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Abstract

In the last decades the study of the stable homotopy category made considerable progress
due to the chromatic approach. The core idea of this programme is to decompose said category
in simpler pieces which we can effectively understand and then recompose them together to
reconstruct the global picture. This operation is accomplished via the Bousfield localizations
with respect to the spectra E(n) and K(n), called respectively Johnson-Wilson spectrum and
Morava K-theory. These two objects have crucial properties which encapsulate the information
of complex orientation of spectra at height lesser or equal to n.

Having established the importance of these localization functors, it is not difficult to under-
stand that we want to consider also their compositions and that some kind of regularity in these
situations is desirable. There are classical results going in this direction: for example Ravenel
showed that LK(n)LK(m) = 0 whenever n > m. Also, he proved that we have an equality
between Bousfield classes 〈E(n)〉 =

∨n
i=0〈K(i)〉. This should be read as some version of our

intention of gluing back information after we decomposed it in smaller pieces.
This work aims to answer the following question: if we fix n as upper bound of the chromatic

height, and consider localizations coming from wedges of K(i)’s, for i ≤ n, are their compositions
finitely many up to isomorphism? Not only we will provide a positive answer, but we will
formulate it in an axiomatic framework which will allow us to propose the proof for any collection
of localizations satisfying properties similar to the ones illustrated above. One of the key
points of the proof is that we can reduce the composition of two iterated localizations to the
combinatorics of a finite poset which models how they arise as homotopy limits of diagrams
involving simple localizations.
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Chapter 1

Basics of chromatic homotopy theory

1.1 Bousfield localization

Since Brown’s representability results, the focus of algebraic topology shifted towards the
study of spectra: these objects let us encode cohomology and homology theories via a sequence
of topological spaces connected by structure homomorphisms which represent the suspension
isomorphisms. These spectra can be collected, up to homotopy, in the stable homotopy category
SHC, whose properties are much more interesting than the ones of the homotopy theory of
topological spaces. For example, it has a triangulated structure compatible with the tensor
product induced by the smash product of spectra.

Much of the information about the homotopy type of an object X ∈ SHC is contained in its
stable homotopy groups πn(X) = [Sn, X] = HomSHC(Sn, X), where Sn is the n-th suspension
of S, the sphere spectrum. In fact, a morphism f : X → Y is an isomorphism if and only if the
induced πn(f) is invertible for any n ∈ Z.

As conceptually pleasing these properties are, they do not allow us to perform any concrete
computation: determining the stable homotopy groups of a general spectrum is not something
which can be easily done. To provide a specific example we recall the following classical results
about the stable homotopy groups of the sphere spectrum, which have not been completely
determined up to this date.

Theorem 1.1.1. � The sphere spectrum S is connective, i.e. πkS = 0 for k < 0. Moreover,
π0S ∼= Z.

� ([33]) For any k > 0 the group πkS is finite.

� ([30]) Any x ∈ πkS with k > 0 is nilpotent, that is xn = 0 for some n ∈ N.

Also, we observe that by the tensor structure, since S coincides with the tensor unit, every
spectrum X is a S-module and π∗(X) is a graded module over the ring π∗S which the previous
results indicate to be very complicated (e.g. it is not Noetherian).

This indicates that the direct approach of understanding SHC by computing the homotopy
groups of all the objects we want to study is destined to fail. This brings us to the question if
we can simplify the picture is some way: can we reduce the information encoded into spectra,
so we can effectively study them even if to provide partial data?

Going back to the setting of topological spaces, even in that situation the homotopy groups
are objects which cannot be trivially determined. But we saw that homology theories provide
other invariants which is more likely to be computed and Hurewicz theorem establishes a bridge
between these two notions. For any spectrum E the functor E∗(−) = π∗(E∧−) is an homology
theory on SHC, the previous discussion induces us to set up a theory in a way that spectra are
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determined not by their homotopy groups but by these E-homology groups and a morphism f
is an isomorphism if and only if the induced map E∗(f) is a bijection. This was accomplished by
Bousfield who laid the foundations for the theory of localizations of SHC in his seminal paper
[4].

Before explaining in details his results we need a few definitions.

Definition 1.1.2. We fix E ∈ SHC. We say that a spectrum X is E-acyclic if X ∧ E = 0.
A morphism of spectra f : X → Y is called an E-equivalence if the induced map E∗(f) is an
isomorphism. A spectrum Z is denoted E-local if [f, Z]∗ is an isomorphism for any E-equivalence
f .

Remark 1.1.3. We recall that a spectrum Y is contractible if and only if its homotopy groups
πn(Y ) are zero for every n ∈ Z. Then we have that X being E-acyclic is equivalent to π∗(E ∧
X) = E∗(X) = 0, i.e. its E-homology is zero. Consequently a morphism f is an E-equivalence
if and only if its fiber is E-acyclic, therefore a spectrum Z is E-local if and only if [X,Z] = 0
for any E-acyclic spectrum X.

Theorem 1.1.4 ([4]). For any spectrum E we can form a functor LE : SHC → SHC, to-
gether with a natural transformation η : Id ⇒ LE such that for every spectrum X we have a
distinguished triangle

CEX → X
ηX−−→ LEX → ΣCEX

where ηX is an E-equivalence (equivalently CEX is E-acyclic) and LEX is E-local.
Moreover, the subcategory of E-local objects in SHC forms a colocalizing subcategory which

can be identified with LESHC, the essential image of the functor LE. So we have a retraction
of categories

LESHC SHC LESHC.

Id

LE

This means that for a generic spectrum X we can present a new spectrum LEX which is
initial among the E-local spectra equipped with a map from X. The theorem establishes that
such a localization with respect of a generic homology theory E, characterized by the universal
properties spelled out above, not always exists but can be formed in a functorial way. Using
this functor we can project a spectrum to a subcategory of SHC which is hopefully easier to
analyse. The following lemma confirms that after this operation the total information is not
encapsulated any more by the stable homotopy groups, but by the E-homology.

Lemma 1.1.5 (E-local Whitehead theorem). Let f : X → Y be an E-equivalence between
E-local spectra, then it is an equivalence.

Proof. By definition, for any E-local spectrum Z the map [f, Z] is an isomorphism. Thus Yoneda
lemma applied to the category LESHC shows that f is an isomorphism in this category. Now
the second claim of Theorem 1.1.4 implies f is an isomorphism in SHC, therefore f is an
equivalence of spectra.

Another concept worth mentioning associated to these localizations is the notion of Bousfield
class.

Definition 1.1.6. Let E,F be spectra. We denote by 〈E〉 the equivalence class of spectra X
such that being X-acyclic is equivalent to being E-acyclic, that is for any spectrum Z we have
Z ∧X = 0 if and only if Z ∧ E = 0. This is called the Bousfield class of E.

We write 〈E〉 ≤ 〈F 〉 if for any spectrum X being F -acyclic implies being E-acyclic, i.e. if
X ∧ F = 0 then X ∧ E = 0.
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We can use these classes to compare Bousfield localizations with respect to different spectra.

Lemma 1.1.7. Let E,F be two spectra. If we have an inequality 〈E〉 ≤ 〈F 〉 then being E-
local implies being F -local, also for any spectrum X there exists a canonical E-equivalence
LFX → LEX. Thus 〈E〉 = 〈F 〉 if and only if there is a natural isomorphism LF ∼= LE.

Moreover, the wedge and smash product of spectra descend to operations on the Bousfield
classes. In other words we have well defined classes

〈E〉 ∨ 〈F 〉 = 〈E ∨ F 〉 〈E〉 ∧ 〈F 〉 = 〈E ∧ F 〉.

Proof. Just unravel the definitions and compare the classes of acyclic spectra.

At this point we have only have to find the right homology theories which will let us deduce
most of the information about the stable homotopy category. An important point is that after
applying the localizations to the spectrum we are studying, we want to be able to recollect the
partial data obtained from such localizations to a global result on the starting spectrum. Our
ideal programme is to first decompose the spectra in smaller pieces, easier to compute, then
glue all these pieces back together.

The identification of a family of homology theories which will allow us to realize this project
and the study of their properties is what chromatic homotopy theory is about.

1.2 The Morava theories

After Quillen unravelled the connection between the geometry of formal groups and the
information that spectra carry encoded in their complex orientation, one of the most successful
approaches to study stable homotopy theory is to realize on it a filtration analogous to the one
on the moduli stack of formal groups given by the height.

We recall that a ring spectrum E is complex orientable if the map E2(CP∞) → E2(S2) ∼=
E0 = π0(E), induced by the 2-cell inclusion S2 ↪→ CP∞, is surjective. Then a choice of an
orientation consists in a choice of an element x ∈ E2(CP∞) such that its image is 1.

Fixed the orientation we can provide an isomorphism E∗(CP∞) ∼= π∗(E)JxK and similarly
we have

E∗(CP∞ × CP∞) ∼= π∗(E)Jx⊗ 1, 1⊗ xK.

Under these identifications the map CP∞ × CP∞ → CP∞, representing the tensor product of
complex line bundles, induces

E∗(CP∞)→ E∗(CP∞ × CP∞)

x 7→ F (x⊗ 1, 1⊗ x)

with F (s, t) a power series in two variables with coefficients in π∗(E). Since the operation of
taking tensor products admits a unit (the trivial bundle), is commutative and associative we
deduce F has the following corresponding properties

� F (t, 0) = F (0, t) = t;

� F (s, t) = F (t, s);

� F (F (s, t), u) = F (s, F (t, u));
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which let us interpret it as some sort of abelian group operation. In fact we can write s+F t =
F (s, t). A power series satisfying these equations is called formal group law.

This procedure let us associate to an oriented spectrum a formal group law, so it comes
natural to ask if we can provide some kind of invariant to classify these.

It can be proved that if R is a Q-algebra then any formal group law over R is isomorphic to
the additive one Fa(s, t) = s+ t. Instead, if the ring R is p-torsion the situation is much more
varied: we have that the p-series of F , defined as [p]F (t) = t +F · · · +F t with p summands,
either is 0 or it factors as [p]F (t) = g(tp

n
) for some g ∈ RJtK with g′(0) 6= 0 and a unique positive

integer n. This quantity is denoted as the height of the formal group law, if [p]F (t) = 0 then it
is convention to say that F has infinite height.

Since the height is invariant under isomorphism we can use it to provide a stratification of
formal group laws. In favourable conditions the height completely determines the isomorphism
class: if R is an algebraically closed field of characteristic p then two formal group laws over it
are isomorphic if and only if they have the same height.

Quillen proved that the stable homotopy group of complex cobordism spectrum MU realizes
the Lazard ring L which classifies the formal group laws. Fixed a prime p, we have a splitting
MU(p)

∼=
∨
n∈N Σ2dnBP , where BP∗ ∼= Z(p)[v1, v2, . . . ] and {dn}n∈N is an appropriate increasing

sequence of natural numbers, coming from the fact that over p-local rings any curve decomposes
as sum of p-typical ones. Therefore, if we restrict to the p-local stable homotopy category
SHC(p), it is enough to work with this reduced version given by the Brown-Peterson spectrum.

From BP we can construct for every n ∈ N, the spectra E(n) and K(n), the Johnson-Wilson
theory and Morava K-theory respectively, characterized by

E(n)∗ = Z(p)[v1, . . . , v
±1
n ] K(n)∗ = Fp[v±1

n ].

Informally, we should consider the parameters vn to represent the information at height n. The
localizations LE(n) and LK(n) on the stable homotopy category correspond to restricting the
stack of formal groups to the open substack of formal groups of height ≤ n and taking the
completion with respect to the locally closed substack of height exactly n respectively.

These spectra have been extensively studied and have exceptional properties which make
them particularly apt to realize the project delineated above. We recollect the most important
ones here. In the literature usually LE(n) is abbreviated as Ln, we also adopt this convention
for sake of briefness. Since they are p-local, the localizations associated to them provide p-local
spectra: therefore from now on we will restrict to consider SHC(p), the p-local stable homotopy
category, as we mentioned above.

Theorem 1.2.1 (Smash product theorem). [35, Thm. 7.5.6] The spectrum E(n) is smashing,
that is for any X ∈ SHC

LnX ∼= LnS ∧X.

Theorem 1.2.2 ([34, Thm. 2.1]). We have a decomposition of Bousfield classes

〈E(n)〉 =
n∨
i=0

〈K(i)〉.

This implies that for every n the localization map X → LnX factors through the E(n+ 1)-
localization

X

Ln+1X LnX
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thus we obtain a tower of spectra of the following form

X

· · · LnX · · · L1X L0X

which induces a map X → holim
←−

LnX. It comes natural to ask if, under the appropriate

assumptions, this is an equivalence therefore we can recover X from the data of its E(n)-
localizations.

Theorem 1.2.3 (Chromatic convergence theorem). [35, Thm. 7.5.7] If X is a finite spectrum
the chromatic tower above converges, in the sense that the map

X → holim
←−

LnX

is an equivalence.

This implies that to understand the sphere spectrum S we only have to first disassemble it
in its chromatic pieces LnS, then we can recover it by taking the homotopy limit of the tower
they form.

Another reassembly result which relates the localizations with respect to E(n) and K(n) is
the chromatic fracture square.

Proposition 1.2.4. Let X any spectrum, then for any natural number n we have a homotopy
pull-back square

LnX LK(n)X

Ln−1X Ln−1LK(n)X.

y

This should be read as the fact that for any spectrum X its E(n)-localization (representing
the information at height ≤ n) can be obtained from its other two localizations Ln−1X (height
≤ n−1) and LK(n)X (containing some information regarding the height n) after they are tuned
by the gluing data Ln−1LK(n)X. The most fitting algebraic analogue would be the p-local Hasse
square

Z(p) Z∧p

Q Q⊗ Z∧p

y

establishing that we can recover Z(p) from its p-completion and its rationalization.
While the spectrum K(n) is not smashing (for n > 0) it has other extremely good traits.

Its main characteristic is that since its homotopy group K(n)∗ is a graded field the spectrum
itself has a similar property.

Proposition 1.2.5. For every n ∈ N the spectrum K(n) is a skew field in the sense of [20,
Def. 3.7.1 (d)]: that is, for any spectrum X which is a module over K(n) we have a decomposition

X ∼=
∨
i∈I

ΣkiK(n)

for some ki ∈ Z with indexing set I.
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Proof. We said K(n)∗ is a graded field in the sense that any of its homogeneous non-zero
elements is invertible. As in the non-graded case this implies that every graded module over it
splits as a direct sum of its copies (possibly shifted by degree): given M a graded K(n)∗-module

then any basis of
⊕|vn|−1

i=0 Mi as Fp-vector space is actually a K(n)∗-basis for M .

Applying this to π∗(X) we obtain a decomposition

π∗(X) ∼=
⊕
i∈I

K(n)∗−ki .

So we can fix a K(n)∗-basis {ei}i∈I for π∗(X) with ei ∈ πki(X), these elements together with
the module action let us produce maps

ΣkiK(n) ∼= K(n) ∧ ΣkiS 1∧ei−−−→ K(n) ∧X µ−→ X

which can be assembled into ∨
i∈I

ΣkiK(n)→ X.

By construction this is an isomorphism on the homotopy groups, so it is an equivalence of
spectra.

A similar reasoning let us deduce the Künneth isomorphism, which is one of the main tools
we have to compute K(n)-homology.

Proposition 1.2.6. Let X,Y be two spectra, then we have an isomorphism

K(n)∗(X ∧ Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

Proof. Applying Proposition 1.2.5 appropriately we get the following chain of isomorphisms

K(n)∗(X ∧ Y ) = π∗(K(n) ∧X ∧ Y ) ∼= π∗

(∨
i∈I

ΣkiK(n) ∧ Y
)
∼=

∼=
⊕
i∈I

K(n)∗−ki(Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

Proposition 1.2.5 is also the key to proving the following crucial fact

Theorem 1.2.7 ([21, Thm. 7.5]). The K(n)-local stable homotopy category LK(n)SHC has no
proper non-trivial localizing subcategories. That is if C ⊆ LK(n)SHC is a localizing subcategory,
then C is either 0 or the whole category.

This means that we cannot produce a non-trivial Bousfield localization on the category
LK(n)SHC, thus for any spectrum X after forming its K(n)-localization X → LK(n)X we
cannot localize further to reduce LK(n)X to a simpler object.

We conclude this section by stating the classification of thick subcategories of finite p-local
spectra.

Lemma 1.2.8 ([34, Thm. 2.11]). Let F be a finite p-local spectrum, suppose we have K(n)∗F =
0 for some positive integer n. Then we also have K(n− 1)∗F = 0.
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Definition 1.2.9. Let n ∈ N. Let F be a finite p-local spectrum, we call it of type n if
K(n)∗F 6= 0 and K(n− 1)∗F = 0.

We denote by C≥n the thick full subcategory of SHC(p) generated by finite spectra of type
greater or equal to n, that is F ∈ C≥n if and only if K(m)∗F = 0 for all m < n. We also write
C≥∞ for the trivial subcategory 0.

Remark 1.2.10. We observe that for any spectrum X the graded abelian group [X,K(n)]∗
admits a natural K(n)∗-action and we have an isomorphism of K(n)∗-modules

[X,K(n)]∗ ∼= HomK(n)∗(K(n)∗X,K(n)∗).

Now if we consider DF the Spanier-Whitehead dual of a finite spectrum F we have K(n)∗DF ∼=
[F,K(n)]∗, therefore DF is of type n if and only if F is. We conclude all the categories C≥n are
closed under Spanier-Whitehead dual.

Theorem 1.2.11 (Thick subcategory theorem). [35, Thm. 3.4.3] Let T be a thick subcategory
of SHCc(p), the category of p-local compact spectra. Then T = C≥n for some n ∈ N ∪ {∞}.

Remark 1.2.12. It is a consequence of the Periodicity theorem ([35, Thm. 1.5.4]) that the
thick subcategories C≥n are all distinct.

Remark 1.2.13. Since K(n)∗ is a graded field, for any two K(n)∗-modules M,N if M 6= 0 and
M ⊗K(n)∗ N = 0 then necessarily N = 0. This trivial observation can be used quite effectively
in our study of spectra via the Künneth isomorphism and the existence of a spectrum of type
n. That is, if X is a generic spectrum then we can fix F (n) a spectrum of type n and see

K(n)∗(F (n) ∧X) ∼= K(n)∗F (n)⊗K(n)∗ K(n)∗X

therefore X is K(n)-acyclic if and only if F (n) ∧X is. This argument lets us use F (n) as test
case for the acyclicity of a spectrum.

1.3 Compositions of localizations

In the previous section we explained why we are interested in the Morava spectra and why
their Bousfield localizations are essential tools for modern algebraic topology. The next natural
question is how much control can we have about successive compositions of such localization
functors: do we get degenerate cases in which we have infinitely many different strings of
compositions, or must there be stabilization phenomena which make impossible to obtain such
convoluted situations?

We first propose some folklore results which seems to indicate some sort of regularity.

Proposition 1.3.1. For any natural numbers m,n with m < n we have LK(n)LK(m) = 0.

Proof. We let X be a generic spectrum and we fix F a finite spectrum of type n, this means
K(m)∗(F ) = 0 while K(n)∗F 6= 0. Hence F ∧ LK(m)X ∼= LK(m)(F ∧X) = 0.

By Proposition 1.2.6 we have

K(n)∗(F )⊗K(n)∗ K(n)∗(LK(m)X) ∼= K(n)∗(F ∧ LK(m)X) ∼= K(n)∗(LK(m)(F ∧X)) = 0.

By Remark 1.2.13 we deduce LK(m)X is K(n)-acyclic and the claim follows.

Proposition 1.3.1 seems to indicate that raising the chromatic height we collapse the com-
position to zero. It also implies the following result, which indicates a similar simplification
when we are considering a localization with respect to a wedge of Morava theories.
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Proposition 1.3.2. Consider natural numbers m < t < n, then the natural transformation

LK(t)LK(m)∨K(n) ⇒ LK(t)LK(n)

is an isomorphism.

Proof. The indicated map just comes from applying LK(t) to the natural transformation arising
from the inequality of Bousfield classes 〈K(n)〉 ≤ 〈K(m) ∨K(n)〉.

Proposition 4.3.12 together with Proposition 1.3.1 imply we have for any spectrum X a
chromatic square of the form

LK(m)∨K(n)X LK(n)X

LK(m)X LK(m)LK(n)X.

y

Applying LK(t) we still get a homotopy pull-back square, but by Proposition 1.3.1 the lower
row is constantly 0 hence the upper horizontal map must be an isomorphism.

Remark 1.3.3. We postpone the proof of Proposition 4.3.12 which allows us to obtain the
above chromatic fracture square, it is nothing specific of the Morava K-theories and we will
prove a far more general result.

The results exposed up to now suggest that the compositions of localizations involving
Morava theories should behave reasonably well if we set a limit for the maximum chromatic
height. This intuition inspired the following conjecture, which is the first stepping stone of this
work.

Definition 1.3.4. We fix a positive integer n. Let A ⊆ {0, 1, . . . n− 1}, we define

K(A) =
∨
a∈A

K(a)

and set λA = LK(A). If A = (A1, . . . , Al) is an l-uple of such subsets we denote by λA the
composition LK(A1)LK(A2) . . . LK(Al).

Remark 1.3.5. It is immediate that λ{a} = LK(a) and Theorem 1.2.2 implies λ{0,...,k} = LE(k)

for any k < n.

Conjecture 1.3.6. Fix the integer n as above, then all the possible iterated localizations λA
are, up to natural isomorphism, only finitely many.

The results proved up to this point already let us prove this conjecture for low values of n.

Example 1.3.7. If n = 1 the only possible composition we examine is the rationalization LK(0).
If n = 2, we are considering LK(0), LK(1) and LE(1): idempotency of localizations together

with Theorem 1.2.2 and Proposition 1.3.1 let us compute all the possible compositions. These
are LK(1)LK(0) = 0, LK(i)LE(1) = LE(1)LK(i) = LK(i) for i = 0, 1.

The case n = 3 can be solved with Proposition 1.3.2.

Even if Conjecture 1.3.6 is easy to formulate and understand it leaves a lot to be desired:
for example we ask only the existence of a natural isomorphism establishing two compositions
to be the same, but in fact what happens is that these iterated localizations are connected by
a network or transformations arising from the homotopical universal properties characterizing
the localizations. These are the maps we want to consider and determine if they are invertible.

We are going to improve Conjecture 1.3.6 in the following way:
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1) for a generic spectrum X we will construct a diagram whose vertices represent these
iterated compositions of localizations of X and the edges are the appropriate combinations
of the natural transformations η : Id⇒ LK(A).

2) We will form this diagram in a homotopy coherent manner: that is, if Q denotes its shape
we will not provide a functor of (SHC(p))

Q but instead an element of the homotopy cat-

egory of diagrams Ho(SpQ), where Sp is a geometric model for the p-local stable homotopy
category.

3) To verify the finiteness of the number of different localizations, we will show we can take
as indexing diagram Q a finite poset. Moreover, we will endow Q with a binary operation
which keeps track of the compositions of localizations.

To deal with the homotopy theoretical part of our proof and realize the claim 2) we will employ
the theory of derivators, for which we will have to develop a few ad-hoc results not present in
the literature. These will be presented in §3.7, 3.8 after we give a brief overview on the basics
of derivators in §3.1-3.6.

We will show that such diagrams for different spectra X form the underlying category of a
strong stable derivator F and the functoriality in X will be encoded via a theory of anafunctors,
which we develop in §4.1, 4.2.

The first step towards constructing the diagram of 1) is that we can express LK(A)X as
homotopy limit of a cube whose vertices are provided by compositions of localizations LK(a) for
the various a ∈ A. This is a generalization of the usual chromatic fracture square and will be
presented in §4.3.

In §4.5 we will finally construct the derivator F with the associated diagrams. The finiteness
outcome will be achieved by proving a formula for the composition of two iterated localizations
(Theorem 4.5.11) which will depend only on the combinatorics of the underlying poset Q. This
not only will complete the proof of Conjecture 1.3.6 but also provide us with a useful way to
compute the composition of localizations completely independent of their geometric meaning,
since this composition can be modelled by the operation on Q.

Moreover, we will formulate our proof in an axiomatic framework so it will hold for any
family of localizations satisfying a slight generalization of Proposition 1.3.1. Therefore the
result will be true not exclusively for the chromatic case, even if it was our starting point and
it is the most important example we can think of.
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Chapter 2

Results and their formulations

2.1 The general setting

As we mentioned above, we are going to work with a well-behaved family of localizations on
a category more general than the stable homotopy category. We make now explicit what this
means and establish the setting of our discussion.

Definition 2.1.1. We fix a stable model category or a quasi-category B0, such that its homotopy
category B = Ho(B0) is a compactly generated triangulated category.

We also set an integer n ≥ 1 and put N = {0, . . . , n− 1} as before. Then we fix a family of
homology theories K(i)∗ : B → Ab∗ for i ∈ N and define K(A)∗ =

⊕
a∈AK(a)∗ for any A ⊆ N .

We let λA denote the localisation with respect to the localizing subcategory of K(A)∗-acyclics.

Remark 2.1.2. Even if we are interested only on the homotopy category B and its localizations,
rather than the specific choice of its geometric model, we invoke the existence of such B0 so
that B coincides with the underlying category of a strong, stable derivator C. This condition
is not strictly required for our argument to work, but it is the most common way to form a
derivator. Also, the homology theories are usually established on the homotopy category or its
model. Therefore, this comes more natural than asking for the existence of a derivator whose
underlying category admits certain homology theories.

Remark 2.1.3. While the matter of the actual existence of the localizations λA is not trivial, it
has been dealt in the literature exhaustively. One of the best classical references for the existence
of Bousfield localizations in a general, well behaved triangulated category is [29, Ch. 9]. Margolis
in [28, Ch. 7] presents a proof for the stable homotopy category, but it can be generalized to
other (sufficiently nice) triangulated categories. This is the approach we adopted in [2, App. A].

It is worth mentioning that analogous existence results have been developed internal to the
geometric models, for both settings of model categories and quasi-categories. Reference for
these two approaches are [17] and [24, §5.2] respectively.

Definition 2.1.4. In the setting of Definition 2.1.1 we say the family of homology theories K(i)∗
satisfies the fracture axiom if for every A non-empty subset of N , and b ∈ N with b > max(A),
then K(b)∗λA(X) = 0 for all X ∈ B. I.e. being K(A)∗-local implies being K(b)∗-acyclic.

Definition 2.1.5. We let P = P(N) be the set of subsets of N , ordered by inclusion. For
A,B ∈ P, we write A∠B if a ≤ b for all a ∈ A and b ∈ B.

Remark 2.1.6. Note that A∠B is vacuously satisfied if A = ∅ or B = ∅, and because of this,
the relation is not transitive.

15



Lemma 2.1.7. The fracture axiom implies the following (apparently more general) statement:
if A,B ∈ P with A∠B and K(B)∗(X) = 0, then K(B)∗(λA(X)) = 0.

Proof. If A = ∅ then K(A)∗ = 0 and so λA = 0 and everything is trivial. We can thus assume
that A 6= ∅, so max(A) is defined. The assumption A∠B then means that b ≥ max(A) for all
b ∈ B. We are given that K(B)∗(X) = 0, or in other words that K(b)∗(X) = 0 for all b ∈ B.
We want to prove that K(b)∗(λA(X)) = 0. If b > max(A) then this is immediate from the
fracture axiom. This just leaves the case where b = max(A), so b ∈ A. The map X → λA(X)
is a K(A)-equivalence, so it is a K(b)-equivalence (because b ∈ A), and K(b)∗(X) = 0 by
assumption, so K(b)∗(λA(X)) = 0 as required.

We next provide a criterion to verify the fracture axiom.

Proposition 2.1.8. Let B be a stable homotopy category in the sense of [20, Def. 1.1.4] (so it is a
closed tensor triangulated category with a set of strongly dualizable generators). Assume we have
N as before and objects K(i) ∈ B representing the homology theories K(i)∗(X) = π∗(K(i)∧X).
Suppose we also have objects F (i) ∈ B, and that the following conditions are satisfied:

(a) F (i) is strongly dualizable for all i.

(b) For j < i we have K(j) ∧ F (i) = 0.

(c) For any object X ∈ B and any i we have K(i)∧X = 0 if and only if K(i)∧F (i)∧X = 0.

Then the fracture axiom is satisfied.

Proof. We take a subset A ∈ P, to avoid trivial cases we assume it is non-empty. We suppose
that b > max(A). We need to show that K(b)∧λA(X) = 0, by condition (c) this is the same as
showing that K(b) ∧ F (b) ∧ λA(X) = 0. For this it will suffice to show that F (b) ∧ λA(X) = 0,
or that the identity map of F (b)∧λA(X) is zero which is equivalent to proving the adjoint map

DF (b) ∧ F (b) ∧ λA(X)→ λA(X)

is zero. Here K(A)∧F (b) = 0 by condition (b), so the source of the above map is K(A)-acyclic,
whereas the target is K(A)-local; this implies that the map is zero as required.

