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Abstract

Cancer is a common disease during the modern age which requires accurate

detection and prediction of its development. Prostate cancer is an interesting form

as it is rarely fatal, yet requires surgical excision to remove, which itself may have

adverse effects. Therefore, it is important to assess correctly each patient to minimise

risk from cancer progression and from treatment side effects.

Raman spectroscopy is an analytical technique which has gained interest in the

analysis of biological specimens, as it is a robust technique which produces distinct

molecular signals which can be used to identify biomolecules. The sheer volume

and dimensionality of spectral data necessitates computational analysis: this work

covers the use of self-organising maps for investigating such data.

Self-organising maps are a machine learning technique which spot patterns and

reduce dimensionality in high dimensional datasets in an unsupervised manner.

Their use can help to discern clusters within the dataset which may not be readily

apparent.

The use of self-organising maps to analyse Raman spectral data from human cell

samples is an underexplored area of research. This work forms a feasibility study

for the use of self-organising maps for such an application, and shows that they are

able to correctly cluster cancer and non-cancer samples from a blinded dataset with

optimum parameters. Moreover, the optimised SOM shows delineation into three

clusters, one of normal prostate data and two of prostate cancer data. Analysis of

these clusters shows spectral differences related to lipid composition, an observation

which has been linked to more aggressive cancer progression.
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Chapter 1

Introduction

This work investigates the use of self-organising maps (SOMs) as a diagnostic and

prognostic tool in the setting of prostate cancer. Prostate cell samples are analysed

using Raman spectroscopy, and the complex signals generated are fed into the SOM

algorithm to produce clusters of like samples based on the presence or absence of

disease. The use of SOMs to analyse Raman spectral data from human cancer cells

is underexplored, and this work forms a feasibility study of this application.

Cancer is a disease in which the body moves from a normal state to one of

disorganisation via the acquisition of genetic alterations. Such aberrations take

time to become established and result in altering internal behaviours of cells. The

earlier these changes are discovered, the more chance there is to prevent further

progression of the disease, or to remove the bulk of diseased tissue before it grows.

Clinical methods of analysis currently consist of histology (direct observation

of cells under the microscope) and epidemiological studies of disease trends and

management outcomes. Imaging techniques are widely used to aid the diagnosis of

cancers, and give information at the whole body level—for this the cancer tissue

must be large enough to be seen at the resolution of a whole body scan.

Interest has grown in newer technologies to investigate the processes within cells

which lead to disease states. Genetic analysis of patients and populations highlights

genes which may predispose to malignancy or which are commonly affected during

cancer establishment. Analysis of the resultant proteins produced and subsequent

impact on cellular behaviour is performed with the hope of understanding the cellular

dysfunction and ways to circumvent it. Spectroscopic analyses can give information

at the molecular level, and the sheer volume and dimensionality of data gathered

from spectroscopy renders computational analysis necessary.

Prostate cancer in humans has been chosen as a disease model due to its societal

importance, biological interest, and the unique clinical question it poses: whether

or not to treat. The majority of prostate cancers are slow growing and do not

infiltrate surrounding tissues, and treatment decisions take into account the benefits

on symptoms as well as life expectancy. In the small subset of aggressive cancers,
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there is a need to intervene at the earliest possible time to sustain life, and so good

prognostic as well as diagnostic accuracy is required.

Chapter 2 covers the relevant biological, physical, and computational background

of this project. It introduces the complex nature of the human cell and discusses

cancer development under a complex systems approach. The necessary aspects of

Raman spectroscopy are explained, and the SOM algorithm is discussed. Review of

current literature shows the SOM to have potential for the classification of biological

tissues based on Raman spectroscopy.

Chapter 3 outlines the research question which forms the basis of the project,

and Chapter 4 discusses the materials and methods used.

Chapter 5 discusses the development of the MySOM module, a python program

which inherits the SOM training features of MiniSom [101] and incorporates tools

for plotting figures and analysing Raman spectral data. It uses examples based on

common datasets in machine learning to show that it can produce meaningful results

and to reveal how the SOM process works.

Chapter 6 reviews the use of MySOM to analyse Raman spectra generated from

pig eyes, following the publication of this data [11]. Although MySOM uses a dif-

ferent SOM architecture and parameters from [11], it is able to cluster the data in a

comparable manner to the published results, showing that it can be used to cluster

Raman spectral data from a biological source.

Chapter 7 uses Raman data from prostate cell lines to test the SOM’s ability to

cluster by disease status, which the SOM does as expected. The sensitivity of the

SOM method to changes in parameters is also demonstrated.

Chapter 8 covers the analysis of a blinded dataset of samples from normal

prostate and prostate cancer. An outlying observation is uncovered and examined,

found to have a very different spectral shape to the others, and it is removed from

the dataset as it greatly impacts the SOM training process. A parameter sweep is

performed to find optimum training parameters, and the resultant SOM displays

three discrete clusters: one with data from normal prostate, and two with data from

prostate cancer. Subsequent analyses of these clusters and their average spectra

yield discernible differences in the lipid composition between normal and cancer,

and between the two cancer subclusters.

Chapter 9 summarises the results of this project, and discusses ideas for future

works.
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Chapter 2

Literature Review

Cancer is a phenomenon with a large body of research, from many different fields

of science and the humanities. It is the very complex nature of cancer, from the

microscopic level of the cell to the large scale nature of population healthcare, which

renders it amenable to investigation by different specialties for particular tasks.

The project undertaken in this work investigates biomolecular aspects of prostate

cancer and is a cross-disciplinary venture between Biology, Physics, and Computer

Science. Firstly, the nature of biological complex systems and the relevant aspects

of cancer biology are discussed. Secondly, the physical nature of electromagnetic

radiation and the Raman spectra generated from cell samples is covered. Thirdly,

computational methods employed to analyse these high dimensionality spectral data

are explored.

2.1 The Biological Problem

2.1.1 Biological Systems

Very few biological phenomena exist in isolation, rather within the framework of

ever growing hierarchical systems. As technology and understanding of individual

biological components has advanced, it has become more and more evident that

study of biological systems is key to understanding more complicated biological

observations [52].

A system refers to a set of entities which interact to form a whole phenomenon,

dissociated from external entities by a boundary [64]. Entities which exist outside of

the boundary form part of the system’s environment, and may exchange information

with the system components. Entities within a system interact with each other

and their environment by a defined set of rules, and display typical attributes and

behaviour. The behaviour of the system as a whole can be observed, and is distinct

from that of its components. Systems can be interpreted from two complementary

viewpoints.
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The reductionist approach dissects systems into individual fundamental parts

and attempts to explain system-wide behaviour as a direct result of component

behaviours; that is to say that the total is equivalent to the sum of its parts [35, p. 16].

The complex systems approach views interactions of system entities with each

other and their environments as the key contributors to system-wide behaviour [12].

Although individual attributes and behaviours may be studied and understood at the

level of individual entities, the vast range of possible interactions and dependence on

different states both within the system and within the environment create a higher

order behavioural organisation within the system; that is to say that the total is

greater than the sum of its parts.

Complex Systems

Many commonly encountered biological systems are complex systems, which display

several key complexity conferring properties, as reviewed well in [12].

Emergence refers to the relationship between the entities within a system and

system behaviour as a whole. System-wide behaviour is difficult to predict from

entities in isolation, as this behaviour only emerges when component entities are

brought together. Such systems may be nonlinear as changes in individual entities

may not have a proportional influence on system-wide behaviour.

Interdependence describes the relationships between entities within a complex

system. If one entity undergoes change, it may impact other entities, and potentially

system behaviour as a whole. Feedback loops may exist, where the behaviour of an

entity impacts upon itself, either directly or via another agent. These loops are

common in biological systems, whereby system parameters must be kept within

narrow margins to optimise system behaviour.

Biological Organisation

Combining reductionist and complexity theory, hierarchical reductionism [22, p. 21]

explains biological systems in terms of hierarchies of systems. Each level of the

hierarchy results from a reductionist view of the fundamental scales of activity, and

within each level a complex system of interacting entities exists. The system within

each level comprises entities which are the result of the behaviours of the system in

the level below, and behaviours which impact the entities of the system in the level

above.

This hierarchy can be extrapolated from subatomic particles to the universe, and

so a subset of the hierarchy relevant to the work discussed is given in Table 2.1.
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Hierarchical Level Example

Biomolecule Peptide
Macromolecule Protein
Organelle Nucleus
Cell Myocyte
Tissue Muscle
Organ Heart
Organ system Cardiovascular System
Organism Human

Table 2.1: Biological hierarchy from biomolecule to organism.

2.1.2 Cancer as a Complex System

Cancer is an abnormal growth of cells within an organism, caused by a change in

the normal function of cells [36]. Cancerous cells sustain their transformation via

usurping the supply of resources and maintaining an environment which supports

cancer growth [37]. This appropriation develops due to changes at the genetic level,

which affect the chemical reactions of a cell and ultimately its behaviour, and changes

in the microenvironment (the surrounding collection of cells, proteins, and messenger

molecules). These altered processes lead to rapid growth, local tissue invasion, and

distant (metastatic) spread.

These changes are caused by alteration to the internal cellular system and its

surrounding environment, representing a complex adaptive system [61]. Histologic

changes are recognised in many cancer types, reflecting perturbation of normal tissue

architecture. However, precisely how genetic, biochemical, and microenvironmental

changes at lower hierarchical levels affect a group of cells is difficult to predict,

and further studies aimed at investigating the emergent properties of these complex

adaptive systems are required.

Review of the different aspects of cancer at each hierarchical level is important

to understand the importance of cancer as a clinical problem. The following sections

discuss key aspects of cancer biology, as relevant to this study into prostate cancer,

from the human scale down to the cellular scale, where the main focus of the thesis

resides.

2.1.3 Prostate Cancer

Prostate Cancer Epidemiology

In the UK, prostate cancer is the most commonly diagnosed cancer, with a lifetime

diagnosis rate of 1 in 8 men [98]. It has an annual incidence of 48500 cases [97],

and an annual death rate of 11500 [98]. Risk factors for prostate cancer include

advancing age, ethnicity, obesity, and family history.

As prostate cancer is a relatively common disease amongst men, it poses an
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Figure 2.1: Diagrammatic representation of the human male reproductive system.
Image reproduced from ib.bioninja.com.au/standard-level/topic-6-human-

physiology/66-hormones-homeostasis-and/male-reproductive-system.html

interesting clinical dilemma: most men with the disease die with it, whereas only a

small proportion die from an aggressive advanced form [84]. Furthermore, the disease

is heterogeneous, with the prostate often containing several cancer foci developing

at different stages.

The Human Male Reproductive System

The male reproductive system functions to produce and to propagate spermatozoa,

short-lived cells which contain half the amount of DNA of somatic cells. They must

fuse with similarly haploid ova within females in order to survive and to grow into

offspring. Spermatozoa are produced in the testes and propelled along the vasa

deferens, through the urethra, and ejected into the vagina of the female during

sexual intercourse. Along their route they mix with nutrient-rich fluids from the

seminal vesicles and prostate, which are required for survival in the female genital

tract. An overview of the human male reproductive system is given in Figure 2.1,

and a thorough review of the physiology of the male reproductive system can be

found in [69].

2.1.4 Clinical Classification of Prostate Cancer

The Prostate Gland

The prostate is a glandular structure which consists of two main tissue types. The

glandular tissue comprises of luminal and basal cells, with occasional interspersed

neuroendocrine cells. The structural stromal tissue comprises of fibroblasts, smooth
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Figure 2.2: Diagrammatic representation of the human prostate showing the four
anatomical zones—anterior, central, peripheral, and transition.
Image reproduced from thestar.com.my/lifestyle/health/2019/07/11/men-

prostate-challenges

muscle cells, and blood vessels.

The prostate is divided anatomically into four zones (Figure 2.2), an anterior

fibromuscular zone and three glandular zones (central, transition, and peripheral)

[72], each of which contains different combinations and ratios of each prostate cell

type. Androgens, the male sex hormones, stimulate the prostate gland to grow and

to produce prostatic fluid. This fluid contains specialised enzymes, citrate, and zinc

required for spermatozoa to survive [66].

Cancer most commonly arises in the peripheral zone, an observation which likely

relates to the specific combination of cells and the microenvironment found in this

region [42]. The variation in prostate cancer incidence and distribution, even within

the same prostate, confers the need for an accurate diagnostic (is the disease present)

and prognostic (how severe is the disease) tool in order to inform management

strategies.

Gleason Grading System for Prostate Cancer

The current Gleason grade system [73] stratifies patients based on prostate histology,

the cellular architecture visible under an optical microscope. Gleason originally

devised a score from 1 to 5, with increasing number correlating to more disturbed

prostate architecture and invasion of surrounding tissues [34]. Prostate cancer has

a heterogeneous nature as it can develop and grow in different locations within

a patient’s prostate. For this reason, the two most common cancer cell patterns

observed within a patient’s prostate tissue are scored based on Gleason’s grading,

and added to give the patient a final score between 2 and 10. In order to simplify
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Figure 2.3: Diagrammatic representation of a human cell. The cell is bound by a
membrane consisting of a phospholipid bilayer which forms a boundary with the
surrounding environment and controls passage of substances into and out of the cell
through specialised channels. The nucleus is the location of genetic information in
the form of deoxyribonucleic acid (DNA), and the surrounding ribosomes are where
this genetic code is read to produce proteins. Mitochondria are the areas of energy
production within the cell.

classification, the International Society of Urological Pathology developed the grade

group system, which combines Gleason grades with similar clinical outcomes and

prognoses into 5 grade groups [27].

The histology-based Gleason grade system relies on how cells look, but gives

no information into the internal changes and biochemical reactions which underpin

malignant transformation. In order to gain more information of these subcellular

processes, it is necessary to use an analytical technique, and work is currently being

conducted to investigate the use of Raman spectroscopy to analyse prostate samples

[8, 19, 49, 80, 85]. Such research is also being performed at the University of York.

