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Abstract

Quantum networks allow for the transmission of quantum information
between physically separated quantum processors and can be used for
both quantum communications and quantum computation applica-
tions. An enabling technology for future quantum networks is that of
quantum repeaters (QRs). In this thesis, we study the performance of
a quantum key distribution (QKD) system that is run over QRs with
encoding. In such repeaters, quantum error correction techniques are
used for entanglement distillation. We develop reliable and efficient
tools, based on the linearity and transversality properties of the sys-
tem, to obtain and study the shared states between two end users via
such a repeater chain. We propose a post-selection technique which
relies on the error-detection, rather than the error-correction, capab-
ility of the underlying code to sift out cases where an error has been
detected. This simple but effective approach not only considerably
improves the secret key rate and increases the resilience of the system
to errors, but also simplifies the demonstration of such protocols in
the near future.

In this thesis, we mainly implement our techniques for three- and five-
qubit repetition codes by modeling different resources of error in cru-
cial components of the system. By developing several scalable numer-
ical and analytical techniques, we investigate in detail the resilience
of the setup to those imperfections in gates, measurement modules,
and the initialization of the setup, at any nesting levels we are inter-
ested in. Furthermore, we propose two alternative decoder structures
for encoded repeaters that not only boost system performance but
also make the implementation aspects easier by removing two-qubit
gates from the QKD decoder. We compare this class of QRs against
alternative fully probabilistic settings and benchmark the regimes of
operation, where one class of repeater outperforms the other. We find
that there are feasible regimes where encoded repeaters—based on
simple three-qubit repetition codes—could offer practical advantages.
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In order to get a view of how this type of QRs may behave in real
life, among various promising candidates nowadays which enable de-
terministic entanglement swapping and distillation operations, here,
we particularly investigate the suitability of platforms using nitrogen-
vacancy (NV) centers in diamond as quantum memories. NV centers
offer a two-qubit register, corresponding to their electron and nuclear
spins, which makes it possible to perform deterministic two-qubit op-
erations within one NV center. For QR applications, we however need
to do joint operations on two separate NV centers. In this thesis, we
study two NV-based repeater structures that enable such determin-
istic joint operations. One structure offers less consumption of clas-
sical communication, hence is more resilient to decoherence effects,
whereas the other one relies on fewer numbers of physical resources
and operations. We assess and compare their performance for the task
of secret key generation under the influence of noise and decoherence
with current and near-term experimental parameters. We quantify
the regimes of operation, where one structure outperforms the other,
and find the regions where encoded QRs offer practical advantages
over their non-encoded counterparts.
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Chapter 1

Introduction

1.1 Quantum networks

The development of the quantum internet Kimble [2008], Wehner et al. [2018], will
constitute a breakthrough in the backbone of future communications systems. If
we can claim the Internet as the greatest invention of the 20th century, which has
revolutionized our daily life, the stage of the 21st century will most likely belong
to quantum devices, which will also intensively change our way of understanding
the world.

Quantum networks, generally speaking, would allow the transmission of quantum
information between any two separated quantum processors at any distances.
They work in a fundamentally different way from classical network by exploiting
the principles of quantum mechanics, and could eventually achieve results that
are provably impossible on today’s networks. Central to their power is the ability
of encoding information on a superposition state. Instead of classical bits, which
can only take values of 0 or 1, quantum bits, known as qubits, are able to rep-
resent the values 0 and 1 at the same time. It is this superposition ability that
opens up the diversity of quantum world and facilitates functionalities that are
out of reach by solely relying on classical physics.

Generally speaking, the applications of a quantum network can be broadly di-
vided into two directions: quantum communication and quantum computation.
At the current stage, they focus on different aspects of development of quantum
technologies. Quantum communication is mainly focused on secure transmission
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of information over long distances. This poses high requirements of the system
on countering the transmission loss through the channels but is more tolerant re-
garding the processing ability of individual units. Simple quantum nodes capable
of manipulating just a few qubits should be sufficient (at least for now). Whereas
for quantum computation, it demands highly efficient and reliable operations of
a large number of qubits, focusing more on dealing with the operational errors at
local stations. Nonetheless, they both have to conquer the fragility of quantum
systems since any disturbance may cause the collapse of a superposition state.

As promising as the theoretical works might be, the experimental challenges
and technological requirements in making a quantum network a reality are very
daunting. Thankfully, through the tremendous efforts being put in this field
Awschalom et al. [2018], Northup & Blatt [2014], Pirandola et al. [2015], Reiserer
& Rempe [2015], we may possibly see the realization of a small-scale quantum
network, which just contains a few nodes within very short distances, in the next
few years Wehner et al. [2018]. In this thesis, I focus around an enabling tech-
nology for future quantum networks known as quantum repeaters (QRs). I will
study how they perform regarding quantum key distribution (QKD) application.
In the following, I will present an overview of QRs and QKD firstly, which will
offer an overall impression before getting into more details in the next chapter.
At the end of this chapter, I will introduce research objectives and the scope of
this thesis.

1.1.1 Quantum repeaters: Overview

QRs are important stepping stones for the establishment of quantum networks.
The proposition of QRs aims at transmitting quantum data over very long dis-
tances. At first glimpse, it is mainly used for quantum communication purposes.
Nevertheless, at the early stage of quantum computer age, it is very likely that
we merely have a few available quantum computer devices that can be accessed
via cloud services. A QR would be necessary then to enable connecting to such
quantum servers.

However, the quality of quantum information degrades during transmission.
In classical telecommunications, we often use relay nodes to receive, amplify,
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and retransmit a signal. However, this approach introduces unavoidable noise
in quantum world due to the rules of quantum mechanics. In order to solve this
problem, the concept of QRs is proposed. The basic ideas behind and the building
blocks that form it will be introduced and discussed in detail in the following
chapter. Roughly speaking, QRs also root on the basis of dividing a whole long
range link into shorter segments, managing the transmission regionally first and
then extending it node-by-node to cover longer distances, while in a quantum
fashion.

Since the first idea of QRs has been presented Briegel et al. [1998], various
protocols have been formulated Azuma et al. [2015], Duan et al. [2001], Jiang
et al. [2009], Muralidharan et al. [2014], Sangouard et al. [2011], while none of
them has been established in the real world. There are different ways to categorize
QR protocols Borregaard et al. [2019], Muralidharan et al. [2016], Razavi [2018]
(I will look into a specific one in the next chapter), while in essence, it can be
considered as if the entanglement has to be established or not. For protocols that
require the establishment of entanglement, two-way classical signalling is always
involved, partially or entirely, which would reduce the data exchange rate to a
certain extent, but this kind of protocol is relatively easier to be achieved with
the current and near-future technological progress. For protocols which do not
rely on entanglement, redundancy encoding is indispensable Ewert et al. [2016],
Munro et al. [2012], Muralidharan et al. [2014]. Such protocols only require one-
way classical signaling and can therefore potentially be much faster, but would
demand quantum processors with a large number of qubits, which may approach
the hardness of building a quantum computer and is thus not within reach in the
short term.

1.2 Quantum key distribution: Overview

Cryptography is a study and practice of techniques that facilitates the secure
transmission of information in the presence of malicious adversaries. It is an in-
dispensable tool that deeply rooted in our daily life, corresponds to the activities
such as online transactions, digital signatures, email and instant messages. A
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widely used class of cryptography schemes today, known as public-key crypto-
graphy or asymmetric cryptography, relies on the computational complexity to
guarantee the security of the corresponding protocols Merkle [1980], Rivest et al.
[1978]. It assumes that the eavesdropper only has access to limited computational
powers, which would take a very long time in order to find the possible key to
decipher our secrets. However, with the future development of quantum com-
puters, such an assumption may no longer hold. What takes a few hundred years
to be solved on a classical computer may only take a few minutes on a quantum
one. Though reaching to that stage in quantum era may still sound like a far-off
vision, tech giants such as Google are very optimistic about it, and aim at con-
structing the world first commercial quantum computer by 2030. Actually, with
the so called “quantum supremacy” being claimed recently Arute et al. [2019],
Boixo et al. [2018], we may not be that far away from such a reality.

In order to well prepare ourselves for such a coming day, the deployment
of quantum cryptography Gisin et al. [2002], should not delay. Unlike classical
cryptography, quantum cryptography relies on the law of quantum mechanics,
which has been through the test of time. Its advantages lie in the fact that it
is inherently impossible to copy any unknown information in quantum domain,
known as the no-cloning theorem Dieks [1982], Wootters & Zurek [1982].

Quantum cryptography has many applications, among which the most known
and mature technology is QKD. QKD enables information-theoretical security
for key exchange problems. Combined with the one-time pad technique Bellovin
[2011], it will offer unconditional security for information exchange even on a clas-
sical network (conditioned on that the two communicators, Alice and Bob, can
authenticate each other). If any eavesdropper is trying to intercept the informa-
tion of the key being established, they cannot avoid creating errors and leaving
discrepancies that Alice and Bob can detect.

There are several ways to categorize the existing QKD protocols. For example,
based on the encoding and detection techniques, most existing QKD protocols
can be classified into two categories: discrete-variable (DV) QKD and continuous-
variable (CV) QKD. The former one typically encodes data on the polarization,
phase or time-bin degrees of freedom of the photon, and relies on single-photon
detection to retrieve the information; whereas the latter one typically encodes
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information in the quadratures of electromagnetic fields and relies on homodyne or
heterodyne detection techniques Grosshans & Grangier [2002]. This classificaion
is not within the discussion of this thesis, but we mention that we only focus on
the DV one hereafter. Alternatively, based on the implementation techniques of
the protocols, they can also be divided into prepare-and-measure QKD Bennett &
Brassard [1984] or entanglement-based QKD Ekert [1991], which will be discussed
in more detail in the next chapter. Briefly speaking, the former one works in
the sense that the transmitter sends information to the receiver, who would then
decode the data as required; whereas for the later one, both users will receive parts
of the entangled states and perform corresponding measurements as required.
These two protocols are essentially interlinked, while it might be easier sometimes
to perform security analyses on the entanglement-based version.

While QKD is seemingly secure, its application faces the challenges of practic-
ality Diamanti et al. [2016], Lo et al. [2014], Scarani et al. [2009]. This is mainly
due to the inevitable transmission loss through the channel as well as imperfect
sources and devices utilized for implementations. Any adversary can take advant-
age of those imperfections to intercept the data communicated, leading to a series
of attacks and thus compromising the security of the protocol. Luckily, sustained
efforts are being put in this field so that every time a possible attack arises, a new
efficient QKD protocol would follow up to tackle it Diamanti et al. [2016], Scarani
et al. [2009]. For instance, decoy-state protocol Lo et al. [2005b] was proposed
in order to address the photon-number-splitting (PNS) attack arising from the
imperfection of single-photon resources; measurement device independent (MDI)
QKD Lo et al. [2012] and twin-field (TF) QKD Lucamarini et al. [2018] were
proposed to cope with the detector side-channel attack (the latter one can even
overcome the repeaterless bound).

1.3 Scope of this study and main contributions
of the thesis

Within the above context, in this thesis, we focus on one specific type of QRs
that applies redundancy encoding while is still entanglement-based. Such QRs
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use quantum error correction techniques to compensate for noises in quantum
operations. We look into the quality of the long-distance entanglement established
by performing a simple QKD application on it. We are aiming at providing a
complete and rigorous analysis of such a system and will explore its compatibility
and performance on specific experimental platforms. We will model the system
by considering various sources of error from its crucial components and will also
take decoherence effect of quantum memories into account. Previous work on this
subject often relies on various approximations, while in this thesis, we will try to
remain as close as possible to the exact cases. We investigate the performance
of such a system in the context of QKD and compare it with the case for some
other types of QRs.

Main contributions of the thesis:

In Chapter 3, we develop our analytical approach based on the the linearity and
transversality properties of the quantum circuits and employed codes to study
the performance of the system for lower nesting level cases. We implement our
technique for three-qubit repetition codes and investigate in detail the impact
of different imperfections on the secret key generation rate of the QKD system.
We study how one can use the information obtained during entanglement swap-
ping and decoding stages to maximize the rate, which leads to an efficient post-
selection technique based on quantum error detection, rather than quantum error
correction features of the code to simplify its implementation. For benchmarking
purpose, we also specify the maximum allowed error rates in different compon-
ents of the setup below which positive key rates can be obtained. The results
presented in Chapter 3 has been published on [PhysRevApplied.14.064037]; and
made available on the arXiv [arXiv:2007.06376].

In Chapter 4, we extend our analysis for higher nesting level cases by devel-
oping several scalable numerical and analytical approximation techniques. We
particularly consider QRs with encoding and compare them with probabilistic
QRs. To that end, we propose two decoder structures for encoded repeaters that
not only improve system performance but also make the implementation aspects
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easier by removing two-qubit gates from the QKD decoder. We apply our tech-
niques to three- and five-qubit repetition codes and obtain the normalized secret
key generation rate per memory per second for encoded and probabilistic QRs.
We quantify the regimes of operation, where one class of repeater outperforms
the other, and find that there are feasible regimes of operation where encoded
repeaters—based on simple three-qubit repetition codes—could offer practical
advantages. The results presented in Chapter 4 has been published on [Phys-
RevApplied.15.044027]; and made available on the arXiv [arXiv:2012.13011].

In Chapter 5, we investigate the explicit implementation of such encoded
QRs using nitrogen-vacancy (NV) centers in diamond as quantum memories. In
particular, we study two NV-based repeater structures that enable deterministic
joint operations between two NV centers. One structure offers less consumption
of classical communication, hence is more resilient to decoherence effects, whereas
the other one relies on fewer numbers of physical resources and operations. We
assess and compare their performance for the task of secret key generation under
the influence of noise and decoherence with current and near-term experimental
parameters. We quantify the regimes of operation, where one structure outper-
forms the other, and find the regions where encoded QRs offer practical advant-
ages over their non-encoded counterparts. The results drafted in Chapter 5 has
been submitted to Physical Review Applied and made available on the arXiv
[arXiv:2105,14122].

1.4 Thesis outline

Chapter 2 of this thesis gives a background of the basic idea behind QR structures
and introduces one of their most important applications, i.e., QKD. This chapter
briefly introduces the building blocks that constitute the system and discusses
one of its classifications based on the implementation method utilized. One fig-
ure of merit used for QKD — the secret key rate — is also explained. In Chapter
3, we look into one specific type of QRs which uses quantum error correction
for entanglement distillation. We propose a post-selection approach which relies
on the error detection features of the code to boost the system performance. In
Chapter 4, we extend our research in Chapter 3 to higher nesting level cases and
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propose two alternative decoder structures which not only simplifies its demon-
stration, but also improves the secret key generation rate. In Chapter 5, we apply
encoded QRs on NV center platform with decoherence effect being considered,
and compare the system performance with their non-encoded counterparts. The
thesis is summarized and looked forward in Chapter 6.
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Chapter 2

Background

This chapter introduces the concept of a QR network and discusses the main
building blocks and techniques used to implement it: entanglement distribu-
tion over elementary links, entanglement swapping, entanglement distillation and
quantum error correction. I then discuss the classification of different QR proto-
cols based on their implementation methods. In this thesis, I focus on a particular
type of QR, in which entanglement distillation can be performed in a determin-
istic way using quantum error correction techniques. Finally, I review the main
application considered in this thesis, i.e., QKD, and its figure-of-merit, the secret
key generation rate.

2.1 Quantum repeaters

Quantum networks have the promise of enabling long-distance secure communic-
ation, large-scale quantum computation, and enhanced metrology through the
distribution of entanglement across nodes Kimble [2008], Wehner et al. [2018].
Despite the continuous progress being made, the realization of such a network
composed of many nodes and channels is still a far-off vision due to the inherent
fragility of quantum systems; and this places challenging requirements on any
possible practical platform. A key requirement for such networks is the ability to
transfer quantum states in a reliable and efficient way among their nodes. This is
where QRs become an instrumental platform for implementing future quantum
networks.
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2.1 Quantum repeaters

The direct distribution of quantum states is limited by the transmission losses
of the channel used 1. For instance, the success probability of transmission a
photon through a fibre-optic channel decays exponentially with distance. Even
under certain optimistic assumptions for the technology evolution, the achievable
distances are limited to a few hundred kilometers Boaron et al. [2018], Chen et al.
[2020], Yin et al. [2016]. Unlike in classical communications, where amplifiers can
be deployed to boost or regenerate the signals, here, this idea fails due to the
fact that quantum states cannot be copied or amplified without any disturbance,
known as the no-cloning theorem Dieks [1982], Park [1970], Wootters & Zurek
[1982]. To tackle this problem, it has been proposed to use QR protocols.

QRs were initially proposed to enable entanglement distribution, in an efficient
way, at long distances Briegel et al. [1998]. Using teleportation techniques Ben-
nett et al. [1993], Boschi et al. [1998], Bouwmeester et al. [1997], Furusawa et al.
[1998], one can then send quantum information across a quantum network once
entangled states are shared between remote users. In its original form, the main
idea behind such repeaters is to split the link into shorter elementary segments
and first distribute and store entanglement over such links. One can then use
entanglement swapping (ES) Zukowski et al. [1993] and, possibly, entanglement
distillation (ED) at middle nodes Bennett et al. [1996], Deutsch et al. [1996] to
establish high fidelity entanglement over long distances. The schematic of this
basic idea is shown in Fig. 2.1. In principle, the key goal of a QR protocol is
to try to change the scaling of entanglement distribution rate from exponential
with distance to polynomial. For an optical fibre channel with a total distance
Ltot, the chance that an entangled state is directly distributed is proportional
to exp(−αLtot), with α being a constant channel loss parameter. However, by
dividing the overall link into 2n segments, as shown in Fig. 2.1, and by adding
quantum memories (QMs) in the middle nodes, we allow for the entanglement
distribution over elementary links to succeed at different times, which effectively
results in a rate scaling with exp(−αL0) now. For a fixed L0, one can increase
the entanglement distribution distance through increasing the nesting level n. It

1Similar to classical communications, the transmission channels typically considered in
quantum communications are optical fibers and free-space. Throughout this thesis, I only
discuss the transmission through optical fibers.
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Figure 2.1: Schematic of generic QR protocols. The whole link with a total
distance Ltot is divided into 2n segments. Entanglement is first distributed and
stored within those elementary links and is then extended over the entire link by
performing ES operations at all middle nodes.

would then become important how efficiently we can perform ES operations, and
how we can handle the errors that may result from them.

Note that an alternative way to use teleportation for quantum state transfer is
to directly send quantum states across the channel by using strong error correction
codes. I will discuss this advanced class of QRs, which do not rely on long
quantum storage, later in Sec. 2.3.2. Before that, I discuss the key ingredients of
conventional QRs in the following section.

2.2 Building blocks of quantum repeaters

Having provided the basic idea with regard to the framework of QRs, we now zoom
into the corresponding building blocks and techniques for their implementation.

2.2.1 Entanglement distribution over elementary links

Entanglement is a form of correlation in quantum world, which does not have any
classical counterpart. It is a phenomena in which the quantum states of composite
systems cannot be described as a product of states of individual subsystems
Horodecki et al. [2009]. The simplest example of entanglement is represented by
the four maximally entangled two-qubit states, or Bell states Braunstein et al.
[1992] : {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}, where

|φ±〉 = 1√
2

(|00〉 ± |11〉), (2.1)
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|ψ±〉 = 1√
2

(|01〉 ± |10〉). (2.2)

Before getting down to QR business, we first discuss how to distribute entangle-
ment over shorter segments.

Entanglement can be created through various types of particles Chen et al.
[2006], Hald et al. [1999], Meekhof et al. [1996], Raimond et al. [2001]. However,
the vast majority of quantum entanglement experiments to date use photons as
entangled particles due to their easy manipulation and relatively sophisticated
optical technologies. One of the most popular and efficient techniques for the
generation of photonic entanglement is based on spontaneous parametric down-
conversion (SPDC) Boyd [2020]. SPDC is a non-linear optical process, which
splits one photon (the pump beam) into a pair of photons (the signal and idler
beams), obeying the law of conservation of energy and momentum. Its type II
down conversion results in entanglement of two photons whose polarizations are
orthogonal.

Fig. 2.2(a) shows a possible structure for a QR using SPDC sources. Here,
entangled photons are generated by SPDC sources located in the middle of each
elementary link. Note that the position of the sources is not restricted to the
exact middle position. One can of course create an entangled photon pair locally
and then send one of the photons to the other node of elementary links. In order
to perform ES between two neighbouring links, one must make sure that these en-
tangled photons have reached their destinations. However, as mentioned before,
photons may get lost in the channel. Such a probabilistic feature would require
that the initially distributed entangled pair to be stored, until other elementary
links are also entangled. Thus, QM modules are required in order to get a better
rate scaling. The created photon pairs have to match the absorption profile of
QMs Bussieres et al. [2013], Liu et al. [2021], Lvovsky et al. [2009], or frequency
conversion among other things may be needed Fernandez-Gonzalvo et al. [2013],
Fisher et al. [2016], Rančić et al. [2018], so that the moment they reach the QM
sites, the state of the photon can be transferred to the QM. In addition, we also
need a mechanism by which we can verify whether each loading attempt succeeds
or not, that is, our entanglement distribution method must be heralding Barz
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Figure 2.2: Entanglement distribution over elementary links by (a) direct distri-
bution of entangled photons generated by SPDC, and (b) photon-interference at
the middle position.

et al. [2010], Wagenknecht et al. [2010]. Implementing such a verification tech-
nique is, nonetheless, not always possible or at least not an easy job in practice.

Another way to distribute entanglement at a distance is based on establish-
ment of memory-photon entanglement at each node first and a subsequent joint
measurement of the photons transmitted to the middle of each link, as shown
in Fig. 2.2(b). Such a joint measurement is known as a Bell-state measurement
(BSM), which projects the input state into the entangled two-qubit bases formed
by Eqs. (2.1-2.2). In this step, BSM typically employs linear optic elements,
such as polarizing beam splitter, wave plates and photon detectors, to erase the
which-path information of the photons and thus creates an entanglement between
the two corresponding memory systems 1. A successful BSM means that they
have survived the path loss and thus can be seen as a heralding event of the
successful distribution of entanglement over elementary links. This scheme was
first proposed by Duan, Lukin, Cirac and Zoller, known as the DLCZ protocol
Duan et al. [2001]. I will return to this protocol in Sec. 2.3.1.

There are other entanglement distribution techniques Cirac et al. [1997], Mat-
sukevich et al. [2006], Munro et al. [2005], but, similar to the above mentioned
schemes, they often require back-and-forth classical communication between senders

1We will introduce another implementation method of BSM in the following section.
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and receivers in order to acknowledge the success of each attempt. For experi-
mental platforms that enable fast local operations, the entanglement generation
rate of a QR protocol is mainly limited by the time consumed for such signal-
ing 1. With a low successful probability for each attempt, the time it takes for a
successful distribution of entangled states over all elementary links would be very
considerable, which poses a high requirement on the coherence time of memory
modules. One possible way to mitigate this problem is by applying multiplexed
QMs Collins et al. [2007], Munro et al. [2010], Razavi et al. [2009]. The basic idea
behind this is to compensate for low success rates by increasing the number of
trials at each time, replacing single memory elements with memory banks. The
memory banks can be constituted of many physical memory modules or they may
deploy several degrees of freedom for a single memory module. However, even
though such a technique is already feasible for certain platforms Li et al. [2020],
Pu et al. [2017], Saglamyurek et al. [2011], Sinclair et al. [2014], Tang et al. [2015],
Usmani et al. [2010], constructing it in a large scale while still keeping the fine
control over individual accessibility, remains a challenge. In this thesis, I only
consider applying it under certain cases just in order to have a clue that, to what
extent, this technique can boost the system performance, without delving into
much details.

2.2.2 Entanglement swapping

Once entanglement is heralded within each elementary link, one can think of
connecting them in order to extend entanglement over longer distances. This
process is implemented by using ES techniques Zukowski et al. [1993]. ES, enabled
by a BSM, allows two formerly independent parties to be entangled without
direct interaction between them. Consider two independently entangled links
AB and CD, as shown in Fig. 2.3(a), A and D are far apart, while B and C
are co-located. By performing the BSM on qubits B and C, we can generate

1It is worth pointing out that the classical and quantum communications are both subject
to the same speed limit of light, either in optical fiber or free space. The failure of any attempt
would lead to the repeat of both quantum distribution and classical confirmation, which takes
time.
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Figure 2.3: (a) Schematic of entanglement swapping. (b) Quantum circuit
for gate-based Bell-state measurement, which is implemented through an en-
tangling/disentangling operation on the pair of qubits followed by single qubit
measurements.

entanglement between farther nodes A and D without them directly interacting
with each other.

Besides what is mentioned in the above subsection where BSM can be per-
formed through linear optics and photon detection, which is a probabilistic pro-
cess subject to the successful arrival of photons, BSM can also be achieved
through deterministic gate-based operations, which is a nonlinear process. Such
a quantum circuit of ES uses controlled-NOT (CNOT) gates, Hadamard gates
and measurement apparatus, as shown in Fig. 2.3(b). Solid-state based platforms
such as trapped-ions Ballance et al. [2016], Gaebler et al. [2016] or color centers
in diamond Taminiau et al. [2014], Zhang et al. [2014] allow for such deterministic
operations, while some other platforms, such as atomic ensembles, would ask for
ES to be performed optically in an inherently probabilistic manner Sangouard
et al. [2011]. Based on how this step is operated, QRs can be classified into
different types, to which I will return in Sec. 2.3.

The linear-optical realization of ES, without the help of ancillary photons,
has a maximum success rate of 1/2 (when imperfections are considered, it is
even less) Braunstein & Mann [1995], Calsamiglia & Lütkenhaus [2001]. Though
deterministic gate-based Bell-state analyzers do not suffer from this limitation,
they have their own drawback to address, particularly, the operational errors
that may be added because of gate and measurement operations. Throughout
this thesis, I mainly consider two types of such errors: bit-flip errors |0〉 ↔ |1〉
and phase-flip errors |0〉 ↔ |0〉, |1〉 ↔ −|1〉, which correspond to Pauli X and Z

15



2.2 Building blocks of quantum repeaters

operators:

Pauli X
[
0 1
1 0

]
,

Pauli Z
[
1 0
0 −1

]
, (2.3)

respectively. Even if perfect gates and measurements are considered, ES oper-
ations would still reduce the fidelity of the entangled state distributed. Each
connection leads to an exponential decrease of the resulting fidelity, unless the
two input states are also maximally entangled Dür et al. [1999]. Therefore, in
practice, after multiple ES connections, the final long-distance entangled state
distributed could be of very low quality that cannot be used for any applications.
Luckily, there are two solutions to tackle this issue: entanglement distillation
(ED) and quantum error correction (QEC), which both rely on using ancilla sys-
tems to compensate for the errors and noises in the channel. These two techniques
will now be discussed more explicitly in the next subsections.

