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Abstract

Recent developments in network theory have provided new avenues for studying the

spread of disease within populations. However, there is a need to develop dynamic

generative models of networks that can capture the dynamic nature of many real-

world systems that typical models cannot account for.

Models of the spread of livestock disease have frequently employed traditional net-

work approaches, but with the availability of highly detailed animal movement

datasets, there is unprecedented scope to develop generative models of livestock

trade parameterised by these data and exploring the spread of disease modulated

by trade. Livestock diseases incur significant financial burdens on farms and gov-

ernments, and the presence of disease remains a constant issue, so developing new

insights and novel control strategies is vital.

Analytically tractable generative models of livestock trade, parameterised to the

Scottish cattle trading system, are developed, incorporating dynamics such as time-

varying trading partnerships that, to date, have not been accounted for. Expressions

for the basic reproduction number R0 are obtained and manipulations to trading be-

haviour are shown to reduce R0 while maintaining farm business requirements.

Extended models, accounting for time-varying trading behaviours, are developed.

Individual-based adaptation in response to changes in trading propensities is shown

to mitigate the prevalence reducing potential of such changes, highlighting the need

to account for behavioural responses when modelling disease spread. Typical disease

control measures, such as post-movement testing and risk aversion are shown to be

effective in controlling disease, but can perturb the trading system. When parame-

terised to the Scottish cattle trade system, the impact of these control measures on

prevalence is explored.

The models presented here are a first attempt at analysing trade and its effect on dis-

ease spread at a national scale for a highly heterogeneous system using a generative

network modelling approach, and can be extended to other real-world systems.
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3.23 Equilibrium values of trading system and prevalence for both

testing regimes Equilibrium average per-farm demand (top left) and
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animal in-flow (middle right), price (bottom left), net income (bot-
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aversion parameter ω = 0.1 and weights increase in increments of

ω. Dashed lines in the disease prevalence plot represent the average

per-farm perceived level of prevalence, defined as the fraction of the
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level of prevalence, defined as the fraction of the network with ω 6= 1. 144

3.29 Average trade quantities and disease prevalence for varying values of

εb, the scaling factor to the frictional component of trade, b, when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.30 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εb, the scaling factor to the frictional component of trade,

b, when λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . 150

17



3.31 Average trade quantities and disease prevalence for varying values of

εa, the scaling factor to the frictional component of trade, a, when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.32 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εa, the scaling factor to the frictional component of trade,

a, when λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . 151

3.33 Average trade quantities and disease prevalence for varying values

of εδ, the scaling factor to the partnership cessation rate, δ, when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.34 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εδ, the scaling factor to the partnership cessation rate,

δ, when λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . 152

3.35 Average trade quantities and disease prevalence for various test sensi-

tivities under the test-and-reject individual animal regime, and when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.36 Average trade quantities and disease prevalence for various test sen-

sitivities under the test-and-reject whole batch regime, and when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.37 Equilibrium average trade quantities and disease prevalence for vari-

ous test sensitivities under the test-and-reject individual animal regime

(dashed lines) and test-and-reject batch regime (solid lines), and when

λ = 0.05 and γ = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.38 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with farm-level risk

aversion, where we set the aversion parameter ω = 0.1, and λ = 0.05

and γ = 1/3. Dashed lines in the disease prevalence plot represent the

average per-farm perceived level of prevalence, defined as the fraction

of the network with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . 154

18



3.39 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with global (system-

wide) risk aversion, where we set the aversion parameter ω = 0.1, and

λ = 0.05 and γ = 1/3. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined

as the fraction of the network with ω 6= 1. . . . . . . . . . . . . . . . 155

3.40 Average equilibrium trade quantities and disease prevalence for vari-

ous test sensitivities combining batch testing and removal with global

(system-wide) risk aversion, where we set the aversion parameter

ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines in the dis-

ease prevalence plot represent the average per-farm perceived level

of prevalence, defined as the fraction of the network with ω 6= 1. . . . 155

3.41 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with global (system-

wide) risk aversion and natural incremental increase to weights, where

we set the aversion parameter ω = 0.1, and λ = 0.05 and γ = 1/3.

Dashed lines in the disease prevalence plot represent the average per-

farm perceived level of prevalence, defined as the fraction of the net-

work with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.42 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with individual risk

aversion and natural incremental increase to weights, where we set

the aversion parameter ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed

lines in the disease prevalence plot represent the average per-farm

perceived level of prevalence, defined as the fraction of the network

with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.43 Average trade quantities and disease prevalence for varying values of

εb, the scaling factor to the frictional component of trade, b, when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

19



3.44 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εb, the scaling factor to the frictional component of trade,

b, when λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . 157

3.45 Average trade quantities and disease prevalence for varying values of

εa, the scaling factor to the frictional component of trade, a, when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.46 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εa, the scaling factor to the frictional component of trade,

a, when λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . 158

3.47 Average trade quantities and disease prevalence for varying values

of εδ, the scaling factor to the partnership cessation rate, δ, when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.48 Average equilibrium trade quantities and disease prevalence for vary-

ing values of εδ, the scaling factor to the partnership cessation rate,

δ, when λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . 159

3.49 Average trade quantities and disease prevalence for various test sensi-

tivities under the test-and-reject individual animal regime, and when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.50 Average trade quantities and disease prevalence for various test sen-

sitivities under the test-and-reject whole batch regime, and when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.51 Equilibrium average trade quantities and disease prevalence for vari-

ous test sensitivities under the test-and-reject individual animal regime

(dashed lines) and test-and-reject batch regime (solid lines), and when

λ = 0.25 and γ = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.52 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with farm-level risk

aversion, where we set the aversion parameter ω = 0.1, and λ = 0.25

and γ = 1.5. Dashed lines in the disease prevalence plot represent the

average per-farm perceived level of prevalence, defined as the fraction

of the network with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . 161

20



3.53 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with global (system-

wide) risk aversion, where we set the aversion parameter ω = 0.1, and

λ = 0.25 and γ = 1.5. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined

as the fraction of the network with ω 6= 1. . . . . . . . . . . . . . . . 162

3.54 Average equilibrium trade quantities and disease prevalence for vari-

ous test sensitivities combining batch testing and removal with global

(system-wide) risk aversion, where we set the aversion parameter

ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines in the disease preva-

lence plot represent the average per-farm perceived level of prevalence,

defined as the fraction of the network with ω 6= 1. . . . . . . . . . . . 162

3.55 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with global (system-

wide) risk aversion and natural incremental increase to weights, where

we set the aversion parameter ω = 0.1, and λ = 0.25 and γ = 1.5.

Dashed lines in the disease prevalence plot represent the average per-

farm perceived level of prevalence, defined as the fraction of the net-

work with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3.56 Average trade quantities and disease prevalence for various test sen-

sitivities combining batch testing and removal with individual risk

aversion and natural incremental increase to weights, where we set

the aversion parameter ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed

lines in the disease prevalence plot represent the average per-farm

perceived level of prevalence, defined as the fraction of the network

with ω 6= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

21



4.1 Model fits to data The average number of trade partners (top

left), number of trades (top middle), batch size (top right), animal

in-flow (bottom left), and animal out-flow (bottom middle) compar-

ing respective values obtained from data against average values from

stochastic simulation, where each point represents a farm in the system.170

4.2 Time evolution of trading system System average per-farm de-

mand (top left), supply (top right), number of trade partners (middle

left), trades (middle right), batch size (bottom left), and animal in-

flow (bottom right). In all cases dashed horizontal lines represent

system averages obtained from data. . . . . . . . . . . . . . . . . . . 171

4.3 Autocorrelations of trading system Autocorrelation function plots

for simulation output of trade quantities as presented in Figure 4.2.

Blue lines represent a 95% confidence interval centered at 0. . . . . . 173

4.4 Model distributions of trade quantities Density distributions

of average number of trade partners (top left), trades (top right),

average batch size (middle left), average animal in-flow (middle right),

and out-flow (bottom left). In all cases blue lines represent out from

stochastic simulation, and black lines are obtained from the data. . . 174

4.5 Assessing farm-level differences in model compared to data

Distributions of the per-farm ratios between simulation output and

data for the average number of trade partners (top left), number of

trades (top right), the average batch size (middle left), and the animal

in- and out-flows (middle right and bottom left, respectively). In all

cases, red dashed lines represent a ratio of 1, indicating the simulation

perfectly represents the data. Note the scales of x-axes differ between
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Chapter 1

Introduction

The recent development of network theory has provided an effective framework for

modelling the spread of disease within populations that exhibit heterogeneous con-

tact patterns that are challenging (or impossible) to account for in traditional models

of disease spread. Despite these developments, models of disease spread on highly

dynamic and temporal networks are currently lacking, and the analysis of genera-

tive temporal networks (in which networks grow and develop based on individual-

or system-level properties) is a promising avenue of study that may provide novel

insight on disease spread within populations.

The spread of disease within livestock trading networks act as an ideal case study for

the development and analysis of generative network models, due to the availability

of long-term, highly detailed datasets in which the movements of individual animals

between premises are recorded. The UK cattle tracing system (CTS) dataset is

an example of one such dataset. This thesis is concerned with the development of

novel generative trading models, and the analysis of the spread of disease modulated

through trades between individuals, using the Scottish subset of the CTS dataset

as a case study throughout. The models presented in this thesis are not confined to

livestock trade, and may be adapted and applied to a number of dynamic network

systems, such as the spread of computer viruses, or the spread of human diseases.
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1.1 Livestock diseases within cattle herds

The maintenance and control of livestock diseases within cattle herds has been a

constant issue for farmers and governments for a number of years. Since the be-

ginning of the 21st century, there have already been a number of disease outbreaks

within the UK, the most notable the 2001 Foot-and-Mouth disease (FMD) epidemic

[45, 80]. Not only are there significant production costs due to the debilitating ef-

fects of these diseases [12, 68, 75, 102], there are harder to quantify impacts such

as on farmers’ emotional well-being [86] and public perception and trust of govern-

ments’ handling of disease outbreaks [54, 105]. Thus controlling infectious diseases

is of vital importance not only from a financial perspective, but from an ethical and

welfare perspective too.

Below we give examples of some livestock diseases that are currently of national

and international importance. We consider two endemic diseases (diseases that are

persistent within farms and incur long-term financial burdens), Bovine Tuberculosis

and Paratuberculosis, and an exotic epidemic disease (within the UK), Foot and

Mouth disease.

1.1.1 Bovine Tuberculosis

Bovine Tuberculosis (bTB) is an endemic disease in cattle that is acquired via in-

fection by the bacterium Mycobacterium bovis through close animal contacts [104],

and has been estimated to cost the UK annually £100 million [4]. At a farm level,

analysis has revealed that annual costs to individual farms in the UK due to the

management of bTB are in the range of £505 to £3184, with the variation due to a

number of factors, such as herd demographics [17]. Due to its impact on trade, the

EU introduced legislation characterising nations as officially tuberculosis free if the

national herd prevalence did not increase by more than 0.1% per year for six years

[49]. A number of mainland EU states have achieved officially tuberculosis free sta-

tus, including, Belgium, Czech Republic, Denmark, Germany, France, Luxembourg,

Netherlands, Austria, Slovakia, Finland, and Sweden [49], with states such as Italy

that are not yet officially tuberculosis free observing general downward trends in
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prevalence [1, 110].

Conspicuously, the UK has not achieved officially tuberculosis free status, with be-

tween herd prevalence estimated at 5-6% in 2009 [4]. Moreover, trends of bTB

prevalence in the UK have indicated that prevalence levels have been increasing

consistently, with the exception of Scotland which has been officially tuberculosis

free for a number of years [2]. There have been a number of suggested reasons why

the UK has not been able to eradicate bTB, while other EU member states have.

Perhaps most notably, the 2001 FMD epidemic lead to widespread disruption in

bTB testing [2], and atypical animal movement dynamics following the outbreak

due to replenishment of stock have altered the risk factors for bTB introduction in

British farms [19, 116]. Moreover, there has been a general tendency for farms to

consolidate and increase their herd sizes [2], contributing to the persistence of bTB

due to herd size being a risk factor in bTB spread [16]. Another contributing factor

is the presence of susceptible wildlife that have been suggested as environmental

reservoirs of bTB, most notably badgers [103]. While the interactions between bad-

gers and livestock are not fully understood, there is evidence that close proximity

to an infected badger sett increases the herd-level risk of infection [82]. As the UK

has higher badger density than mainland Europe [18], and with the badger popula-

tion increasing over the years [61], attempts have been made to control the badger

population in an effort to minimise bTB spread, for example through culling. Ran-

domised badger culls have had mixed effects, with reduction in cattle bTB observed

within the cull areas, but increased bTB observed in areas outside the cull areas [32].

However, despite these results culling has continued for many years. While there are

trade links between Scotland and high prevalence areas of the rest of the UK, the

use of pre- and post-movement testing has been an effective deterrent in the spread

of bTB to Scotland from the rest of the UK [44]. This, combined with lower badger

[61] and cattle densities (at herd level) [2], have been suggested as reasons for why

Scotland has managed to remain officially tuberculosis free.
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1.1.2 Paratuberculosis

Paratuberculosis (paraTB), also known as Johne’s disease, is an endemic disease in

cattle caused by the bacterium Mycobacterium avium subsp. paratuberculosis, linked

to Crohn’s disease in humans, and is often acquired by the faecal-oral route [108]. It

is known to persist for long periods of time within the environment under the right

conditions, making controlling this disease a challenge [121]. There is an economic

incentive to control the disease, with losses due to reduced milk production and

weight loss reducing slaughter value [12, 75, 107]. It has been estimated that annual

losses per cow in the UK due to paraTB are £27 for dairy cattle [75] and £16 for

beef cattle due to weight loss [53]. Control of the disease can be challenging owing

to a long incubation period, allowing for unknowing disease spread and late-time

detection [122, 123]. In addition, sensitivities of animal tests have a large degree

of variation, resulting in failed detections of infected animals [60, 93, 120]. The

potential role of rabbits in the spread and maintenance of paraTB is also not fully

understood, however the presence of paraTB in rabbits has been observed in excreta,

allowing for the possibility of grazing animals to ingest and become infected [23, 24].

Investigations into whether paraTB could be controlled via the culling of rabbits

revealed that very high levels of culling (>90%) for a single cull and >40% for

repeated long-term culling would be necessary to effectively control paraTB within

the rabbit population [26].

The importance of controlling paraTB is not universally recognised, resulting in

further challenges to effectively controlling the disease. International survey studies

have found differing opinions on control programmes intended to reduce paraTB

incidence, with those in favour citing animal health and reductions in production

losses the primary reasons. Conversely, those not in favour of control programmes

cite economic concerns, other diseases are of greater importance, and paraTB is

not prevalent enough to be of concern [123]. Bulk milk tank samples of randomly

selected dairy farms have provided estimates for herd-level prevalence of paraTB in

Britain, finding approximately 68% of dairy farms to be classed as infected [112].
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1.1.3 Foot-and-Mouth Disease

Foot-and-Mouth Disease (FMD) is a highly contagious viral disease that was once

endemic to Britain, though is now considered an epidemic disease [70], however re-

mains an endemic disease in many countries around the world [123]. Understanding

the spread of FMD has become vitally important in the wake of the 2001 UK FMD

epidemic, and has clearly highlighted the role of animal movements in the ability for

disease to spread [51]. The epidemic was largely attributed initially to sheep move-

ments to market, which seeded infection in other animals (including cattle) and lead

to long-range disease dispersal, after which localised spreading was responsible for

the majority of cases [45]. Upon detection of the disease, nationwide movement

restrictions were imposed and premises suspected of being infected were subject to

herd culling. As a result, approximately 10 million animals were slaughtered and

estimated costs to the UK agricultural industry due to these stock losses has been

calculated at around £3.1 billion [116]. There were other losses, not directly re-

lated to agriculture, such as to tourism due to the closing of the British countryside,

amounting to approximately £3.2 billion [45]. Moreover, the management of the

outbreak has been criticised due to the government’s policy of slaughtering herds

deemed at risk of being infected [105] and subsequent analysis has shown that more

targeted culling strategies may have been more effective with less financial impact

[64], although the control strategies employed during the outbreak were based on

predictions of mathematical models [67].

Another FMD outbreak occurred in August 2007, though the impact was far less

severe than the previous 2001 epidemic. This was due to a number of factors,

including rapid detection of infected animals, and an immediate national restriction

of livestock movements [7]. Another key factor was the timing of the outbreak, as the

2001 epidemic began in springtime, a period of the year in which animal movements

are at their peak [45]. In total, 2160 animals were slaughtered in the 2007 outbreak

and total costs to the UK were estimated to be £147 million [7].

The FMD outbreaks in the UK provide a clear example of the significant im-

pact livestock diseases can have on animal health, economies, and disruption to
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farm businesses. Moreover, the complex nature of trade influences the success of

widespread infection (without animal movements, the 2001 FMD epidemic would

not have achieved such widespread distribution [64]), highlighting the importance

of understanding the demographics of animal movements in an attempt to control

disease spread.

1.2 Demographics of livestock movements

The availability of large scale livestock movement databases allow for detailed anal-

ysis of the demography of livestock and livestock movements. An example of such a

dataset in UK cattle trade is the Cattle Tracing System (CTS) data, which uniquely

identifies premises and animals, as well as recording individual animal movements,

and births and deaths at a daily timescale [113]. Analysis of this data for the years

following the 2001 FMD outbreak revealed that the trend of movement character-

istic within the UK were moving in directions speculated to permit greater disease

persistence [109]. Simulation based studies have produced similar results, suggesting

that the introduction of movement standstills following the 2001 FMD epidemic have

altered the livestock trading system in ways that may lead to greater disease persis-

tence [115]. More longer-term analyses, however, have shown that these trends have

generally stabilised since 2005 and the UK cattle trading system has not significantly

altered in recent years [38, 113].

An observed distributional property of the UK cattle trading system is that of so-

called scale-free (or scale-free like) behaviour, in particular for the number of farms

from whom and to whom a farm buys and sells animals annually [22, 38, 46]. Such

distributions, also known as Power-Laws, frequently occur throughout nature and are

characterised by long-tails, with the vast majority of individuals possessing few con-

tacts, and a small fraction possessing disproportionately larger numbers of contacts

[91]. However, it should be noted that in the real world, such scale-free properties are

always subject to some cut-off due to system size. Furthermore, some authors dis-

pute whether or not observed phenomena are truly scale-free or in fact deviate from

true scale-free processes [33]. Nonetheless, scale-free like, or approximately scale-
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free, phenomena are widely observed in many varied phenomena in the natural and

human world. In the context of livestock trading, most farms buy a small number of

animals, but a small number of farms buy a very large number of animals. Similarly,

the vast majority of farms sell only a small number of animals with a small minority

selling very large numbers. In terms of connectivity in the trade system, this means

that a small number of farms play a major role. Such characteristics have also been

observed in livestock trading systems of countries other than the UK [71, 76, 101].

Farms display some habitual trading behaviour in terms of from whom or to whom

animals are bought or sold. While some trade partnerships persist, with repeated

trades between buyers and sellers, the majority of movements (60%) are between

farms that have never traded before and will not trade again. Approximately 33% of

movements are the result of repeat trades in partnerships that have traded between

2 and 10 times [113].

Seasonal trading patterns are clearly evident in the UK cattle trading system, with

defined peaks in April and October, corresponding to peaks in births in April, and

movements to slaughter in October [84, 113]. As evidenced by the 2001 FMD epi-

demic, springtime movements were a key component in the initial spread of disease

[45]. Seasonal trading patterns are examples of episodic or “bursty” activity; move-

ments occur in concentrated bursts followed by periods of low activity [11]. Such

activity patterns have been studied in the context of disease spread and have been

found to alter the spreading capability of disease, slowing disease spread [78].

The UK cattle trading system is also characterised by the presence of livestock

markets. These premises are generally small in number (617 in the UK compared

with 138640 total premises) but are responsible for a significant number of animal

movements [113]. This is in part because they enable trade between farms that

may not otherwise be possible via direct movements, resulting in animal movements

over distances that are disproportionately larger than typical direct farm-to-farm

movements [84]. This role of markets was evident during the 2001 FMD epidemic,

with initial market movements seeding infection into geographical locations that

may not have otherwise been infected [45]. Analysis of contact chains in the UK
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cattle trading system reveals the role of markets in connecting individual farms to

many others, leading to very large contact chains, and geographically distant farms

being connected by a few intermediate animal holdings [38].

The UK cattle trading system is highly complex and heterogeneous, with farms

trading in different manners individually and over time. Accounting for disease

spread on these systems is therefore a challenge and a theoretical framework that

allows for individual heterogeneity would help in assessing the spread of disease on

these complex systems. In the next section we give an outline of networks that have

the potential of allowing for theoretical considerations of disease spread on livestock

trading systems.

1.3 Networks

Farms in cattle trade systems do not trade uniformly with every other farm. More-

over, most farms are generally limited to a few contacts with a small number of

farms in a given year [113], and farms may maintain trade relationships with spe-

cific farms over long periods. Mathematical models, therefore, should account for

this heterogeneity in contact patterns, and the recent development of network the-

ory has provided an avenue to do so [90]. A network, or graph, consists of nodes

(representing individuals in a population or farm premises, for example) and edges

connecting nodes that represent contacts or partnerships between nodes, where edges

can be undirected (indicating a two-way relationship between nodes) or directed (an

edge emanating from one node i to another j indicates the presence of a relationship

from i to j, but not necessarily from j to i) [90]. Two common representations of

systems in a network framework are described below.

1.3.1 Static networks

The static network is a network in which nodes and edges are permanent and non-

changing. In static networks, the network can be characterised by the adjacency

matrix, A, whose elements indicate the presence of edges in the network. For an
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undirected network, the element Aij indicates the presence of an edge between i and

j (and so Aij = Aji) and takes value 1 if there is an edge and 0 otherwise (weighted

edges, in which elements of the adjacency matrix can have values larger than 1, are an

extension that allow for greater characterisation of the importance of specific edges).

In directed networks Aij takes value 1 if there is a directed edge from i to j (so Aij

and Aji are not necessarily equal) and 0 otherwise [90]. The number of edges of a

node, called its degree for undirected networks, and in- and out-degree for directed

networks, representing the fact that nodes may not have equal numbers of edges

pointing at or emanating from them, can be distributed arbitrarily to form a so-

called degree distribution, the probability that a randomly chosen node has a given

number of edges [90]. Frequently in real-world networks, scale-free or Power-Law

distributions are observed, characterised by long tails in which most nodes have a

small degree, with a small number of nodes having a disproportionately larger degree

[91].

For networks with nontrivial degree distributions, questions arise over the role and

importance of specific nodes within the network. Measures from social network

analysis have been developed to answer these questions, and are collectively known as

centrality measures [50]. Node degree is a simple centrality measure, however a more

sophisticated centrality measure is the eigenvector centrality which measures nodes’

importance in connecting high degree nodes together. Distance-based centrality

measures are useful in assessing the ability for traversal across the network. The

closeness centrality measures the mean distance (shortest path) for a node i to reach

any other node j, whereas the betweenness centrality is the fraction of paths between

nodes that node i falls on and is a measure of the control of node i on network flow

(livestock, for instance) [50].

The components of a network measure the sizes of subsets of the network in which

nodes within the subset can all be reached [90]. In undirected networks, the largest

of these subsets is called the giant component. For directed networks, there is a giant

strongly connected component, the largest subset of the network in which a directed

path in both directions exists between every node pair (strongly connected), and a
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giant weakly connected component, the largest subset of the network in which the

directed nature of edges is ignored (weakly connected) [90].

1.3.2 Temporal networks

Temporal networks differ from static networks in one key component; nodes and/or

edges are not necessarily permanent, and can appear and disappear over time [57].

Individuals may cease contact with some and begin contact with others over time,

representing edge fluctuation, or new individuals may be born and old individuals

die, represent node appearance and disappearance. As with static networks, we can

define a time-dependent adjacency matrix A(t), whose elements, Aij(t), indicate

whether an edge (whether undirected or directed) is present at time t. The degree

of an individual, can then be defined as the at time t number of edges of the node.

Defining the degree distribution can be challenging due to the potential for the

temporal dynamics of the network to alter the distribution of edges according to

arbitrary rules, however attempts have been made to obtain analytical expressions

for degree distributions for temporally evolving networks [40].

Centrality measures on temporal networks can be hard to quantify owing to the time-

dependent nature of edges [57]. Attempts to generalise static centrality measures

to temporal networks has often involved aggregating the network into discrete time

steps, creating network snapshots in a given time interval, and calculating centralities

in successive time steps [57, 69]. Choosing an adequate time step, however, may be

challenging depending on the dynamic nature of the network [69].

Attempts to define temporal components in a network have been successful when

aggregating the network into a series of temporal snapshots. Components are then

defined for each temporal snapshot, with the temporal giant strongly connected

component being the largest set of nodes such that each node is strongly connected to

every other node at a given snapshot. Similarly, the temporal giant weakly connected

component is the largest set of nodes in which every node is weakly connected to the

other in a given snapshot [92]. Analysis of such temporal components has revealed

large fluctuations in component sizes over time that may not be observed in static
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networks [92].

Network models may therefore provide a useful framework for modelling livestock

trade, owing to its ability to characterise individuals according to arbitrary proper-

ties and account for temporal variation in trade dynamics. While temporal networks

provide a more realistic interpretation of real-world behaviour, there are few models

of temporal networks and there is a pressing need for the development of generative

models of temporal networks parameterised to real data so that characteristics of in-

dividuals are represented [57]. Attempting to address this issue is a critical aim/goal

of this thesis.

1.4 Modelling disease dynamics

1.4.1 Compartmental and mass action models

Characterising disease states of individuals into discrete compartments is a fre-

quently used and powerful tool in studying disease spread [8]. Epidemiological mod-

els of disease spread often reduce disease status to a number of key categories (e.g.

susceptible, infected, recovered) and explore how the mechanisms of disease spread

influence the transition of individuals between these categories. For simple disease

models, transitions between disease states occur according to rates (for example an

intrinsic rate of disease transmission β and rate of recovery from disease γ [8]), and

an assumed demographic structure of the population, the simplest being the mass

action assumption, whereby all individuals can come into contact with one another

at any given time, and contacts occur between individuals proportionately to the

density of individuals in each disease state [8].

Perhaps the simplest widely used compartmental model of disease spread is the SIR

model, in which individuals are characterised as either susceptible to infection (S),

currently infectious (I), or recovered from infection (R). Assuming the law of mass

action, the time evolution of the densities of each disease category can be described

by
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d

dt
S(t) = −βS(t)I(t),

d

dt
I(t) = βS(t)I(t)− γI(t),

d

dt
R(t) = γI(t).

This simple set of differential equations is nonetheless analytically intractable, i.e.

an explicit solution for each of the disease state densities cannot be obtained, due

to the nonlinear interaction terms. However, insightful information can be gleaned

from these models, notably the reproductive ratio of the disease, R0, defined as the

expected number of secondary cases caused by a single infectious individual in an

otherwise susceptible population in its infectious lifetime [29]. For the simple SIR

model, R0 is

R0 =
β

γ
.

For deterministic systems, such as the simple SIR model above, the value of R0

determines absolutely the ability for disease to persist within the population. If

R0 < 1 then the disease is unable to persist and dies out, if R0 > 1 the disease will

spread exponentially (initially). The critical point R0 = 1 indicates the threshold

value at which point the disease stability switches [55]. Assessing the value of R0

is often used to inform forecasting and intervention strategies for disease control

[118]. The law of mass action is unrealistic, however, and the effects of host and

contact heterogeneity can have significant effects on disease spread [119]. The de-

velopment of network theory has allowed epidemiologists to analyse the spread of

disease within populations without requiring the mass action assumption and under

arbitrary connectivity and contact patterns.

1.4.2 Disease spread on networks

Attempts to assess the spread of disease on networks has currently been mostly

confined to static networks [10], though to great success. By assuming edges in
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a network are distributed according to some arbitrary degree distribution, it has

been shown that disease spread is significantly influenced by an individual’s degree,

with R0 explicitly linked to the degree distribution of the system [89] and that

disease can spread and persist within high degree nodes even if R0 < 1 [118]. In

terms of outbreaks, there is a clear link with outbreak sizes and the size of the

giant component, with nodes outside the giant component unable to cause large-

scale outbreaks, and the size of the outbreak is determined by the size of the giant

component for infectious individuals inside the giant component [89]. Modelling the

spread of disease on directed networks has been less frequent, however extensions

of disease spread to directed networks shows that success of the spread of disease is

influenced by the out component of the network [25], and models of semi-directed

networks (networks comprising of both undirected and directed edges) have shown

that epidemic thresholds are generally larger than for fully undirected networks

[77]. Of interest is disease spread on scale-free networks, due to their ubiquity in

real-world networks [91]. Significantly, it has been shown that for most real-world

networks that exhibit scale-free like properties, there is no epidemic threshold, and

disease can spread and persist even at low transmission rates [100]. An important

property relevant to disease control is the effect of immunisation strategies in scale-

free networks. In particular, it has been shown that random immunisation cannot

remove disease even at very high immunisation levels. On the other hand, targeted

immunisation of the most highly connected nodes is highly effective, with disease

eradication possible even at low immunisation levels [99].

Attempts to model disease spread on temporal networks have produced some suc-

cess. An example is the so-called neighbour exchange model [118, 119], in which

individuals possess a fixed degree following an arbitrary degree distribution, how-

ever edges in the network switch with some rate. This model, intended to reflect that

real-world network connections are not necessarily static, was successful in showing

that R0 was heavily influenced by the switching rate, indicating that static approx-

imations of dynamic networks may be inadequate [118]. The neighbour exchange

model was intended to complement a model of dynamic partnerships in which in-
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dividuals form and end partnerships with arbitrary rates, and importantly, without

the requirement that the degree of individuals was maintained [6]. By assuming

a tree-like network, expressions for R0 were obtained, highlighting the importance

of time-varying partnerships. Extending this model to heterogeneous populations is

covered in Chapter 2. A true, continuous time, analytically tractable network model

of disease spread that accounts for variable contact patterns as well as time-varying,

non-constrained, degree distributions appears to be lacking and is a fundamental

future challenge.