2.1.5 Cell Biology

The Cell

The functional unit of life is the cell, a complex system of biological macromolecules

and organelles contained within cytoplasmic fluid and bounded by a membrane.

Each organelle is a distinct compartment responsible for a process fundamental

to survival, propagation, and normal function of the cell. The relevant organelles

found in human cells considered below are the nucleus, cell membrane, cytoplasm,

mitochondria, and ribosome—information is adapted from [3]. A diagrammatic

representation of a cell containing these organelles is shown in Figure 2.3.
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The nucleus houses genetic material in the form of deoxyribonucleic acid (DNA),

a large polymer of nucleotides containing the bases adenine, cytosine, guanine and

thymine. The order of these bases forms the genetic code of the cell, instructions

for it to produce all its necessary constituents and machinery. This DNA must be

replicated faithfully when the cell undergoes division, as any changes are passed to

the next generation and could alter normal function. In order to ensure DNA is

protected, it is wound tightly around chromatin proteins when not being used for

replication or synthesis.

The cell membrane consists of a phospholipid bilayer with hydrophobic lipid tails

facing its centre and hydrophilic phosphate groups facing its edge and forming an

interface with the cell’s internal and external media. Within the membrane there

are proteinaceous channels which allow transport of polar molecules; hydrophobic

molecules can diffuse through the membrane directly. This configuration allows

complete segregation of the cell’s internal components from its environment, with the

ability to exchange small molecules for use as chemical reagents or signals between

the cell and its surroundings—acting as the boundary of the cell complex system.

Due to differing concentrations of polar molecules on either side of the membrane,

a potential difference exists across it which can be used as a source of energy for

transporting molecules or configuring change.

The cytoplasm is the main body of the cell, consisting mostly of the liquid cytosol

where chemical reactions occur. It also contains the cytoskeleton, a rich network

of tubules providing structure to the cell and a scaffold for transport of molecules

between organelles and the cell membrane.

Mitochondria are small organelles enveloped in their own phospholipid bilayer,

and are responsible for producing large amounts of adenosine triphosphate (ATP).

ATP is the universal energy currency of the cell required for many chemical reactions.

Ribosomes are the specialised machinery within cells where protein synthesis

occurs. Genetic information in nuclear DNA is read by cellular machinery to produce

complementary messenger ribonucleic acid (mRNA). mRNA exits the nucleus and

binds to ribosomes, where the sequence of bases is read and proteins are produced

based on the genetic code.

Cell Metabolism

Cellular metabolism is a collection of interconnected processes required for survival,

in which macromolecules are broken down into their constituent biomolecules and

energy (catabolism), and new macromolecules are built from biomolecules with the

input of energy (anabolism) [3]. The major catabolic process within animal cells

involves the breakdown of the sugar glucose in two stages.

The first stage, glycolysis, occurs within the cytoplasm of the cell and does not

require oxygen. A single glucose molecule is broken down to form two pyruvate
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molecules with a net gain of two ATP.

The second stage, aerobic respiration, occurs within mitochondria and requires

oxygen to go to completion. Pyruvate is broken down to acetate, which enters the

Krebs cycle by binding to oxaloacetate to form citrate. Citrate undergoes several

chemical reactions to produce enzymatic co-factors, reverting to oxaloacetate in

the process. Further acetate can then bind and allow the cycle to continue. The

enzymatic co-factors enter the electron transport chain, where a series of oxidation

and reduction reactions occur to produce ATP. A single glucose molecule is broken

down to form six molecules of carbon dioxide and water with a net gain of 36 ATP.

The intracellular changes which occur during malignant transformation comprise

genetic changes which alter the quantity and nature of molecules produced, and

ultimately the behaviour of the cell. Often the process of cellular metabolism is

usurped to allow malignant cells to grow and to divide rapidly. The Warburg Effect

[102] refers to the commonly observed phenomenon of metabolic reversal: cancer

cells switch from an aerobic metabolism to glycolysis and pyruvate fermentation.

Although this process is an inefficient method of energy production, it allows cells

to grow rapidly as the molecular skeleton of pyruvate is not broken down and can be

incorporated into biomass [37]. Furthermore, rapidly growing tumours may outgrow

their blood supply, but can continue to grow if they are not dependent on oxygen.

Prostate Gland Cell Metabolism

The metabolism found in human cells is slightly altered in normal prostate tissue.

Citrate is stored and secreted by the prostate, rather than being used in the Krebs

cycle for energy production [75]. Prostate cells instead produce energy via the less

efficient process of glycolysis [9].

However, in prostate malignancy there is still metabolic reorganisation, as citrate

is instead used to fuel energy production via oxidative phosphorylation and for lipid

production [9].

The Cell Cycle

Normal cells replicate via the cell cycle, a regulated sequence of processes governing

energy production, DNA replication, protein synthesis, and cellular division [86].

Division does not occur indefinitely, and ceases once a cell reaches its maximum

number of divisions—the Hayflick limit [40]. These cells enter senescence (non-

replicative existence) or undergo apoptosis (programmed cell death).

Some cells escape the Hayflick limit and senescence, becoming immortalised and

able to divide for as long as resources allow. This cancerous transformation is

accomplished by mutations leading to expression of genes which drive replication,

or suppression of genes which prevent replication [67]. Immortalised cells can be
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produced artificially, by inducing normal cells to express tumourigenic genes and

proteins [14].

Cell Lines

Primary cells are those derived directly from the native tissue under investigation,

and are thought to reflect the real cellular behaviour of their tissue of origin [33].

Acquisition of such cells is not always practicable, and replication of these native

cells in vitro can be used to generate cell lines. These cell lines can be cultured

to produce subsequent generations until they enter senescence after achieving the

Hayflick limit (finite cell lines), or indefinitely provided the appropriate resources

(immortalised cell lines) [87].

Immortalised cell lines are useful for research, as they reflect the state of the

native cells at the time they are harvested, are cheaper to use than primary cells,

can be farmed rapidly, and afford a biological control for cell-based experiments.

However, use of cell lines must be carefully monitored, as they do not fully reflect

the nature of their primary cells, as they have mutated to become immortal and likely

retain other mutations [50]. Furthermore, the more cell lines divide, the more likely

mutations are introduced into DNA leading to persistent phenotypic changes in the

offspring. Measurements for the cell lines analysed here were acquired sequentially,

and so mutations differing between members of the same cell line are assumed to be

negligible.

2.2 The Physical Approach

2.2.1 Electromagnetic Radiation

Electromagnetic radiation is classically considered as a perturbation in the electro-

magnetic field, which can be characterised by either its wavelength or frequency,

the product of which is constant [70]. Under quantum mechanics, such radiation is

viewed as a collection of photons, discrete packets of energy, which can be similarly

described by the frequency with which they rotate or the distance they travel in one

rotation (wavelength) [25].

When light interacts with a molecule, it may be absorbed, reflected, or refracted.

Absorption of the energy from a photon raises the molecule to a higher energy level.

Reflection of a photon returns it back along its path and refraction changes the

direction of the photon’s path, both without net changes to the molecule’s energy

level.
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Figure 2.4: Diagrammatic representation of scattering of light. The incident photon
(left) interacts with the water molecule, which in turn releases a photon. Elastic
scattering occurs where the resultant photon is of the same energy as the incident
photon (right)—inelastic scattering occurs when the molecule releases a photon of
higher or lower energy than the incident photon (lower right).

Scattering

When an incident photon interacts with a molecule, the energy from the photon

may be absorbed, moving the molecule to a higher energy state. Once in this state,

the molecule can release a resultant photon travelling in a different direction, and

return to a lower energy state. This process of reciprocal absorption and emission

of photons via interaction with matter is known as scattering of light (Figure 2.4).

The majority of scattering is elastic (Rayleigh scattering), where the excited

molecule returns to its original energy level, and the frequency of the incident and

resultant photons is equal. A very small proportion of molecules display inelastic

scattering, where the excited molecule returns to a higher (Stokes scattering) or

lower (anti-Stokes scattering) energy level and the resultant photon is of a different

frequency to the incident photon, as shown in the Jablonski diagram [45] in Figure

2.5. The bold horizontal lines represent the electronic states of the molecule and the

pale horizontal lines the vibrational levels within these energy levels.

Elastic scattering produces a resultant photon with equal energy to the incident

photon, and hence the same wavelength. Inelastic scattering produces a resultant

photon with different energy to the incident photon, and the observed change in

energy of the resultant photon is deemed the Raman effect after C. V. Raman

who first described the phenomenon [81]. Stokes scattering results in a photon of

lower energy and hence a longer wavelength than the incident photon—a red shift.

Conversely, anti-Stokes scattering yields a photon of higher energy and thus shorter
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Figure 2.5: Jablonski diagram showing the possible energy transitions of a molecule
when light is scattered. Rayleigh scattering (centre) occurs when the excited
molecule returns to its previous energy level. Stokes scattering (left) occurs when
the excited molecule returns to a higher energy level. Anti-Stokes scattering (right)
occurs when an excited molecule returns to a lower energy level.

wavelength than the incident photon—a blue shift. These changes in resultant

photon wavelength are shown in Figure 2.6 (adapted from [29, p. 17]).

The ability of a molecule to become Raman active depends on its vibration,

rotation, and electronic charge, and the energy change which occurs is characteristic

for a particular chemical bond [89].

Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation with matter

[43]. A spectrum is a generated signal representative of this interaction as a function

of the frequency of the radiation. Emission spectra consist of frequencies emitted

by matter when it moves to a new energy level, and may consist of lines or bands.

Line spectra represent signals from individual atoms emitting photons of specific

frequencies, whereas band spectra consist of many lines packed closely together

which represent molecules as a nonlinear summation of component atoms, electron

spin states, vibration, and rotation.

2.2.2 Raman Spectroscopy

The Raman effect is the uneven scattering of light which occurs when incident

light interacts with a molecule and alters its polarisability [26]. The Raman active

molecule enters a short-lived virtual higher energy state, and when relaxing moves
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Figure 2.6: Raman spectrum of CCl4 excited with a 488.0nm laser (adapted from
[29, p. 17]). Intensity of the Raman shift observed is proportional to how many
photons undergo that shift. Most of the resultant photons undergo no change in
energy (Rayleigh scattering, centre). A small proportion of resultant photons lose
energy compared to the incident photons (Stokes scattering, left), and a very small
proportion of resultant photons gain energy compared to the incident photons (anti-
Stokes scattering, right).
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to a different energy state than the original, thus releasing a photon of different

energy to the incident photon. The change in energy (and hence frequency) of the

photons corresponds to the changes in molecular vibration and rotation caused by

energy exchange, and is dependent on the vibrational state of the molecule: thus

the overall frequency shift and spectra measured are typical of a particular chemical

bond.

Stokes scattering is more common as molecules are more likely to be in the

electronic ground state compared to an excited state, and most Raman techniques

measure this frequency shift. In the field of spectroscopy, as the temporal frequencies

of photons encountered are large, it is more common to record a spatial frequency.

The wavenumber, ν, describes the number of full cycles of a wave (or full rotations

of a photon) which occur in one unit of distance, most commonly cm−1. This is

mathematically equivalent to dividing the temporal frequency (f) of the wave by

the velocity of the wave (c), which is the reciprocal of wavelength (λ), as shown in

Equation 2.1.

ν =
f

c
=

1

λ
(2.1)

The utility of observing the Raman effect as an analytical method results from

the fact that the change in resultant frequency corresponds to the molecule itself

and is not affected by the wavelength of the incident radiation [81]. By comparing

Raman spectra derived from analysing molecules in a test sample against spectra

of known chemical signatures, very detailed information can be gathered about the

composition of complex structures such as cells, including differentiation between

primary cells and cell lines, characterisation of pathological states, and interpretation

of cell differentiation [15].

Raman spectra

Raman spectra are generated from measured intensity as a function of the Raman

shift observed in units of wavenumber (cm−1). As both the Stokes and anti-Stokes

shift give the same information, only one side of the complete spectrum (Figure

2.6) is used for analysis, as shown in Figure 2.7. Spectra are broadly divided into

the fingerprint region (800–1800 cm−1), which corresponds to molecular vibrations

associated with DNA, proteins, and lipids, and the high wavenumber region (2800–

3800 cm−1) which corresponds to vibrations from proteins, lipids, and water [68].

Raman spectral bands are typical for the chemical bonds within an analysed

molecule, and standard libraries of spectral shapes generated from known samples

have been developed, such as Wiley’s KnowItAll [90]. Comparison of experimentally

recorded spectral data from an unknown sample with such a standard library has

been widely used and validated as a method of analysing the purity of reagents

and pharmaceuticals, and more recently to investigate the biochemical composition
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Figure 2.7: Example average Raman spectra generated from analysing normal
prostate and prostate cancer tissue samples.

of biological samples [15]. However, the bands obtained when analysing a sample

containing many different biomolecules, such as a cell, are not a simple summation

of individual bands due to complex, non-linear interactions affected by changes in

internal cell parameters. This complexity highlights a key need to analyse Raman

spectra from native biomolecules within biological systems, rather than in isolation

[32].

Before analysis of spectral data is performed, data are processed to remove noise.

Within biological systems, observed variation is often large, and minor differences

between samples may represent significant distinguishing features. Therefore, there

is a need to ensure that pre-processing does not remove small but significant signals.

Common pre-processing techniques include cosmic ray removal, baseline correction,

smoothing, Fourier transformations, and data normalisation, reviewed extensively

in [32].

Raman Spectra and Cancer Investigation

In recent years, interest in Raman spectroscopy as a diagnostic tool has grown, as

it can discern bonds in native molecular structures, therefore it does not require

labelling or processing of biological samples. Research is currently investigating the

use of Raman spectroscopy to analyse accessible body surfaces, such as the gastro-

intestinal tract and skin [20], internal tissues during surgery [20], biopsy samples [62],

and blood samples [19]. Great effort has been expended to create a Raman biological

standard library, containing details of which molecular structures correspond with

Raman spectral bands from both normal and cancer tissues [74, 93], allowing some

interpretation of the spectra in terms of constituent biomolecules.