2.2.3 Entanglement distillation

ED is a procedure by whichM pairs of non-ideal entangled states can be distilled
or concentrated into N < M entangled states of higher fidelity Bennett et al.
[1996], Deutsch et al. [1996]. Before explain this scheme, we first clarify what
fidelity is. In quantum mechanics, fidelity is a measure of the “closeness” of two
quantum states. Consider two quantum states ρ1 and ρ2, the fidelity is defined
as Jozsa [1994]

F (ρ1, ρ2) =
(
Tr(

√√
ρ2 ρ1

√
ρ2 )

)2
. (2.4)

If ρ2 = |φ〉〈φ| is a pure state, the fidelity is then reduced to

F (ρ, |φ〉) = 〈φ|ρ|φ〉. (2.5)

Throughout this thesis, unless specified, the fidelity is typically referred to the
state we care about to the maximal two-qubit entangled states given by Eqs. (2.1-
2.2). ED can be applied before and/or after ES operations. Roughly speaking, it

16



2.2 Building blocks of quantum repeaters

is implemented by constructing more than one entangled pairs in parallel fashion,
applying local operations and measurements in both sides, followed by exchange
of measurement outcomes using classical communication to decide whether it
succeeds or not. Depending on different algorithms used, we may end up with
different rate behaviours. Moreover, the input states for the distillation can be of
the same quality or not, but generally, we would require the fidelity of the input
states to be larger than 1/2 in order for distillation technique coming into force.

As described, conventional ED protocols always depend on two-way classical
communication between the nodes to acknowledge the success or failure of any
attempt. Even though all operations can be performed in a deterministicly gate-
based way, it does not change their probabilistic and heralding features. One way
to mitigate this is by applying QEC techniques, as I am about to discuss next.

2.2.4 Quantum error correction

Another solution utilized to cope with the loss and operational errors involved
in the implementation of QR protocols is QEC. Similar to what classical error
correction does, QEC is also based on the idea of redundant encoding. However,
unlike what can be done in the classical world, there are two main hurdles that
complicate this process in the quantum domain Devitt et al. [2013]: first, due
to the no-cloning theorem of quantum mechanics, it is impossible to protect
quantum data from errors by simply making enough copies of it Dieks [1982],
Wootters & Zurek [1982]; second, direct measurement of the qubits to extract the
error syndromes is not allowed since this will collapse or destroy any quantum
superposition or entangled states Dirac [1981]. With that being the case, what
QEC does is, typically, using a sequence of two-qubit gates to firstly couple ancilla
qubits to the data block and then measuring those ancilla qubits in order to
extract the error syndromes, based on which applying error-correction operations
(typically bit-flip and/or phase-flip gates as given by Eq. (2.3)) on the original
qubits accordingly. Thus the information can be possibly recovered or purified
without any contamination of the data block.

QEC is a very wide field and is not limit to the domain of quantum commu-
nications. Many new codes, methodologies, techniques are being developed to
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facilitate large-scale quantum algorithms ( Arute et al. [2019], Wiebe et al. [2012]
) and fault-tolerant quantum computation ( Fowler et al. [2012], Shor [1996] ). In
this thesis, I only focus on one specific class, known as Calderbank-Shor-Steane
(CSS) codes, named after their inventors. The main contributions of this thesis,
however, is made from QRs based on an even simpler type, the repetition codes,
which share the specific features owned by CSS codes but are much easier to be
analyzed and implemented.

CSS codes are a special type of the more general class of stabilizer codes,
which can be constructed from classical linear codes Nielsen & Chuang [2002].
The details of the code construction and error correction mechanisms are beyond
the scope of this thesis. We emphasize that it is their transversality and linearity
features that facilitate their use in the application of quantum communication.
To be more specific, in order to process the encoded quantum information, all
operations and measurements are also expected to be performed at the encoded
level, which typically involves the mutual control over a large number of qubits.
Luckily, the transversality property of CSS codes enables those processes to be
done by directly applying the individual physical operators to each qubit in the
code block, greatly reducing the complexity of operating on multi-qubit systems.
Moreover, the encoding and decoding steps of CSS codes only require the applic-
ation of Hadamard gates and CNOT gates, in each case with a number scaling
linearly with the size of the code. Those advantages make their implementation
aspects straightforward.

An important example of CSS codes is the 7-qubit Steane code Steane [1996],
named after its inventor. The Steane code is defined as a [[n, k, d]] = [[7, 1, 3]]
quantum code, where n = 7 physical qubits are used to encode k = 1 logical
qubit with a distance d = 3 that can correct up to t = (d − 1)/2 = 1 quantum
error (for one quantum error we mean both a bit-flip error and a phase-flip error
at the same time).

Larger codes are capable of correcting more errors, at the expense of requiring
much more complicated and advanced multi-qubit quantum processors, which,
despite the tremendous efforts being made, is still far off hands in practice. In
this thesis, for most practical purpose, I will just focus on the simplest encoding
structures, the repetition codes. The typical number of qubits used in our work
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2.2 Building blocks of quantum repeaters

Figure 2.4: Quantum circuit for the 3-qubit repetition code.

is 3 or 5. We give a description of 3-qubit repetition code next and mention that
the mechanism works similarly for the 5-qubit one.

The 3-qubit repetition code encodes a single logical qubit into three physical
qubits, which can correct one bit-flip error 1 Braunstein [1996], Peres [1985]. The
two logical qubits are given by

|0〉L = |000〉, |1〉L = |111〉, (2.6)

such that an arbitrary single qubit state |ψ〉 = α|0〉+ β|1〉 is mapped to,

(α|0〉+ β|1〉)|0〉|0〉 → α|000〉+ β|111〉 = |ψ〉L. (2.7)

This process is achieved by the quantum circuit depicted in Fig. 2.4. If the
probability of a single physical qubit being flipped is pp = p, that of a logical
qubit would be pl = 3p2 − 2p3, which corresponds to the situation where at least
two physical qubits are flipped, with the majority rule being applied. So long as
p < 1/2, the error probability after encoding is suppressed. Note that, strictly
speaking, 3-qubit repetition code is not a full quantum code, since it cannot
correct both bit- and phase- flip errors at the same time. However, the thorough
analysis of its functionality regarding the implementation of QRs would still offer
us a generic idea of how QRs with encoding would perform in the near future,
which is at the heart of this thesis. Moreover, through our contribution that
will be introduced in Chapter 4, we find that, for most practical purposes, the

1Note that 3-qubit repetition code can also correct first-order errors on all three qubits
code, which in some error scenarios is a more realistic event. Please refer to Devitt et al. [2013]
for detailed explanation.
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simple 3-qubit repetition code might be the optimal choice for near-term QKD
applications. Moreover, in any case, the full implementation of the simplest 3-
qubit repetition code would certainly be the first attempt at building a QR with
encoding.

It is also worth mentioning that 3-qubit repetition codes can be applied in the
phase domain, where two logical qubits are given by

|0〉L = |+ ++〉, |1〉L = | − −−〉, (2.8)

with |±〉 = (|0〉 + |1〉)/
√

2 . Such an encoding can correct up to one phase-flip
error. It has the same characteristics as the code in Eq. (2.6). All operations
required for error detection and correction are performed similarly just with ad-
ditional Hadamard gates at appropriate points.

2.3 Categories of quantum repeaters

With the knowledge of essential building blocks being introduced in the last
section, we are now more prepared to get on with the QR business. After being
introduced in 1998, the development of QRs has theoretically gone through several
stages, sometimes referred to as different QR generations Muralidharan et al.
[2016]. Based on various implementation or error-suppression methods, there are
different ways to classify them. In this section, we look at one way to categorize
them based on the implementation techniques applied at ES modules.

2.3.1 Probabilistic quantum repeaters

Probabilistic QRs use photonic systems for both distribution and swapping of
entanglement. In early implementations of QRs, it is expected that the initial
entanglement distribution over elementary links Yu et al. [2020], as well as ES and
ED operations to be achieved in this way. This can make the whole system too
slow as many steps may need to be repeated upon a failure Razavi et al. [2009].
Such probabilistic QRs often require QMs with long coherence times, comparable
to the transmission delay between the two end users Lo Piparo & Razavi [2013].
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The pioneering work of this type is developed by Duan, Lukin, Cirac and
Zoller in 2001 Duan et al. [2001], known as DLCZ, where they proposed atomic
ensembles and linear optics to achieve the goal. More specifically, at entangle-
ment generation step, the DLCZ protocol uses laser pulses to shine on atomic
ensembles, to potentially drive a single Stokes photon correlated with atomic ex-
cited state. The photonic states from both ensembles are then transmitted to
and combined at a middle 50/50 beam splitter (BS). The entanglement is gen-
erated between the two ensembles conditional on that a single photon detector
clicks. If more than one photon or no photon is detected, the process fails and
has to be repeated. Regarding the entanglement connection step, the atomic ex-
citation stored in the two co-located ensembles should firstly be converted into
anti-Stokes photons, followed by the same process and verification mechanism
as in the entanglement generation step. It is due to the collective effects of the
atomic ensemble, which enhances the coupling efficiency between the memory
and the photons, that guarantees the feasibility of the scheme Liu et al. [2001],
Lukin et al. [2000], Phillips et al. [2001], Yu et al. [2020]. After being introduced,
various improvements over the DLCZ protocol have been proposed over years,
with further details can be found in Sangouard et al. [2011].

One thing that is worth mentioning and also relevant to this thesis is the
comparison between single-photon and two-photon detections for the implement-
ation of entanglement generation. We mention that the specific implementation
steps and the detailed working mechanisms behind those two methods depend on
different experimental platforms and techniques utilized, which are beyond the
scope of this thesis. Here, we only point out the generic contrasts between them.
Each method has its own strength and weakness. The best choice of scheme
depends on the specific physical situation and the application in mind.

Typically speaking, entanglement generation based on single-photon detection
would ask for only one photon, which could have come from either of two distant
nodes, to survive through the path loss and reach the middle interferometer. Such
an interference leads to a success probability psucc of each attempt as

psucc ∼ pcηηd, (2.9)
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where pc is the coupling efficiency of a photon with the memory, η is the trans-
mitivity of the channel over half of the elementary link L0/2 and ηd is the photon
detector efficiency. Single-photon detection typically corresponds to the so-called
photon-number encoding technique, where the state is represented by the Fock
states |0〉 and |1〉, denoting the absence and presence of the photon, respectively.
Such an encoding is of limited use on its own though this scheme may offer a lar-
ger success probability and thus better scaling rate, compared to the two-photon
detection cases. Firstly, it poses challenging requirement on the stabilization of
the channel. Any phase fluctuation is disruptive, but inevitable in practice, espe-
cially for long distances. Secondly, by using such an encoding, it is literally not
possible to get a perfect maximally entangled state if no post-selection technique
is applied, even though perfect operations are assumed.

In contrast, for entanglement generation based on two-photon detection, where
two photons, one coming from each node, are interfered at the middle stations,
the established entangled state can be theoretically perfect. Such a scheme usu-
ally corresponds to encoding on polarisation or time-bin, and is of more practical
use. However, this comes at a price of lower success probabilities, proportional
to p2

succ now and thus a worse rate scaling.
Here, to conclude this subsection, we mention that, in the original DLCZ

protocol, both entanglement generation and swapping are based on single-photon
detection. But later, the created single-excitation entanglement is more used as
a building block for more directly useful two-photon entanglement; details can be
found in Sangouard et al. [2011]. I will return to this point in Chapter 5, where I
discuss these two schemes on a solid-state platform, i.e., NV-center in diamond.

2.3.2 Deterministic quantum repeaters

Deterministic QRs is a type of QR where their ES operations are performed in
a gate-based deterministic way Razavi [2018]. Some solid-state platforms such
as trapped-ions or vacancy centers in diamond are promising candidates for such
implementations. In fact, when QRs were first introduced in 1998, by Briegel,
Dür, Cirac and Zoller, known as the BDCZ protocol Briegel et al. [1998], the
BSMs were implemented through deterministic but erroneous gates. In their
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work, the authors assumed that the initial entanglement distribution and storage
had already taken place, and the goal was to connect a string of those imperfect
EPR pairs into a single distant pair of high fidelity.

The deterministic ES operation is achieved through the circuit depicted in
Fig. 2.3(b). Unlike probabilistic BSMs, deterministic BSMs are not possible with
only linear optics Lütkenhaus et al. [1999]. It is typically achieved through a
strongly coupled spin system with optical resonators, which does not require two-
way classical communication to confirm its success. The immediate advantage
is that the waiting time can be now reduced and the rate is thus increased.
However, the quality of the resulting pair decreases exponentially with the number
of connections, even though perfect operations are assumed. In order to solve this,
in the BDCZ paper, the authors proposed a nested purification protocol, where
unlike the distillation proposals given in Bennett et al. [1996], Deutsch et al.
[1996], only used one auxiliary pair with constant fidelity at each purification
step to distill the entanglement. This technique could be iterated and applied at
higher nesting levels, thereby connecting and purifying correlations between more
and more distant nodes whereas the resources grow only logarithmically with the
distance. However, similar to Bennett et al. [1996], Deutsch et al. [1996], it
also relied on local operations and classical communication (LOCC), which, in
effect, had turned a deterministic repeater protocol to a probabilistic one. A
remedy to this problem was proposed in Jiang et al. [2009], in which ED is
effectively done by using QEC techniques. This operation can, in principle, be
done deterministically, and, combined with deterministic ES operations, it can
give a boost to the entanglement generation rate in a QR. I now discuss it with
more detail in the following section.

2.4 Quantum repeaters with encoding

In this thesis, in the spirit of having an eye on near-future implementations,
our focus will be on the transition from probabilistic QRs to deterministic QRs
that use QEC techniques for their ED operations Jiang et al. [2009], Munro
et al. [2010], Zwerger et al. [2014]. The detailed structure which we are working
on will be described explicitly in the following chapters when we look at each
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specific case. Here, briefly speaking, in such QRs, using a number of bipartite
entangled states, we create a multi-qubit entangled codeword across elementary
links. As we apply the ES operations, this codeword structure will then allow us
to correct some of the operational errors that happen because of imperfections
in the employed gates, and/or the noisy transmission channel 1. The usage of
deterministic ES and ED can greatly reduce the waiting time of the system, since
one does not need to wait until the success of the previous step before moving
to the next one. All deterministic operations can be performed simultaneously.
However, this advantage, which lowers required coherence times of QMs, may
come at the price of more demanding quantum processing requirements.

Memory-less quantum repeaters

By further improving the QEC and quantum processing capabilities, one can
design QR systems that totally remove the necessities of entanglement distribu-
tion or the usage of QMs. In those advanced QR protocols Azuma et al. [2015],
Fowler et al. [2010], Glaudell et al. [2016], Munro et al. [2012], Muralidharan et al.
[2014, 2018], also known as the third generation of QRs, one can directly encode
the message into a codeword state and send it hop-by-hop across the whole link.
The schematic of such QRs is depicted in Fig. 2.5. The message qubit is en-
coded into a logical state which is resilient to loss and/or operational errors at
the sender side, and then transmitted to the intermediate node, at which, the
encoded state will firstly be decoded and retrieved if there are errors and losses
(note that this process is mainly operated on ancilla systems without disrupting
or revealing any encoded information, thus those nodes can be untrusted), fol-
lowed by another encoding process and transmission to the next middle nodes,
until it reaches the receiver side. Such a protocol saves lots of times since it does
not need any two-way classical signaling to confirm the success or failure, but
comes at the price of highly demanding quantum information processing abilities
and asks for high-precision control over a larger number of qubits in practice. In

1In this thesis, I only focus on the combat of operational errors. For tackling of loss errors
or both loss and operation errors, please refer to Gingrich et al. [2003], Zwerger et al. [2014]
and the cited reference in the following subsection for more detail.
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Figure 2.5: Schematic of the memory-less QR

fact, compared to the long-lived QM requirement for probabilistic QRs, this QR
is even more challenging in terms of demonstration.

2.5 Quantum key distribution

With long-distance entanglement being established using QR protocols, one is
able to perform many tasks such as secure communication Yin et al. [2020], clock
synchronization Jozsa et al. [2000], quantum teleportation Pirandola et al. [2015],
or simply use it as a building element for large-scale quantum internet Kimble
[2008]. In this thesis, we limit ourselves to application of entanglement to QKD,
which is perhaps the most mature quantum technology today.

QKD, the best-known application of quantum cryptography, provides a way
of distributing and sharing secret keys based on quantum mechanics. Note that
QKD does not necessarily rely on the establishment of entanglement. The ba-
sic principle behind QKD is the usage of non-orthogonal quantum states, which,
due to the Heisenberg uncertainty principle, makes them impossible to be dis-
tinguished perfectly between each other without disturbing the system in a de-
tectable way. The security of QKD does not rely on that the key never being
intercepted, rather it relies upon detection of the eavesdropper, should they exist.

There are many different QKD protocols proposed over the past few decades:
from BB84 Bennett & Brassard [1984, 2014], the first QKD protocol ever intro-
duced in 1984, to memory-assisted QKD Bhaskar et al. [2020], Lo Piparo et al.
[2017a,b], Panayi et al. [2014] and twin-field (TF) QKD Curty et al. [2019], Lu-
camarini et al. [2018], Zhong et al. [2019], the latest one being developed in 2018.
Most of them fall into two categories: the prepare-and-measure protocols and the
entanglement-based protocols. In this section, I will first briefly review the BB84
protocol, which is the first prepare-and-measure protocol and then describe its
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entanglement-based counterpart, which is pertinent to this thesis. Finally I will
discuss the main figure of merit used to quantify the performance of any QKD
system.

2.5.1 Prepare-and-measure protocols

The concept of QKD was first introduced in the early 1970s, attributes to the
work of Wiesner and Brassard Brassard & Crépeau [1996], but it was not until
1980s that it really began to shine, when Bennett and Brassard proposed the
first ever QKD protocol, known as BB84 Bennett & Brassard [1984]. Its se-
curity is guaranteed by the impossibility of perfectly distinguishing between two
non-orthogonal states, based on the Heisenberg uncertainty principle. The two
complementary bases used for BB84 are typically the rectilinear basis (horizontal
and vertical) and the diagonal basis (45◦ and 135◦), where the key is encoded in
the polarization photons. This protocol works in the following steps:

• Raw key exchange:
(1) The sender, Alice, generates a long enough 1 random key string, and
encodes each of them onto a polarised single photon with one of the two
bases mentioned above.
(2) She then sends the photons to the receiver, Bob, through the optical
channel.
(3) Bob randomly chooses one of the two bases for each photon he receives
and then measures it.

• Sifting: Once there are a sufficient number of detections, Alice and Bob
use a public but authenticated channel to communicate the measurement
bases they choose. They keep the bits in which they have chosen the same
basis and discard the others, after which, they end up with a sifted key.

• Post-processing: Alice and Bob apply error correction and privacy amp-
lification techniques to reduce the discrepancy between their sifted keys and

1Long enough so that it can copy with the discarding of qubits for the following sifting and
post-processing processes.
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Alice’s bits 0 0 1 1 0 1 0
Alice’s sending

basis
+ × × + + + ×

Photon polarization
sent by Alice

→ ↗ ↖ ↑ → ↑ ↗

Bob’s measuring
basis

+ + × × + × ×

Photon polarization
measured by Bob

→ Random ↖ Random → Random ↗

Public discussion
Shared secret key 0 1 0 0

Table 2.1: An example of BB84 protocol.

the amount of information that might have leaked to the eavesdropper, Eve.
This results in the final key shared between Alice and Bob.

An example of how BB84 works is sketched in Table 2.1. In order to check the
presence of Eve, Alice and Bob have to estimate the discrepancy rate where they
get discordant outcomes given the same choice of measurement basis, known as
quantum bit error rate (QBER). This procedure may require making a part of the
sifted key publicly available, which is then discarded and not used to create the
key. This process offers the main parameters which will be used for secret key rate
calculation. We mention that only photons that have successfully arrived will be
measured. Photons that are lost or absorbed never arrive so are never considered
for key generation. If the QBER is greater than a certain threshold (this threshold
is typically ∼ 11% Lütkenhaus [1999], but can be improved with more advanced
post-processing techniques Pirandola et al. [2020]), the whole protocol will be
aborted 1.

1In QBER estimation, we always consider the worst case scenario by assuming that all
measured errors are down to eavesdroppers, even if some of them are not.

27



2.5 Quantum key distribution

2.5.2 Entanglement-based protocols

Another main category of QKD protocols is based on entanglement, which is the
focus of this thesis. The first entanglement-based protocol was proposed by Ekert
in 1991, known as Ekert91 Ekert [1991]. This protocol consists of a source located
between Alice and Bob, which emits pairs of entangled photons in the Bell state
|ψ+〉AB, as given by Eq. (2.2). The photons then fly apart towards the two users
where Alice and Bob randomly choose different measurement bases in their sets

Alice = {0◦, 45◦, 90◦}, Bob = {45◦, 90◦, 135◦}, (2.10)

respectively, for each photon they receive and measure it. They then publicly
announce the bases they have chosen for each particular measurement and divide
them into two groups: the first group for which they chose the same orientation
and the second group for which they chose different ones. They discard the
cases in which either or both of them failed to register a photon. Next, they
use the outcomes of the second group, which need to be publicly announced, to
test Bell inequality Bell [1964]. If Eve intercepts the entangled state, she would
unavoidably demolish the quantum correlation and leave a footprint. Otherwise,
if the absence of Eve can be proved, Alice and Bob are then able to extract
the secret key based on the outcomes in their first group. The bit values 0 and
1 are assigned to different orientations following the rules shown in Table 2.1.
Note that in this protocol, Alice and Bob do not need to trust the entanglement
source and it can even be hold by Eve. Since the violation of the Bell inequality
guarantees the existence of entanglement. Based on its monogamy property which
states that two quantum systems that are maximally entangled cannot share
any entanglement with a third party Coffman et al. [2000], Werner [1989a], the
security of the protocol can be ensured.

Another important entanglement-based protocol, which is also the one used
for this thesis in Chapters 3, 4 and 5, is BBM92, proposed by Bennett, Brassard
and Mermin in 1992 Bennett et al. [1992]. It can be seen as an “entanglement
version” of the original BB84 protocol in which they basically share the same
sifting and post-processing steps. More explicitly, this protocol works in the
following steps:
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• Raw key exchange:
(1) An entangled photon pair is generated between Alice and Bob and then
flies apart towards them.
(2) Alice and Bob randomly choose one of the two bases: the rectilinear one
or the diagonal one, to measure the photon she/he received. The bit values
0 and 1 are assigned to corresponding polarizations following the rules as
shown in Table 2.1.
(3) This process is repeated many times until they have enough number of
bits.

• Sifting and post-processing: These are operated similarly to BB84.

If the EPR sources, instead of located in between, is directly held by Alice. She
can first measure one photon through the randomly chosen basis and then send
the other, now with a known random polarization, to Bob. This would be equival-
ent to BB84 protocol. Since BBM92 does not require the test of Bell inequality,
it should be more feasible than Ekert91 in terms of implementation. However,
it is worth mentioning that Ekert91 is now expanded to the domain of device-
independent QKD which is a type of protocol that is supposed to offer ultimate
security, since it removes the characterisation requirements on the devices em-
ployed for implementation Vazirani & Vidick [2019]. This topic is beyond the
scope of this thesis, and will not be expanded here.

Although BBM92 is entanglement-based, it does not rely on the violation
of Bell inequality to guarantee the security of the scheme. In fact, its security
analysis is similar to that of BB84, in which the existence of Eve can be detected
by the calculation of the discrepancy rate.

2.5.3 Secret key rate

One important figure of merit for the performance of QKD is the secret key gen-
eration rate. In the entanglement-based QKD domain, this rate is given as a
product of the amount of key, i.e., the quantity of bits, that can be extracted per
entangled state, known as the secret fraction Scarani et al. [2009], and the entan-
glement generation rate. The secret fraction, which we denote as r throughout
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this thesis, quantifies the quality of the entangled state distributed. The entan-
glement generation rate, as the name suggests, quantifies the rate of generating
long-distance entanglement or more precisely, reflects the time required and the
success probability for the implementation of repeater protocols.

The secret fraction is at the core of QKD as it is the quantity to which security
analysis should give a bound. One of the earliest rate bounds for entanglement-
based QKD system was proposed by Shor and Preskill in 2000 Shor & Preskill
[2000]. In their security analysis, the secret fraction is lower bounded by

r = 1− h(ez)− h(ex), (2.11)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary Shannon entropy, and
ez and ex are the QBER in, respectively, Z and X measurement bases. Briefly
speaking, the term h(ez) quantifies the amount of bit-flip errors out of the sifted
key, which is estimated at the error correction step of post-processing, and the
term h(ex) quantifies the amount of information that is leaked to Eve, which is
characterized at the privacy amplification step of post-processing Razavi [2018].
It should be pointed out that Eq. (2.11) only holds in the asymptotic limit of
infinitely long sifted keys. A finite size case would affect the accuracy of parameter
estimation, and a reduction in the secret fraction is expected Scarani et al. [2009].
However, in this thesis, we only stick to the ideal situation in order to avoid the
complexity of finite-key analysis. Note that this bound is highly dependent on
the specific QKD protocol in mind. In principle, one can always consider more
advanced protocols in order to improve it.

The entanglement generation rate (or the raw key rate for prepare-and-measure
protocols) depends on the specific QR protocol and is certainly limited by the
details of the setup, such as transmitivity of the channel, efficiency of the detect-
ors and coupling efficiency of photons to QMs. I will discuss this in more detail
when we come to specific protocols in Chapters 3, 4 and 5.
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Chapter 3

Quantum key distribution over
quantum repeaters with
encoding: Using error detection
as an effective post-selection tool

3.1 Introduction

In this chapter, as specified in Sec. 2.4, we look at an interesting class of QRs,
which rely on QEC for their ED Jiang et al. [2009], and examine how best such
systems can be used for QKD applications. In principle, one can choose different
code structures to implement such systems. Here, we choose the repetition codes
to study and develop our methodology. They offer a simple structure, which
can make their implementation easier, and still have relevance in systems where
one type of error is more dominant than the other. For instance, if the memory
decoherence is affected mainly by a dephasing process, the corresponding errors
are modelled by the Pauli operator Z Panayi et al. [2014], hence a code structure
resilient to this type of error could be useful. The repetition codes would also
offer a good learning platform, for theoretical studies, to better understand how
different components of the system can affect the final result, and to come up
with relevant techniques for analysing more complicated code structures.
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Our main contributions in this chapter:

In this chapter, we devise an analytical method to study the above QR setups.
We, however, realise that, even for the seemingly simple case of repetition codes,
the analysis can become cumbersome quite quickly. Previous work on this subject
Bratzik et al. [2014], Jiang et al. [2009] often relied upon various approximations
to analyse the system. In our work, we try to remain as close as we can to
the exact results and only use approximations that are analytically justified and
numerically verified. Our approach relies on the linearity of the quantum circuits,
and the transversality of the code employed to manage the complexity of the
analysis. This will enable us to obtain an accurate picture of the requirements of
such systems in practice.

Using our methodology, we study the performance of QKD systems run over
QRs with three-qubit repetition codes by accounting for various sources of error
in the setup. We identify the terms that significantly impact the secret key
generation rate, and then assess its dependence on relevant error parameters. In
previous work on this subject Bratzik et al. [2014], the repeater chain is used
to create a bipartite entangled state, which the two users will then employ to
exchange a secret key. In our work, we allow the users to exploit the information
obtained during the ES and decoding stages to divide the states that they obtain,
and keys generated from them, into different groups. This not only improves the
key rate and the resilience of the system to errors, but also allows us to identify
states that contribute the most to the secret key rate. It turns out that in most
cases the key contribution is from what we refer to as the golden states for which
no error has been detected at either swapping or decoding stage. This will enable
us to use an efficient post-selection technique that not only simplifies the analysis
of the system, but also can reduce the complexity in any practical demonstration
of the setup. We believe that our work can pave the way for similarly detailed
analysis of other repeater protocols with more complex encoding. This will enable
quantitative rate-versus-resource analysis for various protocols.