The simplest example of a setting as in Definition 2.1.1 we can present is the following
provided by algebra.

Example 2.1.9. Let B = D(Z(p)) be the derived category of modules over Z(p), and put

K(0) = Q K(1) = Z/p
F (0) = Z(p) F (1) = Z/p.

It is then straightforward to check the hypotheses of Proposition 2.1.8, so the fracture axiom is
satisfied.

F (0) coincides with the unit of B, while F (1) is quasi-isomorphic to

· · · → 0→ Z(p)
p−→ Z(p) → 0→ · · ·

hence they are both perfect complexes. The equality K(0) ∧ F (1) = Q⊗L Z/p = 0 comes from
the fact that after tensoring with Q the above chain complex it becomes acyclic. Condition (c)
is verified because F (0) is the tensor unit and F (1) ⊗L K(1) ∼= Z/p ⊕ ΣZ/p (to see this just
apply Z/p⊗− to the above complex).
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Example 2.1.10. Now the motivating example. Let B0 denote the category of symmetric
spectra of simplicial sets, equipped with the p-localisation of the usual model structure. Put
B = Ho(B0) (so this is the usual SHC(p)). For any i ∈ N = {0, . . . , n − 1}, let K(i) denote
the Morava K-theory spectrum of height i at the prime p, and let F (i) be any finite p-local
spectrum of type i. It is again straightforward to check the hypotheses of Proposition 2.1.8.

Assumptions (a) and (b) are satisfied by construction of our F (i)’s. (c) follows immediately
from Remark 1.2.13.

Therefore, the fracture axiom is verified.

Example 2.1.11. Let B = SHC(p) again. As before F (i) will denote any finite spectrum of
type i. By the periodicity theorem [35, Thm. 1.5.4] it admits a vi-self map, that is a map
fi : ΣdiF (i)→ F (i) such that it is an isomorphism on K(i)-homology and for j 6= i K(j)∗(fi) is
nilpotent. We will be considering as objects representing our homology theories T (i) = f−1

i F (i)
the i-th telescope.

Again (a) holds by construction of the objects F (i). (b) follows from the fact that for j < i
we have T (j) ∧ F (i) = (fj ∧ 1)−1(F (j) ∧ F (i)). Observe K(n)∗(fj ∧ 1) ∼= K(n)∗(fj) ⊗ 1 must
be nilpotent for every n ∈ N. Thus, by an application of the nilpotence theorem [18, Thm. 3
(ii)], the morphism fj ∧ 1 itself is nilpotent and the associated telescope must be trivial.

An alternative argument is that fj ∧ 1 and 0 are both vj-self maps for F (j) ∧ F (i), so for
the asymptotically uniqueness of these maps ([35, Thm. 1.5.4 (ii)]) there exists some N ∈ N
such that fNj ∧ 1 = 0.

Finally, (c) follows from the following fact: we have X∧T (n) = 0 if and only if X∧T (n)′ = 0
where T (n)′ is another telescope of a vn-self map on a type n finite spectrum. Assuming this, we
have only to notice that T (n)∧F (n) = (fn ∧ 1)−1(F (n)∧F (n)) is indeed a new n-th telescope.
The claim is equivalent to the fact that the Bousfield class of T (n) is independent of the choice
of F (n) and fn. This is a well known fact in the literature, for a reference see [25, Lemma 2.1].

This example is relevant since the Bousfield localization associated to
∨n
i=0 T (i) coincides

with the finite localization associated to E(n), usually denoted Lfn. There exists a canonical

comparison map Lfn ⇒ Ln, determining whether this is an equivalence or not is the content of
Telescope Conjecture.

Example 2.1.12. Let G = Cpn−1 be the cyclic group of order pn−1. We take B0 to be the
category of orthogonal G-equivariant spectra with the stable model structure provided in [7,
Thm. 1.2.22], so that B is the G-equivariant stable homotopy category.

We set Hi for 0 ≤ i ≤ n− 1 to be the subgroup of G of order pn−1−i, so we have a sequence
of inclusions

e = Hn−1 ≤ Hn−2 ≤ · · · ≤ H1 ≤ H0 = G.

As it is usual in the literature, fixed F a family of subgroups of G closed under subgroups and
conjugacy we denote by EF the unbased G-orthogonal space characterized, up to G-equivariant
homotopy equivalence, by

EFK '

{
∅ if K 6∈ F
∗ if K ∈ F

for all K ≤ G and its unreduced suspension by ẼF . This is a pointed G-space with the following
the property

ẼFK '

{
∗ if K ∈ F
S0 if K 6∈ F

for any K ≤ G.
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We define the families of subgroups Fi = {K ≤ G : K ≤ Hi} = {Hj : j ≥ i} for 0 ≤ i ≤ n−1,
using these we can set

K(i) = Σ∞+ G/Hi ∧ Σ∞ẼFi+1 F (i) = Σ∞+ G/Hi

where we meanK(n−1) = Σ∞+ G. We notice that the F (i)’s are finiteG-spectra ([7, Prop. 1.3.10]),
so condition (a) is satisfied.

It is immediate to compute the geometric fixed points of these spectra

ΦHm(F (i)) =

{
0 if m < i

F (i) if m ≥ i
ΦHm(K(i)) =

{
0 if m 6= i

Σ∞+ G/Hi if m = i.

Using these results and the fact that geometric fixed points commute with the smash product
we see (b) holds.

To verify (c) we compute explicitly the smash product

F (i) ∧ T (i) = Σ∞+ G/Hi ∧ Σ∞+ G/Hi ∧ Σ∞ẼFi+1.

Since Σ∞+ G/H are cofibrant objects, for these factors the derived and non-derived smash
products coincide thus

Σ∞+ G/Hi ∧ Σ∞+ G/Hi ∧ Σ∞ẼFi+1
∼= Σ∞+ (G/Hi ×G/Hi) ∧ Σ∞ẼFi+1.

We recall the double coset decomposition

G/H ×G/K ∼=
∐

H\G/K

G/(Hg ∩K)

which applied here for H = K = Hi gives us the isomorphism

G/Hi ×G/Hi
∼=
∐
G/Hi

G/Hi.

We deduce
F (i) ∧K(i) ∼=

∨
G/Hi

Σ∞+ G/Hi ∧ Σ∞ẼFi+1 =
∨
pi

K(i)

and the last condition is ensured.
Before concluding we remark the following fact: unlike the previous examples, here the

condition [S,K(i) ∧X]∗ = 0 does not guarantee a priori that K(i) ∧X = 0. That is the tensor
unit, namely S = Σ∞+ G/G, is not a compact generator for B. Instead we have to consider the
whole set {Σ∞+ G/H : H ≤ G} (see [7, Cor. 1.3.11]).

Nevertheless we defineK(i)∗(X) = [S,K(i)∧X]∗ and simplify this expression: the Wirthmüller
isomorphism ([7, Thm. 2.1.10]) ensures that Σ∞+ G/H is self-dual thus

K(i)∗(X) = [S,K(i) ∧X]∗ = [Σ∞+ G/Hi,Σ
∞ẼFi+1 ∧X]∗ =

= πHi∗ (Σ∞ẼFi+1 ∧X) = π∗(Φ
HiX)

where the last isomorphism comes from [27, Ch. V, Prop. 4.17] after observing Fi+1 coincides
with the family of subgroups not containing Hi.

Therefore for any subgroup H ≤ G we have

[Σ∞+ G/H,K(i) ∧X]∗ = [S,K(i) ∧X ∧ Σ∞+ G/H]∗ =

= π∗(Φ
Hi(X ∧ Σ∞+ G/H)) = π∗(Φ

HiX ∧ ΦHi(Σ∞+ G/H))

and ΦHi(Σ∞+ G/H) is non-equivariantly either 0 or a finite coproduct of copies of S.
We deduce that actually K(i)∗(X) = 0 if and only if φHiX = 0 (as non-equivariant spec-

trum) if and only if K(i) ∧X = 0.
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2.2 The main theorem

We proceed to give the statement of our main theorem. First we need to fix some notation
regarding the iterated localizations.

Definition 2.2.1. Let B0, n and K(i)∗ like in Definition 2.1.1 and assume they satisfy the
fracture axiom. Let A = {a1 < a2 < · · · < ak} be an element of P, then we define for every
X ∈ B

φA(X) = λ{a1}λ{a2} . . . λ{ak}(X).

We notice that by the fracture axiom this is the only ordering of the localizations λ{ai} which
makes the composition not necessarily trivial.

If A = (A1, . . . , Al) is an l-uple of subsets of N we set

λA(X) = λA1λA2 . . . λAl(X).

Definition 2.2.2. Let Q be the set of all subsets of P that are upwards closed, i.e. if U ∈ Q and
A,B ∈ P with A ⊂ B then A ∈ U implies B ∈ U . We endow it with inverse inclusion ordering:
that is for any two U, V ∈ Q we set U ≤ V if V ⊆ U . We define u : P→ Q by uA = {B : A ⊆ B},
so u is a morphism of posets. We also define v : P → Q by vA = {B : B ∩ A 6= ∅}, so v is
order-reversing.

Remark 2.2.3. In P, the smallest element is ∅ and the largest element is N . In Q, the smallest
element is u∅ = P and the largest element is ∅. Consider P ′(N), the set of non-empty subsets
of N , it is immediate that this coincides with u∅ \ {∅} ∈ Q. This is the second-smallest element
in Q: that is, if U ∈ Q and U 6= u∅ then u∅ \ {∅} ≤ U . The element uN is second-largest in Q,
in the sense that every element U ∈ Q with U 6= ∅ satisfies U ≤ uN .

Lemma 2.2.4. There is a map ∗ : Q×Q→ Q of posets given by

U ∗ V = {A ∪B | A ∈ U, B ∈ V, A∠B}.

This operation is associative, with

U ∗ V ∗W = {A ∪B ∪ C | A ∈ U, B ∈ V, C ∈W, A∠B, A∠C, B∠C},

and u∅ is a two-sided identity element. Moreover, it is distributive on both sides with respect to
the union.

Proof. Suppose that A ∈ U , B ∈ V , A∠B and A∪B ⊆ C. We can then choose t such that a ≤ t
for all a ∈ A, and t ≤ b for all b ∈ B. We put A′ = {c ∈ C | c ≤ t} and B′ = {c ∈ C | t ≤ c}.
Then A ⊆ A′ so A′ ∈ U , and B ⊆ B′ so B′ ∈ V . We also have C = A′ ∪ B′ with A′∠B′,
so C ∈ U ∗ V . This proves that U ∗ V is closed upwards, so we have indeed defined a map
∗ : Q × Q → Q. It is clear that if U ⊆ U ′ and V ⊆ V ′ then U ∗ V ⊆ U ′ ∗ V ′, so ∗ is indeed a
morphism of posets. All remaining claims can also be trivially verified.

We are finally ready to state our results.

Theorem 2.2.5. In the situation of Definition 2.1.1 and Definition 2.1.4 we denote by C the
homotopy derivator associated to B0. Then there exists a strong stable derivator of fracture
diagrams F , which is a subderivator of the shifted derivator CQ and such that the restriction to
u∅ provides an equivalence u∅∗ : F → C.

Using this, we can define for every U ∈ Q an anafunctor

θU : C u∅∗←−− F U∗−−→ C.

These anafunctors satisfy the following composition law θU ◦ θV ∼= θU∗V .
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We now unravel part of the information contained in this Theorem to make more clear how
this result implies Conjecture 1.3.6.

Corollary 2.2.6. For every object X ∈ B we can provide in a functorial manner a coherent
diagram Z ∈ Ho(BQ0 ). If we denote its value at U ∈ Q by ZU , then this diagram has the
properties that Zu∅ ∼= X and for any A,B ∈ P we have ZuA ∼= φA(X), ZvB ∼= λB(X). Moreover,
the isomorphism ZvA∗vB ∼= λAλB(X) implies that for any l-uple (A1, . . . , Al) of elements of P
the iterated localization λA(X) coincides with the value ZvA1∗···∗vAl. Since Q is a finite poset we
deduce that these λA are finitely many up to isomorphism.

Proof. We have just to consider the underlying level of the derivators and their anafunctors in
Theorem 2.2.5.

The underlying category of F consists of diagrams Z ∈ Ho(BQ0 ) with the property that if X
denotes the initial vertex Zu∅ then value at the vertex uA is given by the iterated localization
φA(X) (see Remark 4.5.6) and at vA we have the localization λA(X) (by Proposition 4.5.10).
Accordingly with this, the edge corresponding to the inequality u∅ ≤ vA in Q can be identified
with the K(A)-equivalence X → λA(X) and u∅ ≤ uA provides the map X → φA(X) coming
from combining appropriately the natural transformations associated to the single localizations
λ{a} for all the elements a ∈ A.

The anafunctors θU induce functors (θU )e which can be considered generalizations of our
iterated localizations in the sense that (θuA)e ∼= φA and (θvA)e ∼= λA.

By construction we have for any Z ∈ F(e) an isomorphism (θU )e(Zu∅) ∼= ZU , which let us
conclude.

It is clear that after invoking this much derivator technology we have to spend a few words
on it. Indeed, the next chapter will be dedicated to establishing the basic terminology and
technical results we developed for our needs.
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Chapter 3

Derivator theory

3.1 Motivations

Derivator theory was independently started by Gothendieck [14] and Heller [16], moreover it
received analogous formulations later by Franke [8], Keller [22] and Maltsiniotis [26]. The core
problem it tries to solve is the following: if we consider a triangulated category as defined by
Verdier we have that the axioms guarantee only the existence of the cone of a morphism, but
not its functionality. This has repercussions on the whole theory of homotopy (co)limits of the
category in the sense that even when we can have results of existence of ad hoc versions of such
objects they usually are not functorial and we can only hope to guarantee some sort of weak
universal property. That is, we do not have the existence of canonical (i.e. unique) morphism
arising from such properties.

The intuition behind the solution, which constitutes the core idea of derivators, is that the
triangulated categories we want to study usually arise as homotopy categories of some geometric
model, and on such model the construction of homotopy fiber can be done functorially. Let us
consider the a simple example given by the derived category of an abelian category A.

This is defined starting from Ch(A), the category of chain complexes in A, after various
procedures finalized to formally invert the quasi isomorphisms. As we stated, if we start with a
morphism f : X → Y in D(A) then its cone C(f) is an object characterized by an exact triangle

X
f−→ Y → C(f)→ ΣX

such that if we have another morphism g determining a second cone and the two maps fit in a
commutative diagram

X Y

X ′ Y ′

f

g

then it can be extend to

X Y C(f) ΣX

X ′ Y ′ C(g) ΣX ′

f

∃
g

in a non-unique way. Thus we cannot form a functor C : D(A)[1] → D(A).
But if we started with a morphism f̃ in Ch(A) representing f then we have available the

following procedure: the first step is to enlarge f̃ considered as an element of Ch(A)[1] to a span
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X Y

CX

i

f̃

where CX is the usual cone chain complex given by (CX)n = Xn ⊕Xn−1 and i : X → CX is
given degree-wise by the inclusion in the first copy of the sum. The second step is forming the
push-out of such diagram, so we get

X Y

CX C(f̃).

f̃

cof(f̃)

It is a standard fact that the homotopy class of C(f̃) coincides with the above cone C(f).
The advantage of this construction is that it is completely functorial, so it allows us to define
C : D(A[1])→ D(A).

This gives us the idea that the category D(A[1]) contains much more information than
D(A)[1], in particular the extra data allow us to form the functorial cone construction we
desire. Actually, this procedure can be generalized to provide functorsD(AI)→ D(A) providing
homotopy limits and colimits of diagrams of shape I. To further confirm our picture, observe
that the objects in D(AI) are honest commuting diagrams of Ch(A)I , while the objects in
D(A)I are diagrams commuting only up to homotopy.

This excursus tells us that instead of working just with the triangulated category D(A)
we should actually consider a whole collection of categories D(AI) which should be related by
functors D(AI) → D(AJ) enabling us to construct all the homotopy limits and colimits we
need.

The most simple way to do this is to encode all this information in a 2-functor

D : Diaop → TCAT I 7→ D(AI)

subject to certain axioms. Here Dia is an appropriate full 2-subcategory of Cat, the 2-category
of small categories, while TCAT denotes the subcategory determined by triangulated categories
(not necessarily small) with 1-cells the exact functors. With Diaop we indicate the 2-category
obtained by formally reversing only the 1-cells, not the 2-cells.

This approach to homotopy theory was developed before the widespread use of the theory of
model categories (first defined by Quillen) and ∞-categories (popularized by Lurie and Joyal)
which are the most common ways used nowadays to perform computations on homotopy cat-
egories. Derivator theory is a much more simplistic approach since we do not work explicitly
with a model where we can develop a well behaved theory of homotopy fibers and cofibers but
rather we require the homotopy category to admit an extension to a diagram of triangulated
categories which contains functor producing all the homotopy limits and colimits we want.

Since we could reduce our argument to work for any collection of homology theories satisfying
the fracture axiom, regardless of other their properties and of the geometric model for the
ambient category, the axiomatic approach offered by derivator theory is the most fitting to the
generality of our proof.

3.2 Recollection on classical category theory

Before actually starting with derivator theory we will need some background on category
theory. The aim of this section is to fix the notation and recollect basic facts about adjunctions
and mate transformations.
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Definition 3.2.1. An adjunction (L,R) : A � B can be defined in two equivalent ways. The
most common one consists in a datum of bijections

HomB(LX, Y )
φX,Y−−−→ HomA(X,RY )

natural in X ∈ A and Y ∈ B. This means that for every morphism u : X → X ′ and v : Y → Y ′

we have a commutative diagram

HomB(LX ′, Y ) HomA(X ′, RY )

HomB(LX, Y ′) HomA(X,RY ′).

φX′,Y

Hom(Lu,v) Hom(u,Rv)

φX,Y ′

This is equivalent to providing two natural transformations η : Id ⇒ RL and ε : LR ⇒ Id,
called the unit and counit of the adjunction, which make the following two diagrams commute

L LRL R RLR

L R
Id

Lη

εL

ηR

Id
Rε

these are called the triangular identities.

Lemma 3.2.2. The two notions proposed in Definition 3.2.1 are equivalent.

Proof. If we start with the class of bijections φ then we set ηX = φX,LX(IdLX) and εY =
φ−1
RY,Y (IdRY ), from the naturality of φ we easily deduce such η and ε are natural as well. For

any morphism f : LX → Y we form the commutative diagram

HomB(LX,LX) HomA(X,RLX)

HomB(LX, Y ) HomA(X,RY ),

φX,LX

Hom(LIdX ,f) Hom(IdX ,Rf)

φX,Y

if we consider the element IdLX in the upper left set then commutativity implies φX,Y (f) =
Rf ◦ ηX and similarly we can prove for any g : X → RY the formula φ−1

X,Y (g) = εY ◦ Lg.
Therefore we deduce

IdLX = φ−1
X,LXφX,LX(IdLX) = φ−1

X,LX(ηX) = εLX ◦ LηX

and the first triangular equality is proved, for the second we have to unravel φRY,Y φ
−1
RY,Y (IdRY ).

If instead we start with with a unit and counit, we can define the bijection φX,Y using the
formula we established above

HomB(LX, Y )
φX,Y−−−→ HomA(X,RY )

f 7→ Rf ◦ ηX .

The triangular equalities imply this has inverse given by

HomA(X,RY )→ HomB(LX, Y )

g 7→ εY ◦ Lg.

and naturality of the transformations implies the same property for this φX,Y .
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Using the description with unit and counit let us formulate the following useful criterion.

Lemma 3.2.3. Let (L,R) : A� B be an adjunction of functors.

1. The left adjoint L is fully faithful if and only if the associated unit η : Id ⇒ RL is an
isomorphism. If this is the case, an object X ∈ B lies in its essential image if and only if
the counit ε : LR→ Id evaluated at X is an isomorphism.

2. Dually R is fully faithful if and only if the counit ε is invertible. If this is the case then
Y ∈ A is in its essential image if and only if ηY is an isomorphism.

Proof. We deal with the first case, the second follows by duality. By Lemma 3.2.2 we see we
can describe L : HomA(X,X ′)→ HomB(LX,LX ′) as the composition

HomA(X,X ′)
Hom(IdX ,ηX′ )−−−−−−−−−→ HomA(X,RLX ′)

φ−1
X,LX′−−−−→ HomB(LX,LX).

Since the second map is a bijection we deduce L is fully faithful if and only if Hom(IdX , ηX′) is
a bijection for every X,X ′ ∈ A, Yoneda lemma implies this is equivalent to ηX′ being a natural
isomorphism.

For the second part of the claim we observe if εY is an isomorphism then trivially Y ∼= LRY
so Y lies in the essential image of L. Conversely, if we have an isomorphism g : Y → RY ′ then
we can form the commutative square

Y LY ′

LRY LRLY ′.

g
∼

εY

LRg

∼

εLY ′

The assumption of η being invertible and the first triangle equality imply also εLY ′ is an iso-
morphism, thus εY must have this property as well.

Lemma 3.2.4. Let (L,R), (L′, R′) : A � B be two adjunctions. Then there exists a bijection
between the natural transformations α : L′ ⇒ L and β : R ⇒ R′ making the following square
diagram commute

HomB(LX, Y ) HomA(X,RY )

HomB(L′X,Y ) HomA(X,R′Y ).

φX,Y

Hom(αX ,IdY ) Hom(IdX ,βY )

φ′X,Y

Proof. The claim is clear from Yoneda lemma and the fact that φX,Y and φ′X,Y are bijections.
Nevertheless, we write down explicitly the formulas which relate α and β.

If we fix Y = LX and start from IdLX in the upper left corner, then the commutativity of
the diagram implies

αX = ε′LX ◦ L′βLX ◦ L′ηX
and dually setting X = RY and comparing the two images of IdRY under the maps of the
diagram we get

βY = R′εY ◦R′αRY ◦ η′RY .

Corollary 3.2.5. In the situation of Lemma 3.2.4, the natural transformation α is invertible
if and only if the corresponding β is.
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Definition 3.2.6. In the situation of Lemma 3.2.4 we call the two corresponding transforma-
tions conjugate or total mates.

Corollary 3.2.7. If a functor has a left or right adjoint this is unique up to natural isomorph-
ism.

We now move our attention to the calculus of canonical mate transformations associated
to squares inhabited by natural transformations. In the literature they are also denoted by
Beck-Chevalley transformations.

Consider the diagram of functors

A B

C D

α

r∗

u∗

q∗

v∗

and suppose u∗ and v∗ admit left adjoints, which we denote respectively by u! and v!. Then we
can extend horizontally the diagram as follows

C A B

C D B

u!

α

r∗

Id

ε
u∗

q∗

v∗

v!

Id

η

we denote such transformation by

α! = εq∗v! ◦ u!αv! ◦ u!r
∗η.

Suppose instead that r∗ and q∗ have right adjoints, respectively r∗ and q∗, then we can augment
the diagram vertically in the following way

B

A B

C D

C

r∗

Id
η

α

r∗

u∗

q∗

v∗

q∗

Id

ε

and call the composite transformation

α∗ = r∗u
∗ε ◦ r∗αq∗ ◦ ηv∗q∗.

We call these transformations the canonical mates associated to α.

Lemma 3.2.8. Suppose that u∗ and v∗ admit left adjoints and r∗, q∗ have right adjoints so
that canonical mates α! and α∗ exist, then they are conjugate in the sense of Definition 3.2.6.
Thus α! is an isomorphism if and only if α∗ is.

Proof. We have just to verify that α! and α∗ satisfy the explicit relations written in the proof
or Lemma 3.2.4. We first observe that if we have a pair of adjunctions

E
F
�
G
F

H
�
I
G
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then (HF,GI) forms a new adjunction with unit and counit given respectively by

Id
η
=⇒ GF

GηF
===⇒ GIHF HFGI

HεI
===⇒ HI

ε
=⇒ Id.

We apply this to the adjunctions

B
v!
�
v∗
D

q∗

�
q∗
C B

r∗

�
r∗
A

u!
�
u∗
C.

Using the notation of Lemma 3.2.4 the two adjunctions we consider will be L = q∗v!, R = v∗q∗
and L′ = u!r

∗, R′ = r∗u
∗. We will be decorating the units and counits with letters to recall

which adjunction they belong to.
In the end we have to show the formula

α! = εq∗v! ◦ u!r
∗α∗q

∗v! ◦ u!r
∗η

where the above ε refers to the adjunction L′ a R′ and η is the unit of L a R. To prove this
equality we form the following diagram

u!r
∗ u!r

∗v∗v! u!r
∗v∗q∗q

∗v!

u!r
∗v∗v! u!r

∗v∗q∗q
∗v! u!r

∗r∗r
∗v∗q∗q

∗v!

u!u
∗q∗v! u!u

∗q∗q∗q
∗v! u!r

∗r∗u
∗q∗q∗q

∗v!

q∗v! u!u
∗q∗v! u!r

∗r∗u
∗q∗v!.

u!r
∗ηv

u!r
∗ηv

u!r
∗v∗ηqv!

u!r
∗v∗ηqv! u!r

∗ηrv∗q∗q∗v!

u!r
∗v∗ηqv!

u!αv! u!αq∗q
∗v!

u!ε
rr∗v∗q∗q∗v!

u!r
∗r∗αq∗q∗v!

εuq∗v!

u!u
∗εqq∗v!

u!u
∗εqq∗v!

u!ε
ru∗q∗q∗v!

u!r
∗r∗u∗εqq∗v!

εuq∗v! u!ε
ru∗q∗v!

We notice that the left column is α! and the composite of the maps on other three edges coincides
with the right hand side of the previous equality (after unravelling the units and counits of the
composite adjunctions).

All the subdiagrams commute trivially, except for two. The first is the lower triangle in
the upper right square: this commutes by the triangular identity involving the left adjoint of
r∗ a r∗. The second is the left square in the middle row: we rewrite it as

u!r
∗v∗v! u!r

∗v∗q∗q
∗v!

u!u
∗q∗v! u!u

∗q∗q∗q
∗v!

u!r
∗v∗ηqv!

u!αv! u!αq∗q
∗v!u!u

∗q∗ηqv!

u!u
∗εqq∗v!

now it is immediate to see the upper part commutes, then we notice that by the triangle identity
involving the left adjoint of q∗ a q∗ the two morphisms in the bottom row are inverses, so they
can be interchanged.

A crucial property of canonical mates is that they are compatible with pasting of squares.
Suppose we have a diagram of this shape

A B E

C D F

α

r∗ s∗

β
u∗

q∗

v∗

t∗

w∗
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then we can compose appropriately the transformations α and β to get

α� β = αt∗ ◦ r∗β : r∗s∗w∗ ⇒ u∗q∗t∗.

Lemma 3.2.9. In the above situation, suppose that the appropriate adjoints exist to define α!

and β!, then the mate (α� β)! exists and we have

(α� β)! = β! � α!.

Dually, provided α∗ and β∗ exist, we have

(α� β)∗ = β∗ � α∗.

Proof. We show only the first statement, the second is proved similarly.
Consider the diagram

C A B

C D B E

D F E

u!

α

r∗

Id

ε
u∗

q∗

v∗

v!

Id

η
s∗

β

Id

ε
v∗ w∗

t∗ w!

Id

η

and observe that when we compose all the natural transformations in the picture the two in the
middle cancel out by a triangle equality. This means β! � α! = (α� β)!.

3.3 Basic definitions

We finally give the definition of a derivator.

Definition 3.3.1. We let PoSet be the 2-category of finite posets. Its objects are finite posets,
considered as categories as usual, 1-cells consist of the classical morphisms of posets (i.e. maps
of sets preserving the ordering) and we have a 2-cell f ⇒ g if and only if f ≤ g.

A prederivator consists of a strict 2-functor

D : PoSetop → CAT

where CAT is the 2-category of all categories (not necessarily small) and PoSetop is the 2-
category obtained by formally reversing the 1-cells (but not the 2-cells) of PoSet.

Given a 1-cell u : R → T , its image under the prederivator D(u) : D(T ) → D(R) will be
denoted by u∗ and we will call it the restriction functor associated to u.

Similarly for a 2-cell α : u⇒ v we denote by α∗ : u∗ ⇒ v∗ the image D(α).

Remark 3.3.2. In full generality a (pre)derivator is defined on Cat, the 2-category of small
categories, but we can restrict the source to a sub 2-category closed under all the constructions
we need to develop our theory (e.g. finite product of categories, forming slice and coslice
categories). For a reference see [5, §1.2].

For this work we choose to restrict to PoSet for two reasons: the first is that since we want
to show finiteness of the composition of localizations we only need to index our diagrams over
finite posets. The second is that we will need a technical result (Theorem 3.8.3) whose proof will
make use of this finiteness condition on the indexing categories and does not hold for derivators
taking values on the whole Cat. We will elaborate on this later, when it comes up.
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Definition 3.3.3. We denote by e the poset with just one object. For D a prederivator the
value D(e) is called its underlying category : this terminology comes from the fact that informally
we think of D(R), for any R ∈ PoSet, as a category of enriched diagrams of shape R over D(e).

