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Abstract

In speaker recognition, deep neural networks deliver state-of-the-art performance due

to their large capacities and powerful feature extraction abilities. However, this perfor-

mance can be highly affected by interference from background noise and other speakers.

This thesis focuses on new neural network architectures that are designed to overcome

such interference and thereby improve the robustness of the speaker recognition system.

In order to improve the noise robustness of the speaker recognition model, two

novel network architectures are proposed. The first is the hierarchical attention net-

work, which is able to capture both local and global features in order to improve the

robustness of the network. The experimental results show it can deliver results that

are comparable to the published state-of-the-art methods, reaching 4.28% equal error

rate using the Voxceleb1 training and test sets. The second approach is the speech

enhancement and speaker recognition joint system that consists of two networks; the

first integrates speech enhancement and speaker recognition into one framework to

better filter out noise, while the other makes further use of speaker embeddings in-

put to a speech enhancement network. This provides prior knowledge for the speech

enhancement network which improves its performance. The results show that a joint

system with a speaker dependent speech enhancement model can deliver results that

are comparable to the published state-of-the-art methods, reaching 4.15% equal error

rate using the Voxceleb1 training and test sets.

In order to overcome interfering speaker, two novel approaches are proposed. The

first is referred to as the embedding de-mixing approach that separates the speaker
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and content properties from a two-speaker signal in an embedding space, rather than

in a signal space. The results show that the de-mixed embeddings are close to the

clean embeddings in terms of quality, and the back-end speaker recognition model can

make use of the de-mixed embeddings to reach 96.9% speaker identification accuracy,

compared to those achieved using clean embeddings (98.5%) on TIMIT dataset. The

second approach is the first end-to-end weakly supervised speaker identification ap-

proach based on a novel hierarchical transformer network architecture. The results

show that the proposed model can capture speaker properties from two speakers in

one input utterance. The hierarchical transformer network can reach more than 3%

relative improvement compared to the baselines in all of the test conditions.
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& Alumäe (2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



LIST OF FIGURES xiv

3.1 High level illustration of the hierarchical architecture. . . . . . . . . . . 67

3.2 The architecture of frame-level encoder with attention to the mth segment. 70

3.3 The DET curve (introduced in Section 2.2.3) on the SWBC dataset

when the utterance length is 3 seconds. . . . . . . . . . . . . . . . . . . 79

3.4 Embedding visualization using t-SNE. In the SWBC dataset, 10 speakers

are selected and 500 three-second segment are randomly sampled for

each speaker. Each color represents a speaker, and each point indicates

an utterance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Visualisation of attention weights. (a) the original spectrogram, (b) the

noise corrupted spectrogram, (c) the global attention weights for the

original spectrogram, (d) the global attention weights for the corrupted

spectrogram, (e) the H-vector attention weights for the original spectro-

gra and (f) the H-vector attention weights for the corrupted spectrogram.

Note that the number of the attention weights in the attentive X-vector

is 300 (there are 300 frames in the input data) and the number of the

segment-level attention weights in H-vector is 10 (10 segment vectors).

In order to compare the attention weights, the attention weights of the

attentive X-vector are divided into 10 groups using a sliding window

(with window size Lwin and step size Lstep). The values for each group

are averaged, results in 10 attention weight values. . . . . . . . . . . . . 90

4.1 The overall structure of the joint training framework of the speech en-

hancement and speaker recognition models. . . . . . . . . . . . . . . . . 98

4.2 The multi-stage attention mechanism. . . . . . . . . . . . . . . . . . . . 102

4.3 Architecture of the proposed approach consisting of two steps (Step1 and

Step2), each of which contains a speech enhancement model (SE-Net1

and SE-Net2) and a speaker recognition model (SR-Net1 and SR-Net2).

The input is a spectrogram corrupted by noise. A speaker identity and

an enhanced spectrogram are the output. . . . . . . . . . . . . . . . . . 113



LIST OF FIGURES xv

4.4 Structure of the speech enhancement model, which is built on a resid-

ual/skip auto-encoder networks and is used in both Step1 and Step2.

The speaker embedding is used only in SE-Net2. . . . . . . . . . . . . . 116

4.5 Comparison of spectrograms (a) original speech; (b) speech corrupted

by noise; (c) enhanced spectrogram obtained using the SE-Net1; (d)

enhanced spectrogram obtained using the SE-Net2. . . . . . . . . . . . 122

5.1 The diagram of the embedding de-mixing approach. . . . . . . . . . . . 133

5.2 The work flow of the embedding de-mixing approach. . . . . . . . . . . 135

5.3 Different implementation strategies of the de-mixing function fdemix:

(a) subtraction; (b) multiplication; (c) concatenation with one fully-

connected layer (d) concatenation with two fully-connected layers; (e)

shared fully-connected layer with concatenation; (f) separated fully-

connected layer with concatenation. . . . . . . . . . . . . . . . . . . . . 136

6.1 A diagram of the end-to-end weakly supervised speaker identification task.171

6.2 The illustration of the data construction process. (a): Concat; (b):

Overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 The EERs (%) obtained using four models: X-vectors, attentive X-

vectors, H-vector with static window and H-vector with sliding window

under different test conditions on the four designed datasets for the

Concat scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.4 The EERs (%) obtained using four models: X-vectors, attentive X-

vectors, H-vector with static window and H-vector with sliding window

in different test conditions on the four designed datasets in the Overlap

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



LIST OF FIGURES xvi

6.5 The visualisation of the attention weights: (a) the spectrogram of Speaker

One, (b) the spectrogram of Speaker Two, (c) the spectrogram of Mixed

Signal, (d) the attention weights of the segment-level attention in H-

vector model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.6 The architecture of the hierarchical transformer network. . . . . . . . . 187

6.7 The architecture of the transformer encoder block with memories (Vaswani

et al. 2017, Dai et al. 2019). . . . . . . . . . . . . . . . . . . . . . . . . 189

6.8 The EERs (%) obtained using the five models in different test conditions

on the four designed datasets: SWBC-S, SWBC-L, Vox-S and Vox-L in

Concat Scenario. For all of the figures, the x-axis represents the number

of speakers in test utterance. . . . . . . . . . . . . . . . . . . . . . . . . 193

6.9 The EERs (%) obtained using the five models under different test con-

ditions on the four designed datasets: SWBC-S, SWBC-L, Vox-S and

Vox-L in Overlap scenario. For all the figures, the x-axis represents the

number of speakers in the test utterance. . . . . . . . . . . . . . . . . . 195

6.10 Multi-head attention weights. (a) the spectrogram of Speaker One, (b)

the spectrogram of Speaker Two, (c) the spectrogram of Mixed Signal,

(d) the multi-head attention weights of the in T-vector model. . . . . . 201

6.11 Attention weights. (a) the spectrogram of Speaker One, (b) the spec-

trogram of Speaker Two, (c) the spectrogram of Mixed Signal, (d) the

multi-head attention weights of in T-vector model. . . . . . . . . . . . . 202

A.1 The architecture of the speaker and content de-mixing network. . . . . 246



List of Tables

2.1 Part of the state-of-the-art speaker verification results on the Voxceleb1

test set when using Voxceleb1 for training only. . . . . . . . . . . . . . 56

2.2 Speaker identification accuracy (%) and verification EER (%) for differ-

ent noise types (Noise, Music and Babble) at different SNR (0-20 dB),

and the original Voxceleb1 test set using the X-vector model. . . . . . . 61

3.1 The details of three speech datasets: Part1 of Sre2008 (SRE08), Call-

Home(CHE) and Switchboard(SWBC) . . . . . . . . . . . . . . . . . . 73

3.2 Speaker identification accuracy (%) on the SRE08 test set with the ut-

terance length is 1s or 3s. Lwin and Lstep are set to 30 frames. Improve

represents the relative improvement (%) of the speaker identification

accuracy compared to the X-vector model in 1 or 3 second scenarios. . 75

3.3 Speaker identification accuracy (%) and speaker verification EER (%) on

CHE dataset when the utterance length is 1s or 3s. Lwin and Lstep are

set to 30 frames. “Improve Acc” represents the relative improvement

(%) of the speaker identification accuracy compared to the X-vector

model in 1 or 3 second scenarios. “Improve EER” represents the relative

improvement (%) of the speaker verification EER compared to the X-

vector model in 1 or 3 second scenarios. . . . . . . . . . . . . . . . . . . 76

xvii



LIST OF TABLES xviii

3.4 Speaker identification accuracy (%) and speaker verification EER (%) on

SWBC dataset when the utterance length is 1s or 3s. Lwin and Lstep are

set to 30 frames. “Improve Acc” represents the relative improvement

(%) of the speaker identification accuracy compared to the X-vector

model in 1 or 3 second scenarios. “Improve EER” represents the relative

improvement (%) of the speaker verification EER compared to the X-

vector model in 1 or 3 second scenarios. . . . . . . . . . . . . . . . . . . 77

3.5 Speaker identification accuracy (%) and speaker verification EER (%)

on Voxceleb1 test set with the utterance length is 1s or 3s. Lwin and

Lstep are set to 30 frames. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Speaker identification accuracies (%) for different noise types (Noise,

Music and Babble) at different SNRs (0-20 dB), and the original Vox-

celeb1 test set. The utterance length is 3 seconds. Lwin and Lstep are

set to 30 frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Speaker verification EER (%) for different noise types (Noise, Music and

Babble) at different SNRs (0-20 dB), and the original Voxceleb1 test set.

The utterance length is 3 seconds. Lwin and Lstep are set to 30 frames. 86

3.8 Speaker identification accuracy (%) and speaker verification EER (%)

on Voxceleb1 dataset when the window size Lwin is changed from 15 to

35 frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Speaker identification accuracy (%) and speaker verification EER (%)

on Voxceleb1 dataset when the step size Lstep is changed from 15 to 35

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.10 Comparison of the proposed approach with the state-of-the-art speaker

verification results on the Voxceleb1 test set when using Voxceleb1 for

training only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



LIST OF TABLES xix

4.1 Speaker identification accuracies (Top-1 (red) and Top-5 (yellow) accu-

racies %) on the Voxcebe1 test data, corrupted by three types of noise

(Noise, Music and Babble) at different SNR (0-20 dB) levels. Five differ-

ent scenarios are tested: SR, SEP, SE+SR, SE-MS+SR and SE+SR-MS. 105

4.2 Speaker verification EERs (%, blue) and DCFs (green) on Voxceleb1 test

data, corrupted by different types of noise (Noise, Music and Babble) at

different SNRs (0-20 dB). Six different scenarios are tested: SR, SEP,

VoiceID, SE+SR, SE-MS+SR, SE+SR-MS. . . . . . . . . . . . . . . . 106

4.3 The comparison of the speaker identification accuracies (top-1 accuracy

%) obtained by the different attention mechanisms in the multi-stage

attention mechanism. T, F, C represents the independent computation

of time, frequency and channel attentions respectively. The C-F-T in-

dicates the order of the three attention mechanisms, being the channel

attention first, then the frequency attention, and finally the time atten-

tion. The SNR of the noises are 0dB. . . . . . . . . . . . . . . . . . . . 108

4.4 The comparison of the speaker identification accuracies (top-1 accuracy

%) obtained by different orders of the time, frequency and channel at-

tentions in the multi-stage attention mechanism. T, F, C represents

the independent computation of time, frequency and channel attentions.

The C-F-T indicates the order of the three attention mechanisms in the

multi-stage attention and, in this case, it is the channel attention first,

then the frequency attention, and finally the time attention. The SNR

of the noises are 0dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Comparison of Top-1 (red) and Top-5 (yellow) accuracies % obtained us-

ing four different methods (SR,VoiceID, SESR-Step1 and SESR-Step2)

under various noise conditions. . . . . . . . . . . . . . . . . . . . . . . . 119



LIST OF TABLES xx

4.6 Comparison of speaker verification EERs (%, blue) and DCFs (green)

obtained using four different methods (SR,VoiceID, SESR-Step1 and

SESR-Step2) under various noise conditions. . . . . . . . . . . . . . . . 120

4.7 Comparison of PESQ scores obtained using the proposed approaches

and baselines under various music noise conditions. . . . . . . . . . . . 121

4.8 Comparison of STOI scores obtained using the proposed approaches and

baselines under various music noise conditions. . . . . . . . . . . . . . . 121

4.9 Comparison of the speaker dependent speech enhancement approach

(SESR-Step2) with the state-of-the-art with the Voxceleb1 test set, using

Voxceleb1 for training only. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1 The cosine similarity score and speaker identification accuracy when us-

ing the estimated embedding of target speaker e
′
s1. “Before” denotes the

cosine similarity or speaker identification directly using emix. “Clean”

de- notes the cosine similarity or speaker identification using es1 that is

extracted from clean speech. . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 The cosine similarity and speaker identification accuracy when using the

estimated embedding of interfering speaker e
′
s2. “Before” denotes the

cosine similarity or speaker identification directly using emix. “Clean”

denotes the cosine similarity or speaker identification using es2 extracted

from clean speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 The cosine similarity and speaker identification results on MC-WSJ

dataset in microphone M1 and M2. . . . . . . . . . . . . . . . . . . . . 147

5.4 Spoken word identification accuracy on the Speech Command dataset

when using the estimated embedding of target content e
′
c1. “Before”

denotes the word identification directly using emix. “Clean” denotes

word identification using ec1 that is extracted from clean speech. . . . . 151



LIST OF TABLES xxi

5.5 Spoken word identification accuracy on the Speech Command when us-

ing the estimated embedding of interfering content e
′
c2. “Before” denotes

the word identification directly using emix. “Clean” denotes word iden-

tification using ec2 that was extracted from clean speech. . . . . . . . . 152

5.6 Speaker identification and cosine similarity results when using the con-

tent embeddings to obtain the speaker embeddings. “Before” denotes

the speaker identification directly using emix. “Clean” denotes speaker

identification using es2 that was extracted from clean speech. . . . . . . 158

5.7 Speaker identification and cosine similarity results when using the con-

tent embeddings to obtain the speaker embeddings. The level of the

speaker interference is fixed at 5dB. “Before” denotes the speaker iden-

tification directly using emix. “Clean” denotes speaker identification

using es2 that was extracted from clean speech. . . . . . . . . . . . . . 159

5.8 Phone classification and cosine similarity results when using the speaker

embeddings to obtain the phone embeddings. “Before” denotes the

phone classification directly using emix. “Clean” denotes phone clas-

sification using ec2 that was extracted from clean speech. . . . . . . . . 160

5.9 Phone classification and cosine similarity results when using the speaker

embeddings to obtain the phone embeddings in different noise condi-

tions, the interference from the other speaker is fixed at 5dB. “Before”

denotes the phone classification directly using emix. “Clean” denotes

phone classification using ec2 that was extracted from clean speech. . . 161

5.10 Continuous phone recognition results using the phone embeddings ob-

tained by the speaker embeddings. The phone error rate (PER) is re-

ported. “Before” denotes the phone recognition directly using emix.

“Clean” denotes phone recognition using Ec2 that was extracted from

clean speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



LIST OF TABLES xxii

6.1 Details for the construction of the four datasets: SWBC-S, Vox-L, SWBC-

S and Vox-L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2 The EERs (%) of the proposed H-vector architecture using different

window sizes (from 10 to 30 frames), while the step size is kept at 10

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.3 The EERs (%) of the proposed H-vector architecture using different step

sizes (from 5 to 25 frames), while the window size is kept at 20 frames. 181

6.4 The EERs (%), with and without using the memory mechanism in the

T-vector model. The window size ranges from 20 to 30 frames. . . . . . 196

6.5 The EERs (%) of the T-vector and the H-vector models in close- and

open-set weakly supervised speaker identification tasks. The window

size for the two models is kept at 25 frames, and the step size is kept at

10 frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.6 The EERs (%) of the proposed T-vector model and the H-vector model

in Concat, Overlap scenarios, as well as the scenario that the input

utterances have random overlap rate for each speaker. . . . . . . . . . . 199

A.1 The implementation details of the proposed hierarchical attention net-

work, where Lwin denotes the segment length, M denotes the number of

segments in one utterance. . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.2 Architecture of the speech enhancement network (SE-Net) that consists

of 11 blocks. In each block, a dilated convolutional layer is followed by

a multi-stage attention (MS) layer. . . . . . . . . . . . . . . . . . . . . 240

A.3 Architecture of SR-Net consists of 8 blocks. Within each block, the mul-

tiple convolutional layers are followed by a multi-stage attention (MS)

layer before a residual connection. . . . . . . . . . . . . . . . . . . . . . 241



LIST OF TABLES xxiii

A.4 The encoder architecture of the proposed speaker dependent speech en-

hancement approach, where T , F , C represents the time, frequency and

feature dimensions. The number of features and strides on each dimen-

sion are shown as Feature/Strides. . . . . . . . . . . . . . . . . . . . . . 243

A.5 Architecture of the speaker recognition module that is used for learning

clean embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A.6 Architecture of the proposed hierarchical attention network architecture,

where N denotes the total number of speakers, Lwin denotes the segment

length, M denotes the number of segments in one utterance. . . . . . . 247

A.7 The architecture of the proposed hierarchical transformer network, where

N denotes the total number of speakers, T represents the whole sequence

length, Transformer represents one transformer encode block, Lwin de-

notes the segment length, M denotes the number of segments in one

utterance, d denotes the output dimension of each transformer encoder

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.1 The 35 unique words and the number of occurrences in the speech com-

mand dataset, from Warden (2018). . . . . . . . . . . . . . . . . . . . . 254



Acronyms / Abbreviations

GMM Gaussian Mixture Model
UBM Universal Background Model
SVM Support Vector Machine
JFA Joint Factor Analysis
I-vector The Identity Vector
DNN Feed Forward Neural Network
MLP Multi Layer Perceptron
Sigmoid Sigmoid Activation Function
ReLU Rectified Linear Unit
Tanh Hyperbolic Tangent
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory
GRU Gated Recurrent Unit
GPU Graphics Processing Unit
STFT Short Term Fourier Transform
DCT Discrete Cosine Transform
MFCC Mel-Frequency Ceptral Coefficients
A-softmax Angular Softmax
AM-softmax Additive Margin Softmax
AAM-softmax Additive Angular Margin Softmax
EER Equal Error Rate
DET Detection Error Tradeoff
DCF Detection Cost Function
Voxceleb1 The Voxceleb1 Dataset
SWBC The Switchboard Cellular Part1 Dataset
MUSAN The MUSAN Dataset
SRE08 The NIST SRE 2008 Part1 Dataset
CHE The CallHome American English Speech Dataset
TIMIT The TIMIT Dataset
MC-WSJ The Multi-Channel Wall Street Journal Audio Visual Corpus

xxiv



ACRONYMS/ ABBREVIATIONS xxv

H-vector The Hierarchical Attention Network
SE-Net The Speech Enhancement Model
SR-Net The Speaker Recognition Model
MS The Multi-Stage Attention Mechanism
PESQ The Perceptual Evaluation of Speech Quality Measurement
STOI The Short-Time Objective Intelligibility Measurement
PER Phone Error Rate
T-vector Hierarchical Transformer Network



List of Symbols

α The attention weight vector as defined in Section 2.3.2
αt The attention weight value at tth time step
αm The normalized attention score vector for Hm

in H-vector of Chapter 3
αS The attention weight vector of the segment-level encoder

in H-vector of Chapter 3
αC,k The channel attention weight vector of

the multi-stage attention model
αF,k The frequency attention weight vector of

the multi-stage attention model
αT,k The time attention weight vector of

the multi-stage attention model
Am The weighted output of the mth frame-level encoder in H-vector
avg(.) Average pooling operation
avgT×F×C The average pooling operation with the kernel size of T × F × C
[a; b] The concatenation of the vectors a and b
b A bias vector
B The batch size
Broad(.)T×F The broadcasting function with target dimension of T × F
C The dimensionality of the channel dimension
Conv2×7×2 The convolutional operation with the kernel size of 2× 7× 2
d The dimensionality of the embeddings
eSm The segment vector of the mth segment in H-vector
ES The sequence of the segment vectors in H-vector
E The dimension of the feature vector of H

as defined in Section 2.2.4
eu The utterance vector in H-vector
eX1 The embedding obtained in step1 in Section 4.4
eX2 The embedding obtained in step2 in Section 4.4
emix The mixed embedding

xxvi



LIST OF SYMBOLS xxvii

es1 The clean embedding of the speaker1
e

′
s1 The predicted embedding of the speaker1

es2 The clean embedding of the speaker2
e

′
s2 The predicted embedding of the speaker2

ec1 The clean embedding of
the spoken content by the speaker1

e
′
c1 The predicted embedding of

the spoken content by the speaker1
ec2 The clean embedding of

the spoken content by the speaker2
e

′
c2 The predicted embedding of

the spoken content by the speaker2
f(.) A mapping function
F The dimensionality of the frequency dimension
fdemix(.) The de-mixing function
G The number of speakers in

one input utterance Xmix in Chapter 6
H The hidden states, hidden layer output

or refined feature map
ht The hidden state at the tth time step
Hm The output of the mth frame-level encoder
Hk The input feature map of the kth CONV-MS block

or RES-MS block

H
′

k The output feature map of the channel attention

H
′′

k The output feature map of the frequency attention

H
′′′

k The output feature map of the time attention
hi The ith attention head
h The number of the attention heads
J The number of inputs of a perceptron
K The Key matrix
L The length of the feature sequence H

in attentive X-vector
L Loss function
Lwin The window size in H-vector
Lstep The step size in H-vector
M Total number of segments in H-vector model
max(.) Max pooling operation
maxT×F×C The max pooling operation with

the kernel size of T × F × C



LIST OF SYMBOLS xxviii

MultiHead(Q, K, V ) The multi-head attention mechanism of Q, K and V
N Total number of speakers or total number of classes
PE(.) The positional encoding operation
Q The Query matrix
q The one’s vector or matrix
ReLU(.) ReLU activation function
Sigmoid(.) Sigmoid activation function
Sm The mth segment
T The dimensionality of the time dimension
Tanh(.) Tanh activation function
V The Value matrix
W A weight matrix
X The input sequence
xt A feature vector at time t in X
XN ∈ RT×F×C Noisy input spectrogram of

the dimensionality of T × F × C

X
′

C1 The enhanced spectrogram for step1 in Section 4.4

X
′

C2 The enhanced spectrogram for step2 in Section 4.4
Xmix The mixed signal
y Ground truth label
y One hot vector of the ground truth label
yx The label vector of Xmix

y
′
x The predicted score vector for Xmix

θ The model parameters
η The learning rate
τ The threshold
∇(w) The gradient of parameter w
σ(.) Activation function



Chapter 1

Introduction

Speaker recognition aims to recognise the identities of speakers from the corresponding

characteristics of their voices (Campbell 1997, Markel et al. 1977). The fact that a per-

sons’ voice contains unique traits makes automatic speaker recognition by computers

possible (Kinnunen & Li 2010). Speaker recognition is useful and has a wide range of

applications (Bai & Zhang 2021). For example, in the security domain, speaker recog-

nition systems provide a step towards identity authorisation, thereby making an online

payment system or a personal electronic device more secure (Peacocke & Graf 1995).

Moreover, the speaker related information that is learned from a speaker recognition

system (referred to as the speaker embeddings) can also benefit many downstream

tasks in speech technology. For example, the information in the speaker embeddings,

captured by a speaker recognition system, can be fed into a speaker dependent au-

tomatic speech recognition (ASR) system in order to better recognise specific target

speakers (Huang & Lee 1993, Fontaine & Bourlard 1997). Furthermore, in speaker

dependent text to speech synthesis (TTS) systems, the learned speaker embeddings

can help the model to better synthesis the voices of the target speakers (Sreenu et al.

2004, Hojo et al. 2016).

The most common approach in speaker recognition is to represent a variable length

signal into a fixed length speaker embedding that can then be used to identify the

1
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speakers. Conventionally, the GMM based i-vector approach achieved the state-of-the-

art performance in speaker recognition (Dehak et al. 2010). In recent years, due to the

strong ability of extracting and representing features, deep learning techniques have

been widely adopted (Poddar et al. 2017). Deep neural networks can be built both

larger and deeper in order to be trained with large amounts of data, which improves

their feature representation and speaker recognition abilities (Zhang 2017, Lei et al.

2014), and this has led to deep neural networks to become the state-of-the-art method

now (Variani et al. 2014, Snyder et al. 2018).

However, deep neural network and other machine learning approaches still suffer

from the effects of background noise. According to Zhao et al. (2014) and Ming et al.

(2007), speaker recognition systems based on deep neural networks perform well in clean

conditions, but performance deteriorates under noisy conditions when the background

noise potentially covers up (or masks) the information of the speaker’s voice. This can

affect some key features that make it difficult for deep neural networks to recognise

speaker identities.

Another challenge comes from interfering speakers which, according to Le Prell &

Clavier (2017), can compete for the same frequency band as the target speaker (i.e.

the speaker that the system needs to recognise), making it difficult for the system to

distinguish between the elements of the target speaker and those from the interfering

speakers.

In order to overcome these challenges, this thesis focuses on developing new deep

neural network architectures to improve the robustness of a speaker recognition system

against background noise and interfering speakers.
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1.1 Proposed Methods

1.1.1 Hierarchical Attention Network

One way to improve the robustness of the speaker recognition models in noisy condi-

tions is to use an attention mechanism that is built into the network architecture. The

attention mechanism can allocate different weight values to different parts of the signal,

thereby allowing the model to focus more on what is important, and less on what is

corrupted (Anwar & Barnes 2019, Zhang et al. 2020). The most widely used attention

mechanism in speaker recognition is global self-attention, which uses attention weights

for the whole input sequence (Wang, Okabe, Lee, Yamamoto & Koshinaka 2018, Okabe

et al. 2018). The limitation here, however, is with longer sequences, where the global

self-attention is unable to focus on all the important features in a input signal and, in

particular, it is unable to pay sufficient attention to the local features. This is explored

in more detail in Section 2.3.2.

In order to overcome the problems mentioned above, Chapter 3 proposes a hierar-

chical attention network to generate robust, utterance-level embeddings (H-vectors) for

speaker recognition. The proposed method splits the global self-attention into two lev-

els: frame-level and segment-level. Such a hierarchical structure aims to learn speaker

related information both locally and globally. The experimental results show that

the proposed method can obtain better noise robustness than the global self-attention

mechanism, and can deliver results comparable to the published state-of-the-art meth-

ods.

The contributions of Chapter 3 are:

� Introduces a hierarchical attention network that can capture both local and global

features to improve the noise robustness of the speaker recognition system.

� The proposed hierarchical attention network contains novel model architectures

that can deliver results comparable to the published state-of-the-art model.
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1.1.2 Speech Enhancement For Speaker Recognition

Speech enhancement is widely used to overcome noise interference. Unlike the at-

tention mechanism, speech enhancement is usually used independently, ahead of the

speaker recognition model, working as a pre-processing stage that filters out the noise

information. The denoised signal can then be used as input to the speaker recognition

model. The disadvantage of such a set-up is that deploying speech enhancement and

speaker recognition separately may lead to a mismatch problem, discussed in more

depth in Section 2.3.3. The mismatch problem, caused by the fact that the two mod-

els are trained separately, means the speech enhancement model may corrupt some

of the important speaker information when filtering out the noise interference. The

speech enhancement model does not have the constraint to retain useful features for

the back-end speaker recognition model (Shon et al. 2019, Wang & Wang 2016, Sadjadi

& Hansen 2010).

In order to overcome the mismatch problem and improve the performance of the

speaker recognition models in noisy conditions, Chapter 4 proposes two architectures

that jointly train the two models.

In the first joint training system, the speech enhancement and the speaker recogni-

tion models are trained together using one objective function. The goal of the training

is to not only filter out the noise information, but also retain the useful features for

the back-end speaker recognition model. For a greater level of robustness, a novel,

multi-stage attention mechanism is proposed, which applies the attention mechanism

in different dimensions of the input data to filter out noise interference in those dif-

ferent dimensions. The experimental results show the joint training system can ease

the mismatch problem and can reach better performance than the separate training

strategy.

In order to further improve performance, in the second joint training system, a

speaker dependent speech enhancement approach is proposed, based on the joint train-

ing framework but making use of the pre-trained speaker embeddings. The speaker
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embeddings contain information for the specific speakers which helps the speech en-

hancement model retain more speaker related information. The experimental results

show that the speaker dependent speech enhancement model can reach better per-

formance than the speaker independent speech enhancement model, and can deliver

results comparable to the state-of-the-art methods.

The contributions of Chapter 4 are:

� Introduces a novel joint training system for the speech enhancement and speaker

recognition models to improve the performance of the speaker recognition model

under noisy conditions.

� Introduces a novel, multi-stage attention mechanism that is applied across the

time, frequency and channel dimensions in order to better filter out the noisy

information in the input signal.

� Introduces a novel, speaker dependent speech enhancement model to filter out

the noise information in the input signal, thereby improving the performance of

the speaker recognition model under various noise interference conditions.

� Introduces a residual auto-encoder model architecture, combining the pre-trained

speaker embeddings to achieve a speaker dependent speech enhancement ap-

proach.

1.1.3 Embedding De-mixing Networks

Interference from speech by other speakers is particularly challenging as they often

compete for the same frequency band as the target speaker, making it difficult for

speaker recognition system to pick out the elements of the target speaker. The most

common approach to overcome this problem is the target speaker extraction method

which isolates the voice of the target speaker from a multi-speaker signal (see Section

2.4.2). The ideal output contains the target voices only. However, when the goal is
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to improve the performance of the back-end speaker recognition model in a multi-

speaker environment, it may not be necessary to separate the target speaker’s voice

and construct it in signal space. Instead, separating the target speaker’s information

in an embedding space may be more efficient. One advantage of separating the target

speaker’s information in an embedding space is that it does not require a decoding

process, which reduces the complexity of the model and makes it easier to train, as

do the fixed length, low dimensional embeddings. The back-end model does not need

to learn the mapping from the signal to the speaker identities, but rather from the

embeddings to the speaker identities.

Judging by a review of the literature, the approach of separating speaker properties

in an embedding space, as laid out in Section 2.4.2, has never before been proposed.

Chapter 5 introduces the first approach that can separate the overlapped informa-

tion in a two-speaker signal into embeddings space, which is further referred to as

the embedding de-mixing approach. The proposed approach not only filters out the

information of one speaker using the corresponding embeddings, but also can extract

the speaker information or content information based on the corresponding content or

speaker embeddings. The contributions of Chapter 5 are:

� Introduces the first approach that can separate the speaker and content properties

in the embedding space rather than in the signal space. The proposed approach

covers three scenarios.

� Introduces a speaker embedding de-mixing approach that can filter out the influ-

ence of the interfering speaker in a two-speaker signal using pre-trained embed-

dings. The results from the de-mixed speaker embedding approach come close

in the speaker identification task to what the system can achieve with a clean

signal.

� Introduces a content embedding de-mixing approach that can filter out the spo-

ken content information from the interfering speaker using the corresponding
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pre- trained embeddings. The de-mixed content embedding delivers comparable

results in the content classification task to those obtained using clean signals.

� Introduces a speaker and content embedding de-mixing approach that is used to

extract the speaker or content properties of the target speaker by the embed-

dings. Both of the de-mixed content embeddings and the the de-mixed speaker

embeddings can deliver results that are comparable to those obtained using clean

signals.

1.1.4 Weakly Supervised Speaker Identification

In a conversation scenario that multiple speakers speaking at the same time, it is useful

if a system can recognise the identities of all the speakers present. In this case, there

is no target speaker, so the model needs to recognise all of the speakers that occur

in the input utterance. A natural way to achieve this is to manually annotate the

speaker identities and positions of the multi-speaker signal in the training set, but this

is expensive and time consuming. Using a pre-trained speaker diarization system is

also an option, but that still requires manually annotated data for training purposes. A

better option is to apply weakly supervised learning, end-to-end, using coarse grained

labels or utterance-level labels. This can make direct use of the training data that only

contains a set of speaker identity labels, but no time information. This can reduce the

cost, and make use of a large amount of training data without the need for manually

annotated time labels for each speaker.

Chapter 6 proposes the first end-to-end weakly supervised speaker identification

approach. Firstly, the developed hierarchical attention network (proposed in Chapter

3) is adapted to the weakly supervised speaker identification task since it was shown to

be more robust in noisy conditions. The experimental results show that, although the

hierarchical attention network can deliver better performance than the widely used X-

vector and attentive X-vector baselines, it cannot capture multiple speaker properties

from one input utterance.



CHAPTER 1. INTRODUCTION 8

In order to overcome this problem and obtain better performance, a novel hier-

archical transformer network is proposed that captures the information from multi-

ple speakers in a single input utterance through the use of the multi-head attention

mechanism. The experimental results show the multi-head attention mechanism can

capture the information of two speakers from a two-speaker signal. Another advantage

of the hierarchical transformer network is the novel memory mechanism that allows

the frame-level encoders to share information, which can help the model to capture

multiple speaker information and improve the performance.

The contributions of Chapter 6 are:

� Introduces the first end-to-end weakly supervised speaker identification approach

that can directly learn from the coarse grained labels of the multi-speaker input

signals.

� Introduces a weakly supervised training strategy of the hierarchical attention

network.

� Introduces a novel hierarchical transformer network that makes use of the multi-

head attention mechanism to capture the features of multiple speakers in a single

input utterance.

� Introduces a memory mechanism in the hierarchical transformer network that

can store and share information between each frame-level encoder to deliver a

better performance.

1.1.5 List of Publications

The publications refer to the works presented in this thesis are:

� Shi, Y., Huang, Q. & Hain, T. “H-VECTORS: Utterance-Level Speaker Embed-

ding Using A Hierarchical Attention Model” in “ICASSP 2020-2020 IEEE In-
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ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)”,

IEEE, pp. 7579–7583.

� Shi, Y., Huang, Q. & Hain, T. Robust speaker recognition using speech en-

hancement and attention model, in “Odyssey 2020 The Speaker and Language

Recognition Workshop” pp. 451–458.

� Shi, Y., Huang, Q. & Hain, T. “Speaker re-identification with speaker dependent

speech enhancement”, in Interspeech 2020 pp. 1530–1534.

� Shi, Y., Huang, Q. & Hain, T. “Weakly supervised training of hierarchical atten-

tion networks for speaker identification”, in Interspeech 2020 pp. 2992–2996.

� Shi, Y. & Hain, T. “Supervised speaker embedding de-mixing in two-speaker en-

vironment”, in “IEEE Spoken Language Technology Workshop 2021 (SLT2021)”,

pp 758-765.

� Shi, Y. & Hain, T. “Contextual joint factor acoustic embeddings”, in “IEEE

Spoken Language Technology Workshop 2021 (SLT2021)”, pp 750-757.

� Chen, M., Shi, Y. Huang, Q. & Hain, T. “Towards Low-Resource StarGan Voice

Conversion Using Weight Adaptive instance Normalization” in “ICASSP 2021-

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP)”

� Shi, Y., Huang, Q. & Hain, T. “H-VECTORS: Improving the Robustness in

Utterance-level Speaker Embedding Using A Hierarchical Attention Model” in

“Neural Networks – Special Issue on Advances in Deep Learning Based Speech

Processing”.

� Shi, Y., Huang, Q. & Hain, T. “Weakly supervised speaker desertification in

multi-speaker scenarios with hierarchical speech segment encoding” in “the spe-
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cial issue of Computer Speech and Language on Separation, Recognition, and

Diarization of Conversational Speech” (submitted on review).

1.2 Thesis Outline

The remainder of this thesis is organised as follow:

� Chapter 2 discusses the literature on deep learning based speaker recognition

methods, including the input features, loss functions, evaluation metrics and deep

neural network architectures. There then follows a discussion on the impact of

background noise and interfering speakers, and the ways in which the developed

methods, including the attention mechanism, speech enhancement, target speaker

extraction and weakly supervised speaker identification, are designed to overcome

these two issues. The datasets that were used for the experiments are introduced.

Finally, a baseline system is built to show how background noise can influence

the performance of deep neural network models.

� Chapter 3 proposes the hierarchical attention network. The model generalisa-

tion ability and the noise robustness of the hierarchical attention network are

evaluated.

� Chapter 4 proposes two novel joint speech enhancement and speaker recognition

systems. The first contains a joint training framework and a novel multi-stage

attention mechanism; the second is the speaker dependent speech enhancement

model, which makes use of the pre-trained embedding to deliver better perfor-

mance.

� Chapter 5 proposes the first embedding de-mixing approach, which includes the

speaker embedding de-mixing, content embedding de-mixing, and speaker and

content embedding de-mixing approaches.
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� Chapter 6 proposes the first end-to-end weakly supervised speaker identification

method. The developed hierarchical attention network is firstly adapted to this

task, and then a novel hierarchical transformer network is proposed to further

improve the performance.

� Chapter 7 provides a conclusion for the whole thesis.



Chapter 2

Automatic Speaker Recognition

The goal of speaker recognition is to automatically recognise the identity of a speaker

from his/her voice, using computers. According to Campbell (1997) and Kinnunen &

Li (2010), the field broadly divides into two branches, namely speaker identification and

speaker verification. Speaker identification aims to match a speaker from the registered

speakers and assumes that data from the test speakers are available when training

the speaker identification model. The relevant diagram for speaker identification is

shown in Figure 2.1(a), where N speakers are registered by the system in advance.

The speaker identification system takes the input of the test utterance and outputs a

similarity score that measures the similarity between the test utterance and the voices

of all the registered speakers. The identity of the speaker of the test utterance is

classified into the same class as the registered speaker who obtains the highest score.

This is a closed-set task, where the speakers in the enrollment database are registered

beforehand (Reynolds 2002, Hansen & Hasan 2015). There is also an open set version in

which, when none of the registered speakers matches the test speaker, the test speaker

can be classified as “unknown” speaker. In this thesis, only the closed-set scenario will

be discussed.

Speaker verification is an open-set task (see Figure 2.1(b)), it aims to authentication

of a claimed identity from measurements on the voice signal. One of the most commonly

12
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(a): The diagram of a speaker identification system

(b): The diagram of a speaker verification system

Figure 2.1: Diagrams of (a): a speaker identification system and (b): a speaker verifi-

cation system.

used application of speaker verification is that the model has no prior information about

the speakers and is simply attempting to ascertain whether or not two input utterances

belong to the same speaker. This system computes a similarity score of the two input

utterances, and a threshold determines whether the two input utterances are spoken

by the same speaker (Jin & Yoo 2010, Campbell 1997).

Speaker recognition can be further divided into text-dependent or text-independent

modes (Jin & Yoo 2010). In the text-dependent mode, the words that are spoken by the

target speakers are pre-defined, while in the text-independent mode, the speakers are

allowed to talk freely (Kinnunen & Li 2010). In this thesis, only the text-independent

mode will be discussed.

According to Reynolds & Rose (1995), one of the earliest speaker identification

systems was based on Gaussian mixture model (GMM). GMM is the combination
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of different Gaussian density functions (PDFs). This method is commonly used to

model multivariate data and, when applied to speaker recognition, it outputs a speaker-

dependent GMM that can then be evaluated, at various data points, to calculate the

similarity between a speaker-dependent GMM and the data of an unknown speaker. In

one of the simplest versions of the GMM-based method, a GMM is generated for each

known speaker. Then, a test utterance is compared to each GMM for known speakers,

and the GMM providing the highest similarity score is then assumed to be the GMM

for the speaker of the test utterance .

In practice, it is difficult to collect enough data to train the GMM for each target

speaker. To address this problem, the GMM-UBM was proposed by Reynolds et al.

(2000). The universal background model (UBM) is used as the “universal” model that

models the background data and the target speaker’s GMM is then adapted using the

maximum a posterior (MAP) method (Greig et al. 1989) by adjusting the parameters

of the trained UBM instead of directly training the GMM for each speaker.

One of the biggest challenges for early speaker recognition systems was to compare

two utterances of different durations. As Markel et al. (1977) pointed out, recognition

effectiveness can be improved by generating and evaluating fixed-dimensional represen-

tations of each utterance. Achieving this opens up the possibility of using any one of a

variety of classifiers developed in various machine learning studies, one of which is to

form a GMM supervector by concatenating the parameters of a GMM model in order

to generate a fixed-dimensional vector from a variable-duration utterance (Kuhn et al.

1998, Kenny et al. 2003). Campbell et al. (2006) found that GMM supervectors can be

successfully deployed for the purposes of speaker identification and verification using

support vector machines (SVMs) (Cortes & Vapnik 1995), whereby the positive exam-

ples were the supervectors generated from the training utterances, while the negative

examples were a set of imposter utterances.

However, according to Campbell et al. (2006), the GMM supervector tends to be

so large that reduces the performance of the back-end classification module, making
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them difficult to train effectively. Furthermore, there is a second problem identified

by Dehak et al. (2010) that conventional GMM-UBM systems are highly sensitive to

variations in the utterances, whether from the channel or from the speaker themselves.

An attempt was made to address these issues by Dehak et al. (2010) who used

joint factor analysis (JFA) (Kenny 2005) to extract speaker features that were used

as input into the SVM classifier (Dehak et al. 2009). Then, speaker and channel (the

signal path) factors can be combined into a single space called the total variability

space, having realised that channel factors can contain speaker-dependent information.

According to Dehak et al. (2010), a speaker and session dependent GMM supervector

can be generated from the total variability space and from the hidden variables. The

hidden variables initially known as the total factors which, while not observable, can

be estimated by their posterior expectation and used as features for the next stage

classifiers. These later became known as identity vectors in speaker identification

systems, or sometimes intermediate vectors, as they are in the intermediate space

between a supervector and an acoustic feature vector. Both cases were then shortened

to i-vectors and this approach, unlike the use of JFA, does not distinguish between

speaker and channel, but is rather a method to reduce the dimensions of the GMM

supervector.

The success of the i-vector eventually led to the extraction of speaker embeddings in

both identification and verification systems (the workflow of which is shown in Figure

2.2) becoming the most widely used approach (Dehak et al. 2009) since fixed length

speaker embeddings can represent speaker features from signals of variable length, mak-

ing the back-end classifier easier to train. The input waveform is first pre-processed

(e.g. using short-term Fourier transform (STFT), see Section 2.2.1) and the acoustic

features are generated using one of the various acoustic feature extraction techniques

(see Section 2.2). After pre-processing, the acoustic features are input into a machine

learning model (or speaker feature extraction method), which extracts the speaker

features and projects them into the embedding space. The output are fixed length



CHAPTER 2. AUTOMATIC SPEAKER RECOGNITION 16

Figure 2.2: The workflow of a speaker embedding extraction method for speaker identi-

fication and speaker verification tasks.

embeddings, known as speaker embeddings. In this workflow, it is the speaker feature

extractor that extracts the i-vector, and the i-vector is equivalent to a speaker em-

bedding. The registered speakers in the speaker identification system are represented

by the speaker embeddings, and the speaker verification system computes the score

between two embeddings, rather than the two utterances.