Cui et al. reviewed the developing use of Raman spectroscopy technologies, and

how different methods of sampling, both laboratory-based and bedside, could be

used for analysing patients [20]. Their conclusions were promising, given the high

sensitivity and specificity of Raman spectra to discern normal from cancerous tissue.
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Raman spectroscopy has gained interest as a diagnostic and prognostic tool for

prostate cancer [49]. Aubertin’s group found Raman spectroscopy to have high

sensitivity and specificity in being able to distinguish normal from malignant tissue

following a supervised machine learning analysis [8].

Circulating hormones stimulate prostate cancer growth, partially by inducing

lipid synthesis, and Potcoava’s group found that hormone treatment of prostate

cells resulted in increased lipid storage within cells, particularly saturated lipids

[80]. Several groups have used Raman spectroscopy to investigate the metabolic

reprogramming of prostate cancer by analysing lipid levels [1, 85]. Roman’s group

showed that accumulated intracellular lipid droplets in prostate cancer cells are

heterogeneous in both composition and amount, and that X-ray irradiation of the

cells leads to depletion of the lipids as part of the cell’s damage response [85].

2.3 The Computational Analysis

Once spectra have been gathered from the samples of interest, they must be classified

without researchers knowing the ground truth of exactly what to expect. In order

to achieve this goal, an unsupervised computational analysis method can be used.

One of the key aims in analysis of spectral data is dimensionality reduction,

whereby the many variables in a dataset are reduced to a few composite variables

which explain most of the variation. Such feature extraction makes the database

easier to interpret as it reduces the redundancy of multiple correlated variables and

simplifies onward processing. Principal component analysis (PCA) is a commonly

used method of dimensionality reduction and is outlined below. Another example

of an appropriate method from machine learning, self-organising maps (SOMs) as

used in this thesis, is also discussed.

2.3.1 Principal Component Analysis

Principal component analysis is a commonly used analytical method to investigate

datasets with high dimensions, such as the continuous waveforms encountered in

spectral data. PCA aims to reduce high dimensionality so that variation is ex-

plained by fewer components in order to increase the ease of interpretation and

understanding.

PCA finds new variables which are linear combinations of the original variables

in the dataset, and which are orthogonal to each other. These principal components

should maximise the variance within themselves with the constraint that they must

be unrelated to each other, in order that the majority of variation within the dataset

is explained by the fewest number of principal components [47]. An image describing

this process is given in Figure 2.8.
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Figure 2.8: Principal component analysis in which principal components pc1 and
pc2 have been derived from the variables x and y. Variation within the original
dataset is seen within both x and y in the image on the left, whereas the majority
of variation is explained by pc1 in the image on the right. In this manner, variation
within the dataset has been maintained, but the dimensionality has been reduced.
Image adapted from setosa.io/ev/principal-component-analysis/.

PCA has several benefits as an analytical method. It is widely understood, used

throughout many fields of science and statistics, and is easy and quick to perform

with the power of modern computing. It is often used to aid classification problems,

as it searches for variables which display high variance and maximise segregation of

classes. The resultant principal components can then be analysed with a clustering

algorithm such as k-means clustering to reveal the natural groups within the dataset.

PCA has one main caveat when it comes to analysing biological data. Most

biological populations are heterogeneous, and so there is large variation both within

and between classes. If the within class variance for a population is sufficiently

high, PCA aligns its higher order principal components along the axis of within

class variation, and the features selected may be completely unrelated to class [18].

Furthermore, to perform k-means clustering, the number of expected clusters must

be given before analysis, so there must be some idea of the inherent groups expected

to be found within the dataset.

2.3.2 Kohonen Self-Organising Maps

In the 1980s Kohonen introduced a new form of network topological organisation in

which input data can be represented by a two-dimensional array [53,54]. These self-

organising maps (SOMs) are an elegant way to display high dimensionality data, and

allow visualisation of subgroup clusters within the dataset, which may not otherwise

be readily apparent. The learning method of SOMs is unsupervised, working to

detect inherent patterns within the data and not requiring an expected number

of clusters into which to sort data. Furthermore, mathematically SOMs can be
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considered to be a non-linear version of PCA [41, p. 462], so their analysis of complex

biological data may be more appropriate where PCA struggles to cluster data which

are not linearly separable.

Kohonen’s maps are a subtype of artificial neural networks (ANNs), a group

of learning algorithms involving a mesh of nodes with edges between them loosely

modelling synapses between neurons in the human brain. These neurons carry a

weight which alters as learning occurs, and their topology changes to represent the

target dataset. ANNs are usually supervised, meaning that during learning there

is feedback to say whether they have correctly classified input data [60]. Although

Kohonen’s maps can be modified for supervised learning, their original realisation

was unsupervised, where the network relied solely on segregating data by internal

patterns, with no notion of class identity [53].

A note on nomenclature. Within work on ANNs, the terms ‘node’ and ‘neuron’

are often used interchangeably to denote the individual units within the network.

The term ‘node’ is used throughout this thesis to describe the units within SOMs,

to reduce confusion with traditional ANNs (and because neither artificial network

truly reflects the complex nature of biological neuronal function).

Structure and Function of Self-Organising Maps

Kohonen originally introduced the idea of SOMs as a network of connected threshold-

logic units which are able to assume the topology of an input dataset [54]. The nodes

within Kohonen’s maps are arranged in a one- or two-dimensional array, with lateral

connections between nodes allowing local feedback loops. This lateral interaction

and competition allows the map to become organised, by each node learning to

detect a unique pattern from the input dataset [55].

The algorithm attempts to fit an artificial network to a dataset by repeatedly

calculating the best matching unit (BMU) of the lattice for each input vector and

drawing that node and its neighbours closer to that vector. With each step of the

algorithm, the effect a node exerts on its surrounding nodes diminishes, and after

many iterations the network assumes the topology of the dataset. The resultant

map is much more visually accessible for humans, as demonstrated in Figure 2.9.

The steps of the SOM algorithm are outlined in Algorithm 2.1.

Prior to SOM analysis, it is useful to normalise data to improve accuracy of the

output, as the normalised input vectors have the same dynamic range [56, p. 115].

A useful method for high dimensionality data is normalisation of the variance of

each dimension across the dataset [56, p. 160], and the combination of variance

normalisation and a Euclidean measure of distance between vectors is very effective

at displaying the relationships between variables in most studies [57].
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Figure 2.9: Diagram representing the lattice of the SOM assuming the topology
of the dataset, adapted from [79]. The red dots are the nodes in the SOM array,
the black lines are the connections between neighbouring nodes, and the green lines
highlight the neighbours of one specific node. As the number of iterations increases,
the shape of the SOM changes from the random starting point to assume that of
the dataset.

Algorithm 2.1 Self-Organising Map Process

input: input data matrix
1: initiate weights
2: for iteration t do
3: for row in input do
4: calculate euclidean distance to each node
5: BMU ← nearest node
6: update BMU weights to better approximate input vector
7: update weights of BMU neighbours
8: end for
9: update neighbourhood function radius, σ(t)

10: update learning rate, α(t)
11: end for
output: SOM
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2.3.3 Self-Organising Map Parameters

For a SOM to be built, several key parameters must be set: map network topology,

configuration, and dimensions; the neighbourhood function; the learning rate; the

decay function, and maximum iteration number. Further discussion on optimisation

of these parameters can be found in Section 8.4.

Map Network

The array of nodes within the map may be arranged in a one-dimensional line, or

higher dimensional lattice [56]. The most common topology is a two-dimensional

sheet of nodes arranged regularly, although three-dimensional arrays, arrays with

irregularly placed nodes, and dynamic arrays which assume their topology when

they receive the training data do exist [58].

The configuration of the lattice nodes may be rectangular or hexagonal, where

each node has direct connections with four or six neighbouring nodes, respectively,

as shown in Figure 2.10. A hexagonal configuration is often preferred as nodes exert

influence over more neighbouring nodes than for a rectangular one [56], although a

rectangular configuration may be easier for non-experts to interpret.

The SOM network should be of an appropriate size to display the data well.

There is no way to know the most appropriate size before training begins, and

the results of training a SOM should be visually inspected to allow trial-and-error

derivation of appropriate SOM size [56]. Varying the SOM size can allow finer or

coarser resolution of the underlying clusters in the data. Vesanto [100] used the

example of 5
√
n nodes (where n is the number of observations in the dataset) when

investigating computational complexity of the clustering algorithm—this value is

now widely used as a starting SOM array size.

The x and y dimensions of a regular rectangular lattice should be in the ratio

of the two highest eigenvalues of the input data autocorrelation matrix, as this

configuration makes convergence in learning faster [57].

Neighbourhood Function

The neighbourhood function, σ(t), defines a symmetrical region around the BMU,

the radius of which decreases monotonically with each iteration step, t [55]. Any

surrounding nodes within the neighbourhood at the end of a training step have their

weight updated to draw them closer to the BMU and further away from other nodes

in the map.

There are several common choices for the form of the neighbourhood function

[79]. A Gaussian function may be used where there is a continuous function across

the neighbourhood, exerting a larger effect on weight values towards the centre of

the neighbourhood and having decreasing impact toward the periphery. A step or
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Figure 2.10: SOM lattice configurations may be rectangular (left) in which each
node is connected to up to four neighbouring nodes, or hexagonal (right) in which
each node is connected to up to six neighbouring nodes.

bubble function may be used where all nodes within the neighbourhood are updated

equally. A triangle function uses a combination of bubble and Gaussian form. Early

training iterations involve a wide neighbourhood and coarse organisation of data,

so the choice of neighbourhood function will impact how data organise themselves,

although an optimum neighbourhood function for a dataset cannot be known a

priori. Due to the iterative decay of the neighbourhood radius, the majority of

training iterations involve a narrow neighbourhood which encompasses one or zero

surrounding nodes, so the choice of function used is unlikely to impact the later fine

organisation phase [79].

The size of σ(t) should be appropriate to the size of the map, and may be greater

than half the map’s diameter [56]. If the starting neighbourhood radius is too small,

then the direction of organisation changes across the map and data become clustered

in local pockets without global organisation [55].

Learning Rate

The learning rate, α(t), defines how much the weights of nodes in the neighbourhood

are affected after each iteration of training [56]. It decreases monotonically with each

iteration, t, so its effect on node weights is large at the beginning of training to allow

coarse organisation, and small during the last iterations to allow fine grain resolution

of clusters [56].
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Decay Function

The decay function defines how the neighbourhood function’s radius and the learning

rate decay with each iteration step. Common functions include linear, exponential,

and inversely proportional to t. With maps of up to a few hundred nodes, the

actual function used is not crucial, as long as it allows σ(t) and α(t) to decrease

with increasing t [56]. With larger maps, optimisation of the decay function to

minimise learning time and processing power required may be useful. [56].

Iteration Number

SOM learning is stochastic, and so requires many iteration steps to converge [56].

Kohonen suggests using at least 500 times the number of nodes in the network to

ensure good statistical accuracy [56, p. 112], although there is no way to ensure that

“enough” iteration steps are used.

Computational Complexity

Time studies have shown the complexity of the SOM algorithm to be linear with

respect to the number of observations in the dataset, n, linear with respect to the

number of dimensions of each observation, k, and quadratic with respect to the

number of nodes in the map lattice, l [79]. Therefore, the overall complexity of the

algorithm is O(nkl2).

2.3.4 Investigating the Reliability of Self-Organising Maps

SOM Error Metrics

No single metric can adequately describe the SOM method [28]. Two commonly

used metrics, quantisation error and topographic error, assess the SOM’s ability to

reflect the distribution and topology of the input dataset, respectively.

The quantisation error is the average distance of each data point to its closest

node in the lattice. This error expresses how well the SOM is representing the

distribution of the input dataset, but has no connection to the topology of the data.

Increasing the number of nodes in the lattice decreases quantisation error, but risks

overfitting data as the ratio of data points to lattice nodes becomes ≤ 1 [79].

Topographic error is the proportion of input data vectors for which the best and

second best matching units are not adjacent in the map network—that is they do

not share a direct lateral connection (green lines in Figure 2.9) [79]. This error

reflects how well the SOM is representing the topology of the input dataset.
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Investigating Reliability

Once a SOM has been generated, it can be interrogated to ensure its results are

reliable and valid. De Bodt et al. [23] have developed a toolkit which can be used

to assess the reliability of a SOM’s representation of the dataset under study. Their

first measure is the coefficient of variation in the quantisation error of the map, used

to assess if the quantisation error is consistent (and therefore the produced map is

a reliable interpretation of the dataset), and to assess if the number of nodes used

to make the map is appropriate, as an incorrect choice impacts the metric. Their

second novel measure is a test of the reliability of the topographic error. Pairwise

comparison of observations over the dataset is performed to investigate whether

or not placement of the observations in the same or adjacent nodes of the SOM

is significant. This measure tests significance of proximity over a given radius, r,

around a node, so for r = 0 observations are together if they map to that node, and

for r = 1 observations are together if they map to that node or one of the eight

adjacent nodes in the (rectangular) lattice. If the placement of specific observations

together is significant, then it can be inferred that the topology of the dataset has

been well preserved, and that the observed clustering is not an artifact of random

initialisation of parameters. This measure can be used to support the results of

the SOM analysis as being a true reflection of input data topology, and to help to

decide whether creating more SOMs with different parameters would be beneficial

or necessary.

As SOMs are generated via a machine learning method from a random initial

configuration, the same dataset may result in several slightly different SOMs despite

using the same parameters. Therefore, an important consideration is the comparison

of two or more SOMs. Most comparisons are made by visually inspecting SOMs,

although some attempts at statistical analysis have been made. One possibility

is use of a dissimilarity index, which is mathematically equivalent to the average

difference in representation of the data by two maps [48], useful for analysing two

SOMs created from different datasets. Kirt et al. [51] developed a similarity measure

by visually inspecting graphs, defining clusters, defining a matrix representation of

neighbouring nodes, and finally calculating how much the matrices are identical.