This chapter is organized as follows. In Sec. 3.2, we begin with a description
of the repeater protocol in Ref. Jiang et al. [2009] and the error models we use to
formulate the problem in hand. In Sec. 3.3, we discuss the linearization method
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employed for our study and go over the exact analysis for nesting level one. We
fully study the effect of different terms, components, and system imperfections
before generalizing our results, in Sec. 3.4, to higher nesting levels. We present
the dependence of the secret key generation rate for such QRs on different error
parameters and find the corresponding thresholds for extracting a nonzero secret
key rate at different nesting levels. Finally, we conclude this chapter in Sec. 3.5.

3.2 System Description

In this section, we first start with a detailed review of the QR scheme with
encoding proposed by Jiang et al. Jiang et al. [2009] and the respective quantum
circuits designed to implement it. Then, we introduce the error models considered
in our analysis, followed by the problem statement and the key objectives of our
study.

In this work, we mainly use the 3-qubit repetition code as an example to
illustrate and develop our key ideas and techniques, where the logical qubits are
encoded as

|0̃〉 = |000〉 and |1̃〉 = |111〉, (3.1)

where |0〉 and |1〉 represent the standard basis for a single qubit. This code can
correct up to one bit-flip error (or may be small amplitude errors on all three
qubits). Although it is not a strong error correction code, the thorough analysis
of its performance with possible errors considered in its implementation will still
offer us an indication of how this type of QRs performs.

3.2.1 Quantum repeater with 3-qubit repetition code

Here, we describe the ideal setting of the protocol proposed in Jiang et al. [2009]
in the special case of 3-qubit repetition codes. In this protocol, depicted schemat-
ically in Fig. 3.1, we first generate encoded entangled states across all elementary
links, which is a probabilistic process due to the heralding distribution of original
Bell pairs; and then apply deterministic ES operations at intermediate nodes to
both distill and swap entanglement across the chain.
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Figure 3.1: Schematic representation of quantum repeaters with encoding. (a)
The codeword states are locally prepared at each memory bank (large blue circles)
and original Bell pairs are distributed between neighboring nodes (small yellow
circles connected by yellow lines); (b) Encoded Bell pairs are generated between
neighbouring stations by performing remote CNOT gates; (c) The encoded ES
operations are performed at each intermediate station simultaneously. This cre-
ates an encoded Bell pair between the two end users. Based on the measurement
results at each middle node, the Pauli frame Knill [2005] of the final entangled
state, which determines the establishment of a target encoded Bell state, can be
adjusted.

The encoded entangled state of interest across an example elementary link
A-B in Fig. 3.1 is in the form

|Φ̃+〉A,B = 1√
2

(|0̃〉A|0̃〉B + |1̃〉A|1̃〉B), (3.2)

where |̃i〉K ≡ |i〉K1|i〉K2|i〉K3 , for i = 0, 1 and K = A,B. In Fig. 3.1, the memory
bank K = {K1, K2, K3} is shown by large (blue) circles. This multipartite en-
tangled state is distributed between memory banks A and B in the following
way:

Step 1 Initialize memory banks A and B in the codeword states 1√
2 (|0̃〉A +

|1̃〉A) and |0̃〉B, respectively. The codeword state for node A can be achieved
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by applying two (CNOT) gates, CNOTA1→A2 and CNOTA1→A3 , on the state
1√
2 (|0〉A1 + |1〉A1)|0〉A2|0〉A3 , where, in the notation CNOTK→J , K is the control

qubit and J is the target qubit. We use the same notation for pairwise CNOT
gates between qubits in two memory banks K and J . This ideally leads to the
desired codeword state

1√
2

(|000〉A + |111〉A) = 1√
2

(|0̃〉A + |1̃〉A). (3.3)

The above state can, in principle, be obtained probabilistically as well, by repeat-
ing a preparation procedure until success. Given that the preparation is a local
process, it can possibly be repeated at a sufficiently fast rate to ensure success in
a reasonable time.

Step 2 In order to generate |Φ̃+〉A,B, we share 3 bipartite maximally entangled
states between the corresponding memories in memory banks a and b, shown by
small yellow circles in Fig. 3.1(a), co-located, respectively, with memory banks A
and B. These Bell states, shown by yellow lines in Fig. 3.1(a), can be distributed
in advance, or in parallel with step 1. The implementation of this process and the
quality of the generated entangled states depend on the specifics of the employed
experimental platform. Normally, this step is mediated with photons, hence is
often probabilistic and needs to be heralding.

Step 3 We use the distributed bipartite entangled states to implement three
remote CNOT gates, see Fig. 3.2 and its caption for further detail, which are
applied transversally, leading to the desired state for the elementary link:

1√
2

(|0̃〉A + |1̃〉A)⊗ |0̃〉B
CNOTA→B−→ |Φ̃+〉A,B. (3.4)

Once the encoded entangled states are distributed across all elementary links,
the next step is to perform ES operations at all intermediate stations to extend
the entanglement to the entire link. For instance, in Fig. 3.1(b), in order to
establish multipartite entanglement between memory banks A and D, we per-
form an encoded Bell measurement on memory banks B and C. This, due to
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Figure 3.2: Circuit for remote CNOT gate Jiang et al. [2007] between a qubit c
at node Ai, as control qubit, and a qubit t at node Bi, as the target qubit. Using
the maximally entangled state shared between ai and bi nodes, and by applying
two local CNOT gates on Ai-ai and bi-Bi pairs, we can effectively implement a
remote CNOT gate on Ai-Bi. Note that this requires single-qubit measurements
on ai and bi, classical communication, and local single-qubit rotation on Ai and
Bi.

the transversality 1 of the employed code, is simply done by performing three
individual BSMs on the corresponding pairs of physical qubits in B and C Jiang
et al. [2009]. More specifically, such BSMs can be realized deterministically by
applying CNOTBi→Ci , followed by a projective X-measurement on qubit Bi and
Z-measurement on qubit Ci, for i = 1, 2, 3. In the ideal case, right before the
single-qubit measurements, the initial state of the two links would then undergo

1Roughly speaking, transversality is a property which ensures that a single error occurred
anywhere in the encoded block causes at most one error per other block of the code. In essence,
this property enables encoded gates to be constructed in a bitwise fashion and offers a general
design principle for finding fault-tolerant circuits. For detailed explanation, please refer to
Nielsen & Chuang [2002].
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the following transformation Jiang et al. [2009]

|Φ̃+〉A,B ⊗ |Φ̃+〉C,D

= 1
2(|Φ̃+〉A,D ⊗ |Φ̃+〉B,C + |Φ̃−〉A,D ⊗ |Φ̃−〉B,C

+ |Ψ̃+〉A,D ⊗ |Ψ̃+〉B,C + |Ψ̃−〉A,D ⊗ |Ψ̃−〉B,C)
CNOTB→C−→ 1

2(|Φ̃+〉A,D ⊗ |+̃〉B|0̃〉C + |Φ̃−〉A,D ⊗ |−̃〉B|0̃〉C

+ |Ψ̃+〉A,D ⊗ |+̃〉B|1̃〉C + |Ψ̃−〉A,D ⊗ |−̃〉B|1̃〉C), (3.5)

where |Φ̃±〉A,D = 1√
2 (|0̃〉A|0̃〉D ± |1̃〉A|1̃〉D), |Ψ̃±〉A,D = 1√

2 (|0̃〉A|1̃〉D ± |1̃〉A|0̃〉D)
and

|±̃〉B = 1√
2

(|0̃〉B ± |1̃〉B)

= 1
2(| ± ±±〉B + | ± ∓∓〉B

+ | ∓ ±∓〉B + | ∓ ∓±〉B), (3.6)

with |±〉 = (|0〉 ± |1〉)/
√

2 for a single qubit.
By measuring the states of Bi and Ci, i = 1, 2, 3, in, respectively, X and

Z basis, we project the state of A and D in Eq. (3.5) into one of the encoded
Bell states. This becomes possible because all terms in |+̃〉 (|−̃〉) have an odd
(even) number of |+〉 states, and measuring |0̃〉 (|1̃〉) ideally results in three |0〉
(|1〉) states. In the non-ideal case, it is possible that, instead of three identical
outputs, we get, for instance, two |0〉s and one |1〉. But, then, because of the
employed error correction scheme, we can still identify which Bell state is the
most likely outcome of the ES process. Note that, by accounting for the erroneous
cases, there will be 64 different combinations of measurement outcomes, and each
of them will uniquely lead to one type of encoded Bell pair. Even though the
measurement outcomes at each middle station should be announced to Alice and
Bob to determine the Pauli frame for the encoded Bell pair shared by them in the
end, this scheme would not rely on any communication among middle stations,
which reduces the time scaling from polynomial to polylogrithmic Muralidharan
et al. [2016]. For applications, such as QKD, that can deal with Pauli frame
adjustments at the post-measurement stage, this scheme also lowers the waiting
time, and correspondingly the required coherence time for the memories.
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After all ES operations, an encoded entanglement is ideally distributed between
the two end users. In order to do QKD, or other possible applications, the final
encoded entangled states can be decoded into a bipartite state. The decoding cir-
cuit employed in this work is simply the reverse process of the encoding procedure
for three-qubit repetition codes Bratzik et al. [2014], as depicted in Fig. 3.3. Alice
and Bob each apply this circuit to their three qubits in hand, and measure two of
them. They flip the first qubit only if they measure |1〉 in the other two qubits.

The above repeater protocol implements an implicit entanglement distillation
by using error correction techniques. This is partly done at the ES stage and is
supplemented by the final error correction that happens at the decoding stage.
But, for protocols such as QKD, which can cope with discarding data if needed,
the other possibility is to use the information available at the ES stations to
discount the end-to-end distributed state if an error has been detected at any
intermediate stage. By doing so, we only keep the cases for which we are more
confident that we have got the desired Bell state, and, effectively, distill the
entanglement generated by the repeater chain. So long as the chance of error is
low, this still offers a nearly deterministic solution for quantum repeaters.

In this work, we will examine how the above idea can improve the performance
of QKD systems that run over such repeaters. It turns out that the secret key rate
of such QKD systems is dominated by the post-measurement state corresponding
to when no error has been detected at ES and decoding stages. Nevertheless, we
still need to calculate the effect of errors on system performance. Detecting no
errors by our error correction scheme does not guarantee the absence of errors.
The decoded state is still affected by errors not detectable by our error correction
scheme, some of which would correspond to higher order error terms that may
not be properly accounted for if our analysis is not sufficiently accurate. In the
following, we first summarise the error models used in our analysis. We then
describe the problem in the context of previous research on this subject.

3.2.2 Error models

Three major imperfections are considered in our analysis:
(1) Imperfections in initial Bell states: The originally distributed Bell states,
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Figure 3.3: Quantum circuit for decoding 3-qubit repetition codes Bratzik et al.
[2014]. Alice and Bob will both use the same circuit for decoding, in which they
flip their first qubit if they measure |1〉 in all other qubits.

i.e., yellow links in Fig. 3.1(a), are not necessarily perfect. We model them as
Werner states Werner [1989b] with fidelity F0:

ρW = F0|φ+〉〈φ+|+ 1− F0

3 (I4 − |φ+〉〈φ+|), (3.7)

where |φ+〉 is given by Eq. (2.1) and I4 is a 4× 4 identity matrix.
(2) Gate imperfections: We employ the generic model for imperfect two-qubit
operations introduced in Ref. Briegel et al. [1998]. The unitary operation Ui,j,
acting on qubits i and j, is modelled by

ρout = (1− β)Ui,jρ
inU †i,j + β

4Tri,j(ρin)⊗ Ii,j, (3.8)

where ρin (ρout) is the input (output) before (after) the two-qubit gate Ui,j, β is
the gate error probability and Ii,j is the identity matrix for qubits i, j. The first
term in Eq. (3.8) models the error-free component, whereas the identity operator
in the second term, corresponding to the case of an error, fully and uniformly
decoheres the state of qubits i and j. The main two-qubit gate used in this
chapter is CNOTi→j.
(3) Measurement imperfections: The projective measurements with errors to
states |0〉 and |1〉 are, respectively, represented by

P0 = (1− δ)|0〉〈0|+ δ|1〉〈1| and
P1 = (1− δ)|1〉〈1|+ δ|0〉〈0|, (3.9)

where δ is the measurement error probability. Similar measurement operators,
P±, are used for projective measurement in |±〉 basis.
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In our analysis, we neglect other types of errors that may be present in a real
setup. For instance, we assume all single-qubit unitary operations, i.e., bit-flip
(X gate) or phase-flip (Z gate) rotations, are perfect. In the case of QKD as
an application, this is justified as these operations can typically be implemented
in the classical post-processing stage. In order to simplify the analysis, we also
assume that quantum memories with sufficiently long coherence times are avail-
able. Considering that the waiting time for encoded QRs is comparatively low,
we neglect the memory decoherence effects in this chapter. However, this effect
will be discussed in more detail in Chapter 5, when we apply this QR structure
to NV center platforms.

3.2.3 Problem Description

In this work, we study the performance of a QKD system that is run over an
encoded QR setup with three-qubit repetition codes by accounting for errors in
the setup as presented above. We consider an entanglement-based QKD setup
that relies on BBM92 protocol Bennett et al. [1992]. We use an asymmetric im-
plementation of the protocol where the two end users, Alice and Bob, choose the
two measurement bases, i.e., Z and X bases, unevenly, in order to increase the
basis-sift factor Lo et al. [2005a]. Our objective is to assess the dependence of
the secret key generation rate in our QKD system on relevant error parameters.
To this end, we first need to calculate the secret key generation rate per decoded
state, ρdec, shared between Alice and Bob. In the asymptotic regime, this para-
meter, known as secret fraction Bratzik et al. [2014], is given by Shor & Preskill
[2000]

r∞(ρdec) = max{0, 1− h(ez)− h(ex)}, (3.10)
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where h(p) = −plog2p− (1− p)log2(1− p) is the binary Shannon entropy, and

ez = Tr(PAlice
0 PBob

1 ρdec) + Tr(PAlice
1 PBob

0 ρdec)
= (δ2 + (1− δ)2)(〈ψ+|ρdec|ψ+〉+ 〈ψ−|ρdec|ψ−〉)
+ 2δ(1− δ)(〈φ+|ρdec|φ+〉+ 〈φ−|ρdec|φ−〉)

ex = Tr(PAlice
+ PBob

− ρdec) + Tr(PAlice
− PBob

+ ρdec)
= (δ2 + (1− δ)2)(〈φ−|ρdec|φ−〉+ 〈ψ−|ρdec|ψ−〉)
+ 2δ(1− δ)(〈φ+|ρdec|φ+〉+ 〈ψ+|ρdec|ψ+〉) (3.11)

are, respectively, the observed error rates in Z and X bases. |φ±〉 and |ψ±〉 are the
corresponding Bell states in the joint space of Alice and Bob, given by Eq. (2.1)
and Eq. (2.2), respectively. Measurement operators are defined according to
Eq. (3.9) with additional superscripts to specify the affected qubit.

In order to understand the effect of various system parameters on the final
secret key rate, we simulate the above setting in the nominal mode of operation
where no eavesdropper is present. In this case, ρdec will then be given by the
shared state between Alice and Bob after decoding, from which we can calculate
the error parameters ez and ex in the asymptotic regime, where an infinite number
of entangled states are shared among users. Our problem would then reduce to
specifying what ρdec is in a typical error-prone QR setting with encoding.

While at first glance this may look like a quite straightforward problem, in
practice, we face some computational challenges. The obvious way to calculate
the final entangled state is to obtain the encoded entangled state at each element-
ary link and then apply ES in a nested way. For a 3-qubit repetition code, the ES
operation involves 12 qubits, so our operation is on a space with dimension 212.
This may sound manageable, but certainly not scalable. The next simplest code,
i.e., 5-qubit repetition code, requires operation on 20 qubits, or a space of dimen-
sion 220. It is easy to see how problem can get out of hand quite quickly. Proper
analytical and numerical techniques are then needed to handle this problem.

Previous work on this subject Bratzik et al. [2014], Jiang et al. [2009] often
rely on various approximations to solve the problem. The original work in Jiang
et al. [2009] makes some assumptions on how the initial states are prepared,
based on which they estimate how much error, to the first order, is expected in
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each qubit. They then use their method to approximate the fidelity of the final
state. While a good approach to prove the scaling improvement offered by their
proposed scheme, it falls short of the accurate scheme that we need for key rate
calculations. A follow-up paper by Bratzik et al. Bratzik et al. [2014] attempted
to fill this gap by approximating the actual state that one would obtain for the
decoded state of a 3-qubit repetition code by accounting for imperfections in the
CNOT gates as well as the initial Bell states. They use several approximations
to achieve this goal:

• They model the error in a cascade of operations by separating the ideal
and the first-order error term in the output from the rest, where the rest
is modelled by a generic identity operator at the output. The first-order
error term is modelled by the identity operator for the involved qubits in
the operation.

• They find a set of operations that will be corrected by the BSM operation,
in addition to what may be corrected by the employed code. Based on this,
they find a set of correctable states that will be mapped to the desired en-
coded Bell states. They use these states to crudely calculate the probability
of obtaining the desired state after a number of ES operations, and assume
that, in all other cases, the identity operator is obtained.

Based on the above assumptions, they would then conclude that the considered
encoded QR cannot beat the original QR protocol in Briegel et al. [1998] in terms
of the achievable key rate or the required gate error parameters.

In this work, we improve upon the approach taken in Bratzik et al. [2014] in
several respects. First, we improve the accuracy of the calculations by accounting
for errors in each gate individually rather than modelling the overall effect, for
a cascade of gates, in a crude way. Our approach enables us to show that the
encoded QRs are resilient to larger margins of error than previously thought.
It is also easier to apply our method to other codes than the 3-qubit repetition
code considered in Bratzik et al. [2014], as some of their steps are specific to this
employed code. As such, extending their approach to other code structures is not
necessarily straightforward. Here, we employ an analytical approach that relies on
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the linearity of the quantum circuits and the transversality of the employed code.
In principle, our approach can be applied to other code structures as long as they
pose the transversality property. Finally, an important element of our key rate
analysis is to use the information reported by the middle nodes of the repeater
chain at its end nodes. This allows us to classify the decoded states, based on the
measurement results at the ES and decoding stages, resulting in a considerable
improvement of system performance. This also reduces the complexity of the
corresponding key rate analysis. Overall, this work enables us to obtain a more
accurate picture of the requirements of such systems in practice, and whether,
any simplified version of them, can realistically be built with current technologies.

In the following sections, we will first use the simplest repeater setup, where
only one swap operation is performed, to describe our methodology, and to justify
certain simplifying assumptions that we make in neglecting the less dominant
terms. Then, we will extend our results to higher nesting levels and obtain the
secret key rate in our setup as a function of various system parameters. We will
also compare our calculation results to the one show in Bratzik et al. [2014].

3.3 Methodology and Performance: Nesting level
one

In this section, we look at the simplest repeater setup with only one middle
node corresponding to nesting level one. The initial objective here is to find a
scalable methodology by which the final entangled state shared by Alice and Bob
can be calculated. We then find the secret fraction corresponding to different
decoded states conditioned on the measurement results at the ES and decoding
stages. This allows us to better understand how each term and each imperfection
affect system performance. This guides us toward finding simple, but still tight,
approximations that reduce the complexity of the problem in hand.

3.3.1 Linearization

Our first objective is to develop a methodology to calculate the joint state between
memory banks A and D, ρAD, in Fig. 3.1(b), after one round of entanglement
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swapping. We first explain this procedure when the initial codeword states in
memory banks A–D are perfectly encoded as follows

ρin
A = 1

2(|000〉A + |111〉A)(A〈000|+ A〈111|)

= 1
2[(|0〉A〈0|)⊗3 + (|0〉A〈1|)⊗3

+ (|1〉A〈0|)⊗3 + (|1〉A〈1|)⊗3],
ρin

B = |000〉B〈000| = (|0〉B〈0|)⊗3, (3.12)

where (|i〉K〈j|)⊗3 ≡ |i〉K1〈j| ⊗ |i〉K2〈j| ⊗ |i〉K3〈j|, for i, j = 0, 1. The initial state
for C and D, ρin

C and ρin
D, are, respectively, similar to that of A and B. In this

case, we can first find the joint state ρAB (ρCD) of memory banks A and B (C
and D) after the remote CNOT operation, and then apply the ES operation. In
this case, we have

ρr
AB = U r

ABTrab[M r
RCERC(ρin)]U r

AB

Tr[M r
RCERC(ρin)] , (3.13)

where Trab is the partial trace over memory banks a and b, ERC is the combination
of all remote CNOT gate operations on Aa and bB memory banks, M r

RC is
the collective projective measurement operator at this step corresponding to the
pattern of measurement results given by r, and U r

AB is the corresponding Pauli
frame correction in Fig. 3.2. In Eq. (3.13), the input state is given by

ρin = ρin
A ⊗ ρin

B ⊗ ρW
ab , (3.14)

where ρW
ab = ρW

a1b1⊗ρ
W
a2b2⊗ρ

W
a3b3 as given by Eq. (3.7) for the subsystems specified

by the subscripts. The quantum operation ERC is also given by

ERC = E1 ⊗ E2 ⊗ E3, (3.15)

with, for i = 1, 2, 3,
Ei = EAiai ⊗ EbiBi , (3.16)

where EKJ is given by the transformation in Eq. (3.8) for the gate CNOTK→J .
As mentioned earlier the direct approach of calculating ERC(ρin) requires deal-

ing with a space of dimension 212 even for the simple 3-qubit repetition code
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considered here. In order to simplify the process and reduce the time required for
running the code, we use the linearity and transversality of operator ERC and its
tensor product form in Eq. (3.15). To be more precise, using Eq. (3.12), we have

ERC(ρin) = 1
2
∑

j,k=0,1

3⊗
i=1

Ei(|j〉Ai〈k| ⊗ |0〉Bi〈0| ⊗ ρW
aibi

). (3.17)

By the above trick, we reduce the computational complexity of the problem to
effectively that of a 4 qubit system in each row comprising of qubits Ai, ai, bi,
and Bi, for i = 1, 2, 3. For each component of the input state, we just need to
calculate the output for one row, extend it to all rows by a simple tensor product,
and then sum over all possible input components.

In order to calculate ρr
AB in Eq. (3.13), we also need to apply measurement

operators. It turns out, however, that similar to a teleportation scheme, once
unitary corrections, which are assumed error free here, are applied, the output
state will not be a function of the measurement outcome. In fact, one can see
in Fig. 3.2 that for any Bell state at aibi input, the chance of having |0〉 and
|1〉, at each input is identical. This probability does not change by the unitary
operation of CNOT gates, or the identity operator in case of an error, hence right
before Z and X-basis measurements on aibi, all four possible outcomes are equally
likely. Without loss of generality, we then drop the superscript r and calculate the
output state for the particular r corresponding to |0+〉aibi , i = 1, 2, 3, for which
no Pauli frame correction is needed. We can then apply relevant normalisation
factors to Eq. (3.17) to find the joint state ρAB of memory banks A and B, and
similarly C and D, after remote CNOT operation as follows:

ρAB = 1
2
∑

j,k=0,1

3⊗
i=1

ρjk
AiBi

, (3.18)

where
ρjk

AiBi
= 4Traibi [P ai

0 P
bi
+ Ei(|j〉Ai〈k||0〉Bi〈0|ρW

aibi
)]. (3.19)

The next step is to model the ES stage, which can also be thought of certain
gate operations, represented collectively by EES, followed by some single-qubit
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measurements. In this case, the joint state of memory banks A and D, upon
observing a measurement outcome m on B and C, is given by

ρm
AD = Um

ADTrBC [Mm
BCEES(ρin

ES)]Um
AD

pm

, (3.20)

where pm = Tr[Mm
BCE(ρin

ES)], Mm
BC is the collective projective measurement op-

erator on memory banks B, in X basis, and C, in Z basis, corresponding to the
measurement result m, Um

AD is the corresponding Pauli frame correction, and the
input state is given by

ρin
ES = ρAB ⊗ ρCD, (3.21)

with
EES =

3⊗
i=1

EBiCi . (3.22)

Using the linear form of the input states as in Eq. (3.18), we then obtain

EES(ρin
ES) = 1

4
∑

j,k=0,1

∑
n,l=0,1

3⊗
i=1

EBiCi(ρ
jk
AiBi
⊗ ρnl

CiDi
), (3.23)

in which, again, the BSM operation is identical and separable in all rows, and
only needs to be calculated once per row in our simulation code. Basically, by
breaking the codeword in Eq. (3.12) into its individual terms, we have broken the
entanglement that exists across different rows of Fig. 3.1(b) and can now deal
with the state evolution in each row separately. The entanglement will be put
together where in the end we add all corresponding terms before applying the
decoding operation.

This whole process, including the imperfect measurement and decoding ones,
has analytically been implemented in Mathematica to provide us with an exact
description of ρm

AD, and its corresponding decoded states, for the first nesting
level. The measurement part is straightforward as it also can be implemented
horizontally along each row according to Eq. (3.9), by which B registers are meas-
ured in X basis and C memories are measured in Z basis. That is, in Eq. (3.20),
we have

TrBC [Mm
BCEES(ρin

ES)] = 1
4
∑

j,k=0,1

∑
n,l=0,1

3⊗
i=1

ρjknl
AiDi

(mi), (3.24)

46



3.3 Methodology and Performance: Nesting level one

where
ρjknl

AiDi
(mi) = TrBiCi [Mmi

BiCi
EBiCi(ρ

jk
AiBi
⊗ ρnl

CiDi
)], (3.25)

with Mm
BC = ⊗3

i=1 M
mi
BiCi

and mi representing the measurement outcome in row
i. The decoding process has been implemented by modelling the CNOT gates in
the decoding circuit of Fig. 3.3 according to Eq. (3.8). By referring to the whole
decoding procedure by operator Edec, we can obtain the final decoded state as
follows

ρdec
m,d =

Ud
A1D1TrA2A3D2D3 [Md

decEdec(ρm
AD)]Ud

A1D1

pd|m
, (3.26)

where pd|m = Tr[Md
decEdec(ρm

AD)],Md
dec is the corresponding measurement operator

to outcome d at the decoder ends, and Ud
A1D1 is the corresponding correction

operator.
Computationally speaking, in our method, we are mostly dealing with only

4-qubit systems. This considerably simplifies analytical calculations. There are,
however, some exceptions to this. For the 3-qubit repetition code, the last step
in Eq. (3.26) would involve dealing with a 6-qubit system, which is manageable.
As the code grows in size, full implementation of the decoding circuit, which
requires handling a multipartite entangled state in its input, would become more
challenging. In that case, our scheme would still be helpful if we ignore the errors
in the decoding circuit. Alternatively, one can think of simpler decoder structures
that only rely on single-qubit measurements, which we will discuss in more detail
in the next chapter. Imperfect encoding could also cause additional complexity
in our technique. In the next subsections, we assess the importance of both
encoding and decoding modelling in our analysis. But, before that, let us first
explore which measurement outcomes would impact our secret key generation
rate the most.

3.3.2 Good, bad, and golden states

The procedure described above can be used to find the decoded state, ρdec
m,d, for

any possible outcome m of the ES stage and d of the decoding stage. There are,
however, 64 possible values for m and 16 for d, each of which could result in a
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different decoded state, hence different secret key fraction for all those instances
that we have got the same measurement outcomes.