More recently, deep neural networks, with their large capacities and powerful fea-

ture extraction capabilities allowed for considerable leaps in performance in areas such

as computer vision and natural language processing (Wu & Chen 2015, Singh et al.

2017). Several studies, including Snyder et al. (2018) and Variani et al. (2014) have

demonstrated that deep neural networks out-perform the GMM models with regard

to feature extraction. Thus, in the workflow in Figure 2.2, the speaker feature extrac-

tor can be replaced with a deep neural network, and the speaker embeddings can be

extracted from a bottleneck layer of the deep neural network, which are called deep

speaker embeddings or deep embeddings (Bai & Zhang 2021).

The rest of this chapter is organised as follows:

� Section 2.1 briefly discusses typical deep neural network architectures, including

feed forward neural networks (DNN), convolutional neural networks (CNN) and
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recurrent neural networks (RNN).

� Section 2.2 focuses on the deep learning techniques in speaker recognition, includ-

ing the input features, loss functions, evaluation metrics and the typical neural

network architectures in speaker recognition that have been proposed in recent

years.

� Section 2.3 discusses the issue of the influence of background noise and noise

robust speaker recognition models, using deep learning, that have been developed

in recent years, including attention mechanism and speech enhancement.

� Section 2.4 discusses the techniques for tackling interfering speaker, including

target speaker extraction techniques and weakly supervised speaker identification.

� Section 2.5 introduces widely used datasets that have been recorded under various

conditions.

� In Section 2.6, a baseline system is designed to show how noise can influence

deep learning based speaker recognition systems, and the results are provided,

together with a discussion.

� Section 2.7 provides a summary.
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2.1 Deep Neural Networks

2.1.1 Feed-Forward Neural Network

Deep neural networks have become the state-of-the-art method in the field of speaker

recognition due to their significant capacity, strong feature extraction ability and flex-

ible network architectures (Snyder et al. 2018, Variani et al. 2014, Bai & Zhang 2021).

Feed-forward neural networks (FFN), or multi-layer perceptrons (MLP) is one of

the most basic neural network architectures and, for the purposes of this thesis, the

two terms will be used interchangeably as DNN. It is a bio-inspired model and the

concept dates back to the 1940s (McCulloch & Pitts 1943).

A DNN defines a non-linear mapping y
′

= f(x;θ) from the input data sample x to

the score of the class label y
′
, parameterized by the model parameters θ. The mapping

function f , or the network contains multiple layers of perceptrons. One perceptron

(or neuron) takes J inputs x1, x2, ..., xJ , and computes the weighted sum of the inputs

z =
∑J

i=1 wixi + bi, where wi and bi are the weight and bias to the input xi (Waibel

et al. 1989, Goodfellow et al. 2016). The output is then input to an activation function

that defines the threshold and maps the input to output in a non-linear fashion.

The multilayer perceptron organises the perceptrons into multiple layers. Figure

2.3 shows a diagram of a DNN. With the exception of the input and the last layer, the

inner layers are called hidden layers that non-linearly maps the output of the previous

layer to the next layer: hl = σ(W lhl−1 + bl), where hl and hl−1 denotes the output

of the current and previous layer, W l and bl denotes the weights and bias of the lth

layer, and σ denotes the activation function. A typical sigmoid activation function is

shown in Equation 2.1 (from Ito (1991)).

Sigmoid(z) =
1

1 + e−z
(2.1)

The sigmoid function can map its input to the numbers between zero and one.

Another commonly used activation function is the Hyperbolic Tangent (Tanh), which
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Figure 2.3: The diagram of the DNN with softmax loss function and back propagation.

maps its input to -1 and 1 (Karlik & Olgac 2011).

However, according to Nair & Hinton (2010), both Sigmoid and Tanh activations

can cause a gradient vanishing problem. When the input is large or small, the sigmoid

function will output zero or one, and the Tanh function will output -1 or 1, with a

derivative extremely close to 0 which can cause the DNN to cease learning during the

training stage. Another problem is the computationally expensive problem, where both

sigmoid and Tanh have an exponential operation. To solve these problems, a rectified

linear unit (ReLU) was proposed by Nair & Hinton (2010) (shown in Equation 2.2).

ReLU(x) =

{
0 if x ≤ 0

x if x>0
(2.2)

Typically in a multi-class classification task, in the last layer of the DNN, the model

will output the predicted scores for each of the classes which is modelled by the softmax

function (Bridle 1989). Equation 2.3 shows the softmax function, where zi denotes the

score for the ith class and N denotes the total number of classes. The softmax function

can normalize the output of a DNN and make all of the probabilities sum to one, which
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provides a probability distribution over classes.

Softmax(zi) =
exp(zi)∑N

n=1 exp(zn)
(2.3)

After the output of the softmax function, the cost function or loss function measures

the difference between the predicted scores and the ground truth labels for each class.

The commonly used loss function for multi-class classification tasks is the categorical

cross-entropy loss (shown in Equation 2.4).

L = −
N∑
i=1

yilogy
′

i (2.4)

The softmax function combined with the cross entropy loss is commonly referred to

as the “softmax loss” (Goodfellow et al. 2016) in which y
′
i and yi denotes the predicted

score and the ground truth score for the ith class, i ∈ {1, 2, ..., N}, N is the total

number of classes. The ground truth label is often formulated by the one hot encoding

(Waibel et al. 1989, Hinton & Salakhutdinov 2006, Brownlee 2017) which encodes the

speaker identities into a vector representation that can be directly used by the neural

networks. Suppose y denotes the ground truth label in one hot encoding for an input

data. y has the dimensionality of N , where each dimension contains the ground truth

score for each class, only the positive class has the value of 1, the negative classes have

the values of 0. The predicted scores can also be organised in a similar way, y
′

denotes

the vector of the model prediction for each class, which has the dimensionality of N

and each dimension contains the predicted score of the classes using the DNN (LeCun

et al. 2015).

Having built the neural network architecture, the next step is the optimisation or

training of the neural networks that is implemented by the gradient descent method

(Hinton & Salakhutdinov 2006). The gradient descent is used to find the values of

the neural network parameters that minimises the cost function, thereby reducing the

error between the predicted scores and the ground truth labels to make the DNN

perform better. In practice, gradient descent updates each of the parameters in a
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DNN iteratively (LeCun et al. 2015). Equation 2.5 shows an example of the gradient

descent of a parameter w.

w
′ ← w − η∇(w) (2.5)

For each iteration, w subtracts its gradient ∇(w) that scaled by a scalar number

η which is called the learning rate. The gradient ∇(w) is the partial derivative of the

loss function to the parameter w (Bottou 2012).

According to (Li et al. 2014), the three gradient descent methods – batch (also

known as vanilla), stochastic and mini-batch – differ primarily in the amount of data

they use. Batch gradient descent calculates the error for each data within the training

set and then updates the model once all examples have been evaluated; this cycle is

known as a training epoch. Although this method produces a stable error gradient

and convergence, these are not always the best possible from the model. Furthermore,

as (Ruder 2016) points out, the batch gradient descent model does require the entire

training set to be in the memory and available to the algorithm. The stochastic gradient

descent model (SGD), on the other hand, updates the parameters after each example,

and such frequent updates can make it faster with certain problems (Bottou 2012). The

cost of this is an increase in computational cost, and the increased update frequency

can lead to noisy gradients, with an erratic error rate as opposed to a gradual decrease.

Finally, the mini-batch gradient descent method is a combination of the former two,

splitting the dataset into small batches and updating each in turn, which delivers a

balance between the efficiency of the batch gradient descent and the robustness of the

SGD method. Due to the mention parallel processing in GPUs (Graphic Processing

Unit), mini-batch gradient decent is the most widely used (Li et al. 2014).

In the SGD method, the batch size is one, while in the vanilla gradient descent, the

batch size is the total number of samples in the training set. In this thesis, all of the

proposed models are trained using the mini-batch gradient descent method, and the

batch size is denoted as B.
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2.1.2 Convolutional Neural Network

Convolutional neural network (CNN) is another type of deep neural network architec-

ture in which the basic components are the convolutional kernels and the convolutional

operation. The term ‘convolution’ refers to the mathematical combination of two func-

tions, effectively merging two sets of information, to produce a third function. Equation

2.6 shows the convolutional process of two functions f [x] and g[x] to produce a third

function y[x], where x is defined as a discrete variable, with k being a discrete time, ∗

is the convolution operator and × is ordinary multiplication.

y[x] = f [x] ∗ g[x] =
+∞∑

k=−∞

f [k]× g[x− k] (2.6)

In the case of a CNN, the convolution is performed on the input data with the use

of a filter or kernel to then produce a feature map. Specifically, in a commonly used

two-dimensional CNN, a convolutional kernel can be viewed as a small two-dimensional

matrix, and the input can be viewed as a large two-dimensional matrix (LeCun et al.

1989, Amari et al. 2003, Goodfellow et al. 2016, Khan et al. 2020).

In a CNN, the convolutional layer contains a set of convolutional kernels, each acting

as a single neuron which, according to (Gál et al. 2004), divide the input matrix into

small slices, often known as receptive fields, in order to better extract feature motifs.

Each kernel convolves with the input matrix by multiplying its elements with those

corresponding elements of the receptive field and using a specific set of weights. Figure

2.4 shows an example of the convolutional operation in a two-dimensional CNN. The

values in the kernel multiply with the corresponding values in the input matrix and

the result is a summation of the values. The convolutional kernel moves horizontally

and vertically with a certain step size (known as a stride) to process the whole input

matrix. After the activation function, the result is a new matrix called a feature map

(Goodfellow et al. 2016). A convolutional layer contains multiple kernels, and a CNN

contains a stack of multiple convolutional layers, at the end of which is the DNN that

aggregates the learnings from the convolutional layers (LeCun et al. 2015).
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Figure 2.4: An example of the convolutional operation in CNN.

The two-dimensional CNN was firstly designed for image processing, and many

studies have shown that the convolutional kernels can learn hierarchical features from

low to high levels (Goodfellow et al. 2016, LeCun et al. 2015). The receptive fields of

the convolutional kernels were shown to be larger when in the deeper layers of a CNN,

which helps it to deliver state-of-the-art performance in many tasks, such as image clas-

sification and image segmentation (Krizhevsky et al. 2012, Alam et al. 2015). In speech

processing, as a one-dimensional speech signal can be represented by two-dimensional

spectrograms, with time and frequency axes using the Fourier transform (Oppenheim

et al. 2001), the spectrograms can be viewed as two-dimensional images and the con-

volutional operation introduced above can be applied (Oppenheim et al. 2001, Davis

& Mermelstein 1980). Many studies show the two-dimensional CNN was also success-

fully used for speech processing and reached the state-of-the-art performance in speaker

recognition (Xie et al. 2019, Yu et al. 2019).
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2.1.3 Recurrent Neural Network

A recurrent neural network (RNN) is a feed forward neural network that models the

time series information (Hochreiter & Schmidhuber 1997, Mikolov et al. 2010, Lipton

et al. 2015) by including hidden states spanning adjacent time steps. In order to

capture the sequence information, the RNN stores the features along each step from

the input data into the hidden states, which store the representations of the sequence

information over time, and these representations are updated when the input of a new

time step comes in. Figure 2.5 shows a diagram of a single layer RNN and Equation

2.7 (from Medsker & Jain (2001)) shows the computation process of one RNN unit,

where xt ∈ R1×F , W xh ∈ RF×F , W hh ∈ RF×F , W hy ∈ RF×F and bh ∈ R1×F are

the trainable weights and bias. F denotes the feature dimension of X, σ denotes the

activation function, for which Sigmoid and Tanh are two most commonly used. The

single layer RNN can also be organized into multiple layers (Mikolov et al. 2010).

ht =σ(xtW xh + ht−1W hh + bh)

yt =htW hy + by
(2.7)

The input signal (i.e. a spectrogram) is denoted as X = {x1,x2, ...,xT}, xt ∈ R1×F

denotes a feature vector of the input signal at time t, ht and ht−1 denotes the hidden

states that contain the sequence information in an RNN in time t and the previous

time step t− 1. yt denotes the output at time t. The RNN receives, as inputs, feature

vector xt at time t and hidden states ht−1 in the network’s previous state. At each

time t, the output yt is derived from the hidden state ht at time t, though output yt

can be influenced by input xt−1 at time t− 1 by the recurrent connections.

Schuster & Paliwal (1997) were the first to propose the bidirectional recurrent neural

network in which there are two layers of hidden states, both of which are connected to

both input and output, but they differ in that the first layer has recurrent connections

from past time steps, while the second has the recurrent connections reversed, enabling

it to pass activation back along the sequence. This is now one of the most widely used
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Figure 2.5: A diagram of a single layer RNN, it can be organized into multiple layers.

of the RNN architectures.

According to Hochreiter & Schmidhuber (1997), Bengio et al. (1993) and Schaefer

et al. (2008), the long-range dependencies built in to RNN architectures create issues

around vanishing and exploding gradients. These are caused by the proliferation of

backpropagating errors across multiple time steps which, in turn, lead to reduced gra-

dient values over long time sequences, making RNNs particularly difficult to train. This

problem is referred to as the vanishing gradient problem. In order to solve this prob-

lem, the long short-term memory (LSTM) was intuitively proposed by Hochreiter &

Schmidhuber (1997). Simple RNNs already have both long-term memory, in the form

of weights that change gradually during the training sequence and encoding general

information about the training dataset, and ephemeral activations, that act as short-

term memory, passing between successive nodes. LSTM captures the information by

splitting the hidden states of the RNN into long-term and short-term memory. This

has been shown to out-perform the RNN in many tasks (Prabowo et al. 2018). Another

variation of RNN is the gated recurrent unit (GRU) proposed by Chung et al. (2014).

The GRU reduced the computational cost of LSTM while retaining the advantages,
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and it has now become one of the most widely used methods for modelling time series

data (Kamath et al. 2019, Khandelwal et al. 2016).

Another widely used method to model sequential information, proposed by (Waibel

et al. 1989), is the time delay neural network (TDNN), which is a DNN with the

addition of multiple, interconnected layers of perceptrons. Neurons on each layer of

a TDNN send their outputs to neurons at the layer above, but there are two key

differences to a standard DNN. First, every unit in a TDNN, at every layer, receive

inputs from a contextual window of outputs from the layer below; and second, in

addition to these connections from the layer below, each unit is also connected to the

time-delayed outputs from the same lower units, thereby providing a model of the

temporal pattern and trajectory of each unit. Two-dimensional input signals, such as

spectrograms, produce a 2-dimensional context window at each layer and, since the

inputs into the higher layers come from wider context windows, these higher layers

are able to model coarser levels of abstraction. Peddinti et al. (2015) has indicated

that TDNN is an efficient method compared to RNN-based models and it operates a

one-dimensional convolution along the temporal dimension to capture temporal context

information of the sequence inputs. Several studies show that TDNN-based deep neural

network models perform well in speaker recognition (Snyder et al. 2018, Wang, Okabe,

Lee, Yamamoto & Koshinaka 2018).
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2.2 Deep Learning For Speaker Recognition

Due to the advantages of the deep neural network models, deep learning has been widely

used in speaker recognition and is now the state-of-the-art method (Bai & Zhang 2021,

Hansen & Hasan 2015). This section reviews the techniques used in deep learning based

speaker recognition, including the input features, loss functions, evaluation metrics and

the typical neural network architectures.

2.2.1 Input Features

It has been found that taking the raw waveform directly as input to a neural network

creates issues around dimensionality, as well as slowing the training process. Given

that frequencies in the waveform are resolved in a non-linear manner by the human

ear, it is better practice to extract acoustic features for the network to process, rather

than the full waveform (Davis & Mermelstein 1980, Zhang 2017).

In order to achieve this, an audio waveform is usually split into short segments

using a sliding window (25ms length and 10ms step are used in all the experiments in

this thesis). Then, a short-term Fourier transform (STFT) (Oppenheim et al. 2001)

is applied to each segment and the magnitudes spectrogram are remained. In some

cases, the spectrograms can be used directly as input features (He et al. 2016, Yu et al.

2019). To further reduce the dimensionality, the spectrogram is then passed over a set

of triangular Mel-scale frequency filters (Davis & Mermelstein 1980) which is shown in

Equation 2.8 (Zhang 2017, Davis & Mermelstein 1980).

Mel(f) = 2595log10(1 +
f

700
) (2.8)

The result of this process are filterbank features. The log amplitudes the filterbank

features are also widely used for neural network inputs in speaker recognition (Zeinali

et al. 2019).

The log amplitudes of the filterbank features can be further computed with a dis-
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crete cosine transform (DCT) (Oppenheim et al. 2001). The DCT linearly de-correlates

the filterbank features and results in the cepstral vectors (Zhang 2017, Oppenheim et al.

2001, Davis & Mermelstein 1980). The MFCC features is one of the most widely used

input features for neural networks in speech recognition (Zhang 2017) and in speaker

recognition (Snyder et al. 2018).

2.2.2 Loss Functions

The performance of deep neural networks is highly determined by the loss functions.

The loss function measures the difference of the model predictions and the ground

truth labels, and the back propagation algorithm relies on the the loss function. Many

studies shown that a good loss function can improve the performance of the model

(Wang, Cheng, Liu & Liu 2018, Deng et al. 2019).

According to Irum & Salman (2019) and Bai & Zhang (2021), one of the most

commonly used workflows for obtaining speaker embeddings is to firstly train a network

using a multi-class classification manner with a softmax function, combined with cross-

entropy loss. Then, the speaker embeddings are extracted from the trained model.

Usually, as introduced in Section 2.1, the softmax function is used in the last layer of a

neural network to convert the scores for each of the classes to between zero and one. It

also guarantees that the scores for all of the classes can be summed up into one score

to simulate the probability process (Bouchard 2007).

It has been indicated by Irum & Salman (2019) that a good speaker embedding

extractor must maximise the inter-class distance between the embeddings that belong

to different speakers, while minimising the intra-class distance between the embeddings

that belong to the same speaker. In speaker identification or verification, maximising

the inter-class distance can make the learned speaker embeddings easier to separate,

and minimising the intra-class distance can reduce speaker variance within different

embeddings from one speaker (Bai & Zhang 2021).

However, Irum & Salman (2019) and Huang et al. (2018) identified that the deep
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neural networks that trained using the softmax loss function can maximise the inter-

class distance but without any constraint on the intra-class distance. In order to

minimise the intra-class distance, several extensions, based on the softmax function,

were proposed. For example Li et al. (2018) proposed an Angular softmax (A-softmax)

function that added a margin to control the decision boundary by controlling the angle

between the embeddings during the training stage. It have shown that embeddings

learned through this A-softmax function have smaller intra-class distances, thereby

performing better in speaker verification tasks. Other loss functions were inspired by

this work, including the additive margin softmax (AM softmax) proposed by Wang,

Cheng, Liu & Liu (2018) and the additive angular margin softmax (AAM softmax)

from Deng et al. (2019), both of which made use of the different margins to control the

intra-class distances in the speaker embeddings.

2.2.3 Evaluation Metrics

Evaluation metric measures the performance of the model and is used after the train-

ing stage. This section introduces the commonly used evaluation metrics for speaker

recognition that will be used in most of the works in the following chapters.

Prediction Accuracy

At the beginning of this chapter, the difference between speaker identification and

verification was discussed. Speaker identification can be viewed as a multi-class clas-

sification task, where the different speakers represent different class labels. Thus, the

evaluation metric in speaker identification is the same as that in other classification

tasks, such as audio classification. The most commonly used metric is classification

accuracy (Rosenfield & Fitzpatrick-Lins 1986, Aronoff et al. 1982). Classification ac-

curacy or prediction accuracy indicates the rate of the correct predictions in the total

test samples. In some cases, classification accuracy can be further divided into top-1

accuracy and top-K accuracy. In top-1 accuracy, for each data sample, when the high-
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est probability of the model prediction matches the class label, the prediction can be

viewed as being correct. While in top-K accuracy, when the ground truth label is in

the Kth highest probability predictions of the model, the prediction can be viewed as

being correct. The top-K accuracy is greater or equal to the top-1 accuracy, the latter

of which is most commonly used in speaker identification.

In speaker verification, on the other hand, the goal is to identify whether or not two

input utterances belong to the same speaker. The output of the speaker verification

system will be a similarity score and a threshold will determine whether the output is

positive or negative. In this case, rather than using classification accuracy, equal error

rate (EER) is better way to evaluate the system (Oglesby 1995, Sztahó et al. 2019).

Equal Error Rate (EER)

In the evaluation of speaker verification, if an error is made, it will either be a false

accept (FA) or a false reject (FR). If the speaker verification system is looking to

authenticate speakers, then an FA error effectively grants access to an imposter speaker,

while an FR error denies access to a legitimate one (Hansen & Hasan 2015). Measuring

the number of FA errors from a given number of imposter attempts gives the false accept

rate (FAR) while the number of false reject errors in a given number of legitimate

attempts gives the false reject rate (FRR). In a speaker verification system, a FA error

is known as a false alarm, while a FR error is known as a miss error.

The output from a typical speaker verification system is a scalar score between the

two utterances, as is the case for most two-class recognition/binary detection problems.

The higher the score value, the more similar they are. According to (Oglesby 1995),

the key variable here is the threshold, τ , which, if too high, creates a high number of

FA or false alarm errors; too low, and it conversely creates a high number of FR or miss

errors. By adjusting the threshold, it is possible to reach a point at which FAR = FRR,

and that is known as the equal error rate (EER). Although the FAR = FRR state of

equilibrium that produces the EER may seem a compelling point at which to operate
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a system, it may not always be ideal from a practical perspective. For example, in a

high security setting, like a bank, it makes sense to set a higher threshold, reducing FA

errors in favour of FR ones. It is better, in this case, to deny legitimate users access

(absent some other form of ID) rather than grant access to an imposter. Conversely,

where convenience is more important than security, such as in an automated customer

service system, the threshold can be set lower, as granting access to an imposter does

not have any dire or long-term consequences (Hansen & Hasan 2015).

A widely used technique for visualising the performance of a binary class classi-

fication task is the receiver operating characteristic (ROC) curve. The true positive

(TP) rate and the false negative (FP) rate are visualised on a two dimensional plane.

However, in speaker verification, the FAR and FRR are usually smaller than 10%, it is

inconvenient to observe the ROC curve. As a result, the most common method of visu-

alising the performance of a speaker verification system is the detection error trade-off

curve (DET) that plots FA errors against FR errors (Martin et al. 1997, Garcia-Perera

et al. 2012). The two axes of DET curve are not linear, but scaled by the the inverse

function of the standard Gaussian cumulative density function.

Detection Cost Function (DCF)

While the EER has its uses, it is not always the preferred performance measure as it

does not distinguish between FA and miss errors, whereas the DCF measures numerical

costs and penalties for both error types. DCF was introduced by the NIST SRE 2008

Martin & Greenberg (2009) challenge.

Equation 2.9, taken from Martin & Greenberg (2009), shows how the DCF is com-

puted across the entire range of decision threshold values, where CFR is the cost of

a miss/FR error, CFA is the cost of an FA error, PTarget is the a priori probability

of target speaker, EFR is the probability of (Miss|Target,Threshold = τ), EFA is the

probability of (FA|Nontarget,Threshold = τ).
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DCF = CFREFRPTarget + CFAEFA(1− PTarget) (2.9)

CFR, CFA and PTarget are pre-defined and they can be set according to different

application environments. For example, in the military access control system, it is

desirable to strictly control the entry and exit of people, thus the probability of false

acceptance is relatively small, then the value of CFA can be increased; When monitoring

the voice of criminals, it requires not to miss possible target voices, so the value of CFR

needs to be increased. When CFA, CFR, PTarget, and 1−PTarget are set, a certain group

of EFR and EFA values makes DCF the smallest, and the DCF at this time becomes

the minDCF (Hansen & Hasan 2015, Martin & Greenberg 2009). This thesis deploys

the settings from NIST SRE 2008 Martin & Greenberg (2009) and Shon et al. (2019),

which are the average minDCF from two sets of parameters: CFR = 10, CFA = 1,

PTarget = 0.01 and CFR = 10, CFA = 1, PTarget = 0.001.

2.2.4 Deep Neural Network Architectures

This section discusses three commonly used network architectures that are used for the

baselines for the proposed model in the following chapters.

D-vector

Variani et al. (2014) proposed one of the earliest deep learning models for speaker

recognition, called the “d-vector”, as shown in Figure 2.6 (from Variani et al. (2014)).

The network is based on a feed-forward neural network and is trained using a supervised

manner with frame-level inputs. The output of the last hidden layer of the network

are collected and averaged as the embedding of the utterance. A speaker verification

task was conducted using the extracted embeddings. The results show that the i-vector

had better performance, but the sum of the d-vector and i-vector out-performed the

i-vector, with 14% to 25% relative improvement under both clean and noisy conditions.
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Figure 2.6: The architecture of the d-vector model, from Variani et al. (2014).

X-vector

The d-vector model made use of deep neural networks but it did not out-perform the

i-vector in some scenarios, possibly because the frame-level training of the speaker

embedding loses some global features of the speakers (Variani et al. 2014). In order

to solve this problem, Snyder et al. (2018) proposed an X-vector model that learns

the speaker embeddings at the segment level. Figure 2.7, shows the architecture of

the X-vector model, which consists of three parts: the frame-level feature extractor,

the statistics pooling operation and the segment-level feature extractor. The input

sequence is denoted as X = {x1,x2, ...,xT}, where xt denotes the temporal frame at

time t, and T denotes the sequence length. In the frame-level feature extractor, the

model makes use of the time-delay neural network (TDNN) that operates at a different

time step from the input utterance. The output of the TDNN layers are the frame-

level features, which are denoted as H = {h1,h2, ...,hL}, where ht denotes the feature

vector at time t, L denotes the sequence length of H .

After the frame level feature extractor, the statistics pooling operates on a time
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Figure 2.7: The architecture of the X-vector model, from Snyder et al. (2018).

axis that compresses the sequence output into a single vector (Snyder et al. 2018). The

mean and standard deviation (std) vectors (µ and s) are the output of this process. The

µ and s are concatenated into a single vector and fed into the segment-level feature

extractor that consists of two fully-connected layers that fuse the learned features

and map them into embeddings (Snyder et al. 2018). The speaker embeddings were

extracted from the first DNN. The experiments were conducted on the NIST SRE

2016 and the Voxceleb datasets. The results show that the X-vector out- performs the

i-vector system, reaching a relative improvement of more than 10%.
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ResNet

Figure 2.8: The architecture of a residual block, from (He et al. 2016).

Another option for speaker recognition is using a CNN model instead of either a

DNN or a TDNN. The most widely used model is ResNet, which was first proposed

by He et al. (2016) for image classification. The core idea of the ResNet is the identity

shortcut connection that skips one or more layers. Figure 2.8 shows an example of

a residual block. The input signal is processed by several convolutional layers with

activation function, which is referred to as the main path. The identity shortcut

connection (or the residual connection) skips the convolutional layers, thus the input

signal directly sums with the output of the main path. According to He et al. (2016),

the residual connection can make the network more stable in the training step and it

can learn more complex feature patterns from the input data.
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A ResNet contains multiple residual blocks connected end-to-end, based on the

number of convolutional layers, and different versions have been proposed, such as

ResNet-34 and ResNet-50 (where the number indicates the number of convolutional

layers) (Aloysius & Geetha 2017). In speaker verification, various versions of ResNet

have been shown to attain state-of-the-art performance. For example, Cai et al. (2018)

used ResNet-34 and successfully reached 4.46% EER on the Voxceleb1 test set, while

Hajibabaei & Dai (2018) adapted the ResNet-20 architecture for speaker verification

and reached 4.30% EER.
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(a) Original (b) Ambulance whistle

(c) Aircraft engine (d) Air defence alert

Figure 2.9: The example spectrograms of (a) speech and the noisy spectrogram corrupted

by (b) ambulance whistle; (c) aircraft engine; (d) air defense alert.

2.3 Noise Robust Speaker Recognition

Although deep neural networks improved the performance of speaker recognition sys-

tems, they still suffer from real-world noise interference, making robustness an increas-

ingly essential metric and property (Zhao et al. 2014). This section firstly discusses

the background noise types and their various influences on the speech signals. All of

the noises discussed in this thesis are additive noises. Then, attention mechanism and

speech enhancement methods will be introduced. For each of these methods, recent

works will be reviewed and discussed.
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2.3.1 Noise Interference

Speech signals are always influenced by background (or environmental) noise in real-

world conditions, such distortion can take many forms, such as additive noise and

reverberations (Ming et al. 2007). Le Prell & Clavier (2017) investigated the impact of

various types of background noise on the speech signal. In their work, they indicated

that background noise can potentially cover up (or mask) the information of another

sound (e.g. the speaker’s voice) and they identified two categories, namely steady

noise and fluctuating noise. Steady noise contains the stable spectral and temporal

characteristics of features, such as the noise from an idling vehicle. This kind of noise

can mask some words spoken by the speaker. However, when the spectrum of the

speech and the spectrum of the noise are not completely overlapped, the speech can

also be recognised, at least partially.

The other type of noise is fluctuating noise, such as from road traffic, which contains

two variant components: the spectral fluctuation where the frequency components

changes rapidly over time, and the temporal envelope variation where the noise level

varies over time.

Typical background noise in the real world contains both types, but the fluctuating

noise is the most common. Figure 2.9 shows some examples of noise corrupted spectro-

grams. Figure 2.9(a) illustrates the speech and Figure 2.9(b), 2.9(c) and 2.9(d) are the

spectrograms after they have been corrupted by different types of background noise:

an ambulance siren, an aircraft engine, and an air defense alert. Note that the noises

discussed in this section are additive noise, the effects of high level noise on the speech

produced by a speaker (Lombard effect) is not included (Lane & Tranel 1971).

According to Le Prell & Clavier (2017), there is also a typical background noise type

that caused by the speech shaped noise. This kind of noise is referred to as the babble

noise, and it represents background noise that contains energy in the same frequency

band as the speech.

Both steady and fluctuating background noise corrupts the speech signal across
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frequency and time domains in ways that can significantly and negatively affect the

performance of deep neural networks. Zhao et al. (2014) and Ming et al. (2007) investi-

gated how the performance of the DNN model can be affected by various types of noise

conditions. In Ming et al. (2007), different noise types such as engine noise, restaurant

noise and pop songs, all at different levels ranging from the signal-to-noise-ratio (SNR)

is 10dB to 20dB (Johnson 2006), are artificially mixed with the clean signal. Then, a

DNN model was used to evaluate the performance. In the clean condition, the speaker

identification accuracy can reach 90.64% using the TIMIT dataset. However, with a

noise level of 20dB, the accuracy can reduce to between 87% and 83%, depending on

noise type. When the noise level is 10dB, the accuracy in some noise conditions (e.g.

a mobile phone ringing) can be lower than 50%.

2.3.2 Attention Mechanism

A method that may improve the robustness of deep neural networks in various noise

conditions is the so called attention mechanism (Bahdanau et al. 2015), which is used to

allocate different weights to different parts of the input data, which can then highlight

the information that is relevant to the targets (Hao et al. 2019). The method allows the

model to pay more attention to the region that contains more information of the target

speaker, while paying less attention to the region that is distorted by background noise

(Zacarias-Morales et al. 2021, Yuan et al. 2020).

Bahdanau et al. (2015) were the first to propose the use of an attention mecha-

nism within a neural network that was specifically designed for a sequence-to-sequence

modelling task, a task which, according to (Cho et al. 2014), is based on a encoder-

decoder architecture, both of which are RNNs. The encoder RNN accepts an input

series of tokens, and the decoder RNN takes a single, fixed length vector as its input

and generates an output sequence from it (see Figure 2.10(a)).

The first challenge with this architecture is that the compression by the encoder

of all the long and detailed input information into a single, fixed length vector can
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(a) (b)

Figure 2.10: Encoder-decoder architecture: (a) traditional (b) with attention model

lead to a loss of information (Cho et al. 2014). The second challenge is the inability of

the framework to model alignment between the input and output sequences, thereby

making it unusable for tasks requiring a structured output, such as translation or

summarisation.

An attention mechanism allows the decoder to access the entire encoded input

sequence which, in theory, serves to remove, or at least reduce, the impact of these

two challenges by inducing attention weights over the input sequence. This allows the

system to prioritise the set of positions in which there is relevant information and then

use this prioritisation in the generation of the next output token. The way in which an

attention mechanism is incorporated into the encoder-decoder architecture is shown in

Figure 2.10(b).

In order for the attention weights to be learned, an additional feed forward neural

network is incorporated into the encoder-decoder architecture, known as the alignment

function, which scores the input relevancy with regard to the output state. The output

of this alignment function are energy scores that are then converted into attention

weights by the distribution function which is, in most cases, the softmax function
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(Bahdanau et al. 2015).

After the success of the attention mechanism in the sequence to sequence task,

different types of attention mechanisms were developed. One of the most commonly

used variation is the so-called transformer model (Vaswani et al. 2017) that captures

global dependencies between input and output using a self-attention mechanism. This

architecture has been shown to be capable of significant parallel processing, requiring

shorter training times and delivering greater levels of machine translation accuracy

without any recurrent components

In essence, the transformer architecture consists of a stack of six identical layers of

encoders and decoders and two sub-layers, namely the feed forward network layer and

the multi-head self-attention layer. According to Vaswani et al. (2017), the ‘multi-head’

attention refers to the fact that the self-attention layer is actually several attention

layers stacked in parallel, allowing for the capture of more aspects of the input and

enabling the model to be more expressive.

Self Attention in Speaker Recognition

Outside of the sequence-to-sequence task, the attention mechanism can also be used

in speaker recognition. One of the first attention mechanisms to be used in speaker

recognition was the attentive X-vector model (Wang, Okabe, Lee, Yamamoto & Koshi-

naka 2018, Zhu et al. 2018) which uses a self-attention layer between the frame-level

feature extractor and the segment-level feature extractor within the X-vector architec-

ture (Snyder et al. 2018). It can highlight the important part of the input speech signal

and generate an attention weight vector that contains different score numbers for each

part of the input sequence. It is then multiplied by the original input sequence and

the output is referred to as the refined sequence or feature vectors.

Figure 2.11 shows a diagram of the self-attention mechanism that is used in the

attentive X-vector. As shown in Section 2.2.4, the output of the frame-level feature

extractor is H ∈ RL×E = {h1,h2, ...,hL}, ht ∈ R1×E denotes one feature vector in



CHAPTER 2. AUTOMATIC SPEAKER RECOGNITION 42

Figure 2.11: The architecture of the attentive X-vector, from Zhu et al. (2018) and

Wang, Okabe, Lee, Yamamoto & Koshinaka (2018).

time t, L denotes the length of the sequence H , E denotes the dimension of each

feature vector of H . Equation 2.10 shows the computation process of the attention

mechanism.

ct =ReLU(htW + b)v

αt =
exp(ct)∑L
i=0 exp(ci)

(2.10)

Equation 2.10 computes the score ct for each feature vector using a feed forward

network with W ∈ RE×L, b ∈ R1×L and v ∈ RL×1 being its weights and bias. The

scores (c) are normalised by a softmax function and the result is α = {α1, α2, ..., αL},

where each element in α represents the attention weight value (a scalar number) to the
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corresponding frame. For example, one feature vector (e.g. ht) will be multiplied with

the attention weight value for the corresponding time step (αt), where t ∈ {1, 2, ..., L}

Another way to understand the use of the attention weights is the data broadcasting

rule. The attention weight vector α contains the dimensionality of L × 1, and the

input feature map H contains the dimensionality of L × E. In order to apply the

attention weight vector to the feature map, the vector α is firstly repeated into the

same dimensionality with H . Then, element wise multiplication is applied between the

attention weights and H , resulting in the refined feature map H
′
, this is also known

as the data broadcasting step.

The above mentioned data broadcasting rule is represented as a function: Broad(.)

further in this thesis. In order to apply the attention weights to each frame of H ∈

RL×E, it is necessary to repeat the elements of α ∈ RL×1 E times along the frequency

dimension. Equation 2.11 shows the computational process of the data broadcasting

process, where Broad(α)L×E denotes the broadcasting function with α being its input,

the target dimension is L × E. q ∈ R1×E is a one’s vector, where all of the elements

in q are ones, × denotes the outer product.

Broad(α)L×E = α× q (2.11)

This data broadcasting rule can be flexibly implemented for other dimensions.

Suppose α ∈ R1×1×C denotes the attention weights for the output of a CNN layer

H ∈ RT×F×C . Equation 2.12 shows the computation process that repeats α into the

same dimension as H , where q1 ∈ RT×1 and q2 ∈ R1×C are vectors that all of the

element values are ones. Trans(.)T×F×C denotes the transpose function that transpose

the matrix or tensor into the target dimension (e.g. T × F × C). More details can be

found later in Chapter 4.

Broad(α)T×F×C = Trans(Trans(q1 ×α)T×C×1 × q2)
T×F×C (2.12)

According to Wang, Okabe, Lee, Yamamoto & Koshinaka (2018) and Zhu et al.
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(2018), the attentive X-vector performs better than the X-vector, reaching a 16% im-

provement in EER on the NIST 2016 speaker recognition evaluations dataset. Follow-

ing the success of the attentive X-vector, it became widely used in speaker recognition

systems, while other versions of the attention were developed. rahman Chowdhury

et al. (2018) used K-max pooling (Kalchbrenner et al. 2014) on the attention weight

vector α. K-max pooling selects the largest attention weights and discards the less

important frames on the learned attention weights of the attentive X-vector model,

reducing computational cost and making the model focus on the parts most relevant

to the target speaker identity. According to rahman Chowdhury et al. (2018), K-max

pooling can slightly improve on the performance of the attentive X-vector in text de-

pendent speaker verification tasks, and the selection of different K values allows the

enhanced model to out-perform the original model.

In addition to the X-vector architecture, attention mechanisms can also be applied

in the CNN-based models for speaker recognition. An et al. (2019) experimented

with adding a self-attention mechanism into some popular CNN architectures, such

as ResNet. The attention mechanism used in the ResNet architecture can achieve

approximately a 2% improvement in speaker identification on the Voxceleb1 dataset

compared with the original ResNet model. India Massana et al. (2019) used a multi-

head self-attention mechanism in a CNN model. As discussed above, the multi-head

attention mechanism computes the attention weights α multiple times in parallel, each

of them focusing on different parts of the input signal. The results show the attention

mechanism used in the CNN model can achieve an 18% relative improvement over the

original CNN model.

In the attentive X-vector architecture, the dimensionality of the attention weight

vector α is L×1, thus the attention values are allocated for the time dimension of H ∈

RL×E, which is also referred to as the time attention (Miao et al. 2019). It can also be

applied in the frequency dimension, where the attention model computes the attention

weights α ∈ R1×E for each element of the frequency dimension of H . According
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to Yadav & Rai (2020), both the time and frequency dimensions of the speech signal

contains important information for speaker recognition, and the use of the combination

of frequency and time attentions can achieve more than 3% relative improvement than

the time attention in the ResNet model. This work was inspired by the convolutional

block attention module (CBAM) in image classification, developed by (Woo et al.

2018), where the attention weights were computed on the time, frequency and channel

dimensions of the input feature, thus important features in all three dimensions can be

highlighted by the model.

However, the attention mechanism described above has two potential problems.

Firstly, the self-attention model computes the attention weights for each frame of the

whole sequence, which is the so-called global attention. Longer sequences of, say,

three seconds, may contain multiple relevant features to the target speaker and, since

the softmax function based global attention can only capture some of the important

features, the model is likely to lose some significant information. This is due to the

fact that global attention computes the importance weight for each frame in the whole

sequence. The softmax function requires the attention weights sum to one (discussed

in Section 2.2.2) and, as the sequence becomes longer, the importance of each frame

is diluted (Wang, Okabe, Lee, Yamamoto & Koshinaka 2018, Okabe et al. 2018). For

example, when there are two important parts in the sequence that the model needs to

focus on, one of the parts is highlighted by the attention mechanism and a high weight

value is assigned (e.g. larger than 0.5). The remainder of the sequence can only share

the remainder of the weighting (e.g. less than 0.5), so the second important part will

be incorrectly weighted, and may lead to an incorrect decision by the model.

The second problem is that the global self-attention pays insufficient attention to

local features due to the computation process discussed above, and this phenomenon

was also discussed by Wu et al. (2018). This can affect the noise robustness of the

model. In noisy conditions, as illustrated in Figure 2.9 and discussed in Section 2.3.1,

different types of noises (including fluctuating and steady noise) can affect the speech
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signal locally (Le Prell & Clavier 2017, Ming et al. 2007).

These issues are dealt with in Chapter 3 with a novel neural network architecture,

based on a hierarchical attention mechanism.

2.3.3 Speech Enhancement

Another potential solution for the noise corruption problem in speaker recognition

is to employ the speech enhancement method. In order to reduce the influences of

the noises in the input signal and to obtain better recognition performance, speech

enhancement is a natural choice (Ortega-Garćıa & González-Rodŕıguez 1996). Speech

enhancement can be viewed as an independent preprocessing module that filters out

noise information, create a clean signal that is then fed into the speaker recognition

model. Approaches to noise reduction can be divided into two categories; methods

that are mask-based, methods that are mapping-based (Bai & Zhang 2021).

The objective of the masking-based methods is to generate a time-frequency mask

which contains a weight for each time-frequency (T-F) unit. The weights in the T-

F mask reduces the noise impact by allocating a different weight for each T-F unit,

with those corrupted by interference being allocated a lower weight than the clean

units (Zhao et al. 2014). This is similar to the procedure of the attention mechanism

discussed above, the main difference being that the attention mechanism is usually built

into a neural network architecture to help the network better filter out the irrelevant

information, while speech enhancement is usually used independently as a front-end

module ahead of the speaker recognition module.

Zhao et al. (2014) firstly used a DNN-based speech enhancement model to generate

a time-frequency ratio mask, which was then used to reduce the noise in the input

signal. The clean output signal is then used in a speaker identification task. The 2008

NIST Speaker Recognition Evaluation dataset was used and a large number of noise

types were tested. The speaker identification results show the DNN-based speech en-

hancement module can improve the noise robustness of the speaker recognition model
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in a wide range of noise types and reached 84.8% speaker identification accuracy. Later

on, Kolbœk et al. (2016) applied long short term memory (LSTM) to the speech en-

hancement module as it can better capture the temporal information, thereby resulting

in better speaker recognition performance. Shon et al. (2019) went a step further, inte-

grating a speech enhancement module and a speaker recognition module into a system

they called VoiceID Loss, in which the speaker recognition module is pre-trained and

fixed when optimising the joint system. Unlike other approaches, the objective of the

speech enhancement module is to improve speaker identification accuracy, rather than

predict a clean signal. The results show that the quality of the enhanced signal was

poor but the performance of the speaker recognition module was improved because the

speech enhancement module not only reduced noise interference, but also discarded

some irrelevant features for speaker recognition. Under different noise conditions, the

VoiceID Loss method performs better in speaker verification than when the speech

enhancement module is not used, reached 6.79% EER in the Voxceleb1 test set.