More precisely, we can form a functor

diaR : D(R)→ D(e)R

called the diagram functor as follows. For any element r ∈ R we can define a functor r : e→ R
sending the unique object of e to r, so for any X ∈ D(R) we define the value diaR(X)r by r∗X.
If we have a morphism f : r → t in R then it induces a natural transformation between the two
evaluation functors f : r ⇒ t, thus we get f∗ : r∗X → t∗X which we set to be diaR(X)(f). It is
immediate that this diaR(X) is a functor R→ D(e) as we wanted.

When handling an object X of D(R) is much easier to think of it as a diagram, so we
implicitly identify it with diaR(X) but this is rather improper. Usually the functor diaR is not
an equivalence and with this passage we lose critical information.

Definition 3.3.4. A derivator D consists on a prederivator satisfying the following axioms.

(D1) D takes coproducts to products, i.e. given a finite family {Ri}i∈I of posets the canonical
functor

D
(∐

i

Ri

)
→
∏
i

D(Ri)

must be an equivalence.

(D2) For any R ∈ PoSet the diagram functor diaR is conservative. That is, a morphism f in
D(R) is an isomorphism if and only if for every r ∈ R its evaluation fr is an isomorphism
in D(e).

(D3) Given a functor u : R → T the restriction u∗ : D(T ) → D(R) must admit both a left and
a right adjoint, which we denote respectively u! and u∗. These are usually called the left
and right Kan extensions along u.

(D4) We require the Kan extensions to satisfy the following Kan pointwise formulas, which are
totally analogous to the ones regulating Kan extensions in the classical setting of category
theory.

Let u be as above, for any t ∈ T we can form the slice category (u/t) and the coslice
(t/u) with associated projection functors p : (u/t) → R and q : (t/u) → R. These fit in
the square diagrams

(u/t) R (t/u) R

e T e T

p

π(u/t) u π(t/u)

q

u

t t

which induce, via the calculus of mates, natural transformations

π(u/t)!
p∗ ⇒ t∗u! t∗u∗ ⇒ π(u/t)∗q

∗

which we require to be isomorphisms. We will explain in detail their definition below.
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Remark 3.3.5. A bit of explanation is necessary to make sense of these axioms. (D1) and
(D2) are not too difficult to grasp: these are just regularity conditions which come natural when
we recall the slogan “objects of the derivators are enhanced diagrams”. We want a diagram
defined on

∐
Ri to be determined by its restrictions to the connected components Ri, which is

precisely what (D1) establishes.
An isomorphism f between two diagrams of shape R should be a pointwise isomorphism,

i.e. fr should be invertible for every r ∈ R. Which is exactly the content of (D2).
The most critical parts of the definition are axioms (D3) and (D4). The former postulates

the existence of homotopical versions of the classical Kan extensions. For example, recall that
if A is a category complete and cocomplete, fixed I a small category we can form the limit and
colimit functors

limI : AI → A colimI : AI → A

respectively as the right and left Kan extensions along the projection π : I → e.
The idea is exactly the same for derivators: (D3) is the requirement for D(e) to be ho-

motopically complete and cocomplete, by the existence of such Kan extensions. The weak
universal properties which homotopy limits and colimits are required to have are encoded in
the adjuctions u∗ a u∗ and u! a u∗.

(D4) is the condition that such extensions not only exist, but are well behaved and follow
a formula we can use to perform computations. If we evaluate the two natural transformations
at some X ∈ D(R), rewriting π(u/t)!

as hocolim
−→

and π(u/t)∗ as holim
←−

, we obtain the maps

hocolim
−→ (u/t)

p∗X ∼= (u!X)t (u∗X)t ∼= holim
←− (t/u)

q∗X

and now we can easily see the resemblance with the classical Kan formulas.

Example 3.3.6 (Represented derivators). Let A be a category, then the most trivial example
of prederivator we can provide is the represented prederivator

y(A) : PoSetop → CAT R 7→ AR = Fun(R,A)

where the restriction u∗ consists in the precomposition with u. It is immediate to see that the
adjoints u∗ and u! coincide with the classical right and left Kan extensions. Therefore y(A) is
a derivator if and only if A admits all limits and colimits of shape given by finite posets.

Example 3.3.7 (Homotopy derivators). Let C be a model category or a quasi-category, then
there exists a derivator

HC : PoSetop → CAT R 7→ Ho(CR)

called the homotopy derivator associated to C.
A complete proof of this is contained in [5, Thm. 6.11] for the case of C a model category:

its core idea is that we can endow CR with the Reedy model structure and work with this. In
this model the class of weak equivalences WR consists of the pointwise weak equivalences, thus
we define Ho(CR) as the localization CR[(WR)−1].

An easier reference is [10, Prop. 1.36] where we assume the model category C to be combinat-
orial. This hypothesis guarantees the existence of the injective and projective model structures
on CR which we can use for our arguments. Since for both models the class of weak equival-
ences again is WR they provide equivalent homotopy categories, indeed it can be shown that
the adjunction

(Id, Id) : CRproj � CRinj

is a Quillen equivalence.
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We observe this provides a nice example of the fact that the diagram functor is not an
equivalence.

diaR : Ho(CR)→ Ho(C)R

as we mentioned in § 3.1 the objects of the category Ho(CR) are elements of CR i.e. diagrams
commuting in C, while objects in Ho(C)R are diagrams commuting only up to homotopy. The
functor diaR can be considered as a forgetful functor which discards the data of coherence in C.

Example 3.3.8 (Shifted derivators). Suppose we start with a derivator D and we fix a finite
poset P , then we can define a new assignment

DP : PoSetop → CAT R 7→ D(P ×R).

It is not difficult to show this provides a new derivator such that its underlying category coincides
with D(P ), it is called the shift of the derivator D by P .

We end the section with the application of the theory of canonical mates to derivators.

Definition 3.3.9. We consider a square diagram in PoSet commuting up to a natural trans-
formation

A B

C E

r

u vα

q

and let D be a derivator, we can apply it to the above square to get a new one

D(A) D(B)

D(C) D(E).

r∗

u∗ v∗
α∗

q∗

We observe that all the involved functors have a right and left adjoint, thus we can form the
canonical mates (α∗)! and (α∗)∗. To keep the notation simple we will drop the upper asterisk
of α, so we will denote them simply by α! and α∗.

We say the starting square is homotopy exact if for any derivator D the associated canonical
mates are isomorphisms.

Example 3.3.10 (The slice and coslice squares). Let u : R→ T be a morphisms of finite posets,
then for any t ∈ T we can form two square diagrams

(u/t) R (t/u) R

e T e T

p

π uαt

q

π u
βt

t t

which we call respectively the slice and coslice squares. Using this we can form the mates

(αt)! : hocolim
−→

(u/t)

p∗ ⇒ t∗u! (βt)∗ : t∗u∗ ⇒ holim
←−

(t/u)

q∗.

These are the canonical natural maps we mentioned in (D4): this axiom is correctly phrased as
asking the two above squares to be homotopy exact for every t ∈ T .
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Example 3.3.11. Let D be a derivator and suppose that we have a diagram as follows

D(A) D(B)

D(C) D(E)

F

u∗ v∗
γ
∼=

G

where F,G are equivalences and γ is a natural isomorphism, we claim that in this situation
the associated canonical mates are invertible. It is enough to observe that γ∗ is formed as the
composition of the natural isomorphism γ with unit and counit of adjunctions involving the
equivalences F and G respectively, hence they are isomorphisms as well.

We observe that if we have a square as

A B

C E

s

u vα
∼=

t

where s, t are equivalences and α is invertible then by the 2-functoriality of D the induced
restrictions s∗, t∗ are also equivalences and α∗ is again a natural isomorphism. Thus after
applying D we are in the situation just discussed above. Therefore squares of this shape are
homotopy exact.

3.4 Stable derivators

The structure of a derivator is not enough to provide a diagram of triangulated categories.
We have to add additional assumptions, to make sense of them and explain how they provide a
triangulated structure we first have to explain how we define the cone and fiber functors using
a derivator. The basic idea is to mimic the procedure illustrated in § 3.1 to provide a functorial
construction of the cone of a morphisms of chain complexes.

We first legitimate the name “extension” for the adjoints of the restrictions guaranteed by
(D3): that is, we show that the Kan extensions along fully faithful functors are fully faithful
functors.

Proposition 3.4.1. Let u : R → T be a fully faithful functor and D a derivator, then the
induced functors

u!, u∗ : D(R)→ D(T )

are also fully faithful.
Moreover, the essential image of u! is given by the objects Y ∈ D(T ) such that for all

t ∈ T \R the morphism (εY )t : (u!u
∗Y )t → Yt is an isomorphism.

Dually X lies in the essential image of u∗ if and only if (ηY )t is an isomorphism for all such
t’s.

Proof. We deal the case of u!, the other involving the right Kan extension is dual.
A concise proof can be formulated using the calculus of mates: if we consider the diagram

R R

R T

Id

Id uId

u

then we can form its canonical mate Id!. Using the diagram
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D(R) D(R) D(R)

D(R) D(T ) D(R)

Id Id

Id

Id

Id
Id u∗

u∗ u!

Id

η

we clearly see Id! reduces to just the unit η : Id⇒ u∗u!. By Lemma 3.2.3 we have to show this
Id! is invertible, i.e. the starting square is homotopy exact.

By (D2) we can reduce to prove ηr is an isomorphism, for all r ∈ R. We consider the
following pasting

(R/r) R R

e R T,

Id

Id uId

r u

Lemma 3.2.9 states that the induced mate coincides with ηr composed with the mate associated
to a slice square, which is an isomorphism by (D4). Therefore we have to show the total square
is homotopy exact.

This can be rewritten as

(R/r) (u/u(r)) R

e e T.

s

Id

p

π u

Id u(r)

The square on the right is a slice square: it is homotopy exact by (D4). Regarding the
square on the left hand side: we observe that since u is fully faithful the induced functor
s : (R/r) → (u/u(r)) is an isomorphism of categories, thus also this square is homotopy exact
by Example 3.3.11. We conclude the total square is homotopy exact as well.

The characterization of the essential image comes from the second part of the statements
of Lemma 3.2.3. Apply it to u! a u∗: Y is in the essential image of u! if and only if εY is an
isomorphism. By (D2) this is equivalent to (εY )t being invertible ∀t ∈ T .

Recall that the following triangle identity holds

Id = u∗ε ◦ ηu∗ : u∗ ⇒ u∗u!u
∗ ⇒ u∗.

We proved η is invertible, hence also u∗ε has this property. Thus εY is an isomorphism if and
only if ∀t ∈ T \R (εY )t is an isomorphism.

This means that for every object X ∈ D(R) the unit X → u∗u!X is an isomorphism, hence
on R ⊂ T the Kan extension u!X coincides with the starting diagram X.

We now focus on particular kind of extensions which will be very useful.

Definition 3.4.2. Let u : R→ T be a fully faithful functor, it is called

� a cosieve if for any t ∈ T \ u(R) the slice category (u/t) is empty. That is, for all r ∈ R if
there is a morphism u(r)→ t in T then t must lie in the image of u;

� a sieve if for any t ∈ T \ u(R) the coslice (t/u) is empty. That is, for all r ∈ R if we have
a morphism t→ u(r) in T then t must belong to the image of u.

Remark 3.4.3. From the axioms of derivators we can deduce that the underlying category
D(e) admits both an initial object ∅ and a terminal object ∗. Reasoning with the shifts of the
derivator we deduce actually all the categories D(R) have this property, for all R finite poset.
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It is immediate from axiom (D4) and Proposition 3.4.1 that if we have a cosieve u then u!

just extends the diagrams by adding ∅ as values in T \ u(R). Dually, if u is a sieve u∗ is just an
extension by ∗.

Example 3.4.4. We gave the general definition of cosieve and sieve. In our case we will be con-
sidering morphisms between finite posets hence the slice and coslice admit explicit descriptions
as

(u/t) ∼= {r ∈ R | u(r) ≤ t} (t/u) = {r ∈ R | t ≤ u(r)}.

This implies a cosieve is just an inclusion of a terminal subposet in T and dually a sieve
corresponds to a initial subposet.

We also observe that if R ⊂ T is a cosieve then T \R ⊂ T is a sieve and vice versa.

Definition 3.4.5. Let D be a derivator, we say it is pointed if the underlying category is
pointed. That is, the canonical map ∅ → ∗ in D(e) is an isomorphism. Notice by (D2) this
implies that all the categories D(R) are pointed.

Corollary 3.4.6. Let u : R→ T be a cosieve. Let D be a pointed derivator. Then u! : D(R)→
D(T ) is a left extension by zero and its essential image is given by the diagrams Y ∈ D(T ) such
that Yt = 0 for all t ∈ T \R.

Dually if u is a sieve then u∗ is a right extension by zero and its essential image admits the
same characterization.

Proof. We suppose u is a cosieve, the other case is dual.
The claim about the extension by zero are immediate from the definition of pointed derivator

and Remark 3.4.3.
The characterization of the essential image comes from Proposition 3.4.1. In the situation

where u is a cosieve (u/t) = ∅ for any t ∈ T \R, hence (D4) implies Yt ∼= 0.

We are finally ready to give the definition of cone C : D([1])→ D(e) in a pointed derivator
D.

As we explained an element f ∈ D([1]) can be thought as some kind of coherent morphism
f : X → Y between two objects X,Y ∈ D(e).

Consider the following chain of functors

[1]
j−→ p ip−→ �

where � = [1]× [1] and p consists of the span which can be identified with the upper left corner

(0, 0) (1, 0)

(0, 1)

of �. The map j just identifies [1] with the upper horizontal edge (0, 0)→ (1, 0).
Observe j is a sieve, thus j∗X has as underlying diagram

X Y

0

Now, the functor (ip)! consists of completing a span to a homotopy cocartesian square, so the
image of j∗X under it has shape
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X Y

0 C(f).

cof(f)

Therefore we define C : D([1])→ D(e) as the composition

D([1])
j∗−→ D(p)

(ip)!−−→ D(�)
(1,1)∗−−−→ D(e).

Observe that (0, 0) : e→ [1] is also a sieve, hence if we precompose C with (0, 0)∗ we can define
the suspension Σ: D(e)→ D(e).

Dually we can define a fiber functor F : D([1])→ D(e) and a desuspension Ω which is right
adjoint to Σ.

This gives an idea of how derivator theory works in practice: we started with a set of axioms
which we used to manipulate formally diagrams by extending and restricting them in a way to
perform the operations we desired.

We want to provide a triangulated structure by defining as exact triangles the ones arising
from cofiber sequences like the one produced above to define C(f). There are two problems
though:

� first of all for D(e) to be a triangulated category we have to provide a triangle starting
with f for every morphism in D(e). This is an element in D(e)[1], while our construction
started from an element of D([1]) and we saw that these two categories are very different.

� A fact that is seen explicitly in the case of stable model categories is that cofiber sequences
should coincide with fiber sequence. This does not necessarily hold for a general derivator,
thus we should impose a condition ensuring it.

This makes clear the motivation behind the following two definitions.

Definition 3.4.7. Let D be a derivator, we say it is strong if for any R ∈ PoSet the partial
diagram functor

dia[1] : D(R× [1])→ D(R)[1]

is full and essentially surjective.

Also, if D is pointed we denote it stable if the adjunction Σ a Ω is an equivalence.

Remark 3.4.8. There are actually several equivalent conditions defining when a derivator is
stable: we refer to [12, Theorem 7.1]. This theorem establishes that the above condition is
equivalent to the fact that all coherent squares are homotopy cocartesian if and only if they are
homotopy cartesian. That is, if ip : p→ � and iy : y → � are the inclusions of the upper left
corner and right lower corner respectively, then the essential images of (ip)! and (iy)∗ coincide.

This gives all we need to construct the distinguished triangle starting with a morphism f in
D(e). Using the strength of the derivator we lift f to an object f̃ of D([1]). Now we consider
the subposet A ⊂ [2]× [1] missing the elements (1, 1) and (2, 1): we have two inclusions

[1]
a−→ A

b−→ [2]× [1]

where a identifies 0 < 1 with (0, 0) → (1, 0). This is a sieve, hence the right extension
a∗ : D([1])→ D(A) is an extension by 0 and a∗f̃ has the form
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X Y 0

0

f

we then complete it by applying b! so we get

X Y 0

0 C(f̃) ΣX.

f

The Kan formula (D4) implies that the new values at (1, 1) and (2, 1) are obtained by forming
two homotopy push-out squares. Thus the they can be identified with C(f̃) and ΣX respectively.

If we now restrict to the non-zero part of the diagram and take its value under dia[3] we
obtain a triangle starting with f as we wanted. We actually declare the exact triangles to be
the the ones isomorphic to triangles arising in this form.

Theorem 3.4.9. Let D be a strong stable derivator. Then for any R ∈ PoSet the category
D(R) admits a triangulated structure such that for the underlying category D(e) the collection
of exact triangles is the one described above.

Moreover, for any functor u : R→ Q the associated restriction u∗ admits a canonical natural
isomorphism u∗Σ ⇒ Σu∗ endowing it with the structure of exact functor. The same holds for
the Kan adjunctions u! and u∗.

The conclusion is that D lifts to a 2-functor

D : PoSetop → TCAT.

Proof. We first observe that the definitions of pointed, strong and stable derivators are closed
under shift, so it is enough to prove D(e) is triangulated. All the others D(R) are covered by
the shifts DR.

Verifying that the axioms of triangulated category are satisfied and showing u∗, u!, u∗ with
the associated canonical transformations preserve exact triangles necessitates careful work. We
refer to [11] for a complete proof.

3.5 Total fibers

We will need later to work with homotopy limits of diagrams of various shape. Thus we
recall here basic facts about total fibers and their characterizations. Obviously what we will
write has a dual application to homotopy colimits.

Definition 3.5.1. Let R ∈ PoSet, we denote by R/ the poset obtained by adding a new minimal
element which we denote by 0.

We let iR : R → R/ be the associated inclusion. Fixed D a pointed derivator, an object
X ∈ D(R/) will be called cone diagram. If it lies in the essential image of (iR)∗ : D(R)→ D(R/)
it is a limiting cone.

Example 3.5.2. Let R = P ′(S) be poset of non-empty subsets of some finite set S. Then R/

is isomorphic to P(S) where 0 is identified with ∅.
For these posets the limiting cones are also called cartesian cubes, if |S| = 2 they are cartesian

squares.

35



Example 3.5.3. Let v : � → [1] be the projection (i, j) 7→ i, we define a coherent diagram of
D(�) to be vertically constant if and only if it is in the essential image of v∗ : D([1])→ D(�).

We should think of such squares as the ones in the form

X Y

X Y.

∼= ∼=

Dually we can also define the horizontally constant squares.

Lemma 3.5.4. Let X ∈ D(�), then it is vertically constant if and only if the morphisms
X(0,0) → X(0,1) and X(1,0) → X(1,1) are isomorphism.

Proof. Observe that the functor b : [1] 7→ � given by i 7→ (i, 1) is a right adjoint of v. By the
2-functoriality of D we have b∗ is a left adjoint to v∗, hence by uniqueness of adjoints we deduce
v∗ can be identified with b∗.

Since b is fully faithful now the claim follows from Proposition 3.4.1: X lies in the essential
image of b∗ only if the unit ηX : X → b∗b

∗X is invertible at (0, 0) and (1, 0). But η(0,0) can be
identified with

X(0,0) → (0, 0)∗b∗b
∗X ∼= (0, 0)∗v∗b∗X = X(0,1)

and similarly η(1,0) is the map X(1,0) → X(1,1).

Corollary 3.5.5. Vertically constant squares are homotopy cartesian.

Proof. We saw in Lemma 3.5.4 that a coherent square is vertically constant if and only if it is
in the essential image of b∗. The claim immediately follows from the factorization of b

[1]
k−→y iy−→ �

where k is the inclusion of the botton row in the lower right corner of the square �.

Clearly we want the limiting cones to be the diagrams X which present X0 as homotopy
limit of the part of the diagram lying on R, this is what the next proposition confirms.

Proposition 3.5.6. In the situation of Definition 3.5.1, given an object X ∈ D(R/) we can
provide a canonical natural map X0 → holim

←− A
i∗AX such that it is an isomorphism if and only

if X is a limiting cone.

Proof. By Proposition 3.4.1 X lies in the essential image of (iR)∗ if and only if (ηX)0 is an
isomorphism. We observe η is the mate Id∗ associated to the commutative square

R R/

R/ R/.

iR

iR Id
Id

Id

Arguing as in Proposition 3.4.1 we can consider instead the mate of the pasting

(0/iR) R R/

e R/ R/

π

iR

iR Id
Id

0 Id

which differs from η0 only by an isomorphism introduced as the mate of the newly attached
coslice square. Under the isomorphism (0/iR) ∼= R the outer square becomes
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R R/

e R/

iR

π Idα

0

recalling that π∗ = holim
←− R

we get (α∗)X : X0 → holim
←− R

(iR)∗X which is the canonical trans-

formation we wanted.

While the criterion of Proposition 3.5.6 confirms our intuition, usually checking explicitly
if such canonical map is an isomorphism is not immediate. The idea behind the definition of
total fiber is to present an obstruction for the diagram to be a limiting cone.

Definition 3.5.7. Let R be a finite poset, D a strong stable derivator. Consider the poset
(R/)/, we denote by −∞ the minimal element of this double construction while 0 refers to the
minimal element of R/ ⊂ (R/)/. Therefore, for any r ∈ R we have inequalities −∞ < 0 < r.

We consider the functor lR = (iR)/ : R/ → (R/)/ mapping R to itself via the identity and
sending 0 to −∞, thus only 0 does not belong to the image of lR. Define c : [1] → (R/)/ by
0 7→ −∞ and 1 7→ 0.

Let X be cone diagram, its total fiber is defined as

tfib(X) = F (c∗(lR)∗X).

Example 3.5.8. First of all, let us present a concrete example to better visualize (R/)/. We
take R =y, the lower right corner of the square � = [1]× [1]

(1, 0)

(0, 1) (1, 1).

Clearly R/ = �: this comes from identifying 0 with the top left corner (0, 0). Thus (R/)/ has
the following shape

−∞

(0, 0) (1, 0)

(0, 1) (1, 1).

If X is a square diagram

X(0,0) X(1,0)

X(0,1) X(1,1)

then (ly)∗X is formed by adding at position 0 the homotopy pullback or the span lying over y
and placing X(0,0) at −∞.
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X(0,0)

P X(1,0)

X(0,1) X(1,1).

y

This way we produced a comparison map f : X(0,0) → P as a coherent morphism, thus we can
form its fiber and we define it to be tfib(X) = F (f).

Since D is stable it can be shown that a f is an isomorphism (that is, the underlying diagram
dia[1](f) is invertible in D(e)) if and only if its fiber is zero.

Therefore the idea is that X is a limiting cone if and only if tfib(X) = 0.

Proposition 3.5.9. In the setting of Definition 3.5.7, the diagram X is a limiting cone if and
only if tfib(X) = 0.

Proof. In the proof of Proposition 3.5.6 we saw that the cone is limiting if and only if evaluating
at X the canonical mate associated to

R R/

e R/

iR

π Idα

0

we get an isomorphism. We can use it to form the pasting

R R/ R/

e R/ (R/)/

iR

π Idα

Id

lR

0 lR

the right square is homotopy exact since lR is fully faithful (Proposition 3.4.1). Thus α∗(X) is
an isomorphisms if and only if evaluating the mate of this pasting at X we get an isomorphism.

Observe this can be rewritten as the vertical pasting

R R/

e (R/)/

e (R/)/

iR

π lR

0

Id

−∞

where the above natural transformation is induced by the inequalities 0 < r for all r ∈ R and the
lower one by −∞ < 0. We notice the upper square is isomorphic to the slice square associated
to (0/lR) ∼= R. If we unravel the mate associated to this decomposition we get

D(e) D(R) D(R/)

D(e) D((R/)/) D(R/)

D(e) D((R/)/)

π∗ (iR)∗

Id

π∗

0∗

(lR)∗

(lR)∗

Id

Id

(−∞)∗
Id
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and evaluating it at X we obtain the natural transformation

((lR)∗X)−∞ → ((lR)∗X)0
∼=−→ holim

←−
R

(iR)∗X.

Thus X being limiting is equivalent to ((lR)∗X)−∞ → ((lR)∗X)0 being an isomorphism.

Now the claim follows from [10, Prop. 4.5].

The advantage of total fibers is that they are relatively easy to compute. We restrict to the
case of Example 3.5.2 where we can provide a useful computational result.

In this situation we rename 0 by ∅, given the immediate identification R/ ∼= P(S). Suppose
s ∈ S, then we can divide a cone X ∈ D(R/) in two smaller cones by restricting along the
inclusions

s0 : P(S \ {s})→ P(S) A 7→ A, s1 : P(S \ {s})→ P(S) A 7→ A ∪ {s}.

We can relate the total fibers of s∗0X and s∗1X to the one of the whole diagram in the following
way.

Proposition 3.5.10. Let D be a stable derivator and S a finite set. Suppose that s ∈ S, and
define the functors s0, s1 as above.

If we take X ∈ D(P(S)) then its total fiber coincides with the fiber of the induced map
bewteen the total fibers of the restrictions of the diagram along s0 and s1, in formulas

tfib(X) ∼= fib(tfib(s0
∗X)→ tfib(s1

∗X)).

Proof. We first consider the composition of functors

j : P(S)
j1−→ J1

j2−→ J2

where J1 = P(S)/ consists of the poset P(S) to which we add an initial object here denoted i
and j1 = lP ′(S). J2 is the push-out of the following diagram

x �/

P(S)/ J2

F q

where the upper horizontal functor is just the inclusion. To describe F we denote as usual the
elements of the square as

(0, 0) (1, 0)

(0, 1) (1, 1)

and we name the initial point we add to this diagram by −∞. Then F sends (0, 0) to i, (0, 1)
to ∅ and (1, 1) to {s}, it is clear that the resulting poset inherits −∞ as initial point. We give
a complete picture of J2 in the case |S| = 3 to facilitate its understanding.
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(0, 1) (1, 1)

(0, 0) (1, 0)

−∞

Where the lower cube is P(S): the leftmost face is the restriction along s0 while the rightmost
one is the restriction along s1. But the functor j2 is not the inclusion induced by the push-out,
instead we make j2 map i to −∞, ∅ to (0, 0) and {s} to (1, 0) while the remaining values stay
at their place.

We now can form the right Kan extension along these functor

j∗ : D(P(S))
(j1)∗−−−→ D(J1)

(j2)∗−−−→ D(J2)

and we compute j∗X. The description of (j1)∗X is immediate from Proposition 3.5.6: we are
adding at the position ∅ the homotopy limit of the punctured cube while we move X∅ to i and
the restriction along i < ∅ gives us the induced morphism from X∅ to the limit.

We now claim that for any W ∈ D(J1) the diagram (j2)∗W adds the limits of the punctured
faces s∗0W and s∗1W at the positions (0, 1) and (1, 1) respectively while shifting the values on the
chain i < ∅ < {s} to −∞ < (0, 0) < (1, 0). The latter claim follows immediately from the fully
faithfulness of Kan extensions along fully faithful functors, for the former we use the detection
result [10, Prop. 3.11]. Or more precisely, an immediate generalization of such criterion to
higher dimensional cubes.

We start with the face parametrized by s0: the only non-trivial assumption of the criterion
we have to show is that the induced functor

P(S \ {s}) \ {∅} → ((0, 1)/j2) A 7→ A

is a left adjoint. Since the slice ((0, 1)/j2) can be identified with the subposet P(S) \ {∅, {s}}
we can easily present a right adjoint by

((0, 1)/j2)→ P(S \ {s}) \ {∅} A 7→ A \ {s}.

Therefore s∗0(j2)∗W is an limiting cone.

Now we deal with s∗1(j2)∗W in the same way: again we only have to prove that the induced
functor

P(S \ {s}) \ {∅} → ((1, 1)/j2) A 7→ A ∪ {s}

is a left adjoint, but this time the slice ((1, 1)/j2) is given by the subsets A of S containing s
such that A \ {s} 6= ∅, therefore the above functor is an isomorphism with inverse

((1, 1)/j2)→ P(S \ {s}) \ {∅} A 7→ A \ {s}.

Thus s∗1(j2)∗W is a limiting cone. From what we proved up to this point it is clear that j∗X is
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a diagram of the form

lims∗0X lims∗1X

limX X{s}

X∅

where the the ones appearing in the upper part of the diagram are intended to be the limits of
the appropriate punctured diagrams (we did not restrict X further just to keep the notation at
minimum) while in the lower part X is left unchanged.

We denote by f : �→ J2 the restriction of q at � ⊂ �/. We claim that f∗j∗X is a cartesian
square diagram. To prove it, we consider another factorization of j as follows

P(R)
k1−→ K

k2−→ K/ = J2.

