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Abstract 
 

 

 

 

      Although two-nucleon (NN) interactions successfully explain many aspects of nuclear 

structure, recent studies are pointing to the important role of three-body (3N) forces in the 

predictions of neutron-rich nuclei and in the evolution of shell structure [1], in particular from 

an ab-initio point of view.  

      The aim of this work is to investigate whether we can describe atomic masses using 

valence-shell corrections that include both NN and 3N forces in the mass formulae. The focus 

lies on pinpointing indications of NN and 3N forces in the residuals of the mass formulae fits 

from the standpoint of their dependence on the valence particles (or holes). 

      Starting from the Bethe–Weizsäcker formula, an investigation on the effects of NN and 3N 

forces by performing local fits to the experimental mass compilation AME2016 [2,3], was 

made. By introducing inert cores and a valence-configuration space, a search to identify hints 

of NN and 3N forces was conducted mainly around the traditional magic numbers 8, 20, 28, 

50, 82 and 126 of neutrons and/(or) protons.  Additionally, a modified Bethe–Weizsäcker mass 

formula was employed to estimate its ability to better fit the doubly magic nuclei.  

      The results show that the addition of the suggested terms of NN and 3N to the mass 

formulae are applicable to describe the trend observed around the doubly magic nuclei for 

some atomic mass regions. Although this is a fact, we cannot directly claim that these 

expressions correspond to the NN and 3N body forces.  

      Moreover, a shell correction [4] was employed to extend the Bethe–Weizsäcker mass 

formula. The results obtained from a fit using this modified formula show an agreement 

between the valence-shell corrections of the present investigation and the suggested ones, in 

the description of the parabolic-like behavior of the residuals between two doubly magic 

nuclei.  
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Chapter 1 

Introduction 
 

 

 

      One of the long-sought goals of nuclear physics is to understand the strong nuclear force. 

The structure of the nucleus and the fundamental interactions between quarks and gluons are 

expanding frontiers in science [5]. Although, considerable progress has been made toward 

exploring the nuclear force acting among the nucleons, there are only phenomenological 

expressions to describe NN interactions.  

      Also, addressing questions such as where the limits of stability are and what combinations 

of neutrons and protons can form a bound nucleus, are major issues in nuclear structure 

physics that seek solutions [6]. Mapping the position of the neutron drip line is necessary on 

models of nucleon-nucleon interactions and many-body correlations [7]. Measuring 

phenomena away from the valley of stability, in the limits of nuclear existence, could shed 

light to the mechanism responsible for new and at the same time unique nuclear structure 

phenomena that are evident in several recent studies and seems to have a crucial impact to 

the understanding of nuclear interactions. To this end, there is evidence that properties of 

exotic nuclei are sensitive to nuclear forces [8]. Entering this exciting new era of opportunities, 

a direct understanding of the element production in the universe can be achieved. 

      The forces between two nucleons, the NN forces, are the forces between pairs of protons 

and neutrons within the nucleons. Two-body forces are mostly responsible for nuclear 

properties. However, to explain nuclear properties further, the three-nucleon forces were 

introduced as interactions between three particles: three neutrons, three protons, or two of 

one and one of the other. Also, it was observed [9] that 3N forces play a significant role and 

should be included in physical implications and extensions of theoretical models [10]. 

Although the consideration of three-nucleon potentials provides new keys to understanding 

the nuclear stability at neutron-rich conditions, calculations in many body systems are difficult 

and require advanced computational techniques [11]. Particularly, the computational effort 

increases exponentially with the mass number, while when the calculations are performed 

considering the three-body forces, the computational challenge is particularly enormous [12].  

      The atomic nucleus is composed of a certain number of neutrons N and protons Z and the 

force which is responsible for holding them together is the nuclear strong force, also named 

as strong force or strong interaction. It is a complex arrangement which mathematically could 

be described as a ‘many-body’ problem. When a given nucleon of an atomic nucleus interacts 

with the rest of the particles, this interaction can be approximated by an averaged energy 

term, the so-called ‘’mean-field potential'’. A nucleon experiences an average (or mean) 

attractive energy which is due to the strong interaction with its neighbors. The strong nuclear 

interaction appears among all the nucleons, p-p, p-n, n-n where n is the neutron and p is the 

proton. In quantum mechanics, the nature and source of the strong force are investigated by 

the quantum chromodynamics (QCD) theory. The strong force is mediated by virtual pion 

exchange, Fig. 1.1. The nuclear force binds the nucleons together and it prevents the nucleus 
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from disintegrating. The nuclear strong force is a short-range force. At short distances the 

nature of the nuclear interaction is attractive. Hence, when two protons are far apart the 

Coulomb electromagnetic force dominates, and the one nucleon repels one other.  

 

 

 

      Similar to electrons in atoms, neutrons and protons exist inside the nuclei in certain energy 

states which correspond to different arrangements of the nucleons in their allowed states. 

Details on the nuclear shell model will be given in an upcoming section (2.1). Mass 

measurements have a significant and unique role in the establishment of the shell model also 

known as the independent particle model. To this end, studies of nuclear masses give us 

important insights in mapping the structural formation for a certain number of protons and 

neutrons inside the nucleus, revealing information about more energetically favorable 

configurations [15]. These energetically stable configurations form large gaps between the 

energy states of the nucleus which are caused by fully completed particle’s shells.  

      Closed shell configurations correspond to specific numbers of protons or (and) neutrons 

across the nuclear landscape and have an important role because they produce additional 

stability to nuclei. Nuclear closed shells of protons or neutrons are the so-called magic 

numbers, N and Z = 8, 20, 28, 50, 82 and the magic number 126 which has so far only been 

observed for neutrons [16]. Nuclei that correspond to such magic numbers of protons or (and) 

neutrons have exceptional stability as they are more tightly bound compared with nuclei that 

have simply one more proton or neutron [17]. A nucleus with both magic numbers of protons 

and neutrons is called a ‘’doubly magic nucleus’’.  

      The existence of magic numbers has been called into question due to recent studies 

conducted far from the region of stability and show that the magic nature of these nuclei are 

not all that robust and can significantly change with proton and neutron number. There are 

several experimental proofs that point out to the lack of the magic character of some of these 

rather exotic nuclei and the existence of new magic numbers [18].  

 

 
Figure 1.1: The three valence quarks of a proton and a neutron are presented. The nuclear force is 

mediated by virtual pion exchange. The RHS and LHS images adapted from the Refs. [13] and [14], 

respectively. 
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      Moreover, the most challenging experiments are those that measure nuclei far from the 

stability line where there is a large excess of neutrons or protons. In nuclear physics, the 

boundaries for particle-stability are referred to as drip lines. In such extreme conditions, a 

combination of protons and neutrons does not necessarily yield a bound nucleus and lead to 

the formation of resonances that decay via particle emission. 

      Nuclei far from the valley of stability, with extreme numbers of either protons or neutrons, 

are also of great importance for the understanding of nucleosynthesis of the elements. Tracing 

the location of driplines accurately constraints the path for the process of nucleosynthesis and 

other astrophysical phenomena [19]. Hence, a combination of accurate nuclear physics with 

precision astronomy is essential to understand astrophysical scenarios. 

      The various production mechanisms that are used at the radioactive-beam facilities 

provide access to drip line nuclei. However, future developments in the experimental 

techniques for the spectroscopic measurements of these nuclei as well as the adoption of 

powerful theoretical tools for the interpretation of the data are critical components for the 

success of the future scientific programs in these facilities [20,21]. Particularly, theoretical 

models, employed in nuclear astrophysics related studies, strongly relied on an accurate 

determination of the reaction energies as well as the reaction rates.  

      Although there are some well-developed theoretical models available, there is not yet a 

complete theory which fully reflects the structure and behavior of these complex nuclear 

systems and can consider some of the complicated correlations that characterise complex 

nuclei [22]. Indeed, over the last few years, nuclear physics has made significant advances in 

the description of nuclear masses; this will lead in the future to a better description of 

properties of exotic nuclei lying in unexplored nuclear-mass regions.  

      The aim of the present thesis is to propose certain valence-shell corrections to theoretical 

models, so to reproduce the data between two doubly magic nuclei. Towards this end, it is 

important to clarify two critical points: 

 

1) The proposed valence-shell correction terms have been assumed to be due to the 
effects of NN and 3N forces, respectively. However, it is crucial to be stressed that this 
is only a hypothesis, and it cannot be readily claimed that these terms are a 
manifestation of NN and 3N nucleon forces. Initially the purpose is to prove (or not) 
that the observed trend of the data can (or not) be explained using the expressions of 
the proposed terms. 

 
2) Modern nuclear mass models are able to significantly improve the agreement 

between the experimental and theoretical atomic mass data. The theoretical 
approach and formulation adapted in the present analysis, does not aim to describe 
nuclear masses as accurately as possible, based on the root mean square (RMS) of 
discrepancies between the observables and predictions. The scope of the present 
work is initially to identify if the inclusion of the extra terms are able to reproduce the 
data. To this end, the calculation of the residuals is only used to evaluate how good 
the minimum is in terms of reproducing the investigated trend. 
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      To this end, it is the purpose of the next chapters to discuss some intriguing subjects that 

are at the frontiers of nuclear structure investigations focusing on the important role of 

nuclear masses and binding energies for the understanding of two-nucleon forces and the 

effective interactions between nucleons in nuclei, by combining macroscopic and microscopic 

theoretical approaches especially from an independent particle structural point of view. 

      This thesis contains chapters which are divided into sections and subsections and is 

organized as follows: 

 
Chapter 2: Literature Review:  

In this chapter, an extended description of the research questions that were pointed out in 

the introduction will be given. First, the basic underline physics theory which underpins the 

present research work is presented. The information here aims at providing  an overall 

description of the developments which have been adapted or are currently underway to 

address major nuclear structure questions, directly connected to this research work.  

 

● Section 2.1: Structural Evolution:  

 

In this section, a short history in the theory of the liquid drop model of the nucleus as 

well as in the establishment of the nuclear shell model is presented. A brief 

description of the observations which led to a microscopic theory for the structural 

formation of the nucleons inside the nucleus will be given.   

 

● Section 2.2: Nuclear masses and Binding Energies: 

 

This section starts with the definition of nuclear masses and binding energies. Then, 

it  briefly discusses some challenges in measuring nuclides at and towards the drip 

lines which are of great importance for addressing questions in nuclear structure 

theory and other branches of physics.  

 

● Section 2.3: The evaluation of nuclear masses: 

 

This section is focused on the important role of the Atomic Mass Evaluation for 

providing reliable information related to the atomic mass measurements. The 

different experimental methods of acquiring such measurements and their required 

evaluation before entering the atomic mass database will be also commented.  

 

● Section 2.4: Nuclear models and theoretical approaches: 

 

In this section, a basic classification of nuclear models will be presented. Also, a short 

literature review of the most notable nuclear mass models which are available up to 

date will be given. Particularly, the focus lies in the understanding of the theoretical 
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models that will be used to reproduce the experimental observables of the present 

research work. To this end, the liquid drop model theoretically described by the 

Bethe–Weizsäcker’ Semi Empirical Mass Formula will be included in the subsection 

(2.4.2). Moreover, an alternative mass formula will be presented in the same 

subsection, which later was used to test its ability to reproduce the observed 

parabolic shape around doubly magic nuclei.  

 

● Section 2.5: The importance of 3N forces:  

 

In this section, an introduction to the three-nucleon forces theory and its importance 

in nuclear physics and astrophysics will be discussed. Also, a focus on the role of three-

nucleon forces to explain the oxygen anomaly and why the 24O is the heaviest bound 

oxygen isotope will be included, since it motivated the present research work.  

 

After the introduction of the theoretical basis of the current research, the key chapters of this 

thesis follow: 

 

Chapter 3: Methodology:  

 

● Section 3.1: Research strategy:  

 

This section aims at presenting the research design and discussing the case study 

approach, based on the phenomenological description that was adapted. The 

information is divided into subsections. First, the research approach and the 

mathematical and physical interpretation of the suggested NN and 3N terms are 

extensively discussed. The nuclear chart regions and subsets of atomic mass data that 

were employed to evaluate the efficacy of our theory will be included. Ending this 

section, the experimental inputs that were used to derive the unknown parameters 

of the mass formula and the adopted modified theory, will be also presented. 

 

● Section 3.2: Regression analysis: 

 

Developing theories and determining the fitting parameters properly, require a good 

knowledge of regression analysis techniques. The most important application to this 

approach is in data fitting. The linear least-squares regression methods, which were 

utilised in the present research analysis, for the determination of the nuclear model 

parameters, will be presented. Remarks will also be given to the derivation of the 

uncertainties of the estimated parameters.  
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● Section 3.3: Uncertainties in the observables: 

 

The purpose of this section is to highlight the role of the experimental uncertainties 

in the fitting procedure. The inaccuracy of the Bethe–Weizsäcker’ Semi Empirical 

Mass Formula due to missing underlying physics was pointed out and analysed in 

parallel with the case of including the weights in the regression analysis.  

 

Chapter 4: Results:   

This chapter aims at discussing and analyzing the results obtained after fitting binding energies 

according to the adapted phenomenological approach. Following the estimation of the 

parameters obtained by the fit, theoretical binding energies and thus the residuals will be 

presented through plots in order to evaluate the strength of our theory. An improvement of 

the obtained by the modified theoretical formula, which includes the valence-shell corrections 

of NN and 3N terms will indicate the validity of our proposed theory. Also, minor modifications 

to the theoretical baseline formula of Bethe–Weizsäcker will be taking into consideration with 

the inclusion of an alternative version of the nuclear mass model. Moreover, suggested terms 

from the relevant literature were adapted to introduce a simple shell correction to the Bethe–

Weizsäcker mass formula and a comparison of these terms with the ones proposed by the 

current investigation will be presented. The results’ chapter will close with some important 

remarks on findings acquired during the conduction of the present research. 

 

Chapter 5: Discussion and Conclusions:  

Important points are discussed and conclusions extracted from the present investigation are 

of great importance for identifying the efficacy of the present phenomenological approach as 

well as for presenting suggestions for further investigation.  

 

      The thesis is completed with a remark on references to the literature. In addition, an 

Appendix A which includes parameters of the fits and relevant input and output data are 

added as well as an Appendix B containing two python codes for the calculation of valence 

particles of nuclides.  
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Chapter 2 

Literature Review 
 

 

 

      This chapter will focus on the past literature, summarizing some of the most important 

concepts of nuclear physics theory which will help us to build a proper understanding of the 

investigated topic. Particularly, the following sections will provide explanations in basic 

theoretical aspects of nuclear structure theory, pointing out basic features of the nucleus and 

cornerstones of theoretical approaches that has been developed across the years for an 

understanding of the fundamental nature of matter.  

      To this end, it is highlighted the paramount importance of the nuclear mass, through its 

binding energy, as well as its first theoretical determination back in 1935, when Bethe and von 

Weizsäcker, released the well-known liquid-drop model for the calculation of nuclear masses. 

Following this establishment, a number of experimental facts provided a clear evidence of 

shell model structure. The magic numbers are also underlined as a significant component of 

the shell structure theory and the shell model potential which predicts higher magic numbers 

is also illustrated.  

      Additionally, the vital role of mass measurements and current challenges towards this 

direction are given, including a presentation of the comprehensive assessment of all the 

currently available atomic mass data, the so-called ‘Atomic Mass Evaluation’.  

      Nuclear models that are necessary to derive nuclear properties and make reliable 

predictions for unknown nuclei, are also presented. At the same time, understanding the 

underlying forces between the nucleons is key objective in nuclear structure theory. The 

important role of the three-nucleon forces towards this justification are discussed.    

      At this point, it should be also stressed that although some basic principles and concepts 

of nuclear physics are presented herein, a detailed theoretical treatment is beyond the scope 

of this thesis and only topics considered to be relevant for the current research are included. 

For a more detailed account, one can access the bibliographical reference section. 
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2.1 Structural Evolution: 
 

      In 1935, von Weizsäcker and Bethe suggested a semi-empirical mass formula which 

considers the atomic nucleus as a drop of a uniform liquid fluid, a theory based on the liquid 

drop model first introduced by George Gamow and then developed by Niers Bohr and John 

Archibald Wheeler [23,24]. Although it successfully explains some of the macroscopic aspects 

of the nucleus, this formula did not take into account specific details of the structure of the 

nuclei related to microscopic effects. Thus, this phenomenological model does not provide 

solutions to several important questions related to nuclear structure and the forces acting 

between the nucleons inside the nucleus [25]. A detailed view of this model is given in an 

upcoming section (2.4.2). It is used as a baseline formula and although several refinements 

have been made to its structure over the years, it remains a guideline for producing modern 

mass formulas.  

      As a greater understanding of the nuclear structure and other nuclear properties came 

into existence, clear discrepancies in the residuals plot of the nucleus’ binding energies, 

notified the research community for additional microscopic effects that had not been yet 

considered and had to be included in the modeling. The following figure, Fig. 2.1, shows 

indications of shell structure which are presented in the deviations of the measured binding 

energies from the semi-empirical mass formula of Bethe and von Weizsäcker. 

 

Some other evidence of discontinuous behavior of nuclear properties occurred at the same 

numbers of neutrons and protons, verifying the above observations in the residual’s plot of 

the binding energies. As an example, breaks of the two-neutron separation energies for 

isotopic sequences at neutron numbers 82 and 126 are also important pieces of evidence that 

nuclei have shell structure. Additionally, the relative abundancies of even-even nuclei, the 

neutron capture cross sections close to shell closures, the densities of excited states are 

further signs which notify the discontinuities in specific numbers of protons and neutrons. 

 

 
Figure 2.1: Deviations of the experimental binding energies from the predicted values of Bethe-Weizsäcker 

mass formula are shown as a function of neutron number N. Particularly, the ΔΒ quantity in y-axis is 

defined as the difference between the measured binding energy and its corresponding predicted value. 

Large discrepancies are prominent in specific locations across the nuclear landscape Adapted from Ref. 

[26]. 
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      These experimental observations led to the justification that an atomic nucleus exhibits 

shell structure. This structure become more evident in specific regions of the nuclear chart 

and more specifically, close or at the so called ‘’magic numbers’’. Combining all the evidence, 

we can summarize the relevant magic numbers for nuclei as: 2,8,28,50,82,126 (as mentioned 

before 126 applies to neutrons only) [27]. The presence of magic numbers is analogous to 

noble gases in atomic physics. Nuclei with magic numbers of both neutrons and protons are 

the so-called ‘’doubly magic nuclei’’. 

      Indeed, all the aforementioned evidence established the nuclear shell model theory which 

considers that there is a specific structure inside the nucleus which is governed by certain 

rules. In these arrangements, the nucleons fill orbits and complete shells with increasing 

energy levels within the nuclear potential [25,28]. For magic numbers of neutrons or protons, 

extra stability is observed, compared to their neighbors and it manifests itself in the mass and 

related binding energy for these nuclei. Nucleons fill shells inside the nucleus in a manner 

which is consistent with Pauli exclusion principle [29]. Completed shells of protons and/or 

neutrons manifest themselves in several other nuclear properties related to electric 

quadrupole moments, nuclear charge radii, particle separation energies and so on [29].  

      Additionally, in order to reproduce the magic numbers, the inclusion of a spin-orbit 

potential is necessary. The upcoming  Fig. 2.2, presents the spin-orbit potential and the proper 

splitting of the subshells which reproduced the observed magic numbers exactly [10].  

      However, it is worth noting that today’s experimental advances and relevant studies have 

revealed modifications to some of the classic magic numbers, and the appearance of new 

ones. Understanding of quenching or disappearance of the magic character for nuclei lying far 

from the valley of stability is important, especially in nuclear astrophysics because it is directly 

related to the production and abundance of the heavy elements [30]. The discussion is 

extended in section (2.5) where experimental proof for unexpected shell closure at N=16 

suggests that oxygen-24 (24O) might be a doubly magic nucleus, contrary to what would be 

expected from stable nuclei. Also, the doubly magic character of nickel-68 (68Ni) (Z=28 and 

N=40) has been examined in several investigations and put into question how strong its magic 

character really is [28,31].  

The nuclear shell model gives an understanding of the magic numbers that are observed in an 

atomic nucleus [32] and it is very important in approximations which consider these closed 

shell configurations as closed shell cores plus the valence nucleons in the valence space 

[28,33]. Indeed, one can considers that some of the nuclei behave in a manner where most of 

the nucleons form an inert core and the rest of the nucleons occupy orbitals in a valence 

configuration space. Therefore, these nucleons are considered as active and are subject to 

nucleonic interactions [34]. Residual interactions among valence nucleons are of a great 

importance for nuclear models by functioning as input data. 

      In ab-initio theory, the underlying interactions among nucleons are crucial determinants 

of nuclear structure. Hence, identifying key issues in ab-initio nuclear theory is critical for 

understanding nuclear properties. The fundamental approach of the valence-space 

formulation is widely used to solve the many body problem incorporating the two- and three-

nucleon forces [35]. 
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      As will be further discussed in section (2.4), there is not yet a complete theoretical 

formulation which is capable to describe the structure as well as the complex way of nucleonic 

interactions in a many body environment based only on the underlying forces among the 

nucleons. Despite the significant progress that has been made in the recent years in the 

development of nuclear models, identifying such interactions and solving the exact problem 

is extremely demanding especially when the three-body forces are involved in the problem. A 

derivation of nuclear interactions from fundamental interactions between quarks, is 

challenging and a fully successfully description has not yet been achieved [5]. 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Splitting of nuclear levels due to the spin-orbit interaction. On the right side, partial and 

accumulated nucleon numbers are shown. The magic numbers (shown at the extreme right-hand 

side) are correctly reproduced, and the shell effect is evident. Adapted from Ref. [36]. 



25 

 

 

2.2 Nuclear masses and Binding energies: 
 

      Nuclear masses have been of great interest to nuclear physics. The mass of the nucleus 

should be regarded as one of its main characteristics reflecting the role of the strong nuclear 

interaction on nuclear binding energies [37]. The binding energy is defined as the difference 

between the sum of the masses of the nucleons which constitutes a nucleus and its nuclear 

mass [38]. As an example, by observing the simplest nuclear system that exist, the deuterium 

nucleus ( 𝐻11
2 ), it is easy to identify that when a neutron and proton bind together to form a 

deuteron, a part of their rest mass energy is released [39].  

      Therefore, the mass of an atomic nucleus composed by N neutrons and Z protons and 

A=Z+N nucleons, where A is the mass number, is given by: 

 

𝑀(𝑍, 𝑁) = 𝑍 ∗ 𝑚𝑝 + 𝑁 ∗ 𝑚𝑛 − 
1

𝑐2  𝐵𝐸(𝑍, 𝑁)                                        (1) 

 

Using the Einstein’s mass energy equivalence, the mass defect Δm is equal to ΔΕ = Δm*𝑐2  

[29]. The quantity ΔΕ or BE(Z,N) presents the nuclear binding energy. 

     Indeed, given the nuclear masses one can easily extract the nuclear binding energy which 

is expressed by: 

𝐵𝐸(𝑍, 𝑁) = (𝑍 ∗ 𝑚𝑝 + N*𝑚𝑛 – M(Z,N)) * 𝑐2                                      (2) 

 
where 𝑚𝑝 and 𝑚𝑛 are the rest mass of a proton and a neutron respectively, M(Z,N) is the total 

nuclear mass and BE(Z,N) is the nuclear binding energy. A schematic representation of the last 
statement is shown in the following Fig. 2.3: 
 
 

 

 
Figure 2.3: The scale example which illustrates that the mass of a nucleus is less than the sum of the 

masses of its constituent protons and neutrons. The energy, E, which is released to form the nucleus is 

also shown. Image by Author. 
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      The Eqs. (1) and (2) correspond to the mass, and hence the binding energy, for a nucleus 
with mass number A. If one wants to determine the atomic mass of the same nucleus, then 
the aforementioned Eqs. (1) and (2) should be modified to account for the mass of the atoms 
of  1H (hydrogen atom), M(1H). Those modifications are given by the Eqs. (3) and (4). In general, 
as it is also highlighted in the upcoming section (2.3), it is considered easier to use atomic 
masses rather than nuclear masses. Atomic masses instead of nuclear masses are also adapted 
for the calculations of the present investigation. 

  𝑀(𝑍, 𝑁) = 𝑍 ∗ 𝑚𝑝 + 𝑁 ∗ 𝑚𝑛 + 𝑍 ∗ 𝑚𝑒  −  
1

𝑐2  𝐵𝐸(𝑍, 𝑁)                                  (3)      

 
or 
 

𝐵𝐸(𝑍, 𝑁) = (𝑍 ∗ 𝑚𝑝 + N*𝑚𝑛+ Z*𝑚𝑒–M(Z,N)) * 𝑐2 = (Z*M(1H) + N*𝑚𝑛 - M(Z,N)) * 𝑐2   (4)                                

             
where 𝑚𝑒 is the total electron mass which one can also ignore its contribution as it is not 
considered so significant compared to the range of the nuclear mass [40]. 
 
     The nuclear binding energy indicates which nuclei are stable and which undergo radioactive 
decay and therefore gives an explanation of the chart of nuclides, Fig. 2.4. An imbalance in 
neutron to proton ratio initiates that there is an excess of either neutrons or protons and the 
nucleus must change a neutron into a proton and vice versa, through the process of beta 
decay (beta minus or plus decay).  
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    The binding energy BE(Z,N) of a nucleus is the energy required to separate all the nucleons 
of a nucleus, or equivalently, the energy released when a nucleus is formed by its component’s 
nucleons. These properties explain nuclear fission and fusion, correspondingly, and are 
described by the plot of experimental binding energies per nucleon shown in the following 
Fig. 2.5 [29,42]. Hence, this curve is of extremely importance in nuclear physics as indicates 
the nature of the force that composes the nucleus as well as α and cluster decays.  
 
     This plot also explains the region of stability including the most tightly bound nuclides which 
are around the mass number A ≈ 62. At this point the curve reaches a maximum of 
approximately 8.7945 MeV/A (according to the data of AME2016 [2,3]) and after that 
decreases gradually.  
 

 

 
Figure 2.4: Chart of nuclides: The valley of stability, the N=Z line of stable light nuclides and the 

different types of radioactive decays are shown. Also, the magic (closed shell) numbers are illustrated in 

the ends of vertical and horizontal lines, while on the top left corner the beta decays are shown. In the 

grey area belong unknown nuclei which have been predicted but have not been yet experimentally 

found. Adapted from [41]. 
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      Nowadays, experimentally measured nuclear masses count more than 2400 and have been 

obtained with a very high degree of accuracy [44]. The increase of the number of the 

measured nuclides’ masses, is of paramount importance for the completeness of our 

knowledge of nuclear structure, as nuclear masses can provide crucial inputs and answer 

questions in several unanswered and challenging topics of nuclear physics. 

      Especially, in nuclear physics, nuclear mass data are of great importance in describing 

global properties [45] and extracting nuclear symmetry energy [46,47,48] which is closely 

connected with the dynamic process of nuclear reactions as well as the structure of the nuclei 

[47]. Moreover, for the understanding of the properties of the three-nucleon forces 

experimental mass data are mandatory [11].  

      Also, the mass of a nucleus and its binding energy, is an important ingredient for various 

aspects of studies in nuclear structure and reactions and also in nuclear astrophysics, 

contributing to the understanding of the origin of the elements in the universe [45] or the 

determination of the chemical composition of the crust of a neutron star [49].  

     Recent developments of experimental techniques at rare-isotopes-beam facilities have led 

to the measurement of the masses of many exotic nuclei. These nuclei play a key role in the 

study of astrophysical nucleosynthesis, for example r-process, the formation and evolution of 

 

 Figure 2.5: Nuclear binding energy per nucleon (MeV) as a function of the mass number A. Nickel-62 

(62Ni) with the highest binding energy per nucleon is marked. In the left of the vertical dashed line lie  

nuclei in which fusion is common, while in the right fission dominates. Adapted from Ref. [43]. 
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nuclear magic numbers far from the well-studied valley of stability, at neutron-rich side. It is 

worth mentioning that studies of exotic nuclei paved the way to the understanding of the 

island of inversion, where standard magic numbers break down (disappearance of N=20 

neutron magic number) [35]. 

      Despite the recent advances in the experimental facilities and modern mass 

measurements, many of these masses remain still unknown (gray area of Fig. 2.4), especially 

for nuclei of super-heavy element region as well as for those at extreme neutron and proton 

rich regions of nuclear chart [50]. To this end, there is an increased need on precise nuclear 

mass measurements of experimental masses as well as reliable theoretical models which are 

capable to predict unknown nuclear mass data by extrapolating from the measured nuclei. 

Therefore, a sufficient accuracy in the predictions of the exotic nuclei can be achieved [50]. 

However, even though theoretical models have been given an impressive level of accuracy 

and sophistication [51], differences that are still present in the predictions of unknown masses 

between different theoretical models, uncover serious weaknesses in the calculations and 

sometimes put under question the predictive power of the models.  
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2.3 The evaluation of nuclear masses: 
 

 

      As discussed in the last section, nuclear masses and binding energies provide one of the 

major and fundamental tools that are employed to map the structural evolution across the 

nuclear landscape. Although there is a large number of known experimental mass data that 

have been measured and are available up to date, new, and still better measured nuclear mass 

measurements are necessary to contribute to our understanding of nuclear structure.  