Rather than generating a time-frequency mask, mapping-based methods directly

learn the mapping from the noisy signal to the clean signal, filtering out the noise

information and retaining the useful information by reconstructing the clean signal.

Most mapping-based methods are based on denoising auto encoder architectures (Lu

et al. 2013), which have been shown to have good noise reduction abilities through the

compression and reconstruction of the input signal. In the compression process, the

model only remembers the key features of the input signal and the noise information

is reduced.

Plchot et al. (2016) proposed a DNN-based denoising auto-encoder architecture

for reducing noise influence in the input speech signal. The model was trained in a

supervised manner that reconstructed the clean signal from the noisy input in such

a way as to minimise the error between the generated signal and the clean signal.

The experimental results show the use of the speech enhancement module can deliver

relative improvements of up to 50% for the text-dependent system and up to 48% for
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the text-independent one in the Fisher database. Pandey & Wang (2019) proposed

adding skip connects into the auto-encoder architecture to obtain a better quality of

output signal. The skip connection enabled the model to better retain relevant features

when predicting the clean signal, and the results show that the quality of the signal was

improved as compared with the baselines under various noise conditions. The speech

quality of the output of the speech enhancement model was shown to be better than

that from the original auto-encoder on the TIMIT dataset.

The MisMatch Problem

In the literature, the speech enhancement model is mainly used independently, and the

enhanced output signal is then used for the back-end speech recognition and speaker

recognition systems. In this way, the noises are filtered by the speech enhancement

model, benefiting the back-end system and improving noise robustness. However, this

does create a mismatch problem between the speech enhancement model and the back-

end model. Sadjadi & Hansen (2010), Wang & Wang (2016) and Shon et al. (2019)

indicated that this problem was caused by the speech enhancement module distorting

some of the useful features and effectively creating new interference which, in turn,

negatively impacts the back-end model.

The reason for this is the difference between the training targets of the two models.

For example, in the mapping-based speech enhancement model, the objective of the

speech enhancement model is to learn the mapping from the noisy speech to the clean

signal. The objective functions are mainly based on the reconstruction of the loss

function. A speech enhancement system often fails to make a good distinction between

a useful feature and noise interference in a reconstructed signal because there is no

constraint in the loss function to guarantee the speech enhancement model will retain

the features useful to the back-end model, as the model is trained independently.

In Chapter 4, this problem will be further discussed and new models will be pro-

posed to address this problem, specifically a joint training framework and new speech
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enhancement model architectures.
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(a) Target speaker (b) Interfering speaker (c) Mixed speech

Figure 2.12: Spectrograms of (a) Target speaker, (b) Interfering speaker and (c) Mixed

speech.

2.4 Speaker Recognition In a Multi-Speaker Envi-

ronment

In some real world scenarios such as conversation, the interference not only comes from

background noise, but also from other speakers. These overlapped interfering speakers

are challenging to overcome as the features and patterns of the interfering speakers

are similar to the target speaker, which makes it difficult for the speaker recognition

system to separate speakers and recognise the target speaker (Wang & Chen 2018).

This section will discuss the influence of interfering speaker in speech signals, and the

potential methods to solve the problem, including target speaker extraction and weakly

supervised speaker identification.

2.4.1 Interfering Speaker

In this thesis, the term “interfering speaker” refers to the speaker that occurs and

temporally overlaps in the same recording as the target speaker. The target speaker is

the speaker that the speaker recognition system needs to recognise. The voices from

the interfering speaker can be viewed as the competing speech. It is when listeners

are unable to distinguish the elements of the target speech from the similar-sounding
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Figure 2.13: The workflow of the target speaker extraction, from Wang et al. (2019).

distracter (Le Prell & Clavier 2017). A typical problem in this field is the “cocktail

party” problem, where multiple speakers are talking at the same time and the listener

cannot distinguish between them (Haykin & Chen 2005).

Figure 2.12 shows an example of the influence of interfering speaker. The three

spectrograms are, from left to right, from the target speaker, the interfering speaker

and the mixed speech. It is obvious that from the mixed speech, it is difficult to

distinguish between the target speaker and the interfering speaker.

For the purposes of this thesis, the experiments in Chapters 3 and 4 evaluate the

performance of the proposed model with various background noises, including the bab-

ble type. In Chapters 5 and 6, different ways are proposed to address the noise caused

specifically by interfering speaker.

2.4.2 Target Speaker Extraction

Target speaker extraction, also known as speaker dependent speech separation, is a

methodology designed to overcome the interfering speakers by isolating the voice of the

target speaker and treating the voices of all the other speakers as background noise.

After removing the influences from other speakers, the extracted signal of the target

speaker can then be used for speaker recognition (Zhao et al. 2019). Figure 2.13 shows
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the workflow of the target speaker extraction method in which the embedding of the

target speaker is trained using a deep neural network known as a speaker embedding

extractor, which takes the clean reference audio for the target speaker to obtain the

corresponding speaker embedding. Then, the target speaker extraction network takes

the mixed signal and the pre-trained speaker embedding as input, and outputs the

enhanced signal that contains the voice of the target speaker only. The network is

trained to minimise the error between the reference clean signal and the enhanced

signal Wang et al. (2019).

In recent years, one of the most popular methods for target speaker extraction is

the “Voice Filter” method proposed by Wang et al. (2019) who based their speaker em-

bedding network on the d-vector structure (Variani et al. 2014), where the DNN used

in the d-vector model is replaced by a three-layer LSTM to better capture the sequence

information. Then, the Voice Filter network takes the learned d-vector for the target

speaker and the mixed speech signal as the input. A soft mask is generated and mul-

tiplied with the original noisy speech signal. The Voice Filter method was firstly used

for speech recognition and reached a better performance in noisy and multi-speaker

environments. Later on, Rao et al. (2019) adapted this method for speaker recogni-

tion, using the enhanced speech signal in a speaker verification task. The experimental

results show that the target speaker extraction method can improve the quality of the

signal, while speaker verification is improved, reaching a 65.7% EER reduction over

not using target speaker extraction.

In the above discussion and citations, target speaker extraction extracts the voice

of the target speaker from the mixed signal, and that is then used as input to the back-

end speaker recognition module. In order to reduce the impact of interfering speaker in

the speech signal and improve speaker recognition performance, there may be another

option that separates the embedding of the target speaker rather than the signal. In

this approach, the enhanced signal in Figure 2.13 can be replaced by the embeddings

that contain the information of the target speaker. In other words, the target speaker
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extraction network does not need to output the signal of the target speaker; instead,

the embedding of the target speaker is the output of the target speaker extraction

module. This approach simplifies the network architecture as it is only separating

the target speaker embedding without having to construct it in the signal space. The

other advantage is picked up by Bai & Zhang (2021) who point out that, since the

embeddings are low-dimensional and fixed in length, the back-end speaker recognition

module is easier to train.

This can be called the embedding de-mixing approach and is one that does not

appear in any of the literature to date. In Chapter 5, the first approach that separates

the speaker information in the embedding space is proposed in order to achieve the

above goal.

2.4.3 Weakly Supervised Speaker Recognition

Although the target speaker extraction method can isolate the voice of the target

speaker and improve speaker recognition performance, it may not work in some sce-

narios. According to Karu & Alumäe (2018), there is a specific situation when the

input signal contains an unknown number of speakers, such as meetings or conver-

sations, the system needs to recognise all of the speaker identities in the recording,

instead of separating the voice of the target speaker. This is a specific task where there

is no target speaker in the multi-speaker signal, and the goal is to recognise all of the

speaker identities that occur in the input utterance.

In order to achieve this, the speaker diarisation method is one option (Anguera

et al. 2012). The speaker diarisation method can segment a multi-speaker signal into

several segments, based on the speaker identities, in order to answer the question “who

speaks when?” (Anguera et al. 2012, Bai & Zhang 2021). However, in the situation

described above, the only requirement is to answer the question “who speaks?”; the

question of “when” is not required.

As indicated by Anguera et al. (2012), the supervised training of a speaker diarisa-
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Figure 2.14: The diagram of the weakly supervised training of the DNN, from Karu &

Alumäe (2018).

tion system requires the label of both speaker identities (who) and positions (when).

Obtaining these labels is time consuming and expensive as it requires manually an-

notated identities and positions of each speaker. Karu & Alumäe (2018) indicated

that weakly supervised learning is another option to achieve the goal and this does

not require the positional labels. The field of weakly supervised learning was reviewed

by Zhou (2018) and Yuan & Zhang (2010), who demonstrated that there is a scenario

they called inexact supervision, in which the training data contains only coarse grained

labels. Specifically, the labels for the multi-speaker signal in the training set contain

only the set of speaker identities, and no positional information is provided, providing

so-called coarse grained labels or utterance-level labels. In this scenario, the model

can be trained to directly use the utterance-level labels to recognise the speakers who

occurred in the input utterance (see Section 6.2 for more details), this is referred to as

the weakly supervised speaker identification task.

The study by Karu & Alumäe (2018) is the only one that proposes a weakly su-

pervised speaker identification approach, which is shown in Figure 2.14, above. It uses

a pre-trained speaker diarisation system to find unique speakers in each recording,

and a pre-trained i-vectors extractor to project the speech of each speaker to a fixed-

dimensional vector. Both the speaker diarisation system and the i-vector system were

pre-trained using background data. The speaker diarisation system segments the input

signal into several short segments. The segments that belongs to the same speaker are

clustered together, but speaker identities are not provided.
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A DNN is then trained to map i-vectors to the score for each of the speakers in

a multi-speaker signal. The output of the weakly supervised training of the DNN

is the similarity score (between 0 and 1) for each speaker in the training set. The

score shows the likelihood of a particular speaker occurring in the input utterance.

The experiments were conducted on the augmented Voxceleb1 dataset and the results

show the weakly supervised training of the DNN can reach 94.5% speaker identification

accuracy, compared with the supervised CNN baseline (80.5%). The reason why the

weakly supervised training can significantly outperform the supervised training baseline

is that it does not require manually annotated labels, making it suitable for handing

large quantities of data.

This approach of applying weakly supervised training to large amounts of coarse

grained labelled data, proposed by Karu & Alumäe (2018) is not without problems.

The speaker diarisation and i-vector systems need to be pre-trained, which also requires

position labels for each of the speakers as input. In other words, only the training from

the i-vector to the utterance-level labels are in the weakly supervised manner, and

the remainder of the approach illustrated in Figure 2.14 deploys traditional supervised

training.

In the literature, an approach that can directly make use of the coarse grained

labeled data for speaker recognition is as yet un-developed. Chapter 6 proposes the

first end-to-end weakly supervised speaker identification system that can directly learn

the mapping from the multi-speaker signal to the utterance-level labels, with two novel

neural network architectures.

2.5 Datasets

This section introduces the datasets that will be used in the following chapters for

speaker identification or verification.
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Table 2.1: Part of the state-of-the-art speaker verification results on the Voxceleb1 test

set when using Voxceleb1 for training only.

EER %

Nagrani et al.(Nagrani et al. 2017) 10.2

Nagrani et al.(Nagrani et al. 2017) 7.8

Shon et al. (Shon et al. 2019) 6.79

Cai et al. (Cai et al. 2018). 4.46

Hajibabaei and Dai (Hajibabaei & Dai 2018) 4.40

Hajibabaei and Dai (Hajibabaei & Dai 2018) 4.30

2.5.1 Voxceleb1

The Voxceleb1 dataset is a large and widely used dataset that was first proposed by

Nagrani et al. (2017) for speaker identification and verification. It contains short clips

of human speech, extracted from interview videos uploaded to YouTube. In order to

extract the audio signals from the videos, a list of speaker identities were collected in

advance, each of which is referred to as the person of interest (POI). Then, face tracking

was used to segment the video segments for each of the POIs, and the audio signal was

extracted from the segmented videos. According to the authors, the utterances in the

dataset contain a wide range of noises, thus this dataset can be used for evaluating the

noise robustness of the models.

The Voxceleb1 dataset contains 1,251 POIs with more than 150,000 utterances

and 350 hours of speech. The dataset was split into two scenarios, one for speaker

identification and the other for verification. In the speaker identification scenario,

both training and test sets contain the 1,251 speakers, with 145,265 utterances in the

training set and 8,251 utterances in the test set. In the speaker verification scenario,

1,211 speakers with 148,642 utterances were selected for the training set, and the

remaining 40 speakers with 4,874 utterances were allocated into the test set. The test

set was organised into 37,720 pairs for speaker verification.

The Voxceleb1 dataset has become the benchmark dataset for speaker identification
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and verification. The authors of the Voxceleb1 dataset (Nagrani et al. 2017) used a

CNN based method, named VGG-M, which reached 80.5% identification accuracy and

7.8% EER in speaker verification. These results were then used as popular baselines

for many subsequent studies. For example, Shon et al. (2019) proposed a speech en-

hancement and speaker verification joint system on Voxceleb1 and reached 6.79% EER;

Cai et al. (2018) used a ResNet-34 model to conduct speaker verification and reached a

EER of 4.46%; and Hajibabaei & Dai (2018) ran a ResNet-20 model and reached 4.30%

EER. With regard to speaker identification, Ding et al. (2020) proposed a CNN based

architecture and reached 87.66% identification accuracy, and Hajibabaei & Dai (2018)

used the ResNet-20 architecture that reached 89.7% identification accuracy. Table 2.1

lists parts of the the state-of-the-art speaker verification results on the Voxceleb1 test

set when using Voxceleb1 for training only. More details can be found in Section 3.5.3.

Based on the above baselines, the following chapter will develop new neural network

architectures, and the proposed models will conduct both speaker identification and

verification tasks on the Voxceleb1 dataset, and their performances with be compared

to the baselines listed above.

2.5.2 MUSAN

The MUSAN dataset from Snyder et al. (2015) contains three categories of signals

from real-world recordings; general noise, music and speech signals. There are 6 hours

of general noise that includes technical noises such as DTMF tones, dial tones, fax

machine noises, and ambient sounds such as wind, footsteps, paper rustling, rain,

animal noises and so on. The music category contains 42 hours of music from popular

Western genres. The speech signals contain a total of 60 hours of speech, including

20 hours of read speech and 40 hours of recordings from US government hearings,

committees and debates.

Data augmentation technique has been widely used in speaker recognition in order

to increase the noise robustness of the model (Wang et al. 2020, Snyder et al. 2018).
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The MUSAN dataset contains a wide range of noise types and a large number of

data collections, covering all of the noise types discussed in Section 2.3.1. It has been

widely used for evaluating the noise robustness of speaker recognition models. Shon

et al. (2019) comprehensively evaluated the noise robustness of a CNN-based speaker

verification model under different noise types and levels, using utterances from the

Voxceleb1 dataset mixed with the noise samples from the MUSAN dataset at different

levels. The model reached 6.79% EER on the original Voxceleb1 test set, falling to

16.56%, 16.24% and 37.96% EER under the noise, music and babble noise types at

0dB respectively. Due to the comprehensive experimental setup in the study of Shon

et al. (2019), the experiments in this thesis to evaluate the noise robustness of the

proposed model all follow the settings from their study.

2.5.3 SRE08, SWBC and CHE

The 2008 NIST Speaker Recognition Evaluation Training Set Part 1 (SRE08) (Martin

& Greenberg 2009) was developed by the Linguistic Data Consortium (LDC) and

the National Institute of Standards and Technology (NIST). It contains multilingual

telephone speech and English interview speech, which contains 640 hours of speech

from 1,336 individual speakers. The interview speech signals appear in segments of

approximately 3 minutes that have been lifted from longer conversations.

The Switchboard Cellular Part 1 (SWBC) dataset contains a total of 109 hour-long

phone calls with 254 speakers, of whom 129 are male and 125 are female (David Graff

2001). Unlike the SRE08, this dataset was recorded under various environmental con-

ditions, specifically indoors, outdoors and in moving vehicles. CALLHOME American

English Speech (CHE) (Alexandra Canavan 2001) contains 120 telephone conversations

between a total of 120 native English speakers, of which 90 of the calls are to various

locations outside of North America.

The properties of these three datasets are explained in details in Section 3.4.1.
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2.5.4 TIMIT and MC-WSJ

The TIMIT corpus of read speech (Garofolo et al. 1993) is designed to provide clean

speech data for acoustic-phonetic studies and for the development and evaluation of

automatic speech recognition systems or speaker recognition systems. There are a total

of 6300 utterances, each consisting of 10 sentences spoken by each of the 630 speakers

from 8 major dialect regions across the United States.

The second dataset is the Multi-Channel Wall Street Journal Audio Visual corpus

(MC-WSJ) collected by Lincoln et al. (2005). It is used to evaluate the proposed

system under real-world conditions. This dataset contains a total of 40 speakers reading

WSJ sentences in three scenarios; single speaker stationary, where a single speaker

reads sentences from six positions in a meeting room; single speaker moving, where a

single speaker moves between the six positions while reading sentences; and overlapping

speakers, where two speakers are reading sentences from different positions at the same

time. The recordings from this latter scenario are used in this setup as it is the only one

offering simultaneous speakers. It contains 10 unique speakers in 9 pairs, where each

pair contains an average of 700 utterances. There is no speaker overlap between the

three scenarios. There are three different recording sources: two microphone arrays,

lapel and headset microphones worn by all of the speakers.

These two datasets are used for evaluating the performance of the model under

multi-speaker environment, details can be found in Section 5.3.2.

2.5.5 Speech Command Dataset

Speech Command dataset (Warden 2018) contains isolated spoken English words. Each

utterance contains one isolated word, and the duration of each is one second. There

are 35 unique words, spoken by more than 2,000 different people. For each isolated

word, there are more than 1,000 utterances on average. The details for this dataset

can be found in Section 5.4.2 and Appendix B.3.
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2.6 Baseline System

Previous sections discussed how deep neural network models can be affected by back-

ground noise. In this section, a baseline system is designed to show the influence of

background noise from experimental results.

2.6.1 Experiment Setup

The baseline system makes use of the X-vector model (Snyder et al. 2018) (discussed

in Section 2.2.4) because it was developed relatively recently and is widely used. This

model architecture is also used as the baseline model in future experiments in Chapters

3 and 6.

As discussed in Section 2.5.2, in order to comprehensively observe the influence

of the noise, both speaker identification and verification experiments were conducted

using the Voxceleb1 dataset and, for both experiments, the training set is augmented

by mixing Voxceleb1 data with noise signals at random chosen SNR levels (0, 5, 10,

15 and 20dB, randomly chosen from the 5 SNR levels). In this setting, each training

utterance will be mixed with one noise utterance at one of the five SNR levels. The

test utterances are mixed with a certain kind of noise at one of the five SNR levels,

thereby delivering clearer results. This experimental setup will be used for the future

experiments in Chapter 3 and Chapter 4, and more details can be found in Appendix

B.1.

2.6.2 Results and Discussion

Table 2.2 shows the results obtained. The X-vector model can reach 88.2% speaker

identification accuracy and a 5.47% equal error rate in speaker verification under clean

conditions.

However, in the condition of the general noise type, the performances for both

speaker identification and speaker verification is reduced, reaching 74.6% accuracy and
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Table 2.2: Speaker identification accuracy (%) and verification EER (%) for different

noise types (Noise, Music and Babble) at different SNR (0-20 dB), and the original Vox-

celeb1 test set using the X-vector model.

Noise Type SNR
X-vectors

Top1 EER

General

0 74.6 12.26

5 79.5 10.01

10 83.1 8.33

15 85.0 7.25

20 87.9 6.91

Music

0 68.2 14.15

5 72.0 11.03

10 79.4 9.35

15 84.2 8.41

20 86.1 6.79

Babble

0 64.1 30.02

5 70.5 16.46

10 77.4 13.26

15 83.5 9.10

20 86.6 7.95

Original 88.2 5.47

12.26% EER when the SNR is 0dB. These results show that noise can significantly

influence the performance of the baseline model in both speaker identification and

speaker verification. With music as interference, the model behaves similarly and

delivering even worse results, with accuracy of 68.2% and an ERR of 14.15%. The

worst results can be observed from the interfering speaker experiments. When the

SNR is 0dB, speaker identification accuracy is only 64.1% and the ERR is 30.02%. In

each of the SNR levels, the interfering speaker shows the worst results.

Compared with the work of Ming et al. (2007) and Shon et al. (2019), a similar

phenomenon can be observed. Firstly, the deep neural network model can be highly

influenced by noise interference, where the higher the noise level, the worse the per-
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formance, and the worst performance comes from the experiments with babble-type

interference. The reason for this is that the interfering speakers compete for a similar

frequency band as the target speaker so that most of the features of the target speaker

are corrupted, meaning that the neural network has a limited amount of clean informa-

tion on the target speaker (see Section 2.4.1). With other noise types such as general

noise and music, even when the features of the target speaker are corrupted by both

fluctuating and steady noise, there are still enough clean features for the network to

capture and use for recognition (Le Prell & Clavier 2017).

2.7 Summary

At the beginning of this chapter, the concepts of speaker identification and speaker

verification were introduced. Speaker identification is a closed-set task while speaker

verification is an open-set task. Deep neural networks now deliver state-of-the-art

performance in speaker recognition, compared to the conventional GMM-UBM based

i-vector systems. Three types of neural network architectures were introduced and

discussed in Section 2.1, including the feed-forward neural network (DNN), the convo-

lutional neural network (CNN) and the recurrent neural network (RNN). Section 2.2

presents a review of the recent literature, including works on input features, loss func-

tions and evaluation metrics. The neural network architectures (d-vector, X-vector

and ResNet) for speaker recognition make use of the advantages of different neural

networks and reached the state-of-the-art method in this domain.

Although deep neural networks have significantly improved the performance of

speaker recognition, they are still affected by noise interference. In Section 2.3, the

background noise were firstly discussed, and the influence of noise interference on the

speech signal was shown in Figure 2.3.1. Then, to overcome this problem, two potential

solutions was discussed, which are the attention mechanism and speech enhancement.

The attention mechanism can be used in noise reduction because it can highlight the
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important features of the input signal and discard the corrupted ones. This can be

viewed as a simulation of the procedure of designing a noise filter. Another method

considered was speech enhancement, which filters out the noise information and out-

puts a clean speech signal. The key difference between these two methods is that the

attention mechanism that was usually used within a neural network architecture to help

the model select relevant features, whereas speech enhancement was an independent

module deployed ahead of the speaker recognition system.

Interfering speaker was also considered. This presents a new challenge in that

other speakers can compete in the same frequency band as the target speaker, making

it difficult for the model to extract features of the target speaker (see Section 2.4).

Target speaker extraction was discussed as the potential solution. The target speaker

extraction method isolates the voice of the target speaker and treats the interference

from other speakers as background noise. This property can be used for the back-end

speaker recognition system. There is another specific situation that when the input

utterance contains unknown number of speakers, the goal is to recognize all of the

speaker identities in one input utterance. This is a specific task and weakly supervised

learning can be deployed, whereby a large amount of data is used with coarse grained

labels.

Finally, datasets recorded were introduced in Section 2.5, specifically Voxceleb1

and MUSAN datasets. These datasets will be used to evaluate the performance of the

proposed models in the following chapters. A baseline system was designed in Section

2.6 to provide the evidence on how the performance of the deep neural networks can

be influenced by noise interference.



Chapter 3

Hierarchical Attention Network

3.1 Introduction

Section 2.3.2 introduced the attention mechanism, discussed various attention-based

approaches to speaker recognition, and laid out the properties of the mechanism.

Briefly, the attention mechanism used for the speaker recognition model (e.g. at-

tentive X-vector (Wang, Okabe, Lee, Yamamoto & Koshinaka 2018) and ResNet (He

et al. 2016)) was a global self-attention layer. It can highlight the most relevant part

from the input signal to the target that can improve the performance of the model

(rahman Chowdhury et al. 2018). This property allowed for noise reduction methods

to be developed for both image and speech signals, whereby the “corrupted features”

were allocated lower weights to ensure that the model focuses on the clean features. In

this way, excess noise can be reduced and the robustness of the model can be improved

(Hao et al. 2019).

However, as discussed in Section 2.3.2, the attention mechanism used in current

speaker recognition models has two potential problems. Firstly, the self-attention

mechanism computes the attention weights for the whole input sequence using the

softmax function. When there are multiple important parts in the input sequence,

some of them may be incorrectly weighted. The second problem is that, while noise

64
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interferences occur at a local scale, a global attention mechanism may be unable to

capture sufficient local information.

In order to address the two problems discussed above, one possible solution is to

develop a new neural network architecture that can capture both local and global

features in one framework. The attention mechanism needs to be used in both local

and global scenarios, and this is something that can be achieved through the use of

hierarchical structures such as the document classification approach proposed by (Yang

et al. 2016). In this approach, the network firstly uses multiple word level encoders,

each one of which captures the local features between words in each sentence and the

attention mechanism is used to assign weights for each word within each sentence.

Each sentence is then summarised in a single sentence vector. At a higher level, the

generated sentence vectors form the input to a sentence level encoder which focuses on

the global information between each sentence. The attention mechanism was used to

allocate weights between each of the sentence vectors. The sentence level encoder then

compresses different sentence vectors to generate a document vector, which is then

used for the final prediction.

The hierarchical structure introduced above splits the attention mechanism into

two levels, where the local and global information can be captured by the word-level

and sentence-level encoders respectively. This property can be applied to speaker

recognition to address the problems mentioned above. The local and global features

from the input utterance can be captured by the hierarchical structure, and it may

also be able to avoid the problem that some parts of the input are incorrectly weighted

by the global attention mechanism (discussed above). To achieve this, the utterance

can be viewed as a document, the segments are sentences and the frames are viewed

as the words. The hierarchical attention network splits the input signal into different

segments. The frame-level encoder computes the attention weights between each frame

within the segment. Then, the segment-level encoder measures the importance between

each segment and generates the utterance vector for the final prediction of the speaker
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identities.

3.1.1 Chapter Outline

The remainder of this chapter is organised as follows:

� Section 3.2 introduces the hierarchical structure at a high level.

� Section 3.3 introduces the detailed model architecture of the hierarchical atten-

tion network.

� Sections 3.4 and 3.5 shows and discusses the results of experiments designed to

evaluate the performance of the hierarchical attention network. Section 3.4 in

particular focuses on the model generalisation comparison between the proposed

hierarchical attention network and the baseline models.

� Section 3.5 shows the evaluation of the noise robustness of the proposed hierar-

chical attention network.

� Section 3.6 is the conclusion.
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3.2 Hierarchical Structure

Figure 3.1: High level illustration of the hierarchical architecture.

Figure 3.1 shows the high level architecture of the hierarchical structure. The proposed

hierarchical attention network is based on this structure and will be introduced in the

next section.

Firstly, the acoustic features are computed from the waveform signal input (MFCC
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features (Davis & Mermelstein 1980) are used in all of the experiments in this chapter).

In order to apply the attention mechanism at the frame and segment levels, the input

feature vector sequence is divided into several short segments using a sliding window.

Specifically, the input sequence X is divided into M segments: {S1,S2, · · · ,SM} using

a sliding window with length Lwin and step size Lstep. Each segment Sm ∈ RLwin×F

contains Lwin F -dimensional acoustic frame vectors.

The frame level encoder takes each of the short segments as input. It computes the

attention weights for each frame within the segment, and compresses it into a single

feature vector called a segment vector. There are M frame-level encoders, each of them

compresses the corresponding segment sequence Sm into a segment vector eSm . The

output vectors of the M frame-level encoders are concatenated together into a new

sequence called the segment vector sequence ES = {eS1 , eS2 , · · · , eSM
}.

In the segment level encoder, each element of the segment vector sequence ES

contains the information of the corresponding segment. The segment level encoder and

attention mechanism is applied to the segment vector sequence ES, and compresses it

into a single vector eu called the utterance vector.

The final speaker identity classifier is constructed using a two-layer MLP followed

by a softmax activation function with eu being its input. The final speaker identities

are the output vector which contains the scores (between 1 and 0) for each speaker.

The model is trained using cross entropy loss, as discussed in Section 2.2.2.

It is obvious that the frame level attention only concerns the relationship of the

frames within a short segment, while the segment level attention pays attention to

the speaker features between each of the segment vectors; in other words, it captures

global features between each segment. It is assumed that this network architecture

will be able to capture more speaker-relevant features, leading to greater accuracy in

terms of speaker recognition. Furthermore, when dealing with noise interference in the

input signal, it is assumed that the hierarchical structure will be more robust than the

X-vector and attentive X-vector architectures.
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3.3 Network Architecture

The previous section described the overall structure of the hierarchical structure; in this

section, the details of the proposed hierarchical attention network will be introduced.

3.3.1 Frame-Level Encoder

The architecture of the frame-level encoder for the mth segment is shown in Figure

3.2, which takes a segment Sm as input. A TDNN layer (as described in Section 2.1.2)

is firstly applied to the input sequence. Followed by the TDNN layer is a bi-directional

GRU layer. As discussed in Section 2.1.3, a GRU can capture both long-term and

short-term memory better than the standard RNN model, and it can also reduce the

computational cost compared to LSTM. As the adjacent frames within one segment

have a strong dependency over time, the speaker-related features (mainly local features

at the frame level) are expected to be located in those frames. Using a GRU can help

the model to better capture this information. In order to get information from both

directions of acoustic frames and contextual information, the bi-directional version of

GRU is also used (discussed in Section 2.1.3).

The output of the mth frame-level encoder is denoted as Hm ∈ RLwin×E, Hm =

{hm,1,hm,2, · · · ,hm,Lwin
}. In the attention layer, a frame-level attention mechanism

takes Hm as input, the output is the attention score vector αm ∈ RLwin×1. The scalar

elements of the attention vector αm are used to scale the vector elements of Hm.

In implementation, the weight vector αm is repeated to the same dimension as Hm

and element wise multiplication is used to generate the weighted output Am. The

computation process of αm is the same as that used in the attentive X-vector, which

can be found in Equation 2.10, Section 2.3.2.

A statistics pooling operation is applied on the weighted output sequence Am to

compute its mean vector (µm ∈ R1×E) and standard deviation (σm ∈ R1×E) vector

over time. A segment vector eSm ∈ R1×2E is then obtained by concatenating the two
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Figure 3.2: The architecture of frame-level encoder with attention to the mth segment.

vectors. The computation process of the statistics pooling operation is the same as

that used in the X-vector model, which is introduced in Section 2.2.4.

3.3.2 Segment Level Encoder

For the segment-level encoder and attention, the same steps used in the frame-level

encoder and attention are implemented except for the bi-directional GRU layer. It con-

tains a TDNN layer, a segment-level attention layer and a statistics pooling operation.

The bi-directional GRU is not used in the segment-level encoder; this has the dual

advantage of a) reducing the computational cost, thereby b) accelerating the training

when processing a large number of samples. Furthermore, the use of the GRU in the

frame-level encoder can help the model to capture more contextually relevant features
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but, at the segment level, the co-relevance between segments may be relatively small

in comparison with the contextual information between frames occurring within a seg-

ment. This is because the segment vectors come from the compression of the frames

within each segment.

The output of the frame level encoder is ES ∈ RM×ES = {eS1 , eS2 , · · · , eSM
}.

After a TDNN layer (with ES being its input), the weight vector αS ∈ RM×1 of the

segment level attention can be computed using the same method as that in the frame-

level encoder. The statistics pooling operation is applied to the weighted output of

the segment-level attention, the output is the utterance-level feature vector eu. The

final speaker identity classifier is constructed using a two-layer MLP with eu as its

input. The output of the first fully connected layer can be used as the final utterance

embedding.

Although the computational process of the attention mechanism at the segment

level is the same as that at the frame level, they have different inputs. The segment-

level attention mechanism measures the importance between each segment while the

frame-level mechanism only focuses on the frames within each segment. Instead of

only applying a global attention such as the attentive X-vector, the two levels of the

attention mechanism may help the model to capture more relevant features and avoid

any dilution of the features. The training details of the model can be found in the next

section.
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3.4 The Generalization of the Hierarchical Atten-

tion Network

In addition to the assessment of noise robustness, the assessment of the model general-

isation is important. According to Bai & Zhang (2021) and Garcia-Romero & McCree

(2014), the different properties of the training and test sets can cause the domain

mismatch problem, which indicates the training and test sets contain different distri-

butions. This becomes an issue when evaluating a model’s ability to adapt properly

to new, previously unseen data that is drawn from the same distribution as the one

used to create the model (Goodfellow et al. 2016), otherwise known as generalisability.

If the evaluation is done with a test set that does not match the training set, this is

when a domain mismatch problem can arise.

In order to comprehensively test the performance of the proposed hierarchical at-

tention network, the experiments are split into two parts: the first part will focus on

the model generalisation of the hierarchical attention network compared with other

strong baseline speaker recognition models that have been recently developed. The

second part is to evaluate the noise robustness of the hierarchical attention network.

These will be the focus of the following two sections.

3.4.1 Experimental Setup

Dataset

In this work, SRE08, SWBC and CHE datasets are used. The introduction of these

three datasets can be found in Section 2.5.3.

The properties of the three datasets are shown in Table 3.1. Clearly, these three

datasets have specific and distinct properties. The SRE08 dataset is a large, multi-

lingual dataset containing both telephone and interview speech, whereas the SWBC

and CHE are smaller and only offer telephone speech. In order to evaluate the model

generalisation of the proposed model, the SRE08 can be used to train a neural network
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Table 3.1: The details of three speech datasets: Part1 of Sre2008 (SRE08), Call-

Home(CHE) and Switchboard(SWBC)

Dataset Type #Speaker Size (hour) #Utterance (1s) #Utterance (3s)

SRE08 Telephone+Interview 1336 640 3,528,326 1,176,453

CHE Telephone 120 60 252,224 84,460

SWBC Telephone 254 130 1,008,901 336,417

and both the SWBC and CHE datasets can be used to extract speaker embeddings

from the trained model and evaluations.

Experimental Setup

In order to evaluate the generalisation of the proposed model, the models are firstly

trained using the SRE08 dataset. Then, speaker embeddings are extracted from the

trained model using SWBC and CHE datasets. Both speaker identification and veri-

fication experiments are conducted. The detailed experimental setup including model

training details can be found in Appendix A.1.1, including the detailed data processing

strategies.

Both the window size (Lwin) and step size (Lstep) of the proposed hierarchical

attention network are fixed at 30 frames. This means there is no overlap between each

segment. For the performance of different window and step sizes, further experiments

are outlined in Section 3.5.

In order to evaluate the performance of the proposed model with short and long

utterances, all the experiments described above are split into two scenarios, one using

an utterance length of one second, the other using an utterance length of three seconds.

Baseline Selection

The purpose of the experiments in this section is to evaluate the performance of the

proposed hierarchical attention network compared to current, widely used baselines.
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In the experiments, two baselines were selected, namely X-vectors (Snyder et al.

2018) and attentive X-vectors (Wang, Okabe, Lee, Yamamoto & Koshinaka 2018, Zhu

et al. 2018). The proposed model is henceforth referred to as H-vector.

X-Vectors (Snyder et al. 2018) is based on a TDNN architecture and is described

in more detail in Section 2.2.4. This model architecture contains a five-layer TDNN-

based frame-level feature extractor, with each layer operating on certain time steps. A

statistics pooling operation is applied to the output of the frame-level feature extractor

to summarise the output sequence into a vector. Then, a DNN-based segment-level

feature extractor is used to generate the final speaker embedding.

The reason for selecting X-vector as one of the baselines is that it is widely used

for speaker recognition and is effective in speaker embedding extraction. Snyder et al.

(2018) demonstrated that the X-vector model has strong generalisation to different

datasets. In their work, the X-vector model is trained using the SRE16 dataset, and

Voxceleb1 data was used as one of the test sets. The results show the X-vector can

obtain better results compared with an i-vector based system. Another reason to

use X-vectors as one of the baselines is that it uses no attention mechanism in the

architecture. The effectiveness of the attention mechanism used in the H-vector model

can therefore be evaluated by comparing the performance of the X-vector architecture

and the H-vector model.

The attentive X-vectors model, combines a global attention mechanism with X-

vectors (Wang, Okabe, Lee, Yamamoto & Koshinaka 2018, Zhu et al. 2018), is the

second baseline deployed in this study as it is one of the most widely used variations

of the X-vector architecture, and is first introduced in Figure 2.11 in Section 2.3.2. In

addition to the frame-level feature extractor, the statistics pooling operation and the

segment-level feature extractor, the attentive X-vectors model uses a global attention

mechanism on the output of the frame-level feature extractor before the statistics pool-

ing operation. The attention mechanism used in attentive X-vectors directly computes

weights for each frame, which is different from the proposed approach.
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Selecting the attentive X-vector model as one of the baselines allows for a direct

comparison between the proposed hierarchical attention mechanism and the global

attention mechanism used in attentive X-vector. As discussed in Section 3.1, the

potential problems of the global attention mechanism are addressed by the proposed

hierarchical attention mechanism . Comparing the performance of the two models is

an obvious way to show which attention mechanism performs best.

3.4.2 Results and Discussion

Table 3.2: Speaker identification accuracy (%) on the SRE08 test set with the utterance

length is 1s or 3s. Lwin and Lstep are set to 30 frames. Improve represents the relative

improvement (%) of the speaker identification accuracy compared to the X-vector model

in 1 or 3 second scenarios.

Utterance Length Model Accuracy Improve

1 Second

X-vector 90.1 0

X-vector+Att 92.1 2.2

H-vector 94.5 4.8

3 Seconds

X-vector 95.2 0

X-vector+Att 96.7 1.5

H-vector 98.5 3.4

Performance On SRE08

Table 3.2 shows the speaker identification accuracy on the SRE08 test set using the

proposed approach and the two baselines. As the models are trained using the SRE08

dataset, the identification accuracy on its test set is firstly shown. Overall, the accu-

racy for all of the three models is over 90% in both the one-second and three-second
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Table 3.3: Speaker identification accuracy (%) and speaker verification EER (%) on CHE

dataset when the utterance length is 1s or 3s. Lwin and Lstep are set to 30 frames. “Im-

prove Acc” represents the relative improvement (%) of the speaker identification accuracy

compared to the X-vector model in 1 or 3 second scenarios. “Improve EER” represents

the relative improvement (%) of the speaker verification EER compared to the X-vector

model in 1 or 3 second scenarios.

Utterance Length Model Accuracy EER Improve Acc Improve EER

1 Second

X-vector 84.8 1.86 0.0 0.00

X-vector+Att 87.5 1.53 3.1 17.74

H-vector 89.1 1.36 5.0 26.88

3 Seconds

X-vector 89.4 1.39 0.0 0.00

X-vector+Att 91.0 1.18 1.7 15.10

H-vector 92.8 1.01 3.8 27.33

scenarios, though accuracy with the three-second utterances is better than that for the

one-second ones. This probably indicates that a longer utterance may contain more

information relevant to a target speaker than a short one.

For the one-second utterances, the H-vector showed a relative improvement of 4.8%

compared to the X-vector model, and 2.6% compared to the attentive X-vector model.

For the three-second scenario, the relative improvements delivered by the H-vector

model were 3.4% and 1.8% respectively.

These relative improvements may demonstrate that, with regard to X-vector model,

the H-vector is superior as a result of its attention mechanism, which the X-vector

lacks and, with regard to the attentive X-vector model, the H-vector performs better

by deploying both local and global attention, as opposed to global attention only.
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Table 3.4: Speaker identification accuracy (%) and speaker verification EER (%) on

SWBC dataset when the utterance length is 1s or 3s. Lwin and Lstep are set to 30 frames.

“Improve Acc” represents the relative improvement (%) of the speaker identification ac-

curacy compared to the X-vector model in 1 or 3 second scenarios. “Improve EER”

represents the relative improvement (%) of the speaker verification EER compared to the

X-vector model in 1 or 3 second scenarios.

Utterance Length Model Accuracy EER Improve Acc Improve EER

1 Second

X-vector 78.2 2.17 0.0 0.00

X-vector+Att 81.0 2.02 3.5 6.90

H-vector 83.7 1.90 7.0 12.44

3 Seconds

X-vector 81.3 1.98 0.0 0.00

X-vector+Att 84.0 1.79 3.3 9.59

H-vector 86.2 1.61 6.0 18.6

Generalisations On Out-of-Domain Datasets

Having shown the performance in the in-domain SRE08 dataset, Tables 3.3 and 3.4

show the identification accuracy and verification equal error rate when using the em-

beddings learned on the SWBC and the CHE dataset, respectively.

Overall, both of the identification accuracies in the following two tables are lower

than that those in Table 3.2. This is because SWBC and CHE have different properties

compared with SRE08

More specifically, for all three models, the accuracies on SWBC are lower than

CHE, perhaps due to the wide range of environmental conditions (indoors, outdoors

and moving vehicles) that may affect the identification rate. For the CHE dataset,

the overall accuracy did not reach the training accuracy on SRE08. A possible reason

is that CHE contains only voices from native English speakers, while SRE08 contains

multilingual data, and so the speaker similarity on the CHE dataset might affect the
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identification rate.

Compared with the results obtained by X-vector and attentive X-vector, the results

obtained by the H-vector show that a better generalisation. The H-vector consistently

outperforms the two baselines, regardless of whether the length of utterances is 1 second

or 3 seconds. In the CHE dataset, the H-vector approach reaches an 89.1% prediction

accuracy and 1.44% equal error rate, with an improvement of over 3% in the speaker

identification task as compared to the baselines. In the speaker verification task, the H-

vector achieved relative improvement over 20% and 10% compared with the X-vector

and attentive X-vector models respectively. Similar to the results with the SRE08

dataset, the results obtained with the three-second utterance length is better than the

performance with the one-second utterances.

For both the in-domain and out-of-domain datasets, the H-vector performed better

than both the X-vector and attentive X-vector baselines, thereby demonstrating that

the proposed hierarchical attention mechanism has better model generalisation and,

specifically, performs better than the global attention in the attentive X-vector model

which, in turn, performs better than the X-vector model. This is due to the use of

global attention that highlight important parts. The lack of attention mechanism in

the X-vector architecture means it treats each frame as being equally important to the

target speaker identities
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3.4.3 Analysis

Visualisation of the DET Curve

Figure 3.3: The DET curve (introduced in Section 2.2.3) on the SWBC dataset when

the utterance length is 3 seconds.

In order to intuitively show and compare the proposed H-vector model and the two

baselines, this section visualises the performance of the three models in two different

ways.
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Figure 3.3 shows the detection error trade-off (DET) curve (Martin et al. 1997,

Garcia-Perera et al. 2012) that was introduced in Section 2.2.3. The figure shows

the curves for all three models (X-vector, attentive X-vector and H-vector) on the

SWBC dataset when the utterance length is 3 seconds. The DET curve plots the false

alarm (FA) rate and false rejection (FR) rate into one graph to illustrate the model

performance and the equal error rate (when the FR and FA rates are equal).