1.4.3 Stochastic simulation of disease processes

Deterministic models of disease spread are useful in analysing typical properties of

disease spread, such as long-run behaviour, however they do not necessarily account

for random variation (stochasticity) that is present in the real world. Inclusion

of stochasticity allows for random events that may hinder disease spread that a

deterministic model would not account for, and stochastic simulation of disease

outbreaks can more accurately capture the variability of a disease outbreak [65].

However, despite inclusion of stochasticity, typical system behaviour will closely

resemble deterministic models in many cases.

In general, the time-evolution of stochastic systems behave according to a random-

walk process and the state of the system at a point in time can be encapsulated by a

single equation, the so-called master equation [5]. Unfortunately, for most systems,

the master equation is analytically intractable, however the Gillespie Stochastic

Simulation Algorithm (Gillespie SSA) generates trajectories of the system that are

exact solutions of the master equation [47, 48]. Each trajectory represents a single

realisation of the stochastic process defining the system, and obtaining multiple

independent trajectories offers insight into average properties of the system, as well

as the variance (and covariation) due to stochasticity.

The SSA assumes Poissonian dynamics and relies on the memory-less property of

the exponential distribution to calculate the time jump between two events and also

what the next event is. Given a system of x possible events, and associated event
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rates Ek, k ∈ {1, . . . , x}, with E =
∑x

k=1Ek being the total event rate, the algorithm

behaves as follows:

1. Initialise the starting state of the system and set the time t = 0.

2. The time of the next event, t + ∆t, is calculated by generating a Uniform

random number, r1 ∈ [0, 1] and setting

∆t =
− ln(r1)∑x
k=1Ek

.

3. The next event to occur is obtained by drawing a second Uniform random

number r2. Event k occurs if

x−1∑
k=1

Ek < r2E ≤
x∑
k=1

Ek.

4. Perform event k, and update the state of the system. Recalculate the event

rates of any events that were altered by event k. Set t→ t+ ∆t.

5. Repeat from Step 2 until either t > tmax, or some other criteria is met (such

as disease extinction).

As an example, consider the SIS disease model, in which susceptible individuals are

infected by infectious individuals with rate βSI, and remain infectious until they

recover and become susceptible again, which occurs with rate γ. Figure 1.1 com-

pares the behaviour of the deterministic and stochastic systems for a population of

N = 100 individuals, an initial state of S = 99 and I = 1 individuals, with disease

parameters β = 0.02 and γ = 0.2. Clearly the general behaviour of the two sys-

tems is similar, however due to stochasticity, for some realisations of the stochastic

model, there are varying times to reach equilibrium, and there is general variation

around the equilibrium. An important observation is that for some stochastic reali-

sations, the disease dies out, which is not permitted under the deterministic model

(as parameterised). Figure 1.2 shows that the disease behaves in two ways: either

the disease successfully spreads, in which case it reaches an equilibrium (with some

variation around the equilibrium), or it does not spread and dies out. These two

equilbria, the disease-free equilibrium and the endemic equilibrium, exist for the
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Figure 1.1: Time trajectories of the deterministic (left) and stochastic (right) SIS disease model.

1000 stochastic realisations are generated for using the Gillespie SSA.

deterministic model, however the disease-free equilibrium is unstable for the cho-

sen parameterisation (thus the disease always spreads and persists). It should be

noted that even in the persistent disease state, the stochastic system is only in very

long-lived metastable state and that ultimately stochastic extinction will occur [74].

1.5 Network-based approaches to modelling dis-

ease spread on livestock trading systems

There has been much work on understanding disease spread on livestock trading sys-

tems. A common approach is to make use of large-scale animal movement datasets

to recreate historic networks that match previously observed animal movements,

and overlay a simulated disease process. A crucial finding of such studies is the

identification of trading as a risk factor for introduction of disease into herds, for

example for bTB [39, 46, 98], paraTB [13, 71], and FMD [37, 51, 97]. The 2001
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Figure 1.2: Distribution of equilibrium disease prevalence for the stochastic SIS model.

FMD epidemic is an example of how disease can alter network structure and have

long-term consequences for disease control. Indeed, it has been shown through net-

work analysis that control measures, such as animal testing, as a consequence of the

FMD epidemic have altered trading behaviours in a way that increases the giant

strong component of the network and permits greater disease spread, highlighting

the complex nature of cattle trade and the challenges of modelling such systems

[109, 115]. As a result of FMD control strategies, the role of animal movements as

a risk factor for bTB spread has become more prominent [116].

Framing livestock trading in a network context has allowed for the exploration of the

effect of changes to the structure of the network on the spread of livestock disease. In

particular, exploitation of the highly heterogeneous and scale-free nature of livestock

trading networks has shown that rewiring trading connections between farms based

on network-level properties, such as centrality measures or by rewiring movements

away from certain holdings like markets, can significantly reduce disease prevalence

when targeted at a small number of farms [43, 85, 117]. In addition, effectively
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removing certain connections in the network has been shown to alter the structure

of the network and the size of the giant component in a way that may be effective

in reducing disease persistence [62, 63]. Targeted vaccination strategies, such as

based on farm size or other risk factors, may also potentially be an effective control

strategy in combating disease spread [64, 66].

An important consideration when modelling trade by recreating networks from his-

toric movement data is the temporal structure of the system. A general approach

to analysing livestock movements is to assume some temporal snapshotting of the

network, where connections between farms are static over some dicrete time period.

Analysing the timescale of snapshots on livestock trading networks has shown that

static network approximations hide important temporal characteristics of the real-

world system, such as centrality, hindering the efficacy of disease control strategies

[9]. For the UK network specifically, the importance of a dynamical network ap-

proach has been made clear, with static networks producing qualitatively different

disease spreading properties compared with more dynamic representations of the

network [114].

Models of disease spread that explicitly replicate observed animal movements are

able to illustrate the potential for disease spread and even possible control measures.

However, this is only in the historic context of past trading dynamics and it is

challenging to use such an approach to generalise farm trading behaviour to ask

“what if...” questions. Generative models that paramaterise a system at farm-level

from these movement datasets would be a powerful tool in exploring the role of

trade on disease spread while not being constrained to only replay past trading

events, and there is currently a pressing need for the development of generative

models of network dynamics in general [57]. Moreover, to date there have been few

attempts at designing generative models of cattle trade, however those models that

have been proposed have proved to be able to capture key system-wide properties

of the trading networks they represent, as well as providing new insights into the

role of trade on disease spread [58, 87]. In particular, manipulating the frequency of

trade and size of animal batches, while conserving animal flows, has been show to
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potentially reduce disease prevalence [87]. However, these models make a number

of simplifying assumptions, such as constant trading patterns, or even neglecting

trading relationships between farms, so there is scope for expanding these models

to provide greater insight on the role of trade on disease spread. The development

of more flexible and realistic generative models of network dynamics and disease

spread on them is the aim of this thesis.

1.6 The thesis

1.6.1 Aims

The general aim of this thesis is to develop highly dynamic generative models of

cattle trade that account for trading partnerships between farms and the movement

of animals that occur between trading partners. With application to disease spread,

this thesis aims to answer these questions: 1) can analytically tractable generative

models of livestock trade be developed that capture farm-level properties? 2) can

the dynamics of trade be exploited in such a way that disease persistence is reduced

while maintaining farm-level animal flows? 3) can these models be expanded to

account for time-varying farm-level stock quantities, dictating trading patterns? 4)

do changes to trade affect stock quantities to such an extent that the trading system

fundamentally changes? 5) under such scenarios, how does network adaptation

impact disease spread? 6) how do traditional disease control measures, such as

animal testing, impact the trading network, and how does that affect disease spread?

7) when applied to the Scottish cattle trade industry, do these results hold, and if

so can effective disease control strategies be proposed?

1.6.2 Thesis structure

Chapter 2 introduces a novel generative livestock trading model that accounts for

time-varying trading partnerships between farms. By considering the trading dy-

namics of farm pairs, per-farm expressions for R0 are obtained that highlight the im-

portant role of trade frequency, batch size, and the dynamics of trading partnerships
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on the ability for disease to spread and persist. This also shows that manipulation

of trading patterns while conserving farm-level animal flows can positively alter R0

such that disease is controlled. By parameterising this model to represent farms in

the Scottish cattle trade industry so that average farm-level quantities reflect obser-

vations and are maintained under putative changes to trade behaviour, the effect of

the above changes to trade are shown to be highly effective in reducing R0.

Chapter 3 expands the model of Chapter 2 by introducing dynamic, time-varying,

farm-level stock quantities that alter farms’ propensities to trade and form trading

partnerships at any given time. This reflects the idea that if a farm has just bought a

batch of animals, its propensity to do so will be lowered for some period of time. The

trading patterns are analysed and the effect of manipulations to trade similar to those

explored in Chapter 2 are shown to be ineffective except in extreme scenarios. This

difference results from the adaptive response of the system that leads to the network

structure dynamically changing so that farm flows are maintained. Animal testing

through trade is included and the effect of rejecting infected animals is shown to be

positive, reducing disease prevalence but has transitory (and sometimes permanent)

impacts on the trading sub-system. Linking testing to adaptive risk aversion, based

on local and global information, is shown to be an effective strategy in reducing

disease prevalence, and can eradicate disease in scenarios where testing alone is

insufficient.

Chapter 4 outlines the method of parameterising the dynamic trading model of

Chapter 3 to the Scottish cattle trade system, and the challenges that arise due

to the presence of time-varying stock quantities that are not observed in the data.

Successful parameterisations that successfully captures farm-level properties to large

degree are obtained, and the resulting parameterised system is explored. The pro-

posed disease control strategies explored in Chapter 3 are assessed on this real-world

parameterised system.

Chapter 5 provides a discussion of the results of each chapter, and future avenues

for research.
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Chapter 2

Generative models of network

dynamics provide insight into the

effects of trade on endemic

livestock disease

2.1 Introduction

The movement of animals via trade has long been considered a significant factor

in the spread of disease within livestock populations [37, 42, 46, 51, 71, 94, 98,

108]. For example, animal movements resulting from restocking following the 2001

Foot-and-Mouth disease (FMD) outbreak in Great Britain has been suggested as a

contributing factor to the subsequent surge in Bovine Tuberculosis (bTB) positive

farms [19, 116]. The 2001 FMD outbreak itself spread widely, via animal movements

[45], before detection led to national and international trade restrictions.

The contents of this chapter have been published in the journal Royal Society Open Science

under the title “Generative models of network dynamics provide insight into the effects of trade on

endemic livestock disease”[72]
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While exotic disease incursions like FMD in 2001 incur large costs over short timescales

(estimates for FMD 2001 include up to UK £3.1 billion for stock losses [116] and

£3.2 billion related to tourism [45]), many endemic diseases impact production year-

on-year. For example, paratuberculosis (paraTB) reduces milk production in dairy

cattle and causes weight loss affecting beef quality [12, 75, 107], and bovine viral

diarrhoea virus (BVDV ) often reduces fertility, animal growth, and milk production

[68]. These incur a significant cost to the agricultural industry (annually paraTB

is estimated to cost £0.8 million, BVDV £39.6 million, and bTB £29.7 million [4,

14]). Unfortunately, controlling such diseases is a challenge due to a number of

factors including animal movements, poorly understood transmission pathways (in

particular the role of wildlife, e.g. rabbits and badgers in the spread of paraTB and

bTB, respectively) [20, 24, 23, 30, 31, 52], long latent periods [123], and variable

sensitivities of diagnostic tests [15, 93, 95].

Understanding the initial spread of disease is highly informative of its long-term

ability to persist within a system, and can be captured by each disease’s basic

reproduction number R0; the number of secondary infections caused by a single

infected individual in an otherwise susceptible population [29]. If R0 < 1 then the

disease is unable to persist and the disease-free critical point is stable. Conversely,

if R0 > 1, the disease-free critical point is unstable, and introduction of a small

number of cases will result in exponential growth (initially) towards a critical point

in which the disease persists. The stability of these critical points switch as R0

passes through the threshold point R0 = 1 [55]. Thus, sufficiently accurate models

that retain analytical tractability so that expressions for R0 can be obtained are

of great value to inform effective interventions against both persistent disease and

outbreaks.

The increasing availability of animal movement datasets has shed light on the com-

plex and highly heterogeneous nature of livestock trade [113], with developments in

network theory enabling new insights into the dynamics of such complex systems

[22, 38]. For example, the study of disease spread on such networks reveals that R0

is heavily influenced by heterogeneity in the distribution of contacts [83, 89]. Thus,
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to study the role of trade on disease spread, epidemiologists must develop models

that adequately account for such complexities.

To date, attempts to assess the spread of disease in real-world cattle trade systems

have largely consisted of replicating animal movements observed in data while over-

laying simulated disease processes [71, 98, 76, 43, 117]. While these illustrate how

past trade dynamics may have supported disease transmission, they cannot be gen-

eralised to ask “what if. . . ” questions about what might occur under some future

set of trades. In contrast, generative models capable of capturing key properties

of such systems, while not being restricted to replaying historic movements, would

allow far more general conclusions to be drawn. They would enable exploration of

the potential impact of changes in movement patterns, highlighting novel avenues

for intervention and control that move beyond standard approaches based on im-

provements to on-farm biosecurity or movement standstills. Thus far, attempts to

develop mechanistic generative models of livestock trade systems have focussed on

global properties [87] rather than considering trade between individual farms, or

have modelled only the size and timing of animal movements on the frozen network

of trade partnerships observed in the data [58].

To our knowledge here we present the first truly generative mechanistic model

for livestock trading systems. This accounts for heterogeneity between farms and

stochastically generates both movement of animals between trade partners and dy-

namically evolves the underlying partnership network (Section 2.2.1). Extending

this to account for disease transmission via trade, we apply and extend the results

of [6] to account for between-farm heterogeneities and derive a per-farm R0, denoted

Ri
0 (Section 2.3.1). We subsequently use this analytic result to show large suppliers

contribute disproportionately to disease spread and modifying trade dynamics could

play a significant role in reducing disease burden (Section 2.3.2). With application

to the Scottish cattle industry, we show that this parsimonious model can capture

key features of the dynamics of a complex real-world trading system (Section 2.4).

Subject to the condition that each farm maintains its annual in-flow of animals (rep-

resenting maintenance of business requirements), we explore, for a broad spectrum

50



of endemic diseases, the impact on R0, the system-average Ri
0, of changes to the way

farms trade animals, including the formation of longer lasting trade partnerships.

These results suggest that changes to trading practices are potentially effective in

reducing both the burden of endemic disease and safeguarding against future disease

outbreaks.

2.2 Materials and methods

2.2.1 Livestock trading model

We seek to model animal movements in terms of trading practices consisting of

the formation and cessation of trade partnerships and trading between established

partners. Connectivity relevant to disease transmission is therefore controlled by

partnership dynamics (longevity of partnerships and number of concurrent partners)

and trading behaviour (size and frequency of trades between partners). We assume

a closed system of N farms and summarise between-farm heterogeneity in terms

of a small number of farm-level constants. Firstly, annual in- and out-flows of

animals measure farm-level demand and supply for farm i, and are denoted by ηi

and ζi, respectively. Secondly, rates quantifying the propensity for farm i to form

trading partnerships, ai, end partnerships, di, and make trades, bi. An outline of

model quantities is given in Table 1 and are explained below in full. We note that

in reality partnership dynamics and trade behaviour depend on a range of factors

not considered here, e.g. social networks and capital, but farm-level propensities,

supply and demand, capture much of the observed variation in the Scottish cattle

trade system Section 2.4).

Dynamics of trading partnerships

The evolution of the topology of the modelled system is determined entirely by

the formation and cessation of trading partnerships. Under the model, each farm

possesses a dynamic list detailing which farms they can purchase animals from at a

given time. Purchasing farms continually seek to optimise their trading partners by
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Quantity Definition

N Number of farms

ηi Per unit-time in-flow of animals for farm i

ζi Per unit-time out-flow of animals for farm i

ai Rate describing farm i’s propensity to form trading part-

nerships

di Rate describing farm i’s propensity to end trading part-

nerships

αij = aiηiζj/N Rate at which i forms a trading partnership with j

δij = di/(ηiζj) Rate at which i ends a trading partnership with j

pij =
αij

αij+δij
The probability that a trading partnership made by i with

j is present

kini =
∑N

j 6=i pij Expected instantaneous number of concurrent trading

partners for farm i conditioned on zero partnerships at

t = 0

bi Rate describing farm i’s propensity to initiate trades with

its trading partners

ϕij = bi min(ηi, ζj) Rate at which i trades with its trading partner j

θi Batch size for farm i

V in
i = θi

∑N
j 6=i ϕijpij Expected unit-time equilibrium in-flow of animals for farm

i

λ Disease prevalence on an infected farm

B(θi) = 1− (1− λ)θi Probability of at least one infected animal moves onto a

susceptible farm i given batch size θi

βij = ϕjiB(θj) Transmission rate from infected farm i to susceptible farm

j, given a trade partnership currently exists between farms

i and j

γ Disease recovery rate

Table 2.1: Table of model quantities and their respective definitions
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preferentially forming partnerships with large suppliers, i.e. farms with large ζi, and

preferentially ending partnerships with small suppliers, such that the system tends

towards an equilibrium in which farms maintain long lasting partnerships with large

suppliers. A farm i begins a trading partnership with another farm j, given no

current partnership between them, at rate

αij =
ai
N
ηiζj (2.1)

where constant ai represents the propensity for farm i to form trading partnerships,

summarising all factors that impact the ability of farm i to do so, e.g. the time

required to search for partners. This process is uni-directional and, in general,

asymmetric (αij 6= αji).

A current trading partnership between farms i and j ends at rate

δij =
di
ηiζj

(2.2)

such that all farms tend to maintain longer partnerships with large suppliers com-

pared with smaller suppliers. High demand farms are less likely to end trading

partnerships in general compared to low demand farms. The constant di represents

an intrinsic measure of the propensity for farm i to remove one of its traders, with

larger values resulting in shorter duration trade partnerships, and vice versa.

The equilibrium probability of there being a trading partnership between i and j is

pij, and the expected number of trading partners for farm i, kini , are calculated as

shown in Table 2.1 (see Appendix Section 2.6.1 for further details). The 1/N scaling

of αij in Eq. (2.1) ensures that kini does not scale linearly with the system size, N .

Movement of animals and trade flows

Animals are assumed to move between trading partners from j to i in batches (the

number of individual animals moved in a single trade) of constant size θi with rate

ϕij = bi min(ηi, ζj), (2.3)

where bi is taken to represent any impediment to the movement of animals, for

example delivery of livestock. The second term in Eq. (2.3) is referred to as the
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reference transaction rate and is the maximum rate of exchange of indivisible goods

(livestock), since 1/ηi is the expected time for i to generate new demand for animals

and 1/ζj the expected time for j to generate new supply [87, 58].

The per unit time in-flow of animals for farm i, when the system is at equilibrium,

which is expected to equal ηi, is

V in
i = ηi = θi

N∑
j 6=i

ϕijpij. (2.4)

This expression is easily interpreted, since ϕijpij is the expected number of trades

from j to i in a unit of time, and θiϕijpij is the total number of animals i purchases

from j. Summed over the entire system, we obtain the total in-flow of animals per

unit time for farm i. This expression for V in
i allows us to alter the dynamics of

trading partnerships and the movement of animals while maintaining each farm’s

in-flow of animals. We shall explore the effect of such conservative changes in Section

2.3.

Disease dynamics

The dynamics of disease are coupled with partnership dynamics and trade behaviour

by assuming disease is driven entirely by animal movements, neglecting indirect

transmission such as from external wildlife sources or distance modulated local in-

fection.

We categorise disease status at farm level using a standard susceptible-infected-

susceptible (SIS) model; susceptible farms become infected through trade with in-

fected farms, and can themselves infect others, and, after an exponentially dis-

tributed infectious period with mean 1/γ, recover to become susceptible once again.

In addition to the infectious period, a given disease is also characterised by an

effective on-farm prevalence level λ, assumed constant across infected farms and

time. We therefore take λ to be the average prevalence of an infected farm over

its infectious lifetime. We assume each animal moved off an infected farm i has a

constant probability λ of infecting the susceptible buying farm and that off-farm

movements do not alter herd prevalence on the selling farm. If an infected farm
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sells θ animals in a trade to a susceptible farm, the total probability of transmission

is B(θ) = 1 − (1 − λ)θ, and the rate at which a farm j receives infection from its

infectious trade partner i is βij = ϕjiB(θj), i.e. the rate at which j trades with i

multiplied by the probability that the trade results in the transmission of disease.

Thus, trades that occur with large size are more likely to result in the transmission

of disease.

2.3 Results

2.3.1 Farms’ basic reproduction number

Calculating R0 for our model is challenging due to the heterogeneous nature of

partnerhip dynamics and trading. Furthermore, the central role of the partnership

network in mediating trade invalidates possible assumptions of homogeneous mixing.

However, the methods outlined in [6] allows for an expression for R0 to be obtained

by considering the dynamics of farm pairs and calculating the probability of disease

transmission. We extend these methods by incorporating farm heterogeneities and

deriving a per-farm expression for R0, R
i
0. Details of the calculation are provided

in Appendix Section 2.6.2, but assume that the trading sub-system has reached

an equilibrium (true for all simulations presented) and the partnership network is

sufficiently sparse. The latter condition is satisfied since, for large systems, the

probability of a two-way trading partnership scales as 1/N2. It is important to note

that the results presented do not depend on the functional forms adopted above to

describe partnership dynamics and trade behaviour and so offer general insights.

For a large system, Ri
0 reduces to

lim
N→∞

Ri
0 =

∞∑
j 6=i

pjiTij +
∞∑
j 6=i

αji
γ
Tij, (2.5)

(see Appendix Section 2.6.2), where the transmissibility

Tij =
βij

βij + δji + γ

is the probability that farm i infects farm j if there is a trading partnership present,

before the end of the infectious contact period, i.e. prior to either recovery or the
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ending of the partnership [118]. The first term in Eq. (2.5) accounts for the number

of current trade partnerships that result in the transmission of disease. The second

term accounts for the number of new trade partnerships formed, before i recovers,

that result in disease transmission before the end of the infectious contact period.

This shows that partnership dynamics play a significant role in the ability for an

infected farm to make infectious contacts. Indeed, even if the transmissibility was

set to unity, so that farm i was guaranteed to pass infection onto its buyers following

a trade, Ri
0 would still be bounded by the rate at which buying farms sought out

new trade partnerships with i, i.e. by αji.

2.3.2 The effect of changes to trading practices

We now use the above expression of Ri
0 to rigorously explore the effects of modifying

trading practices under the strong constraint Eq. (2.4) that farms maintain their

expected in-flow of animals. Illustration of these results using stochastic simulations

of example systems are presented in Appendix Section 2.6.7.

The role of trade behaviour

Consider first changes to the frequency and size of trades. Due to Eq. (2.4), and

supposing the dynamics of trade partnerships are kept constant, a linear increase

in the frequency of trade is accompanied by a proportional decrease in the size of

trades, and vice versa. We introduce the scaling parameter εtrade that determines

the frequency and size of trades, and set

ϕij → εtradeϕij,

θi → ε−1tradeθi

for all i and j. Considering the case of large trades, substitution into the transmis-

sibility, Tij, reveals

lim
εtrade→0

Tij = lim
εtrade→0

(
εtradeϕjiB(ε−1tradeθj)

εtradeϕjiB(ε−1tradeθj) + δji + γ

)
= 0,

since B(ε−1tradeθj) is bounded above by 1. It immediately follows that

lim
εtrade→0

lim
N→∞

Ri
0 = 0 (2.6)
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for all i. Thus, increasing the batch size reduces R0. Similarly, in the case εtrade →∞

where trades occur more frequently, but take ever smaller size, we find that Ri
0

approaches a well-defined non-zero limit, further confirming that disease spread is

inhibited by the dynamics of trade partnerships. This is due to the conservation

of the in-flow of animals, so that the infection rate βij does not scale linearly with

εtrade, but rather approaches a limit given by ϕjiθj ln (1/(1− λ)), implying that

although the number of trades increases significantly, the force of infection does not

rise indefinitely due to the decrease in batch size. See Appendix Section 2.6.3 for

details.

The role of partnership dynamics

We now explore the dynamics of trade partnerships when the frequency and size of

trade is fixed. To do so, we introduce the scaling constant εptnr and set

αij → εptnrαij,

δij → εptnrδij,

which allows for the dynamics of trade partnerships to be explored while maintaining

a farm’s expected instantaneous number of trading partners, kini . As εptnr increases,

partnerships are formed increasingly frequently, however these partnerships last a

decreasing period of time, and vice versa. In these limits we obtain

lim
εptnr→0

lim
N→∞

Ri
0 =

∞∑
j 6=i

αji
δji

βij
βij + γ

(2.7)

for long duration partnerships, which is equivalent to the value of R0 for a static

directed network [83], so that the spread of disease is entirely dependent on the

initial distribution of trade partnerships mediated by trade between them. We note

that this is the scenario explored by [58]. Similarly, for small duration partnerships

we obtain

lim
εptnr→∞

lim
N→∞

Ri
0 =

∞∑
j 6=i

β̂ij
γ
, (2.8)

where β̂ij = βijαji/δji, which is equivalent to the value of R0 for a system under the

mean-field assumption. Details of these results are provided in Appendix Sections
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2.6.4 and 2.6.5. Comparing Eqs. (2.7) and (2.8), since βij + γ > γ for all βij >

0, the disease is expected to spread more prolifically when trade partnerships are

temporary, and a static network approximation offers a lower-bound on the early-

time spread of disease, if all other components of the system are kept constant.

The role of the number of concurrent trading partners

Finally, we consider the effect on Ri
0 of changes to the number of concurrent trading

partners. Since there are an infinite number of combinations of αij and δij that

result in a given kini , here we fix the duration of trade partnerships, i.e. keep δij

constant, and set

αij → εij#ptnrαij.

Note the i, j dependence of εij#ptnr in this case. We also note that conservation

equation Eq. (2.4) implies a change in the number of trading partners must be

accompanied by an inverse change in either the trade rate ϕij or the batch size θi

(or both). For simplicity, we herein maintain Eq. (2.4) by fixing the batch size and

increasing/decreasing the trade rate when the number of trading partners is altered.

For a proportional change in kini of x, we have

εij#ptnr =
xαij

(1− x)αij + δij
,

which can be verified by substitution into our expression for kini (see Table 2.1). In

the limit of a small number of concurrent trading partners we find

lim
εji#ptnr→0

lim
N→∞

Ri
0 = 0 (2.9)

as expected since the system becomes entirely disconnected. For the scenario in

which the number of concurrent trading partners goes to N , as N increases so too

does Ri
0. As such, we use the expression for Ri

0 for a system of finite size (see

Appendix Section 2.6.6), and obtain

lim
εji#ptnr→∞

Ri
0 =

N∑
j 6=i

βij
βij + γ

. (2.10)
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Note here that even for a finite system to reach this limit, εij#ptnr must go to infinity as

the partnership cessation rate is fixed. Unsurprisingly, when the system is completely

connected, the spread of disease is dependent solely on the dynamics of trade and

the intrinsic disease parameters.

2.4 Case study: Scottish cattle trade industry

We demonstrate the potential of our modelling framework by application to the

Scottish cattle trade system. We first show it is able to capture key features of this

complex real-world system, and then use it to assess the potential impact of changes

to trade patterns for the Scottish cattle industry. We use data from the Cattle Trac-

ing System (CTS) for 2005-2013 inclusive, avoiding perturbations resulting from

restocking following the UK 2001 Foot and Mouth Disease (FMD) outbreak [113].

We focus on the Scottish subset of this dataset featuring 15386 cattle farms which

engage in a total of 135106 trades per year, with a total of 420931 animals move per

year averaged over 2005-2013. We consider this a closed system, ignoring in-flow

(representing approximately 10% of on-movements) and out-flow (approximately

14% of off-movements) of animals beyond Scotland, and consider only farm-to-farm

movements grouped into dated batches. Animal flows through markets are main-

tained by treating such movements as transitory and replacing them with direct

farm-to-farm movements. Movements to market are expected to play a small role

in direct transmission endemic livestock disease [38, 13], but we acknowledge for

epidemic spread of exotic or re-emerging diseases, market transmission may play

a more significant role, for example in the 2001 FMD epidemic [45]. As such, we

consider only slow spreading endemic diseases.

The farm-to-farm batch movement data described above are used to parameterise our

model as follows (further details and distributions of trade quantities are presented

in Appendix Section 2.6.11). Appendix Figure 2.10 shows trading patterns and

animal flows are consistent year-on-year (movements at farm level are also known to

be consistent year-on-year [38]), and we obtain annualised average in- and out-flows,

ηi and ζi, for each farm by averaging observed yearly numbers of animals purchased
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and sold, respectively. As above, the batch size for farm i, θi, is assumed constant,

independent of the originating farm, and is estimated from data by averaging the

total in-flow over the total number of trades for each farm.

Estimates for the trade partnership formation and cessation constants ai and di are

determined by evaluating partnerships on an annual basis, that is for a given year

a partnership exists where two farms trade in that year. From the data we find

that 83% of trade partnerships end after a single year, and 89% end after two years,

emphasising the importance of accounting for partnership dynamics. To calculate

ai, we match observed new trading partners from year t to year t + 1 with the

partnership formation rate defined in Eq. (2.1), averaged over all years. Similarly,

the constant di in the partnership cessation rate Eq. (2.2) is found by equating the

number of partnership cessations occurring from one year to the next. Finally, the

constant bi in the trade rate Eq. (2.3) is obtained by solving the constraint equation

Eq. (2.4) given estimates for all other quantities. Distributions across farms for each

of these quantities can be found in Appendix Section 2.6.12.
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(a)

(b) (c)

(d) (e)

Figure 2.1: Model fit to data. For model with modifications to partnership formation and cessa-

tion rates. Panel (a) shows the average out-flow, ζj , of farms’ trading partners, where blue points

are obtained from data, and points from stochastic simulation, where simulations are performed

using Gillespie Stochastic Simulation Algorithm. Bottom four panels show comparisons of simula-

tion output and data for four statistics: annual in-flow (b), annual number of concurrent trading

partners (c), annual number of partnership formations (d), and annual number of partnership

cessations (e).
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(a) (b)

(c)

Figure 2.2: Impact of trade behaviour and partnership dynamics. Percentage change in R0

for a persistent and high prevalence disease (λ = γ = 0.2) due to changes in the dynamics of trade

and trade partnerships compared with the current dynamics of the Scottish trade system (grey

squares). We consider changes to batch size and partnership duration (a), batch size and number

of concurrent trading partners (b), and number of concurrent trading partners and partnership

duration (c).

