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Abstract

The exponential growth of smart wireless devices has put much pressure on the spectral

efficiency and energy efficiency (EE) of the Internet of things (IoT) networks and wireless

sensor networks. In order to support energy constrained wireless devices, wireless powered

communication networks (WPCN) have been proposed based on different wireless powered

transmission (WPT) technologies, e.g., simultaneous wireless information and power transfer

(SWIPT), harvest then transmit (HTT) and backscatter communication (BackCom). We note

that energy-efficient resource allocation schemes need to be tailored to the different WPT

technologies used in WPCNs. In this thesis (including four papers), we classify WPCNs into

three types according to the way of information transmission: active transmission, passive

transmission and hybrid transmission, and present energy-efficient resource allocation schemes

for them in different scenarios of WPCNs.

In active transmission-based WPCNs, a radio frequency (RF) power source, e.g., a base

station (BS) or a power beacon (PB), sends an RF signal to a transmitter, which harvests

energy from the received RF signal through its energy harvesting (EH) circuit and generates its

own RF signal to carry information to a receiver. In Paper I, we consider a SWIPT-enabled

device-to-device (D2D) underlaid network, where a D2D receiver decodes information and

harvests energy from its associated D2D transmitter simultaneously via its SWIPT circuit, and

propose to maximize the sum EE of all D2D links by optimizing the spectrum resource and

power allocation, and the power splitting ratio of each D2D device based on a non-linear EH

model. We find that the number of SWIPT-enabled D2D links that maximize the sum EE is

limited by the EH circuit sensitivity, especially when the D2D communication distance is long.
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In passive transmission-based WPCNs, an RF power source sends an RF signal to a

backscatter device (BD), which backscatters parts of the incident RF signal to a receiver and

harvests energy from the rest of the incident RF signal to support the backscatter circuit. In

Paper II, we propose to ensure the max-min EE fairness among the backscatter links by jointly

optimizing the PB transmission power and the backscatter reflection coefficients. Our results

show that the proposed max-min EE resource allocation scheme is more effective when the

throughput requirement of the BDs is lower and the channel power gain difference among

different PB-to-BD links is smaller. In Paper III, we propose to maximize the system EE of a

symbiotic radio (SR) network that contains a primary link and multiple BDs, each being able to

harvest energy while backscattering, by optimizing the primary transmitter (PT) transmission

power, the BDs’ reflection coefficients and time division multiple access (TDMA) time slot

durations for both the parasitic SR (PSR) and commensal SR (CSR) cases. The simulation

results show that the system EE is maximized when all BDs only achieve the minimum

throughput requirement in the PSR case, while in the CSR case, the system EE is maximized

when a best BD that can contribute the most toward the system EE is allocated the maximum

allowed time to backscatter its information to the primary receiver (PR), and this best BD is

determined by the optimized PT transmission power in the corresponding time slot.

In hybrid transmission-based WPCNs, the wireless devices are equipped with both the RF

signal generation circuit and the backscatter circuit to support active transmission and passive

transmission, respectively. In paper IV, we maximize the total EE of all the IoT nodes, which

are powered by an unmanned aerial vehicle (UAV) and need to send information to a reader,

by optimizing the UAV’s transmit power and trajectory, the IoT nodes’ backscatter reflection

coefficients, transmit power for active transmission, and time allocation between backscattering

and active transmission. Our results show that the UAV tends to fly toward the IoT nodes with

better channel conditions to the reader, and the maximum total EE of the IoT nodes is achieved

when the IoT node that is closest to the reader achieves the highest throughput, while other IoT

nodes maintaining the minimum throughout requirement.
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Part I

Introduction and Overview





Chapter 1

Introduction

1.1 Background

1.1.1 Wireless Powered Communication Networks

It is predicted that the number of the connected devices could be tens or hundreds of billions in

the near future [1, 2]. Also, the requirements of high quality video and widescreen resolutions

in these huge amount of devices have put much pressure on the power sources [3], especially

for the devices in Internet of things (IoT) networks or sensor networks with limited battery

capacity. This challenge encourages us either to look for sustainable power sources or consider

wireless powered communication networks (WPCN) for prolonging the lifetime of energy-

constrained communication networks [4–7]. Natural sustainable power sources like solar,

wind and hydroelectric are considered in [8–10], but the stability and the availability of such

natural power sources are much worse than the energy harvested in WPCNs due to the location,

climate and time [11]. Despite the power sources stored in the battery, energy harvesting (EH)

in WPCNs is employed to capture and convert radio frequency (RF) energy in the ambient

environment into electricity power [3]1. Therefore, the devices in WPCNs could reduce the

dependency on batteries and utilize the harvested energy to work for a longer period of time.

1Base on the information from PowerCast (www.powercastco.com), three types of RF-to-DC converter chips
have been developed including PCC114, PCC110 and PCC210, where the former two chips have the conversion
efficiency up to 75% and the latter chip has the highest conversion efficiency up to 95%.
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Moreover, the researchers have proposed a passive circuit without equipping a battery, i.e.,

the passive backscatter circuit [12]. Indeed, the results from [13] indicate that a batteryless

backscatter circuit can work continuously with an incident RF power of 18 dBm for EH. For

better development of fifth generation (5G) and next-generation sustainable networks, the

deployment of WPCNs will remain the main motivation nowadays and in the future.

1.1.2 Active Transmission in WPCNs

Active transmission in WPCNs indicates that a transmitter harvests energy from an RF source,

e.g., a base station (BS) or a power beacon (PB), then the transmitter utilizes the harvested

energy to transmit information actively to a receiver. Since active transmission in WPCNs

generates the RF signal with sufficient energy, on one hand, the high transmission rate and reli-

ability can be guaranteed, on the other hand, it needs to spend time on harvesting energy before

transmitting information [14]. The time allocation between EH and information transmission

needs to be taken into account. Two active transmission schemes are given in Fig. 1.1 and Fig.

1.2 as harvest then transmit (HTT) scheme and simultaneously wireless information and power

transfer (SWIPT) scheme, respectively.

Fig. 1.1 An illustration of a typical HTT scheme.

Fig. 1.1 demonstrates that a PB sends an RF signal to a transmitter, the transmitter converts

the RF signal into electricity power via its EH circuit, then the transmitter generates its own RF

signal and sends information to a receiver by utilizing the harvested energy. This creates so

called HTT scheme [14, 15]. It’s worth to mention that the PB in Fig. 1.1 works as a dedicated
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RF power source, such power sources can be RF signals from several PBs, TV radio signals,

noise power and any other surrounding signals that may be wasted [16].

Fig. 1.2 An illustration of a typical SWIPT scheme.

Fig. 1.2 illustrates a typical SWIPT networks, where a BS transmits an RF signal to a

transmitter, and the transmitter harvests the energy and decodes the information from the

received signal simultaneously through a SWIPT circuit. SWIPT circuit is composed of

information decoding component and EH component, and it can be implemented either in a

power splitting mode or a time switching mode, where the former mode splits the received

signal into two signal streams, one stream is for information decoding and the other stream is

for EH, the latter mode splits the time duration, one duration is for information decoding and the

other duration is for EH [17–19]. Then the transmitter utilizes the harvested energy to generate

its own RF signal for transmitting information to a receiver. In this case, the transmitter works

both as an information decoder and an information sender. It is noted that the transmitter in Fig

1.2 can be a relay node which receives and decodes the information from the BS, then forwards

the original information to a receiver by utilizing the harvested energy during SWIPT [20, 17].

Also, there exists a simple case only containing a BS/transmitter and a receiver, the receiver

decodes the information from the BS/transmitter by utilizing the energy harvested via SWIPT

[21].

1.1.3 Passive Transmission in WPCNs

Passive transmission in WPCNs usually refers to backscatter communication (BackCom) as

shown in Fig. 1.3, where a PB sends an RF signal to a backscatter transmitter, then the
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transmitter modulates its own information on the incident RF signal and reflects one part of

the signal to a backscatter receiver by tuning its antenna impedance. The other part of the

incident RF signal is harvested for circuit power consumption [12, 22]. Different from active

transmission, backscatter circuit is not equipped with any active RF components, thus the

backscatter transmitter does not generate RF signals, it simply backscatters the incident signal

to the backscatter receiver, which significantly reduces the circuit energy consumption [12, 22].

Fig. 1.3 An illustration of a typical BackCom network.

Based on the backscatter circuit design, BackCom is divided into passive BackCom and

semi-passive BackCom, where the former design indicates that there is no battery in the

backscatter circuit and the latter design refers to a backscatter circuit equipped with an internal

power source. The key benefit of passive BackCom is its low cost and small size, thus it

is simple to be massively deployed. However, the only power source is from the received

RF signal, the effective transmission range of passive BackCom is relatively short. While in

semi-passive BackCom, the transmission range is extended due to an internal power source and

its reliability is better than passive BackCom. Also, the access delay in semi-passive BackCom

is greatly reduced since the backscatter transmitter does not need to wait for harvesting enough

energy for circuit operation. Since semi-passive BackCom still backscatters the incident RF

signals, the transmission rate is not largely improved due to its passive counterpart [12].

Based on the network deployment, BackCom is classified into three major types: monostatic

BackCom, bistatic BackCom and ambient BackCom (AmBC). In the monostatic BackCom,
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the RF source, i.e., PB in Fig. 1.3. and the backscatter receiver are placed in the same device,

i.e., a tag reader. thus it has the problem of round-trip pathloss. The monostatic BackCom

is mostly emplyoed in short-range Radio Frequency Identification (RFID) applications. Fig.

1.3 just shows the bistatic BackCom, where the RF source is separated from the backscatter

receiver and is dedicated, e.g., a PB or a BS. This configuration allows flexible adjustment

of the locations of the RF source for different purposes, e.g., optimal transmission rate or

energy efficiency (EE). Also, its fabrication cost is cheaper than the integrated tag reader in the

monostatic BackCom due to less complex circuit design. AmBC is similar to bistatic BackCom,

where the RF source and the backscatter receiver are separated. However, the RF source in

AmBC is not dedicated, the backscatter transmitter can utilize the RF energy from the ambient

source like a TV tower signal, radio signal or the signal from WIFI access point. Since the

ambient RF sources are utilized, the energy consumption in AmBC is significantly reduced.

Another key advantage of AmBC is that extra frequency spectrum is not needed compared

with monostatic BackCom and bistatic BackCom. Such advantages also bring an important

challenge, i.e., the RF signal from the ambient source is difficult to be estimated and decoded at

the backscatter receiver. Many researchers have been studying to address the above mentioned

problems or challenges [22].

1.1.4 Hybrid Transmission in WPCNs

Hybrid transmission is the combination of active transmission and passive transmission, where

the active RF component and the backscatter circuit are integrated in the same device, i.e., a

hybrid transmitter [14]. In Fig. 1.4, a PB sends an RF signal to a hybrid transmitter, in the first

time slot, the hybrid transmitter performs passive transmission to modulate its own information

on the incident RF signal and backscatters the signal to a receiver while harvesting energy from

the PB. In the second time slot, the hybrid transmitter performs active transmission to generate

its own RF signal and transmits information to the receiver by utilizing the harvested energy

during BackCom.

Due to the cooperation of active transmission and passive transmission, hybrid transmission

in WPCNs can take the advantages of both, that is, it can transmit information via BackCom
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Fig. 1.4 An illustration of a typical hybrid WPCN.

with low energy consumption while harvesting energy from the RF sources and it can send

information to a receiver in an active mode with high data rate and reliability when the energy

storage is sufficient. Switching between the active transmission mode and passive transmission

mode can bring significant system performance improvement, i.e., higher data rate and EE,

in WPCNs. This also brings the challenges of optimizing the transitions among EH, active

transmission and passive transmission [12, 14].

1.2 Motivation and Objectives

The aim of this thesis is to classify WPCNs into three types based on how the information is

transmitted, and we further intend to find energy-efficient resource allocation schemes for the

three types of WPCNs in different scenarios, i.e., a SWIPT-enabled device-to-device (D2D)

network, an unmanned aerial vehicle (UAV)-enabled network, a symbiotic radio (SR) network

and the backscatter networks with multiples users. The analytical and numerical results can

shed insights on the deployment of WPCNs. Based on the aforementioned purposes, the

following research questions are stated.

• Q1: How to classify WPCNs in terms of how the information is transmitted?

• Q2: How to integrate WPCNs with WPCNs with a SWIPT-enabled D2D network, a

UAV-aided network, a SR network and the backscatter networks with multiples users?
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• Q3: How to propose energy-efficient resource allocation schemes for WPCNs in the

scenarios of a SWIPT-enabled D2D network, a UAV-enabled network, a SR network and

the backscatter networks with multiples users?

• Q4: How to optimize the key parameters to improve the EE performance in WPCNs?

In this thesis, Section 1.1.2−1.1.4 in Chapter 1 answer Q1, where WPCNs are classified into

active transmission, passive transmission and hybrid transmission based on how the information

is transmitted. Q2−Q4 are addressed in Paper I-IV of Part II, respectively, where a SWIPT-

enabled D2D WPCN, an unmanned aerial vehicle (UAV)-enabled WPCN, a SR WPCN and a

backscatter WPCN with multiple users are established. Energy-efficient resource allocation

schemes are proposed in these WPCNs to maximize the EE by optimizing the key parameters,

e.g., transmitter’s transmission power, backscatter reflection coefficient and time allocation for

multiple users.

1.3 Thesis Outline and Organization

The thesis is divided into two parts, Part I contains three chapters and Part II includes four

journal papers.

Chapter 1 gives a basic introduction of a SWIPT-enabled WPCN and divide it into three

types based on how the information is transmitted, i.e., active transmission, passive transmission

and hybrid transmission. The motivation and objectives are also introduced in this chapter.

In Chapter 2, the research works on the three types of transmission in WPCNs are described.

The mathematical optimization tools are also introduced to address the proposed research

problems, i.e., convex transformation and convex optimization.

Chapter 3 summarizes the contributions of the four journal papers and gives the conclusions

with future research directions.





Chapter 2

Literature Review

2.1 Research Works on Active Transmission

The authors in [23] aimed to maximize the spectral efficiency by optimizing the optimal time

allocations for the users in a time division multiple access (TDMA) based WPCN and a non-

orthogonal multiple access (NOMA) based WPCN, respectively, where the users transmitted

information to an access point via HTT protocol. They found that the TDMA based WPCN

not only consumed less energy, but also was more spectral efficient than NOMA based WPCN.

In [24], the authors maximized the achievable EE of a WPCN by jointly optimizing the time

allocation and power control of each user while considering the initial battery energy of the

users, the HTT protocol was also considered in this WPCN. The numerical results show that

each user could achieve its own maximum EE when the transmission time was sufficiently long.

The authors in [25] maximized the sum throughput of the IoT devices in a SWIPT enabled

IoT network by jointly optimizing the time, transmit power and spectrum allocation for each

IoT device. The simulation results show that their proposed scheme for solving the throughput

maximization problem could obtain superior performance in terms of the sum throughout of

the IoT devices. In [26], energy efficient resource allocation in SWIPT cooperative wireless

networks was studied to maximize the EE of the network by optimizing the power splitting

ratio, the relay selection schemes and the power allocations for the users. The numerical results

demonstrated that the proposed resource allocation scheme achieved the maximum EE with
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low computational complexity, in which the proposed relay selection outperformed the typical

relay selection schemes in terms of EE. Other research works on active transmission based

WPCNs can be found in [27–30]. However, the above works only consider linear EH model

with constant energy conversion efficiency, and the EH circuit sensitivity is ignored.

2.2 Research Works on Passive Transmission

The EE of a UAV-enabled BackCom network was maximized in [31] by jointly optimizing

the UAV’s trajectory, the backscatter device’s (BD) scheduling and the carrier emitters’ trans-

mission power. The simulation results show that the proposed communicate-while-fly scheme

achieved significant EE gains compared with the hover-and-fly scheme, the state-of-the-art

UAV-monostatic BackCom scheme, and the carrier emitter-relay scheme. In [32], the authors

aimed to maximize the minimum throughput among all BDs by jointly optimizing the backscat-

ter time and reflection coefficients of the BDs, and the access point’s power allocation. The

extensive simulation results show that the proposed joint design achieved significant throughput

gain as compared to the benchmark schemes. The authors in [33] maximized the throughput

of the AmBC system via jointly optimizing the time scheduling, transmit power allocation,

and reflection coefficient for the users. The simulation results demonstrated that the proposed

method can significantly increase the throughput of the AmBC system with a fast convergence

speed. In [34], the authors presented the first attempt to maximize the EE of the users in a

NOMA-BackCom network by jointly optimizing the BS transmit power and the reflection

coefficients of BDs. Numerical results verified the effectiveness of the proposed scheme in

improving the EE by comparing it with the other benchmark schemes. Other research works on

passive transmission based WPCNs can be found in [35–38]. However, the above works ignore

the situation where the BDs work at the same time and at the same frequency band, and the

interference power at the receivers cannot be mitigated.
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2.3 Research Works on Hybrid Transmission

The authors in [39] proposed a hybrid BackCom-HTT mode for a cognitive WPCN, where

the throughput of the network was maximized by optimizing the time allocation between

backscattering and energy harvesting and that between the bistatic backscatter mode and the

HTT mode. The numerical results demonstrated the advantage of the proposed hybrid HTT

and BackCom mode over the benchmark mode in terms of system throughput. In [40], the

authors maximized the EE of all the devices in a hybrid BackCom-HTT network by optimizing

the transmit power of the PB and hybrid devices, and the time allocation among EH, the

backscatter mode and the HTT mode. The simulation results demonstrated the superiority of

the proposed scheme in terms of EE of all the devices. The authors in [41] proposed hybrid

backscatter communication for a WPCN and maximized the throughput by performing the

optimal time allocation. They proved that the proposed hybrid backscatter communication

could increase the transmission range of WPCNs. In [42], the EE of the cognitive radio system

in a hybrid AmBC-HTT mode was maximized by optimizing the detection threshold, the degree

of trade-off between the cognitive radio system in AmBC mode and HTT mode, and the data

transmission time. The extensive results demonstrated the performance gain of the proposed

model in terms of EE. However, the above works only consider fixed PB or BS, while the

UAV-aided hybrid BackCom-HTT WPCNs can help to further improve the system performance

in terms of the throughput and EE.

2.4 Mathematical Optimization

A general optimization problem can be formulated as follows:

max
x

f (x)

s.t. g j(x)≥ 0, j = 1, · · · ,J,

hl(x)≤ 0, l = 1, · · · ,L,

yk(x) = 0,k = 1, · · · ,K,

(2.1)
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where x denotes the n-dimensional vector of optimization variables. f (x) is the objective

function of the optimization problem, g j(x), hl(x) and yk(x) represent inequality and equality

constraints, respectively. The constraints decide the feasible region of x, which is the set of

possible value of x. If the set is empty, the optimization problem will be infeasible. If the

optimal objection value f (x∗) = +∞, then the optimization problem is unbounded. According

to the formulation of the objective functions and the constraints, optimization problems are

mainly classified in to convex and non-convex problems with continuous, discrete or binary

variables.

2.4.1 Convex Transformation

a) Dinkelbach based transformation

Dinkelbach based transformation refers to a nonlinear fractional programming method

proposed by W. Dinkelbach in [43]. Basically, it can transform a fraction formula in an

optimization problem into a subtraction form, which makes the problem convex or much closer

to a convex form. Thus, the Dinkelbach based transformation is suitable to be employed to solve

EE based problems since EE is defined as the ratio of the throughput to the energy consumption.

Some works related to EE based problems have applied this transformation [44, 45]. For an

example, a simple EE maximization problem is formulated as follows:

max
P,t

EE = R(P,t)
EC(P,t)

s.t. C1 : R(P, t)≥ Rmin,
(2.2)

where P and t are the optimization variables of a transmitter’s transmission power and the

transmission time, respectively, R denotes the throughput of the link from a transmitter to a

receiver, and EC represents the energy consumption of the transmitter and the receiver. C1

guarantees the minimum required throughput of this link. By employing Dinkelbach based

transformation, the maximum EE, denoted by Q∗, can be achieved if and only if the following
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equation is satisfied [43],

max
P,t

R(P, t)−Q∗EC(P, t) = R(P∗, t∗)−Q∗EC(P∗, t∗) = 0, (2.3)

where P∗ and t∗ are the optimal transmission power and the optimal transmission time, respec-

tively. Then the optimization problem is equivalently transformed into

max
P,t

R(P, t)−Q∗EC(P, t)

s.t. C1.
(2.4)

By observing (2.4), we can find that if P and t are not coupled, the optimization problem

may become a linear problem, which is convex and easy to be solved. If P and t are coupled,

the optimization problem will still be non-convex but much more possible to be solved. We

further introduce the next two methods for transforming a non-convex problem to a convex

problem.

b) Successive convex approximation

The key idea of a successive convex approximation (SCA) method is to find a local tightly

convex approximation to an optimization problem with non-convex objective function and

constraints [31, 46, 47]. Taking problem (2.1) as an example, by considering f (x) and g j(x)

as non-convex functions, we apply the first-order Taylor expansion to replace f (x) and g j(x)

with their lower bounded functions. Thus, we can solve the original problem by successively

maximizing the lower bound of f (x) with the transformed constraints in an iterative manner.

During the optimization process, an initial point x0 is set as a local point for the first iteration.

Then, each obtained solution of xl after lth iteration is used as next local point to construct the

successive local approximation, the iterations continue until the convergence is reached. Also,

the convergence is guaranteed since the objective function value is non-decreasing after each

iteration due to convex optimization and is usually upper bounded by the constraints.

c) Alternating iterative method

Alternating iterative method aims to decompose a non-convex problem into two or more

convex sub-problems, which can find locally optimal solutions of an optimization problem
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[33, 48]. Specifically, for the Dinkelbach based transformed problem (2.3) with coupled P

and t, this problem is still non-convex. We employ alternating iterative method to solve this

problem in an iterative manner, where the original problem is decomposed into two convex

sub-problems, i.e., optimizing P with fixed t and optimizing t with obtained P. By alternating

the optimization of P and t, the optimization process is repeated until it converges. Also, the

convergence is guaranteed since the objective function value, i.e., the EE in (2.3), increases

with the number of iterations and is upper bounded by constraint C1.

2.4.2 Convex Optimization

After the aforementioned convex transformation, a convex optimization problem is obtained. If

the formulation of the problem is very simple, e.g., a linear formulation, an existing CVX tool

in Matlab will be suitable to be directly used since it can efficiently solve linear optimization

problem in a very short time. However, if the convex problem is more complex than a linear

problem, a Lagrange dual method [49] is introduced below to efficiently solve such convex

optimization problems and obtain the closed form expressions of the optimal value of the

variables, which can also help to gain more insights.

An optimization problem is formulated as

max
xxx

f (xxx)

s.t. hi(xxx)≥ ε1, i = 1, · · · , p,

g j(xxx)≤ ε2, j = 1, · · · ,q,

(2.5)

where (2.5) is a convex optimization problem with non-linear objective function f (xxx) and

constraints hi(xxx) ≥ 0 and g j(xxx) ≤ 0. xxx represents the n-dimensional vector of optimization

variables of the problem. By employing the Lagrange dual method, the Lagrange function for

(2.5) is given by

L(xxx,ααα,βββ ) = f (xxx)+ααα(h(xxx)− ε1)+βββ (ε2 −g(xxx)), (2.6)

where ααα ≥ 0 and βββ ≥ 0 are the Lagrange multipliers vectors associated with the constraints,

respectively. Then the dual function of (2.5) is denoted by G (ααα,βββ ) = max
xxx

L (xxx), and the
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Lagrangian dual optimization problem can be formulated as

min
ααα,βββ

max
xxx

L. (2.7)

For given Lagrange multipliers and based on Karush-Kuhn-Tucker (KKT) conditions, we

have
∂L
∂xxx

= 0. (2.8)

Thus, we can obtain the closed form expression of the optimal solution xxx∗ as well as the

maximum objective function value by calculating (2.8).

The above process is repeated until the Lagrange multipliers converge and it satisfies the

complementary slackness conditions, i.e., α(h(xxx)− ε1) = 0,βββ (ε2 −g(xxx)) = 0. For obtained xxx

in each iteration, the Lagrange multipliers are updated by using a gradient based method, where

ααα(l +1) = ααα(l)− s1(h(xxx)− ε1), (2.9)

βββ (l +1) = βββ (l)− s2(ε2 −g(xxx)), (2.10)

where l is the iteration number, s1 and s2 represent the step sizes for the associated Lagrange

multipliers. The step size is usually selected based on the system parameters’ value, and more

details about how to choose the values of the step sizes in a gradient method is discussed in

[49].





Chapter 3

Contributions of the Thesis

This thesis classifies WPCNs into three types, i.e., active transmission, passive transmission

and hybrid transmission, based on how the information is transmitted. Also, the three types

of WPCNs in different scenarios are introduced in Chapter 2 with the description of basic

system models. Furthermore, energy-efficient resource allocation problems are solved in

the aforementioned WPCNs for different scenarios. i.e., a SWIPT-enabled D2D network, a

UAV-enabled network, a SR network and the backscatter network with multiple users. The

above contents are included in four journal papers in Part II and their main contributions are

summarized in Section 3.1.

The author of this dissertation conceives the ideas and works on system model establishment,

problem formulation, problem solution, implementation of algorithms, simulation, numerical

results analysis, and the writing of Paper I-IV. Dr. Yinghui Ye and I contribute to the network

modelling of the five papers. Pro. Xiaoli Chu guided and supervised all the works. All authors

discuss the theoretical aspects and review the manuscript.

3.1 Papers Included in the Thesis

Paper I: Resource and Power Allocation in SWIPT Enabled Device-to-Device Commu-

nications Based on a Non-Linear Energy Harvesting Model, co-authored with Yinghui Ye,
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Xiaoli Chu and Mianxiong Dong. This paper has been published in IEEE Internet of Things

Journal, Volume: 7, Issue: 11, Page(s): 10813 - 10825, Date of publication: 17 April 2020.

In the first paper, we aim to maximize the sum EE of all D2D links in a SWIPT enabled

D2D underlaid cellular network, where the CUEs are allocated with orthogonal RBs and each

D2D link share the same spectrum resource with a CUE. Specifically, the D2D links reuse the

uplink spectrum resources of the CUEs, where each D2D transmitter causes interference to a

BS and each CUE causes interference to a co-channel D2D receiver.

Before maximizing the sum EE of all D2D links, since we consider the EH sensitivity

sothat some D2D links cannot perform SWIPT, a pre-matching algorithm is proposed to divide

D2D links into SWIPT-enabled D2D links and Non-EH D2D links. Then we formulate the EE

maximization problem for each SWIPT-enabled D2D link and propose an iterative algorithm

to maximize the EE per D2D link by optimizing the D2D transmission power and the power

splitting ratio based on a non-linear EH model, the closed-form expressions of the locally

optimal D2D transmission power and power splitting ratio are also derived. After this, the

EE preference lists for both SWIPT-enabled D2D links and CUEs are constructed based on

the solutions to the per-D2D-link EE maximization problems. Then we propose a one-to-one

constraint stable matching algorithm to match each SWIPT-enabled D2D link with a CUE in the

same channel for maximizing the sum EE of all SWIPT enabled D2D links. The convergence

and computational complexity are also analyzed. The sum EE of Non-EH D2D links is also

maximized by using a similar matching based algorithm. Simulation results show that the

proposed algorithms converge very fast, and the EE increases with the number of D2D links

and greatly decreases with the D2D communication distance. Also, the sum EE achieved by

our proposed algorithms is higher than an existing matching based energy-efficient resource

allocation scheme and some benchmark schemes. Furthermore, the EH sensitivity considered

in this paper significantly affects the number of SWIPT-enabled D2D links especially for

maximizing the EE when the D2D communication distance is long.

Paper II: Max-Min Energy-Efficient Resource Allocation for Wireless Powered Backscat-

ter Networks, co-authored with Yinghui Ye and Xiaoli Chu. This paper has been published in
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IEEE Wireless Communications Letters, Volume: 9, Issue: 5, May 2020, Page(s): 688 - 692,

Date of Publication: 13 January 2020.

In the second paper, we present the first attempt to maximize the minimum link EE among

all the co-channel wireless powered passive backscatter links by jointly optimizing the PB

transmission power and the backscatter reflection coefficients, where a PB sends the RF signals

to the backscatter transmitters and the transmitters modulate their own information on the

incident RF signals and backscatter the modulated signals to the backscatter receivers while

harvesting energy from the RF signals. Since multiple backscatter links work in the same

frequency band and at the same time, each backscatter transmitter causes interference to other

backscatter receivers. The mutual interference among the multiple co-channel backscatter

links leads to complicated coupling effects between the backscatter reflection coefficients and

the PB transmission power, and the complexity significantly increases with the number of

backscatter links. For analytical tractability, we solve the formulated problem for the case of

two co-channel backscatter links.