From Figure 3.3, it is clear that the H-vector model had a lower false rejection rate

and a lower false alarm rate, as well as a lower equal error rate. The attentive X-vector

obtained higher false rejection and false alarm rates, though these were still lower

than those obtained by the X-vector model. This is mainly due to the use of attention

mechanism; the attentive X-vector uses global attention that allocates different weights

to each frame, which can highlight the importance of different frames. For example,

when the false alarm rate is fixed at 1 %, the false reject rate of H-vector, attentive

X-vector and X-vector are 2.9%, 3.5% and 4.7%. When the false reject rate is fixed at

1%, the false alarm rate of H-vector, attentive X-vector and X-vector are 2.6%, 3.1%

and 3.4%.

Visualisation of Embeddings Using the t-SNE Algorithm

The next step was to visually evaluate further the quality of the extracted utterance-

level embeddings. This was achieved by applying the t-SNE algorithm, developed by

Maaten & Hinton (2008). This is a widely used visualisation technique, shows the

distribution of the embeddings by projecting the high-dimensional vectors onto a 2D

plane. The algorithm can project high dimensional data points onto a low dimension

space. For example, the data points that are close to one another in high dimensional

space can be projected into the low dimensional space and remain close. In this way,

the distances between the speaker embeddings can be visualised, and the intra-class

and inter-class distances can be plotted in a two dimensional plane.

In order to plot the data points for the SWBC dataset, 10 speakers were selected
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Figure 3.4: Embedding visualization using t-SNE. In the SWBC dataset, 10 speakers

are selected and 500 three-second segment are randomly sampled for each speaker. Each

color represents a speaker, and each point indicates an utterance.

and 500 three-second segment were randomly sampled for each speaker.

Figures 3.4 (a), (b) and (c) show the distribution of the selected samples of the 10

speakers after using the X-vector, the attentive X-vector, and the H-vector, respectively.

Each colour represents a distinct speaker and each point represents an utterance. The

black mark represents the centre point for each speaker class. Figure 3.4 (a) shows the

distribution of the embeddings obtained by the X-vector model, and a certain lack of

discrimination between speakers is obvious in that there are overlaps between speaker

classes. Due to the use of an attention mechanism in attentive X-vector, Figure 3.4

(b) shows a better sample distribution than Figure 3.4 (a), though it clearly had issues

with the speaker shown in blue as these data points are not well grouped. In Figure 3.4

(c), the embedding obtained by the H-vector model creates a better separation than

either of the baseline models.

The visualisations in Figure 3.4 clearly shows that the H-vector model has the

smallest intra-class distance and the largest inter-class distance demonstrating, once

again, that the H-vector model is superior to either of the baseline models.
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3.4.4 Summary

In order to evaluate the model generalisations, three datasets with different properties

were selected, namely SRE08, SWBC and CHE. The two baseline models, the X-vector

and the attentive X-vector models, were used to compare with the proposed hierarchical

model. The X-vector was used to compare the effectiveness of the attention mechanism

used in the proposed model, while the attentive X-vector was used to compare the global

attention mechanism with the proposed hierarchical attention mechanism and, against

each one, the H-vector model performed better and had a better level of generalisation.

Specifically, the results in Table 3.2 shows the H-vector model performed best with the

in-domain dataset, while Tables 3.3 and 3.4 show the proposed H-vector model can

obtain a better model generalisation with the out-of-domain dataset.

In order to intuitively show the performance comparison, Figure 3.3 shows the DET

plot, indicating that the H-vector model performed better than the two baseline models.

Finally, Figure 3.4 visualises the sample of speaker embeddings in two dimensional

space, and it shows that the proposed H-vector model can achieve both a lower intra-

class distance and a larger inter-class distance than the two baselines.

The results obtained by the H-vector model and the attentive X-vector model are

better than the X-vector model, this phenomenon shows the attention mechanism can

highlight important parts of the input signal and improve the performances. While the

comparison of the attentive X-vector model and the proposed H-vector model shows

that the hierarchical attention can capture both local and global information by the

hierarchical structure, which may lead to the better performances than the global

attention mechanism.
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3.5 Noise Robustness of the Hierarchical Attention

Network

Following on from the evaluation of the model generalisation, this section will focus on

the evaluation of the noise robustness of the H-vector model compared with the two

baselines.

3.5.1 Experiment Setup

In order to evaluate the noise robustness of the proposed model, the Voxceleb1 dataset

(introduced in Section 2.5.1) is used. The data augmentation process is the same as

described and used in Section 2.6.1, details can be found in Appendix B.1. For both

speaker identification and speaker verification tasks, the training utterances from the

training sets are augmented by mixing Voxceleb1 data with random noise signals from

the MUSAN dataset at random SNR levels (0, 5, 10, 15 and 20dB). The test utterances

are mixed with a certain kind of noise at one of the five SNR levels. The ability to

evaluate and compare particular values with specific noise types across the test dataset

allows for a comprehensive evaluation of the noise robustness of the three models.

For the experiments described above, both the window size (Lwin) and step size

(Lstep) of the proposed hierarchical attention network are fixed to 30 frames. There is

no overlap between segments, and experiments to determine the influence of different

window and step sizes were also conducted. The implementation details of the H-vector

model for the experiments in this section are the same for the previous sections.

3.5.2 Results and Discussion

Performance On Voxceleb1

In this section, the goal is to evaluate the noise robustness of the proposed H-vector

model. The Voxceleb1 dataset was recorded “in the wild” and therefore the original
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Table 3.5: Speaker identification accuracy (%) and speaker verification EER (%) on

Voxceleb1 test set with the utterance length is 1s or 3s. Lwin and Lstep are set to 30

frames.

Utterance Length Model Accuracy EER

1 Second

X-vector 85.8 5.75

X-vector+Att 86.9 5.22

H-vector 88.7 4.97

3 Seconds

X-vector 88.2 5.13

X-vector+Att 89.2 4.79

H-vector 90.4 4.64

utterances already had a wide range of other noises included. Not all of the experiments

in this section conducts the AM-Softmax loss function as mentioned in Section 2.2.2.

Table 3.5 (above) shows the speaker identification accuracy and equal error rate

on the Voxceleb1 dataset and, similarly to the earlier experiments, the H-vector model

shows better performances than the two baselines. For the speaker identification task,

the H-vector achieved an 88.7% accuracy with utterance lengths of 1 second and a

90.4% accuracy with utterance lengths of 3 seconds. This is a relative improvement

of over 3% over the two baseline models. In the speaker verification task, H-vector

reached a 4.97% equal error rate on 1-second utterance lengths and 4.64% on 3-second

utterance lengths.

The performance of the models in 1-second scenario is lower than that with the 3-

second scenario utterances, again because the longer utterances contain more speaker-

related information. In the following experiments, the utterance length is kept at three

seconds.

Noise Robustness With the Augmented Voxceleb1 Dataset

In order to evaluate the robustness of the proposed model in noisy conditions, addi-

tional noises from the MUSAN dataset are mixed with the utterances from the original

Voxceleb1 dataset. As discussed in the previous section, the test set is mixed with
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Table 3.6: Speaker identification accuracies (%) for different noise types (Noise, Mu-

sic and Babble) at different SNRs (0-20 dB), and the original Voxceleb1 test set. The

utterance length is 3 seconds. Lwin and Lstep are set to 30 frames.

Noise Type SNR X-vectors Att-X-vectors H-vectors

General

0 74.6 75.8 76.9

5 79.5 79.4 81.3

10 83.1 84.0 86.0

15 85.0 86.3 87.2

20 87.9 87.8 88.9

Music

0 68.2 70.1 72.3

5 72.0 73.5 74.8

10 79.4 81.0 82.9

15 84.2 86.6 87.8

20 86.1 88.0 89.3

Babble

0 64.1 65.2 67.9

5 70.5 71.4 74.0

10 77.4 77.0 78.7

15 83.5 84.5 86.2

20 86.6 86.9 88.1

Original 88.2 89.2 90.4

certain noise types at certain noise levels.

Tables 3.6 and 3.7 show the speaker identification accuracy and speaker verification

equal error rate under different noise conditions. Three noise types are used: general

noise, music and speech noise. The noise level is changed from 0dB to 20dB. The

utterance length is kept at three seconds.

From the results, the proposed H-vector outperforms the two baselines in under

noise conditions (general noise, music and babble). When the noise level becomes

larger, such as babble and music at 0 and 5 dB, the H-vector model obtains a larger

improvement. Even with babble at a level of 0dB, the proposed model achieves a

prediction accuracy of 67.9% and a relative improvement of more than 5% over the

X-vector model and 3% over the attentive X-vector model.

The performances of the three models are much lower than those generated with the
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Table 3.7: Speaker verification EER (%) for different noise types (Noise, Music and

Babble) at different SNRs (0-20 dB), and the original Voxceleb1 test set. The utterance

length is 3 seconds. Lwin and Lstep are set to 30 frames.

Noise Type SNR X-vectors Att-X-vectors H-vectors

General

0 12.26 11.32 10.92

5 10.01 9.26 9.03

10 8.33 7.77 7.28

15 7.25 6.76 6.50

20 6.91 6.02 5.95

Music

0 14.15 12.92 12.68

5 11.03 10.04 9.83

10 9.35 8.64 8.33

15 8.41 8.08 7.62

20 6.79 6.25 6.17

Babble

0 30.02 27.77 26.82

5 16.46 15.32 14.58

10 13.26 12.53 12.38

15 9.10 8.31 8.14

20 7.95 7.22 7.04

Original 5.47 5.06 4.64

original dataset, confirming the discussion in Section 2.3.1 and the experimental results

in Section 2.6.2 showing that background noise can corrupt the speaker-related features,

thereby significantly disrupting the performance of deep neural network models. Of all

the noise types, all three models performed worst with babble, at all levels from 0dB

to 20dB. This confirms the observation in Section 2.4.1 that interference from other

speakers, unlike that from all other noise types, contains similar features or patterns

as the target speaker, all occupying the same frequency band as the target speaker.

3.5.3 Analysis

The Effect of Different Window and Step Sizes

Two key hyper-parameters of the proposed H-vector model are the window size (Lwin)

and the step size (Lstep) and the effect of these two hyper-parameters were not evaluated
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Table 3.8: Speaker identification accuracy (%) and speaker verification EER (%) on

Voxceleb1 dataset when the window size Lwin is changed from 15 to 35 frames.

Utterance Length Window Size Accuracy EER

1 Second

15 86.4 5.24
20 87.3 5.01
25 89.2 4.82
30 88.7 4.97
35 88.3 5.11

3 Seconds

15 88.7 4.72
20 89.6 4.43
25 91.0 4.28
30 90.4 4.64
35 89.5 4.79

Table 3.9: Speaker identification accuracy (%) and speaker verification EER (%) on

Voxceleb1 dataset when the step size Lstep is changed from 15 to 35 frames.

Utterance Length Step Size Accuracy EER

1 Second

15 87.5 4.93
20 89.6 4.86
25 89.4 4.92
30 88.7 4.97
35 87.1 5.12

3 Seconds

15 90.1 4.61
20 91.0 4.43
25 90.6 4.37
30 90.4 4.64
35 88.3 4.90

in the previous sections. The window size controls the number of frames in each

segment. It is the sequence length to the input of the frame-level encoder and attention.

The step size controls the overlap rate between two adjacent segments and it can also

affect the number of segments delivered to the segment-level encoder.

In order to evaluate the performance of the proposed H-vector model when us-

ing different window sizes (Lwin) and step sizes (Lstep), Tables 3.8 and 3.9 show the

prediction accuracy and equal error rate from Voxceleb1 dataset when

� a) the window size changes from 15 to 35 frames and the step size is fixed at 30

frames, and
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� b) the step size changes from 15 to 35 frames and the window size is fixed at 30.

It can be observed that the model is more sensitive to a change in the window size.

The model performs best with the 1-second utterance lengths when Lwin = 20. The

performance for both speaker identification and verification results becomes better and

then drops, which may be due to the fact that the window size controls the number

of frames that input to the frame-level encoder (this can be observed from Figure 3.1,

Section 3.2). When the number of frames is small (e.g. 15 frames), there is not enough

information for each frame-level encoder to capture, but when there are more than 35

frames in one segment, the relationships between the beginning and end frames of the

current segment may be small, as they are not close to each other. This may not help

the frame-level encoder to focus on the key features.

A similar phenomenon occurs when changing the step size in that the performance

increases and then drops away from a peak. This is because the step size controls the

overlap rate between two segments. A smaller step size of, say, 15 frames, results in

more redundant information and more segment vectors, making it more difficult for the

frame-level encoders to distinguish the important features for the target speaker. On

the other hand, when the step size is larger than the window size, there are some frames

that are not input into the network, meaning that the model will lose information.

Comparison With State-of-the-Art

In the previous sections, the proposed hierarchical attention network demonstrated

better model generalisation and robustness compared with the baselines. Table 3.10

shows the comparison of the H-vector model with some of the state-of-the-art tech-

niques using the same Voxceleb1 training set and it is clear that the proposed H-vector

model achieves comparable or better results. Among the models listed, the VGG-M

model is based on a two-dimensional CNN architecture while the CNN+TDNN method

combines the CNN with TDNN architectures. Compared with those three models, the

H-vector model achieves significantly better results which is probably due to better
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Table 3.10: Comparison of the proposed approach with the state-of-the-art speaker veri-

fication results on the Voxceleb1 test set when using Voxceleb1 for training only.

Model Loss EER

Nagrani et al.(Nagrani et al. 2017) VGG-M softmax 10.2

Nagrani et al.(Nagrani et al. 2017) VGG-M softmax+contrastive 7.8

Shon et al. (Shon et al. 2019) CNN+TDNN softmax 6.79

Cai et al. (Cai et al. 2018). ResNet-34 A-softmax+PLDA 4.46

Hajibabaei and Dai (Hajibabaei & Dai 2018) ResNet-20 A-softmax 4.40

Hajibabaei and Dai (Hajibabaei & Dai 2018) Retnet-20 AM-softmax 4.30

Ours H-vector AM-softmax 4.28

modelling and the use of AM-softmax. The hierarchical attention structure captures

local and global information and thus can be more robust in the Voxceleb1 dataset

which contains noisy data recorded in the real world conditions. The other three

methods are based on the ResNet architecture described in Section 2.2.4, and these

performed better due to the fact that residual connection is better at capturing local

features. The H-vector model can deliver a slightly better performance compared to

the ResNet architecture, demonstrating that capturing both local and global features

by the hierarchical structure is helpful.
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(a) Original Spectrogram (b) Noise Corrupted Spectrogram

(c) Global Attention Weights from (a) (d) Global Attention Weights from (b)

(e) H-vector Attention Weights from (a) (f) H-vector Attention Weights from (b)

Figure 3.5: Visualisation of attention weights. (a) the original spectrogram, (b) the

noise corrupted spectrogram, (c) the global attention weights for the original spectrogram,

(d) the global attention weights for the corrupted spectrogram, (e) the H-vector attention

weights for the original spectrogra and (f) the H-vector attention weights for the corrupted

spectrogram. Note that the number of the attention weights in the attentive X-vector is

300 (there are 300 frames in the input data) and the number of the segment-level attention

weights in H-vector is 10 (10 segment vectors). In order to compare the attention weights,

the attention weights of the attentive X-vector are divided into 10 groups using a sliding

window (with window size Lwin and step size Lstep). The values for each group are

averaged, results in 10 attention weight values.
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Visualisation of Attention Weights

In order to show how the attention mechanism works, Figure 3.5 provides the visu-

alisation of the attention weights. Figure 3.5 (a) is the spectrogrm of a 3s utterance

randomly selected from the Voxceleb1 dataset. Figure 3.5 (b) shows the noise cor-

rupted spectrogram (at 0dB). The corresponding text information are marked at the

bottom of the figures. For better visualisation, here demonstrate spectrograms, instead

of MFCCs. Figures 3.5 (c) and 3.5 (d) show the attention weights obtained when using

the attentive X-vector (global attention) on the original utterance and the noise cor-

rupted utterance, respectively. Figures 3.5 (e) and 3.5 (f) show the attention weights

obtained by using the H-vector in the same conditions. Note that the number of the

attention weights in the attentive X-vector is 300 (there are 300 frames in the input

data) and the number of the segment-level attention weights in H-vector is 10 (10

segment vectors). In order to compare the attention weights, the attention weights of

the attentive X-vector are divided into 10 groups using a sliding window (with window

size Lwin and step size Lstep). The values for each group are averaged, results in 10

attention weight values.

Although the weight distributions displayed in Figure 3.5(c) and (d) show that the

use of both attentive X-vector and H-vector can learn the importance of features in

different parts of an utterance recording, the attentive X-vector assigned a high weight

value, about 0.5 to the segment 8. This means the contribution of the segment 8 is

dominant over the remaining 9 segments. This might easily cause an overestimate

of some class labels (or speaker identities), and thus probably leads to an incorrect

decision. As a comparison, although the H-vector model allocated the highest weight

to the segment 8, it is close to 0.3 as shown in Figure 3.5(e) and (f), and other segments

segments are also allocated a relatively reasonable attention values. It shows the H-

vector model can highlight feature contributions from multiple regions of an utterance

recording.

It may be that the global attention process within the attentive X-vector model may
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tend to favour few number of regions over others of a recording, whereas the hierarchical

structure of the H-vector model is able to highlight contributions from more regions

by computing the attention weights within a small segment, and then computing the

attention weights over all segments. In this way, the local features located in each

individual segments can be captured by the corresponding frame-level encoders, while

the global features at a higher level can be captured by the segment-level encoder.

3.5.4 Summary

In this section, the robustness of the hierarchical attention network was evaluated

using the Voxceleb1 dataset combined with additional noise signals from the MUSAN

dataset. In Table 3.5 in Section 3.5.2, the proposed H-vector model performs better

with the Voxceleb1 dataset. In Tables 3.6 and 3.7 of Section 3.5.2, the H-vector model

performed better than the baselines in almost all of the noise conditions.

The window size and the step size are the key hyper-parameters, and Tables 3.8 and

3.9 of Section 3.5.3 show how the variations of the window and step sizes were tested

(from 15 frames to 30 frames). The results show the performance can be improved when

the window size becomes larger, and drops away after reaching a peak. Changing the

step size shows similar behaviour.

In order to compare the proposed H-vector model with the state-of-the-art models,

Table 3.10 in Section 3.5.3 compared the proposed model with the state-of-the-art

results that used the same training data as the H-vector model. The proposed H-

vector model can deliver comparable results to the state-of-the-art models.

Figure 3.5 in Section 3.5.3 shows visualisations of the attention weights allocated

by the attentive X-vector and H-vector models in order to assess how the attention

mechanism works. The results show that the H-vector model can highlight more than

one important feature, even in noisy conditions.

The comparison of the proposed hierarchical attention network and the two base-

lines shows the hierarchical structure can obtain a better noise robustness. The reason



CHAPTER 3. HIERARCHICAL ATTENTION NETWORK 93

may be the hierarchical structure provides a better way to highlight important parts in

the input signal by splitting the attention mechanism into two levels, each level focuses

on different information.

3.6 Conclusion

In this chapter, the hierarchical attention network was proposed and evaluated. For ob-

taining better performance and robustness in noisy conditions, the widely used global

attention has two problems. Firstly, it can only focus on a small number of features

when the input utterances become longer. The second is that the global attention

is unable to pay sufficient attention to the local features. The proposed hierarchical

H-vector model is designed to address these two issues and improve overall perfor-

mance. The hierarchical attention network splits the input utterance into several short

segments. The frame-level encoder is then applied to each of the small segments, cap-

turing the local features of the adjacent frames within each segment. The segment-level

attention applies attention at a higher level, focusing on the global features by allo-

cating different weights to the segment vectors. The details of the architecture of the

hierarchical attention network are given in Sections 3.2 and 3.3.

In order to evaluate the proposed H-vector model, two baselines were used. The X-

vector model represents the most widely used model for speaker recognition and it does

not contain an attention mechanism, this it useful for demonstrating the effectiveness

of the attention mechanism. The second baseline is the attentive X-vector model

with a global attention mechanism, and this serves to compare the performance of the

proposed hierarchical attention and the global attention.

The experiments were designed to evaluate model generalisation and noise robust-

ness. Section 3.4 covered model generalisation and three datasets were used: SRE08,

SWBC and CHE. SRE08 was used for training, and the SWBC and CHE datasets

provided the out-of-domain data that were used for evaluation. The experimental re-
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sults show the H-vector model out-performed the two baselines. The comparison of

the H-vector and X-vector models shows the use of the attention mechanism is more

effective than the X-vector model that treats each frame equally. The comparison of

H-vector and attentive X-vector shows the proposed hierarchical attention delivers bet-

ter performance compared to the global attention. In order to show the performance

comparison, a DET plot and an embedding visualisation using the t-SNE algorithm

were conducted. The DET plot clearly shows the performance comparison of the three

models. The embedding visualisation clearly shows that the embedding generated by

the H-vector model has a smaller intra-class distance and larger inter-class distance.

Section 3.5 focuses on noise robustness evaluation using the Voxceleb1 dataset,

augmented by additional noises from MUSAN dataset. The results with the original

Voxceleb1 dataset and the augmented Voxceleb1 dataset shows the H-vector model

performs well in almost all noise conditions. Even with babble, the most challenging

of the three noise conditions, the proposed model out-performs the two baselines.

The performance of the H-vector model was also compared with published state-

of-the-art results that use the same training set (Voxceleb1) and the proposed model

stands up well to all of them. The results from the H-vector model were slightly bet-

ter than the ResNet-based models, showing that the hierarchical attention structure

is comparable to ResNet. In order to show how the attention works, the attention

weights were visualized. The comparison of the attention weights obtained by global

attention and hierarchical attention indicates that the hierarchical attention can high-

light multiple important features, as well as capturing features somewhat corrupted by

noise.

In conclusion, the proposed hierarchical attention network splits the attention mech-

anism between frame level and segment level to capture both local and global features.

The experimental results show this architecture can deliver better model generalisation

and noise robustness as compared to the widely used X-vector and attentive X-vector

models.



Chapter 4

Speech Enhancement For Speaker

Recognition

4.1 Introduction

In Section 2.3, different types of noise interferences were discussed, it was pointed out

that background noise can contain fluctuating or steady noise and that significantly

affect the quality of the speech signal. The performance of speaker recognition models

can also be influenced as different types of noise can corrupt features within the signal.

Section 2.3.3 discussed speech enhancement as one of the potential solutions to this

problem. In contrast to the attention mechanism discussed in Section 2.3.2, a speech

enhancement model can be built independently as a front-end pre-processing model

to filter out noise interference by either generating a time frequency mask or directly

predicting the clean signal from the noisy input. However, the independent training of

speech enhancement model may cause mismatch issues. The mismatch problem arises

when the speech enhancement model not only filters out the noise interference from the

noisy input, but also some of the features required by the back-end speaker recognition

model can also be corrupted (see Section 2.3.3). The reason for the mismatch problem

is that the training target of the speech enhancement model is to reduce the noise by

95
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either generating a mask or directly producing a clean signal, whereas there are no

constraints on the features that are used for the back-end model (e.g. speaker related

features for the back-end speaker recognition system) (Sadjadi & Hansen 2010, Shon

et al. 2019, Wang & Wang 2016).

In order to overcome this problem, a joint training framework of the speech en-

hancement and speaker recognition models may be a solution. It can make the speech

enhancement model filter out the noise information and remain the useful features for

the speaker recognition model at the same time. From review of recent relevant liter-

ature in Section 2.3.3, it emerged that most speech enhancement systems are trained

independently. Shon et al. (2019) developed a method that integrates the speech en-

hancement and speaker recognition models but, even in this model, the two models

still had to be trained separately.

In this chapter, a joint training framework of speech enhancement and speaker

recognition is proposed, with two novel model architectures, namely the joint training

of speech enhancement for speaker recognition, and speaker dependent speech enhance-

ment for speaker recognition. In the first proposed model, the speech enhancement and

speaker recognition models are trained using one objective function. Within the model

architecture, a novel multi-stage attention mechanism is proposed to improve the per-

formance of the speech enhancement model. The second proposed approach aims to

further improve the performance using speaker embedding that is pre-trained and used

in the speech enhancement model. Such speaker dependent speech enhancement in the

joint training framework can improve the performance under various noise conditions.

4.1.1 Chapter Outline

The rest of this chapter is organized as follows:

� Section 4.2 introduces the overall structure of the joint training framework.

� Section 4.3 includes the model architecture of the joint system, as well as the
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experimental setup and the results, followed by a discussion.

� Section 4.4 proposes a speaker-dependent speech enhancement model based on

the joint training framework. In this section, the experimental setup, results and

discussion are also included.

� A conclusion of this chapter is provided in Section 4.5.
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Figure 4.1: The overall structure of the joint training framework of the speech enhance-

ment and speaker recognition models.

4.2 A Joint Training Framework

In this section, the overall structure of the proposed joint training framework is intro-

duced. The proposed joint training system (as detailed in Section 4.3) and the speaker

dependent speech enhancement system (as detailed in Section 4.4) are all based on the

structure described in this section. The following section will introduce the detailed

model architectures for each of the models within the framework.

Figure 4.1 shows the overall architecture. In this framework, XN ∈ RT×F denotes

the input noisy spectrogram, where T and F denote the time and frequency dimensions

respectively. The speech enhancement model is denoted as “SE-Net” and the speaker

recognition model is denoted as “SR-Net” in this section. The input to the speech

enhancement model is XN . The model learns a time-frequency mask which is then

multiplied with XN . The result is the estimated clean spectrogram X
′

C ∈ RT×F ,

which has the same dimension as XN . The estimated clean spectrogram is then fed

to the SR-Net. The speaker identities are the output of the SR-Net and the speaker

embeddings are extracted from the SR-Net for speaker verification.

The objective function contains two parts; the first is the so called reconstruction

loss and the second is the cross-entropy loss. Equation 4.1 shows the reconstruction

loss of the SE-Net, where xij and x
′
ij denote each element in the clean and denoised

spectrogram, T and F denote the dimension on time and frequency axes, respectively.

The mean absolute error (MAE) (Willmott & Matsuura 2005) is used to measure

the difference between the reference clean spectrogram XC and the estimated clean



CHAPTER 4. SPEECH ENHANCEMENT FOR SPEAKER RECOGNITION 99

spectrogram X
′

C . This is a constraint on the SE-Net to filter out the noise information.

LSE =
1

TF

T+1∑
i=1

F+1∑
j=1

|xij − x
′

ij| (4.1)

The second part of the objective function is shown in Equation 4.2 in which y

and y
′

denote the ground truth speaker label and model prediction from the SR-Net

(discussed in Section 2.1.1). N is the total number of speakers in the training set. It is

the cross-entropy loss that was discussed in Section 2.2.3. Minimising the cross-entropy

loss can restrict the joint system from learning features related to the target speakers

(Shon et al. 2019).

LSR = −
N+1∑
i=1

yi log y
′

i (4.2)

In order to make the joint training model reduce the noise influence and retain

speaker related features at the same time, the joint framework shown in Figure 4.1

is trained using Equation 4.3, which is a combination of Equations 4.1 and 4.2. In

practice, and in order to accelerate the training process, the SE-Net and the SR-Net

are pre-trained independently using Equations 4.1 and 4.2. Then, the two models are

integrated together and fine-tuned using Equation 4.3.

L = LSE + LSR (4.3)

4.3 Joint Training of Speech Enhancement and Speaker

Recognition

4.3.1 Model Architecture

This section builds upon the architecture depicted in Figure 4.1 and shows the details

of the various components of the joint system, including the model architecture of the
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speech enhancement model, the speaker recognition model and the proposed multi-

stage attention mechanism.

Speech Enhancement Model

The architecture of the proposed speech enhancement and speaker recognition joint

system consists of a speech enhancement model and a speaker recognition model. The

noisy spectrogram input is denoted as XN ∈ RT×F×C , where T , F , and C represent

the time dimension, frequency dimension, and channel dimension, respectively. In

contrast to the description in Section 4.2, here the channel dimension is written as it

will be used in the multi-stage attention mechanism (later in this section). The value

of C of the input spectrogram XN is one. Note that the term channel in this Chapter

is different from that from Chapter 2. It is not the number of microphones of the input

signal, but the number of features or kernels of a convolutional layer. This will be

explained in detail in the next sections.

The speech enhancement model consists of multiple convolution and multi-stage

attention (CONV-MS) blocks. Each of them contains a dilated convolution layer fol-

lowed by a multi-stage attention mechanism. The dilated convolution (Yu & Koltun

2015) is a type of convolution that has a larger receptive field (discussed in Section

2.1.2). It was shown by Tan et al. (2018) and Pandey & Wang (2020) to have a better

performance in speech enhancement. For each CONV-MS block, the output of the

dilated convolutional layer is denoted as Hk ∈ RTk×Fk×Ck , where k means the kth

CONV-MS block. The term k used here is to distinguish different CONV-MS blocks,

as a neural network may have multiple CONV-MS blocks. This will be explained later

in this section. Hk is then input to a multi-stage attention (MS) block. The output

H ′′′
k denotes the refined features of the kth Conv-MS block, whose dimension is the

same as Hk (the reason for the three superscripts can be found in the following sec-

tion). The estimated clean spectrogram is the output of the last CONV-MS block.

The detailed model architecture of SE-Net can be found in Table A.2, Appendix A.2.
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Speaker Recognition Model

The speaker recognition model consists of multiple residual convolutional layers and

a multi-stage attention mechanism (RES-MS block). Similar to the description in

Section 4.3.1, the input of the kth residual block is denoted as Hk ∈ RTk×Fk×Ck , and

the final refined feature map of the kth RES-MS block is H ′′′
k . Within each RES-

MS block, a multi-stage attention mechanism is applied. The last RES-MS block is

followed by fully-connected layers, by which the predictions of speaker identities are

finally computed. The notations of the input from, and output to, the CONV-MS block

and the RES-MS block (Hk and H
′′′

k ) are the same for both SE-Net and SR-Net.

The ResNet-20 architecture (as discussed in Section 2.2.4) is used, because it con-

tains residual connections that can make the model easier to train using a large amount

of data. The detailed model architecture can be found in Table A.3, Section A.2.

Multi-Stage Attention Mechanism

One of the key components of the speech enhancement model is the multi-stage at-

tention mechanism (MS). It can work as a noise filter, filtering out interference by

assigning attention weights to the input data. It was shown by Yadav & Rai (2020)

that applying attention mechanism in different dimensions of the input speech signal

can achieve better noise robustness in speaker recognition. Thus, in order to better fil-

ter out noise interference in different dimensions, the multi-stage attention mechanism

can be applied for different dimensions of the input data. The following describes the

architecture of the multi-stage attention mechanism.

The output of the CNN layer in CONV-MS or RES-MS blocks contains the three

dimensional feature map (time, frequency and channel dimensions). As shown in the

previous section, it is denoted as Hk and the time, frequency and channel dimensions

are denoted as Tk, Fk and Ck respectively. All three dimensions may contain noise in-

formation from the input signal, propagating through the layers in the neural network.

Therefore it is necessary to filter them out in each dimension.
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Figure 4.2: The multi-stage attention mechanism.

In order to achieve this, the proposed multi-stage attention mechanism works in all

three dimensions. Figure 4.2 shows the diagram of the multi-stage attention mecha-

nism, and its computational process is shown in Equation 4.4.

H
′

k = Broad(αC,k)⊙Hk

H
′′

k = Broad(αF,k)⊙H
′

k

H
′′′

k = Broad(αT,k)⊙H
′′

k

(4.4)

The attention mechanism is first used in the channel dimension. The attention

weight vector αC,k ∈ R1×1×Ck is obtained and repeated to the same dimension as

Hk ∈ RTk×Fk×Ck , and then element-wise multiplication (denoted as ⊙) is used to

obtain the refined feature map H
′

k. The broadcasting function Broad(.) is defined in

Section 2.3.2, the super-script that denotes the target dimension (Tk × Fk × Ck) are

omitted for simplicity.

The output is then processed to a similar attention mechanism in the frequency

dimension. As per the previous step, the refined feature map is then processed to the

final attention mechanism, the time attention. The output of the time attention is

the final refined feature map H
′′′

k , in which the noise influences across the channel,

frequency and time dimensions may be reduced. The multi-stage attention mecha-

nism can be viewed as an independent block that can be flexibly added after each

convolutional layer in either the SE-Net or the SR-Net (details see Section 4.3.4). The

computational process of the attention weight vectors αC,k, αF,k and αT,k can be found

in Appendix A.2.1.
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4.3.2 Experiments

Data Processing

Rather than computing the MFCC feature that was used in Chapter 3, the experiments

in this chapter take the spectrogram as the input. Spectrograms retain the detailed

local features in the frequency domain that are widely used as the input for the speech

enhancement model (Shon et al. 2019, Yadav & Rai 2020, Ming et al. 2007). A second

reason is that, from the spectrogram input, it is convenient to observe the effectiveness

of the noise reduction. In Section 4.4 in this chapter, the denoised spectrograms are

visualised in order to compare different techniques.

Experimental Setup

The experiments focus on noise robustness and use the Voxceleb1 dataset and the MU-

SAN dataset. The experimental setup in this section is the same as that in Section 3.5,

and details can be found in Appendix B.1. To evaluate the recognition performance,

Top-1 and Top-5 accuracies are employed for speaker identification, as discussed in

Section 2.2.3. The evaluation metrics for speaker verification are the equal error rate

and the minimum Detection Cost Function.

Baselines

In order to comprehensively evaluate the proposed model, the selection of the baselines

is important. The following description shows the descriptions of the three baselines

and the three configurations of the proposed models:

SR is the speaker identification baseline using the speaker recognition model only.

SEP is the baseline that the speech enhancement model and speaker recognition

model are trained separately.
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VoiceID is the baseline from Shon et al. (2019), where the speech enhancement and

speaker recognition models are cascaded, but the two models are not trained

jointly.

SE+SR is the proposed model that jointly optimises speech enhancement and speaker

recognition without a multi-stage attention.

SE-MS+SR is the proposed model using joint optimisation and a multi-stage atten-

tion in the speech enhancement model.

SE+SR-MS is the proposed model using joint optimisation and a multi-stage atten-

tion in speaker recognition model.

A comparison of SR, SEP and VoiceID can show the effectiveness of the joint train-

ing strategy. A comparison of SE+SR, SE-MS+SR and SE+SR-MS can demonstrate

the effectiveness of the proposed multi-stage attention. Note that the softmax loss

function is used as the loss function for all of the models, rather than the AM-softmax

function used in Chapter 3, because of its use in the work on VoiceID; keeping all the

models the same in this respect makes for a fairer and more transparent comparison.

Further experiments using AM-softmax are conducted in Section 4.4.4.

4.3.3 Results and Discussion

The Noise Robustness of the Joint System

In order to show the effectiveness of the joint training strategy and the noise robustness

of the joint system, Table 4.1 shows speaker identification results obtained using the

models listed in Section 4.3.2. The best result in each row is highlighted to facilitate

observation.

Compared to the SR baseline and the SEP baseline, SE+SR yields better perfor-

mance for speaker identification. After using multi-stage attention models, SE+SR-MS

and SE-MS+SR, about 2% to 3% further improvements on Top-1 and Top-5 accuracy
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Table 4.1: Speaker identification accuracies (Top-1 (red) and Top-5 (yellow) accuracies

%) on the Voxcebe1 test data, corrupted by three types of noise (Noise, Music and Babble)

at different SNR (0-20 dB) levels. Five different scenarios are tested: SR, SEP, SE+SR,

SE-MS+SR and SE+SR-MS.

Noise Type SNR
SR SEP VoiceID SE+SR SE-MS +SR SE+SR-MS

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

General

0 74.1 86.9 73.2 84.3 75.6 88.0 76.3 88.9 78.5 90.0 77.7 89.2

5 79.2 90.0 78.8 88.2 80.4 90.8 81.1 91.8 83.4 92.1 81.9 91.8

10 83.2 93.2 81.4 89.7 84.7 94.3 86.0 94.7 87.3 95.6 86.7 95.1

15 84.9 94.6 84.3 92.0 85.6 95.1 87.3 95.8 89.5 96.7 88.8 96.0

20 87.9 95.4 88.0 93.4 88.7 96.0 89.1 96.6 90.9 97.5 90.2 97.0

Music

0 65.8 82.0 63.9 79.8 67.1 83.3 67.7 83.7 70.3 84.1 69.5 83.5

5 76.9 89.1 75.1 88.4 78.2 89.9 80.0 91.0 81.6 91.5 80.6 90.8

10 83.8 93.5 83.6 92.5 84.6 94.2 85.2 94.7 86.3 95.3 85.8 94.7

15 86.1 93.9 85.4 92.7 87.3 95.0 88.4 95.6 89.1 96.7 88.2 95.4

20 87.4 94.7 87.9 93.0 88.9 95.6 89.1 96.0 90.2 97.1 89.5 96.6

Babble

0 62.4 80.2 59.8 77.2 63.8 82.1 65.7 81.5 67.5 83.0 66.6 81.9

5 76.2 87.3 73.2 85.3 77.6 88.7 78.6 88.9 80.6 89.9 79.3 89.6

10 81.4 92.2 79.4 90.5 82.3 93.5 84.6 93.6 86.6 94.5 85.3 83.2

15 84.0 92.6 81.2 90.8 86.1 94.0 86.8 93.9 88.3 94.7 87.6 94.0

20 85.8 92.9 84.0 91.4 86.6 95.1 87.1 94.6 89.0 95.5 88.8 95.2

Original 88.5 95.9 86.4 92.9 89.7 96.4 89.8 96.5 91.9 97.6 90.8 97.3

are obtained in comparison to the baseline in all noise conditions. Compared to SE+SR,

the use of the attention model can also show about 1% to 2% relative improvement even

if the SNR is at 0dB level. This may probably because the use of an attention mecha-

nism can highlight the speaker-related information and reduce the interference caused

by irrelevant noise signals. Note that the results of SR in Table 4.1 is different from the

speaker identification accuracies in Table 2.2. This is because the different input fea-

tures and model architectures. The experiments in this chapter uses the spectrogram

as the input feature and ResNet-20 as the model architecture. While the experiments

in Section 2.6.2 uses 20 dimensional MFCC as the input feature, and X-vector as the

model architecture.

With regard to speaker verification, the tests revealed similar tendencies, as shown
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Table 4.2: Speaker verification EERs (%, blue) and DCFs (green) on Voxceleb1 test

data, corrupted by different types of noise (Noise, Music and Babble) at different SNRs

(0-20 dB). Six different scenarios are tested: SR, SEP, VoiceID, SE+SR, SE-MS+SR,

SE+SR-MS.

Noise Type SNR
SR SEP VoiceID SE+SR SE-MS+SR SE+SR-MS

EER DCF EER DCF EER DCF EER DCF EER DCF EER DCF

General

0 16.94 0.933 17.88 0.946 16.56 0.938 16.20 0.912 15.95 0.901 16.13 0.908

5 12.48 0.855 14.02 0.902 12.26 0.830 11.99 0.819 11.76 0.805 11.78 0.812

10 10.03 0.760 11.94 0.828 9.86 0.747 9.54 0.732 9.17 0.717 9.29 0.727

15 8.84 0.648 9.28 0.734 8.69 0.686 8.48 0.665 8.08 0.639 8.10 0.641

20 7.96 0.594 8.86 0.699 7.83 0.639 7.52 0.629 7.07 0.615 7.09 0.623

Music

0 17.04 0.940 20.25 0.949 16.24 0.913 15.96 0.901 15.58 0.899 15.89 0.904

5 11.54 0.828 17.26 0.925 11.44 0.818 11.15 0.805 10.93 0.791 11.04 0.801

10 9.69 0.749 15.32 0.878 9.13 0.733 9.12 0.731 8.87 0.714 8.97 0.725

15 8.40 0.689 12.16 0.811 8.10 0.677 8.08 0.643 7.62 0.621 7.77 0.629

20 7.70 0.665 10.42 0.724 7.48 0.635 7.39 0.619 7.13 0.607 7.26 0.614

Babble

0 38.90 1.000 46.50 1.000 37.96 1.000 37.53 0.999 37.55 0.999 37.46 0.998

5 28.04 0.998 35.28 1.000 27.12 0.996 26.97 0.979 26.42 0.981 26.35 0.977

10 17.34 0.917 21.25 0.958 16.66 0.926 16.44 0.911 16.30 0.907 16.36 0.911

15 11.31 0.795 18.87 0.927 11.25 0.807 11.24 0.801 10.89 0.795 10.94 0.801

20 9.12 0.720 12.46 0.852 8.99 0.705 8.77 0.695 8.39 0.677 8.51 0.688

Original 6.92 0.565 9.29 0.697 6.79 0.574 6.41 0.541 6.18 0.528 6.26 0.535

in Table 4.2. It is clear that SE+SR with the use of joint optimisation performs better

than VoiceID which uses only a pre-trained speaker identification model, instead of

joint optimisation. In comparison to the speaker identification results, the verification

improvements obtained using SE-MS+SR and SE+SR-MS are relatively small. For

speaker verification, the use of an attention model in the speech enhancement model

can yield better results in almost all conditions, except when speech is corrupted by

babble at SNR levels of 0dB and 5dB. This exception could be due to the fact that

babble signals are relatively complex as they have characteristics similar to speech. The

use of an attention mechanism in the speaker recognition model might be more suitable

for extracting speaker-relevant information than using it in the speech enhancement

model when the acoustic environment is poor.
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From the results presented in Tables 4.1 and 4.2, several points can be highlighted.

Firstly, from the comparison of the SR, SEP ,VoiceID and SE+SID, it is obvious that

the joint training system (SE+SR) proposed in this section can deliver better results

than those obtained by the SR, SEP and VoiceID. This indicates the joint training

system can reduce the mismatch problem discussed in Section 2.3.3.

The results obtained by SEP are worse than that from SR. This phenomenon con-

firms the discussion in Section 2.3.3 of the mismatch problem, where the separate

training target of the speech enhancement network may corrupt some useful informa-

tion to the speaker recognition model when reducing the noise.

Secondly, the best results are mainly obtained with the SE-MS+SR model. This

indicates that the multi-stage attention mechanism used in the speech enhancement

model is more efficient than using it in the speaker recognition model. The reason may

because the SE-Net can access the original noisy spectrogram, whereas the multi-stage

attention models in the speech enhancement model are closer to the noisy data than

those in the speaker recognition model. The design of the multi-stage attention model

is to filter out the noise interference in time, frequency and channel dimensions. The

output feature maps in the speech enhancement model contains more noise information,

therefore the multi-stage attention models in the speech enhancement model may filter

out more noise information and thereby contribute more to the final prediction.