This method is particularly useful for analysing two SOMs generated with different

datasets and parameters. Mayer’s group [71] have developed a method for comparing

several SOMs generated from the same dataset based on visual inspection of output

mapping. This group use the mean pairwise distance to compare an arbitrarily

assigned index SOM against all other SOMs in the set, allowing a measure of how

similarly each SOM plots a given data point.
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2.3.5 Self-Organising Map Clustering Rationale

The SOM method works by spotting intrinsic patterns within data and clustering

like observations together. Kohonen describes this as summarising high dimensional

statistical summary data in a low dimensional space [56]. However, once the SOM

is trained, it is not readily apparent which features of the input data cause it to

cluster how it does. Methods for investigating which components of the input data

are important for clustering (specific for that class) include visual inspection of

component planes and some novel approaches.

A component plane is the array of weight vectors corresponding to one dimension

(component) of the input data vector for each node in the map lattice [56]. These

planes can be visually inspected and compared with their SOM, as areas of high

signal in the component planes which correspond to clusters in the SOM suggest

that this component may be influential in defining cluster membership. Such an

approach is commonly used to assess the clusters in SOMs, but may not be feasible

for spectral data where there may be thousands of component features and hence

component planes.

Rauber and Merkl proposed the LabelSOM method of assigning cluster labels

based on the similarity of input data components which map to a given node [82].

Their SOMs were formed using text data mining examples, whereby input datasets

contain only the values one and zero to indicate presence or absence of a component

within a text document, respectively. Their argument was that the weight of a node

is mostly defined by the individual weights from each input observation mapping

to that node, and so where components of input data were similar, they would

equally contribute to the weight of that node and thus be characteristic of that

node across the dataset. However, some features would have weights of zero due to

the mass absence of a component mapping to that node, so the method was refined

by adding a threshold value for node weight to indicate the minimum importance

of a component to be considered.

Tan expanded the LabelSOM method with a hierarchical implementation—

HLabelSOM [94]. This method involved labelling the nodes of the map using a

threshold weight of 0.5 to define a component feature as descriptive of that node.

His program could then create multiple maps at different hierarchical levels, so that

if four nodes all map to one component they could be considered as a coalesced node

of this feature at a higher level of abstraction.

Although the LabelSOM and HLabelSOM methods are useful in the field of text

data mining, their use with Raman spectra is likely limited. The data used to test

these two methods were binary, where inclusion or exclusion of a component feature

from the input data vector enabled labelling of the nodes. With continuous spectral

data, where there are sometimes thousands of feature components with only slightly

different values, deciding on an appropriate cutoff value would be difficult.

25



2.3.6 Self-Organising Maps and Biological Data

Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is different to Raman spectroscopy,

although there are more examples of its use with SOMs in the literature, where

it has been widely used in the pharmaceutical industry for chemical analysis to

ensure purity of products. More recently, the ability of SOMs to analyse biological

systems has been tested [63]. Human saliva samples were treated with an oral

rinse or water, and NMR spectroscopy performed. SOMs were utilised to analyse

the dataset and successfully segregated treatment and control groups. SOMs were

compared with PCA, and shown to be less affected by variables which were strongly

discriminatory for only a small number of samples, which would constitute a poor

biomarker to differentiate between the groups. The differences between spectra

which the SOMs showed as important for cluster segregation were reviewed, and the

biological mechanisms behind the different concentrations of biomolecules seen were

postulated.

Raman Spectroscopy

There are few publications on the use of SOMs to analyse live human-derived Raman

spectral data. The aim of this work is to test the feasibility of using SOMs to analyse

such data, which are inherently complex due to the nature of dynamic cellular

systems.

Harris et al. [38] analysed Raman spectra generated from immortalised human-

derived normal thyroid cells and a human-derived aggressive thyroid cancer cell line.

Using a supervised SOM method they were able to distinguish normal and cancer

cells with >90% accuracy. Brazhe et al. [16] analysed primary rat cardiomyocytes

by Raman spectroscopy to investigate the different enzyme levels in rod-shaped and

round-shaped cells. They used a SOM method to cluster resultant signals which

demonstrated separation of the two cell morphologies. Majumdar and Kraft [65]

gathered Raman spectra from THP-1 cells, a cell line derived from human acute

monocytic leukaemia [96]. They stimulated the cells to differentiate into a different

type, and subsequent SOM analysis clustered spectra from cells at different stages

during differentiation due to the altered intracellular biomolecules.

There is one example in the literature of SOMs used to analyse Raman spectra

recorded from dried sections of pig eye [11]. The SOM successfully clustered spectra

based on one of five tissue types of origin (Figure 2.12), although it should be noted

that the spectra analysed by this group are themselves easily differentiated by eye

(Figure 2.11), which is not the case for fresh prostate tissue samples. This paper

demonstrates the ability of SOMs to analyse Raman spectroscopic data gathered

from complex biological samples and to uncover more than two natural groups within
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Figure 2.11: Average Raman spectra
recorded for each layer of pig eye tissue
(adapted from [11]).

Figure 2.12: Self-organising map built
from Raman spectra generated from
each layer of pig eye tissue (adapted
from [11]).

a sample set. This example is discussed more fully in chapter 6, where it is used to

validate the SOM approach used here.

2.3.7 Self-Organising Maps with Supervised Learning

Kohonen mentions that the classification accuracy of SOMs can be increased if a

supervised method is used [55]. However, the first principles approach for biology is

to investigate blinded data, which helps to reduce bias in the results. Furthermore,

if a SOM can cluster complex biological data, such as Raman spectral data from a

cell system, in an unsupervised manner successfully, the method may be modifiable

to be used for other biological datasets.
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Chapter 3

Research Question

As demonstrated above, there is a real need for a reliable test for prostate cancer,

one which gives both diagnostic and prognostic information. The current body

of evidence supports the idea of using Raman spectroscopy to investigate human

cellular samples, and the use of SOMs to analyse the derived spectra. Ultimately,

a good test would be able to distinguish between different prostate cell types, such

as non-cancer, cancer, another non-cancer disease state, and potentially a transition

stage between non-cancer and cancer.

This research project is a feasibility study into the use of self-organising maps in

the diagnosis of prostate cancer. The research question is:

“Can self-organising maps distinguish between cancerous and non-can-

cerous prostate cells?”
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Chapter 4

Materials and Methods

The materials and methods used throughout this project are summarised here. The

acquisition, storage, and use of data are discussed, and the methods for recording

results are outlined. Good software engineering techniques are used throughout this

work, and evaluation of their method is covered below.

4.1 Data Management

A data management plan covering details of data storage and use was produced

prior to commencing experimental work. Data are stored in hierarchical directories

outside of the project code directory, and raw data are read into scripts and written

to new files for manipulation if necessary—original data are never edited directly.

4.1.1 Practice Datasets

Practice datasets for testing MySom code include the Iris Flower dataset [31] and

a dataset of RGB colour values [17]. The Iris dataset is chosen because it is a

commonly used dataset in statistics and machine learning with biologically well

defined groups. Furthermore, two of its classes are not linearly separable, enabling

assessment of the utility of clustering algorithms. The Colour dataset is chosen as it

is visually not difficult to interpret, and class membership is defined by the highest

RGB value for each observation, so which colours cluster together may give insight

into how the SOM clusters data. Each of these labelled datasets is contained in a

single file within the dataset directory.

Raman spectral data on pig eye tissue samples were acquired from the authors

of the Banbury paper [11]. These data are organised as a single file per observation,

within individual directories for each tissue type, within the dataset directory.
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4.1.2 Human Data

The Raman spectral data from prostate cell lines have been gathered in Dr Hancock’s

laboratory, Department of Physics, University of York. They are provided by Dr

Hancock as two datasets, one labelled and one blinded, and each is stored in its

own directory. There are no ethical conflicts of interest as data are gathered from

commercial cell lines [13, 44].

4.1.3 Data Analysis

The MySom module has been written in Python. It inherits the characteristics of

MiniSom [101], and includes code for normalisation of Raman spectral data and

production of consistent SOM plots. MiniSom is chosen as the basis for MySom

as it is shown to be a popular and versatile package following literature search and

review within a recent masters thesis [104].

4.1.4 Appropriateness and Limitations

The proposed analysis methods are reasonable given the body of evidence supporting

the use of SOMs to uncover subgroups in large sets of complex biological data. The

benefit of the SOMmethod is that it is unsupervised; there is no assumption of which

subgroups are expected, and the algorithm clusters observations without bias.

The main constraints of the method are post-processing analysis: once clusters

are defined, analysis of subgroup members is required as it is not readily apparent

why the data are clustered as they are. This process is simple if the SOMs separate

samples based on expected results, such as cancer and normal for the prostate data,

although there is a possibility that other groups may become apparent (perhaps non-

cancer disease, transition from normal to cancer, or another unexpected group).

Further to being an appropriate analytical technique, SOMs simplify the visual

representation of complex data and are easy to understand, and so lend themselves

readily to clinical medicine. A trained SOM can be given new patient data, whose

position within the map can be calculated and highlighted. From this image, doctors

can understand the significance of the result quickly and use the SOM to form part

of the reasoning behind clinical decisions and as a visual aid in patient explanation.

The generated SOMs look for differences in peak intensity bands of the Raman

spectra generated from prostate samples. Once these differences are uncovered,

potential biological mechanisms underlying the perceived changes in spectral bands

can be postulated. However, caution must be utilised, as the spectral fingerprint of

each cell reflects both the cellular constituents and environment, and the connections

between these complex systems are non-linear—if a given biomolecule is present

more in a Raman active state, it does not necessarily mean that its concentration is

different.
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Once clusters are found, results can be compared with what is known about the

prostate samples. This analysis allows a qualitative review of how well the known

disease state of the sample matches the output of the SOMs, and any discrepancies

can be explored. It is expected that the SOM finds at least as many clusters as

clinically classified groups if it is a good method for analysing these data—it may

find more groups due to the higher resolution of information gained by Raman

spectroscopy (intracellular biomolecular changes) than optical microscopy (tissue

architecture). The SOM method can be statistically evaluated by comparison of the

clinically classified data with the SOM clusters and subsequent Bayesian statistical

and receiver operating characteristic curve analysis.

Once a putative mechanism of action to explain the observed cluster differences

is proposed, new biological laboratory experiments can be performed to test these

hypotheses, and hopefully to provide new data for further computational analysis.

4.2 Recording Experiments and Results

4.2.1 Logbook

A digital logbook detailing all experiments is kept with the following sections and

information:

• What is expected from the code run

• What precisely is done during the code run

– What code is used

– What parameters are used

– What data are used

• Results of the code run

• Discussion of the code run and results

• Addenda

– Any new information recorded with time and date added

4.2.2 Appropriateness and Limitations

This method of recording experiments is useful, as each stage from conception to

execution to discussion is laid out clearly. Recording experiments in this way allows

future researchers to follow what has happened, and highlights when information

has been added.

33



4.3 Good Software Engineering Practice

4.3.1 Version Control System

All code is stored in a GitHub repository at github.com/thenakedcellist/prostate.

This allows the module to be freely available for others to use and quick recovery of

older versions if refactoring causes loss of code.

4.3.2 Test Environments

The code for the MySom module is accompanied by a full test suite run using

pytest [59]. This practice reduces the chance of a runtime error due to the code

itself, and ensures any errors are dealt with using simple known test cases so that

code can be optimised during refactoring before use with real data.
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Chapter 5

Preliminary Experiments

This chapter discusses the first short experiments performed to check that a module

based on MiniSom [101] works as expected. A fully operable tool chain requires

a program that can access relevant data files within the data directory, load the

correct data in a usable format, normalise the data appropriately, analyse the data

using MiniSom, and produce output SOMs and graphs.

The MySom module is written to integrate the methods of MiniSom with these

required functionalities. It is tested using the Iris flower dataset [31] and a RGB

colour dataset [17], commonly used datasets for classification problems in statistics

and machine learning. MySom is able to correctly cluster the three species of iris

within the Iris Flower dataset, including being able to mostly segregate data from

two species which are not linearly separable [31]. MySom is also able to correctly

cluster the colour data into groups based on the highest RGB byte value, and the

resultant SOM layout gives some insight into the way in which clusters are formed.

5.1 MySom Module

The MySom module unifies all the tasks necessary for building and interrogating

SOMs, and is used for all subsequent analyses. It inherits the features and functions

of MiniSom, and extends its capability to include tools for data normalisation, as

shown in algorithm 5.1, and plotting of output SOMs. It uses a rectangular lattice

configuration to simplify the output for non–computer scientists. The full MySom

pseudocode is found in Appendix A. The variables required for the code to run are:

• Map dimensions: x and y

• Number of variables recorded for each observation: k

• Starting neighbourhood radius: σ(0)

• Starting learning rate: α(0)

• Decay function

• Configuration of map array: rectangular or hexagonal

• Random seed: integer or None
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Algorithm 5.1 MySom Normalisation and Self-Organising Map Plots

input: Raman spectral data
1: function Normalise Data(Am,n)
2: for Am,n do
3: xi,j ← xi,j/‖ai,∗‖F ⊲ divide by Frobenius norm
4: end for
5: return Am,n

6: end function

7: procedure Make SOM u-matrix(input)
8: Normalise Data(input)
9: SOM train(input)

10: Make SOM u-matrix
11: end procedure
output: SOM u-matrix

An example SOM built with synthetic data is shown in Figure 5.1. The output

u-matrix is coloured such that darker areas represent nodes which are closer to their

neighbours, and lighter colours those which are less densely packed, in order to give

a visual representation of data distribution across the map. This plot is useful for

discerning the border between clusters, where regions of less densely packed nodes

reflect fewer mapped data points than more densely packed regions, such as the

low nodal density stripe down the centre of this map. The input data have been

overlaid, each data point lying on the node which is closest to it, with a random

jitter to ensure that data points do not overlap. Therefore, the position of a point

within a node on the map does not reflect actual distance from other points mapped

to the same node.