      Also, improvements or validation of some of the already measured atomic masses are 

needed to be performed due to the enormous quantity of information that is available and 

has been obtained by different studies and experimental techniques. The process of the 

evaluation involves comparison, combination, or derivation of an average adopted value of 

the measured results [52]. Therefore, the interest of nuclear physicists lies in finding an 

appropriate and consistent method to execute and report these experimental mass values. To 

this end, the Atomic Mass Evaluation, which is often referred as AME or the ‘mass table’, is a 

comprehensive atomic mass database including experimental as well as extrapolated atomic 

mass results.  

      Atomic masses can be determined with several experimental methods. The first technique 

is based on the differences resulting from the Q value when a radioactive decay or nuclear 

reaction occurs (indirect methods). The Q value is defined as the energy absorbed or released 

following a nuclear reaction. Although this method can achieve accurate measurements, it 

should be treated with a special care in the determination of the ground states to prevent 

cumulative errors. The second method that is widely used and tends to generate small errors, 

is mass 33 spectrometry measurements, where atomic mass data are determined through 

time-of-flight or frequency measurements (direct methods). However, several other types of 

mass spectroscopy can be used, providing valuable experimental results. Also, determination 

of atomic masses can be achieved by conducting measurements with respect to a well-known 

reference nucleus [53]. 

      Physicists, who are involved in these calculations, should make readjustments to the 

measured values creating a coordinated network which is applicable to check the validity of 

the new mass values. To this end, experimental mass measurements, most of the times, are 

accepted after appropriate treatment and then follow a mass adjustment procedure. 

Regardless of the adapted process, the mass values are not considered as absolute mass 

measurements [54].  

      However, taking into consideration the error accompanying each technique, it always 

requires a critical evaluation and judgment over the new mass measurements before entering 

the database. With this way, precise measurements can turn into accurate ones [53]. 

Particularly, in reference [55], it is highlighted that there are mass values that are not taken 

into consideration due to the large values of uncertainties. Other reasons could reflect a 

wrong mass measurement caused by a possible mistake in the estimation of the final decay 

energy level or the decay energy associated with an isomer rather than to a ground state or 

the mass number assigned to a decay was wrong.  
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      Additionally, it is significant to be stressed that mass tables of Atomic Mass Evaluations 

record atomic mass values and not nuclear mass values due to the technique of estimation of 

the majority of nuclei involved in the database. Thus, most of the existing mass data have 

been obtained using indirect methods, which deal with mass differences between atomic 

nuclei rather than nuclei or by mass spectrometry. However, experimental mass 

measurements obtained by the in-flight separation production mode can lead to nuclear mass 

measurements [53].  

      The Atomic Mass Evaluation, which is issued every few years, provides a complete 

assessment of all the currently available atomic mass data. Recently, the most up to date 

atomic mass evaluation was published and it is known as AME2020 [55,56]. The data analysis 

presented in the current report, is exclusively derived by using the Atomic Mass Evaluation 

published in 2016, known as AME2016. However, a comparison between a specific subset of 

experimental atomic masses of AME2016 and their corresponded values obtained from 

AME2020 was occurred and any relevant outcomes are commented in the chapter of results, 

if necessary.  

      The results included in the AME2020 have been obtained using mass-spectrometry 

methods, Penning traps, as well as energy measurements [55]. Reference should be made to 

the use of Penning traps as a mass spectroscopy tool which generates the most accurate input 

data for stable or long-lived nuclides [55]. In AME2016, the mass-spectrometry results were 

taken from measurements using cyclotron frequencies of ions in Penning traps [2]. 

 

 

2.4 Nuclear Models and Basic Theoretical Approaches: 
 

2.4.1 The nuclear mass models: 
 

      In order to answer fundamental questions in nuclear physics, as those presented in chapter 

1, it is essential to successfully construct an accurate theoretical formulation for a description 

of the nuclear properties of nuclei (such as binding energy, shape, nuclear size etc.) across the 

nuclear landscape. The theoretical efforts towards this investigation is crucial for 

understanding several physical phenomena not only in nuclear physics but also in nuclear 

astrophysics. 

      There are several methods and approaches for prediction of experimentally inaccessible 

nuclear masses and all of them include fitting to known mass data to a larger or smaller extent 

in an attempt to uncover the physics of these elusive mass regions [17,57]. Hence, nuclear 

models are semiempirical in the sense that include a number of free parameters, associated 

with specific physical terms, that are fitted to nuclear data [58].  

      Theoretical nuclear models are mainly distinguished into global and local approximations. 

The philosophy of these two approaches differs. The global models make use of all the 

currently available experimental measured nuclear masses, while the local approaches use 

techniques for the prediction of nuclear masses in a limited region. Although, global nuclear 

mass formulae cannot capture ‘’higher resolution structures’’ which are important for an 
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accurate prediction [53,59], are able to explain some general characteristics and the main 

properties of the mass surface and N-Z plane. On the contrary, local approaches are able to 

perform more accurate nuclear mass predictions compared to global techniques, but only for 

the mass region around to the experimentally known nucleus [59].  

     It is also essential to further categorised the nuclear mass formulae, usually starting from 

the simplest case of the liquid-drop model, which is expanded with additional corrections to 

its initial form. Particularly, nuclear mass models can be classified into three main categories 

based on the adapted theoretical approach and physical terms involved in the calculations.  

Macroscopic mass formulae as well as macroscopic-microscopic (macro-micro) approaches or 

purely microscopic mass formulae have been developed over the past decades [4,53] aiming 

to reproduce the already measured atomic mass data as well as to provide reliable 

extrapolations, especially for nuclei in the highly neutron rich part of nuclear chart.  

      The term ‘macroscopic mass formula’ is used to describe the sum of the energy terms 

which are generally given by the liquid-drop model [60]. Macroscopic mass formulae are 

applicable to reproduce the gross nuclear features while they are unable to consider 

deviations which are caused due to the presence of quantum shell effects. When shell and 

pairing corrections are also added to the macroscopic part of the theoretical formula, the 

coexistence between macroscopic and microscopic effects composes the aforementioned 

‘macroscopic-microscopic’ (macro-micro) approach [60], which so far provides a valuable and 

highly functional tool in the description of the systematics of nuclear properties. Also, purely 

‘microscopic’ theories have been developed for the description of the atomic nucleus from 

the base of nucleonic interactions via realistic two- and three-body forces [61].  

      Therefore, one can find and assess nuclear models of various kinds available in the 

literature. In the introduction section of Ref. [50], a short review on the different nature of 

nuclear models is presented. Some of the nuclear models which fall into the category of the 

macroscopic-microscopic approach are the improved Bethe–Weizsäcker liquid drop model, 

modified to account for surface and volume contributions as well as Wigner effects [38], the 

finite-range droplet model (FRD) [62,63,64], the Thomas-Fermi Model [65], the Thomas-Fermi 

with the addition of the Strutinsky integral model (ETFSI) [66], the relativistic Hartree (RH) or 

mean field theory (RMF) [67], which it is considered as a successful theory in describing several 

nuclear phenomena [68,69,70], with lots of applications in nuclear astrophysics field [71-76], 

the Wigner-Kirkwood mass formula [51,77,78,79], the Garvey-Kelson model (GK) [80-83], the 

Liran-Zeldes model (LZ) [84], the Koura et al., Koura– Tachibana–Uno– Yamada mass model 

(KTUY) [85,86], the nuclear Lublin-Strasbourg Drop (LSD) model [87,88], an infinite nuclear 

matter (INM) model [89,90], the Weizsäcker-Skyrme model [45,47,91,92,93,94,95], the Duflo-

Zuker mass formula [96-99]. Among the aforementioned nuclear mass models, some 

characteristic examples of global mass models, are the finite-range droplet model, the Duflo-

Zuker mass model, while the Garvey-Kelson model (GK) [37,47] is an example of local 

approximation.  

      At this point, special reference should also be made to the Duflo-Zuker (DZ) mass model 

which is capable to describe measured nuclear masses with a standard deviation of 

approximately 500 keV, if only 10 parameters are included in the fitting procedure, while the 

Duflo-Zuker mass model (DZ33) with 33 parameters achieves the best fit with a standard 

deviation of about 400 keV [49,100]. Also, the Thomas-Fermi statistical model with a well-

chosen effective-interaction [95,101] is used for accurate calculations of nuclear masses. 
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      Additionally, the rapid expansion of computational techniques have opened an exciting 

new era of capabilities in the nuclear structure theory and particularly, in microscopic 

theoretical approaches of nuclear models. To this end, several microscopic nuclear mass 

equations have been suggested based on the Hartree-Fock-Bogoliubov (HFD) mean field 

models with the BSk21 Skyrme interaction (HFB21) [102] (global method [37,50]) or 

alternative with the D1M Gogny forces (GHFB) [103]. Also, the Density-functional theory is 

considered a significant microscopic approach which has also attracted attention since it can 

successfully describe data of known nuclei using relativistic and Skyrme interactions. 

Moreover, neural networks have been recently used for nuclear mass predictions and their 

error’s estimation [104,105].  

      A detailed description of the above nuclear mass models as well as their key ingredients 

and physical interpretation can be found in the references accompanied each of the 

theoretical model. However, a special reference should be made to studies related with an 

accurate determination and predictive power of nuclear mass equations across the years. 

These models were tested and compared both for their ability to precisely predict as-yet-

unknown masses as well as in producing the lower standard deviations (rms) in the selected 

atomic mass regions. A study relevant to the above process was conducted in Ref. [106], 

where ten frequently applied nuclear models of different features were tested and compared 

in different atomic mass regions of nuclear chart. This paper should also be viewed as a 

valuable guidance for future investigations related to the present theoretical framework. The 

proposed nuclear models can be tested incorporating theoretical framework of this work. 

Correspondingly, similar studies can be found in Refs. [38,53,107,108,109,110]. 

     Significant modifications as well as extensions of the Bethe–Weizsäcker mass formula has 

been devoted in the macroscopic parts of some of the aforementioned mass models in order 

to improve its formalism. Some of these modified macroscopic parts were also tested in terms 

of the current investigated topic. In Refs. [4,30,48,53,58,111,112,113,114,115,116], modified 

liquid drop mass formulas, mainly based on the Bethe–Weizsäcker formalism, are tested for 

their ability to describe nuclear masses as well as to predict unknown nuclei. As it will also be 

pointed out in the section of methodology, only the most notable models (among the tested 

ones) for this study, are presented to some extent. An analytical reference of such an 

approach is analyzed in the upcoming chapter 3 of this thesis. However, the theoretical 

formalism of the latter models will also be presented in the upcoming subsection (2.4.2). 

      In addition, a reference should be made to the study [117], where the semi-empirical mass 

formula of Bethe–Weizsäcker is extended with the addition of terms to account for 

macroscopic and shell corrections. The correlations between the terms are examined as well 

as mutual influences that it is possible to be revealed between them. The nuclear models, 

suggested in this paper, were also tested for their efficacy to reproduce the parabolic trend 

of the residuals between doubly magic nuclei which is investigated in the present research. 
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2.4.2 The two LDM formulae: 
 

At this point, two Liquid Drop Mass (LDM) formulas will be presented, as their formalism will 

be employed in the fitting procedure to the experimentally available atomic mass data. 

      Indeed, this subsection shall focus to the demonstration of the general expression of the 

following mass formulas as well as in the physical interpretation of their constituent terms: 

 

1) The BW-mass formula: 

 

      One of the first nuclear models, the BW-mass formula considers the nucleus as a droplet 

of uncompressed fluid which resembles in some ways a classical liquid drop. Based on the 

Liquid Drop Model, the semi-empirical mass formula (SEMF) was derived and estimates fairly 

accurately the systematic behavior of the nucleon binding energy with the mass number [34], 

assessing how much energy is available for consumption [24]. It gives a general description of 

masses and related stability of nuclei [5] and incorporates the essential macroscopic physics 

[37,118].   

      In the liquid-drop model, the binding energy is expressed by a sum of terms which are 

individually functions of the neutron number N, proton number Z, and the mass number 

A=N+Z [119]. Specifically, this formula consists of five terms which are the volume, surface, 

coulomb, asymmetry, and pairing terms. Although refinements to these terms have been 

followed over the years aiming to add additional corrections to existing terms or capture more 

effects, the general baseline expression of the formula is the same today. Modifications to the 

Coulomb and pairing terms expressions have also been proposed by different authors 

[120,121]. Several of these terms were tested and compared for the purposes of the present 

research study to conclude which are the most appropriate for our analysis. 

The nuclear binding energy BE(N,Z) is expressed by the SEMF:  

 

                  𝐵𝐸(𝑁, 𝑍) =  𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

−  𝑎𝑎  
(𝑁−𝑍)2

𝐴
+ 𝑎𝑝𝛿(𝑁, 𝛧)             (5) 

 

where δ(N,Ζ) is:  

                                              (6) 
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      The delta function δ(N,Ζ) relates to the superconductivity  properties of atomic nuclei. 

Since nuclei are systems that are normally at zero temperature, they form cooper pairs that 

are the basic blocks of the electronic superconductivity and thus they are superconductors. 

Hence, the delta function is important to be considered in the mass formula of Eq. (5) [122].  

      Each of the terms in the SEMF (Eq. (5)) has a physical meaning which is based on general 

nuclear properties and forces: 

● Volume energy term (𝑎𝑣): The volume energy term depends on the strong nuclear 
interaction between neutrons and protons when they are near each other. Thus, a 
positive, linear term which accounts for the number of nucleons in a nucleus should 
be added in the calculation of the total binding energy.  

● Surface energy term (𝑎𝑠): The surface term  is a correction to the volume term which 
accounts for the smaller contributions of the surface nucleons. The surface nucleons 
have only a few nearest neighbors and do not interact with as many nucleons as those 
inside the nucleus [123].  

● Coulomb energy term (𝑎𝑐): This term is derived from the Coulomb interaction among 
protons and shows that protons repel each other through the repulsive 
electromagnetic Coulomb force. A nucleus with many protons is forced to a large 
Coulomb repulsion and thus has lower binding energy [123]. 

● Asymmetry energy term (𝑎𝑎): This term accounts for the protons and neutrons 
occupying independent quantum states and it is related to the Pauli principle. The 
imbalance caused by the difference in the number of protons and neutrons of the 
asymmetric nuclei, provides higher energies to the nucleons which are occupied by 
higher energy quantum states creating a more unstable nucleus [123]. 

● Pairing energy term (𝑎𝑝): The final term indicates that nucleons in nuclei tend to form 

pairs. This is physical evidence which is given by the Eq. (6) and shows that when N 
and Z are even, the binding energy is greater, while it is decreased in the case of N 
and Z are odd numbers [123]. Also, for even-odd configurations, the pairing term is 
neglected and there is no physical influence depending on it. 

 
      The coefficients of the terms in Eq.(5), 𝑎𝑣 , 𝑎𝑠, 𝑎𝑐 , 𝑎𝑎 , 𝑎𝑝 , which have a clear physical 

interpretation, as explained above, are presented in the following Fig. 2.6:   
 

 

 

 

 

 

 

Figure 2.6: Schematic explanation of the terms of the semi-empirical mass formula in the liquid drop 

model of the nucleus. Adapted from Ref. [24]. 
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      Moreover, it is worth mentioning that, in Ref. [112], the results show an independence in the 

contribution of the pairing term in the vicinity of closed shell nuclei. The contribution of the pairing 

term to the fitting procedure of doubly magic nuclei has also been investigated in the present 

research work and is analyzed in the methodology and results section.  

      From now on, the mass formula presented by the Eq. (5) will be referred as ‘BW’ and/or 

baseline formula. This is the standard-baseline formula which does the groundwork of the current 

investigated topic.  

 

2) A LDM formula which is a modified expression of the Bethe-Weizsäcker 

one, first introduced in Refs. [30,124]: 

 

      As previously mentioned, the origin of the traditional magic numbers 2, 8, 20, 28, 50, 82, 

and 126, can be explained by the shell model. The original expression of the Bethe-Weizsäcker 

mass formula, Eq. (5), is inadequate to describe the shell closures related to the magic 

numbers and their signature is clearly observed by the large deviations in the residual plot of 

binding energies as a function of the neutron or proton number. Although, modern mass 

formulae, as those presented in the subsection (2.4.1), successfully account for such nuclei, 

light nuclei, especially close to the neutron driplines are also subject to investigation. The 

standard BW mass formula gives an overall description for nuclei of medium and heavy mass 

regions while it is incapable to predict the mass of light nuclei especially for those approaching 

the drip lines. 

      Additionally, the BW mass formula cannot predict new magic numbers and the 

disappearance of some traditional ones. As an example, the unexpected shell closure at 

neutron number N=16 has experimentally been confirmed, making the 24O the heaviest last 

bound oxygen isotope found in nature, ad doubly magic nuclei [16]. 

      These observations notify for necessary modifications that need to be applied to the 

standard BW formula in order to alleviate the above problems. Hence, the interest lies in 

designing a modified version of the BW mass formula which accounts for light nuclei, 

identifying the new magicity or its loss and setting better boundaries in the prediction of the 

neutron drip line.  

      Taking into consideration all the above, a newly modified formula was introduced by 

Samanta and Adhikari [30], from an easy phenomenological form: 

 

BE(A, Z) =  av ∗ A −  as ∗ A
2

3 − ac ∗
Z∗(Z−1)

A
1
3

− aa ∗
(A−2Z)2

1+𝑒
−

𝐴
𝑘

∗ A + 𝑎𝑝 ∗ 𝛿𝑛𝑒𝑤                   (7) 

 

where the constant k is set to 17 (k=17) and associated with the modifications applied to the 

asymmetry term.   
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      Also, a new delta quantity 𝛿𝑛𝑒𝑤 is added in the pairing term, including a constant value 

given by c = 30, while  𝛿 = δ(N, Ζ)  is the old pairing expression as described by: 

 

  δnew = (1 − e−A/c) ∗ δ                                                                 (8) 

 

      This mass equation, Eq. (7), includes modifications to the asymmetry and pairing terms 

and accounts well for light nuclei as well as reveals extra stability associated with particular 

positions of neutron and proton numbers in the light mass region. In this way, the existence 

of new magic numbers was supported or suggested by the above modified formula. In the 

present work, the modified formula presented by the Eq. (7) is referred as  ’LDM1’.  

     Also, it should be stressed that similarly, to the BW baseline formula,  the newly updated 

mass equation, Eq. (7), does not incorporate shell effects, and therefore, large discrepancies 

between the theoretical estimations and experimental exist when trying to justify the extra 

stability near the magic numbers [30].  

      Particularly, at this point it is interesting to compare the optimal parameters obtained from 

a fit of the present generalized BW formula, given by the Eq. (7), with the parameters of the 

BW baseline formula of Eq. (5). To this end, two linear least square fits were performed to all 

the experimentally known binding energies data included in the AME2016 [2,3] text file [125]. 

The best parameters of each fit are displayed with their accompanied uncertainties in the 

following Table 2.1 and the calculation of the goodness of the fit is also considered useful. This 

calculation was conducted using the well-known quantity root-mean-square (rms) 

deviation of the measured binding energies from the estimated values described by: 

 

  𝑟𝑚𝑠 =  √
∑ (𝑀𝑖− 𝑃𝑖)2

𝑖

𝑁
                                                                     (9) 

 

where i is the index of each data point, 𝑀𝑖 is the experimental binding energy, 𝑃𝑖  is the 

predicted value of binding energy from the fit and N is the number of data points involved in 

the fitting procedure, i.e., N is equal to 2494 for the AME2016 tabulation [125].  
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      By inspecting the results of the fit coefficients as well as the calculated rms deviations 

between the experimental and estimated binding energies, for the nuclides presented in the 

entire AME2016 mass table, it is concluded that there is a difference between the results of 

the two fits. Particularly, it can be seen that the incorporation of only two parameters to the 

BW baseline formula leads to a reduction in the rms deviation from 3.61 MeV to 2.99 MeV, 

for the 2494 experimental binding energies of the AME2016 evaluation. The interest also lies 

in particular identifying the role of the LDM1 formula in better describing the light nuclei away 

from the valley of stability, compared to the BW baseline mass formula. To this end, the 

residuals obtained from a fit of the BW baseline formula and the modified LDM1 formula were 

compared for the three isotopic chains of oxygen, beryllium and lithium and are presented in 

the following Figs. 2.7, 2.8 and 2.9, respectively. In each graph ΔΕ denotes the difference 

between the experimental and the corresponding calculated binding energy values.  

      By the inspection of the residuals of the BW baseline formula and the LDM1 formula, it can 

be seen that the additional parameters which have been added to the LDM1 formula 

contribute significantly to the description of the light nuclei in the neutron rich side of the N-

Z plane. Although the modified mass formula lacks shell corrections, its ability is notable to 

describe nuclei further than the stability line, by introducing only two modifications to already 

well-known parameters of the standard BW mass formula.  

      However, is should be noted that the modified mass equation, Eq. (7), has the same 

behavior as the BW mass formula when it comes to the description of heavy nuclei. Large 

deviations in the heavy mass region are also considered evidence for shell closures.  

 

 

Linear Least-Squares Fit to the entire AME2016 mass table 

(MeV) BW formula, Eq.(5) 

rms: 3.61 MeV 

 

LDM1, Eq. (7) 

rms: 2.99 MeV 

av  15.27 ± 0.02 15.84 ± 0.02 

as  16.42 ± 0.07 18.25 ± 0.06 

ac  0.685 ± 0.002 0.721 ± 0.001 

aa  22.17 ± 0.06 23.55 ± 0.05 

ap  10.77 ± 0.88 14.31 ± 0.96 

Table 2.1:  Best fit results of the BW baseline formula (Eq. (5)) and the LDM1 mass formula (Eq.(7)) to 

the experimental binding energies data. 
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Figure 2.7:  Comparison of the residuals obtained from a linear least squares fit of the BW mass formula (Eq. (5)) 

and the LDM1 formula (Eq. (7)), for the oxygen isotopic chain. 

Figure 2.8: Comparison of the residuals obtained from a linear least squares fit of the BW mass formula (Eq. (5)) 

and the LDM1 formula (Eq. (7)), for the beryllium isotopic chain. 

  12O    13O    14O    15O    16O   17O   18O   19O    20O   21O    22O   23O   24O    25O    26O 

 

6Be       7Be       8Be       9Be      10Be     11Be       12Be    13Be       14Be   15Be      16Be    
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Figure 2.9: Comparison of the residuals obtained from a linear least squares fit of the BW mass formula (Eq. (5)) 

and the LDM1 formula (Eq. (7)), for the lithium isotopic chain. 

   4Li           5Li         6Li           7Li          8Li           9Li          10Li        11Li         12Li        13Li 
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2.5 The importance of 3N forces: 
 

      One of the most critical questions in nuclear physics is to understand the nuclear forces 

acting between the nucleons from first principles [126]. Towards this direction, the aim is to 

develop a unified description for all the nuclear systems composed artificially, in the 

laboratory as well as in cosmos based on the underlying forces among the nucleus [127]. In 

this context, the development of a systematic and consistent way to describe the interplay 

between nucleonic interactions in many-body systems have concentrated all the theoretical 

efforts for many years. Particularly, the focus lies on the development and application of 

microscopic many-body approaches that include three-nucleon (3N) forces [128]. Thus, 

nuclear theory has entered an exciting era of structure and reaction calculations driven by 

several developments in many-body methods and theories, which aim to explain phenomena 

and nuclear properties based on nuclear forces [40].  

      The role of the three-nucleon forces in nuclear systems, where more than two nucleon 

interactions are involved, is of major importance for the proper description of nuclei [126]. 

The concept of the 3N forces and their impact on observables was known a long time ago, 

from the early twenty century [129]. The importance of inclusion of the three-body forces in 

the calculations of a trinucleon system was identified in the mid of 1980’s [130,131]. Two 

nucleon interactions alone were not sufficient to describe the experimental binding energy 

for nuclei with mass number A = 3, 3H and 3He [130]. Hence, three-body calculations had to 

be taken into consideration. In this way, an understanding of several phenomena, such as the 

structure of nuclei and nuclear reactions, can be achieved by entirely considering two 

nucleonic interactions coupled with three-nucleon forces [132]. To this end, consistent two-

nucleon and three-nucleon interactions have been established as new standard inputs in 

several theoretical approaches [7]. In the standard meson-exchange theory [133], three body 

forces arise readily as well as in nucleonic interactions from Chiral Effective field theory (EFTs) 

which has a connection to the underlying theory of Quantum Chromodynamics (QCD) 

[134,135].  

      At the most basic level, the strong force is explained by QCD involving the quark–gluon 

interactions. Although Lattice QCD can predict properties of some nucleon states, the detailed 

description of many-nucleon systems based on QCD has not been achieved yet.  

      Chiral effective field theory provides estimates of contributions of interactions between 

nucleons using a scheme parametrized taking into account long-range pion exchange 

contributions and shorter-range contact interactions. These contributions manifest as 

nucleon-nucleon, three-nucleon and even many-body interactions. The appearance of three-

body and other many body interactions is due to the composite nature of nucleons. Nucleons 

are not elementary particles and then they can be effected by external forces which distort 

their constituents. An interesting study which reviews the importance of chiral effective field 

theory in understanding the three-nucleon forces and making unique predictions for even 

higher order many-body forces are presented in Ref. [1]. 
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      Chiral effective field theory interactions are considered the theoretical microscopic input 

for ab-initio theories. Recently, significant progress has been made in the development of ab 

initio theories. This progress was greatly advanced by notable expansions in the following 

fields: nuclear interactions, development of better many body theories, vast increased 

computational power and use of improved algorithms, renormalization group methods 

[136,137].  

      Although, the application of the two nucleon interactions in many body theories is 

relatively straightforward and already established, the calculation of 3N forces has still 

unknown territories. Difficulties arise in creation of original conceptual models and their 

subsequent implementation. This framework is extensively analysed in Ref. [136] and 

references therein.   

      The inclusion of at least three-body forces in theoretical models is of paramount 

importance for an understanding of plenty of phenomena not only in several domains of 

nuclear physics but also in nuclear astrophysics [1]. Particularly, several studies point out the 

key role of three-nucleon forces in the predictions of neutron and proton drip lines as well as 

in understanding the properties of neutron-rich matter which is of great importance for the 

structure of neutron stars.   

      Three-nucleon forces have to be included in theoretical calculations for explaining 

phenomena and addressing questions related to the formation and evolution of the nuclear 

structure [1]. The first evidence of this was the investigation of the dripline in oxygen isotopes 

where the 3N forces make the nucleus 24O doubly magic and a dripline nucleus 

[127,138,139,140,141].       Similar studies conclude that 3N forces significantly contribute for 

the magic neutron number N=28 [142]. Particularly, the so called ‘’oxygen anomaly’’ has been 

explained in Ref. [127] using three-nucleon forces acting in few-body systems and is illustrated 

in Fig. 2.10: 

 

 

 

Figure 2.10: The location of the oxygen anomaly in the neutron drip line is presented. Some 

isotopes of the most neutron-rich nuclei are also highlighted as well as the location of the 

neutron drip line corresponds to the  fluorine and neon isotopic chains. Adapted from Ref. [6]. 
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      The oxygen anomaly cannot be reproduced in shell model calculations that include only 

microscopic nucleon-nucleon interactions. The instability observed in oxygen isotopes with 

mass number from A=25 to A=28, has been attributed to the repulsive interactions among 

excess neutrons and thus are responsible for the change to the position of the neutron drip 

line from 28O to the experimentally observed 24O [127]. Additionally, other many-body 

correlations that may also have an impact in the oxygen anomaly, have been reported in Ref. 

[6] and it is  considered that they are resulting from the dineutron correlation [143,144] and 

continuum coupling [145].  

      In a similar manner, the magic nature of the neutron number N=28 and its origin was 

investigated for the doubly magic nucleus 48Ca [142]. On the contrary, among the well-

understood magic numbers N = 2,8,20, the magic number N=28 could not be reproduced using 

theoretical approaches which involved only two-nucleon interactions. The outcome of  

theoretical calculations revealed that the origin of the N=28 magic number is attributed to the 

three-body forces which manifest as repulsive interactions between two valence neutrons 

[142]. In this way, the magic character of N=28 in the doubly magic nucleus 48Ca,  leads to a 

high 2+ excitation energy  as well as to an enhanced magnetic dipole transition strength [142].  

      The later findings related to the oxygen and calcium neutron-rich isotopes established 

even more the importance of investigating the neutron-rich matter in terms of many-body 

interactions and developing relevant theories.  

       Additionally, neutron drip lines are particularly important in addressing questions on the 

r-processes which occur in the formation of the heavy elements in neutron-stars mergers [18]. 

Therefore, mapping and investigating the location of neutron rich regions accurately based on 

the effect of three-nucleon forces on stability is important [1].  

      Neutron-rich matter physics are distinguished by the wide range between extreme 

situations. In very low densities, where the distance between particles is large, the systems’ 

properties depend on S-wave scattering and the effects of nuclear forces are not significant. 