Here K is defined as the push-out of

[1] �

P(R)

G

H

where G maps the poset {0 < 1} to (0, 1) < (1, 1) while H sends it to ∅ ⊂ {s}. The functor k1

takes ∅ to (0, 0), {s} to (1, 0) and leaves the rest unchanged. k2 just maps (0, 0) to −∞ and is
the identity on the other values of K.

Similarly to before (k1)∗X adds the limits of the punctured faces s∗0X and s∗1X at the values
(0, 1) and (1, 1), while shifting X∅ and X{s} at the positions (0, 0) and (1, 0). Using again
Proposition 3.5.6 we see (k2)∗(k1)∗X just adds the limit of the punctured diagram on K at the
position (0, 0), since (k2)∗(k1)∗X ∼= j∗X it is trivial to observe that this new limit is just limX.
We now apply again the detection criterion to k2 to prove f∗j∗X is cartesian. This time we
have to show that the functor induced by f

y→ ((0, 0)/k2)

has a right adjoint. In this case ((0, 0)/k2) is the subposet of K obtained by removing the initial
point (0, 0), thus we present the desired adjoint as

((0, 0)/k2)→y
(1, 0), (0, 1), (1, 1) 7→ (1, 0), (0, 1), (1, 1)

A 7→

{
(0, 1) if s 6∈ A
(1, 1) if s ∈ A.

We now restrict our attention to q∗j∗X = Y . Since we are going to embed this diagram in the
3-dimensional cube [1]3 we identify �/ with an appropriate subposet via the functor �/ → [1]3

determined by

−∞ 7→ (0, 0, 0) (0, 0) 7→ (0, 1, 0) (1, 0) 7→ (1, 1, 0)

(0, 1) 7→ (0, 1, 1) (1, 1) 7→ (1, 1, 1).
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First we take the right Kan extension along l : �/ → C, where C is obtained from �/ by adding
the point (1, 0, 0). Using (D4) we have that (l∗Y )(1,0,0) is given by the limit of Y on the restriction
along the slice ((1, 0, 0)/l), since this has (1, 0) as initial point (l∗Y )(1,0,0)

∼= Y(1,0) = X{s}. Now
we take the left Kan extension along the inclusion C ↪→ [1]3 and again reasoning as in the
previous point we get that the new diagram is obtained as constant extension by adding X∅ at
(0, 0, 1) and X{s} at (1, 0, 1).

At the end we obtain the following coherent diagram Z ∈ D([1]3)

X∅

X∅

X{s}

X{s}

limX X{s}

lims∗0X lims∗1X

This can be seen as a morphism from the rear to the front face after exchanging the second and
third coordinate and using [1]3 = [1]2 × [1].

We define v : [1]2 × [1] → [1]2×y as the shift of [1] →y sending 0 < 1 to (1, 0) < (1, 1). v
is a cosieve thus v! gives a left extension by zero, that is we are adding another square which
is constantly zero and a morphism from this to the front face. Now take iy : [1]2×y→ [1]2 ×�
the shift of y→ �, the right Kan extension along this functor provides the homotopy pullback
of a span of squares. We apply this construction to the diagram we obtained from X: that
is we compute the fiber of Z seen as morphism in the last coordinate. Since the limit can be
computed pointwise the new square we obtain is

tfibX 0

tfibs∗0X tfibs∗1X

if we prove this is cartesian we can conclude. This follows from the fact that the pullback
of cartesian squares is a cartesian square: to see it just consider the two factorizations of
y×y → � × � as y×y → �×y → � × � and y×y →y × � → � × �. In our case we proved
explicitly that the front face is cartesian, the rear face and the square added by v! are cartesian
since they are vertically constant (Corollary 3.5.5).

Remark 3.5.11. We observe that, if D is also strong, the above cartesian square

tfibX tfibs∗0X

0 tfibs∗1X

implies the existence of an exact triangle in D(e)

tfibX → tfib s∗0X → tfib s∗1X → Σ tfibX.

Corollary 3.5.12. Let S be a finite set, let D be a strong stable derivator. Consider the diagram

e

P ′(S) P(S)

p s
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of inclusions of the element S in P ′(S) and P(S). Then for any X ∈ D(e) we have isomorphisms

tfib(s!X) ∼= Ω|S|X holim
←−
P ′(S)

p!X ∼= Ω|S|−1X.

Proof. Observe that, being s and p cosieves, s!X and p!X are coherent diagrams obtained from
X by extending by zero.

We prove the first isomorphism by induction on |S|. If |S| = 1 then

tfib(s!X) = fib(0→ X) ∼= ΩX.

For |S| ≥ 2 we can apply Proposition 3.5.10 to get

tfib(s!X) ∼= fib(tfib(s∗0s!X)→ tfib(s∗1s!X)) ∼= tfib(0→ Ω|S|−1X) = Ω|S|X.

For the second claim observe that by definition of total fiber we have an exact triangle

tfib(s!X)→ 0→ holim
←−
P ′(S)

p!X

thus holim
←− P ′(S)

p!X ∼= Σtfib(s!X) ∼= Ω|S|−1X.

3.6 Two notions of homotopy equivalence on finite posets

We collect here some interactions of the homotopy theory of posets with derivators which
will be useful later. The crucial point is that we want to give conditions to determine whether
restricting along a map of posets preserves homotopy limits and colimits, this requires the two
posets to have a “similar” shape in the sense that their homotopy type should be compatible
in some way which we need to make precise.

Definition 3.6.1. Let R, T be two finite posets, we denote PoSet(R, T ) the set of monotone
maps from R to T . We endow this with the partial order given by f ≤ g if and only if f(r) ≤ g(r)
in T for any r ∈ R. It is easy to see that this makes the category PoSet into a cartesian closed
category.

Definition 3.6.2. Let R be a finite poset. We define a functor

PoSet
N−→ sSet

|−|−−→ Top

by composing the nerve functor with usual geometric realization of simplicial sets.
We denote this functor, with a slight abuse of notation, simply |−| and call |R| the geometric

realisation of R. It can be proved that it preserves finite coproducts and finite limits. In
particular, we can apply geometric realisation to the evaluation map PoSet(R, T )×R→ T , and
then take adjoints, to obtain a continuous map

|PoSet(R, T )| → Top(|R|, |T |).

Definition 3.6.3. For any finite poset R, we define π0(R) to be the quotient of R by the
smallest equivalence relation such that p ∼ q whenever p ≤ q. This is easily seen to be the
same as the set of path components of |R|. It gives a functor from finite posets to finite sets,
which preserves finite products and coproducts. It follows by a formal argument that we can
construct a category Ho(PoSet) as quotient of PoSet with morphism sets π0(PoSet(R, T )). We
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call this the strong homotopy category of finite posets. It also follows that if f and g lie in the
same equivalence class of π0(PoSet(P,Q)) then the resulting maps |f | and |g| are homotopic (by
a straight-line homotopy, in the basic case where f ≤ g or g ≤ f). Thus, geometric realisation
descends to a functor

| − | : Ho(PoSet)→ Ho(Top).

Remark 3.6.4. Suppose we have morphisms f : R → T and g : T → R that are adjoint, in
the sense that f(r) ≤ t if and only if r ≤ g(t). We then have (co)unit inequalities 1 ≤ gf and
fg ≤ 1, showing that fg and gf give identities in the strong homotopy category, and thus that
f and g are strong homotopy equivalences.

Definition 3.6.5. We say that R is strongly contractible if the projection map πR : R→ e is a
strong homotopy equivalence.

Remark 3.6.6. We note that this is the case if R has a smallest element or a largest element.
If m is the minimum of R then it provides a functor m : e → R left adjoint to πR, dually a
maximum n gives a right adjoint to πR.

We also note that if R is a strongly contractible poset, then |R| is a contractible space, since
the geometric realization transfers homotopic maps to homotopic maps.

Definition 3.6.7. Consider a morphism f : R→ T in PoSet, and note that πT f = πR : R→ e.
For any derivator C and any X,Y ∈ C(e) we therefore get a map

f∗ : C(T )(π∗TX,π
∗
TY )→ C(R)(π∗RX,π

∗
RY ).

We say that f is a D-equivalence if this map is always bijective. We also say that R is D-
contractible if the map πR : R→ e is a D-equivalence, or equivalently the functor

π∗R : C(e)→ C(R)

is full and faithful.

Remark 3.6.8. The definition of D-equivalence is usually presented differently in the literature.
In [5, §1.8] the following square diagram is considered

R e

T e

f

πR

Id

πT

which gives the mate Id∗ : π∗T ⇒ f∗π
∗
R. Applying the functor (πT )∗ we get a natural transform-

ation ζ : (πT )∗π
∗
T ⇒ (πR)∗π

∗
R and we declare f to be a D-equivalence if this is an isomorphism.

To see these two conditions are the same observe that by the adjunctions π∗ a π∗ we can
form a composition of maps

C(T )(π∗TX,π
∗
TY ) C(R)(π∗RX,π

∗
RY )

C(e)(X, (πT )∗π
∗
TY ) C(e)(X, (πR)∗π

∗
RY )

f∗

∼=∼=

which we can show to coincide with C(e)(X, ζY ). Now Yoneda lemma makes the equivalence
clear.

We could also consider the diagram
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R e

T e

f

πR

Id

πT

to get the mate Id! : f!π
∗
R ⇒ π∗T and applying (πT )! the natural transformation (πR)!π

∗
R ⇒

(πT )!π
∗
T . We can see that this being an isomorphism is equivalent to f∗ inducing a bijection on

the hom-sets similarly to before, using the adjunctions π! a π∗.
We chose to present the above condition as definition because it is easier to formulate and

it is symmetric.

Remark 3.6.9. Since π∗R is part of two adjunctions (πR)! a π∗R and π∗R a (πR)∗, by Lemma 3.2.3
R being D-contractible is equivalent to the two natural transformations

ε : (πR)!π
∗
R ⇒ Id η : Id⇒ (πR)∗π

∗
R

being isomorphism.
This means that for any X ∈ C(e) the homotopy colimit (respectively limit) of π∗RX, the

constant diagram of shape R, must coincide with X.
Some authors (like [13]) use the term homotopy contractible rather than D-contractible.

Example 3.6.10. Note that for C a represented derivator the condition of ε and η being
isomorphisms is satisfied whenever R is connected, but in general the property if being D-
contractible is much more demanding.

For example, consider the poset C

a b

c d

whose geometric realization coincides with the circle S1. This poset is connected but not D-
contractible: take C to be the homotopy derivator associated to the Quillen model category of
topological spaces. Then C being D-contractible implies that for every space X the canonical
map hocolim

−→
π∗CX → X is an homotopy equivalence. For X a cofibrant space this homotopy

colimit can be represented by the space X × S1 and it is clear this cannot be homotopic to X
in full generality (take for example X = S1).

Proposition 3.6.11. If [f ] = [g] in π0(PoSet(R, T )) then

f∗ = g∗ : C(T )(π∗TX,π
∗
TY )→ C(R)(π∗RX,π

∗
RY ).

Thus, f is a D-equivalence if and only if g is a D-equivalence.

Proof. We can reduce easily to the case where f ≤ g. As C : PoSetop → CAT is a strict 2-functor,
the following diagram of categories and functors must commute on the nose:

PoSet(R, T )× PoSet(T, e) PoSet(R, e)

[C(T ), C(R)]× [C(e), C(T )] [C(e), C(R)].

◦

C C

◦

The inequality f ≤ g gives a morphism (f, πT ) → (g, πT ) in the category PoSet(R, T ) ×
PoSet(T, e), and this becomes the identity morphism of πR in PoSet(R, e). This implies that
for any α ∈ C(T )(π∗TX,π

∗
TY ) we have a commutative square
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f∗π∗TX f∗π∗TY

g∗π∗TX g∗π∗TY

f∗α

g∗α

thus the claim is proved.

Corollary 3.6.12. If f : R → T is a strong homotopy equivalence, then it is a D-equivalence.
In particular:

(a) If f has a left or right adjoint, then it is a D-equivalence.

(b) If R is strongly contractible, then it is D-contractible.

The importance of D-contractible posets lies in the following criterion to determine whether
a map is homotopy cofinal or final. We first recall the definition of these notions.

Definition 3.6.13.

(a) We say that a map f : R→ T is homotopy final if the commuting square

R T

e e

f

πR πT
Id

Id

is homotopy exact. That is, the following canonical mate

hocolim
−→
R

f∗(X) = (πR)!f
∗(X) = (πT )!f!f

∗(X)→ (πT )!(X) = hocolim
−→
T

X

is an isomorphism for all derivators C and all objects X ∈ C(T ).

(b) Dually, we say that a map f : R→ T is homotopy cofinal if the commuting square

R T

e e

f

πR πT
Id

Id

is homotopy exact, that is the associated mate

holim
←−
T

X = (πT )∗(X)→ (πT )∗f∗f
∗(X) = (πR)∗f

∗(X) = holim
←−
R

f∗(X)

is an isomorphism for all derivators C and all objects X ∈ C(T ).

The next proposition should clarify the relation between the classes of morphisms defined
above.

Proposition 3.6.14. If the map f : R → T is homotopy final or cofinal then it is a D-
equivalence.
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Proof. It follows immediately from Remark 3.6.8. We spell out the cofinal case, as the other is
dual.

By definition f being homotopy cofinal is asking the canonical mate Id∗ : (πT )∗ ⇒ (πR)∗f
∗

associated to the square in Definition 3.6.13 (b) to be an isomorphism. This mate has as
conjugate Id! : f!π

∗
R ⇒ π∗T , so this also is an isomorphism. But applying (πT )! to it we get the

natural transformation (πR)!π∗R ⇒ (πT )!π
∗
T is invertible, establishing f is a D-equivalence.

Proposition 3.6.15. The map f is homotopy final if (t/f) is D-contractible for all t, and this
holds if f has a left adjoint. Dually, f is homotopy cofinal if (f/t) is D-contractible for all t,
and this holds if f has a right adjoint.

Proof. We deal explicitly with the first claim: the second follows by duality.

By definition f is homotopy final if and only if the mate Id! associated to the square

R e

T e

f

πR

Id

πT

is an isomorphism. Equivalently we have show the conjugate mate, Id∗, is invertible. By
(D2) this can be verified pointwise, so it is enough to show the following pasting of squares is
homotopy exact for any t ∈ T .

(t/f) R e

e T e

π f

πR

Id

t πT

The left square is a coslice square, and the whole composition coincides with

(t/f) e

e e

π

π
Id

and this square being homotopy exact is equivalent to (t/f) being D-contractible.

If f is part of an adjunction f ` g then the coslice (t/f) is naturally isomorphic to the
coslice (g(t)/IdR). But this has an initial object, namely (g(t), Idg(t)), so we conclude by
Remark 3.6.6.

Remark 3.6.16. The content of [13, Rmk. 3.14] indicates that the converse implication of the
above proposition holds: the functor f is homotopy final (respectively cofinal) if and only if
every coslice (t/f) (respectively every slice (f/t)) is D-contractible.

The upshot of the results of Heller and Cisinski is that a map f is a D-equivalence if and
only if the associated nerve N(f) is a weak homotopy equivalence of simplicial sets. Therefore a
poset R being D-contractible is equivalent to being homotopy contractible in the classical sense.

These outcomes are highly non-trivial and it will not be needed here, so we do not elaborate
further on the matter.

Proposition 3.6.17. Consider a square

P Q

R S,

t

u v
α

w
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and the resulting mate transformation α∗ : w∗v∗ ⇒ u∗t
∗. For any r ∈ R we have coslice posets

(r/u) and (w(r)/v), and using t and α we can produce a morphism tr : (r/u) → (w(r)/v). If
this is homotopy cofinal for all r, then α∗ is an isomorphism.

Proof. Again by (D2) we have to check (α∗)r is an isomorphism for every r ∈ R and this is
equivalent to the square being homotopy exact after pasting on the left a coslice square

(r/u) P Q

e R S.

π

t

u v

r

α

w

Now we can rewrite the total square as

(r/u) (w(r)/v) Q

e e S

tr

π π vId

w(r)

where the right square is a coslice square and the left square is homotopy exact by the assumption
of tr being homotopy cofinal.

3.7 Barycentric subdivision

Definition 3.7.1. Recall a chain of R is a subset σ ⊂ R such that the induced order on σ is
total. If σ is nonempty, we define its dimension as dim(σ) = |σ| − 1. We put

s(R) = { nonempty chains σ ⊆ R}
sd(R) = {σ ∈ s(R) | dim(σ) = d}
s≤d(R) = {σ ∈ s(R) | dim(σ) ≤ d}.

Note that every nonempty chain σ has a largest element, which we denote by max(σ). We order
s(R) by inclusion, this makes max: s(R)→ R into a morphism of posets.

This provides a functor s : PoSet → PoSet and a natural transformation max: s(R) → R
(since for σ ⊆ σ′ we have max(σ) ≤ max(σ′)). However, if f ≤ g then it is not true in general
that s(f) ≤ s(g): consider chains of dimension 0, we have s(f)({r}) ≤ s(g)({r}) if and only if
f(r) = g(r) hence s(f) ≤ s(g) is equivalent to f = g.

Example 3.7.2. We should think of s(R) as some sort of barycentric subdivision of the poset
R: that is for any sequence of elements connected by inequalities r0 < r1 < · · · < rd we have a
corresponding chain {r0, . . . , rd} which encodes all the possible sequence of inequalities between
the elements ri’s. This provides a subposet in s(R) whose geometric realization is just ∆d and
the boundary ∂∆d is attached to |R| along the sequence r0 < r1 < · · · < rd in R, so we are not
modifying to homotopy type of |R|.

As concrete example let us consider [2] = {0 < 1 < 2}, then we can visualize s(R) as

0

01 012 02

1 12 2.
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Proposition 3.7.3. If [f ] = [g] in π0(PoSet(R, T )), then [s(f)] = [s(g)]. Thus, s descends to
an endofunctor of the strong homotopy category.

Proof. We can easily reduce to the case where f ≤ g. We then choose a minimal element r1 in
R, then a minimal element r2 in R \ {r1} and so on, giving an enumeration R = {r1, . . . , rm−1}
such that ra 6≤ rb whenever a > b. We define φ : R → [m] = {0, . . . ,m} by φ(ri) = i, thus φ
is injective and monotone, and 0 and m are not in the image. Then for 0 ≤ k ≤ m we define
uk, vk : s(R)→ s(T ) by

uk(σ) = {f(r) | r ∈ σ, φ(r) < k} ∪ {g(r) | r ∈ σ, φ(r) ≥ k}
vk(σ) = {f(r) | r ∈ σ, φ(r) ≤ k} ∪ {g(r) | r ∈ σ, φ(r) ≥ k}.

We find that uk(σ) and vk(σ) are nonempty chains in T , so we actually have maps uk, vk : s(R)→
s(T ) as claimed. It is also clear that σ ⊆ τ implies uk(σ) ⊆ uk(τ) and vk(σ) ⊆ vk(τ), so uk
and vk are morphisms of posets. From the definitions it is immediate that uk, uk+1 ≤ vk, which
implies that all the maps uk and vk are homotopic. The equalities have u0 = s(g) and um = s(f)
let us conclude so [s(f)] = [s(g)].

Lemma 3.7.4. The map max: s(R)→ R is homotopy cofinal (and so is a D-equivalence).

Proof. Fix r ∈ R; by Proposition 3.6.15 it will suffice to show that the poset

U = (max /r) = {σ ∈ s(R) | max(σ) ≤ r}

is strongly contractible. Put

V = {σ ∈ s(R) | max(σ) = r} = {σ ∈ U | r ∈ σ} ⊆ U.

As {r} is smallest element in V , we see that V is strongly contractible. We can define a poset
map t : U → V by t(τ) = τ ∪ {r}, and we find that this is left adjoint to the inclusion V → U ,
so the inclusion is a strong homotopy equivalence by Remark 3.6.4. It follows that U is also
strongly contractible.

The following proposition is the rephrasing in derivator language of a classical result about
homotopy limits in simplicial or topological categories.

Proposition 3.7.5. Let n be the maximum length of any chain in R. Then for all strong stable
derivators C and objects X ∈ C(R) there is a natural tower

holim
←−
R

(X) = Tn(X)→ Tn−1(X)→ · · · → T 0(X)→ T−1(X) = 0

and natural distinguished triangles⊕
σ∈sd(R)

ΩdXmax(σ) → T d(X)→ T d−1(X).

Proof. Put Y = max∗(X) ∈ C(s(R)). Lemma 3.7.4 identifies holim
←− R

(X) with holim
←− s(R)

(Y ), so

we will work with Y from now on.
Let jd : s≤d(R)→ s(R) be the inclusion, and put T d(X) = holim

←−
j∗d(Y ). Note that Tn(Y ) =

holim
←− s(R)

Y = holim
←− R

X.

Now we fix d and consider the object Z = j∗≤d(Y ) and the two inclusions j : s≤(d−1)(R) →
s≤d(R) and i : sd(R) → s≤d(R). Observe j is a sieve and i is its complementary cosieve, thus

49



[10, Example 4.25] gives a distinguished triangle i!i
∗(Z)→ Z → j∗j

∗(Z). If we let π : s≤d(R)→
e and apply π∗, we get a distinguished triangle π∗i!i

∗(Z)→ T d(X)→ T d−1(X). Now note that
sd(R) is a discrete poset: for σ, τ ∈ sd(R) we can only have σ ≤ τ if σ = τ . Because of this and
(D1), we see that C(sd(R)) '

∏
σ∈sd(R) C(e). Hence we can write i∗(Z) as a coproduct of objects

W (σ) ∈ C(sd(R)), where W (σ)τ = 0 for τ 6= σ, and W (σ)σ = Zσ = Yσ = Xmax(σ). It will now

suffice to identify π∗i!W (σ) with ΩdYσ. Since i is a cosieve, it follows that for τ ∈ s≤d(R) we
have

(i!W (σ))τ =

{
Yσ if τ = σ

0 otherwise.

The poset {τ ∈ s(R) | τ ⊆ σ} is naturally identified with P ′(σ). Let k : P ′(σ) → s≤d(R) be
the inclusion, which is a sieve. As the support of i!W (σ) is contained in the image of k, we
see from Corollary 3.4.6 that the unit map i!W (σ)→ k∗k

∗i!W (σ) is an isomorphism. It follows
that π∗i!W (σ) is the homotopy limit of k∗i!W (σ). By Corollary 3.5.12 this can be identified
with ΩdYσ. Since C is stable Ω is an equivalence, hence it commutes with coproducts and we
conclude.

Corollary 3.7.6. Let n be the maximum length of any chain in R. Then for all strong stable
derivators C and objects X ∈ C(R) there is a natural diagram

0 = T−1(X)→ T0(X)→ · · · → Tn(X) = hocolim
−→
R

(X)

and natural distinguished triangles

Td−1(X)→ Td(X)→
⊕

σ∈sd(R)

ΣdXmax(σ).

Proof. Apply the proposition to the dual derivator.

Proposition 3.7.7. Let C be a strong stable derivator. For any map f : R→ T of finite posets,
the functors f∗, f! and f∗ all preserve arbitrary products and coproducts.

Proof. The functors f∗ and f! have right adjoints, so they preserve coproducts. The functors
f∗ and f∗ have left adjoints, thus they preserve products. We need only to show that f∗
preserves coproducts, by duality it will follow f! preserves products. Consider a family of
objects Xα ∈ C(R) and the resulting canonical map

h :
⊕
α

f∗(Xα)→ f∗

(⊕
α

Xα

)
.

We want to prove that h is an isomorphism: by (D2) it will suffice to show that t∗(h) is an
isomorphism for all t ∈ T . We have already observed that t∗ preserves coproducts, and we
have the Kan formula (D4) expressing t∗f∗ as a homotopy limit over the coslice (t/f). This
reduces the matter to showing that all homotopy limit functors preserve coproducts. Note that
the functor Ω: C(e)→ C(e) is an equivalence of categories, so it certainly preserves coproducts.
It follows that all functors of the form X 7→ ΩdXr also preserve coproducts. It then follows
by induction that the functors T d in Proposition 3.7.5 all preserve coproducts. By taking d
sufficiently large, we see that homotopy limits preserve coproducts as required and this completes
the proof.
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3.8 Thick subderivators

The aim of this section is to establish a correspondence between the thick subcategories of
C(e) (for C a strong stable derivator) and inclusions of derivators E ⊆ C which let us identify
E(R) with a thick subcategory of C(R) for any R ∈ PoSet.

We show that any thick subcategory T ⊂ C(e) can be lifted to a derivator E with a morphism
E ↪→ C given level-wise by inclusions.

Definition 3.8.1. Let C be a strong stable derivator. By a thick subderivator E ⊆ C we mean
a system of full subcategories E(R) ⊆ C(R) for all R, such that:

(a) each category E(R) is closed under finite coproducts (including the empty coproduct, so
0 ∈ E(R)).

(b) Every category E(R) is closed under retracts: that is if we have two objects X,Y ∈ C(R) and

morphisms X
a−→ Y

b−→ X such that ba = IdX and Y ∈ E(R) then also X ∈ E(R). In particular,
E(R) is closed under isomorphisms.

(c) For any morphism u : R → T of finite posets, we have u∗E(T ) ⊆ E(R), u!E(R) ⊆ E(T ) and
u∗E(R) ⊆ E(T ). More briefly, we say that the functors u∗, u∗ and u! preserve E .

Definition 3.8.2. Let C be a strong stable derivator, and let T be a thick subcategory of C(e).
For any finite poset R and any r ∈ R recall we have a corresponding map r : e→ R.

(a) We put
(γ0T )(R) = {X ∈ C(R) | r∗X ∈ T for all r ∈ R}.

(b) We let (γ1T )(R) denote the smallest thick subcategory of C(R) containing r!(T ) for all
r ∈ R.

(c) We let (γ2T )(R) denote the smallest thick subcategory of C(R) containing r∗(T ) for all
r ∈ R.

Theorem 3.8.3. The subcategories (γiT )(R) are the same for i = 0, 1, 2 (so we will just write
(γT )(R) in future). The map γ gives a bijection from thick subcategories of C(e) to thick
subderivators of C. Moreover, if E is a thick subderivator of C, then E(R) is a thick subcategory
of C(R) for all R.

Remark 3.8.4. This result is the motivation for our choice to consider derivators defined only
on finite posets, not on any small category. It is easy to see that the claim cannot hold for such
a definition of derivator.

For a derivator D : Diaop → CAT defined on a general 2-category of diagrams Dia (see
[5, §1.2]) usually (D1) is replaced by its stronger variant

(D1’) for any indexing set I and any collection of small categories {Ai}i∈I such that
∐
iAi ∈ Dia

the canonical functor

D
(∐

i

Ai

)
→
∏
i

D(Ai)

is an equivalence.

This with the other axioms implies the category D(R) admits products and coproducts over
any indexing set I if this, considered as a discrete category, lies in Dia (see [11, Prop. 7.1]).

If Theorem 3.8.3 held even for a derivator D defined on Cat, then we would have that any
T thick subcategory of D(e) would be closed under arbitrary products and coproducts, which
is obviously false.
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Imposing the categories of Dia to have a finite set of objects is not enough either. Fixed
G a non-trivial group, we can consider R = BG the category with just one object ∗ and
its endomorphisms given by G. Then Theorem 3.8.3 would imply that if we have an object
X ∈ C(R) whose associated element X∗ lies in T , then hocolim

−→ BG
X ∈ T which is again false

in full generality.

The proof will be given after some preliminary lemmata.

Lemma 3.8.5. If E ⊆ C is a thick subderivator, then E(R) is a thick subcategory of C(R) for
all R, and

(γ1E(e))(R) ∪ (γ2E(e))(R) ⊆ E(R) ⊆ (γ0E(e))(R).

Proof. We saw in §3.4 that the triangulation of C(R) is defined in terms of operations of the
form u∗, u!, u∗, this is elaborated in detail in [10, §4.2]. From this it follows that E(R) is closed
under the suspension functor and its inverse, and under cofibrations, so it is a thick subcategory.
From the definitions we also know that the functors r! and r∗ preserve E , so E(R) contains the
generators of (γ1E(e))(R) and (γ2E(e))(R), hence the first inclusion easily follows. On the other
hand, the functors r∗ also preserve E and this means that E(R) ⊆ (γ0E(e))(R).

Lemma 3.8.6. If T is a thick subcategory of C(e), then γ0T is a thick subderivator of C, with
(γ0T )(e) = T .

Proof. Suppose we have a morphism u : R→ T of finite posets. It is clear from the definitions
that u∗((γ0T )(T )) ⊆ (γ0T )(R). We claim that also the functors u∗ and u! preserve γ0T . In
the case T = e this follows from Proposition 3.7.5 and Corollary 3.7.6 using induction of the
maximum length of the chains in R.