We propose an iterative algorithm to decompose the max-min EE problem into two sub-

problems conditioned on the convexity of the objective function: one is a convex optimization

problem, while the other is non-convex. The convex problem is solved by employing Lagrange

dual method and KKT conditions, and the non-convex problem is solved by exploiting the

characteristics of the associated constraints. The closed form expressions of the globally optimal

PB transmission power and the globally optimal backscatter coefficients are also obtained

during the optimization process. Simulation results show that the proposed iterative algorithm

converges very fast and the EE gap between the best user and the worst user after max-min

resource allocation is much smaller than the EE gap in the system EE maximization scheme.

Also, such EE gap is much smaller with higher throughput requirements for the backscatter

links. Furthermore, the max-min EE resource allocation is more effective when the throughput

requirement of the BDs is lower and the channel power gain difference from the PB to each

backscatter transmitter is smaller.

Paper III: Energy Efficiency Maximization for Symbiotic Radio Networks with Mul-

tiple Backscatter Devices, co-authored with Yinghui Ye, Kai Liang and Xiaoli Chu. This
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paper has been published in IEEE Open Journal of the Communications Society, Volume: 2,

Page(s): 1431 - 1444, Date of Publication: 21 June 2021.

In the third paper, the system EE is maximized by jointly optimizing the PT transmission

power and the BDs’ reflection coefficients and TDMA time slot durations for both the PSR and

CSR cases in a SR network, where the PT and the PR are designed to support both the primary

and BackCom transmissions, multiple BDs take turn to modulate their own information on the

incident primary signal and backscatter the modulated signal to the PR by following TDMA,

while harvesting energy from the incident primary signal to support their circuit operation.

Due to multiple coupled variables in the objective function and the constraints, the for-

mulated problem is non-convex and is hard to solve directly. To solve the problem, in the

PSR case, we first introduce auxiliary variables and utilize the Dinkelbach-based method to

transform the original problem from a fraction form into a subtraction form, then employ a

BCD method in conjunction with a successive convex programming (SCP) technique to solve

the problem. The closed-form expression of the sub-optimal reflection coefficients and PT

transmission power is derived by employing the Lagrange dual method. In the case of CSR, as

the system EE is a monotonically increasing function of the BDs’ reflection coefficients, we

first obtain the globally optimal reflection coefficients. Then, employing techniques similar to

the PSR case but without using the BCD method, we obtain the sub-optimal solutions of the PT

transmission power and the BDs’ time slot durations, and derive the closed-form expressions

of the sub-optimal PT transmission power. Based on the above obtained solutions, we propose

a Dinkelbach based iterative algorithm to solve the formulated problems in the PSR and CSR

cases. The convergence and computational complexity of the proposed algorithm are analyzed

and verified by simulation. Also, the simulation results show that the proposed algorithm

converges very fast and the system EE is maximized when the primary link contributes almost

the EE and each BD only achieves the minimum throughput requirement in the PSR case. In

the CSR case, the system EE is maximized when a best BD that can contribute the most toward

the system EE is allocated the maximum allowed time to backscatter its information to the

PR while the other BDs’ throughputs being kept at the minimum required level. Furthermore,
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this best BD is not fixed and is determined by the optimized PT transmission power in the

corresponding time slot.

Paper IV: Energy Efficiency Maximization for UAV-Enabled Hybrid Backscatter-

Harvest-then-Transmit Communications, co-authored with Yinghui Ye, Xiaoli Chu and

Sumei Sun. This paper has been published in IEEE Transactions on Wireless Communication,

DOI: 10.1109/TWC.2021.3116509, Date of Publication: 06 October 2021.

In the fourth paper, we formulate a problem to maximize the EE of all the IoT nodes by

jointly optimizing the UAV’s transmit power and trajectory and the allocation of communication

resources, including the backscatter reflection coefficients, the transmit power of IoT nodes

during active transmission, and the time allocation between BackCom and active transmission

in the UAV-enabled hybrid BackCom-HTT network, where a UAV works as a mobile energy

source to provide RF energy for all the ground IoT nodes. The IoT nodes utilize the incident

RF signal to communicate with a reader via a hybrid BackCom-HTT scheme, where the IoT

nodes first perform BackCom and then perform active transmission.

Since the EE of multiple IoT nodes are jointly maximized, the formulated optimization

problem involves many variables that are coupled in the objective function and/or the constraints.

Through theoretical analysis, we reveal that letting the UAV transmit with the maximum power

maximizes the EE of all the IoT nodes. Leveraging this finding and the generalized fractional

programming theory, we first introduce Dinkelbach-based method to transform the original

optimization problem into a more tractable but still non-convex problem. Then, we use a BCD

method in conjunction with a Lagrange dual method and a SCP technique to solve the problem.

The closed-form expressions for the sub-optimal reflection coefficient and active transmit

power of each IoT node are derived. Based on the obtained solutions, we propose a Dinkelbach

based iterative algorithm to maximize the EE of all the IoT nodes in the UAV-enabled hybrid

BackCom-HTT network. The simulation results show that the proposed algorithm has a fast

convergence speed, and can achieve a much higher total EE than the benchmark schemes. In

addition, the UAV tends to fly to the IoT nodes that are closer to the reader and we observe that

the maximum total EE of the IoT nodes is achieved when the IoT node that is closest to the

reader achieves a much higher throughput than other IoT nodes and the other IoT nodes only
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achieve the minimum throughput requirement. Furthermore, the available time is used up for

maximizing the EE of all the IoT nodes.

3.2 Papers not Included in the Thesis

• Energy Supply Minimization in Wireless Powered Backscatter Communication

Networks, co-authored with Yinghui Ye and Xiaoli Chu. This paper is under preparation

and is planned to be submitted to a transaction journal on August, 2021.
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Abstract

Due to the limited battery capacity in mobile devices, simultaneous wireless information and

power transfer (SWIPT) has been proposed as a promising solution to improving the energy

efficiency (EE) in Internet of things (IoT) networks, i.e., device-to-device (D2D) networks, by

allowing mobile devices to harvest energy from ambient radio frequency (RF) signals. However,

the nonlinear behavior of RF energy harvesters has largely been ignored in existing works on

SWIPT. In this paper, we propose to maximize the sum EE of all D2D links in a D2D underlaid

cellular network by optimizing the resource and power allocation based on a non-linear energy

harvesting (EH) model. Toward this end, we first propose a pre-matching algorithm to divide

the D2D links into a SWIPT enabled group and a non-EH group that cannot meet the EH

circuit sensitivity. We then develop a two-layer iterative algorithm to jointly optimize the D2D

transmission power and the power splitting ratio to maximize the EE for each SWIPT enabled

D2D link. On this basis, we build the preference lists for both SWIPT enabled D2D links and

cellular user equipment (CUEs), and propose a one-to-one constraint stable matching algorithm

to maximize the sum EE of all SWIPT enabled D2D links by optimizing the spectrum resource

sharing between D2D links and CUEs. The sum EE of non-EH D2D links is maximized through
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an iterative power control algorithm and a one-to-one stable matching algorithm. Simulation

results show that our proposed algorithms achieve a much higher sum EE than the existing

matching based energy-efficient resource allocation scheme for SWIPT enabled D2D networks.

1 Introduction

With the fast development of wireless communication systems, it is predicted that there will be

7 trillion wireless devices worldwide by 2020 [1], imposing significant pressures on increasing

the energy efficiency (EE) of Internet of things (IoT) networks [2]-[4]. A large number of

IoT applications are emerging in residential areas, hospitals, factories, etc. Several wireless

techniques have been proposed to support IoT, such as ZigBee and WiFi. However, most of

them work in unlicensed bands and cannot guarantee the quality of service (QoS) for IoT

applications [5], [6]. It is expected that future IoT systems will mainly be supported by 5G

mobile networks [7].

Meanwhile, device-to-device (D2D) communications are intrinsic to IoT systems. Hence,

D2D communications underlaying cellular networks have been considered as a promising

technology to support IoT networks [5], [6]. D2D communications, one of the important

scenarios in IoT networks, allow two user equipment (UE) in proximity to communicate with

each other directly without passing through a base station (BS) by reusing the spectrum resource

of cellular links, and hence improve the EE of a cellular network. However, there will be mutual

interference between spectrum-sharing D2D links and cellular UE (CUEs), which need to be

mitigated through proper resource allocation schemes [8]-[10]. Meanwhile, radio frequency

(RF) enabled energy harvesting (EH), which allows UE to harvest energy from ambient RF

signals [11], has been proposed to improve the EE of wireless communications. One popular

EH technology is the simultaneous wireless information and power transfer (SWIPT), where

the receiver is able to harvest energy and process information simultaneously via a power

splitting scheme or a time switching scheme [12]-[16]. In addition to WPT, techniques for EH

from natural resources have also been developed for IoT networks [17]-[19].

The EE definition is based on the whole D2D link which comprises the energy harvested by

the D2D receiver. Also, in the long term, each D2D user statically has the same probability
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of being a transmitter or a receiver, and the proposed algorithms will benefit all D2D users

in the network. Although there are considerable number of works on the D2D networks with

EH, the researches on the SWIPT based D2D are still insufficient due to the following reasons.

Some works assume that the energy source is from the unstable natural resource [20], e.g., solar

energy. The other works allow the energy harvester to harvest energy from ambient RF signals

[21]. SWIPT is not considered in both cases. Note that SWIPT is expected to operate under

short distances because it is mainly limited by the received signal power and the minimum

required energy for activating the EH circuit, a.k.a., the EH circuit sensitivity (e.g., -20 dBm

[22], which is much higher than the thermal noise power), while the information transfer

depends on the receive signal to interference plus noise ratio (SINR). The shared short-range

nature between D2D communications and SWIPT motivates the combination of them to further

improve the EE performance. For long-distance wireless transmissions in IoT networks, EH

could employ laser-charging, e.g., UAV-enabled IoT networks with laser charging was studied

in [23] and [24].

The resource allocation schemes for conventional D2D communications without SWIPT

may not be applicable for SWIPT enabled D2D communications, where the conventionally

considered harmful interference could be exploited for EH. The authors in [25] employed

game theory to define the utility of SWIPT-enabled D2D links and allocated D2D transmission

power by an iterative algorithm. In [11], a stable matching algorithm was proposed to optimize

the spectrum resource and power allocation to improve the average EE for SWIPT-enabled

D2D communications. In [26], a transmission flow mechanism was developed to evaluate the

impact of different network parameters on the harvested energy and the outage capacity in a

SWIPT-based D2D cooperative network. The authors in [27] proposed a scheme that selects

between full duration (FD) and partial duration (PD) SWIPT schemes to maximize the data

rate of a SWIPT-enabled D2D link. In [28], a power control scheme was proposed to maximize

the D2D rate without degrading the performance of CUEs in a downlink SWIPT network.

However, the above works have assumed a simplified linear EH model, where the amount

of harvested energy is linearly proportional to the received power, which is not the case in

a practical EH system due to the non-linearity of the diodes, inductors, and capacitors [29].
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Moreover, the energy conversion efficiency was assumed a fixed value in [11], [21], [22], [25],

[26], while the power splitting ratio was assumed as a fixed value in [11], [25]-[27], thus

missing the opportunity to optimize it for improving the EE of a SWIPT enabled D2D underlaid

network.

In this paper, we aim to maximize the sum EE of all D2D links in a SWIPT enabled D2D

underlaid cellular network, where D2D links reuse uplink resources and a piecewise linear EH

model1 is considered for SWIPT. Our main contributions are summarized as follows.

• Considering the impact of EH circuit sensitivity, we propose a pre-matching algorithm

to identify the D2D links that can perform SWIPT under the constraints of EH circuit

sensitivity and minimum throughput requirement. Based on the pre-matching results, we

maximize the EE of each SWIPT enabled D2D link.

• We propose a one-to-one constraint stable matching algorithm to maximize the sum EE

of SWIPT enabled D2D links by optimizing the spectrum resource sharing between D2D

links and uplink CUEs. This matching algorithm ensures that each SWIPT enabled D2D

link is matched to a CUE.

• In the one-to-one constraint stable matching algorithm, the preference lists for both

D2D links and CUEs are constructed based on the solutions to the per-D2D-link EE

maximization problems, which jointly optimize the D2D transmission power and power

splitting ratio based on a piecewise linear EH model for each SWIPT enabled D2D

link. Since the two variables are coupled in the objective function, making it difficult to

solve, we propose a two-layer energy efficient iterative algorithm (TLEEIA) to solve it

by applying the block coordinated decent (BCD) method.

• The sum EE of non-EH D2D links is maximized by devising an iterative power control

algorithm and a stable matching algorithm but with a lower complexity than that for

SWIPT enabled D2D links.

1There are many non-linear EH models reported in the literature. The piecewise linear EH model is one of the
most analytically tractable models while ensuring a good accuracy [30].
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• We perform extensive simulations to evaluate the EE performance of our proposed

algorithms in comparison with a baseline scheme which employs our proposed algorithms

based on a linear EH model, the matching based energy-efficient resource allocation

scheme in [11], and two heuristic algorithms including proposed matching with maximum

D2D transmission power scheme and random matching with maximum D2D transmission

power scheme. The impacts of some system parameters, e.g., the number of D2D links

or CUEs and the D2D communication range, on the sum EE of D2D links are also

examined. Furthermore, we find that the EH sensitivity significantly affect the number of

SWIPT-enabled D2D links especially when the D2D communication distance is long.

The rest of the paper is organized as follows. The system model of a D2D communication

underlaid cellular network is built in Section 2. In Section 3, the detailed EE optimization

process for each SWIPT enabled D2D link is introduced. In Section 4, a one-to-one constraint

stable matching algorithm is proposed to solve the resource allocation problem so as to

maximize the sum EE of SWIPT enabled D2D links, the sum EE maximization of non-EH

D2D links is also derived in this section. In Section 5, the simulation results are presented.

Section 6 concludes the paper.

2 System Model

2.1 Network Model

As shown in Fig. 1, a BS2 is located at the center of a signal cell that covers CUEs and

D2D users. Each D2D link i consists of transmitter i (TX i) and receiver i (RX i), and they

communicate with each other directly by sharing the spectrum resource with a CUE in an

underlaid mode 3. We assume that there are M orthogonal resource blocks (RBs) allocated to M

2The BS obtains all the necessary channel state information (CSI) by collecting feedbacks from the CUEs
and D2D devices. In LTE/LTE-A networks, each user (which can be a CUE or a BS assisted D2D device) is
scheduled to periodically send measurement reports (including CSI) to the serving BS [31], while the acquisition
and reporting of CSI between D2D/cellular transmitters and D2D receivers could employ the techniques proposed
in [31], [32].

3Our proposed system will not introduce extra system overhead, the CSI estimation required in our proposed
system is the same as that required in D2D networks without EH. As the optimization problem is solved at the
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Fig. 1 SWIPT enabled D2D networks.

CUEs and shared by N D2D links. For simplicity, we denote all CUEs and all D2D links by the

sets Ĉ={1, 2, ...,k, ..., M} and D̂ ={1, 2, ..., i, ..., N}, respectively. We suppose that N ≤ M and

that a D2D link can only share the RB of one CUE and the RB of a CUE can only be reused by

at most one D2D link4. For simplicity, the entire time block is normalized to 1. A flat fading

channel is considered, where the distance dependent pathloss and Rayleigh fading are used to

model the large-scale fading and the small-scale fading, respectively. It is also assumed that

the channel state remains static within each resource block. There is no intra-cell interference

among CUEs by employing orthogonal frequency division multiple access (OFDMA) [36],

[37]. Besides, QoS in this paper is measured by the signal-to-interference-plus-noise ratio

(SINR).

We assume that D2D peer discovery and link establishment have been completed. As a

D2D pair reuses an uplink RB of a CUE, the D2D receiver receives interference from the

co-channel CUE while the D2D transmitter causing interference to the BS. We assume that

each D2D device is equipped with a RF EH circuit and an information decoding unit. Due

BS for all the D2D links within its coverage, solving the optimization problem does not consume power at the
D2D devices. In addition, the D2D receiver is able to harvest energy from the signals transmitted by the D2D
transmitter and the co-channel CUE [21], [33].

4Multiple co-channel D2D links may experience strong mutual interference that needs to be mitigated by an
advanced interference mitigation scheme. For analytical tractability, we assume that one RB is reused by at most
one D2D link [11], [34], [35]. The case with multiple co-channel D2D links will be studied in our future work.
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to the EH circuit sensitivity and D2D link QoS requirement, some D2D links cannot perform

SWIPT. Thus, we will propose a pre-matching algorithm to divide all D2D links into non-EH

D2D links and SWIPT enabled D2D links in section 3.

2.2 Non-EH D2D Links

As discussed in Section 2.1, in the D2D underlaid cellular network, the interference to the BS

comes from a co-channel D2D transmitter and only a co-channel CUE causes interference to a

D2D receiver. Thus, when sharing the same RB, the SINR of cellular link k5 and non-EH D2D

link i are given by

SINRC
k =

PC
k hC

k
PD

i hB
i +N0 +N1

=
PC

k dC
k
−αh

′C
k

PD
i dB

i h′
i
B +N0 +N1

, (1)

SINRD
i =

PD
i hD

i

PC
k hk,i +N0 +N1

=
PD

i dD
i
−αh

′D
i

PC
k dk,i

−αh′
k,i +N0 +N1

, (2)

where PC
k and PD

i are the transmission power6 of CUE k and D2D transmitter i, respectively, hC
k

and hD
i represent the channel responses of cellular uplink k and D2D link i, respectively, dC

k is

the distance from CUE k to the BS and dD
i represents the distance between the TX and RX of

D2D link i. Similarly, hB
i and hk,i are the channel responses of interference link from D2D link

i to BS and the interference link from CUE k to D2D link i, respectively, dB
i and dk,i are the

distance of the interference links above, h
′C
k , h

′D
i , h

′B
i , h

′
k,i are the Rayleigh channel coefficients

accordingly, α is the free space pathloss exponent, N0 is the additive white gaussian noise

(AWGN) power, and N1 is the noise power due to RF band to base band conversion.

Then the throughputs of cellular link k and D2D link i are respectively given by

T
′C

k = log2(1+SINRC
k ), (3)

5Since most notations in this paper are related to CUE k, but the optimization problem focuses mainly on
maximizing the EE for D2D links, for notational simplicity, we will omit subscript k from notations where
appropriate.

6For analytical tractability, we assume that all CUEs transmit at the maximum power level [11], [38]. The
impact of CUE transmission power on the sum EE of D2D links will be evaluated through simulation in Section
6.4
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Fig. 2 Power splitting unit.

T
′D

i = log2(1+SINRD
i ). (4)

2.3 SWIPT Enabled D2D Links

SWIPT can be implemented in either a power splitting mode or a time switching mode. We

consider the power splitting mode in this paper since it has been proved to be more efficient in

both throughput and EE [39]. As shown in Fig. 2, the power splitting unit splits the received

radio signal into two signal streams. One stream is for information decoding and the other is for

EH, where λe denotes the power splitting ratio, which determines the portion of the received

signal used for EH. A D2D receiver can harvest energy from the signals transmitted by its

paired D2D transmitter and the interference from the co-channel CUE and the surrounding

thermal noise.

For SWIPT enabled D2D link i, the throughput is given by

T D
i = log2

(
1+

(1−λ e
i )P

D
i hD

i

(1−λ e
i )(P

C
k hk,i +N0)+N1

)
, (5)

where the useful information signal, the interference and the noise are scaled by the factor of

(1−λ e
i ).

The received power for EH at D2D receiver i when sharing the RB with CUE k is given by

PR
i = λ

e
i (P

D
i hD

i +PC
k hk,i +N0). (6)
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We employ the piecewise linear EH model proposed in [24]7, which fits over real measure-

ment data. Accordingly, the amount of power harvested by D2D receiver i is given as

EHD
i =


0, PR

i ∈ [P0
th,P

1
th];

k jPR
i +b j, PR

i ∈ [P j
th,P

j+1
th ], j ∈ 1, ...,L−1;

PEH
max, PR

i ∈ [PL
th,P

L+1
th ],

(7)

where Pth = {P j
th|1 ≤ j ≤ L+1} is the set of thresholds on PR

i for L+1 linear segments; k j and

b j are the coefficient and the intercept of the linear function in the j-th segment, respectively,

P1
th denotes the minimum received power requirement for activating the RF EH circuit, and

PEH
max represents the maximum power the RF EH circuit can harvest. It has been shown in [40],

[43] that the piecewise linear EH model captures the harvested power more accurately than the

linear EH model, the accuracy of the piecewise linear EH model improves with more segments,

and a 4-piecewise linear EH model offers a good trade off between accuracy and computational

complexity.

The total energy consumption of D2D link i is given as

ECD
i = PD

i +2Pcir −EHD
i , (8)

where Pcir is the circuit power consumption for a D2D transmitter (or a D2D receiver) including

the power consumption of mixer, frequency synthesizer, etc.

7The accuracy of piecewise linear EH model increases with the number of linear segments, [40] proves that
the sigmoid function based non-linear EH model in [41] and the piecewise linear EH model are more accurate
than the linear EH model for practical RF-DC circuits. Also, the 4-piecewise linear EH model and the sigmoid
function have similar accuracy, while the 4-piecewise linear EH model has a lower mean square error than the
sigmoid function does. The sigmoid function is difficult to be transformed into a convex form, while the piecewise
linear EH model is convex with higher computational complexity. Furthermore, the authors in [42] propose a
simple non-linear EH model, which is convex and has low computational complexity. However, this EH model is
less accurate than the other two EH models and does not consider EH circuit sensitivity. Therefore, the piecewise
linear EH model is used for more tractability and high accuracy.
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3 Per-D2D-Link Energy Efficiency Maximization for SWIPT

Enabled D2D Links

In this section, we first propose a pre-matching algorithm to separate SWIPT enabled D2D

links and non-EH D2D links, then we maximize the EE of each potential SWIPT enabled D2D

link based on the pre-matching results.

3.1 Pre-Matching Algorithm

Considering the EH circuit sensitivity, we divide the D2D links into two groups: one group

denoted by EhaD for SWIPT enabled D2D links (which can activate the EH circuit at the

receiver while meeting the minimum D2D throughput requirement) and the other denoted

by In f D for non-EH D2D links (which cannot perform SWIPT). We propose a pre-matching

algorithm in Algorithm 1 to obtain the two groups. For any D2D link i, the partner selection

set SD
i is initialized as Ĉ. If when reusing the RB of CUE k, and transmitting at the maximum

transmission power Pmax, D2D link i cannot meet the EH circuit sensitivity and/or the D2D

throughput requirement, then CUE k is removed from SD
i . This step is repeated for each CUE

in the set Ĉ and the partner selection sets SD
i for D2D link i are obtained, the minimum power

splitting ratio for meeting the EH circuit sensitivity requirement of D2D link i is calculated as

λ
e,i
min =

P1
th

PmaxhD
i +PC

k hk,i +N0
, (9)

As λ e
i,min cannot exceed 1, we can obtain the maximum throughput of D2D link i when satisfying

the EH circuit sensitivity requirement as

T D
i,max = log2

1+
PmaxhD

i

PC
k hk,i +N0 +

N1
1−λ e

i,min

 . (10)

Algorithm 1: Pre-matching algorithm

1: Input: D̂,Ĉ,PC
k ,P

1
th,Pmax,TD

min.
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2: Output: SD
i , In f D, EhaD.

3: Initialize: SD
i = Ĉ, In f D = /0, EhaD = /0.

4: for i ∈ D̂ do

5: for k ∈ Ĉ do

6: obtain λ e
i,min using (9), obtain T D

i,max using (10).

7: if λ e
i,min > 1 or T D

i,max ≤ TD
min then

8: SD
i \ k.

9: end if

10: end for

11: if SD
i = /0 then

12: In f D ∩ i.

13: else SD
i ̸= /0, EhaD ∩ i.

14: end if

15: end for

The above procedures will be performed for each D2D link to obtain their partner selection

set. At the end of Algorithm 1, if the partner selection set for a D2D link is empty, then this

D2D link is grouped into the set In f D; otherwise, it is grouped into the set EhaD.

3.2 Per-D2D-Link EE Problem Formulation

The partner selection set (returned by Algorithm 1) for an SWIPT enabled D2D link may

contain more than one CUE, while a CUE may appear in more than one partner selection sets.

In order to optimize the matching between SWIPT enabled D2D links and CUEs so that the
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sum EE of SWIPT enabled D2D links is maximized, we first maximize the EE for each SWIPT

enabled D2D link i in EhaD. The EE is defined as the ratio of throughput T D
i to the total power

consumption ECD
i [10].

The EE of D2D link i in EhaD when reusing the RB allocated to CUE k in SD
i is given by

EED
i =

T D
i

ECD
i
=

log2

(
1+ PD

i hD
i

(PC
k hk,i+N0)+

N1
(1−λe

i )

)
PD

i +2Pcir −EHD
i

. (11)

Accordingly, the EE maximization problem of SWIPT enabled D2D link i is formulated as

P1 : max
{PD

i ,λ
i
e,i∈EhaD}

EED
i

s.t. C1 : 0 < PD
i ≤ Pmax,

C2 : 0 ≤ λ e
i ≤ 1,

C3 : T D
i ≥ TD

min,

C4 : TC
k ≥ TC

min,

C5 : P j
th ≤ PR

i ≤ P j+1
th , j ∈ 0, ...,L,

(12)

where C1 denotes the maximum transmission power for all D2D transmitters; C2 sets the range

of power splitting ratio; C3 and C4 set the minimum throughput requirement for D2D links and

cellular links, respectively; C5 indicates that the energy harvester of D2D receiver i works in

the j-th linear segment in the piecewise linear EH model.

In order to solve P1, we propose a TLEEIA, which includes an outer-loop algorithm given

in Algorithm 2 and an inner-loop iterative algorithm given in Algorithm 3. In Algorithm 3,

the maximum number of segments, Nmax, in the piecewise linear EH model that PR
i belongs to

is obtained by calculating PR
i,max = PmaxhD

i +PC
k hk,i +N0 and comparing the calculated value

with the piecewise linear EH model in (7), where PR
i,max is the maximum received power of D2D

RX i. Then, Algorithm 3 continues to calculate the optimal values of {PD
i,1, ...,P

D
i, j, ...,P

D
i,Nmax

},

{λ e
i,1, ...,λ

e
i, j, ...,λ

e
i,Nmax

} and {EED
i,1, ...,EED

i, j, ...,EED
i,Nmax

} that maximize the EE of SWIPT

enabled D2D link i when it is matched with every possible CUE in the j-th segment. In

Algorithm 2, the optimal segment that maximizes the EE of SWIPT enabled D2D link i when
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matched with every possible CUE is determined by j∗ = argmax
j
{EED

i,1, ...,EED
i, j, ...,EED

i,Nmax
},

and the corresponding optimal λ e
i
∗, PD∗

i and EED∗
i are obtained.

Algorithm 2: TLEEIA−Outer loop algorithm

1: Input: EhaD,SD
i ,λ

e
i, j,P

D
i, j,EED

i, j.

2: Output: PD∗
i , λ e

i
∗, EED

i
∗.

3: for i ∈ EhaD do

4: for k ∈ SD
i do

5: for j = 1 : Nmax do

6: j∗ = argmax
j
{EED

i,1, ...,EED
i, j, ...,EED

i,Nmax
}.

7: Obtain PD∗
i = PD

i, j∗ , λ e
i
∗ = λ e

i, j∗ , EED
i
∗
= EED

i, j∗ .

8: end for

9: end for

10: end for

3.3 Inner-Loop Iterative Algorithm

Since P1 is a non-convex fractional programming problem and difficult to solve, we transform

it into a non-fractional problem by employing nonlinear fractional programming [44], given by

P2 : max
{PD

i ,λ
e
i }

T D
i −QD

i
∗ECD

i , i ∈ EhaD

s.t. C1−C5
(13)

where QD
i
∗
= EED

i
∗. Based on [43], we have the following theorem for solving P2.
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Theorem 1. The optimal QD
i
∗ can be achieved if and only if T D

i
∗−QD

i
∗ECD

i
∗
= 0, where

QD
i
∗
= max

{Pi,D∗}
EED

i =
T D

i
∗

ECD
i
∗ , which is the maximum EE of D2D link i, and PD∗

i , T D
i

∗ and ECD
i
∗

are the corresponding optimal values when D2D link i reuses the RB of CUE k.

According to Theorem 1, we can address the original non-convex problem by solving P2.

QD
i is regarded as the negative weight of ECD

i and we set the initial value of QD
i as a small

positive value.

We employ Lagrange dual decomposition and Karush-Kuhn-Tucker (KKT) conditions to

solve P2. The Lagrange function is given by

L(PD
i ,λ e

i ,α,β ,γ,δ ,ε) = T D
i −QD

i
∗
ECD

i −α(PD
i −Pmax)−β (λ e

i −1)

+ γ(T D
i −TD

min)+δ (TC
i −TC

min)+ ε(PR
i −P1

th),
(14)

where α , β , γ , δ and ζ are the Lagrange multipliers for C1-C5, respectively. Then the Lagrange

dual optimization problem is obtained as

P3 :

min
{α,β ,γ,δ ,ε≥0}

max
{PD

i ,λ e
i }

L(PD
i ,λ e

i ,α,β ,γ,δ ,ε), i ∈ EhaD

s.t. C5

(15)

To solve P3, we have the following proposition.