This state resembles that of cold atomic gases. In intermediate densities, the energy-density, 

which is a function of the properties of nuclear matter, is used to describe the physics of 

neutron-rich nuclei which is important to determine the synthesis of heavy elements. In the 

other end, at higher densities, far away from the nuclear densities, scarce information exists 

on the properties and composition of nuclear matter. Three-body forces are needed to explain 

the neutron-rich matter’s properties at nuclear densities. Specifically, three-nucleon forces 

direct the saturation of symmetric nuclear matter [146,147]. Also, three-nucleon 

contributions, although they are small, are considered important for the equation of state 

(EQS) of neutron-rich matter and consequently for the symmetry energy and its density as 

well as the neutron stars’ structure [1].  
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Chapter 3 

Methodology 
 

 

The purpose of this chapter is to present the research design and philosophy adapted for the 

investigation of the present research topic.  

      Particularly, the research steps as well as the different computational tools and strategies 

that were assigned for the data interpretation are described.  

      Once the overarching rationale of the investigated topic is presented, the most important 

findings of this research are included in the results’ section. 

 

 

3.1 Research Strategy: 

 

3.1.1 Research Approach: 
 

      Starting from the general form of the BW mass formula, local fits were conducted in order 

to get an optimum set of coefficients, which satisfies our theoretical aims. By the term ‘local 

fit’, it is meant a fit which involves nuclei with specific characteristics such as only doubly magic 

nuclei, only symmetric (N=Z) or asymmetric (N≠Z) subsets of nuclei, fits restricted to groups 

of nuclei (precisely measured nuclei or nuclei in certain atomic mass regions etc.). As it was 

previously discussed in subsection (2.4.2), the BW formula, which predicts binding energies of 

nuclei, incorporates the standard volume, surface, coulomb and asymmetry terms, 𝑎𝑣 , 𝑎𝑠 , 𝑎𝑐 

, 𝑎𝑎, respectively, while the pairing coefficient , 𝑎𝑝, is added as free or fixed parameter in the 

fit, for a slight better description of the residuals when needed. 

      In the present analysis, a residual is defined as the difference between an experimental 

value and the corresponding predicted binding energy. Specifically, each experimental value 

is approximated by a theoretical prediction, thus according to the definition a corresponding 

residual is calculated. The residuals are considered as an important optimization tool for the 

validation of a theoretical approach. By conducting a fit of a model to experimental data and 

then calculating the residuals, the adapted phenomenological approach can be validated. 

      Once the theoretical formulation and the experimental binding energy data was chosen, a 

fit to the binding energy data followed. When a fitting procedure was completed, the results 

of the fit were the estimated coefficients and the residuals. 

       Following visual inspection of the residuals, it should be no surprise if the predictions are 

somehow poor as the BW mass model has limited predictive power and misses important 

underlying physics. However, as it was stated in the introduction, this was not the point of 

interest here. The focal point is the behavior of the residuals examined for even-even nuclei 
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chains bound at each end by doubly magic nuclei. These nuclei groups were chosen to 

reproduce, the also previously observed [117], parabolic-like shape of the residuals calculated 

between two doubly magic nuclei.  

      At this point a reference should be made to the exclusive use of the even-even nuclei - 

nuclei with an even number of both protons and neutrons - in the following analysis. In 

general, even-even nuclei are considered more stable configurations. This is also reflected in 

the pairing term of the BW baseline formula, where even-even nuclei give rise to an increase 

in the binding energy which is also explained by the nuclear shell model. On the contrary, and 

according to the nuclear shell model, in an odd mass number nucleus unpaired nucleons or 

holes exist which result into additional interactions among the nucleons. 

The present work was realized according to the discrete steps: 

1) The BW formula was fit to the experimental binding energies of the traditional doubly 

magic nuclei and the resulting parameters were used in the steps below.  

2) The residuals of the doubly magic nuclei were calculated.  

3) The residuals of interest were those which corresponded to doubly magic nuclei in 

the edge of selected nuclei chains.  

4) The residuals in the ends of the selected atomic mass chains (residuals of doubly 

magic numbers) should have both close values, ideally near zero values. From now on 

this basic assumption should be referred as first condition.   

5) Using the BW formula with the already estimated parameters, the residuals for even-

even nuclei bound by doubly magic numbers were evaluated.  

6) If these residuals appeared in a parabolic-like shape, we consider this as the second 

condition that should be satisfied for proceeding to the next steps.  

7) If the first condition (step 4) and the second condition (step 6) were satisfied, the 

analysis proceeded with the fit of the BW formula enriched with two additional terms 

which has been assumed to be related to NN and 3N forces. This fit was applied to the 

same even-even nuclei as in step 5.  

8) The derived residuals should minimize the observed parabolic-like shape described in 

step 6. 

 

The above steps are presented schematically in the following Fig. 3.1: 

 

 

 

 

 

 

 

 

Fit of the BW formula to DM data: Estimation 

of the parameters 

 

 

Calculation of the Residuals 
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Figure 3.1: Schematic representation of the research steps followed in this work. 

Selection of nuclei chains bound by DM nuclei  

Attention given to the residuals of DM nuclei 

 

First condition:  

The residuals of the doubly magic nuclei in the 

selected atomic chains should both have close 

values or be ≈ 0 

 

Calculation of the residuals of the in-between 

even-even nuclei 

Second condition: 

The calculated residuals of the even-even 

nuclei should lie in a parabola-like form in the 

Residuals- A plane. 

If the first and second conditions are satisfied, 

fit the BW formula with the NN and 3N terms 

added to the same nuclei as in step 5. 

New residuals should now lie in a near zero line  
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      A repeated routine of the above steps were also occurred when the LDM1 formula was 

also used to fit the traditional doubly magic nuclei plus the doubly magic nucleus 24O. 

      It is necessary at this point to start introducing the suggested valence-shell corrections and 

identify how the modified BW formula, with the inclusion of these two additional terms, 

contributes to the description of the parabolic trend of the atomic masses. By modified BW 

formula is meant the enriched BW baseline formula, neglecting or not the pairing 

contribution, plus the additional microscopic valence shell corrections, that has been assumed 

to be given due to NN and 3N body forces, and is presented as follows:   

 

𝐵𝐸(𝑁, 𝑍) =  𝑎𝑣 ∗ 𝐴 − 𝑎𝑠 ∗ 𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 𝑎𝑝 ∗ 𝛿(𝑁, 𝛧) + 𝑁𝑁 + 3𝑁 (10)   

 

      The first terms  𝑎𝑣, 𝑎𝑠, 𝑎𝑐 , 𝑎𝑎 ( with or without 𝑎𝑝 ) of the modified BW formula refers to 

the nuclear energy part of the corresponding  BW baseline formula and they remain the same 

in terms of mathematical expressions.  

      The mathematical expression of the suggested additional terms, NN and 3N terms, as well 

as their physical interpretation are extensively discussed in the upcoming subsection (3.1.2). 

Also, as the fit was applied only to the even-even nuclei, the delta function of the Eq. (10) can 

be simplified as: 

 

 𝐵𝐸(𝑁, 𝑍) =  𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗ 𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 𝑎𝑝 ∗

1

𝐴1/2 + 𝑁𝑁 + 3𝑁       (11) 

 

      From now on the notation ‘M’ next to BW mass formula, BWM, indicates that a fit was 

conducted after the inclusion of the microscopic valence-shell corrections, given by the NN 

and 3N terms, to the nuclear energy part of the BW baseline mass model.  

      The criterion for an improvement between the initial BW residuals and the residuals given 

by the modified BW formula Eq. (11),  is a decreasing trend in the plot of the residuals versus 

the mass number of the nuclei.  

      The theoretical framework of the present research study is only a phenomenological 

approach where closed-shell configurations provide a convenient approximation and one can 

assume their neighboring nuclei into a valence-configuration space. The viability of this 

approach has been previously demonstrated in several publications [7] and it is characterized 

as an effective approach. The strategy introduces inert cores and treats the effects which are 

maybe resulted by the NN and 3N forces, as a consequence of the interactions of a smaller 

number of valence nucleons lying between the two closed shells.  

      To this end, we consider the doubly magic nuclei, as inert cores and then we let the valence 

nucleons of the even-even magic (or not) nuclei to be affected by what has been assumed to 

be given by two and three body forces. It is an approximation which simplifies the problem. 
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By considering inert cores and NN and 3N forces in the valence space, the theoretical approach 

and assumption of the present study will be applied to specific atomic mass regions and not 

to all nuclei.  

 

 

3.1.2 Physical and Mathematical explanation of the suggested 

valence-shell corrections: 
 

Having described in detail the phenomenological approach of this work, attention should be 

given to one important characteristic feature which drives the formalism of the proposed 

terms related to the valence shell corrections which have been assumed to be due to the two 

nucleon and three nucleon forces. The mathematical expressions of the NN and 3N terms, 

included in Eq. (11), can reproduce the parabolic pattern that should be observed in the 

residuals of the selected atomic mass region, starting, and finishing to closed shells (doubly 

magic nuclei). Specifically, the in-between residuals of nuclei, as it was stated, should lie in a 

form resembling a parabola, reaching a maximum in the middle of the shell. From now on, the 

notation ‘DM’ will be used as a shortcut for the ‘Doubly Magic’ nuclei. In the following Fig. 3.2, 

a schematic representation of the expected parabola of the residuals calculated between two 

DM numbers, using the Eq. (5), in a selected nuclide chain, is given:  

 

 

 Figure 3.2: Expected parabola of residuals calculated using the BW baseline formula  (Eq. (5)), 

between two DM numbers (DM1 and DM2), in a selected nuclide chain. 
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      Therefore, the mathematical expressions of the proposed terms should present a parabolic 

function or in other words a U-shaped curved line. With such a way, the suggested terms are 

mathematically comparable with the residuals of the even-even nuclei which also expected to 

follow a parabola.  

      So, the question is, what are the physical quantities that can be incorporated in the 

expressions of the proposed terms and follow a U-shaped line? 

      In several studies shell corrections terms have been proposed from the standpoint of their 

dependence on the valence nucleons [117,148,149,150]. In like manner, the formalism of the 

current suggested terms refers to the description of NN and 3N body forces from the base of 

the independent particle model and is expressed as a function of the valence nucleons. 

Beyond a doubly magic core the number of valence nucleons are increased up to mid shell, as 

fill in orbitals of higher energies, and then decreased till they reach the next magic number of 

neutron and proton forming closed shell orbitals for both protons and neutrons. 

      This systematic behavior of the valence neutron (or proton) particles or holes counted 

from the nearest closed shell, is indicated in the structure of the suggested expressions which 

have been assumed to be provoked due to the two nucleon and three nucleon forces. Indeed, 

according to our hypothesis, the NN and 3N forces, which are described as a function of the 

valence nucleons, should be evident in the selected atomic mass regions, in a way which are 

capable of reproducing the parabolic pattern of the valence particles or holes. 

      As a result, the phenomenological shell-model interactions of NN and 3N forces that have 

been proposed in this research and describe the behavior of the valence nucleons between 

two closed shells, are mathematically expressed through the equations :  

 

𝑁𝑁 = 𝐵 ∗ [𝑛 ∗ (𝑛 − 1)]                                                               (12) 

3𝑁 = 𝐷 ∗ [𝑛 ∗ (𝑛 − 1) ∗ (𝑛 − 2)]                                                     (13) 

 

where B and D are free parameters to be estimated from the fit as before and 𝑛 is the number 

of valence nucleons (particles or holes) of each nucleus counted from the nearest closed shell.     

      Evidently, the microscopic terms of NN and 3N terms, given by the Eqs. (12) and (13), 

respectively, are linear in the number of valence particles (or holes). They are parametrized 

employing the valence nucleons which given by the sum of the valence protons (𝑛𝑝) and 

valence neutrons (𝑛𝑛) counted from the nearest closed shell.  

      By construction, the formulas representing the NN and 3N contributions lie on a parabola 

as a function of valence nucleons. Starting from a closed shell configuration for both protons 

and neutrons, the valence particles for nuclei behind the mid-shell follow an increasing trend, 

while valence holes, correspond to nuclei approaching the next doubly magic shell-closure, 

are gradually decreased their number.  
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      The NN and 3N terms have a clear physical interpretation which is comparable to the 

proton behavior due to Coulomb repulsion. Particularly, the NN term shows that each of the 

𝑛 valence nucleons interacts with the (𝑛 − 1) others. The same logic is applied to the 3N term, 

where it is considered that a valence nucleon interacts with the others (𝑛 − 1) ∗ (𝑛 − 2) but 

not with itself. 

      Firstly, the estimation of the number of valence protons and neutrons is necessary for the 

calculation of the total number of valence nucleons 𝑛 as defined by the expressions of NN and 

3N forces, Eqs. (12) and (13),respectively.  

      The calculation of the number of the valence neutrons of a nucleus can be estimated using 

the following Eqs. (14) and (15) based on two main conditions. Starting from a doubly magic 

shell closure, the first condition indicates that if the number of neutrons of a nucleus is smaller 

or equal to the number of neutrons of the mid shell nucleus, then the Eq. (14) should be used.  

In this case, valence particles are counted from the nearest closed shell. In contrast,  if the 

number of neutrons contained in a specific nucleus is greater than the number of neutrons of 

the mid shell, then the Eq. (15) is valid. Similar expressions hold for the number of valence 

protons 𝑛𝑝. The formulas for the calculation of the valence neutrons (or protons) are also 

reported in Ref. [38].  

 

● 𝐼𝑓 𝑁 ≤  𝑁𝑚𝑒𝑑   ∶    𝑛𝑛 = 𝑁 −   𝑁𝑐                                                         (14) 

● 𝐼𝑓 𝑁 >  𝑁𝑚𝑒𝑑   ∶     𝑛𝑛 = 𝑁𝑐+1 − 𝑁                                                      (15) 

 

where  N is the number of neutrons (or protons) corresponds to a particular nucleus, 

𝑁𝑐 symbolizes the first closed shell – right behind the formation of the valence space – and 

corresponds to the traditional magic numbers of neutrons or protons:  

 

𝑁𝑐 = 2, 8, 20, 28, 50, 82 ,126                                                            (16) 

                                                       and their mid closures:  

𝑁𝑚𝑒𝑑 =  5, 14, 24, 39, 66, 104                                                           (17) 

 

      Also, the 𝑁𝑐+1   is the number of magic neutrons (or magic protons) of the next nearest 

closed shell. 

      Although the mathematical expressions of NN and 3N terms described by the Eqs. (12) and 

(13), respectively, present the bottom line of the current formalism in terms of the physical 

interpretation, transformations to their mathematical expressions were necessary to be 

applied. The interesting thing here is to understand the reasons behind these changes. Several 

fits and tests have been made which drove the investigation towards this direction and to the 

application of the relevant corrections to their initial formulas.  
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      To start with, modifications are applied to the mathematical functions of NN and 3N body 

forces so as to make them reflect the right correlations between the nucleons. Once the inert 

core has been specified and the valence space is introduced, correlations between the active 

nucleons should be generated in the U-shaped line in such a way where their strength will be 

more notable in the beginning and softer around the mid shell. In order to get such 

mathematical expressions that produce satisfactory results for both NN and 3N terms, it is 

essential to minimize the slope originating in the previous formulas, Eqs. (12) and (13).  

      The minimization of the slope permits to reproduce the right concept of interactions 

between the nucleons in the parabolic plot and introduces corrections to their behavior 

especially around the mid shell. The initial expressions of NN and 3N terms, Eqs. (12) and (13), 

respectively, show a sudden overshooting of the correlations among the valence nucleons 

around the mid shell while at the same time do not account for the proper strength of 

nucleonic interactions right after the doubly magic shell core.  

      Therefore, it is found that a correct representation of the correlations of the valence 

nucleons between two closed shells can mathematically expressed through the following 

equations:  

 

NN = B ∗ (nmax *( nmax -1)) - (nmax– n)*( nmax − n − 1)                          (18) 

3N = D ∗ (nmax *( nmax- 1)*( nmax − 2))-(nmax– n)*( nmax − n − 1) ∗ ( nmax − n − 2)  (19) 

 

where similarly, B and D are parameters to be estimated from the fit, the notation n refers to 

the number of valence particles (or holes) for each nucleus counted from the nearest closed 

shell and nmax corresponds to the valence nucleons of the mid-shell nucleus. The notation 

nmax reflects the fact that the mid-shell nucleus has the maximum number of valence 

nucleons in the U-shaped line. 

      If one examines the connection between the mathematical expressions of the initial NN 

and 3N terms (Eqs. (12) and (13)) and the final ones (Eqs. (18) and (19)), it is evident that these 

expressions are not so different. Particularly, although the final expressions of NN and 3N (Eqs. 

(18) and (19)) are written relevant to the valence nucleons of the mid shell, the strength of 

NN and 3N terms, as expressed initially by the Eqs. (12) and (13), is still there. 

      As an example, an instructive and inspirational point which drove the research towards in 

modifying the initial mathematical expressions of NN and 3N terms, was the trend of the 

residuals, given by a fit of Eq. (11), for the even-even nuclei between the two closed shells 
100Sn and 132Sn. Particularly, for a better understanding of the physical reasons which altered 

such modifications, it is worth deserved to include some relevant plots for a visual inspection 

of the behavior of each function based on the number of the valence particles of each nucleus. 

Particularly, a comparison of the plots generated by the initial NN and 3N terms, Eqs. (12) and 

(13), and the new ones, described from the Eqs. (18) and (19), are presented afterwards in 

Figs. 3.3 and 3.4, respectively. In this example the valence particles, correspond to the even-

even nuclei between the DM closed shells, 100Sn and 132Sn, are shown. As the interest lays on 
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comparing the mathematical functions of NN and 3N terms, before and after the appropriate 

changes, the parameters B and D was assumed to have a value equal to 1 keV.   

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100Sn   102Sn  104Sn   106Sn  108Sn  110Sn  112Sn  114Sn  116Sn  118Sn  120Sn  122Sn  124Sn  126Sn  128Sn   130Sn  132Sn 

 

Figure 3.3: The contributions of NN, 3N and NN+3N. They were calculated using Eqs.(12) and (13) with  B = D = 1 keV. 
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      By inspecting the values of the initial NN and 3N expressions, Eqs. (12) and (13), presented 

in Fig. 3.3, and comparing them with the corresponding outcomes of the final expressions of 

NN and 3N, Eqs. (18) and (19) of Fig. 3.4, it is obvious that the final functions of NN and 3N 

have been modified to account more for the valence interactions ranging from zero (inert 

core, 100Sn) to the start of the valence space and this is the correct physical approach. For 

instance, if one performs the relevant calculations, in the final expression of NN, the DM 

nucleus 100Sn with zero number of valence nucleons, suddenly increases its strength from 0 to 

58 keV, for the magic nucleus 102Sn, from 58 keV to 108 keV for next nucleus 104Sn and so on. 

On the other hand, if one looks at the corresponding value of the magic nucleus 102Sn given 

by the initial expression of NN, it is evident that only a small number of valence nucleonic 

interactions are generated from the closed shell to first open shell. In addition, at the midshell 

(around the magic nucleus 116Sn), there is a sudden increasing in the number of correlations. 

The last statement is not in compliance with the physical interpretation of the suggested 

correlations.  

      It is evident that the initial mathematical expressions of NN and 3N, presented in Fig 3.3, 

consider a stronger effect of valence interactions around the midshell while underestimate 

the valence interactions right after the DM shell closures. Applying the appropriate 

transformations to their initial functions, the NN and 3N expressions of Fig. 3.3, are now 

 

 

 

 

100Sn   102Sn  104Sn   106Sn  108Sn  110Sn  112Sn  114Sn  116Sn  118Sn  120Sn  122Sn  124Sn  126Sn  128Sn   130Sn  132Sn 

 

 

 

Figure 3.4: The contributions of NN, 3N and NN+3N terms. They were calculated using Eqs. (18) and (19) with B = D = 1 

keV. 
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capable to describe the correlations between the valence nucleons giving a stronger picture 

at the edge and softer at the midshell. In such a way, the new final expressions have a slope 

which reflect that in the midshell all the correlations have been already generated. Therefore, 

the U-shaped line is now smooth around the midclosure magic nucleus, 116Sn. Therefore, in 

the results section, the analysis related to the expressions of the Eqs. (18) and (19), is only 

considered.  

      Given that the background theory of these expressions has been fully presented, it is 

important to make a remark on a practical component of the data analysis related to the 

calculations. As it is already pointed out, by construction the NN and 3N terms are expressed 

as a function of the valence nucleons. Therefore, a code which is applicable to calculate the 

valence particles or holes for all the nuclei, it was necessary to be produced. The same code 

can also be applied efficiently to a larger dataset such as the entire mass16.txt file which 

includes both odd and even numbers of neutrons and protons. The main thing is to correctly 

define which are the magic numbers of shell closures for protons and neutrons as well as their 

mid shells and then based on the Eqs. (14),(15),(16),(17) to construct the problem. The code 

was written in python programming language, and it is able to print output data of valence 

neutrons or valence protons or valence nucleons for a nucleus with N neutrons and Z protons. 

The latter is presented in the Appendix B of the present thesis and was named as 1st code. 

Also, a more simplified and sorter version of the same code was produced for the calculation 

of the valence nucleons. This code is also included in the Appendix B and was named as 2nd 

code. However, in this code changes to the number of protons, Z, and mass number, A, should 

be applied manually and then the code can generate the valence nucleons (particles or holes). 

It is important to acknowledge that both codes constructed based on the equations presented 

in the paper [38]. 
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3.1.3 Regions of Interest: 
 

 

      The selected atomic mass regions, where the BW estimated parameters were applied and 

the residuals were calculated, should contain even-even nuclei either of the same isotonic or 

isotopic magic chain or any other chain in the nuclear chart which necessarily is characterized 

by the presence of two doubly magic nuclei for the application of the analysis’ steps described 

in the subsection (3.1.1). The first closed shell and its higher energy successive. From now on, 

these selected atomic mass regions are named as regions of interest. 

      As an example , the calcium isotopic chain includes the doubly magic nucleus calcium-40 

(40Ca) while the next confirmed doubly magic nucleus, in the same chain, is  calcium-48 (48Ca). 

In a similar manner, more atomic mass regions, such as the tin chain (from the doubly magic 

nucleus 100Sn to doubly magic nucleus 132Sn), two diagonal chains (from the doubly magic 

nucleus oxygen-16 (16O) to doubly magic nucleus 40Ca and from 40Ca to doubly magic nucleus 

nickel-56 (56Ni)) as well as one isotonic chain of N=28 (from 48Ca to 56Ni), can also be used to 

test the present theoretical framework as they are in step with the forementioned rule. The 

term diagonal, which was coined in this work, refers to nuclei chains between two DM nuclei 

numbers, which are called so because of their appearance in the N-Z plane, also having the 

property N=Z. These two diagonal chains belong to the light and medium atomic mass regions 

of the nuclear chart.  

      However, as we are only interested in even-even nuclei that are included between two 

doubly magic nuclei, only a few atomic mass regions are currently available for testing our 

theory due to the lack of experimental atomic mass data for the doubly magic nuclei.  

      As shell closures were considered the traditional magic numbers which correspond to 

proton or neutron numbers equal to 2,8,20,28,50,82 and 126. Due to the limited availability 

of atomic mass data for doubly magic nuclei, the heaviest isotopic chain that can be utilized 

to apply the present theoretical framework, is the tin (Sn) chain. However, the heaviest doubly 

magic nucleus that is involved in the fitting procedure of the DM nuclei is the lead-208 (208Pb) 

with 82 protons and 126 neutrons.  

      Following the description of the profile of the regions of interest, one could wonder about 

one more atomic mass region which follows the rule of two doubly magic nuclei along the 

same isotopic chain, but it is not included in the analysis. In general, the truth is that one can 

consider at least two more chains of even-even nuclei which lie between two doubly magic 

nuclei. 

      One of these chains corresponds to the Helium isotopic chain which includes the two 

doubly magic nuclei, helium-4 (4He) and helium-10 (10He). Although fits have been conducted 

to the DM nuclei when the 4He and 10He were also involved, it was concluded that a fit, without 

taking into consideration very light nuclei, gives more considerable results for our case study.  

      Therefore, very light nuclei with mass number smaller than A=16 were not considered in 

the final results of the analysis. Also, as stated before, the simple liquid-drop concept, as 

formulated from the BW mass formula, is not capable to predict very light nuclei as well as 

very exotic heavy nuclei and thus fits to a restricted dataset, or in subsets of this dataset, with 

mass number ranged from A=16 to A=208, were mainly performed. 
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      Additionally, one more isotopic chain was tested in terms of our theoretical approach. This 

isotopic chain corresponds to the oxygen isotopes. Starting from the first doubly magic shell 

core, oxygen-16 (16O), valence nucleons of even-even nuclei are considered in the valence 

space, until the next experimentally confirmed doubly magic nucleus, oxygen-24 (24O) to be 

reached. The results from this fit as well as the theoretical formulation that was used for the 

inclusion of the DM nucleus 24O, are presented in the results’ chapter. 

      Based on the instructive Fig. 3.5 of chart of nuclides, a schematic representation of each 

of the selected atomic mass regions including the even-even nuclei lay between two 

traditional doubly magic shell closures, is also given. Particularly, the regions of interest were 

the calcium chain (Z=20) (Fig. 3.6), the tin chain (Z=50) (Fig. 3.7), the two diagonal chains (Figs. 

(3.8) and (3.9 (RHS))) and the isotonic chain (N=28) (Fig.(3.9 (LHS)). In these regions, the best 

parameter’s fit were applied, and the BW calculated residuals (initial) were compared with 

those obtained considering the additional NN and 3N expressions. 

 

 

       

 

 

 Figure 3.5: Graphical presentation of the five main regions of interest, depicted on the nuclear chart, used for 

testing the current theoretical framework. Image source [151]. 
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Calcium Isotopic Magic Chain (Z=20):  

 

 

 

Tin Isotopic Magic Chain (Z=50): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The magic chain Z=20 of the calcium isotopes. It is one of the regions of interest, where even-even 

nuclei included between the two DM nuclei, 40Ca and 48Ca, were used to apply the present theoretical framework. 

The arrows assist to understand the process of counting valence particles or holes starting from the nearest closed 

shell. Nuclear chart data were taken from Ref. [152]. 

Figure 3.7: The magic chain Z=50 of the tin isotopes. It is one of the regions of interest, where even-even nuclei 

included between the two DM nuclei, 100Sn and 132Sn, were used to apply the present theoretical framework. 

The arrows are used as it was explained in Fig. 3.6. Nuclear chart data were taken from Ref. [152]. 
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Diagonal Chain from the DM nucleus 40Ca to DM nucleus 56Ni 

 

 

 

 

 

 

Diagonal Chain from the DM nucleus 16O to the DM nucleus 40Ca Isotonic Chain N=28 

Figure 3.8: The diagonal chain from the DM nucleus 40Ca to DM nucleus 56Ni. Region of interest, where even-

even nuclei included between the two DM nuclei, were used to apply the present theoretical framework. 

Nuclear chart data were taken from Ref. [152]. 

Figure 3.9: At the LHS: The isotonic magic chain N=28.  Region of interest, where even-even nuclei included 

between the two DM nuclei, 48Ca and 56Ni, were used to apply the present theoretical framework. Nuclear chart 

data were taken from Ref. [152]. At the RHS: Presentation of the diagonal chain from the DM nucleus 16O to the 

DM nucleus 40Ca. Region of interest, where even-even nuclei included between the two DM nuclei, were used to 

apply the present theoretical framework. Nuclear chart were taken from Ref. [152]. 
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3.1.4 Experimental Inputs: 
 

      The BW mass formula, Eq. (5), provides a convenient starting point for the description of 

the nuclear systems and also was used as a baseline for the application of the present theory. 

The model is described by a set of 5 parameters which some of them can be slightly varied 

depending on the needs of the calculations. Details about the structure of the model and its 

underlying theoretical basis can be found in subsection (2.4.2). 

      In this work, the parameters of the BW formula were obtained by using the comprehensive 

database of nuclear masses, which is the atomic mass evaluation generally referred to as 

AME2016 and was published in March 2017 [2,3]. However, the most up-to-date atomic mass 

evaluation is the one given by the AME2020 [55,56] and includes updated information to the 

experimental data recorded in the previous AME2016 database. Updated experimental data 

of the AME2020, were only used for comparison purposes, when needed, and for certain 

nuclei. This was mainly to identify any possible changes to the accuracy of the experimental 

measurements compared to the last published database. A detailed explanation of the 

reasons and the importance of a more precise determination of atomic masses will be further 

discussed in an upcoming section (3.3). 

      The AME2016 table, which lists atomic and not nuclear masses, contains the best values 
for atomic masses and their uncertainties. Information on the evaluation philosophy and 
general procedures for the implementation of the mass measurements, are briefly given in 
section (2.3) of the present thesis. An extended description is also provided in the Refs. [2,3]. 
Estimates for unknown masses were made by extrapolation from neighboring known data 
[53] and are also included in the mass table.  
 
      A reference has already been made to the inherent relationship of nuclear masses and 

binding energies. In the present analysis, the quantity of interest is the binding energy of 

atomic nuclei. The mass tables contain the values of atomic masses and other derived 

quantities. The binding energies of nuclei can easily be derived once one knows the nuclear 

or atomic masses Eqs. (1),(2) and (3),(4), respectively. The binding energies are reported in 

the mass table in keV units, while the atomic masses are given in mass units and all the rest 

physical quantities also in energy units. 