Finally, compared with the results obtained by the H-vector model in Table 3.7 of

Section 3.5.2 which were obtained using the same data construction and experimental

setup, one can observe that the results obtained in this experiments are worse. This is

because the use of the AM-softmax in Section 3.5.2 reduces the intra-class distance and

enlarges the inter-class distance, while the softmax function can only enlarge the inter-

class distance (as discussed in Section 2.2.2). This property can significantly influence

the performance of the speaker verification task which relies on the similarity scores

between two speaker embeddings.
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Table 4.3: The comparison of the speaker identification accuracies (top-1 accuracy %)

obtained by the different attention mechanisms in the multi-stage attention mechanism.

T, F, C represents the independent computation of time, frequency and channel attentions

respectively. The C-F-T indicates the order of the three attention mechanisms, being the

channel attention first, then the frequency attention, and finally the time attention. The

SNR of the noises are 0dB.

Noise Type C-F-T T F C

General 78.5 76.6 77.5 77.7

Music 70.3 67.6 68.9 69.8

Babble 67.5 65.8 66.7 67.3

4.3.4 Analysis

The Effectiveness of the Time, Frequency and Channel Attentions

The previous results shown the multi-stage attention played an important role in the

joint system. In order to further evaluate the its effectiveness, the time, frequency

and channel attentions are used independently in the speech enhancement model. In

Table 4.3, the results obtained are shown. The T, F, C represents the time, frequency

and channel attentions respectively in the speech enhancement model. The results

are compared with the C-F-T, which represents the SE-MS+SR model in Table 4.1

that is using the order of the attention mechanisms as channel, frequency and time

attention. The models are evaluated on different noise types at 0dB. The speaker

identification results in Table 4.3 show the channel attention contributes most to the

final results (reached 77.7% in the general noise scenario compared to 78.5% obtained

by the C-F-T). Frequency attention provides the second largest contribution while the

time attention contributes less to the final prediction.

This phenomenon indicates channel dimension contains more noise information.

As discussed in Section 2.1.2, in a two dimensional CNN architecture, the channel

dimension represents the features learned from the convolutional kernels. For each
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dimension of the feature map within a CNN architecture, each channel dimension

represents the summation of a learned feature map by a convolutional kernel. When

the layers becomes deeper, the time and frequency dimensions are smaller while the

channel dimension becomes larger. Thus, the channel dimension may contain more

information about the input data, as well as more noise interference, than the other

two dimensions. The attention mechanism used in channel dimension may filter out

more noise, thereby contributing more to the final prediction.

It can also be observed from Table 4.3 that the frequency attention obtained better

results than those obtained by the time attention, indicating that there is more noise

information in the frequency dimension. As discussed in Sections 2.3.1 and 2.4.1, and

shown in Figures 2.9 and 2.12, noise influences the signal mostly in the frequency

dimension as fluctuating noise is the major background noise type and it is fluctuating

in the frequency dimension. Thus, the attention mechanism used in the frequency

dimension can provide a greater contribution to the final prediction than the time

attention.

Different Orders of the Time, Frequency and Channel Attentions

In order to verify the above findings, the multi-stage attention is organised in different

orders. Table 4.4 shows the speaker identification results obtained by the different

multi-stage attention mechanisms. In each version, the order of the three attention

computing processes are changed. For simplicity, the different version of the multi-

stage attention is denoted by the order in which the symbols appear (e.g. C-F-T

denotes channel-frequency-time).

Although the results obtained by C-F-T are better than those obtained by C-T-F,

the difference is relatively small. For the babble tests, C-F-T reaches 67.5% accuracy

and C-T-F reaches 67.2%, suggesting that switching the time / frequency order makes

little difference to the final outcome. The best results come from the C-F-T order and,

when considering those where the channel attention moves away from first place, it is
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Table 4.4: The comparison of the speaker identification accuracies (top-1 accuracy %)

obtained by different orders of the time, frequency and channel attentions in the multi-

stage attention mechanism. T, F, C represents the independent computation of time,

frequency and channel attentions. The C-F-T indicates the order of the three attention

mechanisms in the multi-stage attention and, in this case, it is the channel attention first,

then the frequency attention, and finally the time attention. The SNR of the noises are

0dB.

Noise Type C-F-T C-T-F F-C-T F-T-C

General 78.5 77.9 76.4 75.5

Music 70.3 69.8 67.2 65.9

Babble 67.5 67.2 65.8 64.3

clear that the further it is from the noisy input, the worse the results become. For

example, when the channel attention is applied first in C-F-T, it can reach, 78.5% with

general noise, but when it is moved to the end, the identification accuracy drops to

75.5%. This verifies the findings in Table 4.4 that the channel attention can capture

and filter out more noise information. The performance of the model is clearly sensitive

to the order of the attention mechanisms.

The results from testing the F-C-T and F-T-C combinations were worse than when

the attention mechanism is not used (SE+SR reached 67.7% with music noise while F-

C-T reached 67.2% and F-T-C reached 65.9%). Again, it is clear that the order of the

attention mechanisms affects performance, and this is because the three mechanisms

are deployed sequentially, rather than in parallel, which means that errors in the output

of the first mechanism can propagate to the other two. The most effective order, then,

is C-F-T, which follows the ordering of importance shown in Table 4.3.
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4.3.5 Summary

In this section, a joint training system of speech enhancement and speaker recognition

was proposed to address the mismatch problem. In Section 4.2, a high level introduction

of the joint training system was provided, and the detailed architecture was in Section

4.3. The joint training system contains a speech enhancement model and a speaker

recognition model, trained using one loss function that consists of a reconstruction loss

and a classification loss. The reconstruction loss constrains the model to filter out the

noise information while the classification loss constrains the model to retain speaker

related features at the same time. A multi-stage attention mechanism is proposed

and applied in both models. The multi-stage attention mechanism computes attention

weights for each dimension of the output feature map within the CNN architecture in

both models.

In Section 4.3.2, the experiments were conducted on the augmented Voxceleb1

dataset to evaluate the robustness of the proposed model compared to multiple base-

lines. The results are shown in Section 4.3.3. Comparing the proposed joint training

system with the baseline system that does not use a speech enhancement system shows

the proposed system provides better noise robustness. When the proposed system was

compared to the baseline that separately trained the two models indicates the joint

training system can reduce the mismatch problem and obtain better results, reach-

ing 91.9% identification accuracy and 6.18% EER with the original Voxceleb1 test

set without using the AM-softmax function. The combined results of deploying the

multi-stage attention in both the speech enhancement and speaker recognition models

shows that using it in speech enhancement model is more efficient as it is closer to

the original noisy input. Further experiments in Section 4.3.4 shows that the time,

frequency and channel attentions contribute differently to the final prediction, with

the latter contributing the most. The ordering of these three attention mechanisms is

also important, and the best results come from applying the channel attention first.
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4.4 Speaker Dependent Speech Enhancement For

Speaker Recognition

In the previous section, a joint training framework that integrates the speech enhance-

ment and speaker recognition models was proposed. The results show that joint train-

ing system can deliver better noise robustness compared to not using the joint training

framework or not using the speech enhancement model.

The performance of the joint training framework may be further improved by the

pre-trained speaker embeddings. As shown in Wang et al. (2019), discussed in Section

2.4.2, for the target speaker extraction approach, pre-trained speaker embeddings play

an important role as they contains prior information of the target speaker, which

helps the model retain more information of the target speaker when reducing the noise

impact. Thus, the performance of the target speaker extraction network can benefit

from the speaker embedding.

Based on the above discussion, it is assumed that the performance of the speech

enhancement model in the proposed joint training framework can also be improved

by the pre-trained speaker embeddings. In order to prove this hypothesis, this sec-

tion proposes an architecture that uses pre-trained speaker embeddings to improve

the performance of the joint system. The proposed approach in this section is further

referred to as the speaker dependent speech enhancement method for speaker recog-

nition. The speech enhancement model reduces the noise for specific target speakers,

and the speaker recognition model benefits from the speaker dependent noise reduction

process.

4.4.1 Model Architecture

Figure 4.3 shows the architecture of the proposed approach, consisting of two steps

(Step1 and Step2), where each step contains both a speech enhancement model (SE-

Net1 and SE-Net2) and a speaker recognition model (SR-Net and SR-Net2). Given an
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Figure 4.3: Architecture of the proposed approach consisting of two steps (Step1 and

Step2), each of which contains a speech enhancement model (SE-Net1 and SE-Net2) and

a speaker recognition model (SR-Net1 and SR-Net2). The input is a spectrogram corrupted

by noise. A speaker identity and an enhanced spectrogram are the output.

input spectrogram XN , the goal for Step1 is to generate a speaker embedding (ex1)

using SE-Net1 and SR-Net1 that were developed in Section 4.2. In Step2, the speaker

embedding ex1 is used as the prior information to improve the speaker recognition

and speech enhancement performances. The architecture of the speech enhancement

model (SE-Net2) and speaker recognition model (SR-Net2) have similar architectures

to the SE-Net1 and SR-Net1 in Step1. The only difference is that SE-Net2 takes ex1

into account. The details of the training strategy and the model architectures for each

component are introduced in the following sections.
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Speaker Embeddings (Step1)

As shown in Figure 4.3, in the first step, SE-Net1 and SR-Net1 are cascaded. The

noise corrupted spectrogram XN is denoised using SE-Net1, and a speaker embedding

is then obtained by the first fully connected layer of SR-Net1. The training strategy

in Step1 is the same as that described in Section 4.2, where the speech enhancement

and speaker recognition models are firstly pre-trained using the reconstruction loss

and the classification loss functions respectively. Then, the joint training system is

trained using the combination of these two loss functions. The experimental results in

Section 4.3 show that the speaker embeddings extracted from the joint system (used

for speaker verification) deliver better performances in noisy conditions. As a result,

the joint system is used as a robust speaker embedding extractor in this section, the

extracted speaker embedding ex1 is used as the prior knowledge for Step2.

Speaker-Dependent Speech Enhancement (Step2)

In Step2, both the speech enhancement and speaker recognition models use similar

structures to those in Step1. However, unlike SE-Net1, the SE-Net2 concatenates the

speaker embedding vector ex1, with the output of one of its bottleneck layers and

enhances the quality of XN .

The optimisation of Step1 and Step2 are independent of each other. The parameters

of SE-Net1 and SR-Net1 used in Step1 are fixed when training SE-Net2. SR-Net2

shares weights with SR-Net1. A joint optimisation is implemented for the two models

in Step2 by using the Equation 4.5, where the computation of LSE and LSR are the

same as that in Section 4.2 (Equations 4.1 and 4.2).

L = LSE + LSR (4.5)

There are several important points in Step2. Firstly, although it contains its own

speech enhancement (SE-Net2) and speaker recognition (SR-Net2) models, the weights

are shared. The only difference between SE-Net1 and SE-Net2 is that the speaker
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embedding extracted from Step1 concatenates with the output of one of the bottle

layers of SE-Net2. Most of the parameters are trained in Step1 and fine-tuned in

Step2.

Secondly, SR-Net1 and SR-Net2 share parameters. It is trained in Step1, and fixed

in Step2. The training in Step2 only fine-tunes the parameters in SE-Net2. The reason

to fix the parameters of SR-Net2 and only train SE-Net2 in Step2 is to make the model

focus more on the speaker-dependent denoising process. The SR-Net2 in Step2 can be

viewed as a pre-trained classifier to evaluate the performance of the speaker dependent

noise reduction process in SE-Net2. As a result, in Step2, SE-Net2 is trained using the

loss function that contains both the reconstruction loss and the classification loss (as

shown in Equation 4.5). The input to SE-Net2 is the noisy input together with the

pre-trained speaker embedding from Step1.

A similar training strategy in Step2 can be found in the VoiceID Loss approach

(Shon et al. 2019) and was discussed in Section 2.3.3. The speech enhancement model

and the pre-trained speaker recognition model are integrated and are then trained

while the speaker recognition model is fixed. One of the key differences between this

proposal and the work in Shon et al. (2019) is the use of both reconstruction loss and

classification loss functions to train the model. VoiceID Loss only used the classification

loss function. By way of comparison, the VoiceID Loss model is used here as a baseline,

referred to as VoiceID that previously appeared in Section 4.3 and will soon be discussed

further in Section 4.4.2.

Model Architecture

Figure 4.4 shows the architecture of the speech enhancement model (SE-Net2) in Step2,

which is the same as in Step1, except for the concatenation of the speaker embeddings.

It is based on the structure of a convolutional residual auto-encoders that was proposed

for image processing by Dong et al. (2018) and applied to speech enhancement by

Pandey & Wang (2019). The residual auto-encoder is used so that the model is better
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Figure 4.4: Structure of the speech enhancement model, which is built on a residual/skip

auto-encoder networks and is used in both Step1 and Step2. The speaker embedding is

used only in SE-Net2.

able to reconstruct the clean signal. As discussed in Section 2.3.3, the standard auto-

encoder can denoise the input by compressing the input and then reconstructing it, but

while this compression process can make the model discard the noise information and

retain the most relevant information for reconstruction, it can lead to useful features

being discarded. This, in turn, can make it difficult for the model to distinguish

and separate some of the speaker related information and the noise interference. The

residual connection provides a shortcut connection from the encoder to the decoder,

allowing the decoder to capture more useful speaker related information, not only from

the compressed bottleneck layer but also directly from the encoder.

The GRU layer is used to capture more contextual features through the capture of

both long term and short term information while, at the same time, reducing compu-

tational costs (as discussed in Section 2.1.3).
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4.4.2 Experiments

The datasets, the data processing and the experimental setup here are identical to

those in Section 4.3. This is to make comparison more straightforward.

In this section, two baselines and two configurations of the proposed approach were

tested:

SR is the baseline method using only the speaker recognition model (SR-Net1) without

any pre-processing or post-processing.

VoiceID is the baseline published in Shon et al. (2019), where the speech enhancement

and speaker recognition models are cascaded, but without joint training and

without the use of speaker embeddings.

SESR-Step1 is the proposed model where the SE-Net1 and SR-Net1 models are

jointly trained, but speaker embedding vectors are not being used. This is equiv-

alent to the joint training approach that introduced in Section 4.4.

SESR-Step2 : is the proposed model where the SE-Net2 and SR-Net2 models are

jointly trained with the learned speaker embedding vector being used in SE-Net2.

As in Section 4.3, the use of the SR and VoiceID models is to compare the proposed

model with one that does not use a speech enhancement model and does not use a joint

training strategy.

The proposed model SESR-Step1 is the Step1 that uses a speaker independent

speech enhancement model in the joint training framework, while SESR-Step2 is the

speaker dependent speech enhancement and the speaker recognition model. The com-

parison with these two models is to evaluate the effectiveness of the pre-trained speaker

embedding used in Step2. Furthermore, SESR-Step1 used the same training strategy

as that shown in Section 4.3, the comparison of SESR-Step2 with SESR-Step1 can also

be viewed as a comparison of the proposed model in this section and that proposed in

Section 4.3.
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In addition, in order to explore the noise robustness of the speaker dependent

speech enhancement method, the quality of the enhanced signal is also assessed using

the Perceptual Evaluation of Speech Quality (PESQ) (Rix et al. 2001) and the Short-

Time Objective Intelligibility (STOI) (Taal et al. 2010) scores. PESQ is one of the

most widely used methods for evaluating speech quality. It measures the difference

between the enhanced signal and the reference clean signal by mapping the differences

in the acoustic parameters of the two signals into a PESQ score whose value is between

-0.5 and 4.5. A higher score means the higher the quality. STOI is a state-of-the-art

evaluation technique for speech intelligibility that is computed by linear correlation of

speech temporal envelopes. The STOI score is between 0 and 1, and again, higher is

better.

4.4.3 Results and Discussion

Noise Robustness

Table 4.5 shows the speaker identification performances obtained using the two base-

lines (SR and VoiceID) and the two proposed approaches (SESR-Step1, SESR-Step2).

It is clear that the two proposed methods can yield better performance than the base-

lines under various noise conditions, even if the SNR is 0dB. Moreover, after using

the speaker information learned by Step1, the proposed SESR-Step2 approach can fur-

ther improve the identification performance (91.1%) in comparison with SESR-Step1

(90.2%). These improvements can be put down to two factors, the first of which is

the use of speech enhancement before speaker identification and a joint optimisation,

by which some noise interference might be filtered out. The second factor is the im-

plementation of the speaker dependent speech enhancement in Step2. Unlike speaker-

independent speech enhancement, the use of speaker information can not only recover

the noise-corrupted speech signals to some extent, but may also highlight speaker-

specific features which may turn out to be the key to subsequent speaker recognition.

Table 4.6 shows the speaker verification performance obtained using the four differ-
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Table 4.5: Comparison of Top-1 (red) and Top-5 (yellow) accuracies % obtained using

four different methods (SR,VoiceID, SESR-Step1 and SESR-Step2) under various noise

conditions.

Noise Type SNR
SR VoidID SESR-Step1 SESR-Step2

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

General

0 74.1 86.9 75.6 88.0 76.4 88.9 77.4 89.4

5 79.2 90.0 80.4 90.8 81.8 91.2 83.6 91.6

10 83.2 93.2 84.7 94.3 85.4 94.7 87.1 95.7

15 84.9 94.6 85.6 95.1 86.3 95.8 88.7 95.9

20 87.9 95.4 88.7 96.0 89.5 96.4 90.3 96.8

Music

0 65.8 82.0 67.1 83.3 69.2 85.2 70.4 85.8

5 76.9 89.1 78.2 89.9 80.1 90.6 81.3 90.6

10 83.8 93.5 84.6 94.2 85.9 95.1 85.9 95.5

15 86.1 93.9 87.3 95.0 88.4 95.7 89.0 96.3

20 87.4 94.7 88.9 95.6 89.2 96.6 90.4 97.0

Babble

0 62.4 80.2 63.8 82.1 65.7 83.5 66.6 83.9

5 76.2 87.3 77.6 88.7 79.4 89.1 80.1 90.3

10 81.4 92.2 82.3 93.5 84.0 94.9 84.8 94.5

15 84.0 92.6 86.1 94.0 87.2 95.2 89.1 95.7

20 85.8 92.9 86.6 95.1 88.4 95.7 90.3 96.2

Original 88.5 95.9 89.7 96.4 90.2 96.8 91.1 97.7

ent methods. Similar to Table 4.5, SESR-Step2 achieves the best results under most

conditions. When evaluating the verification performance, any other techniques that

are designed to reduce the intra-class distance, such as AM-softmax (discussed in Sec-

tion 2.2.2), were not employed. This might be the reason that the improvement of

using SESR-Step2 over SESR-Step1 on the speaker verification task is relative small.

Speech Quality Assessment of the Enhanced Signal

While evaluation using speaker recognition metrics is important, so is the quality of the

enhanced speech. In the proposed joint training framework, the speech enhancement

model provides the enhanced signal to the speaker recognition model, which is therefore

highly dependent on the quality of the incoming, enhanced signal.

Tables 4.7 and 4.8 show the speech enhancement performance evaluated using PESQ
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Table 4.6: Comparison of speaker verification EERs (%, blue) and DCFs (green) ob-

tained using four different methods (SR,VoiceID, SESR-Step1 and SESR-Step2) under

various noise conditions.

Noise Type SNR
SR VoidID SESR-Step1 SESR-Step2

EER minDCF EER minDCF EER minDCF EER minDCF

General

0 16.94 0.993 16.56 0.938 16.02 0.885 15.89 0.886

5 12.48 0.855 12.26 0.830 11.87 0.794 11.83 0.786

10 10.03 0.760 9.86 0.747 9.21 0.695 9.17 0.695

15 8.84 0.648 8.69 0.686 8.18 0.625 7.99 0.616

20 7.96 0.594 7.83 0.639 7.06 0.590 6.85 0.589

Music

0 17.04 0.940 16.24 0.913 15.69 0.893 15.70 0.904

5 11.54 0.828 11.44 0.818 10.88 0.754 10.78 0.770

10 9.69 0.749 9.13 0.733 8.76 0.690 8.94 0.704

15 8.40 0.689 8.10 0.677 7.81 0.631 7.65 0.621

20 7.70 0.665 7.48 0.635 7.09 0.606 7.03 0.592

Babble

0 38.90 1.000 37.96 1.000 37.18 0.999 37.52 0.994

5 28.04 0.998 27.12 0.996 26.84 0.991 26.69 0.991

10 17.34 0.917 16.66 0.926 16.38 0.878 16.93 0.901

15 11.31 0.795 11.25 0.807 10.87 0.781 10.84 0.780

20 9.12 0.720 8.99 0.705 8.76 0.679 8.72 0.685

Original 6.92 0.565 6.79 0.574 6.52 0.548 6.48 0.537

and STOI, respectively. The second column in both tables shows the quality of input

speech corrupted by music noise at five different SNR levels. The third column indicates

the obtained speech quality after using VoiceID. Of the two proposed approaches,

SESR-Step2 shows clear advantages over VoiceID and SESR-Step1 under various noise

conditions, reached 1.90 PESQ and 0.63 STOI scores when the SNR is 0dB.

An interesting observation is that the speech quality obtained by the VoiceID is

lower than that obtained by the noisy speech. The reason, as discussed in Section

4.4.1, is that the VoiceID model only takes the classification loss as the training target

when training the joint model while in the proposed model, both the reconstruction loss

and the classification loss are used to train the joint system (Shon et al. 2019). From

the speech quality assessment results in Tables 4.7 and 4.8, and the speaker recognition
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Table 4.7: Comparison of PESQ scores obtained using the proposed approaches and

baselines under various music noise conditions.

SNR Noisy VoiceID SESR-Step1 SESR-Step2

0 1.53 1.48 1.62 1.90

5 1.78 1.72 1.89 2.14

10 1.86 1.83 1.97 2.35

15 2.16 2.06 2.21 2.58

20 2.39 2.20 2.53 2.89

Table 4.8: Comparison of STOI scores obtained using the proposed approaches and

baselines under various music noise conditions.

SNR Noisy VoiceID SESR-Step1 SESR-Step2

0 0.53 0.50 0.56 0.63

5 0.60 0.58 0.64 0.71

10 0.65 0.61 0.67 0.75

15 0.67 0.62 0.69 0.77

20 0.68 0.64 0.70 0.78

results in Tables 4.5 and 4.6, the proposed SESR-Step2 model performs better for the

speaker recognition task and obtains a better quality enhanced signal which is due to

the pre-trained speaker embedding that help the model to better focus on the specific

target speakers when inputting a noisy spectrogram. The fact that the joint training

system uses both the reconstruction and classification losses also boosts the quality of

the enhanced signal and delivers more robust speaker embeddings.

4.4.4 Analysis

An Illustration of the Enhanced Signal

In order to intuitively see the enhanced signal, and to further verify the robustness

of the proposed approach with regard to noise interference, Figure 4.5 shows four

spectrograms;
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(a) Original speech (b) Noisy speech

(c) Enhanced speech using SE-Net1 (d) Enhanced speech using SE-Net2

Figure 4.5: Comparison of spectrograms (a) original speech; (b) speech corrupted by

noise; (c) enhanced spectrogram obtained using the SE-Net1; (d) enhanced spectrogram

obtained using the SE-Net2.

� the original speech;

� speech corrupted by music noise at 0dB;

� enhanced speech obtained using SESR-Step1;

� enhanced speech obtained using SESR-Step2.

It can be observed from both Figures 4.5(c) and 4.5(d) that the music noise can be

removed from the spectrograms to a certain extent after using speech enhancement,

and that the two joint training models developed in this chapter clearly reduce the

noise impact. From Figures 4.5(a) and 4.5(b), it is clear that the noise contains both

fluctuating and steady components that was discussed in Section 2.3.1. Both of the
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SESR-Step1 and SESR-Step2 can reduce the influence. Especially the noises from the

high frequency part can be remarkably reduced.

From the spectrogram shown in Figures 4.5(c) and 4.5(a), it is obvious that the

some speaker information are corrupted by SESR-Step1. This may because the speaker

independent mode of the joint system does not have the information about the target

speaker. This makes the model difficult to distinguish the information between the

noise and the target speaker. While the spectrogram shown in Figure 4.5(d) is close to

the original one shown in Figure 4.5(a). Moreover, the spectrogram in Figure 4.5(d) is

clearer than that in Figure 4.5(c). This may due to the pre-trained speaker embedding

helps the model to focus on the specific target speakers. The speaker embeddings

provide strong prior information about the target speaker, which makes the model

emphasis the information of the target speaker thus deliver better noise reduction

performance.

Comparison of State-of-the-art Methods

The previously developed model in Section 4.3 shows the effectiveness of the joint

training framework and the multi-stage attention. The work in Chapter 3 showed

the effectiveness of the AM-softmax to reduce the intra-class distance of the speaker

embeddings to improve the performance of the speaker verification task.

The experiments in this section shows that speaker dependent speech enhancement

can further improve the performance of the joint system. Here, all of the advantages of

the developed models are put together and compared with the state-of-the-art models

in the literature.

Table 4.9 shows the comparison of the SESR-Step2 with the state-of-the-art mod-

els that were trained using the Voxceleb1 dataset and evaluated using the Voxceleb1

test set. Other than the model architectures discussed in Section 4.4.1, two speech en-

hancement models make use of the multi-stage attention model, with channel attention

coming first in the order (C-F-T, as discussed in Section 4.3.4). The model is trained
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Table 4.9: Comparison of the speaker dependent speech enhancement approach (SESR-

Step2) with the state-of-the-art with the Voxceleb1 test set, using Voxceleb1 for training

only.

Model Loss EER (%)

Nagrani et al. (2017) VGG-M softmax 10.2

Nagrani et al. (2017) VGG-M softmax+contrastive 7.8

Shon et al. (2019) CNN+TDNN softmax 6.79

Cai et al. (2018). ResNet-34 A-softmax+PLDA 4.46

Hajibabaei & Dai (2018) ResNet-20 A-softmax 4.40

Hajibabaei & Dai (2018) RetNet-20 AM-softmax 4.30

Chapter 3 H-vector AM-softmax 4.28

Chapter 4 SESR-Step2 AM-softmax 4.15

using AM-softmax instead of standard softmax to reduce the intra-class distance of the

speaker embeddings. The results show that the proposed speaker dependent speech en-

hancement model can out-perform the state-of-the-art models, as well as the H-vector

model that was proposed in Chapter 3. This clearly demonstrates that when the three

proposed elements – the multi-stage attention, the joint training framework and the

speaker dependent speech enhancement, and the AM-softmax function – are combined

to work together, they collectively deliver better performance that the current state-

of-the-art models.

4.4.5 Summary

In this section, a speaker dependent speech enhancement model was proposed, based

on the developed joint training framework in Section 4.3. In Section 4.4, the proposed

method was divided into two steps:

� Step1 is based on the developed joint training framework, and the purpose is to

generate the speaker embeddings for each input signal.

� Step2 has the pre-trained speaker embeddings used as prior knowledge into the
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speech enhancement model to better focus on the target speakers when reducing

the noise impact.

The architecture of the speech enhancement model makes use of the residual auto-

encoder architecture, which can build a shortcut connection between the decoder layers

and the corresponding encoder layers that means the decoder retains more speaker

related features when predicting a clean signal from a noisy input signal.

The experimental setup in Section 4.4.2 shows the experiments were done with the

augmented Voxceleb1 dataset. The results in Section 4.4.3 show the proposed model

can deliver better noise robustness compared with the baselines, especially the baseline

that does not use the speaker dependent speech enhancement scenario. This indicates

that the speaker dependent mode of the speech enhancement model helps to deliver

better performance. Further experiments were conducted, designed to evaluate the

quality of the enhanced signal, and the results show that the proposed models both

deliver a higher quality enhanced signal than either the noisy input or the baseline that

does not employ the joint training strategy. This indicates that the proposed model

not only improves the performance of the speaker recognition task in noisy conditions,

but also can improve the quality of the noisy spectrogram. Furthermore, although

the SESR-Step2 contains two speech enhancement models and two speaker recognition

models, the two speaker recognition models are the same in the two steps, it is trained

in Step1 and fixed at step2. The speech enhancement model in Step2 shares most

of the parameters, the only difference is that it concatenates the pre-trained speaker

embeddings. As a result, the number of parameters of SESR-Step2 is similar to that

of SESR-Step1.

In Section 4.4.4, the denoised spectrograms are shown and indicates the speaker

dependent mode of the speech enhancement model can reduce more noise impact and

get closer to the clean signal. Finally, the multi-stage attention, joint training strategy,

speaker dependent speech enhancement and AM-softmax are combined in one model

that can out-perform the state-of-the-art models in the literature, reached 4.15% EER



CHAPTER 4. SPEECH ENHANCEMENT FOR SPEAKER RECOGNITION 126

using the same training and test dataset.
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4.5 Conclusion

Speech enhancement is one of the potential ways to overcome noise interference in

the speech signal and improve the noise robustness of the speaker recognition models.

However, as discussed in Section 2.3.3. there is the mismatch between the indepen-

dently trained speech enhancement model and the speaker recognition model, where

the features learned by the former are not a good match for the input of the latter.

This is due to the different target functions and the separate training strategy.

In order to address the mismatch problem, this chapter firstly proposed a joint

training framework in Section 4.2. The joint training framework trains the speech

enhancement and speaker recognition models with one loss function. The loss function

contains the reconstruction loss, which makes the joint system better reduce noise, and

the classification loss that helps the joint system retain speaker related features at the

same time.

In order to implement the joint training framework, Section 4.3 discussed the ar-

chitecture of the joint training system. The speech enhancement model consists of

multiple dilated convolutional layers that can capture more local features from the

noisy input spectrogram. The ResNet-20 architecture is used as the speaker recogni-

tion model. As discussed in Section 2.2.4, the ResNet architecture is widely used in

speaker recognition. It has shown good performance in several studies and it is easier

to compare with other models.

The other key component is the novel multi-stage attention mechanism. As dis-

cussed in Section 2.3.2, the attention mechanism can also reduce the noise impact by

allocating weights to different parts or regions of the input data. In order to achieve

higher robustness, the attention mechanism is computed in time, frequency and channel

dimensions in order to filter out the noise impact in all dimensions from the output fea-

ture map of a CNN model. Both speech enhancement and speaker recognition models

contain the multi-stage attention mechanism.

The experimental results in Section 4.3.3 show the joint system can deliver better
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robustness compared to the baseline that is not using the speech enhancement model

and that is not using the joint training strategy. The proposed joint training system

can obtain 2% to 3% relative improvement compared to those baselines. When us-

ing the multi-stage attention mechanism in either the speech enhancement or speaker

recognition models, an additional improvement can be obtained compared with the

baseline without the multi-stage attention mechanism. The results obtained also in-

dicate the attention used in the speech enhancement model contributes more to the

final prediction. This is because the speech enhancement model is close to the noisy

input, so the attention mechanism can filter out more noise interference in the speech

enhancement model.

The additional experiments in Section 4.3.4 investigate the effectiveness of the time,

frequency and channel attention and the order in which they appear. The results

show that the channel attention contributes more to the final prediction, and that the

performance of the frequency attention is lower than that of the channel attention but

higher than that of the time attention. This suggests the most noise information resides

in the channel dimension, followed by the frequency dimension, with the least in the

time dimension. This is due to the computational process of the two-dimensional CNN

that learns and represents features into the channel dimension. The conclusion from

this work is that the most effective ordering of the three attention mechanisms follows

the pattern of most- to least-important dimensions, i.e., channel attention first, then

frequency attention, and finally time attention.

In order to further improve the noise robustness of the proposed model, Section

4.4 proposed a second joint system called the speaker dependent speech enhancement

model, based on the joint system proposed in Section 4.3. It can be divided into

two steps. Step1 is similar to the joint system in that a speech enhancement model

(SE-Net1) and a speaker recognition model (SR-Net1) are jointly trained to generate

the speaker embedding of the input signal. Then, in Step2, the generated speaker

embedding is used as prior knowledge into the speech enhancement model (SE-Net2)
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to help it better focus on the target speaker. Step2 also contains a speaker recognition

model (SR-Net2), which is identical to SR-Net1, shares weights and is fixed when

training in Step2. SE-Net2 has a similar architecture to SE-Net1 but it takes the

speaker embedding as input. The speech enhancement models in this step make use

of the residual auto-encoder architecture to generate a better enhanced signal. The

experimental results in Section 4.4.3 show the speaker dependent speech enhancement

system not only delivers better speaker recognition performance, but also delivers a

better quality enhanced signal when compared to the enhanced signal after only Step1.

The visualisation of the enhanced spectrograms verify this effect.

Finally, the joint training strategy, the multi-stage attention (developed in Section

4.3), the speaker dependent speech enhancement (developed in Section 4.4) and the

AM-softmax (discussed in Section 2.4 and used in Section 3.4) are combined. The

results in Section 4.4.4 show that the combination of these developed techniques can

out-perform the state-of-the-art models using Voxceleb1 as the training set, reaching

an EER of 4.15% on the test set of Voxceleb1.



Chapter 5

Embedding De-Mixing In a

Two-Speaker Signal

5.1 Introduction

Section 2.4.1 discussed the speaker interference in the speech signals, and particularly

the way in which interference can compete the same frequency band with the target

speaker to make it difficult for the back-end speaker recognition model to distinguish

between the target speaker and the interfering speaker. Section 2.4.2 discussed a solu-

tion called target speaker extraction, where the aim is to isolate the target voice in a

mixed signal. A typical workflow for the target speaker extraction approach was dis-

cussed, where a speaker embedding extractor is pre-trained using the clean signals, the

clean speaker embeddings are obtained and the target speaker extraction network then

takes the mixed speech signal and the pre-trained embedding as the input, outputting

the clean signal or spectrogram that contains the target speaker only. The separated

clean signal can then be used for the back-end speaker recognition model.

One key property of the target speaker extraction approach is that the target

speaker’s voice is separated in signal space. There may be another option to sepa-

rate the interfering speaker in embedding space, which may have several benefits. The

130
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embedding is low dimensional and it can project variable length acoustic signals into

fixed length embeddings. It has shown in Wang et al. (2019) that the embedding

contains the information of the target speaker and it can help the separation network

to better filter out the interfering speaker and remain the useful information. Sec-

ondly, when separating the information of the target speaker in embedding space, the

back-end model (e.g. speaker recognition model) can directly learn and recognize the

speaker properties from the estimated embeddings, rather than from the reconstructed

signals. This may make the back-end model easier to train.

The separation process that extracts the target information from a mixed signal

in embedding space is further referred to as the embedding de-mixing process. Judg-

ing by the extant literature, this approach remains undeveloped. In this chapter, a

novel embedding de-mixing approach is proposed that contains two aspects: a filtering

process and an extraction process. For the filtering process, the model can use a pre-

trained speaker embedding to filter out the influence of that speaker in a two-speaker

signal. For example, when the embedding of one speaker is obtained, the model can

filter out the influence of this speaker and output the embedding of the other speaker.

The filtering process can also be applied using the spoken content embeddings, where

the model can filter out the influence of the spoken content from one speaker by the

content embedding. In this case, the output is the spoken content embedding of the

other speaker.

For the extraction process, the model can use a pre-trained speaker embedding to

extract the spoken content embedding for the same speaker. This process can also be

applied inversely, where the model can use a pre-trained spoken content embedding to

extract the speaker embedding.

Based on the filtering process and the extraction process above, the proposed em-

bedding de-mixing approach offers three scenarios;

� The speaker embedding de-mixing scenario: the model removes the influence of

one speaker using the speaker embedding for this speaker, so that the output is
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the embedding of the other speaker;

� The content embedding de-mixing scenario: the model removes the content that

is spoken by one speaker using the corresponding content embedding;

� The speaker and content embedding de-mixing scenario: the model extracts one

speaker embedding by the content embedding of the same speaker, or inversely,

one content embedding can be obtained by its speaker embedding.

5.1.1 Chapter Outline

The remainder of this chapter is organised as follows:

� Section 5.2 gives an overall description of the embedding de-mixing approach,

including the definition of the embedding de-mixing functions.

� Section 5.3 discusses the detailed model architecture and implementations of the

speaker embedding de-mixing step. The experimental results and discussion are

also provided.

� Section 5.4 discusses the detailed model architecture and experimental results of

the content embedding de-mixing step.

� Section 5.5 discusses the speaker and content embedding de-mixing step.

� Section 5.6 provides a conclusion.
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Figure 5.1: The diagram of the embedding de-mixing approach.

5.2 The Embedding De-Mixing Approach

In this section, the structure of the embedding de-mixing approach is introduced. Fig-

ure 5.1 shows an example of the embedding de-mixing process. Suppose the input mixed

speech signal Xmix contains two speakers, and the information from each speaker in-

cludes the properties of that speaker, and the spoken content from that speaker. When

representing this information in embedding space, the speaker embeddings are referred

to as es1 and es2. The content embeddings are represented as ec1 and ec2 in embedding

space. The term emix represents the embedding of the mixed signal, which is further

referred to as the mixed embedding. The terms Speaker1 and Speaker2 represent the

two speakers; Speaker1 is viewed as the target speaker, while Speaker2 represents the

interfering speaker.

In Figure 5.1, the mixed signal Xmix is input to an embedding de-mixing network

that also takes the embedding of Speaker2 (es2) as input. The output of the network

is the predicted speaker embedding of Speaker1 (e
′
s1). The obtained embedding e

′
s1

can be used by a back-end speaker recognition model. In this example, the embedding



CHAPTER 5. EMBEDDING DE-MIXING IN A TWO-SPEAKER SIGNAL 134

de-mixing network filters out the influence of Speaker2 on emix using es2. The output

is assumed to contain only the information of Speaker1. This is the speaker embedding

de-mixing mentioned in Section 5.1.

The content embedding de-mixing is similar to the speaker embedding de-mixing

that was introduced above. The de-mixing network takes the content embedding of

Speaker2 (ec2) and the mixed speech signal as input, and the output is the predicted

clean content embedding e
′
c1. In this way, the spoken content information from one

speaker in the mixed speech signal is filtered by the de-mixing network using the

corresponding content embedding. In this thesis, the spoken content denotes the word

or phonemes spoken by the speaker. The content embedding refers to the spoken

content that represented in embedding space.

The third scenario, the speaker and content embedding de-mixing, is different from

the above two scenarios. In this scenario, the speaker embedding es1 and the mixed

signal are provided to the embedding de-mixing network. The desired output is the

corresponding content embedding ec1. In this way, the embedidng de-mixing network

extracts ec1 using es1 from the mixed signal. The de-mixing network can also extract

the speaker embedding using the content embedding, where input can be the content

embedding ec1 and the mixed signal, and the output is the corresponding speaker

embedding es1.

Figure 5.2 shows an example of the work flow of the embedding de-mixing approach.

Similar to the Figure 5.1, it also uses the speaker embedding de-mixing scenario as

the example. The embedding de-mixing network consists of three parts; the speaker

recognition model that is used for obtaining the clean embeddings, the embedding

extractor that converts the mixed speech signal into the embedding space. The output

is the mixed embedding emix. The final component is the de-mixing function, as shown

in Equation 5.1.

e
′

s1 = fdemix(emix, es2) (5.1)
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Figure 5.2: The work flow of the embedding de-mixing approach.

Equation 5.1 takes emix and the pre-trained clean embedding es2 as input and

outputs the predicted embedding e
′
s1. The embedding de-mixing model is trained in

a supervised manner, which uses the reconstruction loss of the predicted embedding

e
′
s1 and the reference clean embedding es1 to form the training target (Willmott &

Matsuura 2005).

The embedding de-mixing process is performed by the de-mixing function fdemix(.).

The next section will introduce and discuss the different possible architectures of

fdemix(.).

5.2.1 The Embedding De-Mixing Function

The embedding de-mixing function fdemix(.) takes the emix and one speaker embedding

es2 as input, the output is the estimated clean embedding e
′
s1. There are different pos-

sible choices of fdemix(.). As there is no baseline system in the literature with which a

proposed model can be compared, six possible architectures are investigated in this sec-

tion. Figure 5.3 illustrates the six different implementation strategies for fdemix(.): (a)
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Figure 5.3: Different implementation strategies of the de-mixing function fdemix: (a)

subtraction; (b) multiplication; (c) concatenation with one fully-connected layer (d) con-

catenation with two fully-connected layers; (e) shared fully-connected layer with concate-

nation; (f) separated fully-connected layer with concatenation.

subtraction (Sub); (b) multiplication (Mul); (c) concatenation with one fully-connected

layer (Concat1) (d) concatenation with two fully-connected layers (Concat2); (e) shared

fully-connected layer with concatenation (Share-Concat); (f) separated fully-connected

layer with concatenation (Separate-Concat). In this section, the subscripts s and c are

omitted for simplicity.

Subtraction

The first implementation strategy is a subtraction operation (Sub) of emix and e2,

shown in Figure 5.3(a) above and Equation 5.2 below. After subtraction, the subtracted
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embedding vector is passed to a fully-connected layer without an activation function.

That can be viewed as a linear transformation. The embedding dimension is denoted

as d for all of the embeddings in this section. W ∈ Rd×d and b ∈ R1×d are the

parameters of the fully-connected layer.

e
′

1 = (emix − e2)W + b (5.2)

Multiplication

The multiplication approach (Mul) is similar to the Sub method except that emix is

multiplied element-wise with e2. Figure 5.3(b) and Equation 5.3 show the architecture

of the Mul method, where ⊙ denotes element-wise multiplication.

e
′

1 = (emix ⊙ e2)W + b (5.3)

Concatenate With One Fully-Connected Layer

The third method is referred to as Concat1. emix ∈ R1×d and e2 ∈ R1×d are con-

catenated, and then input to a fully connected layer, as shown in Figure 5.3(c) and

Equation 5.4. [emix; e2] ∈ R1×2d denotes the concatenated vector of emix and e2,

W ∈ R2d×d and b ∈ R1×d are the parameters for the fully connected layer, which does

not have any activation function.

e
′

1 = [emix; e2]W + b (5.4)

Concatenate With Two Fully-Connected Layers

Concatenation with two fully-connected layers (Concat2) is similar to the Concat1

in that emix and e2 are concatenated and then fed into two fully connected layers,

as shown in Figure 5.3(d) and Equation 5.5. The first fully-connected layer uses a
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ReLU activation function while there is no activation function after the second layer.

W ∈ R2d×d and b ∈ R1×d are the parameters for the fully connected layer.

e
′

1 = ReLU([emix; e2]W 0 + b0)W 1 (5.5)

Shared Fully-Connected Layer With Concatenation

These final two strategies differ from the previous four. In the fifth method, (Share-

Concat), emix and e2 are input into two fully connected layers that share parameters.