Proposition 1. P3 is convex with respect to λ e
i when we fix PD

i and it is also convex with

respect to PD
i when we fix λ e

i .

Proof. Please see Appendix A. ■

Based on Proposition 1, we can find the locally optimal λ e
i for a given PD

i and the locally

optimal PD
i for the optimized λ e

i by applying the BCD method.8 Then we use KKT conditions

to obtain the expression of λ e
i for a fixed PD

i by solving the following equation.

∂L(PD
i ,λ e

i ,α,β ,γ,δ ,ε)

∂λ e
i

= 0. (16)

8Although the convergence of the BCD method cannot be analyzed theoretically [45], it can converge typically
in a few iterations for a moderate number of users as shown in the simulation results.
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Theorem 2. By solving (16) for λ e
i , the optimal value of λ e

i in P3 is given as

λ
e
i
∗ =

−a2 ±
√

a2
2 −4a1a3

2a1


+

, (17)

where {X}+ = max{0,X}, a1 = K(GH +H2), a2 = K(G+2H)N1, a3 = KN2
1 −J, G = PD

i hD
i ,

H = PC
k hk,i +N0, K = β +(QD

i
∗
+ ε)k j(G+H), and J = GN1loge

2(1+ γ).

Proof. Please see Appendix B. ■

Similarly, when λ e
i is fixed, the optimal value of PD

i can be obtained by solving the following

equation.
∂L(PD

i ,λ e
i ,α,β ,γ,δ ,ε)

∂ PD
i

= 0. (18)

Theorem 3. By solving (18) for PD
i , the optimal value of PD

i can be obtained in a closed form

as

PD
i
∗
= max{0,P1}, (19)

with P1 =


XN +

3

√
−yN+

√
y2

N−g2

2a1
+

3

√
−yN−

√
y2

N−g2

2a1
, y2

N > g2

XN −θ ,XN +2θ , y2
N = g2

XN +2θ cos(φ − 2πn
3 ), [n = 0,1,2]. y2

N < g2

(20)

where b1 =m3hD
i h2

i,B, b2 =(2m3m5+m3m6)hD
i hB

i −(m1−m2m3)h2
i,B, b3 =(m3m2

5+m3m5m6+

m4)hD
i − (2m1m5 +m1m6 −2m2m3m5 −m2m3m6)hi,B, b4 = m2m4 +m2m3m2

5 +m2m3m5m6 −

m1m2
5 −m1m5m6. XN = −m2

3m1
, yN =

2b3
2

27b2
1
− b2b3

3b1
+ b4, g = 2b1

√
b2

2−3b1b3

9b2
1

3

, φ = 1
3arccos −yN

g ,

θ 2 =
m2

2−3m1m3
9m2

1
, m1 = (1+ γ)hD

i loge
2, m2 = PC

k hk,i +N0 +
N1

1−λ e
i
, m3 = QD

i (1+(1−λ e
i )ηhD

i −

k jhD
i )+α −ελ e

i k jhD
i , m4 = PC

k hC
k hB

i loge
2δ , m5 = N0+N1, m6 = PC

k hC
k , and the sign of θ is the

same as that of 3
√

yn
2b1

.

Proof. Please see Appendix C. ■
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Then we use the gradient method to update the values of the Lagrange multipliers as

follows:

α = {α + s1(PD
i −Pmax)}+, (21)

β = {β + s2(λ
e
i −1)}+, (22)

γ = {γ − s3(T D
i −TD

min)}+, (23)

δ = {δ − s4(TC
k −TC

min)}
+, (24)

ε = {ε − s5(PR
i −P1

th)}+, (25)

where s1, s2, s3, s4 and s5 are the step sizes of the associated constraints and they need to be

properly initialized for guaranteeing the convergence and optimality. The step size is usually

based on the objective function and simulation parameters, we set the step size for updating the

five Lagrange multipliers as 10−5 in this paper.

We propose an inner-loop iterative algorithm in Algorithm 3 to obtain the optimal value of

λ e
i, j, PD

i, j and EED
i, j for each SWIPT-enabled D2D link in the j-th segment of the linear piecewise

EH model. In Algorithm 3, t is the number of iteration step; I denotes the maximum allowed

number of iteration. The iteration terminates when the difference between the value of achieved

EE and that of EE in previous step is smaller than ψ or I is achieved.

Algorithm 3: TLEEIA−Inner loop iterative algorithm

1: Input: EhaD,SD
i .

2: Output: λ e
i, j,P

D
i, j,EED

i, j.

3: Initialize: QD
i
∗
(t) = QD

i
∗
(0),PD

i (t) = PD
i (0), I,ψ, t = 0.

4: Obtain Pmax
i,R and decide the maximum number of segments: Nmax.

5: for i ∈ EhaD do

6: for k ∈ SD
i do
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7: for j = 1 : Nmax do

8: We use the initialization value PD
i (0) to obtain λ e

i (t) by calculating (17).

9: while t < I do

10: We use the achieved value of λ e
i (t) to obtain PD

i (t +1) by calculating (20).

11: We use the calculated value of PD
i (t +1) to obtain λ e

i (t +1) by calculating (17).

12: if T D
i [λ e

i (t +1),PD
i (t +1)]−QD

i
∗
(t)ECD

i [λ
e
i (t +1),PD

i (t +1)]> ψ then

13: QD
i
∗
(t +1) = T D

i [λ e
i (t +1),PD

i (t +1)]/ECD
i [λ

e
i (t +1),PD

i (t +1)].

14: Update Lagrange multipliers using (21)-(25).

15: else PD
i, j = PD

i (t +1), λ e
i, j = λ e

i (t +1), EE j
i,D = QD

i
∗
(t).

16: Continue

17: end if

18: t = t +1.

19: end while

20: end for

21: end for

22: end for
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4 Sum Energy Efficiency Maximization

In this section, we propose a one-to-one constraint stable matching algorithm to maximize the

sum EE of SWIPT enabled D2D links, where the preference lists for both D2D links and CUEs

will be constructed based on the results of Algorithm 2. The sum EE of non-EH D2D links will

be maximized in a similar but simpler way at the end of this section.

4.1 Preference Lists

In order to find the most appropriate CUE for each SWIPT enabled D2D link to share RB with

such that the sum EE of all SWIPT enabled D2D links is maximized, which is also referred to

as the partner selection problem, we need to build a preference list for each SWIPT enabled

D2D link and each CUE based on the results of Algorithms 2.

Each SWIPT enabled D2D link would prefer to share the RB of a CUE that maximizes its

EE. The preference list of D2D link i, denoted by ΩD
i = {Ω1

i ,Ω
2
i , ...,Ω

k
i }, where i ∈ EhaD, is

obtained by sorting all the CUEs in SD
i in the descending order of the EE that D2D link i can

achieve when sharing their RBs. Each CUE would prefer to share its RB with a D2D link that

causes the least interference to its uplink to the BS. The preference list of CUE k, denoted by

ΩC
k = {Ω1

k ,Ω
2
k , ...,Ω

i
k}, where k ∈ SD

i , is constructed by sorting all the D2D links in EhaD in

the ascending order of the interference power that they cause to the BS when sharing the RB

with CUE k. Therefore, we can establish the preference lists for all SWIPT enabled D2D links

and the CUEs in SD
i .

If all the SWIPT enabled D2D links can find their partners, the matching will be called

perfect stable matching. However, sometimes due to the bad channel condition or the long

D2D communication distance, some of the D2D links can only select few or even one CUE to

match with for meeting the constraints especially for EH circuit sensitivity. Thus, such D2D

links may have limited CUEs in their preference lists so as in the partner selection set SD
i . Also,

the limited CUEs may match with other D2D links they prefer based on ΩC
k , this results in such

D2D links to be unmatched. Considering the user fairness and the EE performance, we cannot
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let such D2D links fail to perform SWIPT. Thus, a one-to-one constraint stable matching is

proposed in the next subsection to ensure all SWIPT enabled D2D links can find their partners.

4.2 One-to-One Constraint Stable Matching Algorithm

The BS collects all the preference lists constructed as described above and runs a one-to-one

constraint stable matching algorithm to ensure that each SWIPT enabled D2D link is matched

to an appropriate CUE. Since stable matching tends to favor the group that proposes to the

other group [46], the algorithm lets the D2D links start proposing to the CUEs first. In each

loop, the D2D links in EhD
a propose to their most preferred CUE one by one. If CUE k (k ∈ SD

i )

receives only one proposal, then it will select the proposing D2D link as its partner. When

CUE k receives more than one proposals, if there is a proposing D2D link with only one CUE

in its preference list, then CUE k will select this D2D link and reject all the others; if all the

proposing D2D links have more than one CUEs on their preference lists, then CUE k will select

the most preferred D2D link among the proposing D2D links according to its own preference

list ΩC
k and reject all the others.

During each loop, a D2D link will be removed from (or added to) EhaD if it is matched to

(or refused by) a CUE. At the end of each loop, all SWIPT enabled D2D links will delete their

most preferred CUE from their preference lists. In the next loop, each unmatched D2D link in

EhaD will propose to the most preferred CUE one by one in their updated preference list. The

one-to-one constraint stable matching algorithm will terminate until all SWIPT enabled D2D

links have been matched to a CUE. Finally, the unmatched CUEs are gathered in ΦR.

Algorithm 4: Constraint stable matching algorithm

1: Input: EhaD,Ĉ,ΩD
i ,Ω

C
k .

2: Output: Φ, ΦR.

3: Initialize: Φ = /0.

4: while EhaD ̸= /0 do
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5: for i ∈ EhaD do

6: D2D link i proposes to its most preferred CUE based on ΩD
i .

7: for k ∈ SD
i do

8: if CUE k receives only one proposal from D2D link i and currently has no partner then

9: CUE k and D2D link i are matched, EhaD \ i, Φ = (i,k).

10: end if

11: if CUE k receives another proposal from D2D link i
′ then

12: CUE k will check ΩD
i and ΩD

i′
.

13: if D2D link i or i
′
has no more preference then

14: CUE k will match with D2D link i or i
′
, the matched D2D link will be removed from

EhaD, the unmatched D2D link will be added into EhaD.

15: end if

16: if Both D2D links have other preferences then

17: CUE k will match with more preferred D2D link based on ΩC
k , the matched D2D

link will be removed from EhaD, the unmatched D2D link will be added into EhaD.

18: end if

19: end if

20: end for

21: end for

22: All D2D links in EhaD delete their most preferred CUE in ΩD
i .

23: end while
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24: All unmatched CUEs are gathered in ΦR.

4.3 Sum EE Maximization for Non-EH D2D Links

The non-EH D2D links have been grouped in In f D by the pre-matching algorithm in section

3.1. Also, the constraint stable matching algorithm is firstly performed for SWIPT-enabled

D2D links for obtaining higher sum EE, and each SWIPT-enabled D2D link is matched with

a appropriate CUE. Then we propose an iterative power control algorithm and a one-to-one

stable matching algorithm to maximize the sum EE of non-EH D2D links by matching them

with the CUEs that have not been matched with any SWIPT enabled D2D link. The difference

from Algorithm 4 is that there are no constraints regarding the EH circuit sensitivity or the

power splitting ratio. The optimal transmission power of non-EH D2D links i (i ∈ In f D) when

reusing the RB of CUE k (k ∈ ΦR) is given by

PD
i
∗
=

{
(1+β

′
)loge

2

α
′
+QD

i
∗ −

PC
k hk,i +N0 +N1

hD
i

}+

. (26)

Proof. Please see Appendix D. ■

5 Computational Complexity Analysis

The complexity of the pre-matching algorithm in Algorithm 1 is mainly determined by the

number of D2D links and CUEs. Therefore, the computational complexity of Algorithm 1 is

O(MN), where M and N are the numbers of CUEs and D2D links, respectively.

The TLEEIA algorithm employs an inner-loop algorithm (i.e., Algorithm 3) and an outer-

loop algorithm (i.e., Algorithm 2) to solve P1. There are three main steps to solve P1. In

Step 1, we compute the maximum number of segments that PR
i may belong to, denoted by

Nmax. In Step 2, we solve the optimization problem P3 for given i. By solving P3, we obtain

Nmax power allocation and resource allocation policies, denoted by {PD
i,1, ...,P

D
i, j, ...,P

D
i,Nmax

}

and {λ e
i,1, ...,λ

e
i, j, ...,λ

e
i,Nmax

}, respectively, and compute the corresponding EE denoted by
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{EED
i,1, ...,EED

i, j, ...,EED
i,Nmax

}. In Step 3, the optimal solution of P1 is determined by max
j
{EED

i,1,

...,EED
i, j, ...,EED

i,Nmax
} and is denoted by PD∗

i , λ e
i
∗, EEi

D∗
. The inner-loop iterative algorithm in

Algorithm 3 solves Step 2. If the ‘while’ loop of Algorithm 3 needs ∆1 iterations to converge,

the subgradient method used in Algorithm 3 needs ∆2 iterations to converge, and the BCD

method used in Algorithm 3 needs ∆3 iterations to converge, then the update of PD
i and λ e

i

need O(∆3) operations, and the updates of each Lagrange multiplier calls O(∆2) operations,

while there are 5 Lagrange multipliers in Algorithm 3. Thus, the computational complexity

of Algorithm 3 is O(M′N′∆15∆2∆3), where N′ and M′ are the numbers of SWIPT enabled

D2D links and CUEs possible to match, respectively. The outer-loop algorithm in Algorithm 2

solves Step 3, where the computation times are Nmax. Therefore, the computational complexity

of the TLEEIA algorithm is NmaxO(M′N′∆15∆2∆3) [11], [47].

For the one-to-one constraint stable matching in Algorithm 4, due to the fact that every

SWIPT enabled D2D link has only one opportunity to propose to CUEs in its preference list,

the computational complexity of Algorithm 4 is O(M′N′) [11]. The computational complexity

of the stable matching algorithm in Appendix D for non-EH D2D links is O(M′′N′′), where

M′′ and N′′ denote the numbers of remaining CUEs and non-EH D2D links, respectively. In

short-range D2D communications, since the numbers of non-EH D2D links and remaining

CUEs are typically smaller than those of SWIPT enabled D2D links and CUEs possible to

match, respectively, the stable matching algorithm has a lower complexity than the one-to-one

constraint stable matching in Algorithm 49.

6 Simulation Results

This section shows the simulation results of the proposed algorithms based on the piecewise

linear EH model in comparison with a baseline which employs our proposed algorithms based

on a linear EH model, the matching based energy-efficient resource allocation scheme in [11],

and two heuristic algorithms including proposed matching with maximum D2D transmission

power scheme and random matching with maximum D2D transmission power scheme. The EE

9The proposed algorithms are operated by the BS, without increasing the overhead for CSI acquisition or
reporting as compared with the existing BS assisted D2D communications underlaying cellular network.
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is analyzed with respect to some key parameters including the number of D2D links or CUEs

and the D2D communication distance.

6.1 Parameters Initialization

The simulation parameters are listed in Table 1. Without loss of generality, we assume the same

number of D2D links as the number of CUEs.

Table 1 Simulation Parameters
Simulation parameter Value
Cell radius R 200 m
Number of D2D links N 10∼30
Number of CUEs M 10∼50
D2D communication distance range r 10∼60 m
Pathloss exponent α 3 [48]
Receiver power segment

[10, 57368, 230.06, 100] uw
[P0

th,P
1
th,P

2
th,P

3
th]

Coefficient [k0,k1,k2,k3,k4] [0, 0.3899, 0.6967, 0.1427]
Intercept [b0,b1,b2,b3,b4] [0,-1.6613,-19.1737,108.2778]
Maximum harvestable power PEH

max 250 uw
Max transmission power

23 dBm
for any user Pmax
CUE transmission power PC

k 23dBm
Noise power N0,N1 −100 dBm [11], [13], [28]
Circuit power consumption Pcir 20 dBm
Throughput requirement for

2 bit/s/Hz
D2D link TD

min
Throughput requirement for

1 bit/s/Hz
cellular link TC

min

6.2 Pre-Matching Fail Rate

Fig. 3 shows the pre-matching fail rate (PMFR) versus the number of D2D links or CUEs and

D2D communication distance. PMFR is defined as the ratio of the number of non-EH D2D

links to the total number of D2D links as a result of the pre-matching algorithm. As we can

see from Fig. 4, the PMFR reduces from 12% to 7.8% with users increasing from 10 to 70.

Based on the proposed one-to-one constraint matching algorithm, more CUEs increase the
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Fig. 3 PMFR versus the number of D2D links (or CUEs) and D2D communication distance.

preference list elements for each D2D link. Therefore, each D2D link has more CUEs to be

matched with, which reduces the PMFR. Furthermore, the PMFR increases sharply from 2%

to 61% with larger D2D communication distance range from 10m to 70m. When the D2D

communication range increases, D2D transmitters need to improve their transmission power

to meet the EH constraints, once the required transmission power exceeds Pmax, such D2D

links cannot perform SWIPT which increases the number of Non-EH D2D links, and we have

higher PMFR. This also indicates that the PMFR is much sensitive to the D2D communication

distance due to the large pathloss and rayleigh fading.

6.3 Convergence of Algorithm 3

Fig. 4 shows the EE per link versus the iteration step for different values of three individual

D2D links. The EE of these three links converges very quickly to a unique value at 3rd step, and

we find that the EE always converges at 3rd or 4th step for all other D2D links. It proves that



59

1 2 3 4 5 6 7 8 9

Iteration 

0

10

20

30

40

50

E
ne

rg
y 

E
ffi

ci
en

cy
 [b

its
/H

z/
J]

 D2D link 1
D2D link 2
D2D link 3 (Pmax=23dBm)
D2D link 3 (Pmax=20dBm)

Fig. 4 Convergence of Algorithm 3.

this iterative algorithm is very efficient for solving the optimization problem. Also, different

D2D links have different optimal EE based on the channel condition. By observing the EE of

D2D link 3 with different maximum D2D transmission power limitation, the EE of D2D link 3

increases with higher maximum transmission power. Since the optimal value of PD
i of some

D2D links exceeds Pmax , if we allow higher Pmax, such D2D links can achieve higher EE.

6.4 Sum EE

In this subsection, we compare the sum EE of all D2D links versus the number of D2D links

or CUEs, and D2D communication range for different algorithms. In Fig. 5 and Fig. 6, the

“optimal solution” is obtained through exhaust search, and the stable matching based resource

allocation algorithm of [11] (which does not consider the EE of non-EH D2D links or the

optimization of power splitting ratio) is included in comparison with our proposed algorithms

under the system model as described from Section 2 to 4. The piecewise linear EH model

baseline is obtained by substituting the optimal PD
i and λ e

i under the linear EH model into

the piecewise linear EH model. Two heuristic algorithms including constraint matching with
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Fig. 5 Sum EE versus the number of D2D links or CUEs (r = 20m).

Pmax and random matching with Pmax are also proposed to make comparison with our proposed

algorithms in EE performance. We do not consider random power allocation in this paper since

the required transmission power may exceed the maximum allowed power when the channel

condition is bad. If we assume random power allocation, many D2D links will not realize

SWIPT which will definitely degrade the EE performance.

Fig. 5 shows the sum EE of all D2D links versus the number of D2D links or CUEs for

different algorithms. As more users contribute more EE, for a fixed number of available RBs,

the EE increases significantly with more D2D links and lower PMFR in Fig. 3. We can find

that our proposed algorithms based on the piecewise linear EH model achieve the highest EE

compared with other cases. Also, the gap between the optimal solution and piecewise linear

EH model can be definitely ignored. The difference between the EE performance of piecewise

linear EH model and baseline indicates that the linear EH model leads to resource allocation

mismatches and suffers from EE performance degradation in the piecewise linear EH model.

By observing the increasing gap between piecewise linear EH model and [11], we can find that

more CUEs and our proposed constraint stable matching makes it much more possible for D2D
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links to be matched as SWIPT enabled D2D links and provides more EE. In Fig. 5, the sum-EE

improvement of our proposed algorithms is mainly brought by the joint optimization of the

D2D transmission power and the power splitting ratio of D2D receivers. We note that the sum

EE gap between [11] and our proposed algorithms is not large. This is because the considered

D2D communication distance (i.e., 20 m) is short, and the resultant PMFR of our proposed

algorithm is low, thus the number of SWIPT enabled D2D links in our proposed system is close

to that in [11].

For the constraint matching with Pmax and random matching with Pmax algorithms, the power

consumption issues have been totally ignored and they focus on improving the throughput of

D2D links to increase EE, but this improvement cannot compensate for the loss of EE due to

higher energy consumption. By the way, the random matching with maximum power algorithm

shows the worst EE performance, this is easy to understand that D2D links can achieve higher

EE when they find better CUEs to be their partners. In this paper, we assume that each D2D

link shares a resource Block with a CUE, and the number of CUEs and resource blocks is the

same. Thus, the number of D2D links cannot exceed the number of resource blocks and is

assumed as the same as the number of CUEs in the simulations. The sum EE will increase with

the number of D2D links until all the resource blocks are allocated.

Fig. 6 shows the sum EE of D2D links versus D2D communication range r for different

algorithms. Our proposed algorithms based on the piecewise linear EH model also achieve the

highest EE compared with other cases. The difference between the piecewise linear EH model

and the baseline also proves that the linear EH model causes resource allocation mismatches

and EE performance degradation. With the increasing of D2D communication range and much

lower PMFR in Fig. 3, the EE decreases sharply for all the algorithms while our proposed

algorithms based on the piecewise linear EH model still shows the best EE performance, and

random matching with maximum power algorithm is still the worst case. The reason for such

reduction is that longer D2D communication distance requires D2D transmitter to improve the

transmission power for meeting C3 and C5, then much more energy consumption is caused.

Also, the throughput of D2D links reduces due to higher pathloss. Therefore, the EE decreases

with longer D2D communication distance.
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Fig. 6 Sum EE versus D2D communication distance (N = M = 30).

Comparing the EE performance in [11] with piecewise linear EH model, when the distance

is small, e.g., below 20m, the EE performance is quite close because the PMFR is very low with

short distance, D2D links can always find their partners even we consider the practical energy

harvesting model. However, there still exists small difference due to the joint optimization of

D2D transmission power and power splitting ratio. When the distance becomes larger, more

D2D links will fail to communicate in [11] due to high PMFR, which results in significantly

degradation of EE, but it is still higher than another two heuristic algorithms within 60m.

When the distance exceeds 60m, the EE obtained through the scheme in [11] will be lower

that the heuristic algorithms due to huge reduction of the number of SWIPT enabled D2D

links. In Fig. 6, as the D2D communication distance increases, leading to a higher PMFR, the

sum-EE gain of our proposed algorithm over the algorithm in [11] increases significantly. This

gain is achieved by our proposed pre-matching and constraint stable matching algorithms in

conjunction with the joint optimisation of the D2D transmission power and the power splitting

ratio, especially when the D2D communication distance is long. Furthermore, we find that

the EE performance of the two heuristic algorithms are relatively stable, this is because that
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Fig. 7 Sum EE versus CUE transmission power (N = M = 30, r = 25m).

maximum D2D transmission power is already assumed in these two algorithms, total energy

consumption remains unchanged and lower throughput is the main reason for the reduction of

EE performance. Comparing these two heuristic algorithms, constraint stable matching still

shows better EE performance.

Fig. 7 plots the sum EE of D2D links in our proposed system versus the CUE transmission

power. We can see that the sum EE of D2D links first increases with the CUE transmission

power. This is because a higher CUE transmission power can provide more energy for D2D

receivers to harvest and make it more likely for the CUE to meet the QoS requirement, resulting

in a higher probability for it to be matched with a D2D link. When the CUE transmission power

increases beyond a certain value (around -2dBm in Fig. 7), the sum EE of D2D links starts to

decrease. This is because the EE improvement brought by the higher harvested energy cannot

compensate for the loss of EE caused by the increased interference power from co-channel

CUEs.
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7 Conclusion

In this paper, we have maximized the sum EE of all D2D links by optimizing the allocation of

spectrum resource and transmission power in SWIPT enabled D2D underlaid cellular networks

based on a piecewise linear EH model. Specifically, we firstly propose a pre-matching algorithm

to divide D2D links into a SWIPT enable group and a non-EH group considering the EH circuit

sensitivity and D2D transmission rate requirements. We then propose a one-to-one constraint

stable matching algorithm to maximize the sum EE of SWIPT enabled D2D links, where the

preference lists of CUEs and SWIPT enabled D2D links are built based on the results of the

joint optimizations of the transmission power and power splitting ratio that maximize the EE of

each SWIPT enabled D2D link. The sum EE of the non-EH D2D links is maximized following

a similar approach. Simulation results show that the sum EE is much higher with short D2D

communication distance and more users, and our proposed algorithms achieve a much higher

sum EE of D2D links than the existing work. In our future work, we will study the joint

optimization of CUE transmission power, D2D transmission power and the power splitting

ratio to maximize the sum EE.

Appendix A

Proof of Proposition 1

In order to find the convexity of the optimization problem (29), we first derive the second-

order derivative of Lagrange function L(PD
i ,λ e

i ,α,β ,γ,δ ,ε) with respect to λ e
i as shown below.

For simplicity, we denote this Lagrange function as L, PD
i is regarded as a fixed value.

∂L2

∂λ e
i

2 =
−PD

i hD
i N1loge

2V ((PD
i hD

i +V )(1−λ e
i )+N1)

(V (1−λ i
e)+N1)2((PD

i hD
i +V )(1−λ e

i )+N1)2

+
−PD

i hD
i N1loge

2(V (1−λ e
i )+N1)(PD

i hD
i +V )

(V (1−λ e
i )+N1)2((PD

i hD
i +V )(1−λ e

i )+N1)2 < 0,

(A.1)

where V = PC
k hk,i + N0, all the variables and constants in (A.1) is greater than 0, so the

optimization problem is convex with respect to λ e
i when we fix PD

i .
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Then we fix λ e
i and derive the second-order derivative of L with respect to PD

i as

∂L2

∂PD
i

2 =
−(1+C)h2

i,Dloge
2

(PD
i hD

i +Pk,Chk,i +N0 +
N1

1−λ e
i
)2

−
(PC

k hC
k hB

i loge
2)W

U(PD
i hB

i +N0 +N1 +PC
k hC

k )
2
< 0,

(A.2)

where U = (PD
i hB

i +N0 +N1)
2, W = [(2PD

i 2hB
i + 2N0 + 2N1)hB

i +PC
k hC

k hB
i ], all the variables

and constants in (A.2) is greater than 0, so the optimization problem is convex with respect to

PD
i when we fix λ e

i . Combing (A.1) and (A.2), Proposition 1 is proven.

Appendix B

Proof of Theorem 2

We first let the first-order derivation of L with respect to λ e
i be 0, which is formulated in

(16). Then we transform (16) into a standard quadratic equation as

a1λ
e
i

2 +a2λ
e
i +a3 = 0, (B.1)

Then we obtain the solution of (B.1) based on the two cases as

Case i. If a2
2 −4a1a3 = 0, there exist two equal real roots and we obtain

λ
i
e
∗
=

−a2 +
√

a2
2 −4a1a3

2a1
=

−a2 −
√

a2
2 −4a1a3

2a1
, (B.2)

Case ii. If a2
2 −4a1a3 > 0, there exist two real roots and we obtain

λ
i
e
∗
=

−a2 ±
√

a2
2 −4a1a3

2a1
, (B.3)

Combining Case i and Case ii, Theorem 2 is proven.
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Appendix C

Proof of Theorem 3

We first let the first-order derivation of L with respect to Pi,D be 0, which is formulated in

(18). Then we transform (18) into a standard cubic equation as

b1PD
i

3
+b2PD

i
2
+b3PD

i +b4 = 0, (C.1)

According to [49], we can calculate the solution of (C.1) based on three cases as

Case i. If y2
N > g2, there exists a real root and we obtain

Pi,D
∗ = XN +

3

√√√√−yN +
√

y2
N −g2

2b1
+

3

√√√√−yN −
√

y2
N −g2

2b1
, (C.2)

Case ii. If y2
N = g2, there exist two real roots and we obtain

PD
i
∗
= XN −θ ,XN +2θ , (C.3)

Case iii. If y2
N < g2, there exist three roots and we obtain

PD
i
∗
= XN +2θ cos(φ − 2πn

3
), [n = 0,1,2]. (C.4)

Combining Case i, Case ii and Case iii, Theorem 3 is proven.

Appendix D

EE Maximization for Non-EH D2D Links

Similar to the optimization process of SWIPT enabled D2D links, we first formulate the EE

optimization problem for each non-EH D2D links as

max
{PD

i ,i∈In f D}
EED

i =
log2

(
1+ PD

i hD
i

PC
k hk,i+N0+N1

)
PD

i +2Pcir
. (D.1)
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Subject to

0 < PD
i ≤ Pmax, (D.2)

T D
i ≥ T D

min. (D.3)

Then we employ the same nonlinear fractional programming and Lagrange dual decomposition

to transform the problem in (D.1) into a similar Lagrange dual optimization problem which is

obtained by

min
{α

′
,β

′
,γ
′≥0}

max
{PD

i ,i∈In f D}
L
′
(PD

i ,α
′
,β

′
)

= T D
i −QD

i
∗
ECD

i −α
′
(PD

i −Pmax)+β
′
(T D

i −TD
min),

(D.4)

where α
′
and β

′
are the Lagrange multipliers associated with (D.2)−(D.3), respectively. It is

obvious to find that the optimization problem in (D.1) is convex with respect to Pi,D, we can

easily obtain the expression of the optimal Pi,D by using KKT conditions as

PD
i
∗
=

{
(1+β

′
)loge

2

α
′
+QD

i
∗ −

PC
k hk,i +N0 +N1

hD
i

}+

, (D.5)

The optimal PD
i can be achieved easily by iterating (D.5) and updating the Lagrange multipliers

until the EE of D2D link i converges to an unique value.