      The results of the present work were obtained using only the experimentally measured 

nuclei – several reported masses and their uncertainties are extrapolated from systematics 

and marked with the symbol # in place of the decimal point were not taken into account. In 

the mass list, information relevant to the mass excess of each nucleus are also given which is 

an alternative way to look at binding energy. However, columns which record data 

corresponding to the mass excess (keV), beta-decay energy (keV), atomic masses (micro-u) as 

well as their accompanied uncertainties, are not considered in the process of analysis. 

      A typical page of the atomic mass table AME2016 is presented in the Fig. 3.10. Several 

physical quantities, which are shown, correspond to experimental and extrapolated atomic 

mass data. 
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      These atomic mass data are part of the atomic mass evaluation AME2016 table and are 

included in the mass16.txt file, accessible online, and was used as the main data file for the 

present research work. The source of mass16.txt file for downloading can be found in Ref. 

[125] and is provided by the Atomic Mass Data Center (AMDC).  

      In Fig. 3.10, it is observed that some measured experimental binding energies 

accompanied with zero values of uncertainties. As reported in Ref. [3], a zero value should be 

considered as an uncertainty smaller than 0.5 eV or 0.0005 keV. This is an important feature 

that one should take into consideration, especially in the case of a weighted least squares fit. 

The definition of the ‘chi-squared’ function reflects that the values of the weights should be 

necessarily different from zero, otherwise the ‘chi-squared’ cannot be solved. Hence, in case 

of using a software programme to carry out calculations or developing a code to solve 

analytically or numerically the regression problem, an error indication will be observed in the 

used algorithm.  

      In the original AME2016 text file [125], the total number of experimental and extrapolated 

atomic mass data are 3435 and correspond to ground state masses [2]. From them, the 2497 

nuclei are experimental measured values while the rest 938 nuclei correspond to extrapolated 

mass data. As previously explained, the latter were neglected from the present analysis. It is 

also quite interest to emphasize the variation in the magnitude of uncertainties for different 

nuclei included in the mass table. A table shown the most accurately determined atomic 

masses of 16 nuclides is presented in Ref. [3]. The atomic masses for these nuclei correspond 

to values of uncertainties of less than 1 eV. It is worth noting that the doubly magic nucleus 

oxygen-16 (16O) is in the list of the most precisely measured nuclei.  Also, in the first published 

article [2] of the atomic mass evaluation, AME2016, a distinction of the 2497 experimental 

atomic mass data based on the magnitude of their uncertainties is noted. Particularly, it is 

written that there is an accuracy greater than 0.1 keV for 111 nuclei, while 378 and 1477 of 

them are determined with a precision greater than 0.1 keV and 10 keV respectively.  

      Additionally, special care should be also given in the case of including the experimental 

uncertainties in the fitting procedure, as one should be cognizant of the presence of 153 nuclei 

which are not precisely determined and have values of uncertainties larger than 100 keV. In 

 

 

 
Figure 3.10: Extract from the atomic mass data compilation (AME2016) [125]. The decimal 

point was replaced by # for (non-experimental) estimated values. 
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such case, the more dominant nucleus is the more well determined than the rest participating 

in the fitting procedure. An extensive explanation of the last statement will be given in the 

upcoming section (3.3).  

      The reading of the data file is made using the Python programming language. Once the file 

has been accessible, cleaning and restructuring of the raw material of mass16.txt file was 

performed so as to simplify its version and applied appropriate adjustments to its physical 

quantities, when needed.  

      To this end, the quantity ‘total binding energy in MeV’ (BE (keV)) was calculated from the 

binding energy per particle (BE/A (keV)) and a change to the energy units was also made, from 

keV to MeV. It should be noted that the fit is not affected by this change. It is just a scale of 

factor in terms of units. The value of uncertainty accompanied each of the experimental 

binding energy should also be adjusted accordingly to the modifications occurred to the latter 

value. On the contrary, when a linear regression fit of the BW form of binding energy per 

particle to the entire mass16.txt file, is occurred and compared with a second fit of total 

binding energy, the difference between the best fit coefficients obtained by these two fits, is 

quite considerably different. The reason behind this difference will be explained in the 

upcoming section (4.4). The last statement shows the importance of always choosing an 

appropriate scale for the data before the start of the analysis. 

      It should be also stressed that considering a fit to the quantity total binding energy instead 

of binding energy per particle and vice-versa, one should also apply the appropriate 

modifications to the mathematical expressions of BW baseline formula (Eq. (5)) or LDM1 

formula (Eq. (7)), by multiplying (or diving) with the mass number A each term of the 

equations.  

      Also, specific sets of nuclei which were considered inappropriate for the present analysis 

were removed (such as very light nuclei of hydrogen isotopes, extrapolated nuclei etc.) and a 

file which contains only experimental inputs of a particular interest to the current 

investigation was used. These nuclei are the even-even nuclei and are in total 649. 

Consequently, the data presented in Table 3.1, were adapted as the main input of the present 

work, which then it was used to generate further restricted data sets as well as to extract 

nuclei of particular interest in terms of their characteristics, such as the doubly magic nuclei.  
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3.2 Regression Analysis: 
 

      The BW baseline mass formula has been extended to account for microscopic shell 

corrections that has been assumed to be due to the NN and 3N terms as a function of valence 

nucleons. Using the raw data of experimental binding energies, provided by AME2016, 

different local fits, included exclusively even-even nuclei across the nuclear landscape, were 

conducted to get the most optimal set of parameters for the description of the parabolic 

shape observed in atomic mass regions between two doubly magic nuclei. Having described 

the theoretical approach, it is important to introduce basic concepts and methods of 

regression analysis used to fit continuous functions corresponded to nuclear mass formulas. 

      Among numerous fits that have been performed for the estimation of the best fit 

parameters, a focus has only been given to cases which are able to generate fit coefficients 

which satisfy the main conditions of the present phenomenological approach. These cases are 

mainly oriented to the fit of the DM nuclei. Ideally, the aim is to be found a set of coefficients 

which is applicable to reproduce the parabolic trend of the even-even nuclei between two 

doubly shell closures, for all or at least for the majority of the even-even nuclei of the regions 

of interest. Tracing a unified set of best parameters towards the regions of interest was 

investigated. 

      The goal of the regression analysis is to find the relationship between the dependent 

variable or outcome or response value 𝑌𝑖 , as its value is said to depend on the value that 𝑋𝑖, 

 

 Table 3.1: Data for even-even nuclei extracted from Ref. [125]. After modifying the column of binding 

energy per particle in keV (BE/A(keV)) and its corresponding uncertainty (un(keV)), the columns which 

correspond to the total binding energy and its uncertainty, BE(MeV) and unT(MeV) are shown, 

respectively. 
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which is called the independent or predictor variable, takes on [153], according to equation 

follows:  

𝑌𝑖 = 𝑓(𝑋𝑖 , 𝑎) +  𝑒𝑖                                                                  (20) 

 

where i indicates a series of data, 𝑎 is a vector presents the unknown parameters and 𝑒𝑖 is an 

error term or the residual variable which shows the imperfection in the actual relationship 

between the data and the model.  

      In other words, the key point is to quantify the relationship between the explanatory 

variable (or variables) and the response variable. When changes to the values of the 

independent variable are performed, the interest lays to observe how these modifications 

have affected the response variable. By performing a regression analysis and extracting the 

relationship between the Y and X variables, predictions are used as a guidance for capturing 

missing variables that should be added to the model. Therefore, additional terms, when 

needed, it is necessary to be added in a regression model so as to take into consideration 

other important factors that theoretically should affect the quality of the model. If the number 

of independent variables used to describe the forementioned relationship, are two or more, 

the model is a multiple regression model.        

      The nuclear mass formulae fall into the category of the multiple regression models. 

Starting from the simplest BW nuclear mass model, a parameterization of the data was made. 

The BW mass formula, which is described by the Eq. (5), is a model which is linear in parameter 

space. It depends on five parameters that are the 𝑎𝑣, 𝑎𝑠, 𝑎𝑎 , 𝑎𝑐, 𝑎𝑝 which multiple some 

functions of N and Z. The physical explanation of each term has already been described in the 

subsection (2.4.2). 

      By using the data points given by the even-even nuclei of AME2016 database, different fits 

to the BW function were performed to make predictions for values of Y and therefore to 

provide information on the mutual interaction between the experiment and theory. Hence 

the goal of data fitting is to find the best values of parameters which fully match the 

observations with the theory. 

      Specifically, in 1829, it was proved by Carl Friedrich Gauss that it is convenient and 

mathematically correct to say that the best fit minimizes the sum of the squares of the errors 

between the data and the fit regression model [154]. The latter is called the method of ’’least-

squares’’ or ordinary least-squares (OLS). The ordinary least-squares method gives us the most 

precise estimates of the parameters compared to other unbiased estimation methods [153]. 

      In the present research, a particular focus is given to the ordinary linear regression where 
the fitting procedure is generalized to be considered as a linear algebra problem (exact 
solution in matrix notation) or when a numerical solution is applied for the estimation of the 
optimal parameters (i.e., via gradient descent algorithms).  
 
      Nowadays powerful support through analytical computational tools for the use of OLS and 

other specialized least-squares methods are available. Ideally, a numerical tool should be able 

to provide an increasing numerical precision in the determination of the unknown parameters 

as well as to achieve accurate treatment in the estimation of the parameter’s uncertainties 

and their corresponding correlations. 
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      There are many different techniques to perform regression analysis. Some widely popular 

methods include resampling techniques like bootstrapping and cross-validation [122,155]. 

With resampling techniques, the true estimator is approaching. 

      In case of the BW liquid-drop model, a multiple linear regression analysis is applied to 

approximate the solution of an overdetermined system of linear equations. The idea is that 

the set of parameters that is obtained from the best fit should minimize the sum of the squares 

of the residual errors between the experimental data, 𝑦𝑖, and the model. In case of a nuclear 

model the equation which describes the model is written as ∑ 𝑐𝑗𝑗 (𝑥𝑖) 𝑎𝑗. The last equation 

means that the model includes j number of functions,  𝑐𝑗(𝑥𝑖), which depends on j number of 

parameters,  𝑎𝑗. The 𝑥𝑖 refers to the individual data of the used dataset.  

The minimization can be performed analytically using the general form of the ‘’chi-squared’’ 

function:  

𝑥2 =  ∑
(𝑦𝑖−∑ 𝑐𝑗(𝑥𝑖𝑗 )𝑎𝑗)2

𝜎𝜄
2𝑖                                                          (21) 

 

      The difference between the observations and the predicted values is given by the error 

term, ei , including in the numerator and should be as small as possible. However, it is unlikely 

that the predictions made by the regression line will precisely follow the observations. The 

last statement reveals the imperfect relationship between the inputs data and the theoretical 

predictions which is often caused by factors such as missing of independent variables or 

systematic effects due to systematic or statistical uncertainties etc. [156]. An interesting study 

towards an understanding of the uncertainties in scientific measurements is also given in Ref. 

[156]. 

      Thus, given the expression of the 𝑥2 function, Eq.(21), and the variance in the 

denominator, one can perform the linear regression fit having two possible choices. The first 

choice is to consider that the least squares fit treats each observation equally in determining 

the parameters, by applying equal weight to each of the experimental inputs. This is the case 

of equal and non-correlated measurement error, and the error or weight matrix is an identical 

matrix [154]. The OLS procedure assigns a weight of 𝑤𝑖 =  
1

𝜎𝜄
2  equal to 1 for each observation. 

      The second option is to weigh some observations more heavily than others. This procedure 

is known as a weighted least squares (WLS) and the resulting parameter estimates are called 

weighted least squares estimates. The WLS is a generalization case of ordinary least squares 

and is usually applied to stabilize the variance of the residuals to satisfy the standard 

regression assumption of homoscedasticity which means constant variance [153, 157]. Also, 

a weighted least squares fit can provide a solution of limiting the influence of outlying 

observations on the regression analysis [157]. As will be proved later, the last statement was 

also one of the indications that paved the way for drawing appropriate conclusions on the 

fitting method that should follow for the rest of the analysis. An extended reference on the 

impact of uncertainties in the fitting procedure is also presented in the next section.  
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      When a WLS procedure is applied, the observations will get less weight and therefore their 

impact in the fitting procedure will be less, compared with experimental inputs with smaller 

values of uncertainties and thus greater weight. In other words , large values of error variances 

corresponded to low-accuracy data, are weighed less in the fit, while observations which are 

precisely determined should be more heavily weighted.  

       In mathematics, some problems can be solved either analytically or numerically. The 

minimization of 𝑥2 function, Eq. (21), can be performed analytically [122]. The relationship 

between the data and the parameters of a linear model can be always written as a matrix-

vector product. As the chi-squared minimization is in fact the maximum-likelihood estimator 

(MLE) of the function parameters 𝑎𝑗, if we derive respect to them and set to zero as standard 

MLE, the Eq. (21) is written: 

∑ 𝑐𝑗 (𝑥𝑖) [
𝑦𝑖−𝛴𝑗𝑐𝑗𝑎𝑗

𝜎𝑖
2 ]𝑖  = 0                                                           (22)  

 

And the matrix notation can be used to express the Eq. (22):  

  0 = 𝐶𝑇𝑉−1𝑦 −  𝐶𝑇𝑉−1𝐶𝑎                                                         (23)  

𝐶𝑇𝑉−1𝑦 = 𝐶𝑇𝑉−1𝐶𝑎                                                         (24) 

𝑎 = (𝐶𝑇𝑉−1𝐶)−1𝐶𝑇𝑉−1𝑦                                                         (25) 

 

which concludes to the following  𝑥2 estimator of the parameter vector â:  

â = (𝐶𝑇 𝑉(𝑦)−1 𝐶)−1𝐶𝑇𝑉𝑦
−1 ∗  𝑦 = 𝑀 ∗ 𝑦                                            (26) 

 

where the 𝑉𝑦 is the error matrix or covariance-variance matrix or variance matrix for the 
measured values y, in this case the experimental binding energies taken from the mass table 
AME2016, and C is the matrix that contains the functions of the linear model, independent 
variables of the nuclear model [122]. 
 

      The regression routines of most statistical software packages have options on performing 

a weighted or unweighted least squares fit. The data analysis was performed using 

minimization methods applied in Python programming language. Particularly, several 

minimization methods are used to estimate the best values of parameters. Where applicable, 

more than one of the minimization techniques presented below, were tested to check the 

validity of the fit by comparing the outcomes. Indeed, analytical solutions are very important 

for evaluating numerical codes. Actually, an exact solution is a straightforward method to 

solve the problem and estimate the best fit parameters once the matrix C of Eq. (26) is defined. 

Following the estimation of the best fit parameters, the results should be tested with each of 

the outcomes of the numerical solutions. In such a way the sensitivity of each algorithm can 

be assess as well as their ability to make reliable estimations of their parameters, associated 

uncertainties, and correlations. 
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      The minimization methods and routines that were followed for the determination of the 

best fit parameters in this work, briefly are presented below: 

 

i. Analytical Solution:  

The minimization of the  𝑥2  function, Eq. (21), is performed analytically using the 

matrix notation given by the Eq. (26). The matrices multiplication presented in this 

equation can simply be performed by making use of the built-in-functions in Python.  

The code is adapted by Ref. [122].  

ii. Curve Fitting from Python: 

The code is modified to perform a least squares minimization method to determine 

the model’s parameters. The routine is called ‘’curve fit’’ and it is provided by the 

SciPy.Optimize package.  

The code is adapted by Ref. [122].  

iii. LMFIT library:  

‘Lmfit’ provides a high-level interface mainly for non-linear optimization and curve 

fitting problems in python [158]. This function imports a ‘Model’ function and 

provides a useful statistical report with information including the chi-square value, 

the values of the parameters, their uncertainties etc.  

iv. MINUIT:  

It is a tool for the estimation of the minimum value of a multi-parameter function 

analyzing the shape of the function around the minimum [159]. Here, the iminuit 

which is a Jupyter-friendly Python interface for the Minuit2 C++ library [160] 

maintained by CERN's ROOT, was used as an alternative minimization method.  

  

     It is also worth mentioning that each of the minimization routines described above, can 

generate the best values of parameters as well as their corresponding uncertainties. The 

uncertainties were calculated by the variances of the diagonal elements of the covariance-

variance matrix. Particularly, the square root of the variance gives the uncertainty for each of 

the parameters. The covariance-variance matrix provides plenty of information related not 

only to the error on the parameters but also the covariance between the one parameter and 

the other, through its off-diagonal terms. In other words, it provides access to the so called 

‘Pearson correlation coefficient’. Particularly, given two data sets 𝑋 and 𝑌, with N elements 

each, the covariance matrix is defined as : 

𝑐𝑜𝑣(𝑋, 𝑌) =  
1

𝑁
 ∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑖 = 𝑋𝑌̅̅ ̅̅ −  �̅��̅�                                     (27) 

where 𝑋𝑌̅̅ ̅̅  is the average value of the product 𝑋 𝑌 of the two data, �̅� is the average value of 

the data 𝑋 and similarly, �̅� is the average value of the data 𝑌.  

As an example, considering  the following 2x2 covariance matrix (Σ) of x and y vectors: 

Σ =   [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
]    𝑜𝑟   [

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦
2]                                                   (28) 
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where 𝜎𝑥 𝑎𝑛𝑑 𝜎𝑦 are the standard deviations of 𝑥 and 𝑦, respectively,  𝜎𝑥𝑥 (𝑜𝑟 𝜎𝑥
2 ) and 𝜎𝑦𝑦 

(𝑜𝑟 𝜎𝑦
2) are the variances of x and y, respectively and the  𝜎𝑦𝑥 = (𝜎𝑥𝑦)T = cov(x,y), applying 

the Eq. (27). 

      If the 𝑥 and 𝑦 are uncorrelated, the off-diagonal elements of the covariance-variance 

matrix (Σ), presented in Eq. (28), are zero and then a variance matrix is formed.  

The Pearson’s correlation coefficient is written as:  

𝑟𝑥,𝑦  =  
𝑐𝑜𝑣 (𝑋,𝑌)

𝜎𝑥𝜎𝑦
                                                                (29) 

      Therefore, from a covariance-variance matrix, one can easily have access to a symmetric 

and square matrix which is known as ‘correlation matrix’ and gives valuable information about 

the correlations presented between different terms of the BW baseline formula. It provides a 

critical assessment related to the physics that the model is applicable to grasp considering this 

set of the physical parameters. It can also uncover relationships and mutual influence of terms 

that maybe have not previously observed. 

      It is important to note that in case of employing the fit using one from the minimization 

routines described above, special care should be given to whether we fit a linear or nonlinear 

model. Numerical solutions are widely used for complex models and nonlinear models. In such 

cases one should pay attention to the physics of the model and therefore to optimize as much 

as possible the fitting. If the model is linear and contains simple terms, a numerical solution is 

also a simple way to perform the fitting procedure.  

      In the case of fitting a linear model, it can be proved that we have only one minimum. This 

means that if the routine converges, the right minimum point has been found. However, this 

is not always the case when one deals with nonlinear models where typically they have more 

than one minimum.  

      Particularly, when an automatic routine is used for performing the fitting procedure, 

attention should be given in defining the starting points [122]. A numerical solution requires 

initial guesses to be inserted in the code for each of the values of the parameters. In the fit of 

a nonlinear model, there is often the case where one minimizes the chi-squared function, the 

code generates the minimum but still the data  are not reproduced. In this case, there are 

some factors that need to be examined for identifying what causes the wrong predictions. The 

first is that either the model is wrong, or the starting guesses result the problem. The fitting 

routine is automatic and therefore the user does not have the control of the procedure 

directly. 

      There are several nonlinear nuclear models which require a careful approach towards this 

justification. In order to resolve the problem of starting points, the analysis of the chi-square 

surface can be performed so as to identify if the generated minimum is a local minimum or an 

absolute minimum [122]. An alternative method to resolve the problem is to change the 

algorithm used for the fit.  

      In the present research analysis, the macroscopic part of nuclear mass models such as the 

ones given by the Refs. [38,112] were also tested to identify whether they satisfy the main 



68 

 

conditions of the adapted phenomenological approach. As it is already pointed out, in case of 

a nonlinear nuclear mass model, the fitting procedure was evaluated each time by modifying 

the starting points of the parameters. Also, the outcomes obtained by different minimization 

routines such that presented above, were compared. If these evaluation methods led to 

outcomes which produce similar values of best parameters, the approximation of the fitting 

process is good.  

      However, the interest of the results section lay only to present fits of the macroscopic part 

of nuclear mass formulas, among those tested, which were applicable to satisfy the needs of 

the current theoretical approach.  

 

 

3.3 Uncertainties in the observables:  
 

 

      Once the minimization method was applied and the parameters were determined, one can 
easily compute the residuals. The residuals can give us an idea about the discrepancy between 
the model and the data. Therefore, large discrepancies are a strong indicator of the regression 
model’s quality. Such deviations in the model’s behavior can be influenced by a poor fit or the 
quality of the model. The BW mass formula is a linear model in parameter space so there is 
only one minimum, and it is certain that a numerical or exact solution is applicable to generate 
the correct values of best coefficients.  
 
      In the case of the liquid-drop model, it is beyond doubt that the model is inaccurate, 
providing a poor approximation of the reality. It is a not well-constructed model where the 
typical error estimate is hundred times larger than the experimental variances of observables. 
Particularly, the average deviations of the BW baseline formula give values in order of MeV, 
while the typical experimental uncertainties range between a few tens of keV, but also can 
have an uncertainty value in order of eV [57].  
 
      Thus, the BW formula is far worse than the error obtained by the uncertainties of the 
experimental binding energies. Although significant achievements have been made in 
reproducing the mass of the nuclei across the nuclear chart, with a rms in order of keV, shell 
corrections should still be included in the fit. To this end, it is clear that for performing the 
least-squares fitting procedure, one should also decide whether or not there is a point to 
include the experimental uncertainties in the fit.  
 
      It is obvious that the dependence of the results on the weights will be significant. 
Considering the uncertainties of the experimental binding energies, while neglecting 
correlations between them, it is expected that binding energies, having greater values of 
uncertainties, lose their impact over the regression [161]. In general, imprecise measurement 
uncertainties and model imperfections are the two main sources that cause poor predictions 
and thus discrepancies between the observed values and the theoretical ones [162].  
 
      Therefore, applying weights to the data can have a significant effect on the accuracy and 

thus the estimated results. In this work, both a weighted and an unweighted least squares fit 
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were applied to find the most optimal set of parameters. After investigation of the given 

results and performing several tests to understand the impact of the uncertainties in each fit, 

conclusions were made. Upon evaluation of the conclusions, it was finalized that an 

unweighted least squares fit is the only ’natural’ choice for the current research. An analytical 

explanation on the reasons that drove us to this conclusion will be presented in the chapter 4 

of the results. 

      Also, it is necessary to clarify from the beginning, if the experimental quantities involved 
in the fit are considered as correlated or uncorrelated. It is usually essential to make the 
assumption that the experimental observables are statistically independent values, which 
determined and entered the mass table as absolute measurements. In this way, the 
measurement error related with one observable is considered as statistically unassociated 
with the measurement error in all other observables.  
 
      To this end, in case of performing a weighted least squares fit, in a matrix notation, the 

weight matrix of the Eq.(26) is the variance matrix , and its off-diagonal terms are zero. 

Particularly, here, the experimental nuclear binding energies are considered as uncorrelated 

measurements and either we deal with an unweighted least squares fit or with weighted least 

squares fit, the error matrix of the Eq.(26) is always a variance matrix, where 𝑉𝑦 is equal or 

different to the identical matrix for the case of an unweighted or weighted least squares fit 

respectively. 
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Chapter 4 

Results 
 

 

      After an analytical representation of important aspects of the present phenomenological 
approach and research strategy, the most important results obtained by the analysis are 
presented in this chapter. An investigation related to an appropriate fit, which is capable to 
reveal the parabolic like trend of the magic (or not) nuclei between the two doubly shell 
closures, was continuously conducted. Once the latter is satisfied the inclusion of the extra 
valence-shell corrections, assumed to be due to the presence of NN and 3N forces, were 
added to the model so as to describe the captured shape.  
 
      As already outlined, the BW baseline equation as well as the modified liquid-drop mass 
formula (LDM1) was tested for their ability to reproduce the main conditions of the current 
work. Therefore, modifications to the existed terms of the BW formula, such those described 
by the LDM1, were used as alternative adjustments in performing the analysis and describing 
the parabolic shape of the residuals by introducing the additional terms of NN and 3N in the 
examined atomic mass chains.  
 
      Any other case mentioned as tested in previous sections and its related analysis is not 

presented in the results’ chapter, it is evident that it does not satisfy the purposes of this 

project. However, when required, critical evidence points that assist in constructing and 

directing a concrete analysis strategy will be discussed. 
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4.1 The BW Mass Formula Fits:  

 

4.1.1 Weighted Least Squares Fit to binding energy data for the DM 

nuclei (A ≥16): 

 

      A search for an appropriate set of parameters which is able to satisfy the two main 

conditions of the present phenomenological approach, was started by performing a weighted 

least-squares fit of the BW baseline mass formula to the traditional DM nuclei of AME2016 

mass table. In such a way, there are not valence-shell interactions. Particularly, fits to the DM 

nuclei were restricted for A ≥16. At this point a reminder is given to the exclusion of the very 

light nuclei from the fitting procedure as the BW baseline formula is not capable to grasp the 

properties of such nuclei since it purely approximates a system composed of a few particles. 

      The best values of parameters and their accompanied uncertainties, as determined after 

a weighted least squares fit of the BW multi-parameter function of Eq. (5) to the traditional 

DM nuclei data are presented in the following Table 4.1. 

 

 

      Comparing the fit parameters of Table 4.1 with corresponding parameters from the 

literature it can be seen that the DM fit produced considerably different results. Even if the fit 

was repeated unweighted, still the resulting parameters differ significantly. Notice should be 

given to the value of the pairing term which was estimated 1 order of magnitude greater than 

the reported in literature. This should be explained from the independence of pairing term in 

closed shells nuclei as it was also reported in Ref. [112]. Although a search in the literature 

was made aiming to detect results from relevant studies, which were exclusively focused on 

fits of nuclear mass models to DM nuclei, no such investigations were found. Indicatively, the 

Table 4.2 presents a compilation of different values of parameters that were estimated in 

previous works which included all or subsets of nuclides of different atomic mass evaluations. 

This Table 4.2 was included in the present analysis for comparison purposes. 

Weighted least squares Fitting to the DM nuclei for A ≥16   

1) Fitting on the total binding energy (BE(MeV)) 

2) Using the BW baseline formula of Eq. (5) 

3) Including the experimental uncertainties: ‘unT(MeV)’ 

4) Considering the pairing term (ap) as free parameter 

5) Minimization method: scipy.optimize.curve_fit  

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

24.66 ± 0.53 45.04 ± 1.59 1.33 ± 0.03 46.02 ± 1.45 194.80 ± 9.84 

 

Table 4.1:  Best values of parameters from the weighted least squares fitting of the BW mass 

formula, Eq.(5), to the DM nuclei for A ≥ 16 , including the pairing contribution. 
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  Following this conclusion, the reasons which affect the results of the best fit parameters, in 
case of fitting the DM nuclei, considering the conditions of the fit shown in Table 4.1, was 
investigated. As already referred in subsection (2.4.2), an independence of the pairing term in 
the vicinity of closed shell nuclei is reported in Ref. [112].  
 
      To this end, a weighted least squares fit to the DM nuclei for A ≥16 was repeated for the 

BW baseline formula, Eq. (5), but now neglecting the pairing contribution and the results of 

the best fit coefficients are shown in the following Table 4.3. 

  Comparison of the best fit coefficients of the BW mass formula (MeV) as obtained from different studies 

Coefficients 

in MeV 

AME  Fit Restricted 

Dataset 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

Ref. [163] 2016 BE A≥16 14.64 14.08 0.64 21.07 11.54 

Ref. [38] 2003 BE All the 2149 

nuclei reported 

in Ref. [177] 

15.67 17.70 0.71 23.07 12.73 

Ref. [144] 2003 BE All the mass 

table 

15.777(53) 18.34 (17) 0 .710 (3)  23.21(10) 12 (2) 

Ref. [120] 2003 BE Subset of 1931 

nuclei 

15.8 18.3 0.714 23.2 12.0 

Ref. [164] 2012 BE A > 14 15.69 ± 0.025 17.75 ± 

0.08 

0.713 ± 

0.002 

23.16 ± 0.06 11.8 ±0.9 

Table 4.2:  Comparison of the best values of coefficients of the BW mass formula terms as obtained by different authors. The 

column ‘Fit’ contains the experimental values of the total binding energy (BE) in MeV to which the BW formula is fitted. 

                                       Weighted least squares Fitting to the DM nuclei for A ≥16    

1) Fitting on the total binding energy (BE(MeV)) 

2) Using the BW baseline formula of Eq. (5) 

3) Including the experimental uncertainties: ‘unT(MeV)’ 

4) Without including the pairing term (ap)  

5) Minimization Method:  scipy.optimize.curve_fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

14.17 ± 0.18 13.51 ± 0.37 0.60 ± 0.26 17.30 ± 0.83 - 

Table 4.3:  Best values of parameters from the weighted least squares fit of the BW mass formula to the DM 

nuclei for A ≥16, without including the pairing term (ap) in the fitting procedure. 
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      By inspecting the set of the best values of energy coefficients of Table 4.3, the results 
arising from the weighted regression of the BW baseline formula can be evaluated. The best 
fit coefficients can also be compared with those obtained from fits of Table 4.2 so as to detect 
possible extreme values in the estimated parameters or their corresponding uncertainties.      
 