To calculate the total secret fraction, we need to average over all possible
outcomes as follows

rtotal
∞ =

∑
m,d

pm,dr
m,d
∞ , (3.27)

where
pm,d = pmpd|m (3.28)

is the probability of getting the measurement outcomes m and d and rm,d
∞ =

r∞(ρdec
m,d) is the secret fraction obtained from Eq. (3.10) and Eq. (3.11).

Note that in Eq. (3.27) we make full usage of the available measurement
information, m and d, from earlier steps. This is expected to give us a higher
key rate than the key rate that can be calculated from the state averaged over
different ES and/or decoder outcomes. This is because of the convexity of the
secret fraction formula in Eq. (3.10) as a function of ex and ez. Figure 3.4 confirms
this assertion by comparing the secret fraction for the following four cases at
δ = 0 and F0 = 0.98 versus β 1: (i) when we use the full information in m and
d as proposed in this work (solid line); (ii) when we assume the users have no
knowledge of m, but know d, which can be locally obtained by each user (dash-
dotted line). In this case, we first find the average ES state over all possible
values of m, and then pass it to our decoder circuits; (iii) when the users have
the information from the ES stage, but the decoder output d will only be used
internally in the decoder to correct the shared state (dashed line). In this case,
the total secret fraction is given by ∑m pmr∞(ρm), where ρm ≡

∑
d pd|mρ

dec
m,d; and

(iv) when the users do not know of eitherm or d before doing QKD measurements
(dotted line), i.e., when the decoded state is given by ρavg = ∑

m,d pm,dρ
dec
m,d. In

this case, the whole repeater chain and decoders are seen as a black-box channel
by the users. As can be seen, by accounting for all different outcomes separately,
we can tolerate, respectively, roughly three and two times larger values of β, as
compared to the cases where we use ρavg or ρm for secret key extraction. Even
if we only use the information at the decoder units, which is at the same place

1For the definition of these three parameters, please refer to Eqs. (3.7-3.9), respectively.
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Figure 3.4: Secret fraction at F0 = 0.98 and δ = 0 for (i) when we fully use the
knowledge of m and d, as given by Eq. (3.27) (solid blue curve), versus (ii) when
only d is known to the users, but not m (dash-dotted green curve), or (iii) when
only m is known to the users, but not d (dashed amber curve), or (iv) when none
of m and d is used for key extraction (dotted red curve).

as the users’ locations, we can obtain higher key rates than cases (iii) and (iv).
This shows the importance of the internal information across the repeater chain
and the user boxes in our QKD system. Note that a similar observation has been
made for third generation quantum repeaters, and how accounting for syndrome
information can boost system performance Namiki et al. [2016].

The key rate calculation in Eq. (3.27) can be cumbersome as many terms need
to be considered. There are several ways by which we can group different terms
in Eq. (3.27) together to reduce the required computation. First, note that, for
QKD applications, the secret key analysis is independent of which Bell state is
the target state as they are all the same up to local Pauli rotations. Furthermore,
the Pauli frame adjustments needed after the BSMs consists of a series of single-
qubit operations, which, in our analysis, are assumed perfect. Thus, in this work,
we calculate the secret fraction for only |Φ̃〉A,D as the ES measurement outcome,
and use the same result for other encoded Bell states in Eq. (3.5). This reduces
the number of relevant ES outcomes to 16 corresponding to the measurement
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results {| + ++〉B, | + −−〉B, | − +−〉B, | − −+〉B}, at memory bank B, and
{|000〉C , |001〉C , |010〉C , |100〉C}, at memory bank C. Further investigation shows
that the four different outcomes at memory bank B do not affect the generated
secret fraction as long as the measurement results at memory bank C are the same.
We can then only limit ourselves to the specific measurement result | + ++〉B,
which further reduces the number of relevant ES outcomes to 4.

Based on the above discussion, we recognise two generic groups of output
states, after the ES stage, which we refer to as good versus bad states. For
|Φ̃〉A,D as the ES measurement outcome, the good ES states correspond to the
measurement outcome |000〉C where no bit flip has been detected at the ES stage,
whereas the bad ES states correspond to the measurement outcomes |001〉C ,
|010〉C , or |100〉C in which we have detected a bit-flip error at the ES stage.

For both good and bad states, we still have 16 cases to consider for the decoder
output. We refer to a decoded good state as a golden state if the two users
detect no error at their decoder circuits. This corresponds to the measurement
outcome dg = |00〉A2A3 |00〉D2D3 . The probability of getting a golden state, and
its corresponding total secret fraction is then given by

pg = 16pmg ,dg and rg
∞ = pgr

mg ,dg
∞ , (3.29)

where mg = |+++〉B|000〉C , and the factor 16 accounts for the four possible Bell
states at the ES stage, and the four outcomes of the B register. Similarly, we have
a group of good, but not golden, states, whose corresponding total probability of
occurrence and secret fraction are given by

pgng = 16
∑

d 6=dg

pmg ,d and rgng
∞ = 16

∑
d6=dg

pmg ,dr
mg ,d
∞ . (3.30)

Finally the corresponding probability and secret fraction to bad states are given
by

pb = 48
∑

d

pmb,d and rb
∞ = 48

∑
d

pmb,dr
mb,d
∞ , (3.31)

where mb = |+ ++〉B|100〉C , and the factor 48 covers three different locations of
a single error in register C, each at 16 different cases of Bell state and B register
outcomes as in golden states. The total secret fraction is then given by

rtotal
∞ = rg

∞ + rgng
∞ + rb

∞. (3.32)
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One of the key results of this work is to show that, in most practical cases,
the golden states are the main positive contributor to the key rate formula in
Eq. (3.32), that is, rtotal

∞ ' rg
∞. This result allows us to considerably reduce the

complexity of the problem in that, instead of accounting for all possible outcomes
at different parts of the repeater chain, we only focus on a single class of states.

Here, we demonstrate how different kinds of states contribute to the key
rate. Figure 3.5 shows the total secret fraction and its three main compon-
ents in Eq. (3.32) for different parameter regimes, for the initial codeword states
as in Eq. (3.12). We make several interesting observations from this figure, as
summarized below:

• Observation 1: At δ = 0, only golden states can generate positive key
rates. This has been shown in Figs. 3.5(a)-(b). In Fig. 3.5(a), we have
assumed that the initial Bell states are ideal and that there is no measure-
ment error. We have then plotted the secret fraction versus the CNOT gate
error parameter, β. It can be seen that, in this case, the golden state is the
only contributor to the total secret fraction. It turns out that for all other
states the phase error rate is at its worst possible value of 0.5 at which no
secret key can be generated. We have a similar observation in Fig. 3.5(b),
where, now, β = 0, and F0 is a variable. In this case, our analysis indicates
that most decoder outcomes simply never happen. But, even if they do,
except for golden states, for all other terms ex = 0.5. To see why this hap-
pens we can look back at the ideal state obtained after the ES operation in
Eq. (3.5). In order to detect an error state such as | + ++〉B|100〉C at the
ES stage, we can either have an error corresponding to XC1 , which results
in |φ+〉 after decoding, or something like ZB1XC1 , which results in |φ−〉. If
we trace back these errors, using known circuits that convert an error after
a CNOT gate to errors before it Bratzik et al. [2014], we can see that such
errors, respectively, originate from |ψ+〉 and |ψ−〉 somewhere earlier in the
circuit. In the case of imperfect Bell states, this is caused by the terms in
the input Werner state in Eq. (3.7). The identity operator in the imperfect
CNOT gate can similarly introduce such states in the circuit resulting in
a similar behavior. In both cases, the weight of |ψ+〉 and |ψ−〉 is the same
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at the input mixture, resulting in an equal mixture of |φ+〉 and |φ−〉 after
decoding. At δ = 0, according to Eq. (3.11), this results in ex = 0.5.

• Observation 2: At δ 6= 0, non-golden states can contribute to the total
secret fraction but at comparatively much lower values. This can be seen
from Figs. 3.5(c)-(d). In Fig. 3.5(c), we have fixed β and F0 to their ideal
values and have plotted the secret fraction for different values of δ. This
is the first case in which rgng

∞ (dotted line) and rb
∞ (dash-dotted line) take

nonzero values for some values of δ. The reason for this is that if we detect
an error at the ES stage, for instance, by observing |100〉C , because of
measurement errors, the actual state in hand, according to Eq. (3.5), is
most likely still the ideal state. Most cases for the decoder output are
also similarly benign. The errors that may happen at the remote CNOT
stage could equally result in bit or phase-flip errors, both with a probability
scaling with δ. This allows us to have positive key rates for bad, as well as,
good, but not golden, states. At low values of δ, however, the overall chance
of obtaining such states is much lower than that of the golden states, which
makes the total secret fraction still approximately the same as rg

∞. Finally,
in Fig. 3.5(d), we have verified this finding when β and δ are nonzero. We
have chosen δ = 0.01 as it gives a high rate for bad states in Fig. 3.5(c). We
observe that the key rate for bad and good-but-not-golden states is nonzero
for small value of β. This suggests that so long as the phase error rate
is dominated by the measurement error we can get a positive key rate for
non-golden states. But, once β increases to the level that the dominant
source of phase error is what we discussed in Observation 1, then no secret
keys can be extracted from such terms. At δ = 0.01 the onset of dominance
of CNOT errors is just before β = 0.01. At δ = 0.001, we have verified
that the golden state is the only contributor to the key rate for β > 0.0046.
Given that in practice it is easier to have a low value for δ as compared to
β, this observation suggests that for sufficiently small δ, the errors in the
two-qubit gates would be the dominant factor in determining the final key
rate. The latter can reliably be calculated from golden states in such cases.
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• Observation 3: At cut-off point, the golden states are the main contributor
to the key rate. Even though the non-golden states can contribute to a small
extent to the key rate within some range of parameters, their contribution
effectively ceases to zero by the time that we get to the cut-off point for
our QKD system. This suggests that to find such maximum allowed error
rates, one can reliably only calculate the key rate for the golden states.

• Observation 4: The measurement error δ has the lowest cut-off point
ahead of β and 1− F0. According to Fig. 3.5(c), at δ ≈ 0.023, the key rate
drops to zero. This happens at β ≈ 0.07, in Fig. 3.5(a), and F0 ≈ 0.76
in Fig. 3.5(b). This could simply be because of the number of measure-
ment operations in the whole setup exceeding the number of CNOT gates.
But, this also suggests that unless δ is sufficiently small, its effect cannot
necessarily be neglected in a reliable analysis of the system.

Based on the above observations, in the remainder of this chapter, we only
calculate rg

∞. This is a tight lower bound on rtotal
∞ , in line with the common

practice in calculating the key rate in QKD. More importantly, this suggests
a practical distillation technique in such encoded repeaters, in which one can
simply ignore the output if any error has been detected at the ES or decoding
stage. This could substantially simplify the implementation of such systems in
their early demonstrations. Under the assumption that rg

∞ closely follows rtotal
∞ ,

this distillation technique is more effective than relying on the error correction
capabilities of the code. That is, in practical QKD settings, we may only need to
use the error detection features of a code rather than its error correction power.

3.3.3 The effect of the encoding and decoding circuits on
the secret fraction

In this section, we study how errors in encoding and decoding circuits would affect
the achievable secret fraction. Thus far, we have only considered the perfectly
encoded states as given by Eq. (3.12), which can be a reasonable assumption if
one uses probabilistic techniques to initialize the memories. If, however, one uses
CNOT gates to create such states deterministically, we should also account for
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Figure 3.5: Secret fraction as a function of different error parameters at (a)
F0 = 1 and δ = 0; (b) β = 0 and δ = 0; (c) F0 = 1 and β = 0; and (d) F0 = 1 and
δ = 0.01. In all graphs, the top solid blue curve is for the total secret fraction,
rtotal
∞ , followed by the dashed golden curve, rg

∞, for golden states, the dotted green
curve rgng

∞ for good, but not golden, states, and the dash-dotted red curve, rb
∞,

for bad states. In (a) and (b), the latter two terms are zero, so the dashed golden
curve overlaps with the solid blue one.

errors in such gates. In this case, the initial codeword states for memory bank A,
as an example, is given by Bratzik et al. [2014]

ρin
A = ρcode

A + ρother
A , (3.33)

where

ρcode
A = 1

2[1 + β(β/2− 5/4)](|000〉A〈000|+ |111〉A〈111|)

+ 1
2(1− β)2(|000〉A〈111|+ |111〉A〈000|) (3.34)
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and

ρother
A = β

4 (3/2− β)(|101〉A〈101|+ |010〉A〈010|)

+ β

8 (|001〉A〈001|+ |100〉A〈100|)

+ β

8 (|110〉A〈110|+ |011〉A〈011|). (3.35)

The terms in Eq. (3.34) are effectively the encoded state in Eq. (3.12) although
with modified weights to account for CNOT errors. Our linearization technique
is easily applicable to these terms as they are still in the desired tensor product
form of having the same input qubit in all rows. To apply our technique to the
other terms in Eq. (3.35), we need to consider many more combinations of input
states, which will increase the complexity of the simulation especially at higher
nesting levels. Here, through the comparison of the secret fraction for different
input states, we show that the coded part in Eq. (3.34) plays the major role in
determining the secret fraction, based on which we can neglect the other terms.
This will crucially simplify the code for further simulation. Note that the above
states have been obtained by first applying EA1A2 and then EA1A3 , as the two
operators do not commute for nonzero values of β.

Figure 3.6 shows the secret fraction versus β at F0 = 0.98 and δ = 0 in several
different cases. The top three curves (solid lines) give the secret fraction if we
neglect all sources of error at the decoder stage, whereas the next batch of three
curves (dashed lines) account for errors in the decoder circuit. In each batch, we
consider three cases: (i) the encoding circuits are all perfect (top blue curves),
that is, we assume β = 0 in these modules; (ii) The encoding process is modelled
by the imperfect encoded state given in Eq. (3.33) (the bottom orange curves);
and (iii) The encoding process is modelled by the state ρcode

A in Eq. (3.34) (green
curves in the middle of the circled batches). Two important observations can be
made from this graph. First, it is clear that the imperfections in the decoder
module is far more important than the encoder one. This is mainly because
we have more chances to detect errors originated from the encoder than that of
decoder. An error caused by encoding imperfections may be picked up at the
entanglement swapping or decoding stage, and removed by our post-selection
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Figure 3.6: Secret fraction versus β at F0 = 0.98 and δ = 0. The solid lines
correspond to error-free decoding circuits, and the dashed lines correspond to
imperfect decoding circuits. The top blue curve in each batch corresponds to ideal
encoding; the lower orange lines correspond to imperfect encoders as modelled by
Eq. (3.33), and the middle green lines correspond to the coded part of the encoded
state given by Eq. (3.34). In all cases the secret fraction is lower bounded by that
of the golden states. The black dotted curve is the corresponding graph obtained
in Bratzik et al. [2014] for the same parameter values for their model of imperfect
encoders and decoders.

technique, whereas errors caused by decoder, if undetected, can directly affect
the error rate. For a realistic analysis of the system, it will then be crucial to
account for decoder errors, as we do in this chapter. The second point is that,
especially in the case of imperfect decoders, which is of practical interest, the
effect of ρother

A on the secret fraction is effectively negligible, as the curve obtained
from ρcode

A very closely follows that of the imperfect encoder modelled by the full
state in Eq. (3.33). In the rest of this work, we will then only account for ρcode

A

when we model imperfections in the encoders. As mentioned earlier, this will
substantially simplify our analysis as we only need to replace ρjk

AiBi
in Eq. (3.19)

with (Cjk)1/3ρjk
AiBi

, where C00 = C11 = 1+β(β/2−5/4) and C01 = C10 = (1−β)2.
In Fig. 3.6, we have also compared our results with Fig. 6 in Bratzik et al.

[2014], which, for the same parameters, obtains the secret fraction for the same
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system but without using the post-selection that we make on the basis of good/bad
states, or decoder outputs. The corresponding curve in Bratzik et al. [2014] is
shown by the dotted black line. The results clearly demonstrate how substan-
tially one can improve the performance of QKD over encoded repeater setups by
relying mainly on the error detection, rather than correction, features of the code.
This could also change the main conclusion drawn in Bratzik et al. [2014] in that
such repeaters can hardly outperform other classes of deterministic repeaters as
the cut-off point for β has nearly improved by six folds from nearly 0.01 to about
0.06 when imperfections in both encoders and decoders are considered. Another
distinction, between our work and that of Bratzik et al. [2014] is in the way er-
rors have been modelled in each case. In Bratzik et al. [2014], errors are modelled
collectively by an identity operator even if there is a cascade of operations. This
is expected to overestimate the error in the system. In our work, we account for
errors per individual gates, which gives us a more accurate picture of how errors
propagate to the final state, and eventually affect the secret fraction. Based on
the findings in Fig. 3.4 and Fig. 3.6, there is a two-fold improvement in the cut-off
value of β because of such more accurate modelling and calculations.

In the following section, we use the results of this section to analyse the
repeater chain at higher nesting levels. Based on the performance analysis for
nesting level one, we will only consider the golden state contribution to the secret
fraction. Unless otherwise mentioned, we fully account for imperfections in the
decoder, but only use the coded components in Eq. (3.34) to model the encoder.

3.4 Extension to higher-nesting levels

The methodology developed in Section 3.3.1 can be extended to higher nesting
levels in a recursive way. For instance, at nesting level n = 2, we can think of
8 memory banks named A to H, where we first apply our ES technique to BC
and FG pairs and then DE. In this case, the output state of the ES stage, for
measurement output mg = | + 0〉 at all corresponding ES measurements, can be
written as follows:

ρ
mg

AH = ρ
(2)
ES/Tr[ρ(2)

ES], (3.36)
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where
ρ

(2)
ES = 1

16
∑

j1,...,j8=0,1

3⊗
i=1

ρj1,...,j8
AiHi

(mg), (3.37)

with

ρj1,...,j8
AiHi

(mg) = TrDiEi [M
mg

DiEi

EDiEi(ρ
j1,...,j4
AiDi

(mg)⊗ ρj5,...,j8
EiHi

(mg))]. (3.38)

Here, ρj1,...,j4
AiDi

(mg) and ρj5,...,j8
EiHi

(mg) have already been calculated in Eq. (3.25). One
can generalize this technique to higher nesting levels in a similar way to obtain
the corresponding matrix ρ(n)

ES for nesting level n. The corresponding golden state
for the two end nodes A and A′ is then given by

ρ
(n)
AA′ = ρ

(n)
dec/Tr[ρ(n)

dec], (3.39)

where

ρ
(n)
dec =

TrA2A3A′2A′3
[PA2

0 PA3
0 P

A′2
0 P

A′3
0 Edec(ρ(n)

ES )]
Tr[ρ(n)

ES ]
. (3.40)

The corresponding secret fraction can then be lower bounded by

r(n)
∞ = 162n−1Tr[ρ(n)

ES ]Tr[ρ(n)
dec]r∞(ρ(n)

AA′), (3.41)

where the prefactors are, respectively, the number of golden states at nesting level
n and the corresponding probability for each.

As an application of the analytical method we developed above, we look into
the dependence of the secret fraction on various sources of errors in the setup.
Figure 3.7 shows the secret fraction, for the first three nesting levels, as a function
of β, δ, and 1 − F0, while, in each case, the other two parameters are assumed
ideal. As expected, the secret fraction drops as we go to higher nesting levels
as the number of gates and measurement operations exponentially grows with
the nesting level. The resilience to error parameters would correspondingly go
down, but, instead, we are covering exponentially longer distances, at higher
nesting levels, if we assume the elementary link is of the same length in all cases.
Given that by increasing the nesting level by one, we have over twice as many
operations as before, a simple rule of thumb may suggest that the cut-off point
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Figure 3.7: The secret fraction as a function of (a) gate error probability β,
(b) measurement error probability δ, and (c) the error in the initial Bell states
1 − F0, at different nesting levels. In each case, the other two parameters have
taken their ideal values.

for each source of error must be halved. Our more precise calculations suggest
that the new cut-off points are slightly better than what is predicted by this
rule of thumb, which could be because some errors cancel each other when one
considers all possibilities, as we do in our analysis. For instance, at n = 1, 2, 3,
the maximum allowed β is, respectively, 0.062, 0.041, and 0.026. As it was the
case for n = 1, the secret fraction is most sensitive to δ and least sensitive to
F0. It is therefore crucial to have accurate single-qubit measurement operations
in such QRs to make them useful for QKD purposes.

3.5 Conclusions and Discussion

In this chapter, we studied the performance of QKD systems run over a repeater
setup that used three-qubit repetition codes for entanglement distillation. By
modeling the error in all two-qubit gates and single-qubit measurements, we ob-
tained an accurate picture of the requirements of such systems. It turned out
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that such systems could considerably be more resilient to errors than previously
thought. The system was most sensitive to measurement errors, but, provided
that they were kept sufficiently low in the experimental setup, we showed that
CNOT errors on the order of a few percents could be tolerated, which is feasible
in practice already Ballance et al. [2016], Gaebler et al. [2016]. The QKD sys-
tem could also handle imperfections in the initial Bell states aligned with what
experimentally is achievable today Casabone et al. [2013], Dolde et al. [2014]. To
handle the computational complexity associated with this many-qubit repeater
setup, we devised an analytical technique for modelling the repeater chain, where,
at the core of it, we only needed to deal with four qubits at a time. This enabled
us to obtain the analytical form of the final entangled states shared between the
two end users after several nesting levels. Moreover, our analysis enabled us to
fully account for the information available to the end users, from entanglement
swapping and decoding circuits, in their secret key distillation. By using this
information, we showed three-fold increase in resilience to errors in CNOT gates
as compared to when the repeater chain and decoders are treated as a black box.
By looking at different sets of measurement outcomes, we then identified the
key golden states that contributed the most to the final key rate. These golden
states corresponded to the cases where no error had been detected at entangle-
ment swapping and decoding stages. This observation resulted in a simple, but
effective, post-selection tool for our QKD system that entirely relied on the error
detection features of the code, rather than its error correction as when we treat
the repeater chain as a black box. We also studied the impact of errors in the
encoder and decoder circuits and showed that the latter is much more detrimental
to the QKD system.

The analytical framework derived in this chapter can be improved and exten-
ded to consider more complex code structures and alternative decoders. One of
the computational challenges that we have to deal with is the number of terms
that needs to be calculated in the final state. In its exact form, we need to
consider all combinations of input states to the elementary links, whose number
grows exponentially with the nesting level. To manage the complexity, we need
then to identify which input combinations have a major impact on the final key
rate, and which ones could perhaps be neglected for a tight approximation. The
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decoder setup could also pose computational challenges as in its current form,
it takes a multi-qubit entangled state at its input and gives a bipartite state at
its output. For large codes, it may be hard to computationally handle the large
input. Alternative decoders may need to be designed to offer competitive per-
formance especially if larger codes suffer more from errors in the system. Finally,
this work mainly relied on finding the key rate once the repeater chain had gen-
erated an entangled state. In order to calculate the total key rate one should look
at the timing of the protocol with respect to the initial entanglement distribution
and how multiplexing is used in the system. All the above will be addressed in
the next chapter.
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Chapter 4

Simple efficient decoders for
quantum key distribution over
quantum repeaters with encoding

4.1 Introduction

In this chapter, we expand on the repeater-based QKD system studied in Chapter
3. The approach proposed previously, while accurate and effective for the first few
nesting levels, will face computational problems at arbitrarily high nesting levels.
The key reason for this is that the number of terms that need to be calculated will
grow exponentially with the nesting level. At some point, as an approximation
method, we need to drop the least significant terms and only keep those that
majorly contribute to the key rate. In this chapter, we try to obtain a better
understanding of such terms and devise analytical and numerical techniques that
help us with reliable key rate calculations. This will then enable us to consider
and analyze larger codes, e.g., five-qubit repetition codes, and compare them with
simpler codes such as three-qubit repetition codes.

Another source of complexity in the analysis presented in Chapter 3 is the de-
coder module. The default decoder used in such settings is the one that reverses
the entangling operation applied at the encoding stage Bratzik et al. [2014]. The
decoder module is then often composed of a number of untangling cnot gates
between different pairs of input qubits, followed by syndrome measurement and
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correction operations. Depending on the size of the employed code, the error
analysis of the decoder part can become computationally complex. More import-
antly, the use of many erroneous cnot gates has an adverse impact on the key
rate as shown in 3.3.3. This is particularly the case because the decoder modules
are the last components in the setup, therefore, errors occurred in this last stage
may be harder to pick up.

Our main contributions in this chapter:

In this chapter, we offer a remedy for the above problems by introducing alternat-
ive decoder structures that only rely on single-qubit measurements. This not only
simplifies the QKD setup but also, by removing the major source of error from
the decoding circuits, results in better performance in many practical scenarios.
Then, by developing several numerical and analytical methodologies, we allow for
the key rate analysis being extend to larger codes (five-qubit repetition codes)
and higher nesting levels (up to the 7th nesitng level). We account for various
sources of error in the setup for each of the proposed decoders. We identify the
terms that significantly impact the secret key generation rate, and then assess
its dependence on relevant error parameters. Finally, we obtain the optimum
structure for the QR setup at fixed distances, and the minimum requirements
for the system to offer a positive key rate, or a rate, in bit per second per QM,
larger than that of a probabilistic QR. We show that, in many practical regimes
of operation, the simple three-qubit repetition code is our best choice.

This chapter is organized as follows. In Sec. 4.2, we describe the QKD setups
of interest based on the repeater protocol of Ref. Jiang et al. [2009] with four
different decoder structures. By considering relevant error models for different
components of the system, in Sec. 4.3, we compare the secret key rate for different
QKD decoders in the case of nesting level one for the QR setup. We then extend
our results, in Sec. 4.4, to higher nesting levels by proposing several different
approximation techniques. We study the dependence of the secret key genera-
tion rate on different error parameters and find the corresponding thresholds for
extracting a nonzero secret key rate at different nesting levels. In Sec. 4.5, we
consider the entanglement generation rate of the elementary links for probabilistic
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and deterministic QRs, with and without multiplexing, and combine those results
with the results of the previous section to obtain the total normalized secret key
rates in bits per second. We also illustrate the parameter regions where one type
of QR performs more efficiently than the other. Finally, we conclude this chapter
in Sec. 4.6.

4.2 System Description

Figure 4.1: The schematic of the QKD setup on a repeater chain based on the
three-qubit repetition code. The small circle pairs represent bipartite entangled
state prepared in advance. Using remote cnot gates, an encoded entangled state
is generated across elementary links, and stored in memories represented by large
circles. The encoded entanglement is then extended across the entire link by
performing ES operations on the middle nodes. The two users will then apply
decoding operation on this state to generate their raw key.

Figure 4.1 shows the schematic of the QKD system considered in this work.
Here, we use a quantum repeater with encoding Jiang et al. [2009], Jing et al.
[2020] to distribute entangled states in an encoded form across the two ends of
the link. We then decode such states to share a raw key between the users, Alice
and Bob, from which a secret key can be extracted using postprocessing tech-
niques. Our objective is to assess the performance of the above QKD system in
the nominal mode of operation where no eavesdropper is present. In such a case,
it is crucial to consider errors that stem from imperfections in the system, three
major sources of which we consider in this work as follows
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(1) Imperfections in initial Bell states: The originally distributed Bell states
in the QR setup are modeled as Werner states with fidelity F0:

ρW = F0|φ+〉〈φ+|+ 1− F0

3 (I4 − |φ+〉〈φ+|), (4.1)

where |φ+〉 is the target Bell state given by Eq. (2.1), and I4 is a 4 × 4 identity
matrix.
(2) Two-qubit gate imperfections: The cnot gate for a control qubit i and
a target qubit j is modeled as Briegel et al. [1998]

ρout = (1− β)Ui,jρ
inU †i,j + β

4Tri,j(ρin)⊗ Ii,j, (4.2)

where ρin (ρout) is the input (output) before (after) the cnot gate, and Ui,j

represents the unitary operator corresponding to an ideal cnot gate. The error
in this two-qubit operation is modeled by a uniform depolarization of qubits i
and j, represented by identity operator Ii,j, with probability β.
(3) Measurement imperfections: The projective measurements to states |0〉
and |1〉 are, respectively, represented by

P0 = (1− δ)|0〉〈0|+ δ|1〉〈1| and
P1 = (1− δ)|1〉〈1|+ δ|0〉〈0|, (4.3)

where δ is the measurement error probability. Similar measurement operators,
P±, are used for projective measurement in |±〉 = 1/

√
2 (|0〉 ± |1〉) basis.