Initial results based on the above parameter estimates obtained for the model de-

scribed in Section Section 2.2 reveal that our proposed trading partnership formation

and cessation rates did not accurately replicate the distributions of the duration of

trade partnerships or the joint distribution of farms’ in-flows, ηi, and their traders’
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out-flows, ζj. We therefore modified these rates to

αij =
ai
N

(
ηiζ

m
j + w

)
, (2.11)

δij =
di
ηi
, (2.12)

and find that setting m = 0.75 and w = 75 yields results closer to those observed in

the data as shown in Figure 2.1 (initial fits are presented in Appendix Figures 2.15

and 2.16), while also replicating the values of higher-order statistics, e.g. annual in-

flow, number of concurrent trading partners, and number of trades. This indicates

the flexibility of our approach to represent real-world complexity in a parsimonious

and tractable generative model framework. The required modifications to the model

rates show that small buyers place greater weight on factors other than simply the

size, ζi, of the prospective seller, but that larger buyers tend to buy from larger

suppliers. Furthermore, large sellers are, in general, kept as trading partners for the

same period of time as small sellers, again suggesting that farm sizes (the volume of

animals bought/sold) are only one factor in selecting trade partners.

2.4.1 Assessing the potential for trade practices to modulate

endemic disease

We now explore the effect of increased trade size, longer duration of trade partner-

ships, and reduced number of concurrent trading partners, subject to the constraint

that farms’ in-flows are maintained. To do so we focus on a fixed disease parameter-

isation λ = 0.2 and 1/γ = 5 years, which is intended to represent a high prevalence,

high persistence disease. For this hypothetical disease parameterisation and current

Scottish trading patterns, our model predicts a system-average Ri
0 R0 ≈ 10.

Figure 2.2 shows the percentage reduction in R0 under varying changes to trade and

trade partnership dynamics compared with current trading patterns (see Appendix

Figure 2.19 for R0 values). This shows that fewer, longer lasting trade partnerships

yield the greatest reduction in R0, with up to 90% reduction when farms maintain

a single, near permanent trade partner. Fewer concurrent partnerships combined

with fewer, larger trades reduces R0 by up to 76%, however reducing the number
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(a) (b)

(c) (d)

Figure 2.3: Reducing endemic disease burden. The percentage reduction in the system aver-

age R0 for a range of disease parameterisations under specific trading and partnership dynamics

changes, when compared with values of R0 for current trading patterns in the Scottish trade sys-

tem. Black points represent disease parameterisations in which R0 > 1 before changes, and R0 < 1

after changes are implemented.

of concurrent partnerships is responsible for most of this reduction. In the Scottish

trading system, cattle farms average approximately 7.3 concurrent annual trading

partners, and batches take average size of 3.58. Changes to current partnership

dynamics and trading behaviour could yield both significant reductions and increases

in R0. For example, if the system-average number of concurrent trading partners

and batch size were reduced by one, then R0 would be reduced by approximately

12%. Conversely, if these were to be increased by one, then R0 is increased by over

15%.
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2.4.2 Impact of trade practices on a wide range of endemic

diseases

We now explore the effect of specific changes to trade and partnership dynamics

for a broad range of disease parameterisations (see Appendix Figure 2.20 for R0

values). We consider halving the average number of concurrent trading partners,

doubling the duration of trade partnerships, and doubling the average batch size,

with each of these interventions considered under every possible combination (Figure

2.3) and in isolation (Appendix Figure 2.21). These changes are again made subject

to conserving individual farms’ in-flows of stock. Chosen farm-level prevalence, λ,

ranges from 0.01 to 0.25, with infectious periods, 1/γ, ranging from 6 months to 5

years.

Changes to the size and frequency of trades are most effective in reducing R0 for high

prevalence, small duration diseases, whereas changes to the duration and number of

trade partnerships are most effective on high prevalence, long duration diseases (see

Appendix Figure 2.21). This difference is explained by the fact that as the batch

size increases, the inter-trade times increase, so that for small duration diseases the

probability that an infected farm recovers before it is traded with increases. Changes

to multiple aspects of trade patterns yield greater reductions in R0 compared with

changes to single elements. Encouraging fewer, longer lasting trade partnerships

combined with fewer, larger trades provides the greatest reduction in R0 (up to 53%

for the highest prevalence and longest lasting diseases considered here) and also

bring R0 below 1 for a greater range of diseases. It is noteworthy that our suggested

changes bring R0 below 1 for diseases that are already close to this threshold, but

also significantly reduce R0 for high prevalence, long duration diseases, i.e. diseases

that are extremely challenging to control and eradicate.

65



Figure 2.4: Targeting high risk farms. Percentage reduction in R0 compared to: current trading

patterns (left); and 100% adoption of new trading patterns (right). The new trading patterns are

those shown in the bottom right panel of Figure 2.3d, which provides percentage reduction at 100%

(dashed lines). In both panels the x-axis indicates what percentage of the most frequent buyers

(those making the largest number of trades annually) are adopting these changes. Different disease

parameterisations are shown with dashed lines representing values of R0 for: Case 1) λ = 0.06,

γ = 1; Case 2) λ = 0.15, γ = 0.4; and Case 3) λ = 0.25, γ = 0.2. Initial R0 values for current

trading patterns are: Case 1) R0 = 1.19, Case 2) R0 = 4.92, and Case 3) R0 = 11.43.

2.4.3 Targeting the trade practices of large buyers

The results above show significant reductions in R0 are attainable when all farms

change their trade behaviour and partnership dynamics. However, consistent with

other livestock markets [113, 58], the Scottish trading system exhibits scale-free like

properties; a small number of farms trade much more frequently than the average

and have a much larger annual number of concurrent trade partners (see Appendix

Figures 2.12 and 2.13). Despite this, these outlying farms have average batch sizes

similar to the mean batch size (and in some cases smaller, for example the 1% of
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farms that make the largest number of trades make, on average, 363.5 trades per

year, with average batch size 2.86, whereas the mean batch size is 3.58), suggesting

there is scope for such farms to increase their average batch size. We therefore

explore the potential for changes targeted at the most frequent buyers (those farms

making the largest number of trades annually) and compare the resulting system

average R0 with the value of R0 for current (i.e. no changes to) trade patterns, and

with the value of R0 obtained when all farms adopt the proposed changes.

Figure 2.4 shows the results from targeting the top x% of farms with x ranging from

0 to 100%. The changes to trading patterns considered are the composite changes

that lead to the greatest reduction in R0 in Figure 2.3. These changes are assessed

under three disease parameterisations: Case 1) λ = 0.06, γ = 1, corresponding to a

disease scenario in which our suggested changes in Section 2.4.2 brought R0 below

1, Case 2) λ = 0.15, γ = 0.4, and Case 3) λ = 0.25, γ = 0.2, corresponding to the

disease parameterisation that provided the greatest reduction in R0 for the range of

parameters we explored in Section 2.4.2.

In all disease scenarios 20% of the most frequent buyers are responsible for approx-

imately 87% of the total possible reduction in R0. Moreover, when 50% of the most

frequent buyers adopt the proposed changes to trading patterns, we obtain approx-

imately 98% of the reduction in R0 that would be achievable if all farms comply. In

Case 1) 8% compliance is sufficient to bring R0 below 1, suggesting that for diseases

with values of R0 close to the threshold value, only a small fraction of farms would

need to change their trading patterns to eradicate disease. For diseases that are

challenging to control (Case 3), significant reductions are still achievable through

the targeted approach, though stricter control measures may be necessary to bring

R0 below 1 for these diseases.
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Figure 2.5: Comparing biosecurity with changes to trade patterns. Percentage reduction

in R0 (disease parameters λ = 0.25 and γ = 0.2) for targeted changes to both trading practices

and improved biosecurity (left), and due solely to targeted improvements to biosecurity (right). In

both cases, x-axes indicate what percentage of the most frequent buyers adopt trade changes and

largest sellers improve biosecurity.

2.4.4 Combining targeted changes to trading practices with

targeted biosecurity

So far we have considered only changes to buyers’ trading patters, but now show that

targeted changes in trade may be more impactful than similar targeting of standard

on-farm biosecurity measures. We assess the impact of varying percentages of the

largest sellers (those with the largest annual out-flow of animals) adopting on-farm

biosecurity that is assumed to reduce prevalence λ and the infectious period 1/γ

from a baseline (λ = 0.25 and 1/γ = 5). These targeted biosecurity changes are

assessed alone and in combination with changes to trading patterns targeted at the

most frequent buyers, as above. Figure 2.5 shows that the combination further

reduces system average R0 compared to solely targeting trade patterns. However,

these additional reductions increase relatively linearly as an increasing fraction of

sellers adopt improved biosecurity. This is in stark contrast to the impact of an

increasing fractions of the largest buyers changing trade practices (see Figure 2.4)
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for which most of the potential reduction in R0 is due to a small fraction of the

most frequent buyers. This may be understood by considering that our analysis

of the Scottish trading system suggests that formation and cessation of trading

partnerships is determined by more factors than simply the size of the selling farm,

i.e. their ζi. Thus, the out-flow of animals of a farm does not solely indicate whether

that farm is a potential risk for the spread of disease.

2.5 Discussion

Animal movements via trade have long been considered a significant factor in the

spread and persistence of diseases within national scale livestock disease systems [37,

42, 46, 51, 71, 94, 98, 108]. Recently available movement data has enabled mod-

elling of disease spread to be superimposed on historic livestock movement patterns

[51, 9, 109]. Network analysis of such data have also proved highly insightful. For

example, using static networks to identify that fewer larger trades could improve

disease control [88], or that highly connected ‘hubs’ are likely efficient targets for

biocontrol [38]. Nonetheless, there is a pressing need to develop truly generative

models of livestock movements to enable such data to better inform understanding

and management of these complex systems. In this article we outline a generative

approach with two components: a dynamic network which evolves via continuous

formation and cessation of trading partnerships determining network topology at

a given time; and a contact process on this network that represents animal move-

ment (trades) and related disease spread between farms. Our approach goes beyond

current state of the art models [58], for which only the size and timing of animal

movements is modelled on a fixed network of trade partnerships, and is sufficiently

powerful to represent key features of Scottish cattle movements as recorded by the

Cattle Tracing System (CTS). Analysis of this model yields powerful insights into

disease control, with limiting cases allowing re-derivation of known R0 expressions,

e.g. for static networks and well-mixed systems.

In the context of the Scottish cattle trading system we show that disease risks can be

reduced in a way that minimises disruption by maintaining annual in-flows of animals
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for all farms. Fewer, larger trades, and fewer, longer lasting trade partnerships yield

the greatest reduction in system average R0 when they are applied simultaneously,

especially for diseases with high prevalence and persistence. Moreover, they can

reduce R0 below 1 for diseases close to this critical threshold under current trading

patterns. Thus, changes in trade practices could eradicate certain diseases without

other, potentially more disruptive and costly, control measures, and they could assist

control of more persistent diseases that require multiple interventions. The fact

that R0 can be significantly reduced by simply changing the ways in which farms

maintain their annual in-flow of animals is, we believe, a significant finding as this

is potentially far less intrusive than other control strategies involving, for example,

movement bans or restricting from whom a farm can purchase animals [43]. We

note, however, that different network structures may effect the efficacy of each of

our proposed changes to trade.

Our analysis also highlights the potential to exploit scale-free like properties of live-

stock trading systems for disease control. Targeted changes to the trade practices

of only the farms with the highest trade volumes can significantly reduce R0 and

thus the burden of endemic disease and outbreak risk for the whole system. Fur-

ther reductions result from combining changes to trade patterns with more standard

biosecurity measures targeted on farms with the largest annual out-flows of animals.

As such targeted modifications are expanded, resulting disease control benefits from

changing trade practices scale much more favourably than do those of similarly tar-

geted farm-level biosecurity (Figure 2.5). Given the current emphasis on farm-level

biosecurity this is further evidence that the disease control potential of modifying

trade deserves greater attention.

These results illustrate how mechanistic generative models, such as introduced here,

can make a unique contribution to the study of livestock networks that complements

existing network approaches. For example, our results agree with static network

analysis identifying that fewer larger trades could improve disease control [87, 88],

but go beyond these to show the impact of trade partnership dynamics. The scale-

free properties of livestock trade are a common target for network analysis including
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recent work on UK livestock trade that shows a fraction of farms are highly connected

by contact chains involving multiple trades [38]. Although we do not explicitly

identify such contact chains, their influence on disease transmission is integrated

into our analysis and captured in our calculations of R0 that account for trade and

the formation of trade partnerships.

Naturally, the first implementation of our novel framework has made simplifying

assumptions, the relaxation of which will be the subject of further work. Firstly,

we assume trade occurs throughout the year, however animal movements generally

occur in specific months [113]. Secondly, the rate at which farms trade is assumed

constant, regardless of when the last trade was, but fluctuation in supply and demand

is likely to play an important role in trade dynamics. However, we note that currently

available generative mechanistic models of livestock trade make similar assumptions

[87, 58]. Reformulating the trade rate to be a function of these stock quantities is a

natural progression of our model which would resolve these issues, but could limit

analytic tractability. Finally, the rates determining the formation and cessation of

trade partnerships are based only on the annual in- and out-flows of farms, but our

analysis suggests other factors may be at play. Distance-based metrics, farm types

(beef, dairy, etc.), time-varying stock rates (see above), and socio-economic factors

may enable better quantification of trading and partnership dynamics, and may also

prove significant in the spread of disease.

In conclusion, we have introduced what we believe is the first generative modelling

framework for livestock movements that is able to account for key features of com-

plex national scale real-world systems. Analysis of resulting between-farm disease

spread shows changes to trading patterns that conserve farm-level in-flow of animals

provide a powerful approach to control of endemic disease and likely also mitigate

outbreak risk. Attempts to adopt these novel approaches to disease control may re-

veal frictions in the ability of a real-world trading system to implement our proposed

changes to trade and further work is needed to explore such barriers to uptake. For

example, larger batch sizes (and fewer trades) may inhibit flexibility in adapting to

changing conditions. Furthermore, there is evidence that some farmer behaviours
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are determined by responses to external influences including extreme weather events

and socially accepted farming practices [56]. This suggests that incentives, e.g. in

the form of cooperatives, health schemes, or subsidies, may be required to encourage

modification of farm-level trading behaviour. However, it is encouraging that reduc-

tions in disease burden resulting from targeted modification of trade practices scale

much more favourably than those associated with improvements to farm biosecurity

that are the usual focus of disease control policies.
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2.6 Appendix

2.6.1 Derivation of pij(t) and kini (t)

We here derive the probability of a trade partnership between farms i and j, pij(t),

and the expected number of concurrent trade partners, kini (t).

The first-order differential equation governing the time-evolution of the probability

of a trade partnership between i and j is given by

d

dt
pij(t) = αij − (αij + δij)pij(t), (2.13)

which, under the assumption that the system begins in a disconnected state, i.e.

pij(0) = 0, for all i and j, can be solved to yield

pij(t) =
αij

αij + δij

(
1− e−(αij+δij)t

)
. (2.14)

At equilibrium, we obtain

pij = lim
t→∞

pij(t) =
αij

αij + δij
. (2.15)

As the presence (or absence) of a trading partnership at time t is a Bernoulli random

variable with probabilities differing between farm pairs, the expected number of

trading partners for farm i at time t, kini (t), is a Poisson Binomial random variable

with value

kini (t) =
N∑
j 6=i

pij(t) (2.16)

and the equilibrium number of concurrent trading partners is
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kini = lim
t→∞

kini (t) =
N∑
j 6=i

pij. (2.17)

2.6.2 Derivation of Ri
0

The disease transmissibility Tij is calculated by solving

Tij =

∫ ∞
0

P (i infects j | τij = t)P (τij = t)dt, (2.18)

where τij is the infectious contact period, the period of time in which i is infected

and is a supplier to j. Noting that the infectious contact period is a compound

Poisson process, and since either recovery of cessation of the trading partnership

ends the infectious contact period, which occurs with rate γ + δji, we have

P (τij = t) = (γ + δij)e
−(γ+δij)t,

P (i infects j | τij = t) = 1− e−βijt,

where βij is the rate at which i transmits infection to j. Upon substitution into Eq.

(2.18) and integrating, we obtain

Tij =
βij

βij + δji + γ
. (2.19)

To calculate Ri
0, consider an initial infected farm i and another randomly chosen

susceptible farm j. Referring to Figure 2.6, we define S · I as the state in which i is

not a current trading partner of j. Similarly, S−I is the state in which i is a current

trading partner of j. We first calculate the probability that i transmits infection to

j by calculating the probability that the farm pair transitions to the I − I state, i.e.

the state in which both farms are infected and i is a trading partner of j, before i

recovers (represented by the transition to either the S ·S or S−S state). Now, since
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Figure 2.6: Farm pair transition diagram. The farm pair can begin in either the S − I state or

the S · I state, corresponding to the presence or absence of a trading partnership, respectively.

The presented states are the only ones relevant to obtaining the probability that the infected farm

transmits infection to the susceptible farm, i.e. the probability of transitioning to the I − I state,

and are thus the only states relevant to obtaining Ri0.

j is chosen at random, the pair can begin in an initially connected or disconnected

state, i.e. in the S ·I or S−I state, so we must calculate the conditional probabilities

of transitioning to the I − I state given their starting state, which we define as AS·I

and AS−I , respectively. These conditional probabilities are related to each other by

the following equations:

AS·I =
αji

αji + γ
AS−I ,

AS−I = Tij +
δji
βij
TijAS·I

(these are obtained by considering the state transition diagram Figure 2.6). Upon

solving we obtain
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AS·I =
αjiβijTij

βij(αji + γ)− αjiδjiTij
, (2.20)

AS−I =
(αji + γ)βijTij

βij(αji + γ)− αjiδjiTij
. (2.21)

Defining the probability of transmission as ρij, we have, by the Law of Total Prob-

ability,

ρij = pjiAS−I + (1− pji)AS·I ,

i.e. the probability that the pair start in a connected state and infection is success-

fully transmitted, plus the probability that the pair start in a disconnected state

and infection is successfully transmitted. After substitution we obtain

ρij =
(αji + γpji)βijTij

βij(αji + γ)− αjiδjiTij
. (2.22)

Disease transmission is Bernoulli random variable, and the probability of transmis-

sion differs between farm pairs but is independent. It follows that Ri
0 is the mean of

a Poisson Binomial distribution, given by

Ri
0 =

N∑
j 6=i

ρij. (2.23)

Using the expression αji = ajηjζi/N , substitution into Eq. (2.22) yields

ρij =
ajηjζiβijTij

βij(ajηjζi + γN)− ajηjζiδjiTij
+

γpjiβijTij
βij(αji + γ)− αjiδjiTij

.

For a large system the denominator of the first term approaches βijγN , the denom-

inator of the second term approaches βijγ, and pji → αji/δji. Combining these we

obtain

76



lim
N→∞

Ri
0 =

∞∑
j 6=i

αji
γ
Tij +

∞∑
j 6=i

pjiTij. (2.24)

2.6.3 Ri
0 in large εtrade limit

Under the scaling of the trade rate ϕij and batch size θi by εtrade, the infection rate

βij does not scale linearly as εtrade increases. The limit, rather, is given by

lim
εtrade→∞

βij = ϕji lim
εtrade→∞

εtradeB(ε−1tradeθj) = ϕji lim
εtrade→∞

(
εtrade

(
1− (1− λ)

θj
εtrade

))
,

which is of indeterminate form. Application of L’Hôpital’s Rule yields

lim
εtrade→∞

βij = −ϕjiθj ln(1− λ) = ϕjiθj ln

(
1

1− λ

)
. (2.25)

Under this limit, the disease transmissibility is

Tij =
ϕjiθj ln

(
1

1−λ

)
ϕjiθj ln

(
1

1−λ

)
+ δji + γ

,

and the large N limit of Ri
0 is of the same form as Eq. (2.24).

2.6.4 Ri
0 in small εptnr limit

Scaling the partnership formation and cessation rate, αij and δij, by εptnr and using

the expression for the disease transmissibility Eq. (2.19), we have

lim
N→∞

Ri
0 =

∞∑
j 6=i

εptnrαji
γ

βij
βij + εptnrδji + γ

+
∞∑
j 6=i

pji
βij

βij + εptnrδji + γ
. (2.26)

In the small εptnr limit, the first term vanished and we obtain

lim
εptnr→0

lim
N→∞

Ri
0 =

∞∑
j 6=i

αji
δji

βij
βij + γ

. (2.27)
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2.6.5 Ri
0 in large εptnr limit

In the large εptnr limit the second term of Eq. (2.26) vanishes, but the first term is

bounded and tends towards

∞∑
j 6=i

αji
γ

βij
δji
.

After rearranging we obtain

lim
εptnr→∞

lim
N→∞

Ri
0 =

∞∑
j 6=i

αji
δji

βij
γ

=
∞∑
j 6=i

β̂ij
γ
, (2.28)

where β̂ij = βijαji/δji.

2.6.6 Ri
0 in fully connected limit

Using the scaling factor εji#ptnr to scale the partnership formation rate αji as described

in Section 2.3.2, and noting that pji → 1 as εji#ptnr →∞, we have, for a finite system,

and using Eq. (2.23),

lim
εji#ptnr→∞

Ri
0 =

N∑
j 6=i

βijTij
βij − δjiTij

,

which, upon substitution of the disease transmissibility Eq. (2.19) yields

lim
εji#ptnr→∞

Ri
0 =

N∑
j 6=i

βij
βij + γ

. (2.29)

2.6.7 Comparison of theoretical predictions with stochastic

simulation

We compare our theoretical predictions of R0, the system average Ri
0, for two trading

systems: one in which trading patterns of farms distributed according to Power-Law

distributions, and one in which all farms behave homogeneously, that is all quantities
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in our system are equal across farms. In all cases we set the system size N = 200,

farm prevalence λ = 0.4, and infection recovery rate γ = 0.2.

For the Power-Law system, trading quantities are of the form

p(Z = z) = Cx−α,

where C normalises the distribution, and α determines the slope of the distribution.

We distribute the in- and out-flows of farms, ηi and ζj, respectively, the number of

concurrent trading partners, kini , and the unit-time number of trades according to

this distribution, and the value of α is chosen to obtain desired averages for each of

these quantities. In the below scenarios, and in both systems, farms bring on and

send out 2 animals per time unit, i.e. η = ζ = 2, with an average of 2 trades from 2

concurrent trading partners.

We assume the constant ai in the partnership formation rate is also distributed in

such a way, and the partnership cessation constant di is thus determined by solving

the expression for kini (see Table 2.1). As an initial state, we desire the average

partnership duration to be 1 unit of time, so ai and di are rescaled to achieve this.

The batch size, θi, is obtained by dividing the unit time in-flow, ηi, by the unit time

number of trades for each farm, and the constant bi in the rate of trade is found by

solving our expression for the expected unit time in-flow of animals (see Eq. (2.4)).

As with the duration of trade partnerships, we choose an initial state in which the

average batch size is set to 1. Thus, bi and θi are rescaled to achieve this.

For the homogeneous system, for comparison we set the values of farms’ trading

quantities to be equal to the means of the Power-Law system. For a homogeneous

system, our expressions for Ri
0 can be reduced to closed-form expressions. As our

system is homogeneous, we drop subscripts from all quantities and summations over

the system can be replaced with products, e.g.
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N∑
i

x = xN.

We note that
∑N

j 6=i pij = pN = kin, and that kin → α/δ for large N . Thus,

Ri
0 = R0 =

(αN + γkin)βT

β(α + γ)− αδT
, (2.30)

and

lim
N→∞

R0 =
αN

γ
T + kinT. (2.31)

Note that α is a function of the system size N so that αN is bounded for increasing

N .

2.6.8 Comparing changes to frequency and size of trades

As predicted by Eq. (2.6), increasing the batch size and decreasing the frequency of

trade has the desirable effect of reducing R0 in both the Power-Law and homogeneous

systems (see Figure 2.7). Both the theory and simulation are in good agreement,

predicting similar behaviour qualitatively and quantitatively, although there are

differences between the two systems, with the Power-Law system predicting slightly

smaller values of R0 than the homogeneous system, and a more pronounced decrease

in the equilibrium disease prevalence as the batch size is increased. In both systems,

however, complete removal of disease is possible when the batch size is increased to

6 for the Power-Law system and 8 for the homogeneous system.

2.6.9 Comparing changes to duration of trading partner-

ships

Increasing the average duration of trading partnerships reduces R0 as predicted by

Eq. (2.7), and both the theory and simulation output predict similar qualitative
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Figure 2.7: The system-average R0 (top left), equilibrium disease prevalence (top right), percentage

reduction in R0 compared to the initial state (bottom left), and the percentage reduction in the

equilibrium disease prevalence compared to the initial state (bottom right) as the average batch

size is increased from an initial batch size of 1. Solid red lines represent the theoretical predictions

for the homogeneous system, and solid black lines represent the output of the average of 2000

independent simulations for the homogeneous system. Dashed lines represent the same output

for the Power-Law system, except in simulations each of the 200 farms is chosen to be the initial

infected in 10 simulations.

behaviour, however the differences between the two are noticeable, in particular

for the homogeneous system (see Figure 2.8). Encouraging longer lasting trading

partnerships has a markedly larger effect on the equilibrium prevalence for the Power-

Law system compared to the homogeneous system, with approximately 80% and

30% reduction when partnerships last an average of 20 time units for the Power-

Law and homogeneous systems, respectively. We note that, while the value of R0

can be reduced, altering the duration of trading partnerships may be insufficient in

reducing R0 below the threshold value of 1, and its ability to do so is determined by

the intrinsic disease parameters and/or the frequency and size of trades.
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Figure 2.8: The system-average R0 (top left), equilibrium disease prevalence (top right), percentage

reduction in R0 compared to the initial state (bottom left), and the percentage reduction in the

equilibrium disease prevalence compared to the initial state (bottom right) as the average trading

partnership duration is increased from an initial duration of 1 time unit. Solid red lines represent

the theoretical predictions for the homogeneous system, and solid black lines represent the output

of the average of 2000 independent simulations for the homogeneous system. Dashed lines represent

the same output for the Power-Law system, except in simulations each of the 200 farms is chosen

to be the initial infected in 10 simulations.

2.6.10 Comparing changes to number of concurrent trading

partners

A reduction in the number of concurrent trading partners, accompanied by a pro-

portional increase in the number of trades so that farms’ in-flow of animals are

maintained, yields a reduction in R0 and the equilibrium prevalence, and, as with

changes to the batch size, the theory and simulation predict similar qualitative and

quantitative behaviour (see Figure 2.9). Complete eradication of disease is possible

as the number of trading partners is brought closer to zero, and we note that for our

two systems considered here that greater proportional reductions in the number of

trading partners is required to reduce R0 below 1 than is required if the batch size

is increased. However, this may be a property of our chosen systems and not true

in all cases, as evidenced by our analysis of the Scottish cattle trade industry where

changes in the number of trading partners yielded greater reductions in R0.
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Figure 2.9: The system-average R0 (top left), equilibrium disease prevalence (top right), percentage

reduction in R0 compared to the initial state (bottom left), and the percentage reduction in the

equilibrium disease prevalence compared to the initial state (bottom right) as the average number

of concurrent trading partners is increased from an initial number of 0.1. Solid red lines represent

the theoretical predictions for the homogeneous system, and solid black lines represent the output

of the average of 2000 independent simulations for the homogeneous system. Dashed lines represent

the same output for the Power-Law system, except in simulations each of the 200 farms is chosen

to be the initial infected in 10 simulations.

2.6.11 Overview of CTS data analysis

Our analysis of the Scottish trading system involves obtaining the distribution of

quantities to apply to our model without explicitly matching the animal movements

observed in the data. The Cattle Tracing System (CTS) dataset provides detailed

records of individual cattle movements between premises, with each animal uniquely

identified by an animal ID. We restrict our considerations solely to farms located

within Scotland, and between years 2005-2013, inclusive. We choose not to include

years prior to 2005 so that potential lingering perturbations to trade following the

2001 Foot-and-Mouth disease epidemic are minimised.

We remove seasonal trends by obtaining yearly averages for farm parameters and

quantities, and since movements to markets are expected to play a small role in

the spread of endemic diseases, we treat such movements as transitory and replace
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them with direct farm-to-farm movements (thus maintaining the flow of animals

through markets). Any movements to market that are not subsequently moved off

that market are removed from the dataset. Additionally, any animal movement to a

non-farm premises (defined as an agricultural holding in the data) is removed. This

removes movements to slaughterhouses, here considered endpoints for infection. Our

modelling assumption that disease transmits solely through trade implies that an

animal holding that neither buys nor sells at least one animal in the time period

considered makes no contribution to the spread of disease; consequently, these farms

are also removed from the dataset. Finally, any farm-to-farm movement that orig-

inated or ended at a location not within Scotland was removed, so that we have

a closed system of farms that trade solely within the population. Movements sent

out of Scotland accounted for approximately 14% of all outgoing animal movements,

and movements to Scotland accounted for approximately 10% of all incoming animal

movements.

Our resulting dataset is closed system of the individual cattle movements of 15386

farms. We combine these individual cattle movements into batch movements be-

tween farms by matching the on- and off-location IDs for a given date. These batch

movements allow us to obtain values for model quantities as follows. The yearly

average in- and out-flow of animals for farms, ηi and ζi, respectively, are obtained

by averaging the total observed number of animals purchased/solve over the time

period we are considered, defined as T . Thus

ηi =
1

T

T∑
t=1

V in
i (t),

ζi =
1

T

T∑
t=1

V out
i (t),

where V in
i (t) and V out

i (t) are the total in- and out-flows of animals for farm i in year

t, respectively.