      Especially, when the parameters accompanied with large values of uncertainties, it is a 
clear indication that they are not well determined by the experimental data. In general, the 
smaller the value of the parameters’ uncertainties, the more confidence one can have about 
the sample values that used as estimates for the fit coefficients [153]. In addition, parameters 
with large values of uncertainties, completely lose their impact over the regression analysis 
[161] and are necessary to be removed from the fitting procedure as they can cause 
misleading to the error analysis [57]. Therefore, in the present research work, the parameters 
along with their accompanied uncertainties were always considered as a rough indicator for 
the evaluation of the accuracy and reliability of the parameters as well as the population used 
to make the estimates [153]. 
 
      It is of substantial interest that the best values of parameters, given in Table 4.3, differ 
significantly from those of Table 4.1. Thus, it is concluded that the pairing contribution should 
be removed from the regression analysis. 
 
       Also, as noted earlier in subsection (2.4.2), one can come across with different forms of 

pairing term in the literature [120]. The form of pairing term, which was adapted in the 

present analysis, is given by the Eq. (6). However, two more terms related to the pairing 

expressions can been described by:  𝛿(𝑁, 𝛧) =  𝐴−𝑘   𝑤𝑖𝑡ℎ kϵ {
3

4
, 1}. Although an 

investigation was made to reveal any possible improvements to the estimated parameters 

using there alternative expressions of pairing term, no significant contribution and changes to 

the results were identified.  

      The optimum values of parameters were determined using the minimization routine SciPy 

Curve fitting from Python. In the current research analysis, the scipy.optimize.curve_fit is the 

main automatic routine which is used for the representation of the results. This numerical 

solution was also compared with the exact solution of the chi-squared function in matrix 

notation, Eq. (26), but as it was expected no differences were detected in the estimation of  

the parameters. The BW baseline formula is a simple case of a linear model in parameter space 

and the automatic routine should be able to easily detect that one minimum. In such case, the 

search for the minimum through an automatic routine is a quite easy and straightforward 

process. 

      In addition, many more automatic routines were checked for their ability to extract the 

results, when needed. Particularly, the best fit coefficients generated by the automatic routine 

‘scipy.optimize.curve_fit’ of Table 4.3, were compared with other numerical routines such 

those presented in section (3.2). As an example, in Table A.1 given in Appendix A, one can find 

the outcomes of the fit coefficients corresponded to different minimization methods. These 

values of parameters were all determined after a weighted least squares fitting to the DM 

nuclei for A ≥16  was performed, using the BW baseline formula but without including the 

pairing contribution.  
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      From the outcomes of Table A.1, one can conclude that the values of the best fit 

coefficients are  quite similar, and no large divergences occur between the estimated 

parameters of different linear regression methods (numerical  solutions and exact). 

Particularly, it is observed that the ‘Lmfit library’ from python and the minimization routine 

‘MINUIT’ generate the same results of best fit coefficients, while the results of exact solution 

and ‘scipy.optimize.curve_fit’ are also in totally agreement.  

      However, it is visible that the MINUIT gives significantly smaller values of parameters 

uncertainties. The uncertainty in regression parameters depends on the sensitivity of the 

regression method. The estimation of the parameter’s uncertainties employing an exact 

solution can solve conflicts arise from different numerical solutions.   

      After the estimation of the parameters given in Table 4.3, the residuals of the DM nuclei 

can be determined. In the present analysis, the residuals were calculated by the difference:  

 

                      𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  𝐵𝐸𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 (𝑀𝑒𝑉) − 𝐵𝐸𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 (𝑀𝑒𝑉)                           (30) 

 

      In the present analysis, the experimental total binding energy is noted as ‘BE(MeV)’ and its 

corresponding theoretical value as ‘LD (MeV)’ . 

      Particularly,  the focus is set on the values of the residuals which correspond to the pairs 

of the doubly magic nuclei of the regions of interest, presented in the following Table 4.4: 

 

 
 
 
 
   

     Residuals of Doubly Magic Nuclei of the Regions of Interest in MeV for a Weighted Least Squares Fit of 

the BW formula to the DM nuclei for A ≥16 

Diagonal Chain from 
16O to 40Ca 

Diagonal chain from 
40Ca to 56Ni 

Calcium Isotopic 

chain: Z=20 

Isotonic chain: 

N=28 

Tin Isotopic chain: 

Z=50 

16O 40Ca 40Ca 56Ni 40Ca 48Ca 48Ca 56Ni 100Sn 132Sn 

Residuals in MeV 

0.001 -0.089 -0.089 6.769 -0.089 0.044 0.044 6.769 16.108 5.549 

 

 

Table 4.4: The residuals from the weighted least squares fit of the BW formula to the DM nuclei binding 

energies which correspond to the edge of the regions of interest. The blue header columns contain the 

residuals of the doubly magic closed shells of the diagonal chain 16O to 40Ca, the burgundy red header columns 

the residuals of the DM nuclei of the diagonal chain 40Ca to 56Ni, the orange, purple and green header columns 

contain the residuals of the DM nuclei of the calcium, isotonic (N=28) and tin chains, respectively. 
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      By a visual inspection of the pairs of Table 4.4, it is evident that the DM nuclei which 
correspond to the Calcium isotopic chain and the diagonal chain from 16O to 40Ca are the only 
regions of interest where the first condition of the present phenomenological approach is 
satisfied. Particularly, the two DM nuclei 40Ca and 48Ca have approximately the same values of 
residuals. Similar behavior follows the residuals of the DM nuclei of the diagonal chain from 
16O to 40Ca. In contrary, one can observe that the rest of the chains do not follow this rule 
having pairs of DM nuclei with large values of discrepancies between them. Also, the residuals 
of the DM nuclei are shown in the following Fig. 4.1 for a better visualization and 
understanding of the obtained values: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   16O            40Ca              48Ca                56Ni          100Sn          132Sn            208Pb 

Residuals of the Doubly Magic Nuclei for A≥16 

Figure 4.1: Residuals of the weighted least squares fit of the BW mass formula to the binding energies of the 

DM nuclei when the pairing term is neglected. The estimated values of binding energies are noted as 

‘LDw/op’. 
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      A question that immediately arises by looking at the residuals of Fig. 4.1 is which are the 

factors that force the value of the residual of the nucleus 100Sn to be so high compared to all 

the rest. While the light region of DM nuclei seems to be predicted quite well, having residual 

values close to zero, one can observe a clear imbalance in estimates. There is a clear 

overestimation of the DM nucleus 100Sn by the fitting procedure. During the conduction of the 

present analysis, considerable time was consumed towards an understanding of the weights’ 

effects on the outcomes. Particularly, different tests were made for identifying the role of 

each nucleus in the weighted least squares fit and concluding about the possible choices 

related to the experimental uncertainties that one has in the regression formalism. In the 

present thesis, only the most important tests are included. 

      Dependence of the results on the weights is obvious when different kinds of 

measurements are included in the fitting procedure and their accompanied experimental 

uncertainties have different magnitudes. It should be born in mind that the predictions 

obtained by a weighted least squares fir are significantly affected by the choice of the nuclei 

and their uncertainties, as some nuclei account more in the fit than others.  

      The standard procedure of weighting the data with the inverse square of the measurement 

uncertainty, clearly shows that more weight and thus more importance is given to the more 

accurately determined nuclei, while less precisely nuclei receive less importance in the fit. The 

last statement is the focal point here. By looking at the residuals of Fig. 4.1, the light region of 

the DM nuclei performs better since we have uncertainties that are way smaller and thus 

more important. Especially, the DM nucleus 16O has a very precisely known experimental 

value, while the experimental value of the DM nucleus 100Sn is not so well determined. 

Therefore, we concluded that this is what makes the fit shifting towards the light region trying 

to make better predictions for these light nuclei rather than the heavy ones. 

      Additionally, in Ref. [165], it is also pointed out the role of the DM nucleus 100Sn as a critical 

nucleus that imposes modifications to the weighted least-squares fitting procedure. 

Particularly, it concludes that the DM nucleus, 100Sn, is an important nucleus that needs to be 

measured more accurately. 

      Also, as it has already been seen, when the pairing contribution is included in the fit of the 

DM nuclei, the results of the coefficients are strange, and the values of parameters are far 

from the reported ones given by the relevant literature (Table 4.2). For this reason, in the case 

of the DM nuclei, a fixed value of 12 MeV for the parameter ap was adopted which then it was 

multiplied by 
1

𝐴1/2 .  

      The fixed value of 12 MeV is reported in several papers. Particularly, in Ref. [117], which is 

a review on different fits of terms of the semi-empirical mass formula, is mentioned that the 

pairing term coefficient is calculated between 9.62 and 11.81 MeV ~ 12.0 MeV. Also, in Refs. 

[116,120], the value of ap = 12 MeV is reported after performing a least-squares fit. 

      In addition, in the present analysis, an unweighted least squares fit was performed to the 

mass16.txt file, which included all the 2494 odd and even nuclei, using the minimization 

method MINUIT and a pairing term value of 12.0 MeV was estimated. The results are shown 

in the Table A.2 of the Appendix A. 

      From this point on and for the rest of the analysis, the 12 MeV fixed value of pairing 

parameter is adopted. Therefore, a weighted least squares fit of the BW baseline formula, Eq. 
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(5), to the DM nuclei was repeated for the estimation of the best values of parameters, but 

now including the pairing coefficient as a fixed parameter. The calculated residuals are 

presented in the following Fig. 4.2: 

 

       

      Comparing the values of residuals obtained when the pairing term is considered - or not- 

as a fixed parameter equal to 12 MeV in the weighted least squares regression, it can be seen 

that its contribution is insignificant as it was expected for doubly magic nuclei. The residuals 

of the DM nuclei are slightly minimized by the inclusion of the pairing term; however, no 

important improvements was occurred in the overall performance of the residuals for the case 

of the weighted least squares fit. 

      In the first test, the idea was to replace the actual values of experimental uncertainty of 
100Sn and 132Sn, with a very small uncertainty (= 10-10 MeV ) at least three orders of magnitude 

smaller than the smallest of the rest uncertainties of the other DM nuclei, which remained the 

same. Once these modifications were applied, a weighted least squares fit of the BW baseline 

formula to the traditional DM nuclei for A ≥16 was repeated, considering the value of 12 MeV 

for the pairing parameter. An inspection of the residuals obtained from this fit is necessary to 

present for uncovering the close links between the experimental uncertainties of the most 

and less accurate DM nuclei during a weighted least squares fitting. To this end, the plot of the 

 

 

 

 

 

 

 

 

 

16O               40Ca              48Ca              56Ni            100Sn             132Sn            208Pb 

Residuals of the Doubly Magic Nuclei for A≥16 

Figure 4.2: Residuals of the weighted least squares fit of the BW baseline formula to the DM nuclei 

binding energies, when a fixed value of 12 MeV was assigned to the pairing parameter. Also, the best 

values of the estimated parameters are presented. 
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residuals related to this test, which is named ‘Test 1’, is shown in Fig. 4.3. Also, the estimated 

parameters are reported in Table A.3 of the Appendix A. 

 

 

      Taking into consideration the results obtained by the Test 1, it is evident that the residuals 
very much depend on the choice of the weights. The fit is driven by the uncertainties assigning 
more importance to more precisely known nuclei. In this case, the well-determined light 
nuclei are predicted very accurately from the fitting procedure. In addition, the DM nuclei 
100Sn and 132Sn have completely changed their behavior compared to their residual values of 
Fig. 4.2. Particularly, the fit assigns now more importance to the prediction of the DM nuclei 
100Sn and 132Sn while overestimates the residual values of the DM nucleus 208Pb. As it can be 
observed from the Fig. 4.3, the difference between the experimental and theoretical binding 
energies corresponding to the DM nuclei 100Sn and 132Sn is exactly zero. However, this is 
unlikely the case due to several factors which significantly influence the fit, such as 
measurement errors, systematic or random, underlying missing theory of the model etc. Here, 
it is certain that there is an underestimation of the residual values of the DM nuclei of 100Sn 
and 132Sn caused by the extremely small values of experimental uncertainties of Test 1. It is 
also worth mentioning that this is more of an issue when the sample size used in the 
estimation procedure is too small.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Test 1: Residuals of the Doubly Magic Nuclei for A ≥ 16 

16O              40Ca              48Ca              56Ni             100Sn             132Sn            208Pb 

 
Figure 4.3: Residuals of the weighted least squares fit of the BW baseline formula to the DM binding 

energies. The actual experimental uncertainties for the DM nuclei 100Sn and 132Sn were replaced with a 

small value (Test 1). 
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      An additional test, Test 2, was also conducted to test the influence of the experimental 

uncertainties in the present dataset of the DM nuclei. Particularly, if the DM nucleus 100Sn is 

completely removed from the fitting procedure, one can ascertain that almost nothing 

changes in the results. The latter indicates that the fit considers as an outlier the DM nucleus 
100Sn and thus ignores its impact in the weighted least squares procedure. The residuals’ plot 

associated with this fit is presented in the following Fig. 4.4. 

 

 

      Furthermore, one more test, Test 3, is presented here which aims to show the inherent 

connection between the weights of the observables and their importance in the estimation of 

the parameters and thus the residuals. In this fit, it was assumed that the light nuclei have a 

greater value of uncertainty. Particularly, the DM nuclei: 16O, 40Ca and 48Ca, which are 

considered as the most precisely measured nuclei of the DM dataset, have now a value of 

uncertainty equal to 0.1 MeV. The rest of the uncertainties of the DM nuclei remained the 

same. The results obtained from the Test 3 show that the fit is shifting towards to the nuclei 

which are most precisely determined. In Table A.4 presented in the Appendix A, the estimated 

parameters are shown, while in the following Fig. 4.5, the residuals associated with this fit are 

presented. It is now clear, that the weights have a big dependence on the estimated residuals 

 

 

 

 

 

 

 

 

 

Test 2: Residuals of Doubly Magic Nuclei for A≥16 without the DM nucleus 100Sn in the fit 

   16O                   40Ca                  48Ca                     56Ni                    132Sn               208Pb 

 
Figure 4.4: Residuals for the DM nuclei (A ≥16) obtained after the conduction of the Test 2 (the DM 

nucleus 100Sn was excluded from the fitting procedure). The best values of parameters from the fit are 

also presented. 



80 

 

of the DM nuclei dataset. Their behavior is driven by the choice of the experimental 

uncertainties and therefore the weights. 

 

       
      After analyzing the data of the Tests 1, 2 and 3, the close dependence of the least-squares 
fitting procedure on the weights is evident. Therefore, conclusions are made regarding what 
the next steps should be in the regression analysis. An unweighted least squares fitting 
appears to be the only ‘natural’ choice of weights, 𝑊𝑗 =1, considering the current availability 
and precision of the DM nuclei included in the AME2016 mass table. More precise measured 
atomic mass data for DM nuclei are necessary to be made in the future if one wants to 
consider the experimental uncertainties in the fitting procedure.  
 
      In addition, two graphical ways were used to show the imbalance presented in the 

magnitudes of experimental uncertainties of the traditional DM nuclei for A ≥16 and are 

presented in Fig. A.1 of Appendix A. Particularly, a histogram was utilized to emphasize the 

large difference in the values of experimental uncertainties between the DM nucleus 100Sn 

and the rest of the DM nuclei. The box-and-whisker plot was also adapted as an alternative 

way to detect outliers. In the case of including the experimental uncertainties in the fitting 

procedure, it can be also visually proved that the experimental uncertainty correspond to DM 

nucleus 100Sn is an outlier. 

 

 

 

 

 

 

 

 

 

Test 3: Residuals of the Doubly Magic Nuclei for A≥16 

16O         40Ca               48Ca               56Ni              100Sn             132Sn            208Pb 

 
Figure 4.5: The residuals for the DM nuclei obtained from the weighted least squares fit of the BW 

baseline formula following the conditions of Test 3. 
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      Moreover, a reference has already been made to the fact that the AME2016 is an out-of-

date database and the most recent released atomic mass evaluation AME2020 is now 

available for use. The focus lies in identifying any significant changes that have been occurred 

to the experimental measured values of the DM nuclei and their corresponding uncertainties. 

Particularly, an inspection of the experimental uncertainty of the not well-determined DM 

nucleus, 100Sn, is required so as to detect any possible improvement on its measured value. 

The result was that although there is a slight decrement in the value of its uncertainty, from 

approximately 0.3 MeV to 0.2 MeV, it is a minor change that cannot bring significant 

enhancements in the weighted regression analysis of the DM nuclei dataset.  

 

 

4.1.2 Unweighted Least Squares Fit to binding energy data for the DM 

nuclei (A ≥16): 
 

 

      A conclusion has already been made regarding the insufficiency of the weighted least 

squares fitting procedure to satisfy the first condition of the present phenomenological 

approach. To this end, an unweighted least squares fit of the BW baseline formula (Eq. (5)) to 

the DM nuclei for A ≥ 16 was conducted. It should be mentioned that an unweighted least 

squares regression analysis is adapted for the rest of the analysis assuming equal weight to all 

the experimental data of 𝜎𝑖
2  =  𝜎2(𝛮, 𝛧) = 1 𝛭𝑒𝑉2 [166]. 

      In Ref. [117], an unweighted least squares fit to all the nuclei included in the AME2003 

mass table was reported using the BW baseline formula and without taking into consideration 

the contribution of the pairing term. The fit is made considering the total binding energy and 

a slight difference to the expression of the coulomb term can also be observed. The difference 

is related to its numerator, and it is extensively discussed in the section (4.4) of the present 

investigation. In Table A.5 presented in the Appendix A, the estimated values of parameters 

for this fit is included as well as the best fit coefficients obtained using different minimization 

methods to fit the DM nuclei. The results of the fit taken by the Ref. [117] are only included 

for comparison purposes. It should be stressed that the sample size between the two studies 

- Ref. [117] and the present analysis-  is very different. Therefore, although there is no 

expectation for making the same estimations, extreme differences between the values of the 

estimated parameters cannot be acceptable.  

      The following Table 4.5 includes the conditions of the unweighted least squares fit to the 

DM nuclei for A ≥16  as well as the best values of the estimated parameters. The value of 

pairing parameter was inserted in the regression analysis as fixed and set to 12 MeV. Also, it 

should be stressed that if one compares the values of the optimum parameters of Table 4.5, 

with the best values of coefficients of Table A.5, where the pairing term is totally neglecting 

from the fit, it is concluded that its contribution in the fit is not large. However, the pairing 

contribution as fixed parameter was included in the rest of the analysis as it succeeds to bring 
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the values of the DM nuclei - edge of the regions of interest- a bit (although not significantly) 

close to each other.  

 

 

      Re-applying the previous strategy as for the unweighted least squares fit, the values of the 

residuals correspond to the DM nuclei of the regions of interest, should satisfy the first 

condition of the present theoretical approach. Therefore, in the following Table 4.6, the 

results of the residuals are presented as pairs based on which region of interest, they are 

found in. Also, in Fig. 4.6, the residuals of the DM nuclei are shown. 

 

       

 

                               An Unweighted Least Squares Fitting to the DM nuclei for A ≥16  

1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq. (5) 

3) Without Including the experimental uncertainties  

4) Including the pairing term as fixed parameter ap=12 MeV 

5) Minimization Method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) fixed 

16.86± 1.36 20.65± 3.75 0.79±0.10 26.81± 4.16 12.0 

 

 

Table 4.5: Best values of parameters from the unweighted least squares fit of the BW mass formula to the DM 
nuclei for A ≥16, with 12 MeV assigned to the pairing term coefficient. 

Residuals of Doubly Magic Nuclei of the Regions of Interest in MeV for an Unweighted Least Squares Fit of the 

BW baseline formula to DM nuclei for  A ≥16 

Diagonal Chain from 16O to 
40Ca 

Diagonal chain from 
40Ca to 56Ni 

Calcium Isotopic 

chain: Z=20 

Isotonic chain: 

N=28 

Tin Isotopic chain: 

Z=50 

Residuals in MeV 

16O 40Ca 40Ca 56Ni 40Ca 48Ca 48Ca 56Ni 100Sn 132Sn 

3.72 -4.06 -4.06 -1.85 -4.06 -3.08 -3.08 -1.85 4.08 3.51 

 

 
Table 4.6: The residuals from the unweighted least squares fit of the BW formula to the DM nuclei binding 

energies which correspond to the edge of the regions of interest. The blue header columns contain the residuals 
of the doubly magic closed shells of the diagonal chain 16O to 40Ca, the burgundy red header columns the 

residuals of the DM nuclei of the diagonal chain 40Ca to 56Ni, the orange, purple and green header columns 
contain the residuals of the DM nuclei of the calcium, isotonic and tin chains, respectively. 
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      Following the research steps described in the subsection (3.1.1), the residuals of the DM 
nuclei correspond to the edge of the regions of interest should start and finish from 
approximately the same point. By visual inspection of the residuals of Fig. 4.6, it is clear that 
the first condition is satisfied at least for the three out of five atomic mass regions. Particularly, 
the calcium and tin isotopic chains appear to have almost equal values of residuals. The same 
behavior is also followed for the residuals correspond to the DM nuclei of the isotonic chain 
(N=28), even though they present a difference of approximately 1.23 MeV. These small 
differences between the DM shell closures of the regions’ edge is a first indication for the 
suitability of the estimated parameters of Table 4.5 to reproduce the investigated parabolic 
shape in these atomic mass regions. Although the first condition is satisfied, the best values 
of parameters is also necessary to satisfy the second condition. Therefore, it is important to 
verify if the even-even magic nuclei lay between the DM nuclei of tin, calcium and isotonic 
chains, can reproduce a U-shaped line. In addition, it should be noted that the two diagonal 
chains do not align with the first rule and due to this reason, the analysis associated with these 
chains is not included here. Additional terms or refinements to the BW baseline formula 
should be considered which are able to reproduce the symmetry energy of the even-even 
nuclei of the diagonal chains. As they are all symmetric nuclei, terms that account more for 
N=Z nuclei than the asymmetric ones, should be considered in the fit.  
 

 

 

 

 

 

 Residuals of the Doubly Magic Nuclei for A ≥ 16 

16O                40Ca                48Ca                56Ni                 100Sn               132Sn              208Pb 

 Figure 4.6: The residuals for the DM nuclei (A≥16) obtained from the unweighted least squares fit of the BW 
baseline formula, assigning the value of 12 MeV to the pairing term coefficient. 
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      It is important to make an additional observation regarding the residuals’ values of the tin, 
calcium and isotonic (N=28) chains. As an example, by inspection of the residuals of the DM 
nuclei 40Ca and 48Ca, it can be seen that although these DM nuclei have almost equal values of 
residuals, they do not start from zero. The phenomenological approach of the present 
investigation assumes some inert cores and a valence space configuration. It is expected that 
the start point should be zero where no valence nucleons interactions occur and then valence 
interactions start to be taken into consideration with the increase of the valence space. 
Although this is only a phenomenological approach and not an exact solution of the problem, 
a strategy which aims to bring the residuals of the DM nuclei to zero was adapted. This is an 
artificial method applied to all the nuclei along the regions of interest, when needed. 
Particularly, the idea is to subtract a reference nucleus from all the experimental as well as 
calculated binding energies which correspond to the even-even nuclei of the regions of 
interest and their edge (two DM nuclei). The reference nucleus is always one of the DM nuclei 
included in this chain and all the calculations are taken relevant to this DM nucleus.  
 
      In what follows, the best fit parameters presented in Table 4.5, were applied to the even-

even nuclei included between the DM nuclei of tin, calcium and isotonic (N=28) chains. If the 

second condition is satisfied, a comparison between the BW residuals (initial) and the 

residuals obtained from the fit of the BWM formula (Eq. (11)), is conducted for the evaluation 

of the results and relevant plots are presented. 

 

 

1) Calcium isotopic chain (Z=20):  

 

      First, the best parameters applied to the even-even nuclei which lie between the two DM 

nuclei 40Ca and 48Ca. By only inspecting the residual’s values, column ‘BE(MeV)-LD(MeV)’ of 

the following Table 4.7, one can conclude that the fit parameters are applicable to reproduce 

values of residuals which resemble a parabola. 

      Here, the DM nucleus 40Ca was used as a reference nucleus and thus its experimental and 

theoretical value was subtracted by the rest of the nuclei included in the dataset. Thus, the 

residuals (initial) that were used in the fit were all relative measurements. This is an artificial 

approach which was used to force the residuals of the DM nuclei 40Ca and 48Ca to start from 

zero or as close to zero as possible. 

      The Eqs. (31),(32),(33) present the steps, which were followed, when the reference nucleus 
40Ca is subtracted from the rest of the even-even magic nuclei up to DM nucleus 48Ca. 

 

   𝐵𝐸𝑛𝑒𝑤(𝑒𝑥𝑝)   = BEexp(AX’) – BEexp(40Ca)                                             (31) 

𝐵𝐸𝑛𝑒𝑤(𝑡ℎ𝑒𝑜𝑟) =  BEtheor(AX’) – BEtheor(40Ca)                                         (32) 

 

 

then the final residuals relevant to the reference DM nucleus 40 Ca are: 
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𝐵W_Residuals = 𝐵𝐸𝑛𝑒𝑤(𝑒𝑥𝑝)− 𝐵𝐸𝑛𝑒𝑤(𝑡ℎ𝑒𝑜𝑟)                                      (33) 

  

where the notation AX’ refers to an even-even nucleus with mass number A, lays between the 

two DM nuclei 40Ca and 48Ca.  

      The following Table 4.7 shows the residuals of the even-even nuclei from 40Ca to 48Ca, 

before (‘BE(MeV)-LD(MeV’)) and after (‘BW_Residuals’) the subtraction of the experimental 

and theoretical value of the DM nucleus 40Ca from the experimental and theoretical values of 

the rest of the nuclei.  

 

 

 

 

      Following the estimation of the residuals for the even-even nuclei from the DM nuclei 40Ca 

to 48Ca, an additional fit of the BW baseline formula plus the NN and 3N valence-shell 

corrections (Eq. (11)) was made. Specifically, the parameters of the BW baseline formula were 

set to values determined by the previous fit of the BW formula to the DM binding energies. 

Therefore, the modified BW formula includes extra two terms which are the independent 

variables, X and k, while B and D are the free parameters to be estimated. The ‘BW_Residuals’ 

column of Table 4.7 are the dependent variables. At this point, it is important to mention that 

the X and k variables are the predictors which correspond to the following analytical 

expressions: 

 

 

 

 

Nucleus LD (MeV) 

 (or 

BEtheor.) 

BE(MeV)-LD 

(MeV) 

(BEexp(ACa)-

BEexp(40Ca)) 

MeV 

(BEtheor(ACa)-

BEtheor(40Ca)) (MeV) 

BW_Residuals = (BE(ACa)-BE(40Ca)) - 

(BEtheor(ACa)-BEtheor(40Ca)) MeV 

40Ca 346.115 -4.063 0.000 0.000 0.000 

42Ca 370.680 -8.784 19.844 24.565 -4.721 

44Ca 390.643 -9.683 38.908 44.528 -5.620 

46Ca 406.610 -7.837 56.721 60.495 -3.774 

48Ca 419.087 -3.086 73.949 72.972 0.977 

  

 

Table 4.7: The best fit parameters of Table 4.5 were applied to the even-even nuclei from 40Ca to 48Ca. In such a way, their 
theoretical binding energies in MeV (LD(MeV)) as well as the residuals (BE(MeV)-LD(MeV)) were calculated. The column 

‘(BEexp(ACa)-BEexp(40Ca)) MeV’ shows the results after the subtraction of the experimental binding energy of 40Ca from the 
experimental binding energies of the rest of the magic nuclei. Similar calculations for the theoretical binding energies and 
are presented in column ‘ (BEtheor(ACa)-BEtheor(40Ca)) (MeV)’. Finally, the new residuals relevant to the reference nucleus 

40Ca are shown in the last column, ‘BW_Residuals’. 
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• From Eq. (18) :  

 

Expressing the NN term as:  

  NN =  B ∗ (nmax *( nmax -1)) - (nmax– n)*( nmax − n − 1) 

where         

X =   (nmax ∗ ( nmax −1)) −  (nmax–  n) ∗ ( nmax − n − 1)                        (34) 

  

and 

• From Eq. (19) ∶    

 

Expressing the 3N term as: 

3N = D ∗ (nmax *( nmax- 1)*( nmax − 2))-(nmax– n)*( nmax − n − 1) ∗ ( nmax − n − 2) 

where 

k = (nmax *( nmax- 1)*( nmax − 2))-(nmax– n)*( nmax − n − 1) ∗ ( nmax − n − 2)     (35) 

 

Starting with Eq. (11), with ap = 12 MeV, and re-arranging terms, the following equation is 

derived:  

𝐵𝐸(𝑁, 𝑍) − (𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12.0 ∗

1

𝐴
1
2

) = 𝑁𝑁 + 3𝑁   (36) 

 

Substituting the NN and 3N terms from Eqs. (18) and (19), the following Eq. (37) is derived: 

𝐵𝐸(𝑁, 𝑍) − (𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12.0 ∗

1

𝐴
1
2

) =  B ∗ (nmax*( 

nmax-1)) - (nmax– n) * ( nmax − n − 1) + D ∗ (nmax *( nmax- 1)*( nmax − 2)) - (nmax– n)*        

( nmax − n − 1) ∗ ( nmax − n − 2)                                                                                                 (37) 

 

Using Eqs. (34) and (35), Eq.(37) is simplified as:  

𝐵𝐸(𝑁, 𝑍) − (𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12.0 ∗

1

𝐴
1
2

) = 𝐵 ∗ 𝑋 + 𝐷 ∗ 𝑘                                     

(38) 

The last equation is equivalent to: 

 

    𝑜𝑟       𝐵𝑊_𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝐵 ∗ 𝑋 + 𝐷 ∗ 𝑘                                                   (39) 
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using the last Eq. (39) the parameters B and D were determined by fitting to the BW_Residuals 

values.  