After the iteration, we employ a simpler one-to-one stable matching among the non-EH

D2D links and remaining CUEs in ΦR. The preference lists establishment standards are the

same for both non-EH D2D links and remaining CUEs, and the matching process is still the

same as we introduced above except the condition in line 11 of Algorithm 4. We do not consider

the constraint in line 12 of Algorithm 4 because the requirements for non-EH D2D links are

easy to meet and the preference lists of such D2D links are always full, on the other words,

non-EH D2D links can always match with any of the remaining CUEs while guaranteeing

the throughput requirement of the matched CUE. The sum EE of non-EH D2D links can be

maximized through this simple stable matching algorithm.
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Abstract

In this letter, we present the first attempt to solve an energy efficiency (EE) based max-min

fairness problem for a wireless powered backscatter network where a power beacon (PB),

which is a dedicated radio frequency (RF) power resource, and multiple backscatter devices

work in the same frequency band. Each backscatter transmitter harvests energy from the signal

transmitted by the PB, modulates its own information on the received signal, and backscatters

the modulated signal to its associated receiver. We propose to ensure max-min fairness among

the backscatter links by jointly optimizing the PB transmission power and the backscatter

reflection coefficients. For analytical tractability, we solve the optimization problem for the

case of two co-channel backscatter links by employing Lagrange dual decomposition when it is

convex, and analyzing the monotonicity of the constraints when it is non-convex. Based on

the obtained closed-form expressions of the optimal PB transmission power and the optimal

backscatter reflection coefficients, we propose an iterative algorithm for max-min EE resource

allocation. Simulation results show that the proposed iterative algorithm converges very fast

and achieves a much fairer EE performance among backscatter links than maximizing the

system EE of the network.

1 Introduction

Wireless powered backscatter communication has been considered as a promising technology to

prolong the network lifetime of Internet of Things (IoT) systems [1]. In recent years, throughput
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maximization [2], signal detection [3] and hardware implementation [4] have been investigated

for wireless powered backscatter communications, but the energy efficiency (EE) problem has

not been sufficiently studied. The authors in [5] maximized the EE of a backscatter link by

jointly optimizing the reflection coefficient and the power beacon (PB) transmission power. The

EE maximization problem was studied for radio frequency (RF) powered cognitive backscatter

communications [6]. However, both [5] and [6] considered only a single backscatter link and

their results cannot be readily applied to multiple co-channel wireless powered backscatter

links. Moreover, when multiple backscatter transmitters share the transmission power from a

PB, it is necessary to ensure the fairness among the co-channel backscatter links.

In this letter, we consider a wireless powered backscatter network, where a PB and multiple

backscatter links work in the same frequency band, and propose to maximize the minimum link

EE among all the wireless powered backscatter links by jointly optimizing the PB transmission

power and the backscatter reflection coefficients. The mutual interference between the multiple

co-channel backscatter links and the interference from the PB to the backscatter receivers leads

to complicated coupling effects between the backscatter reflection coefficients and the PB

transmission power, resulting in a much higher complexity than that of EE maximization for one

single backscatter link. The complexity of the max-min EE problem increases with the number

of co-channel links, and allowing more backscatter links to access the same channel may cause

severe co-channel interference and increase the system complexity, which should be avoided

because backscatter circuitry design needs to be kept simple [1]. For analytical tractability,

we solve the problem for the case of two co-channel backscatter links. At the end, we obtain

closed-form expressions for the optimal PB transmission power and the backscatter reflection

coefficients. More specifically, the max-min EE problem is decomposed into two sub-problems

conditioned on the convexity of the objective function: one is a convex optimization problem,

while the other is non-convex. The convex problem is solved by employing Lagrange dual

decomposition and KKT conditions, and the non-convex problem is solved by exploiting the

characteristics of the associated constraints. Considering the low complexity and low cost

requirements of backscatter devices [1], based on the obtained optimal solution, we propose

an iterative algorithm that allows each backscatter transmitter to independently make optimal
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gi,1
gi,2

Inj,i

Fig. 1 Wireless powered backscatter networks.

resource allocation decisions that maximize their EE while guaranteeing the fairness among

the backscatter links.

2 System model

As illustrated in Fig.1, we consider a wireless powered backscatter network1 with a PB and M

co-channel backscatter links, which are denoted by the set D̂ = {1,2, · · ·, i, · · ·,M}. Backscatter

link i consists of one backscatter transmitter i and one receiver i. Each node is equipped

with a single antenna. We assume the availability of perfect channel state information (CSI)

at each backscatter node [5]. In each time block T , the PB broadcasts a RF signal while

each backscatter transmitter harvests energy from the received RF signal to support its circuit

operation and modulates and reflects the received RF signal to carry its information to the

associated receiver by properly setting a reflection coefficient.

1Note that different from the energy harvesting sensor or relay nodes in wireless powered communication
networks (WPCN) or simultaneous wireless information and power transfer (SWIPT) networks that can set
their own transmission power levels, the backscatter nodes directly modulate and reflect the incident RF signals
transmitted by the PB. Furthermore, multiple variables including the PB transmission power and the reflection
coefficients of co-channel backscatter links need to be jointly optimized in backscatter networks, while in WPCN
or SWIPT networks, only the transmission power and the transmission time duration or power splitting ratio of
sensor or relay nodes are optimized [7], [8].
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In addition to the information carrying signal from backscatter transmitter i, receiver

i also receives the co-channel interference from the other backscatter transmitters and the

PB, and the received power at receiver i is given by
√

Pagi,1Zigi,2s(n)ci(n)+
√

Pagi,3s(n)+

∑
M
j=1, j ̸=i

√
Pag j,1Z jIn j,is(n)c j(n)+N0, where Pa is the transmission power of the PB; Zi ∈

[0,1], is the reflection coefficient of backscatter transmitter i; N0 represents the additive white

Gaussian noise (AWGN) power; s(n), c(n) denote the signal transmitted and backscattered

from the PB and backscatter transmitter i, respectively, and n is the index of the symbols; gi,1

and gi,2 denote the channel power gains from the PB to transmitter i and from backscatter

transmitter i to receiver i, respectively; In j,i represents the channel power gain from backscatter

transmitter j to receiver i, and gi,3 denotes the channel power gain from the PB to receiver

i. Since the PB serves as a RF energy source only, the transmitted signal from the PB s(n)

is predefined and is known by all the backscatter receivers, thus receiver i can remove the

interference from the PB, i.e., Pagi,3 [5]. Accordingly, the SINR at receiver i is written as

SINRi =
Pagi,1Zigi,2

N0 +∑
M
j=1, j ̸=i Pag j,1Z jIn j,i

. (1)

The throughput2 (bits/s) of backscatter link i is given by

Ri = T log2(1+SINRi). (2)

The energy harvested by backscatter transmitter i is

EH i = Pagi,1(1−Zi)ηT, (3)

where η ∈[0,1] is the energy conversion efficiency3, for simplicity, the time block T is

normalized to one, and we ignore the energy harvested from the thermal noise since it is

very small [2], [5]. The backscatter transmitters are batteryless and cannot store the harvested

2As the backscatter modulation order increases, the backscattered signals approximately follow a Gaussian
distribution and hence we use Shannon expression to calculate the throughput [9]-[12].

3The main contribution of this chapter and Paper III, Paper IV do not focus on the EH model. Also, we can
still use the non-linear EH models in these chapters and solve the same optimization problems formulated, we
employ linear EH model for simplicity and less computational complexity.
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energy. We assume that the energy harvested by transmitter i is used only for and is sufficient

to support its circuit operation [5], i.e., EHi ≥ PCt , where PCt denotes the transmitter circuit

power consumption and is assumed to be the same for all backscatter transmitters.

The power consumption for link i is composed of the RF transmission power Pa of the

PB (which covers the backscatter transmitter circuit power consumption), the circuit power

consumption at the PB and receiver i are denoted by PCpb and PCi, respectively. We assume

that the circuit power consumption of each receiver is the same, and the total circuit power

consumption of each backscatter link i is PCr = PCpb +PCi. Thus, the EE of backscatter link i

is given by

EE i =
Ri

Pa +PCr
. (4)

3 Max-Min EE Resource Allocation

3.1 Problem Formulation

We propose to maximize the minimum link EE among all co-channel backscatter links in order

to improve the EE of the backscatter network while guaranteeing fairness among co-channel

backscatter links. Accordingly, the optimization problem is formulated as

P1 : max
{Pa,Zi}

min
{i∈D̂}

EEi

s.t. C1 : 0 < Pa ≤ Pmax,

C2 : 0 ≤ Zi ≤ 1, i ∈ D̂,

C3 : Ri ≥ Rmin, i ∈ D̂,

C4 : EHi ≥ PCt , i ∈ D̂,

(5)

where C1 sets the maximum allowed transmission power Pmax for the PB transmission power

Pa; C2 sets the range of backscatter reflection coefficients; C3 sets the minimum throughput

requirement Rmin for backscatter links; and C4 ensures that the harvested energy of a backscatter

transmitter is sufficient to cover its circuit power consumption. P1 is a non-convex fractional
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optimization problem and is mathematically difficult to solve due to the coupling between

variables Pa and Zi in (1), (3), and (4).

From (1)−(4) we can see that EEi increases with Zi, while EHi decreases with Zi. Thus, the

maximum EEi is achieved when EHi = PCt . By solving Pagi,1(1−Zi)η = PCt for Zi, we have

Zi = 1− PCt

Pagi,1η
. (6)

By substituting (6) into (5), P1 reduces to an optimization problem with respect to Pa only,

which can be further transformed into a more tractable form following Lemma 1.

Lemma 1 [13]: After substituting (6) into (5), the optimal solution to P1 can be obtained

if and only if max
{Pa}

min
{i∈D̂}

Ri −Q∗ (Pa +PCr) = min
{i∈D̂}

Ri
∗−Q∗ (P∗

a +PCr) = 0, where Q∗ is the

max-min EE, Ri
∗ and P∗

a are the optimal throughput of backscatter link i and the optimal PB

transmission power, respectively.

Based on (6) and Lemma 1, P1 is converted to

P2 : max
{Pa}

min
{i∈D̂}

−Q∗ (Pa +PCr)+log2

(
1+

Pagi,1gi,2−
PCt gi,2

η

Pa ∑
M
j=1, j ̸=i g j,1In j,i−∑

M
j=1, j ̸=i

PCt In j,i
η

+N0

)
s.t. C1, C5 : Pa ≥ PCt/gi,1η , i ∈ D̂,

C6 : log2

(
1+

Pagi,1gi,2−
PCt gi,2

η

Pa ∑
M
j=1, j ̸=i g j,1In j,i−∑

M
j=1, j ̸=i

PCt In j,i
η

+N0

)
≥ Rmin.

(7)

By introducing a slack variable Y , P2 can be expressed as

P3 : max
{Pa,Y}

Y

s.t. C1,C5,C6,

C7 : log2

(
1+

Pagi,1gi,2−
PCt gi,2

η

Pa ∑
M
j=1, j ̸=i g j,1In j,i−∑

M
j=1, j ̸=i

PCt In j,i
η

+N0

)
−Q∗(Pa +PCr)≥ Y, i ∈ D̂.

(8)
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3.2 Convexity Analysis of P3

For notational simplicity, we rewrite C7 as

fi(x) = log2

(
1+

Aix−Bi

Cix−Di

)
−Q∗(x+PCr)−Y ≥ 0, i ∈ D̂, (9)

where x = Pa, Ai = gi,1gi,2, Bi =
PCtgi,2

η
, Ci = ∑

M
j=1, j ̸=i g j,1In j,i, Di = ∑

M
j=1, j ̸=i

PCt In j,i
η

−N0, and

Ai,Bi,Ci ≥ 0.

Taking the first-order derivative of fi(x) with respect to x, i ∈ D̂ we obtain

f ′i (x) =
(BiCi −AiDi)log2e

(Cix−Di +Aix−Bi)(Cix−Di)
−Q∗. (10)

The second-order derivative of fi(x) is obtained as

f ′′i (x) =
−(BiCi −AiDi)log2e

(Cix−Di +Aix−Bi)(Cix−Di)

× (Ci +Ai)(Cix−Di)+(Cix−Di +Aix−Bi)Ci

(Cix−Di +Aix−Bi)(Cix−Di)
.

(11)

Based on (6) and C2, i ∈ D̂, we have Aix−Bi ≥ 0 and Cix−Di ≥ 0. If BiCi −AiDi > 0,

then f ′′i (x)< 0 and P3 is convex; otherwise, f ′′i (x)≥ 0 and P3 is non-convex. We will solve P3

for these two cases, respectively. However, P3 is still intractable mainly due to the complexity

of C7, which increases with M. In the following, we will solve P3 for the case of M = 2, i.e.,

when there are two co-channel backscatter links in the network.
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3.3 Solution of Convex P3

When BiCi −AiDi > 0 for i ∈ {1,2}, P3 is a convex problem with respect to Pa and Y . By

employing Lagrange dual decomposition, we obtain

L(x,Y,α,βi,θi,φi) = α (Pmax − x)+∑
2
i=1 βi

(
x− PCt

gi,1

)
+∑

2
i=1 θi

[
log2

(
1+

Aix−Bi

Cix−Di

)
−Rmin

]
+Y (12)

+∑
2
i=1 φi

[
log2

(
1+

Aix−Bi

Cix−Di

)
−Q∗(x+PCr)−Y

]
,

where α,βi,θi,φi are the Lagrange multipliers associated with the constraints of P3.

To solve ∂L(x,Y,α,βi,θi,φi)
∂x = 0, we rewrite it as

k1x4 + k2x3 + k3x2 + k4x+ k5 = 0, (13)

where k1 = Ja1a2,k2 =−J(b1a2+a1b2),k3 = JC1a2+Jb1b2+Ja1C2−Ea2−Fa1,k4 = Eb2+

Fb1−JC1b2−Jb1C2,k5 = Jc1c2−Ec2−Fc1,a1 =C2
1 +A1C1,b1 = 2C1D1+B1C1+A1D1,c1 =

B1D1+D2
1,a2 =C2

2 +A2C2,b2 = 2C2D2+B2C2+A2D2,c2 =B2D2+D2
2,E =(θ1+φ1)(B1C1−

A1D1),F = (θ2 +φ2)(B2C2 −A2D2),J = (α − (β1 +β2)+2Q∗)ln2.

Then we obtain the four roots of (13) as [14]

x1,2 =

− k2

4k1
−S±

√
−4S2 −2p+ q

s

2

+ , (14)

x3,4 =

− k2

4k1
+S±

√
−4S2 −2p− q

s

2

+ , (15)

where [X ]+ = max(0,X), p =
8k1k3−3k2

2
8k2

1
,q =

k3
2−4k1k2k3+8k2

1k4

8k3
1

,S = 1
2

√
−2

3 p+ T+∆0
T

3k1
,

T =
3
√

∆1+
√

∆2
1−4∆3

0
2 , ∆1 = 2k3

3 −9k2k3k4+27k2
2k5+27k1k2

4 −72k1k3k5, and ∆0 = k2
3 −3k2k4+

12k1k5.
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For any given Y , the optimal value of Pa is given by

P∗
a = max(x1,x2,x3,x4). (16)

Substituting (16) into (8), we can calculate Y ∗ as

Y ∗ = min
{i∈D̂}

(
log2

(
1+

AiP∗
a −Bi

CiP∗
a −Di

)
−Q∗ (P∗

a +PCr)

)
. (17)

The Lagrange multipliers are updated by using the subgradient method [15].

3.4 Solution of Non-convex P3

If BiCi−AiDi ≤ 0 for either i ∈ D̂, then C7 is non-convex and P3 cannot be solved using convex

optimization methods. In the following, we analyze the monotonicity of C7 to solve P3. Based

on (8), BiCi −AiDi, i ∈ {1,2} can be written as

B1C1 −A1D1 =
PCtg1,2

η
In2,1(g2,1 −g1,1)+g1,1g1,2N0, (18)

B2C2 −A2D2 =
PCtg2,2

η
In1,2(g1,1 −g2,1)+g2,1g2,2N0. (19)

From (18) and (19), we can see that if g2,1 −g1,1 > 0, then B1C1 −A1D1 > 0 and B2C2 −

A2D2 ≤ 0, leading to f ′′1 (x) < 0 and f ′′2 (x) ≥ 0; Otherwise, B1C1 −A1D1 ≤ 0 and B2C2 −

A2D2 > 0, leading to f ′′1 (x)≥ 0 and f ′′2 (x)< 0.

Without loss of generality, in the following, we assume B1C1 −A1D1 ≤ 0, thus f ′′1 (x)≥ 0

and f ′′2 (x) < 0. Based on (9)−(11), we can see that f1(x) is a monotonically decreasing

function of x and f2(x) is a concave function of x while meeting all the constraints of P3. The

relationship between f1(x) and f2(x) can be analyzed by defining

h(x) = f1(x)− f2(x) = log2

(
1+

A1x−B1

C1x−D1

)
− log2

(
1+

A2x−B2

C2x−D2

)
, (20)
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and calculating

h′(x) =
(B1C1 −A1D1)log2e

(C1x−D1 +A1x−B1)(C1x−D1)
− (B2C2 −A2D2)log2e

(C2x−D2 +A2x−B2)(C2x−D2)
. (21)

Since B1C1 −A1D1 ≤ 0, we have h′(x) ≤ 0, indicating that there is at most one intersection

between f1(x) and f2(x).

Then we need to find the range of x. Denoting the feasible value range for x by [xmin,xmax],

based on C1, C5 and C6, we obtain that

xmin = max
(

Bi −Di(2Rmin −1)
Ai −Ci(2Rmin −1)

,
PCt

gi,1η

)
, i ∈ {1,2}, (22)

xmax = Pmax. (23)

Based on the above analysis, we can solve non-convex P3 under the following 2 conditions.

Condition 1. h(xmin)h(xmax)> 0: f1(x) and f2(x) do not intersect, and the maximum value

of Y is given by

Y ∗ = min(max
{x}

f1(x),max
{x}

f2(x)). (24)

Since f1(x) is a monotonically decreasing function of x, max
{x}

f1(x) = f1(xmin), and x∗1 = xmin.

Since f2(x) is a concave function, to obtain x∗2 = argmax
{x}

f2(x), we solve f ′2(x) = 0 for x and

get

G =
−u2 ±

√
u2

2 −4u1u3

2u1
,G ∈ [xmin,xmax], (25)

where u1 =(C2
2 +A2C2), u2 =−(2C2D2+B2C2+A2D2) and u3 =D2

2+B2D2− log2e(B2C2−A2D2)
Q∗ .

Then we have

x∗2 =


xmax, G ≥ xmax,

G, xmin < G < xmax,

xmin, G ≤ xmin.

(26)
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Therefore, the optimal value of x is given by

x∗ = argmin
x∗1,x

∗
2

( f1(x∗1), f2(x∗2)). (27)

Condition 2. h(xmin)h(xmax) ≤ 0: f1(x) and f2(x) have one intersection, which can be

further divided into the following three cases.

Case (i). If f ′2(xmin)≤ 0, then f ′2(x)< 0,x ∈ [xmin,xmax]. In this case, f1(x) and f2(x) are

both monotonically decreasing functions of x, and we obtain

x∗ = xmin. (28)

Case (ii). If f ′2(xmax)≥ 0, then f ′2(x)> 0,x ∈ [xmin,xmax]. In this case, f2(x) is a monotoni-

cally increasing function of x, and the optimal x occurs at the intersection. Solving f1(x) = f2(x)

for x, we obtain

x∗ = H =
−n2 ±

√
n2

2 −4n1n3

2n1
,x ∈ [xmin,xmax], (29)

where n1 =A1C2−C1A2, n2 =D1A2+C1B2−B1C2−A1D2, n3 =B1D2−B2D1, and H denotes

the intersection value of x.

Case (iii). If f ′2(xmin)> 0 and f ′2(xmax)< 0, then f2(x) first increases and then decreases

with x in [xmin,xmax], and we obtain

Pa
∗ =


G, f1(xmin)> f2(xmin) & f1(G)≥ f2(G),

H, f1(xmin)> f2(xmin) & f1(G)≤ f2(G),

xmin, f1(xmin)≤ f2(xmin).

(30)

Based on the obtained solutions to convex P3 and non-convex P3, we propose an iterative

algorithm in Algorithm 1 to solve P3 and obtain the global optimal values of P∗
a and Z∗

i . In

Algorithm 1, t is the index of iteration of the main loop; I is the predefined maximum allowed

number of iteration of the main loop, and ψ is a very small value set to check whether the

objective function in P3 converges.
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Algorithm 1: Iterative algorithm

1: Input: D̂ = {1,2}.

2: Output: P∗
a ,Z

∗
i .

3: Initialize: Q∗(t) = Q∗(0),Y (t) = Y (0), I,ψ, t = 0.

4: while t < I do

5: if BiCi −AiDi > 0, i ∈ D̂ then

6: for n = 1 to I1 do

7: for u = 1 to I2 do

8: We use Q∗
u(t) and Yu(t) to obtain Pa,u(t +1) by calculating (15).

9: We use obtained Pa,u(t +1) to calculate Yu(t +1) by calculating (16).

10: end for

11: Q∗
u(t +1) = Ri[Pa,u(t +1)]/(Pa,u(t +1)+PCr).

12: We update Lagrange multipliers by using a sub-gradient method.

13: end for

14: else We obtain Y (t +1) and Pa(t +1) under Condition 1 or Condition 2.

15: Q∗(t +1) = Ri[Pa(t +1)]/(Pa(t +1)+PCr).

16: end if

17: if
∣∣ min
{i∈D̂}

Ri[Pa(t +1)]−Q∗(t +1)(Pa(t +1)+PCr)
∣∣≤ ψ then

18: P∗
a = Pa(t +1), obtain Z∗

i using (6), obtain EE1 and EE2 using (4).

19: Break
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20: end if

21: t = t +1.

22: end while

4 Simulation Results

In this section, we present the simulation results to evaluate the performance of our proposed

max-min EE resource allocation scheme in comparison with the criterion of maximizing

system EE (max-SEE) under the case of two co-channel backscatter links. We consider

distance dependent pathloss as large scale fading, where the pathloss exponent is set as 2.5,

and rayleigh fading as small scale fading which follows a unit mean exponential distribution.

The transmission radius of PB is set as 30 m; the distance between a backscatter transmitter

and its receiver is denoted as r, which is less than 15 m for all backscatter links. Pmax=23 dBm,

N0=−114 dBm, η = 0.6, PCt=0.1 mw, PCr=110 mw, Rmin=3 bits/Hz.

Fig. 2 shows the convergence of the iterative algorithm for three cases with different

distance (r) between a backscatter transmitter and its receiver. We can see that the max-min EE

converges in the 4th ∼ 6th iteration, and a higher EE is obtained for a smaller r. It is because

the throughput increases for a shorter communication distance, leading to a higher EE. Fig. 2

proves that our proposed iterative algorithm is efficient to converge fast.

In Fig. 3, we compare the EE under max-min fairness and max-SEE versus the channel

power gain differences between gi,1 and g j,1. On the one hand, we can see that the max-SEE

algorithm achieves a higher system EE than our proposed Algorithm 1. However, the EE gap

between the best user and the worst user is too large, which is significantly reduced by ensuring

max-min fairness. On the other hand, in the first case, the EE of the worst user under the

max-SEE criterion improves 31.53% by employing max-min fairness; while in the second case,

the EE of the worst user improves 25.55%. This indicates that the max-min fairness is less

effective when the channel power gain difference between gi,1 and g j,1 becomes larger. This is
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Fig. 2 Iterative algorithm for different value of r.

because when the channel power gain difference becomes larger, the EE difference between the

best user and the worst user becomes larger so that it will be harder to achieve fairness. This

also proves that the max-SEE algorithm tends to favour the best user.

Fig. 4 shows the EE versus the throughput requirement for backscatter links under the

criterions of max-min fairness and max-SEE. A higher throughput requirement reduces the

range of Pa, which may change the obtained optimal solution of Pa. Before the throughput

requirement increases to 8 bits/Hz, based on the max-SEE, which tends to favour the best user,

when the range of Pa reduces, the best user cannot obtain its optimal value of Pa which makes

its EE lower. But the worst user forwards to its optimal value so that its EE improves. When we

consider max-min fairness, EE of the best user and the worst user keeps unchanged and begins

to drop after the throughput requirement greater than 7 bits/Hz, this is because that the obtained

optimal solution of Pa first keeps unchanged and then changes for both the best user and the

worst user. After the throughput requirement exceeds 8 bits/Hz, the EE of the best user and

the worst user under both criterions reduces since both the users cannot obtain their optimal
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Fig. 3 EE versus channel power gain differences between gi,1 and g j,1.

value of Pa. Also, the EE gap between the best user and the worst user becomes smaller, and

the optimal solutions under the criterions of both max-min fairness and max-SEE are the same.

5 Conclusions

In this letter, we solve the max-min EE resource allocation problem in a wireless powered

backscatter network. An iterative algorithms is proposed to solve this problem by jointly opti-

mizing the transmission power of the PB and the reflection coefficients when the optimization

problem is convex or non-convex. Simulation results show that the iterative algorithm con-

verges very fast, and the max-min EE resource allocation is more effective when the throughput

requirement of the BDs is low and the channel power gain difference from the PB to each

backscatter transmitter is small.
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Abstract

Driven by the limited radio spectrum resources and the high energy consumption of wireless

devices, symbiotic radio (SR) has recently been proposed to support passive Internet-of-things

(IoT) networks, where a primary transmitter (PT) transmits information to a primary reader

(PR), while passive backscatter devices (BDs) modulate their own information on the received

primary signal and backscatter the modulated signal to the same PR by adjusting their reflection

coefficients1. Existing works on SR have mainly studied the case of a single BD while without

considering the BD’s energy harvesting (EH) ability. In this paper, we aim to maximize the

energy efficiency (EE) of an SR system that includes multiple BDs each being able to harvest

energy while backstattering, by jointly optimizing the PT transmission power and the BDs’

reflection coefficients and time division multiple access (TDMA) time slot durations for both

the parasitic SR (PSR) and commensal SR (CSR) cases. To solve the formulated non-convex

optimization problems, we propose a Dinkelbach-based iterative algorithm that builds on

1Compared with relay communication, backscatter communication does not generate RF signal actively. Also,
the backscatter device modulates its own information on the incident RF signal and reflects the modulated signal
to the receiver for decoding, which means that the receiver decodes the signals from both the backscatter device
and the primary transmitter. Therefore, the motivation of using backscatter communication is its low energy
consumption and the decoding of both the primary signal and backscattered signal. Some potential applications of
backscatter communication are expected, e.g., low-power consumption wearable device, built in biosensor chip,
operation and maintenance of railway system, industrial sensor network and underwater Internet of things.
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the block coordinated decent (BCD) method and the successive convex programming (SCP)

technique. Simulation results show that the proposed algorithm converges fast, and the system

EE is maximized when all BDs only achieve the minimum throughput requirements in the PSR

case, while in the CSR case, the system EE is maximized when the BD that can provide the

highest EE is allocated the maximum allowed time for backscattering while guaranteeing the

throughput requirements for the other backscatter links.

1 Introduction

It is predicted that the Internet of Things (IoT) devices will be over 80 billion worldwide by 2030

[1], putting huge pressure on wireless networks concerning the limited radio spectrum resources

and soaring energy consumption. In order to support massive IoT connections, cognitive radio

(CR) technology has been employed to let IoT devices (as secondary transmitters (STs)) share

the same spectrum with incumbent primary transmitters (PTs) [2], [3], [4], [5]. However,

the energy efficiency (EE) of a CR system is limited by the energy-consuming active radio

frequency (RF) components used in the STs [2], [6].

Different from active RF transmissions, backscatter communications (BackCom) [7], [8],

[9], [10], [11], [12] allow a backscatter device (BD) to modulate its own information on the

incident RF signal transmitted by a PT and backscatter the modulated signal to the desired

receiver by adjusting its reflection coefficient [13], [14], [15], while harvesting energy from the

incident RF signal to cover its circuit power consumption [11]. Thus, the energy consumption

of passive BackCom is significantly reduced as compared with active transmissions in CR.

However, since the BDs have no knowledge of the information transmitted by the PT, the EE

of BackCom will be limited by the strong interference caused by the PT [6].