The general case can be reduced to the above: by (D4) we have isomorphisms

t∗u!X ∼= (π(u/t))!p
∗X t∗u∗X ∼= (π(t/u))∗q

∗X

for p : (u/t) → R and q : (t/u) → R the projections associated to the slice and coslice respect-
ively. If we start from X ∈ (γ0T )(R) trivially p∗X ∈ (γ0T )((u/t)) and q∗X ∈ (γ0T )((t/u)).

It is immediate to check that γ0T is closed under retracts, so γ0T is a thick subderivator of
C. The relation (γ0T )(e) = T is clear.

Corollary 3.8.7. If T is a thick subcategory of C(e), then (γ1T )(R) ∪ (γ2T )(R) ⊆ (γ0T )(R)
for all R.

Proof. Lemma 3.8.6 allows us to apply Lemma 3.8.5 to the case E = γ0T .

Lemma 3.8.8. If T is a thick subcategory of C(e), then all functors u! preserve γ1T , and all
functors u∗ preserve γ2T .

Proof. Fix a map u : R → T , and put U = {X ∈ C(R) | u!(X) ∈ (γ1T )(T )}. It is easy to see
that U is a thick triangulated subcategory. As u ◦ r = u(r) : e → T we see that u! ◦ r!

∼= u(r)!,
and it follows that r!(T ) ⊆ U for all r ∈ R. It follows that (γ1T )(R) ⊆ U , which implies u!

preserves γ1T as required. Dually, we see that u∗ preserves γ2T .

Lemma 3.8.9. If T is a thick subcategory of C(e), then γ0T = γ1T = γ2T .

Proof. We will write Γi = γiT for brevity. It will be enough to prove that Γ0 = Γ1, as duality
then gives Γ0 = Γ2. We already know from Corollary 3.8.7 that Γ1(R) ⊆ Γ0(R) for all R, so
it will suffice to prove that Γ0(R) ⊆ Γ1(R). This is clear if R is empty, as (D1) implies C(∅) is
the terminal category e. If R is nonempty, we can choose a minimal element a ∈ R and put
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T = R \ {a}. Let j : e → R correspond to a, and let i : T → R be the inclusion. Consider an
object Y ∈ Γ0(R): we must show it belongs to Γ1(R). Put X = j!j

∗(Y ), the constant diagram
of value Ya over R, and let Z be the cofibre of the counit map X → Y . From Proposition 3.4.1
we have j∗j! = 1 and so j∗Z = 0, so the support of Z is contained in i(T ). As i is a cosieve, we
see that Z ' i!i∗(Z). Now i∗(Z) ∈ Γ0(T ) and we can assume by induction that Γ0(T ) ⊆ Γ1(T ),
so Z ∈ i!Γ1(T ) ⊆ Γ1(R). From the definitions we also have j∗(X) ∈ T thus X ∈ Γ1(R). As
Γ1(R) is thick and contains X and Z, it also contains Y as required.

Proof of Theorem 3.8.3. First we suppose that we start with a thick subcategory T ⊆ C(e).
Lemma 3.8.9 tells us that the γiT are all the same, so we can just write γT . Lemma 3.8.6 tells
us that this is a thick subderivator, with (γT )(e) = T .

Suppose instead that we start with a thick subderivator E ⊆ C, and we put T = E(e).
Lemma 3.8.5 tells us that E(R) is a thick subcategory of C(R) for all R, and in particular that
T is a thick subcategory of C(e). We can therefore apply Lemma 3.8.9 to T and combine this
with Lemma 3.8.5 to see that E = γT .

Corollary 3.8.10. Let E be a thick subderivator of C, and let X be an object of C(R). Suppose
that R =

⋃
iRi for some family of subposets Ri. Then X lies in E(R) if and only if X|Ri ∈ E(Ri)

for all i.

Proof. The identity E = γE(e) means that X ∈ E(R) if and only if r∗(X) ∈ E(e) for all r ∈ R.
Similarly, X|Ri ∈ E(Ri) if and only if r∗(X) ∈ E(e) for all r ∈ Ri. The claim is immediate from
this.

Lemma 3.8.11. Let C be a strong stable derivator, and let E(R) be a thick subcategory of C(R)
for all R. Suppose that for every u : R→ T , the functors u! and u∗ preserve E. Then E = γE(e),
so in particular E is a thick subderivator.

Proof. Put E ′ = γE(e) = γ0E(e) = γ1E(e). We now claim that E(R) ⊆ E ′(R) for all R. Using
the description E ′ = γ0E(e), this reduces to the claim that r∗E(R) ⊆ E(e) for all r, which is true
because r∗ preserves E by assumption. In the opposite direction, we know that the functors r!

preserve E , which means that E(R) contains all the generators of E ′(R) = (γ1E(e))(R). As E(R)
is assumed to be thick, it follows that E ′(R) ⊆ E(R).

Definition 3.8.12. Let T be a triangulated category with coproducts. We say that an object
X ∈ T is compact if the natural map

⊕
α[X,Yα] → [X,

⊕
α Yα] is an isomorphism for every

family of objects Yα. We write Tc for the full subcategory of compact objects (which is easily
seen to be thick). If T = C(R) for some derivator C, then we will write Cc(R) rather than C(R)c.
We say that T is compactly generated if

(a) The category Tc is essentially small (so there is a skeleton that has a set of objects, rather
than a proper class); and

(b) T is the only thick subcategory of T that is closed under arbitrary coproducts and contains
Tc.

Lemma 3.8.13. Let T be a triangulated category, let G be a set of objects of T , and let U be
the smallest thick subcategory containing G. Then U is essentially small.

Proof. Define full subcategories Un as follows. Start with U0 = G ∪ {0}. Let Un+1 consist of⋃
k∈Z ΣkUn, together with a choice of cofibre for every morphism in Un, and a choice of splitting

for every idempotent morphism in Un. Put U∞ =
⋃
n Un. We then find that U∞ has only a set

of objects, and contains a representative of every isomorphism class in U .
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Proposition 3.8.14. Cc(R) is a thick subderivator of C (and so is the same as γCc(e)).

Proof. Put E = γCc(e), which is a thick subderivator; if Cc(R) actually defines a thick subde-
rivator of C then Theorem 3.8.3 immediately implies Cc = E .

If F is left adjoint to G and G preserves coproducts then for compact X we have[
FX,

⊕
α

Yα] = [X,G
⊕
α

Yα] = [X,
⊕
α

GYα] =
⊕
α

[X,GYα] =
⊕
α

[FX, Yα],

so FX is compact. Using this and Proposition 3.7.7, we see that u! and u∗ preserve Cc. The
claim now follows from Lemma 3.8.11.

Corollary 3.8.15. If C(e) is compactly generated, then C(R) is compactly generated for all R.

Proof. First, we can choose a small skeleton G for Cc(e), and then put

G(R) = {r!(X) | r ∈ R, X ∈ G} ⊆ Cc(R).

From the description Cc(R) = (γ1Cc(e))(R) we see that Cc(R) is generated by G(R), and so is
essentially small by Lemma 3.8.13.

Now let T be a localising subcategory of C(R) that contains Cc(R). Put

U = {X ∈ C(e) | r!(X) ∈ T for all r ∈ R}.

This is easily seen to be a localising subcategory of C(e) containing Cc(e), so U = C(e). From
Theorem 3.8.3 it follows that γU = C, so in particular C(R) = (γ1U)(R). However, from the
definition of U it is clear that (γ1U)(R) ⊆ T , so T = C(R) as required.

Definition 3.8.16. We say that C is compactly generated if it satisfies the condition of Corol-
lary 3.8.15.

Remark 3.8.17. Unfortunately for a derivator C defined only on finite posets the existence of
arbitrary coproducts on C(R) is not guaranteed, so we cannot apply the above results.

The only examples of derivators of type PoSet admitting small coproducts we can think of
are the ones obtained by restricting a derivator defined over Catop.

Anyway, the above results tell us that in the case C actually has coproducts if C(e) admits
as set of compact generators G, then C(R) has a set of compact generators given by

{r!X | r ∈ R,X ∈ G}

and moreover Cc defines a thick subderivator.

Definition 3.8.18. Let U be a thick subcategory of a triangulated category T . We then write

U⊥ = {Y ∈ T | [U, Y ] = 0 for all U ∈ U}
⊥U = {X ∈ T | [X,U ] = 0 for all U ∈ U}.

Similarly, if E is a thick subderivator of a stable derivator C, we put E⊥(R) = E(R)⊥ and
(⊥E)(R) = ⊥(E(R)).

Proposition 3.8.19. E⊥ and ⊥E are thick subderivators, so E⊥ = γ(E(e)⊥) and ⊥E = γ(⊥E(e)).

Proof. Suppose that X ∈ (⊥E)(R) and u : R → T . For V ∈ E(T ) we have u∗(V ) ∈ E(R) and
so [u!(X), V ] = [X,u∗(V )] = 0. From this we see that u! preserves ⊥E . As u∗ is left adjoint to
u∗ and u∗ preserves E , we see in the same way that u∗ preserves ⊥E . Therefore, it follows from
Lemma 3.8.11 that ⊥E is a thick subderivator. A dual argument shows that E⊥ is also a thick
subderivator.
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3.9 Morphisms of derivators

We now provide a brief review of the appropriate notions of morphism of derivators and
of natural transformation between between two such morphisms. Basically we want to be
able to define an appropriate 2-category PDER of prederivators, and consequently the full 2-
subcategory DER spanned by derivators. Since a prederivator consists in a strict 2-functor
C : PoSetop → CAT the most obvious choice would be to set a morphism F : C → D to be a
pseudo-natural transformation, and a 2-cell σ : F ⇒ G should be a modification between the
two morphisms. These two notions are taken from [3, Def. 7.5.2 and 7.5.3], but we proceed to
spell them out here explicitly.

Definition 3.9.1. Let C,D be two prederivators, a morphism of derivators between them
F : C → D consists in a collection of functors FR : C(R)→ D(R) for any R finite poset, together
with a collection of natural isomorphisms {γFu } (where u : R→ T ranges over all the morphisms
of posets) fitting in square diagrams as follows

C(T ) D(T )

C(R) D(R).

u∗

FT

γFu
u∗

FR

Moreover, we require the collection {γFu } to satisfy the following compatibility conditions:

� γFIdR = IdFR ;

� for any two composable non-decreasing maps of finite posets R
u−→ T

v−→ S we have
γFvu = γFu � γFv = γFu v

∗ ◦ u∗γFv , that is the pasting in the following diagram

D(S) D(T ) D(R)

C(S) C(T ) C(R)

γFv
FS

v∗

FT

u∗

γFu
FR

v∗ u∗

coincides with γFvu;

� for any natural transformation α : u ⇒ v between two maps u, v : R → T the equality
FRα

∗ ◦ γFu = γFv ◦ α∗FT holds, that is the following two pastings coincide

C(T ) D(T ) C(T ) D(T )

C(R) D(R) C(R) D(R).

v∗ u∗
α∗

FT

γFu
u∗ v∗

FT

γFv
v∗ u∗

α∗

FR FR

We say F is a strict morphisms if γFu = Id for any u, i.e. F commutes with the restrictions on
the nose.

Definition 3.9.2. Let F,G : C → D be two morphisms of prederivators. A natural transforma-
tion between them σ : F ⇒ G consists in a collection of natural transformations σR : FR ⇒ GR
for every R finite poset which must be compatible with the isomorphisms {γFu }, {γGu } in the
following sense: for any map of posets u : R→ T the following pastings must coincide
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C(T ) D(T ) C(T ) D(T )

C(R) D(R) C(R) D(R).

u∗

FT

GT

σT

γGu
u∗ u∗

FT

γFu
u∗

GR

FR

GR

σR

In formulas γGu ◦ u∗σT = σRu
∗ ◦ γFu .

Definition 3.9.3. We denote by PDER the 2-category whose objects are prederivators, the
1-cells morphisms of prederivators and 2-cells natural transformations between such morphisms.

We define DER to be the full 2-subcategory of PDER generated by the objects which are
derivators.

We can use this arrangement to provide a notion of adjunction internal to the setting of
(pre)derivators: as in Definition 3.2.1 we define an adjunction (L,R) : C � D to be a pair of
morphisms going in opposite directions together with two 2-cells η : Id⇒ RL and ε : LR⇒ Id
satisfying the triangular identities.

Specifying these data to every finite poset T it is immediate to see we obtain an adjunction
(LT , RT ) : C(T )� D(T ) in the classical sense.

It comes natural to wonder if also the converse statement holds: given a collection of ad-
junctions (LT , RT ) can we extend it to an adjunction between prederivators? The key step to
answer this question is given by the next lemma.

Lemma 3.9.4. Let C,D be two prederivators and suppose that for any T finite poset we have
an adjunction (LT , RT ) : C(T ) � D(T ). Assume also that we fixed a family {γLu } of natural
isomorphisms which let us assemble the functors {LT } into a morphism L : C → D. Then
for any u : T → S morphism of finite posets, there exists a unique natural transformation
γRu : u∗RS ⇒ RTu

∗ which fits in the following diagram

HomD(S)(LSX,Y ) HomC(S)(X,RSY )

HomD(T )(u
∗LSX,u

∗Y ) HomC(T )(u
∗X,u∗RSY )

HomD(T )(LTu
∗X,u∗Y ) HomC(T )(u

∗X,RTu
∗Y ).

u∗

∼=

u∗

−◦(γLu )−1 γRu ◦−
∼=

Furthermore, these γRu ’s make {RT } into a lax morphism of derivators: that is, while not being
necessarily invertible they satisfy the coherence conditions listed in Definition 3.9.1.

Proof. Even this proof boils down to basic diagram chasing: to determine γRu we fix X = RSY
and compute the image of Idu∗RSY ∈ HomC(T )(u

∗RSY, u
∗RSY ) by going through the diagram

in counter-clockwise motion.
Using the formulas of Lemma 3.2.2 it is easy to see that γRu is determined as the composition

u∗RSY
ηTu

∗RS−−−−−→ RTLTu
∗RSY

RT (γLu )−1RS−−−−−−−−→ RTu
∗LSRSY

RTu
∗εS−−−−−→ RTu

∗Y.

Naturality of the involved transformations guarantees that this γRu is natural as well and it is
the only possible candidate making the diagram commute.

The uniqueness ensures that the compatibility conditions of {γLu } are transferred to {γRu }.
If u = IdS then the diagram reduces to

56



HomD(S)(LSX,Y ) HomC(S)(X,RSY )

HomD(S)(LSX,Y ) HomC(S)(X,RSY )

Id

φX,Y

γRIdS
◦−

φX,Y

and γRIdS can only be IdRS .

If we have two composable morphism of posets T
u−→ S

v−→ P then we can form the commut-
ative diagram

HomD(P )(LPX,Y ) HomD(P )(LPX,Y ) HomC(P )(X,RPY )

HomD(S)(v
∗LPX, v

∗Y ) HomD(S)(v
∗LPX, v

∗Y ) HomC(S)(v
∗X, v∗RPY )

HomD(T )(u
∗v∗LPX,u

∗v∗Y ) HomD(S)(LSv
∗X, v∗Y ) HomC(S)(v

∗X,RSv
∗Y )

HomD(T )(u
∗LSv

∗X,u∗v∗Y ) HomD(T )(u
∗LSv

∗X,u∗v∗Y ) HomC(T )(u
∗v∗X,u∗RSv

∗Y )

HomD(T )(LTu
∗v∗X,u∗v∗Y ) HomD(T )(LTu

∗v∗X,u∗v∗Y ) HomC(T )(u
∗v∗X,RTu

∗v∗Y ).

v∗ v∗

∼=

v∗

u∗ −◦(γLv )−1 γRv ◦−

−◦(γLv )−1 u∗

∼=

u∗

−◦(γLu )−1 −◦(γLu )−1 γRu ◦−
∼=

The equality γLvu = γLu � γLv tells us that the left column is the one in the diagram of the claim
associated to vu, we have to notice that similarly the column on the right can be rewritten as

HomC(P )(X,RPY ) HomC(P )(X,RPY )

HomC(S)(v
∗X, v∗RPY ) HomC(S)(v

∗X, v∗RPY )

HomC(S)(v
∗X,RSv

∗Y ) HomC(T )(u
∗v∗X,u∗v∗RPY )

HomC(T )(u
∗v∗X,u∗RSv

∗Y ) HomC(T )(u
∗v∗X,u∗RSv

∗Y )

HomC(T )(u
∗v∗X,RTu

∗v∗Y ) HomC(T )(u
∗v∗X,RTu

∗v∗Y )

v∗ v∗

γRv ◦− u∗

u∗ γRv ◦−

γRu ◦− γRu ◦−

to conclude γRvu = γRu � γRv .

Now suppose we have two morphisms of posets u, v : T → S with a natural transformation
α : u ⇒ v. We want to show that RTα

∗ ◦ γRu = γRv ◦ α∗RS , we verify this equation directly by
unravelling the formula for γRu and γRv provided at the start. After doing this we obtain the
following diagram

u∗RSY RTLTu
∗RSY RTu

∗LSRSY RTu
∗Y

v∗RSY RTLT v
∗RSY RT v

∗LSRSY RT v
∗Y.

α∗RS

ηTu
∗RS

RTLTα
∗RS

RT (γLu )−1RS

RTα
∗LSRS

RTu
∗εS

RTα
∗

ηT v
∗RS RT (γLv )−1RS RT v

∗εS
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We observe that the left square commutes by naturality of ηT , the right square by naturality
of α∗ and the one in the middle by the compatibility condition of the family of transformations
{γLu }. This lets us conclude.

This implies that for two morphisms (L,R) : C � D to form an adjunction of derivators
there must be a strict relation between the associated natural isomorphisms γF and γG: fixed
a family for one of the two morphisms the other is uniquely determined.

Moreover, it is not guaranteed that from a collection of natural isomorphism {γLu } the
resulting γRu ’s are invertible, we have to impose additional conditions to guarantee this.

If both C and D are derivators, the equality for γRu stated at the start of the proof of
Lemma 3.9.4 and the formulas of Lemma 3.2.4 imply that γRu is conjugate to the natural
transformation ((γLu )−1)! : u!LT ⇒ LSu!, which is the pasting of the diagram

C(T ) C(S) D(S)

C(T ) D(T ) D(S).

u!

Id

η
u∗

LS

u∗

Id

ε
(γLu )−1

LT u!

This being an isomorphism means that L preserves left Kan extensions along u, if this is the
case for any u then L is called cocontinuous.

Dually we say that a morphism of derivators R : D → C is continuous if it preserves right Kan
extensions: more precisely the canonical mate (γRu )∗ : RSu∗ ⇒ u∗RT is invertible for any map
of posets u : T → S. We can similarly show it is conjugate to a transformation LTu

∗ ⇒ u∗LS
which is our candidate for (γLu )−1, provided it is invertible.

Proposition 3.9.5. In the setting of Lemma 3.9.4 assume further C,D to be derivators. Then
the induced γRu ’s make R into a morphism of derivators if and only if L is cocontinuous. Dually,
if {RT } form a morphism of derivators R the associated transformation LTu

∗ ⇒ u∗LS is always
invertible if and only if R is continuous.

Corollary 3.9.6. Let (L,R) : C � D be an adjunction of derivators, then L is cocontinuous
and R is continuous.

At this point we can define an equivalence of (pre)derivators to be just an equivalence
internal to the 2-category of (pre)derivators: i.e. a morphism of (pre)derivators that is part
of an adjunction such that the associated unit and counit are invertible. Also in this case we
provide a levelwise characterization.

Proposition 3.9.7. Let C,D be two prederivators, then a morphism F : C → D is an equivalence
if and only if for any R finite poset FR is an equivalence.

Proof. The “only if” part is clear, we have to prove the inverse implication.

By assumption FR : C(R) → D(R) is an equivalence, so we can fix an adjoint equivalence
GR : D(R) → C(R). Without loss of generality we can assume FR a GR. By Lemma 3.9.4 we
can provide natural transformations γGu which make {GR} into a lax morphism.

We wrote down γGu explicitly as appropriate composition of transformations coming from
(γFu )−1, ηT and εS . All of these are invertible thus γGu is a natural isomorphism as we wanted.

We end this section with a basic lemma which will be crucial in the following discussion.

Lemma 3.9.8. Let P be a prederivator, D a derivator and F : P → D an equivalence of
prederivators. Then P is also a derivator.
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Proof. The idea is to use the equivalence F to transfer the statements of the axioms from P to D
where they hold. We only give a brief sketch of the proof, not carrying on all the computations.

To see P verifies (D1) we observe the following diagram commutes up to isomorphism

P
(∐

iRi
) ∏

i P(Ri)

D
(∐

iRi
) ∏

iD(Ri).

F∐
Ri

∏
i FRi

∼=

For a generic poset R we know FR is an equivalence (hence conservative) and suitably compatible
with the evaluations r∗ for all r ∈ R: from this (D2) follows immediately.

Regarding (D3): we observe that for any u : R→ T we have a diagram

P(R) P(T )

D(R) D(T )

FR

u∗

FT

u∗

γFu

where the bottom functor has a left and a right adjoint (u! and u∗ respectively), while the
horizontal functors are equivalences. It is easy to cook up two functors going in the right
direction composing only left adjoints or right adjoints, that these candidates are indeed the
Kan extensions we need is a consequence of Corollary 3.2.5 (modulo tedious computations).

Finally for (D4) we show the Kan formula for left extensions holds for P. The diagram

D((u/t)) D(R)

D(e) P((u/t)) P(R) D(T )

P(e) P(T )

p∗

γFp
π∗

F(u/t) FR

p∗

α∗

u∗

Fe

γFπ

π∗

t∗

u∗
γFu

FT

implies that the composite α∗ � γFp coincides, up to pasting with additional various γF , with
the next diagram

D((u/t)) D(R)

D(e) D(T )

P(e) P(T ).

p∗

α∗
π∗

γFt

u∗

t∗

Fe

t∗

FT

We observe that the mates associated to the various γF must be isomorphisms by Example 3.3.11.
The total mate of the last pasting is an isomorphism by (D4) for D and the fact just explained.
It follows that P(α)! is invertible after composing with (γFp )!: thus it had this property to begin
with.
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Chapter 4

Localizations as anafunctors

4.1 Anafunctors

We now introduce the notion of anafunctor: this is the way we adopted to avoid implicit
choices when inverting equivalences in the constructions which we will form to prove the finite-
ness of the compositions of localizations. The idea is to introduce a calculus of fractions in
bicategories and then conjugate it to invert the class of 1-cells given by equivalences. Our main
reference for such calculus is [31], from which we take the following definition.

Definition 4.1.1. Let C be a bicategory and let W be a class of its morphisms. We say W
admits a right calculus of fractions in C if the following conditions are satisfied.

BF1 All equivalences of C are in W .

BF2 W is closed under compositions: that is if f : X → Y and g : Y → Z are elements of W
so is g ◦ f .

BF3 For any w : A→ X in W and any morphism f : B → X there exists a square commuting
up to an invertible 2-cell

Y B

A X

v

g
∼= f

w

with v ∈W . Moreover, we assume that in every class of such squares we have a preferred
choice.

BF4 Let w ∈ W and suppose we have a 2-cell α : wf ⇒ wg, then there exists v ∈ W and a
2-cell β : fv ⇒ gv such that αv = wβ. Moreover, if α is invertible we require β to be
invertible as well.

If v′ and β′ are another pair with such property, then we require the existence of two
1-cells u and u′ such that vu, v′u′ ∈ W and we have a 2-cell ε : vu ⇒ v′u′ making the
following diagram commute

fvu gvu

fv′u′ gv′u′.

βu

fε gε

β′u′
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BF5 W is closed under isomorphisms: if f ∈ W and we have an invertible 2-cell f ∼= g then
also g is in W .

In the situation of the above Definition we can define a new bicategory C[W−1] by formally
inverting the 1-cells in W . Its objects are the same as C, its 1-cells are the spans fw−1 = A

w←−
X

f−→ B where w ∈W and f is an arbitrary 1-cell.

Composition is given as follows: taken two spans A
w←− X

f−→ B and B
v←− Y

g−→ by BF3

there exists a preferred square associated to the span X
f−→ B

v←− Y which allows us to form a
diagram

Z

X Y

A B C

u h

w

f v

∼=

g

so we set the composite to be gh(wu)−1.

A 2-cell between two morphisms fw−1 and gv−1 consists in an equivalence class of diagrams
of the following shape

X

A Z B

Y

w f
u1

u2
v

α
β

g

where we require wu1, vu2 to be in W , α, β are 2-cells and the former must be an isomorphism.

Remark 4.1.2. Obviously Definition 4.1.1 is a generalization of the calculus of fractions intro-
duced by Gabriel-Zisman to the context of bicategories. The core ideas are the same, we only
have to modify the classical definition to take into account the 2-cells and the fact that in this
new context composition is defined only up to natural isomorphism.

In fact, observe that 1-cells are not defined by equivalence classes of spans but directly as
spans. This works because in a bicategory we consider two 1-cells to be morally the same if
they are connected by an invertible 2-cell. Thus when we consider compute the composition of
fractions, two different choices of squares invoked by BF3 give two results related by invertible
2-cells which are well behaved by the other axioms.

Thus, we are moving the problem of well definiteness of compositions to the level of 2-
cells, which are identified according a precise equivalence relation. We do not write down such
relation since it is very convoluted and we will not actually need the full potential of this
theory of fractions in bicategory. We just mention that BF4 is needed to ensure this relation is
transitive.

For the complete definitions and all the necessary verifications that this calculus of fractions
is well defined we refer again to [31].

We present a criterion to determine the existence of a calculus of right fractions.

Definition 4.1.3. Let C be a bicategory, a square diagram

61



P C

A B

f ′

g′ g

f

σ

with σ invertible is defined as bipullback if for every other diagram commuting up to isomorphism

X C

A B

k

h g

f

γ

there exist a 1-cell l : X → P and invertible 2-cells α : g′l ⇒ h and β : f ′l ⇒ k such that the
following diagram commutes

fg′l fh

gf ′l gk.

fα

σl γ

gβ

That is, we can fill the second square as

X

P C

A B.

l

k

h

α

β

f ′

g′ g

f

σ

Moreover such filling is unique in the following sense: suppose we have another one given by
l′ : X → P and α′ : g′l′ ⇒ h, β′ : f ′l′ ⇒ k, then there exists a unique invertible 2-cell λ : l′ ⇒ l
such that α ◦ g′λ = α′ and β ◦ f ′λ = β′.

We say C admits bipullbacks if and only if every span

C

A B

g

f

can be filled to a bipullback. In this case, for any 1-cell f we can consider the square diagrams

Df X X X

X Y X Y

f

Id

Id f

f

σ

f

with the first a bipullback, so we have induced a 1-cell which we denote δf : X → Df .

Proposition 4.1.4 ([36, Proposition 2.8]). Let C be a bicategory such that all 2-cells are in-
vertible. Suppose it admits bipullbacks and let W be a class of morphisms. Assume W satisfies
the following conditions:

BP1 W contains all the equivalences;

BP2 W is closed under compositions;
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BP3 W is stable under bipullbacks;

BP4 for any w ∈W , δw ∈W ;

BP5 W is closed under invertible 2-cells.

Then W admits a right calculus of fractions in C.

Remark 4.1.5. Let C be a bicategory admitting bipullbacks. Then it is easy to see that taking
W to be the class of equivalences the conditions of Proposition 4.1.4 are satisfied. This guar-
antees that all the conditions of Definition 4.1.1 hold, except for BF4 when α is not invertible.
Nevertheless, since equivalences admit inverses up to invertible 2-cells we can verify directly
that even in this case BF4 is satisfied.

The point of Proposition 4.1.4 is that, if they are available and they are compatible with the
chosen class W , bipullbacks offer an excellent choice of preferred squares as required by BF3.

Definition 4.1.6. In the situation of Remark 4.1.5 we call a 1-cell of the resulting bicategory
of fractions C[W−1] an anafunctor.

Example 4.1.7. Consider C = CAT the 2-category of locally small categories. Take C a
category admitting finite products, then we can express the operation of forming the product

of two elements as the anafunctor C×C a←− P b−→ C where P is the category of pullback squares

T A

B ∗

where ∗ is the terminal object and T is the product of A,B. Then a : P → C × C sends this
diagram to the pair (A,B), while s : P → C maps it to T .

Remark 4.1.8. Using the language of anafunctors we could rephrase all definitions of the usual
categorical colimits and limits, by encoding their universal properties in appropriate categories
of diagrams (like we did in Example 3.5.2). Usually this is not the adopted approach: classical
colimits and limits are characterized by said properties and then treated as functors in practice.
This is because in all the examples we want to consider or we have explicit constructions or we
invert the reverse morphism of the respective anafunctor in virtue of the axiom of choice. This
axiom in fact establishes that the datum of a fully faithful and essentially surjective functor is
equivalent to an adjunction with invertible unit and counit.

4.2 Anafunctors for derivators

We want to conjugate Definition 4.1.6 in the case of the 2-category of derivators DER. So
we have to prove it admits bipullbacks, at least along equivalences.