We make the modelling assumption that the batch size of a farm i, θi, is constant

and independent of the farm whence the batch originated, so that all farms can
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supply θi animals to farm i when a trade occurs. As such, we obtain θi by simply

taking the average size of all trades observed for farm i:

θi =
1

Φi

T∑
t=1

V in
i (t),

where Φi is the total number of trades observed for farm i.

To obtain estimates for the partnership coefficients ai and di, we assume that a farm

that buys animals from another farm in year t and again in year t + 1 maintained

the trading partnership in both years. Conversely, if a trade is observed in year t

but not in year t + 1 then we assume the partnership ended at the end of year t.

Thus, we evaluate trading partnerships on an annual basis and our analysis revealed

that approximately 83% of partnerships ended after a single year, and 89% after two

years.

To calculate ai, we match the observed new trading partnerships from year t to t+1

with the partnership formation rate defined in Eq. (2.1). We do this for each year,

as the number of potential new trading partners varies over the years depending on

who is currently a trading partner. Thus we define ai(t) for year t, which is found

by equating

ai(t)
∑

j /∈Kin
i (t−1)

ηiζj
N

= Ai(t− 1, t)

⇒ ai(t) =
Ai(t− 1, t)N∑
j /∈Kin

i (t−1) ηiζj
,

where Ai(t−1, t) is the number of observed trading partnerships formed by i in year

t that were not observed in year t − 1. In the subscript of the summation we take

Kin
i (t− 1) to be the trading partners of farm i in year t− 1. We then calculate ai as

ai =
1

T

T∑
t=1

ai(t).
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Note that for any farm in which ζi = 0 we set ai = 0.

We obtain di in a similar manner by equating the number of partnership cessations

occurring from one year to the next with the partnership cessation rate at defined

by Eq. (2.2). Thus

di(t)
∑

j∈Kin
i (t−1)

1

ηiζj
= Di(t− 1, t),

⇒ di(t) =
ηiDi(t− 1, t)∑
j∈Kin

i (t−1) ζ
−1
j

,

where Di(t− 1, t) is the number of observed partnerships in year t− 1 that were not

observed in year t. Note that the denominator is only defined for non-zero Kin
i (t),

i.e. in years in which farm i had at least one trading partner. Thus, to obtain di,

we average over the years in which i had at least one trading partner, defined as Yi.

Therefore

di =
1

Yi

Yi∑
t=1

di(t).

Finally, we obtain the trade rate coefficient bi by solving Eq. (2.4) so that

bi =
ηi

θi
∑N

j 6=i pij ·min(ηi, ζj)
.
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2.6.12 Distributions of model quantities from CTS data

(a)

(b)

Figure 2.10: Monthly total number of animal movements (a) and number of animals moved (b). In

general, animal movements and flows are consistent year-on-year, though there is a notable decline

in 2007, corresponding to the small FMD outbreak that occurred.
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(a)

(b)

Figure 2.11: The distribution (a) and empirical cumulative distribution (b) of animal flows.

(a) (b)

Figure 2.14: The distribution (a) and empirical cumulative distribution (b) of the average batch

size.
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(a) (b)

Figure 2.12: The distribution (a) and empirical cumulative distribution (b) of the annual average

number of trading partnerships.

(a) (b)

Figure 2.13: The distribution (a) and empirical cumulative distribution (b) of the annual average

number of trades.
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2.6.13 Distribution of trading partners’ out-flows and part-

nership duration before and after modification to for-

mation and cessation rates

(a)

(b)

Figure 2.15: Simulation output and data for the distribution (a), and density and empirical cumu-

lative distribution (b) of the average out-flow of farms’ trading partners under original functional

forms for the partnership formation and cessation rates.
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(a)

(b)

Figure 2.16: Simulation output and data for the distribution (a), and density and empirical cumu-

lative distribution (b) of the average partnership duration of farms under original functional forms

for the partnership formation and cessation rates.
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(a)

(b)

Figure 2.17: Simulation output and data for the distribution (a), and density and empirical cumu-

lative distribution (b) of the average out-flow of farms’ trading partners under modified functional

forms for the partnership formation and cessation rates.
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(a)

(b)

Figure 2.18: Simulation output and data for the distribution (a), and density and empirical cu-

mulative distribution (b) of the average partnership duration of farms under modified functional

forms for the partnership formation and cessation rates.

93



2.6.14 Values of R0 for varying trade patterns

Figure 2.19: System average R0 for varying values of average batch size, average partnership

duration, and average number of concurrent trading partners. We consider changes to batch size

and partnership duration (top left), batch size and number of concurrent trading partnerships (top

right), and number of concurrent trading partnerships and partnership duration (bottom left).

Grey squares represent the current trading patterns of the Scottish trade system. In all cases we

set λ = γ = 0.2.
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2.6.15 Values of R0 for varying disease parameterisations

Figure 2.20: The predicted system average R0 for a range of disease parameterisations under

current observed trading patterns in the Scottish trade system.
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Figure 2.21: Percentage reduction in system average R0 for singular changes to trade over a range of

disease parameterisations. Changes considered are doubling the batch size, with an accompanying

halving of the number of trades (top left), doubling the duration of trade partnerships (top right),

and halving the number of concurrent trading partners (bottom left). Changes to the batch size are

most effecitve for diseases characterised by high prevalence and short infectious periods, whereas

changes to the duration and number of trading partnerships are most effective for diseases with

high prevalence and long infectious periods.
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Chapter 3

A stochastic, adaptive systems

view of livestock trading

3.1 Introduction

In Chapter 2, we introduced a generative trade model that accounts for the stochastic

formation and cessation of trade partnerships and the movement of animals that such

partnerships permitted. The rates determining the formation and cessation of trade

partnerships, αij and δi, and the rate of trade, ϕij, were defined, respectively, as:

αij =
ai
N

(
ηiζ

m
j + w

)
, (3.1)

δi =
di
ηi
, (3.2)

ϕij = bi ·min(ηi, ζj), (3.3)

where ηi and ζj are the unit-time in- and out-flow of farms i and j, respectively, N

is the system size, ai, di, and bi are rates defining the propensity for farm i to form

and end partnerships, and trade, respectively, and m and w are constants. These

rates are functions of static farm-level quantities, namely annual in- and out-flows

of animals, and are thus invariant to changes and/or perturbations of the trading
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system. However, trading patterns are generally not static, with seasonal trends

clearly evident in the UK cattle trade system with the majority of animal movements

occurring in springtime, corresponding to periods in which the majority of calves

are born [46, 113]. Moreover, while farmer behaviour generally evolves with cultural

changes, they can also be affected and disrupted by external pressures, including

disease outbreaks, extreme weather events, and farm relocation [56]. In a network

context, seasonal trading patterns are examples of “burstiness”; events occur in

concentrated bursts, followed by a period of low activity [11]. The implications of

bursty activity on disease spread has been studied previously, though its effect can

be beneficial or deterimental to disease control based on correlations between the

topological structure of the network and the frequency and timing of contacts [34].

The surges of trades in springtime represent periods in which supply and demand,

or stock levels, are at their greatest and the drop in movements following the spring

months suggests a level of satiation of demand. Our trading model outlined in

Chapter 2 does not account for farm satiation; indeed, a farm is as likely to trade

immediately following a previous trade as that farm is during a long inter-trade

period. We therefore extend our model to account for farm-level time-varying stock

quantities, measuring current farm-level supply and demand, which determine the

rates at which farms form trading partnerships, make trades, and the size of trade

batches. Our resulting model extends previous work in the literature which included

similar time-varying stock quantities, however we go beyond the current state of the

art by 1) explicitly accounting for trade partnerships, and 2) accounting for stock

quantities in the rates of partnership formation and trade [58, 87].

In this chapter, we introduce an individual-based dynamic trading model in which

time-varying farm-level stock quantities, defined as supply and demand, determine

the rates at which farms form new trading partnerships and trade with current

trade partners. We will explore the dynamics of this highly dynamic and adaptive

system, initially in the absence of disease, and consider the response of individual

farms in changes to trading propensities (such as increased trade friction) and how

these individual-based responses alter the trading dynamics at the system level.
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Moreover, we will analyse the sensitivity of the system to shocks in farm-level supply

and demand. When disease is introduced, we will show that farm-level responses

to changes in trading propensities alter the structure of the trading system in ways

such that disease prevalence is largely unaltered, except in certain extreme cases.

We introduce typical disease control strategies, such as on-movement animal testing,

and evaluate the impact of animal and batch rejection on farms’ ability to maintain

their business needs, and also how such control strategies affect between-herd disease

prevalence. Farm- and system-level information propagation, mediated through on-

movement animal testing, indicating “high-risk” farms will be introduced, and the

impact of farms’ avoidance of high-risk farms on the trading system and disease

prevalence will be explored. Our results will highlight the potential benefits of a

global risk aversion strategy on significantly reducing disease prevalence.

3.2 An individual-based systems model of trade

dynamics

3.2.1 Mechanisms of stock generation and a global pricing

strategy

We assume a closed system of N farms in which farm i’s propensity to form trading

partnerships and make trades are determined by time-varying stock quantities, Di(t)

and Si(t), which represent, respectively, the number of animals farm i wishes to

purchase and has available to sell at time t. A full outline of model quantities and

parameters is presented in Table 3.1. We herein use the terms demand and supply

to refer to Di(t) and Si(t). The global supply and demand is thus defined as

D(t) =
N∑
i=1

Di(t), (3.4)

S(t) =
N∑
i=1

Si(t). (3.5)
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Global stock levels determine a system-wide price of goods at a given time t, P (t).

We adopt the pricing model of [87] and assume that the rate of change of the

logarithm of the price is proportional to the rate of change of the net willingness to

trade, defined as D(t)− S(t), i.e.

d

dt
P (t) = σP (t)

d

dt
(D(t)− S(t)) , (3.6)

⇒ P (t) = P0 · exp(σ(D(t)− S(t)− (D0 − S0)), (3.7)

where P0, D0, and S0 are, respectively, the price, global demand, and global supply

at t = 0. The constant σ represents the price sensitivity of goods to the difference

in global supply and demand. We assume that the system begins in a state with no

stock, so that D0 = S0 = 0, meaning P0 = P ∗ can be interpreted as a steady-state

price when supply and demand are balanced. Thus we have

P (t) = P ∗eσ(D(t)−S(t)). (3.8)

Note that the price is determined not by absolute values of global stock quantities,

rather by relative imbalances between supply and demand. The functional form for

P (t) is desirable as it does not permit negative prices, and replicates macroeconomic

properties, namely that excess demand causes prices to increase, excess supply causes

prices to decrease, and balanced supply and demand causes the price to equilibriate.

Collectively, these form the so-called law of supply and demand [79].

Farms generate units of stock with a linear, per-farm, rate of ηi(t) for demanded

stock and ζi(t) for supply stock. This simple rate is intended to represent the fact

that farms will accumulate supply and demand over time if no trades occur. The

functional forms of ηi(t) and ζi(t) are assumed to be

100



Quantity Definition

N Number of farms in the system

Di(t) Demanded stock of farm i at time t

Si(t) Available supply of farm i at time t

D(t) Global demanded stock at time t

S(t) Global available supply at time t

P (t) Price of goods at time t

P ∗ Price of goods when global stocks are equal

ηi(t) Rate at which farm i generates new demand at time t

η∗i
Rate at which farm i generate demand at price equilib-

rium

εD
Elasticity of demand. Measure of how demand genera-

tion changes due to changes in price

ζi(t)
Rate at which farm i increases its available supply at

time t

ζ∗i
Rate at which farm i increases available supply at price

equilibrium

εS
Elasticity of supply. Measure of how supply generation

changes due to changes in price

αij(t)
Rate at which i forms a trading partnership with j at

time t

δi Rate at which i ends a trading partnership

ϕij(t)
Rate at which i trades with its trading partner j at time

t

θij(t) Size of trade following a trade between i and j at time t

Table 3.1: Table of quantities and parameters in the model
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(a) (b)

Figure 3.1: Sensitivity of price to stock imbalances Price sensitivity to imbalances in global

demand and supply (a) and stock generation rates for varying prices (b). In both cases we set

P ∗ = 5, εD = εS = 0.5, and η∗i = ζ∗i = 1. Each trajectory is obtained deterministically from Eqs.

(3.8), (3.9), and (3.10)

.

ηi(t) = η∗i

(
P (t)

P ∗

)−εD
, (3.9)

ζi(t) = ζ∗i

(
P (t)

P ∗

)εS
, (3.10)

which are functionally similar to those used in [87], however we exclude stock losses,

external flows, and explicit characterisation of farms as either strict buyers or sellers.

The constants η∗i and ζ∗i represent stock generation rates at market equilibrium, i.e.

when global stock levels are balanced and P (t) = P ∗. We saw in Chapter 2 that

these are readily determined from data on between-farm movements averaged over

a suitable period. The constants εD and εS are, respectively, the price elasticities

of demand and supply. Their values determine how sensitive stock generation is to

perturbations of the price around the equilibrium price, and, for simplicity, we have

assumed they are constant across farms.

Figure 3.1a shows the sensitivity of price to imbalances in demand and supply for

varying values of the constant σ. As expected, a surplus in demand relative to

supply yields exponential increases in price, particularly for larger values of the

price sensitivitiy σ. Conversely, a surplus of supply causes the price to decrease,
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approaching 0 as this surplus increases. We therefore have

lim
D(t)−S(t)→∞

P (t) =∞,

lim
D(t)−S(t)→−∞

P (t) = 0,

lim
D(t)−S(t)→0

P (t) = P ∗.

Figure 3.1b highlights the relationship between the stock generation rates and price

as presented by Eqs. (3.9) and (3.10). Increases in price decrease the demand

generation rate ηi(t) and increases the supply generation rate ζi(t), whereas decreases

in price increase ηi(t) and decrease ζi(t). Thus farms generate more demand (and

less supply) when prices are low, and less demand (and more supply) when prices are

high. There is a feedback loop between the price of goods and stock levels: excess

demand leads to increases in price, which cause the demand generation rate, ηi(t),

to decrease and the supply generation rate, ζi(t), to increase. This, in turn, causes

the net willingness to trade, D(t) − S(t), to decrease and thus the price to return

to the equilibrium price P ∗. As the price returns to the equilibrium price, the stock

generation rates return to their equilibrium values. Therefore, the inclusion of a

pricing model can act as a corrective mechanism in the model to prevent stock level

divergences. Finally, we note that changes in price do not alter current supply and

demand, altering only future generation of stock.

3.2.2 The dynamics of trade partnerships

The presence of trade partnerships explicitly distinct from trade events was a key

extension to existing models in the model presented in Chapter 2. This innovation

enabled representation of a dynamic network of trade partnerships on which trades

occurred, also dynamically. This was a step forward compared with the static trade

partnership networks with dynamic trades of earlier studies. However, the rates

determining the dynamics of partnerships were constant, and unaffected by recent

trade activity of farms. We extend these rates here by expressing them as functions

of the farm-level stock quantities, so that the rate of partnership formation becomes:
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αij(t) =
ai
N
Di(t)Sj(t)m. (3.11)

We note here that further analysis of the length of partnership durations in the

Scottish trading system revealed that farm in-flow is not a strongly determining

factor in the duration of trade partnerships (correlation between farm-in flow and

trade partnership duration length is R2 = 0.057, p << 0.01). As such, and for

simplicity, we herein keep the partnership cessation rate, δi for a given farm i,

constant.

Eq. (3.11) describes how model farms’ propensities for forming new trading partner-

ships are dictated by current stock levels, rather than average, long-term properties

of farms as in Chapter 2, and new trade partners are chosen based on their current

available supply stock. As demand now varies in the model, so does the partnership

formation rate; periods of high demand will cause a surge of partnership formations,

followed by the gradual removal of partnerships as demand is satisfied by trade so

that new partnerships are formed less frequently. As in Chapter 2, we include the

constant m = 0.75 to represent that farms’ decision making process in the formation

of trade partnerships is not influenced entirely by stock levels (though we do not

explore such behaviour here) [56]. Our expression for αij(t) may lead to less discrim-

inatory choices in trade partners as farms with small long-term supply rates are not

precluded from having large instantaneous supply levels. We posit, however, that

small ζ farms will have, on average, low supply so that the distribution of “sizes”

(measured by farm out-flows ζ) of farms’ trading partners will be similar to Figure

2.1 in Chapter 2.

3.2.3 The dynamics of trade

As with the partnership formation rate, we extend the rate of trade from Chapter

2 to be a function of current demand of a farm i and current supply of its trading

partner j:
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ϕij(t) = bi ·min(Di(t),Sj(t)), (3.12)

where the constant bi is intended to represent any impediment to efficient trade

[87]. The trade rate presented in Chapter 2 was a function of the expected long-

term average in- and out-flows of animals of a buying farm and its trading partner,

and was intended to represent that large out-flow farms will generally have larger

supply. As with Eq. (3.11), the key difference is that the rate at which farms

purchase animals is driven entirely by current requirements for stock, rather than

long-term trading trends. For a farm i, the min function in Eq. (3.12) allocates the

highest trade rate to a trade partner j that can match or exceed i’s demand. In

other words

ϕij(t) = biDi(t) if Di(t) < Sj(t), (3.13)

ϕij(t) = biDi(t) = biSj(t) if Di(t) = Sj(t), (3.14)

ϕij(t) = biSj(t) if Di(t) > Sj(t). (3.15)

Thus, purchasing patterns of farms are driven by dynamical state variables, namely

supply and demand. We neglect, therefore, more abstract and hard to quantify

variables that are likely present in real-world trading systems, e.g. farmer reputation,

details of the stock type that may make it more suitable, perceptions of disease risk,

etc. The exploration of such behaviour is an avenue for future work and we consider

some simple behavioural-trade feedback loops in the context of disease later in this

chapter.

Trades initiate a batch movement of animals, the size of which is also determined by

current demand Di(t) of the purchasing farm and current supply Sj(t) of the selling

farm:

θij(t) = min(Di(t),Sj(t)). (3.16)
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At most, farms will purchase enough animals to satisfy their demand at a given time,

and sellers operate on a first come, first served basis, i.e. sellers will offload their

entire supply in a single trade if demanded. Farms, therefore, buy and sell based

on current market pressures, excluding any forecasting, allocation of stock, future

agreements to sell, etc. Analysis in [58] found that Eq. (3.16) resulted in simulation

output most closely resembling data, suggesting that farms do indeed purchase and

sell animals in the most fluid way possible.

Interpreting Eq. (3.16) is straightforward: supply and demand are indivisible quan-

tities in our model, representing animals available for sale and number of animals a

farm wants to buy, respectively. As such, batches can take minimum size 1, i.e. a

single animal moved. The maximum size, however, is determined by current stock

quantities of the buying and selling farm, which can lead to excess demand and

supply following a batch movement. Therefore, transactions are imperfect [87] in

the sense that batch movements may not fully satisfy the buyer. Excess stock from

a trade is carried over and influences future trades.

Finally, the cumulative in-flow of animals for a typical farm i at time t is given by

V in
i (0, t) =

∫ t

0

N∑
j∈kini (τ)

pij(τ)ϕij(τ)θij(τ)dτ, (3.17)

where pij(t) is the probability that farm j is a seller to i, i.e. a trade partner, and

kini (t) is the number of trade partners of farm i at time t. Eq. (3.17) accumulates the

history of trade for farm i up to time t, however, unfortunately, is not analytically

tractable as the functional forms of ϕij(t) and θij(t) contain discontinuities and are

themselves functions of Di(t) and Sj(t) which cannot be expressed in closed-form.

To conclude, our model represents a free market, where agents (farms) buy and sell

animals at a given price level, outside the influence of regulatory and governmental

control. Nonetheless it is possible to add such externalities into future analyses based

on modifications of the model presented here. It is possible that our model may be

described as a perfectly competitive market, which must satisfy two conditions: 1)
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goods are homogeneous, i.e. all the same, and 2) that there are sufficient numbers of

buyers and sellers that no single individual can influence or dominate the market [79].

The first point is a simplifying assumption of our model (though is not a necessity;

we could distinguish animals into type (beef and dairy, for example), or indeed

quality). The second point is dependent on the trading system being analysed, and

influenced by system size and the distributions of trading patterns of farms.

3.3 The adaptive system dynamics of trade

In this section we explore the behaviour of our trading model in the absence of

disease dynamics for a simple, homogeneous system in which farms generate supply

and demand with equal rates and have similar propensities to form and end trading

partnerships, and to trade animals. In all cases we assume N = 200, η∗i = ζ∗i = 2.0,

P ∗ = 1, ai = 0.2, δi = 1.0, and b = 2.0 for all farms i. The price elasticities are set

to εD = 0.412 and εS = 0.821 and are taken from the FAPRI-UK economic model

documentation 2011 [36]. Stochastic simulations are performed using a standard

Gillespie Stochastic Simulation Algorithm [47, 48].

3.3.1 Exclusion of a pricing model can lead to divergent

stock levels

In Section 3.2.1 we highlighted that the presence of a pricing model introduces a feed-

back loop between imbalances in global supply and demand and the stock generation

rates. Referring to Figures 3.2 and 3.3, variation in the price sensitivity parameter

σ alters the sensitivity of the stock generation rates in response to changes in price,

and the price itself is more sensitive to imbalances in global supply and demand for

greater values of σ. The dynamic pricing model is effective at constraining stock

levels so that stock imbalances are minimised, even for very small values of σ. The

exception is the case when σ = 0, which is equivalent to the absence of a pricing

model entirely. In this case, stock generation rates are equal to their equilibrium

value at all times, and stochasticity of the simulation can lead to scenarios in which
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Figure 3.2: Price sensitivity on stock generation Average stock generation rates and average

price over time for varying values of the price sensitivity parameter σ. The special case σ = 0

represents the absence of a pricing model. For each parameter value, output is generated by

averaging 20 independent realisations of the stochastic simulation.

stock levels become imbalanced. Furthermore, in the absence of a pricing model,

such imbalances are not corrected for by changes in the stock generation rates, lead-

ing to cascading imbalances and divergences in stock quantities. We note that in

the output presented in Figure 3.3, a divergence in demand is evident, however

divergences in supply are also possible (see Figure 3.4).

3.3.2 Shocks in stock quantities

We now explore the ability for the modelled trading system to adapt itself to shocks

in global stock quantities when starting from equilibrium. We consider first shocks

in global demand, namely the introduction of a fixed increase in demand for each

farm at a specified point in time. Considering Figure 3.5, we see that shocks in

demand cause rapid increases in excess demand and therefore price. However, these

108



Figure 3.3: Price sensitivity on supply and demand stability Average price against excess

demand (left) and excess demand over time (right) for varying values of the price sensitivity

parameter σ. The special case σ = 0 represents the absence of a pricing model, i.e. no fluctuations

in price caused by excess demand. For each parameter value, output is generated by averaging 20

independent realisations of the stochastic simulation.

spikes are temporary and the system rapidly adjusts by appropriate reductions in

the demand generation rate η(t) and increases in the supply generation rate ζ(t)

so that excess demand and price return to pre-shock equilibrium values. Of note

is the inability for the stock generation rates to return to pre-shock values, instead

finding a new stable equilibrium (with larger shocks causing greater shifts away from

pre-shock equilibria). Referring to Figure 3.6, shocks in demand bring about surges

in the formation of new trade partnerships and trades as farms seek to satisfy their

new demand. This leads to reductions in available supply, hence the increase in ζ(t).

The surges in trade are temporary, quickly returning to pre-shock values, however

average stock quantities do not return to pre-shock values, instead finding a new,

slightly larger, equilibrium (this new equilibrium is approximately 25% larger for

the largest demand shock).
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Figure 3.4: Stock imbalances in the absence of price Global excess demand for a number of

independent stochastic simulations when a pricing model is absent (σ = 0).

Considering similar shocks to supply, Figures 3.7 and 3.8 show that the system

response in terms of excess demand and price is similar, though mirrored compared to

demand shocks, when the system exhibits supply shocks. The stock generation rates

attain new equilibrium values in response to supply shocks, with farms generating

more demand and less supply on average in the immediate aftermath than in pre-

shock times. Interestingly, however, supply and demand levels do not deviate from

pre-shock equilibrium values after the initial surge in trade following supply shocks,

suggesting our trading system is more sensitive to shocks in demand than in supply.

This may be explained by differences in our chosen supply and demand elasticities, as

the supply generation rate ζ(t) is more elastic (sensitive to changes in price [79]) than

is the demand generation rate η(t). Moreover, the model itself responds differently

to shocks in demand than supply because the partnership formation rate increases

and decreases linearly with increasing and decreasing demand and fixed supply, and

increases and decreases nonlinearly with increasing and decreasing supply and fixed
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demand.

Finally, we explore the system response to complete removal of all stock, i.e. Di(t) =

Si(t) = 0 for all farms i. Our stochastic simulations begin in a disconnected state,

i.e. there are no trade partnerships, and farms have no stock quantities. As the

simulation progresses, farms generate stock and begin to form partnerships until the

system reaches an equilibrium where farms can match with appropriate sellers to

satisfy their demand. In this shock scenario, we are investigating how the system

in equilibrium responds to a sudden loss of all supply and demand. Considering

Figures 3.9 and 3.10, we notice that removal of farm stocks has no discernible effect

on the price of goods. This is to be expected, as the price is affected by imbalances

in stock quantities rather than the individual availability of stock. As a result, stock

generation rates are also unaffected by global stock removals. The removal of stock

causes short-term out of equilibrium trade patterns, however the system rapidly

returns to the pre-shock equilibrium as farms begin to re-accumulate stock. There

is also negligible difference in the time taken for the system to return to the pre-shock

equilibrium compared with the time taken to reach equilibrium beginning from the

initial, disconnected state. We note that removal of all supply and demand is not

equivalent to the real-world removal of all animals in the system, which would be

catastrophic and prevent farms (in the short term, at least) to generate new supply.

3.3.3 Effects of trade and partnership friction on system

dynamics

In this section we explore the impacts of friction on the rate of trade and partnership

formation as given by Eqs (3.12) and (3.11), respectively. In economics, friction

represents any impediment to efficient trade, for example distance, matching buyers

and suppliers, and delivery times [27]. Friction is transposed onto our model in

a similar manner as in [58, 87], but with a key difference; we treat the formation

of trade partnerships as distinct from trade events. As such, the constant ai in

Eq (3.11) represents the frictional component to finding trade partners, and the

constant bi in Eq (3.12) represents the frictional component of all impediments to
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Figure 3.5: Shocks in demand impact price and stock generation Global excess demand

(top left), average price (top right), average demand generation rate η(t) (bottom left), and average

supply generation rate ζ(t) (bottom right) for varying shocks to global demand. For a given demand

shock s, for all farms i, farm-level demand is updated to Di(t) → Di(t) + s. In all cases, shocks

occur at t = 250.

trade between partners. Therefore, we can explore the role of friction in these two

components of trade in isolation and together. In Chapter 2 we explored the role of

friction in early-time disease spread, finding that manipulation of friction can lead

to desirable reductions in R0, but in this section we restrict our analysis solely to

its impact on transient and long-term dynamics of trade.

Trade friction

We consider first changes to trade friction, via changes to the trade rate constant

b, noting again that in this example system farms are homogeneous in their stock

generation rates and trade and partnership rates (though farm stock levels will differ

due to the stochasticity of the system and timing and sizes of trades). Increasing

b decreases trade friction, so farms have a greater propensity to trade, whereas de-
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Figure 3.6: Shocks in demand and response of trading system Average per-farm demand

(top left) and supply (top right), number of trading partners (middle left), number of trades (middle

right), batch size (bottom left), and per unit-time animal in-flow (bottom right) for varying shocks

to global demand. For a given demand shock s, for all farms i, farm-level demand is updated to

Di(t)→ Di(t) + s. In all cases, shocks occur at t = 250.

creasing b increases trade friction and farms trade less frequently. For the model

described in Chapter 2, and in the trading models presented in [58, 87], any change

in the friction of trade is linearly reflected in the frequency of trade, e.g. a 50% reduc-

tion in b corresponds to 50% fewer trades, as conditional on b, the rates describing

the frequency of trade are constant and are functions of farms’ average long-term

in- and out-flows. For the model described here, however, the rate of trade is a

dynamic function, varying with farm stock levels. As such, a given change in b may

not necessarily result in a correspondingly large change in the frequency of trade.

Indeed, Figure 3.12 reveals that this is the case, and by considering b = 1 as a base-

line, increasing b (less friction) does increase the frequency of trade, but not linearly.

For example, setting b = 100 (2 orders of magnitude greater than b = 1) increases

the number of trades per farm by approximately 55.68% (from an average of 0.67
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Figure 3.7: Shocks in supply impact price and stock generation Global excess demand (top

left), average price (top right), average demand generation rate η(t) (bottom left), and average

supply generation rate ζ(t) (bottom right) for varying shocks to global supply. For a given supply

shock s, for all farms i, farm-level supply is updated to Si(t)→ Si(t) +s. In all cases, shocks occur

at t = 250.

trades when b = 1 to 1.05 when b = 100). This is due to the effect on stock levels

as b is changed. For large b (low friction), farms begin by accumulating stock and

forming trade partnerships. However, as friction is low, farms trade with their trade

partners at high frequency leading to smaller batch sizes and lower levels of unmet

demand and available supply. These depleted stock levels feed back into the rates of

partnership formation and trade, so that farms require fewer trade partners, and the

effect of increasing b on the trade rate is thus counteracted by smaller stock levels.

The converse if true for reductions in b, as for small b there is greater friction in

trade resulting in farms accumulating more stock before a trade occurs, resulting in

large batches of animals. However, larger unmet demand and available supply leads

to farms forming a greater number of trade partnerships in an attempt to satisfy

their demand. When b = 1, average per-farm demand and supply is approximately
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Figure 3.8: Shocks in supply and response of trading system Average per-farm demand (top

left) and supply (top right), number of trading partners (middle left), number of trades (middle

right), batch size (bottom left), and per unit-time animal in-flow (bottom right) for varying shocks

to global supply. For a given supply shock s, for all farms i, farm-level supply is updated to

Si(t)→ Si(t) + s. In all cases, shocks occur at t = 250.

2.26, when b = 100 the average is 1.74 (a reduction of 22.78%), and when b = 0.01

the average is 6.15 (an increase of 171.66%), hence the effect of friction on farms’

ability to satisfy their demand is not symmetric, with a disproportionately larger

impact when friction is high (b = 0.01) compared with when friction is low (b = 100).