As in Chapter 3, here, we still assume all single-qubit operations are perfect
and quantum memories with infinitely long coherence times are available.

In this chapter, we still mainly use the three-qubit repetition code as an
example to illustrate our proposed techniques, where the logical qubits are given
by Eq. (3.1). Some of our proposed techniques are, nevertheless, applicable to
larger codes as well. Here, as an additional example, we also apply our analysis to
the five-qubit repetition code, where the logical qubits are encoded as Braunstein
[1996]

|0̃〉 = |00000〉 and |1̃〉 = |11111〉. (4.4)
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This code can ideally correct up to two bit-flip errors, as compared to one in the
three-qubit case. The comparison between the two codes allows us to learn how
the interplay between noisy gates and stronger error-correction features affects
the performance of the QKD system.

In the following, we briefly explain the repeater model and describe different
decoding modules, used in Fig. 4.1, that we analyze and compare in this work.

4.2.1 Quantum repeater with repetition codes

Here, we briefly review the protocol proposed in Jiang et al. [2009] in the case of
the three-qubit repetition code. The protocol with five-qubit repetition code is
constructed in a similar way. For detailed description, please refer to the previous
chapter.

The QR protocol operates in the following way. First, the codeword states,
1√
2 (|0̃〉 + |1̃〉) and |0̃〉, are locally prepared, respectively, at the left and right

memory banks (large circles in Fig. 4.1), and Bell pairs are distributed between
auxiliary memories (represented by small circles in Fig. 4.1) of all elementary
links. Using these distributed Bell states, one can then implement remote cnot
gates, transversally, on main and auxiliary memories, after which, the encoded
entangled states 1√

2 (|0̃〉|0̃〉+ |1̃〉|1̃〉) are ideally created across all elementary links.
Next, we perform ES operations at all intermediate stations to extend the entan-
glement over the entire link. This, due to the transversality of the employed code,
is simply done by performing three individual BSMs on the corresponding pairs
of physical qubits. Finally, after all ES operations, an encoded entanglement is
ideally distributed between the two end users. Depending on the application in
mind, the final encoded entangled state can be decoded into a bipartite state as
done in the previous chapter, or be used directly as we will introduce next. In all
cases, some measurement information needs to be passed to the users to identify
the relevant Pauli-frame rotation on the final state.
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4.2.2 Decoder structures

Figure 4.2: The schematic of different decoder structures considered in this
paper: (a) the original decoder proposed in Chapter 3, where a decoding circuit
is used to generate a qubit, on which a QKD measurement, either in Z or X basis,
is performed. The decoding circuit would generate syndrome data d, which is used
for state classification. (b) A modified version of the decoder proposed in Bratzik
et al. [2014], which is very similar to (a) except that the decoder measurement
outcome d is not used for classification. They still use the information in m

in their key rate extraction. Note that, in both (a) and (b), Eve can control
the decoder module, but has to pass some measurement data to users. (c) First
alternative decoder, proposed in this work, where users directly measure the three
qubits either all in Z basis or in X basis. They use majority (parity) rules, in
Z (X) basis, to decode the key bit. (d) Our second alternative decoder, which
is very similar to (c), except that in the Z basis a perfect match 111 (000) is
mapped to bit 1 (0). In (c) and (d), we assume Alice and Bob have control over
the final set of memories in their secure box.

Here, we consider four different decoder modules for the QR-QKD setup con-
sidered in this work. Figure 4.2 shows the schematic of these decoders. In the
first two decoders, Alice and Bob use the biased version of the entanglement-
based BBM92 protocol Bennett et al. [1992], Lo et al. [2005a] by applying QKD
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measurements on a bipartite state obtained via a decoding circuit. This circuit
can in principle belong to a third, untrusted, party, hence Alice and Bob do not
need to characterize this device in decoders 1 and 2. Its operation is based on
reversing the entangling operation applied at the encoding stage. This type of de-
coder may also find applications in non-QKD scenarios. Figure 4.2(a) shows the
decoder setup used in Chapter 3, hereafter we refer to as decoder 1, in which, us-
ing cnot gates, we first untangle the encoded entangled state, and then perform
QKD measurements on the resulting bipartite state. In the previous chapter, it is
shown that the measurement information obtained at the ES, m, and decoding,
d, stages can be used to separate the type of entangled states shared by the users,
and consequently obtain higher key rates overall. In decoder 1, we assume that
the information in m and d is fully used to take advantage of this classification.
The second decoder, decoder 2, is shown in Fig. 4.2(b), where, as in decoder 1,
we also apply error-correction operation to the resulting bipartite state. This
decoder does not, however, pass the information obtained at the decoder stage to
the user ends, and, in that sense, treats the decoder setup as a black box. Both
these decoders are studied in Chapter 3, where we show that, the particular case
where no error is detected at decoding and ES stages is the major contributor to
the key rate.

In this chapter, we try to account for specific requirements of the QKD system
to possibly come up with simpler, and as turns out more efficient, decoders. There
are several observations that lead us to these alternative structures. First, we
note that, so long as QKD is concerned, the purpose of the decoder module is
to perform measurements in two mutually unbiased bases. Secondly, physically
speaking, the three quantum memories in the two end nodes of the repeater chain
are practically held in the secure boxes of Alice and Bob. The corresponding error
correction/detection operations can then be performed by the two legitimate
users, and not necessarily a third party. Finally, at least in the case of repetition
codes, error correction/detection, or part of it, can potentially be done as part of
post-processing rather than quantum mechanically.

Putting together the above points, in this work, we propose two alternative
decoders and compare their performance with that of decoders 1 and 2. In both
decoders, Alice and Bob, instead of manipulating their three qubits by quantum
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gates, directly measure them all in either X or Z basis. The two users choose
their own basis independently, but randomly, according to the asymmetric QKD
protocols Lo et al. [2005a]. They then use classical postprocessing to assign a
certain bit to their raw key bit. In decoder 3, shown in Fig. 4.2(c), we use the
majority rule, in Z basis, to replicate the error correction feature of the code
against bit-flip errors. For instance, a measurement corresponding to |101〉 is
mapped to bit 1. In that sense, decoder 3 can be thought of as a simplified
version of decoder 2. In X basis, we map the measurement outcomes that have
an odd number of |+〉 states to bit 0, and all other measurement outcomes to
bit 1. The former (latter) corresponds to input states that result in |+〉 (|−〉)
states in the output of an ideal decoder 2. In decoder 4, shown in Fig. 4.2(d), we
additionally apply the postselection rule proposed in the previous chapter, where,
in Z basis, only measurement outcomes corresponding to no errors, i.e., |000〉 or
|111〉, is kept, and all other cases are discarded. In X basis, we use the same
parity rule as in decoder 3. In both decoders 3 and 4, we use m to postselect only
cases where no error has been detected at the ES stage.

As compared to decoders 1 and 2, our alternative decoders 3 and 4 do not
need to deal with the errors in the decoder cnot gates. This certainly reduces
some sources of error in the decoder, which is a sensitive part in the whole setup.
Our classical postprocessing is not, however, an exact replica of that of decoder
1 as we do not use the information available in d for classification. It will be
interesting to see how the interplay between these two factors spans out, as we
investigate in the next section.

4.3 Secret key analysis for nesting level one

In this section, we discuss the performance of the QKD system in Fig. 4.1 for
different decoding structures of Fig. 4.2. As the first step, we investigate the
dependence of the secret key generation rate in our QKD system on relevant error
parameters in the case of one repeater node, i.e., the first nesting level. To this
end, we first calculate the secret key generation rate per entangled state shared
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between Alice and Bob. In the asymptotic regime for an efficient entanglement-
based QKD protocol, this parameter, known as the secret fraction Bratzik et al.
[2014], is lower bounded by Shor & Preskill [2000]

r∞(eb, ep) = max{0, 1− h(eb)− h(ep)}, (4.5)

where h(p) = −plog2p−(1−p)log2(1−p) is the Shannon binary entropy function,
and eb and ep are, respectively, the bit-flip and phase-flip error probability, or an
upper bound of which, in the Z basis.

To calculate the secret fraction, in previous chapter, we develop a technique by
which we analytically calculate the relevant density matrices with the above error
parameters being included. Here, we use the same methodology to obtain the
joint state, ρ̃m, of the two memory banks held by Alice and Bob, upon observing
the measurement outcome m at the ES stage, and the joint state ρm,d, after the
decoding circuit in decoder 1, upon observing, in addition to m, the measurement
outcome d at the decoding stage. The states ρ̃m and ρm,d can, respectively, be
obtained using Eqs. (3.20) and (3.26) in previous chapter, with the corresponding
probability of occurrence denoted by pm and pm,d. In our calculations, we consider
a partially imperfect encoder, as modelled by Eq. (3.34), where less significant
cross terms are ignored. In the following, we obtain the secret fraction for each
of the proposed decoders in the asymptotic regime, where an infinite number of
entangled states have been shared. As mentioned before, we consider the normal
mode of operation, where no eavesdropper is present, but we account for the
device imperfections as modelled in Sec. 4.2.

4.3.1 Decoder 1

In this decoder, the users take full advantage ofm and d to classify their entangled
states as a function of these two parameters, and extract a secret key separately
from each set. In this case, the total secret fraction is given by

r(1)
∞ =

∑
m,d

pm,dr∞(e(1)
b , e(1)

p ), (4.6)
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where

e
(1)
b = Tr(PAlice

0 PBob
1 ρm,d) + Tr(PAlice

1 PBob
0 ρm,d),

e(1)
p = Tr(PAlice

+ PBob
− ρm,d) + Tr(PAlice

− PBob
+ ρm,d). (4.7)

The measurement operators in Eq. (4.7) are defined according to Eq. (4.3) with
additional superscripts to specify the user. Note that, in this case, the phase-error
rate is effectively the same as the bit-flip error rate in the X basis.

4.3.2 Decoder 2

In the second decoder, the information in d is not used for classification, but only,
internally, for error correction. For each m, the state on which QKD measure-
ments are performed is then given by

ρ(2)
m =

∑
d

pd|mρm,d, (4.8)

where pd|m = pm,d/pm. The total secret fraction in this case is given by

r(2)
∞ =

∑
m

pmr∞(e(2)
b , e(2)

p ), (4.9)

where

e
(2)
b = Tr(PAlice

0 PBob
1 ρ(2)

m ) + Tr(PAlice
1 PBob

0 ρ(2)
m ),

e(2)
p = Tr(PAlice

+ PBob
− ρ(2)

m ) + Tr(PAlice
− PBob

+ ρ(2)
m ). (4.10)

4.3.3 Decoder 3

Decoder 3 uses a direct measurement on the three qubits held by each user to
specify the raw key. Before calculating the corresponding error parameters, it is
then important to establish the security of this structure and how we can bound
the bit error rate and the phase error rate in Z basis. This has been done in
Appendix A, where we show that, in the ideal case, the measurement operators
modelling decoder 3 are identical to that of decoder 2. We can then use a similar
security proof to relate the phase error rate in the Z basis to the bit error rate
in the X basis. In the imperfect implementation of either decoders, we end up
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overestimating both parameters, which is still in line with the lower bound nature
of Eq. (4.5). With this in mind, the total secret fraction for decoder 3 is given by

r(3)
∞ =

∑
m

pmr∞(e(3)
b , e(3)

p ), (4.11)

where

e
(3)
b = Tr(P̃Alice

0 P̃Bob
1 ρ̃m) + Tr(P̃Alice

1 P̃Bob
0 ρ̃m)

e(3)
p = Tr(P̃Alice

+ P̃Bob
− ρ̃m) + Tr(P̃Alice

− P̃Bob
+ ρ̃m) (4.12)

with

P̃0 = P000 + P100 + P010 + P001,

P̃1 = P111 + P110 + P101 + P011,

P̃+ = P+++ + P+−− + P−+− + P−−+,

P̃− = P−−− + P−++ + P+−+ + P++− (4.13)

being, respectively, the corresponding measurement operators to bit 0 and 1 in
Z basis and X basis, where Pijk = Pi ⊗ Pj ⊗ Pk. Note that the majority rule is
used in the Z basis.

4.3.4 Decoder 4

Decoder 4 is very similar to decoder 3 with an additional post-processing step in
which, in the Z basis, we only accept the cases where either three 1s or three 0s
have been obtained. This is inspired by the observation in the previous chapter
that the output with no error in the decoding stage is the main contributor to
the key rate. In this case, the bit error rate in the X basis is not necessarily an
upper bound on the phase error rate for the post-selected data in the Z basis.
But, we can consider the worst case scenario by assuming that all the errors that
we observe in the X basis correspond to the post-selected part of the data in the
Z basis. In this case, the total secret fraction for decoder 4 is lower bounded by

r(4)
∞ =

∑
m

psuccpmr∞(e(4)
b , e(4)

p ), (4.14)
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where

psucc =Tr(PAlice
000 PBob

000 ρ̃m) + Tr(PAlice
111 PBob

111 ρ̃m)
+ Tr(PAlice

000 PBob
111 ρ̃m) + Tr(PAlice

111 PBob
000 ρ̃m) (4.15)

is the success probability for the post-selection step, i.e., detecting no error in the
Z basis,

e
(4)
b = Tr(PAlice

000 PBob
111 ρ̃m) + Tr(PAlice

111 PBob
000 ρ̃m)

psucc
, (4.16)

and

e(4)
p = min(

e(3)
p

psucc
, 0.5). (4.17)

The final equation gives an upper bound on the phase error rate in the Z basis
as explained above.

4.3.5 Comparison between different decoders

Now that we have all the ingredients to analyze all decoder settings, we can
compare them in terms of their resilience to different error parameters. In Chapter
3, we have already established that, by properly using the information available
in d, decoder 1 outperforms decoder 2; please see Fig. 3.4. Decoder 3, in the
ideal case when there is no error in the decoder, should be identical to decoder
2, but, in the case of erroneous cnot gates, it is expected that it outperforms
decoder 2. It would not be trivial, however, if decoder 3 can outperform decoder
1 as well. Decoder 4 also, by postselecting in the Z basis, can reduce the bit-flip
error rate, as compared to decoder 3, but its phase-error rate bound in Eq. (4.17)
is not necessarily tight. We have to therefore investigate if decoder 4 can ever
surpass decoder 3 in terms of performance. In this section, we try to answer these
questions.

73



4.3 Secret key analysis for nesting level one

Figure 4.3: Secret fraction for different decoder (Dec) structures versus (a) gate
error probability β at F0 = 1 and δ = 0, and (b) measurement error probab-
ility δ at F0 = 1 and β = 0. In the curves corresponding to perfect decoders,
all error parameters assume their ideal values just in the decoder module; the
corresponding value in the rest of the system is as the graph shows.

Figures 4.3(a) and (b) show the performance of different decoders, respect-
ively, as a function of gate error probability β, at F0 = 1 and δ = 0, and meas-
urement error probability δ, at F0 = 1 and β = 0. In both cases, we have also
included several curves corresponding to perfect decoders as well. For instance,
the perfect decoder in Fig. 4.3(a) uses perfect cnot gates as well as ideal meas-
urement modules in its decoder circuit, whereas in the rest of the system β can
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take nonzero values. We make several interesting observations from these figures,
which we summarize below:

• Observation 1: Decoders 3 (orange curves) and 4 (green curves) show
better performance than decoders 1 (dashed black) and 2 (dashed blue),
when the imperfections in the decoder circuit are considered. In Fig. 4.3(a),
it is mainly the cnot errors that make the difference. Without cnot
and measurement errors, even decoder 2 performs better than an imperfect
decoder 1. This is an interesting result, which shows that the effect of
cnot errors in the decoder circuit can trump the benefits we may get from
knowing the value of d in decoder 1. It then follows that decoder 3 is
also better than imperfect decoder 1. At δ = 0, this is because decoder
3 is identical to a perfect decoder 2 (see Appendix A). But, interestingly,
this also holds even for nonzero values of δ as shown in Fig. 4.3(b). As a
result, the maximum allowed value for β roughly moves from 0.03-0.06, for
decoders 1 and 2, to 0.08, for decoders 3 and 4. A similar behavior is seen
in Fig. 4.3(b), where maximum allowed value for δ roughly increases from
0.02 to 0.035.

• Observation 2: We notice that, the classification versus d could still play
a role if all sources of error in the decoder could diminish. For instance in
both figures, the curves corresponding to perfect decoder 1 offer the best
performance. Also, it can be seen that, when there are no error parameters
considered for decoders at all, decoders 2 and 3 perform similarly as ex-
pected by the results of Appendix A. That said, in practice, achieving this
level of perfection may not be possible, hence, so far as QKD is concerned
as an application, decoders 3 and 4 are the preferred option, which not only
improve the performance, but are also easier to implement.

• Observation 3: In smaller error regions, decoder 3 performs slightly better
than decoder 4, but eventually decoder 4, because of its postselection rule,
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is more tolerant to errors 1. The good thing is that decoder 4, in terms of
hardware, is exactly the same as decoder 3, and the postselection rule can
be applied by software in the postprocessing steps. It is therefore feasible
that, for every regime of operation, we calculate both r(3)

∞ and r(4)
∞ , and

pick the higher rate. In this work, the secret fraction calculated for this
setup hereafter is the maximum of these two parameters denoted by ropt

∞ =
max(r(3)

∞ , r(4)
∞ ).

• Observation 4: It is interesting that, in Fig. 4.3(b), where β = 0, decoder
3 still outperforms decoder 2 in the case of imperfect measurement modules.
One may think that, given that both decoders rely on three single-qubit
measurement operations, the secret fraction should be the same in both
cases. Interestingly, this is not the case, and the reason for that is somehow
because of the dependence of eb parameters on the location of the error
as we explain next. In decoder 2, to the first order approximation, e(2)

b is
proportional to δ, corresponding to an error in the measurement on the top
qubit. In decoder 3, however, we need to make at least two errors in order
to have a bit flip, which means that, to the first-order approximation, e(3)

b is
proportional to δ2. This justifies why decoder 3 outperforms decoder 2 even
if β = 0. More generally, in our calculations, we realize that the position
where the bit-flip occurs affects the value of e(3)

b in an asymmetric way. It is
important then that we consider all terms in Eq. (4.12) in calculating e(3)

b .
Note that the terms contributing to e(3)

p are mostly symmetric in terms of
their subscripts as well as over Alice and Bob.

We finish this section by extending one of the key results of the last chapter, in
using error detection as an effective postselection tool, to setups that use decoders
3 and 4. In Fig. 4.4, we have plotted ropt

∞ versus different error parameters,
1Decoder 4, in essence, slightly overestimates the errors in X basis. The crossing point

between the performance of decoders 3 and 4 can be understood as a tradeoff between this
overestimation of errors and the postselection rule. In smaller error regions, the error detection
features have not come into effect so that the performance of decoder 4 is worse; whereas in
larger error regions, by applying the postselection rule, most errors can be removed and thus
the performance gets improved.
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Figure 4.4: Secret fraction ropt
∞ versus (a) β, at δ = 1 − F0 = 0; (b) 1 − F0, at

δ = β = 0; (c) δ, at β = 1 − F0 = 0; and (d) β, at δ = 0.01 and 1 − F0 = 0.
The curves labelled by good correspond to the output states where no error is
detected at the ES stage, whereas the bad curves are for the output states where
some errors are detected at the ES stage. The curves labeled by total are the
weighted sum of good and bad terms as given by Eq. (4.11) and Eq. (4.14).

alongside the contributions from good states, corresponding to no error at the ES
stage, and bad states, for which some error has been detected. We get very similar
results to the previous chapter, where the total secret fraction is either equal to
the contribution from good states, or almost equal to it. This observation allows
us in the next section to only focus on the good states, when we calculate the
rate at higher nesting levels.

4.4 Extension to higher-nesting levels

In order to estimate the secret key rate at higher nesting levels, we are going
to use the same approach as proposed in the previous chapter, but we modify
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it, using numerical and analytical approximations, so that we can manage its
computational complexity. The key ingredient needed to calculate the key rate in
the case of decoders 3 and 4 is the multipartite entangled state ρ̃m. In this section,
as explained before, we only account for the contribution from good states, and,
as a representative, we only consider one particular good outcome among all that
correspond to no error at the ES stage. We denote the corresponding output
state to this outcome by ρ̃good. Once ρ̃good is obtained, we can use Eq. (4.11) and
Eq. (4.14) to obtain a tight lower bound on the secret fraction by ignoring the
contribution from bad states. Our objective here is to get a realistic picture of
what our encoded setup can achieve, and to what degree it is resilient to system
errors. Exact lower bounds, which can securely be obtained in an experimental
setup, are not then necessarily needed, and instead, we use tight estimates on
such lower bounds to gain insight into system operation and its limitations.

In the previous chapter, we develop an analytical approach to find the joint
multipartite state between Alice and Bob. In our proposed technique, we break
down the initial state of the system to its core components, and apply possibly
erroneous gate and measurement operations to each possible input combination
separately. By using the traversality of the employed code, we then obtain ρ̃good,
while avoiding the computational complexity corresponding to large multi-qubit
systems. Instead, we just need to deal with a four-qubit system at a time. The
number of the input terms we need to consider, however, grows exponentially with
the nesting level, and practically it is very difficult to use our previous approach
in full for nesting levels greater than three. More precisely, the entangled state
between memory banks A and B, held, respectively, by Alice and Bob, for nesting
level n, is given by (ignoring normalization factors)

ρ̃
(n)
good =

∑
j,k

3⊗
i=1

ρj,k
AiBi

(4.18)

where j = [j1, . . . , j2n ] and k = [k1, . . . , k2n ] with each component taking a binary
value. ρj,k

AiBi
is the joint state of the ith memory in banks A and B if the initial

state for the 2n+1 memories involved in the process is given by ⊗2n
l=1 ρ

(l)
init, where

ρ
(l)
init = |jl〉〈kl|⊗|0〉〈0| is the initial state of elementary link l. In previous chapter,

we use a recursive technique to write ρj,k
AiBi

, at nesting level n, in terms of ρj′
AiBi
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and ρk′
AiBi

, at nesting level n − 1, with j′ = [j1, . . . , j2n−1 , k1, . . . , k2n−1 ] and k′ =
[j2n−1+1, . . . , j2n , k2n−1+1, . . . , k2n ], going back to the starting point, where

ρ̃
(0)
good = 1

2
∑

j,k=0,1

3⊗
i=1

ρjk
AiBi

(4.19)

can be calculated for each elementary link.
As can be seen in Eq. (4.18), the number of terms that need to be calculated for

nesting level n is 22n+1 . This is despite the fact that we already limit ourselves to
a particular measurement outcome. For instance, at n = 3, the number of terms
is 216 = 65, 536, which means that our core 4-qubit calculations has to be run this
many times in order to get all possible outputs. This may still sound manageable,
but certainly not scalable especially if we are dealing with the analytical form of
each term.

In this chapter, we develop several approximation techniques to handle the
computational complexity in Eq. (4.18). By carefully analyzing each component,
we find the terms that contribute negligibly to the secret fraction and can there-
fore be omitted. The principle behind our approximation techniques is to break
the exponential growth trend and cut off the number of terms that has to be
considered at each nesting level, thus improving the calculation speed dramatic-
ally. This has been achieved via analytical and numerical techniques as explained
below. Using such techniques, we can also analyse larger codes in our setting, an
example of which is given at the end of this section.

4.4.1 Analytical approximations

In this section, we investigate three approximation techniques. Figure 4.5 gives a
comparison between these three techniques and that of exact results for n = 1, 2, 3
as a function of β. Our approximation method (i) is a crude one, in which, at each
nesting level, we only keep four combination terms in which the initial state of all
elementary links is assumed to be the same, i.e., jl (kl) is the same for all values
of l and takes one of the possible values of 0 and 1. In other words, j = 0,1 and
k = 0,1. The results, while not matching the exact curves, follows the trend very
closely, at each nesting level, for small to moderate values of β. It suggests that,
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4.4 Extension to higher-nesting levels

Figure 4.5: Secret fraction ropt
∞ versus gate error probability β for the first three

nesting levels under three different approximation methods, with initial fidelity
F0 = 1 and measurement error probability δ = 0.

in this region, the contribution from the four terms with identical input states
at each elementary link is the major contributor to the key rate, and all other
input combinations can somehow be neglected. Approximation (i), nevertheless,
cannot correctly predict the maximum value of β at each nesting level, and only
provides an upper bound on that. Our approximation techniques (ii) and (iii),
respectively, correspond to the first-order and second-order approximations of the
output state ρ̃good, but with some nuances. The question is, as we deal, at lower
nesting levels, with matrices corresponding to ρj,k

AiBi
, which of such matrices to

keep at higher nesting levels, and which elements within each matrix needs to be
accounted for. Note that each ρj,k

AiBi
represents a two-qubit system, hence can be

represented by a 4 × 4 matrix. In method (ii), starting from nesting level one,
we keep all components ρj,k

AiBi
for which their matrix representation has at least

one element of order β, or lower. We also equate to zero all elements of such a
matrix that are of the order of β2 or higher. Please note that if an element has
terms on the order of β or one, that element would be fully kept. We observe
strange instability in our calculations, when β is moderately large, if we do not
keep the whole element, including all higher order terms, in such cases. As a
result of this purging, some combinations of j,k do not contribute to either the
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4.4 Extension to higher-nesting levels

summation at the current level or as an input to next nesting levels. This makes
the computation workload considerably lighter. Approximation method (iii) is
very similar except that we keep matrices that have elements of order O(βi),
i ≤ 2. In such a case, again, the full expression for the element is used even if
some parts of it is of higher order than two.

As can be seen in Fig. 4.5, approximation methods (ii) and (iii) come very
close to the exact results, with their difference to each other and the exact results
becomes negligible at n = 3. It can then be concluded that either of them would
be sufficient to give us a tight estimate of the key rate at high nesting levels. This
could be because, in our scheme, we only use good states for generating secret key
bits. The higher order error terms can result in a larger number of errors, which
would be harder to remain unnoticed, in higher nesting levels, where quite a few
measurements are performed at the ES stage. This would make the contribution
from terms in higher orders of β less important. These analytical approximations
give us some useful insight into which components contribute the most to the
key rate 1. With this in mind, in the next section, we introduce a numerical
approximation technique, by which we can even consider higher nesting levels.

4.4.2 Numerical approximations

For arbitrarily high nesting levels, while the analytical approximation techniques
discussed previously are still applicable, the simulation speed is still severely
limited by the complexity of the analytical expressions after each ES operation.
Numerical techniques will then be required to find the output state in such cases.
Here, based on what we learned from our analytical techniques, we propose a
numerical approximation method, which is both reliable and fast. In our method,
starting from nesting level one, we use the following procedure

1. Calculate ρj,k
AiBi

for all relevant combinations of j,k that we have kept in
the previous nesting level (i.e., all, at n = 1).