Lemma 4.2.1. The 2-category DER admits bipullbacks along equivalences.

Proof. Given a span D F−→ F G←− E with G an equivalence of derivators we provide an explicit
model for the bipullback. For a finite poset A we define P(A) to be the category with objects
triples (X,Y, α) where X ∈ D(A), Y ∈ E(A) and α : FA(X) → GA(Y ) is an isomorphism in
F(A). A morphism (f, g) : (X,Y, α) → (X ′, Y ′, β) consists in a pair of morphisms f : X → X ′

and g : Y → Y ′ respectively in D(A) and E(A) such that the diagram
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FAX FAX
′

GAY GAY
′

α

FAf

β

GAg

commutes. Now we define the restriction along a functor u : A → B as follows: on objects
we set u∗(X,Y, α) = (u∗X,u∗Y, αu) where the isomorphism αu is the unique one making the
following square commute

FAu
∗X GAu

∗Y

u∗FBX u∗GBY

αu

γFu

u∗α

γGu

and on morphisms u∗(f, g) = (u∗f, u∗g), it is immediate to show this pair defines a morphism
(u∗X,u∗Y, αu) → (u∗X ′, u∗Y ′, βu). This gives us a prederivator P and we can easily augment
the starting span to a square commuting up to isomorphism

P E

D F

P2

P1 G
ϕ

F

where the morphism P1, P2 are given component-wise by the projections and ϕ(X,Y,α) = α
defines an invertible modification from FP1 to GP2.

Using the fact that G is an equivalence we easily show P1 to be an equivalence as well. Thus
by Lemma 3.9.8 P is a derivator.

Given another square

C E

D F

K

H G

F

γ

we can easily form a filling (L : C ⇒ P, α : P1L⇒ H,P2L⇒ K) by

LR : C(R)→ P(R) Z 7→ (HR(Z),KR(Z), γR(Z) : FRHR(Z)→ GRKR(Z))

and α and β can be taken to be identities. We should verify that this L actually defines a
morphism of derivator, and that the filling provided in unique in the sense of Definition 4.1.3.
These are just bothersome and trivial computations which we do not report here.

Therefore, we conclude P is a model for the bipullback of the starting span as claimed.

Remark 4.2.2. It is not true that DER admits general bipullbacks, but the above proof shows
clearly that the 2-category PDER of prederivators has this property.

The preferred squares we will use for the composition of fractions are the explicit bipullbacks
constructed above.

Remark 4.2.3. We state here two easy consequences of the definition of the bicategory DER[W−1]
which we will use automatically without mention.

First, suppose we have a commutative diagram of derivators as follows

64



C X

Y D

F
'

J
GH '

K

where F and H are equivalences, hence J is also an equivalence. The diagram then presents an
isomorphism between the anafunctors GF−1 and KH−1.

Second, suppose we fix an equivalence F : X → C, and consider two functors G0, G1 : X → D.
Then any natural transformation α : G0 ⇒ G1 gives rise to a 2-cell G0F

−1 ⇒ G1F
−1 between

anafunctors

X

C D

X

F G0

F G1

α

and this is functorial in α.

4.3 The derivator of fully localizing cubes

We now establish our framework for Bousfield localisation in the context of derivators.

Definition 4.3.1. Let C be a derivator equivalent to the homotopy derivator associated to a
stable model category (or stable quasi-category) with compactly generated homotopy category.
This implies C is a compactly generated strong stable derivator.

Let K : C(e) → Ab be a homology theory. As usual, we extend this to a graded theory
K∗ : C(e) → Ab∗ by Kn(X) = K(Σ−nX). For X ∈ C(R) define KR(X) =

⊕
r∈RK(Xr), and

note that this is again a homology theory. Using Theorem 3.8.3 we see that the subcategories
ker(KR

∗ ) ⊆ C(R) form a localising subderivator of C, which we will just call ker(K∗).
Now suppose we have an object X ∈ C([1]×R). This gives a morphism u : X0 → X1 in C(R)

by taking the partial diagram along [1]. We say that X is a localisation object if fib(u) ∈ ker(KR
∗ )

and X1 ∈ ker(KR
∗ )⊥. We write L(R) for the subcategory of localisation objects in C([1] × R).

This is clearly a subprederivator of C[1], and we have a morphism 0∗ : L → C of prederivators.

Proposition 4.3.2. L is a thick subderivator of C[1], and 0∗ : L → C is an equivalence of
derivators.

Proof. We know from Theorem 3.8.3 and Proposition 3.8.19 that ker(K∗) and ker(K∗)
⊥ are

thick subderivators. Together with the result we recalled in Theorem 3.4.9, this implies that L
is a thick subderivator of C[1].

To prove our claim regarding 0∗ : L → C we show that the general level 0∗R is an equivalence
of categories.

Essential surjectivity: since C(R) is a compactly generated triangulated category with cop-
roducts we can form the localization with respect to ker(KR

∗ ) and we get for any X ∈ C(R) a
morphism η : X → LX which is an KR

∗ -localization. Since C is strong there exists a coherent
diagram f ∈ C([1]×R) such that dia[1]f ∼= η in C(R)[1], this clearly means that 0∗(f) ∼= X.

Fully faithfulness: we have to show that for any two coherent localizations X : X0 → X1

and Y : Y0 → Y1 the map

HomL(R)(X,Y ) = HomC([1]×R)(X,Y )
0∗−→ HomC(R)(X0, Y0)
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is a bijection.

We name the functors

0 : R→ [1]×R r 7→ (0, r) 1 : R→ [1]×R r 7→ (1, r).

Observe that we can form in C([1]×R) the triangle

0!0
∗X

εX−−→ X → Z → Σ0!0
∗X

where εX is the counit of the adjunction 0! a 0∗ evaluated at X. The associated incoherent
diagram in C(R) is

X0 X0 0

X0 X1 C(X)

∼=

∼=

X

X

where C(X) denotes the cone of the coherent morphism X. Therefore by Corollary 3.4.6 we
can identify Z with the diagram 1!C(X). Now we apply HomC([1]×R)(−, Y ) to this triangle to
get the long exact sequence

· · · ← HomC([1]×R)(0!0
∗X,Y )← HomC([1]×R)(X,Y )← HomC([1]×R)(1!C(X), Y )← . . .

We have HomC([1]×R)(1!C(X), Y ) ∼= HomC(R)(C(X), 1∗Y ) = 0 since by construction C(X) is

KR
∗ -acyclic and 1∗Y = Y1 is KR

∗ -local. This implies that the map

(εX)∗ : HomC([1]×R)(X,Y )→ HomC([1]×R)(0!0
∗X,Y )

is an isomorphism. Composing this with the bijection HomC([1]×R)(0!0
∗X,Y ) ∼= HomC(R)(0

∗X, 0∗Y )
we obtain

0∗ : HomC([1]×R)(X,Y )→ HomC(R)(X0, Y0)

by Lemma 3.2.2, therefore 0∗R induces isomorphisms on the hom-groups as we wanted.

We will sometimes need a slightly more general statement.

Lemma 4.3.3. Suppose that X,Y ∈ C[1](R), giving morphisms f : X0 → X1 and g : Y0 → Y1

in C(R). Suppose that fib(f) ∈ ker(KR
∗ ) and Y1 ∈ ker(KR

∗ )⊥. Then the map

0∗ : C([1]×R)(X,Y )→ C(R)(X0, Y0)

is bijective.

Proof. These weakened hypotheses are all that was used in the proof of Proposition 4.3.2

Definition 4.3.4. We define LK to be the anafunctor C 0∗←− L 1∗−→ C, and call this Bousfield
localisation with respect to K.

We now return to a framework similar to that of Definition 2.1.4: we assume that we have a
compactly generated stable derivator C together with homology theories K(i) on C(e) for i ∈ N ,
satisfying the fracture axiom. As in Section 2.2, we define P to be the poset of subsets of N
(ordered by inclusion) and Q to be the poset of upward closed subsets of P (ordered by reverse
inclusion). They are related by the morphism u : P→ Q given by uT = {U | T ⊆ U}.
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Definition 4.3.5. Consider a finite poset R and an object X ∈ C(P×R). Suppose that t ∈ N
and U ⊆ N with t < u for all u ∈ U . We then write tU for {t} ∪ U , so we have U < tU
in P, giving maps ft,U,r : XU,r → XtU,r in C(e). We say that X is (t, U)-localising if ft,U is a
K(t)∗-localisation. Equivalently, XtU,r should be K(t)∗-local, and the fibre of ft,U,r should be
K(t)∗-acyclic for every r ∈ R. We also say that X is fully localising if it is (t, U)-localising
for all t and U . We write P(R) for the full subcategory of fully localising objects in C(P× R).
There is an evident inclusion ∅ : R→ P×R, which gives a functor ∅∗ : P(R)→ C(R).

Example 4.3.6. Consider the case n = 1, thus N = {0}, and suppose that our derivator C
arises from a stable model category B0. Under the isomorphism of posets P ∼= [1] an object of
P(R) is a diagram X : [1] × R → C0 such that the morphisms X0r → X1r are all localisations
with respect to K(0). Informally, we can therefore say that an object of P is a diagram of type
(X → LK(0)X). In the case n = 2 an object of P is essentially a diagram of the following type:

X LK(0)X

LK(1)X LK(0)LK(1)X

X φ0X

φ1X φ01X

The right hand diagram is just alternate notation for the left hand one. For n = 3, the diagram
is as follows:

φ12X φ012X

φ2X φ02X

φ1X φ01X

X φ0X

where to keep the notation simple we write φA by just presenting the set A as a string of
increasing integers.

Proposition 4.3.7. P is a thick subderivator of CP, and ∅∗ : P → C is an equivalence of
derivators.

Proof. The claim is clear if N = ∅. If N 6= ∅, we let n0 ∈ N be the smallest element, so N can
be decomposed as {n0} q N1 say. This gives an obvious decomposition P = [1] × P1. We can
define P1 ⊆ CP1 using N1, and by induction we can assume that this is a thick subderivator
with ∅∗ : P1 → C being an equivalence.

Now define L as in Definition 4.3.1, with respect to the homology theory K(n0) for the
derivator P1. We find that

P(R) = {X ∈ L(P1 ×R) | X0 ∈ P1(R)},

and the claim now follows from Proposition 4.3.2 together with the induction hypothesis.

Again, from the proof we can deduce a slightly more general statement.

Lemma 4.3.8. Suppose that X,Y ∈ CP(R). Suppose that for t, U and r as before, the map
ft,U,r : XU → XtU is a K(t)-equivalence, and the object YtU is K(t)-local. Then the map

∅∗ : C(P×R)(X,Y )→ C(R)(X∅, Y∅)

is bijective.
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Proof. As above taking n0 the minimum of N we get a decomposition P = [1]×P1 and arguing
by induction we can assume the map C(P1×R)(X0, Y0)→ C(R)(X∅, Y∅) is a bijection. Now we
have just to compose this with C(P× R)(X,Y )→ C(P1 × R)(X0, Y0) which is an isomorphism
by Lemma 4.3.3.

Definition 4.3.9. We finally adapt the iterated localizations of Definition 2.1.1 and Defini-
tion 2.2.1 to this setting. For A ⊆ N define λA to be the anafunctor LK of Definition 4.3.4 for
the homology theory K =

⊕
a∈AK(a)∗.

We also set φA to be

C ∅∗←− P A∗−−→ C.

Remark 4.3.10. Suppose that A = {a1, . . . , ar} with a1 < · · · < ar. It is then not hard to see
from the definitions that in some sense we have

φA ' LK(a1) · · ·LK(ar),

so that Definition 4.3.9 is a more precise version of Definition 2.2.1. A rigorous formulation
with anafunctors will be given in Corollary 4.3.18.

Proposition 4.3.11. The anafunctor φ{a} is isomorphic to LK(a).

Proof. Define j : [1] → P by j(0) = ∅ and j(1) = {a}. This gives a morphism j∗ : CP → C[1].
If we define L as in Definition 4.3.1 with respect to K(a), we find that j∗ restricts to give a
morphism P → L. This fits into a commutative diagram as follows:

P C

C L

{a}∗

j∗
∅∗ '

0∗
'

1∗

From this it is clear that j∗ is an equivalence and the anafunctor φ{a} = {a}∗(∅∗)−1 is equivalent
to LK(a) = 1∗(0∗)−1.

Now let j be the inclusion of P′ = P \ {∅} in P, and consider the fibration

tfib(X) −→ ∅∗(X)→ holim
←−
P′

j∗(X)→ Σ tfib(X).

We can now give a derivator formulation of the chromatic fracture argument.

Proposition 4.3.12. For any X ∈ P(R), the above morphism ∅∗(X) → holim
←− P′

j∗(X) is a

localisation with respect to K(N)∗ =
⊕

i∈N K(i)∗.

Proof. From the definition of P(R) we see that for all T ∈ P′, the object j∗(X)T is local with
respect to K(min(T ))∗ and thus with respect to K(N)∗. Proposition 3.8.19 tells us that the
K(N)∗-local objects form a thick subderivator, so the object LX = holim

←− P′
j∗(X) is K(N)∗-

local. It will therefore suffice to show that the fibre tfib(X) = fib(X∅ → LX) is K(N)∗-acyclic,
or equivalently, that it is K(i)∗-acyclic for all i. Let Yr be the total fibre of the subdiagram
indexed by subsets of {r + 1, . . . , n − 1}, so Yn−1 = 0 and Y−1 = tfib(X). Let Zr be the total
fibre of the subdiagram indexed by subsets of {r, . . . , n − 1} containing r, so that Yr → Zr
is a K(r)∗-localisation, and the fibre is Yr−1 by Proposition 3.5.10. This shows that Yi−1 is
K(i)∗-acyclic. The fracture axiom then tells us that Zi−1 is also K(i)∗-acyclic, and since Yi−2

is the fibre of the map Yi−1 → Zi−1 it is again K(i)∗-acyclic. By iterating this, we find that
Y−1 is K(i)∗-acyclic as required.
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Definition 4.3.13. We say that an object X ∈ C(P× P×R) is doubly localising if

(a) X is fully localising relative to P×R, so it lies in P(P×R).

(b) The restriction to {∅} × P×R ' P×R lies in P(R).

We write P2(R) for the full subcategory of doubly localising objects in C(P× P×R).

Proposition 4.3.14. P2 is a thick subderivator of CP×P, and (∅, ∅)∗ : P2 → C is an equivalence.

Proof. The first claim is immediate from Theorem 3.8.3.

We can apply Proposition 4.3.7 to the shifted derivator CP and denote by Ps the resulting
derivator of cubes of localizations. Then the two properties of the Definition 4.3.13 easily imply
that we can restrict the associated equivalence to

Ps CP

P2 P

∅∗
'

∅∗
'

we have just compose the lower equivalence with ∅∗ : P → C and the second claim is verified.

It is easy to see that X ∈ C(P × P × R) = CR(P × P) is doubly localising if and only if the
following conditions are satisfied:

(a) For all a,A,B with {a}∠A, the map XA,B → X{a}∪A,B is a K(a)∗-localisation.

(b) For all b, B with {b}∠B, the map X∅,B → X∅,{b}∪B is a K(b)∗-localisation.

This essentially means that if A = {a1 < · · · < ap} and B = {b1 < · · · < bq} we must have

XA,B = LK(a1) · · ·LK(ap)LK(b1) · · ·LK(bq)X(∅,∅).

In particular, we see that X(A,B) = 0 unless A∠B. This motivates the following construction.

Definition 4.3.15. We put M = {(A,B) ∈ P× P | A∠B}, and define σ : M→ P by σ(A,B) =
A ∪B. We say that an object X ∈ C(M×R) = CR(M) is doubly localising if

(a) for all a,A,B with {a}∠A and {a} ∪ A∠B, the map XA,B → X{a}∪A,B is a K(a)∗-
localisation.

(b) For all b, B with {b}∠B, the map X∅,B → X∅,{b}∪B is a K(b)∗-localisation.

We write P ′2(R) for the subcategory of C(M×R) of doubly localising objects.

Proposition 4.3.16. P ′2 is a thick subderivator of CM, and the inclusion inc : M → P × P
induces mutually inverse equivalences

P ′2
inc∗−−→ P2

inc∗−−→ P ′2,

and the resulting morphism (∅, ∅)∗ : P ′2 → C is also an equivalence. Moreover, the map σ : M→ P
gives an equivalence σ∗ : P → P ′2 and thus an equivalence inc∗ ◦σ∗ : P → P2.
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Proof. We denote by CM the subderivator of CP×P spanned by the objects X such that Xp = 0
whenever p ∈ (P× P) \M.

The subposet M ⊆ P× P is a sieve, so Corollary 3.4.6 gives mutually inverse equivalences

C(M×R)
inc∗−−→ CM(R)

inc∗−−→ C(M×R).

We have observed that if X ∈ C(P× R) is doubly localising then XA,B = 0 for (A,B) 6∈ M, so
X ∈ CM(R). It follows that inc∗ restricts to give an equivalence from P2(R) to some subcategory
of C(M × R), with inverse given by inc∗. It is easy to check that the relevant subcategory is
P ′2(R). We have now seen that in the diagram

P2
inc∗−−→ P ′2

(∅,∅)∗−−−→ C,

the first map and the composite are both equivalences of (pre)derivators, so the second map is
also an equivalence. From this and Lemma 3.9.8 it follows that P ′2 is also a derivator. Finally,
direct inspection of the definitions shows that σ∗ : CP → CM restricts to σ∗ : P → P ′2, and
(∅, ∅)∗σ∗ = ∅∗, which implies that σ∗ : P → P ′2 is an equivalence as well.

Proposition 4.3.17. If A∠B then there is an equivalence of anafunctors φAφB ' φA∪B.

Proof. Define jB : P→ P× P by jB(T ) = (T,B). Consider the following diagram:

C P

P2 C

P P ′2

C P.

A∗

∅∗
'

(A,B)∗

inc∗

'

(∅,∅)∗ '

j∗B

∅∗
'

B∗

∅∗
'

(∅,∅)∗
'

(A,B)∗

∅∗
'

(A∪B)∗

σ∗
'

Given that C is a strict 2-functor, we see that everything commutes on the nose. Several
morphisms have been marked as equivalences; these are justified by Proposition 4.3.16. It
follows that all routes from the middle bottom C to the middle right C give the same anafunctor
up to equivalence. If we go clockwise around the edge of the diagram we get φAφB, and if we
go anticlockwise we get φA∪B.

To be precise the composition of anafunctors φAφB is given by the following composition of
spans via the bipullback

P ×C P

P P

C C C.

P1 P2

∅∗ B∗ ∅∗ A∗
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The upper left part of the previous diagram means that we can easily produce an isomorphism
of anafunctors

P ×C P

C C

P2

∅∗P1 A∗P2

(∅,∅)∗

L

(A,B)∗

where L is obtained using ∅∗ and j∗B.

Corollary 4.3.18. Suppose that A = {a1, . . . , ar} with a1 < · · · < ar. There is then an
equivalence of anafunctors

φA ' LK(a1) · · ·LK(ar).

Proof. This follows by induction using Propositions 4.3.11 and 4.3.17. The base case A = ∅ says
that φ∅ is equivalent to the identity, which is clear because φ∅ = ∅∗(∅∗)−1 by definition.

4.4 The iterated chromatic localizations φA are distinct

Before carrying on our proof, we present an interesting digression about Example 2.1.10.
That is, we show that in this case the various iterated localizations φA must be distinct.

Definition 4.4.1. We let BP∗-Mod be the category of graded BP∗-modules. We recall BP is
the p-local Brown-Peterson spectrum, thus BP∗ ∼= Z(p)[v1, v2, . . . ] where |vi| = 2(pi − 1). We
denote, for any positive integer m, by Im the ideal of BP∗ generated by v0, v1, . . . , vm−1, where
v0 = p. We define the functor

φ∗m : BP∗-Mod→ BP∗-Mod M 7→ (v−1
m M)∧Im .

There is an evident natural map ηm : M → φ∗m(M), also we have a unique natural transformation
µ making the following diagram commute

M ⊗N

φ∗m(M)⊗ φ∗m(N) φ∗m(M ⊗N)

(v−1
m M)/Ikm ⊗ (v−1

m N)/Ikm (v−1
m (M ⊗N))/Ikm.

ηm⊗ηm ηm

µ

πk⊗πk πk

µ

These make φ∗m into a lax monoidal functor. In particular, we deduce φ∗m(BP∗) has a natural
ring structure and φ∗m(M) is a module over φ∗m(BP∗).

For any finite subset A ⊂ N such that A = {a1 < a2 < · · · < al}, we define the functor
φ∗A : BP∗-Mod → BP∗-Mod by φ∗A = φ∗a1φ

∗
a2 . . . φ

∗
al

. We can define natural transformations
θA,A′ : φ

∗
A ⇒ φ∗A′ for any A ⊆ A′ by composing iteratively the maps ηm as follows. If A′ = ∅ we

must have A = ∅ hence φ∗A = φ∗A′ = Id and we set θ∅,∅ = Id. Otherwise, we put a = minA′ and
A′0 = A′ \ {a} so that φ∗A′ = φ∗aφ

∗
A′0

. If a 6∈ A then A ⊆ A′0, we can suppose θA,A′0 has already

been defined and we put

(θA,A′)M = (φ∗AM
θA,A′0−−−→ φ∗A′0

M
ηa−→ φ∗A′M).
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If instead a ∈ A, we set A0 = A\{a} and we must have A0 ⊆ A′0, hence φ∗A = φ∗aφ
∗
A0

and we can
assume we already established θA0,A′0

: φ∗A0
⇒ φ∗A′0

so we define θA,A′ = φ∗aθA0,A′0
: φ∗A ⇒ φ∗A′ .

Remark 4.4.2. Using the naturality of the maps ηm it is easy to verify that for any triple of
subsets A ⊆ B ⊆ C we have θB,C◦θA,B = θA,C and it is clear that θA,A = Id. Also, the monoidal
structures on the functors φ∗a give rise to monoidal structures on the composite functors φ∗A
and the natural transformations θA,A′ are compatible with these: the maps θA,A′ : φ

∗
A(BP∗)→

φ∗A′(BP∗) are ring homomorphisms and in general φ∗A(M)→ φ∗A′(M) is a morphism of φ∗A(BP∗)-
modules.

Definition 4.4.3. Given Q ⊆ N we define

BPQ = BP∗/(vi : i 6∈ Q) =

{
Fp[vi : i ∈ Q] if 0 6∈ Q
Z(p)[vi : i ∈ Q \ {0}] if 0 ∈ Q.

In particular BP∅ = Fp. We observe that if Q is finite then BPQ is a Noetherian graded ring.

Our first objective is to show that the functors φ∗A are all distinct. This will be demonstrated
by the following Proposition.

Proposition 4.4.4. Fix Q ⊆ N and let A ⊆ Q be a finite subset. Then we have {i ∈ N :
vi is invertible in φ∗A(BPQ)} = A. Hence for different finite subsets A,B ⊆ Q the two BP∗-
modules φ∗A(BPQ) and φ∗B(BPQ) cannot be isomorphic.

Before presenting the proof we will need some algebraic preliminaries about regular sequences
in a (graded) ring.

Definition 4.4.5. Let R be a commutative ring with identity element, possibly graded. Let
x1, . . . , xk be a sequence of elements of R, where in the graded case we assume these to be
homogeneous. We say such sequence is regular if for any i ≤ k multiplication by xi provides an
injective morphism

xi : R/(x1, . . . , xi−1)→ R/(x1, . . . , xi−1).

Remark 4.4.6. There are two important observations on this definition. The first one is that
we do not require the quotients R/(x1, . . . , xi−1) to be non-zero, in this case we have that the
multiplication by xi−1 on R/(x1, . . . , xi−2) induces an isomorphism. Hence xi−1 must be a unit
on this quotient.

The second fact to be noted is that the regularity of the proposed sequence could depend
on the ordering of the elements. As example consider R = Z[x, y] and x1 = 2, x2 = 3x, x3 = 3y,
this sequence is obviously regular but if we reorder it as y1 = 3x, y2 = 3y, y3 = 2 then regularity
does not hold any more.

Lemma 4.4.7. Let R be a (graded) commutative Noetherian ring and x1, . . . , xk a regular
sequence of (homogeneous) elements of R.

(a) For every S ⊂ R multiplicatively closed subset (of homogeneous elements) the same se-
quence is regular in the localization S−1R.

(b) If I ⊂ R is a (homogeneous) ideal then the sequence in question is regular in the completion
R∧I .

(c) Let T be an R-algebra obtained by applying iteratively localizations and completions, in
any order, then the sequence is again regular in T .
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Proof. We observe that regularity can be expressed recursively as the existence of short exact
sequences

0→ R/(x1, . . . , xi−1)
xi−→ R/(x1, . . . , xi−1)→ R/(x1, . . . , xi)→ 0

For point (a) we have just to recall that localization is an exact functor, hence after applying
−⊗R S−1R we obtain the same sequences stating x1, . . . , xk is regular in the ring S−1R.

For point (b) we need a bit more of machinery: the Artin-Rees lemma ensures that for a
Noetherian ring R the completion with respect to I of finitely generated R-modules is given
by tensoring with R∧I ([1, Prop. 10.13]) and this ensures the morphism R → R∧I is flat ([1,
Prop. 10.14]). Hence, as in (a) applying − ⊗R R∧I to the mentioned short exact sequences
provides the same sequences for the ring R∧I .

Finally (c) follows by applying repeatedly (a) and (b), keeping in mind that the localization
of a Noetherian ring is still Noetherian ([1, Prop. 7.3]) and the completion of a Noetherian ring
remains Noetherian (another deep consequence of Artin-Rees, see [1, Thm. 10.26]).

Lemma 4.4.8. We fix a finite subset A ⊂ N. Let B ⊆ A, then the elements {vi : i ∈ A<minB}
(taken with the natural ordering) provide a regular sequence in the ring φ∗B(BPA), moreover we
have (φ∗B(BPA))/IminB 6= 0.

Proof. We prove the claim by induction on |B|. In the starting case B = ∅ we set the convention
minB = +∞ so IminB = (vi : i ∈ N). Since BPA is a polynomial algebra, it is immediate to
see the sequence provided by the vi’s for i ∈ A is regular and clearly BPA/IminB = Fp 6= 0.

Suppose now |B| ≥ 1, so we can write B = {b} ∪ B′ for b = minB and B′ = B \ {b}. We
observe that BPA is a Noetherian ring and φ∗B′(BPA) is obtained from it by applying recursively
localizations and completions, thus arguing as in the proof of Lemma 4.4.7 (c) we conclude also
φ∗B′(BPA) is Noetherian. By [1, Prop. 10.15 iii)] we have an isomorphism

(φ∗B(BPA))/Ib = (v−1
b φ∗B′(BPA))∧Ib)/Ib

∼= (v−1
b φ∗B′(BPA))/Ib

and since localization is an exact functor we have

(v−1
b φ∗B′(BPA))/Ib = (v−1

b φ∗B′(BPA))/(vi : i ∈ A<b) ∼= v−1
b (φ∗B′(BPA)/(vi : i ∈ A<b)).

From the surjection

φ∗B′(BPA)/(vi : i ∈ A<b)� φ∗B′(BPA)/(vi : i ∈ A<minB′) = φ∗B′(BPA)/I<minB′ 6= 0

we conclude φ∗B′(BPA)/(vi : i ∈ A<minB) 6= 0.
By inductive assumption {vi : i ∈ A<minB′} is a regular sequence in φ∗B′(BPA) and we notice

{vi : i ∈ A<b} provides an initial segment of such sequence and the next element to be added is
vb, thus the map

vb : φ∗B′(BPA)/(vi : i ∈ A<b)→ φ∗B′(BPA)/(vi : i ∈ A<b)

is injective and we proved φ∗B′(BPA)/(vi : i ∈ A<b) 6= 0. Thus vb is not a zero-divisor in thisBP∗-
algebra, in particular it is not nilpotent and we conclude the localization v−1

b (φ∗B′(BPA)/(vi :
i ∈ A<b)) is not zero.

The claim that {vi : i ∈ A<b} constitutes a regular sequence in φ∗B(BPA) follows easily from
the inductive assumption and Lemma 4.4.7 (c).

Proof of Proposition 4.4.4. Take vi with i ∈ A, then there are clearly maps of BP∗-algebras

v−1
i BPQ → φ∗A≤i(BPQ)

θA≤i,A−−−−→ φ∗A(BPQ)
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ensuring vi is invertible in φ∗A(BPQ).
Now the inclusion A ⊆ Q induces the quotient map

BPQ → BPQ/(vi : i 6∈ A) = BPA

and we can consider its image under φ∗A. If vi for i 6∈ A were invertible in φ∗A(BPQ) then we would
get φ∗A(BPA) = 0. But Lemma 4.4.8 for the case B = A establishes that φ∗A(BPA)/IminA =
φ∗A(BPA) is not trivial.