The outputs kmix and k2 are then concatenated and passed to another fully connected

layer, as shown in Figure 5.3(e) and Equation 5.6. W 0 ∈ Rd×d, b0 ∈ R1×d, W 1 ∈

R2d×d and b1 ∈ R1×d are the parameters for the fully connected layers.

e
′

1 = ReLU([kmix;k2]W 1 + b1)

kmix = ReLU(emixW 0 + b0)

k2 = ReLU(e2W 0 + b0)

(5.6)

Separated Fully-Connected Layer With Concatenation

The final strategy, Separate-Concat, is similar to Share-Concat, in that emix and e2

are input into two fully connected layers but, in this case, the two fully connected

layers do not share parameters. The outputs kmix and k2 are then concatenated and

input into another fully connected layer (as shown in Figure 5.3(f) and Equation 5.7).

W 0,0 ∈ Rd×d, b0,0 ∈ R1×d, W 0,1 ∈ Rd×d, b0,1 ∈ R1×d, W1 ∈ R2d×d and b1 ∈ R1×d are

the parameters of the fully connected layers.

e
′

1 = ReLU([kmix;k2]W 2 + b2)

kmix = ReLU(emixW 0,0 + b0,0)

k2 = ReLU(e2W 0,1 + b0,1)

(5.7)

These six embedding de-mixing functions can be classified into three categories,

namely mathematical operations (Sub and Mul), concatenation before processing (Con-
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cat1 and Concat2), and concatenation after processing (Share-Concat and Separate-

Concat). These will now be discussed in further detail.

The mathematical operation methods investigate whether the information in the

embedding space can be controlled with a simple mathematical operation, such as sub-

traction or multiplication. This idea is originally from the word embeddings in natural

language processing. When the word embedding of “France” is subtracted by the em-

bedding of “Paris”, and the embedding of “Rome” is added, the result will be close

to the embedding of “Italy”. This indicates mathematical operations can be applied

to the semantics that is encoded in the word embeddings (Mikolov, Chen, Corrado &

Dean 2013, Mikolov, Sutskever, Chen, Corrado & Dean 2013). For the embeddings

from speech signals considered here, it is difficult to evaluate the semantics of different

speaker properties. However, if the subtraction or multiplication strategies can benefit

the de-mixing process, it shows the learned embeddings contain high level information

that can be separated and controlled using a simple mathematical operation.

The methods in the second category (concatenation before processing) apply a

concatenation operation before neural network layers, while those in the third category

(concatenation after processing) apply a concatenation operation after processing with

neural network layers. Concatenation is an information fusion technique widely used

in neural networks and is employed here to fuse two input embeddings in the neural

network layers. The embeddings (emix and e1) contains different information. Merging

the two embeddings before or after the network layers may provide a strong prior

information to the neural network, and it may affect the performance of the de-mixing

process. In order to evaluate whether or not this prior information is important to the

embedding de-mixing process, the two categories mentioned above are designed.
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5.3 Speaker Embedding De-Mixing

As discussed in Section 5.2, the first scenario of the embedding de-mixing approach is

the speaker embedding de-mixing. The embedding de-mixing network in this scenario

takes the mixed embedding emix and the embedding of one speaker es2 to predict the

embedding of the other speaker es1. This is a filtering process whereby the information

of Speaker2 is removed from the mixed embedding, when the model has es2 being its

input. This section will introduce the detailed model architectures of the embedding de-

mixing network for speaker embedding de-mixing, as well as the experimental results.

5.3.1 Model Architecture

Clean Embedding Extraction

In order to achieve the goal for the speaker embedding de-mixing process, as shown in

Figure 5.2 and discussed in Section 5.2, the workflow contains three components: the

speaker recogntion model to obtain the clean embeddings, the embedding extractor for

converting the mixed signal into the embedding space, and the embedding de-mixing

function.

In order to learn high quality and robust speaker embeddings, the speaker recogn-

tion model is designed based on the X-vector architecture which, as discussed in Section

2.2, delivers a high robustness and can better capture time-relevant information (Sny-

der et al. 2018). The detailed model architecture of the speaker recognition model can

be found in Appendix A.4.

Embedding De-mixing

After collecting the embeddings for each speaker using the trained speaker recognition

network, the embedding de-mixing network is trained. The embedding extractor takes

the mixed signal as input, the output is the mixed embedding emix. After obtaining

the emix, the embedding de-mixing function takes the clean embedding es2 and the
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emix as input, outputs the predicted clean embedding e
′
s1. Different implementation

strategies of the de-mixing function can be found in Section 5.2.1, the detailed model

architecture of the embedding extractor can be found in Appendix A.4.

As discussed in Section 5.2, the de-mixing function is trained using the recon-

struction loss that measures the difference between the clean embedding es1 and the

predicted embedding e
′
s1 (shown in Equation 5.8) in which a reconstruction loss is used

between e
′
s1 and es1. In this work, the mean absolute error (MAE) is applied Willmott

& Matsuura (2005), where es1,i and e
′
s1,i denote the value of the ith element from es1

and e
′
s1, respectively. |.| denotes the absolute value.

L =
1

d

d∑
i=1

|es1,i − e
′

s1,i| (5.8)

The MAE is used here as the reconstruction loss function in order to avoid the

gradient vanishing problem, discussed in Section 2.1.3, that may be created by the

more widely used MSE. In the embedding de-mixing process, the difference between the

predicted embedding and the reference clean embedding may be very small, and using

MSE may make the difference even smaller, thereby creating the gradient vanishing

issues.

5.3.2 Experimental Setup

Data Processing

In order to comprehensively test the performance of the speaker embedding de-mixing

model, two datasets are used; the TIMIT dataset (Garofolo et al. 1993) and the MC-

WSJ dataset (Lincoln et al. 2005). The introduction of these two datasets can be found

in Section 2.5.4.

The experiments are split into two parts; speaker embedding de-mixing with ar-

tificially augmented data (TIMIT), and with the real-world dataset (MC-WSJ). As

discussed in Section 3.5, it is convenient to control the energy level of the interfering
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speaker in an artificially augmented dataset, and it is better to observe the behaviour of

the proposed model under different levels of interference. Under real-world conditions

in the MC-WSJ dataset, two microphone arrays recorded two moving speakers. This

situation is more difficult for the de-mixing network as the energy for each speaker

changes throughout any given utterance. More details of the data processing of the

augmented TIMIT dataset and the MC-WSJ dataset can be found in Appendix B.2.

Evaluation Metric

As the embedding de-mixing approach in this thesis is the first approach that separates

the speaker information in embedding space rather than in signal space, there is no

standard evaluation metric. For the purposes of this study, two evaluation metrics

were selected; speaker identification accuracy and a cosine similarity score.

Speaker identification accuracy is obtained using an additional classier. As men-

tioned in Section 5.3, the speaker recognition model is trained using the clean signals.

The final DNN layers are reused here as the classifier to evaluate the quality of the

predicted embeddings. It takes the embedding as input and outputs the predicted

speaker identity scores. A detailed model architecture can be found in Appendix A.4.

Cos(es1, e
′

s1) =
es1e

′
s1

||es1||||e
′
s1||

(5.9)

The other evaluation metric is the cosine similarity score that computes the dis-

tance between the clean embedding es1 and the predicted embedding e
′
s1, as shown in

Equation 5.9. In contrast to speaker the identification accuracy that computed by a

back-end model, the cosine similarity score directly measures the distance between two

embeddings and thereby indicates the quality of the de-mixed embeddings.
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Table 5.1: The cosine similarity score and speaker identification accuracy when using

the estimated embedding of target speaker e
′
s1. “Before” denotes the cosine similarity

or speaker identification directly using emix. “Clean” de- notes the cosine similarity or

speaker identification using es1 that is extracted from clean speech.

Cosine Similarity Identification Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.22 0.48 0.59 36.5 58.4 72.5

Sub 0.80 0.82 0.84 86.2 89.9 95.2

Mul 0.68 0.73 0.78 83.7 88.8 94.8

Concat1 0.44 0.47 0.52 52.9 56.8 68.8

Concat2 0.51 0.55 0.60 64.5 70.3 88.5

Share-Concat 0.46 0.62 0.69 58.9 76.0 82.9

Separate-Concat 0.78 0.86 0.89 82.5 93.0 96.9

Clean 1.0 98.5

5.3.3 Results and Discussion

The Performance on the Augmented TIMIT Dataset

The first experiment is conducted on the augmented TIMIT dataset. The interfering

speakers are mixed with a known SNR level in order to better observe the performance

of the six different de-mixing functions.

Table 5.1 shows the results of using es2 to obtain es1 from the mixed embedding

emix. The cosine similarity scores and speaker identification accuracies for all of the

six embedding de-mixing functions fdemix(.) at different SNR levels are shown.

Comparing with not using fdemix(.) (directly evaluating mixed embeddings emix),

most of the architectures of fdemix(.) performed better. This shows that the speaker

embedding de-mixing process removed some of the influences of the information from

the interfering speakers. The Separate-Concat method delivered the best performance
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with SNR level of 0dB and 5dB. Even when the SNR is -5dB (The power of the

interfering Speaker2 is greater than that of the target Speaker1), the Separate-Concat

method still reached 82.5% identification accuracy and 0.78 cosine similarity.

The Sub method delivered the best performance when the SNR is -5dB, with a

speaker identification accuracy of 86.2% and a cosine similarity score of 0.80. This

shows that a simple mathematical operation and a linear transformation can be applied

on the speaker embeddings to filter out some of the information of the interfering

speaker. The Mul method is another mathematical operation (multiplication).

The speaker embedding de-mixing approach can be applied symmetrically, where

the speaker embedding de-mixing network can use es1 and emix to obtain es2, which is

using the embedding of the target speaker to obtain the embedding of the interfering

speaker. Table 5.2 shows the experimental results. The SNR value is the signal-to-noise

ratio of the target speaker (Speaker1) to the interfering speaker (Speaker2) and it is

clear that, when the SNR equals to 5dB, the performance worse than when the SNR

is -5dB. All the results for six methods show slightly lower performances than when

using es2 to reconstruct es1 (shown in Table 5.1). This is due to the data construction

process. When constructing artificially augmented utterances, the target speakers are

fixed but the interfering speakers are randomly chosen. This means that each of the

target speakers occurred a certain number of times in the training dataset, but for the

interfering speakers, some speakers occur many times while some are rarely appeared.

Thus, the de-mixing network cannot fit each of the interfering speakers well.

From observation of the results, it is clear that all six implementation methods for

the embedding de-mixing functions delivered different performance levels. As discussed

in Section 5.2.1, these six methods can be categorised into three classes: simple mathe-

matical operation, concatenation before processing and concatenation after processing.

From the results in Tables 5.1 and 5.2, the results obtained by the two simple mathe-

matical operation methods (Sub and Mul) are better than those obtained by the mixed

signals, indicating that these operations impact on the speaker properties encoded in
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Table 5.2: The cosine similarity and speaker identification accuracy when using the

estimated embedding of interfering speaker e
′
s2. “Before” denotes the cosine similarity or

speaker identification directly using emix. “Clean” denotes the cosine similarity or speaker

identification using es2 extracted from clean speech.

Cosine Similarity Identification Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.60 0.46 0.28 72.0 58.4 31.7

Sub 0.78 0.74 0.72 95.9 90.0 87.1

Mul 0.70 0.66 0.62 95.5 88.4 83.2

Concat1 0.45 0.42 0.38 65.1 56.0 51.7

Concat2 0.52 0.47 0.42 89.2 70.9 64.1

Share-Concat 0.65 0.53 0.47 83.7 77.0 59.5

Separate-Concat 0.87 0.79 0.70 97.1 93.8 83.6

Clean 1.0 98.5

the embeddings, particularly the Sub method. This indicates that the overlapped in-

formation of the two speakers in the signal space can be reduced in the embeddings

space.

The results obtained by the “concatenation before processing” methods (Concat1

and Concat2) are far from those obtained by the clean results, suggesting that the em-

bedding de-mixing network needs the information of the separate inputs. As discussed

in Section 5.2.1, Concat1 and Concat2 both concatenate the embeddings before feeding

them into the network layers, an operation that does not provide the prior information

that emix and es2 are separate embeddings that contain different information to the

model. This information may not be learned by the model in the training process.

The results obtained with “the concatenation after processing” methods (Share-

Concat and Separate-Concat) behaved differently. The results obtained by the Share-

Concat method are far from that obtained from the clean signal, while the Separate-
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Concat method obtained the best results of all six methods in most of the conditions.

The reason may be similar to that in the previous categories. The Share-Concat merged

the two embeddings after the neural network layer, but it uses two shared layers and the

prior information may still not provided to the model. Separate-Concat, on the other

hand, uses separate layers to process the two embeddings, which provides the model

with strong prior information that the two embeddings contain separate information.

The model can learn this information well and thereby deliver the best performance.

Performance on the Real-World Dataset

The experiments with the artificially augmented dataset have shown that the speaker

embedding de-mixing network can filter out the interference information in the embed-

ding space. This experiment will evaluate whether it can also obtain similar perfor-

mance under real-world conditions.

Table 5.3 shows the experimental result from microphone1 (M1) and microphone2

(M2) in the MC-WSJ dataset. Similar to the results obtained on the augmented TIMIT

dataset, the Separate-Concat method obtained the best results, reaching 93.9% and

90.9% test accuracies and 0.83 and 0.80 cosine similarities with M1 and M2 respectively.

The reason why the results from M2 are lower than that from M1 might be the distance

between the speakers and the microphones since M1 is closer to the speakers while M2

is further away (Lincoln et al. 2005).

Compared with the results from the headset recordings, which reached a 99.1% test

accuracy, the results obtained by the Separate-Concat method still show a gap because,

under real-world conditions, the two speakers are moving and the SNR between the

target speaker and the interfering speaker changes over time. It may be more difficult

for the de-mixing network to filter out the information of the interfering speaker with

fluctuating energy levels.
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Table 5.3: The cosine similarity and speaker identification results on MC-WSJ dataset

in microphone M1 and M2.

Cosine Similarity Identification Accuracy (%)

M1 M2 M1 M2

Before 0.46 0.41 52.1 47.1

Sub 0.74 0.69 87.2 83.9

Mul 0.71 0.66 84.4 82.1

Concat1 0.39 0.33 50.2 41.7

Concat2 0.64 0.60 79.1 72.4

Share-Concat 0.60 0.53 65.1 55.4

Separate-Concat 0.83 0.80 91.3 90.9

Headset 1.0 99.1

5.3.4 Summary

In this section, a speaker embedding de-mixing network is introduced that can filter out

the information of one speaker in the embedding space by the corresponding pre-trained

clean speaker embedding. Specifically, it can filter out the information of the interfering

speaker or the target speaker by the corresponding speaker embeddings. In Section

5.3.1 the detailed model architecture of the speaker embedding de-mixing network was

introduced, which consists of the speaker recognition model, the embedding extractor

and the embedding de-mixing function. The speaker recognition model is used to

obtain the clean speaker embeddings. The embedding extractor projects the mixed

signal into the mixed embedding emix, which is then used by the embedding de-mixing

function.

In order to comprehensively evaluate the performance of the speaker embedding

de-mixing network, experiments were conducted using two different datasets: the ar-

tificially augmented TIMIT dataset and the MC-WSJ dataset. In Section 5.3.2, data

construction process was introduced. The augmented TIMIT dataset was used to
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evaluate the performance of the proposed model with different levels of interference,

while the MC-WSJ dataset was used to evaluate the proposed model under real-world

conditions.

The results given in Section 5.3.3 demonstrate that the embedding de-mixing net-

work is able to filter out interference using the corresponding speaker embedding. From

the comparison of the different speaker de-mixing network functions, it can be observed

that simple mathematical operations can be applied in the embedding space to reduce

the influence of the interfering speaker.
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5.4 Content Embedding De-Mixing

As Section 5.3 shows that the proposed embedding de-mixing network can filter out

the information of the interfering speaker in the embedding space, it is interesting to

test whether the same architecture can also separate spoken content information.

Following the architecture of the speaker embedding de-mixing network, this section

introduces the content embedding de-mixing network. Similar to the de-mixing process

of the speaker embeddings, the content embedding de-mixing network takes the mixed

embedding emix and embedding of the spoken content of the interfering speaker ec2 to

obtain the embedding of the spoken content of the target speaker ec1.

5.4.1 Model Architecture

The content embedding de-mixing network contains the same components: the content

recognition network, the embedding extractor and the embedding de-mixing network.

The content recognition network has the same architecture as the speaker recogni-

tion network introduced in Section 5.3.1, this time with the goal of extracting a clean

embedding of the spoken content.

The embedding extractor maps the mixed signal to the mixed embedding emix. The

embedding de-mixing function takes emix and ec2 as inputs, the output is the predicted

content embedding e
′
c1. The de-mixing network is trained using the reconstruction loss

shown in Equation 5.10.

L =
1

d

d∑
i=1

|ec1,i − e
′

c1,i| (5.10)

5.4.2 Experiment Setup

The data used for separating the content information is difficult to select because

while the speaker identities remain constant across the whole utterance, while the

content information changes throughout each utterance. As a result, in order to use the
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same model architecture for the speaker embedding de-mixing network to evaluate the

separation of the content information, the Speech Command dataset (Warden 2018),

a dataset containing isolated spoken English words, was selected. As introduced in

Section 2.5.5, each utterance contains one isolated word, and the duration of each is

one second. There are 35 unique words, spoken by more than 2,000 different people.

For each isolated word, there are more than 1,000 utterances on average. The details

for this dataset can be found in Appendix B.3.

As a result, the content in this section denotes the spoken words in the input

utterance. The model is trained to predict the spoken word for each input signal. The

extracted embeddings are assumed to contain the information of the spoken words.

Apart from the data selected, the experimental setup of the content embedding

de-mixing network is the same as that for the speaker embedding de-mixing network

discussed in Section 5.3.2.

5.4.3 Results and Discussion

Table 5.4 shows the spoken word recognition accuracy using the estimated content

embedding e′
c1. For simplicity, the spoken content of the interfering speaker is further

referred to as the interfering content, and the spoken content of the target speaker

is further referred to as the target content. In this scenario, The embedding of the

interfering content ec2 and the mixed embedding emix are used to obtain the embedding

of the target content ec1. Similar to the experiments with speaker embedding de-

mixing, the Separate-Concat method obtained the best results among all of the de-

mixing functions. The test accuracy is much higher than the classification accuracy

using the mixed signal. When the SNR is 5dB, the classification accuracy of the

Separate-Concat method reached 93.3%.

Other de-mixing functions, such as Share-Concat, also delivered good performance,

reaching 91.1% test accuracy at an SNR of 5dB, which is in stark contrast to its much

lower performance in speaker embedding de-mixing.
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Table 5.4: Spoken word identification accuracy on the Speech Command dataset when

using the estimated embedding of target content e
′
c1. “Before” denotes the word identifi-

cation directly using emix. “Clean” denotes word identification using ec1 that is extracted

from clean speech.

Cosine Similarity Test Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.21 0.33 0.39 28.5 39.2 41.4

Sub 0.50 0.68 0.71 59.4 76.1 81.1

Mul 0.46 0.60 0.67 54.4 71.2 79.6

Concat1 0.49 0.58 0.65 57.7 64.1 77.1

Concat2 0.51 0.66 0.73 59.5 73.9 81.8

Share-Concat 0.59 0.72 0.80 75.3 85.8 91.1

Separate-Concat 0.71 0.78 0.86 81.1 87.5 93.3

Clean 1.0 96.5

Table 5.5 shows the symmetrical experimental results that using the estimated

interference content embedding e′
c2. In this scenario, the embedding of the target

content ec1 and the mixed embedding emix are used to obtain the embedding of the

interfering content ec2. Similar behaviour can be observed in this scenario with the

experimental results in Table 5.4. The Separate-Concat method also obtained the best

performance among all of the de-mixing methods, demonstrating that this method

performs better either using the target embedding to obtain the interfering embedding,

or using the interfering embedding to obtain the target embedding.

It is clear that the content embedding de-mixing network can filter out some of

the information of the interference content, despite the fact that this is a much more

challenging task, given that the content spoken by different people may have different

properties, affecting the content information and making it harder for the system to

distinguish. As a result, there is still a gap between the best results obtained from the
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Table 5.5: Spoken word identification accuracy on the Speech Command when using the

estimated embedding of interfering content e
′
c2. “Before” denotes the word identification

directly using emix. “Clean” denotes word identification using ec2 that was extracted from

clean speech.

Cosine Similarity Test Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.33 0.25 0.12 39.5 36.4 25.3

Sub 0.56 0.52 0.44 79.7 73.5 58.4

Mul 0.54 0.49 0.38 77.5 70.7 52.4

Concat1 0.61 0.48 0.42 75.5 63.2 56.6

Concat2 0.66 0.52 0.43 80.4 72.5 59.4

Share-Concat 0.77 0.68 0.56 90.4 83.6 74.7

Separate-Concat 0.78 0.71 0.64 90.2 86.4 80.1

Clean 1.0 96.5

content embedding (80.1% by the Separate-Concat method) and those from the clean

data.

Another phenomenon is that the Sub method was unable to obtain better results

than other methods such as Separate-Concat, again due to the complexity of the con-

tent information mentioned above. Unlike the results from speaker embedding de-

mixing process, the simple mathematical operations struggle to process the information

of the spoken content.

5.4.4 Summary

This section moved on to content, with the goal of establishing whether or not the

same embedding de-mixing network can also filter out spoken content information in

the embedding space. As introduced in Section 5.4.1, the content embedding de-mixing

network takes the mixed embedding emix and the interfering content embedding ec2 to
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obtain the embedding of the target content ec1.

In the experiments laid out in Section 5.4.2, a speech command dataset was selected

which contains a single isolated spoken word in each utterance. This is to ensure

that the speaker identity stays the same for the entire utterance while the content

information changes. Only utterances that contain single words were selected in order

to control this variance and to simplify the evaluation process.

The results in Section 5.4.3 show that the content embedding de-mixing network

can filter out some information of the interfering speakers, but there remains a gap

between these results and those obtained from the clean signal, due to the data com-

plexity mentioned above. There is no improvement from using the simple mathematical

operations. The Separate-Concat method delivered the best results among all of the

six embedding de-mixing functions, reaching 80.1% identification accuracy at a level

of 5dB.
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5.5 Speaker and Content Embedding De-Mixing

In Sections 5.3 and 5.4, it was demonstrated that the proposed methods are able to

separate both speaker and content information in a two-speaker environment by using

the de-mixing network when the embedding of the interfering speaker is available. This

section proposes the embedding extraction method whereby the content embedding ec1

can be extracted using the speaker embedding es1, or inversely the speaker embedding

es1 can be extracted using the content embedding ec1 in a two-speaker environment.

This method is further referred to as the speaker and content embedding de-mixing.

5.5.1 Model Architecture

Before de-mixing the information in the embedding space by using the embedding de-

mixing network, the clean speaker and the content embeddings need to be extracted.

The model architecture of the clean embedding de-mixing process is the same as that

introduced in Sections 5.3 and 5.4. The clean speaker embeddings are extracted using

the speaker recognition network, and the clean content embeddings are extracted from

the content recognition network.

After the clean speaker and content embeddings are obtained, the de-mixing net-

work is trained, the model architecture of the de-mixing network in this scenario can

be found in Appendix A.5.

Equation 5.11 shows the loss function of using ec1 to obtain es1 and using es1 to

obtain ec1 respectively.

L1 =
1

d

d∑
i=1

|es1,i − e
′

s1,i|

L2 =
1

d

d∑
i=1

|ec1,i − e
′

c1,i|

(5.11)
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5.5.2 Experiments

Experimental Setup

In order to evaluate the performance of the speaker and content extraction at the same

time, TIMIT is used in this section. As discussed in Section 5.3.2, TIMIT contains

both ground truth speaker labels and time-aligned phone labels. This is suitable for

this experiment because the time-aligned phone labels can help the model learn the

content information.

In order to extract the clean embeddings, the speaker embedding extraction process

is the same as that described in Section 5.3.2. The speaker recognition model is trained

using the clean signals. The embeddings for each utterance are extracted, and the final

speaker embedding is the average of the utterance-level embeddings that belong to the

same speaker.

The clean phone embeddings are learned using a phone classification network in a

manner similar to the work in (Shi & Hain 2021). The utterances are segmented using

a sliding window with 20 frames length and 10 frames step. The phone label for each

segment is represented as the center frame’s phone label, as the phone labels in TIMIT

are accurate to the frame. After training, the final phone embedding is the average of

the obtained embeddings that belong to the same phone. A total of 58 unique phone

embeddings are obtained, with silences excluded.

After the clean embedding extraction, two separate embedding de-mixing networks

are trained. The first network takes the mixed signal and es1 as input, the output is

e
′
c1. When training this network, as the content changes over time in the utterances

while the speaker identity keeps the same. The training process is at the segment

level (the segment length is 20 frames). The de-mixing network is trained to predict

the phone embedding from the input segment. The output phone embeddings for one

utterance can be organised as a sequence by concatenating all of the predicted phone

embeddings from one input utterance, which is denoted as E
′

c1.

The second de-mixing network takes the mixed signal and ec1 as input, the output
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is e
′
s1. In this case, the input utterance is also segmented using a sliding window with

20 frames length and 10 frames step size. For each segment, the network will predict

the speaker embedding e
′
s1. As the speaker identity stays the same across the whole

sequence, the final predicted embedding takes the average of the outputs from all of

the segments. Two de-mixing networks trained; the first takes the mixed signal and

es1 as the input to predict ec1, while the second takes the mixed signal and ec1 as

the input to predict es1. The output of the first de-mixing network is a sequence of

the predicted phone embeddings, while the output of the second network is a single

predicted speaker embedding.

Evaluation

In order to evaluate the quality of the predicted speaker and content embeddings,

the cosine similarity score is used. As discussed in Section 5.3.2, this is a direct way

to measure the distance between the predicted embedding and the reference clean

embedding.

For the predicted speaker embeddings, the speaker identification task is also con-

ducted to evaluate the performance of the predicted embeddings from the back-end

speaker recognition model. This is also the same as that in Section 5.3.2.

For the evaluation of the content embeddings, in addition to the cosine similarity

score, two tasks are conducted, namely isolated phone classification and continuous

phone recognition. For the isolated phone classification, the output of the predicted

phone embedding sequence can be divided into several segments, each of which contains

a unique phone label. A phone classifier is used to evaluate the quality of the obtained

phone embeddings. The phone classifier is pre-trained when obtaining the clean phone

embeddings.

The isolated phone classification can be used to evaluate the quality of each output

sequence phone embeddings, while the continuous phone recognition task evaluates the

quality of the sequence predicted phone embeddings. In practice, the sequence of the
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predicted phone embeddings (E
′

c1) is taken as the input. The recognition network ar-

chitecture largely follows that developed by Michalek & Vaněk (2018), and the detailed

architecture can be found in Appendix A.5.

In addition to the above evaluation tasks, the additional noise information is mixed

with the input sequence to evaluate the performance of the proposed speaker and

content embedding de-mixing network in a complex environment. As the model does

not have any prior information about the noise interference, the robustness of the

proposed method can be evaluated. Similar to the experimental setups in Section 3.5,

noise signals are taken from the MUSAN dataset (Snyder et al. 2015), which are mixed

with the input mixed signals at specific SNR levels. In this case, only the general noise

and the music noise types are selected. It is not necessary to use the babble type as

there is already speaker interference in the mixed signal.

5.5.3 Results and Discussion

Extracting Speaker Embedding e
′
s1 from Content Embedding ec1

Table 5.8 shows the cosine similarity and speaker identification accuracy results when

using the content embedding ec1 to obtain the speaker embedding es1. Similar to the

previous results in Section 5.3, the Separate-Concat method delivered the best results,

reaching a 0.76 cosine similarity score and a speaker identification accuracy of 82.2%,

compared with an accuracy of 98.5% on the clean embeddings. This is a larger gap

than emerged with the speaker embedding de-mixing network (shown in Tables 5.1

and 5.2). Using the content embedding to obtain the speaker embedding is much more

difficult than using the embedding for one speaker to obtain the other. The speaker

embeddings comes from the same embedding space, and are trained together, while

the content embeddings and speaker embeddings represent different information and

are trained separately, which means they come from different embedding spaces. The

results using the Sub method were comparable to those from the Separate-Concat,

but still lower than those from the speaker embedding de-mixing network. This shows
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Table 5.6: Speaker identification and cosine similarity results when using the content

embeddings to obtain the speaker embeddings. “Before” denotes the speaker identification

directly using emix. “Clean” denotes speaker identification using es2 that was extracted

from clean speech.

Cosine Similarity (%) Test Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.22 0.45 0.64 36.5 58.4 72.5

Sub 0.62 0.67 0.71 72.7 76.5 78.9

Mul 0.51 0.58 0.60 65.5 62.4 64.7

Concat1 0.27 0.32 0.38 39.7 42.2 46.4

Concat2 0.48 0.53 0.56 58.7 60.2 63.9

Share-Concat 0.43 0.48 0.50 50.2 54.3 56.5

Separate-Concat 0.65 0.71 0.76 77.7 78.4 82.2

Clean 1.0 98.5

the mathematical operation can help the model to extract the speaker information

from the corresponding content embeddings, but the performance is affected due to

the complexity of the different embedding spaces discussed above.

Table 5.7 shows the results when using the content embedding to extract the corre-

sponding speaker information under different noise interference conditions. The SNR

level of the the interfering speaker is fixed at 5dB. This situation is more difficult

than the two-speaker environment as the model not only needs to separate the speaker

properties, but it also need to filter out the complex noise information.

It is obvious that when the energy level of the noises is larger, there is a larger gap

between the results obtained and those derived from the clean conditions. However, the

Separate-Concat method achieved a 70.3% identification accuracy compare with not

using the de-mixing network (39.6%). This shows that it has a better noise robustness

when separating information from different speakers. The results obtained by the Sub

method are lower than those obtained by the Separate-Concat method, which indicates

the performance of the mathematical operation in the embedding space is affected by
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Table 5.7: Speaker identification and cosine similarity results when using the content

embeddings to obtain the speaker embeddings. The level of the speaker interference is fixed

at 5dB. “Before” denotes the speaker identification directly using emix. “Clean” denotes

speaker identification using es2 that was extracted from clean speech.

Model SNR
Noise Music

Cosine Accuracy (%) Cosine Accuracy (%)

Before 0.33 43.7 0.26 39.6

Sub
5 0.52 64.7 0.47 59.4

10 0.56 68.6 0.50 62.3

Mul
5 0.47 51.3 0.42 45.7

10 0.51 56.2 0.49 50.0

Concat1
5 0.25 32.5 0.22 29.4

10 0.28 37.6 0.25 33.6

Concat2
5 0.41 51.6 0.36 46.2

10 0.48 55.7 0.42 49.7

Share-Concat
5 0.37 47.8 0.31 45.0

10 0.43 50.2 0.38 48.6

Separate-Concat
5 0.61 70.6 0.54 67.6

10 0.66 72.7 0.59 70.3

Clean 1.0 98.5 1.0 98.5

the noise interference, and the noise robustness of the mathematical operation is lower

than for other network architectures. This is because when operating the subtraction

operation in the embedding space, it can only subtract some of the influence of the

interfering speakers, but not the noise interference, as there is no prior information

provided about the noises.

Extracting Content Embedding e
′
c1 from Speaker Embedding es1

Isolated Phone Classification

After evaluating the obtained speaker embeddings, the obtained content embeddings

were then evaluated. Table 5.8 shows the isolated phone classification results of using

es1 to obtain ec1. Once again, the Separate-Concat method delivered the best perfor-

mance, with a 0.60 similarity score and 63.2% accuracy, compared with 74.1% from
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Table 5.8: Phone classification and cosine similarity results when using the speaker

embeddings to obtain the phone embeddings. “Before” denotes the phone classification

directly using emix. “Clean” denotes phone classification using ec2 that was extracted

from clean speech.

Cosine Similarity Test Accuracy (%)

SNR -5dB 0dB 5dB -5dB 0dB 5dB

Before 0.11 0.16 0.24 19.7 21.4 29.8

Sub 0.30 0.42 0.49 48.7 52.5 58.8

Mul 0.25 0.37 0.40 42.5 49.7 53.2

Concat1 0.11 0.16 0.23 22.0 27.1 30.8

Concat2 0.20 0.31 0.38 38.7 40.2 42.7

Share-Concat 0.32 0.38 0.44 47.6 49.8 52.2

Separate-Concat 0.45 0.52 0.60 55.8 57.6 63.2

Clean 1.0 74.1

the clean phone classification results. It is important to note that phone classification

differs from the widely reported phone recognition experiments on TIMIT (continu-

ous phone recognition). Classification uses phone boundaries which are assumed to be

known. However, no contextual information is available, which is typically used in the

recognition setups by means of triphone models, or bigram language models. Therefore

the task is often more difficult than recognition.

Similar to the results in the previous experiments, the Sub method generate rea-

sonable results. However, the gaps between the clean results and the results obtained

by the Sub method are larger than those from the Separate-Concat method. As dis-

cussed in Section 5.3, the reason is that the model cannot capture the information from

the separate embeddings by concatenating them before passing them through into the

network layers.

The Sub and Mul methods obtained higher results compared with those when not

using the de-mixing network, indicating that the mathematical operations can capture

the isolated content information in the embedding space. Combined with the results
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Table 5.9: Phone classification and cosine similarity results when using the speaker

embeddings to obtain the phone embeddings in different noise conditions, the interference

from the other speaker is fixed at 5dB. “Before” denotes the phone classification directly

using emix. “Clean” denotes phone classification using ec2 that was extracted from clean

speech.

Model SNR
Noise Music

Cosine Accuracy (%) Cosine Accuracy (%)

Before 0.10 17.4 0.08 15.9

Sub
5 0.31 42.4 0.28 41.1

10 0.36 47.1 0.33 46.2

Mul
5 0.28 36.2 0.26 34.2

10 0.33 39.4 0.30 37.4

Concat1
5 0.07 20.3 0.05 18.4

10 0.12 23.4 0.09 21.2

Concat2
5 0.20 29.6 0.18 26.6

10 0.27 32.6 0.22 29.2

Share-Concat
5 0.24 40.4 0.19 37.4

10 0.29 43.7 0.23 39.6

Separate-Concat
5 0.43 51.1 0.37 49.6

10 0.48 54.7 0.44 52.7

Clean 1.0 74.1 1.0 74.1

obtained in Section 5.3.2, the mathematical operations can not only help the model to

filter out the speaker information in the embedding space, but can also extract the con-

tent information using the speaker information. However, as discussed in Section 5.4.2,

the mathematical operations deliver lower results in the content embedding de-mixing

process. This indicates that the speaker information is necessary for the mathematical

operations to capture content information in the embedding space, as both the speaker

de-mixing network in Section 5.3.2 and the de-mixing network in this section take the

speaker embeddings as input.

Table 5.9 shows the performance of the isolated phone classification under noisy con-
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ditions. A similar phenomenon can be observed in that the noise interference can affect

the performance for all of the six methods. However, the Separate-Concat method de-

livered a higher level of noise robustness, reaching 52.7% accuracy at 10dB of music

noise compared with 63.2% obtained in clean conditions. The Sub method has lower

noise robustness, reaching 46.2% in 10dB of music noise compared with 58.8% ob-

tained in clean conditions, but this is still higher than the results obtained by other

de-mixing functions. This phenomenon is similar to the observations from Table 5.7.

It shows the Separate-Concat method not only delivers better results when separating

the speaker or content information in the embedding space, but can also reach a high

noise robustness level when different noise types affect the quality of the input signal.

Phone Recognition On the Obtained Content Embedding Sequence E
′

c1

Having evaluated the performance using the isolated phone classification, the contin-

uous phone recognition is also important as it evaluates the contextual information

captured by the model. Table 5.10 shows the results of the continuous phone recogni-

tion using the obtained phone embedding sequence E
′

c1. The phone error rates (PER)

are reported instead of the accuracy as it is a widely used measurement in speech

recognition. The Separate-Concat method achieved 30.2% PER, as compared to the

clean phone recognition results of 16.6% PER.

The Sub method reached 37.6% PER in continuous phone recognition, which is the

second lowest PER among all of the six architectures. Mul, the other mathematical

method, also performed better than when not using the de-mixing functions. The

Share-Concat method shows different performances in this section compared with that

in Sections 5.3.2 and 5.4.2. In the previous sections, it obtained lower results because

it uses two shared DNN layers to process the two input embeddings, which makes it

difficult for the model to distinguish the information from the separate embeddings.

However, in this experiment, it reaches 38.2% PER which is comparable with the best

result (30.2%) obtained by the Separate-Concat method. The reason why the Share-
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Table 5.10: Continuous phone recognition results using the phone embeddings obtained

by the speaker embeddings. The phone error rate (PER) is reported. “Before” denotes

the phone recognition directly using emix. “Clean” denotes phone recognition using Ec2

that was extracted from clean speech.

Phone Error Rate(%)

SNR -5dB 0dB 5dB

Before 87.4 79.3 72.5

Sub 42.5 40.2 37.6

Mul 50.2 47.9 44.7

Concat1 60.2 58.8 55.4

Concat2 55.8 53.5 50.1

Share-Concat 46.1 40.5 38.2

Separate-Concat 40.1 35.9 30.2

Clean 16.6

Concat method performs well in the continuous phone recognition task but less so in

the isolated phone classification task may be that the contextual information of the

input sequence helps the model to distinguish the information from different input

embeddings.

5.5.4 Summary

In this section, a speaker and content embedding de-mixing approach is proposed that

aims to extract the information of the target speaker from the corresponding spoken

content information or, inversely, extract the information of the spoken content of the

target speaker using the corresponding speaker embeddings. In Section 5.5.1, the model

architectures are discussed. The clean embedding extraction network makes use of the

model architecture developed in Sections 5.3 and 5.4. Then, after the clean content

and speaker embeddings are extracted, they are used for the embedding de-mixing

network.

In Section 5.5.2, the experimental setup is discussed. The TIMIT dataset is used
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as it contains both the ground truth speaker labels and the time-aligned content labels

(phone labels). When designing the experiments, the obtained speaker embeddings

are evaluated using the cosine similarity score and speaker identification accuracy,

while the content embeddings are evaluated in two different ways: the isolated phone

classification task and the continuous phone recognition task. The isolated phone

classification task directly evaluates the quality of the obtained phone embeddings, and

the continuous phone recognition task further evaluates the contextual information that

is captured by the de-mixing network. Both the speaker and the content embeddings

are also evaluated under different noise interferences to reveal the levels of robustness.

The results shown and discussed in Section 5.5.3 show that both the speaker and

the content information can be extracted from the embeddings space. However, there is

a gap between these results and those derived from the clean conditions which is due to

the complexity of the speaker and content embeddings. These two types of embeddings

encode different information and are trained separately using different networks. It is

difficult for the module to capture the information from the speaker embedding by use

of the content embedding.

Among the six proposed de-mixing functions, the Separate-Concat method provided

the best results, and demonstrated the best robustness under noisy conditions. The

two mathematical operations can obtain results comparable to the Separate-Concat

method, but when the input contains noise information, the performance of these

methods is reduced.
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5.6 Conclusion

In this chapter, an embedding de-mixing approach was proposed. As discussed in

Section 5.1, in order to filter out the speaker interference and improve the performance

of the back-end module, target speaker extraction methods are widely used that isolate

the voice of the target speaker and construct it to a clean signal.

However, when the purpose is to improve the performance of the back-end mod-

ule, such as on speaker recognition model, it may not be necessary to construct the

information of the target speaker into the signal space, as the decoding process (or

reconstruction process) can also affect the performance. Instead, separating the infor-

mation of the target speaker into the embedding space may be more efficient. Firstly,

embeddings are low dimensional, and it can project signals of variable length into fixed

length. Moreover, the back-end speaker recognition model can also be simplified as it

can learn a mapping from the embeddings to the speaker identity scores rather than

from the signals to the speaker identity scores.

Following a review of the literature, ways to separate different speaker properties

into the embedding space have yet to be developed and, with this being the case, the

first method was presented here and is referred to as the embedding de-mixing network.

Section 5.2 shows its high level architecture of three components;

� the recognition network that obtains the clean embeddings;

� the embedding extractor that maps the mixed signal into the embedding space;

� the de-mixing function that separates the information in the embedding space.

In order to comprehensively evaluate the proposed approach, six different embed-

ding de-mixing functions were designed. They can be classified into three categories:

simple mathematical operations (the Sub and Mul methods) which are based on sub-

traction and multiplication operations; concatenation before processing (the Concat1

and Concat2 methods) which merge the information of the two input embeddings by
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a concatenation operation before passing them through the network layers; and con-

catenation after processing (the Share-Concat and Separate Concat methods) which

merge the information of the two input embeddings by a concatenation operation after

passing them through the network layers.

Based on the architecture introduced above, the embedding de-mixing method can

be separated into three steps: speaker embedding de-mixing, content embedding de-

mixing and the speaker and content embedding de-mixing.

In the speaker embedding de-mixing method in Section 5.3, the goal is to filter

out the influence of one speaker using the embedding of the other speaker in the same

two-speaker signal. This step has two scenarios: using the embedding of the interfering

speaker to obtain the embedding of the target speaker, and using the embedding of

the target speaker to obtain that of the interfering speaker. The clean embeddings

are pre-trained and collected using a speaker recognition network. Then, a de-mixing

network is trained which takes the mixed signal and one of the embeddings to obtain

the embedding of the other speaker. The model is evaluated on two datasets: the

augmented TIMIT dataset and the real-world MC-WSJ dataset. The results show

that the speaker embedding de-mixing network can filter out the information of one

speaker using the embedding of the other speaker.

Section 5.4 introduced the content embedding de-mixing network which filters out

the spoken content information of one speaker by the corresponding content embedding.

Similar model architectures are used for this step, and the Speech Command dataset

is used. The results show that the content embedding de-mixing network can filter

out the content information from one speaker, but not as efficiently as it does with

the clean data. This is due to that the content information may be complex, with

different speakers speaking the same content, thereby constantly changing the content

information and making it difficult for the module to capture that information.

Section 5.5 introduced the third scenario, referred to as the speaker and content

embedding de-mixing. In this step, the model uses the speaker embedding to extract
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the corresponding content information or, inversely, uses the content embedding to

extract the corresponding speaker information. The TIMIT dataset was used as it

contains the speaker labels and the aligned phone labels. The experimental results

covered on both the obtained speaker embeddings and the obtained content embed-

dings. The speaker identification accuracies show the obtained speaker embedding can

be extracted from the corresponding content embedding, although the quality is lower

than in the speaker embedding de-mixing step. The speaker and content embeddings

are in different embedding spaces, which may affect the performance. The isolated

phone classification and continuous phone recognition results show the content embed-

dings can be extracted from the corresponding speaker embeddings, but there is still

a gap to those obtained by the clean signal for same reasons as discussed earlier. The

additional experiments use the noise signal mixed with the data to evaluate the noise

robustness of the proposed model. The results show the noise information can affect

the performances of all of the six de-mixing functions, but the Separate-Concat method

still obtains reasonable results.