We note, however, that in all cases the system reaches an equilibrium, and farms

maintain the same level of animal in-flow, though the time to reach equilibrium is

greater when friction is high. Also, excess demand, price, and stock generation rates

are largely unaffected by changes in trade friction.

Friction in partnership formation

We next consider changes to friction in the formation of trade partnerships by al-

tering the formation rate constant a. Small values of a correspond to large amounts

115



Figure 3.9: Removal of all stock does not alter price and stock generation Global excess

demand (top left), average price (top right), average demand generation rate η(t) (bottom left), and

average supply generation rate ζ(t) (bottom right) when global supply and demand are removed.

In all cases, shocks occur at t = 250.

of friction in forming trade partnerships, and large values of a correspond to small

amounts of friction. To our knowledge, we are the first to consider friction in part-

nership formation, with current generative cattle trade models not distinguishing

partnership dynamics with trade events [58, 87]. As with trade friction, changes to

friction of partnership formation in the model of Chapter 2 resulted in corresponding

changes in the number of trade partnerships. However as with changes to trade fric-

tion, Figure 3.13 shows that the responses to changes in a are nonlinear in the more

complex model. Again using a = 1 as a baseline, setting a = 100 increases the equi-

librium per-farm average number of trading partners from 1.12 to 7.07 (an increase

of 528.98%). A correspondingly large reduction in a, setting a = 0.01, decreases the

number of trading partners to 0.22 (a reduction of 80.02%). In terms of stock levels,

setting a = 100 reduces average per-farm supply and demand to 0.29 from 1.18 (a
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Figure 3.10: Removal of all stock and response of trading system Average per-farm demand

(top left) and supply (top right), number of trading partners (middle left), number of trades (middle

right), batch size (bottom left), and per unit-time animal in-flow (bottom right) when global supply

and demand are removed. In all cases, shocks occur at t = 250.

reduction of 75.34%), whereas setting a = 0.01 increases these to 6.27 (an increase of

429.29%). Small values of a (large friction) result in farms having few trade partners

at any given time, so that there are fewer farms from whom to purchase animals to

satisfy demand. As such, average stock levels increase and animal batches during a

trade increase. Conversely, large values of a (low friction) cause farms to form more

partnerships, giving a greater number of farms from whom to purchase animals, so

average stock levels decrease and batch sizes are small. As with changes to trade

friction, greater friction in partnership formation (small a) increases the time for the

system to reach equilibrium, however in all cases farms are able to maintain their

required in-flow of animals.
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Duration of trade partnerships

Finally, we consider changes to the propensity for farms to end trade partnerships,

i.e. changes to the partnership cessation rate δ. Small values of δ result in longer

lasting partnerships, and small values result in short duration partnerships. Consid-

ering Figure 3.14, small δ (long duration partnerships) result in a greater number of

trading partners, more frequent trading (with smaller batches), and smaller levels

of per-farm unmet demand and available supply. On the other hand, large δ values

(short duration partnerships) result in very few trade partnerships and trades, larger

batch sizes when trades do occur, and farms have, in general, larger unmet demand

and available supply. It is impressive, however, that even in the case where δ = 100,

i.e. partnerships typically last 0.01 units of time, when farms have very few trade

partners, the system is still able to adapt and reach a stable equilibrium, with farms

maintaining their desired in-flow of animals. Of note is the transient dynamics of

stock quantities and batch sizes for small δ, where stock levels initially increase, be-

gin to level off, and then decrease to reach a stable equilibrium. The reason for this

is that at these small δ values, the timescales of trade and partnership cessations

are vastly different, with trade occurring more frequently than the removal of trade

partners. This allows farms to more readily purchase animals from trade partners

before the partnership ends, depleting supply levels and satisfying demand, causing

the decrease in stock levels and approach to a stable equilibrium.

3.4 Disease control and trade in a complex adap-

tive system

In this section we extend our trading model to account for disease spread via trades.

Previously in this chapter, we showed how alterations to the propensity for farms to

form and end partnerships, and make trades do not necessarily result in predictable

alterations to respective trade quantities, e.g. a reduction in the trade rate constant

bi does not yield a commensurate reduction in the number of trades. This was

due to the resulting impact on stock quantities, increasing pressure for farms to
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Figure 3.11: Impact of trade friction on price and stock generation Global excess demand

(top left), average price (top right), average demand generation rate η(t) (bottom left), and av-

erage supply generation rate ζ(t) (bottom right) for varying values of the trade rate constant b,

representing varying levels of trade friction.

form partnerships and continue trading. Alterations to friction changed the trading

structure of the system so that farms minimised their demand and maintain their

in-flows of animals. Such effects on network structure in relation to cattle trade

have not previously been explored, and the resulting implications for disease spread

may contradict previous results highlighting the effect of restrictions and changes to

network structure on disease spread [43, 85, 87].

We extend our trading model to include disease transmission in a similar manner as

in Chapter 2. The dynamics of disease are coupled with partnership dynamics and

trade by assuming disease is driven entirely by animal movements, neglecting indirect

transmission such as from external wildlife sources. Disease status is categorised at

farm level using a standard susceptible-infected-susceptible (SIS) model; susceptible

farms become infected through trade with infected farms, and can themselves infect
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Figure 3.12: Impact of trade friction on trading system equilibria Average per-farm demand

(top left) and supply (top right), number of trading partners (middle left), number of trades (middle

right), batch size (bottom left), and per unit-time animal in-flow (bottom right) for varying values

of the trade rate constant b, representing varying levels of trade friction.

others, and, after an exponentially distributed infectious period 1/γ, recover to

become susceptible once again [8]. In addition to the infectious period, a given

disease is also characterised by an effective on-farm prevalence level λ, assumed

constant across infected farms and time. We therefore take λ to be the average

prevalence of an infected farm over its infectious lifetime. We assume each animal

moved off an infected farm i has a constant probability λ of infecting the susceptible

buying farm and that off-farm movements do not alter herd prevalence on the selling

farm [106]. Our disease model differs from the one presented in Chapter 2 in one

key element: batch sizes are not constant and thus the probability of infection varies

over time and with farm-level stock quantities. If an infected farm j sells θij(t)

animals to a susceptible farm i at time t, the probability that that trade results in

infection is B(θij(t)) = 1 − (1 − λ)θij(t), and the rate at which i receives infection
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Figure 3.13: Impact of partnership formation friction on trading system equilibria Av-

erage per-farm demand (top left) and supply (top right), number of trading partners (middle left),

number of trades (middle right), batch size (bottom left), and per unit-time animal in-flow (bottom

right) for varying values of the partnership formation rate constant a, representing varying levels

of friction in the formation of trade partnerships.

from j is βji(t) = ϕijB(θij(t)), i.e. the rate at which i trades with j multiplied by

the probability that the trade results in the transmission of disease. Thus, trading

dynamics, and hence disease risks, change with the accumulation of stock and the

satiation of demand.

Having explored the generic behaviour of adaptive trade dynamics in our individual-

based systems model, we now explore a case study based on a simple representation

of a real-world trading system. We simulate disease spread on our trading system for

a network of N = 200 homogeneous farms (all farms share equal values for a, b, δ,

η∗, and ζ∗), and parameterise the system so that equilibrium per-farm averages for

number of trade partners, trades, batch size, and animal in-flow match those for the

Scottish trading system. Average values for these trading quantities are presented
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Figure 3.14: Impact of partnership durations on trading system equilibria Average per-

farm demand (top left) and supply (top right), number of trading partners (middle left), number

of trades (middle right), batch size (bottom left), and per unit-time animal in-flow (bottom right)

for varying values of the partnership cessation rate δ, representing varying levels of propensities

for farms to end trading partnerships.

in Table 3.2. In all scenarios presented below, we assume an initial burn-in period

for the trading system to reach equilibrium and to allow disease to be introduced

and reach an equilibrium prevalence level (we note that disease is introduced only

after the trading system has reached equilibrium). Putative changes to trade are

implemented at t = 50 in all cases. Disease parameters in all scenarios are λ = 0.25

(corresponding to 25% on-farm prevalence) and 1/γ = 3 (farms remain infectious

for an average of 3 time units). We will refer to this as the baseline disease scenario

throughout. All figures presented below are replicated in the Appendix for two fur-

ther disease scenarios: 1) λ = 0.05, γ = 1/3, representing a low farm prevalence, long

infectious period disease, and 2) λ = 0.25, γ = 1.5, representing a high farm preva-

lence, short infectious period disease. In all three disease scenarios, trading patterns

using the chosen parameterisation predict high system-level prevalence, suggesting
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that the trading system operates in a way that permits widespread prevalence across

a range of different diseases.

Quantity Data average

Trade partners 7.0

Trades 7.7

Batch size 3.58

In-flow (and out-flow) 27.1

Table 3.2: Table of system-level averages for trading quantities obtained from the Scottish trading

system.

3.4.1 The effect of friction on disease spread and control

To explore the role of friction on disease spread, we use a similar strategy as in

Chapter 2 by scaling the frictional components of partnership formations and trade,

a and b, and the partnership cessation rate δ, by constants εa, εb, and εδ, i.e.

a→ εaa,

b→ εbb,

δ → εδδ.

Recall from Chapter 2 that these scalings were used to alter farm-level trading

propensities to desired levels.

Trade friction

Considering first alterations to trade via changes to εb, Figures 3.15 and 3.16 show,

respectively, the impact of changes to trade friction on trade quantities and preva-

lence levels over time, and at equilibrium. As expected, increases in trade friction

(small values of εb) result in significant alterations to the trade network, with farms

having more trade partners, overall greater demand and available supply, and with
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Figure 3.15: Impact of trade friction on trade and disease prevalence Average per-farm

demand (top left) and supply (top middle), number of trading partners (top right), number of

trades (middle left), batch size (middle middle), per unit-time animal in-flow (middle right), and

system disease prevalence (bottom left) for varying values of εb, the scaling factor to the frictional

component of trade, b. In all cases, disease is introduced at t = 25 and changes to trade at t = 50.

trades occurring much less frequently and with much larger size. We note, how-

ever, that for all values of εb considered, the system is able to adapt so that farm

in-flows are maintained, though there is a transitory period in which farm flows are

not maintained as the system adjusts to the alterations in the trade rate and farms

search for new trade partners. The resulting network still permits stable disease

persistence except in the case of very high friction when εb = 10−5, as in this case

trades occur infrequently enough to allow infected farms to recover before they are

traded with, even though these trades are highly likely to spread disease if the source

farm is infected, due to the very large batch sizes of these trades. Considering Ap-

pendix Figure 3.30 for the low farm prevalence, long infectious period scenario, we

see that the impact of εb on disease prevalence is similar, with disease eradication

possible only in the extreme cases where trades become very infrequent. However,
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Figure 3.16: Impact of trade friction on equilibrium values of trading system and disease

prevalence Average equilibrium per-farm demand (top left) and supply (top middle), number of

trading partners (top right), number of trades (middle left), batch size (middle middle), per unit-

time animal in-flow (middle right), and system disease prevalence (bottom left) for varying values

of εb, the scaling factor to the frictional component of trade, b.

Appendix Figure 3.44 for the high farm prevalence, short infectious period scenario

shows that alterations to trade via εb are more effective, with complete removal of

disease achievable at smaller εb (εb ≤ 0.001). As prevalence is high under the base-

line trading network, this suggests that the recovery rate determines the efficacy of

alterations to trading patterns, highlighting the potential for on-farm biosecurity to

play a significant role in disease control.

Friction in partnership formation

Similar qualitative behaviour is observed when alterations are made to the frictional

component of partnership formation via εa as shown in Figures 3.17 and 3.18, with

disease persisting except at very small values of εa, which corresponds to a sparse

network in which few trade partnerships are present. In those scenarios farms are
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Figure 3.17: Impact of partnership formation friction on trade and disease prevalence

Average per-farm demand (top left) and supply (top middle), number of trading partners (top

right), number of trades (middle left), batch size (middle middle), per unit-time animal in-flow

(middle right), and system disease prevalence (bottom left) for varying values of εa, the scaling

factor to the frictional component of trade, a. In all cases, disease is introduced at t = 25 and

changes to trade at t = 50.

characterised by similar stock quantities as was observed for small εb, and few trades

occur but take large size. Again, however, the system adapts itself so that farm

flows are maintained. Interestingly, for very large values of εa, disease prevalence

is largely unaffected, despite the system tending towards a highly connected, highly

frequent trading regime in which farms are more readily able to satisfy their demand

and maintain animal flows. This is in direct contradiction of the results presented

in Chapter 2, which predicted that increasing network connectivity and trade fre-

quency would increase Ri
0, leading to greater disease persistence. This result clearly

highlights the important role of accounting for farm-level stock quantities, and the

nontrivial effect satiation has on mitigating the potential role of trade on disease

spread. As with εb, the efficacy of alterations to partnership formation via εa is
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Figure 3.18: Impact of partnership formation friction on equilibrium values of trading

system and disease prevalence Average equilibrium per-farm demand (top left) and supply (top

middle), number of trading partners (top right), number of trades (middle left), batch size (middle

middle), per unit-time animal in-flow (middle right), and system disease prevalence (bottom left)

for varying values of εa, the scaling factor to the frictional component of trade, a.

determined by the disease parameters. For the low farm prevalence, long infectious

period scenario, Appendix Figure 3.32 shows that disease can only be eradicated in

the extreme cases when εa is very small. In the high farm prevalence, short infec-

tious period, scenario, Appendix Figure 3.46 shows that, as with εb, disease can be

eradicated at larger values of εa, so smaller alterations to the trading system are

required to reduce disease prevalence.

Duration of trade partnerships

Finally, we consider alterations to the trade partnership duration, 1/δ, through

changes in εδ. Larger values of εδ correspond to reductions in partnership duration,

and vice versa. Referring to Figures 3.19 and 3.20, we see that encouraging longer

lasting trade partnerships (small εδ) does not alter equilibrium prevalence signifi-
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Figure 3.19: Impact of partnership durations on trade and disease prevalence Average

per-farm demand (top left) and supply (top middle), number of trading partners (top right),

number of trades (middle left), batch size (middle middle), per unit-time animal in-flow (middle

right), and system disease prevalence (bottom left) for varying values of εδ, the scaling factor to

the partnership cessation rate, δ. In all cases, disease is introduced at t = 25 and changes to trade

at t = 50.

cantly, however it does lead to greater satiation of farm-level demand, due to the

greater average number of trade partnerships. Our results of Chapter 2 showed that

encouraging longer lasting partnerships could reduce disease persistence to non-zero

levels, but not completely eradicate disease. On the other hand, significantly reduc-

ing the duration of partnerships (large εδ) does reduce disease prevalence but even

for extreme values of εδ, eradication is not possible and the disease is able to persist

at a lower equilibrium prevalence. Appendix Figure 3.34 shows that for the low farm

prevalence, long infectious period scenario, the impact of εδ on disease prevalence is

similar to the baseline disease scenario, and complete eradication is not possible for

the values of εδ considered here. Indeed, only small reductions are achievable rela-

tive to the magnitude of change to the trading system. Encouragingly, in the high
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Figure 3.20: Impact of partnership durations on equilibrium values of trading system

and disease prevalence Average equilibrium per-farm demand (top left) and supply (top middle),

number of trading partners (top right), number of trades (middle left), batch size (middle middle),

per unit-time animal in-flow (middle right), and system disease prevalence (bottom left) for varying

values of εδ, the scaling factor to the partnership cessation rate, δ.

prevalence, short infectious period scenario, complete eradication of disease is possi-

ble when trade partnerships last for increasingly short durations, again highlighting

that the impact of changes to trade on disease prevalence is largely determined by

the infectious period, rather than the farm-level prevalence, possibly due to the base-

line structure of the trading system permitting widespread between-herd prevalence

even for low farm-level prevalences.

3.4.2 Movement testing: impact on trading patterns and

prevalence

Animal testing and culling is a common approach to control livestock diseases [59,

73, 123], however these result in financial burdens on farms due to production losses.
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In this section we explore the ability for post-movement animal testing to control and

eradicate disease globally across a trading system for variable test sensitivities and

under two on-movement testing regimes: 1) test-and-cull individual animals, and 2)

test-and-cull whole animal batches. In contrast to existing models, a critical issue we

are able to address here is the system-wide response of the trading dynamics to the

impacts of such on-movement testing. That is, testing may cause long-term changes

to trading patterns due to the creation of imbalances in stock levels; if a trade

results in the detection of infected animals, the removal of these animals will result

in different levels of depletion of supply and demand for the selling and buying farm,

respectively, as the selling farm reduces its supply by the batch size of the trade, but

the buying farm’s demand is reduced only by the number of animals in the batch

that were not rejected. For example, assume a susceptible farm i makes a trade

with its infectious trade partner j. If the trade takes size θ, and the test sensitivity

is τ , i.e. infected animals test positive with probability τ , then the expected number

of detected animals in the batch is τλθ, i.e. the probability of detecting an infected

animal given a herd-level prevalence of λ multiplied by the batch size. Thus for

individual animal testing and rejecting, the expected number of infected animals

entering the buying farm is λθ(1− τ) and the stock levels of the buying and selling

farm are updated to, respectively,

Di(t)→ Di(t)− θ(1− τλ)

Sj(t)→ Sj(t)− θ.

In the case of testing and rejecting the entire batch, batches can only enter the

buying farm if all animals test negative, which occurs with probability (1 − τ)θ, so

the expected number of infected animals to enter the buying farm is λθ(1− τ)θ. In

this scenario, the expected update to stocks of the buying and selling farm is

Di(t)→ Di(t)− θ
(
1− λ(1− τ)θ

)
Sj(t)→ Sj(t)− θ.
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The two testing strategies are equivalent when τ = 0, in which case no animals are

detected to be infected so there are no imbalances to stock depletion, and when τ = 1,

in which case all infected animals are detected and removed. In this scenario, the

effect of testing is expected to produce the greatest disturbance to trading patterns,

though is guaranteed to eradicate disease as batches from infected farms will always

be rejected, preventing any disease spread between farms. To measure the potential

financial burden of such on-movement controls, i.e. the costs of rejecting animals,

we calculate a simple measure of farms’ income, defined as the number of animals

each supplying farm sells (regardless of whether they are rejected due to testing

positive for infection) multiplied by the price at the time of the trade, and farms’

lost income, defined as the number of animals that are rejected due to testing positive

for infection multiplied by the price at the time of the trade. We then define the net

income as the difference between these two quantities. We assume that detection of

infected animals does not alter farms’ propensities to trade in the future with the

selling farm, except through the typical changes due to depletion of stock following

a trade.

Rejection of individual animals

Considering first testing-and-rejecting of individual animals, Figure 3.21 shows the

long-term evolution of the trading system when animal testing is introduced for a

range of selected test sensitivities. In general, we find that implementation of a

testing regime causes long-term changes to trading patterns (except when testing

eradicates disease). For example, at τ = 0.5, testing causes long-term increases in

farm-level demand and reductions in supply, causing long-term increases in price and

reductions in the net income of farms. Moreover, due to rejection of animals, farms

are unable to maintain their desired in-flow of animals. These long-term changes in

the system are due to testing being insufficient in fully removing disease, with very

small observed reductions in prevalence. When τ = 1, however, disease is guaranteed

to be eradicated as every infected animal tests positive for infection. In this scenario,

the system still exhibits a temporary shock to trading patterns following the intro-

duction of on-movement testing as animals are rejected during trades, however this
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Figure 3.21: Impact of individual animal rejection on trading system and disease preva-

lence Average per-farm demand (top left) and supply (top middle), number of trading partners

(top right), number of trades (middle left), batch size (middle middle), per unit-time animal in-

flow (middle right), price (bottom left), net income (bottom middle) and system disease prevalence

(bottom right) for various test sensitivities under the test-and-reject individual animal regime.

leads to rapid reduction in system-wide disease prevalence and trading patterns re-

turn to pre-testing equilibrium values. Assessing the effect of testing across a larger

range of sensitivities, Figure 3.23 shows that complete elimination of disease is pos-

sible only at very high test sensitivities, i.e. τ > 0.95, with prevalence being reduced

by only 3.45% at τ = 0.5 and 12.71% at τ = 0.75, though at τ = 0.95 prevalence

is reduced by approximately 87%, suggesting significant reductions in prevalence

are still possible at high, but not perfect, test sensitivities. From Appendix Figure

3.35, for the low farm prevalence high infectious period scenario, individual animal

rejection appears more effective at reducing prevalence, even for test sensitivities in

which eradication is not possible. This may be due to the fact that at low farm

prevalences λ, the number of infected animals in a batch is expected to be small. As

such, successful detection and removal of infected animals essentially clear infection
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Figure 3.22: Impact of whole batch rejection on trading system and disease prevalence

Average per-farm demand (top left) and supply (top middle), number of trading partners (top

right), number of trades (middle left), batch size (middle middle), per unit-time animal in-flow

(middle right), price (bottom left), net income (bottom middle) and system disease prevalence

(bottom right) for various test sensitivities under the test-and-reject whole batch regime.

from the batch, leading to fewer infectious trades. This results in smaller distur-

bances to trade, as fewer animals in a batch are rejected, minimising imbalances

in stock quantities. For the high farm prevalence, short infectious period scenario

(see Appendix Figure 3.49), testing and rejection of individual animals is also more

effective than in the baseline disease scenario. In this case, however, animal rejec-

tion is more effective because infected farms recover more quickly, so the number of

potentially infectious contacts is smaller. As such, if sufficient numbers of animals

are rejected so that disease spread is prevented, infected farms are more likely to

recover before they are traded with again and therefore are denied the chance to

infect their buyers.
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Rejection of animal batches

We now consider the testing-and-rejecting of batches. As explained above, under

this regime entire batches are rejected if a single infected animal is detected, which is

expected to cause greater long-term disturbances to trade for test sensitivities that

fail to fully eradicate disease, and even for sensitivities in which eradication is possi-

ble, we expect the temporary shocks to be significantly greater than the individual

animal test-and-reject regime. From Figure 3.22 we see that this is indeed true.

At τ = 0.5, rejecting batches leads to greater long-term increases in demand and

reductions in supply, larger increases in price, greater reductions in net income, and

a greater inability for farms to maintain their in-flows. Moreover, at this sensitivity

disease prevalence is reduced by 11.17%, compared with 3.45% for the individual

rejection scheme. At τ = 1, we see again that complete eradication of disease is pos-

sible, though the temporary shocks to the trading system are significantly greater

than in the individual animal rejection regime. Of note is the temporary net loss

exhibited under this regime when τ = 1, as all batches from infected farms are tem-

porarily removed while disease is cleared from the system. Referring to Figure 3.23,

we see that for all test sensitivities, batch rejection leads to larger reductions of dis-

ease prevalence than individual animal rejection, though the long-term disturbances

to trade are significantly greater for test sensitivities τ ≤ 0.85. For sensitivities

greater than this, the differences in disturbance to trade are small between the two

regimes, while the batch removal regime provides greater reduction in disease preva-

lence. Sensitivities of the single intradermal comparative cervical tuberculin test for

bTB have been estimated to have median values of between 87-90% [96, 111], and

the ELISA test to detect paratuberculosis is highly variable with sensitivities ranging

from 13.5% to 75% for high shedding animals [60, 120]. Referring to Appendix Fig-

ure 3.37, in the low farm prevalence, long infectious period scenario, the differences

in testing regimes is small for disease prevalence, though the whole batch rejection

strategy causes greater disturbances to trade at lower test sensitivities. However,

testing is more effective at reducing disease prevalence compared to the baseline dis-

ease scenario, with lower disease prevalence at all test sensitivities and eradication
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possible at τ ≈ 0.8, compared with τ = 0.95 in the baseline disease scenario. The

reasons for the small differences in prevalence reduction are due to the fact that

at small λ, batches are more likely to contain only a single infected animal, so the

detection of an infected animal in the individual rejection scheme has a similar effect

to the detection of an infected animal in the batch rejection scheme. In this case,

however, individual animal rejection is preferable as it is unlikely there are more in-

fected animals in the batch, whereas rejection of the entire batch overestimates the

risk of infection and leads to unnecessary disturbances on the trading system. For

the high farm prevalence, short infectious period scenario, Appendix Figure 3.51

shows that both individual and whole batch rejection is more effective compared

to the baseline disease scenario for all test sensitivities, highlighting the ability of

testing to prevent disease spread between farms before infected farms recover. We

observe that complete eradication is possible at τ = 0.75 for the individual rejection

scenario, and τ ≈ 0.6 for the whole batch rejection scenario. As in the baseline

disease scenario, whole batch rejection leads to greater reduction in prevalence, due

to batches containing, in general, a larger number of infected animals. At lower

test sensitivities, where infected animals are more likely to avoid detection, rejecting

the batch requires only a single detection, minimising the likelihood that infected

batches will avoid detection, and reducing onwards transmission.

3.4.3 Networked versus global information to inform risk

aversion

In the previous section we explored animal testing via trade, with successful detec-

tion of infected animals resulting in either individual animal or whole batch removal,

and showed that this can lead to disease eradication for high sensitivity tests, but

leads to long-term trade disturbances when testing is unable to eradicate disease.

However, detection of infected animals from a given supplier did not alter the likeli-

hood of the buying farm purchasing animals again from the still potentially infected

farm (beyond the typical effect due to the depletion of stock). Risk aversion, whereby

individuals avoid high-risk individuals, has been an observed behaviour of farmers in
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Figure 3.23: Equilibrium values of trading system and prevalence for both testing

regimes Equilibrium average per-farm demand (top left) and supply (top middle), number of

trading partners (top right), number of trades (middle left), batch size (middle middle), per unit-

time animal in-flow (middle right), price (bottom left), net income (bottom middle) and system

disease prevalence (bottom right) for various test sensitivities under the test-and-reject individual

animal regime (dashed lines) and test-and-reject batch regime (solid lines).

an attempt to control bTB [21, 35] and is generally know to impact the spread and

stability of disease [41]. Here we implement risk aversion through animal testing,

by altering the propensities for farms to form and maintain partnerships, and trade

with farms that are deemed high-risk, i.e. farms for which there is past evidence that

they are infected. We assume throughout that trade operates under a test-and-reject

batch scheme, i.e. farms reject the entire batch if a single animal tests positive.

We first implement risk aversion at a farm level, where buyers perceive suppliers to

be high-risk based on their previous trades with them and thus develop a perceived

prevalence of disease based on information from their individual trade network.

Farms maintain a vector of weights, Wi for farm i, that determine the propensity
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to form and end partnerships, and trade with each farm within the system. As

such we modify trade partnership formation, rate of trade with trade partners, and

dissolution of trade partnerships as follows:

αij(t)→ Wijαij(t),

ϕij(t)→ Wijϕij(t),

δi → (Wij)
−1 δi,

where Wij is the j-th element of farm i’s vector of weights, i.e. the weight assigned

by farm i to farm j, and we take (Wij)
−1 to be the inverse of the j-th element of

Wij. Weights initially take value 1, with successful detection of infected animals

assigning a new weight ω < 1. Further trades that do not result in the detection of

infected animals incrementally increase weights in steps of ω until they return to 1,

and further trades in which detection occurs returns weight Wij to ω. We note that

this aversion strategy may lead to unnecessary long-term disturbances to trade even

when disease is eradicated, as farms only update their weights with each specific

supplier farm during trades, which the risk aversion strategy itself hinders.

Information propagation on local networks

Figure 3.24 shows the effect of individual risk aversion, with a chosen aversion param-

eter ω = 0.1 in all cases. At test sensitivity τ = 0.5, risk aversion causes long-term

perturbations to trade within the system, as test sensitivity is high enough for farms

to begin detecting infection and rejecting batches. This causes initial reductions

in farm-level supply, however risk aversion causes farms to avoid farms that are

deemed high-risk, resulting in these high-risk farms accumulating supply, causing

system-average supply levels to increase. When testing was performed in isolation

(Figure 3.22), we observed only long-term reductions in supply. We also observe

greater long-term increases in demand as a result of risk aversion, as farms avoid

trade with high-risk farms, reducing the number of farms that can be traded with.

In terms of disease prevalence, however, individual based risk aversion has a positive
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Figure 3.24: Impact of individual-based risk aversion on trading system and disease

prevalence Average per-farm demand (top left) and supply (top middle), number of trading

partners (top right), number of trades (middle left), batch size (middle middle), per unit-time

animal in-flow (middle right), price (bottom left), net income (bottom middle) and system disease

prevalence (bottom right) for various test sensitivities combining batch testing and removal with

farm-level risk aversion, where we set the aversion parameter ω = 0.1. Dashed lines in the disease

prevalence plot represent the average per-farm perceived level of prevalence, defined as the fraction

of the network with ω 6= 1.

effect in reducing prevalence for τ = 0.5, a sensitivity that did not permit removal of

disease when only testing was performed, with further reductions in disease preva-

lence compared with only testing. This reduction in prevalence reduces the number

of batches rejected, so that the price, net income, and in-flow of animals begin to

return to pre-testing equilibrium values, though we note that this return is slow

(and we do not follow the trajectory long enough to see complete convergence). We

see that weights that are updated solely through individual trades cause unneces-

sary system-wide “distrust” for test sensitivities that complete remove disease, e.g.

τ = 1. While disease is fully removed in this scenario, the average per-farm perceived
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prevalence (the fraction of farms that have a weight ω < 1) does not return to zero,

leading to long-term avoidance of farms deemed high-risk. Figure 3.26 shows that

over a range of test sensitivities, an individual based risk aversion strategy leads to

greater reductions in disease prevalence compared to the test-and-reject only strat-

egy for all test sensitivities τ > 0.15. Qualitatively, including individual based risk

aversion alters the impact of testing on farm-level supply and batch size, with both

quantities increasing with individual risk aversion, compared with decreasing with

test-and-reject only. Individual based risk aversion is not as effective in the low farm

prevalence, long infectious period scenario (see Appendix Figure 3.40), as risk aver-

sion is tied to successful detections of infected batches, which at low farm prevalences

are less likely than in the baseline disease scenario. As such, farm-level perceived

prevalences are lower and the actual disease prevalence is reduced by similar mag-

nitudes compared to simply testing, i.e. with no risk aversion. Similarly, in the

high farm prevalence, short infectious period scenario (see Appendix Figure 3.54),

individual based risk aversion does not significantly alter the ability for disease to

spread and persist. In this case, however, the small differences are due to the short

infectious periods, meaning farms are unlikely to repeat trade with infected farms

even without risk aversion. Thus, for short infectious period diseases, an individual

based risk aversion strategy is unnecessary compared to simply testing and rejecting

animal batches.