An example density plot derived from the SOM in Figure 5.1 is shown in Figure

5.2. This plot shows the density of the input data across the map space, with

dark orange regions corresponding to areas of high density and pale orange areas

corresponding to areas of low density. This plot is useful for interpreting where the

centre of a cluster lies, as this information is not as readily apparent in the u-matrix

image where nodes are shown of uniform size in a regular array and their colour is

used to represent distance from one another in the map space. In this case there are

two data foci in the lower left and upper right regions of the map, separated by the

stripe of low nodal density across the map centre seen in Figure 5.1.

5.2 Iris Flower Dataset

The Iris flower dataset was collated by Edgar Anderson [5] following measurement of

100 iris plants on Quebec’s Gaspé peninsula and 50 iris plants native to the Southern

United States. His sample consisted of 50 individual plants from each of the three

distinct species, Iris setosa, Iris versicolor, and Iris virginica [6]. Anderson worked
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Figure 5.1: A SOM built with synthetic data to highlight key features of the SOM
layout. The square nodes of the map array are coloured to reflect their distance
from their neighbouring nodes, such that darker regions of the map represent areas
of densely packed nodes. The lightly coloured nodes (2, 3), (3, 2) and (3, 1) form
a stripe of low nodal density which may represent a border between clusters. Each
orange dot is one of the input data observations placed on the array node which
maps to it most closely in the map space. A random jitter is added so that multiple
observations within one node do not overlap and obscure one another—relative
position within a node does not correspond to distance between those observations
in the map space.
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Figure 5.2: The density plot of the SOM built with synthetic data shown in Figure
5.1. The darker regions of the plot represent areas where data points are densely
packed in the map space, with the lighter regions representing areas of data sparsity.
Two foci of data density are seen centred around (1, 1) and (4, 3), suggesting that
there are two clusters within this dataset. The stripe of low nodal density across
(2, 3), (3, 2) and (3, 1) in Figure 5.1 corresponds to the paler region between the
two data foci shown here, which confirms this is a border between clusters.
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Species Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm)

I. setosa 5.1 3.5 1.4 0.2
I. versicolor 7.0 3.2 4.7 1.4
I. virginica 6.3 3.3 6.0 2.5

Table 5.1: Subset of the Iris Flower dataset adapted from Fisher’s paper [31].

closely with statistician Ronald Fisher, who used the data set to demonstrate his

method of linear discriminant analysis (LDA) [31]. LDA is a method used to classify

groups based on differences between linear combinations of statistical characteristics,

and has been developed for dimensionality reduction of high dimensional data [46].

The Iris Flower dataset has become very popular in the fields of statistics and

machine learning for testing the ability of classification algorithms, as it is a simple

dataset with low dimensionality [24]. Iris setosa is linearly separable from the other

two species, whereas the variances in measurements observed for Iris versicolor and

Iris virginica overlap, so the ability of a classification algorithm to correctly group

these observations can be used as a measure of its utility.

5.2.1 Materials and Methods

The dataset is a 150× 5 array in which each row contains observational data from a

single iris flower (Table 5.1). It is a labelled dataset, with the first column containing

the species classification and the subsequent columns containing measurements from

the flower’s petal and sepal.

The entire Iris Flower dataset is analysed with a rectangular array configuration

and the following parameters:

• Map dimensions: 8× 8

• σ(0): 3.0

• α(0): 1.0

• Random seed: 1

5.2.2 Results and Discussion

In the SOM u-matrix (Figure 5.3) there is a stripe of low nodal density spanning

from the lower centre to centre right of the map, representing an area of sparsely

packed nodes separating the two densely packed blue regions. This stripe most

likely represents a clear divide between clusters as organised on the map. The map

is trained unsupervised, and the input data are subsequently overlaid to show which

nodes match to them most closely. Iris setosa forms the lower right cluster separated

from the other data points by the stripe of nodal low density. The other two species

appear to be somewhat well separated, with Iris versicolor spanning the upper right
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Figure 5.3: SOM u-matrix trained on the entire Iris Flower dataset. There is a
stripe of low nodal density extending from (3, 0) to (7, 4) which cuts the map into
one small region at the lower right and one large region to the left. This stripe likely
represents a border between clusters.

of the map and along the low density stripe, and Iris virginica inhabiting the upper

left of the map.

Figure 5.4 shows the density plot for the SOM in Figure 5.3. There are three

foci of data density, one centred around (7, 1) corresponding to the I. setosa cluster,

one centred around (1, 7) corresponding to the I. virginica cluster, and one centred

around (7, 7) corresponding to the I. versicolor cluster. The focus of data for

I. setosa is much more dense than the foci for the other two clusters, and this is

because the data are spread across only ten nodes in one corner of the map, whereas

data for the other two clusters are spread across a larger number of nodes.

The data are being classified as expected by the SOM. Iris setosa is located over

ten densely packed nodes and completely separated from the other two species by

a large gap of map space (Figure 5.3). The map region containing Iris versicolor

and Iris virginica shows a wider distribution of the input data, possibly signifying

that there was difficulty in fully separating these two groups—this is unsurprising

as Fisher’s original paper states that these two groups are not linearly separable

and their variances overlap [31]. There does appear to be a focus for each species in

the upper left and upper right corners of the map, with overlap around the border

between the two groups, and an observation of I. versicolor within the I. virginica

cluster on node (1, 7).

Ultimately, this example shows that the toolchain works, the MySom module can
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Figure 5.4: Density plot for the SOM shown in Figure 5.3. A focus of high data
density is seen centred around (7, 1), with two less dense foci centred around (1, 7),
and (7, 7). The high density focus at the lower right corresponds to the cluster for
Iris setosa in the SOM, and the two less dense foci represent the centre of clusters
of the other two iris species. These foci are less dense because the same number of
observations are spread over more map nodes than for I. setosa.
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be used to analyse the data and to produce expected results. Ponmalai and Kamath

used SOMs to investigate the Iris Flower dataset (classes were named arbitrarily),

and found similarly that one class was easily separated from the others by a stripe

of low nodal density on the SOM, and that the other two classes were positioned

very closely together without a clear border between them [79]. They concluded

that each species class was grouped into a single cluster, and that there was some

crossover between the clusters of the two linearly inseparable classes, as found here.

5.3 Colour Classification

The Colour dataset is derived from a GitHub repository containing a database of

colours, their names, their hex code, and their RGB byte code [17]. Each three-

dimensional vector of RGB values is assigned a categorical colour label, based on

which RGB component has the highest byte value. If a single component has the

highest value, the colour is labelled red (R), green (G), or blue (B); if two components

have an equally high value, the colour is labelled the additive secondary colour cyan

(C), magenta (M), or yellow (Y); and if all three components are of equal value, the

colour is labelled black (K).

5.3.1 Materials and Methods

The Colour dataset is a 865 × 4 array in which each row contains data for one colour.

The first column contains the categorical colour identifier, and the second, third, and

fourth columns contain the byte value of the red, blue, and green colour components,

respectively (Table 5.2). The number of observations within the dataset belonging

to each class and the class derivation are:

• 481 Red (R) : R > G ∧R > B

• 130 Green (G) : G > R ∧G > B

• 193 Blue (B) : B > R ∧B > G

• 14 Cyan (C) : G = B ∧G > R

• 18 Magenta (M) : R = B ∧R > G

• 15 Yellow (Y ) : R = G ∧R > B

• 14 Black (K) : R = G = B

The entire Colour dataset is analysed with a rectangular array configuration and

the following parameters:

• Map dimensions: 12× 12

• σ(0): 3.0

• α(0): 1.0

• Random seed: 1
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Categorical Colour Identifier Red Byte Value Green Byte Value Blue Byte Value

R 163 38 56
G 164 198 57
B 93 138 168
C 0 255 255
M 139 0 139
Y 132 132 130
K 0 0 0

Table 5.2: Subset of the Colour dataset adapted from a GitHub repository [17]. The
categorical colour identifiers refer to red (R), green (G), blue (B), cyan (C), magenta
(M), yellow (Y), and black (K).

Figure 5.5: SOM u-matrix trained on the entire Colour dataset—overlaid input data
are coloured according to categorical colour label. The primary colours are spread
across densely packed regions of the map: red (R) over a large region at the lower
left, green (G) at the centre right, and blue (B) at the upper centre. The secondary
colours each map to one single node between the clusters for their respective primary
colour constituents: cyan (C) at (10, 11) between green and blue; magenta (M) at
(1, 8) between red and blue; and yellow (Y) at (11, 2) between red and green. The
tertiary colours, labelled black (K), are located at (6, 6), a central node in a region
of very low nodal density, signifying that these data points are very different from
the others.
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5.3.2 Results and Discussion

The SOM in Figure 5.5 shows good segregation of the colour data across the map

space. Several SOMs were produced with different parameters, which all showed

similar segregation of the colour clusters.

The primary colour groups categorised as red, green, and blue are discretely

separated to the lower left, centre right and upper centre, respectively, with only

minor overlap of green and blue on node (10, 11) at the border between these two

groups. It is likely that this overlap exists because the RGB values of the mapped

input data are similar enough for this node to be closest to some green and some

blue observations. The secondary colours each map to a single node at the border

between their constituent primary colours: (10, 11) for cyan, (1, 8) for magenta,

and (11, 2) for yellow. The tertiary colours, labelled black, all map to node (6, 6),

in an area of low nodal density with surrounding nodes far from their neighbours.

The way in which the colours have been so clearly delineated likely reflects the

SOM’s method of clustering data. A SOM can be considered a graph of the similarity

of statistical relationships of high dimensional data plotted in a low dimensional

form [56]. By definition of the labelling process used, each primary colour is very

likely to have three different byte values for red, green, and blue (although the two

lower values could be the same), each secondary colour must have two values the

same, and each tertiary colour must have all three values the same. Therefore,

the variance within the RGB values for the primary colours is higher than for the

secondary, and the variance for the tertiary colours is zero.

This difference in summary statistics for the classes likely explains why they have

clustered as they have, with least variance in the small central region of the map

and most variance toward its larger periphery. One caveat of this interpretation

is the difference in proportion of the three colour types within the dataset: there

are many more primary colours than secondary or tertiary, which will affect the

map’s ability to form clusters. However, there are similar numbers of secondary and

tertiary colours, so it is likely that the difference in variance between these groups

has caused their separation on the map.

5.4 Summary

This chapter covers the introduction of the MySom module designed to analyse

high dimensional input data and to build SOMs. Two datasets are used to perform

baseline tests on MySom showing it to produce expected results and to be suitable

for application to real data.

Use of the Iris Flower dataset shows that the SOM can easily distinguish the

one species of iris which is linearly separable from the other, and further that it can

correctly cluster the two species which are known to be linearly inseparable [31].
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This ability to discern between the two similar species of iris shows the SOM to be

a useful tool for analysing data in complex non-linear systems.

Use of the Colour dataset shows that the SOM is able to correctly cluster RGB

colour data as expected, and also gives insight into how the SOM method works by

comparing the statistical summaries of input data vectors. In this manner it is able

to retain as much information as possible from the three-dimensional dataset while

displaying it in two-dimensional space.

The next chapter evaluates the use of MySom to analyse high dimensionality

Raman spectral data from biological tissues, and compares the output to results

published from the same dataset.
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Chapter 6

Pig Eye Experiment

This chapter covers the transition from using small low dimensionality datasets to

a large high dimensionality spectral dataset to test MySom. The Banbury group

conducted experiments on eye tissue from pigs, in order to assess the feasibility of

using Raman spectroscopy and SOMs as a classification tool [11].

The Pig Eye dataset is restructured for use with MySom and used to test the

module’s ability to cluster Raman spectral data. A different subset of the dataset

to that published is used to test MySom, and the reasons for this difference are

discussed. Output SOM results are comparable between the MySom and published

methods.

6.1 The Pig Eye Dataset

6.1.1 Original Dataset

The original Pig Eye dataset contains Raman spectral data generated from tissue

sections of pig eyes. These samples were collected from eleven pigs, from each

of five sites within the eye (cornea, lens, optic nerve, retina, vitreous) [11]. 88

Raman spectra were generated per site from each animal, giving 11× 5× 88 = 4840

observations.

The data are organised as a single file per observation within five directories,

one for each tissue type. Data in the files are arranged in two columns, the first

for wavenumber and the second for measured intensity. This format is different

from the Iris Flower and Colour datasets used previously, and the data to be used

from the prostate cell lines, which are arranged with each row representing a single

observation.

In order to convert the raw data into the appropriate format, a script is written

which parses the titles of the individual files within the directory and subdirectories,

and creates a data array within a .csv file with the correct format for the MySOM

module. An assert statement is used in order to stop the code run should the values
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Identifier 1669.551758 (cm−1) 1668.565430 (cm−1) 1667.580078 (cm−1) 1666.593750 (cm−1) · · ·
animal 1 cornea 7 5.921497 186.249908 57.344173 8.223427 · · ·
animal 2 lens 5 14.322484 51.075981 30.978479 26.05842 · · ·
animal 3 optic nerve 53 36.640327 5.393722 40.284195 11.233159 · · ·
animal 4 retina 0 95.318336 0.791617 30.455341 1.325872 · · ·
animal 5 vitreous 2 68.758102 65.646217 47.07341 38.555355 · · ·

Table 6.1: Subset of Pig Eye dataset for Animals 1 to 6

for wavenumber not match between samples.

At runtime this checkpoint is triggered, as there are two sets of wavenumbers

used: one for animals 1 to 6, and a different set for animals 7 to 11. It may be the

case that the recording machinery was calibrated between experimental runs, and

the author has been contacted and agrees with this suspicion.

6.1.2 Restructure of the Dataset for MySom

After processing, the data are split into two directories based on which value of

wavenumber is recorded: data for animals 1 to 6 are in the first directory, and data

for animals 7 to 11 are in the second.