1We clarify that, based on our observation in Fig. 4.5, neglecting higher-order error terms
gives a slightly optimistic prediction.
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4.4 Extension to higher-nesting levels

Figure 4.6: Secret fraction ropt
∞ for three-qubit repetition code, as a function of

gate error probability β for different nesting levels, using our numerical approx-
imation technique at Ntop = 20, with initial fidelity F0 = 1 and measurement
error probability δ = 0. Here, the errors in the encoding and decoding circuits
are included. The exact simulation results for the first three nesting levels are
shown (solid yellow lines) as comparison.

2. Each ρj,k
AiBi

is represented by a 4× 4 matrix. We collate all 16 elements for
all states calculated in step 1, and sort them in the decreasing order based
on their absolute values. We keep the top Ntop elements, and equate the
rest to zero.

3. We identify combinations j,k whose corresponding matrices have at least
one nonzero element after step 2. We keep these states, and ignore the rest.

4. Repeat the above steps for the next nesting level, until reaching the desired
one.

In Fig. 4.6, we plot the secret fraction as a function of gate error probability β
for up to seven nesting levels, using the above algorithm at Ntop = 20, with initial
fidelity F0 = 1 and measurement error probability δ = 0. We also present the
exact simulation results (solid yellow lines) for the first three nesting levels. The
value of Ntop = 20 is chosen such that the results of our numerical approximation
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match the exact calculation results with high accuracy. The results of the previous
section regarding the higher order terms being negligible at high nesting levels
give us some assurance that the numerical results remain accurate for n > 3 as
well. We have included the results for up to seven nesting levels because, even for
an elementary distance of 20 km, this already covers 10,000 km of distance for
the repeater chain. This is the order of magnitude that we need for continental-
scale quantum repeaters. We come back to this point in Sec. 4.5. An interesting
observation in Fig. 4.6 is that, even at n = 7, the required threshold for β is on
the order of 1%, which keeps the prospect of implementing such systems, at long
distances, promising. For instance, QMs based on trapped ions or vacancy centers
in diamond or silicon mostly meet the measurement and gate requirements for
this setup, and can be used in early demonstrations Ballance et al. [2016], Erhard
et al. [2019], Gaebler et al. [2016], Taminiau et al. [2014], Van der Sar et al. [2012],
Zhang et al. [2014].

From Fig. 4.6, we can obtain the maximum gate error β that can be tolerated
for extracting a non-zero secret key rate at different nesting levels. In Table II of
Ref. Abruzzo et al. [2013], a similar analysis is performed for the original quantum
repeater protocol Briegel et al. [1998], also known as the BDCZ protocol after its
authors. Note that in Abruzzo et al. [2013], the authors use the gate quality pG =
1−β as a figure of merit. Compared with their results, we notice that the quantum
repeater protocol in the present work is more tolerant to gate errors at nesting
levels n ≥ 3. At low nesting levels, the BDCZ quantum repeater may, however,
work better, but considering that the memory decoherence is expected to hit
harder the BDCZ protocol than the encoded repeater 1, it is likely that the latter
can perform better at lower nesting levels as well, once we consider decoherence
effects. This result can be taken as an improvement of the results obtained in
Ref. Bratzik et al. [2014], where the authors conclude that the encoded QR is less
tolerant against gate errors than the original QR. The change in conclusion could
be mainly due to the more accurate modelling of gates and measurement modules,
in our work, as well as the improvement that we get because of our classification

1This is because probabilistic ED operations are typically involved in the BDCZ protocol,
which may take many rounds of classical information to confirm their success.
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technique, i.e., separating the cases for which no error has been detected, at the
ES stage, from the rest.

Table 4.1: The simulation time for calculating the secret key fraction for different
methods: Exact analytical solution, analytical approximation method (iii) in
Sec. 4.4.1, and the numerical approximation method at Ntop = 20. Here we use
three-qubit repetition codes with β as the variable, while the other two parameters
are error-free. The time shown is the average time using a personal computer.
The Numerical column represents the computation time per point.

Nesting level Exact Analytical (iii) Numerical

n = 1 ∼1.5 s ∼1.5 s ∼0.06 s
n = 2 ∼3.1 s ∼2.7 s ∼0.12 s
n = 3 ∼65.8 s ∼9.2 s ∼0.61 s
n = 4 >54852.2 s1 ∼106.6 s ∼2.4 s
n = 5 N/A N/A ∼5.3 s
n = 6 N/A N/A ∼11.6 s
n = 7 N/A N/A ∼31.4 s

1 We stopped the simulation at this point without getting the final results.

Finally, it would be interesting to find out how computation time is improved
using either of our analytical or numerical approximation techniques. Table 4.1
shows the time consumed in each technique, including the exact analytical ap-
proach, in order to obtain the secret key fraction, at different nesting levels, in a
nominal setting corresponding to Figs. 4.5 and 4.6. That is, we use cnot error
rate, β, as a variable, and fix the initial fidelity at F0 = 1 and measurement error
probability at δ = 0. The time shown may change if we change the parameter set-
ting, and, in any case, they mainly represent the order of magnitude suitable for
comparison, as the actual time may depend on the processor used and/or other
conditions of the computing device. In our case, we have used a personal Mac
machine, and we have run the simulations several times, under similar conditions,
to get an average value for each point. Based on the numerical figures in Table.
4.1, we notice that, as expected, the computation time scales exponentially in
almost all cases, but there is a huge difference in the slope of the growth in the

84



4.4 Extension to higher-nesting levels

three cases, where for the exact analytical technique, even at n = 4, we could not
find the final answer after spending over 15 hours, whereas for the analytical ap-
proximation approach, we obtain the answer in less than two minutes. This time
was only around 2 s per point in the numerical approximation case. In the end,
although at low nesting levels, the computation time is about the same for all
schemes, the only solution that can practically be used to assess the performance
in continental-scale scenarios, or for larger codes, is the numerical one. Note that
the time figures shown in the numerical case are per calculated point. The total
time needed would then need to be multiplied by the number of points we are
interested in. But, this additional factor would only affect the total computation
time linearly.

Now that we have sufficient tools to analyze our system, we can investigate the
dependence of the key rate on another important design aspect, i.e., the employed
code itself. So far, we have only dealt with the case of the three-qubit repetition
code. This code is one of the simplest, and, therefore, weakest possible codes
when it comes to error correction. One may wonder, if we use stronger codes,
whether we get any improvement in system performance. We should bear in mind
that larger codes require more gates for their encoding and decoding, and their
additional error correction capabilities may be countered by the increase in the
encoding errors. In the case of decoders 3 and 4, which we consider here, some
key sources of error at the decoder are eliminated, but it would still be interesting
to see how larger codes behave, as we investigate next.

The effect of the employed code

In this section, we find the secret fraction for a five-qubit repetition codes as
described in Eq. (4.4). We will investigate if the ability of this code in correcting
for up to two errors would be helpful for the QKD setup considered in this work.
The setup and the protocol used is very similar to that of three-qubit code with
certain obvious changes for the five-qubit case. For instance, the initial code-
word state for node A, in Fig. 4.1, is now ideally given by (|0̃〉A + |1̃〉A)/

√
2 ,

which can be achieved by applying four cnot gates on the state 1√
2 (|0〉A1 +

|1〉A1)|0〉A2|0〉A3 |0〉A4|0〉A5 , with Ai representing the individual memories in bank
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A. Similar to what we have considered for the three-qubit repetition code, after
accounting for errors in such gates, the codeword state for memory bank A is
given by

ρin
A = ρcode

A + ρother
A , (4.20)

where

ρcode
A = 1

32(16− 44β + 49β2 − 25β3 + 5β4)×

(|00000〉A〈00000|+ |11111〉A〈11111|)

+ 1
2(1− β)4(|00000〉A〈11111|+ |11111〉A〈00000|) (4.21)

contains the terms which are in the tensor product form of having the same
input qubit in all rows. The state ρother

A , which contains many more combinations
of input states, is lengthy and will not be given explicitly here. Based on the
observation in Fig. 3.6 in chapter 3, where it is shown that ρcode

A part plays the
major role in determining the secret fraction, here we only consider Eq. (4.21) and
neglect the other terms. This crucially simplifies the code for further simulation.

Figure 4.7 shows the secret fraction as a function of gate error β for QRs
with five-(dashed lines) and three-qubit repetition codes (solid lines), at F0 = 1
and δ = 0, up to n = 3. We notice that, initially, the protocol with three-qubit
repetition code generates more keys. This is expected as, at low values of β, there
are not that many errors and the three-qubit code can detect them similarly to
the five qubit code, without imposing additional encoding errors 1. However,
with the increase in β, the protocol with five-qubit repetition codes begins to
show advantage over the three-qubit code since it can tolerate more errors. We
have to wait and see if this possible advantage at higher error rates is of any
practical relevance. We give an answer to this question in the following section.

1One may wonder if the performance of five-qubit code might be underestimated here due
to the neglect of the other cross terms. We mention that this should not be the case based
on the observation in Fig. 3.6, where the involvement of other cross terms deteriorates the
performance rather than improves it. We would expect the similar performance also hold for
five-qubit cases.
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4.5 Secret key rate for the repeater chain

Figure 4.7: Secret fraction ropt
∞ of QRs encoded with three-qubit repetition code

(solid lines) and five-qubit repetition code (dashed lines) for the first three nesting
levels as a function of gate error probability β, with initial fidelity F0 = 1 and
measurement error probability δ = 0. We have used our numerical approximation
method at Ntop = 20.

4.5 Secret key rate for the repeater chain

The most practical figure of merit for a QKD system is often represented by its
total secret key generation rate, R, in bits per unit of time. Thus far, we have
only focused on the secret fraction, which gives us the probability of generating a
secret key once a multipartite entangled state is shared with the users. In order
to obtain the total secret key generation rate, we need to multiply the secret
fraction by the entanglement generation rate γ. In this section, we account for
the latter factor, in two possible implementations of the setup in Fig. 4.1, as well
as the corresponding fully probabilistic quantum repeater setups. This allows us
then to specify the regions in which each setup could offer a better performance.

In all cases considered in this section, we assume that a DLCZ-like protocol
Duan et al. [2001] is used to distribute entanglement over the elementary links.
In this scheme, entangled memory-photon pairs are generated simultaneously at
each elementary node, the photons are coupled into optical fibers and interfere
in the middle of each segment. A successful BSM, which is classically commu-
nicated to the two end nodes of the elementary link, projects the corresponding
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memory qubits into an entangled states. In our work, we assume that the success
probability for each entangling attempt is given by Sangouard et al. [2009, 2011]

P0 = 1
2p

2η2
chη

2
d, (4.22)

where p represents the probability of generating the initial memory-photon en-
tanglement and the coupling efficiency of a photon into the optical fiber, ηd ac-
counts for the detector efficiency and its corresponding coupling efficiency, and
ηch = exp

[
− L0

2Latt

]
is the transmitivity of a photon through half of the element-

ary link with length L0. Latt is the attenuation length of the channel, where for
standard optical fibers is around 22 km. Also, ignoring the measurement time
and the interaction time between memories and photons, each entangling attempt
as above would take

T0 = L0/c, (4.23)

which includes the initial transmission of the photon and the classical commu-
nication to verify the success, with c = 2× 105 km/s being the speed of light in
fiber. With the successful probability for generating one Bell pair being P0, the
average waiting time for generating N Bell pairs is given by

< T >N= T0ZN(P0) (4.24)

where ZN(P0) is the average number of trials required to distribute N Bell pairs
given by Bernardes et al. [2011]

ZN(P0) =
N∑

k=1

(
N
k

)
(−1)k+1

1− (1− P0)k
. (4.25)

Based on the above entanglement distribution protocol, we now consider sev-
eral QR protocols based on error correction, with and without multiplexing, and
probabilistic ES operations, and compare them together.
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4.5 Secret key rate for the repeater chain

4.5.1 Encoded QR with no multiplexing

Here, we consider, the setup in Fig. 4.1, with minimal number of logical quantum
memories, that is, 2q per memory bank for a q-qubit repetition code with q = 3, 5.
The factor two accounts for the memories used for initial entanglement distribu-
tion (small circles) and those used for the remaining steps (large circles). The
total number of memories, at nesting level n, in the setup is then given by 2n+2q.
In this setting, whenever, at any intermediate node, the initial entanglement over
its adjacent links are prepared, we can go ahead and perform the corresponding
ES operation at that node. By this technique, on average it will take ZNdet(P0),
for Ndet = q× 2n, until we have all elementary links entangled, and done the cor-
responding ES operations. The entanglement generation rate, i.e., the number of
encoded entangled states shared per second is then given by

γdet = 1
< T >Ndet

. (4.26)

The subscript det refers to the deterministic QR considered in the present work.
The normalized secret key generation rate is then given by

Rdet = ropt
∞ × γdet

2n+2q
, (4.27)

where ropt
∞ = max(r(3)

∞ , r(4)
∞ ).

Note that, in practice, each physical memory module may contain multiple
logical qubits. For instance, for nitrogen vacancy centers in diamond, both elec-
tronic and nuclear spins can be used as a qubit. In such cases, the normalized
rate in Eq. (4.27) can be modified to account for this factor.

4.5.2 Encoded QR with multiplexing

With the probability for successfully generating an entangled pair P0 being small,
a large number of attempts will be needed before one elementary link is ready
for use. One could, however, do this entangling process in parallel across many
pairs of memories. This multiplexing operation improves the rate and resilience
to decoherence Collins et al. [2007], Razavi et al. [2009] at the price of requiring
significantly more physical resources to minimize the required temporal resources.
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Figure 4.8: Normalized secret key rates for the encoded QRs with/without
multiplexing for the first three nesting levels as a function of the total distance,
with initial fidelity F0 = 0.99, gate error probability β = 0.01 and measurement
error probability δ = 0.005. The secret key rate is calculated for the better of
decoders 3 and 4 at p = 0.5, ηd = 0.9, and Latt =22 km using our numerical
approximation technique at Ntop = 20.

Here, we consider the case where there are a large number of memories Nm per
station satisfying NmP0 � 1. Using this multiplexing technique, we can ensure
that, after every attempted cycle of duration T0, there are enough entangled pairs
generated to immediately perform the QR swapping and QKD measurement op-
erations. The entanglement generation rate, for this continuously running system,
is given by

γMux
det = NmP0

qT0
, (4.28)

which leads to the normalized secret key generation rate as follows

RMux
det = ropt

∞ × γMux
det

4Nm × 2n
= ropt

∞ P0

2n+2qT0
. (4.29)

In Fig. 4.8, we plot the normalized secret key rate for QRs with 3-qubit repetition
code with and without multiplexing as a function of the total distance Ltot =

90



4.5 Secret key rate for the repeater chain

2nL0. We assume an initial fidelity F0 = 0.99, gate error probability β = 0.01,
and measurement error probability δ = 0.005. As for other parameters, we have
assumed p = 0.5, which is achievable for cavity-enhanced memories Riedel et al.
[2017], and ηd = 0.9 Marsili et al. [2013]. For the chosen parameters, we can
generate non-zero key rates up to the third nesting level. Note that according
to Fig. 4.8, the optimum distance for elementary links is about 50 km. Since
the memory coherence time and dark count rate of detectors are not taken into
account in this analysis, we do not see the typical cut-off security distance beyond
which secure key exchanges is not possible. It is expected that a coherence time
on the order of 10T0 and 10 < T >Ndet are, respectively, needed for the proper
operation of the system with and without multiplexing Lo Piparo & Razavi [2013].
We notice that, as expected, the multiplexing helps increase the secret key rate.
The higher the nesting level, the more visible this increase is. But, even with
multiplexing, the total rate achievable by the system is rather low. For instance,
at a total distance of 800 km, we would need around 1000 quantum memories
to obtain a total key rate on the order of bits per second. This is comparable
with what one may achieve with probabilistic quantum repeaters. Next, we will
consider this class of quantum repeaters for a more quantitative analysis.

4.5.3 Probabilistic quantum repeaters

The most feasible implementations of quantum repeaters rely on probabilistic op-
erations for the initial entanglement distribution as well as further ES operation
Yu et al. [2020]. Initially proposed by Duan, Lukin, Cirac and Zoller (DLCZ)
Duan et al. [2001], it soon found various alternatives Amirloo et al. [2010], Sang-
ouard et al. [2011]. Here, we use a generic model for this class of quantum re-
peaters to enable a fair comparison with encoded systems when it comes to QKD
as an application. One key difference is in the fact that the implementation of
probabilistic ES is not based on gate operations. Instead, a probabilistic photonic
ES can be achieved by converting back the state of quantum memories to single
photons and then do BSMs on the corresponding photons. We can therefore neg-
lect all gate and measurement errors in probabilistic repeaters, and only consider
imperfections in the initially distributed Bell states. The main drawback of such
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a protocol is that probabilistic BSMs increase the waiting time and reduce the
rate. The resilience to decoherence would also be lower, requiring coherence time
on the order of 10 × Ltot/c, because of additional transmission delays, even if
multiplexing is used Lo Piparo & Razavi [2013].

Based on above assumptions, in this work, the ES operation is modelled as
follows. If, by nesting level n, the entangled states on ab and cd links is diagonal in
the Bell basis and is given by ρab = ρcd = An|φ+〉〈φ+|+Bn|φ−〉〈φ−|+Cn|ψ+〉〈ψ+|+
Dn|ψ−〉〈ψ−|, the resulting state between a and d after a BSM on b and c can still
be written in the Bell diagonal form with the following new coefficients Abruzzo
et al. [2013]

An+1 = (A2
n +B2

n + C2
n +D2

n),
Bn+1 = 2(AnBn + CnDn),
Cn+1 = 2(AnCn +BnDn),
Dn+1 = 2(AnDn +BnCn). (4.30)

The initial state of the elementary links in our analysis is given by Eq. (4.1). The
successful probability for the ES operation is assumed to be

PES = 1
2p

2
mη

2
d, (4.31)

where pm is the reading and coupling efficiency of memories, which, for simplicity,
here we assume pm = p. The entanglement generation rate for such a protocol
can be derived as Sangouard et al. [2011]

γprob = 1
< T >Nprob

P n
ES (4.32)

for Nprob = 2n. Here, we assume the ES success probability is the same for all
nesting levels. The normalized secret key rate per memory is then given by

Rprob = rprob
∞ Pclickγprob

2n+1 , (4.33)

where Pclick = η2
d is the success probability for performing QKD measurements

(twofold coincidence), and

rprob
∞ = r∞(Cn +Dn, Bn +Dn) (4.34)
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Figure 4.9: Normalized secret key rates for QRs with encoding (solid, three-
qubit code) and probabilistic QRs (dashed) in the absence of multiplexing for
up to six nesting levels as a function of the total distance, with different error
parameters: (a) F0 = 0.999, β = 0.0005 and δ = 0.0001; (b) F0 = 0.99, β = 0.005
and δ = 0.001; (c)F0 = 0.98, β = 0.02 and δ = 0.01. Other parameters are as
in Fig. 4.8. In the encoded repeater case, the secret key rate is calculated for
the better of decoders 3 and 4 using our numerical approximation method at
Ntop = 20.
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at nesting level n.
One can similarly find out the corresponding key rate equations in the case

of multiplexed repeaters; see, for instance, Razavi et al. [2009]. The results are
very similar to that of Fig. 4.8. For the sake of comparison that we are pursuing
in this paper, we obtain similar results if we use encoded and probabilistic QRs
both with, or without, multiplexing. Given that, for early demonstrations of
quantum repeaters, quantum memories are quite precious, next we compare the
two systems only in the case of no multiplexing for which fewer memories are
needed.

4.5.4 Optimal QRs in different parameter regions

Figure 4.9 shows the secret key rate for encoded and probabilistic QRs for three
sets of parameters. These three sets represent different degrees of reliability for
our quantum gates and measurements. This mainly affects the encoded repeater
case, and we notice that, in all three cases, the probabilistic QR (dashed lines)
can only offer a key up to nesting level four, while the encoded QR (solid lines)
can offer better rate-versus-distance scaling by using higher nesting levels. In
Figs. 4.9(a) and (b), corresponding to low-error and moderately-low-error regimes,
we notice that the QR with encoding offers higher key generation rates than the
probabilistic one. This advantage increases with the nesting level to the point
that, at n = 4, the QR with encoding improves the key rate by more than three
orders of magnitude. In lower error regime with F0 = 0.999, β = 0.0005, δ =
0.0001, the encoded QR can generate secret keys up to n = 6 corresponding to
64 elementary links. If we multiply the number of QMs required at this nesting
level by the normalized key rate, the total key rate is ∼ 10−2 bits per second
at 10,000 km, which is comparable to what currently most advanced fiber-based
QKD techniques can achieve at distances below 1000 km Chen et al. [2020],
Currás-Lorenzo et al. [2021]. If the error parameters are increased by one order
of magnitude, as in Fig. 4.9(b), secret key can only be extracted up to n = 5 for
encoded QRs, and the generated key will be reduced by two orders of magnitude
as compared to Fig. 4.9(a) at n = 5. In the higher error regime, shown in
Fig. 4.9(c), the probabilistic QR shows better performance in most distances.
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This is mainly because of the errors involved in the gates, which makes the use
of error correction codes less effective. In Fig. 4.9(c), the QR with three-qubit
encoding can only generate secret keys up to n = 2 with the specified error
parameters. We conclude that the QR with encoding will only be useful when
the error rates are moderately low.

The examples in Fig. 4.9 imply the existence of operation regions in which
one or the other QR could offer a better performance. In Figs. 4.10(a) and (b),
we have, respectively, specified these regions, at a fixed distance of 1000 km, for
three-qubit and five-qubit repetition codes. The choice of 1000 km corresponds
to possibly near-term implemetations of QR systems that outperform no-repeater
systems. In both figures, we have highlighted which QR structure offers the higher
key rate, if any, as a function of our three error parameters 1− F0, β, and δ. We
identify four regions in Figs. 4.10(a) and (b):

• Region 1: For low gate and measurement error probabilities, when initial
fidelity of Bell states is high, the third nesting level of QRs with encoding
dominates.

• Region 2: For the same region of gate and measurement error probabilities,
when initial fidelity becomes worse, the second nesting level of QRs with
encoding is more favourable.

• Region 3: For slightly higher gate and measurement error probabilities, the
encoded QR loses its advantage, and probabilistic QRs are the best option.

• Region 4: For high error probabilities and low initial fidelity of the original
entangled states, it is not possible to generate a secure key with either of
QR protocols.

It is interesting to note that the region that the three-qubit code outperforms
the probabilistic QR is larger than that of the five-qubit code. In fact, by the
time that, according to Fig. 4.7, the five-qubit QR outperforms the three-qubit
one, both encoded QR structures perform worse than the probabilistic repeater.
This would suggest then it is likely that the best error correction codes for QKD
purposes are the simplest ones, and it may not be necessary to overcomplicate
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Figure 4.10: The region plots showing the distribution of the optimal QR pro-
tocol in a three-dimensional parameter space at Ltot = 1000km for (a) three-qubit
repetition code and (b) five-qubit repetition code. Other parameters are as in
Fig. 4.8. In the encoded repeater case, the secret key rate is calculated for the bet-
ter of decoders 3 and 4 using our numerical approximation method at Ntop = 20.
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the system by employing larger codes. In fact, so long as QKD is concerned, the
practical choices seem to be between a probabilistic structure for the quantum
repeater versus the three-qubit code in the encoded structure. We mention that
we do not consider all sources of imperfection in our analysis, and it may be ill
judged to rule out the possibility of finding better codes. We should also note
that, in our comparison, we have not considered the third generation of quantum
repeaters, which rely on quantum error correction for handling both channel loss
and gate errors. The requirements of such systems is much more stringent than
the ones we considered here, and, at least, in the short term, our above conclusion
may be the most relevant one for initial implementation of the system.

Another interesting observation in Fig. 4.10(a) is that the typical values re-
quired for 1 − F0, β, and δ, in order to offer an advantage over probabilistic
repeaters, seems to be quite within a feasible range. For the key error parameter
of β, up to 2% is acceptable, whereas for fidelity we are looking at lower ninety’s,
which both seem achievable with current technology. The measurement error can
also be kept below 1%. All in all, our analysis suggests that extending the reach
of trust-free terrestrial QKD links to 1000 km is within reach in the near future.

4.6 Conclusions

In this chapter, we benchmarked the performance of a QKD system that relied on
QEC for ED against probabilistic QRs that do not necessarily use any additional
distillation techniques. In order to improve system performance and simplify its
implementation requirements, in the former case, we first proposed two decod-
ing schemes that did not need any two-qubit gates. This reduced the decoding
errors, as compared to conventional error-correction decoders, and increased the
resilience of the system to common sources of error. In order to analyse the
system, we also developed several numerical and analytical approximation tech-
niques, and checked them against exact results in certain cases. This allowed
us to study the performance of two codes from the family of repetition codes.
We interestingly found that, for most practical purposes, the three-qubit system
could offer the best performance so long as error parameters are around 1%. In
higher error regimes, probabilistic QRs could already offer better rates, or secret
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key exchange was not at all possible. Our results also shed light into how encoded
QRs would compare with some other classes of QRs that relied on probabilistic
ED techniques. We showed that for moderate to high nesting levels the encoded
setup could tolerate more errors than the BDCZ protocol. We note that the ex-
tension of our decoding and approximation techniques are in principle possible to
larger codes, but, in the case of QKD, this may not offer additional advantage.
Based on our analysis, it seems feasible to employ current technologies for QMs
to demonstrate this encoded class of repeaters.
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Chapter 5

Quantum repeaters with
encoding on nitrogen-vacancy
center platforms

5.1 Introduction

In this chapter, we study the use of NV centers as a platform for QRs with
encoding. This is partly driven by the successful implementation of determin-
istic two-qubit gates between electron and nuclear spins of a single NV center
Jelezko et al. [2004], Taminiau et al. [2014], Waldherr et al. [2014]. Moreover,
such memories are adopted for the first demonstration of a simple QR network
between four cities in Netherlands Pompili et al. [2021], van Dam et al. [2017].
This offers a promising platform for the implementation of near-future encoded
QR structures. Through the work of last two chapters, we learn that the simple
three-qubit repetition code could be the best option for QKD applications over
short to moderately long distances. In particular, we find that there are working
regimes of operation where encoded QRs can outperform probabilistic QRs in
Sec. 4.5. This means that for the type of networks that we are expecting to have
in short term, it could be a rewarding exercise to implement encoded QRs despite
their additional implementation challenges.

To get an accurate view of the requirements, versus gains, for NV-center based
QRs with encoding, we need to consider realistic scenarios that such memories can
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be used in. While, in Chapters 3 and 4, the performance of the QRs with three-
qubit repetition codes is carefully studied in the presence of operational errors,
such analyses are not directly applicable to the case of NV centers. Firstly, the
work done previously assumes that a direct deterministic BSM on two separate
QMs is readily available. This is not exactly the case for NV centers. While it
is possible to use an entangled link between the electron spins of two NV centers
to mediate a joint operation on them Vinay & Kok [2017], we should account for
additional errors, or delays, that this may cause, and also different QR structures
that we can then come up with based on this mediatory entangled link. Secondly,
previous work ignores the impact of memory decoherence. Now that we have a
chosen memory, which is short of ideal once it gets to coherence times, we should
consider its effect on the performance to have a better assessment of system
requirements.