System-wide propagation of information

We now consider a system-wide aversion strategy, which we define as global risk

aversion. This aversion strategy differs from the individual based aversion strategy

in that farms no longer possess an individual vector of weights, rather all farms share

and contribute to information on high-risk suppliers through a single global vector

of weights. Thus, all farms adjust their behaviour towards individual farms when

any farm detects infection from a selling farm during a trade. We expect, therefore,

for a greater degree of risk aversion (at least initially) due to farms combining their

weights into a single, system-wide, aversion strategy. Considering Figure 3.25, we

indeed see that a global aversion strategy causes greater initial shocks in stock levels
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Figure 3.25: Impact of global risk aversion on trading system and disease prevalence Av-

erage per-farm demand (top left) and supply (top middle), number of trading partners (top right),

number of trades (middle left), batch size (middle middle), per unit-time animal in-flow (middle

right), price (bottom left), net income (bottom middle) and system disease prevalence (bottom

right) for various test sensitivities combining batch testing and removal with global (system-wide)

risk aversion, where we set the aversion parameter ω = 0.1. Dashed lines in the disease prevalence

plot represent the average per-farm perceived level of prevalence, defined as the fraction of the

network with ω 6= 1.

than individual based aversion, however for τ = 0.5 and τ = 1, these shocks are

temporary and farms begin to return to pre-testing equilibrium values. We notice

that for τ = 0.1, a global aversion strategy is still unable to eradicate disease, though

does lead to larger reductions in prevalence than in the individual based aversion

strategy. Long-term perturbations to the system are greater for this sensitivity than

for the individual based aversion strategy, due to a greater system-wide perceived

prevalence. For the global aversion strategy, we note that perceived prevalences

generally follow the trend of actual disease prevalence, which was not observed in

the individual based aversion strategy. For the individual based aversion strategy,
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Figure 3.26: Equilibrium values of trading system and prevalence for both risk aversion

strategies Equilibrium average per-farm demand (top left) and supply (top middle), number of

trading partners (top right), number of trades (middle left), batch size (middle middle), per unit-

time animal in-flow (middle right), price (bottom left), net income (bottom middle) and system

disease prevalence (bottom right) for various test sensitivities under a test-and-reject batch regime

only (black line), test-and-reject batch with individual risk aversion (red line), and test-and-reject

batch with a global aversion strategy (blue line). In both aversion strategies we set the aversion

parameter ω = 0.1.

farms updated their weights based on their trades with farms, resulting in perceived

prevalences that did not track actual prevalence levels. However, for the global aver-

sion strategy, farms collectively contribute to system-levels weights, so that trades

with high-risk farms are more likely to occur, resulting in updates to weights and

perceived prevalences that more closely resemble actual prevalence levels. Referring

to Figure 3.26, we observe that a global risk aversion strategy removes disease for

a much larger range of test sensitivities (τ ≥ 0.55). Furthermore, for sensitivities

that do not result in complete removal of disease, system-wide prevalence is still

significantly reduced compared to both an individual based aversion strategy and
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no aversion strategy at all (the latter corresponding to simply testing and rejecting

batches). As mentioned above, a global aversion strategy causes greater long-terms

disturbances to trade than an individual based and no aversion strategy at low test

sensitivities (τ ≤ 0.25), but is less intrusive than individual based risk aversion at

larger sensitivities. For the low farm prevalence, long infectious period scenario (see

Appendix Figure 3.54), global aversion does further reduce disease prevalence, but

not as significantly as in the baseline disease scenario. As with individual based

risk aversion, farms deem suppliers high-risk based on successful detections of in-

fected batches, which are less likely when the farm-level prevalence is low. As farm

weights increase based on subsequent trades that do not result in detected animals,

this reduced likelihood of detecting infected animals results in farm weights that are

generally higher than in the baseline disease scenario, so that farms are less risk

averse towards infected farms. In the high farm prevalence, short infectious period

scenario (see Appendix Figure 3.54), a global risk aversion strategy is highly effective

for all test sensitivities, significantly reducing disease prevalence compared with in-

dividual risk aversion and only testing, and can eradicate disease at test sensitivities

as low as τ = 0.25. As the global risk aversion strategy allows farms to preemptively

avoid high-risk farms (in the individual risk aversion regime farms must trade at

least once to determine whether a farm is high-risk), due to information on risk

being shared across the system, high-risk farms are avoided to such an extent that

they recover from infection before they are traded with and have the potential to

spread disease.

Discounting risk information

We conclude this section by including a natural incremental increase to weights

after some fixed period of time, as well as via trade. This is intended to represent a

regaining of trust of farms that are deemed high-risk. For a given aversion parameter

ω, we assume that farms incrementally increase weights of high-risk farms (whether

at an individual farm level or globally depending on the risk aversion strategy)

by ω if, after some fixed period, a positive test has not occurred with that high-

risk farm, until the weight returns to 1. We assume that this is in addition to
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Figure 3.27: Impact of discounting of risk for individual-based risk aversion on trading

system and prevalence Average per-farm demand (top left) and supply (top middle), number of

trading partners (top right), number of trades (middle left), batch size (middle middle), per unit-

time animal in-flow (middle right), price (bottom left), net income (bottom middle) and system

disease prevalence (bottom right) for test sensitivity τ = 0.75 combining batch testing and removal

with individual risk aversion and an incremental increase in weights after various periods of no

trades with a detected batch, where we set the aversion parameter ω = 0.1 and weights increase

in increments of ω. Dashed lines in the disease prevalence plot represent the average per-farm

perceived level of prevalence, defined as the fraction of the network with ω 6= 1.

the incremental increases to weights that occur if trades with high-risk farms do

not result in the testing and rejection of animal batches. We test the impact of

these natural incremental increases to weights for both the individual based aversion

strategy and the global aversion strategy. In all cases presented below we assume a

test sensitivity τ = 0.75, a sensitivity that allowed for complete removal of disease

in the global aversion regime, and significant (though not complete) reduction in

prevalence in the individual based aversion regime, and that farms operate under a

test-and-reject whole batch regime.
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Figure 3.28: Impact of discounting of risk for global risk aversion on trading system

and prevalence Average per-farm demand (top left) and supply (top middle), number of trading

partners (top right), number of trades (middle left), batch size (middle middle), per unit-time

animal in-flow (middle right), price (bottom left), net income (bottom middle) and system disease

prevalence (bottom right) for test sensitivity τ = 0.75 combining batch testing and removal with

global risk aversion and an incremental increase in weights after various periods of no trades with

a detected batch, where we set the aversion parameter ω = 0.1 and weights increase in increments

of ω. Dashed lines in the disease prevalence plot represent the average per-farm perceived level of

prevalence, defined as the fraction of the network with ω 6= 1.

Considering first the individual risk aversion scenario, Figure 3.27 shows that a nat-

ural weight increase is detrimental to the ability for risk aversion to reduce disease

prevalence, with a short period between weight increments resulting in higher dis-

ease prevalence compared with no natural weight increases. This is because weights

return to 1 more quickly, resulting in a perceived prevalence that is markedly lower

than the actual prevalence. Even when the period between increments is long, dis-

ease prevalence is generally larger, suggesting that for the chosen test sensitivity,

long-term “distrust” is beneficial in controlling disease. There are positive benefits
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of a natural weight increase, however, with farms more readily able to satisfy their

demand, but farm flows, price, and net income remain depressed compared with no

on-movement testing. In the case of small farm-level prevalence and long infectious

period Appendix Figure 3.42 shows that a natural weight increase does not signifi-

cantly alter the ability for risk aversion to remove disease, with similar qualitative

reductions in disease prevalence regardless of the time period in which weights are

updated. This is also the case for the high prevalence, short infectious period sce-

nario (see Appendix Figure 3.56), with rapid eradication of disease possible for all

weight increment periods.

For the global risk aversion scenario, Figure 3.28 shows that for all weight increment

periods, global risk aversion is still able to fully remove disease for our chosen test

sensitivity. There are clear benefits to including a natural weight increment in

this case, however, with smaller initial disturbances to trading patterns for smaller

weight increment periods (increased discounting of historic information on risk),

and no significant impact on the time for the trading system to return to pre-testing

equilibrium values once disease has been removed. This behaviour is also observed in

the low farm prevalence, long infectious period case (Appendix Figure 3.41) and the

high farm prevalence, short infectious period case (Appendix Figure 3.55), suggesting

a natural weight increment may be effective in minimising disruption to trade while

not impacting the ability for risk aversion to remove disease from the system for a

global risk aversion strategy and test sensitivity that is capable of removing disease.

3.5 Discussion

In this chapter, a highly dynamic generative trading model was introduced in which

farms’ propensities to form partnerships and trade with their trade partners are de-

termined by farm-level time-varying stock quantities, defined as supply and demand.

These stock quantities vary over time due to a constant rate at which farms increase

them in unitary amounts, and they are depleted via trade with farms’ trade partners.

Thus here we add the dynamics of farm-level supply and demand to the dynamics

of the trade partnership network modelled in Chapter 2. This ensures that trading
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and partnership formation behaviours of any given farm reflect livestock levels and

in particular satiation of demand due to trade can lead to long inter-trade times in

which farms accumulate stock before they trade again, a dynamic not systematically

accounted for in the model of Chapter 2. As real-world trading patterns vary over

time in the UK cattle trade network, with peaks in springtime, for example, [46,

113], incorporating a simple time-varying trading mechanism into our generative

models allows for more realistic trading dynamics.

However, these additional features come at the cost of analytical tractability, as our

model rates contain discontinuities (in the trade rate and batch size, for instance),

and we thus rely heavily on stochastic simulation of our system. Our model in

Chapter 2 was designed in such a way that analytical tractability was maintained,

and we were able to obtain disease relevant expressions for R0 that informed po-

tentially effective control strategies. An ongoing challenge is the development of a

theoretical framework allowing for analysis of our dynamic trading model. Our gen-

erative trading model introduced in this chapter goes beyond currently developed

generative trading models by 1) explicitly including time-varying trade partnerships,

an element of trade that is conspicuously lacking in the literature (except for our

model outlined in Chapter 2 [72]) and 2) all of our rates are functions of supply and

demand (current generative models assume constants rates of trade, for example)

[58, 87].

By altering the propensities for farms to form and end partnerships, and make trades

with their trade partners, we showed that our dynamic trading model reflects the

emergent adaptive nature of real-world trading amongst intelligent actors all seeking

to meet their business needs, and will adapt itself in response to these changes in such

a way that the structure of the network changes. This adaptive systems behaviour

is fundamentally different from the model introduced in Chapter 2. The network

adaptation is due to the pressure of accumulation of farm-level stock quantities

that these changes bring about, and enables farms to maintain their animal in-

flows. This network adaptation clearly shows the potential of generative trading

models, as typical data-driven network-based models of livestock trade have not, to
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our knowledge, explored how the network adapts to changes in trading propensities,

restrictions, or shocks. Our model shows that simple changes to trading propensities

do not result in predictable changes in farm trading patterns, as seen in the model

in Chapter 2. In response to shocks in stock quantities, our model rapidly adjusts,

leading to surges in trade as these shocks are mitigated, and quickly return to pre-

shock equilibrium values except in the extreme cases where farm-level demand is

perturbed by a significant amount, in which the system maintains an equilibrium

in which farm-level supply and demand are very slightly greater than pre-shock

equilibrium values.

We introduced disease spread via trade on a simple homogeneous system of N = 200

farms, parameterised in such a way that system-average properties, such as the

number of trade partners, trading frequency, batch size, and animal flows, matched

system-averages obtained from the Scottish subset of the CTS data. To our knowl-

edge, our analysis of trade, and changes in trade, on disease spread represents the

first in-depth attempt at exploring the role of trade on such a dynamic trading

model. We assumed a baseline disease parameterisation characterised by farm-level

prevalence λ = 0.25, and recovery rate γ = 1/3, representing a highly prevalence

and persistent disease, but also considered the effect of trade on two other diseases:

1) λ = 0.05 and γ = 1/3, a low prevalence, highly persistent disease, and 2) λ = 0.25

and γ = 1.5, a high prevalence, short duration disease. We first explored the poten-

tial of changes to trading propensities on disease persistence, because the model of

Chapter 2 suggested these may be effective in reducing disease and reducing trade

frequency has also been shown to be potentially effective in a generative modelling

framework [87]. Under our dynamic trading model, we find that simple changes to

trading propensities do not reduce disease prevalence by significant amounts, except

in extreme cases where trade essentially stops, the network dissolves, or trade part-

nerships last for vanishingly small durations (even in this latter case, disease is not

completely eradicated). This resilience of disease to changes in trading propensities

is due to the adaptation of the trading system in response, with farms finding new

avenues of minimising their demand and maintaining animal flows that also allowed
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for the persistence of disease. The UK cattle trade network has been previously

shown to adapt in response to changes in trade aimed at reducing disease spread,

resulting in network structures that permit greater disease spread [44, 109, 115].

An interesting observation is that changes in trading propensities so that trades

occur more frequently leads to farms having a greater number of trade partners,

and partnerships that last longer, do not result in noticeable increases in disease

prevalence, as might be expected. As our homogeneous model is parameterised to

match system-average properties of the Scottish trading system, this may suggest

that farms currently trade in a very low frictional trading system, and significant

alterations to trading patterns may be required to reduce disease persistence.

Introducing testing of traded animals showed the potential for routine batch testing

on disease prevalence. For our baseline disease scenario, testing animals through

trade was shown to reduce disease prevalence, but could only eradicate disease in

high test sensitivity scenarios for both individual animal rejection, and whole batch

rejection. There were significant alterations to network structure in response to the

introduction of testing, with both individual and whole batch rejection resulting

in imbalances in farm-level stock quantities that disrupted animal flows, increased

prices, and reduced farms’ net incomes. We supplemented our testing strategies

by linking animal detections to different risk aversion strategies, in which farms

change their trading patterns towards farms deemed high-risk. Farm risk aversion

is an observed behaviour in an attempt to avoid infected of bTB [21, 35] and more

generally risk aversion has been shown to be effective in controlling disease (such

as COVID-19) [41]. We proposed two risk aversion strategies: an individual-based

risk aversion, whereby farms avoid farms from whom they have detected an infected

animal, and a global risk aversion, whereby farms share a common source of infor-

mation and avoid farms that have been deemed high-risk (by supplying an animal

detected as infected) either by them or by other farms in the system. Risk aversion

was shown to be an effective supplemental control strategy and significantly reduced

disease prevalence compared with only testing. In particular, a global risk aversion

strategy was shown to be able to eradicate disease even for low sensitivity tests, and
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resulted in lower disease prevalence for all test sensitivities. In the cases where risk

aversion could not completely remove disease, there were further disturbances to

the trading system as farms began avoiding high-risk farms, leading to greater un-

met demand. Moreover, individual level risk aversion lead to inaccurate perceptions

of prevalence. We attempted to prevent this by incorporating a natural increment

to farm weights, so that farms would regain “trust” in high-risk farms over time.

For the individual-based risk aversion strategy, this was shown to be detrimental

to prevalence reduction, as farms would more readily trade with high-risk farms,

resulting in greater prevalence than without this natural weight increment. For the

global aversion strategy, however, there were no significant impacts on disease preva-

lence, with eradication still possible at the chosen test sensitivities. In addition, the

transitory disturbances to the trading system were smaller when farms rapidly re-

gained their trust in high-risk farms, further augmenting the positive benefits of risk

aversion.

While our parameterisation was intended to match observed Scottish trading pat-

terns, we assumed for simplicity that the system was homogeneous, i.e. that all

farms traded in similar manners (on average). However, the Scottish and UK cattle

trading system is known to be highly heterogeneous, displaying scale-free behaviour

[22, 84, 113], and, more generally, network structure is known to have an impact on

disease spread [89, 100]. Moreover, we assumed a small system of N = 200 farms,

so factors that may influence disease spread such as network density are unexpected

to match the Scottish trading system. The results of this chapter, therefore, should

be interpreted with care, as they may not necessarily be indicative of the effect of

our explored control measures on real-world networks, but they do present a first

attempt at exploring such control measures using a complex adaptive systems model

of trading behaviour. In the next chapter we address the challenges of parameter-

ising our dynamic trading model for the Scottish trading system. In addition, we

will explore the potential for the control measures outlined here to be successful in

a real-world system, and the magnitude of disturbances to the trading system.
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3.6 Appendix

3.6.1 Plots for λ = 0.05, γ = 1/3

Effect of friction

Figure 3.29: Average trade quantities and disease prevalence for varying values of εb, the scaling

factor to the frictional component of trade, b, when λ = 0.05 and γ = 1/3.

Figure 3.30: Average equilibrium trade quantities and disease prevalence for varying values of εb,

the scaling factor to the frictional component of trade, b, when λ = 0.05 and γ = 1/3.
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Figure 3.31: Average trade quantities and disease prevalence for varying values of εa, the scaling

factor to the frictional component of trade, a, when λ = 0.05 and γ = 1/3.

Figure 3.32: Average equilibrium trade quantities and disease prevalence for varying values of εa,

the scaling factor to the frictional component of trade, a, when λ = 0.05 and γ = 1/3.
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Figure 3.33: Average trade quantities and disease prevalence for varying values of εδ, the scaling

factor to the partnership cessation rate, δ, when λ = 0.05 and γ = 1/3.

Figure 3.34: Average equilibrium trade quantities and disease prevalence for varying values of εδ,

the scaling factor to the partnership cessation rate, δ, when λ = 0.05 and γ = 1/3.
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Batch testing

Figure 3.35: Average trade quantities and disease prevalence for various test sensitivities under the

test-and-reject individual animal regime, and when λ = 0.05 and γ = 1/3.

Figure 3.36: Average trade quantities and disease prevalence for various test sensitivities under the

test-and-reject whole batch regime, and when λ = 0.05 and γ = 1/3.
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Figure 3.37: Equilibrium average trade quantities and disease prevalence for various test sensitiv-

ities under the test-and-reject individual animal regime (dashed lines) and test-and-reject batch

regime (solid lines), and when λ = 0.05 and γ = 1/3.

Risk aversion

Figure 3.38: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with farm-level risk aversion, where we set the aversion parameter

ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines in the disease prevalence plot represent the

average per-farm perceived level of prevalence, defined as the fraction of the network with ω 6= 1.
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Figure 3.39: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with global (system-wide) risk aversion, where we set the aversion

parameter ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined as the fraction of the network

with ω 6= 1.

Figure 3.40: Average equilibrium trade quantities and disease prevalence for various test sensitivi-

ties combining batch testing and removal with global (system-wide) risk aversion, where we set the

aversion parameter ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined as the fraction of the network

with ω 6= 1.
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Figure 3.41: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with global (system-wide) risk aversion and natural incremental increase

to weights, where we set the aversion parameter ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines

in the disease prevalence plot represent the average per-farm perceived level of prevalence, defined

as the fraction of the network with ω 6= 1.

Figure 3.42: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with individual risk aversion and natural incremental increase to weights,

where we set the aversion parameter ω = 0.1, and λ = 0.05 and γ = 1/3. Dashed lines in the

disease prevalence plot represent the average per-farm perceived level of prevalence, defined as the

fraction of the network with ω 6= 1.
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3.6.2 Plots for λ = 0.25, γ = 1.5

Effect of friction

Figure 3.43: Average trade quantities and disease prevalence for varying values of εb, the scaling

factor to the frictional component of trade, b, when λ = 0.25 and γ = 1.5.

Figure 3.44: Average equilibrium trade quantities and disease prevalence for varying values of εb,

the scaling factor to the frictional component of trade, b, when λ = 0.25 and γ = 1.5.
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Figure 3.45: Average trade quantities and disease prevalence for varying values of εa, the scaling

factor to the frictional component of trade, a, when λ = 0.25 and γ = 1.5.

Figure 3.46: Average equilibrium trade quantities and disease prevalence for varying values of εa,

the scaling factor to the frictional component of trade, a, when λ = 0.25 and γ = 1.5.

158



Figure 3.47: Average trade quantities and disease prevalence for varying values of εδ, the scaling

factor to the partnership cessation rate, δ, when λ = 0.25 and γ = 1.5.

Figure 3.48: Average equilibrium trade quantities and disease prevalence for varying values of εδ,

the scaling factor to the partnership cessation rate, δ, when λ = 0.25 and γ = 1.5.
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Batch testing

Figure 3.49: Average trade quantities and disease prevalence for various test sensitivities under the

test-and-reject individual animal regime, and when λ = 0.25 and γ = 1.5.

Figure 3.50: Average trade quantities and disease prevalence for various test sensitivities under the

test-and-reject whole batch regime, and when λ = 0.25 and γ = 1.5.
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Figure 3.51: Equilibrium average trade quantities and disease prevalence for various test sensitiv-

ities under the test-and-reject individual animal regime (dashed lines) and test-and-reject batch

regime (solid lines), and when λ = 0.25 and γ = 1.5.

Risk aversion

Figure 3.52: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with farm-level risk aversion, where we set the aversion parameter

ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines in the disease prevalence plot represent the

average per-farm perceived level of prevalence, defined as the fraction of the network with ω 6= 1.

161



Figure 3.53: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with global (system-wide) risk aversion, where we set the aversion

parameter ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined as the fraction of the network

with ω 6= 1.

Figure 3.54: Average equilibrium trade quantities and disease prevalence for various test sensitivi-

ties combining batch testing and removal with global (system-wide) risk aversion, where we set the

aversion parameter ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines in the disease prevalence plot

represent the average per-farm perceived level of prevalence, defined as the fraction of the network

with ω 6= 1.
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Figure 3.55: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with global (system-wide) risk aversion and natural incremental increase

to weights, where we set the aversion parameter ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines

in the disease prevalence plot represent the average per-farm perceived level of prevalence, defined

as the fraction of the network with ω 6= 1.

Figure 3.56: Average trade quantities and disease prevalence for various test sensitivities combining

batch testing and removal with individual risk aversion and natural incremental increase to weights,

where we set the aversion parameter ω = 0.1, and λ = 0.25 and γ = 1.5. Dashed lines in the disease

prevalence plot represent the average per-farm perceived level of prevalence, defined as the fraction

of the network with ω 6= 1.
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Chapter 4

National-scale parameterisation of

generative systems model for

livestock trade and implications

for disease control

4.1 Introduction

It is well understood that trade plays a role in the spread of livestock diseases,

though a complete understanding of the mechanisms through which trade influences

disease spread are not fully understood. It is vital, therefore, that models of livestock

trade that can capture much of the complexity of the systems they represent are

developed so that a thorough understanding of trade can be obtained and used to

develop truly effective disease control strategies. Attempts to model livestock trade

and disease have largely consisted of constructing static and temporal networks of

observed trades from a dataset and subsequent simulation of disease spread through

those movements [43, 71, 76, 98, 117]. These models, while illustrative, cannot

necessarily be generalised to ask “what if...” questions, as they are necessarily

constrained by past movements observed in data. For example, such approaches are
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not suited to address questions that relate to how the trade system might adapt

in the face of shocks or under the imposition of regulations or control policies;

precisely the kind of questions of most interest to policy makers. Generative models

in which a system is parameterised according to data that capture individual-level

properties while not being constrained to specific movements may be an invaluable

tool in exploring the role of trade in disease spread and there is a pressing need

for the development of such models [57]. Cattle trading networks, with more or

less complete observation of a dynamic network process in realtime, represent an

ideal case-study for the development of such tools. However, there have been few

such attempts to develop generative network models for cattle trading networks, and

these have generally made simplifying assumptions such as parameterising assuming

a homogeneous system or treating trading dynamics as static [58, 87].

In Chapter 3, a generative model of livestock trade dynamics was developed that in-

cluded farm-level time-varying quantities, representing available supply and demand

for a given farm and time. The model was designed so that these stock quantities de-

termined the rates at which farms sought out trading partners and initiated trades.

It was shown that altering the propensities for farms to form or end partnerships, or

initiate trades would ultimately change the structure of the network as farms sought

to minimise their unmet demand and maintain animal flows. When disease spread

was introduced through trade, it was shown that these manipulations may not be as

effective in reducing disease prevalence as had been shown in Chapter 2, due to this

adaptation of the system and resulting restructuring of the network, however dis-

ease could be eliminated in some extreme cases, such as when trades occurred very

infrequently, or the network was essentially dissolved. Alternative control strategies,

such as batch testing and risk aversion, were considered and shown to be potentially

effective, but would lead to transitory disturbances to the trading system in the

cases when widespread disease could be eradicated, and ongoing disturbances when

disease could not be eradicated.

While the analysis of Chapter 3 was informative on the potential dynamics of disease

spread in our modelled dynamic trading system, homogeneity was assumed and the
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system size was small (N = 200). The model was parameterised in such a way that

system-average properties, such as average unit-time trades, trade partners, and

batch size were similar to those observed in the Scottish cattle trading system, how-

ever the network structure ultimately differed markedly from the real-world system

as the Scottish system is highly heterogeneous and exhibits scale-free behaviour, i.e.

a small fraction of farms trade in ways and frequencies vastly different to the ma-

jority of the system [22, 84, 113]. Network structure is known to have an impact on

disease spread [89, 100], so applying the model of Chapter 3 to the Scottish trading

system is vital in truly understanding the impact of proposed trading and control

strategies on disease spread.

The highly dynamic nature of the our trading model introduces challenges in terms

of parameterisation for the Scottish trading system, namely due to the fact that

farm-level stock quantities are unobservable in the data. In this chapter, therefore,

a method for using the CTS data to parameterise our dynamic trading model is

outlined in Section 4.2 and an analysis of the resulting parameterised system is

explored to ensure that system- and farm-level properties are well characterised

in our dynamic trading model. It will be shown that the parameterised system

represents farms’ trading properties to a very high degree of success, and accurately

characterises qualitative and quantitative distributional properties at system-level.

Disease spread via trade is introduced in Section 4.3 and alterations to trade and

control strategies similar to those explored in Chapter 3 will be applied to the

Scottish system, highlighting potential effective avenues for disease control on this

real-world system.

4.2 Parameterising systems model of trade dy-

namics using farm-to-farm movement data

In this section we describe the challenges and our method for parameterising the

trading model outlined in Chapter 3 Section 3.2 to the Scottish cattle trade system

using the Cattle Tracing System (CTS) data. We show that an accurate parameter-
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isation is possible and that farm-level properties can be captured by our dynamic

model.

The fundamental challenge of parameterising our model is that the rates of partner-

ship formation and trade are functions of dynamic, time-varying stock quantities,

Di(t) and Si(t), which are not recorded in available data. While animal flows are

readily observable in the data, farm-level demanded and available stock are hidden

and the relationship between farm-level supply and demand and animal flows may be

difficult to discover (preventing a simple mapping of the farm-level parameterisation

from Chapter 2 to our supply and demand based trading model used here), as in the

data farms maintain their animal flows in different ways, e.g. by purchasing from

multiple farms, making frequent small batch trades, infrequent large batch trades,

etc. In Chapter 2, parameterisation was more straightforward as rates were constant

functions of farms’ average annual in- and out-flows, so we had only to obtain values

of ai, δi, and bi that replicated the frequency of partnership formations, cessations,

and trades, respectively.

To parameterise our dynamic trading model, we take the parameterisation from

Chapter 2 as an initial state, so we assume that farm-level equilibrium demand and

supply is, on average, equivalent to their respective equilibrium stock generation

rates, η∗i and ζ∗i . This assumption is likely to overestimate stock levels for farms

that trade frequently, but underestimate stock levels for farms that do not trade

frequently. Farms that trade frequently, e.g. more than once per year, accumulate

less demand before it is satisfied (at least partially) via trade so that typicallyDi(t) ≤

η∗i ), whereas farms that trade infrequently (less than once per year), will accumulate

more demand before it is satisfied via trade so typically Di(t) ≥ η∗i . Nonetheless,

using this initial state, we simulate our trading system to obtain per unit-time

averages (for each farm) for the number of trading partnerships and number of

trades. We then use these values to inform necessary adjustments to ai and bi (the

parameters η∗i , ζ
∗
i , and δi are invariant to changes in farm-level supply and demand

and so their values are readily observed from data as described in Chapter 2) in the

following way:
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ai(s+ 1) = ai(s)
kin,datai

kini (s)
, (4.1)

bi(s+ 1) = bi(s)
Φdata
i

Φi(s)
, (4.2)

where s is the sth simulation (equivalently the sth step in the fitting algorithm),

kini (s) is the average number of trading partners for farm i in simulation s, Φi(s) is

the average number of trades for farm i in simulation s, and kin,datai and Φdata
i are

the number of trading partners and trades for farm i from the data, respectively.

The ratios kin,datai /kini (s) and Φdata
i /Φi(s) are the factors quantifying the difference

between the data and simulation for number of trading partners and number of

trades for farm i in simulation s, respectively. We implicitly assume, therefore,

that the number of trading partners and number of trades are monotonic functions

of ai and bi, respectively (our method may still be applicable for non-monotonic

functions if the initial values of ai and bi are sufficiently close to the true values).

We then use the updated values for ai and bi and iteratively re-simulate the system

and update ai and bi. These simulations are run to simulate trade dynamics in the

modelled system for the period of time spanned by the observations so that numbers

of trades and trade partners can be compared as described above. In addition, it is

important to note that simulations are allowed to equilibriate before recording these

measures since, as noted in Chapters 2 and 3 we assume that the observed data is

representative of a system in equilibrium. We note here that we assume that the

generation of stock is deterministic, so in an abritrary time interval [t, t+ ∆t], farm

i will generate ηi(t)∆t demand and ζi(t)∆t supply. We choose ∆t to be the largest

time interval that allows for the farms with the largest η∗i and ζ∗i to generate one

unit of demand and supply in this time interval, respectively. This was done due

to the computational complexity of simulating our trading system, but does lead to

predictable fluctuations in price and excess demand that operate on 9 year cycles,

reflecting the duration of observations in the CTS used here.