Within each directory, data are stored as two files. The first file contains a

one-dimensional array, the first column of which contains the identification string

‘wavenumber’, and subsequent columns which contain values for wavenumber. The

second file contains a two-dimensional array, the first column of which contains an

identification string containing animal number, tissue type and sample number for

that observation, and subsequent columns which contain recorded intensity for the

corresponding wavenumber.

The recorded data from animals 1–6 is a 2640 × 1015 array (Table 6.1), and the

recorded data from animals 7–11 is a 2200 × 1015 array. The Banbury paper [11]

does not explicitly state the instrumental accuracy of their experiment, and data

are presented exactly as in the raw files obtained from the group.

6.2 Published Pig Eye Analysis

The Banbury group created a SOM using a subset of the Pig Eye dataset. They

randomly removed 25% of observations for testing and built the SOM with the

other 75% [11]. These data were removed at the tissue level, and not at the level of

individual animals, so it is unknown exactly which observations were used to train

the map and whether each animal was equally represented.

According to their published source code [10], the Banbury group built their

SOM with a hexagonal array configuration and the following parameters:

• Map dimensions: 16× 16

• σ: 1.0–0.3
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Figure 6.1: The original SOM published by the Banbury group [11]. Each node is
coloured to match its modal activating tissue type, and each small dot within a node
represents a single observation mapping to that node. There is good delineation of
tissue types and an even distribution of modal tissue types.

• α: 0.4–0.1

Ranges are given for neighbourhood radius (σ) and learning rate (α) as the group use

a linear decay function for these parameters, tending from maximum to minimum

over 10000 iterations.

The map shown in Figure 6.1 shows good delineation of tissue types, although

retina appears to segregate into two clusters. In their paper, the group argue that

the retina cluster toward the mid bottom of the plot reflects noise in the signal, as

several of its nodes and the surrounding nodes are not activated by a clear modal

tissue type [11]. The authors do not speculate on this, but there is the possibility

that tissue types were not completely separated during sampling, as the retinal

layer of the eye is only five cells thick, is bathed on one side by vitreous humour,

and surrounds the central optic nerve. A diagram of a human eye cross-section is

given for reference in Figure 6.2.

6.3 Re-Analysis of the Data with MySom

Data for the first six animals of the Pig Eye dataset were re-analysed using MySom,

using a rectangular array configuration and the following parameters:

• Map dimensions: 16× 16

• σ(0): 1.0
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Figure 6.2: Diagram of a human eye cross-section showing the locations of the
cornea, lens, optic nerve, retina, and vitreous.
Reproduced from https://www.rnib.org.uk/eye-health-eye-conditions/how-eye-
works

• α(0): 0.1

• Random seed: 1

A rectangular lattice is used to test MySOM’s ability to produce comparable results

with the published data, rather than to replicate the data exactly. This experiment

is a test of MySOM’s ability to analyse biologically-derived high dimensionality

data and to produce meaningful results, as this is ultimately the aim of the main

experiments using prostate cell data. The resultant SOMs will ultimately need to

be analysed by non-computer scientists, by doctors and patients who may be lay

people, and a rectangular lattice is used to aid their ease of interpretation.

6.3.1 Results and Discussion

The SOM u-matrix in Figure 6.3 shows a stripe of low nodal density separating

the densely packed nodes of the lower right corner and the rest of the map, likely

signifying a cluster in the lower right corner. The rest of the map shows densely

packed nodes at the edges and corners, with another stripe of low nodal density

traversing from the upper centre to the centre left. These less densely packed areas

likely represent edges between clusters. This SOM shows gross separation of the

tissue type classes, with discrete clusters defined for the cornea and vitreous. Data

for the optic nerve appear to be segregated into a large group at the upper right of

the map and a smaller group at the lower centre, with a few single points scattered

across the map. Lens has split into two distinct groups, a large one at the lower
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Figure 6.3: SOM u-matrix trained on the first six animals of the Pig Eye dataset
with overlaid input data. There is a white stripe across the lower right corner,
indicating a large distance between nodes at the lower right and other nodes in the
map: this represents a border between the cluster containing lens data in the lower
right corner and the rest of the map space. There is another stripe of low nodal
density extending down and left from (10, 14), which corresponds to the border
between optic nerve, retina, and vitreous.
The bulk of the map is occupied by delineated clusters of each class, with cornea at
the left, vitreous at the upper centre, optic nerve at the upper right, retina at the
centre, and lens at the lower right. Optic nerve has a second smaller cluster at the
lower centre, and there is a small cluster of lens at the upper left. Data for retina
are spread over a large number of map nodes of medium density, whereas all other
clusters map to an area of more densely packed nodes.
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Figure 6.4: Density plot of the data distribution in Figure 6.3 showing four dense
groups centred around (7, 13), (14, 14), (1, 2), and (11, 1) corresponding to major
cluster centres for vitreous, optic nerve, cornea, and lens, respectively. There is no
clear central focus corresponding to retina, which reflects the distribution of these
data across many not densely packed nodes in the centre of the map in Figure 6.3.

right and a small one at the upper left. Data for retina appear to be spread across

many nodes of medium density within the centre of the map in a single large cluster.

The density plot in Figure 6.4 shows four dense data foci which correspond to

cornea, lens, optic nerve, and vitreous, the four clearly segregated tissue types in

the published study [11] and in the MySom re-analysis in Figure 6.3. There is no

central dense focus corresponding to retina, which is unsurprising given that data

for this tissue type were spread widely over medium density areas of the map in

Figure 6.3. Furthermore, data for this tissue type are divided into two clusters in

the Banbury group’s published map (Figure 6.1), so it is likely that these data are

more heterogeneous than those of the other tissue types.

6.3.2 Comparison with Published Data

The plots produced by MySom are comparable with the published images from

the Banbury group [11] and show that the module works as expected. There are

notable methodological differences between the MySOM method and the published

data, such as use of a rectangular lattice with an asymptotic decay function here, and

use of a hexagonal lattice with a linear decay function in the published method [10].

These difference have been introduced for two reasons: firstly, to test MySOM’s
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ability to analyse complex, biologically-derived spectral data and to produce results

comparable with published data without copying them verbatim; and secondly, to

show that the methodology that is to be used in the main experiments with Raman

spectra gathered from prostate cells will produce meaningful, interpretable results.

MySom can produce SOMs trained on the high dimensional Raman spectroscopic

data to successfully cluster observations by tissue type, the low nodal density regions

of the map can be used to interpret where borders lie between clusters, and density

plots reflecting data distribution across the maps can show central dense foci of data

within clusters.

In the Banbury group SOM in Figure 6.1, the data segregate into six clusters,

one for each tissue type and a second small cluster for retina, with a few nodes at

cluster borders mapping to more than one tissue type. In the MySom output SOM

in Figure 6.3, the data are segregated into clusters, one for each tissue type and a

second smaller cluster for optic nerve and lens. Similarly to the Banbury group map

(Figure 6.1), retina does not seem to cluster into a single region in the MySom map

(Figure 6.3) but is rather spread across a large central region. The MySom density

plot (Figure 6.4) does not show a central dense focus corresponding to retina, as

these data are spread over a large number of nodes such that each node is activated

by fewer observations. This result highlights the importance of interpreting SOM

u-matrices with overlaid input data (Figure 6.3) and density distribution (Figure

6.4), as this SOM u-matrix alone does not show clear borders between all five tissue

groups and the density plot shows only four data foci.

The MySom map shown in Figure 6.3 is not exactly the same as the Banbury

group map in Figure 6.1, and there are several reasons as to why this may be. The

published map was built using a randomly selected 75% of the original dataset,

whereas the MySom map was built using all data from only six animals, and so it

is feasible that data segregate differently as they are different subsets. Secondly,

the published map uses a hexagonal array configuration, such that node weight

changes affect six neighbouring nodes, as opposed to the rectangular configuration

employed by MySom in which nodes influence four neighbours. Thirdly, the learning

rate and neighbourhood function radius employed by the Banbury group decayed

linearly, whereas MySOM uses an asymptotic decay function. The effect of using

an asymptotic decay function is that the spread of the neighbourhood function

decreases quickly during the early stages of training and more slowly as iteration

number increases. This method of training may partially account for the two clusters

seen for optic nerve and lens in Figure 6.3, as by random chance these subclusters

may have been separated early in the training process and each refined separately

with subsequent iterations as the neighbourhood function was too small for partner

subclusters to interact.
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6.4 Summary

This chapter shows that the MySom module can analyse high dimensionality Raman

spectral data gained from biological sources, as it is able to cluster tissue sample

data by tissue type. The aim of this chapter was not to faithfully replicate the SOM

produced by the Banbury group, but to produce comparable results with MySom

to confirm that it can be used with real biological data and that output results

are meaningful. The next experiments focus on translating the MySom method to

human prostate cell line data.
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Chapter 7

Prostate Cell Line Experiment

Feasibility Study

The work by the Banbury group concerning tissue samples from pig eyes [11] is a

demonstration that SOMs can be used to cluster Raman spectral data. The spectra

gathered from their tissue samples are readily separable by eye (Figure 2.11), and

it is reasonable to expect that spectral signals would differ between different tissue

types as the physical and biochemical differences between them is large.

A more difficult distinction is to be made between samples of the same tissue in a

healthy and a disease state. In this instance, the tissue types analysed are the same,

and so variation must come from disease status, or inherent heterogeneity within

the tissue itself, which could be quantitively assessed on the biomolecular level.

This chapter covers the first experiments performed with MySom and Raman

spectral data gathered from prostate cell lines (derived from normal prostate and

prostate cancer) at the University of York. The thirty spectra generated from these

samples are not easily separable by eye (Figure 7.1). The primary point of this

chapter is to show that the SOM method works and clusters Raman data even with

a small dataset, and as the method works it is appropriate to continue with a larger

unseen dataset. The second point is to show that the output of the SOM is very

sensitive to its training parameters and how they change. A parameter sweep is

needed to optimise the SOM, but choice of parameters relies indirectly on dataset

size, and so optimisation is performed with the full blinded dataset in Chapter 8.

7.1 Prostate Cell Lines

The analysed data are derived from two prostate cell lines, PNT2-C2 and LNCaP.

PNT2 is a cell line originating from the healthy prostate epithelium of a thirty-three-

year-old man [13], which has been immortalised by viral transfection [21]. During

development, the PNT2 cell line developed several subclone lineages; PNT2-C2 is

the particular strain used for these experiments [75].
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Figure 7.1: Raman spectra generated from thirty cells from two prostate cell lines.
Each observation is the Raman spectrum for a single cell nucleus, fifteen from the
normal PNT2-C2 prostate cell line and fifteen from the cancer LNCaP prostate
cell line. Spectra have been normalised and interpolated, and intensity of observed
Raman shift is in arbitrary units. It is difficult to discern unique spectral features
between the two groups.

LNCaP is a cell line originating from the left supraclavicular lymph node of

a fifty-year-old man, which was the site of a metastatic deposit from prostate

carcinoma [44]. It has been used extensively to study prostate cancer in vitro

[76, 77, 83, 88, 91, 99, 105].

7.2 Raman Spectra from Prostate Cell Lines

The data analysed in this chapter are gathered from Raman spectral analysis of the

two prostate cell lines PNT2-C2 and LNCaP. Spectroscopy was performed on the

nuclei of fifteen cells from each of these cell lines in Dr Hancock’s lab, Department of

Physics, University of York. Thirty spectra were generated by recording the intensity

of Raman shift observed, and were subsequently normalised and interpolated. These

spectra are shown in Figure 7.1, with orange spectra representing PNT2-C2 data

and magenta spectra representing LNCaP data.

Within any given system, unique spectral features may be apparent in relative

spectral differences, such as the ratio of peak intensities, which can then be compared

between systems. It is difficult to discern spectral features which differentiate the

PNT2-C2 and LNCaP groups in Figure 7.1 by eye.
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2760.53 (cm−1) 2760.91 (cm−1) 2761.29 (cm−1) 2761.66 (cm−1) · · ·
PNT2-C2 high (3) 3.73E-05 4.35E-05 3.76E-05 2.12E-05 · · ·
PNT2-C2 high (10) 5.38E-05 5.25E-05 5.07E-05 4.44E-05 · · ·
LNCaP livehigh 6 3.13E-05 3.38E-05 3.65E-05 3.86E-05 · · ·
LNCaP livehigh 14 6.4E-05 5E-05 4.17E-05 4.73E-05 · · ·

Table 7.1: Subset of the Known Prostate Cell Line dataset with wavenumber for
reference.

7.3 Structure of the Dataset

For SOM analysis, spectral data from the fifteen PNT2-C2 and fifteen LNCaP cell

line measurements have been amalgamated into the Known Prostate Cell Line datset

of thirty observations.

This labelled dataset is stored as two files, the first holding a one-dimensional

array of length 1056, each column containing a value for wavenumber (cm−1). The

second file contains a two-dimensional array, the first column of which contains an

identification string containing cell line and sample number for that observation, and

subsequent columns which contain recorded intensity for the corresponding change

in wavenumber in arbitrary units.

The data for the samples are a 30 × 1057 array, a subset of which is shown

in Table 7.1, along with wavenumber for reference. These data are gathered from

Dr Hancock’s group, Department of Physics, University of York, and they have an

instrumental accuracy of ± 3 cm−1.

7.4 SOM Parameter Selection

7.4.1 Changing SOM Parameters

The SOM is built using four parameters: the x and y dimensions of the map,

the starting neighbourhood radius, σ(0), the starting learning rate, α(0), and the

number of iteration steps in the learning process. Changing each value affects how

the map develops during training, and optimum values can be tested by varying

each parameter in isolation (with all others equal), or for each possible combination

of parameter values.

The behaviours of the cell systems captured by the spectral data are inherently

complex and display non-linearity, meaning that their response to an input depends

on their current state. Optimising each parameter in isolation and grouping the

best value for each would likely be ineffective, as each parameter value would be

placed in a system with different values for the other parameters than the ones it

trained with, and hence a different system state. Therefore, each combination of

parameters should be tested to find the optimum parameter set. There are non-

exhaustive ways of achieving this, although such methods are not required here as
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only a small number of combinations are used.