      In addition, an extra fit considering only the contribution of NN term was applied so as to 

identify its strength in the fitting procedure. In this case, the fitted Eq. (39) is now written as:  

 

                        𝐵𝑊_𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  𝑁𝑁   =>    𝐵𝑊_𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  𝐵 ∗ 𝑋                                 (40) 

 

      At this point it should be noted that an exclusive fit of the BWM formula when only the 3N 
contribution is included in the fit, was not taken into consideration here, as its contribution 
was found to be insignificant.  
 
      Once the minimization process of the Eqs. (39) and (40) was completed, the best values of 

parameters B and/(or) D were estimated and then the residuals were calculated. It is of utmost 

importance to evaluate how these residuals are behaving compared to the initial ones. 

      The inclusion of NN and 3N terms in the BW mass formula should be able to describe the 

parabolic trend between the two doubly magic numbers. A judgement on the latter is made 

based on how well the NN and 3N terms can capture the parabolic-like shape of the 

BW_Residuals. 

      The BW_Residuals (initial residuals) are plotted against the even-even nuclei included 
between the two DM nuclei of 40Ca and 48Ca. The BW_Residuals in MeV are described by the 
blue line color plot of the following Fig. 4.7. To visualize the improvement in the description 
of the parabolic shape, the residuals obtained from the fit of Eq. (39), BW_Residuals-(NN+3N) 
in MeV, are given by the green color line and plotted in the same graph for comparison 
purposes. In the same graph, the residuals’ values from a fit of Eq. (40), BW_Residuals-NN in 
MeV, when only the contribution of NN is taken into account, are also shown.  
 
      The resulting residuals after the consideration of the NN and 3N microscopic terms in the 
BW baseline formula appear to approach the zero-line capturing the parabolic-like shape of 
the blue line color. The residuals’ values, which correspond only to NN contribution, Eq. (40), 
is also presented by the red color line and shows that a better description of the parabolic 
shape is succeeded when the 3N term also included in the fit. 
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2) Tin isotopic chain (Z=50): 

 

      An investigation towards the even-even nuclei between the DM nuclei, 100Sn and 132Sn, is 

presented next. The best fit parameters of Table 4.5 were applied to the even-even nuclei 

included between the two DM nuclides of the tin isotopic chain and their residuals examined 

for their ability to resemble a parabola. As it is evident only by inspecting the residuals’ values 

of the following Table 4.8 and specifically the column: ‘BE(MeV)-LD(MeV)’, the data follow a 

U-shaped assembly line. Similarly, to the calcium chain,  the experimental and theoretical 

value of the DM reference nucleus, 100Sn, was subtracted from all the experimental and 

theoretical binding energies of the nuclei included in the dataset of the tin chain. Therefore, 

the new values of residuals ‘BW_Residuals’ were calculated relatively to the DM nucleus, 100Sn 

and a new fit of the Eqs. (39) and (40) was performed for the estimation of the best fit 

coefficients B and/(or) D. Also, a comparison between the BW_Residuals and the residuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40Ca                          42Ca                          44Ca                           46Ca                        48Ca 

Calcium isotopic chain (Z=20): Even-Even Nuclei between the DM: 40Ca to 48Ca: BW_Residuals vs  

BW_Residuals-(NN+3N) vs BW_Residuals-NN 

Figure 4.7: Residuals of the even-even nuclei between the two DM nuclei 40Ca and 48Ca. Three plots are 
shown for comparison purposes. The blue line color plot connects the BW_Residuals calculated using the 
parameters of Table 4.5, the green line corresponds to the residuals obtained after the fit of the Eq. (39) 
and the red color line shows the residuals’ values when the NN contribution is only considered, Eq. (40). 

The best values of B and/(or) D parameters are also shown. 
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obtained after the fit of the Eqs. (39) and (40), BW_Residuals-(NN+3N) and BW_Residuals-NN, 

respectively, are presented in the following Fig. 4.8. 

 

 

 

 

 

 

 

Nucleus LD (MeV) BE(MeV)-LD 

(MeV) 

BEexper(100Sn) 

(MeV) 

BEexp(ASn)-

BEexp(100Sn) 

(MeV) 

BEtheor(100Sn) 

(MeV) 

(BEtheor(ASn)-

BEtheor(100Sn)) 

(MeV) 

BW_Residuals 

(MeV) 

100Sn 821.214 4.084 825.297 0 821.214 0 0 
102Sn 850.728 -1.636 825.297 23.794 821.214 29.515 -5.720 

104Sn 878.188 -6.261 825.297 46.629 821.214 56.974 -10.345 

106Sn 903.710 -9.914 825.297 68.499 821.214 82.496 -13.997 

108Sn 927.401 -12.746 825.297 89.358 821.214 106.187 -16.830 

110Sn 949.362 -14.793 825.297 109.272 821.214 128.149 -18.877 

112Sn 969.687 -16.162 825.297 128.228 821.214 148.473 -20.245 

114Sn 988.461 -16.888 825.297 146.275 821.214 167.247 -20.972 

116Sn 1005.764 -17.083 825.297 163.384 821.214 184.551 -21.167 

118Sn 1021.673 -16.722 825.297 179.653 821.214 200.459 -20.806 

120Sn 1036.257 -15.718 825.297 195.242 821.214 215.043 -19.802 

122Sn 1049.581 -14.057 825.297 210.227 821.214 228.368 -18.141 

124Sn 1061.708 -11.748 825.297 224.663 821.214 240.494 -15.831 

126Sn 1072.693 -8.809 825.297 238.586 821.214 251.480 -12.893 

128Sn 1082.592 -5.218 825.297 252.076 821.214 261.378 -9.302 

130Sn 1091.454 -1.168 825.297 264.989 821.214 270.240 -5.251 

132Sn 1099.326 3.517 825.297 277.546 821.214 278.113 -0.567 

 

 

 

Table 4.8: The best fit parameters of Table 4.5 were applied to the even-even nuclei from 100Sn to 132Sn. The values of the 
residuals of the column ‘BW_Residuals (MeV)’ were derived taking into account the DM reference nucleus 100Sn. 
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      Finally, it becomes apparent that the residuals of the even-even nuclei included between 

the two DM nuclei, 100Sn and 132Sn, follow a parabolic trend which can successfully described 

by the inclusion of the NN and 3N valence-shell corrections. The green color line which 

corresponds to the residuals given by the fitted Eq. (39) has been significantly attributed to 

the explanation of the parabolic form of the initial residuals. Similar behavior is also found for 

a fit of the Eq. (40). The inclusion of the valence-shell corrections, due to what is anticipated 

to be given by NN and 3N terms, in the BW baseline formula serves the purposes of the 

present theoretical approach. 

 

 

 

 

 

 

 

 

 

 

 

 

Tin isotopic chain (Z=50): Even-Even nuclei between the DM nuclei: 100Sn to 132Sn: BW_Residuals vs 

BW_Residuals-(NN+3N) vs BW_Residuals-NN 

 100Sn 102Sn 104Sn 106Sn 108Sn 110Sn 112Sn114Sn 116Sn 118Sn 120Sn 122Sn 124Sn 126Sn 128Sn130Sn 132Sn 

 
Figure 4.8: Residuals of the even-even nuclei between the DM nuclei 100Sn and 132Sn. Three plots are shown for 
comparison purposes. The blue color line plot connects the BW_Residuals calculated using the parameters of 

Table 4.5, the green line corresponds to the residuals obtained after the fit of the Eq. (39) and the red color line 
shows the residuals’ values when the NN contribution is only considered, Eq. (40). The best values of B and/(or) D 

are also shown. 
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3) Isotonic chain (N=28): 

 

 

      Repeating the analysis for the isotonic chain N=28, the parameters of the Table 4.5 were 

applied to the even-even nuclei included between the two DM nuclei 48Ca and 56Ni. The 

difference between the experimental and theoretical binding energies for these nuclei are 

presented in the column: ‘BE(MeV)-LD(MeV)’ of Table 4.9. The in-between residuals of the 

two DM nuclei, 48Ca and 56Ni, appear to follow a parabola. However, it should be noted that 

there is still a difference in the residuals’ values of the DM nuclei - edge - of the present atomic 

mass region. In a similar way as before, the experimental binding energy as well as its 

corresponding theoretical value of the reference DM nucleus, 48Ca, is necessary to be 

subtracted from each of the experimental and theoretical values of all the rest nuclei of the 

dataset, respectively. The final residuals are shown in the last column of Table 4.9. 

 

 

 

      What follows the estimation of the residuals’ values for each of the nuclei of Table 4.9, is 

fits of the BW modified formula given by the Eqs. (39) and (40), to the dataset presented in 

Table 4.9. In a similar manner as before, the following Fig. 4.9, shows a comparison of the 

initial residuals, BW_Residuals, and the residuals as obtained after the fits of the Eqs. (39) and 

(40).  

 

 

 

 

 

 

 

Nucleus LD 

(MeV) 

BE(MeV)-

LD(MeV) 

BEexper(48Ca) 

(MeV) 

(BE(ACa)-

BE(48Ca)) (MeV) 

BEtheor(48Ca) 

(MeV) 

(BEtheor(ACa)-

BEtheor(48Ca)) (MeV) 

BW_Residuals 

(MeV) 
48Ca 419.087 -3.086 416.001 0.000 419.087 0.000 0.000 

50Ti 445.065 -7.279 416.001 21.785 419.087 25.978 -4.193 
52Cr 464.447 -8.095 416.001 40.351 419.087 45.360 -5.009 
54Fe 477.861 -6.097 416.001 55.764 419.087 58.774 -3.010 
56Ni 485.849 -1.853 416.001 67.995 419.087 66.762 1.233 

 

 

Table 4.9: Best fit parameters of Table 4.5 were applied to the even-even nuclei from the DM nuclei 48Ca to 56Ni. The values of the 
residuals of the column ‘BW_Residuals (MeV)’ were derived taking into account the DM reference nucleus 48Ca. 
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      Given the residuals’ plots of the last Fig. 4.9, it seems that the inclusion of the valence-shell 

corrections, given by the NN and 3N terms, minimizes the BW_Residuals, which were 

calculated using the parameters of Table 4.5 and are depicted in Fig 4.9 connected with a blue 

line. The latter actually means that is able to describe the parabolic shape of the blue color 

line. However, it should be emphasized that it is not expected the residuals of green color line 

to be exact zero. As previously explained, the predicted values cannot be exactly the same as 

the observed values due to the measurement uncertainties and model imperfections [162].  

 

 

 

 

 

 

 

 

Isotonic chain (N=28): Even-Even nuclei between the DM nuclei: 48Ca to 56Ni : BW_Residuals vs 

BW_Residuals-(NN+3N) vs BW_Residuals-NN 

            48Ca                      50Ti                            52Cr                            54Fe                          56Ni 

 

Figure 4.9: Residuals of the even-even nuclei between the DM nuclei 48Ca and 56Ni. Three plots are shown 
for comparison purposes. The blue line color plot connects the BW_Residuals calculated using the 

parameters of Table 4.5, the green line corresponds to the residuals obtained after the fit of the Eq. (39) and 
the red color line shows the residuals’ values when the NN contribution is only considered in the fit, Eq.(40). 

The values of the best fit parameters are also shown. 
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      The overall performance of the case of an unweighted least squares fit of the BW baseline 

formula to the traditional DM nuclei and also fitting its modified version (BWM) to the regions 

of interest, is now important to be assessed. First, it was proved that the best fit coefficients 

obtained from such an unweighted least squares regression, are applicable to reproduce the 

parabolic behavior of the BW residuals between two DM nuclei. Following the last 

justification, a fit of the BWM formula, Eq. (39) (and Eq. (40)),  towards the even-even nuclei 

included between the two shell closures, was performed. The findings show that the inclusion 

of the additional valence-shell corrections of NN and 3N terms are applicable to describe the 

parabolic shape of the BW residuals for calcium and tin isotopic chains as well as for the 

isotonic chain (N=28).  

     At this point, it is important to make a remark on the fit to the dataset restricted to the 

even-even nuclei of Table 3.1. An unweighted least squares fitting procedure was also applied 

to the even-even nuclei included in the range of 16 ≤ A ≤ 208. Although this case of fitting was 

tested, such a fit was rejected and considered invalid. Reference has already been made to 

the inadequacy of the BW baseline formula to account for shell effects and microscopic 

theory. It is a simple model which only provides valuable information about the bulk 

properties of nuclear systems. Particularly, in case of conducting a fit of the BW baseline 

formula to the even-even nuclei for 16 ≤ A ≤ 208, open shells of even-even nuclei are not taken 

into consideration in the model’s theory of the BW formula. To this end, the estimated 

parameters, obtained from such a fit, are considered inappropriate and was not used for 

further evaluation of our research approach.  

      In addition, as previously reported, one more isotopic chain can be tested for its ability to 

reproduce our phenomenological approach, if ones takes into consideration the 

experimentally approved DM nucleus, 24O. Therefore, the DM nucleus, 24O, was added to the 

list of the DM nuclei and an unweighted least squares fitting procedure followed. The results 

showed that the edge of the Oxygen isotopic chain, which correspond to the DM nuclei 16O 

and 24O, do not satisfy the first condition of the present research strategy. In a similar manner, 

the residuals’ values of the rest of the DM nuclei presented in the list, also do not follow the 

first rule after the inclusion of the DM nucleus 24O. Therefore, this case of fit is not presented 

here.  

      Before proceeding with the rest of the analysis, it should be summarized that more input 

as well as output data related to the fits of the regions of interest are included in the Appendix 

A. The input data, residuals’ values, theoretical binding energies as well as the contribution of 

each of the NN and 3N terms, after fitting the Eqs. (39) and (40) to the even-even nuclei of the 

examined regions of interest, are shown in  Tables A.6 to A.11 of the Appendix A.   
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4.2 The LDM1 Formula Fit:  

 

4.2.1 Fit to the traditional DM nuclei (A ≥16) binding energies and 

with the addition of the DM nucleus 24O: 
 

      As it has been discussed in subsection (2.4.2), an improvement to the expression of the 

BW baseline formula was suggested by Samanta and Adhikari [124], aiming to explain some 

light nuclei as well as nuclei far from the line of stability. Particularly, by modifying the 

asymmetry and pairing terms in the initial BW baseline formula, it identified new magic 

numbers of Z and N or the disappearance of some of the already known magic numbers.  

      In the present analysis, the LDM1 formula was only adapted in an attempt to bring the 

residuals for the pairs of the DM nuclei of the selected regions of interest to similar values so 

to satisfy the first condition of the present phenomenological approach. To this end, an 

unweighted least squares fit of the LDM1 formula to the traditional DM nuclei, adding also 

the newly observed DM nucleus 24O, was conducted. Therefore, the even-even nuclei included 

between the two closed shells of the oxygen isotopic chain was also examined for their ability 

to reproduce the current theoretical approach. All the DM entries should also follow the 

condition A ≥16. The best fit coefficients are presented in Table 4.10.  

 

 

      Once the best fit parameters were calculated, the residuals’ values for each nucleus 

included in the fit was accessed. Particularly, the interest lays in observing the values of the 

DM nuclei which were included in the regions of interest. The pairs of such DM nuclei are 

shown in the following Table 4.11 and their residuals’ plot in Fig. 4.10, and they should satisfy 

the first condition.  

 

 

1) Fitting the BE in MeV  

2) Using the LDM1 formula of Eq. (7) 

3) Without including the experimental uncertainties  

4) Including the pairing term as fixed parameter 12 MeV 

5) Minimization Method: Scipy.curve.fit from Python 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) fixed 

15.89 ± 0.71 17.98 ± 1.91 0.72 ± 0.05 23.93 ± 2.11 12.0 

 

 

Table 4.10: Best fit parameters obtained  from the unweighted least squares fit of the LDM1 formula to 
the DM nuclei binding energies,  for A ≥16,  including the DM nucleus 24O. 
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Diagonal Chain from 

16O to 40Ca 

Diagonal chain from  

40Ca to 56Ni 

Isotopic chain: 

 Z=20 

Isotonic chain: 

 Z=28 

Isotopic chain: 

 Z=50 

Isotopic chain: 

 Z=8 

Residuals in MeV 

16O 40Ca 40Ca 56Ni 40Ca 48Ca 48Ca 56Ni 100Sn 132Sn 16O 24O 

2.30 -4.31 -4.31 -1.01 -4.31 -4.99 -4.99 -1.01 4.97 4.37 2.30 1.05 

 

 

Table 4.11: The residuals from the unweighted least squares fit of the BW formula to the DM nuclei binding energies which correspond to 
the edge of the regions of interest. The blue header columns contain the residuals of the doubly magic closed shells of the diagonal chain 
16O to 40Ca are presented, the burgundy red header columns the residuals of the DM nuclei of the diagonal chain 40Ca to 56Ni, the orange, 
purple and green header columns the residuals of the DM nuclei of the calcium, isotonic and tin chains, respectively. Also, the residuals for 

the DM nuclei of the oxygen isotopic chain are shown in red header color. 

 

 

 

 

 

 

 

 

 

 

 

       16O             24O           40Ca              48Ca                56Ni            100Sn            132Sn          208Pb 

Residuals of the traditional Doubly Magic Nuclei plus the DM nucleus 24O for A≥16 

Figure 4.10: The residual values for the DM nuclei (A ≥16) obtained from the unweighted least squares fit of 
the LDM1 formula plus the DM nucleus 24O are shown. 
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      By inspecting the values of the pairs of the DM nuclei, presented in Table 4.11, it is evident 

that the pairs of the DM nuclei which satisfy the rule of having approximately close values of 

residuals, correspond to the calcium, tin, and oxygen isotopic chains. On the contrary, one can 

also notice that there is a big difference in the residuals’ values of the DM nuclei of the isotonic 

chain (N=28) as well as the diagonal chains from 16O to 40Ca and from 40Ca to 56Ni. Particularly, 

the edge of the isotonic chain (N=28), which correspond to DM nuclei 48Ca and 56Ni, have an 

absolute difference of approximately 4 MeV between their residuals’ values. These chains are 

not suitable to satisfy the first condition of the present theoretical approach as well as they 

produce residuals’ values of even-even nuclei between closed shells, with inconspicuous 

parabolic character. Thus, their analysis was omitted from the present work.  

      In a similar manner as before, first the best fit parameters of Table 4.10, are applied to the 

calcium, tin and oxygen isotopic chains in order to identify if they can produce residuals which 

follow a parabolic-like form in compliance with the research steps presented in the subsection 

(3.1.1). If the latter is true, a fit to the even-even nuclei of these regions of interest using a 

modified LDM1 formula was conducted. This formula refers to the inclusion of the additional 

valence-shell corrections given by the NN and 3N terms to the LDM1 formula, Eq.(7). 

Afterwards, the analysis for the examined regions of interest proceeded in a similar manner 

like the one presented in the example case with the application of the Eqs. (31),(32),(33). Then 

the final residuals are derived and named as ‘LDM1_Residuals’. The analytical mathematical 

expression of the modified LDM1 formula is presented next:  

 

BE(A, Z) = av ∗ A − as ∗ A
2

3 − ac ∗
Z∗(Z−1)

A
1
3

− asym ∗
(A−2Z)2

1+𝑒
−

𝐴
17

∗ A + δn𝑒𝑤 + NN + 3N     (41) 

      Following exactly the same calculations as for the case of the BW baseline formula and the 

Eqs. (34) to (37), the parameters B and D were determined with regression analysis using the 

following equation, which is linear in parameter space with the dependent variable in the left-

hand side: 

   𝐿𝑀𝐷1 __𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =   𝐵 ∗ 𝑋 + 𝐷 ∗ 𝑘                                                 (42) 

 

If only the contribution of NN term is considered, the modified LDM1 expression of Eq. (42) is 

now written:  

           𝐿𝑀𝐷1 __𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =   𝐵 ∗ 𝑋                                                      (43) 

 

      Relevant Tables and graphs, obtained for each of the regions of interest, are presented 

next. The steps followed to obtain the plots of each graph have a similar logic as before and 

the previous subsections can be revisited for further clarifications, if necessary.  
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1) Calcium isotopic chain from the DM nucleus 40Ca to DM nucleus 48Ca:  

 

      The best fit parameters of Table 4.10 were applied to the even-even nuclei included 

between the two DM nuclei 40Ca to 48Ca. Then the estimations of the experimental binding 

energies as well as the residuals correspond to each of the nuclei were calculated and the 

subtraction of the DM reference nucleus, 40Ca, was also conducted. Once the final residuals’ 

values (LDM1_Residuals) have been determined, an unweighted least squares fit of the 

modified LDM1 formula, Eq. (42), as well as of  Eq. (43), to the even-even nuclei from the DM 

nuclei 40Ca to 48Ca, was performed. The residuals’ plots correspond to such fits are presented 

in the same graph of Fig. 4.11 for comparison purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        40Ca                       42Ca                           44Ca                              46Ca                        48Ca 

Calcium isotopic chain (Z=20): Even-Even nuclei between the DM nuclei: 40Ca to 48Ca: 

LDM1_Residuals vs LDM1_Residuals-(NN+3N) vs LDM1_Residuals-NN 

 

 

Figure 4.11: Comparison of the residuals correspond to the even-even nuclei from the DM nucleus 40Ca to 
48Ca. The blue color line connects the LDM1_Residuals calculated using the parameters of Table 4.10, the 
green color line the residuals after fitting the Eq.(42) and the red color plot the residuals after fitting the 

Eq. (43). 
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2) Tin isotopic chain from the DM nucleus 100Sn to DM nucleus 132Sn:  

 

      The best fit parameters of Table 4.10 were applied to the even-even nuclei included 

between the two DM nuclei 100Sn to 132Sn. Then, theoretical values of binding energies as well 

as the residuals correspond to each of the nuclei were calculated. The experimental and 

theoretical values of the DM reference nucleus 100Sn was also subtracted from each of the 

experimental and theoretical binding energies of the DM nuclei, respectively, included in the 

list of the tin isotopic chain.  Once the final residuals’ values (LDM1_residuals) have been 

determined an unweighted least squares fit of the modified LDM1 formula, Eq. (42), as well 

as the Eq. (43), to the even-even nuclei from the DM nucleus 100Sn to 132Sn, can be made. The 

residuals’ plots of the above fits are all presented in the following Fig. 4.12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tin isotopic chain (Z=50): Even-Even nuclei between the DM nuclei: 100Sn to 132Sn: 

LDM1_Residuals vs LDM1_Residuals-(NN+3N) vs LDM1_Residuals-NN 

100Sn 102Sn 104Sn 106Sn 108Sn 110Sn 112Sn114Sn 116Sn 118Sn 120Sn 122Sn 124Sn 126Sn 128Sn130Sn 132Sn 

 

Figure 4.12: Comparison of the residuals correspond to the even-even nuclei from the DM nucleus 
100Sn to DM nucleus 132Sn. The blue color line connects the LDM1_Residuals calculated using the 
parameters of Table 4.10., the green color line, the residuals after fitting the Eq. (42) and the red 

color line the residuals after fitting the Eq. (43). 
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3) Oxygen isotopic chain from the DM nucleus 16O to DM nucleus 24O:  

 

      The best fit parameters of Table 4.10 were applied to the even-even nuclei included 

between the two DM nuclei from 16O to 24O. Then, the theoretical values of binding energies 

as well as the residuals correspond to each of the nuclei can be calculated. The experimental 

and theoretical value of the DM reference nucleus 16O was also subtracted from each of the 

experimental and theoretical binding energies of the DM nuclei, respectively, included in the 

list.  Once the final residuals’ values, LDM1_residuals, have been determined, an unweighted 

least squares fit of the modified LDM1 formula Eq. (42), as well as Eq. (43), to the even-even 

nuclei from the DM nucleus 16O up to DM nucleus 24O, can be performed. The residuals’ plots, 

correspond to the oxygen Isotopic chain, are presented in the following Fig. 4.13:  

 

 

          Considering the results obtained from the above analysis, one can conclude that a fit of 

the LDM1 formula to the DM nuclei, including the DM nucleus, 24O, generates a set of 

parameters which is applicable to reproduce the U-shaped line of the residuals for the even-

even nuclei  between the two DM shell closures. This parabolic-like shape is notable for the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxygen isotopic chain (Z=8): Even-Even nuclei between the DM nuclei: 16O to 24O: 

LDM1_Residuals vs LDM1_Residuals-(NN+3N) vs LDM1_Residuals-NN 

 

    16O                     18O                            20O                            22O                        24O             

Figure 4.13: Comparison of the residuals correspond to the even-even nuclei from the DM nucleus 
16O to DM nucleus 24O. The blue color line connects the LDM1_Residuals calculated using the 

parameters of Table 4.10, the green color line the residuals after fitting the Eq. (42) and the red color 
line plot the residuals after fitting the Eq. (43). 
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calcium, tin and oxygen isotopic chains. Thus, once a fit of the modified LDM1 formula 

occurred towards to these atomic mass regions, the parabolic-like behavior can be captured 

with the inclusion of the NN and 3N terms.  

      Concluding relevant input as well as output data related to the fits of the LDM1 to the 

even-even nuclei lie between the DM nuclei of each regions of interest are presented in the 

Appendix A and in Tables A12 to A17.  

 

 

4.3 Comparison with Shell Corrections from the literature: 
 

      The importance of inclusion shell corrections in the liquid-drop mass formula has been 

pointed out by many authors from the early years of nuclear physics. Several studies have 

been made in implementing shell effects to mass models in order to achieve an accurate 

description of nuclear masses. To this end, several terms of shell corrections have been 

proposed which are often laborious and challenging to apply. 

      A simple way to account for shell effects in the liquid-drop mass formula can be found in 

Refs. [38,111,167,168]. This is based on counting valence nucleons - particles or holes - 

following the rule of interacting boson model (IBM) [169].  In Refs.  [4,99,112,170], one can 

find a similar approach in adapting such shell corrections to different versions of liquid-drop 

mass formula so as to achieve a precisely description as well as reliable predictions of nuclear 

masses especially around closed shells.  

      To compare the valence-shell corrections of Eqs. (18) and (19), introduced in this work, 

with a shell correction from the literature, two terms suggested by Ref. [4] were chosen. These 

terms, which are characterized by simplicity, are expressed as a function of the total number 

of valence nucleons, particles or holes and are added to the BW baseline formula. Particularly,  

one of them is linear and the other is quadratic in the number of valence neutrons (nn) and 

valence protons (np). The linear and quadratic terms are named P and PP, respectively, and 

are described by the following expressions:  

 

𝑃 = 𝑏1 ∗ (𝑛𝑛 +  𝑛𝑝)                                                                      (44) 

                                                                      and 

𝑃𝑃 = 𝑏2 ∗ (𝑛𝑛 +  𝑛𝑝)2                                                                  (45) 

 

where 𝑛𝑛 and 𝑛𝑝 are the number of valence neutrons and valence protons respectively and  

𝑏1 𝑎𝑛𝑑 𝑏2 are free parameters to be estimated from the fit. The sum (𝑛𝑛 +  𝑛𝑝) is equal to 

the total number of the valence nucleons , 𝑛 , of the nucleus.  
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      Including both the linear and quadratic terms, Eqs. (44) and (45), respectively, the 

following modified BW mass formula is now written as:  

  𝐵𝐸(𝑁, 𝑍) =  𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗ 𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12 ∗

1

𝐴
1
2

+ 𝑃 + 𝑃𝑃      (46) 

 

      Re-arranging the terms in Eq.(46) and leaving the shell correction in the right-hand side of 

equation, the Eq.(47) is derived: 

   𝐵𝐸(𝑁, 𝑍) − (𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12.0 ∗

1

𝐴
1
2

) = 𝑃 + 𝑃𝑃  (47) 

 

replacing P and PP terms from the Eqs. (44) and (45), respectively, Eq.(47) is transformed as: 

𝐵𝐸(𝑁, 𝑍) − (𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

− 𝑎𝑎 ∗
(𝑁−𝑍)2

𝐴
+ 12.0 ∗

1

𝐴
1
2

) = 𝑏1 ∗

 (𝑛𝑛 + 𝑛𝑝) +   𝑏2 ∗  (𝑛𝑛 +  𝑛𝑝)
2

                                                                                                              (48) 

 

the Eq. (48) is equivalent to: 

 

    𝐵𝑊_𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = 𝑏1 ∗ (𝑛𝑛 + 𝑛𝑝) +   𝑏2 ∗ (𝑛𝑛 + 𝑛𝑝)
2
                           (49) 

 

      It should be also emphasized that the shell correction described by the sum of the Eqs. (44) 

and (45), is only a simple expression and an upgraded version of the latter has been introduced 

in the Duflo-Zuker microscopic mass formula [4,96,171]. This updated version proposes the 

addition of extra terms in the liquid-drop mass formula which considers two-, three- and four-

body forces according to the study [99]. For a detailed description of the physical 

interpretation of each of these terms and their use in the nuclear mass model,  one can access 

the suggested literature.   