Our main contributions in this chapter:

In this chapter, motivated by the ideas and structures in Vinay & Kok [2017]
and Childress et al. [2006], we propose two structures for encoded QRs with
NV centers. One structure has the advantage of requiring less consumption of
classical communication, while the other one uses fewer resources. We will assess
and compare their performance for generating secret key under the influence of
erroneous operations and decoherence, using current or near-term experimental
parameters. We compare the results with the simpler non-encoded structures
where deterministic BSMs are employed but no ED operation is applied. Our
results suggest that, while at short distances, the non-encoded schemes may offer
the best performance, as we go to longer distances, it pays off to use structures
that employ more encoded links. We also specify the gap between what we have
experimentally available today versus the minimum required specifications for
any of these systems to work.

This chapter is structured as follows. In Sec. 5.2, we begin with a description
of the ideal implementation of encoded QRs motivated by Ref. Childress et al.
[2005], Jiang et al. [2009] on NV-based platforms, and give the error models we
use to formulate the problem in hand. In Sec. 5.3, we analyse the effect of

100



5.2 System description

decoherence, as well as other system imperfections, on system performance, and
calculate the secret key generation rates for such setups in Sec. 5.4. We compare
our results with the case of QRs without encoding, and illustrate the parameter
regions where one type of protocol outperforms the others. Finally, we conclude
this chapter in Sec. 5.5.

5.2 System description

In this chapter, we study the implementation of QRs with encoding on NV center
platforms. One of the key features of NV centers, which makes them a desirable
option for QR setups, is their being a two-qubit register. This includes an electron
spin acting as the optical interface with single photons, and a nuclear spin, due
to neighboring carbon or nitrogen atoms to the vacancy, suitable for long-time
quantum storage. Moreover, using microwave and radio frequency signals, within
each NV center, two-qubit operations, e.g. controlled not (cnot) and controlled
phase gates, can be performed deterministically on these two qubits Everitt et al.
[2014], Wei & Deng [2013]. Within each NV center, one can also map a quantum
state from the electron to the nuclear spin, and vice versa Awschalom et al. [2018],
Doherty et al. [2013], Dutt et al. [2007], Neumann et al. [2010]. All these tools
come handy in dealing with operations that we need in the QR setup.

An additional requirement for an efficient QR setup is the ability to write and
read single photons to and from a QM. By driving an NV center, embedded in
a diamond crystal, with a laser field, we can drive many transitions that mostly
involve vibrational mode phonons. Such transitions will not be useful for coherent
operations as these vibrational modes often quickly die out within the crystal.
Zero phonon line (ZPL) emissions are then effectively the key to generating en-
tangled states with NV centers. Even at near zero Kelvin temperatures, however,
such emission are typically only a small portion, around 3%, of all radiations
from the NV center Barclay et al. [2011]. Accounting also for low collection ef-
ficiency from a bulk crystal, entanglement generation with NV centers has been
extremely inefficient Epstein et al. [2005]. A remedy to both problems of ZPL
emission rates and collection efficiency is to have a microcavity around the NV
center Bogdanović et al. [2017], Hausmann et al. [2013], Nemoto et al. [2014], Ruf
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et al. [2021]. There have been several efforts in this regard, which have improved
the ZPL emission rates to 46% and have increased the collection efficiency by
several factors Faraon et al. [2011], Le Sage et al. [2012], Riedel et al. [2017].

In this chapter, we assume cavity-based NV center platforms are available,
and use known techniques with this technology to entangle light with NV centers
and perform quantum operations and measurements on them. These tools are
summarized in Sec. 5.2.1, based on which, we explain several QR protocols and
structures, and then finish this section with our error models.

Throughout the paper, we denote electron (nuclear) spins with lower (upper)
case letters, for instance, if |0〉a and |1〉a represent the basis vectors corresponding
to, respectively, electron spin numbers mS = 0 and mS = −1, then |0〉A and |1〉A
represent the basis vectors corresponding to, respectively, nuclear spin numbers
mI = 0 and mI = −1 of the same NV center.

5.2.1 NV Center as a Toolbox

Here, we explain how specific features of NV centers can be used to implement
the main components of encoded QRs.

Entanglement distribution

One of the key ingredients of QR protocols is to establish entangled states over ele-
mentary links. Suppose we want to share an entangled state |Φ+〉AB = 1√

2 (|00〉AB+
|11〉AB) between nuclear spins A and B. We can then first share an entangled
state between the corresponding electron spins a and b, and then map the state
of a (b) to A (B). This mapping is performed by initialising the nuclear spins in
|00〉AB, performing cnot gates within each NV center with the electron spin as
the control qubit, and then measuring the electron spins in X basis.

There are several schemes for distributing entangled states between the elec-
tron spins of two remote NV centers. In most of them, the entanglement distri-
bution involves generating a spin-photon entanglement at each end of the link
and then swapping entanglement in the middle of the link Bernien et al. [2012],
Hensen et al. [2015], Pfaff et al. [2014]. Depending on whether the spin-photon
entanglement is in one optical mode (i.e., zero or one photon space), or two (e.g.,
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the polarization, or time-bin, space), the BSM in the middle may rely on single-
mode or two-mode interference. If the BSM is conclusive then the entanglement
distribution task is heralded to be successful, otherwise it needs to be repeated
until success. The schemes that rely on single-mode interference often require
one photon to safely travel to the middle of the link, hence may have better rate
scaling with distance for heralding success. However, in order to obtain a high
fidelity entangled state, we should either keep the spin-photon entanglement gen-
eration rate very low (e.g., around 1%) Cabrillo et al. [1999], Humphreys et al.
[2018], Pompili et al. [2021], Rozpędek et al. [2019] or rerun the procedure to
distill the entangled state Barrett & Kok [2005], Bernien et al. [2013], Nemoto
et al. [2014], Pfaff et al. [2014]. In both cases the effective success rate, in certain
regimes of interest to this work, could then become comparable to the two-mode
schemes, where the rate decays exponentially with the distance between nodes A
and B. For instance, in our setup, where the optimum elementary link is around
10-20 km, the extra channel loss in the two-mode case is a small factor, although
one has to also account for additional coupling or detector efficiencies. But, aside
from the success rate of entanglement generation, another important factor is
the amount of the initial noise, or loss in fidelity, that we can tolerate in our
system. The two-mode schemes can, in principle, generate ideal entangled states,
whereas, in the single-mode schemes, some errors, due to, e.g., generating one
photon at each end, would be inevitable. In a real experiment, one has to factor
in all these nuances, as well as practical restrictions on the system, to decide
which entanglement distribution scheme may work best in their setting.

In order to encompass the essence of different entanglement distribution schemes
available, here, we assume that a generic two-mode entanglement distribution
scheme is used where, at each of nodes A and B, the polarization of a single
photon is entangled with the electron spin of the NV center (see Lo Piparo et al.
[2017a,b], for example). These photons are frequency converted 1, if needed, and
will be coupled to an optical channel. Using linear optics and single-photon de-
tectors, a partial BSM in the polarization basis is then performed on these two

1We clarify that, though in the specific analysis of this chapter, we do not directly include
the frequency conversion rate, it can be embedded into the choice of coupling efficiency.
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photons at the middle of the link. Once a successful BSM is heralded, this inform-
ation will be sent back to nodes A and B, at which point, the state of electron
spins is transferred and stored onto the corresponding nuclear spins. We model
the generated entangled state as a Werner state as will be explained later in the
next section. Note that any other entanglement distribution scheme can also be
similarly analyzed using techniques and procedures provided in this work.

Encoded entanglement distribution

In this chapter, we again consider encoded QRs with three-qubit repetition codes
as given by Eq. (3.1), which can correct up to one bit-flip error. Although this is
not a strong error correction code, it has been shown in previous two chapters that
so long as we rely on its error detection features it offers a reasonable performance
at short and moderately long distances as compared to more complicated codes.
We therefore analyse this particular code for our NV center platform.

The first step in an encoded QR is to ideally distribute encoded entangled
states in the following form:

|Φ̃+〉AB = 1√
2

(|0̃0̃〉AB + |1̃1̃〉AB), (5.1)

where here we consider two example memory banks A = (A1, A2, A3) and B =
(B1, B2, B3) at the two ends of an elementary link. To this end, using the scheme
described in the previous subsection, we first generate Bell pairs |Φ+〉AiBi =

1√
2 (|00〉AiBi + |11〉AiBi), for i = 1, 2, 3. Once electron spins are available again

in all NV centers of memory banks a and b, we initialize them in the codeword
states 1√

2 (|0̃〉a + |1̃〉a) and |0̃〉b. Finally, using transversal remote cnot gates,
shown in Fig. 5.1, we can generate the state in Eq. (5.1) Jiang et al. [2009]. The
same procedure is applied to all elementary links.

Note that the remote cnot circuit in Fig. 5.1 is slightly different from the
one used in Fig. 3.3 in chapter 3. In the previous chapter, the remote cnot
circuit requires measurements on qubits that hold the initial Bell state, i.e., the
nuclear spins in our NV-center setup. In NV centers, however, a nuclear spin is
often measured by first mapping its state to an electron spin, using a cnot gate,
and then measuring the electron spin Neumann et al. [2008, 2010]. This is not,
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Figure 5.1: Quantum circuit for remote cnot gate. Note that single-qubit
measurements (trapezoidal boxes) are performed on electron spins. Here, ai−Ai

represent the electron-nuclear spins in one NV center separated by a distance L0

from the corresponding NV center at the other end of the elementary link.

however, possible in our case as this would ruin the initial state of the electron
spins. We have therefore slightly changed the remote cnot circuit such that the
measurements are only done on electron spins with nuclear spins always in an
entangled state.

Entanglement Swapping

Once encoded entangled states are distributed between the nuclear spins across
all elementary links, the next step is to perform ES operations at all intermediate
stations to extend the entanglement to the entire link. In the encoded repeater
protocol, this can be done by performing BSMs, in a transversal way, on corres-
ponding pairs of NV centers at each of the intermediate nodes. This operation
would also allow us to pick up some of the errors that might have been accumu-
lated by this stage, and help us distill the final entangled state. For instance,
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in the 3-qubit repetition code considered here, the BSM is made of an X and a
Z operator measurement, the results of which specify the type of encoded Bell
state that will be shared between the remote nodes. Ideally, the results of the
Z operator measurements must be 000 or 111. Because of the errors in the sys-
tem, we may, however, get other combinations of 0 and 1, which correspond to
detecting an error. The majority rule here can be used to specify the most likely
post-BSM encoded Bell state. It turns out in previous chapter, however, that for
QKD purposes, detecting the error, and using that information for post-selection,
would provide us with an effective way to boost the key rate, and error correction,
as envisaged in the original protocol Jiang et al. [2009], would not be needed.

For the above process, a direct joint measurement on the nuclear spins of
two separate, although possibly co-located, NV centers may not be possible.
To do a deterministic BSM on two separate nuclear spins, here, we distribute
an additional Bell pair between the corresponding electron spins of the two NV
centers. ES operations can then be performed by performing BSMs on the nuclear
and electron spins within each NV center Vinay & Kok [2017]. This can be done
by first applying a cnot gate to nuclear and electron spins followed by relevant
single-qubit measurements on each. Note that, in this procedure, we have to first
measure the electron spin, and then map the nuclear spin state to the electron
spin. The latter can be done by initialising the electron spin in an appropriate
state and then performing a cnot gate on the two spins with the nuclear spin
as the control qubit. We can then measure the electron spin again, to effectively
complete the measurement on the nuclear spin. A similar procedure can be used
across the repeater chain. The measurement outcomes need to be notified to the
end users to adjust the Pauli-frame on the final states, and/or for error correction
or post-selection purposes.

Note that in the above procedure, the two NV centers do not necessarily need
to be co-located, and, in principle, one can assume an arbitrary distance between
the two memories. That would, however, change system resilience to memory
decoherence. To study this, in the following, we define several protocols for
different QR architectures and will analyse and compare them in the forthcoming
sections.

106



5.2 System description

5.2.2 Quantum repeater structures and protocols

In this section, based on whether we employ coding or not, and how deterministic
BSMs are done, we define four protocols, as explained below.

Protocols for encoded repeaters

Here, we describe the ideal implementation of the protocol proposed in Ref. Ji-
ang et al. [2009] with three-qubit repetition codes on NV center platforms. We
consider two architectures, shown in Figs. 5.2 and 5.3, depending on whether the
BSM is done on co-located NV centers or those apart by a distance L0, corres-
ponding to the length of an elementary link. In both structures, there are a total
of 2n elementary links, where n is the nesting level of the corresponding QR.

In what we refer to as protocol 1, we use the structure in Fig. 5.2, and carry
out the following steps:

• Step 1: distribute encoded entanglement across all elementary links; see
Sec. 5.2.1. As this requires multiple attempts to entangle all relevant pairs
of NV centers, we stop this process, whether or not all relevant pairs are
entangled, after a stoppage time T1 and move to the next step.

• Step 2: perform BSMs at all intermediate nodes; see Sec. 5.2.1. We again
stop this procedure, whether or not all relevant BSMs are completed, after
a stoppage time T2.

• Step 3: pass all measurement results to the two end users. If there are
missing entangled pairs, or incomplete BSMs, then we discard the state
generated in that round. We will account for the effect of such discarded
states in our key rate analysis.
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Figure 5.2: Schematic QR structure for protocol 1 with the following steps:
(a) Distributing Bell pairs between electron spins (small orange circles) over all
elementary links in a heralding way. Transferring and storing the entangled states
to the corresponding nuclear spins (large blue circles), followed by remote cnot
gate. (b) Performing ES operation on nuclear spins at intermediate nodes by
creating temporary Bell pairs between the corresponding electron spins, and then
performing a BSM within each NV center. (c) The final encoded entangled state
is created between the two end users. Based on the measurement results at each
middle node, the Pauli frame of the final entangled state can be adjusted.
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Figure 5.3: Schematic QR structure for protocol 2 with the following steps:
(a) Generating encoded Bell pairs between nuclear spins in every other link; (b)
Distributing Bell pairs between electron spins in all remaining links in order to
facilitate BSM within each NV center at intermediate nodes. (c) The encoded
entanglement is extended to end users. Based on the measurement outcomes
gathered from middle stations, one can adjust the Pauli frame of the final en-
tangled state.

In what we call protocol 2, motivated by Refs. Childress et al. [2005, 2006],
we use the structure in Fig. 5.3, and carry out the following steps:

• Step 1: distribute encoded entanglement across every other elementary link;
see Sec. 5.2.1. We stop this process after a stoppage time T1 and move to
the next step.

• Step 2: distribute uncoded entanglement across the electron spins of all
remaining links; see Sec. 5.2.1. We stop this process after a stoppage time
T2 and move to the next step.
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• Step 3: perform BSMs at all intermediate nodes, which now only contain
single NV centers; see Sec.5.2.1.

• Step 4: pass all measurement results to the two end users. If there are
missing entangled pairs, or incomplete BSMs, then we discard the state
generated in that round.

Protocol 2 requires fewer NV centers and operations than protocol 1, and, in that
sense, may offer some advantage. But, in the end, what matters is the overall
performance, normalized by the total number of memories used, which we use for
comparison between such protocols.

Protocols for uncoded repeaters

In order to better understand whether QRs with encoding will offer any advant-
ages over their non-encoded versions, in this chapter, we also consider protocols
3 and 4, which are, respectively, the uncoded versions of protocols 1 and 2. For
simplicity, we do not consider any distillations for protocols 3 and 4, as, without
coding, that would turn them into probabilistic protocols. A comparison between
encoded QRs and probabilistic ones is already available in chapter 4. In protocols
3 and 4, we just need to replace Step 1 with the following revised step:

• Step 1’: distribute Bell pairs between nuclear spins in all, for protocol 3,
or every other, for protocol 4, elementary links; see Sec. 5.2.1. We move to
the next step after a stoppage time T1.

The rest of the protocols is as in protocols 1 and 2, respectively.

5.2.3 Error models

In order to analyse the above QR setups, we consider three major sources of
imperfections as follows.
(1) Gate imperfections: The cnot gate for a control nuclear spin J and a
target electron spin j, within an NV center, is modeled as Briegel et al. [1998]

ρout = (1− β)UJ,jρ
inU †J,j + β

4TrJ,j(ρin)⊗ IJ,j, (5.2)
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where ρin (ρout) is the input (output) before (after) the cnot gate, and UJ,j

represents the unitary operator corresponding to an ideal cnot gate. The error
in this two-qubit operation is modeled by a uniform depolarization of qubits J
and j, represented by identity operator IJ,j, with probability β. We assume that
a similar relationship as in Eq. (5.2) would also model a cnot gate with the
electron (nuclear) spin as the control (target) qubit. While not necessarily the
case, for simplicity, we assume that the parameter β is the same in both cases.
In NV centers, there are other common two-qubit gates, such as controlled phase
gates, that may be used in practice. Using equivalent quantum circuits, however,
such operations can often be modeled by a cnot gate with possibly additional
single-qubit rotations. In such cases, we assume parameter β captures the total
error in the equivalent model. As in chapters 3 and 4, here, we assume all single-
qubit operations are perfect.
(2) Measurement errors: The projective measurements to electron spin states
|0〉 and |1〉 are, respectively, represented by

P0 = (1− δ)|0〉〈0|+ δ|1〉〈1| and
P1 = (1− δ)|1〉〈1|+ δ|0〉〈0|, (5.3)

where δ is the measurement error probability. Similar measurement operators,
P±, are used for projective measurement in |±〉 = 1/

√
2 (|0〉 ± |1〉) basis. The

projective measurements of nuclear spins are modelled effectively in the same
format but with error parameters β/2+δ, since there should always be a mapping
operation performed through a cnot gate as described in Sec. 5.2.1.
(3) Decoherence: We model the decoherence effect in electron/nuclear spins by
using a depolarizing channel. For a single qubit a (A), after a waiting time tw,
the initial state ρ will be mapped to

Da
depol(ρ) = λe

2ρ+ (1− λe
2)(I2 − ρ),

DA
depol(ρ) = λn

2ρ+ (1− λn
2)(I2 − ρ), (5.4)

where

λ
e/n
2 (tw) = 1

2 + e
− tw
τe/n

2 (5.5)
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with τe/n being the coherence time for electron/nuclear spins and Id being a d×d
identity matrix. The expression in Eq. (5.4) is a re-arranged form of the typical
expression for a depolarizing channel, pρ+(1−p)I2/2, with p = exp

{
(−tw/τe/n)

}
,

in which λe/n
2 represents the fidelity of the output state with respect to the input

state, in the case of pure input states. As shown below, this formulation suits
better the two special cases of interest we need to deal with in the setup under
consideration.

The first case of interest is when we have a two-qubit system in an initial en-
tangled state such as |Φ+〉AB(ab), for nuclear spins (electron spins). After a waiting
time tw, both spins decohere according to Eq. (5.4) resulting inDAB

depol(|Φ+〉AB〈Φ+|)
as the output state for nuclear spins, where DAB

depol = DA
depol ◦DB

depol, and similarly
for electron spins. As shown in Appendix B, for ρ = |Φ+〉AB(ab)〈Φ+|, the output
state can be written as

DAB
depol(ρ) = λn

4ρ+ (1− λn
4)(I4 − ρ)/3,

Dab
depol(ρ) = λe

4ρ+ (1− λe
4)(I4 − ρ)/3, (5.6)

where

λ
e/n
4 (tw) = 1

4(3λe/n
2 (tw)− 1)2 + 3

4(1− λe/n
2 (tw))2 (5.7)

is the fidelity of the output state with respect to the entangled input state. The
same form as in Eq. (5.6) holds for any other Bell states, or any mixed state
diagonal in Bell states, such as Werner states. For a general two-qubit state,
Eq. (5.6) acts as a conservative approximation to decoherence effects given that
it correctly specifies the fidelity of the output state, while maximizing the noise by
using a maximally mixed state for all other off-diagonal terms. We use Eq. (5.6) to
model decoherence across the elementary links as, in practical regions of interest,
deviations from a Bell-diagonal state is reasonably small. Note that the off-
diagonal terms ignored by our approximation often do not contribute to the
QBER in QKD systems.

The second case of interest is when the initial state is of the form |Φ̃+〉AB,
which is a six-qubit system, or a slight deviation from it. With similar calcula-
tions, we approximate the output state for an encoded entangled state ρ by

DAB
depol(ρ) = λn

64ρ+ (1− λn
64)(I64 − ρ)/63, (5.8)
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where

λ
e/n
64 (tw) = 1

64[(3λe/n
2 (tw)− 1)6 + 33(1− λe/n

2 (tw))6

+ 15(3λe/n
2 (tw)− 1)2(1− λe/n

2 (tw))4

+ 15(3λe/n
2 (tw)− 1)4(1− λe/n

2 (tw))2] (5.9)

is the fidelity of the output state, with respect to the input state, if the initial
state is the ideal encoded entangled state |Φ̃+〉AB. Similar to the two-qubit
case, the above modeling of decoherence effectively treats all non-desired states
as a maximally mixed state while correctly predicting the output fidelity; see
Appendix B for more detail.

5.3 Error Analysis

In order to assess how well the NV-center based encoded QRs would operate,
here, we obtain the final distributed state as a function of system parameters.
In the case of measurement or gate errors, we have previously devised analytical
and numerical techniques to accurately account for such issues and their impact
on system performance. In this chapter, we additionally account for the effect of
memory decoherence especially because, in terms of coherence time, the electron
spins in the NV centers may impose some limitations on the achievable rates and
distance.

Accounting for the decoherence effect, in an analytical way, in a system with
many individual NV centers, where each decoheres on its own independently of
others, is by no means an easy task. Here, we devise an approximation technique,
in which, at each step of the way, we calculate the average waiting time for
memories involved, and then assume all of them have decohered by the same
average time. This should provide us with a reasonable approximation to what
in practice can be achieved, which is what we are looking for here in the context
of QKD as an application.

An expression that would come handy in our calculations is the average num-
ber of attempts that it takes for M independent Bernoulli experiments to all
succeed after a total of W attempts. If the success probability for each attempt

113



5.3 Error Analysis

is given by q, this average number of attempts is given by Praxmeyer [2013],
Shchukin et al. [2019]

N(M, q,W ) = 1− (1− qW )M

(1− qW +1)M − qM(1− qW )M

+ (1− qM)(W −∑W−1
i=1 (1− qi)M)

(1− qW +1)M − qM(1− qW )M
. (5.10)

In the following, we calculate the relevant time parameters for each step of
the proposed protocols and explain our methodology to obtain the QR final state
as a function of system parameters.

5.3.1 Entanglement distribution

Here, we first obtain the entangled state distributed over an elementary link.
This involves two steps: first, generating an entangled state between two electron
spins, and, then, transferring that state to the corresponding nuclear spins. In
both processes, we deviate from an ideal Bell pair because of gate errors and
decoherence. We follow the two-photon protocol described in Sec. 5.2.1. For
simplicity, we assume that the generated entangled state without any decoher-
ence is the ideal Bell pair |Φ+〉. By the time that we hear about the success
of entanglement distribution, this ideal state of electron spins has already deco-
hered by the time it takes to transmit photons and learn about the success of the
entanglement distribution protocol. In this chapter, we assume that, compared
to the transmission time (which for our setup is typically on the order of tens
of µs, or longer), the time it takes for any local operation is negligible. In that
case, this waiting time, or, effectively, the repetition period for the entanglement
distribution protocol is given by

T0 = L0

c
, (5.11)

where L0 = Ltot/2n is the length of elementary links, with Ltot being the total
distance between two end users and n is the nesting level. During this time,
the desired target state |Φ+〉 decoheres in electron spins, according to Eq. (5.6),
yielding

ρee = F0|Φ+〉〈Φ+|+ 1− F0

3 (I4 − |Φ+〉〈Φ+|), (5.12)
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which is a Werner state with

F0 = λe
4(T0), (5.13)

where λe
4 is given by Eq. (5.7).

This state is then immediately transferred onto the corresponding nuclear
spins. This is being done by applying one cnot gate on each end, with electron
spins as the control qubit and nuclear spins in an initial state |0〉, followed by X
measurements on electron spins. This process has been analytically simulated,
according to Eqs. (5.2) and (5.3), by the symbolic software Mathematica to give
us the entangled state ρnn shared between two nuclear spins at distance L0.

5.3.2 Encoded entanglement distribution

The next step in encoded protocols is to create encoded entanglement across
certain elementary links. In principle, once the three Bell pairs required in each
leg are established, we can proceed with the remote cnot gate operation that
distributes encoded entanglement across the corresponding link. In our proposed
protocols, we, however, wait for a time T1 before we proceed to the ES stage.
This means that the nuclear spins in our system have decohered for an average
time of T 1 = N(M,P0(L0), T1/T0)T0, with M being the total number of relevant
Bell pairs, and

P0(L0) = 1
2η

2
cη

2
t η

2
d (5.14)

being the success probability for each entangling attempt, where ηc accounts
for the emission probability of a ZPL photon from the NV center, its collection
and coupling efficiency into and out of the optical channel, and the efficiency
of any required frequency conversion, ηd is the single-photon detector efficiency,
and ηt = exp[−L0/(2Latt)] is the transmissivity of a photon through half of the
elementary link. In protocol 1, M = 3×2n, whereas in protocol 2, M = 3×2n−1.
Similarly, in protocol 3, M = 2n, and in protocol 4, M = 2n−1.

Based on our average approach to accounting for decoherence across the re-
peater chain, here we assume all nuclear spins have decohered for a time T 1 by
the time we apply the remote cnot gate operation for encoded repeaters. This
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effect can be modelled by Eq. (5.6) at λn
4(T 1), with input state ρ = ρnn. We then

model the operations in the remote cnot circuit in Fig. 5.1, accounting for oper-
ation and measurement errors, to obtain ρ′nn as the output state for this stage of
the protocol. Note that, for remote cnot operation, electron spins are initialized
into the codeword states. This can be done, e.g., using techniques introduced in
Bernardes & van Loock [2012], Cheng et al. [2013], Zheng et al. [2012]. Based on
these techniques, in this chapter, we assume that the codeword states are created
error-free and the time it takes to prepare them is embedded into T1. This is
because the remote cnot operation can be done at each elementary link once
the three required Bell states for that link are generated. That implies that,
in terms of timing, the additional delay caused by the remote cnot procedure,
including the local preparation of the initial codeword states, would only matter
for the elementary link that gets entangled the last. Given that T1, in typical
regimes of operation, is on the order of ms, and local operations are assumed to
be much faster, we neglect this additional timing parameter. If this is not the
case in a certain experiment, the parameter T1 can be adjusted accordingly for
rate calculations. In protocols 3 and 4, we follow the same procedure but we do
not include the remote cnot operation.

5.3.3 Entanglement swapping

Once encoded/uncoded entanglement is stored in the nuclear spins, additional
electron-electron entanglement is established so that ES operations can be per-
formed at intermediate stations. For protocols 2 and 4, this process is the same
as what has been done for the distribution of original Bell pairs, whereas, in
protocols 1 and 3, the Bell pairs are distributed only over a very short distance
between two co-located electron spins. In the latter case, we assume that the
corresponding electron-spin decoherence happens over a negligible time, whereas
in the former the electron-electron state has the same form as ρee in Eq. (5.12).