To exploit the synergy between CR and BackCom, symbiotic radio (SR) has been proposed

recently [6], where the PT and the primary receiver (PR) are designed to support both the

primary and BackCom transmissions, and has attracted a lot of research interest. Depending on

whether the BD symbol period is equal to or much longer than the PT symbol period, SR is

classified into parasitic SR (PSR) and commensal SR (CSR), respectively [2]. The authors in

[2] jointly optimized the transmission power and beamforming vectors of a multi-antenna PT
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to maximize the weighted sum-rate and minimize the transmission power separately in an SR

system. In [16], the weighted sum-rate of an SR network was maximized through optimizing the

PT transmission power and the BD reflection coefficient under either a long-term or short-term

PT transmission power constraint. The authors in [17] derived the expressions of the outage

probability and the ergodic rate for an SR system, where the base station transmits information

to two cellular users and a BD backscatters its information to one of the two cellular users, and

analyzed the corresponding diversity orders. In [18], the PT transmission power was minimized

by jointly designing the beamforming vector at the PT and the power splitting factor at the

full-duplex BD, while guaranteeing the minimum BD rate requirement. The authors in [19]

maximized the system EE subject to the throughput requirements of the direct and backscatter

links as well as the PT transmit power constraint, by optimizing the PT beamforming vectors

in an SR system with a finite block length backscatter link. Nevertheless, the above works

considered only a single BD while ignoring the energy harvesting (EH) ability of the BD.

In this paper, we investigate the EE maximization problem of an SR system with multiple

BDs, each being able to harvest energy from the incident primary signal to support their circuit

power consumption. Our main contributions are summarized as follows:

• We propose an SR system, where following the time division multiple access (TDMA)

protocol but allocating a BD-specific time slot duration to each BD, multiple BDs take

turn to modulate their own information on the incident primary signal and backscatter

the modulated signal to the PR, while harvesting energy from the incident primary signal

to support their circuit operation.

• We formulate an optimization problem to maximize the EE of the SR system by jointly

optimizing the PT transmission power and the BDs’ reflection coefficients and TDMA

time slot durations for both the PSR and CSR cases.

• Due to multiple coupled variables in the objective function and the constraints, the

formulated problem is non-convex and is hard to solve directly. To solve the problem,

in the PSR case, we first introduce auxiliary variables and utilize the Dinkelbach-based

method to transform the original problem from a fraction form into a subtraction form,
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then employ a block coordinate decent (BCD) method in conjunction with a successive

convex programming (SCP) technique to transform the objective function into a convex

function, and obtain the sub-optimal solutions of the PT transmission power, the BDs’

reflection coefficients, or the BDs’ time slot durations, given the other variables by using

the interior point method. The closed-form expression of the sub-optimal reflection

coefficients is derived by employing the Lagrange dual method. In the case of CSR, as

the system EE is a monotonically increasing function of the BDs’ reflection coefficients,

we first obtain the globally optimal reflection coefficients. Then, employing techniques

similar to the PSR case but without using the BCD method, we obtain the sub-optimal

solutions of the PT transmission power and the BDs’ time slot durations, and derive the

closed-form expressions of the optimal reflection coefficients and the sub-optimal PT

transmission power. Based on the above obtained solutions, we propose a Dinkelbach

based iterative algorithm to solve the formulated problems in the PSR and CSR cases.

• The convergence and computational complexity of the proposed algorithm are analyzed

and verified by simulation. The simulation results show that the proposed algorithm

converges very fast and the system EE is maximized when all BDs only achieve the

minimum throughput requirements in the PSR case, while in the CSR case, the system

EE is maximized when a best BD that can contribute the most toward the system EE is

allocated the maximum allowed time to backscatter its information to the PR while the

other BDs’ throughputs being kept at the minimum required level. Furthermore, this best

BD is determined by the optimized PT transmission power in the corresponding time

slot.

The rest of the paper is organized as follows. The system model is presented in Section

2. In Section 3 and Section 4, the system EE maximization problem is formulated and solved,

respectively. Section 5 presents the Dinkelbach based iterative algorithm for maximizing

the system EE. Section 6 analyzes the convergence and the computational complexity of the

proposed algorithm. In Section 7, the simulation results are presented. Section 8 concludes the

paper.
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Fig. 1 An SR Network

2 System Model

In this section, we introduce the SR network with multiple BDs, present the throughout analysis

for both the PSR and CSR cases, and define the system EE of the network.

2.1 Network Model

As shown in Fig. 1, the SR network consists of a PT, a PR and M BDs, where each BD i

∈ M = {1, · · · ,M} is equipped with a single antenna, an EH circuit and a passive backscatter

circuit2. The PT transmits its information to the PR through a direct link, meanwhile BD i

modulates its own information on the incident primary signal from the PT and backscatters

the modulated signal to the PR by adjusting its reflection coefficient. The BDs share the same

RF channel with the primary link. The mutual interference among the BDs during BackCom

can be avoided by employing TDMA, where a time block T is divided into M time slots for

the M BDs, i.e., ∑
M
i=1 ti ≤ T , and ti is the duration of the ith time slot allocated to BD i for

BackCom and EH at the same time, while all the other BDs staying idle. Assuming that there is

2BackCom systems can be mainly classified into passive systems and semi-passive systems, where the key
benefits of a passive BD without any internal energy storage are its low cost and small size [14], [20]. In this
paper, we consider passive BDs where the energy is only harvested for covering circuit power consumption and is
not stored in the BDs.
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no internal power source or energy storage in the BDs, the harvested energy during BackCom

is used up for BD circuit operation and cannot be stored [14].

We use a block flat-fading channel model, where the channel parameters stay constant

during each time block T [2]. The channel power gain of the direct link from the PT to the PR

is denoted by ht,r = (dt,r)−α
µ t,r, where dt,r, α and µ t,r are the distance, the path-loss exponent

and the Rayleigh fading power gain of the link from the PT to the PR, respectively. We denote

the channel power gain from the PT to BD i and that from BD i to the PR by ht,b
i = (dt,b

i )
−α

µ
t,b
i

and hb,r
i = (db,r

i )
−α

µ
b,r
i , respectively, where dt,b

i and db,r
i are the distance from the PT to BD i

and that from BD i to the PR, respectively, µ
t,b
i and µ

b,r
i are the Rayleigh fading power gain

from the PT to BD i and that from BD i to the PR, respectively.

The amount of energy harvested by BD i during the ith time slot is given by

EHi = tiPih
t,b
i (1− zi)η , (1)

where Pi and zi are the PT transmission power and the reflection coefficient of BD i in the ith

time slot, respectively, and η represents the energy conversion efficiency of the EH circuit. We

ignore the energy harvested from the thermal noise as it is much lower than the RF energy [15],

[21]. Accordingly, the total amount of energy harvested by all the BDs in a time block T is

given by EHsum =
M
∑

i=1
EHi.

2.2 Throughput Analysis

Denote the primary signal transmitted from the PT by s(n) with symbol period of Ts and the ith

BD’s signal by ci(l) with symbol period of Tc, where n and l are the indices of symbols of the

primary signal and the BackCom signal, respectively. The symbol periods Ts and Tc are much

shorter than ti, i ∈ M . It is assumed that s(n) and ci(l) follow independent standard circularly

symmetric complex Gaussian distribution C N (0,1). Thus, the backscattered signal from BD

i is given by
√

zici(l), where zi ∈ [0,1] is the reflection coefficient of BD i. Following [2], we

consider two cases of SR, one is the PSR with Ts = Tc, and the other is the CSR with Tc = NTs,

where N >> 1 is a positive integer, i.e., the symbol period of the BackCom is much longer
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than that of the primary transmission. In the following, we will analyze the throughputs of the

primary link and BackCom links for the two cases separately.

2.2.1 PSR

Since Ts = Tc, we assume that l = n and the received signal at the PR for the nth primary

symbol in the ith time slot is given by

y(n)(1) =
√

Piht,rs(n)+
√

Pizih
t,b
i hb,r

i s(n)ci (n)+ k (n) , (2)

where k(n) is the additive white Gaussian noise (AWGN) with zero mean and power σ2.

According to (2), the received signal from BD i is weaker than that from the PT. Therefore,

the PR can utilize the successive-interference-cancellation (SIC) technique to decode the

primary signal s(n) first, then remove s(n) from the received signal y(n)(1), and detect the

BackCom signal ci(n). Since the symbol rates of s(n) and ci(n) are the same in the PSR case,

ci(n) is regarded as interference when decoding s(n). As we can see from the second term on

the right-hand side of (2), the interference is the product of two complex Gaussian signals s(n)

and ci(n), and thus follow a non-Gaussian distribution. The lower bound of the PT-PR link

throughput (bits) in a time block is given by [2]

Rs(1) =
M

∑
i=1

Wtilog2

(
1+

Piht,r

Pizih
t,b
i hb,r

i +σ2

)
, (3)

where W is the channel bandwidth.

Assuming that the primary signal is perfectly removed from y(n)(1) by SIC [2], [16], [17],

[18], [19], we have

y
′
(n)

(1)
=

√
Pizih

t,b
i hb,r

i s(n)ci (n)+ k (n) . (4)

Regarding s(n) as a random channel component imposed on ci(n), the throughput of

backscatter link i in the ith time slot is given by [22]

Rc
i
(1) =WtiEs

[
log2

(
1+

Pizih
t,b
i hb,r

i |s(n)|2

σ2

)]
, (5)
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where |s(n)|2 follows the exponential distribution with a unit mean.

2.2.2 CSR

Since Tc = NTs,N >> 1, the BackCom symbol ci(l) spans N primary symbol periods for

n = 1, · · · ,N. Accordingly, the received signal at the PR for the nth primary symbol is written

as

y(n)(2) =
√

Piht,rs(n)+
√

Pizih
t,b
i hb,r

i s(n)ci(l)+ k (n) . (6)

The second signal term in (6) can be viewed as the output of the primary signal s(n) passing

through a slowly varying channel
√

ht,b
i hb,r

i ci(l). Thus, the PR first decodes the primary signal

s(n) by treating the BD signal as a multipath component. If ci(l) is negative, the PR can

compensate for the negative signal via maximum ratio combing (MRC) and ci(l) is not be

regarded as interference signal. For given ci(l), the average throughput of the PT-PR link in a

time block is given by

Rs(2)′′ =
M

∑
i=1

WtiEci [log2 (1+ γ
s
i )], (7)

where γs
i =

Piht,r+Pizih
t,b
i hb,r

i [ci(l)]
2

σ2 is the signal-to-noise ratio (SNR).

Lemma 1: γs
i follows a noncentral chi-square distribution χ2 with the freedom of 2, and its

probability density function (PDF) is given by

fi(x) =
1

2θi
e
(
− x+λi

2θi

)
I0

(√
xλi

θi

)
(8)

where the noncentrality parameter λi =
Piht,r

σ2 , the Gaussian variance parameter θi =
Pizih

t,b
i hb,r

i
2σ2 ,

and I0(·) is a modified Bessel function of the first kind and is given by

I0 (v) =
∞

∑
m=0

1
m!Γ(m+1)

(v
2

)2m
. (9)
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Based on (7), the expected throughput of the PT-PR link in a time block over all possible

values of ci(l) is given by

Rs(2)′ =
M

∑
i=1

Wti
∫ +∞

0
log2 (1+ x) fi (x)dx. (10)

Following [2], [16], [17], [18], [19], when γs
i →+∞, the expected throughput of the PT-PR

link in a time block is given by

Rs(2) =
M

∑
i=1

Wti

[
log2

(
Piht,r

σ2

)
−Ei

(
− ht,r

zih
t,b
i hb,r

i

)
log2e

]
, (11)

where Ei(x) ∆
=
∫ x
−∞

1
ueudu.

Assuming that the primary signal is perfectly removed from y(n)(2) via maximum-likelihood

(ML) detection [23], for n = 1, · · · ,N, we have

y′(n)(2) =
√

Pizih
t,b
i hr,b

i s(n)ci(l)+ k (n) . (12)

Since E|s(n)|2 = 1, the symbol ci(l) can be decoded by performing maximal ratio combing

(MRC) of y′(n)(2), n = 1, · · · ,N, received in N consecutive primary symbol periods, and the

throughput of backscatter link i in the ith time slot can be approximately calculated as [2], [16],

[17], [18], [19]

Rc(2)
i =Wti

1
N

log2

(
1+

NPizih
t,b
i hb,r

i
σ2

)
. (13)

2.3 System Energy Efficiency

The system EE of the SR network is defined as the ratio of the total throughput of all links to

the total energy consumption of the network in a time block [24], [25], [26], [27]. Letting RPSR
sum

and RCSR
sum denote the total throughput of the network for the PSR and the CSR, respectively, we

have

RPSR
sum = Rs(1)+

M

∑
i=1

Rc(1)
i , (14)
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RCSR
sum = Rs(2)+

M

∑
i=1

Rc(2)
i . (15)

The total energy consumption of the SR network in a time block is given by

ECsum =
M

∑
i=1

ti
(
Pi +PBD

cir +PT R
cir
)
, (16)

where PBD
cir and PT R

cir represent the circuit power consumption of a BD and that of the PT and

PR in total, respectively.

Thus, the system EE in the cases of PSR and CSR is given respectively by

EEPSR =
RPSR

sum

ECsum −min(EHsum,
M
∑

i=1
tiPBD

cir )

, (17)

EECSR =
RCSR

sum

ECsum −min(EHsum,
M
∑

i=1
tiPBD

cir )

, (18)

where min(EHsum,T PBD
cir ) in the denominator on the right-hand side indicates that any excessive

energy harvested by BDs will not contribute to a higher system EE, because the BDs do not

have any built-in energy storage.

3 PSR System Energy Efficiency Maximization

In this section, we first formulate the system EE maximization problem for the PSR case, then

transform the problem into a more tractable form and propose a Dinkelbach-based iterative

algorithm to solve it.

3.1 Problem Formulation

We aim to maximize the system EE of the SR network by jointly optimizing the PT trans-

mission power Pi, and BDs’ TDMA time slot duration ti and reflection coefficients zi, i ∈ M .
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Accordingly, the optimization problem is formulated as

P1 : max
{Pi,ti,zi}

EEPSR

s.t.

C1 :0 ≤ Pi ≤ Pmax,∀i;

C2 : 0 ≤ zi ≤ 1,∀i;

C3 :ti ≥ 0,
M
∑

i=1
ti ≤ T ,∀i;

C4 :Rs(1) ≥ Rs
min,R

c(1)
i ≥ Rc

min,∀i;

C5 :EHi ≥ tiPBD
cir ,∀i,

(19)

where Pmax is the maximum transmission power of PT, and Rs
min and Rc

min are the minimum

required throughput of the primary link and a backscatter link, respectively; C1 and C2 specify

the value ranges of the PT transmission power and BDs’ reflection coefficients, respectively; C3

constrains the sum duration of all BDs’ time slots in a time block; C4 guarantees the minimum

throughput requirements for the primary link and the backscatter links and C5 requires that the

harvested energy of each BD should exceed its circuit energy consumption.

We can see that P1 contains a fractional objective function with multiple variables coupled

in it and in the constraints. As it is extremely difficult to solve P1 directly, we will first transform

it into a more tractable form.

3.2 Problem Transformation

Assuming that the harvested energy of each BD is sufficient to cover its circuit power consump-

tion while any excessive harvested energy cannot be stored, letting Ai = ht,b
i hr,b

i and introducing
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an auxiliary variable Li = Piziti, we transform P1 as

P2 :

max
{Pi,ti,Li}

W

M
∑

i=1
tilog2

(
1+ Pih

t,r

Ai
Li
ti
+σ2

)
+

M
∑

i=1
tiEs

[
log2

(
1+AiLi|s(n)|2

tiσ2

)]
M
∑

i=1
ti(Pi+PT R

cir )

s.t.

C1,C3;

C2−1 : 0 ≤ Li ≤ tiPi,∀i;

C4−1 :Rs(1)
′
≥ Rs

min,R
c(1)
i

′

≥ Rc
min,∀i;

C5−1 :tih
t,b
i (Pi − Li

ti
)η ≥ tiPBD

cir ,∀i,

(20)

where Rs(1)
′
=

M
∑

i=1
Wtilog2

(
1+ Piht,r

Ai
Li
ti
+σ2

)
, Rc(1)

i

′

=WtiEs

[
log2

(
1+ AiLi|s(n)|2

tiσ2

)]
.

In order to make P2 more tractable, we use the Dinkelbach-based method [28], [29], [30]

to firstly transform the objective function in P2 from a fraction form into a subtraction form.

Then, the maximum system EE, denoted by Q∗, can be achieved if and only if the following

equation is satisfied,

max
{Pi,ti,Li}

Rs(1)′+
M
∑

i=1
Rc(1)′

i −Q∗
M
∑

i=1
ti
(
Pi +PT R

cir
)

=Rs(1)
′∗
+

M
∑

i=1
Rc(1)

i

′∗
−Q∗

M
∑

i=1
t∗i
(
P∗

i +PT R
cir
)
= 0,

(21)

where Rs(1)
′∗
,Rc(1)

i

′∗
, t∗i and P∗

i are the optimal value of the throughput of the PT-PR link, the

throughput for BD i in the ith time slot, the TDMA time slot duration and the PT transmit

power, respectively.

According to (21), P2 is further transformed into

P3 : max
{Pi,ti,Li}

Rs(1)′+
M
∑

i=1
Rc(1)′

i −Q∗
M
∑

i=1
ti
(
Pi +PT R

cir
)

s.t.

C1,C2−1,C3,C4−1,C5−1.

(22)
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3.3 Problem Solution

We note that P3 is still non-convex due to multiple coupled variables. To this end, we propose a

BCD method to solve P3 alternatively, i.e., to optimize Li, ti under a fixed Pi and then optimize

Pi under the updated Li, ti.

For a fixed Pi, we apply the successive convex programming (SCP) technique on Rs(1)
′
to

transform it into a convex form and successively maximize a lower bound of the objective

function of P3 in an iterative manner based on the following lemma.

Lemma 2: For any given X ( j)
i =

L( j)
i

t( j)
i

, j > 0, where L( j)
i and t( j)

i denote the obtained values

after the jth iteration, we have

Rs(1)′ (Xi)≥ Rs(1)′
(

X ( j)
i

)
,∀i, (23)

where

Rs(1)′
(

X ( j)
i

)
=Wti

[
log2

(
1+ Piht,r

AiX
( j)
i +σ2

)
− Piht,rAilog2e(

AiX
( j)
i +σ2+Piht,r

)(
AiX

( j)
i +σ2

) (Xi −X ( j)
i

)]
,

(24)

and the equalities only hold when Xi = X ( j)
i .

Proof. Please see Appendix A. ■

By substituting (24) into (22) and after some manipulations, P3 is equivalently formulated

as

P3.1 : {t∗i ,L
∗
i }= F1 = arg max

{ti,Li}

M
∑

i=1
W

[
tilog2

(
1+ Piht,r

AiX
( j)
i +σ2

)
− Piht,rAilog2e(

AiX
( j)
i +σ2+Piht,r

)(
AiX

( j)
i +σ2

) (Li − tiX
( j)
i

)]
+

M
∑

i=1
WtiEs

[
log2

(
1+ AiLi|s(n)|2

tiσ2

)]
−Q∗

M
∑

i=1
ti
(
Pi +PT R

cir
)

s.t.

C2−1,C3,C5−1;

C4−2 : Rs(1)′
(

X ( j)
i

)
≥ Rs

min,R
c(1)
i

′

≥ Rc
min,∀i.

(25)
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It is easy to verify that the first and third terms of the objective function in P3.1 are linear

with respect to Li and ti, and the second term of the objective function is a standard log-form

convex function. Thus, P3.1 is jointly convex with respect to Li and ti, and it can be efficiently

solved by standard convex optimization methods, e.g., the interior point method [31] and CVX

tool in Matlab.

For the obtained Li and ti, P3 is equivalently formulated as

P3.2 : F2 = max
{Pi}

Rs(1)′+
M
∑

i=1
Rc(1)′

i −Q∗
M
∑

i=1
ti
(
Pi +PT R

cir
)

s.t.

C1,C2−1,C4−1,C5−1.

(26)

It is easy to verify that P3.2 is convex with respect to Pi since the first and third terms of the

objective function are convex and linear with respect to Pi, respectively, while the second term

of the objective function is constant for the obtained Li and ti. Thus, we can easily solve P3.2

by applying the interior point method or using CVX tool in Matlab.

Lemma 3: To gain more insights, we derive the closed form expressions of the optimal

reflection coefficient zi and the optimal PT transmission power Pi by employing the Lagrange

dual method as follows.

z∗i =
1
Pi
×

 (1+δi)log2e

µi+εi+(1+β )
Pih

t,rAilog2e(
AiX

( j)
i +σ2+Pih

t,r
)(

AiX
( j)
i +σ2

) − σ2

Ai

 , (27)

P∗
i =

(1+β ) log2e
Q∗+ µi−εi

ti

− AiXi +σ2

ht,r , (28)

where β ,δi,µi,εi are the Lagrange multipliers associated with C4-1, C2-1 and C5-1, respec-

tively.

Proof. Please see Appendix B. ■

Remark 1: As we can see in (27), the optimal reflection coefficient is lower with higher

PT transmission power, indicating that the EE of the primary link dominates the system EE.

This can be explained as follows. Increasing the PT transmission power will lead to higher
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interference power from the backscatter links to the primary link. Since the EE of the primary

link dominates the system EE, the system EE can be increased by the BDs reducing their

reflection coefficients so as to reduce their interference to the primary link and to increase the

primary link EE. According to (28), the optimal PT transmission power in a time slot increases

with a better channel condition of the primary link, i.e., ht,r, as well as a longer duration of the

time slot, i.e., ti. The above insights will be verified by simulations.

4 CSR System Energy Efficiency Maximization

In this section, we first formulate the system EE maximization problem for the CSR network,

then transform the problem into a more tractable form and propose a Dinkelbach-based iterative

algorithm to solve it.

4.1 Problem Formulation

Similar to the PSR case, the system EE maximization for the CSR case is formulated as

P4 : max
{Pi,ti,zi}

EECSR

s.t.

C1,C2,C3,C5;

C4−3 :Rs(2) ≥ Rs
min,R

c(2)
i ≥ Rc

min,∀i;

(29)

Similar to P1, P4 is extremely difficult to solve due to the fractional objective function and

multiple coupled variables. Next, we transform P4 into a more tractable form.

4.2 Problem Transformation

Since the numerator of the objective function of P4, i.e., RCSR
sum in (15), is a monotonically

increasing function of zi, the system EE is maximized when the harvested energy of each BD
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equals their circuit power consumption, that is

tiPih
t,b
i (1− zi)η = tiPBD

cir , (30)

and the optimal reflection coefficient z∗i is obtained as

z∗i = 1− PBD
cir

Pih
t,b
i η

. (31)

Remark 2: According to (31), the optimal reflection coefficient in the CSR case increases

with higher PT transmission power, which is opposite to the PSR case. This is because in CSR,

the backscatter links not only cause no interference to the primary link, but also enhance the

throughout of the primary link.

Based on (31) and letting Bi =
PBD

cir hr,b
i

η
, P4 is transformed into

P5 : max
{Pi,ti}

W

M
∑

i=1
ti

[
log2

(
Piht,r

σ2

)
−Ei

(
− ht,r

Ai−
Bi
Pi

)
log2e

]
+

M
∑

i=1
ti 1

N log2

(
1+ N(PiAi−Bi)

σ2

)
M
∑

i=1
ti(Pi+PT R

cir )

s.t.

C1,C3,C4−3;

C2−2 : 0 ≤ 1− PBD
cir

Pih
t,b
i η

≤ 1,∀i.

(32)

Then, by introducing the auxiliary variables Ui = (PiAi −Bi)ti, i ∈ M , substituting Pi =

Bi/Ai +Ui/(tiAi) into (32) and employing the Dinkelbach-based method on the objective
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function of P5, we transform P5 into

P6 : max
{ti,Ui}

W
M
∑

i=1
ti

log2

((
Bi+

Ui
ti

)
ht,r

Aiσ2

)
−Ei

− ht,r

Ai−
AiBi

(Bi+
Ui
ti
)

 log2e


+W

M
∑

i=1
ti 1

N log2

(
1+ NUi

tiσ2

)
−Q∗

M
∑

i=1
ti

(
Bi+

Ui
ti

Ai
+PT R

cir

)
s.t.

C3;

C1−1 :0 ≤
Bi+

Ui
ti

Ai
≤ Pmax,∀i;

C2−3 : 0 ≤ 1− PBD
cir Ai(

Bi+
Ui
ti

)
ht,b

i η
≤ 1,∀i;

C4−4 :Rs(2)
′
≥ Rs

min,R
c(2)
i

′

≥ Rc
min,∀i,

(33)

where Rs(2)
′
=W

M
∑

i=1
ti

 log2

((
Bi+

Ui
ti

)
ht,r

Aiσ2

)
−Ei

− ht,r

Ai−
AiBi

(Bi+
Ui
ti
)

 log2e

 and Rc(2)
i

′

=

W
M
∑

i=1
ti 1

N log2

(
1+ NUi

tiσ2

)
.

4.3 Problem Solution

To solve P6, we apply the SCP technique on Rs(2)
′

to transform it into a convex form and

successively maximize the lower bound of the objective function in an iterative manner based

on the following lemma.

Lemma 4: For any given P( j)
i = B( j)

i /Ai +U ( j)
i /(t( j)

i Ai), j > 0, where P( j)
i , B( j)

i , U ( j)
i and

t( j)
i denote the obtained parameter values after the jth iteration, we have

Rs(2) (Pi)≥ Rs(2)
(

P( j)
i

)
,∀i, (34)
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where
Rs(2)

(
P( j)

i

)
=W

M
∑

i=1
ti

[
log2

(
P( j)

i ht,r

σ2

)
−Ei

− ht,r

Ai−
Bi

P( j)
i

 log2e

+

 log2 e

P( j)
i

+

Biexp

− htr

Ai−
Bi

P( j)
i

 log2 e

Ai(P
( j)
i )

2
−BiP

( j)
i


(

Pi −P( j)
i

)]
,

(35)

and the equalities in (34) only hold when Pi = P( j)
i .

Proof. Please see Appendix C. ■

By substituting (35) into (33) and after some manipulations, P6 is equivalently formulated

as

P6.1 : {U∗
i , t

∗
i }= F3 = arg max

{Ui,ti}
W

M
∑

i=1
ti

[
log2

(
P( j)

i ht,r

σ2

)

−Ei

− ht,r

Ai−
Bi

P( j)
i

 log2e+

 log2 e

P( j)
i

+

Biexp

− htr

Ai−
Bi

P( j)
i

 log2 e

AiP
( j)
i −BiP

( j)
i


(

Bi+
Ui
ti

Ai
−P( j)

i

)]
+W

M
∑

i=1

Ui
Ai

 log2 e

P( j)
i

+

Biexp

− htr

Ai−
Bi

P( j)
i

 log2 e

AiP
( j)
i −BiP

( j)
i


+W

M
∑

i=1
ti 1

N log2

(
1+ NUi

tiσ2

)
−Q∗

M
∑

i=1

(
Biti+Ui

Ai
+PT R

cir

)
s.t.

C3;C4−4;

C1−2 :Ui ≤ ti (PmaxAi −Bi) ,∀i;

C2−4 :Ui ≥ 0,∀i.

(36)

It is observed that the first term and the third term of the objective function in (36) are linear

with respect to Ui and ti, and the second term of the objective function is a standard log-form
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convex function. Therefore, P6.1 is jointly convex with respect to Ui and ti, and can be solved

by employing the interior point method or using CVX tool in Matlab.

Lemma 5: To gain more insights, we derive the closed form expression of the optimal PT

transmission power Pi by employing the Lagrange dual method as follows.

P∗
i =

Bi

Ai
+

1
NAi

×



Ai (1+δi) log2e

Y − (1+β )

 log2 e

P( j)
i

+

Biexp

− ht,r

Ai−
Bi

P( j)
i

 log2 e

AiP
( j)
i −BiP

( j)
i



−σ
2



, (37)

where Y = Q∗+Aiεi, and β ,δi,εi are the Lagrange multipliers associated with C4-4 and C1-2,

respectively.

Proof. Please see Appendix D. ■

5 Dinkelbach Based Iterative Algorithm

Based on the solutions obtained in Sections 3 and 4, we propose a Dinkelbach-based iterative

algorithm in Algorithm 1 to solve P3 and P6 for the PSR and CSR cases, respectively, where

v is the iteration index for updating the maximum system EE Q∗, and ε is the convergence

threshold imposed on the objective function in P3 and P6, by meeting which the algorithm

terminates.

Algorithm 1: Dinkelbach based iterative algorithm

1: Input: M .

2: Output: Q∗, t∗i ,L
∗
i ,P

∗
i ,U

∗
i .
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3: Initialize: j = 1,v = 1,Q∗(v),ε .

In the case of PSR

4: repeat

5: repeat

6: Initialize L( j)
i , t( j)

i ;

7: repeat

8: Obtain ti,Li by solving P3.1;

9: j = j+1;

10: until the objective function value in P3.1 converges;

11: Obtain Pi by solving P3.2;

12: until the objective function value in P3 converges;

13: Compute Rs(1)′ and Rc(1)
i

′
in (20);

14: v = v+1;

15: Update Q∗(v) =
Rs(1)′+

M
∑

i=1
Rc(1)

i
′

M
∑

i=1
ti(Pi+PBD

cir )
;

16: until |min
i∈M

Rs(1)′+
M
∑

i=1
Rc(1)

i
′
−Q∗ (v)

M
∑

i=1
ti
(
Pi +PBD

cir
)
| ≤ ε .