The dataset used here (30 observations) is much smaller than the blinded dataset

(285 observations) that is used in Chapter 8, and part of the parameter optimisation

relies on size of the dataset (see Section 8.4). Therefore, a complete optimisation

analysis is not performed here, but the effects of altering SOM training parameters

are highlighted.

Kohonen states that map size cannot be guessed beforehand, that a starting

point should be chosen and the dimensions varied by trial-and-error after seeing the

results of this plot [57]. Vesanto suggests starting with an initial map size of 5
√
n

where n is the number of observations in the dataset [100]. There are 30 observations

in this dataset, and 5
√
30 = 27.39, so map dimensions of 7× 4 = 28 and 6× 5 = 30

are used.

σ should be high enough so that clustering is fast in the first few iterations as

the BMU affects at least one node in each direction—if σ is too small, nodes cannot

impact surrounding nodes and the SOM takes on a mosaic pattern [56, p. 112].

σ(0) = 1 is chosen as a value of sigma so that at least one node in each direction

surrounding the BMU is affected by the neighbourhood region in the first instance,

and σ(0) = 0.5 is tested to see the effect of a small σ on the output SOM.

α should be set between 0 and 1 [56, p. 111], so the extreme values for α(0) of

0.1 and 1 are tested.

The number of training iterations should be at least 500 × the size of the map

array in order to achieve statistical convergence [56]. For the largest map array

under test this value is 500×6×5 = 15000. All SOMs are built with 15000 iteration

steps.

MySom takes an argument for random seed, so that the random values used for

initiating training of the SOM can be set and therefore reproduced. Each of the

parameter groups is analysed ten times with random seeds 1–10 to ensure that the

output of training is consistent and therefore due to the parameters used, and not

due to the random allocation of starting weights of the SOM nodes.

The parameters tested are grouped into families (1–8) of different parameter

combinations, each with ten members (representing random seeds 1–10). Four errors

are calculated for each SOM, based on quantisation and topographic errors (see

Section 2.3.4). Minimum total error is desirable, but SOM learning dynamics cannot

be expressed by a single energy function [28], meaning that minimisation of one error

may cause inadvertent increase in the other. For this reason, the error difference is

calculated to see if quantisation and topographic error are proportionate.

• Quantisation error: QE

• Topographic error: TE

• Total error: (QE + TE)

• Error difference: |QE − TE|
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SOM Family Map Dimensions σ α QE TE (QE + TE) |QE − TE|
1 7× 4 0.5 0.1 0.00756 0.16667 0.17440 0.15894
2 7× 4 0.5 1.0 0.00354 0.13333 0.13707 0.12990
3 7× 4 1.0 0.1 0.01572 0.00000 0.01618 0.01618
4 7× 4 1.0 1.0 0.01577 0.03333 0.05014 0.01841
5 6× 5 0.5 0.1 0.00749 0.16667 0.17550 0.15757
6 6× 5 0.5 1.0 0.00288 0.16667 0.16955 0.16379
7 6× 5 1.0 0.1 0.01525 0.03333 0.04877 0.01790
8 6× 5 1.0 1.0 0.01501 0.03333 0.04803 0.01909

Table 7.2: Parameters used to investigate SOMs built with the Known Prostate Cell
Line dataset. The values for family 3 are shown in bold as these have the lowest
total error. QE = quantisation error. TE = topographic error. All error values are
median values of the ten family members.

The median error of each family is used to compare parameter groups. These data

are summarised in Table 7.2.

7.5 Results and Discussion

Of the eight SOM families, family 6 has the lowest QE and family 3 has the lowest

TE. It is not a surprise that the smallest errors do not belong to the same maps,

as each is measuring a different aspect of the SOM, and no single metric can fully

describe the characteristics of a SOM [28].

Family 3 is selected as the best representation of the data due to its low QE

(0.01572) and TE (0.00000), and a low total error (0.01627). The low error difference

shows that the errors are close together, so quantisation and topographic errors

contribute to the total error similarly, and these SOMs are a good fit to both the

distribution and topology of the dataset. The SOM in Figure 7.2 was built with a

rectagular array configuration and the parameters from family 3:

• Map dimensions: 7× 4

• σ(0): 1.0

• α(0): 0.1

• Random seed: 1

Each family member showed a similar pattern and distribution of the input data,

so the SOM produced with random seed 1 is selected arbitrarily for display.

This SOM in Figure 7.2 was trained unsupervised, and the input data were

labeled once the SOM analysis was complete. The SOM shows good separation of

the data into two clusters, with a stripe of low density nodes across the centre of the

map from upper left to lower right dividing the PNT2-C2 and LNCaP observations.

The PNT2-C2 cluster is contiguous, and the LNCaP cluster is separated from the

PNT2-C2 cluster, suggesting that the map is not overfitted, which could result in

breaking apart of the clusters, as seen with small σ values.
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Figure 7.2: Som u-matrix trained unsupervised on the Known Prostate Cell Line
dataset. There is a stripe of low density nodes across the centre of the map from
(1, 3) to (4, 1), which separates the normal PNT2-C2 (lower) and malignant LNCaP
(upper) clusters. The PNT2-C2 cluster is contiguous and the LNCaP cluster is
segregated fully from the PNT2-C2 cluster.

Figure 7.3: Density plot of the SOM in Figure 7.2 showing two dense regions around
(1, 1) and (4, 3) representing PNT2-C2 and LNCaP, respectively.
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The density plot in Figure 7.3 shows two dense foci of data at the lower left

and upper centre of the plot. The lower left focus corresponds to nine PNT2-C2

observations and the upper centre focus corresponds to eight LNCaP observations

situated in these positions in Figure 7.2.

Changing the parameters used to build SOMs alters how the training process

occurs and ultimately the architecture of the resultant maps. Some of the errors

seen when changing the parameters for this dataset are quite large, such as the

median TE for family 5 of 0.15000 (Table 7.2). It is likely that such large errors

are present due to the small number of observations in the dataset. TE measures

the proportion of observations where the best matching node and the second best

matching node are not adjacent. With a sample size of only thirty, each individual

data point where this posit does not hold contributes a large proportionate error;

with a larger dataset, each individual error would contribute less to the total error.

The sample size thirty is approximate to 5
√
n in this case, meaning there is an

average of 1 observation per node on the map—it is conceivable that the SOM may

not cluster data if the neighbourhood radius does not reach far enough to adjacent

neighbours, leading to distribution of data across the map rather than clustering

around best matching nodes. Kohonen comments that the SOM is primarily a

visualisation technique and is not the best tool for analysing small datasets [57].

7.6 Summary

MySom is able to cluster data from this dataset as expected into normal (PNT2-C2)

and cancer (LNCaP) groups, given optimum parameters. This result is promising,

as the input spectra are not clearly separable by eye, meaning that the SOM is

finding patterns which segregate data by disease status rather than another source

of sample heterogeneity. The next stage of experimentation involves an optimum

parameter sweep and analysis of a larger, blinded prostate cell line dataset to test

the SOM’s ability to cluster data and discussion of how best to analyse the output.
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Chapter 8

Blinded Prostate Cell Line

Experiment

This chapter covers the experimental use of the MySom module to cluster Raman

spectra gathered from prostate cell lines (derived from normal prostate and prostate

cancer) in Dr Hancock’s lab, Department of Physics, University of York. These data

are blinded, and test the ability of MySom to cluster data and the methods by which

this clustering can be interpreted.

Parameter choices impact the architecture of the SOM significantly, and values

are selected for a parameter sweep. An index case of parameters is run with MySOM

to check performance, and the resultant SOM (Figure 8.1) shows one observation

in the dataset to be segregated far from the others on the map, indicating a very

different pattern to the rest of the data in the dataset. Analysis of this spectrum

shows it to be an outlying signal (Figure 8.2) with a grossly different shape to the

rest of the spectra in the dataset and it is removed from subsequent analyses.

The Cleaned Prostate Cell Line dataset is used to perform a parameter sweep to

determine the optimum parameter sets which give a good mapping to the input data.

The resultant SOMs are assessed based on quantisation and topographic errors, and

visual interpretation of cluster borders and data density foci. The selected optimum

SOM parameters show delineation of the data into three clusters (Figures 8.5 and

8.6), which is unexpected given the two classes of input data.

Data are then unblinded and the three clusters shown to be one containing

data from the normal (PNT2-C2) class and two containing data from the cancer

(LNCaP) class. Investigation of the Raman spectra for the sample as a whole and

for each cluster shows some potentially distinguishing features of the input spectra,

which correspond to a difference in the amounts of saturated and unsaturated lipids

between the two cancer clusters.
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2760.53 (cm−1) 2760.91 (cm−1) 2761.29 (cm−1) 2761.66 (cm−1) · · ·
8.26E-05 6.84E-05 5.21E-05 4.16E-05 · · ·
4.16E-05 4.66E-05 5.47E-05 6.34E-05 · · ·
8.63E-05 8.99E-05 9.21E-05 9.3E-05 · · ·
6.22E-05 6.72E-05 7.72E-05 8.72E-05 · · ·

Table 8.1: Subset of the Blinded Prostate Cell Line dataset with wavenumber for
reference.

8.1 Structure of the Dataset

The dataset for SOM analysis contains spectral data from an unknown (blinded)

number of PNT2-C2 (normal prostate) and LNCaP (prostate cancer) cell lines, total

285 observations. The unlabelled dataset is stored as two files, the first containing

a one-dimensional array of length 1056, each column containing a value for the

wavenumber (cm−1). The second file contains a two-dimensional array containing

measured arbitrary intensity values that correspond to each wavenumber.

The data for the samples are a 285 × 1056 array, a subset of which is shown in

Table 8.1, along with the wavenumbers for reference. These data are gathered from

Dr Hancock’s group, Department of Physics, University of York, and they have an

instrumental accuracy of ± 3 cm−1.

8.2 Parameter Selection Rationale

8.2.1 Parameter Selection

The parameters which affect training and output of the SOM are the configuration

of the map array, the neighbourhood function, the learning rate, and the number

of iterations of training, as discussed in Section 7.4.1. Training is stochastic, and a

random seed can be used to set the starting point of this process. Further discussion

of these parameters and their selection can be found in Section 2.3.3.

Map Array Configuration

The neural network array used for SOM training must be of appropriate topology,

lattice configuration, and size, and should have optimum dimensions. SOM arrays

are most often displayed as a two-dimensional regular lattice of nodes with either

rectangular or hexagonal configuration, although irregular lattices or arrays with

higher dimensions can be used [57]. A two-dimensional lattice with rectangular

topology is used with MySom as it is computationally simpler and easier for non-

experts to interpret.

The appropriate size of a SOM array cannot be calculated a priori, but can be

investigated by trial and error to see how data cluster [56]. Vesanto investigated
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Map Dimensions Nodes in Map Dimension Ratio Comments

19 × 5 95 3.8 Optimum number of map nodes
and map dimension ratio

14 × 6 84 2.33 Optimum number of map nodes
17 × 5 85 3.4 Optimum number of map nodes
15 × 4 60 3.75 Optimum map dimension ratio
23 × 6 138 3.83 Optimum map dimension ratio

Table 8.2: Table showing the selected map dimensions for a parameter sweep to
optimise SOM parameters.

the computational complexity of clustering with SOMs, and combining partitive

and agglomerative clustering [100]. In his discussion he uses the example of a SOM

lattice with 5
√
n nodes (where n is the number of observations in the dataset), which

reduces overall computational complexity. The figure of 5
√
n nodes has become

widely used as a starting point for deciding on optimum SOM size [79, 95].

Kohonen comments that the first benefit of the SOM is in visualisation of the

input dataset, whereby finer resolutions can be used to discern smaller subgroups of

data, or coarser resolution where fewer groups are expected [57], so optimum size is

determined by visual interpretation of the output SOM. The second use of the SOM

is as a histogram of input data, whereby the nodes are coloured according to how

many input data points map to them, requiring approximately fifty data points on

average per node for statistical accuracy [57]. MySom uses overlaid scatter data of

the input datset to show how many data points map to each node, so Kohonen’s

first visualisation interpretation of the SOM is used.

For a rectangular regular lattice, Kohonen suggests that the x and y dimensions

should be in the ratio of the two highest eigenvalues of the input data autocorrelation

matrix [57]. This configuration makes convergence in learning faster.

Reviewing the above points, the map dimensions summarised in Table 8.2 are

used for a parameter sweep. The dataset contains 285 observations, for which 5
√
n

is approximately 84.4. The two highest eigenvalues of the autocorrelation matrix of

the input dataset are 512.692 and 133.623 giving on optimum ratio of 3.837. A map

dimension of 19 × 5 is a good approximation of this number of nodes and dimension

ratio; 14 × 6 and 17 × 5 give a good approximation of the size but not the dimension

ratio; and 15 × 4 and 23 × 6 give a good approximation of the dimension ratio but

not the size.

Neighbourhood Function

The neighbourhood function defines the region of nodes surrounding the BMU whose

weights are affected in the updating step of the algorithm, and has a shape and

starting radius, σ(0). The function decreases monotonically with each iteration

step.
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Several neighbourhood function forms can be used, with the key features that

the spread of the function is symmetrical about the BMU, and σ(t) → 0 as t → ∞.

As long as σ(0) is of an appropriate size, the choice of neighbourhood function is

inconsequential [56, 79]. A Gaussian neighbourhood function is used with MySom.

The initial size of the neighbourhood function needs to be large enough that it

reaches nodes surrounding the BMU, otherwise the map becomes discontinuously

ordered in local pockets without map-wide organisation [55]. Kohonen suggests that

σ(0) can appropriately be more than half the smallest map dimension [55, 56].

Taking the above points into consideration, tested values for σ(0) are 0.5, 1.0,

2.0, 3.0, and 4.0. σ = 1.0 is chosen as its neighbourhood should impact at least

one surrounding node in each direction; σ = 0.5 is chosen to test if this value less

than one gives a globally disordered map with locally organised clusters as Kohonen

suggests [55]. The value σ = 4.0 is chosen as this is larger than half the map radius

for all the map dimensions given in Table 8.2, and σ = 2.0 and σ = 3.0. are chosen

as reasonable values between 1.0 and 4.0.