Our iterative method for obtaining parameter values is somewhat analogous to an

Expectation-Maximisation algorithm (EM algorithm). The EM algorithm calculates

168



an expectation for the log-likelihood given current parameter estimates, followed by

computation of parameter values that maximise the expectation of the calculated

log-likelihood. The two steps are then iteratively repeated until suitable parameter

values are obtained [28]. Starting from an initial reasonable best guess, our method

proceeds by calculating a discrepancy measure between simulations based on current

parameter values (which plays the role of the log-likelihood here), and then uses

this to make an adjustment to the parameter values. This process is iterated until

convergence. Our method is able to parameterise farms in such a way that per-farm

trading quantities are replicated in stochastic simulation, though we note that it

does not explain the relationship between farm-level supply and demand and their

respective animal flows. For farms that trade infrequently, in particular farms that

only make one observed trade in the nine year period we consider from the CTS data,

the above method requires multiple iterations to obtain suitable parameterisations.

This is because these farms are susceptible to inherent stochasticity in simulation

and long inter-event times, resulting in unit-time averages obtained from only a

small number of observed events.

4.2.1 Assessing model fit at global and farm level

Figure 4.1 shows per-farm fits after a sequence of parameter iterations using the

method outlined above. In general, simulation output is able to replicate desired

trading behaviour for individual farms as described in the data. Correlations be-

tween data and simulated output of trade quantities for individual farms are given

in Table 4.1, highlighting that in general our parameterisation replicates, at farm

level, trading behaviour exhibited in the data extremely well. The area of poorest

performance is that farm batch sizes are generally not as well represented by simu-

lation. However there is still a statistically significant positive correlation between

simulation and data (see Table 4.1). In particular it is farms that trade with large

batch sizes that are not as accurately represented. However, such farms are generally

those that make a small number of trades (typically 1 or 2) over the 9 year period of

the observations, and as such are those farms that are challenging to parameterise.
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Figure 4.1: Model fits to data The average number of trade partners (top left), number of trades

(top middle), batch size (top right), animal in-flow (bottom left), and animal out-flow (bottom

middle) comparing respective values obtained from data against average values from stochastic

simulation, where each point represents a farm in the system.

Quantity Correlation p-value

Trade partners 0.9999 < 2.2× 10−16

Trades 0.9999 < 2.2× 10−16

Batch size 0.4261 < 2.2× 10−16

In-flow 0.9998 < 2.2× 10−16

Out-flow 0.9999 < 2.2× 10−16

Table 4.1: Table of correlation coefficients of trade quantities from simulation and data output for

individual farms.

Figure 4.2 shows simulation output over time (of a single realisation) for our cur-

rent optimal parameterisation, starting from an initial condition in which no trade

partnerships are present but must be formed through parnership formations and ces-
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Figure 4.2: Time evolution of trading system System average per-farm demand (top left),

supply (top right), number of trade partners (middle left), trades (middle right), batch size (bottom

left), and animal in-flow (bottom right). In all cases dashed horizontal lines represent system

averages obtained from data.

sations. After an initial burn-in period, where the system rapidly evolves to satisfy

demand and ensure farm flows are maintained, the system reaches a stable equilib-

rium. We note that the equilibria differ slightly for number of trade partners and

average batch size, so that in general in simulation farms have a greater number

of trade partners and trade batches of smaller size than the data. To explore the

properties of this equilibrium, we use the autocorrelation function as a measurement

of the correlation between successive time points for each of our trading quantities.

Figure 4.3 shows that for all trade quantities, autocorrelations show a general trend

of tending towards zero, which is typically the case in stochastic dynamic systems

[81]. Perhaps unsurprisingly, the dynamics of supply and demand operate on similar

timescales (likewise for the dynamics of trades and partnership formation). Further-

more, it is interesting to note that the dynamics of supply and demand appear to
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operate on longer timescales than those of trade partnership and trade dynamics,

with the former having an autocorrelation length (time over which the ACF falls

to 0.5) of around half a decade, whereas the autocorrelation lengths of partnership

and trade dynamics are less than a year. However, whilst the form of these auto-

correlations are informative of the dynamical properties of the trading system, their

further analysis remains the subject of future work.

Considering distributional properties of the trading system (again noting that values

are obtained once the simulations have reached equilibrium), Figure 4.4 highlights

that our stochastic model is also able to replicate the distributions of trade quantities

to a very high degree. More rigorously, we use the Kolmogorov-Smirnov test (K-S

test) to measure the extent to which our simulation deviates from the data. To

do so, the K-S test calculates the empirical cumulative distribution function (CDF)

of each trade quantity from the data and from simulation output, and obtains the

absolute maximum difference D between the simulation CDF and the data CDF.

Table 4.2 shows the values of D for various trade quantities, and we conclude that

there is no significant difference between the distribution of simulation output and

data output.

Quantity D p-value

Trade partners 0.0541 < 2.2× 10−16

Trades 0.0767 < 2.2× 10−16

Batch size 0.0574 < 2.2× 10−16

In-flow 0.0433 5.548× 10−13

Out-flow 0.0258 7.121× 10−5

Table 4.2: Table of K-S test maximum absolute difference between stochastic simulation output

and data.

On a more granular scale, we consider the per-farm ratio of simulation output to

data output for each of our trading quantities, i.e. we calculate
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Autocorrelations of trading system Autocorrelation function plots for simulation

output of trade quantities as presented in Figure 4.2. Blue lines represent a 95% confidence interval

centered at 0.

ratio =
xsim

xdata
.

If the simulation value matches the data value, then this ratio will be equal to 1,

if it is smaller then the ratio will be smaller than 1, and if it is larger then the

ratio will be greater than 1. From Figure 4.5, we see that, for all trade quantities,
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Figure 4.4: Model distributions of trade quantities Density distributions of average number

of trade partners (top left), trades (top right), average batch size (middle left), average animal in-

flow (middle right), and out-flow (bottom left). In all cases blue lines represent out from stochastic

simulation, and black lines are obtained from the data.

farms generally operate in the simulation similarly to their observed behaviour in

the data. Table 4.3 shows that there are some farm-level differences between the

simulation and data, with not insignificant values for the Mean Absolute Percentage

Error (MAPE), defined as,

MAPE =
1

N

N∑
i=1

Di − Si
Di

,

where N is the system size, and Di and Si are the data and simulation output for

farm i for a given trade quantity, e.g. number of trade partners. Table 4.4 also

highlights that the percentage of farms whose simulations outputs deviate greatly

from the data are relatively small, with the number of trading partners being the

most variable. Encouragingly, however, we see that farm in- and out-flows are very
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Figure 4.5: Assessing farm-level differences in model compared to data Distributions of

the per-farm ratios between simulation output and data for the average number of trade partners

(top left), number of trades (top right), the average batch size (middle left), and the animal in-

and out-flows (middle right and bottom left, respectively). In all cases, red dashed lines represent

a ratio of 1, indicating the simulation perfectly represents the data. Note the scales of x-axes differ

between panels, emphasising small differences in farm flows.

well represented by simulation, clearly showing that our model is able to accurately

match buyers and sellers so that farm flows are maintained.

Sim-data ratio Mean S.D MAPE

Batch size 1.03 0.24 9.06

Num. trades 0.97 0.15 8.95

Num. trade partners 1.02 0.24 13.72

In-flow 0.97 0.07 2.77

Out-flow 0.99 0.02 1.32

Table 4.3: Table of sim-data ratios of trade quantities with their respective system-wide means,

standard deviations, and MAPE, the mean absolute percentage error.
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Figure 4.6: Model distributions of supply and demand Histogram of average farm-level

demand (left) and supply (right) obtained from stochastic simulation of our trading system.

Sim-data ratio Num (%) ≤ 0.8 Num (%) ≥ 1.2

Batch size 580 (3.77) 1162 (7.55)

Num. trades 1169 (7.60) 598 (3.89)

Num. trade partners 1436 (9.33) 1777 (11.55)

In-flow 362 (2.35) 0 (0)

Out-flow 13 (0.08) 0 (0)

Table 4.4: Table of the number (and percentages) of farms with sim-data ratios smaller than 0.8

and greater than 1.2.

4.2.2 Measuring farm stock quantities

It was highlighted in Section 4.2 that the fundamental challenge of paramterisation

of our trading model was the inability to explicitly relate farm flows, that were used

to parameterise the model in Chapter 2, to time-varying, farm-level stock quantities,
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Figure 4.7: Model cumulative distributions of supply and demand Cumulative distribution

of farm-level supply and demand stock, obtained from stochastic simulation of our trading system.

namely supply and demand. Our iterative method for parameterising the system,

however, allowed us to achieve accurate, per-farm values for ai and bi, the frictional

components of partnership formation and trade, respectively, without requiring us

to define this relationship explicitly (the resulting simulations define an implicit

relationship). We dedicate this section, therefore, to exploring potential relationships

between farm-level stock quantities and trade behaviour. Referring to Figure 4.6,

we see that the majority of farms have small unmet demand and available supply at

any given time; indeed 94.58% and 75.04% of farms have, on average, demand and

supply smaller than 10, respectively. Figure 4.7 shows that farms have, in general,

smaller available supply than demand, suggesting that waiting times between trades

are due primarily to the requirement for farms to accumulate supply, and also shows

that our model is efficient in matching buyers and sellers so that available supply is

minimised by efficient trade.

Exploring the relationship between farm-level trading patterns and stock quantities
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(noting that our calculations are based on simulation output), we find there is little

correlation between a farm’s demand generation rate η∗i and its average demand

(R2 = 0.0303), but there is a strong, significant, positive relationship between a

farm’s average batch size and its average demand (R2 = 0.4375), indicating that

farms with large demand generally trade in large batches. Conversely, there is a

very strong relationship between a farm’s supply generation rate ζ∗i and its avail-

able supply (R2 = 0.9203). This may be due to the fact that in our model farms

have no agency in offloading supply, with trades and the formation of partnerships

being initiated by the buying farm. Moreover, the partnership formation rate αij(t)

nonlinearly increases with supply, so large supply farms are not disproportionately

chosen as trade partners. This does not lead to divergences in excess demand, how-

ever, as is evident from Figure 4.8, showing that global excess demand is small and

any imbalances in stock levels are quickly accounted for by appropriate alterations to

price and stock generation rates. In addition, the average ratio of demand to supply,

another measurement for imbalances in stock quantities, is very tightly constrained

around 1.

Exploring whether high farm-level demand can be explained by an inability for

farms to maintain their in-flow, we find that farms that do not maintain their in-

flow relative to their expected in-flow from the data (the number of such farms is

very small, see Table 4.4) generally have larger demand (R2 = −0.3453) suggesting

that unmet demand may be reduced for these farms if they were able to maintain

their in-flows. Conversely, there is very little correlation between farm-level supply

and the difference in out-flow from simulation compared to the data (R2 = 0.0976)

(see Figure 4.9).

4.3 Disease spread on Scottish cattle trading sys-

tem

We now use the parameterised model to explore the dynamics of potential disease

control in the Scottish cattle trading system. Disease is introduced and spreads via

178



Figure 4.8: Measuring model imbalances in supply and demand The average system-wide

excess demand (left) and the average ratio of demand to supply (right), obtained from stochastic

simulation of our trading system.

trade in a way similar as in Chapter 3. We assume infected farms have a constant

farm-level prevalence λ and recover with rate γ so that infected farms are infected for

an exponentially distributed period with mean 1/γ. If a susceptible farm i makes a

trade with its infectious trade partner j of batch size θ, the probability that i becomes

infected is simply the probability that at least one infected animal from j is chosen

in the batch, which occurs with probability 1− (1− λ)θ. Thus, larger batches have

a greater probability of transmitting disease. In the scenarios presented below we

assume λ = 0.25, and γ = 1/3, intended to represent a high prevalence disease that

is highly persistent. Under current trading patterns of the Scottish trading system,

our model predicts an equilibrium between-herd prevalence of approximately 55%,

as opposed to approximately 88% for the homogeneous system studied in Chapter

3. This disparity highlights a number of important network characteristics that

should be taken into account. Firstly, we assumed a system size of N = 200 in
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Figure 4.9: Impact of model and data differences on farm-level supply and demand

Per-farm average animal in-flow against demand and out-flow against supply averaged over a 45

year period.

Chapter 3, as opposed to N = 15386 in the real-world system, and while the model

was parameterised so that system-average properties of the Scottish system were

replicated, this lead to a more densely connected network, allowing disease to spread

more easily between farms. Secondly, the homogeneous structure of the network

itself played a role, as all farms exhibited average system-level properties of the

Scottish system. However, the Scottish system is highly heterogeneous, displaying

scale-free properties, which are known to skew the mean. As such, trading patterns

of farms in the homogeneous system are different from those of “typical” farms in

the Scottish system.

4.3.1 Impact of changes to propensities of trade

In Chapter 3, we showed that simple changes to the propensitities for farms to form

and end partnerships, and initiate trades by scaling the partnership formation rate
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constant ai, the cessation rate δi and the trade frictional constant bi by, respectively,

εa, εδ, and εb were insufficient in significantly reducing disease prevalence. The ex-

ceptions were in extreme scenarios where trading patterns were disturbed sufficiently

to effectively halt trade in the case of εb, alter network structure so that farms have

very few trade partners in the case of εa, and cause partnerships to last vanishingly

small time periods in the case of εδ. This was in contrast of the results of Chapter

2 which suggested these changes could be highly effective. These differences are a

result of the adaptive capacities of the trade system as represented in the model

developed in Chapter 3. This flexibility is mediated by the dynamic nature of in-

dividual farm-level supply and demand levels which rise in response to restrictions

represented by the above mentioned scalings of trade rate and partnership formation

and duration. Since the relevant rates depend on both the intrinsic rate parame-

ters and dynamically adjusted supply and demand, this allows the farm-level animal

flows to be maintained, with potential prevalence reducing benefits of alterations to

trade patterns being limited or nullified.

We now explore the potential for impacts on the structure of the Scottish trading

system, and disease prevalence, resulting from such changes, i.e. to changes in

friction associated with trading and the formation of trade partnerships, as well as to

the duration of such partnerships. In particular, we consider two alterations: halving

current rate constants for each individual farm, i.e. we set ε = 0.5, and doubling

current rate constants for each individual farm, i.e. we set ε = 2. Considering first

alterations to trading frequency via εb, we observe from Figure 4.10 that setting

εb = 0.5 results in a noticeable decrease in trade frequency, however these trades

occur with larger batch sizes, and farms have, in general, a larger number of trade

partners. The opposite holds true when εb = 2, with farms trading more frequently

and in smaller batches, and have fewer trade partners in general. In both scenarios,

we note that farms flows are not disturbed, highlighting the ability for the modelled

system to adapt and find new structures that enable farm flows to be maintained.

Figure 4.11 shows that the effect on prevalence of changes to εb are small, with slight

reductions in prevalence when εb = 0.5, and little to no increase when εb = 2. Recall
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Figure 4.10: Impact of trade friction on Scottish trading system System-averages for various

trade quantities when each farm’s trade rate constant bi is scaled by various values of εb. Vertical

dashed lines represent the point at which εb is changed, and horizontal dashed lines represent

respective system-wide averages for various trade quantities as obtained from the CTS data.

that this was also observed in the homogeneous adaptive systems model of Chapter

3. The fact that prevalence is largely unaltered suggests that simple interventions

designed to impact one aspect of trade behaviour, e.g. to increase trade friction, can

result in complex changes to trade networks and unpredictable changes in prevalence,

due to farms finding new avenues to maintain animal flows. It may also suggest that

the Scottish trading system is currently operating in a very low frictional trading

regime in the sense that changes to trade friction make little difference to overall

outcome in terms of net flows of animals. This implies that the system dynamic (the

market) is sufficiently flexible to overcome the effect of increased friction in one or

other constituent activity, in this case trade. This may also be inferred from Figure

4.4, when considering batch sizes. Most farms buy animals in batches of 1, i.e. a

single animal is bought per observed trade, whereas if trade friction was very high,

182



Figure 4.11: Impact of trade friction on disease prevalence System-wide disease prevalence

when each farm’s trade rate constant bi is scaled by various values of εb. Vertical dashed lines

represent the point at which εb is changed.

it might be expected that farms would generally purchase larger batches.

Considering now alterations to the propensity for farms to form trading partnerships

via εa, we again consider scenarios where εa = 0.5, so that farms generally form fewer

partnerships, and ε = 2 so that farms form more partnerships. From Figure 4.12,

when εa = 0.5 the trading system shifts to one which the methods of Chapter 2

would suggest is highly favourable for reducing disease prevalence; farms have fewer

trade partners, and trade less frequently with larger batches. Conversely, when

εa = 2, the system shifts to an unfavourable structure, with farms having a larger

number of trade partners, and trade more frequently in smaller batches. Figure

4.13 shows, however, that while disease prevalence is reduced and increased when

ε = 0.5 and ε = 2, respectively, the magnitude of these changes are small. Again,

this result was highlighted in Chapter 3, with significant alterations to εa required

to reduce disease prevalence. We note that in the case of εa = 2, farm-level stock

183



Figure 4.12: Impact of partnership formation friction on Scottish trading system System-

averages for various trade quantities when each farm’s partnership formation rate constant ai is

scaled by various values of εa. Vertical dashed lines represent the point at which εa is changed,

and horizontal dashed lines represent respective system-wide averages for various trade quantities

as obtained from the CTS data.

quantities are reduced significantly, as farms have a greater number of available

suppliers from whom to purchase stock. Our model, therefore, suggests there may

be scope for changes to the Scottish cattle trading system, allowing farms to form a

greater number of trade partnerships, as this appears to have only small implications

for disease prevalence.

Finally, we consider alterations to the duration of partnerships via εδ, and again

assume two scenarios: εδ = 0.5 so farms maintain trade partners for twice as long,

and εδ = 2 so partnerships last half as long as they currently do. Figure 4.14 shows

that in the case where εδ = 0.5, farms possess a larger number of trade partners,

trade more frequently and in smaller batches. This leads to reductions in farm-level

stock quantities as farms have a larger number of trade partners and those partners
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Figure 4.13: Impact of partnership formation friction on disease prevalence System-wide

disease prevalence when each farm’s partnership formation rate constant ai is scaled by various

values of εa. Vertical dashed lines represent the point at which εa is changed.

remain as partners for a longer period of time, allowing a greater level of supply

depletion before the partnership ends. When partnerships last smaller durations,

i.e. when εδ = 2, farms have fewer trade partners, trades occur less frequently and

are of larger batch size. This results in greater available supply and unmet demand,

as farms wait longer before trades occurs, leading to greater accumulation of stock.

The effect on prevalence is, again, small and considering Figure 4.15, longer lasting

partnerships result in a small increase in disease prevalence, and shorter duration

partnerships resulting in a small decrease in prevalence.

To conclude, it appears the Scottish trading system is resistant to simple changes

in farm propensities to alter trading patterns, with even substantial alterations in

network structure resulting in little to no significant changes in disease prevalence.

This is because a simple change in the frequency of trade, for example, results in

changes to farm-level stock quantities, and the system adapts itself and finds a new
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Figure 4.14: Impact of partnership durations on Scottish trading system System-averages

for various trade quantities when each farm’s partnership cessation rate constant δi is scaled by

various values of εδ. Vertical dashed lines represent the point at which εδ is changed, and horizontal

dashed lines represent respective system-wide averages for various trade quantities as obtained from

the CTS data.

network structure that mitigates the effects of these changes to trade. Such changes

to network structure in response to legislative changes to trade, and the implications

they have on disease spread, have been observed for the UK cattle trading network,

finding these changes to network structure have increased the susceptibility for dis-

ease spread on the UK network [44, 109, 115].

4.3.2 Whole batch testing and rejecting

In Chapter 3, we showed that animal batch testing through trade may be an effec-

tive strategy, though its effectiveness was dependent on both test sensitivity (the

probability that an infected animal tests positive), and the batch rejection strategy

employed. We found that whole batch rejection, whereby farms reject entire batches
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Figure 4.15: Impact of partnership durations on disease prevalence System-wide disease

prevalence when each farm’s partnership cessation rate constant δi is scaled by various values of

εδ. Vertical dashed lines represent the point at which εδ is changed.

if a single animal tests positive, was more effective than individual animal rejection,

whereby farms reject single animals if they test positive, in reducing disease preva-

lence for all test sensitivities, and could eradicate disease for smaller test sensitivities.

We now explore the potential for whole batch rejection to reduce disease prevalence

on the Scottish system for various selected test sensitivities.

Figure 4.16 shows the impact of whole batch rejection on system-wide trade quanti-

ties, with larger test sensitivities causing larger shocks to the system. In particular,

at sensitivity τ = 1, testing causes price to more than double initially, and farms

report net losses, though these shocks are temporary due to the detection of in-

fected animals and consequent rejection of batches, and trading patterns return to

pre-testing equilibrium values. Qualitatively similar behaviour is observed when

τ = 0.9, though under this sensitivity the trading system does not return to pre-

testing values as quickly. When τ = 0.5 and τ = 0.1, the trading system exhibits
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Figure 4.16: Impact of whole batch rejection on Scottish trading system System-averages

for various trade quantities when whole batch testing and rejecting is enforced, for various test

sensitivities.

long-term disturbances, with farms unable to maintain their in-flow, and increased

prices and less net income observed. Figure 4.18 shows that testing causes significant

transitory imbalances in stock levels for τ = 1 and τ = 0.9, due to the initial rejection

of batches leading to varying levels of stock depletion at farm level following a trade.

For τ = 0.5 and τ = 0.1, these imbalances are longer lasting, with large persistent

excess demand observed, though the magnitude of the disturbances are smaller for

τ = 0.1 than τ = 0.5. These different system-level responses to testing are due to

the ability for testing to remove disease. When τ = 1, all trades with infected farms

result in the batch being rejected, and infected farms cannot spread infection. This

results in rapid reduction in disease prevalence, and eventually eradication, so that

trading patterns return to pre-testing values. When τ = 0.9, we observe similar

rapid reduction in disease prevalence, however complete eradication is not possible

in the time period considered. While disease could not be fully eradicated, preva-
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Figure 4.17: Impact of whole batch rejection on disease prevalence Effect of whole batch

testing and rejecting on system-wide disease prevalence for various test sensitivities.

lence is reduced to sufficiently low levels that batch rejections become increasingly

rare and trading properties return to near pre-testing equilibrium values. In the

case where τ = 0.5 or τ = 0.1, testing still reduces disease prevalence, however test-

ing alone is insufficient in eradicating disease due to a sufficient number of infected

batches avoiding detection and allowing disease spread. This inability to eradicate

disease results in permanent disturbances to trading patterns and associated costs.

The testing and rejection of animal batches may therefore be an effective control

strategy for the Scottish cattle trade system, though only when animal tests are

of high sensitivity. For low sensitivities, disease cannot be eradicated through test-

ing alone and leads to long-term disturbances to the trading system, in particular

increased prices and lower farm net income.
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Figure 4.18: Impact of whole batch rejection on stock imbalances Impact of batch testing

and rejection for various test sensitivities on imbalances in stock quantities (left) and the ratio of

system-average demand to supply (right).

4.3.3 Whole batch testing and rejecting with a global risk

aversion strategy

Recall from Chapter 3 that risk aversion, where farms avoid farms deemed high-risk,

modulated through batch testing, was an effective combination control strategy that

could further reduce disease prevalence compared to testing alone. We now explore

the potential for a global risk aversion strategy to further reduce disease prevalence

within the Scottish cattle trade system (we omit individual-based risk aversion due

to computational limitations for a system of N = 15386 farms, and due to the fact

that the results of Chapter 3 showed global sharing of information was more effective

in reducing prevalence).

In the global aversion regime, there is a system-wide vector of weights W that

represents knowledge of the empirically determined risk level associated with each
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Figure 4.19: Impact of global risk aversion on Scottish trading system System-averages for

various trade quantities when whole batch testing and rejecting is enforced which informs a global

risk aversion strategy, for various test sensitivities.

selling farm. In this model we assume that this information is used to determine

alterations for farms to form and end trade partnerships, and to trade with a given

farm. By default the elements of W take value 1, however trades with a farm, j,

that result in detection of infected animals alter the value of weights to some value

ω (we use ω = 0.1 in all cases here to represent a large level of risk aversion). When

this occurs, the rate of partnership formation, cessation, and trade become

αij(t)→ ωαij(t),

δij → ω−1δij,

ϕij(t)→ ωϕij(t),

respectively, for all farms i. Thus, information on high-risk farms is shared through-

out the system, and all farms have a tendency to avoid such high-risk farms in
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Figure 4.20: Impact of global risk aversion on disease prevalence System-wide disease

prevalence when whole batch testing and rejecting is enforced which informs a global risk aversion

strategy, for various test sensitivities. Dashed lines represent system-wide perceived prevalence,

the fraction of the system with weight ω < 1.

similar ways. In the global aversion regime, farms are able to preemptively avoid

high-risk farms due to the sharing of information on risk, which differs from the

individual-based aversion regime, as in that case farms necessarily must directly

trade and detect an infected batch before they would deem a supplier high-risk and

alter their trading patterns. As in Chapter 3, we assume that repeat trades with

high-risk farms increase their weight in steps of ω, until the weight of the high-risk

farm returns to 1.

Introducing global risk aversion alters trading behaviour compared with testing

alone, regardless of test sensitivity. Considering Figure 4.19, global risk aversion

perturbs farm-level stock quantities to a greater degree than testing alone, with a

general increase in supply and demand, especially for test sensitivity τ = 0.1, in

which long-term consistent increases in stock are observed. This is because test-

192



Figure 4.21: Impact of global risk aversion on stock imbalances Impact of batch testing and

rejection, and global risk aversion for various test sensitivities on imbalances in stock quantities

(left) and the ratio of system-average demand to supply (right).

ing creates imbalances in supply and demand, and risk aversion leads to long-term

avoidance of farms, leading to the accumulation of supply for farms deemed high-risk

and the accumulation of demand because there are fewer suppliers that buyers are

willing to trade with. The avoidance of farms is also reflected by the fact that the

introduction of testing and risk aversion cause farms to reduce their number of trade

partners, whereas an increase in the number of trade partners was observed when

testing only was introduced. As positive tests cause farms to increase the cessation

rate and decrease the formation rate of the farm from whom the batch originated,

it is not surprising that risk aversion leads to a thinning of network structure. This

is further observed in the frequency of trade, with risk aversion causing a decrease

in the number of trades, whereas testing alone caused increases in trade frequency.

Trades that do occur take larger batch sizes in the risk aversion regime than when

testing alone, and we observe similar shocks to animal flows, price, and net income
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in both regimes.

There is a noticeable effect of risk aversion on between-herd prevalence, with disease

eradicated for τ = 0.9 more quickly than through testing alone, and for τ = 0.5

disease is almost completely eradicated, highlighting the significant role risk aver-

sion could have on controlling diseases for low test sensitivities. For τ = 0.1, the

disease cannot be eradicated with the inclusion of risk aversion, but prevalence is

significantly reduced to a new equilibrium. We observe, however, that the perceived

disease prevalence, defined as the fraction of the network with a weight smaller than

1, is generally overestimated compared with actual prevalence, except when τ = 0.1

due to the poor sensitivity of testing, suggesting that our mechanism through which

weights are updated (trade) contains a lag and thus may result in altered trading

patterns for longer than is necessary. Nonetheless, a global risk aversion strategy is

clearly effective in reducing disease prevalence, and for test sensitivities for which

testing alone could not eradicate disease, there is potential for risk aversion to al-

ter trading patterns such that disease can be eradicated or prevalence significantly

reduced. This would allow the trading system to return to pre-testing (and risk

aversion) equilibrium values that is not possible through testing alone when risk

aversion allows for eradication of disease, but we note that long-term disturbances

to trade are observed when disease cannot be eradicated.

4.3.4 Whole batch testing and rejecting with a global risk

aversion strategy and discounting of risk

We attempt to reduce the lag between actual prevalence and perceived prevalence

that was observed for the global risk aversion strategy by introducing a natural,

incremental, increase to farm weights after a specified and fixed time period in

which no detected batches from a high-risk farm were detected. That is we discount

information about supplier risk levels. In Chapter 3, this was shown to not alter

disease prevalence for the global risk aversion strategy for a test sensitivity in which

disease was eradicated without this incremental weight updating, however it did

reduce the transitory perturbations of the trading system when farms regained trust
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Figure 4.22: Impact of discounting of risk on Scottish trading system System-averages for

various trade quantities when whole batch testing and rejecting is enforced which informs a global

risk aversion strategy, for various test sensitivities. High-risk farms have their weights incrementally

increased in steps of ω after a period, ∆t = 0.1, in which no batches were detected to contain an

infected animal.

quickly. We apply this to the Scottish trading system and assume ω = 0.1 and

weights update in steps of ω after a chosen time period ∆t = 0.1 (corresponding to

roughly one month) in which no batch was detected positive. Weights continue to

be incremented (globally) through trade as before.

Considering Figure 4.22, qualitatively similar behaviour is observed for τ = 0.9 when

natural weight increments are introduced, though the initial shocks to supply and

demand are less severe, as farm weights update more quickly. Generally, the system

returns to pre-testing equilibrium values more quickly than in the scenario where

there is no discounting of information on supplier risk, which may be understood by

considering Figure 4.23, noting that the perceived prevalence for τ = 0.9 matches

the actual prevalence to a greater degree than in the case without risk discounting
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Figure 4.23: Impact of discounting of risk on disease prevalence System-wide disease preva-

lence when whole batch testing and rejecting is enforced which informs a global risk aversion strat-

egy, for various test sensitivities. High-risk farms have their weights incrementally increased in

steps of ω after a period, ∆t = 0.1, in which no batches were detected to contain an infected

animal.

(see Figure 4.20). For τ = 0.5 and τ = 0.1, natural increments to weights appear to

negatively impact the effect of risk aversion, with the system once again exhibiting

long-term disturbances to trading patterns. This is because of the increased dis-

ease prevalence compared with no discounting of risk. In addition, in this case the

perceived prevalence is now underestimated, so farms are less risk averse than they

should be. Thus incorporating a natural regaining of trust via time-dependent in-

crements to weights can be effective in reducing unnecessary burden on the trading

system for test sensitivities that permit eradication of disease, however care must be

taken for lower test sensitivities, as this regaining of trust may detrimentally impact

the success of risk aversion and cause longer-run persistence of disease and strain on

the trading system.
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Figure 4.24: Impact of discounting of risk on stock imbalances Impact of batch testing and

rejection, and global risk aversion with natural increments to weights for various test sensitivities

on imbalances in stock quantities (left) and the ratio of system-average demand to supply (right).