      Considering the BW_Residuals given in Tables 4.7, 4.8, 4.9 correspond to the calcium 

isotopic chain, tin isotopic chain, and isotonic chain (N=28), respectively, a fit of the Eq. (49) 

to the even-even nuclei included between the DM shell closures of these chains was 

conducted. The residual’s plots, presented for each of the regions of interest, include a 

comparison between the initial residuals, BW_Residuals, and the residuals obtained after the 

fit of the Eq. (49), BW_Residuals-(P+PP). 

      A judgment on the efficacy of the additional terms P and PP to reproduce the parabolic 

shape is based on their ability to describe the atomic masses of these particular regions of 

interest. 
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      The steps followed are exactly the same as previously and the only modification applied is 

in the interpretation of the modified BW formula which is now given by the Eq. (49). Thus, the 

phenomenological approach is identical to what has already been introduced.  

 

 

1) Calcium isotopic chain from the DM nucleus 40Ca to DM nucleus 48Ca:  

 

      The analysis starts with the case of the even-even nuclei included between the DM nuclei, 
40Ca to 48Ca. A fit of the modified BW mass formula of the Eq. (49) to these even-even nuclei 

was made and a comparison of the residuals’ values are shown in the following Fig. 4.14. In 

addition, the input and output data are also included in Table 4.12. 

 

 

 

 

 

 

 

                                                                          Input and  Output data  

Nucleus BW_Residuals 

(MeV) 

nn + np (nn+np)2 (P+PP) MeV (BW_Residuals-(P+PP)) 

MeV 
40Ca 0 0 0 0 0 

42Ca -4.721 2 4 -4.248 -0.474 

44Ca -5.620 4 16 -5.620 0.000 

46Ca -3.774 2 4 -4.248 0.474 

48Ca 0.977 0 0 0 0.977 

 

Table 4.12:  The input data and the estimated theoretical and residual values correspond to the even-even 
nuclei of the calcium isotopic chain. 
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2) Tin isotopic chain from the DM nucleus 100Sn to DM nucleus 132Sn: 

 

      Similar analysis was followed for the description of the parabolic behavior of the residuals 

of the even-even nuclei for the Tin isotopic chain, considering the suggested shell correction 

given by the inclusion of the terms P and PP in the fit. Particularly, an unweighted least squares 

fit of the Eq. (49) is conducted and the input as well as output data related to this fit has been 

included in the following Table 4.13. Following the calculation of the residuals, a comparison 

between the BW_Residuals and the residuals obtained after the fit of the Eq. (49), is presented 

in the following Fig. 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calcium isotopic chain (Z=20): Even-Even nuclei  between the DM nuclei: 40Ca to 48Ca 

     40Ca                           42Ca                          44Ca                              46Ca                            48Ca 

Figure 4.14: Comparison of the residuals for the even-even nuclei between the DM shell closures, 40Ca and 
48Ca. The blue line color connects the BW_Residuals calculated using the parameters of Table 4.5 and  the 

green color line connects the residuals obtained from a fit of Eq.(49). 
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                                                                               Input and  Output data 

Nucleus BW_Residuals 

(MeV) 

nn + np (nn+np)2 P+PP (MeV) (BW_Residuals-(P+PP)) 

MeV 
100Sn 0 0 0 0 0 
102Sn -5.720 2 4 -5.209 -0.511 
104Sn -10.345 4 16 -9.677 -0.668 
106Sn -13.997 6 36 -13.404 -0.594 
108Sn -16.830 8 64 -16.390 -0.440 
110Sn -18.877 10 100 -18.635 -0.242 
112Sn -20.245 12 144 -20.139 -0.106 
114Sn -20.972 14 196 -20.903 -0.069 
116Sn -21.167 16 256 -20.925 -0.241 
118Sn -20.806 14 196 -20.903 0.097 
120Sn -19.802 12 144 -20.139 0.338 
122Sn -18.141 10 100 -18.635 0.494 
124Sn -15.831 8 64 -16.390 0.558 
126Sn -12.893 6 36 -13.404 0.510 
128Sn -9.302 4 16 -9.677 0.374 
130Sn -5.251 2 4 -5.209 -0.043 
132Sn -0.567 0 0 0 -0.567 

 

 

Table 4.13: The input data as well as the estimated theoretical and residuals’ values of binding energies 
correspond to the even-even nuclei of the tin isotopic chain are presented. 
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3) Isotonic chain (N=28) from the DM nucleus 48Ca to DM nucleus 56Ni:  

 

      In a similar manner, a fit of the Eq. (49) to the even-even nuclei which lie between the DM 

shell closures 48Ca to 56Ni and the calculation of the in-between residuals, can also follow. The 

input data as well as the output theoretical and residuals’ values of binding energies for the 

even-even nuclei, are shown in the following Table 4.14. Following the calculation of the 

residuals, a comparison between the ‘BW_Residuals’ and those obtained by the fit of Eq. (49) 

is shown up in Fig. 4.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tin isotopic chain (Z=50): Even-Even nuclei lie between the DM nuclei : 100Sn to 132Sn  

100Sn  102Sn  104Sn  106Sn  108Sn  110Sn 112Sn114Sn 116Sn 118Sn 120Sn 122Sn 124Sn 126Sn  128Sn 130Sn 132Sn 

 
Figure 4.15: Comparison of the residuals of the even-even nuclei between the DM shell closures, 100Sn and 
132Sn. The blue line color connects the BW_Residuals calculated using the parameters of Table 4.5 and the 

green color line connects the residuals obtained from a fit of Eq. (49). 
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Input and  Output data 

Nucleus BW_Residuals 

(MeV) 

nn + np (nn+np)2 P+PP (MeV) (BW_Residuals-(P+PP)) 

MeV 
48Ca 0 0 0 0 0 
50Ti -4.193 2 4 -3.602 -0.591 
52Cr -5.009 4 16 -5.009 0.000 
54Fe -3.010 2 4 -3.602 0.591 
56Ni 1.233 0 0 0 1.233 

 

 
Table 4.14: The input data and the estimated theoretical and residual values correspond to the even-even 

nuclei of the isotonic chain N=28, from the DM nucleus 48Ca to 56Ni are presented. 

 

 

 

 

 

Isotonic chain (N=28): Even-Even nuclei lie between the DM nuclei: 48Ca to 56Ni 

48Ca                                50Ti                                  52Cr                                  54Fe                                 56Ni 

 

Figure 4.16: Comparison of the residuals of the even-even nuclei between the DM shell closures of the 
isotonic chain N=28, from the DM nucleus 48Ca to DM nucleus 56Ni. The blue line color connects the 

BW_Residuals calculated using the parameters of Table 4.5 and the green color line connects the residuals 
obtained from the fit of Eq. (49). 
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      As previously stated in subsection (4.1.2), the set of parameters of Table 4.5, is not 

applicable to reproduce residuals for the even-even nuclei of the diagonal chains from 16O to 
40Ca and from 40Ca to 56Ni, which resemble a parabola. As the main conditions of the current 

phenomenological approach are not satisfied, a fit of the modified BW formula, Eq. (49), to 

the even-even nuclei of the diagonal chains, is not considered appropriate and thus is not 

included here.  

      Summarizing the case of including the shell correction, described by the P and PP terms, 

to the BW mass formula, it is evident that these terms are applicable to capture the parabolic-

like shape for the in-between residuals of the calcium and tin isotopic chains as well as isotonic 

chain (N=28). 

      A comparison between the valence shell-corrections, proposed by the current 

investigation and those suggested from the literature, incorporating the P and PP terms,  show 

a clear agreement in the description of the parabolic behavior of the residuals. The latter 

means that the shell correction of P and PP terms, is applicable to reproduce the observed 

parabolic character of the residuals with a similar manner as the present additional terms of 

NN and 3N are able to do so. The residuals obtained from a fit of the Eqs. (39) and (49) towards 

the nuclei of the regions of interest produce residuals for even-even nuclei lie between two 

DM nuclei, with very similar values.  

 

 

4.4 General Important Remarks that were detected during 

the analysis: 
 

      Various investigations have been made throughout the conduction of the present research 

aiming to access a set of best fit parameters which is able to reveal the parabolic shape of the 

residuals between two DM nuclei and to describe them with the inclusion of the extra NN and 

3N terms afterwards. Towards this justification, alternative expressions of the terms of 

nuclear mass formulas or expansion of the existed ones (obtained from the literature) was 

conducted. Also, least-squares fits to different atomic mass regions as well as fits of the 

nuclear mass formulas to the quantity binding energy per nucleon rather than the total 

binding energy, with or without the incorporation of the experimental uncertainties, were 

investigated. A presentation of some of the most important conclusions that detected during 

this analysis are presented herein:  

1) It is evident that there is a limited availability of measured atomic mass data 

corresponding to DM nuclei. Particularly, the traditional doubly magic nuclei of 

mass16.txt (excluding the very light ones) are seven, four of which correspond to 

symmetric DM nuclei (16O, 40Ca, 56Ni, 100Sn) and the rest to asymmetric (48Ca, 132Sn, 
208Pb). The first concern that arises here has to do with the sample size and the 

statistical power that needs to be increased for making more reliable estimations. 

Particularly, if  the sample size of the DM nuclei dataset is increased, the statistical 

power will be enhanced. Collecting enough data is also important for detecting 
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important association that maybe exist in the population. The ground rule regarding 

the data sample is that the bigger the sample size, the better the estimations are. 

However, the latter depends on several factors and further investigations using power 

analysis techniques are necessary. Correspondingly, there are also limitations for a 

dataset which includes a large sample size. In Ref. [172], an extensive discussion 

regarding the sample size and the statistical techniques applied for determining the 

essential sample size is also presented.  

 

2) In the present analysis several attempts were made for reducing the residuals 

corresponding to the DM nuclei. To this end, additional terms were added to the BW 

baseline formula aiming to reproduce the symmetry energy of the even-even nuclei 

of the diagonal chains. As they are all symmetric nuclei, terms that account for N=Z 

nuclei should be considered in the fit. Similarly, additional terms were used for fits 

involving DM nuclei. The list of the traditional DM nuclei, used in the present work, 

includes four symmetric and three asymmetric nuclei. Different combinations of 

terms were applied and their ability to reproduce our theory as well as to describe the 

DM nuclei were evaluated.  

As an example, a fit of the BW baseline mass formula to the DM nuclei, when two 

extra terms are also added in the fitting procedure, will be presented. Particularly, the 

standard part of the BW baseline formula remains the same and then two extra terms 

were added. The extra terms are the exchange coulomb term (𝑎𝑥𝑐) and the Wigner 

energy term (𝑎𝑤) reported and explained in Ref. [117].  

Thus, the BW baseline formula with a fixed pairing parameter with a value of 12 MeV 

and the inclusion of the two additional  terms, is now given by: 

 

 

           𝐵𝐸(𝑁, 𝑍) =  𝑎𝑣 ∗ 𝐴 −  𝑎𝑠 ∗  𝐴
2

3 − 𝑎𝑐 ∗
𝑍∗(𝑍−1)

𝐴
1
3

−  𝑎𝑎 ∗  
(𝑁−𝑍)2

𝐴
+

12

𝐴
1
2

+ 𝑎𝑥𝑐 ∗
𝑍

4
3

𝐴
1
3

+ 𝑎𝑤 ∗  
| 𝑁−𝑍 |

𝐴
   

(50) 

 

If an unweighted least squares fit of Eq. (50) to the traditional DM nuclei is performed, 

the results of the residuals for the DM nuclei are presented in Fig. 4.17. Also, a 

comparison between the set of the estimated parameters obtained from the fit of Eq. 

(50) and the BW baseline formula, Eq. (5), is presented in the following Table 4.15.  
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                     Unweighted Least Squares Fit of the Eq. (50) to the traditional DM nuclei for A ≥ 16 

1) Fitting the BE in MeV  

2) Using the BW baseline formula with the extra terms: 𝒂𝒙𝒄 and  𝒂𝒘 of Eq. (50) 

3) Without including the experimental uncertainties 

4) Including a fixed value of pairing parameter ap = 12MeV  

5) Minimization Method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) axc (MeV) aw (MeV) 

16.69 ± 0.92 20.12 ± 2.65 0.79 ± 0.06 25.21 ± 2.80 12.0 fixed 7.56 ± 2.41 81.29 ± 41.64 

                     

                       Unweighted Least Squares Fit of the Eq. (5) to the traditional DM nuclei for A ≥ 16 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) axc (MeV) aw (MeV) 

16.86  ± 1.36 20.65 ± 3.75 0.79 ± 0.10 26.81  ± 4.16 12.0 fixed - - 
 

Table 4.15: Comparison of the best values of parameters obtained from fit of Eq.(50) and Eq.(5) to the traditional DM 
nuclei for A≥ 16. 

 

1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq. (5) 

3) Without including the experimental uncertainties 

4) Including a fixed value of pairing parameter ap = 12MeV  

5) Minimization Method: scipy.curve.fit 
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By inspection of the values of the residuals of Fig. 4.17, one can conclude that the 

residuals are greatly minimized with the inclusion of just two terms in the BW baseline 

formula. 

Despite this fact, one should be skeptical about whether it originates in the real 

applicability of the model to make reliable estimations of the present observations or 

other factors influence each term in the model and drive the behavior of the 

regression analysis. 

Particularly, a question arise regarding the overfitting problem which in this occasion 

may occur due to the small sample size of the DM nuclei. In such a way, it is 

responsible for the differences between the actual and predicted values, which are 

exactly zero for some DM nuclei or very close to zero for some others. The standard 

linear regression considers that the number of the sample observations (n) should be 

much greater that the number of parameters (p) such that n >> p, so as to make 

reliable predictions. If the number of the data  are almost equal to the number of 

parameters, n ≈ p, it is often the case where the parameters are forced to follow the 

data. In addition, it should be noted that the inclusion of the Wigner term in this fit 

result some asymmetric nuclei to be predicted very accurately compared to some 

 

 

 

 

 16O                40Ca                48Ca                56Ni                 100Sn               132Sn              208Pb 

Fit of the Eq. (50) to the Doubly Magic Nuclei for A ≥ 16 

Figure 4.17: The residuals for the DM nuclei (A≥16) obtained from the unweighted least squares fit of the enriched 
BW baseline formula, Eq. (50). 
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others. This  indicates a clear preference of the fit towards the asymmetric nuclei 

rather the symmetric.  

Also, by comparing the best values of coefficients reported in Table 4.15, it can be 

seen that the parameters av, as, ac, aa do not differ significantly between the two fits, 

but they are characterized from a slightly increase in their uncertainties’ values.    

A special reference should be given to the large value of uncertainty accompanying 

the estimated parameter of the Wigner term (aw), presented in Table 4.15. This 

observation implies that the parameter is not well determined. A correlation analysis 

to identify the role of this parameter over the least squares fitting procedure is also 

recommended. This will be determined whether it should be eliminated from the 

analysis.  

It is also necessary to be verified if the estimated coefficients correspond to the 

additional terms (𝑎𝑥𝑐 𝑎𝑛𝑑 𝑎𝑤)  are  similar to the ones reported in the relevant 

literature, Ref. [117]. In Ref. [126], the reported values for the 𝑎𝑥𝑐 𝑎𝑛𝑑 𝑎𝑤 are 2.22(5) 

MeV and -43.30(222) MeV, respectively. However, in this study an enriched BW 

formula, involved eleven fit coefficients, are fitted to the entire AME2003 atomic mass 

table.  

Although this analysis cannot be considered for applying our theoretical approach, 

due to reasons previously explained, it is a good example which provided us with 

valuable insights and directed the current investigation. 

 

3) The dependence of the least-squares fitting procedure on the weights of the DM 

nuclei was also evident when a fit to the binding energy per particle was performed 

instead of the total binding energy. In order to investigate the last statement, it is 

important to focus on the difference between the fits of these two physical quantities. 

A fit on the total binding energy seems also to be a reasonable decision for our 

analysis.   

Naturally,  a fit on the total binding energy, assigns more importance to the heavy 

atomic mass region, while a fit to the binding energy per particle gives more 

importance to the medium, light nuclei [57,117]. 

Therefore, fits to the DM nuclei using the quantities of the total binding energy and 

binding energy per particle were conducted to determine the changes in the 

estimated parameters. As it was expected, considerable differences in the values of 

the best fit parameters were found in the case of an unweighted least squares fit. A 

Similar investigation in nuclei of the entire AME2003 mass table was reported in Ref. 

[126], where the results obtained from a fit to the total binding energy significantly 

differed from those obtained from a fit to the quantity, binding energy per particle.  

However, when in the present work, a weighted least squares fit to the DM nuclei 

binding energy per particle of BW baseline formula,  was conducted, it was found that 

the best fit parameters do not differ from the results of the best fit parameters of a 

weighted least squares fit of BW to the total binding energy. This is due to the 

influence of the weights in the fitting procedure, which result the residuals of the DM 

nuclei to behave with similar manner either a fit to the total binding energy or the 

binding energy per particle is performed.  
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In Tables A.18 to A.23 presented in Appendix A, the residuals for the DM nuclei as well 

as the estimated parameters for different fit cases are presented.  

The outcome generated from these fits significantly contributed to changing the 

research direction related to the regression analysis.  

 

4) Several studies have considered the expression 
𝑍2

𝐴1/3  for the coulomb term, instead of 

the expression  
𝑍∗(𝑍−1)

𝐴
1
3

 which is reported in Eq. (5) and also adapted by the present 

investigation. However, both of the expressions were tested and a fit to the DM nuclei 

was repeated using the form 
𝑍2

𝐴1/3, so as to evaluate any significant changes to the 

results of the DM nuclei residuals. The form of the coulomb term 
𝑍∗(𝑍−1)

𝐴
1
3

  is a more 

correct expression in terms of the physical meaning of the Coulomb energy. 

Particularly, although the 𝑍2 form is widely used in several studies 

[23,117,163,165,173], strictly speaking it is not quite right. The BW baseline formula, 

when included the 𝑍2 form, states that even one proton, i.e., Z=1, is able to contribute 

as a corrected factor to the binding energy, even though there is nothing to repel it. 

In this case, the correction to the binding energy should not be quite as big. In such a 

way, a more appropriate expression for the coulomb term is given by the form 
𝑍∗(𝑍−1)

𝐴
1
3

 

which is now zero for Z =1 and indicates that the biggest binding energy corresponds 

to any mass number for Z=1. However, the Coulomb terms 
𝑍2

𝐴1/3  𝑎𝑛𝑑 
𝑍∗(𝑍−1)

𝐴
1
3

  give 

similar results for large values of A as reported in Ref.  [174].  

 

5) There are several popular solutions across the literature which aim to deal with 

problems related to  different magnitudes of experimental uncertainties when 

entered the regression analysis. A popular method, which is usually applied, is to 

consider an artificial lower limit on the measurement uncertainties, allowing only 

uncertainties of around 50 keV to less than 150 keV to be included in the weighted 

least squares fit [100,113,117,121,166,175]. This suggestion could be proven to be 

useful for the present investigation, if more experimental doubly magic data were 

available to incorporate the fit.  

An additional solution, presented in Ref. [79], has been assumed a constant error for 

all the experimental observables which is equal to the median of the experimental 

uncertainties of the nuclei included in the list. However, by performing such a 

weighted least squares fit, the results are exactly the same as in the case of an 

unweighted least squares regression analysis or when one considers a constant 

weight equal to 1 among all the observations. 
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Chapter 5 

Discussion and Conclusions 
 

 

 

      In this research work, valence-shell corrections have been modeled in order to describe 

the parabolic trend of atomic mass data between two DM closed shells.  

      Given the research analysis and the results section, it was observed the relevance of the 

suggested terms, Eqs. (18) and (19), in the explanation of the parabolic shape of the residuals 

between the DM shell closures. Particularly, the suggested terms are able to explain the 

parabolic behavior of the residuals in the calcium and tin isotopic chains as well as the isotonic 

chain (N=28) using as a baseline model the BW formula. In addition, un unweighted least 

squares fit of the LDM1 formula was able to reveal the parabolic-like character of the oxygen 

isotopic chain which is also very well described by the addition of NN and 3N terms.  More 

theoretical mass formulae should be tested for their efficacy to reproduce the DM nuclei 

better. The inclusion of NN and 3N terms can then be further considered. In such a way, 

residuals of even-even nuclei between the diagonal chains maybe can also be explained by 

the current phenomenological approach.  

       It is also worth mentioning that shell correction which is linear and quadratic in the 

number of valence nucleons and presented in Ref. [4], was added in the BW baseline formula 

and the results are compared with those suggested from the present investigation. The 

findings show that the shell correction of Ref. [4] can also capture the parabolic behavior of 

the residuals between the DM nuclei describing the observed trend of atomic mass data, with 

a very similar manner as those introduced by the present research work.  

      In addition, special treatment should also be given in the incorporation of a larger sample 

size of nuclei in the linear regression analysis. The limited number of available doubly-magic 

nuclei compared to the number of the model’s parameters, can clearly influence the fitting 

procedure. Such a model could possibly represent the noise rather than the genuine 

relationships in the population. 

      Moreover, the process can be enhanced if special care is given to a precise estimation of 

the already measured observables. With such a way, the phenomenological approach of the 

present investigation will be possible to enhance its efficacy in describing the observed 

parabolic character of the residuals, by considering the experimental uncertainties in the fit. 

Particularly, the doubly magic nucleus 100Sn is a critical nucleus [165] whose the experimental 

measured value should concentrate the experimental and theoretical efforts for a more 

accurate estimation of its value [136] .  

      It is also recommended that experimental attempts are essential for more input doubly 

magic nuclei. Indeed, the present theoretical approach could be tested to more atomic mass 

https://statisticsbyjim.com/glossary/population/
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regions. Therefore, new measurements of drip lines and data on magic numbers are required, 

e.g., 78Ni.  

      Furthermore, in the current investigation, the hypothesis that have been adapted is that 

the origin of these terms, given by the Eqs. (18) and (19), is due to the presence of NN and 3N 

body forces. However, it is important to be stressed that although the expressions of the 

proposed terms can capture the observed parabolic shape of the residuals, a straightforward 

claim that these terms are a manifestation of the NN and 3N body forces cannot be made in 

this stage of the investigation. Future work towards this justification is essential so as to 

identify their true origin 

      Reference has already been made in the inclusion of an updated version of shell correction 

to the liquid-drop mass formulas according to the suggestion of the paper [4, 99]. Following 

the latter, additional terms have been added to the liquid-drop formula which are expressed 

as a function of valence nucleons incorporating the degeneracy of the proton and neutron 

valence shell and also presenting two-, three- and four- body forces.  

      The last statement are included here as a suggestion point for further investigation and 

can be used as instructions on additional theoretical work that is needed to be done so as to 

accurately evaluate the origin of these terms. Therefore, it should be noted that the present 

findings should be interpreted with caution and based on the realization that other studies 

have provided evidence towards an explanation of the effects of two- and three- body forces 

in atomic masses.  
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APPENDIX A 

Input data and Results from the Fitting Procedure 
 

 

      In this appendix, results obtained by individual fits throughout the present investigation 

are included. One can access the information provided on each of these Tables, in accordance 

with the corresponding section and based on the numbering associated with them. Although 

it does not provide an analytical description for each case fit, it presents the appropriate 

supporting material to the results’ chapter without interrupting the narrative flow of the 

research analysis to the reader. 

 

 

 

 

                        Weighted least squares Fitting of the BW formula to the DM nuclei for A ≥ 16 

1)       Fitting on the total binding energy (BE(MeV)) 

2)       Using the BW baseline formula of Eq. (5) 

3)       Including the experimental uncertainties: ‘unT (MeV)’ 

4)       Without including the pairing term (ap) in the fit 

 

Minimization 

Method 

 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

Exact Solution: Eq. 

(26) 

14.17 
 

13.51 
 

0.60 
 

17.30 
 

- 

Scipy.curve.fit 

library from 

Python 

(Numerical 

Solution) 

14.17 ± 0.18 
 
 

13.51 ±  0.37 
 

0.60 ± 0.026 
 
 

17.30 ± 0.84 
 

- 

Lmfit library from 

Python 

(Numerical 

Solution) 

13.99 ± 0.39 
 
 

13.15 ± 0.79 
 

0.57 ± 0.06 
 

16.41 ± 1.78 
 

- 

MINUIT 

(Numerical 

Solution 

13.99 ± 6e-11 13.14 ± 10e12 0.57 ± 23e-11 16.41 ± 7e-9 - 

 

 
Table A.1: Comparison of the results of the estimated best values of parameters between an analytical (or exact) 
and three numerical solutions for the weighted least squares fit of the BW baseline formula to the DM nuclei for 

A≥16. 
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                       Unweighted Least Squares Fitting of the BW formula to the entire AME2016 table 

1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq. (5) 

3) Without including the experimental uncertainties in the fit 

4) Including the pairing term as free parameter  

5) Minimization Method: iminuit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

15.44 ± 0.01 16.75 ± 0.04 0.69 ± 0.7e-3 22.68 ± 0.02 12.0 ± 0.5 

Table A.2: An unweighted least squares fit of the BW formula was performed to the entire AME2016 mass table. The 
MINUIT automatic routine was used, and a value of 12 ± 0.5 MeV was assigned to the pairing coefficient. The latter 

was adapted as a fixed value associated with the pairing parameter in the present investigation.  

 

 

                            Test 1 : Weighted least squares Fitting of the BW formula to the DM nuclei for A ≥ 16 

1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq. (5) 

3) Replacing the actual experimental uncertainties of the DM nuclei, 100Sn and 132Sn, with the values 

of the experimental uncertainties of Test 1  

4) Including a fixed value of pairing parameter ap = 12 MeV  

5) Minimization Method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

14.24 ± 0.24 14.32 ± 0.53 0.55 ± 0.02 18.17 ± 0.84 12.0 fixed 

Table A.3: A weighted least squares fit of the BW formula was performed to the DM nuclei (A ≥ 16) and the best fit 
coefficients are shown. The uncertainties of the experimental binding energies, that included in the fitting procedure, 

followed the conditions of the Test 1. 
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                        Test 3:  Weighted least squares Fitting of the BW formula to the DM nuclei for A ≥ 16 

1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq. (5) 

3) Replacing the actual experimental uncertainties of the DM nuclei, 16O, 40Ca and 48Ca 

with the values of the experimental uncertainties of Test 3 

4) Including a fixed value of pairing parameter ap = 12MeV  

5) Minimization Method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

16.69 ± 0.92 20.12 ± 2.65 0.79 ± 0.06 25.21 ± 2.80 12.0  fixed 

 

 
Table A.4: A weighted least squares fit of the BW formula was performed to the DM nuclei (A ≥ 16) and the best fit 
coefficients are shown. The uncertainties of the experimental binding energies that included in the fitting procedure 

followed the conditions of the Test 3. 

 

 

 

 

 

 

 

 

 

 

Figure A.1: (a) Graphical representation of the uncertainties of the traditional DM nuclei for A ≥ 16 using a histogram. 
(b) Two boxplots are presented in the same plot. The LHS boxplot corresponds to the values of the residuals when a 
weighted least squares fit of the BW formula to the DM nuclei was performed (w_Exp.Un.) while the RHS boxplot 
corresponds to an unweighted least squares fitting procedure (w/oExp.Un.). (c) The box-and-whisker plot which is 

designed to present the distribution of a population, is shown. Available in Ref. [176]. 
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A) Unweighted Least Squares Fit of the BW baseline formula to binding energy data 

for DM nuclei (A ≥ 16 ) considering the pairing parameter as constant value of 12 

MeV: 

 

Input and Output Data related to the subsection (4.1.2) of the present thesis: 

 

Parameters of Table 4.5 applied to the even-even nuclei of the following regions 

of interest:  

 

                        Unweighted least squares Fitting of the BW formula to the DM nuclei for A ≥ 16 

1)       Fitting on the total binding energy (BE(MeV)) 

2)       Using the BW baseline formula of Eq. (5) 

3)       Without including the uncertainties correspond to the BE(MeV) in the fit 

4)       Without including the pairing contribution in the fitting procedure 

 

Minimization 

Method 

 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap 

(MeV) 

Exact Solution: Eq. 