In the case of CSR

17: repeat

18: Initialize U ( j)
i , t( j)

i ;

19: repeat

20: Obtain Ui, ti by solving P6.1;
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21: j = j+1;

22: until the objective function value in P6.1 converges;

23: Compute Rs(2)′ and Rc(2)
i

′
in (33);

24: v = v+1;

25: Update Q∗(v) =
Rs(2)′+

M
∑

i=1
Rc(2)

i
′

M
∑

i=1
ti(Pi+PBD

cir )
;

26: until |min
i∈M

Rs(2)′+
M
∑

i=1
Rc(2)

i
′
−Q∗ (v)

M
∑

i=1
ti
(
Pi +PBD

cir
)
| ≤ ε .

6 Convergence and Running Time Analysis

We first analyze the convergence of Algorithm 1. The SCP based iterative method applied for

solving P3.1 and P6.1 ensures that the objective function value of them monotonically increases

with the iteration, because the objective functions in P3.1 and P6.1 are the lower bound functions

of those in P3 and P6, respectively. Meanwhile, P3.1 and P6.1 are upper bounded by their

constraints. Thus, the SCP based iterative method is guaranteed to converge to a locally optimal

solution. The BCD method used to solve P3 also ensures that the solution converges to a

locally optimal value, because the objective function value of P3 is nondecreasing with updated

variables after each iteration, and it is also upper bounded by its associated constraints.

Then, we evaluate the running time of Algorithm 1, the simulations are performed using

CVX in MATLAB 2018 and a laptop with the following configurations: Intel(R) Core(TM)

i7-9750H CPU @ 2.6GHZ, RAM 16 GB. For the PSR case, the number of iterations of the

BCD process and SCA process is denoted as ∆1 (3-4 steps) and ∆2 (2-3 steps), respectively.

Also, the running time for solving P3.1 is around 1.25s and each step of ∆2 cost around 1.28s.

Thus, the running time of the PSR case is around ∆1(1.25+∆21.28)s. For the CSR case, the

number of iterations of the SCA process is denoted as ∆3 (2-3 steps) and each step costs around

1.29s. Thus, the running time of the CSR case is 1.29∆3s.
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7 Simulation Results

In this section, we present the simulation results to evaluate the system EE performance versus

the system parameters, e.g., the PT-PR distance, and the throughput requirements for the

backscatter link and the primary link. The convergence of Algorithm 1 and the throughput

performance are also evaluated. The simulation parameters are set as follows unless otherwise

specified. The number of the BDs M = 5, N = 100 for the CSR case, the PT-PR distance

r = 20m, the pathloss exponent α = 3, the channel bandwidth W = 10kHz, the AWGN power

spectral density is −130dBm/Hz 3, the maximum PT transmission power Pmax = 23dBm, the

energy conversion efficiency η = 0.6, the backscatter circuit power consumption PBD
cir = 200µW,

the PT and PR’s total circuit power consumption PT R
cir = 2mW, and the convergence threshold

ε = 10−10. We assume that the minimum throughput requirement for each backscatter link is

the same.

7.1 Convergence of Algorithm 1

Fig. 2 shows the convergence of Algorithm 1. We can see that the system EE in both the

PSR and CSR cases converges quickly after the 3rd iteration. The system EE in the PSR case

is higher than that in the CSR case. This is because due to the long BD symbol period, the

throughout of the backscatter link in the CSR case is lower than that in the PSR case, thus the

system EE is reduced. Moreover, the throughout of the primary link in the CSR case is higher

than that in the PSR case, but the system EE improvement brought by the higher throughput

cannot compensate for the EE loss due to the higher PT transmission power for meeting Rc
min.

Therefore, the system EE decreases with higher power consumption. In addition, the system

EE increases with higher maximum PT transmission power in both the PSR and CSR cases.

This is because the optimal PT transmission power for maximizing the system EE is capped at

Pmax and a higher Pmax leads to a higher system EE.

3A higher noise power density will not lose the generality and will not affect the optimization process of the
proposed EE maximization problem. Also, the AWGN generated by the receiver mainly consists of the thermal
noise (also known as the antenna noise) and the baseband noise. -174 dBm/Hz is only the power spectral density
of the thermal noise at the room temperature, and the practical power spectral density of the AWGN is usually
much higher than -174 dBm/Hz due to the baseband noise [46].
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Fig. 2 Convergence of Algorithm 1

7.2 System EE and Throughput Performance

Fig. 3 plots the system EE versus the PT-PR distance r for different values of N. It can be

seen that the system EE in both the PSR and CSR cases reduce with a longer r. The reason is

that the longer r decreases the received power at the PR, which reduces the throughput of the

primary link and the system EE. In addition, the system EE in the CSR case is higher with a

lower N. This is because the backscatter link can achieve a higher throughput with a shorter

BD symbol period. When the value of N reaches 200, the system EE of the CSR case reduces

to 0 when r is longer than 15m. This is because the throughout requirements of the BDs in the

CSR case cannot be satisfied due to the very long symbol period of the BackCom for N = 200.

Fig. 4(a) illustrates the system EE versus Rc
min in the PSR case under different Rs

min. We

can see that the system EE decreases with a higher Rc
min. This is because a higher backscatter

link throughput requirement needs the PT to increase its transmission power, while the EE

improvement due to a higher backscatter link throughput cannot compensate for the EE loss

due to more energy consumption. However, the system EE keeps the same when Rs
min increases

from 3M bits/s to 4M bits/s. This indicates that the primary link throughput obtained under the
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Fig. 3 System EE versus PT-PR distance r

optimal solution for maximizing the system EE is higher than 4M bits/s. When Rs
min increases

beyond 4.7M bits/s, the PT needs to increase its transmission power, which results in system

EE reduction.

Fig. 4(b) demonstrates the system EE versus Rc
min in the CSR case under different Rs

min.

We can see that the system EE decreases with Rc
min in the CSR case much faster than that in

the PSR case. This is because due to long BD symbol period in CSR, higher PT transmission

power is required to meet Rc
min, which greatly reduces the system EE. When Rc

min exceeds

17k bits/s, even the maximum PT transmission power cannot let the BDs meet the throughput

requirement, thus the system EE drops to 0.

By comparing Fig. 4(a) with Fig. 4(b), we find that the system EE in the CSR case exceeds

that in the PSR case when Rc
min is between 3k bits/s and 13k bits/s and Rs

min is larger than 47k

bits/s. Since the BD signal is regarded as an interference signal in the PSR case while being

treated as a multipath component in the CSR case, the PT needs to transmit at a higher power



121

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

Rc
min (bits/s) 104

2

4

6

8

10

12

14

16

S
ys

te
m

 E
E

 [b
its

/J
ou

le
]

106

Rs
min=3*106 bits/s

Rs
min=4*106 bits/s

Rs
min=4.7*106 bits/s

Rs
min=5*106 bits/s

Fig. 4(a) System EE versus Rc
min

(PSR)

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

Rc
min (bits/s) 104

0

2

4

6

8

10

12

S
ys

te
m

 E
E

 [b
its

/J
ou

le
]

106

Rs
min=3*106 bits/s

Rs
min=4*106 bits/s

Rs
min=4.7*106 bits/s

Rs
min=5*106 bits/s

Fig. 4(b) System EE versus Rc
min (CSR)

level to meet the primary link throughput requirement in PSR than in CSR, which reduces the

system EE in the PSR case.

Fig. 5(a) shows the throughout of each Backscatter link under different Rs
min and Rc

min in the

PSR. It is clear to see that each backscatter link maintains the minimum required throughput

Rc
min even when Rs

min is changed. This proves that the primary link dominates the system EE

and the maximum system EE is achieved when each BD adjusts its reflection coefficient to

minimize its interference to the primary link while meeting its own throughput requirement

Rc
min.

Fig 5(b) plots the primary link throughput versus Rc
min under different Rs

min in the PSR case.

For Rs
min being 3M bits/s and 4M bits/s, the primary link throughput is the same and it reduces

with a higher Rc
min. This is because a higher Rc

min needs a higher reflection coefficient, but then

the interference power from each BD also becomes larger and the primary link throughput

reduces. In addition, when Rs
min is higher than 4.7M bits/s, the maximum system EE is achieved

when the PT transmission power is just sufficient to meet Rs
min which would be sufficient to

meet all the considered values of Rc
min as well. Thus, increasing Rc

min does not affect the primary
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link throughput, while any increase of the PT transmission power beyond the sufficient level

will decrease the system EE.

Fig. 6(a) illustrates the throughout of each Backscatter link under different Rs
min for

Rc
min =3k bits/s in the CSR case. We find that for each considered value of Rs

min, only one

BD achieves a throughput higher than Rc
min. This is because that this BD has the potential to

contribute more to the system EE than the other BDs, thus is allocated the maximum allowed

time for backscattering, while the remained time is allocated to the other BDs for meeting

Rc
min. Moreover, the BD that is allocated the maximum allowed time for backscattering may

change with different Rs
min. This is because different values of Rs

min may require different PT

transmission power, which affects the backscatter link throughput achievable by each BD.

Fig. 6(b) demonstrates the primary link throughput versus Rc
min under different Rs

min in the

CSR case. When Rs
min is lower than 4M bits/s and Rc

min is no larger than 15k bit/s, the primary

link throughput increases with Rc
min. This is because the PT transmission power for meeting

low values of Rs
min is not sufficient to meet Rc

min and the PT transmission power has to increase

for a higher Rc
min, thus resulting in a higher primary link throughput. When Rs

min exceeds 4.7M
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bits/s, the primary link throughput first keeps constant and then increases with Rc
min. This is

because the PT transmission power for meeting large values of Rs
min can satisfy relatively small

values of Rc
min but will have to increase for meeting larger values of Rc

min. When Rc
min reaches

17k bit/s, Rc
min cannot be satisfied, while the PT transmission power being capped at Pmax, hence

the primary link throughput drops to 0.

Fig. 7 demonstrates that the sum throughput of the primary link and the backscatter links

increases linearly with the number of BDs in both the PSR and CSR cases. This is because in

the PSR case, the increase of the sum throughput is mainly brought by the more backscatter

links, each maintaining the minimum throughput requirement, i.e., Rc
min; while similarly in the

CSR case, apart from one BD achieving a throughput higher than Rc
min, all the other BDs also

maintain the minimum throughput requirement, hence the sum throughput increases linearly

with more BDs. For each considered number of BDs, the sum throughput of the CSR case

is higher than that of the PSR case. This is because in the CSR case, one BD can achieve a

throughput much higher than Rc
min, while the backscatter links helping improve the throughput

of the primary link.
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8 Conclusions

In this paper, we have investigated the system EE maximization problem in an SR system,

where multiple BDs share the same RF channel with a primary link, for both the PSR and

CSR cases. Since the formulated system EE maximization problem is extremely difficult

to solve directly, we propose a Dinkelbach-based iterative algorithm to first transform the

optimization problem into a more tractable form by introducing auxiliary variables and using

the generalized fractional programming, then employ the BCD method and the SCP technique

to solve the transformed problem in an iterative manner. The simulation results demonstrate

that the proposed algorithm converges very fast and the maximized system EE reduces with a

longer PT-PR distance and a higher throughput requirement per link. Moreover, we find that

the primary link dominates the system EE and the maximum system EE in the PSR case is

maximized when all the BDs only achieve the minimum throughput requirement. However,

the system EE in the CSR case is maximized when the BD that has the potential to obtained

the highest throughput among all BDs (which depends on the PT transmission power in the
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corresponding time slot) is allocated the maximum allowed time for backscattering, while

guaranteeing the throughput requirement of the other BDs.

Appendix A

Proof of Lemma 2

Let us define a function given by f1 = log2

(
1+ Piht,r

AiXi+σ2

)
, where f1 is convex with respect

to Xi. Since the first-order Taylor expansion of a convex function is a global under-estimator of

its function values. For any given X ( j)
i , we have

f1 ≥ log2

(
1+ Piht,r

AiX
( j)
i +σ2

)
− Piht,rAilog2e(

AiX
( j)
i +σ2+Piht,r

)(
AiX

( j)
i +σ2

) (Li
ti
−X ( j)

i

)
, (A.1)

where the equalities hold when Li
ti
= X ( j)

i . The proof is completed.

Appendix B

Proof of Lemma 3
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Based on the Lagrange dual method, P3.1 is equivalently transformed into

L1

= min
β ,δi,λ ,µi,εi

max
Li,ti

F1 +βW

[
tilog2

(
1+ Piht,r

AiX
( j)
i +σ2

)

− Piht,rAilog2e(
AiX

( j)
i +σ2+Piht,r

)(
AiX

( j)
i +σ2

) (Li − tiX
( j)
i

)
−Rs

min

]

+
M
∑

i=1
δiW

[
Es

[
tilog2

(
1+ AiLi|s(n)|2

tiσ2

)]
−Rc

min

]

+λ

(
T −

M
∑

i=1
ti

)
+

M
∑

i=1
µi (Piti −Li)+

M
∑

i=1
εi

[
ti

(
Pi −

PBD
cir

ht,b
i η

)
−Li

]
.

(B.1)

Since P3.1 is convex, (B.1) is convex. Applying the KKT conditions and letting ∂L1
∂Li

= 0,

we obtain
Xi =

Li
ti
=

(1+δi)log2e

µi+εi+(1+β )
Pih

t,rAilog2e(
AiX

( j)
i +σ2+Pih

t,r
)(

AiX
( j)
i +σ2

) − σ2

AiEs|s(n)|2
.

(B.2)

By substituting (B.2) into zi =
Xi
Pi

, z∗i is obtained.

P3.2 can also be transformed into

L2

= min
β ,µi,εi

max
Pi

F2 +βW
[

M
∑

i=1
tilog2

(
1+ Piht,r

AiXi+σ2

)
−Rs

min

]

+
M
∑

i=1
µi (Pmax −Pi)+

M
∑

i=1
εi

(
Pi −Xi −

PBD
cir

ht,b
i η

)
.

(B.3)

Since P3.2 is convex, (B.3) is convex. Applying the KKT conditions and letting ∂L2
∂Pi

= 0,

we obtain

P∗
i =

(1+β ) log2e
Q+ µi−εi

ti

− AiXi +σ2

ht,r . (B.4)

The optimal values of zi and Pi are obtained and the proof is completed.



127

Appendix C

Proof of Lemma 4

Let us define a function f2 = log2

(
Piht,r

σ2

)
−Ei

− ht,r

Ai−
PBD
cir hr,b

i
Piη

 log2e, where f2 is convex

with respect to Pi. Since the first-order Taylor expansion of a convex function is a global

under-estimator of its function values. For any given P( j)
i , we have

f2 ≥ log2

(
P( j)

i ht,r

σ2

)
−Ei

− ht,r

Ai−
PBD
cir hr,b

i

P( j)
i η

 log2e+

 loge
2

P( j)
i

+
Bie

− htr

Ai−
Bi

P( j)
i loge

2

AiP
( j)
i −BiP

( j)
i

(Pi −P( j)
i

)
,

(C.1)

where the equalities hold when Pi = P( j)
i . The proof is completed.

Appendix D

Proof of Lemma 5

Based on the Lagrange dual method, P6.1 is equivalently transformed into

L3

= min
β ,δi,λ ,εi

max
Ui,ti

F3 +β

(
W

M
∑

i=1
ti

[
log2

(
P( j)

i ht,r

σ2

)
−Ei

− ht,r

Ai−
PBD
cir hr,b

i

P( j)
i η

 log2e

+

 loge
2

P( j)
i

+
Bie

− htr

Ai−
Bi

P( j)
i loge

2

AiP
( j)
i −BiP

( j)
i


(

Bi+
Ui
ti

Ai
−P( j)

i

)]
+W

M
∑

i=1

Ui
Ai

 loge
2

P( j)
i

+
Bie

− htr

Ai−
Bi

P( j)
i loge

2

AiP
( j)
i −BiP

( j)
i

−Rs
min

)

+
M
∑

i=1
δiW

[
M
∑

i=1
ti 1

N log2

(
1+ NUi

tiσ2

)
−Rc

min

]
+λ

(
T −

M
∑

i=1
ti

)
+

M
∑

i=1
εi [ti (PmaxAi −Bi)−Ui].

(D.1)
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Since P6.1 is convex, (D.1) is convex. Applying the KKT conditions and letting ∂L3
∂Ui

= 0,

we obtain

Ui
ti
= 1

N


(1+δi)log2e

Q
Ai
+εi−

(1+β )


loge

2
P( j)
i

+
Bie

− htr

Ai−
Bi

P( j)
i loge

2
AiP

( j)
i −BiP

( j)
i


Ai

−σ2


. (D.2)

Substituting (D.2) into Pi =
Bi+

Ui
ti

Ai
, the optimal value of Pi is obtained and the proof is

completed.
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Abstract

Wireless powered communication via backscatter and/or harvest-then-transmit (HTT) has been

considered a promising solution to connecting nodes in the Internet of things (IoT) networks.

However, the harvested energy at an IoT node is heavily limited by the distance between the

node and the power beacon (PB) due to the high propagation loss. In this paper, we propose

to employ an unmanned aerial vehicle (UAV) as a mobile PB to provide energy signals on

demand to the IoT nodes, which convey their information to a reader via backscattering or

active transmission using the harvested energy. We maximize the total energy efficiency (EE)

of all the IoT nodes powered by the UAV by jointly optimizing the UAV’s transmit power

and trajectory, the IoT nodes’ backscatter reflection coefficients and their transmit power for

active transmission, and the time allocation between backscattering and active transmission.

To solve the formulated non-linear fractional programming problem, we use the generalized

fractional programming theory and a block coordinated decent method to decompose it into

two sub-problems: one optimizes the communication resource allocation under a fixed UAV

trajectory, and the other optimizes the UAV trajectory with given communication resource

allocation. We then devise a Dinkelbach-based iterative algorithm to solve the two sub-problems

by employing a Lagrangian dual method and a successive convex programming technique,

respectively and iteratively. Simulation results show that our proposed iterative algorithm
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converges very fast, and the optimized UAV-enabled hybrid backscatter-HTT communication

achieves a much higher EE of all the IoT nodes than the benchmark schemes including the

UAV-enabled backscatter, UAV-enabled HTT, and hybrid BackCom-HTT with a fixed PB.

1 Introduction

Due to the limited battery capacity of low-powered Internet of Things (IoT) nodes, wireless

powered communication networks (WPCNs) have been proposed to support IoT, where the

IoT nodes can either harvest RF energy from an energy source and then use the harvested

energy to convey information via active transmission, i.e., harvest-then-transmit (HTT) [1]-[4],

or modulate and backscatter the incident radio frequency (RF) signal to carry its information

to the associated receiver without requiring an active transceiver [5]-[8]. The circuit power

consumption of backscatter communications (BackCom) is very low and can be supported

by the harvested RF energy. However, BackCom cannot realize when the incident signals

are not available. Meanwhile, HTT can solve this problem but its energy consumption is

normally high [5]-[8]. To exploit the complementarity of BackCom and HTT, hybrid BackCom-

HTT communications have been proposed. The authors in [8] solved a max-min throughput

problem among multiple sensor nodes for a wireless powered IoT network. In [9], the wireless

powered nodes were allowed to operate in backscatter mode when the harvested energy

from the dedicated RF signals is not sufficient to support HTT, where the time allocated for

backscattering was optimized to maximize the throughput. The authors in [10] proposed hybrid

BackCom-HTT for a cognitive WPCN, where the throughput of the secondary communication

system was maximized by optimizing the time allocation between backscattering and energy

harvesting and that between the bistatic backscatter mode and the HTT mode. In [11], the

time allocation between data backscattering and energy harvesting, as well as the time sharing

among multiple transmitters were optimized to maximize the throughput of a RF-powered

backscatter cognitive radio network. The authors in [12] maximized the energy efficiency (EE)

of all the devices in a hybrid BackCom-HTT network by optimizing the transmit power of the

power beacon (PB) and hybrid devices, and the time allocation among energy harvesting, the

backscatter mode and the HTT mode.
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Although the above works [9]-[12] demonstrated the superior performance of hybrid

BackCom-HTT over BackCom or HTT in terms of throughput and EE, they considered a fixed

RF energy source, e.g., a PB, where the received power at IoT nodes is limited by their distance

to the PB due to severe RF propagation loss [13]. Recently, unmanned aerial vehicles (UAVs)

have been employed as mobile PB to provide RF energy to IoT nodes via line-of-sight (LoS)

links. In [14], the UAV’s trajectory was optimized to maximize the total energy harvested by

all the IoT nodes wirelessly powered by it. In [15], a max-min throughput problem was solved

in a UAV-enabled WPCN, where a UAV was dispatched as a mobile access point (AP). In

[16], the system throughput of a UAV-aided BackCom network was maximized by optimizing

the time allocation, backscatter reflection coefficient, and UAV trajectory for two protocols,

namely transmit-backscatter and transmit-backscatter-relay, where the direct link from the

backscatter device to the receiver of the latter protocol is not available. In [17], two UAVs

were used to wirelessly power two IoT devices and collect information from them, and the

minimum uplink throughput of the two IoT devices was maximized through jointly optimizing

the trajectories of the two UAVs and the downlink/uplink wireless resource allocation. The

above works indicate that the UAV-enabled networks can achieve better performance in terms

of throughput and energy transmission compared with fixed PB based networks. However, we

note that UAV-carried mobile PB has not been exploited for emerging hybrid BackCom-HTT

networks. This motivates us to configure a new network which fully makes the use of the

advantages of UAV and BackCom-HTT.

In this paper, we propose a novel UAV-enabled hybrid BackCom-HTT communication

system to connect multiple IoT nodes to a reader, where a UAV is dispatched as a mobile

PB to provide RF energy for all the IoT nodes. Based on a time-division multiple access

(TDMA) protocol, an IoT node first backscatters the incident RF signal from the UAV to carry

its own information to the reader, while harvesting the RF power for supporting its circuit

operation together with the other IoT nodes, and then utilizes the remaining energy to transmit

information to the reader via active transmission. We then maximize the total EE of all the IoT

nodes wirelessly powered by the UAV.

Our main contributions are summarized as follows:
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• We propose a novel system model, namely the UAV-enabled hybrid BackCom-HTT

communication network, where a UAV works as a mobile energy source to provide RF

energy for all the ground IoT nodes. The IoT nodes utilize the incident RF signal to

communicate with a reader via a hybrid BackCom-HTT scheme.

• To exploit the synergy between hybrid BackCom-HTT communications and UAV, we

formulate a problem to maximize the EE of all the IoT nodes in the UAV-enabled hybrid

BackCom-HTT system by jointly optimizing the UAV’s transmit power and trajectory

and the allocation of communication resources, including the backscatter reflection

coefficients, the transmit power of IoT nodes during active transmission, and the time

allocation between BackCom and active transmission.

• Since the EE of multiple IoT nodes are jointly maximized, the formulated optimization

problem involves many variables that are coupled in the objective function and/or the

constraints. Through theoretical analysis, we reveal that letting the UAV transmit with

the maximum power maximizes the EE of all the IoT nodes. Leveraging this finding and

the generalized fractional programming theory, we transform the original optimization

problem into a more tractable but still non-convex problem. Then, we use a block

coordinated decent (BCD) method to decompose the transformed problem into two

sub-problems: one optimizes the communication resource allocation with a fixed UAV

trajectory and the other optimizes the UAV trajectory with given communication resource

allocation. We employ a Lagrangian dual method to solve the former sub-problem

optimally and apply a successive convex programming (SCP) technique to obtain a

locally optimal solution to the latter sub-problem. The closed-form expressions for the

optimal reflection coefficient and active transmit power of each IoT node are derived.

Based on the obtained solutions, we propose a Dinkelbach based iterative algorithm to

maximize the EE of all the IoT nodes in the UAV-enabled hybrid BackCom-HTT system.

• We perform extensive simulations to evaluate the optimized UAV trajectory, time allo-

cation for BackCom and active transmission, the convergence of our proposed iterative

algorithm, and the EE of all the IoT nodes achieved by our proposed algorithm in com-
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IoT node
Reader

Energy transmit link

Information transmit link

(Backscatter and HTT transmission)

UAV

Fig. 1 UAV-enabled hybrid BackCom-HTT network.

parison with that of several benchmark schemes including the UAV-enabled backscatter,

UAV-enabled HTT, energy consumption minimization, and hybrid BackCom-HTT with a

fixed PB. The simulation results show that the proposed algorithm has a fast convergence

speed, and can achieve a much higher total EE than the benchmark schemes. In addition,

we observe that a higher EE is achieved for all the IoT nodes when more time is allocated

to those IoT nodes with better channel conditions to the UAV and the reader for BackCom

and active transmissions, repectively. Also, the UAV tends to fly towards to those IoT

nodes with better channel condition.

The rest of the paper is organized as follows. The system model of a UAV-enabled hybrid

BackCom-HTT network is built in Section 2. In Section 3, the total EE maximization problem

is formulated and solved. Section 4 analyzes the convergence and computational complexity of

our proposed algorithms. In Section 5, the numerical results are presented. Section 6 concludes

the paper.

2 System Model

In this section, we present the system model, and the associated throughput analysis and

definition of the total EE.
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Fig. 2 Time allocation scheme.

2.1 Network Model

As illustrated in Fig. 1, the proposed UAV-enabled hybrid BackCom-HTT network consists of

one UAV, M IoT nodes and one reader, where the IoT nodes harvest energy from the UAV’s

RF transmission and transmit information to the reader through hybrid BackCom and HTT

within the time block T . We assume that each IoT node is equipped with a backscatter circuit,

an EH module, and an active RF transmitter such that they can operate in the BackCom and

HTT modes. Each IoT node i ∈ M = {1, · · · ,M} is deployed at a fixed location qg
i = (xi, yi) on

the ground in a 2-D Cartesian coordinate system. The reader is fixed at the location qr= (xr,

yr). The UAV is assumed to fly at a fixed altitude H > 0 above the ground, and the location

of the UAV in the 2D horizontal plane at altitude H at any time instant t ∈ T is denoted by

qu
t = (xu

t , yu
t ). We assume that all the IoT nodes are inside a region on the ground, while the

UAV is dispatched from an initial location qu
ini= (xu

ini, yu
ini) outside this region to provide energy

for the IoT nodes and then flies back to qu
ini at the end of the BackCom time period.

The entire time block T is divided into two time periods, i.e., θT (0 < θ ≤ 1) for BackCom

and (1− θ)T for HTT active transmission by utilizing the energy harvested within θT , as

shown in Fig. 2. During the first time period, a UAV is dispatched to provide energy for

the IoT nodes to backscatter their own information to the reader via BackCom, and the IoT

node-to-reader BackComs follow a TDMA protocol. For simplicity, the first time period of θT

is equally divided into N time slots, where the n-th time slot τn,n ∈ N = {1,2, · · · ,N}, has a

duration of δ = θT
N . We assume that the value of N is sufficiently large so that the UAV can be
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considered as static at each time slot [14]-[16], and N >> M. Let qu
n denote the location of the

UAV at time slot n. Thus, the distance between the UAV and IoT node i at time slot n is given

by

du
i,n =

√
||qu

n −qg
i ||2 +H2, (1)

where || · || denotes the Euclidean norm of a vector.

Following [16], [18], [19], we adopt the following Rician fading channel model for UAV

communications:

hu
i,n = β0(du

i,n)
−2||µ(1)

i,n ||
2
=

β0||µ
(1)
i,n ||

2

||qu
n −qg

i ||2 +H2 , (2)

where β0 denotes the channel power gain at a reference distance of d0 = 1m, and µ
(1)
i,n denotes

the small-scale fading and is modeled as

µ
(1)
i,n =

√
K

K +1
ˆ

µ
(1)
i,n +

√
1

K +1

ˆ̂
µ
(1)
i,n , (3)

where
ˆ

µ
(1)
i,n denotes the LoS channel coefficient with || ˆ

µ
(1)
i,n ||= 1,

ˆ̂
µ
(1)
i,n represents the non-LoS

channel coefficient, which is a circularly symmetric complex Gasussian random variable with

mean zero and variance 1, and K is the Rician factor. In this paper, it is reasonable to assume

that the channel from the UAV to an IoT node is dominated by the LoS path [20]-[23]. Thus,

the Rician factor K is very large, and the channel model in (2) approximately reduces to

hu
i,n = β0(du

i,n)
−2|| ˆ

µ
(1)
i,n ||2, which is equivalent to a free-space path-loss model [16]. Hence, the

channel from the UAV to an IoT node can be estimated based on the locations of the UAV and

IoT nodes.

To ensure that every IoT node has a chance to backscatter its information to the reader in

each time slot, a time slot is further divided into M sub-slots [15], where the ith sub-slot is

allocated to IoT node i. Let τi,n denote the backscattering time for IoT node i at time slot n and
M
∑

i=1
τi,n =

θT
N holds for ∀n ∈ N .