4.4 Discussion

In this chapter, we outlined the challenges of parameterising our highly dynamic gen-

erative trading model to the Scottish cattle trading system, owing to the presence of

time-varying farm-level stock quantities in our model that are not observable in the

data. By initiating the parameterisation from an assumed starting point taken from

the parameterisation of the model described in Chapter 2, we showed our method for

obtaining farm-level parameters for ai and bi, the frictional components of partner-

ship formation and trade, respectively, can lead to parameterisations that represent

distributional properties of the Scottish trading system, as well as capturing farm-

level trading dynamics to a remarkable level of accuracy, especially considering the

relative simplicity of the model. This method, however, is computationally intensive

as it requires simulation of the system, followed by a reevaluation of ai and bi for

each farm, followed by subsequent simulations using these updated values. More-
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over, it does not define an explicit relationship between farm-level trading patterns

and farm-level supply and demand. To our knowledge this model represents the

first attempt at developing and parameterising a highly dynamic generative trading

model. With the parameterisation developed here it has been shown that it is possi-

ble to explore the dynamics of trade in ways that have, up to now, not been possible

using current modelling approaches, such as the conceptually simple approach of

representing observed cattle movements as a snapshotted temporal network. Cur-

rent approaches to modelling livestock trading dynamics are limited to generation

of trade events on existing trade partnership networks. However, our generative

model goes beyond current models by including dynamic trading partnerships, and

parameterising at farm-level [58, 87] and can be used to explore the response of the

trading system to a wide range of proposed disease control measures, including those

studied here.

Extending our parameterised trading model to account for disease spread via trade

for a disease characterised by farm-level prevalence λ = 0.25 and recovery rate γ =

1/3, representing a high prevalence, highly persistent disease, we showed that under

current Scottish trading patterns, the disease is expected to persist at a between-

herd prevalence of approximately 55%. We first explored the potential for changes

to the propensities for farms to form and end partnerships, and to make trades

and showed that our model under the Scottish parameterisations predicts similar

qualitative behaviour as the homogeneous model in Chapter 3, with the trading

system adapting to increased (or reduced) frictions such that the network structure

changes to maintain farm flows. As a result, disease prevalence is largely unaltered

by such changes to trade propensities. This is in direct contradiction of the results

of the model of Chapter 2, which suggested such changes could be highly effective,

and also of current generative trading models, which have suggested reductions to

trade (and compensatory increased batch sizes) could reduce disease prevalence [87].

Our results highlight that trade is complex and dynamic, and farm response to

alterations to trade can have unexpected consequences for disease spread. This has

been observed previously, with legislative changes to trade following the 2001 FMD
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outbreak altering the UK cattle trade network in such a way that it has been shown

the UK network is now more susceptible to disease spread [44, 109, 115], further

emphasising the need for trading models that can accurately explore the role of

trade on disease spread.

Including animal batch testing and rejection was shown to be an effective control

measure against persistent endemic disease spread, with eradication or near erad-

ication for high test sensitivities, and significant reductions possible for lower test

sensitivities. The impact of such tests on the trading system, however, was clearly

visible, with large, short-term, disturbances to trade for sensitivities in which disease

could be eradicated, and long-term persistent alterations to trade for sensitivities

that did not eradicate disease. Thus testing alone through traded animal batches

may be insufficient in eradicating diseases such as paraTB, a disease for which the

commonly used ELISA test has notoriously variable test sensitivities [60, 120]. We

also note that for paraTB, it has been shown on a dataset of animal movements in

France that typical control measures such as animal testing of trade animals may

be insufficient in eradicating the disease [13].

We extended our testing regime by linking it to a global risk aversion strategy, where

farms share a common pool of information regarding high-risk farms. Farm risk

aversion, where farmers avoid high-risk farms is observed as a behaviour related to

avoidance of bTB infection [21, 35] and more generally risk aversion has been shown

to be effective in controlling disease [41]. We incorporated risk aversion through

changes to farms’ propensities to form and end partnerships, and make trades, with

farms deemed high-risk by scaling the appropriate rates by a weight, ω. Risk aversion

employed in this manner was shown to be highly effective at eradicating disease, and

near complete removal of disease was possible for test sensitivities for which testing

alone could not eradicate disease. However, it generally resulted in an overestimated

perceived prevalence, leading to unnecessarily long disturbances to trade. In an

attempt to mitigate this, we introduced a natural regaining of “trust”, or discounting

of risk, in which weights incrementally increased after some period of time in which

no infected batches were detected. For high test sensitivities, this was shown to be an
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effective supplement to risk aversion, allowing for complete eradication of disease. In

addition perceived disease prevalence matched actual disease prevalence, minimising

the duration of disturbances to trade. For lower test sensitivities, however, the

same rate of discounting of risk was shown to detrimentally impact risk aversion,

preventing disease eradication and causing ongoing disturbances to trading patterns.

While this dynamic model represents the first attempt at developing a parameter-

imised model of the Scottish cattle trade, there is scope for extension. We chose not

to include animal markets, though animal flows through these premises are main-

tained in our parameterisation as we treat farm-to-market movements as transitory,

and replace them with the resultant farm-to-farm movements. As markets generally

do not operate permanently, including them in our model is challenging as their

presence must be accounted for in our parameterisation. Moreover, it is unclear

whether our supply and demand based trading model can accurately account for

market dynamics, an issue highlighted in previous generative trade models [58]. Fi-

nally, while we generally assume that we are modelling endemic diseases, for which

markets may not be as influential, for epidemic diseases such as FMD, markets are

known to play a significant role [45]. In terms of our method of parameterisation,

while we showed that our parameterisation could capture farm-level dynamics to a

very high degree, it was less successful for farms that trade very infrequently, and in

general simulation of our parameterised system predicted smaller batch sizes than is

observed in the data. The limited number of observed trading events for such farms

is likely to make and parameterisation challenging. Nonetheless, development of a

more rigorous method for parameterising the system at farm-level is a natural next

step, as this may allow for a deeper understanding of the nature of farms’ trading

patterns and the accumulated stock levels that are observed in simulation.
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Chapter 5

Discussion

5.1 Aims of the thesis

The general aim of this thesis was to expand and develop generative trading models

of cattle trade, an area of research currently lacking, and explore the role of trade on

disease spread. These generative models are an attempt to extend current modelling

approaches of livestock trade, in which large-scale datasets are employed to replay a

network of animal movements as either a static or temporally snapshotted network,

and simulation of a simulated disease process modulated by the observed animal

movements.

The thesis aimed to answer the following questions: 1) can analytically tractable

generative models of livestock trade be developed that capture farm-level proper-

ties? Yes, in Chapter 2 we presented such a model that was amenable to theoretical

analysis, and parameterisation to the Scottish cattle trade system was achieved using

the Cattle Tracing System (CTS) dataset; 2) can the dynamics of trade be exploited

in such a way that disease persistence is reduced while maintaining farm-level ani-

mal flows? Yes, the trade properties of farms in the model of Chapter 2 could be

manipulated to conserve farm-flows, and it was shown that this could reduce R0,

the basic reproductive number, across a range of diseases; 3) can these models be

expanded to account for time-varying farm-level stock quantities, dictating trading
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patterns? Yes, the model of Chapters 3 and 4 were an extension of the model of

Chapter 2 and incorporated farm-level supply and demand, altering the rates at

which farms formed new trade partnerships and trade at a given time, though at

the loss of analytical tractability; 4) do changes to trade affect stock quantities to

such an extent that the trading system fundamentally changes? Yes, the model of

Chapters 3 and 4 were highly dynamic, and changes to farm trading patterns lead

to network adaptation as farms attempted to minimise their demand and maintain

animal flows; 5) under such scenarios, how does network adaptation impact disease

spread? It was found in Chapters 3 and 4 that network adaptation nullifies the

potential disease reducing benefits of changes to trading patterns, except in extreme

scenarios where trade is essentially halted; 6) how do traditional disease control

measures, such as animal testing, impact the trading network, and how does that

affect disease spread? Testing of trade animal batches was shown to be effective in

reducing disease prevalence for certain test sensitivities. Test-and-slaughter strate-

gies caused transitory disturbances to system-wide trading patterns when testing

could remove disease, and permanent disturbances when testing could not fully re-

move disease. Risk aversion strategies were shown to be an effective supplemental

behavioural change in response to detection of infected animals, further reducing

disease prevalence. A global aversion strategy was found to be more effective than

an individual-based aversion strategy; 7) when applied to the Scottish cattle trade

industry, do these results hold, and if so can effective disease control strategies be

proposed? Yes, simple changes to trading propensities alter the Scottish trading sys-

tem but do not yield significant reductions in disease prevalence. Control measures

such as batch testing and risk aversion can significantly reduce (or eradicate) dis-

ease even for low test sensitivities, though cause disturbances to system-wide trading

patterns.

For complex systems and intractable problems, there is often no one approach to

best suggest solutions. However, understanding the dynamics of the system, includ-

ing how key factors interact enable proposed interventions to be designed, tested for

unexpected outcomes, and combined in ways that may yield significant insight to be
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made in addressing challenging problems. In this thesis we have developed an ap-

proach to modelling complex trading patterns and shown that the resulting models

provide a good representation of the highly complex Scottish cattle trading system.

Application of our models to putative disease control measures provide useful un-

derstanding of their potential impacts, including unintended outcomes that mitigate

against desired goal of disease prevalence reduction. These models therefore confirm

that control of endemic disease is a complex problem, but provide tools that may

enable more intelligent design and combinations of interventions to address it.

We now discuss the results of each chapter in more detail.

5.1.1 Chapter 2

In Chapter 2 a heterogeneous trading model was introduced in which farms pos-

sessed a dynamic list of trading partners from whom they exclusively purchase an-

imals. This model was analytically tractable and applying the methods of [6] we

were able to derive a per-farm expression for the diseases basic reproductive number,

defined as Ri
0. This expression highlighted the role of the dynamic nature of trade

partnerships and trade on disease spread that does not appear to have been consid-

ered previously. Using the expression, it was shown that manipulation of farm-level

trading propensities while maintaining animal in-flows were an effective method of

reducing Ri
0, with sufficient changes to trade patterns capable of bringing Ri

0 be-

low 1, the critical threshold value that destabilises the endemic disease equilibrium.

We applied our methods to the Scottish subset of the CTS dataset over the years

2005-2013, and showed that per-farm parameterisations could be obtained such that

farm-level trading properties were matched, along with system-level distributional

properties. Analysis of changes to trading patterns on this parameterised system via

Ri
0 were shown to significantly reduce Ri

0. In particular, encouraging fewer, longer

lasting trade partnerships, with fewer trades of larger batch size could reduce Ri
0

significantly, especially for high farm prevalence, highly persistent diseases; the dis-

eases that are typically challenging to control. Moreover, targeted trading changes

to the largest farms were shown to be highly effective in reducing disease persistence,
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more so than traditional biosecurity control measures.

5.1.2 Chapter 3

The model of Chapter 2 assumed that a farm’s trading behaviour was not altered by

the effects of trade events, i.e. it did not account for fluctuations in farm-level supply

and demand. However, this is not realistic for the real-world Scottish cattle trading

system as time-varying trading patterns are readily observable, e.g. burstiness of

trade events. We therefore extended the model of Chapter 2 by including farm-

level stock quantities, defined as supply and demand, that accumulated at constant

rate and were depleted via trades. We incorporated demand satiation and supply

depletion at a farm-level by modelling rates of trade partnership formation and trade

as functions of farms’ dynamically varying demand and the selling farms’ supplies.

Thus, farms trade and form trade partnerships more frequently when demand is

high, but demand is satisfied through trade, leading to demand satiation resulting

in farms’ trading behaviour (tendency to form trade partnerships and trade) altering.

Our generative models go beyond current state-of-the-art by dynamically modelling

stock levels and allowing these to influence event rates by incorporating farm stock

levels into our model rates [58, 87]. However we lost analytical tractability due

to discontinuities in model rates and farm-level stock quantities at a given time

could not be expressed in a closed-form expression. A simple pricing model (similar

to the pricing model of [87]) was included into our model, that satisfied simple

macroeconomic supply-demand principles, as a mechanism for controlling global

stock imbalances, finding that without a pricing model, small imbalances in global

stock levels could lead to cascading and long-term imbalances. The inclusion of a

pricing model was also desirable to measure the potential financial impact on the

system of changes to trade.

The dynamic nature of our model was explored by manipulating farm-level trad-

ing propensities. We found that the trading system would adapt itself in response

to these alterations, and network structure would change so that new avenues of

trade were found which minimised the effect of changes to trading propensities such
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that farm-level unmet demand was minimised and farm flows were maintained. The

robustness of the trading system to instantaneous shocks to stock levels was investi-

gated, finding the model would rapidly adjust to these shocks, leading to temporary

surges in trade, but with the system quickly returning to pre-shock equilibrium

values. The exception was when demand was perturbed significantly, with the sys-

tem finding a new equilibrium in which farm-level demand was slightly larger than

pre-shock equilibrium values.

Disease spread via trade was included in the model, and similar changes to trade

propensities as in Chapter 2 were made to explore the impact of the dynamic adap-

tation of the model on disease spread. Changing the propensities for farms to form

and end partnerships, and make trades was found to be largely ineffective in reduc-

ing disease prevalence, except in extreme cases where either trade effectively halted,

or the network dissolved. These findings were in direct contradiction of the results of

Chapter 2, which showed these changes to trade were highly effective, and highlight

the dynamic nature of trade and the challenges of effectively modelling livestock

trading systems.

We introduced animal batch testing, a common control strategy for diseases such as

bTB and paraTB [4, 123], and considered two animal rejection strategies: removing

individual animals that test positive, and removing entire batches if a single infected

animal is detected. Testing in this way is similar to post-movement testing, and

while we did not consider pre-movement testing, this can be incorporated into the

model. As expected, the greater the test sensitivity, the more effective both testing

strategies were in reducing disease prevalence, however whole batch rejection always

leads to greater reductions in prevalence and could eradicate disease at lower test

sensitivities. Animal rejection naturally leads to imbalances in global stock levels, as

buyers accept only animals that do not test positive for disease in a batch, and our

dynamic model allowed us to explore the effect on trade that these imbalances cause;

an analysis that, to our knowledge, has not been performed before using standard

livestock trade modelling approaches. Both individual and whole batch rejection lead

to disturbances to trading patterns, and the magnitude of these disturbances were,
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in general, larger for whole batch rejection. These disturbances were permanent for

test sensitivities for which post-movement testing was unable to eradicate disease,

and transitory when testing could eradicate disease.

An adaptive risk aversion strategy was incorporated that was influenced by ani-

mal testing; farms would adjust their trading propensities towards farms that were

deemed high-risk. We explored two risk aversion strategies, an individual-based

strategy, whereby farms possessed a list of farms that they identified as high-risk,

i.e. from whom they had detected infected animals, and a global strategy whereby

the trading system shared and contributed towards a global list of farms that were

deemed high-risk. High-risk farms were assigned a weight that altered the rates at

which farms would form and end partnerships, and make trades, and risk aversion

was shown to be an effective supplemental control strategy that further reduced dis-

ease prevalence compared with testing alone. Risk aversion altered the disturbances

to the trading system compared with only testing, as testing alone did not alter

the propensities for farms to trade with high-risk farms (except due to stock deple-

tion), whereas risk aversion caused farms to avoid these high-risk farms, leading to a

reduction in network connectivity. Both aversion strategies lead to disease eradica-

tion at lower test sensitivities than testing alone, however a global aversion strategy

was shown to be more effective than individual-based aversion allowing for disease

eradication at even lower test sensitivities. This was due to farms being able to

preemptively avoid high-risk farms, whereas for the individual-based aversion farms

necessarily had to trade with farms before they could be deemed high-risk. While

risk aversion was effective at reducing prevalence, farms generally overestimated

their “perceived” prevalences, i.e. the fraction of the system that were deemed high-

risk, which lead to unnecessarily long disturbances to trading patterns. To mitigate

this, we incorporated a natural regaining of “trust”, or discounting of risk, allowing

for weights of high-risk farms to incrementally increase after some period in which

no animal or batch were detected to have infection. We evaluated this for a test

prevalence in which global aversion allowed for complete removal of disease, and for

which individual aversion lead to near eradication. For the global aversion strategy,
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natural increments to weights were found to not alter long-run disease prevalence,

but did cause smaller disturbances to trading patterns, especially when weights were

updated quickly. On the other hand, for individual-based aversion, the same rate of

discounting of risk was shown to be detrimental and lead to increased disease preva-

lence. Both aversion strategies have the potential for reducing prevalence, however

a system-wide aversion scheme appears to be a highly effective surveillance system

supplementing animal testing that could reduce disease prevalence, even for low test

sensitivities.

5.1.3 Chapter 4

The model analysed in Chapter 3 was parameterised for a small homogeneous sys-

tem of farms. However, real-world trade networks display a large degree of hetero-

geneity, including scale-free like distributions across farms int he case of livestock

trading systems [22, 84, 113]. The challenges of parametersing our dynamic trading

model for the Scottish trading system via the CTS data was presented, the main

challenge being that the model rates were functions of farm-level supply and de-

mand, which are unobserved in the data. We chose to use an iterative method to

parameterise our model, where each farm is parameterised by an iterative method

starting from an initial parameterisation (we chose to use the parameterisation used

for the model in Chapter 2). The system was then simulated, and average values

for per-farm trading quantities were compared with their values in the data. The

factor differences between simulation and data for each farm were used to inform a

new parameterisation, the system was re-simulated and the process repeated. This

method was computationally intensive, requiring multiple iterations to obtain ap-

propriate parameterisations. In addition, our method was inefficient in obtaining

parameterisations for farms that trade very infrequently, as these farms are sensitive

to stochasticity in the simulation. However, it should also be noted that the data

contain relatively few events and by implication limited data for such farms. Further

refinement of this parameterisation method is an avenue for future work. Neverthe-

less, we were able to obtain a parameterisation that represented the trading patterns

of the Scottish system to a very high degree, both at system-level and farm-level.
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Introducing disease spread via trade into our parameterised system, we explored the

effects of similar changes to trading propensities on prevalence as in Chapter 3. Our

results conformed to the results of Chapter 3, finding that the system adapted to

changes in trading propensity so that animal flows were maintained, which lead to

minimal reductions in disease prevalence. Even for trading patterns that the model

of Chapter 2 predicted would lead to increased incidence, for example increased net-

work connectivity, more frequent trades, and smaller batch sizes, there were only

very small increases in disease prevalence. We posit that the Scottish trading sys-

tem is currently operating with very low friction, and fundamental alterations to

the system would be required to reduce disease prevalence without other disease

control strategies. However, as with many complex systems it may be that multiple

interventions could yield useful benefits.

Whole batch testing and rejection was included and shown to be an effective control

strategy at reducing disease prevalence, but could not eradicate disease except for

high test sensitivities. For all test sensitivities, the introduction of batch testing

resulted in disturbances to the trading system caused by imbalances in farm stock

levels that testing resulted in (in a trade, the buying farm accepts either the whole

batch if all animals test negative for infection, or the batch is rejected if a single

animal tests positive, but the supply of the selling farm depletes by the batch size

regardless of whether the batch is accepted or rejected by the buying farm). For

test sensitivities in which disease was eradicated (or very close to eradication), these

disturbances were temporary and the trading system would return to pre-testing

equilibrium values. When testing could not eradicate disease, these disturbances

were permanent and the trading system would find a new stable trading equilib-

rium. We linked animal testing to a behavioural response by introducing the global

risk aversion strategy outlined in Chapter 3. As in Chapter 3, the introduction of

risk aversion altered the trading patterns of farms compared to testing alone, and

was again highly effective in reducing disease prevalence, with disease eradication

possible for test sensitivities that did not permit eradication through testing alone,

and substantial reductions for very low test sensitivities (though eradication was
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still not possible in these cases). As with animal testing, when risk aversion could

not eradicate disease, there were permanent disturbances to trading patterns, such

as increased prices, lower farm net income, and farms were not able to fully meet

their in-flow requirements. For test sensitivities in which testing combined with

risk aversion could eradicate disease, farms generally overestimated the risk of dis-

ease, and perceived prevalences were generally higher than the actual prevalence.

The discounting of risk as in Chapter 3 was included, and similar behaviour was

observed for the parameterised system. For high test sensitivities, disease could

still be eradicated and perceived prevalence more closely matched the actual preva-

lence, minimising the disruption to the trading system that testing and risk aversion

caused. For lower test sensitivities, there was a detrimental impact on prevalence

reduction, with disease no longer able to be eradicated for middling test sensitivi-

ties, and the effect of risk aversion was largely mitigated for low test sensitivities,

resulting in further disruptions to the trading system.

5.2 The role of trade in disease spread

The models presented in this thesis are the first attempt at developing new tools in

analysing the role and effect of trade on livestock diseases, with case studies applied

to the Scottish cattle trading system by parameterising our models to the Scottish

subset of the CTS dataset. With the recent development of network theory and the

increasing availability of large, rich datasets of animal movements, typical models

of livestock trade have consisted of replicating observed animal movements and ob-

serving a simulated process modulated through these movements, finding that trade

(specifically the movement of infected animals between herds) is a significant risk

factor to the spread and maintenance of livestock diseases [13, 37, 39, 46, 51, 71, 97,

98]. These modelling approaches have identified potential avenues for exploiting the

highly heterogeneous nature of trade, with targeted rewiring of network connections

based on network-level properties such as centrality measures, or by rewiring move-

ments away from particular holdings shown to be reduce disease prevalence [43, 85,

117]. In addition, effectively removing certain connections in the network has been
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shown to alter the structure of the network and the size of the giant component in a

way that may be effective in reducing disease persistence [62, 63]. However, assessing

the impact of these alterations to trade on farm-level properties, such as maintaining

animal flows or minimising demand, or on system-level properties such as price, is

challenging using these modelling approaches as they are typically constrained by the

models designed around fixed observed animal movements. It has previously been

shown that alterations to farm trading patterns in response to legislative changes

intended to control disease or in response to a disease outbreak (for example the

2001 UK FMD outbreak) can have unintended consequences on the structure of the

trading network, leading to increased susceptibility to disease spread [44, 109, 115],

highlighting the need for the development of trading models that can incorporate

business considerations of farms that may influence trading behaviour.

We have developed novel generative trading models, in which the trading system

grows and develops based on farm-level trading characteristics, for which there is a

pressing need in general [57], and when parameterised to the Scottish cattle trading

system represent, to our knowledge, the first attempt at analysing trade and its

effect on disease spread on a national scale for a highly heterogeneous system using

a systems modelling approach. There have been very few attempts at developing

generative models within livestock trading, and none applied to Scotland, and these

models have focused primarily on trading dynamics, with small consideration to

disease spread. Moreover, simplifying assumptions such as constant trade networks,

rates of trade, and homogeneity cannot capture the complexity and time-varying

nature of livestock movement patterns [58, 87]. The generative model outlined in

Chapter 3, and parameterised for the Scottish trading system in Chapter 4, was ef-

fective in showing the potential for a generative modelling framework, yielding new

insight into how farms may adapt their trading behaviour in response to alterations

in trading propensities. Our generative models are effective in capturing the com-

plexities and nuance of livestock trade, and show that simple alterations to trading

patterns may not yield expected changes to disease prevalence, as farms dynamically

alter their trading behaviour, a phenomena that may not be easily understood using
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typical network-based approaches. In addition, the effect of typical disease control

measures, such as post-movement testing, and the response of the trading system to

such measures can be analysed using our generative modelling approach, to inform

potential intervention strategies that reduce prevalence while minimising farm- and

system-level disturbances to trade.

5.3 Extensions and future work

Our generative modelling framework is a flexible tool allowing for the modelling of

trade and disease spread, and the effect of control strategies and alterations to trade

can be incorporated into the model. There are a number of elements of real-world

trading systems that we have not included in our models, and the inclusion of some

of these will be the focus of future work. Firstly, we have neglected any spatial

component to our trading models, for example farms preferentially buying/selling

to nearby farms, with farms’ decisions on who to farm trade partnerships and trade

with dictated entirely by current stock quantities. While the presence of markets

facilitates long-range animal movements, it has been observed that cattle in the

UK, for example, generally travel short distances via movements in their lifetime

[113]. The comparison between the dynamic model presented in Chapters 3 and 4

and an amended model in which distance influenced trades between farms would

be informative, both when considering the differences in disease prevalence and how

distance-based movements impact the dynamics of the trading system. The 2001

UK FMD epidemic is an example of a disease outbreak in which long- and short-

range animal movements contributed to the magnitude of the outbreak; long-range

movements via animal markets were primarily responsible for the initial nationwide

spread, with subsequent local movements considered responsible for the maintenance

of the disease [45].

External sources of infection, such as wildlife reservoirs, is a natural future inclusion

to our models, as we have considered the spread of disease solely through trade

throughout this thesis. For example, the presence of infected badgers, which can

act as environmental reservoirs of bTB [103], is suspected of increasing herd-levels

211



risk of infection of bTB [82], with the UK having higher badger densities than

mainland Europe [18], although Scotland does have lower densities than the rest of

the UK [61]. The impact of persistent external sources of infection into herds on

the control measures outlined in this thesis is a promising area for future work, and

one that can be facilitated within our modelling framework. In particular, while

we showed in Chapters 3 and 4 that simple changes to farm trading propensities

was unsuccessful in eradicating disease except in extreme cases where the system

fundamentally changes, it would be interesting to explore how such changes, when

combined with distance-based trading as above, may effect the ability for local high-

risk areas of infection from wildlife to spread disease to low-risk areas of infection

from wildlife.

A simplifying assumption of our models is to treat farms as a unit, that is to say

we do not track individual animals. As the CTS dataset contains the identification

and movement records of individual animals, there is scope to extend our model

to incorporate individual animals. As we treats as a single unit, we assume that

infected farms maintain a constant herd-level prevalence throughout its infectious

lifetime, however herd demographics (such as births and deaths) and animal move-

ments (infected animals may be introduced or leave the farm) may cause prevalence

to fluctuate. Our disease model could be considered a “worst-case” scenario, due to

farms maintaining their herd-level prevalence regardless of the frequency and size

animal movements. An individual-based trading model has previously shown that

increasing animal movements could be beneficial to reducing disease persistence, if

combined with constant animal tests during these movements [106]. As we neglect

herd demographics such as herd size, interpreting farm-level supply and demand can

be challenging, and we have considered these quantities as a measure of inefficiency

in farms’ abilities to completely satisfy their demand, and also to measure the po-

tential impact on farms caused by changes to trading patterns and disease control

strategies. Our analysis and parameterisation of the Scottish cattle trade system

further highlighted that these stock quantities should not be taken as representative

of herd demographics, with some farms having extremely large supply and demand
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at any given time, and their values were more a consequence of farm-level trading

patterns rather than an indicator of herd size.

We have considered the impacts of disease control measures both on disease preva-

lence and also on the trading system, however there are a number of intervention

strategies that we have not considered but can be analysed using our generative

modelling framework. While alterations to trading propensities were explored as a

potential alternative to movement restrictions, movement restrictions are a common

control strategy in response to the detection of disease. For example, in the 2001

and 2007 UK FMD outbreaks, nationwide movement restrictions were imposed to

minimise the spread of disease causing widespread disruption to farms and incurring

large economic costs [7, 45, 116]. Moreover, following the relaxation of these restric-

tions, animal movements were atypical as farms attempted to offload larger amounts

of stock and to recuperate losses due to slaughter [19, 116]. Movement restrictions

can be incorporated into our generative trading model, and the inclusion of farm-

level stock quantities allow for both a measurement on the stress of these restrictions

on farms, but will also influence short- and perhaps long-term trading behaviour fol-

lowing the relaxation of restrictions. Initial exploration (not shown in the thesis) of

simple movement restrictions have suggested that the success of system-wide restric-

tions depends entirely on whether disease can be eradicated during the time period

of restrictions. If the disease is not eradicated before restrictions are lifted, large

surges of trade due to accumulation of stock result in prevalence rapidly returning

to pre-restriction levels. More work is required on behavioural changes of farms in

response to restrictions, e.g. less generation of supply and demand, to fully under-

stand the effect of restrictions on disease spread, but is a potentially economically

important area of study due to the large disruptions nationwide restrictions create.

We explored risk-based trading through an adaptive risk-aversion strategy, modu-

lated through the testing of traded animals. A natural extension of such approaches

is to model so-called risk-based trading schemes. There has been little modelling of

such schemes, however the introduction of trading schemes based on bTB score cards

has been shown to potentially reduce the number of infected animals purchased from
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high-risk farms [3]. Our generative modelling framework is well suited to exploration

the potential of similar trading schemes on control of disease, but also on the finan-

cial burden on farms and their ability to maintain animal flows and meet demand.

Considerations such as minimum scheme size necessary to maintain farm-level de-

mand, critical scheme sizes at which disease can be maintained within the scheme,

and the development of “smart” schemes in which trading schemes partition at crit-

ical sizes so that potential disease persistence within the scheme is prevented are all

future areas of work that may help inform the effectiveness of trading schemes and

inform potential future policy when applied to real-world cattle trading systems.

Our dynamic models of Chapters 3 and 4 were analytically intractable and required

extensive use of simulation. A challenge, and area of future work, is developing a

theoretical framework to allow for similar theoretical analyses of the model as was

presented in Chapter 2.

We conclude by noting that while we have focused on cattle trading systems, our

generative models are not confined to such systems, and can potentially be adapted

to other dynamic systems, for example computer networks and the spread of viruses

in data packets. The current COVID-19 pandemic has shed light on the devastating

impact diseases can have on human health and national economies, and the role of

control strategies that minimise contacts between individuals on preventing disease

spread. Our model has the potential to be adapted to human contact networks and

could be an invaluable tool in quantifying the risks of certain contact patterns and

the economic and financial impacts to individuals on typical control strategies, and

in also investigating potentially effective control strategies that minimise disruption

to daily life.
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