Once electron-electron entanglement is established, the corresponding ES op-
erations between electron and nuclear spins are immediately performed. These
ES operations could therefore be performed at different times for different memor-
ies. To estimate the decoherence during this step, and to follow the simple
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T 1, PS1 T 2, PS2

Protocol 1 M = 3× 2n, M = 3× (2n − 1),
q = P0(L0) q = P0(0), Ts fixed

Protocol 2 M = 3× 2n−1, x M = 3× 2n−1,
q = P0(L0) q = P0(L0), Ts = T0

Protocol 3 M = 2n, M = 2n − 1,
q = P0(L0) q = P0(0), Ts fixed

Protocol 4 M = 3× 2n−1, M = 2n−1,
q = P0(L0) q = P0(L0), Ts = T0

Table 5.1: The relevant values of M , q, and Ts for calculating T 1 and T 2, as well
as, PS1 and PS2, for different protocols.

scheme we have adopted for decoherence analysis, we calculate the average time
T 2(M,Ps) = TsN(M,Ps, T2/Ts), to do ES operations across the repeater chain,
where Ts denotes the repetition period for the electron-electron entangling at-
tempt, and Ps denotes its success probability. During this time, our state ρ′nn

would decohere. For protocol 1, the decoherence is modeled by Eq. (5.8) with
λn

64 calculated at tw = T 2(3× (2n − 1), P0(0)) and Ts being a small internal time
constant. Note that while Ts in this case could be short, its product with N could
result in a non-negligible amount of decoherence. For protocol 2, the decoher-
ence is modeled by Eq. (5.8) with λn

64 calculated at tw = T 2(3 × 2n−1, P0(L0))
and Ts = T0. For protocol 3, the decoherence is modeled by Eq. (5.6) with λn

4

calculated at tw = T 2(2n − 1, P0(0)) and Ts being a small internal time constant.
Finally, for protocol 4, the decoherence is modeled by Eq. (5.6) with λn

4 calculated
at tw = T 2(2n−1, P0(L0)) and Ts = T0. Table 5.1 summarizes the choice of M and
q for calculating T 1 and T 2 for different protocols.

Let us denote the resulting state after the above decoherence process as ρ′′nn.
Using the error models in Sec. 5.2.3, and the techniques introduced in chapters
3 and 4, we can then calculate the final output state of the QR accounting for
gate, measurement, and decoherence errors.
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5.4 QKD Performance

It would be interesting to compare different QR structures and protocols in terms
of their performance for a concrete application. Here, we choose QKD as our
benchmarking tool. We use the decoder modules proposed in the last chapter,
which only rely on single-qubit measurements, to generate a raw key bit. We also
use the post-selection technique proposed in chapter 3, wherein only data points
that no errors has been detected in the ES stage are used for key generation.

Here, we first calculate the secret key generation rate per entangled state
between Alice and Bob for the BBM92 protocol Bennett et al. [1992]. In the
asymptotic limit, and, for the efficient Lo et al. [2005a] entanglement-based QKD
protocol, where one basis is used more often than the other, this parameter,
known as the secret fraction Scarani et al. [2009], is given by

r∞ = Max{0, 1− h(Qz)− h(Qx)}, (5.15)

where h(p) = −plog2(p)−(1−p)log2(1−p) is the Shannon binary entropy function
and Qi is the QBER in measurement basis i, i.e., the probability that Alice and
Bob get discordant measurement outcomes in that basis. Here, the secret fraction
is calculated for the better of two decoders proposed in chapter 4.

In order to obtain the total secret key generation rate, we need to multiply the
secret fraction by the entanglement generation rate R. Due to our assumptions
that the time for local operations and measurements is negligible, the overall
timescale for the implementation of protocols is determined by the sum of T1 and
T2. Thus, the rate to obtain a Ltot-distant entangled pair by dividing it into 2n

segments is expressed as

R = PS

T1 + T2
, (5.16)

where PS = PS1PS2 denotes the probability that, in step 1, all required elementary
links are successfully entangled and, in step 2, all relevant BSMs are performed.
The success probability for step 1 is given by PS1 = (1−(1−q)T1/T0)M , and, in step
2, conditioned on success in step 1, by PS2 = (1− (1− q)T2/Ts)M , where, in each
protocol, the corresponding values for q, M , and Ts are outlined in Table 5.1. In
this chapter, we normalize secret key rate by the number of NV centers to assess
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and compare the performance of proposed protocols. The normalized key rate is
given by

RP1
QKD = RP1rP1

∞
6× 2n

,

RP2
QKD = RP2rP2

∞
3× (2n + 1) ,

RP3
QKD = RP3rP3

∞
2n+1 ,

RP4
QKD = RP4rP4

∞
2n + 1 , (5.17)

for protocols 1 to 4, respectively, as specified by the superscripts.
Based on above expressions, we compare the secret key generation rate, in the

nominal mode of operation where no eavesdropper is present, for protocols 1 to
4. Our objective is to estimate the relevant parameters in Eq. (5.17) to get some
insight into how these protocols are expected to perform in practice.

The nominal parameter values used in our numerical results are as follows.
We fix PS1 and PS2 to 0.99 each, from which T1 and T2 can be calculated for
each protocol. We then calculate T 1 and T 2 to estimate the effect of decoherence
on our system. To calculate T 1 and T 2, in our numerical results, we have used
the following approximation to N(M,P,W ) in Eq. (5.10), which is sufficiently
tight, for our purposes, when W � 1 Coopmans et al. [2021], Eisenberg [2008],
Shchukin et al. [2019]:

N(M, q) ≈ 1
q

(γ + ln(M) + 1
2M ), (5.18)

where γ ≈ 0.57721 is the Euler-Mascheroni constant. For our set of parameters,
T 1 and T 2, respectively, end up to be somewhere between 1/2 to 2/3 of T1 and T2.
We set the coherence time of electron and nuclear spins as τe = 10 ms and τn = 1 s,
respectively, which is achievable in practice Bar-Gill et al. [2013], Bernien et al.
[2013], Maurer et al. [2012]. The above values mostly reflect the back action
on nuclear spins, when electron spins are being manipulated, but recent work
with this type of memory Abobeih et al. [2018], Bradley et al. [2019], Kalb et al.
[2018], Pompili et al. [2021] has shown some progress with resolving this issue.
We will therefore consider larger values of coherence time in our numerical results
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Figure 5.4: Comparison of normalized secret key rate as a function of gate error
probability β at (a) ηc = 0.3, Ltot = 300 km, (b) ηc = 0.5, Ltot = 500 km, (c)
ηc = 0.3, Ltot = 200 km, (d) ηc = 0.5, Ltot = 300 km, (e) ηc = 0.3, Ltot = 100 km,
and (f) ηc = 0.5, Ltot = 200 km, for protocols 1–4. The result for repeaterless case
without encoding is also calculated (black solid bound). The measurement error
probability is set at δ = 10−4. The coherence time of electron spins and nuclear
spins are τe = 10 ms and τn = 1 s, respectively. Note that for Ltot > 200 km,
there is no key generated without using a repeater.
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as well. The detector efficiency is set to ηd = 0.9, which can be achieved by using
superconducting single-photon detectors Zhang et al. [2015], offering negligible
dark counts in our case. The distribution time for next-to-each-other electron-
electron entanglement is set to Ts = 5 µs, which is on the same order of magnitude
as the timing of internal operations reported in Pompili et al. [2021]. We choose
the optical fiber as our channel with the speed of light being c = 2 × 105 km/s
and Latt = 22 km.

Figure 5.4 illustrates the performance of different protocols for generating
secret keys as a function of cnot gate error probability β, at electron-spin meas-
urement error probability δ = 10−4, in the presence of depolarizing noise. We have
chosen two different values for the coupling efficiency, ηc, as well as four nominal
distances of 100 km, 200 km, 300 km, and 500 km. Such distances are perhaps
too short to have an immediate impact in practice, but they are relevant to early
demonstrations of quantum networks as being pursued, e.g., in Netherlands Pom-
pili et al. [2021]. For each value of β, we have found the optimum nesting level
n, for each protocol, that maximizes the key rate in Eq. (5.17). Figures 5.4(a)-(f)
show system performance at different combinations of such parameters. Note
that, for some parameter regimes, some protocols have not been able to generate
a positive key rate, and, therefore, are absent from the relevant graph. We make
several interesting observations from this figure, as summarized below:

• Observation 1: Among different values chosen, in our simulation, for the
total distance, Protocols 3 and 4 could only generate non-zero secret key
rates at Ltot = 100 km. For the chosen measurement error probability and
coherence time parameters, even if we improve the coupling efficiency to
ηc = 0.7, there is still no key at Ltot ≥ 200 km for these two protocols. This
behavior is mainly because no distillation is considered in uncoded repeat-
ers. But, given that conventional entanglement distillation techniques that
do not rely on quantum error correction codes are probabilistic Bennett
et al. [1996], Deutsch et al. [1996], it is not expected that they offer any
improvement in key rate scaling. The reason for this is that whenever we
need to do a probabilistic operation, we need to repeat that until success.
This requires additional classical communication to herald the success or
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failure of previous attempts, which results in additional delay and decoher-
ence, both reducing the rate. Nevertheless, in the regions where uncoded
QRs work (hollow circles in Fig. 5.4(e)), they offer, comparatively, high
key rates at low values of β. Between protocols 3 and 4, we observe that
the highest secret key rates are generated when we use protocol 4 at nest-
ing level n = 3. This observation implies that, without any encoding, the
QR protocols may only be able to cover short distances, due to their low
tolerance of errors.

• Observation 2: Among the four protocols, protocol 1 has the highest
computational overhead, but also the highest resilience to errors and deco-
herence. This is because of using encoded entanglement in all elementary
links, as opposed to every other in protocol 2, or none in protocols 3 and 4.
Because of this feature, in cases where decoherence or gate-error probability
is high, this protocol is the only one surviving; see Figs. 5.4(a) and (b). But,
if the decoherence is manageable, then protocol 2 starts offering better key
rates for low values of β; see Figs. 5.4(c) and (d), although, at larger values
of β, protocol 1 is still the only protocol offering non-zero key rates. When
distance is low, or coupling efficiency is high, e.g., in Figs. 5.4(e) and (f),
protocol 2 maintains its superiority over the entire region of β relevant to
these two protocols. This seems to be because of the additional, but unne-
cessary, computational overhead in protocol 1, as compared to protocol 2.
Another way to look at this trend is that protocol 2 uses fewer physical re-
sources at the cost of having less protection against errors, due to its partial
use of encoding, and having a longer cycle period, typically, over 1.5 times
that of protocol 1. Both these issues make it more sensitive to decoherence.
For instance, in Figs. 5.4 (a) and (d) (also, Figs. 5.4 (c) and (f)), where
the total distance is fixed, at lower values of ηc, the decoherence time of the
system will be longer and thus protocol 1 offers advantage (because it can
detect cases of error that protocol 2 may miss). For higher values of ηc, the
decoherence is not the major issue, thus the fewer number of erroneous op-
erations and the less consumption of physical resources in protocol 2 make
it the better choice.
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• Observation 3: We notice that, for the optimum choice of nesting level,
the inter-node distance varies roughly from 10-20 km, and it tends to be
larger at longer total distances. This is somehow expected for this type of
repeaters where the optimum distance is often on the order of Latt. This
inter-node distance is more manageable than that of third generation QRs,
for which nodes are only apart by a few kms Azuma et al. [2015], Borregaard
et al. [2020], Ewert & van Loock [2017], Glaudell et al. [2016], Lee et al.
[2019], Muralidharan et al. [2014], but it is more demanding than that of
probabilistic QRs, where the inter-node distacne can be on the order of
tens of kms Lo Piparo & Razavi [2013], Sangouard et al. [2011]. Also note
that, at short distances, it may not make sense to use any repeater nodes at
all, and one can directly distribute an entangled state between the far-end
users. This case is shown by the horizontal black solid line in Fig. 5.4, and
effectively represents the key rate at n = 0 for protocols 3 and 4, given by

R0 = P0(Ltot)× rP3
∞

2T0
. (5.19)

Note that for Ltot > 200 km, there is no key generated without using a
repeater.
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Figure 5.5: Comparison of normalized secret key rate as a function of total
distance Ltot at (a) ηc = 0.5, τe = 10 ms, τn = 1 s, (b) ηc = 0.5, τe = 100 ms,
τn = 10 s; and ηc at (c) Ltot = 300 km, τe = 10 ms, τn = 1 s, (d) Ltot = 800 km,
τe = 100 ms, τn = 10 s; for protocols 1 and 2. The cnot gate error probability
and measurement error probability are β = 10−3, δ = 10−4, respectively.

To further understand how protocols 1 and 2 compare to each other, in Fig.
5.5, we investigate the sensitivity of these protocols to the total distances Ltot,
coupling efficiency ηc, and coherence times of nuclear, τn, and electron, τe, spins.
Figures 5.5(a) and (b) show the normalized key rate versus total distance for two
different sets of coherence times, where τn and τe in Fig. 5.5(b) are ten times that
of Fig. 5.5(a). We observe that, in both figures, protocol 2 starts at a higher key
rate than protocol 1, and this continues until a certain distance at which no secret
keys can be generated via protocol 2, while protocol 1 can still offer positive key
rates for another few hundreds of kilometers. For instance, for parameters of Fig.
5.5(b), protocol 1 can offer around 0.01 bit/s of key rate at 2000 km (once the
number of memories used is accounted for), whereas protocol 2 offers zero key
rate. Figures 5.5(c) and (d) compare the two protocols versus ηc. In Fig. 5.5(c),
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for which coherence times are lower, there is again a crossing point beyond which
protocol 2 outperforms protocol 1. In Fig. 5.5(d), in which coherene times are
longer, protocol 2 maintains its superiority even at a longer distance of 800 km
for ηc > 0.22. All those observations again confirm that, protocol 2 could be
the better option if we are not in a noise-limited regime. When decoherence is
high, or we need to reach longer distances, protocol 1 shows more resilience to
errors and can reach longer distances, or work at lower coupling efficiencies. This
trade-off needs to be considered when designing the optimal QR setting.

Based on our simulation results, we realize that the coherence time of nuclear
spins is more crucial than that of electron spins. We observe that if we only
improve the coherence time of electron spins, the QKD system performance is
only boosted marginally. That being the case, in Fig. 5.6, we give the region
plot highlighting the optimal QR structure that offers the highest key rate, at
δ = 10−4, τec = 10 ms, τnc = 10 s, in a three-dimensional parameter space.
We first note that, even with the improved coherence time, the uncoded QR
protocols, i.e., protocols 3 and 4 still only work at Ltot = 100 km, and protocol 4
offers the higher key rates compared to others at high efficiency and low gate error
probability region. For longer distances and larger error probabilities, protocol 2
is most often the optimal. Here, we interestingly notice that, with the improved
coherence time of the system and with three variables being considered, the region
where protocol 1 outperforms protocol 2 becomes limited, which is also partially
evidenced from Figs. 5.5(b) and (d). This leads to a practical conclusion that, for
near-term implementations, the partially encoded QRs, which use fewer resources,
might be the best option.
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Figure 5.6: The region plot showing the distribution of the optimal QR protocol
in a three-dimensional parameter space at δ = 10−4, τe = 10 ms, and τn = 10 s.

5.5 Conclusion

In this chapter, we analyse two quantum repeater protocols with three-qubit re-
petition codes on NV centers in diamond platforms, with operation errors and de-
coherence noise being considered. We benchmark such encoded repeaters against
uncoded structures by using QKD as a concrete application. We find that, the
uncoded QRs only work and possibly offer some advantage at short distances. For
longer distances, QRs with encoding are the optimal choice. We notice that, typ-
ically, for intermediate distances or at high coupling efficiencies, the protocol that
relies on only partially encoded entangled states, hence consuming fewer physical
resources, is the best-performing scheme, while, at longer distances or lower ef-
ficiencies, the protocol that relies on encoded entanglement in all its elementary
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links, and is thus more resilient to errors, is the optimal one. However, we inter-
estingly find that, if the setup parameters are overall improved, the parameter
region where the latter protocol shows some advantage becomes limited. This
leads to a conjecture that, for the future implementation of encoded quantum
repeaters, it seems that the partially encoded structures, rather than the fully
encoded structure, are of more practical use.
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Chapter 6

Summary and Future Work

6.1 Summary of results

In this thesis, we thoroughly analyzed the performance of QKD systems that
run over QRs with encoding. We fully studied the effect of different components
and system imperfections on the secret key generation rate of such systems. We
summarize our main results as follows:

• In order to simulate the erroneous quantum circuits and get the analytical
form of the final entangled state, we derived a hybrid analytical-numerical
framework based on the linearization technique and the transversality of the
code employed to handle the computational complexity of such analyses.
Previous work on this subject often relied on various approximations to
analyze the system. Here, we tried to remain as close as we can to the
exact results and only used approximations that were analytically justified
and numerically verified. Our techniques allowed us to only deal with four
qubits at a time whatever the actual number of qubits in the whole system,
which hugely improved the simulation speed.

• We found that, in the context of QKD, it is often more efficient to use the
error detection, rather than the error correction, capability of the underlying
code to sift out cases where an error has been detected. By doing so, we
noticed that such systems could considerably be more resilient to errors
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than previously thought. The system is most sensitive to measurement
errors, but, provided that they are kept sufficiently low in the experimental
setup, we showed that cnot errors on the order of a few percents could be
tolerated. The QKD system could also handle imperfections in the initial
Bell states aligned with what experimentally is achievable today.

• A key enabler to improve the key rate is to classify the QKD data points into
different groups based on the measurement results reported from ES and
decoding stages. By using this information, we observed three-fold increase
in resilience to errors in cnot gates as compared to when the repeater chain
and decoders were treated as a black box. We identified that the golden
states that contributed the most to the final key rate correspond to the
cases where no error has been detected at ES and decoding stages. This
observation resulted in a simple, but effective, post-selection tool for the
QKD system, which not only improved system performance but could also
simplify the implementation of such systems in their early demonstrations.

• We noticed that, for such systems, the imperfections in the decoder mod-
ules are far more relevant and also more difficult to detect, than those
in the encoder ones. In order to tackle this, we proposed two alternative
decoder structures which only relied on single-qubit measurements. In con-
trast to conventional error-correction decoders, these decoding schemes did
not need any two-qubit gates, which, therefore, offered lower decoding er-
rors and increased the resilience of the system to common sources of error.
The proposition of these decoders not only reduced the complexities of the-
oretical analysis for such systems, but also simplified the implementation
aspects in many practical scenarios.

• In order to have a clue whether larger codes perform better, we applied
our technique to QRs with five-qubit repetition codes. We noticed that,
five-qubit codes only showed some advantages in high error region since
it could tolerate more errors, but this advantage would be beaten by the
deployment of probabilistic QRs, and thus might not be of any practical use.
We found that, for most practical purposes at moderately long distances,
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the three-qubit system could offer the best performance so long as error
parameters were around 1%. Our analysis suggested that extending the
reach of trust-free terrestrial QKD links to 1000 km is within reach in the
near future.

• We investigated the explicit implementation of such encoded QR protocols
on a practical platform enabled by NV centers in diamond. We studied
two NV-based encoded repeater structures and their uncoded counterparts.
One structure offered less consumption of classical communication, hence
was more resilient to decoherence effects, whereas the other one relied on
fewer physical resources and operations. We assessed and compared their
performance for the task of secret key generation under the influence of noise
and decoherence with current and near-term experimental parameters. We
noticed that, the uncoded QRs only worked and possibly offered advantages
at short distances. For longer distances, QRs with encoding were the better
option. We realized that, typically, for intermediate distances or higher set-
up efficiencies, protocol 2, the one which consumed less physical resources,
was the best-performing scheme; whereas for longer distances or lower set-
up efficiencies, protocol 1, the one which consumed less temporal resources
and thus was less sensitive to decoherence, was the optimal. However, we
interestingly noticed that, if the set-up parameters were overall improved,
the parameter region where protocol 1 showed advantage became limited.

6.2 Future outlook

The framework developed in this thesis can be extended to more advanced CSS
codes. Though we argued that larger codes might not of any practical use in
moderately long distances in Chapter 4, this does not rule out the possibilities
of finding better codes for arbitrary long distances. Moreover, since we did not
include all possible sources of imperfections in our analysis in Chapter 4, such
as decoherence of QMs, dark count rate of photon detectors, or non-ideal single-
photon resources, it might be ill judged to just limit ourselves to simple codes for
future possibilities. The next close step would be to look into the performance of
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QRs with 7-qubit Steane code, which is a QEC code that can correct one bit-flip
error as well as a phase-flip error at the same time. It would take more efforts to
do such a simulation, but it is still doable and certainly worth trying.

During our calculation, we realized that, for QRs with encoding on solid-state
platforms, where local operations can be performed fast and deterministically,
the distribution time of initial Bell states is always the crucial limitation for
secret key generation rate. This can be improved by applying the multiplexing
techniques, as partially shown in Chapter 3. However, we have to mention that
solid-state platforms, unlike atomic ensemble systems, are more constrained on
the implementation of multiplexing schemes. This would ask us to investigate the
possibility of cross-platform architectures that could benefit from both long-lived
multimode QMs and deterministic fast local gate operations.

With various QR proposals, QEC codes, and experimental platforms being
developed and applied nowadays, one major task that need to be addressed is to
come up with a systematic and reliable figure of merit in order to quantify and
compare the performance between different systems in a fair way. Such a criterion
should also be able to guide us on finding a way to maximise the performance at
the minimal cost for each specific case. On the other hand, so far, most of the
research simply focus on the construction of a single repeater chain which only
involves two end-users. However, with our ultimate ambitious goal, to establish
a quantum internet world wide, in mind, proposals for 2D quantum network is
being put on agenda. Such a network allows a large number of users to perform all
kinds of different tasks at the same time, whereas the utilization ratio of different
channels would certainly vary. For such cases, a practical and efficient optimal
resource analysis would become more indispensable and critical. Designing codes
for such 2D QRs would also be of interest as future work.

In addition, so far, we mainly considered to utilize the long-distance entangle-
ment distributed for secret key generation applications. It would also be interest-
ing to apply this framework to access the performance of non-QKD applications,
such as quantum metrology, quantum teleportation, and even the test of funda-
mental quantum physics. Our analysis allows us to calculate the precise format,
of the final distributed entanglement, analytically or numerically, with which the
figure-of-merit parameters for those applications can be derived.
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Appendix A

Equivalence of Decoders 2 and 3

In this Appendix, we prove that decoders 2 and 3, in the ideal case, are equivalent.
That would then allow us to use the same security proof that we have for decoder
2, i.e., that of entanglement-based BBM92 protocol Bennett et al. [1992], to
decoder 3 as well. In practice then, both decoders 2 and 3 implement the BBM92
protocol with erroneous decoders. Given that these errors result in overestimating
bit-flip and phase-flip errors, we can still use the key rate formula in Eq. (4.5) to
obtain a lower bound on the secret key rate.

In order to prove our conjecture, we effectively show that the measurement
operators implemented, in the ideal case, by either decoders are identical. We
first write down the perfect measurement operators for decoder 3 corresponding
to measuring bit 0, or, equivalently, states |0〉 in Z and |+〉 in X bases, as follows

M
(3)
0 = |000〉〈000|+ |100〉〈100|+ |010〉〈010|+ |001〉〈001|, (A.1)

M
(3)
+ = |+ ++〉〈+ + +|+ |+−−〉〈+−−|

+ | −+−〉〈−+−|+ | − −+〉〈− −+|, (A.2)

respectively. The proof for bit 1 can similarly be done. In order to show that
the effective measurement operators for decoder 2 are equivalent to Eq. (A.1)
and Eq. (A.2), we break the circuit of decoder 2 into two parts (see Fig. 4.2(b)):
the first step includes two cnot operations and the second step contains the
corresponding measurements of three qubits and the flip gate on the first qubit
only if the outputs of the other two qubits are |1〉. We look at this process in a
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backward way and the corresponding projectors right before the second part can
be represented as

Mmid
0 = |000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |111〉〈111|,

Mmid
+ = |+ 00〉〈+00|+ |+ 01〉〈+01|

+ |+ 10〉〈+10|+ |+ 11〉〈+11|, (A.3)

which implies the fact that for QKD measurement in Z basis, the outputs of the
second and the third qubits will affect the result of the first qubit, while for QKD
measurement in X basis, the outputs of the other two qubits does not matter. If
we now go back to the input stage of the decoder, where cnot1→2 and cnot1→3

are applied subsequently, Eq. (A.3) will be transformed to

M
(2)
0 = |000〉〈000|+ |001〉〈001|+ |010〉〈010|+ |100〉〈100|,

M
(2)
+ = (|000〉+ |111〉)(〈000|+ 〈111|)

+ (|001〉+ |110〉)(〈001|+ 〈110|)
+ (|010〉+ |101〉)(〈010|+ 〈101|)
+ (|011〉+ |100〉)(〈011|+ 〈100|) (A.4)

Note that to calculate M (2)
+ , we represent the first qubit in {|0〉, |1〉} basis before

applying the corresponding cnot gates. We can see that M (2)
0 = M

(3)
0 now.

For M (2)
+ , after writing all three qubits in {|+〉, |−〉} basis, we establish that

M
(2)
+ = M

(3)
+ . The derivation steps are straightforward and are left out. This

proves our conjecture.
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Appendix B

Derivation of decoherence
parameters

The decoherence model in Eq. (5.4) for a single qubit system, where d = 2 can
be rewritten as

Ddepol(ρ) =λ2ρ+ (1− λ2)(I2 − ρ)
=(2λ2 − 1)ρ+ (1− λ2)I2

=(2λ2 − 1)ρ+ (1− λ2)ρ+XρX + Y ρY + ZρZ

2
=3λ2 − 1

2 ρ+ 1− λ2

2 (XρX + Y ρY + ZρZ) (B.1)

where X, Y and Z are Pauli operations. For a two-qubit system, each qubit
decoheres independently, which leads to

DA
depol ◦DB

depol(ρAB)

= (3λ2 − 1
2 )2ρAB + (3λ2 − 1)(1− λ2)

4

× [(XB, YB, ZB)ρAB

 XB

YB

ZB

+ (XA, YA, ZA)ρAB

 XA

YA

ZA

]

+ (1− λ2

2 )2(XB, YB, ZB)(XA, YA, ZA)ρAB

 XA

YA

ZA


 XB

YB

ZB

 . (B.2)
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If the state ρAB is a Bell diagonal state, we can verify that the output state
obtained from (B.2) is equivalent to Eq. (5.6). Note that, in Eq. (B.2), a Bell state
remains intact by the following operators: IAIB, XAXB, YAYB, ZAZB. Therefore,
the fidelity of the output state with respect to the input Bell state is given by
the sum of the corresponding coeffficients in (B.2) that

λ4 = 1
4(3λ2 − 1)2 − 3

4(1− λ2)2, (B.3)

which is the same as Eq. (5.7).
To obtain the decoherence effect on a six-qubit system, we have to apply

the single qubit depolarizing model in Eq. (5.4) on each qubit independently,
and calculate the tandem effect. This results in a lengthy expression for the
output state, which we will not reproduce here. But, it can be verified that the
operators that map the encoded Bell state |Φ̃+〉AB to itself are given by: I⊗6,
X⊗6, Y ⊗6, Z⊗6, X⊗2Y ⊗4, X⊗4Y ⊗2, Z⊗4I⊗2 and Z⊗2I⊗4. Again, one can calculate
the corresponding fidelity for the output state by accounting for the coefficients
of the relevant terms to obtain

λ64 = 1
64[(3λ2 − 1)6 + 33(1− λ2)6

+ 15(3λ2 − 1)2(1− λ2))4

+ 15(3λ2 − 1)4(1− λ2)2], (B.4)

which is equivalent to Eq. (5.9).
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