When IoT node i is in the backscatter mode, its received RF signal from the UAV is divided

into two parts [7]: a Zi,n portion of the received power is used for BackCom to the reader, and

the rest is harvested for supporting its circuit consumption, where Zi,n ∈ [0,1] is the reflection
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coefficient1. Accordingly, the total amount of energy harvested by IoT node i during the first

time period θT is given by

EHi =
N

∑
n=1

(
Pu

ηhu
i,n(1−Zi,n)τi,n+Pu

ηhu
i,n

(
θT
N

− τi,n

))
=

N

∑
n=1

Pu
ηhu

i,n

(
θT
N

− τi,nZi,n

)
.

(4)

where Pu represents the UAV transmit power, η is the energy conversion efficiency of the

EH circuit, which is assumed to include the EH circuit power consumption. We ignore the

energy harvested from the signals backscattered by the other IoT nodes and the thermal noise,

since their power is much smaller than Pu [9], [10], [12]. During the second time period of

(1− θ)T , the IoT nodes utilize the remaining harvested energy (after deducting the circuit

energy consumption) to transmit information to the reader via active transmission. Same as

in BackCom period, TDMA is used. We divide (1− θ)T into M time slots, where the ith

time slot of duration ti is allocated to the ith IoT node for active transmission, and we have
M
∑

i=1
ti = (1−θ)T .

2.2 Throughput of BackCom and HTT

The sum received power at the reader from IoT node i via BackCom and from the UAV at time

slot n is given by [22]

Pr,B
i,n = PuZi,nhu

i,nhr
i +Puhu,r

n , (5)

where hr
i = β0(dr

i )
−α ||µ(2)

i ||
2

denotes the channel power gain from IoT node i to the reader

and dr
i = ||qg

i −qr||, where α is the free space path loss exponent and ||µ(2)
i ||

2
represents the

Rayleigh fading power gain. The channel power gain from the UAV to the reader is denoted

as hu,r
n . Since the UAV serves as the dedicated energy source, its transmitted signal is a priori

known to the reader, and the interference Puhu,r can be removed by the reader. After the UAV

1The backscattered signal is composed of two components: the structural mode scattering component and the
antenna mode scattering component. In this paper, we only consider the antenna mode scattering component,
which is characterized by the reflection coefficient, because the structural mode scattering is determined by the
geometrical layout of the reflective device antenna and the electromagnetic properties of the material, and can be
regarded as a constant value [24].
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interference has been removed, the received power at the reader at time slot n is rewritten as

Pr,B
i,n

′
= PuZi,nhu

i,nhr
i [26].

Thus, the BackCom throughput of IoT node i-to-reader link at time slot n can be calculated

as

RB
i,n =Wτi,nlog2

1+
ϕPr,B

i,n

′

Wσ2

 , (6)

where W is the system bandwidth. Since BackCom usually transmits modulated signals

from a finite constellation, which is very different from Gaussian signaling widely adopted

in conventional active communications, thus the conventional achievable rate formula cannot

perfectly match with that in BackCom. We introduce ϕ to represent the performance gap

between the active transmission and the BackCom [8]-[12], and σ2 denotes the noise power

spectral density.

The received power at the reader from the active transmission of IoT node i is given by

Pr,H
i = Pihr

i , (7)

where Pi denotes the transmit power of IoT node i.

Then, the active transmission throughput of IoT node i-to-reader link is calculated as

RH
i =Wtilog2

(
1+

Pr,H
i

Wσ2

)
. (8)

2.3 Total Energy Efficiency

The total EE of all the IoT nodes is defined as the ratio of the total throughput achieved by the

IoT nodes to the total energy consumption of the IoT nodes [27]2. Letting Rsum denote the total

2In this paper, we aim to maximize the total EE of all the IoT nodes by jointly optimizing how they harvest
and use the RF energy transmitted by the UAV, which can be regarded as maximizing the efficiency of the IoT
nodes in utilizing the RF energy provided by the UAV [12], [27]. The system EE that includes the UAV’s energy
consumption will be studied in our future work.
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throughput achieved by all the IoT nodes in T , we have

Rsum =
M

∑
i=1

N

∑
n=1

RB
i,n +

M

∑
i=1

RH
i . (9)

The energy consumption of IoT node i is given by ECi =
N
∑

n=1
PB

cirτi,n+(PH
cir+Pi)ti, where PB

cir

and PH
cir represent the constant circuit power consumption for BackCom and active transmission,

respectively, and they are assumed to be the same for all M IoT nodes.

The total energy consumption of all the IoT nodes is given by

ECsum =
M

∑
i=1

N

∑
n=1

PB
cirτi,n +

M

∑
i=1

(
PH

cir +Pi
)
ti, (10)

Then, the total EE of all the IoT nodes is given by

EEsum =
Rsum

ECsum
. (11)

3 Energy Efficiency Maximization

In this section, we first formulate the EE maximization problem for the considered UAV-aided

hybrid BackCom-HTT IoT system, then we propose a Dinkelbach-based iterative algorithm to

solve the optimization problem.

3.1 Problem Formulation

We propose to maximize the EE of all the IoT nodes by jointly optimizing the UAV’s transmit

power Pu, transmit time factor θ , and trajectory vector q = [qu
1,q

u
2, ...,q

u
N ], as well as the IoT

nodes’ BackCom reflection coefficient vectors Zn = [Z1,n,Z2,n, · · · ,ZM,n],n ∈ N , BackCom

time allocation vectors τττn = [τ1,n,τ2,n, · · · ,τM,n],n ∈ N , active transmission time allocation

vector t = [t1, t2, · · · , tM], and active transmission power vector P = [P1,P2, · · · ,PM]. Accord-
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ingly, the optimization problem is formulated as

P1 : max
{Pu,θ ,Zn,τττn,t,P,q}

EEsum

s.t.

C1 : 0 ≤ θ ≤ 1,0 ≤ Zi,n ≤ 1,τi,n ≥ 0, ti ≥ 0,∀i,∀n;

C2 : 0 ≤ Pu ≤ PUAV
max ,0 ≤ Pi ≤ Pnode

max ,∀i;

C3 :
M
∑

i=1
τi,n =

θT
N ;

M
∑

i=1
ti = (1−θ)T,∀n;

C4 :
N
∑

n=1
RB

i,n +RH
i ≥ Rmin,∀i;

C5 : 0 ≤ Piti ≤ EHi −
N
∑

n=1
PB

cirτi,n −PH
cirti,∀i;

C6 : EHi −ECi ≥ 0,∀i;

C7 : ||qu
n −qu

n−1|| ≤Vmaxδ ,∀n;

C8 : qu
1 = qu

ini,q
u
N = qu

ini;

(12)

In (12), C1 specifies the value ranges of the transmit time factor, the reflection coefficient

factors, and the transmit time allocation factors for both BackCom and active transmission.

PUAV
max and Pnode

max in C2 denote the maximum transmit power of the UAV and the IoT nodes,

respectively. C3 constrains the total transmit time for both BackCom and active transmission.

C4 guarantees the long-term minimum throughput requirement for each IoT node. In C5, the

transmit power consumption of each IoT node cannot exceed the remaining harvested energy

after BackCom. C6 ensures that the power consumption of each IoT node during BackCom

and active transmission should not exceed the energy harvested by the IoT node within θT .

C7 constrains the maximum speed of the UAV, Vmax, by limiting its flight distance during each

time slot. In C8, the UAV is dispatched from an initial location and flies back to the initial

location at the end of the first time period.

The formulated problem P1 is a non-convex fractional optimization problem with multiple

variables coupling in both the objective function and the constraints, i.e., Pu, Zn, τττn, t, P

and q. Thus, it would be extremely difficult to solve P1 directly. In order to make this

optimization problem more tractable, we first determine the optimal transmit power of the UAV,

as summarized in Lemma 1.
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Lemma 1: In our proposed system model, the optimal transmit power of the UAV for

maximizing the total EE of all the IoT nodes is the maximum UAV transmit power, i.e.,

Pu∗ = Puav
max, where ∗ denotes the optimal solution.

Proof. Please see Appendix A. ■

Remark 1: Lemma 1 indicates that letting the UAV transmit with the maximum allowed

power can maximize the EE of all the ground IoT nodes. For BackCom, since the IoT nodes

reflect the incident RF signal from the UAV, the throughput of BackCom improves with higher

UAV transmit power without increasing the IoT node’s power consumption, thus the EE of IoT

nodes increases. For active transmission, the higher UAV transmit power reduces the time for

harvesting energy, and the IoT nodes will have more time to transmit information to the reader,

thus increasing the throughput and the EE. This insight can be supported by Remark 3, where

the whole time block needs to be used up for achieving the maximum EE.

3.2 Problem Transformation

Based on Lemma 1, P1 is transformed into

P2 : max
{θ ,Zn,τττn,t,P,q}

M
∑

i=1

N
∑

n=1
Wτi,nlog2

(
1+

ϕPuav
maxhu

i,nZi,nhr
i

Wσ2

)
+

M
∑

i=1
Wtilog2

(
1+

Pih
r
i

Wσ2

)
M
∑

i=1

N
∑

n=1
PB

cirτi,n+
M
∑

i=1
(PH

cir+Pi)ti

s.t.

C1,C3,C4,C6,C7,C8;

C2−1 : 0 ≤ Pi ≤ Pnode
max ,∀i;

(13)

Next, we employ Dinkelbach’s method to transform the fractional objective function into a

subtractive form. Letting Q∗ denote the maximum EE, based on [28], Q∗ can be achieved if

and only if the following equation holds:

max
{θ ,Zn,τττnnn,t,P,q}

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −Q∗ECsum =
M
∑

i=1

N
∑

n=1
RB

i,n
∗
+

M
∑

i=1
RH

i
∗−Q∗EC∗

sum = 0.

(14)
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Based on (13), P2 is transformed into

P3 : max
{θ ,Zn,τττn,t,P,q}

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −Q∗ECsum

s.t. C1,C2−1,C3,C4,C6,C7,C8.
(15)

where Q denotes a small positive value that is used as the initial value of Q*. Although P3

is more tractable than P2, it is still non-convex due to the coupling between Zn and τττn, P

and t. We solve this coupling issue by introducing the following auxiliary vectors: Xn =

[X1,n,X2,n, · · · ,XM,n],n ∈ N and Y = [Y1,Y2, · · · ,YM], where Xi,n = Zi,nτi,n and Yi = Piti. Then,

P3 is transformed into

P4 : max
{θ ,Xn,τττn,t,Y,q}

M
∑

i=1

N
∑

n=1
RB

i,n
′
+

M
∑

i=1
RH

i
′
−Q∗ECsum

′

s.t.

C3,C7,C8;

C1−1 : 0 ≤ θ ≤ 1,τi,n ≥ 0, t ≥ 0,∀i,∀n;

C2−2 : 0 ≤ Xi,n ≤ τi,n,0 ≤ Yi ≤ tiPnode
max ,∀i,∀n;

C4−1 :
N
∑

n=1
RB

i,n
′
+RH

i
′
≥ Rmin,∀i,∀n;

C6−1 : EHi
′ −ECi

′ ≥ 0,∀i,

(16)

where RB
i,n

′
=Wτi,nlog2

(
1+

ϕPuav
maxXi,nhu

i,nhr
i

τi,nWσ2

)
,RH

i
′
=W tilog2

(
1+ Yihr

i
tiWσ2

)
, ECi

′
=

N
∑

n=1
PCBτi,n

+(PCH ti +Yi), and the total amount of energy harvested by IoT node i during BackCom is

rewritten as

EHi
′
=

N
∑

n=1

[
Puav

maxηhu
i,n(τi,n −Xi,n)+Puav

maxηhu
i,n
(

θT
N − τi,n

)]
=

N
∑

n=1
Puav

maxηhu
i,n
(

θT
N −Xi,n

)
.

(17)

3.3 Problem Solution

We note that P4 is still non-convex and challenging to solve due to the coupling among the

UAV trajectory q, Xn and τττn in the objective function, C4-1 and C6-1. To this end, we
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propose a BCD method to decompose P4 into two sub-problems, namely, the optimization of

communication resource allocation including θ , Xn, Y, τττn, and t with fixed UAV trajectory,

and the optimization of the UAV trajectory optimization for a given communication resource

allocation. Then, we solve P4 by solving these two subproblems alternately. This process leads

to a Dinkelbach based iterative algorithm given in Algorithm 1.

3.3.1 Communication resource allocation optimization

For a given UAV trajectory q, the communication resource allocation sub-problem is formulated

as

P4.1 : max
{θ ,Xn,τττn,Y,t}

M
∑

i=1

N
∑

n=1
RB

i,n
′
+

M
∑

i=1
RH

i
′
−Q∗ECsum

′

s.t.

C1−1,C2−2,C3,C4−1,C6−1.

(18)

It is easy to verify that P4.1 is a standard convex optimization problem. In the following,

we will solve this problem by using the Karush-Kuhn-Tucker (KKT) conditions. First, the

Lagrangian function for P4.1 is given by

L(θ ,Xn,τττn,Y, t,ααα(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ)

=
M
∑

i=1

N
∑

n=1
Wτi,nlog2

(
1+

ϕPuav
maxhu

i,nXi,nhr
i

τi,nWσ2

)
+

M
∑

i=1
Wtilog2

(
1+ Yihr

i
tiWσ2

)
−Q∗

(
M
∑

i=1

N
∑

n=1
PCBτi,n +

M
∑

i=1

(
PCHti +Yi

))
+

M
∑

i=1

N
∑

n=1
α
(1)
i,n (τi,n −Xi,n)+

M
∑

i=1
α
(2)
i (tiPnode

max −Yi)+
N
∑

n=1
β (1)(θT

N −
M
∑

i=1
τi,n)

+β (2)
(
(1−θ)T −

M
∑

i=1
ti

)
+

M
∑

i=1
γi

(
N
∑

n=1
RB

i,n
′
+RH

i
′
−Rmin

)
+

M
∑

i=1
φi(EHi

′ −ECsum
′
),

(19)

where ααα
(1)
n = [α

(1)
1,n ,α

(1)
2,n , · · · ,α

(1)
M,n]⪰ 000, n∈N , ααα(2)=[α(2)

1 ,α
(2)
2 , · · · , α

(2)
M ]⪰ 000, βββ

(1)=[β (1)
1 ,β

(1)
2 ,

· · · ,β (1)
N ] ⪰ 000, β (2) ≥ 0, γγγ=[γ1,γ2, · · · ,γM] ⪰ 000 and φφφ=[φ1,φ2, · · · , φM] ⪰ 000 are the Lagrange

multipliers associated with C2-2, C3, C4-1 and C5-2, respectively. Please note that the non-

negativity constraints in C1-1 and C2-2, i.e., θ ≥ 0,τi,n ≥ 0, ti ≥ 0 and Xi,n ≥ 0,Yi ≥ 0, are

considered in the optimal solution in the following. Accordingly, the dual function of P4.1 is
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denoted by G (ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ) = max

θ ,Xn,τττn,Y,t
L (θ ,Xn,τττn,Y, t), and the Lagrangian

dual optimization problem can be formulated as

min
ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ

max
θ ,Xn,τττn,Y,t

L. (20)

Since P4.1 is a standard convex optimization problem, it satisfies Slater’s condition so

that the duality gap between P4.1 and (20) is zero. Thus, we can solve P4.1 by maximizing

L (θ ,Xn,τττn,Y, t) for given ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ , and minimizing G (ααα

(1)
n ,ααα(2),βββ (1),β (2),

γγγ,φφφ) for given θ ,Xn,τττn,Y, t. The details are provided as follows.

For given Lagrange multipliers, based on the KKT conditions, we take the derivative of L

with respect to Xi,n,Yi,τi,n, ti and θ , respectively, yielding

∂L
∂Xi,n

=
W (1+ γi)log2e
Xi,n
τi,n

+ Wσ2

ϕPuav
maxhu

i,nhr
i

−α
(1)
i,n −φiPuav

maxηhu
i,n, (21)

∂L
∂Yi

=
W (1+ γi)log2e

Yi
ti
+ Wσ2

hr
i

−α
(2)
i −Q∗−φi, (22)

∂L
∂τi,n

=W (1+ γi)

(
log2

(
1+

ϕPuav
maxhu

i,nhr
i

Xi,n
τi,n

Wσ2

)
− log2e

1+ Wσ2

ϕPuav
maxhu

i,nhr
i

Xi,n
τi,n

)

−Q∗PCB +α
(1)
i,n −β

(1)
n −φiPCB, (23)

∂L
∂ ti

=W (1+ γi)

log2

(
1+

hr
i

Yi
ti

Wσ2

)
− log2e

1+ Wσ2

hr
i

Yi
ti

−Q∗PCH +α
(2)
i Pnode

max −β
(2)−φiPCH ,

(24)
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∂L
∂θ

=
N

∑
n=1

β
(1)
n

T
N
−β

(2)T +
M

∑
i=1

N

∑
n=1

φiPuav
maxηhu

i,n
T
N
. (25)

By letting (21) and (22) equal to 0, we obtain

Z∗
i,n =

Xi,n

τi,n
= min(1,W

 (1+ γi)log2e

α
(1)
i,n +φiPuav

maxηhu
i,n

− σ2

ϕPuav
maxhu

i,nhr
i

+), (26)

P∗
i =

Yi

ti
= min(Pnode

max ,W

[
(1+ γi)log2e

α
(2)
i +Q∗+φi

− σ2

hr
i

]+
), (27)

where Z∗
i,n and P∗

i denote the optimal reflection coefficient of IoT node i at time slot n during

BackCom and the optimal transmit power of IoT node i during active transmission, respectively,

and [x]+ ∆
= max{x,0}.

Remark 2: From (26), we find that Z∗
i,n increases with higher hr

i , indicating that an IoT

node closer to the reader uses a higher reflection coefficient to backscatter information. The

reason is that the UAV can afford to backscatter a higher portion of the incident RF signal

power for achieving a higher EE, given that its circuit power consumption for BackCom is

constant. From (27), we can see that P∗
i increases with hr

i , which is the channel gain from IoT

node i to the reader. That is, an IoT node with a better channel to the reader should transmit

with higher power during active transmission. The resulting higher throughput will overweight

the increased power consumption and lead to a higher EE.

Based on (25) and substituting (26) and (27) into (23) and (24), respectively, we find that

the Lagrangian function L is linear with respect to τi,n, ti and θ . This indicates that the optimal

values of τi,n, ti and θ can be found at the vertices of the feasible region. By substituting (26),

(27) into P4.1 and after some manipulations, we obtain an equivalent optimization problem as
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follows,

max
θ ,τττn,t
M
∑

i=1

N
∑

n=1
Wτi,n

(
log2

(
1+

ϕPuav
maxhu

i,nhr
i Z∗

i,n
Wσ2

)
−Q∗PCB

)
+

M
∑

i=1
Wti
(

log2

(
1+ hr

i P∗
i

Wσ2

)
−Q∗(P∗

i +PCH)
)

s.t.

C1−1,C3;

C4−2 :
N
∑

n=1
RB

i,n
′′
+RH

i
′′
≥ Rmin,∀i;

C6−2 : EHi
′′ −ECi

′′ ≥ 0,∀i,

(28)

where RB
i,n

′′
=Wτi,nlog2

(
1+

ϕPuav
maxhu

i,nhr
i Z∗

i,n
Wσ2

)
, RH

i
′′
= Wtilog2

(
1+ hr

i P∗
i

Wσ2

)
, EHi

′′
= Puηhu

i,n(
θT
N

−τi,nZ∗
i,n), and ECi

′′
=

N
∑

n=1
PCBτi,n +(PCH +Pi

∗)ti.

It is obvious that problem (28) is a linear programming problem with respect to τi,n, ti and

θ . Thus, we can solve problem (28) efficiently by using standard convex optimization tools,

e.g., CVX tool. Then, Xi,n and Yi can be obtained by substituting τi,n and ti back into (26) and

(27), respectively.

Remark 3: In (28), the objective function is the weighted sum of τi,n and ti. Thus, the

maximum EE of all the ground IoT nodes can be achieved by allowing the IoT nodes to use up

all the available time, i.e., T , for BackCom and active transmission. Furthermore, in order to

maximize the EE, more time for BackCom and active transmission should be allocated to the

IoT nodes with better channel conditions from themselves to the UAV and to the reader. For

those IoT nodes whose channel conditions are not good enough to allow for EE improvement,

the time allocated to them will guarantee that they can achieve their minimum throughput

requirement. The above remark will be verified in Section 5.

Since the dual optimization problem in (20) is convex as is P4.1, for given τi,n, ti and θ , we

use a gradient based method to update the Lagrange multipliers ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ as
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follows,

α
(1)
i,n (l +1) =

[
α
(1)
i,n (l)− s1(τi,n −Xi,n)

]+
,∀i,∀n; (29)

α
(2)
i (l +1) =

[
α
(2)
i (l)− s2(tiPnode

max −Yi)
]+

,∀i; (30)

β
(1)
n (l +1) =

[
β
(1)
n (l)− s3

(
θT
N

−
M

∑
i=1

τi,n

)]+
,∀n; (31)

β
(2)(l +1) =

[
β
(2)(l)− s4

(
(1−θ)T −

M

∑
i=1

ti

)]+
; (32)

γi(l +1) =

[
γi(l)− s5

(
N

∑
n=1

RB
i,n

′
+RH

i
′
−Rmin

)]+
,∀i; (33)

φi(l +1) =
[
φi(l)− s6(EHi

′
−ECsum

′
)
]+

,∀i, (34)

where l is the iteration index for updating the Lagrange multipliers, s1,s2,s3,s4,s5 and s6 are

the step sizes for the associated Lagrange multipliers. How to choose the values of the step

sizes in a gradient method has been discussed in [29] and is thus omitted here for brevity. Then,

we use the updated Lagrange multipliers to update τi,n, ti and θ in problem (28).



153

3.3.2 UAV trajectory optimization

For given communication resource allocation in terms of Xi,n,Yi,τi,n, ti and θ , the UAV trajectory

optimization sub-problem is formulated as

P4.2 : max
{q}

M
∑

i=1

N
∑

n=1
RB

i,n
′
+

M
∑

i=1
RH

i
′
−Q∗ECsum

′

s.t.

C4−1,C6−1,C7,C8.

(35)

P4.2 is still non-convex due to the non-convex vectors q in the objective function and

the constraints. An SCP based technique is employed to obtain a locally optimal solution

by successively maximizing a lower bound of the objective function in an iterative manner.

Specifically, let q0 = [q0
1,q

0
2, ...,q

0
N ] denote the initial UAV trajectory and ql

′
= [ql

′

1 ,q
l
′

2 , ...,q
l
′

N ]

denote the obtained UAV trajectory after the l
′
th iteration. Accordingly, we propose the

following lemma to transform RB
i,n

′
and EHi

′
into convex formulations [15], [16], [30].

Lemma 2: For any given ql
′
, l

′ ≥ 0, we have

RB
i,n

′
(q)≥ RB

i,n

′
(ql

′
),∀i,∀n; (36)

EHi
′
(q)≥ EHi

′
(ql

′
),∀i, (37)

where

RB
i,n

′
(ql

′
) =Wτi,nlog2

(
1+

ϕPuav
maxhr

i Xi,nβ0µ

Wσ2τi,n(H2 +F0)

)
−

Wτi,nlog2e(
1+ Wσ2τi,n(H2+F0)

ϕPuav
maxhr

i Xi,nβ0µ

)
(H2 +F0)

(F −F0),∀i,∀n, (38)

EHi
′
(ql

′
) =

Puav
maxηβ0µ

(
θT
N −Xi,n

)
H2 +F0

−
Puav

maxηβ0µ
(

θT
N −Xi,n

)
(H2 +F0)

2 (F −F0),∀i,∀n, (39)
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F = ||ql
′

n −qg
i ||

2,F0 = ||q0
n −qg

i ||
2,∀i,∀n, (40)

the equations in (36) and (37) only hold when q0 = ql
′
.

Proof. Please see Appendix B. ■

Based on Lemma 2, we optimize the UAV trajectory q by replacing RB
i,n

′
and EHi

′
in P4.2

with their respective lower bounds RB
i,n

′
(ql

′
) and EHi

′
(ql

′
) in (38) and (39) at each iteration l

′
.

By substituting (38) and (39) into problem (35), P4.2 can be equivalently formulated as

q∗ = argmax
{ql′ }

M
∑

i=1

N
∑

n=1
RB

i,n
′
(ql

′
)+

M
∑

i=1
RH

i
′
−Q∗ECsum

′

s.t.

C7,C8,

C4−3 :
N
∑

n=1
RB

i,n
′
(ql

′
)+RH

i
′
≥ Rmin,∀i,∀n,

C6−3 : EHi
′
(ql

′
)−ECi

′ ≥ 0,∀i.

(41)

Since (38) and (39) are convex with respect to ql
′
, problem (41) is a convex optimization

problem and can be efficiently solved by using standard convex optimization methods, e.g., the

CVX tool or the Lagrange dual method.

Remark 4: The factor ‘F −F0’ in (39) indicates that a higher amount of energy can be

harvested when the UAV is closer to the IoT nodes, as the received power will be higher. In

order to maximize the objective function of (41), which is equivalent to maximizing the total

EE of all the ground IoT nodes, the UAV needs to be closer to the IoT nodes that can achieve a

higher throughput than the other IoT nodes during BackCom. Meanwhile, the time allocation

for BackCom and active transmission will guarantee the minimum throughput requirements

for all IoT nodes. That is to say, the IoT nodes allocated less time during BackCom will have

enough time to transmit information actively to meet the minimum throughput requirement

during active transmission. The above remark will be verified in Section 5.
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3.4 Dinkelbach-Based Iterative Algorithm

We propose a Dinkelbach-based iterative algorithm in Algorithm 1 to summarize the optimiza-

tion process in Section 3.3.

Algorithm 1: Dinkelbach based iterative algorithm

1: Input: M ,N .

2: Output: Q∗,Z∗
n,τττ

∗
n, t∗,P∗,q∗.

3: Initialize: k = 1,Q∗(k) = Q∗(0),ε .

4: repeat

5: Initialize q;

6: repeat

7: repeat

8: Initialize ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ ;

9: Obtain θ ,Xn,τττn,Y, t by solving P4.1;

10: Update the Lagrange multipliers ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ in (28)-(33), respectively;

11: until ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ converge;

12: repeat

13: Initialize q0;

14: Obtain q∗ by solving P4.2;

15: Update the obtained UAV trajectory ql′ ;

16: until q∗ converges;
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17: until ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ and q converge after k = 2;

18: Compute RB
i,n,R

H
i and ECsum in (6), (7) and (9), respectively;

19: k = k+1;

20: Update Q∗(k) = Rsum
ECsum

;

21: until | min
i∈M,n∈N

M
∑

i=1

N
∑

n=1
RB

i,n +
M
∑

i=1
RH

i −Q∗(k)ECsum| ≤ ε .

In Algorithm 1, k is the iteration index for updating Q∗, i.e., the maximum EE, and ε is set

to control the convergence of the objective function in P4.

4 Convergence and Computational Complexity Analysis

We first analyze the convergence of Algorithm 1, which includes two layers of iteration, where

the two inner layer iterative loops aim to achieve the convergence of Lagrange multipliers

for solving P4.1 and the convergence of the UAV’s trajectory, respectively, and the outter

layer iteration seeks the convergence of the BCD algorithm that decomposes P4 into P4.1 and

P4.2. Since P4.1 is a standard convex optimization problem, the iterative updates of θ ,τττ, t and

the Lagrange multipliers ααα
(1)
n ,ααα(2),βββ (1),β (2),γγγ,φφφ are guaranteed to converge to the optimal

solution of P4.1. To solve P4.2, successive convex programming (SCP) method is used. We

denote the maximum EE obtained by solving P4.2 in the (l +1)th iteration by EE(l +1), and

denote the maximum EE obtained through solving (41) in the lth and the (l +1)th iteration by

EElb(l) and EElb(l +1), respectively. Based on [30], we have

EElb(l)≤ EElb(l +1), (42)

EElb(l +1)≤ EE(l +1), (43)

where l is the iteration number, (42) holds since EElb(l+1) is the optimal solution of (41), and

(43) holds since a convex function is globally lower bounded by its first-order Taylor expansion.
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The inequalities in (42) and (43) imply that the achieved maximal EE is non-decreasing after

each iteration and is upper bounded, and the approximate problem (41) of P4.2 is solved

optimally locally in each iteration. Therefore, the SCP based method for solving P4.2 is

guaranteed to converge to a locally optimal solution. After each iteration of the BCD algorithm

that alternately solves P4.1 and P4.2, the objective function value of P4 is nondecreasing with

updated variables. Meanwhile, P4 is also upper bounded by its associated constraints, thus the

BCD algorithm is guaranteed to converge to a solution of P4.

Next, we evaluate the computational complexity of Algorithm 1. The computational

complexity of the Lagrange dual method in (19) for solving P4.1 is O(∆1MN) [31], where ∆1

is the number of iterations for updating the Lagrange multipliers. The number of iterations

for using SCP method to solve problem (41) is denoted as ∆2. The iterations needed for the

convergence of the BCD algorithm and Q∗ are denoted by ∆3 and ∆4, respectively. Thus,

the total computational complexity of Algorithm 1 is O[(∆1MN +∆2)∆3∆4]. According to

our simulations, the values of ∆1 , ∆2, ∆2 and ∆4 are in the ranges of 2-5, 2-3, 2-4 and 3-5,

respectively.