Comparing the six proposed embedding de-mixing functions, the Separate-Concat

method out-performed all the others in all three steps described above. The Sub

method can deliver results that are comparable to the Separate-Concat method, except

for when the speaker information is not available, such as in the content embedding

de-mixing approach. It also obtained a lower noise robustness when there are noise

interferences in the input signals. The reason may be that the content information or

the noise interference is so complex that the simple architecture of the mathematical

operations (Sub and Mul) can not capture them. Other methods, such as Concat1

and Concat2, delivered worse results in almost all conditions due to the concatenation

process being applied before the network layers so that the model cannot distinguish

different types of information from the different input embeddings.



Chapter 6

Weakly Supervised Speaker

Identification

6.1 Introduction

Section 2.4.3 discussed a scenario in which overlapped speakers, engaged in a conversa-

tion, in a single signal. There is no target speaker, the number of speakers is unknown,

and all the speakers need to be recognised by the system. In such a situation, neither

target speaker extraction techniques (discussed in Section 2.4.2) nor the embedding

de-mixing approach (as proposed in Chapter 5) will be of any utility.

As discussed in Section 2.4.3, one possible solution for this situation is to manually

annotate each speaker, as well as the time in which each speaker occurs in the signal.

However, this is expensive and time consuming. An alternative solution is to use a

front-end speaker diarization model before recognising all the speakers, though this

may still require manually annotated labels for training purposes.

In order to achieve the goal discussed above, weakly supervised learning may be

a potential solution. As discussed in Section 2.4.3, one scenario in weakly supervised

learning, known as inexact supervision, can learn directly from the coarse grained

labels. When the input signal contains an unknown number of speakers, and the

168
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goal is to recognise all of the speaker identities, the inexact supervision in weakly

supervised learning can make direct use of the speaker labels without the need for the

time information for each speaker. In this way, it is not necessary to manually annotate

all of the speaker labels with the time information as only a set of speaker identities is

needed.

From a review of the literature, there appears to be only one study (Karu & Alumäe

2018) that has employed weakly supervised learning to speaker recognition, using a pre-

trained speaker diarization system and a pre-trained i-vector extraction model. Those

two systems still need manually annotated time information for each speaker. An end-

to-end weakly supervised speaker identification approach that can directly learn the

mapping from the signal to the set of speaker labels is as yet undeveloped.

In this chapter, an approach is proposed that uses weakly supervised training for

speaker identification through the use of two neural network architectures: the hier-

archical attention network and the hierarchical transformer network. The hierarchical

attention network is based on the network architecture that was proposed in Chapter

3. In this chapter, it is trained in a weakly supervised manner because the hierarchical

structure is shown to have a good noise robustness. As discussed in Section 2.4.1, the

interfering speakers affects the speech signal in a similar but stronger way. When there

are multiple speakers overlapping, the frame-level encoders of the hierarchical attention

network are assumed to capture the local information that may be useful for the model

to capture the speaker related information.

However, the hierarchical attention network has two disadvantages. The attention

mechanism used in the frame-level encoders may not be able to capture the properties

from multiple speakers in a single input utterance. The second problem is that there

are no connections between each of the frame-level encoders, which may negatively

impact performance. To address these problems, a hierarchical transformer network

(T-vector) is proposed. The T-vector model also contains a frame-level encoder and a

segment-level encoder. The model makes use of transformer encoder blocks in both the
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frame-level and segment-level encoders to better capture multiple speaker information

and process the sequence in parallel instead of the GRU layer. The multi-head attention

mechanism (Vaswani et al. 2017) used in the transformer block may better capture

different speaker properties from the multi-speaker input signal. An additional memory

mechanism is used between each frame-level encoder to capture long-term information

and improve the performance (Dai et al. 2019).

6.1.1 Chapter Outline

The remainder of this chapter is organised as follows:

� Section 6.2 defines and discusses the end-to-end weakly supervised speaker iden-

tification task.

� Section 6.3 adapts the developed hierarchical attention network to weakly super-

vised learning, and the experimental results are also shown.

� Section 6.4 introduces and discussed the proposed hierarchical transformer net-

work, combined with the experimental results and discussion.

� Section 6.5 provides the conclusion.
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Figure 6.1: A diagram of the end-to-end weakly supervised speaker identification task.

6.2 Task Definition

The goal for the weakly supervised speaker identification is to recognise all the speaker

identities within an input utterance (or in a given period of time) when the utterance

contains an unknown number of speakers.

Figure 6.1 shows a diagram of the weakly supervised speaker identification task.

Suppose the total number of speakers in the training set is N , the input data Xmix

contains a random number of G speakers. The number G <= N that indicates the

speakers that occurred in the input utterance are all from the training set, but the

number G is unknown for each training utterance. For each input data Xmix, the

label is a set of speaker identities without any time information. Xmix contains the

mixed time domain signals, and it will be converted into MFCC features before passing

through the neural network model. Specifically, the label for Xmix is denoted as

yx = {yx,1, yx,2, ..., yx,N}. It is organised as a vector of dimension N , which is the

same as the total number of speakers. Each element of yx denotes one speaker from

the training set, and the value is either one or zero, where number one represents

the corresponding speaker who occurs in Xmix while the number zero represents the

speaker who is not present in Xmix. It is obvious that the number of elements in yx

whose values are equal to one is G. For example, suppose yx = {0, 1, 0, 0, 1, 0} denotes

a label vector for an input signal which contains two speakers (G equals to 2), and the
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total number of speakers is six (N equals to 6).

A neural network is trained to predict the speakers who occurs in Xmix. For

example, when Xmix is input to the neural network, the output is the predicted score

vector y
′
x, which contains the estimated scores for each speaker. The score values are

between zero and one.

From the above description, one can observe that the weakly supervised speaker

identification can make direct use of the weakly labelled data as the input data contains

a random number of speakers, but only the utterance-level labels are available. As

discussed in Section 2.4.3, the definition of the weakly supervised speaker identification

in this section can satisfy the requirement to omit the need for manually annotated

speaker labels. The proposed task definition does not require the time information of

the speakers.

Another key point in the task definition discussed above is that it is a closed-set

task, where the total number of speakers N is fixed. As discussed in the beginning of

Chapter 2, this it is similar to the closed-set speaker identification task. However, it is

convenient here to convert it to an open set task. An extra dimension that represents

the unseen speaker can be added to the score vector yx. This dimension represents

the speaker that is not in the training set, and will change the dimension yx and y
′
x

to N + 1. In this chapter, the focus is on the closed-set scenario, though additional

experiments for adapting it into an open-set scenario are discussed in Section 6.4.3.

L = −
N∑
i=1

yilogy
′

i + (1− yi)log(1− y
′

i) (6.1)

The most important part of the weakly supervised speaker identification task is the

training target or loss function. In this task, as the labels for each speaker are binary

labels, thus, the binary cross-entropy loss is used as the loss function, which is shown

in Equation 6.1, where y
′
i and yi denote the predicted score and the ground truth label

for the ith speaker, N denotes total number of speakers in the training set.
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Figure 6.2: The illustration of the data construction process. (a): Concat; (b): Overlap.

6.3 Weakly Supervised Training of the Hierarchical

Attention Network

6.3.1 Experimental Setup

Data Construction

There is no ready-made data available for this task. Consequently, new datasets are

constructed from the Voxceleb1 and SWBC datasets that were first introduced in

Sections 2.5 and 3.4.1.

In order to conduct weakly supervised training, two data scenarios were designed,

namely Concat and Overlap. Figure 6.2(a) shows an example of the Concat scenario

where three speakers’ voices are concatenated without any overlap, while Figure 6.2(b)

shows an example of the Overlap scenario where the three speakers’ voices are com-

pletely overlapped.
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Table 6.1: Details for the construction of the four datasets: SWBC-S, Vox-L, SWBC-S

and Vox-L.

Name Original Dataset Type #Select Speaker #Utterance Train #Utterance Test

SWBC-S SWBC Telephone 254 6000 20,000

SWBC-L SWBC Telephone 254 100,000 20,000

Vox-S Voxceleb1 Interview 1000 15000 30,000

Vox-L Voxceleb1 Interview 1000 150,000 30,000

There are different reasons for constructing these two data scenarios. From Figure

6.2(a), it is obvious that the overlap rate for the three speakers is zero. As there is

no published baseline for this task, it is unknown what performance to expect when

identifying unknown number of speakers from one input utterance. Thus, the Concat

scenario provides a simple situation which can reveal the upper limits for the model

in this task. The Overlap scenario provides the most difficult situation, where all the

speakers speaker at the same time. In this case, the purpose is to evaluate the lower

limit of the model. Having evaluated the proposed model in these two scenarios, addi-

tional experiments are shown in Section 6.4.3 that use the data containing a random

overlap rate for multiple speakers.

In order to test the robustness of the proposed approach, for each of the two sce-

narios, four datasets were generated based on SWBC and Voxceleb1. The details are

shown in Table 6.1. SWBC-S (where S stands for small) is derived from the SWBC

dataset. Each speaker occurs 30 times on average within the training set. SWBC-L,

where L stands for large, contains more training data, with each speaker occurring

an average of 200 times in the training set, while the amount of test data remains the

same. These small and large versions of the datasets are used to explore the robustness

of the proposed model with small and large amounts of training data. The Voxceleb1

was configured into small and large datasets in a similar way. For Vox-S, 1,000 speakers

were randomly selected from the dataset, each occurs 30 times in the training set. For
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Vox-L, each speaker occurs 300 times in the training set, while the test set is the same

as for Vox-S. For each of the eight datasets, the number of speakers in each signal (G)

is randomly chosen from one to three in all datasets. When the number of speakers is

one, the generated utterance is the same as the original utterance. When the number

of speakers are two or three, the output utterance contains multiple speakers, with or

without overlap. The method for mixing the utterances can be found in Appendix B.1.

Baseline

As the experiments here used the developed H-vector model, the selected baselines are

the same as those in Chapter 3, namely the X-vectors from Snyder et al. (2018) and the

attentive X-vector (or Att-Xvector) from Zhu et al. (2018), Okabe et al. (2018), Wang,

Okabe, Lee, Yamamoto & Koshinaka (2018), and rahman Chowdhury et al. (2018).

The reason is that although the H-vector has already been shown to deliver better

performance under noisy conditions than the X-vector and the attentive X-vector, it

is still not clear how it will perform in a multi-speaker environment. As discussed in

Section 2.4.1, interfering speaker in the speech signal is much more difficult to process

than simple background noise.

As discussed in Section 3.4, the X-vector is a TDNN-based model which con-

tains a TDNN-based frame-level feature extractor, a statistics pooling operation and

a segment-level feature extractor. A comparison between X-vector and H-vector can

evaluate the effectiveness of the attention mechanism used in the H-vector model.

The attentive X-vector model contains an additional global self-attention mechanism

to allocate different weights for different frames ahead of statistics pooling operation.

Thus, the attentive X-vector is used to compare the different attention mechanisms:

the global attention in attentive X-vector and the hierarchical attention in H-vector.

As shown in Section 3.5.2, different window and step sizes can control the amount of

information provided to the frame-level and segment-level encoders, thereby affecting

the performance. In order to evaluate the relationships between the segmentation
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settings and performance, similar to that in Section 3.5.2, it is split into two scenarios:

H-vector+sliding window and H-vector+static window. In H-vector+sliding window,

the window length Lwin is set to 20 frames, and the step length Lstep is set to 10 frames.

In H-vector+static window, the Lwin is set to 20 frames, and the Lstep is set to the same

as Lwin, which means there is no overlap for each local segment. The implementation

details can be found in Appendix A.6.

Evaluation Metric

As discussed in Section 2.2.3, prediction accuracy is used as the evaluation metric for

the speaker identification task. However, this is not suitable for the weakly supervised

speaker identification task because the number of speakers in each training utterance

(G) is unknown. When using the prediction accuracy as the evaluation metric, the

model prediction comes from the prediction with the highest probability. It can only

be used when there are a certain number of positive labels in one training sample.

When there are multiple unknown numbers of labels, it is impossible to determine

which predictions have the highest score (Xu et al. 2017).

Therefore, the equal error rate (EER), as discussed in Section 2.2.3, is employed

here, as it does not require G to be fixed. In this scenario, each dimension of the

predicted score vector y
′
x can be viewed as the output of a binary classification task.

The EER is firstly computed for each predicted score vector, the EER for the whole

test set is computed as the average of the EERs of all of the predicted score vectors.

6.3.2 Results and Discussion

Performance for the Concat Scenario

The first experiment focuses on the performance of the models in the simple Concat

scenario, where the speakers do not overlap in the input utterance. Figure 6.3 shows

the results obtained using the four models (X-vector, attentive X- vector, H-vector with

static window and H-vector with sliding window) under different test conditions (1, 2,
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Figure 6.3: The EERs (%) obtained using four models: X-vectors, attentive X-vectors,

H-vector with static window and H-vector with sliding window under different test condi-

tions on the four designed datasets for the Concat scenario.

3 or multiple speakers) on the four designed datasets (SWBC-S, SWBC-L, Vox-S and

Vox-L). In each figure, the X-axis represents the number of speakers in an utterance

(1, 2 and 3), “Multiple” means the combination of all three cases, which means it is

the average number of the three situations (1,2, and 3 speakers). With regard to the

H-vector with static window, the window size Lwin is 20 frames; in the H-vector with

sliding window, the window size Lwin is 20 frames and the step size Lstep is 10 frames.

Notice that in the training sets, the number of speakers in each input utterance

ranges randomly from one to three. For the test set, there are four different conditions,

where the number of speakers are fixed at one, two or three. The “Multiple” scenario
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means the number of speakers are fixed randomly at either one, two or three, as in the

training set.

From the results, it is clear that the H-vector model out-performed both the X-

vector and the attentive X-vector. The attention mechanism gives the H-vector model

the ability to highlight the important parts. It delivers better results than the X-

vector and it out-performs the attentive X-vector. Because the hierarchical attention

structure in H-vector captures both local and global features, compared to the global

features captured by the global attention mechanism.

H-vector+sliding window performs better in almost all conditions, while the H-

vector+static window performs better than the two baselines. This indicates the over-

lap between each segment for the H-vector can help the model better capture the

information from different speakers.

Among all of the test conditions, the best results are obtained when the number of

speakers in each utterance is one, and the worst case is when each utterance contains

three speakers. Of course, it is easier for the models to capture the properties of a single

speaker than multiple speakers speaking simultaneously. This is also the difficulty of

the weakly supervised speaker identification task.

Moreover, when the training data is small, the proposed H-vector+sliding win-

dow still performs better than the baselines and the H-vector+static window, reaching

11.5% and 3.4% relative improvement over X-vector and Att-Xvector respectively with

the SWBC-S dataset in the Concat scenario. This shows the robustness of the proposed

H-vector+sliding window when there is insufficient training data.

The Performance for the Overlap Scenario

Figure 6.4 shows the results obtained for the four models on Overlap scenario. As

discussed in Section 6.3.1, this is a difficult scenario in which all of the speakers are

overlapped in the utterance signal with an overlap rate is 100%.

The results obtained from the Concat scenario are much better than those for the
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Figure 6.4: The EERs (%) obtained using four models: X-vectors, attentive X-vectors,

H-vector with static window and H-vector with sliding window in different test conditions

on the four designed datasets in the Overlap scenario.

Overlap scenario, confirming the discussion in Section 2.4.1 that interference from other

speakers can compete for the same frequency band as other speakers, thus making it

more difficult for the model to distinguish the elements of each speaker. The worst case

is on the Vox-S dataset in the Overlap scenario, where the overlap rate is the highest

and the there is only a small amount of training data available.

Although the Vox-S dataset in Overlap scenario is the most difficult one among

all of the eight datasets, the H-vector+sliding window still out-performed the other

models, reaching 43.0% EER, compared with the X-vector (48.5%) and attentive X-

vector (45.6%) when there are three overlapped speakers in the test utterance.
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Table 6.2: The EERs (%) of the proposed H-vector architecture using different window

sizes (from 10 to 30 frames), while the step size is kept at 10 frames.

Data Type Window Size
EER (%)

SWBC-S SWBC-L Vox-S Vox-L

Concat

10 12.56 7.15 18.29 13.69

15 11.87 6.85 18.08 13.34

20 11.27 6.47 17.48 13.08

25 11.69 6.59 17.81 13.29

30 12.11 6.92 18.21 13.66

Overlap

10 17.81 15.71 34.37 26.46

15 16.89 15.05 33.48 25.85

20 16.24 14.56 32.77 25.39

25 15.99 15.58 32.26 25.94

30 16.59 16.02 32.86 26.17

Effectiveness of Different Window and Step Sizes

The window and step sizes are, in effect, hyperparameters that control the length of

the signal input to the frame-level and segment-level encoders. It is therefore necessary

to evaluate the performance of the H-vector model at different window and step sizes,

In a similar way to the experiments discussed in Section 3.5.3.

Tables 6.2 and 6.3 show the results obtained using the proposed H-vector+sliding

window when using different window and step sizes. For the Overlap scenario, the

EER is more sensitive to the change of window size and step size than in the Concat

scenario. In most cases, the best results are obtained when the window size is 20 frames

and the step size is 10 frames, where the step size is set to the half-size of the window

size. A similar behaviour can be observed in Section 3.5.3, where the performance

using different window and step sizes can be improved from a small size, but eventually,

performance peaks and then declines. This confirms the findings in Section 3.5.3 stating

that a larger window size leads to a longer segment being input into the frame-level

encoder. The information between the beginning and the end frames of the segment
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Table 6.3: The EERs (%) of the proposed H-vector architecture using different step sizes

(from 5 to 25 frames), while the window size is kept at 20 frames.

Data Type Step Size
EER (%)

SWBC-S SWBC-L Vox-S Vox-L

Concat

5 11.95 6.74 18.01 13.65

10 11.27 6.47 17.48 13.08

15 11.34 6.29 17.98 12.82

20 11.45 6.96 18.21 13.15

25 11.86 6.84 18.56 13.42

Overlap

5 16.49 14.92 33.87 25.51

10 16.24 14.56 32.77 25.39

15 16.88 14.13 33.53 24.86

20 17.22 14.82 33.92 25.46

25 17.78 15.11 34.25 25.81

may contain fewer relationships. When the window size is smaller, the segment length

is small and there may be insufficient information provided to the frame-level encoder.

Step size also plays an important role with regard to the prediction results, even

though the experiments in Section 3.5.3 demonstrate that the H-vector is more sensitive

to the window size rather than the step size. This may be due to the complexity of

the data structure. The step size controls the number of segments, thus it controls the

information input to the segment-level encoder. The segment-level encoder captures

the global features, which indicates that global information is also important in the

weakly supervised speaker identification task. This is because when the input utterance

contains multiple speaker, the model has to capture all the speaker properties and

predict them. Even though it can capture local features using the frame-level encoder,

the captured local information needs to be integrated at a higher level. If the step size

is large, there will be insufficient information provided to the segment-level encoder,

leaving it less able to capture the global features for all the speakers in a multi-speaker

utterance.
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(a) Spectrogram of Speaker One (b) Spectrogram of Speaker Two

(c) Spectrogram of Mixed Signal (d) Attention Weights in H-vector

Figure 6.5: The visualisation of the attention weights: (a) the spectrogram of Speaker

One, (b) the spectrogram of Speaker Two, (c) the spectrogram of Mixed Signal, (d) the

attention weights of the segment-level attention in H-vector model.

Another finding is that the results are more sensitive to both the window size and

the step size when in the Overlap scenario, where both local and global information are

difficult to extract. Thus both the frame-level and segment-level encoders need more

information in order to make a prediction.

6.3.3 Analysis

Visualisation of the Attention Weights

Following the analysis in Section 3.5.3, in order to observe how the hierarchical atten-

tion network works, the segment-level attention weights are visualised in Figure 6.5.
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In Figure 6.5(a), the spectrogram of one speaker is shown; Figure 6.5(b) is the spectro-

gram of the second speaker; Figure 6.5(c) is a combination of the first two spectrograms

in (a) and (b), with an overlap rate is 50%. Only the first half of the signal of Speaker

One is affected by Speaker Two with 0dB, as the second half of the signal of Speaker

One is not affected.

From the results, it is clear that the H-vector model allocates higher weight for the

segments 5 to 10, and lower weights for the segments 1 to 5. This confirms the discussion

in Section 2.4.1 that the interference from the second speaker can significantly affect

the signal by competing with the target speaker for the same frequency band, which

makes it difficult for the model to separate the elements of the two speakers. As a

result, the higher weights are allocated to the clean features (in segments 5 to 10), and

lower weights are allocated to the segments that are highly distorted by Speaker Two

(segments 1 to 5).

However, the H-vector model in this chapter is trained to recognise all of the speak-

ers from the input signal and, as shown in Figure 6.5(d) the H-vector model failed to

capture the features for Speaker Two because the Speaker Two only occurs in segments

1 to 5, but these segments are allocated with very low weights.

The reason why the H-vector model cannot capture the features for the second

speaker may be that the attention mechanism in the H-vector model cannot focus

on two speakers. As discussed in Section 3.3, the computation process of both of

the frame-level and segment-level attention mechanisms only provides one group of

attention weights for the signal, and the attention weight values are computed by the

softmax function so that they can be summed to one. It may be difficult for the model

to capture multi-speaker information when the training target is to recognise all of the

present speakers. In the next section, this problem will be addressed by a new model

architecture.
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6.3.4 Summary

This section proposed an adaption of the developed hierarchical attention network to

the weakly supervised speaker identification task. The reason for using the H-vector

model for the weakly supervised speaker identification task is that the hierarchical

structure is shown to have greater robustness in noisy conditions. It is assumed that

the H-vector model can also deliver better performance in a multi-speaker environment.

In Section 6.3.1, new datasets are constructed from the clean signals from the Vox-

celeb1 and SWBC datasets. In order to comprehensively evaluate the performance of

the model, the constructed datasets represent two scenarios: Concat and Overlap. The

Concat scenario contains a random numbers of speakers in the same input utterance

without any overlap. The Overlap scenario contains a random number of speakers

totally overlapped in a single input utterance. The model is evaluated with both small

and large amounts of training data from both of the parent datasets, leading to the

construction of a total of eight child datasets. The X-vector and attentive X-vector

are selected as the baselines. The goal is to evaluate the effectiveness of the atten-

tion mechanism and the hierarchical structure. The results obtained shown in Section

6.3.2 reveal that the H-vector with a sliding window obtained the best results, reach-

ing 6.48% and 14.88% EERs in the Concat and Overlap scenarios of SWBC-L dataset

(“Multiple” test condition). This is due to the effectiveness of the hierarchical structure

and the use of the sliding window allows the model to capture more information. The

results in the Concat scenario are better than those obtained in the Overlap scenario

due to the fact that overlapped speakers can significantly affect the features, making

it difficult for the model to distinguish between the elements. When there is minimum

training data available, the H-vector can still perform better than the baselines.

In order to intuitively observe and analyse how the attention mechanism works,

Section 6.3.3 offers a visualisation of the segment-level attention weights. From the

comparison of the visualised attention weights in Section 3.5.3, the H-vector model

clearly failed to capture the features from the second speaker that occurred in the
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input utterance. This is due to the fact that the computational process of the attention

mechanism in the H-vector model may not capture the information of multi-speaker

features.
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6.4 The Hierarchical Transformer Network

In the previous section, the H-vector model was used for weakly supervised speaker

identification. However, the results in Sections 6.3.2 and 6.3.3 show that the attention

mechanism in the H-vector model cannot capture multiple speaker features from a sin-

gle input utterance. In this section, a new network architecture, called the hierarchical

transformer network, is suggested as a way to address this issue.

6.4.1 Model Architecture

Figure 6.6 shows the architecture of the proposed hierarchical transformer network (T-

vector). The model consists of a global TDNN layer, a positional encoding operation

which is based on the sinusoidal positional encoding (Vaswani et al. 2017) that will be

discussed later in this section, frame-level encoders, a segment-level encoder, and two

fully connected layers as a classifier.

Given the input acoustic frame vector sequence, a TDNN layer is used, and the

output is then added to the positional encoding of the original input, the output is

denoted as S ∈ RT×F , where T represents the sequence length and F is the dimension

of the frequency axis.

In the frame-level encoders, similar to the hierarchical attention network, the input

sequence S is divided into M segments: {S1,S2, · · · ,SM} using a sliding window with

length Lwin and step size Lstep. Then, M frame-level encoders are used, compressing

M segments into M segment vectors eSm ,m ∈ {1, 2...M}. Each frame-level encoder

contains L transformer encoder blocks and a statistics pooling operation. The frame-

level encoder blocks share weights, and are connected using memories of hidden states,

which will be discussed later in this section.
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Figure 6.6: The architecture of the hierarchical transformer network.

After obtaining the segment vector sequence ES ∈ RM×ES , the segment-level en-

coder uses a TDNN layer followed by a transformer encoder block, memory is not

used in the segment-level encoder. Another TDNN layer and a statistics pooling are

used to compress the segment vector sequence into a single vector that represents the
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whole input sequence, which is referred to as the utterance vector. The speaker iden-

tity classifier is constructed using a two-layer MLP followed by a sigmoid activation

function.

The speaker identity scores are the output vectors which contains the scores (be-

tween 1 and 0) for each speaker. The model is trained using the loss function that was

introduced in Section 6.2.

From the above description, one can observe some key attributes of the architecture

of the T-vector model. Firstly, it still makes use of the hierarchical structure that

was introduced in Section 3.2. The experimental results show that the hierarchical

structure can capture the local and global features of the input signal, rather than just

the global attention mechanism that only focuses on the global features. As a result,

the hierarchical structure is reused, but different architectures for each component

within the structure are applied.

The key differences between the proposed hierarchical transformer network and the

hierarchical attention network are the transformer block and the memory mechanism.

The transformer block makes use of the multi-head attention that may help the model

to better capture the features for multiple speakers. The memory mechanism can build

a connection between each frame-level encoder by sharing the information across the

whole input sequence. The details of each component are introduced in the following

sections.

Transformer Encoder Block

As shown in Figure 6.6, the most important part of the T-vector model is the replace-

ment of the TDNN and GRU layers with the transformer encoder block. This section

and the next will introduce the details of the transformer encoder block.

The architecture of the transformer was introduced in Section 2.3.2. One of the

most important components is the transformer encoder block. Figure 6.7 shows the

architecture of one transformer encoder block where, for each block, a multi-head



CHAPTER 6. WEAKLY SUPERVISED SPEAKER IDENTIFICATION 189

Figure 6.7: The architecture of the transformer encoder block with memories (Vaswani

et al. 2017, Dai et al. 2019).

attention layer is used for the input segment (Vaswani et al. 2017). Layer normalisation

(Ba et al. 2016) is used after the residual connection (He et al. 2016). The output is

fed into a DNN layer, and then the same layer normalisation is used. The output is

used as the input to the next block and the memory for the next frame-level encoder.

As discussed in Section 6.3.3, the reason why the attention mechanism in the hier-

archical attention network cannot capture the features from multiple speakers maybe

that the computation of the attention mechanism can only focus on one speaker. In

order to address this issue, the multi-head attention mechanism is used.

As discussed in Section 2.3.2, the multi-head attention and the transformer were
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first developed in the field of neural machine translation. A fundamental feature of the

multi-head attention mechanism is that it computes the attention weights for the input

signal several times in parallel. Each attention mechanism, called an attention head,

focuses on one part of the input, allowing the array to cover all the different features

in the input signal. For speaker recognition, especially in weakly supervised speaker

identification, the multi-head attention mechanism is assumed to be able to capture

different speaker features with different attention heads.

To achieve this, the input signal is initially linearly transformed into three different

sequences: Query (Q), Key (K) and Value (V ), each of them have the same dimen-

sionality as the input signal. The purpose is to compute the attention weights multiple

times in parallel. Equation 6.2 (from Vaswani et al. (2017)) shows an example of the

the computational process for one attention head.

hi = Attention-Head(Q,K,V ) = Softmax(
QKT

√
d

)V (6.2)

In order to compute multiple attention heads, each attention head is computed

using K, Q and V with the corresponding weight parameters WK
i , WQ

i and W V
i .

This is shown in Equation 6.3. The results of each attention head are then combined

using a parameter matrix WO.

MultiHead(Q,K,V ) = [h1,h2, ...,hh]WO

hi = Attention-Head(QWQ
i ,KWK

i ,V W V
i )

(6.3)

Figure 6.7 also shows how the layer normalisation (Ba et al. 2016) and the residual

connection (He et al. 2016) are used. The layer normalisation normalises the learned

features, a process that has been shown to have a greater level of robustness when

processing noisy speech signals (India Massana et al. 2019). The residual connection,

discussed in Section 2.2.4, can make the training of the model faster and more accu-

rately.

Combining all of the components discussed above, the transformer blocks are used

as the basic component of the hierarchical transformer network. Another important
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property of the T-vector model is the memory mechanism, which will be introduced in

the next section.

Multi-Head Attention With Memory

The memory mechanism provides the information that can be shared across the whole

sequence. The idea comes from the RNN architecture that was discussed in Section

2.1.3. Different frame-level encoders take each segment as input, computing the at-

tention weights and summarising them into a single vector. When processing each

segment, the input of the frame-level encoders take only the current segment, no infor-

mation from the previous segments is provided. In the weakly supervised speaker iden-

tification task, the input utterances may contain multiple overlapped speakers, which

means that the features in the early segments may be difficult to capture, though this

becomes easier in the later segments. The memory mechanism provides a connection

between the frame-level encoders to capture those features that are located in differ-

ent segments and share them across all the frame-level encoders. This is similar to

the hidden states in the RNN model that store and share the information across all

of the time steps to make the model better capture long term memory. The detailed

computation process of the memory mechanism can be found in Appendix A.7.2.

The last component is the positional encoding (Takase & Okazaki 2019), as il-

lustrated in Figure 6.7 and discussed in Section 2.3.2, which is deployed before the

sequence is split into segments in order to provide positional information for each

frame to the frame-level encoders. For example, when splitting the input utterance

into segments, originally there is no positional information provided. The frame-level

encoders, built based on the transformer block, use each segment as input. Within each

frame-level encoder, as the transformer encoder block processes the sequence informa-

tion in parallel, it does not have the sequential mechanism, such as that in the RNN,

to deal with the sequence input. This effect is also indicated by Vaswani et al. (2017).

As a result, the sequence information within each segment will not be captured.



CHAPTER 6. WEAKLY SUPERVISED SPEAKER IDENTIFICATION 192

A simple but efficient way to solve this problem is to assign a unique code for each

frame so that the transformer encoder block in each of the frame-level encoders will

make use of the sequence information. The T-vector model makes use of the sinusoidal

positional encoding (Vaswani et al. 2017) technique. The computational process can

be found in Appendix A.7.2.

6.4.2 Experiment Setup

The T-vector model is an updated architecture from the H-vector. Therefore the

experimental setups here are identical to those laid out in Section 6.3.1.

In terms of baseline selection, the H-vector is used in addition to the X-vector and

attentive X-vectors, as a comparison between H-vector and T-vector can reveal the

performance of the multi-head attention and the memory mechanisms. An additional

baseline, the S-vector, is also selected (Katta et al. 2020). The S-vector makes use of the

same transformer encoder block as the basic component of the model. The difference

between S-vector and T-vector is that S-vector does not have the hierarchical structure

and the memory mechanism, but is rather based on the X-vector architecture, replacing

the TDNN layers with multiple transformer blocks. This makes the S-vector suitable for

evaluating the performance of the hierarchical structure and the memory mechanism.

The implementation details of the T-vector model can be found in Appendix A.7.1.

6.4.3 Results and Discussion

Performance for the Concat Scenario

Similar to the evaluation process laid out in Section 6.3.2, the Concat scenario is used

first, as it is an simpler scenario. Figure 6.8 shows the results obtained using the

five models (X-vector, attentive X-vector, H-vector, S-vector, T-vector) under different

test conditions (1, 2, 3 or multiple speakers) on the four designed datasets (SWBC-S,

SWBC-L, Vox-S and Vox-L). For all of the figures, the x-axis represents the number of
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Figure 6.8: The EERs (%) obtained using the five models in different test conditions

on the four designed datasets: SWBC-S, SWBC-L, Vox-S and Vox-L in Concat Scenario.

For all of the figures, the x-axis represents the number of speakers in test utterance.

speakers in a test utterance. In the T-vector model, the window size Lwin is 20 frames,

the step size Lstep is 10 frames. For the H-vector model, the window size Lwin is also

20 frames, the step size Lstep is 10 frames.

The T-vector model performed better than the four baselines under all test con-

ditions, showing robustness when the training data is small by reaching 13.3% and

10.56% relative improvements over H-vector and S-vector respectively, in the SWBC-S

dataset in the Concat scenario. Compared with the results obtained by the H-vector,

the improvement of the T-vector may come from the use of multi-head attention and

the memory mechanism.
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Compared with the results obtained by the S-vector, the improvement of T-vectors

may come from the use of a hierarchical structure with the memory mechanism. Instead

of processing the whole input sequence, the T-vector makes use of the hierarchical struc-

ture that can better capture both local and global features. The memory mechanism

guarantees the information of each speaker is shared across all frame-level encoders.

Compared with the X-vector and attentive X-vector baselines, the improvements de-

livered by the T-vectors comes from the use of the multi-head attention mechanism,

which captures overlapped speaker information better than the TDNN layers.

Similar to the results in Figure 6.3, the best results for any of the models are

obtained when the number of speakers is one, and the worst case is when there are

three speakers. This is due to complexity of the data. When the number of speakers

increases, the models are difficult to capture their features.

Performance for the Overlap Scenario

The Overlap scenario is a more difficult scenario as the speakers are completely over-

lapped in the input utterances. Figure 6.9 shows the results obtained using the five

models (X-vector, attentive X-vector, H-vector, S-vector, T-vector) under different test

conditions (1, 2, 3 or multiple speakers) on the four datasets (SWBC-S, SWBC-L, Vox-

S and Vox-L). For all figures, the x-axis represents the number of speakers in the test

utterance. Once again, the settings for the T-vector model are: window size Lwin is 20

frames, step size Lstep is 10 frames.

It is visible that the results obtained in the Overlap scenario are worse than those

from the Concat scenario. However, there remains a gap in performance between the T-

vector model and the baselines, particularly for the SWBC-L dataset where it attained

an EER of 28.1%. The gap between X-vector and the other models is significant

because no attention mechanism is used in the X-vector model. It treats each frame

as being equally important. In the Overlap scenario, where the speaker features are

overlapped, the attention mechanism is necessary in order to discard the features that
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Figure 6.9: The EERs (%) obtained using the five models under different test conditions

on the four designed datasets: SWBC-S, SWBC-L, Vox-S and Vox-L in Overlap scenario.

For all the figures, the x-axis represents the number of speakers in the test utterance.

are highly distorted.

It is obvious that all results from the SWBC based dataset are better than those

from Voxceleb1, an effect that can be observed in Figures 6.3, 6.4, 6.8 and 6.8. As

discussed in Section 6.3.1, the total number of speakers are different in that the SWBC

dataset contains only 254 speakers, while Voxceleb1 contains 1,000 speakers. When

the number of speakers increases, it is more difficult for the model to be trained.
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Table 6.4: The EERs (%), with and without using the memory mechanism in the T-

vector model. The window size ranges from 20 to 30 frames.

Data Type Memory Window Size
EER (%)

SWBC-S SWBC-L Vox-S Vox-L

Concat

With

20 9.28 4.46 14.41 10.79

25 8.97 4.04 13.97 10.25

30 9.05 4.20 14.30 10.49

Without

20 10.31 5.52 16.02 11.64

25 10.04 5.18 15.54 10.98

30 10.34 5.37 15.85 11.47

Overlap

With

20 14.48 13.10 29.38 23.51

25 14.07 12.96 28.91 23.25

30 14.13 12.77 29.04 23.08

Without

20 15.85 14.25 31.04 24.48

25 15.25 13.99 30.24 23.80

30 15.71 13.75 30.09 23.66

The Effectiveness of the Memory Mechanism

The memory mechanism in the T-vector model is one of the most important compo-

nents. In order to evaluate the effectiveness of this memory mechanism, Table 6.4

shows the results from both with and without the use of the memory mechanism when

using different window sizes (Lwin). Universally and across both scenarios, the best

results are obtained when using the memory mechanism. It significantly improves the

performance of the T-vector, reaching 10.6% and 7.7% relative improvement for the two

scenarios respectively, with the SWBC-S dataset when the window size is 25 frames.

It shows that reusing information from previous segments allows the model to better

capture long-term speaker information.

The results reveal a similar effect as seen in Section 6.3.2 whereby the window size

affects performance; a larger window size leads to a higher level of performance, though

this does peak eventually, from whence it declines. This is because the window size

controls the amount of information input to the frame-level encoders; a small window

size leads to insufficient information, while a window size that is too large leads to
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irrelevant information, thereby negatively influencing the ability of the network to

capture pertinent features.

In addition, the window size can also affect the performance of the memory mech-

anism as the window size not only controls the amount of information that is input

to, and captured by, the frame-level encoder, but also controls the amount of informa-

tion that is stored and shared in memory. When the window size is large, irrelevant

information is stored and shared across all of the frame-level encoders that will reduce

the ability of some of the encoders to extract useful information. Conversely, when

the window size is small, there will be insufficient useful information that is stored and

shared.

The results shown in Table 6.4 confirm that the connection between the different

frame-level encoders provided by the memory mechanism can improve the performance

in a weakly supervised speaker identification task as the connections allow each frame-

level encoder to share information of difference segments that can allow the model to

better capture the speaker features located in different segments.

6.4.4 Analysis

The Open-Set Mode

As discussed in Section 6.2, the weakly supervised speaker identification task can be

adapted into an open-set scenario in which the total number of speakers is not fixed,

and the final layer of the network has an additional dimension to predict the scores

for the unknown speakers. In order to evaluate the T-vector and H-vector models

in this open-set scenario, 200 utterances spoken by 50 speakers are selected from the

TIMIT dataset. When training the two models, the 200 utterances were part of the

data construction process for the test set, and the labels for the 50 speakers are set to

the same label, namely the unknown speaker.

Table 6.5 shows the results for the closed-set and open-set scenarios for the two

models. It is obvious that the results obtained in the open-set scenario are worse
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Table 6.5: The EERs (%) of the T-vector and the H-vector models in close- and open-set

weakly supervised speaker identification tasks. The window size for the two models is kept

at 25 frames, and the step size is kept at 10 frames.

Data Type Model Mode
EER (%)

SWBC-S SWBC-L Vox-S Vox-L

Concat

H-vector
Open 13.07 8.03 18.85 15.02

Close 11.69 6.59 17.81 13.29

T-vector
Open 9.98 5.25 15.11 11.48

Close 8.97 4.04 13.97 10.25

Overlap

H-vector
Open 17.22 16.91 34.58 27.14

Close 15.99 15.58 32.26 25.94

T-vector
Open 15.43 24.52 30.62 25.17

Close 14.07 23.96 28.91 23.25

than those for the closed-set scenario, simply. In the original training set, there is a

fixed number of speakers, all with speaker identity labels. However, in the open-set

scenario, the model needs to identify all of the original speakers and the extra speakers,

and classify all of the 50 speakers into the unknown category.

Compared to the results obtained with the T-vector and H-vector models, it is obvi-

ous that the T-vector can obtain better results than the H-vector in all of the datasets

in both open-set and closed-set scenarios. For example, with the SWBC-S dataset

in the Concat scenario, even though there are only 6,000 utterances in the closed-set

scenario, the T-vector can provide an EER of 11.69%; in the open set scenario, the

results are not as good, but the T-vector model still managed a 13.07% EER, compared

with the H-vector model that reached 17.22%. As discussed in the previous sections,

the reason is that the T-vector contains the multi-head attention mechanism that can

capture the properties of multiple speakers, and the memory mechanism allows each

frame-level encoder to connect and share information across all frame-level encoders.
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Table 6.6: The EERs (%) of the proposed T-vector model and the H-vector model in

Concat, Overlap scenarios, as well as the scenario that the input utterances have random

overlap rate for each speaker.

Model Mode
EER (%)

SWBC-S SWBC-L Vox-S Vox-L

H-vector

Concat 11.69 6.59 17.81 13.29

Overlap 15.99 15.58 32.26 25.94

Random 13.25 10.88 25.72 19.28

T-vector

Concat 8.97 4.04 13.97 10.25

Overlap 14.07 12.96 28.91 23.25

Random 11.44 9.24 23.20 18.79

The proposed weakly supervised training strategy for a speaker identification task

can be adapted into an open-set scenario and, although the results obtained are worse

than those for the closed-set scenario, the proposed T-vector model can still out-

perform the H-vector model.

Multiple Speakers With Random Overlap Rates

As discussed in Section 6.3.1, the Concat and Overlap scenarios of the constructed

datasets offer an easy and a difficult scenario, for the models to recognise multiple

speakers. The Concat scenario is easy in that none of the speakers overlap in the input

signal, whereas the Overlap scenario is difficult because multiple speakers are totally

overlapped in the signal. These two scenarios are used to evaluate the upper and lower

bounds of the proposed models, because the weakly supervised speaker identification

task is a newly proposed task.

In order to simulate the situation in real-world conditions, another scenario also

needs to be considered in which multiple speakers have random overlap rates in the

input signal. This scenario, known as the Random scenario, is closer to a real-world
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situation and can be used to evaluate the performance of the models in close-to-real-

world conditions.

Table 6.6 shows the results obtained with the H-vector and T-vector models in

the Concat, Overlap and Random scenarios with the four constructed datasets. It is

obvious that the results in the Random scenario are better than those in the Overlap

scenario, but worse than those in the Concat scenario. This is because in the Random

scenario, the speakers are overlapped in some segments but not in others, and the model

can capture more speaker features from the segments where there is no overlapping.

The T-vector delivered better performance than the H-vector model in the Random

scenario. For example, in the Vox-S dataset in the Random scenario, the T-vector

reached 23.20% EER while the H-vector reached 25.72% EER for reasons discussed

in previous sections, that the T-vector has the advantage of the multi-head attention

mechanism and the memory mechanism to better capture the information of multiple

speakers in a single utterance.

Overall, the results in Table 6.6 show the T-vector model performs better than the

H-vector model in all of the three data construction scenarios.

Analysis of the Multi-Head Attention

Following the analysis techniques in Sections 6.3.3 and 3.5.3, Figure 6.10 shows a

visualisation of the multi-head attention weights. In Figures 6.10(a), (b) and (c), the

signals of Speaker One, Speaker Two and the mixed speech signals are the same as those

in Figure 6.5, Section 6.3.3, thereby providing a comparison between the multi-head

attention in the T-vector and the attention mechanism used in the H-vector models.