We conclude vi is invertible in φ∗A(BPQ) if and only if i ∈ A.

The connection between the algebraic functors φ∗A and the iterated localizations φA of Ex-
ample 2.1.10 is established by the next result. Recall that for any i ∈ N the spectrum BP 〈i〉 is
given by BP/(vi+1, vi+2, . . . ), hence BP 〈i〉∗ = Z(p)[v1, . . . , vi].

Proposition 4.4.9. Let A ⊆ N , then we have an isomorphism of graded BP∗-modules

π∗(φABP 〈n− 1〉) ∼= φ∗A(BPN ).

Proof. This follows directly from [19, Lemma 2.3] and the surrounding discussion. The cited
Lemma implies immediately that π∗(φmBP ) = φ∗mBP∗, but the proof can be adapted to any
BP -algebra E so that the sequence v0, . . . , vm is regular in π∗(E) and π∗(E)/Im 6= 0. This
way v−1

m E results a vm-periodic Landweber exact spectrum. This lets us prove the claim by
induction on |A|.

Let A = {a} ∪ B with a < minB and |B| ≥ 1. Since the localization functors φm have a
clear lax monoidal structure it follows φB(BP 〈n− 1〉) admits the structure of BP -algebra, by
inductive assumption π∗(φBBP 〈n − 1〉) = φ∗BBPN and Lemma 4.4.8 guarantees v0, v1, . . . , va
is a regular sequence in this ring.

Thus v−1
a φBBP 〈n−1〉 is a va-periodic Landweber exact spectrum and [19, Cor. 1.12] implies

it is Bousfield equivalent to E(a). Since it is a ring spectrum, it must be local with respect to
itself, therefore v−1

a φBBP 〈n− 1〉 is E(a)-local.
We now claim that φBBP 〈n − 1〉 → v−1

a φBBP 〈n − 1〉 is an E(a)-equivalence: the proof
is exactly the same as the second part of [19, Lemma 2.3]. We have to verify that the map
va : Σ|va|φBBP 〈n − 1〉 → φBBP 〈n − 1〉 is an E(a)-equivalence, this is equivalent to proving
that ηR(va) is a unit in E(a)∗φBBP 〈n− 1〉 ∼= E(a)∗ ⊗BP∗ BP∗BP ⊗BP∗ φ∗B(BPN ). Again the
formula

ηR(va) = va mod Ia

immediately shows the claim to be true. Notice that, differently from the starting case, here
π∗φBBP 〈n− 1〉 is IminB-complete hence any element of va + Ia is invertible.

At this point we proved LE(a)φBBP 〈n − 1〉 = v−1
a φBBP 〈n − 1〉. Now [19, Cor. 2.2] states

LK(m) = LF (m)LE(m), thus

φABP 〈n− 1〉 = φaφBBP 〈n− 1〉 = LF (a)LE(a)φBBP 〈n− 1〉 = LF (a)(v
−1
a φBBP 〈n− 1〉).

Finally [19, Thm. 2.1] implies

π∗(LF (a)v
−1
a φBBP 〈n− 1〉) ∼= (v−1

a φ∗BBPN )∧Ia = φ∗A(BPN ).

Remark 4.4.10. The same reasoning would allow us to prove that π∗(φABP ) ∼= φ∗ABP∗ if we
could show that the functor φ∗a preserves the regularity of the sequence v0, v1, . . . , vi for i < a
from φ∗BBP∗ to φ∗aφ

∗
BBP∗. Unfortunately, since BP∗ is not Noetherian, the arguments adopted

in Lemma 4.4.7 and 4.4.8 do not work.
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Corollary 4.4.11. The iterated localizations φA of Example 2.1.10 cannot be naturally iso-
morphic for different subsets A ⊆ N .

Proof. Immediate from Proposition 4.4.9 and Proposition 4.4.4.

The same computations of Proposition 4.4.9 also show the φA’s are distinct in the case of
Example 2.1.11.

Proposition 4.4.12. Let E be a BP -module spectrum, then the canonical map

LT (n)E → LK(n)E

is an equivalence.

Proof. We have just to show LT (n)E is K(n)-local.
Fix F (n) a finite spectrum of type n, it can be proved that we can choose a vn-self map

v : ΣkF (n)→ F (n) such that 1 ∧ v = vp
l

n ∧ 1 as endomorphism of BP ∧ F (n) for some l ∈ N, a
reference for this assertion is [21, Thm. 4.6]. This implies that BP ∧ T (n) = BP ∧ v−1F (n) =
v−1
n BP ∧ F (n).

We claim that for any spectrum X the wedge product BP ∧T (n)∧X is K(n)-local. Consider
W a K(n)-acyclic spectrum then

[W,BP ∧ T (n) ∧X] ∼= [W, v−1
n BP ∧ F (n) ∧X] ∼= [W ∧DF (n), v−1

n BP ∧X].

By Remark 1.2.10 the spectrum DF (n) is of type n, hence W ∧DF (n) is E(n)-acyclic. Since
v−1
n BP is a BP -algebra which is a vn-periodic Landweber exact spectrum it is Bousfield equival-

ent to E(n) by [19, Cor. 1.12] and being v−1
n BP∧X a module over v−1

n BP it must be E(n)-local.
We conclude the above hom-group is zero hence BP ∧ T (n) ∧X is indeed K(n)-local.

Because E is a BP -module we have T (n)∧E is a retract of BP ∧T (n)∧E, hence even this
is K(n)-local.

By [21, Prop. 4.22] there exists a tower of generalized Moore spectra of type n

· · · →Mn →Mn−1 → · · · →M1 →M0

with BP∗Mk
∼= BP∗/Jk for some ideal Jk = (pi0 , vi11 , . . . v

in−1

n−1 ) of BP∗ such that the sequence
of n-uples (i0, . . . , in−1) is cofinal at the varying of k. Also, we can choose vn-self maps
wk : ΣmkMk → Mk which are compatible with the tower so that we can form the homotopy
limit

holim
←−
k

Tel(Mk) ∧ E = holim
←−
k

w−1
k Mk ∧ E.

We showed each term in the inverse system is K(n)-local, so the limit has this property as well.
This concludes our argument once we realize the presented homotopy limit is a model for

the T (n)-localization of E: for a reference of this fact see [25, Prop. 5.1], the proposed proof
actually deals with the localization of the sphere spectrum but it can be immediately adapted
to any other spectrum.

In the general case the fracture axiom immediately implies that if φa = φb for a < b then
φa = φbφa = 0. But we do not know if we can distinguish the compositions φA’s. In the
chromatic case we relied on the properties of the Morava K-theories and on the existence of a
universal example (namely BP ) which contains the information of all the involved homology
theories.

In the situation of Definition 2.1.1 we could ask the homotopy category B to be monoidal
and the homology theories K(i)∗ to be represented by objects K(i) with good properties: e.g.
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they are ring objects and they are skew fields. Then we could think of providing as universal
discriminant object U =

⊕n−1
i=0 K(i), but this will not do the trick.

Being K(i) a ring object it is local with respect to itself, hence we have

φaK(i) =

{
K(i) if a = i

0 else

thus

φAU =

{
K(i) if A = {i}
0 else.

The fact is that that the direct sum of the objects K(i) does not keep track of the gluing data
between the homology theories. Thus while U contains information about every isolated object
K(i), it does not provide any data about how they interact.

In fact, it is known that 〈BP 〉 6=
∨
i∈N〈K(i)〉, for reference see [34, Thm. 2.2].

This could be interpreted in the language of algebraic geometry as the fact that the Hopf
algebroid (BP∗, BP∗BP ) represents the moduli stack of formal group laws and the localization
LK(i) corresponds to the completion along the locally closed substack of formal group laws of
height exactly i. But to put together the information provided by these completions we need
the underlying complete stack.

4.5 Fracture diagrams

We now define the anafunctor version of the iterated localisations with respect to the direct
sums of the fixed homology theories K(i)∗.

Definition 4.5.1. Recall the poset Q and the order-embedding u : P → Q we presented in
Definition 2.2.2. Consider an object X ∈ C(Q × R), and the restriction (u × 1)∗ : C(Q × R) →
C(P×R) induced by u : P→ Q. We say that X is u-cartesian if the natural map

(u× 1)∗ : C(Q×R)(W,X)→ C(P×R)((u× 1)∗(W ), (u× 1)∗(X))

is an isomorphism for all W , or equivalently X is in the essential image of the functor

(u× 1)∗ : C(P×R)→ C(Q×R).

This equivalence comes from Lemma 3.2.3 and the triangular equalities.
We say that X is a fracture object if it is u-cartesian, and (u×1)∗(X) is fully localising. We

write F(R) for the subcategory of fracture objects in C(Q×R). We also define j : R→ Q×R
by j(r) = (u∅, R).

Remark 4.5.2. Because we have ordered Q by reverse inclusion, for U ∈ Q we have U ≤ uA
if and only if uA ⊆ U , which is equivalent to A ∈ U . Using this together with the Kan formula
(D4), the u-cartesian condition becomes

XU = holim
←−
A∈U

XuA.

Example 4.5.3. Consider the case N = {0, 1}, and put

W = vN = u{0} ∪ u{1} = {A ⊆ N | A 6= ∅} ∈ Q.

We then have Q = {uA | A ∈ P} ∪ {W, ∅}, with partial order as shown below.
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u∅ u{0}

W

u{0, 1}

u{1} ∅

An associated fracture diagram is in the shape is

X φ0X

λ01X

φ01X

φ1X 0.

Observe we are extending the fully localizing square associated to X ∈ C(R) by adding 0 (the
zero-localization) and λ01X by embedding the fracture square associated to K(0) and K(1).

Now consider the case N = {0, 1, 2}, where |P| = 8. It turns out that |Q| = 20: while it is
possible to present a graphical representation of Q it is not rather pleasant or illuminating. We
present instead a partial picture of a corresponding fracture diagram

X φ0X

φ1X φ01X

φ2X φ02X

φ12X φ012X.

λ012X

λ01X

λ12X

λ01φ2X

φ0λ12X

λ02X

Proposition 4.5.4. F is a thick subderivator of CQ, and j∗ : F → C is an equivalence of
derivators.

Proof. Let E(R) be the subcategory of u-cartesian objects in C(Q × R), so the functor (u ×
1)∗ : E(R) → C(P × R) is an equivalence. An object is u-cartesian if and only if the unit
map X → (u × 1)∗(u × 1)∗(X) is an isomorphism, and from this we see that E(R) is a thick
subcategory of C(Q×R).
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Now consider a morphism f : R → T of finite posets. We know from [10, Prop. 2.6] that
the resulting morphism f∗ : CT → CR preserves homotopy Kan extensions (both left and right).
Thus it commutes up to a canonical isomorphism with the functors (u × 1)∗, so it restricts to
give a functor f∗ : E(T )→ E(R). It is straightforward that the functors (1× f)∗ commute with
(u × 1)∗, so they restrict to give f∗ : E(R) → E(T ). By the dual of Lemma 3.8.11, we deduce
that E is a thick subderivator of CQ.

We can see that E is actually the essential image of u∗ : CP → CQ, by Proposition 3.4.1
this morphims must be fully faithful. Thus the restriction u∗ : CP → E is an equivalence of
derivators.

By the fully faithfulness of u∗ we see that an object X ∈ C(Q×R) lies in F(R) only if it is
the right Kan extension along u of an object of P(R), hence we obtain the diagram of derivators

CP E

P F

u∗

u∗

where the vertical arrows are inclusions and the horizontal ones equivalences. Therefore, com-
posing the inverse equivalence u∗ : F → P with ∅∗ of Proposition 4.3.7 we get the second
claim.

Definition 4.5.5. For U ∈ Q, we define θU to be the anafunctor

C j∗←− F U∗−−→ C.

We also note that an inequality U ≤ V gives a natural transformation U∗ ⇒ V ∗ and thus a
2-cell θU ⇒ θV between anafunctors, as discussed in Remark 4.2.3.

Remark 4.5.6. Consider an object X ∈ C(R), and a fracture object Y ∈ F(R) with j∗Y ' X.
Then the object YU = U∗Y ∈ C(R) is a choice of θU (X). As Y is u-cartesian we have

YU = holim
←−
U≤uA

YuA = holim
←−
A∈U

YuA.

As u∗Y ∈ P(R) we know that YuA is a choice of φA(X). Thus, the basic idea is that θU (X) =
holim
←− A∈U

φA(X).

Remark 4.5.7. Consider the original chromatic context where the homology theory K(i)∗ is
represented by a spectrum, so we can apply φA or θU to that spectrum. Using [34, Thm. 2.1
(i)] it is easy to see that φA(K(i)) ∼= K(i) if A ⊆ {i}, and φA(K(i)) = 0 in all other cases. From
this we find that θU (K(i)) ∼= K(i) if {i} ∈ U , and θU (K(i)) = 0 in all other cases.

Thus, for any U, V ∈ Q if there exists 0 ≤ i ≤ n − 1 such that {i} belongs to just one of
these two elements then the corresponding θU and θV are different.

However, since the occurrence {i} ∈ U is very rare this statement is not particularly strong.

Lemma 4.5.8. If A = {a1, . . . , ar} with a1 < · · · < ar then there are equivalences of anafunctors

θuA ' φA ' LK(a1) · · ·LK(ar).

Proof. We have a diagram as follows, which commutes on the nose:

F C

C P

uA∗

j∗ ' u∗

'

∅∗
'

A∗
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This gives an equivalence uA∗(j∗)−1 ' A∗(∅∗)−1 of anafunctors, or in other words θuA ' φA.
Moreover, Corollary 4.3.18 gives φA ' LK(a1) · · ·LK(ar).

Lemma 4.5.9. The functor θ∅ is zero.

Proof. Fix X ∈ C(R) and choose Y ∈ F(R) together with an isomorphism X ' j∗(Y ). It will
suffice to prove that Y∅ = 0. By Remark 4.5.6 we have

Y∅ = holim
←−
A∈∅

YuA.

Since (∅/u) = {A ∈ P : A ∈ ∅} = ∅ clearly Y∅ = 0.

Proposition 4.5.10. For vA = {T ⊆ N | T ∩A 6= ∅} we have θvA ' λA.

Proof. Let Y be any object of F(R). We claim that the morphism Yu∅ → YvA is a localisation
with respect to K(A)∗. In order to simplify notation, we replace C by CR and thus reduce to
the case R = e. As Y is a u-cartesian object, we see that YvA is the homotopy inverse limit of
(u∗Y )|vA. We define the poset

P ′ = P ′(A) = {B ⊂ A : B 6= ∅}.

Note that the inclusion i : P ′ → vA is left adjoint to the map

r : vA→ P ′ B 7→ B ∩A.

It follows from Proposition 3.6.15 that i is homotopy cofinal, so

YvA = holim
←−
B∈vA

YuB ∼= holim
←−
B∈P ′

YuB.

We can now apply Proposition 4.3.12 (with N replaced by A) to see that this homotopy limit
is a K(A)-localisation, as required.

Now define k : [1]→ Q by k(0) = u∅ and k(1) = vA. This gives a morphism k∗ : CQ → C[1],
and the previous paragraph shows that this restricts to give a morphism F → L (where L is as
in Definition 4.3.1, for localisation with respect to K(A)). We now have a diagram as follows,
which commutes on the nose:

F C

C L

vA∗

j∗ ' k∗

'

0∗
'

1∗

As 0∗ and j∗ are equivalences, we see that k∗ is also an equivalence. This gives an isomorphism
vA∗(j∗)−1 ' 1∗(0∗)−1 of anafunctors, or in other words θvA ' λA.

The crucial point of our proof will be the following result which reduces the composition of
the anafunctors θU to the operation ∗ on Q of Lemma 2.2.4.

Theorem 4.5.11. The composite θUθV is naturally isomorphic to θU∗V .

The proof will be given after some preliminaries.
We start with the following result, which will be needed in the proof of Theorem 4.5.11, and

which also shows that Theorem 4.5.11 is consistent with Proposition 4.3.17.
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Lemma 4.5.12. For A,B ∈ P we have

uA ∗ uB =

{
u(A ∪B) if A∠B

∅ otherwise.

Proof. By definition, we have

uA ∗ uB = {C ∪D | A ⊆ C,B ⊆ D,C∠D} ⊆ u(A ∪B).

If A∠B then we can choose k with a ≤ k for all a ∈ A, and k ≤ b for all b ∈ B. Then any
E ∈ u(A ∪ B) can be written as C ∪D with C = {j ∈ E | j ≤ k} ⊇ A and D = {j ∈ E | j ≥
k} ⊇ B, so E ∈ uA ∗ uB. We therefore have uA ∗ uB = u(A ∪ B) in this case. On the other
hand, if it is not true that A∠B then we can choose a ∈ A and b ∈ B with a > b. If C and D
are as in the definition then a ∈ C and b ∈ D so it cannot be that C∠D. From this it follows
that uA ∗ uB = ∅.

Definition 4.5.13. We say that an object X ∈ C(Q×Q×R) is a double fracture object if

(a) X is a fracture object relative to Q×R, so it lies in F(Q×R).

(b) The restriction to {u∅} ×Q×R ' Q×R lies in F(R).

We write F2(R) for the full subcategory of double fracture objects in C(Q × Q × R). We
also define k, l : Q → Q × Q by k(V ) = (u∅, V ) and l(U) = (U, u∅). This gives functors
k∗, l∗ : F2(R)→ C(Q×R). Finally, we define j2 : e→ Q×Q to be the map with image (u∅, u∅).

Proposition 4.5.14. F2 is a thick subderivator of CQ×Q, and the maps k and l give equivalences
as shown:

F2 F

F C.

k∗

'

l∗ '
j∗2

'
j∗'

j∗
'

Proof. Put E(R) = F(Q×R) ⊂ C(Q×Q×R) (so this is the subcategory of objects satisfying
condition (a)). From Proposition 4.3.12 we see that E is a thick subderivator of CQ×Q and that
k∗ : E → CQ is an equivalence of derivators. Moreover, it is clear k∗ restricts to an equivalence
k∗ : F2 → F , since F is a thick subderivator of CQ we deduce F2 must be a thick subderivator
of CQ×Q. We have seen that j∗ : F → C is also an equivalence.

Next, recall again that F is a thick subderivator. Any monotone map f : R → T gives
a functor (1 × f)∗ : C(Q × T ) → C(Q × R), and the subderivator property implies that (1 ×
f)∗(F(T )) ⊆ F(R). Take T = Q×R and f(r) = (u∅, r); the conclusion is then that l∗(E(R)) ⊆
F(R), and so l∗(F2(R)) ⊆ F(R). This means that we have a diagram of functors as claimed.
The upper right triangle commutes on the nose, while the lower left triangle commutes up to
a natural isomorphism interchanging the two copies of Q × Q to identify the subderivator of
CQ×{u∅} with F ⊂ C{u∅}×Q.

As j∗ and k∗ are equivalences, we can chase the diagram to see that l∗ and (u∅, u∅)∗ are
equivalences as well.

Example 4.5.15. We give an example of a diagram in F2 to make sense of the above Propos-
ition 4.5.14. We consider the case n = 2, since the cardinality of Q × Q increases quickly this
is the only non-trivial case we would be able to present concretely (e.g. if n = 3 then |Q| = 20
and |Q×Q| = 400). We also remove the element ∅ from Q to simplify the picture further, since
in this position the value of the diagram will be zero. Thus Q×Q has shape
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(u∅, u∅) (u∅, u{0})

(u∅, u{1}) (u∅, uN)

(u∅,W )

(u{0}, u∅) (u{0}, u{0})

(u{0}, u{1}) (u{0}, uN)

(u{0},W )

(W,u∅) (W,u{0})

(W,u{1}) (W,uN)

(W,W )

(u{1}, u∅) (u{1}, u{0})

(u{1}, u{1}) (u{1}, uN)

(u{1},W )

(uN, u∅) (uN, u{0})

(uN, u{1}) (uN, uN)

(uN,W )

and a corresponding double fracture diagram is

X φ0X

φ1X φ01X

λ01X

φ0X φ0φ0X

φ0φ1X φ0φ01X

φ0λ01X

λ01X λ01φ0X

λ01φ1X λ01φ01X

λ01λ01X

φ1X φ1φ0X

φ1φ1X φ1φ01X

φ1λ01X

φ01X φ01φ0X

φ01φ1X φ01φ01X.

φ01λ01X

The smaller squares are indexed on the second copy of Q, while the bigger square which contains
these is indexed on the first copy of Q. Thus the subdiagram on the upper left corner starting
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with X occupies the positions (u∅, V ) for V ∈ Q and by condition (b) of Definition 4.5.13 it
must be a fracture diagram. Condition (a) means that we have to obtain the other subdiagrams
by applying θU to get the one placed in position U . For example in the lower left corner we
have the positions (u{1}, V ) so the associated diagram is produced just by applying φ1 to the
starting square.

It is clear that at the position (U, V ) we have just θUθV of the value in (u∅, u∅).
Both l∗ and k∗ being equivalences corresponds to the fact that restricting along l and k we

obtain two fracture diagrams starting with X, and since fracture diagrams are determined by
their initial value this means we did not lose any information.

Corollary 4.5.16. For any U, V ∈ Q, the composite anafunctor θUθV is isomorphic to the
fraction

C
j∗2←− F2

(U,V )∗−−−−→ C.

Proof. Note that if X ∈ F2(R) then X ∈ F(Q × R) and F is a subderivator so we have
V ∗X ∈ F(R). We can thus interpret V ∗ as a morphism from F2 to F . It fits into a diagram as
follows, which commutes on the nose:

C

F2 F

C F C.

(U,V )∗

V ∗

k∗'
j∗2
'

U∗

j∗'

j∗
'

V ∗

The bottom edge represents the anafunctor θV , whereas the right hand edge represents θU . The
claim is clear from this.

Proposition 4.5.17. The morphism u2
∗ : CP×P → CQ×Q restricts to give an equivalence P2 →

F2, with inverse (u2)∗.

Proof. In this proof all the restrictions will be with respect to the base derivator C, even if we
will apply them to elements we will prove are in the derivator of (doubly) localizing or fracture
objects. This lets us avoid awkward notation and it is not confusing since the above derivators
are subderivators of appropriate shifts of C.

We must show that P2(R) ' F2(R) for all R, but we can reduce to the case R = e by
replacing C with CR.

We will factor the map u2 : P×P→ Q×Q as u2 = u1 ◦u2, where u1 = u×1: P×Q→ Q×Q
and u2 = 1 × u : P × P → P × Q. We also use the maps i∅ : P → P × P and iu∅ : Q → Q × Q
given by i∅(B) = (∅, B) and iu∅(V ) = (u∅, V ). These fit in a commutative diagram

P P× P

Q Q×Q.

i∅

u u2

iu∅

Id

Note that an object X ∈ C(P×P) lies in P2(e) if and only if it satisfies the following conditions:

(a) X ∈ P(P)
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(b) i∗∅X ∈ P(e).

Similarly, by unwinding the definitions a little we see that an object Y ∈ C(Q×Q) lies in F2(e)
if and only if the following hold:

(c) u∗1Y ∈ P(Q)

(d) Y = (u1)∗(u
∗
1Y )

(e) i∗u∅Y ∈ F(e).

Suppose that Y ∈ F2(e), so that (c), (d) and (e) are satisfied. Put X = (u2)∗Y ∈ C(P × P);
we must show that X ∈ P2(e), or in other words that (a) and (b) are satisfied. Note that
X = u∗2(u∗1Y ) and u∗1Y ∈ P(Q) by (c) and P is a subderivator so u∗2(u∗1Y ) ∈ P(P) so (a) is
satisfied. Moreover, the diagram shows that i∗∅X = i∗∅(u

2)∗Y = u∗i∗u∅Y , and i∗u∅Y ∈ F(e) by (e),
so u∗i∗u∅Y ∈ P(e) and (b) holds.

Suppose instead that we start with X ∈ P2(e), so that (a) and (b) hold. Put Y = u2
∗X ∈

C(Q×Q); we must then prove (c), (d) and (e). We first note that Y = (u1)∗(u2)∗X and u1 is
fully faithful so ε : u∗1(u1)∗ ∼= Id and we deduce u∗1Y

∼= (u2)∗X. Moreover, we have X ∈ P(P)
by (a) and P is a subderivator so (u2)∗X ∈ P(Q) and this proves (c). Condition (d) is also
clear from this discussion. For condition (e), we note that the diagram gives a canonical mate

(Id∗)X : i∗u∅Y = i∗u∅u
2
∗X → u∗i

∗
∅X ∈ C(Q).

We know that i∗∅X ∈ P(e) by (b), and it follows that u∗i
∗
∅X ∈ F(e). It will therefore suffice to

show that (Id∗)X is an isomorphism. Using (D2) this is equivalent to to checking that V ∗(Id∗)X
is an isomorphism in C(e) for all V ∈ Q. Put

B = {B ∈ P | V ≤ uB}
C = {(A,B) ∈ P× P | (u∅, V ) ≤ (uA, uB)}.

(These can in fact be simplified to B = V and C = P × V .) The map i∅ restricts to give a
map B→ C. The Kan formula tells us that the domain of V ∗(Id∗)X is holim

←− C
X, whereas the

codomain is holim
←− B

i∗∅X. The evident projection C → B is right adjoint to i∅, so i∅ : B → C is

homotopy cofinal by Proposition 3.6.15, so (Id∗)X is an isomorphism as required.
The discussion above shows that the adjunction of morphisms

(u2)∗ : CQ×Q � CP×P : u2
∗

restricts to an adjunction

(u2)∗ : F2 � P2 : u2
∗

and by Proposition 3.4.1 the counit ε : (u2)∗u2
∗ ⇒ Id is invertible. All that is left is to prove

is that when Y ∈ F2(e), the unit map Y → u2
∗(u

2)∗Y is also an isomorphism. Put Z = u∗1Y ,
so condition (d) gives Y ∼= (u1)∗Z (via the unit associated to u∗1 a (u1)∗). It will suffice to
show that Z ∼= (u2)∗u

∗
2Z (via the unit for u∗2 a (u2)∗). Note that Z ∈ P(Q) by condition (c),

and P is a subderivator, so (u2)∗u
∗
2Z also lies in P(Q). As i∗∅ : P → C is an equivalence, it will

suffice to check that the map i∗∅Z → i∗∅(u2)∗u
∗
2Z is an isomorphism. For this, we claim that

i∗∅(u2)∗u
∗
2Z
∼= u∗u

∗i∗∅Z. This follows from the fact that i∗∅ : CP → C is a morphism of derivators
and so it is compatible with u∗ and u∗. We must therefore check that the map i∗∅Z → u∗u

∗i∗∅Z
is an isomorphism. Here i∗∅Z = i∗∅u

∗
1Y = i∗u∅Y , and this lies in F(e) by condition (e), so the

claim follows from the definition of F .
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Definition 4.5.18. Given U, V ∈ Q we put

U � V = (U × V ) ∩M = {(A,B) ∈ P× P | A ∈ U, B ∈ V, A∠B}.

The definition of U ∗ V can then be written as

U ∗ V = {A ∪B | (A,B) ∈ U � V }.

Note that U � V and U ∗ V can be seen as subposets of M and P respectively. We define
σ : U � V → U ∗ V by σ(A,B) = A ∪B, and note that this is a morphism of posets.

Proposition 4.5.19. The map σ : U � V → U ∗ V is homotopy cofinal.

Proof. If U � V = ∅ the claim becomes trivial, hence we examine the case U � V 6= ∅.
We apply Proposition 3.6.15 after showing that for every C ∈ U ∗V the slice category (σ/C)

is D-contractible.
If C = ∅ then (σ/C) = {(∅, ∅)} thus we can assume C is not empty. For any integer i we

set C≤i = {c ∈ C : c ≤ i} and C≥i = {c ∈ C : c ≥ i}.
We start by defining the map

φ : (σ/C)→ (σ/C) (A,B) 7→ (C≤maxA, C≥minB)

where we assume the convention min ∅ = n and max ∅ = −1. This ensures C≤maxA∠C≥minB

even in the case one among A and B is empty. It is easy to see that φ is well-defined: since
A ⊂ C we have A ⊂ C≤maxA and being U upward closed we deduce C≤maxA ∈ U , similarly
C≥minB ∈ V . Also φ is a morphism of posets: if (A,B) ≤ (A′, B′) then A ⊂ A′ implies maxA ≤
maxA′ which means C≤maxA ⊂ C≤maxA′ , similarly B ⊂ B′ implicates C≥minB ⊂ C≥minB′ .
Moreover, we have Id ≤ φ.

Now we observe there exists k ∈ {0, 1, . . . , n − 1} such that (C≤k, C≥k) ∈ U � V : since by
the definitions (σ/C) is not empty we can take an element (A,B) ∈ (σ/C), then if A 6= ∅ we
set k = maxA. Clearly A ⊂ C≤k and B ⊂ C≥k thus (C≤k, C≥k) ∈ U �V again because both U
and V are upward closed. If A = ∅ take k = minC and it is trivial to see this does the trick.