(26) 

16.29 18.91 0.76 25.26 - 

Scipy.curve.fit 

library from Python 

(Numerical 

Solution) 

16.29 ± 1.39 
 
 

18.90 ±  3.83 
 

0.75 ± 0.10 
 
 

25.26 ± 4.25 
 

- 

Lmfit library from 

Python 

(Numerical 

Solution) 

16.29 ± 1.39 
 
 

18.90 ± 3.83 
 

0.75 ± 0.10 
 

25.26 ± 4.25 
 

- 

MINUIT 

(Numerical 

Solution) 

16.29 ± 0.27 18.9 ± 0.7 0.759 ± 0.020 25.3 ± 0.8 - 

Results obtained by 

Ref. [117]: (Fit to 

AME2003) 

15.36 (3) 16.42 (8) 0.691 (2) 22.53 (7) - 

 

 

Table A.5: Comparison of the results of the estimated best values of parameters between an analytical (or exact) 
and three numerical solutions for the unweighted least squares fit of the BW baseline formula to the DM nuclei 

for A ≥ 16, without considering the contribution of pairing term. 
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The following Tables show input as well as a selection of output data for each of the 

examined regions of interest which were used for the evaluation of the current theoretical 

framework. The column names of the first row have been previously introduced in the 

main body of the thesis. However, a reference should be made to the notations: ‘NNterm’ 

and ‘3Nterm’. These terms describe the individual contributions of each of the NN and 3N 

expressions in the fitting procedure, following the estimation of B and D best fit 

coefficients obtained from the Eq. (39). In such a way, the physical representation of the 

‘NNterm’  was easy to be distinguished from the column name ‘NN’ which here refers to 

a fit of Eq. (40) towards to the NN contribution only.  

 

 

1) Calcium isotopic chain  (Z=20): from the DM nucleus 40Ca to DM nucleus 48Ca: 

 

 

 

 

Table A.7: (II) Input and Output Data for the even-even nuclei lie between the two DM nuclei: 40Ca to 48Ca 

X k (NN+3N) 

MeV 

( BW_Residuals-

(NN+3N) ) MeV 

NNterm 

(MeV) 

3Nterm 

(MeV) 

NN 

(MeV) 

(BW_Residuals-NN) MeV 

0 0 0 0 0 0 0 0 

10 24 -4.248 -0.474 -6.862 2.614 -4.430 -0.291 

12 24 -5.620 0.000 -8.234 2.614 -5.316 -0.304 

10 24 -4.248 0.474 -6.862 2.614 -4.430 0.656 

0 0 0 0.977 0 0 0 0.977 

 

  

 

 

 

Table A.6: (I) Input data for the even-even nuclei lie between the DM nuclei: 40Ca to 48Ca     

 

N Z A El BE/A(keV) un(keV) BE/A(MeV) un(MeV) BE(MeV) unT(MeV) Valence 

Neutrons 

(nn) 

Valence 

Protons 

(np) 

Valence 

Nucleons n 

20 20 40 Ca 8551.303 0.001 8.551303 0.000001 342.05212 0.00004 0 0 0 

22 20 42 Ca 8616.563 0.004 8.616563 0.000004 361.895646 0.000168 2 0 2 

24 20 44 Ca 8658.175 0.007 8.658175 0.000007 380.9597 0.000308 4 0 4 

26 20 46 Ca 8668.979 0.049 8.668979 0.000049 398.773034 0.002254 2 0 2 

28 20 48 Ca 8666.686 0.002 8.666686 0.000002 416.000928 0.000096 0 0 0 
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2) Tin isotopic chain (Z=50): from the DM nucleus 100Sn to DM nucleus 132Sn: 

 

 

      

N Z A El BE/A(keV) un(keV) BE/A(MeV) un(MeV) BE(MeV) unT(MeV) Valence 

Neutrons 

(nn) 

Valence 

Protons 

(np) 

Valence 

Nucleons (n) 

50 50 100 Sn 8252.974 3.015 8.253 0.003 825.297 0.302 0 0 0 

52 50 102 Sn 8324.43 0.981 8.324 0.001 849.092 0.100 2 0 2 

54 50 104 Sn 8383.911 0.055 8.384 0.000 871.927 0.006 4 0 4 

56 50 106 Sn 8432.038 0.048 8.432 0.000 893.796 0.005 6 0 6 

58 50 108 Sn 8469.027 0.05 8.469 0.000 914.655 0.005 8 0 8 

60 50 110 Sn 8496.087 0.125 8.496 0.000 934.570 0.014 10 0 10 

62 50 112 Sn 8513.618 0.003 8.514 0.000 953.525 0.000 12 0 12 

64 50 114 Sn 8522.566 0 8.523 0.000 971.573 0.000 14 0 14 

66 50 116 Sn 8523.116 0.001 8.523 0.000 988.681 0.000 16 0 16 

68 50 118 Sn 8516.533 0.004 8.517 0.000 1004.951 0.000 14 0 14 

70 50 120 Sn 8504.492 0.007 8.504 0.000 1020.539 0.001 12 0 12 

72 50 122 Sn 8487.907 0.02 8.488 0.000 1035.525 0.002 10 0 10 

74 50 124 Sn 8467.421 0.008 8.467 0.000 1049.960 0.001 8 0 8 

76 50 126 Sn 8443.523 0.083 8.444 0.000 1063.884 0.010 6 0 6 

78 50 128 Sn 8416.979 0.138 8.417 0.000 1077.373 0.018 4 0 4 

80 50 130 Sn 8386.816 0.014 8.387 0.000 1090.286 0.002 2 0 2 

82 50 132 Sn 8354.872 0.015 8.355 0.000 1102.843 0.002 0 0 0 

Table A.8: (I) Input data for the even-even nuclei lie between the two DM nuclei: 100Sn and 132Sn 

Table A.9: (II) Input and Output data for the even-even nuclei lie between the two DM nuclei: 100Sn to 132Sn  

X k NN+3N 

(MeV) 

(BW_Residuals-(NN+3N) 

MeV 

NNterm 

(MeV) 

3Nterm 

(MeV) 

NN 

(MeV) 

(BW_Residuals-NN) MeV 

0 0 0 0 0 0 0 0 

58 1176 -5.314 -0.406 -4.549 -0.766 -5.129 -0.591 

108 2040 -9.798 -0.547 -8.470 -1.329 -9.550 -0.795 

150 2640 -13.483 -0.514 -11.764 -1.719 -13.264 -0.733 

184 3024 -16.399 -0.430 -14.430 -1.969 -16.271 -0.559 

210 3240 -18.579 -0.297 -16.469 -2.110 -18.570 -0.307 

228 3336 -20.053 -0.192 -17.881 -2.173 -20.162 -0.084 

238 3360 -20.853 -0.119 -18.665 -2.188 -21.046 0.074 

240 3360 -21.010 -0.157 -18.822 -2.188 -21.223 0.056 

238 3360 -20.853 0.047 -18.665 -2.188 -21.046 0.240 

228 3336 -20.053 0.252 -17.881 -2.173 -20.162 0.360 

210 3240 -18.579 0.439 -16.469 -2.110 -18.570 0.429 

184 3024 -16.399 0.568 -14.430 -1.969 -16.271 0.439 

150 2640 -13.483 0.590 -11.764 -1.719 -13.264 0.371 

108 2040 -9.798 0.496 -8.470 -1.329 -9.550 0.248 
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3) Isotonic chain (N=28) from the DM nucleus 48Ca to DM nucleus 56Ni: 

 

 

 

 

 

 

B) Unweighted Least Squares Fit of the LDM1 formula to binding energy data for 

DM nuclei (A ≥ 16) including the DM nucleus 24O and considering the pairing 

parameter as constant value of 12 MeV : 

 

Input and Output Data related to the section (4.2) of the present thesis. 

 

Parameters of Table 4.10  applied to the even-even nuclei of the following 

regions of interest:  

58 1176 -5.314 0.063 -4.549 -0.766 -5.129 -0.123 

0 0 0 -0.567 0 0 0 -0.567 

Table A.10: (I) Input data for the even-even nuclei lie between the two DM nuclei: 48Ca to 56Ni 
 

N Z A El BE/A(keV) un(keV) BE/A(MeV) un(MeV) BE(MeV) unT(MeV) Valence 
Neutrons (nn) 

Valence 
Protons (np) 

Valence 
Nucleons (n) 

28 20 48 Ca 8666.686 0.002 8.666686 0.000002 416.000928 0.000096 0 0 0 

28 22 50 Ti 8755.718 0.002 8.755718 0.000002 437.7859 0.0001 0 2 2 

28 24 52 Cr 8775.989 0.007 8.775989 0.000007 456.351428 0.000364 0 4 4 

28 26 54 Fe 8736.382 0.007 8.736382 0.000007 471.764628 0.000378 0 2 2 

28 28 56 Ni 8642.779 0.008 8.642779 0.000008 483.995624 0.000448 0 0 0 

Table A.11: (II) Input and Output data for the even-even nuclei between the two DM nuclei 40Ca to 48Ca 
 

X k (NN+3N) MeV (BW_Residuals-(NN+3N)) MeV NNterm (MeV) 3Nterm 
(MeV) 

NN 
 (MeV) 

(BW_Residuals-NN) MeV 

0 0 0 0 0 0 0 0 

10 24 -3.6016 -0.5911 -7.0377 3.4361 -3.8413 -0.3514 

12 24 -5.0091 0.0000 -8.4453 3.4361 -4.6096 -0.3996 

10 24 -3.6016 0.5911 -7.0377 3.4361 -3.8413 0.8309 

0 0 0 1.2331 0 0 0 1.2331 
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In a similar manner, the following Tables present a selection of output data for each of the 

regions of interest which were used for the evaluation of the current theoretical framework. 

The notation that have been given to the physical quantities of each of the columns is the 

same as before.  

In addition, it should be noted that the experimental inputs correspond to the even-even 

nuclei of the examined regions of interest, remain the same and thus, there is no need to 

include such quantities here, as one can find them in the above Tables A.6 to A.11. However, 

both the input and output data correspond to the oxygen isotopic chain (Z=20) are included  

here.   

 

 

1) Calcium isotopic chain  (Z=20): from the DM nucleus 40Ca to DM nucleus 48Ca: 

 

 

 

 

 

 

 

 

 

Table A.12: (I) Output data for the even-even nuclei lie between the two DM nuclei: 40Ca to 48Ca   

Nucleus LD (MeV) BE(MeV)-LD(MeV) BEexper(40Ca) 

(MeV) 

(BE(ACa)-

BE(40Ca)) 

(MeV) 

BEtheor(40Ca) 

(MeV) 

(BEtheor(ACa)-

BEtheor(40Ca)) 

(MeV) 

LDM1_Residuals 

(MeV) 

40Ca 346.362 -4.310 342.052 0 346.362 0 0 
42Ca 370.405 -8.509 342.052 19.844 346.362 24.043 -4.200 
44Ca 390.584 -9.624 342.052 38.908 346.362 44.222 -5.315 
46Ca 407.323 -8.550 342.052 56.721 346.362 60.961 -4.240 
48Ca 420.991 -4.990 342.052 73.949 346.362 74.629 -0.680 

                       

X k NN+3N 

(MeV) 

(LDM1_Residuals-(NN+3N)) 

MeV 

NNterm 

(MeV) 

3Nterm 

(MeV) 

NN (MeV) (LDM1_Residuals-NN) 

MeV 

0 0 0 0 0 0 0 0 

10 24 -4.220 0.020 -5.474 1.254 -4.307 0.108 

12 24 -5.315 0.000 -6.569 1.254 -5.169 -0.146 

10 24 -4.220 -0.020 -5.474 1.254 -4.307 0.067 

0 0 0 -0.680 0 0 0 -0.680 

Table A.13: (II) Input and Output data for the even-even nuclei lie between the two DM nuclei: 40Ca to 48Ca 
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2) Tin isotopic chain (Z=50): from the DM nucleus 100Sn to DM nucleus 132Sn:  

 

 

 

Table A.15: (II) Input and Output data for the even-even nuclei lie between the two DM nuclei: 100Sn and 132Sn 

X k NN+3N 

(MeV) 

(LDM1_Residuals-

(NN+3N)) (MeV) 

NNterm (MeV) 3Nterm 

(MeV) 

NN (MeV) (LDM1_Residuals-

NN) (MeV) 

0 0 0 0 0 0 0 0 

58 1176 -4.191 -0.242 -3.345 -0.846 -3.986 -0.447 

108 2040 -7.696 -0.297 -6.229 -1.467 -7.422 -0.571 

150 2640 -10.549 -0.238 -8.651 -1.898 -10.308 -0.479 

184 3024 -12.787 -0.170 -10.612 -2.174 -12.644 -0.313 

210 3240 -14.441 -0.083 -12.112 -2.330 -14.431 -0.094 

228 3336 -15.549 -0.039 -13.150 -2.399 -15.668 0.080 

238 3360 -16.143 -0.029 -13.727 -2.416 -16.355 0.183 

240 3360 -16.258 -0.122 -13.842 -2.416 -16.493 0.113 

238 3360 -16.143 -0.036 -13.727 -2.416 -16.355 0.177 

228 3336 -15.549 0.075 -13.150 -2.399 -15.668 0.195 

210 3240 -14.441 0.198 -12.112 -2.330 -14.431 0.188 

184 3024 -12.787 0.295 -10.612 -2.174 -12.644 0.153 

150 2640 -10.549 0.319 -8.651 -1.898 -10.308 0.078 

108 2040 -7.696 0.265 -6.229 -1.467 -7.422 -0.009 

 

Nucleus LD (MeV) BE(MeV)-

LD(MeV) 

(BEexper(100Sn)) 

MeV 

(BE(ASn)-

BE(100Sn)) MeV 

BEtheor(100Sn) 

(MeV) 

(BEtheor(ASn)-

BEtheor(100Sn)) 

(MeV) 

LDM1_Residuals 

(MeV) 

100Sn 820.328 4.969 825.297 0 820.328 0 0 
102Sn 848.556 0.536 825.297 23.794 820.328 28.228 -4.433 
104Sn 874.950 -3.023 825.297 46.629 820.328 54.622 -7.993 
106Sn 899.614 -5.818 825.297 68.499 820.328 79.286 -10.787 
108Sn 922.643 -7.988 825.297 89.358 820.328 102.315 -12.957 
110Sn 944.125 -9.555 825.297 109.272 820.328 123.797 -14.525 
112Sn 964.144 -10.618 825.297 128.228 820.328 143.815 -15.588 
114Sn 982.775 -11.203 825.297 146.275 820.328 162.447 -16.172 
116Sn 1000.092 -11.410 825.297 163.384 820.328 179.764 -16.380 
118Sn 1016.160 -11.209 825.297 179.653 820.328 195.832 -16.179 
120Sn 1031.043 -10.504 825.297 195.242 820.328 210.715 -15.473 
122Sn 1044.799 -9.274 825.297 210.227 820.328 224.471 -14.244 
124Sn 1057.482 -7.522 825.297 224.663 820.328 237.154 -12.491 
126Sn 1069.145 -5.261 825.297 238.586 820.328 248.817 -10.230 
128Sn 1079.835 -2.461 825.297 252.076 820.328 259.507 -7.431 
130Sn 1089.597 0.689 825.297 264.989 820.328 269.269 -4.280 
132Sn 1098.474 4.369 825.297 277.546 820.328 278.146 -0.600 

Table A.14: (I) Output data for the even-even nuclei lie between the two DM nuclei: 100Sn and 132Sn 
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58 1176 -4.191 -0.089 -3.345 -0.846 -3.986 -0.294 

0 0 0.000 -0.600 0 0 0 -0.600 

 

 

 

4) Oxygen isotopic chain from the DM nucleus 16O to DM nucleus 24O:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.16: (I) Input data for the even-even nuclei lie between the two DM nuclei from 16O to 24O  

N Z A El BE/A(keV) un(keV) BE/A(MeV) un(MeV) BE(MeV) unT(MeV) Valence 

Neutrons 

(nn) 

Valence 

Protons 

(np) 

Valence 

Nucleons (n) 

8 8 16 O 7976.206 0 7.976206 0.0000005 127.619296 0.000008 0 0 0 

10 8 18 O 7767.097 0 7.767097 0.0000005 139.807746 0.000009 2 0 2 

12 8 20 O 7568.57 0.044 7.56857 0.000044 151.3714 0.00088 4 0 4 

14 8 22 O 7364.871 2.587 7.364871 0.002587 162.027162 0.056914 2 0 2 

16 8 24 O 7039.685 6.87 7.039685 0.00687 168.95244 0.16488 0 0 0 

 

Nucleus LD 

(MeV) 

BE(MeV)-

LD(MeV) 

BEexper(16O) 

(MeV) 

(BE(AO)-BE(16O)) 

MeV 

BEtheor(16O) 

(MeV) 

(BEtheor(AO)-BEtheor(16O)) 

MeV 

LDM1_Residuals 

(MeV) 
16O 125.317 2.303 127.619 0 125.317 0 0 
18O 144.497 -4.689 127.619 12.188 125.317 19.180 -6.992 
20O 157.186 -5.815 127.619 23.752 125.317 31.870 -8.118 
22O 164.679 -2.652 127.619 34.408 125.317 39.363 -4.955 
24O 167.897 1.055 127.619 41.333 125.317 42.581 -1.248 

Table A.17: (II) Output data for the even-even nuclei lie between the two DM nuclei from 16O to 24O 
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Fit to the BE (MeV) 

(Eq. (5)) 

Fit to the 

BE/A(MeV) 
 

DM Nuclei Residuals Residuals 

100Sn 4.0838094 0.0412005 

132Sn 3.5167529 0.0477544 

40Ca -4.0628941 -0.0645543 

48Ca -3.0861741 -0.0067985 

16O 3.7210328 0.0123641 

56Ni -1.8530517 0.0285308 

208Pb -2.4889696 -0.0584970 

Table A.18: Unweighted least squares fit of the BW formula to the BW 
formula to the DM nuclei for A ≥ 16: 

 

Residuals of ( BE/A (MeV) x A ) 

0.0412005*100 = 4.1200520 

 

0.0477544*132 =6.3035742 

 

-0.0645543*40 =-2.5821704 

 

-0.0067985*48 =-0.3263290 

 

0.0123641*16 =0.1978250 

 

0.0285308*56 =1.5977248 

 

-0.0584970*208 =-12.1673677 

 

1) Without including the experimental uncertainties 

2) Including a fixed value of pairing parameter ap=12MeV 

3) Minimization method: scipy.curve.fit 
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Table A.19:  Weighted least squares fit of the BW formula to the DM 
nuclei for A ≥ 16: 

1) Without including the experimental uncertainties 

2) Including a fixed value of pairing parameter ap =12 MeV  

3) Minimization method: scipy.curve.fit 

                                                                             Fit to the BE (MeV) 

(Eq. (5)) 

Fit to the 

BE/A (MeV) 

 

 DM Nuclei Residuals Residuals 

100Sn 16.0473102 0.1604731 

132Sn 5.0808835 0.0384915 

40Ca -0.0839196 -0.0020980 

48Ca 0.0420399 0.0008758 

16O 0.0011749 0.0000734 

56Ni 6.3608741 0.1135870 

208Pb -2.7001316 -0.0129814 

Residuals of ( BE/A (MeV) x A ) 
 

0.1604731*100 =16.0473105 

 

0.0384915*132 =5.0808837 

 

-0.0020980*40 =-0.0839196 

0.0008758*48 =0.0420399 

 

0.0000734*16 =0.0011749 

 

0.1135870*56=6.3608742 

 

0.0129814*208 = -2.7001308 
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1) Fitting the BE/A in MeV  

2) Using the BW baseline formula  

3) Without including the experimental uncertainties 

4) Including a fixed value of pairing parameter ap = 12 MeV  

5) Minimization method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

15.08 ± 0.53 16.15 ± 1.27 0.64 ± 0.05 21.45 ± 1.95 12.0  fixed 

Table A.20: Best fit parameters for the unweighted least squares fit of the BW formula, Eq. (5), to 
the DM nuclei for A ≥16. (Fit BE/A (MeV)) 

Table A.21: Best fit parameters for the unweighted least squares fit of the BW formula, Eq. 
(5), to the DM nuclei for A ≥ 16 (Fit BE(MeV)). 

 

1) Fitting the BE in MeV  

2) Using the BW baseline formula  

3) Without including the experimental uncertainties 

4) Including a fixed value of pairing term ap = 12 MeV  

5) Minimization method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

16.86± 1.36 20.65± 3.75 0.79±0.10 26.81± 4.16 12.0  fixed 

 

 

1) Fitting the BE/A in MeV  

2) Using the BW baseline formula  

3) Including the experimental uncertainties (un(MeV)) 

4) Including a fixed value of pairing term ap = 12 MeV  

5) Minimization method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

14.81 ± 0.17  15.45 ± 0.35 0.64 ± 0.02 19.07 ±  0.78 12.0  fixed 

Table A.22: Best fit parameters for the weighted least squares fit of the BW formula to the DM nuclei for 
A ≥ 16 (Fit BE/A(MeV)) 
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1) Fitting the BE in MeV  

2) Using the BW baseline formula of Eq.  (5) 

3) Including the experimental uncertainties (unT(MeV)) 

4) Including a fixed value of pairing term ap = 12 MeV  

5) Minimization method: scipy.curve.fit 

av (MeV) as (MeV) ac (MeV) aa (MeV) ap (MeV) 

14.81 ± 0.17 15.45 ± 0.35 0.64 ± 0.02 19.07 ± 0.78 12.0  fixed 

Table A.23: Best fit parameters for the weighted least squares fit of the BW formula, Eq.(5), to the DM 
nuclei for A ≥ 16.(Fit BE(MeV)) 
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APPENDIX B 

Python Codes to Compute the Number of Valence 

Neutrons/Protons of Nuclides 
 

 

 

1st Code:  Calculation of Valence Neutrons, Valence Protons and 

Valence Nucleons: 
 

Calculations Functions taken from the Ref. [38]: 

'J.Mendoza-Temis et al., 'Nuclear masses and the number of valence nucleons', Volume 799, 
Issues 1–4, 1 February 2008, Pages 84-93'  
 
In the present analysis, these functions are described in the Eqs. (14),(15),(16),(17):  

 #Code starts:  

choice_map = {1:'Neutrons', 2:'Protons', 3:'Nucleons'} 

 

def calc(elements, entry='neutrons', elements_2=None): 

     

    # Magic shell closures 

    shell_closures = [2, 8, 20, 28, 50, 82]             

     

    # Case where there are 0 valence elements 

    if elements in shell_closures: 

        valence_elements = 0 

     

    else: 

        # n_c1 and n_c2 

         

        ## loop over closed shell values and compare with given N 

        for i in range(len(shell_closures)-1): 

            if shell_closures[i] < elements < shell_closures[i+1]: 

                n_c1 = shell_closures[i] 

                n_c2 = shell_closures[i+1] 

 

                n_med = (n_c1+n_c2)//2 

                break 

 

        print('N: ',elements) 

        print('n_c1: ', n_c1)    

        print('n_c2: ', n_c2) 

        print('N_med: ', n_med) 

 

         

        if elements <= n_med: 

            valence_elements = elements - n_c1 

        else: 

            valence_elements = n_c2 - elements 
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    if entity == 'nucleons': 

         

        if elements_2 in shell_closures: 

            valence_elements_2 = 0 

 

        else: 

            # n_c1 and n_c2 

 

            ## loop over shell closures and compare with value of a 

given N 

            for i in range(len(shell_closures)-1): 

                if shell_closures[i] < elements_2 < 

shell_closures[i+1]: 

                    n_c1 = shell_closures[i] 

                    n_c2 = shell_closures[i+1] 

 

                    n_med = (n_c1+n_c2)//2 

                    break 

 

              

            if elements_2 <= n_med: 

                valence_elements_2 = elements_2 - n_c1 

            else: 

                valence_elements_2 = n_c2 - elements_2 

 

            valence_elements = valence_elements + valence_elements_2 

     

    if entry == 'nucleons': 

        print('Valence {} for N={}, P={}: {}\n'.format(entry, 

elements, elements_2,valence_elements))   

    else: 

        print('Valence {} for N={}: {}\n'.format(entry, 

elements,valence_elements))  

     

 

def main(choice=None, n=None): 

     

    # Check if choice is given or not 

    if not choice: 

         

        # If not given, get choice from user 

        while True:  

            try: 

                choice = int(input("""Please choose one of the below 

options:  

                1  :   Calculate Valence Neutrons 

                2  :   Calculate Valence Protons 

                3  :   Calculate Valence Nucleons  

                              """)) 

                 

                # Check for validity 

                if choice not in [1, 2, 3]: 

                    print('Enter correct choice.') 

                    continue 

                else: 

                    break 

            except: 

                print('Enter correct choice.') 

                continue 
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    # Check if N not given         

    if not n and choice in [1,2]: 

         

        # If not given, get from user 

        while True: 

            try: 

                n = int(input('Enter {}: 

'.format(choice_map[choice]))) 

 

                if n < 2 or n > 82: 

                    print('Enter correct value of 

{}'.format(choice_map[choice])) 

                    continue 

                else: 

                    break 

            except: 

                print('Enter correct value of 

{}'.format(choice_map[choice])) 

                continue 

    elif not n and choice == 3: 

                # If not given, get from user 

        while True: 

            try: 

                n = int(input('Enter Neutrons: ')) 

 

                if n < 2 or n > 82: 

                    print('Enter correct value of Neutrons') 

                    continue 

                else: 

                    break 

            except: 

                print('Enter correct value of Neutrons') 

                continue 

         

        while True: 

            try: 

                p = int(input('Enter Protons: ')) 

 

                if p< 2 or p> 82: 

                    print('Enter correct value of Protons') 

                    continue 

                else: 

                    break 

            except: 

                print('Enter correct value of Protons') 

                continue 

         

     

    #1) Call the function which is used to perform calculations 

providing  an appropriate input. 

    if choice == 1: 

        calc(entry='neutrons', elements=n) 

    elif choice == 2: 

        calc(entry='protons', elements=n) 

    elif choice == 3: 

        calc(entry='nucleons', elements=n, elements_2=p) 

    else: 

        print('Enter correct choice 1, 2 or 3') 

                 

# 2)Test to verify if the code works and prints the correct values: 
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# Example: How many valence neutrons (entry = 'neutrons') have a 

nucleus with 16 neutrons? (elements = 16)  

# Similarly, instead of entry = 'neutrons' , it can change to entry 

='protons' for a calculation of valence protons  

 

calc(entry='neutrons', elements=16) 

calc(entry='neutrons', elements=18) 

calc(entry='neutrons', elements=20) 

calc(entry='neutrons', elements=22) 

calc(entry='neutrons', elements=24) 

calc(entry='neutrons', elements=26) 

calc(entry='neutrons', elements=28) 

calc(entry='neutrons', elements=30) 

calc(entry='neutrons', elements=32) 

calc(entry='neutrons', elements=34)   

 

 

# 3) In the next shell,  the code asks to make a choice:  

#    1  :   Calculation of Valence Neutrons 

#    2  :   Calculation of Valence Protons 

#    3  :   Calculation of Valence Nucleons  

# Type 1 or 2 or 3 based on the choice  

# Then insert for which number of protons and/(or) neutrons want to 

take the valences  

# Calculations for single N : 

 

main() 

 

# 4) Calculations for list of N values of protons or neutrons  

# Calculation of valence protons: Enter multiple of N in this list 

and get the valence protons: 

ls_N = [9, 56, 44, 33, 76] 

 

# 1 : neutrons 

# 2 : protons 

choice = 2 

 

for i in (ls_N): 

    main(choice=choice, n=i)    

 

# Calculation of valence neutrons: Enter multiple values of N in the 

list and get the valence neutrons:  

 

ls_N = [2,4,2,6,4,2,8,6,4,8,6,4,10,8,6,12,10] 

choice = 1  #for neutrons 

 

for i in (ls_N): 

    main(choice=choice, n=i) 
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2nd Code: Calculation of Valence Nucleons: 
 

Similarly, the Calculations Functions taken from the Ref. [38]: 

'J.Mendoza-Temis et al., 'Nuclear masses and the number of valence nucleons', Volume 799, 
Issues 1–4, 1 February 2008, Pages 84-93'  
 
In the present analysis, these functions are described in the Eqs.(14),(15),(16),(17).  

# Code starts: 

 

def valence(A,Z): 

    N = A - Z 

    cs = [2,8,20,28,50,82,126 ] #Closed shells of Neutrons or Protons 

    ms = [5,14,24,39,66,104 ]   #Their corresponding mid shells 

    val=0 

     

# Calculation of Valence Neutrons (Nv) 

    Nv=0 

    for I in range( 6): 

        if(N == cs[I] ): 

            NV = 0 

            break 

        if ( N < cs[I] ): 

            if ( N <= ms[I-1] ): 

                Nv = N - cs[I-1] 

            if ( N > ms[I-1] ): 

                Nv =cs[I] - N 

                break 

                 

# Calculation of Valence Protons (Pv) 

    Pv=0 

    for I in range(6): 

        if ( Z == cs[I] ): 

            Pv = 0 

            break 

        if ( Z < cs[I] ): 

            if ( Z <= ms[I-1] ): 

                Pv = Z - cs[I-1] 

                break 

            if ( Z > ms[I-1] ): 

                Pv =cs[I] - Z 

                break 

# Calculation of Valence Nucleons 

    val = Pv+Nv       

    return val   

 

# Insert Manually the Mass Number (A) and the Proton Number (Z) 

# of the nucleus you want to calculate  

# the valence nucleons 

 

A=116 # 116Sn (I will test the magic nucleus 116Sn) 

Z=66 

ccc=valence(A,Z) 

print(ccc) 
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