Recall that the first half of the mixed signal in Figure 6.10(c) is a mixture of the

Speaker One signal (Figure 6.10(a)) and the first half of the Speaker Two signal (Figure

6.10(b)). The second half of the signal in Figure 6.10(c) only contains the second half

of the signal of Speaker One. In other words, the mixed signal in Figure 6.10(c) only

overlaps the signal from Speaker Two in the first half, while the second half contains
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(a) Spectrogram of Speaker One (b) Spectrogram of Speaker Two

(c) Spectrogram of Mixed Signal (d) Attention Weights in T-vector

Figure 6.10: Multi-head attention weights. (a) the spectrogram of Speaker One, (b)

the spectrogram of Speaker Two, (c) the spectrogram of Mixed Signal, (d) the multi-head

attention weights of the in T-vector model.

the clean signal of Speaker One. This setting is used to evaluate whether the attention

mechanism can capture the features of multiple speakers.

The multi-head attention weights are visualised in Figure 6.10(d), with each color

representing the weight of one of the four attention heads. In this illustration, the

same technique is used as in Sections 6.3.3 and 3.5.3 in that the attention values are

averaged using a sliding window into ten weight values. This is for better observation

and comparison with the attention weights shown in Sections 6.3.3 and 3.5.3 as they

use the same target speaker (Speaker One, shown in Figure 6.10(a)).

It is obvious from Figure 6.10(d) that the different attention heads concentrate on

different parts of the signal. Attention head 1 (blue) assigned the highest weight to the
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(a) Spectrogram of Speaker One (b) Spectrogram of Speaker Two

(c) Spectrogram of Mixed Signal (d) Attention Weights in T-vector

Figure 6.11: Attention weights. (a) the spectrogram of Speaker One, (b) the spectrogram

of Speaker Two, (c) the spectrogram of Mixed Signal, (d) the multi-head attention weights

of in T-vector model.

segment 8, while attention head 2 (orange) assigned the segment 7 with the highest

weight. Combined with the analysis in Section 6.3.3, this is because segments 7 and 8

contain the most important features about Speaker One. This phenomenon can also

be confirmed by the previous illustration in Figures 3.5 and 6.5. Attention head 3

(green) not only allocates high weights to the segments 7 and 8, but also the segment

10. This shows that the 10th segment also contains information from Speaker One,

and it was captured by attention head 3. All of these three attention heads captures

the information of Speaker One.

Attention head 4 (red) also allocated the highest weight to the segment 7, but the

segment 4 also shares a larger weight compared with the other attention heads. The
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segment 4 is located in the mixed signal of Speakers One and Two, which suggests

that, while attention head 4 clearly captured useful information from the segment 4,

the fact that it comes from the segment 4 within the mixed signal means this alone is

insufficient to prove that the captured information is from Speaker Two.

In order to analyse what information is captured by attention head 4, and whether

the multi-head attention mechanism can capture multiple speaker information from

the signal, Figure 6.11 shows the Concat scenario of the two signals. Figure 6.11(c)

contains the mixed signal of the two speakers in the Concat scenario, which means the

first half of the signal in Figure 6.11(c) only contains the signal from Speaker Two, and

the second half of the signal in Figure 6.11(c) only contains the signal from Speaker

One. In other words, the mixed part of the signal in Figure 6.10(c) (the first half of

it) is replaced with the signal of Speaker Two only.

From the visualisation of the multi-head attention weights in Figure 6.11(d), the

attention head 1 and head 2 are mostly concentrated on segments 5 to 10; head 3 and

head 4 are mostly concentrated on the information in the segments 4 and 5 that only

carry the information from Speaker Two. This shows that the multi-head attention can

capture the features from different speakers in one input signal and, furthermore, this

confirms the assumption made in Section 6.4.1 that the different attention heads can

concentrate on different speakers. This property of the multi-head attention mechanism

used in the T-vector model is one of the reasons why the T-vector model can obtain

better results in the weakly supervised speaker identification task.

6.4.5 Summary

In this section, in order to improve performance in the weakly supervised speaker

identification task, the hierarchical transformer network is introduced. Even though

the H-vector model can obtain better results compared to the X-vector and attentive

X-vector models, it is unable to capture features from multiple speakers in one input

utterance.
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In order to address this problem, the proposed T-vector makes several improvements

based on the architectural structure of the H-vector. As discussed in Section 6.4.1, the

transformer encoder block is used as the basic component of the architecture of the

T-vector model. The most important part of the transformer encoder block is the

multi-head attention mechanism, used to compute multiple attention weights for the

same input signal in parallel and assumed to be able to capture information from

multiple speakers from a single input signal. A memory mechanism is used connect

each of the frame-level encoders to build a link to store and share information.

As discussed in Section 6.4.2, the experimental setup is the same as that used in

Section 6.3.1, including the data construction process in order to provide a comparison

with the H-vector model. The S-vector model is used as an additional baseline. It makes

use of the multi-head attention mechanism, but it has no hierarchical structure. It can

be used to compare with the T-vector model in order to demonstrate the effectiveness

of the hierarchical structure and the memory mechanism.

The experimental results in Figures 6.8 and 6.9 shows that the T-vector out-

performs all four baselines (X-vector, attentive X-vector, S-vector and H-vector) in

both the Concat and Overlap scenarios. It can reach 4.89% and 13.97% EERs in

Concat and Overlap scenarios for SWBC-L dataset (“Multiple” test condition). Fur-

thermore, Table 6.4 shows that the memory mechanism is essential for the T-vector

model in that a relative improvement of over 3% can be obtained using the memory

mechanism in almost all of the constructed datasets. Different window sizes also affect

the performance, as the length of the sliding window controls the amount of informa-

tion input to the frame-level encoders and the amount of information that is shared by

the memory mechanism.

The results in Table 6.5 show the proposed weakly supervised speaker identifica-

tion task can be adapted into an open-set scenario in which the T-vector can obtain

better results than the H-vector model in the open-set scenario. To simulate the sce-

nario in real-world conditions, Table 6.6 shows the proposed T-vector model can also
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out-perform the H-vector model in the Random scenario, in which the speakers are

overlapped with a random overlap rate in the input utterance. The visualisation of the

multi-head attention weights shown in Figures 6.10 and 6.11 confirms that the multi-

head attention mechanism can capture the features of different speakers from a single

input utterance. This property is the reason why the T-vector model can out-perform

the H-vector model in almost all test conditions.
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6.5 Conclusion

As discussed in Section 2.4.3, in some real-world scenarios, when there is an unknown

number of speakers in one input signal, it may be useful to identify all the speakers.

A way to achieve this is to manually annotate all of the speakers with their time

information from the mixed signal. However, this is time consuming and expensive. It

is desirable instead to develop an approach that can directly make use of the coarse

grained labels of the multi-speaker data. This was called weakly supervised speaker

identification.

As discussed in Section 2.4.3, previous work addressed this problem but that still

required the pre-training of a speaker diarisation model and an i-vector model. The

end-to-end weakly supervised speaker identification approach was thus undeveloped.

This chapter proposed an approach that can directly train a neural network model for

speaker identification in a weakly supervised manner.

Since there are no previous baselines that can be referenced, Section 6.2 defined the

weakly supervised speaker identification task. The data contains the utterances of a

random number of speakers and only the utterance-level labels are available. The goal

for this task is to recognise all of the speaker identities. This task can be separated as

either a closed-set or open-set scenario. In the closed-set scenario, the total number

of speakers is fixed, while in the open-set scenario, the extra speakers can also be

recognised and classified as unknown speakers.

The hierarchical attention network, the H-vector model developed in Chapter 3, is

adapted to serve for the weakly supervised speaker identification task. The H-vector

model was shown to have better noise robustness in speaker recognition under noisy

conditions compared to the X-vector and the attentive X-vectors. The hierarchical

structure can capture both local and global features, instead of only focusing on the

global features in the attentive X-vector. In order to comprehensively evaluate the

H-vector model in this task, eight datasets were constructed into Concat and Overlap

scenarios, based on the SWBC and Voxceleb1 datasets.
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The Concat scenario contains multiple speakers in the input utterance with no

overlap, while the Overlap scenario contains multiple speakers who are completely

overlapped in the input signal. These two scenarios are designed to test the upper and

lower bounds of the model performance when applied to the weakly supervised speaker

identification task. The results obtained show that the H-vector model can out-perform

the X-vector and attentive X-vector models for both the Concat and Overlap scenarios.

The window and step sizes can both affect the performance of the H-vector as they

control the information that is input to the frame-level and segment-level encoders.

Although the H-vector delivers a better performance than the two baselines, when

visualising the attention weights, it can be observed that the attention mechanism

used in the H-vector model cannot effectively capture the features of multiple speakers

because the attention weights vector is only computed once in the H-vector model, so

it is difficult for the attention mechanism to focus on multiple speakers at the same

time.

In order to address this issue, the hierarchical transformer network (T-vector) model

was proposed in Section 6.4. The T-vector model makes use of the multi-head atten-

tion mechanism, which computes the self-attention weight vectors for one input signal

multiple times in parallel. This property is assumed to be able to capture the features

of multiple speakers in a single input utterance. Another important component in the

T-vector model is the memory mechanism, which is used to build a connection be-

tween each of the frame-level encoders, allowing the encoders to both store and share

information across the network to better capture different speaker features. The ex-

perimental setup is the same as that in Section 6.3.1 to enable a better comparison.

An additional baseline, named S-vector, is used to compare the effectiveness of the

hierarchical structure used in the T- vector model. The results show that the T-vector

model can obtain better performance compared with all four baselines in almost all

conditions. The memory mechanism is shown to have a significant impact on the results

obtained, which confirms the assumption that the memory mechanism can store and
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share information between each of the frame-level encoders to improve the performance.

The experiments also show that the proposed weakly supervised speaker identification

task can also be adapted into an open-set scenario. To simulate real-world conditions,

the utterances are mixed with random overlap rates. The T-vector still out-performs

the H-vector in these two scenarios. Finally, to show how the multi-head attention

works, the attention weights of different heads are visualised. The results show that

the different attention heads can concentrate on different speakers in one input utter-

ance, confirming the assumption that this can improve performance further by having

different attention heads focusing on different speakers at the same time.



Chapter 7

Conclusion and Future Work

Speaker recognition systems aim to recognise the speaker identities from their voices.

Due to the large model capacity and strong feature extraction ability, deep neural

networks out-perform the conventional GMM based i-vector system in speaker recog-

nition. In Chapter 2, a literature review was conducted covering deep neural network

architectures, input features and loss functions for speaker recognition systems, and

recently developed deep neural network architectures for speaker recognition.

As discussed in Section 2.3.1, speech signals can be influenced by background noise,

and the performance of deep neural networks can be affected by noisy conditions. One

potential solution is the attention mechanism that can be built into a neural network

to emphasise the important parts of the input while discarding irrelevant information.

However, the current widely-used global attention mechanism is unable to overcome

noisy interference. As discussed in Section 2.3.2, the global attention mechanism can

only focus on some of the important features, and fails to pay enough attention to the

local features.

In Chapter 3, a novel network architecture named the hierarchical attention net-

work was proposed. It has a hierarchical structure that splits the attention mechanism

into two levels: the frame level and the segment level. The frame-level encoder applies

the frame-level attention that focuses on the local features, while the segment-level

209
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attention focus on the global features. The results show that the hierarchical attention

network can deliver better performance than the X-vector and attentive X-vector mod-

els under various noisy conditions at different levels. The contributions and findings of

Chapter 3 are:

� The proposed hierarchical attention network that can capture both local and

global features to improve the model generalisation of the speaker recognition

system. It can reach better performance when using the out-of-domain test set

compared to the X-vector and attentive X-vector baselines.

� The hierarchical attention network can reach better performance compared to

the baselines under various noise conditions.

� The Proposed hierarchical attention network delivers results comparable to the

published state-of-the-art model, reached 4.28% EER on the Voxceleb1 test set.

Speech enhancement is another approach to overcome the noise interference. As

discussed in Section 2.3.3, current speech enhancement methods are typically trained

independently. This may cause a mismatch problem. The learned features of the speech

enhancement model may not well match that are required by the speaker recognition

model. In order to address the problem and improve the noise robustness of the

speaker recognition system, Chapter 4 proposes two novel model architectures. The

first method combined the speech enhancement model and the speaker recognition

model, and a novel multi-stage attention mechanism is proposed to better filter out

the noise influence. The second system further uses speaker embeddings to build a

speaker dependent speech enhancement method to reach better noise robustness for

specific target speakers. The contributions and findings of Chapter 4 are:

� The joint training framework can reach better noise robustness compared to

baselines, with 91.1% speaker identification accuracy and 6.18% EER on the

Voxceleb1 test set.
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� The multi-stage attention mechanism can improve the noise robustness of the

joint system in either the speech enhancement model or the speaker recognition

model. The multi-stage attention used in the speech enhancement model can

obtain better results, and the channel attention contributes the most among the

three attention mechanisms.

� The speaker dependent speech enhancement model contains a novel residual auto-

encoder architecture that concatenates the pre-trained speaker embeddings. It

can reach better noise robustness compared to the speaker independent mode of

the joint system. It is able to outperform the state-of-the-art methods, reaching

4.15% EER on the Voxceleb1 test set.

As discussed in Section 2.4.1, the interference from other speakers in the input signal

can also affect the performance of the speaker recognition model. The widely used

target speaker extraction method extracts the signal of the target speaker to overcome

this problem. However, as discussed in Section 2.4.2, this may not be necessary, and

extracting the speaker properties in an embedding space may be more efficient. Chapter

5 proposed an embedding de-mixing approach that not only filters out the influence of

the interfering speaker, but can also extract the content or speaker properties using the

pre-trained speaker or content embeddings. The contributions and findings of Chapter

5 are:

� The embedding de-mixing approach separates speaker and content properties in

an embedding space rather than in a signal space.

� The proposed speaker embedding de-mixing approach can reduce the influence

of the interfering speaker in a two-speaker signal by the pre-trained embeddings.

The best configuration of the proposed approach can reach 96.9% and 91.3%

speaker identification accuracies on TIMIT and MC-WSJ datasets, compared to

the results obtained by the clean signals, which are 98.5% and 99.1%.
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� The proposed content embedding de-mixing approach can reduce spoken content

information from the interfering speaker using the corresponding pre-trained em-

bedding. The best results can reach 93.3% spoken word identification accuracy

on the Speech Command dataset, which is close to that obtained from the clean

signals (96.5%).

� The proposed speaker and content de-mixing approach extracts speaker or con-

tent properties of the target speaker by the use of the pre-trained content or

speaker embeddings. When extracting the speaker embeddings, the obtained

embeddings can reach 82.2% speaker identification accuracy compared to that

obtained from the clean signals (98.5%). When extracting the content embed-

dings, the obtained embeddings can reach 63.2% phone classification accuracy

and 30.2% phone recognition error rate, compared to the clean results, which are

74.1% and 16.6%.

� One of the six proposed embedding de-mixing functions, named Separate-Concat

method, achieved the best performances in almost all of the three scenarios. It

can reach close embedding quality compared to the clean signals.

As discussed in Section 2.4.3, in some real-world scenarios, such as conversations

or meetings, recognising all of the speaker identities from the multi-speaker signal is

required. To achieve this, instead of hand annotating the speaker and positional labels

for each speaker, a more efficient method is to use weakly supervised learning that can

directly make use of the coarse grained labels. The current weakly supervised speaker

identification approach requires a pre-trained speaker diarisation system that still re-

quires manually annotated labels. Chapter 6 proposed the first end-to-end weakly

supervised training of speaker identification approach, as well as two neural network

architectures. The contributions and findings of Chapter 6 are:

� The first end-to-end weakly supervised speaker identification approach can di-

rectly learn from the utterance-level labels of the multi-speaker input signals.
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� The proposed hierarchical attention network can be trained in a weakly super-

vised manner. It can reach better performance (equals or more than 3% relative

improvements) than the X-vector and attentive X-vector baselines in all of the

augmented datasets and test configurations.

� The proposed hierarchical transformer network can further improve the perfor-

mance of the proposed H-vector by the multi-head attention mechanism and

novel memory mechanism. The multi-head attention mechanism can capture

the speaker features from multiple speakers in one input utterance. The mem-

ory mechanism can improve the performance by connecting different frame-level

encoders.

7.1 Future Work

A straightforward extension to the work in Chapters 3 and 4 is to build the developed

hierarchical attention network and the joint training system into one framework. As

shown in these two chapters, the hierarchical structure can improve the noise robustness

of the model by focusing on both the local and global features. The speech enhancement

model in the joint training system can filter out noise interference and then feed the

enhanced signal into the speaker recognition model. One possible extension is to use

the hierarchical structure into the speech enhancement model and train it jointly with

a speaker recognition model. In this way, the hierarchical structure can capture both

local and global features, thus can improve the quality of the noise reduction process

in the speech enhancement model.

A possible extension of the work in Chapter 5 is to explore the effectiveness of

the de-mixing approach with three or more speakers. The proposed approach only

considers a scenario with two speakers. However, in some real-world conditions, there

may be more speakers speaking at the same time. De-mixing the speaker properties

of all of the speakers into the embedding space may be useful for many downstream
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tasks.

As possible extension of the work in Chapter 6 is to consider when the input utter-

ance contains more speakers. The proposed approach only evaluates up to a maximum

of three speakers, whereas in a real-world situation, the number of speakers in a single

utterance or a given period of time may be larger than three. Developing a technique

that can recognise all of them will be helpful in many applications.
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Appendix A

Implementation Details

This appendix describes the implementation details of the experiments mentioned in

the previous chapters. All of the models are implemented using Tensorflow version 1.5

Abadi et al. (2016).

A.1 Hierarchical Attention Network

A.1.1 Experimental Setup For Section 3.4.1

This section describes the detailed experimental setup for the speaker identification

and verification experiments in Section 3.4.1.

The CHE and SWBC datasets contain out-of-domain data compared with the

SRE08 dataset, which contains fewer speakers but in a greater variety of acoustic

conditions. For the extracted speaker embeddings from the CHE and SWBC datasets,

both speaker identification and verification tasks are conducted. For the speaker iden-

tification task, datasets are randomly split into a training set and a test set at a 9:1

ratio, with both sets having the same number of speakers. The training set here is

to train the classifier of the embeddings, rather than training the model, using SRE08

dataset. Prediction accuracy is used as the evaluation metric. For the speaker veri-

fication task, in SWBC, there are 50 speakers in the enrolment set and 120 speakers
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in the evaluation set, with 10 utterances for each speaker. In the CHE, there are 30

speakers in the enrolment set and 60 speakers in the evaluation set. Each speaker has

10 utterances. For this task, the evaluation metric is the equal error rate (EER).

Energy based VAD (Pang 2017) is used to remove the unvoiced signals. VAD is

applied directly to the signals for the interviews and, for the telephone speech signals,

the two channels are firstly separated into two individual signals, and then VAD is

applied to each channel. Then, fixed length sliding windows (either one second or

three seconds) with a half-size shift are employed to divide speech streams into short

segments, each of which is viewed as an utterance. The total number of utterances

of the three datasets are listed in Table 3.1. Each segment is further segmented into

frames using a 25ms sliding window with a 10ms shift. All frames are converted into 20-

dimensional MFCC feature vectors. In creating a hierarchical structure, each utterance

is viewed as a document; each fragment as a sentence; and each frame vector as a word

(Yang et al. 2016).

A.1.2 Implementation and Training Details

This section describes the implementation and training details of the hierarchical atten-

tion network in Chapter 3. In order to improve the reproducibility of the experiments,

Table A.1 shows the detailed configuration of the proposed hierarchical attention net-

work. Between each layer, there are batch normalisation layers (Ioffe & Szegedy 2015)

and dropout layers (Srivastava et al. 2014), where the dropout rate is set to 0.2. An

Adam optimiser (Kingma & Ba 2015) is used for all experiments with β1 = 0.95,

β2 = 0.999, and ϵ = 10−8. The initial learning rate is 10−4.

As discussed in Section 2.2.2, variations of the softmax functions, such as the AM-

softmax (additive margin softmax) (Wang, Cheng, Liu & Liu 2018), can reduce the

intra-class distance of the embeddings. In order to obtain better results, all of the

models in this study, including the baselines, use the AM-softmax loss function for

training, where m is set to 0.35, and s is set to 40. Cosine similarity is used to measure
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Table A.1: The implementation details of the proposed hierarchical attention network,

where Lwin denotes the segment length, M denotes the number of segments in one utter-

ance.

Level Model Input Output

Frame-Level

CNN (Lwin,20,1) (Lwin,1,512)

Bi-GRU (Lwin,512) (Lwin,1024)

Attention (Lwin,1024) (Lwin,1024)

Statistics Pooling (Lwin,1024) (1,2048)

Segment-Level

CNN (M,2048,1) (M,1,1500)

Attention (M,1500) (M,1500)

Statistics Pooling (M,1500) (1,3000)

Utterance-Level
DNN (512) (1,3000) (1,512)

DNN (512) (1,512) (1,512)

the distance of the two embeddings in the speaker verification task.

A.2 Speech Enhancement For Speaker Recognition

A.2.1 Implementation of the Multi-Stage Attention Mecha-

nism

This section describes the computation process of the multi-stage attention mechanism

that proposed in Section 4.3.1. The working flow of channel attention is shown in Equa-

tion A.1, where W0 ∈ RCk×100, b0 ∈ R1×100 and W1 ∈ R100×Ck are the parameters of

the kth channel attention block.

HC
k,max = maxTk×Fk×1(Hk)

HC
k,avg = avgTk×Fk×1(Hk)

smax = ReLU(HC
k,maxW 0 + b0)W 1

savg = ReLU(HC
k,avgW 0 + b0)W 1

αC,k = Sigmoid(savg + smax)

(A.1)
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In the implementation of channel attention, max pooling and average pooling (with

the kernel size of Tk × Fk × 1) are firstly applied on both the time and frequency

dimension of Hk. Their output HC
k,avg ∈ R1×1×Ck and HC

k,max ∈ R1×1×Ck are then

used as the input of two fully connected layers sharing the same parameters and followed

by a ReLU activation. The channel attention weight vector αC,k ∈ R1×1×Ck is finally

obtained after a sigmoid activation which is applied to the summation of savg and smax.

After repeating αC,k to the same dimension as Hk, the attention map is multiplied by

the original feature map Hk to generate the refined feature map H ′
k.

One important operation is the attention weight that is computed here by the

sigmoid function, rather than a softmax function. As discussed in Sections 2.1.1 and

2.2.2, both the softmax and sigmoid functions project the input to the numbers that

are between zero and one. The difference is that the output numbers of the softmax

function can be summed to one, a constraint that the sigmoid function does not have.

As discussed in Section 3.1 and shown in Section 3.5.3, the softmax based attention

weight computing method may dilute some features when there is more than one

important feature. In order to avoid this problem, the softmax function is replaced by

the sigmoid function.

HC′

k,max = max1×1×Ck(H ′
k)

HC′

k,avg = avg1×1×Ck(H ′
k)

HC′

k,pool = [HC′

k,avg;H
C′

k,max]

HT ′

k,max = maxTk×1×1(HC′

k,pool)

HT ′

k,avg = avgTk×1×1(HC′

k,pool)

H ′
k,pool = [HT ′

k,avg;H
T ′

k,max]

αF,k = Sigmoid(Conv2×7×2(H ′
k,pool))

(A.2)

The frequency and time attention works in a similar structure. Equation A.2 shows

the implementation of the frequency attention. In the kth CONV-MS or RES-MS

block, a max pooling and an average pooling are firstly applied to the channel dimension
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of the input data H ′
k, and the corresponding outputs are HC

k,max ∈ RTk×Fk×1 and

HC
k,avg ∈ RTk×Fk×1, respectively. HC

k,pool ∈ RTk×Fk×2 is obtained by concatenating

the outputs after using poolings. On the time dimension, the same max pooling and

average pooling steps are applied on HC
k,pool ∈ RTk×Fk×2 and the corresponding outputs

are HT
k,avg ∈ R1×Fk×2 and HT

k,max ∈ R1×Fk×2. Again, the output after concatenating

them on the time dimension is Hk,pool ∈ R2×Fk×2. The frequency attention weight

vector αF,k is computed using a convolution operation with a 2× 7× 2 kernel followed

by a sigmoid activation. The stride value is 1 on the frequency dimension during

convolution. The size of αF,k is then expanded to the same as H ′′
k by data broadcast.

The frequency refined feature map H ′′
k is finally obtained by the product of αF,k and

H ′
k.

HC′′

k,max = max1×1×Ck(H ′′
k)

HC′′

k,avg = avg1×1×Ck(H ′′
k)

HC′′

k,pool = [HC′′

k,avg;H
C′′

k,max]

HF ′′

k,max = max1×Fk×1(HC′′

k,pool)

HF ′′

k,avg = avg1×Fk×1(HC′′

k,pool)

H ′′
k,pool = [HF ′′

k,avg;H
F ′′

k,max]

αT,k = Sigmoid(Conv7×2×2(H ′′
k,pool))

(A.3)

The computation of the time attention is similar to that for the frequency atten-

tion. Equation A.2 shows the computational flow. The final feature representation is

obtained by the multiplication of the previous frequency refined feature map and the

time attention weights αT,k.

A.2.2 Model Architectures and Training Details
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Table A.2: Architecture of the speech enhancement network (SE-Net) that consists of 11

blocks. In each block, a dilated convolutional layer is followed by a multi-stage attention

(MS) layer.

Layer Name Structure Dilation

CONV-MS Block1
7x1x48

1x1
MS

CONV-MS Block2
1x7x48

1x1
MS

CONV-MS Block3
5x5x48

1x1
MS

CONV-MS Block4
5x5x48

1x2
MS

CONV-MS Block5
5x5x48

1x4
MS

CONV-MS Block6
5x5x48

1x8
MS

CONV-MS Block7
5x5x48

1x1
MS

CONV-MS Block8
5x5x48

2x2
MS

CONV-MS Block9
5x5x48

4x4
MS

CONV-MS Block10
5x5x48

8x8
MS

CONV-MS Block11
1x1x1

1x1
MS
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Table A.3: Architecture of SR-Net consists of 8 blocks. Within each block, the multiple

convolutional layers are followed by a multi-stage attention (MS) layer before a residual

connection.

Block Name Structure Output

RES-MS Block1

3x3x64

150x129
3x3x64

3x3x64

MS

RES-MS Block2

3x3x128

75x65
3x3x128

3x3x128

MS

RES-MS Block3

3x3x128

75x653x3x128

MS

RES-MS Block4

3x3x256

38x33
3x3x256

3x3x128

M

RES-MS Block5

3x3x256

38x333x3x256

MS

RES-MS Block6

3x3x256

38x333x3x256

MS

RES-MS Block7

3x3x256

38x333x3x256

MS

RES-MS Block8

3x3x512

19x17
3x3x512

3x3x128

MS

Pool 19x1 1x17x512

FC 512
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This section describes the detailed model architectures and training details of the

joint system proposed in Section 4.3. In order to improve the reproducibility of the pro-

posed model in this work, detailed model architecture of the speech enhancement and

speaker recognition models are shown in Tables A.2 and A.3, and their architectures

are introduced in Section 4.3.1.

In the speech enhancement model, 11 dilated convolutional layers are employed

and each layer is followed by a multi-stage attention module (MS) that is inserted into

each residual block. Each of these two models are trained independently, and are then

fine-tuned by a joint optimisation. During the training, an Adam optimiser (Kingma

& Ba 2015) is used with the initial learning rate being set to 1e− 3 and the decay rate

being set to 0.9 for each epoch.

The speaker recognition model shown in Table A.3 uses the ResNet-20 architecture

(He et al. 2016), due to its effectiveness in speaker recognition (Hajibabaei & Dai 2018).

A.3 Speaker Dependent Speech Enhancement Model

This section describes the detailed model architectures and training details of the

speaker dependent speech enhancement model proposed in Section 4.4. Table A.4 shows

the encoder architecture of the skip/residual auto-encoder employed by the speech

enhancement model used in Step1 and Step2. Its decoder structure mirrors the encoder.

For the speaker recognition model, as discussed in Section 4.4.1, the ResNet-20

architecture is used and the detailed model architecture can be found in Section A.2.

For optimisation, the Adam optimizer (Kingma & Ba 2015) is used with the initial

learning rate being set to 1e− 3 and the decay rate being set to 0.9 for each epoch.
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Table A.4: The encoder architecture of the proposed speaker dependent speech enhance-

ment approach, where T , F , C represents the time, frequency and feature dimensions.

The number of features and strides on each dimension are shown as Feature/Strides.

Operation Structure Input (T, F, C) Output (T, F, C)

Encoder

16/(1,2) (300,257,1) (300,129,16)

32/(2,2) (300,129,16) (150,65,32)

64/(2,2) (150,65,32) (75,33,64)

128/(2,2) (75,33,64) (38,17,128)

256/(2,4) (38,17,128) (19,5,256)

Reshape - (19,5,256) (19,1280)

Concatenation - (19,1280) (19,1536)

DNN 512 (19,1536) (19,512)

Bi-GRU 640 (19,512) (19,1280)

Reshape - (19,1280) (19,5,256)

A.4 Speaker Embedding De-mixing

A.4.1 Model Architecture

This section describes the model architecture of the speaker embedding de-mixing net-

work proposed in Section 5.3. Table A.5 show the architecture of the speaker recogni-

tion model used in this work. The speaker recognition model consists of three elements,

which are the frame-level feature extractor, statistics pooling and the segment-level fea-

ture extractor. For the frame-level feature extractor, the network consists of the TDNN

layers and the residual TDNN blocks. As discussed in Section 2.2 the residual connec-

tion can make the model easy to train and more robust and is therefore added to the

frame-level extractor feature. The input data is first passed into two TDNN layers.

Then, three residual TDNN blocks are used. The last TDNN layer maps the feature

dimension into 1500. The use of residual TDNN blocks instead of normal TDNN layers,

like X-vectors, can increase the robustness of the learned embeddings (Zeinali et al.

2019). A statistics pooling operation is then used, the output from which is fed into a

segment-level feature extractor which contains two fully-connected layers. The speaker

embedding is obtained from the last fully-connected layer. The softmax function, com-
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Table A.5: Architecture of the speaker recognition module that is used for learning clean

embeddings.

Layer Context Output

TDNN Layer1 [t− 1, t, t + 1] 512

TDNN Layer2 [t] 512

TDNN-Res1
[t− 2, t− 1, t, t + 1t + 2]

512
[t]

TDNN-Res2
[t− 2, t− 1, t, t + 1, t + 2]

512
[t]

TDNN-Res3
[t− 2, t− 1, t, t + 1, t + 2]

512
[t]

TDNN Layer3 [t] 1500

Statistics Pooling T 3000

Segment-Level
T 512

T 512

bined with cross-entropy loss (as discussed in Section 2.2.2), is used as the loss function

to train the speaker recognition network.

For the architecture of the de-mixing network, it puts the feature extractor and

the embedding de-mixing function together. The input mixed data contains Speaker1

and Speaker2. The embedding extractor converts the mixed signal into the embedding

space and results in emix. The embedding extractor for the mixed signal is built using

the same model architecture as the speaker recognition model (excluding the softmax

layer). The embedding extractor for the mixed signal actually takes the pre-trained

network of the speaker recognition model, as it already learns the mapping from the

signal space to the embedding space. In order to reduce the training complexity, the

trained network is reused to extract the mixed embedding emix.
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A.4.2 Implementation Details

With regard to implementation, for all of the models used in the speaker embedding

de-mixing method, the dimension of all of the fully connected layers is set to 512. Each

layer is followed by a batch normalisation layer (Ioffe & Szegedy 2015) except for the

embedding layer. ReLU activation (Wan et al. 2013) is used for each layer except for

the embedding layer. The Adam optimiser (Kingma & Ba 2015) is used in training,

with β1 set to 0.95, β2 to 0.999, and ϵ is 10−8. The initial learning rate is 10−3. For both

of the experiments conducted using the TIMIT and MC-WSJ datasets, 20 dimensional

MFCC features are used.

A.5 Speaker and Content Embedding De-Mixing

This section describes the detailed model architecture of the speaker and content em-

bedding de-mixing network proposed in Section 5.5.

For the architecture of the phone recognition network used for evaluation in Section

5.5.2, it contains a sequence-to-sequence architecture that was introduced in Section

2.3.2. The encoder contains a two-layer Bi-LSTM, each with 256 units for each direc-

tion. For the decoder, the beam search decoder is used. CTC loss (Soltau et al. 2016)

is used for the continuous phone recognition task. It is pre-trained using the clean

TIMIT dataset for the purpose of phone recognition.

For the implementation of the speaker and content de-mixing network, it is shown

in Figure A.1. The acoustic feature sequence is input to two TDNN layers. The output

sequence is then the input to a two-layer GRU. The output vector from the second bi-

directional GRU layer is emix. Then, the same de-mixing function fdemix(.) is used as

was introduced in Section 5.2. emix and es1 are input to fdemix(.), the output e
′
c1 is

the estimated content embedding of the corresponding speaker. Or, inversely, the emix

and es1 are input to fdemix(.), and the output e
′
s1 is the estimated speaker embedding

of the corresponding content.
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Figure A.1: The architecture of the speaker and content de-mixing network.

There are two TDNN layers, the first of which operates on [t−2, t, t+2], the second

on the current time step t only. Each of the two layers have 512 dimensional output.

Then, a two-layer bi-directional GRU is applied on the output of the TDNN layers.

The GRU layers has a 256 dimension for each direction. The embedding is extracted

from the second layer of the GRU.
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A.6 Weakly Supervised Training of the Hierarchi-

cal Attention network

A.6.1 Implementation and Training Details

Table A.6: Architecture of the proposed hierarchical attention network architecture,

where N denotes the total number of speakers, Lwin denotes the segment length, M de-

notes the number of segments in one utterance.

Level Model Input Output

Frame-Level

TDNN (Lwin,20) (Lwin,256)

Bi-GRU (Lwin,256) (Lwin,512)

Attention (Lwin,512) (Lwin,512)

Statistics Pooling (Lwin,512) (1,1024)

Segment-Level

TDNN1 (M,1024) (M,512)

TDNN2 (M,512) (M,512)

TDNN3 (M,512) (M,1500)

Attention (M,1500) (M,1500)

Statistics Pooling (M,1500) (1,3000)

Utterance-Level
DNN (512) (1,3000) (1,512)

DNN (K) (1,512) (1,N)

This section describes the implementation and training details of the weakly su-

pervised training for the hierarchical attention network that proposed in Section 6.3.

In order to improve the reproducibility, Table A.6 shows the details of the h-vector

model, which is the same as that in Section 3.4 except for the last layer. The TDNN in

both frame-level and segment-level encoder operates at the current time step. Batch

normalizations (Ioffe & Szegedy 2015) are added after each layer except for attention

layer. Adam optimiser (Kingma & Ba 2015) is used for all experiments with β1 = 0.95,
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β2 = 0.999, and ϵ = 10−8. The initial learning rate is 10−4.

A.7 Hierarchical Transformer Network

A.7.1 Implementation Details

Table A.7: The architecture of the proposed hierarchical transformer network, where N

denotes the total number of speakers, T represents the whole sequence length, Transformer

represents one transformer encode block, Lwin denotes the segment length, M denotes the

number of segments in one utterance, d denotes the output dimension of each transformer

encoder block.

Level Model Input Output

Global TDNN (T,20) (T,d)

Frame-Level
4xTransformer (Lwin,d) (Lwin,d)

Statistics Pooling (Lwin,d) (1,2d)

Segment-Level

TDNN (M,2d) (M,d)

Transformer (M,d) (M,d)

TDNN (M,D) (M,1500)

Statistics Pooling (M,1500) (1,3000)

Utterance-Level
DNN (512) (1,3000) (1,512)

DNN (K) (1,512) (1,N)

This section describes the implementation and training details of the hierarchical

transformer network that proposed in Section 6.4. Table A.7, shows the parameter

configuration of the proposed network architecture, The value of d is set to 512, and

the dimension of the DNN within the transformer encoder block is set to 2048, and

the number of the attention heads h is set to h in all transformer layers. The TDNN

layers in both frame-level and segment-level encoders operate at the current time step.

The Adam optimiser (Kingma & Ba 2015) is used for all experiments with β1 = 0.95,
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β2 = 0.999, and ϵ = 10−8. The initial learning rate is 10−4.

A.7.2 The Memory Mechanism In the Multi-Head Attention

Mechanism

This section describes the computation process of the memory mechanism that used

in the hierarchical transformer network proposed in Section 6.4.1. Equation A.4 shows

the memory mechanism that is built into the multi-head attention mechanism. The

most important part of the transformer block is the multi-head attention mechanism

that captures different speaker properties, therefore the memory mechanism shares the

information from each segment in the multi-head attention mechanism, allowing it to

capture more speaker features.

MultiHead([Q;C], [K;C],V ) = [h1,h2, ...,hh]WO

hi = Attention-Head(QWQ
i , [K;C]W k

i , [V ;C]W V
i )

(A.4)

In Equation A.4, the input segment is transformed into Queries (Q), Keys (K) and

Values(V ) using the linear transformation (K,Q,V ∈ RM×d) (Vaswani et al. 2017).

Then, memory (C, has the same dimensionality as Q, K and V ) from the last block

is concatenated with K and V respectively, resulting in [K;C], [Q;C] ∈ R2M×d. For

each attention head hi, W
Q
i ,W

Q
i ,W

Q
i ∈ Rdk×M are the parameter matrices, dk = d

h
,

h is the number of attention heads. hi is computed using Equation 6.2. The results

for each attention head are concatenated together and WO ∈ Rd×M is used to fuse the

output of each attention head into a single output. The values of the initial memories

are set to zeros when processing the first segment of the input sequence; the gradients

are not computed for the all of the memories during training process to reduce the

computational cost (Dai et al. 2019).

Equation A.5 shows the sinusoidal positional encoding technique used in the T-

vector model. This was introduced by Vaswani et al. (2017). The “pos” represents

the position of the frame in the whole sequence (not the segment) (Takase & Okazaki

2019).
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PE(pos, 2i) = sin(pos/10000
2i
d )

PE(pos, 2i + 1) = cos(pos/10000
2i
d )

(A.5)

From Equation A.5 one can observe that the positional encoding provides a vector

to represent the position of each frame in the whole sequence. The positional encoding

vector is then concatenated with the original frames. When processing each segment,

the transformer block in each frame-level encoder can access the unique position of each

frame. Combined with the memory mechanism, it is assumed that this can make the

model better able to capture the sequence information and provide better performance.



Appendix B

Experimental Setup and Data

Description

B.1 Experimental Setup for The Noise Robustness

Evaluation

This section describes the experimental setup for the evaluation of the noise robustness

of the proposed models. The experiments in Sections 3.5, 4.3 and 4.4 all make use of

the experimental setup below.

For the speaker identification task, in the VoxCeleb1 dataset, both training and test

sets contain 1,251 speakers (Nagrani et al. 2017). The training set contains 145,265

utterances and the test set contains 8,251 utterances. In order to reduce possible bias,

the MUSAN dataset is also split into two parts for training and test to ensure that the

noise signals used for training will not be reused for test. Each training utterance is

mixed with a type of noise at one of five SNR levels. For the test set, the same data

configuration is set.

For the speaker verification task, there are 148,642 utterances from 1,211 speakers

in the VoxCeleb1 development dataset, and 4,874 utterances from 40 speakers in the

test dataset. There are a total 37,720 test pairs. The data configuration is the same

251
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for both tasks.

xmix = x + scalen

scale =

√
power(n′)

power(n)

power(n) =
1

T

T∑
t=1

n2
t

power(n
′
) =

power(x)

10SNR/10

power(x) =
1

T

T∑
t=1

x2
t

(B.1)

Equation B.1 shows the computational process of the procedure of mixing signals,

where x and n are audio signal and noise from Voxceleb1 and MUSAN dataset re-

spectively, T represents the length of the two signals, and xt and nt represents the tth

sample point in x and n.

B.2 Data Processing for the Embedding De-mixing

Approach

This section describes the data processing step (using TIMIT and MC-WSJ) for the

embedding de-mixing approach, which are used for the experiments in Sections 5.3 and

5.5.

As discussed in Section 5.3.2, TIMIT contains clean speech data. In the clean

embedding extraction step, the clean embeddings are directly learned from the clean

signal from the TIMIT dataset. After training the speaker recognition model, for

each speaker, 200 segments are randomly sampled and fed into the speaker recogni-

tion model, resulting in a corresponding 200 embeddings for each segment. The clean

speaker embeddings are the average of the embeddings from each segment-level em-

bedding belonging to the same speaker.

TIMIT consists only of clean speech so, in order to generate a mixed speech signal
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for the purposes of speaker embedding de-mixing, each utterance in the TIMIT dataset

is randomly mixed with another utterance from another speaker, at a certain signal-to-

noise ratio (SNR), who thereby becomes the interfering speaker. Speaker1 is the target

speaker, and Speaker2 is the interfering speaker. Training data will only be mixed with

training data, and test data will only be mixed with test data. This is to avoid bias, as

when training the de-mixing network, the model will not get access to any utterances

from the test set.

As discussed in Section 5.3.2, the overlapping scenario contains the overlapped

speakers and it is used for this setup. The clean speaker embeddings are trained

using the signals recorded by headset microphones worn by the speakers. This is

because the recorded signal from the headset is closest to the clean signal and there is

minimal energy from the interfering speaker. In the embedding de-mixing process, the

learned clean embeddings are used to filter out the interference information from the

interference signal. The de-mixing network is trained and tested on the signal from

two types of microphones (array1 and array2). For each speaker pair, 70 utterances

are randomly selected as the test utterances.

B.3 The Speech Command Dataset

This section describes the property of the speech command dataset (Warden 2018)

that was used for the experiments in Section 5.4.2.

The speech command dataset contains 105,829 utterances of 35 unique words. The

length for each utterance is one second. There are 2618 unique speakers in this dataset.

The 35 unique words and the number of occurrences can be found in Table B.1.
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Table B.1: The 35 unique words and the number of occurrences in the speech command

dataset, from Warden (2018).

Word Number of Utterances

Backward 1,664

Bed 2,014

Bird 2,064

Cat 2,031

Dog 2,128

Down 3,917

Eight 3,787

Five 4,052

Follow 1,579

Forward 1,557

Four 3,728

Go 3,880

Happy 2,054

House 2,113

Learn 1,575

Left 3,801

Marvin 2,100

Nine 3,934

No 3,941

Off 3,745

On 3,845

One 3,890

Right 3,778

Seven 3,998

Sheila 2,022

Six 3,860

Stop 3,872

Three 3,727

Tree 1,759

Two 3,880

Up 3,723

Visual 1,592

Wow 2,123

Yes 4,044

Zero 4,052
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