We define the map

λk : (σ/C)→ (σ/C)

(A,B) 7→ (Ã, B) where Ã =

{
A if maxA ≤ k,
C≤k if maxA > k.

The idea is to truncate A at k if its maximum is bigger that this value, but since U is not
downward closed in general A≤k will not be an element of U , thus we substitute A with C≤k
which is in U by assumption.

It is easy to see λk is well defined: if maxA > k then clearly C≤k∠B hence (C≤k, B) ∈ (σ/C).
We verify λk is a map of posets, that is A ⊂ A′ implies Ã ⊂ Ã′. As before we notice that
maxA ≤ maxA′, if maxA′ ≤ k then Ã = A ⊂ A′ = Ã′, if k < maxA then Ã = C≤k = Ã′.
For the case maxA ≤ k < maxA′ we observe that the condition (A,B) ∈ (σ/C) implies A ⊂ C
thus Ã = A ⊂ C≤k = Ã′. Moreover we have the inequality φ ≥ λk.

Similarly we can define a map

%k : (σ/C)→ (σ/C)

(A,B) 7→ (A, B̃) where B̃ =

{
B if k ≤ minB,

C≥k if minB < k.

84



We can use the same arguments to show this is well defined and it is non-decreasing, also φ ≥ %k
and %kλk = λk%k.

If we apply λk to the inequalities Id ≤ φ ≥ %k we get λk ≤ λkφ ≥ λk%k, thus in the end we
have a chain of inequalities

Id ≤ φ ≥ λk ≤ λkφ ≥ λk%k.

But (C≤k, C≥k) is the maximal element in the image of the last map, thus by Remark 3.6.6 we
conclude the slice is contractible.

Proposition 4.5.20. Consider the map µ : Q × Q → Q (given by (U, V ) 7→ U ∗ V ) and the
induced morphism µ∗ : CQ → CQ×Q. This restricts to give an equivalence µ∗ : F → F2, making
the following diagram commute up to natural isomorphism:

P F

P2 F2.

u∗
'

inc∗ σ∗ ' µ∗'

u2∗

'

Proof. By the usual reduction via shifts, it will suffice to work with P(e), F(e) and so on.
Proposition 4.3.16 gives the left hand equivalence, the top and bottom equivalences are given
by Proposition 4.5.4 and Proposition 4.5.17 respectively. We claim that for X ∈ P(e), there is
a natural isomorphism µ∗u∗X ' u2

∗ inc∗ σ
∗X. Assuming this, everything else follows easily by

chasing the diagram.

To prove the claim, we apply Proposition 3.6.17 to the square

M P

Q×Q Q,

σ

u2◦inc u

µ

Id

which commutes by Lemma 4.5.12. This square induces the canonical mate (Id)∗ : µ∗u∗ ⇒
u2
∗ inc∗ σ

∗, and the Proposition tells us that this is an isomorphism provided that the map

σ(U,V ) : ((U, V )/(u2 ◦ inc))→ (µ(U, V )/u)

is homotopy cofinal for all U, V ∈ Q. By unwinding the definitions, we see that this is just the
map U � V → U ∗ V whose cofinality was proved in Proposition 4.5.19.

Proof of Theorem 4.5.11. By Proposition 4.5.20 we obtain the following commutative diagram:

F C

C F2.

(U∗V )∗

µ∗

'j∗'

j∗2

'

(U,V )∗

The anafunctor provided by the upper left corner is θU∗V by definition, and the other given on
the lower right corner is θUθV by Corollary 4.5.16.
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Proposition 4.5.10 established the identification θvA ∼= λA, thus by Theorem 4.5.11 we have
for any k-uple of subsets A = (A1, . . . , Ak)

λA = λA1 ◦ · · · ◦ λAk ∼= θvA1∗vA2∗···∗vAk .

But it would be better to give a more intrinsic characterization of the element of Q presenting
such iterated localization.

Definition 4.5.21. Let A = (A1, . . . , Ak) an uple of elements of P, a subset T ∈ P is called a
thread set of A if and only if there exists an increasing sequence a1 ≤ a2 ≤ · · · ≤ ak such that
ai ∈ T ∩Ai for all 1 ≤ i ≤ k.

We define T (A) to be the collection of all thread sets of A.

Lemma 4.5.22. For any A we have T (A) ∈ Q. Moreover, we have the equality

T (A) = vA1 ∗ · · · ∗ vAk.

Proof. The claim T (A) ∈ Q is trivial: by definition T (A) ⊂ P and if T is a thread set of A then
clearly any B ∈ P containing it contains also an increasing sequence presenting B as a thread
set.

The second assertion can be easily be proven by induction. If k = 1 clearly T (A1) = vA1.
For k > 1 we have to apply the induction hypothesis after showing

T (A1, . . . , Ak) = T (A1, . . . , Ak−1) ∗ vAk.

For T ∈ T (A) there exits a sequence a1 ≤ · · · ≤ ak with ai ∈ Ai ∩ T , so we can give a
decomposition T = T≤ak ∪ T≥ak which presents T as an element of the set on the right hand
side.

Conversely take T = B ∪C with B ∈ T (A1, . . . , Ak−1), C ∈ vAk and B∠C. By assumption
there exists a sequence a1 ≤ · · · ≤ ak−1 with ai ∈ B ∩Ai, now B∠C implies ak−1 ≤ maxB ≤ c
for any c ∈ C ∩Ak. Therefore a1 ≤ · · · ≤ ak−1 ≤ c is a sequence establishing T ∈ T (A).

Corollary 4.5.23. Let A and B be two uples of subsets, even with a different number of ele-
ments. If T (A) = T (B) then λA ∼= λB.

Proof. Immediate from Theorem 4.5.11 and the above discussion.

Lemma 4.5.24. Let A,B ∈ P with A ⊆ B, then vA ∗ vB = vB ∗ vA = vA.

Proof. We prove only vA ∗ vB = vA, the other equality can be showed with similar arguments.
We first establish vA ⊆ vA ∗ vA: if C ∈ vA by definition there exists x ∈ C ∩ A, so

C = C≤x ∪ C≥x giving the inclusion.
It is immediate that if U, V,W ∈ Q and V ⊆ W then U ∗ V ⊆ U ∗W and V ∗ U ⊆ W ∗ U ,

thus vA ⊆ vA ∗ vA ⊆ vA ∗ vB (because A ⊆ B implies vA ⊆ vB) and vA ∗ vB ⊆ vA ∗ u∅ = vA
(because u∅ is the minimal element of Q).

Corollary 4.5.25. Let A = (A1, . . . , Ak) as above and suppose for some l we have Al ⊆ Ai for
all 1 ≤ i ≤ k. Then λA ∼= λAl.

Proof. This is a straightforward consequence of Lemma 4.5.22 and Lemma 4.5.24.

Remark 4.5.26. Lemma 4.5.24 is just the combinatorial version of the first part of Lemma 1.1.7.
For two localizations LE and LF the inequality 〈E〉 ≤ 〈F 〉 between the associated Bousfield
classes means that being LF -acyclic implies being LE-acyclic, therefore LELF ∼= LFLE ∼= LE .

By the notation fixed in Definition 2.1.1, it is clear that for A ⊆ B we have 〈K(A)〉 ≤ 〈K(B)〉.
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Example 4.5.27. We will use Corollary 4.5.23 to compute all the iterated compositions of λA
for A = ({0, 1, 3}, {0, 2, 3}). It is easy to verify that

v{0, 2, 3} ∗ v{0, 1, 3} = v{0, 3},

this and Lemma 4.5.24 imply that

T (A)∗k = v{0, 3} ∀k ≥ 2

thus λkA = λ{0,3}.

Another application of Corollary 4.5.23 lets us provide an explicit formula for λi in the
situation of Example 2.1.12.

Proposition 4.5.28. In the setting of Example 2.1.12 we fix i ∈ N and define A = N≥i,
B = N≤i. Then for any G-equivariant spectrum X we have

λA(X) = F (Σ∞+ EFi, X) λB(X) = Σ∞ẼFi+1 ∧X

where F (−,−) denotes the internal hom of the G-equivariant stable homotopy category.

Proof. Recall we showed that for any 0 ≤ j ≤ n − 1 a G-spectrum Y is K(j)∗-acyclic if and
only if φHjY = 0.

For the first claim we observe that [32, Prop. 3.3.10] implies a G-spectrum X is K(A)∗-

acyclic if and only if π
Hj
∗ (X) = 0 for all j ≥ i. The localization corresponding to this class of

acyclics has been studies extensively in the literature and it is known to have such expression:
for a reference see [27, Ch. IV, Prop. 6.4].

We now pass to the second identification. For i = n− 1 we observe the K(B)∗-acyclics are
just 0, hence λB is trivially the identity functor. So we can assume i < n−1, we will be proving
directly that X → Σ∞ẼFi+1 ∧X is a K(B)∗-localization.

The fiber of this map is Σ∞+ EFi+1 ∧X, since (EFi+1)Hj = ∅ for all j ≤ i it is immediate to
see this G-spectrum is K(B)∗-acyclic.

To conclude we prove Σ∞ẼFi+1 ∧X is K(B)∗-local: fix Z a K(B)∗-acyclic G-spectrum, we
have to verify that

[Z,Σ∞ẼFi+1 ∧X] = 0.

Since ΦHjZ = 0 for 0 ≤ j ≤ i the map Σ∞+ EFi+1 ∧ Z → Z must be an equivalence by
[32, Prop. 3.3.10], moreover Σ∞+ EFi+1 belongs to the localizing subcategory of B generated by
{Σ∞+ G/Hj : j ≥ i + 1} (see [27, Ch. IV, §6] and surrounding discussion) so we can reduce to
prove

[Z ∧ Σ∞+ G/Hj ,Σ
∞ẼFi+1 ∧X] = 0

for any j ≥ i+ 1. Using the self-duality of the suspension spectra of the orbits we have

[Z ∧ Σ∞+ G/Hj ,Σ
∞ẼFi+1 ∧X] = [Z,Σ∞+ G/Hj ∧ Σ∞ẼFi+1 ∧X]

and we notice that the G-spectrum Σ∞+ G/Hj ∧Σ∞ẼFi+1 is contractible since all its geometric
fixed points are trivial.

Corollary 4.5.29. In the setting of Example 2.1.12, for any i ∈ N and any G-spectrum X we
have

λi(X) = F (Σ∞+ EFi,Σ∞ẼFi+1 ∧X).
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Proof. Taken A and B as in the notation of Proposition 4.5.28 it is trivial to verify the equality
T (A,B) = u{i}, then Corollary 4.5.23 implies λi(X) = λAλB(X). We have only to use the
formulas showed in Proposition 4.5.28 to conclude.

A question which immediately arises from the above discussion is that if we can express
every element of Q as T (A) for some uple of subsets. In fact we proved that the all the iterated
localizations λA can be expressed as anafunctors θU for particular elements of Q, so it comes
natural asking if also the converse holds. Unfortunately this is false: we can easily present an
explicit element U which is not a collection of thread sets.

Example 4.5.30. Fix n = 3 and take U = {{0, 1}, {1, 2}, {0, 1, 2}} ∈ Q. We claim that
U 6= T (A) for any A. Indeed, suppose that U = T (A) with A = (A1, . . . , Ak) as usual. Then
{1} 6∈ T (A), so we can choose m with 1 6∈ Am. Similarly {0} 6∈ T (A), so 0 6∈ Al for some l.
On the other hand, we have {0, 1} ∈ T (A), which means that there exists p with 1 < p ≤ k
and 0 ∈ Ai for i < p and 1 ∈ Ai for i ≥ p. From this it is clear that p > m. Similarly, as
{1, 2} ∈ T (A) there must exist q with 1 ≤ q < k and 1 ∈ Ai for i ≤ q and 2 ∈ Ai for i > q. From
this we see that q < m and so q ≤ p − 2. It follows in turn that {0, 2} ∈ T (A), contradicting
our assumption that T (A) = U .

Remark 4.5.31. If we consider Example 4.5.3 we see that in such diagram the object θU (X),
for the element U defined in Example 4.5.30, is presented as the homotopy pullback of the span

φ01X

φ12X φ012X.

This cannot be reduced to a chromatic fracture square. We currently do not know whether it
can be actually be written as iterated localization of X at all.

To conclude this section we discuss if the above formulation provides a concrete upper bound
to the number of iterated localizations for a fixed n. That is, can we compute the cardinality
of Q?

Since Q ⊂ P(P) we have |Q| ≤ 22n but this number obviously amply overestimates such
cardinality.

It is known that an upward closed subset U of a finite poset P is uniquely identifiable with
an antichain, which is a collection of non-comparable elements of P . The bijection is provided
just by taking the minimal elements in U .

In the case of P, the power set of a set with n elements, the question of counting the
number of such antichains is a famous problem: this number is usually referred as the Dedekind
number M(n). This can also be characterized as the cardinality of a free distributive lattice in
n generators, or the number of monotone Boolean functions in n variables.

Unfortunately, even this better estimate has exponential growth. Moreover, M(n) has been
computed explicitly only for n ≤ 8. In [23] it is proved that

2( n
bn/2c) ≤M(n) ≤ 2

(
1+O

(
logn
n

))
( n
bn/2c),

where O
( logn

n

)
indicates a function in n with the same asymptotic behaviour as logn

n .

Other more accurate bounds exist, but they are more complicated to present. The bottom
line is that we cannot expect to determine |Q| exactly and our approach does not offer any
further insight on this problem than the results already existing in the literature.

88



4.6 Monoidal structures

In the setting of Definition 2.1.1, if the homotopy category B has a symmetric monoidal
structure and the kernels of the homology theories K(i)∗ are tensor ideals it is know that the
localizations λA admit the structure of lax monoidal functors.

We want to show that also our generalized localizations θU can be endowed with a lax
monoidal structure, spelled out in the appropriate sense for anafunctors.

We refer to [9, §2] for the complete account on the notion of monoidal derivator.

Lemma 4.6.1. Let C,D be two prederivators, then we can define a new prederivator C × D by
the following composition of 2-functors

PoSetop
∆−→ PoSetop × PoSetop

C×D−−−→ CAT× CAT
×−→ CAT,

where ∆: PoSetop → PoSetop×PoSetop is the diagonal and × : CAT×CAT→ CAT the cartesian
product of categories.

Moreover, if both C and D are derivators so is C × D. If C and D are both strong or stable
so is C × D.

Proof. See [9, Lemma 1.2].

This means that the usual cartesian product of categories endows PDER, the 2-category of
pre-derivators, with the structure of symmetric monoidal 2-category. Its unit consists of y(e),
the derivator represented by the category e, and the braiding isomorphism τ is induced by the
one on CAT exchanging positions in the product of two categories.

This allows us to provide the following easy definition

Definition 4.6.2. A (symmetric) monoidal prederivator is a (symmetric) monoidal object of
the monoidal 2-category (PDER,×, y(e)).

While conceptually neat, it is better to unravel this definition to have a better understanding
of the notion.

A monoidal prederivator consists in a 6-uple of objects (C,⊗,1, a, l, r) where C is a prede-
rivator, ⊗ : C × C → C and 1 : y(e) → C are two morphisms of derivators, and finally a, l, r are
three invertible modifications as in the following diagrams

y(e)× C C × C C × y(e) C × C × C C × C

C C × C C.∼=

l

1×C

⊗

C×1

∼=

r

⊗×C

C×⊗ ⊗

⊗

a

These modifications are required to satisfy the usual pentagon and triangle identity. Moreover,
C is symmetric if also we have an invertible 2-cell b fitting in the diagram

C × C C × C

C
⊗

τ

⊗
b

and satisfying the appropriate coherence conditions, we refer to [6, Def. 13] for the explicit
spelling.

By specifying these data at any finite poset R, we easily deduce C(R) is a (symmetric)
monoidal category with tensor product ⊗R, unit 1R and the required associator and units given
by aR, lR and rR.
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Since ⊗ and 1 are morphism of prederivators, for every u : R → T we have associated
compatibility isomorphism γu⊗ and γu

1
which endow u∗ with the structure of strong (symmetric)

monoidal functor. The coherence conditions required by monoidal functors are obtained after
unravelling the fact that a, l, r are modifications.

Therefore, C factors as C : PoSetop → MonCAT, where the target is the 2-category of mon-
oidal categories. Similarly in the symmetric case C lands in sMonCAT, the 2-category of sym-
metric monoidal categories.

In the case of derivators, we want also to ensure the left Kan extensions to be (strong)
monoidal functors if possible. This is why in [9, Def. 2.4] we require ⊗ to preserve homotopy
left Kan extensions in both variables: this implies u! admits a canonical (i.e. arising from the
appropriate mates) structure of strong monoidal functor.

We do not require ⊗ to commute with right Kan extensions simply because usually this is not
the case. In a lot of situations we have that the tensor product on a category ⊗ : M×M→M
is a left adjoint of two variables: that is we have two functors

homl,homr : Mop ×M→M

called respectively the left and right internal hom functors, which come with compatible families
of isomorphisms

HomM(X ⊗ Y, Z) ∼= HomM(Y,homl(X,Z)) ∼= HomM(X,homr(Y,Z))

for any X,Y, Z ∈ M, providing us with adjunctions X ⊗ − a homl(X,−) and − ⊗ Y a
homr(Y,−). Thus, we should expect the tensor product to preserve left Kan extensions in both
variables, but we have no indication it should do the same for right Kan extensions in general.

In the case of a derivator C, if for every R the tensor product ⊗R on C(R) is a left adjoint
of two variables there is a canonical way to collect the two right adjoints homl(−,−) and
homr(−,−) into lax bimorphisms of derivators. In this manner ⊗ preserving left Kan extensions
corresponds to some of the natural transformations γhoml , γhomr to be invertible (see [9, Lemma
1.9], which is an adaptation of Lemma 3.9.4 to bimorphisms). This justifies the following
definition.

Definition 4.6.3. A monoidal derivator C is biclosed if its tensor product ⊗ is a left adjoint of
two variables. If additionally C is symmetric then the braiding isomorphism let us identify the
two right adjoints of the tensor product ⊗, so we call C simply closed.

As we could expect, (symmetric) monoidal model categories induce a monoidal structure on
the associated homotopy derivator.

Theorem 4.6.4. LetM be a combinatorial monoidal model category, then the associated homo-
topy derivator HM admits the structure of biclosed derivator. Furthermore, if M is symmetric
then HM is closed.

Therefore, for the remainder of this section we suppose that the geometric model B0 invoked
in Definition 2.1.1 is a combinatorial (symmetric) monoidal model category.

This is not actually too restricting: we observe that in the first three examples presented
(Examples 2.1.9, 2.1.10 and 2.1.11) the chosen model B0 is in this form. For Example 2.1.12
the model category of G-orthogonal spectra we proposed is not combinatorial, nevertheless it is
Quillen equivalent to the flat model structure on the category of symmetric G-spectra ([15, Thm.
7.5]) which has this property.

We can finally start with the preliminary results.
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Lemma 4.6.5. Let R be a finite poset, take X,Y ∈ C(Q × R) such that Y is u-cartesian and
the associated restrictions u∗X,u∗Y satisfy the assumptions of Lemma 4.3.8. Then we have a
bijection

j∗ : C(Q×R)(X,Y )→ C(R)(j∗X, j∗Y ).

Proof. Since Y is u-cartesian by Lemma 3.4.1 the unit morphism Y → u∗u
∗Y is invertible.

Thus composing along it induces an isomorphism

C(Q×R)(X,Y ) ∼= C(Q×R)(X,u∗u
∗Y )

now the target is isomorphic to C(P × R)(u∗X,u∗Y ) and the composition these two bijections
coincides with

u∗ : C(Q×R)(X,Y )→ C(P×R)(u∗X,u∗Y ).

Finally apply Lemma 4.3.8 to get the desired isomorphism

∅∗u∗ = j∗ : C(Q×R)(X,Y )→ C(R)(j∗X, j∗Y ).

Lemma 4.6.6. Suppose that X,Y, Z ∈ F(R). Then the natural map

αR : C(Q×R)(X ⊗ Y,Z)→ C(R)(j∗X ⊗ j∗Y, j∗Z)

is a bijection. Moreover, this is compatible with the restrictions.

Proof. We start by observing that in general X ⊗ Y will not be an object of F(R) any more
(since the tensor product of two K(i)∗-local objects is not necessarily K(i)∗-local), but it still
retains the property that the induced maps u∗(X⊗Y )A → u∗(X⊗Y )tA are K(t)∗-equivalences
(where A ∈ P with t < a for any a ∈ A) by our assumption that the localizing categories of
K(t)∗-acyclics are tensor ideals.

Lemma 4.6.5 gives a bijection

j∗ : C(Q×R)(X ⊗ Y, Z)→ C(R)(j∗(X ⊗ Y ), j∗Z)

and precomposing with the isomorphism

(γ⊗j )−1 : j∗X ⊗ j∗Y ∼= j∗(X ⊗ Y )

coming from the fact that j∗ is a strong monoidal functor we obtain the desired αR.

We now spell out explicitly the compatibility with restrictions along u : T → R: we claim
the following diagram commutes

C(Q×R)(X ⊗ Y, Z) C(R)(j∗(X ⊗ Y ), j∗Z) C(R)(j∗X ⊗ j∗Y, j∗Z)

C(Q× T )(u∗(X ⊗ Y ), u∗Z) C(T )(u∗(j∗X ⊗ j∗Y ), u∗j∗Z)

C(Q× T )(u∗X ⊗ u∗Y, u∗Z) C(T )(j∗(u∗X ⊗ u∗Y ), j∗u∗Z) C(T )(j∗u∗X ⊗ j∗u∗Y, j∗u∗Z)

j∗

u∗

−◦(γ⊗j )−1

u∗

−◦(γ⊗u )−1 −◦(γ⊗u )−1

j∗ −◦(γ⊗j )−1
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where the two horizontal compositions coincide with αR and αT . Recall that for any morphism
of derivators F the compatibility conditions on the natural transformations γF require for any

two composable morphisms of posets I
a−→ J

b−→ K the equality

γFba = (a∗b∗FK
γFb−−→ a∗FJb

∗ γFa−−→ FIa
∗b∗)

must hold. Specifying this for F = ⊗ and j, u and considering these two maps commute
appropriately the claim follows trivially.

Proposition 4.6.7. Define E to be the bipullback derivator of the span

F

F × F C × C C.

j∗

j∗×j∗ ⊗

Let G be the prederivator determined by

G(R) = {(X,Y, Z, ψ) : X,Y, Z ∈ F(R), ψ : X ⊗ Y → Z s.t. αR(ψ) is invertible}

for any R finite poset and for any u : T → R the associated restriction is given by

u∗ : G(R)→ G(T ) (X,Y, Z, ψ) 7→ (u∗X,u∗Y, u∗Z,ψu)

where the morphism ψu is the composition

u∗X ⊗ u∗Y (γ⊗u )−1

−−−−→ u∗(X ⊗ Y )
u∗ψ−−→ u∗Z.

Then the bijection αR induces an equivalence of derivators F : G → E

FR : G(R)→ E(R) (X,Y, Z, ψ) 7→ (X,Y, Z, αR(ψ)).

Proof. Observe the compatibility of α with restrictions proved in Lemma 4.6.6 implies for any
u : T → R we have αT (ψu) = (αRψ)u, ensuring that the restriction for G is well defined: that is
αT (ψu) is a bijection.

We now claim F is a strict morphisms of prederivators, i.e. it commutes with restrictions.
This is equivalent to the statement αR(ψu) = αT (ψ)u (for the restrictions with respect to G and
E respectively) which can be reduced to γ⊗ju = γ⊗uj . More explicitly, recalling the description of
u∗ for the bipullback E we have (αTψ)u and αR(ψu) are given by the two rows in the diagram

u∗j∗X ⊗ u∗j∗Y u∗(j∗X ⊗ j∗Y ) u∗j∗(X ⊗ Y ) u∗j∗Z

j∗u∗X ⊗ j∗u∗Y j∗(u∗X ⊗ u∗Y ) j∗u∗(X ⊗ Y ) j∗u∗Z

(γ⊗u )−1 u∗(γ⊗j )−1
u∗j∗ψ

(γ⊗j )−1
j∗(γ⊗u )−1 j∗u∗ψ

and the left square commutes by γ⊗ju = γ⊗uj .

It is trivial to see F is an equivalence, hence by Lemma 3.9.8 also G is a derivator.

Proposition 4.6.8. For any U ∈ Q there exist 2-cells mU : ⊗ ◦θU × θU ⇒ θU ◦ ⊗ and
uU : 1 ⇒ θU ◦ 1 endowing θU with the structure of lax monoidal functor. Moreover, these
natural transformations are compatible in the sense that for U ≤ V in Q the appropriate dia-
grams involving mU , uU ,mV , uV and θU ⇒ θV commute.
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Proof. We first provide explicitly mU : recall this must be a 2-cell between the anafunctors

F : C × C j∗×j∗←−−−− F ×F U∗×U∗−−−−→ C × C ⊗−→ C

G : C × C ⊗−→ C j∗←− F U∗−−→ C.

We have an invertible natural transformation γ⊗U : U∗ ◦ ⊗ ⇒ ⊗ ◦ U∗ × U∗ : CQ × CQ → C which
restricted to F × F ⊂ CQ × CQ allows us to rewrite F as

F : C × C j∗×j∗←−−−− F ×F ⊗−→ CQ U∗−−→ C.

By the definition of the composition of anafunctors, G coincides with the fraction induced by
the following bipullback

P F

CQ C

C × C C

j∗

U∗
∼=

⊗

if we precompose ⊗ : C × C → C along j∗ × j∗ we obtain

E P F

CQ C.

F × F C × C C

j∗

U∗

j∗×j∗

∼=

⊗

By the pasting law for bipullbacks the left square is also a bipullback. Since j∗ × j∗ is an
equivalence the induced morphism E → P is an equivalence of derivators as well.

Now Proposition 4.6.7 implies we can substitute E with G. Moreover, we can extend this
diagram of derivators as follows

G F C

F × F CQ C

C × C C

a

b U∗

µ

⊗

j∗×j∗

U∗

j∗

⊗

(γ⊗j )−1

∼=

where for a generic poset R the functors aR and bR are given by the formulas

aR : G(R)→ F(R)×F(R) (X,Y, Z, ψ) 7→ (X,Y )

bR : G(R)→ F(R) (X,Y, Z, ψ) 7→ Z

and the natural transformation µR is provided by (X,Y, Z, ψ) 7→ ψ.

This induces the 2-cell mU : F ⇒ G: we write down it explicitly via the diagram
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F × F

C × C G CQ C.

G F

j∗×j∗
⊗

a

U∗

j∗×j∗◦a
b

µ

We can form the 2-cell uU in a similar fashion: first we observe that the composite θU ◦ 1
consists in the fraction obtained from the pibullback

I F C

y(e) C

j∗

U∗

∼=

1

where for any R finite poset

I(R) = {(∗, Y, %) : ∗ ∈ y(e)(R), Y ∈ F(R), % : 1R(∗)
∼=−→ j∗Y }.

Lemma 4.6.5 provides a bijection

βR : C(Q×R)(1Q×R(∗), Y )
j∗R−→ C(R)(j∗1Q×R(∗), j∗Y ) ∼= C(R)(1R(∗), j∗Y )

which we can use as in Proposition 4.6.7 to define an equivalence between I and another
derivator J given by

J (R) = {(∗, Y, σ) : ∗ ∈ y(e)(R), Y ∈ F(R), σ : 1Q×R(∗)→ Y s.t. βR(σ) is invertible}.

This new model for the bipullback lets us provide a new diagram as follows

J F

y(e)Q CQ C

y(e) C

c

d

ε

j∗

1
Q

j∗

U∗

∼=

1

with (εR)(∗,Y,σ) = σ, furthermore we added the transformation j∗ ⇒ U∗ arising from the
inequality u∅ ≤ U in Q.

From this we see ε induces a 2-cell uU : 1⇒ θU ◦ 1: explicitly we write 1 as the fraction

y(e)
j∗◦c←−− J j∗◦c−−→ y(e)

1−→ C

which is isomorphic via γ1j to

y(e)
j∗◦c←−− J c−→ y(e)Q

1
Q
−→ CQ j∗−→ C

and now form the diagram
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J y(e)Q

y(e) CQ C.

J F

j∗c

c

ε

1
Q

j∗

U∗

j∗c
d

Compatibility of mU and uU with the inequalities U ≤ V is immediate from the construction:
we saw these two natural transformations are induced respectively by µ and ε which are modi-
fications between morphisms of derivators landing in CQ, before even taking the evaluation at
U ∈ Q.

From the construction of µ and ε it is also clear that compatibility of mU and uU with
the associator a and the two unitors l, r can be checked after applying the isomorphisms in-
duced from j∗ by Lemma 4.3.8. At this point the desired equalities between morphisms in the
appropriate categories follow from the monoidality of the derivator C.
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