5 Simulation Results

In this section, we present simulation results to evaluate the time allocation, the UAV trajectory,

the convergence of Algorithm 1, and the EE performance versus different parameters based on

our proposed Algorithm 1, in comparison with the benchmark schemes, i.e., the UAV-enabled

BackCom scheme, the UAV-enabled HTT scheme, the energy consumption minimization

scheme, and the fixed PB based hybrid BackCom-HTT scheme. The details of the benchmark

schemes are provided in Appendix C. We consider a network, where all the IoT nodes are

located within a 2-D region of 10×10 m2 [33], the UAV’s original position and the location of

the reader are respectively 10 m and 30 m away from the center of this region, which is set as

the origin of the 2D ground plane. The values of the other fixed system parameters are listed in

Table 1 [14], [15], [25], [34].
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Table 1 Simulation Parameters
Simulation parameter Value
Number of IoT nodes M 5
Number of time slots N 50
Altitude of UAV H 10m
Maximum speed of UAV Vmax 10m/s
Coordinate of UAV’s original location (−10,0)
Coordinate of reader location (30,0)
Channel bandwidth W 10 kHz
Noise power spectral density σ2 −130 dBm/Hz
Channel power gain at reference distance β0 −30 dB
Rician factor 7 dB
Pathloss exponent of UAV-node channel 2
Pathloss exponent of node-reader channel 3
Maximum UAV transmit power Puav

max 40 dBm
Maximum IoT node transmit power Pnode

max 23 dBm
Energy conversion efficiency η 0.5
Backscatter circuit power consumption PB

cir 200 µw
HTT circuit power consumption PH

cir 1 mw

5.1 Time Allocation Versus Backscatter Performance Gap

Fig. 3 illustrates the impact of backscatter performance gap ϕ on the time allocation for

BackCom, i.e., θ . It is easy to verify that θ is always 1 for the UAV-enabled backscatter scheme

since it only includes BackCom. For the UAV-enabled HTT scheme, θ keeps the same value

as 0.28 with different ϕ , this is also easy to verify that during BackCom in the UAV-enabled

HTT scheme, the IoT nodes only harvest energy and then transmit information to the reader

during active transmission. For our proposed Algorithm 1, when ϕ is smaller than −50 dB, θ

is the same as that in the UAV-enabled HTT scheme, since the EE provided by BackCom is

too low and the minimum throughput requirement Rmin cannot be met in this case. Same as

in the UAV-enabled HTT, the IoT nodes only harvest energy during BackCom and transmit

information to the reader during active transmission. θ slightly increases with the improvement

of ϕ from −50dB to −40dB, then it dramatically increases when ϕ is greater than −40dB.

This is because that BackCom of some IoT nodes at some time slots can gain more EE with

higher ϕ so that more time is allocated to BackCom. It also indicates that θ is sensitive to ϕ ,

where θ improves dramatically after exceeding −40 dB. When ϕ is bigger than −25 dB, θ is
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Fig. 3 Portion of time allocated for BackCom versus BackCom performance gap (Rmin = 5×104

bit/s).

always one, which indicates that BackCom dominates the over all time period, and the active

transmission of any IoT node at any time slot cannot provide higher EE than that in BackCom.

Comparing the energy consumption minimization scheme with our proposed Algorithm 1, θ

in energy consumption minimization scheme is no smaller than that in our proposed Algorithm

1. This is because BackCom consumes much less energy than active transmission due to the

low backscatter circuit consumption without transmit power consumption. Specifically, when

ϕ is smaller than −50 dB, the throughput requirement cannot be met by BackCom. Thus,

the IoT nodes only harvest energy during BackCom, and transmit information during active

transmission. However, in order to minimize the energy consumption, more time is allocated

to BackCom for energy harvesting but without energy consumption, since the throughput of

all the IoT nodes only need to equal to Rmin. θ significantly increases from 0.48 to 0.8 with

ϕ increasing from −50 dB −30 dB, which indicates that more time is allocated to BackCom

for saving energy while satisfying Rmin with active transmission/BackCom. Also, the gap

between our proposed Algorithm 1 and the energy consumption minimization scheme becomes
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Fig. 4(a) UAV trajectory for a UAV-enabled
backscatter network (Rmin = 5×104 bit/s).
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Fig. 4(b) UAV trajectory for a UAV-enabled
HTT network (Rmin = 5×104 bit/s).

smaller since higher ϕ can both improve the EE and minimize the energy consumption. After ϕ

exceeds −25 dB, the BackCom dominate the over all time period as in our proposed Algorithm

1. We can also see that the EE of each scheme stays constant when ϕ is less than −50dB or

more than −25dB.

5.2 UAV Trajectory

In Fig. 4 (a), the UAV trajectory is illustrated where θ = 1, which means that BackCom

dominates the whole time period. The UAV is dispatched to provide energy for the IoT nodes

from the left side outside the region where all the IoT nodes are located in, and then flies back

to the initial location at the end of the BackCom time period. As we can see, the UAV flies to

and hovers above each IoT node to make sure all the IoT nodes meet Rmin. Also, the UAV takes

the longest time to hover above the node on the right side of the network, since this IoT node is

closest to the reader which can provide more EE for the EE of all the IoT nodes. In addition,

the UAV returns to the initial location immediately after passing through the IoT node on the

left side of the network, this is because that the UAV focuses on providing energy for the IoT

nodes, and it needs to take the shortest time to return to the initial location. That is to say, the

UAV returns straightly to the initial location after leaving the IoT node which is located on the
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Fig. 4(c) UAV trajectory for a UAV-enabled hybrid network (Rmin = 5×104 bit/s).

left side of the network. Same reasons can be used to explain the straight trajectory after UAV

being dispatched. Thus, the trajectory of the UAV after being dispatched and before returned is

overlapped.

In Fig. 4 (b), the UAV trajectory is illustrated where θ = 0.27, which means that HTT

dominates the whole time period. The UAV in this figure only flies to and hover above three IoT

nodes and spends the most time hovering above the IoT node at the middle of the network. This

is because that the throughput of each IoT node is only provided during active transmission

in this case, sufficient energy for active transmission needs to be harvested during BackCom.

Thus, the UAV needs to fly to a middle position to ensure that each IoT node can harvest enough

energy for meeting the throughput requirements. However, more time of active transmission is

allocated to the two IoT nodes that are closer to the reader for achieving higher throughput and

EE, while other IoT nodes only achieve the minimum throughput requirements.

Fig. 4 (c) shows the UAV trajectory for θ = 0.52, which refers to a hybrid BackCom-HTT

network. We can see that the UAV trajectory is similar to that in Fig. 4 (a), where the UAV

flies to and hover above each IoT node and returns to the initial location via a straight line. The

difference is that the UAV spends less time hovering above the IoT node that is closest to the

reader and other IoT nodes achieve higher throughput with longer BackCom transmission time.



162 Paper IV

This is because the maximum EE of all the IoT nodes is achieved when the IoT node that is

closest to the reader is allocated the most time during active transmission while other IoT node

only achieve the minimum throughput requirement during the whole time block. Thus, more

time of BackCom is allocated to other IoT nodes for meeting the throughput requirements.

Based on the above results and Remark 4, we summarize the insights into the UAV

trajectory as follows. First, the UAV tends to fly to the IoT nodes that are closer to the reader

for the above three cases, and such IoT nodes can achieve higher throughput and provide higher

EE of all the IoT nodes. Second, if BackCom dominates the network, the UAV will fly above

each IoT node to ensure that all the IoT nodes satisfy the throughput requirement, and the IoT

node that is closest to the reader is allocated the most time for maximizing the EE of all the IoT

nodes. Third, if HTT dominates the network, the UAV spends the most time hovering above

the IoT node that is around the middle position of all the IoT nodes, but the IoT nodes that are

closer to the reader achieve higher throughput and provide higher EE. Fourth, in the case of

hybrid backscatter-HTT, the UAV trajectory is similar to that in pure BackCom network, but

the UAV spends less time to hover above the IoT node that is closest to the reader for meeting

the throughput requirements of other IoT nodes. Fifth, if the reader’s location is changed, the

UAV will fly to the IoT nodes that are closer to the updated location of the reader. Last but not

least, if the time block is long enough, the UAV trajectory will be a straight line from the initial

location to the IoT node closest to the reader for maximizing the total EE, since the throughput

requirement of other IoT nodes can be satisfied through BackCom or HTT for a sufficiently

long time.

5.3 Convergence of Algorithm 1

Fig. 5 illustrates the convergence of our proposed Algorithm 1 versus different maximum

UAV transmit power. It can be observed that our proposed algorithm always converges to the

optimal EE after 4th step under any given UAV transmit power. This proves that our proposed

Algorithm 1 is computationally efficient. Also, based on Lemma 1, where maximum UAV

transmit power is proved to be the optimal value for maximum EE. We can see that higher
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Fig. 5 Convergence of Algorithm 1 (Rmin = 5×104 bit/s, ϕ =−30 dB).

maximum UAV transmit power achieve higher EE than other cases with lower UAV transmit

power in Fig. 5.

5.4 Total EE Performance

5.4.1 Total EE versus ϕ

Fig. 6 illustrates the total EE of all the IoT nodes versus ϕ . We can see that the total EE

of our proposed Algorithm 1 outperforms all other schemes. Next, we describe and explain

each curve of each scheme as follows. Firstly, the total EE of UAV-enabled HTT scheme is

constant, i.e., 7.2× 107 bits/s, since the IoT nodes during the first time period in the UAV-

enabled HTT scheme only harvest energy, and then transmit information to the reader during

active transmission. Thus, the backscatter performance gap of BackCom has no impact on the

UAV-enabled HTT scheme. Secondly, the EE of our proposed algorithm is constant when ϕ is

smaller than −40 dB since the IoT nodes under this condition are the same as the IoT nodes

in the UAV-enabled HTT scheme in order to meet Rmin. Then the total EE of our proposed
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Fig. 6 Flow chart of Total EE versus BackCom performance gap ϕ (Rmin = 5×104 bit/s).

algorithm increases sharply when ϕ improves from −40 to −20 dB, which indicates that

BackCom provide much more EE than active transmission with low ϕ .

In addition, the total EE of the energy consumption minimization scheme is still constant

when ϕ is smaller than −40 dB due to the same reason explained above, then it gradually

increase with the improvement of ϕ . Also, the total EE of the energy consumption minimization

scheme exceeds that of the UAV-enabled HTT scheme after ϕ is greater than −35 dB due to

the longer time allocated to BackCom for saving energy. This also indicates that BackCom

can provide more EE with higher ϕ . The EE of the UAV-enabled backscatter scheme is 0

when ϕ is smaller than −40 dB, this is because that the IoT nodes cannot meet Rmin, which

fails to contribute EE. When ϕ increases beyond −20 dB, the total EE of the UAV-enabled

backscatter scheme becomes the same as that of our proposed algorithm. This is because

BackCom occupies the entire time block in our proposed algorithm when ϕ is greater than −20

dB.
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Fig. 7 Total EE versus minimum throughput requirement Rmin (ϕ =−30 dB).

5.4.2 Total EE versus Rmin

Fig. 7 plots the total EE of all the IoT nodes versus Rmin. The total EE of our proposed

Algorithm 1 still out performs than that of other schemes. Similarly, the total EE of all schemes

decreases with higher Rmin, since a higher Rmin makes some IoT nodes at some time slots fail to

preform BackCom which greatly decreases the EE. Also, the EE improvement due to a higher

throughput cannot compensate for the loss of EE caused by the high energy consumption for

meeting a higher throughput requirement. As we can see the total EE of our proposed algorithm

significantly decreases but the decreasing rate becomes smaller with the improvement of Rmin,

this is because that more IoT nodes or more time slots are allocated for active transmission, and

the EE loss during active transmission is only caused by a higher energy consumption which

is smaller than the EE loss due to the low time allocation to BackCom. For the UAV-enabled

backscatter scheme, the total EE drops sharply with higher Rmin, since some IoT nodes cannot

meet Rmin and fail to join the network. Thus, the total EE drops to 0 when Rmin is too high,

e.g., 9 ×104 bits/s. The total EE of our proposed Algorithm 1 and that of the UAV-enabled

backscatter scheme are the same when Rmin is smaller than 3×104 bits/s, because BackCom
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occupies the whole time block for such low Rmin. When Rmin is larger than 3× 104 bits/s,

the proposed Algorithm 1 achieves the highest EE among the four considered schemes. As

Rmin further increases, the EE achieved by Algorithm 1 gradually reduces to be the same as

that of the UAV-enabled HTT scheme. This is because for very high values of Rmin, active

transmission occupies the whole time block.

The total EE of the UAV-enabled HTT scheme reduces steadily with increasing Rmin, since

the EE loss is only caused by the high energy consumption for meeting a higher throughput

requirement. However, the total EE did improve due to higher throughput, thus, the total EE of

the UAV-enabled HTT scheme decreases steadily. For the energy consumption minimization

scheme, the total EE is around 8.7×108 bits/Joule from 3×104 bits/s to 6×104 bits/s, and

then suddenly drops to 2.8×107 bits/Joule at Rmin = 9×104 bits/s. Since the time allocated to

BackCom is more than that allocated to active transmission, the EE obtained by this scheme

decreases slowly. After Rmin exceed 6×104 bits/s, active transmission takes a longer time, and

the sudden decreasing of the total EE is due to a much higher energy consumption during active

transmission. Furthermore, the EE of each scheme will increase with the minimum throughput

requirement below the value of 3∗104.

5.4.3 Total EE versus Vmax

Fig. 8 shows the total EE of all the IoT nodes versus the maximum UAV flying speed Vmax.

It is obvious that the total EE of all the schemes shows the same trend, where our proposed

Algorithm 1 achieves the highest EE. Specifically, the total EE of all the schemes gradually

increases with higher Vmax and converges to a certain value after Vmax exceeds 40 m/s. The

reason for that is a higher Vmax allows the UAV quickly fly to and stay at some positions

which can lead to higher EE while satisfying the constraints, e.g., Rmin, the amount of energy

harvested requirement. Thus, the total EE improves with better UAV trajectory. However, the

EE improvement is not large as compared to fig. 6 and fig. 7, this is because Vmax can only

change the optimal trajectory, where the network size is small. Since the UAV can easily travel

around a small network, it will not contribute too much EE improvement. Also, the optimal

UAV trajectory is constant after Vmax exceed 40 m/s, which indicates that the UAV has enough
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Fig. 8 Total EE versus maximum UAV speed Vmax (Rmin = 5×104 bit/s, ϕ =−30 dB).

speed to make an optimal trajectory. Thus, the total EE of all the schemes converges after the

optimal UAV trajectory is fixed.

Same reasons can be explained for the total EE of energy consumption minimization scheme

despite this scheme aims to minimize the energy consumption. In addition, the total EE of

the UAV-enabled backscatter scheme does not drop like in fig. 7 and fig. 8, this is easy to be

verified, the serious drop of the EE for the UAV-enabled backscatter scheme is that the IoT

nodes cannot meet Rmin. However, the IoT node can easily meet Rmin with high UAV speed.

5.4.4 Total EE versus fixed PB or UAV initial location

Fig. 9 shows the total EE versus the fixed PB location or the UAV initial location under two

schemes, i.e., our proposed Algorithm 1 and the fixed PB based BackCom-HTT scheme. The

total EE of both schemes increases with shorter distance from the UAV initial location or the

PB location to the IoT nodes. It is easy to be verified that the harvested energy utilization

and the throughput increases with short communication distance, which improves the EE.



168 Paper IV

(-12,0) (-11,0) (-6,0) (-5,0)(-10,0)      (-9,0)        (-8,0)      (-7,0)
PB location or UAV initial location

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
E

 [b
it/

Jo
ul

e]

108

Proposed Algorithm 1
Fixed PB based hybrid BackCom-HTT

Fig. 9 Total EE versus fixed PB or UAV initial location (Rmin = 5×104 bit/s, ϕ =−30 dB).

Specifically, the total EE of the fixed PB based BackCom-HTT scheme is very low when the

distance from the PB to the IoT nodes is long, i.e., (-12, 0), (-11, 0) and (-10, 0). This is because

that the minimum throughput requirement of some users cannot be met, and none of the users

could meet this requirement after the PB location is farther than (-12, 0). Then the total EE

significantly increases with shorter distance from the PB to the IoT nodes with less increasing

rate. Also, the increasing trend of the total EE of our proposed algorithm is very stable, which

is due to the high mobility of the UAV. Since the UAV works as a mobile power station, it can

quickly fly to the region, where all the IoT nodes are located. Thus, the impact of the small

distance difference of initial UAV locations on the EE is not obvious.

However, our proposed algorithm gain much more total EE than the fixed PB based

BackCom-HTT scheme does. This is due to the high propagation loss of the long distance from

the fixed PB to the IoT nodes, and the energy harvested by the IoT nodes is much decreased due

to the same reason. Such high propagation loss seriously degrades the total EE performance as

illustrated in Fig. 9. In addition, the EE gap between the two schemes becomes small, since the
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Fig. 10 Throughput versus minimum throughput requirement Rmin (ϕ =−30 dB).

propagation loss difference between the fixed PB and the UAV is becoming small, which leads

to this small EE gap.

5.5 Throughput Versus Rmin

Fig. 10 illustrates the throughput of individual node versus Rmin. It can found that the throughput

of IoT node 2, node 3, node 4, node 5 is identical to the corresponding Rmin, i.e., 3, 4, 5, 6,

7, 8 and 9×104 bits/s, respectively. However, the throughput of IoT node 2 is much higher

than Rmin. This is because that we aim to maximize the total EE of all the IoT nodes, most

time is allocated to IoT node 2 since it can provide more EE than other IoT nodes do due to

better channel condition from itself to the UAV and to the reader. This allows IoT node 2

to gain much more throughput. Meanwhile, the minimum throughput requirement of other

IoT nodes needs to be met, thus, other IoT node’s throughput only needs to equal to Rmin

for achieving maximum EE of all the IoT nodes. In addition, the throughput of IoT node 2

gradually decreases with higher Rmin. Since more time is allocated to other IoT nodes for
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meeting their minimum throughput requirement when increasing Rmin, the throughput of IoT

node 2 drops with less given transmit time.

6 Conclusions

In this paper, we have investigated the total EE maximization of all the IoT nodes in a UAV-

enabled hybrid BackCom-HTT network. Since the optimization problem is non-convex, we

have proposed a Dinkelbach based iterative algorithm to first transform the problem into a more

tractable subtractive form, then use a BCD method to decompose the transformed problem

into two sub-problems, where the communication resource allocation subproblem is solved

by employing the Lagrangian dual method and the UAV trajectory optimization subproblem

is solved by applying the SCP technique. Simulation results demonstrate that the total EE

performance of our proposed algorithm is much better than the benchmark schemes, i.e., the

UAV-enabled backscatter scheme, the UAV-enabled HTT scheme, the energy consumption

minimization scheme, and the fixed PB based hybrid BackCom-HTT scheme. Moreover,

our results show the total EE of all the ground IoT nodes increases for a lower throughput

requirement, higher backscatter performance gap and higher UAV maximum speed under all

the considered schemes. In addition, our proposed algorithm allocates more time for BackCom

and/or active transmission to the IoT nodes with better channel conditions for improving the

total EE of all the IoT nodes, while guaranteeing the other IoT nodes meeting their minimum

throughput requirement.

In our future work, we will extend this work to the case with multiple UAVs serving a large

number of IoT nodes distributed over a large area, where the interference mitigation during

BackCom and the trajectory optimization for multiple UAVs will be the main challenges to

tackle. It will also be interesting to extend the proposed system model to the case of fixed wing

UAVs or for online operation.
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Appendix A

Proof of Lemma 1

When Pu, Z, τττ , t, P and q are given, the objective function in P1 monotonically increases

with Pu since Pu only exists in the numerator of the objective function. Thus, the optimal UAV

transmit power is obtained by its upper bound. Due to C4-C7 in P1, they are used to obtain the

lower bound of Pu, the upper bound of Pu is given by Puav
max and we have Pu∗ = Puav

max. The proof

is completed.

Appendix B

Proof of Lemma 2

Let us define two functions given by f1 = Alog2

(
1+ B

C(H2+F)

)
and f2 = D

H2+F , where

A,B,C,D > 0 are constants, f1 and f2 are both convex with respect to F . Since the first-order

Taylor expansion of a convex function is a global under-estimator of the function values, for

any F0 ≥ 0 we can obtain

f1 ≥ Alog2

(
1+

B
C(H2 +F0)

)
− A log2 e(

1+ C(H2+F0)
B

)
(H2 +F0)

(F −F0), (B.1)

f2 ≥
D

H2 +F0
− D

(H2 +F0)
2 (F −F0). (B.2)

By substituting A=Wτi,n, B=ϕPuav
maxhr

i Xi,nβ0µ , C =Wσ2τi,n and D=Puav
maxηβ0µ(θT

N −Xi,n)

into (B.1) and (B.2), then (36) and (37) are obtained. Also, the equalities in (B.1) and (B.2) hold

when F = F0, thus, the equalities in (36) and (37) hold when q0 = ql
′
. The proof is completed.

Appendix C

Benchmark Schemes
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UAV-enabled backscatter scheme

In this scheme, we aim to maximize the EE of all the IoT nodes, where the overall time period

T is allocated to the IoT nodes for wireless energy transfer and BackCom. Accordingly, the

optimization problem of this scheme is formulated as

P5 : max
{Zn,τττn,q}

M
∑

i=1

N
∑

n=1
Wτi,nlog2

(
1+

ϕPuav
maxhu

i,nZi,nhr
i

Wσ2

)
PCB

M
∑

i=1

N
∑

n=1
τi,n

s.t.

C7,C8;

C1
′
: 0 ≤ Zi,n ≤ 1,τi,n ≥ 0,∀i,∀n;

C2
′
:

M
∑

i=1
τi,n =

T
N ,∀n;

C3
′
:

N
∑

n=1
RB

i,n ≥ Rmin,∀i;

C4
′
: EHi −

N
∑

n=1
PCBτi,n ≥ 0,∀i;

(C.1)

UAV-enabled HTT scheme

In this scheme, we aim to maximize the EE of all the IoT nodes, where the IoT nodes only

harvest energy from the UAV during the first time period and use the harvested energy to

transmit information during the second time period. Accordingly, the optimization problem of
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this scheme is formulated as

P6 : max
{θ ,t,P,q}

M
∑

i=1
Wtilog2

(
1+

Pih
r
i

Wσ2

)
M
∑

i=1
ti(Pi+PCH)

s.t.

C7,C8;

C1
′′

: 0 ≤ θ ≤ 1,0 ≤ Pi ≤ Pnode
max ,∀i;

C2
′′

:
M
∑

i=1
τi,n =

θT
N ,

M
∑

i=1
ti = (1−θ)T ; ,∀n

C3
′′

:
M
∑

i=1
RH

i ≥ Rmin,

C4
′′

: EHi −
M
∑

i=1
ti(Pi +PCH)≥ 0,∀i.

(C.2)

Energy consumption minimization scheme

In this scheme, we aim to minimize the total energy consumption, where other constraints in

P1 keep the same. Accordingly, the optimization problem of this scheme is formulated as

P7 : min
{θ ,Zn,τττn,t,P,q}

PCB
M
∑

i=1

N
∑

n=1
τi,n +

M
∑

i=1
ti(Pi +PCH)

s.t.

C1−C8.

(C.3)

Fixed PB based backscattering with HTT scheme

In this scheme, we aim to maximize the EE of all the IoT nodes, where a fixed PB instead of the

UAV is located outside the IoT node region. In particular, the first time period allocated to the

BackCom is divided into M time slots with ith time slot allocated to ith IoT node by employing

TDMA, which is the same as that in active transmission. Accordingly, the optimization problem
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of this scheme is formulated as

P8 : max
{θ ,Zn,τττn,t,P}

M
∑

i=1
(RB

i +RH
i )

ECPB
sum

s.t.

C1;

C2
′′′

: 0 ≤ PB ≤ PB
max,0 ≤ Pi ≤ Pnode

max ,∀i;

C3
′′′

:
M
∑

i=1
τi = θT,

M
∑

i=1
ti = (1−θ)T ;

C4
′′′

: RB
i +RH

i ≥ Rmin,∀i;

C5
′′′

: EHi
PB −ECPB

sum ≥ 0,∀i,

(C.4)

where RB
i =Wτilog2

(
1+ ϕPB

maxhB
i Zihr

i
Wσ2

)
, EHPB

i =
N
∑

n=1
Puηhu

i (θT − τiZi) and ECPB
sum =

M
∑

i=1
(PCBτi+

ti(PCH +Pi)), PB
max and hB

i denote the maximum PB transmit power and the channel power gain

from the PB to the IoT nodes, respectively. PB
max is set the same as Puav

max for comparison. Based

on the algorithms proposed to solve P1, we employ the same methods to solve P5,P6, P7 and

P8, respectively. The optimization process for these four schemes is omitted for saving space.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

In this thesis, we have proposed four energy-efficient resource allocation schemes for solving

EE related problems in different scenarios of WPCNs including a SWIPT-enabled D2D network,

a UAV-enabled network, a SR network and the backscatter networks with multiple users.

In a SWIPT-enabled D2D network (Paper I), the proposed algorithms achieve a higher sum

EE than some existing schemes. We also find that the sum EE is much higher with short D2D

communication distance and more users. Furthermore, the number of SWIPT-enabled D2D

links significantly reduces with long D2D communication distance due to the consideration of

EH sensitivity in this paper. In the backscatter networks with multiple users working in the

same frequency band and at the same time (Paper II), we propose an iterative algorithm to

obtain the globally optimal solutions of the backscatter transmission power and the reflection

coefficients of the backscatter devices for maximizing the minimum EE of a backscatter link.

The EE gap between the best user and the worst user is much smaller when we employ max-min

EE resource allocation scheme compared with system EE maximization scheme, and such EE

gap is much smaller with higher throughput requirements for the backscatter links. We further

find that this scheme is more effective when the throughput requirement of the BDs is lower

and the channel power gain difference from the PB to each backscatter transmitter is smaller.
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In a SR network with multiple BDs (Paper III), the system EE reduces with a longer PT-PR

distance and a higher throughput requirement per backscatter link. Moreover, we find that the

primary link dominates the system EE and the backscatter links only achieve the minimum

throughput requirement in the PSR case. While in the CSR case, the maximum system EE is

achieved when the BD that has the potential to obtained the highest throughput among all BDs

is allocated the maximum allowed time for backscattering, while guaranteeing the throughput

requirement of the other BDs. In a UAV-enabled network (Paper IV), the total EE of the IoT

nodes is maximized, where the proposed UAV-enabled hybrid BackCom-HTT scheme achieves

a higher EE than other benchmark schemes. Also, the total EE is maximized when the available

time is used up and the IoT node that is closest to the reader achieves the highest throughput

while guaranteeing the minimum throughput requirements of other IoT nodes. For the UAV

trajectory optimization, the UAV tends to fly to the IoT nodes that are closer to the reader.

8.2 Future Works

For the future work, we propose the following future research directions for each paper included

in this thesis. For Paper I, since we assume that there is only one D2D link sharing the RB

with one CUE in this paper, an obvious future work is to consider multiple D2D links reusing

the spectrum resource with one or multiple CUEs. Allowing multiple D2D links to work in

the same channel can make the D2D receivers harvest more energy but also increases the

co-channel interference, the optimization of the co-channel D2D transmission power is the

main challenge to be addressed. Also, the optimization of the CUE transmission power can

further help to improve the EE performance. This also brings more harvested energy and

interference at the receiver, and such interference signal increases the difficulty for solving the

EE maximization problem since the interference signal is constant in Paper I. For Paper II, the

most significant challenge is to consider the number of co-channel backscatter links larger than

two, this is extremely difficult to obtain the globally optimal solution of the PB transmission

power since the analyzing conditions in Paper II is much more complex with higher number of

co-channel backscatter links.
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For Paper III, to extend the coverage of the SR network, multiple antennas deployed at

the PT, BD and the receiver need to be considered. Such deployment of multiple antennas

greatly increases the complexity of solving the EE maximization problem since the optimization

process includes the matrix operation, and a new mathematical solution needs to be proposed.

For Paper IV, a globally optimization of the UAV trajectory is expected even though this

challenge is extremely difficult, and the existing works only find the globally optimal UAV

trajectory in a 1-dimension network, where the UAV’s trajectory is straight. Also, multi-

UAV networks need to be studied for better system performance, e.g., wider network range,

higher EE and throughput. However, such networks also bring some challenges including

the trajectory design of multiple UAVs and the signal detection from different UAVs at the

IoT nodes. Furthermore, other scenarios of WPCNs need to be classified, e.g., intelligent

reflective surface (IRS) networks, satellite communication networks and relay networks, and

the energy-efficient resource allocation scheme in these networks need to be further studied.
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