Learning Rate

The learning rate, α(t), defines how much the weights of nodes in the neighbourhood

are affected with iteration number, t. The learning rate should be between 0 and 1,

and initially be close to 1 [55]. It should decrease monotonically throughout each

iteration, although whether the decay is exponential, linear, or inversely proportional

to t is inconsequential [55, 56, 79]. MySom uses an asymptotic decay shown in

Equation 8.1.

α(t) =
α(t− 1)

1 + t
0.5·tmax

(8.1)

The values for initial learning rate, α(0), selected for the parameter sweep are

0.5, 0.75, 0.9, 0.95, and 0.99. These values are selected following Kohonen’s advice

of using values close to 1, particularly with random initiation of SOM weights [56,

p. 112] as used in MySOM, and to get an idea of how decreasing the value of α(0)

affects map organisation.

Iteration Number

The SOM learning method is stochastic in nature, and so requires many iteration

steps to reach good statistical accuracy [56]. There is no way to guarantee that

“enough” iteration steps have been used, but Kohonen suggests a rule of thumb of at

least 500 times the number of nodes in the network [56, p. 112]. The dimensionality

of the input data does not impact the number of iteration steps required [56].

The largest map network outlined in Table 8.2 contains 138 nodes, requiring

a maximum number of iteration steps, tmax, of at least 138 × 500 = 6.9×104.
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All subsequent training with MySOM uses 10×105 iteration steps, as this number

ensures the minimum value has been surpassed, and corresponds to values Kohonen

used in his original SOM simulation experiments [55]. Higher values would increase

the time taken to run experiments and would not be expected to make results more

accurate.

Random Seed

Initial SOM weights can be random, or selected from a hyperplane spanned by the

principal components of the input data associated with the two highest eigenvalues

[56]. The former method gives evidence that the SOM can be used to cluster data

from any arbitrary starting point, and the latter method reduces the number of

iterations needed to reach convergence.

A random starting weight is used with MySom, and the random seed used to

initialise these weights can be chosen. Each parameter set is run ten times with

random seeds 1–10, for three key reasons. Firstly, this allows comparison between

SOMs built with the same parameters to ensure their architecture results from the

parameters used in training and not from the random starting point. Secondly,

this allows comparison of SOMs built from the same starting points and trained

with different parameters, ensuring that differences in their architecture result from

different training parameters and not from the random starting point. Thirdly, this

allows reproducibility of results.

8.2.2 Index Case SOM

As a first test of the SOM analysis to investigate if these parameters produce an

interpretable map, the SOM in Figure 8.1 is built using the following parameters:

• Map dimensions: 19 × 5

• σ(0): 2.0

• α(0): 0.9

• Random seed: 1

These parameters are selected because the map dimensions optimise computational

complexity and eigenvalue ratio, and σ and α are in the middle of the ranges to be

used for the parameter sweep.

The SOM in Figure 8.1 obtained from the Blinded Prostate Cell Line dataset

shows a good spread of data across most of the map, and stripes of low nodal density

around (2, 11) and (2, 16). There is a single observation which maps to (2, 4), and

this node is surrounded by nodes of very low density, signifying that it is situated

far from the other nodes in the map. For a single observation to be separated by a

large region of map space where the rest of the map shows an even distribution of

data, it must have a pattern very different from the other input data vectors. Such
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Figure 8.1: SOM u-matrix trained on the entire Blinded Prostate Cell Line dataset.
There is a good distribution of data points across most of the map with stripes of
low density around (2, 11) and (2, 16). There is a single datapoint mapping to (2, 4)
surrounded by a region of low nodal density. This observation is likely an outlier
and is investigated further.
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a large difference could indicate this observation is a true outlier, or an abnormal

signal, and it is investigated further.

8.3 Investigation of the Outlier

Three steps are taken to investigate the outlying observation at (2, 4) in Figure

8.1. Firstly, individual spectra for the entire dataset are plotted together for visual

inspection. Secondly, the effect of removing the outlying observation on the average

spectrum is investigated. Thirdly, the effect of removing the outlying spectrum on

SOM training and output is investigated.

8.3.1 Individual Sample Spectra

Figure 8.2 shows plots for all the spectra within the dataset. The broad shape of the

spectra is a rise from baseline to a peak at 2850 cm−1, a small dip, then a shallow

increase followed by a steep increase to a second peak at 2940 cm−1, before falling

to baseline around 3030 cm−1 with a small peak around 3060 cm−1. Some of the

spectra also show a slight shoulder to the main peak at 3010 cm−1.

The outlier spectrum in Figure 8.2 has a different shape, with its first peak at

2890 cm−1 and a second bifid peak with zeniths at 2950 cm−1 and 2970 cm−1. This

shape is very different from the others, and may represent sampling error or data

corruption.

The mean ± 3 × the standard deviation of the sample is also plotted on Figure

8.2, and these bounds encase the majority of spectra entirely or almost entirely. The

outlying spectrum does not fit within these bounds as its main peaks fall outside of

this region.

8.3.2 Average Sample Spectra

Given the shape of the outlying spectrum, how much it is different from the pattern

of the other spectra, and that a large portion of it lies outside of the region bound

by three standard deviations from the mean, it is very unlikely to be a true outlier

and looks like a sampling error or data corruption.

Figure 8.3 shows the average spectrum for the entire dataset with and without

the outlying spectrum. The shape of these spectra is the same, so removal of the

outlying observation has little effect on the average spectrum.

The standard error of the mean is a measurement of the precision with which

the sample mean reflects the population mean—the smaller this error, the smaller

the uncertainty in the calculated value of the mean [4]. The standard error of the

mean for the Blinded Prostate Cell Line dataset ranges from 2.4270 ×10−6 to 7.4999

×10−5, indicating that the samples have converged and there is confidence that the
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Figure 8.2: Plot of all spectra from the blinded prostate cell line dataset. The cyan
spectrum drawn with a solid line is that of the outlying observation mapping to
node (2, 4) in Figure 8.1. The orange spectra drawn with broken lines are the other
spectra in the dataset.
The majority of the spectra follow the same shape, with a sharp increase from
baseline to a peak at 2850 cm−1, a small dip to 2860 cm−1, slowly rising to 2920 cm−1,
rapidly rising to 2940 cm−1, steeply descending to baseline at 3030 cm−1, with a small
peak at 3060-3070 cm−1. Some spectra display a small shoulder at 3010 cm−1.
The outlier looks spectrally very different to the rest of the spectra, with a steep
increase from baseline to a peak at 2890 cm−1, steep decline to 2930 cm−1, then
steep increase to 2950 cm−1, small dip to 2960 cm−1, sharp increase to 2970 cm−1,
then rapid descent to 3000 cm−1 and a slow descent to baseline at 3030 cm−1.
The dotted black line marks the mean ± 3 × the standard deviation of the sample.
The majority of the spectra fit entirely or almost entirely within these bounds,
except for the outlier spectrum whose peaks lie outside of this region.
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Figure 8.3: Average spectra for the entire Blinded Prostate Cell Line dataset (cyan,
complete line) and the dataset with the outlier removed (black, dashed line). The
shape of these average spectra is identical, so removal of the outlier has minimal
effect on the average spectrum. The standard error envelope has been omitted from
this image as it is too narrow to be discernible.
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sample mean approximates the population mean. The statistical envelope of the

standard error has been omitted from Figure 8.3 as it lies so close to the mean

spectra that is is not discernible.

8.3.3 Removal of Outlier Spectrum

The outlying observation exerts little effect over the shape of the average spectrum

within the dataset, as shown in Figure 8.3. However, this outlier does have a marked

effect on SOM training, as evidenced by the 12 empty nodes surrounding it in the

SOM shown in Figure 8.1. No other region of the map has more than four contiguous

empty nodes.

Removal of this outlier from the Blinded Prostate Cell Line dataset yields the

Cleaned Prostate Cell Line dataset. The SOM in Figure 8.4 was trained on the

Cleaned Prostate Cell Line dataset with the same parameters as the SOM in Figure

8.1. This new SOM has a more even spread of data across the map space, with three

regions of low nodal density at the lower right, centre, and upper centre. There are

no single observations taking up large regions of map space, suggesting that the

outlying spectrum was exerting a large effect on SOM training.

As the outlier appears to be of a very different spectral shape to the other

spectra, it exerts little effect on the average spectrum, and it grossly impacts SOM

training, it is removed for parameter optimisation. All subsequent SOM analyses

are performed with the Cleaned Prostate Cell Line dataset.

8.4 Parameter Optimisation

Combination of the parameters selected in Section 8.2.1 yields 125 parameter sets

(5 map arrays × 5 σ(0) values × 5 α(0) values = 125 sets). Each of these parameter

sets is used to train a SOM ten times with random seeds 1–10, respectively, giving

a total of 1250 training runs. Each group of ten SOMs trained with the same

parameters is denoted as a family, with each family numbered from 1–125.

In order to investigate which SOMs are the best representation of the data, a

similar rationale to that laid out in Section 7.4 is used to select the SOMs with the

lowest combined quantisation and topographic errors. The median QE, TE, total

error, and error difference for each SOM family is calculated (Table 8.3). These

errors are compared with the SOM outputs to decide on optimum parameters.

The optimum SOM family is chosen as being the one with the lowest total error,

where borders between clusters on the u-matrix are well defined, and where data

foci on the density plot are discrete. Of the SOM families summarised in Table 8.3,

Family 117 is selected as optimum as it is the family with the lowest total error value

for which the SOM (Figure 8.5) shows well demarcated regions of low nodal density

and the density plot (Figure 8.6) shows discrete foci of data. For the families with
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Figure 8.4: SOM built with the same training parameters as that in Figure 8.1 with
the outlier removed from the dataset. There is a good spread of data across the
entire map space, with stripes of low density around (1, 10), (1, 16), and (3, 1).
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Family Array σ α QE TE (QE + TE) |QE − TE|
81 15× 4 1.0 0.5 0.019604 0.0 0.019604 0.019604
82 15× 4 1.0 0.75 0.019908 0.0 0.019908 0.019908
83 15× 4 1.0 0.9 0.020134 0.0 0.020134 0.020134
111 23× 6 2.0 0.5 0.020138 0.0 0.020138 0.020138
61 17× 5 2.0 0.5 0.021557 0.0 0.021557 0.021557
62 17× 5 2.0 0.75 0.021627 0.0 0.021627 0.021627
64 17× 5 2.0 0.95 0.021776 0.0 0.021776 0.021776
86 15× 4 2.0 0.5 0.022923 0.0 0.022923 0.022923
106 23× 6 1.0 0.5 0.016016 0.007042 0.023058 0.008973
87 15× 4 2.0 0.75 0.023493 0.0 0.023493 0.023493
88 15× 4 2.0 0.9 0.023742 0.0 0.023742 0.023742
89 15× 4 2.0 0.95 0.023809 0.0 0.023809 0.023809
90 15× 4 2.0 0.99 0.023850 0.0 0.023850 0.023850
12 19× 5 2.0 0.75 0.021298 0.003521 0.024819 0.017777
63 17× 5 2.0 0.9 0.021612 0.003521 0.025133 0.018091
117 23× 6 3.0 0.75 0.022025 0.003521 0.025546 0.018504
91 15× 4 3.0 0.5 0.026191 0.0 0.026191 0.026191
93 15× 4 3.0 0.9 0.026643 0.0 0.026643 0.026643
48 14× 6 4.0 0.9 0.026652 0.0 0.026652 0.026652
66 17× 5 3.0 0.5 0.023308 0.003521 0.026829 0.019787

Table 8.3: Table of the twenty SOM families in the parameter sweep with the lowest
total error. The values for family 117 are shown in bold as these are the optimum
SOM training parameters based on errors and visual interpretation of the output
map and density plots. QE = quantisation error. TE = topographic error. All
errors given are median values for the ten family members.
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lower total error values, at least one of these visual requirements does not hold. See

Appendix B for these plots.

Family 117 is the first family in the list with a σ(0) value of at least half the

map dimension and an α(0) value close to 1, supporting Kohonen’s suggestion of

optimum values [55, 56]. The lower values for σ(0) and α(0) in the few maps with

lower errors may explain why they produce suboptimal maps, as values which are

too small create maps with pockets of local organisation between which the direction

of ordering changes [55]. This analaysis further supports the conclusion by Erwin

that no single metric can fully describe a SOM [28], and emphasises the importance

of visually inspecting the SOM rather than relying on error metrics alone.

8.5 Unblinding the Data

8.5.1 SOM Trained with Optimum Parameters

The SOM in Figure 8.5 is built with the optimum parameters selected from the

parameter sweep:

• Map dimensions: 23× 6

• σ(0): 3.0

• α(0): 0.75

• Random seed: 1

The SOM (Figure 8.5) shows a large stripe of low nodal density down the centre

of the map and a smaller stripe of low nodal density at the lower left around (1, 7).

The density plot (Figure 8.6) shows three data density foci at the upper left, lower

left, and right of the map. These results imply the presence of three clusters in the

dataset.

8.5.2 Hypotheses

The SOM in Figure 8.5 and the density plot in Figure 8.6 contain data from two

diseases classes and display separation into three clusters. There are three distinct

possibilities for why three clusters are present.

• Single subgroup hypothesis

– Cluster A contains data from class 1

– Cluster B contains data from class 2

– Cluster C contains data from class 1

• Mixed subgroups hypothesis

– Cluster A contains data from class 1

– Cluster B contains data from class 2 or classes 1 and 2
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Figure 8.5: SOM u-matrix trained unsupervised on the Cleaned Prostate Cell Line
dataset with the optimum parameters selected from the parameter sweep. There is
a good spread of data across the map space, with stripes of very low density around
(2, 11), (2, 20), and (4, 3), and areas of low nodal density around (1, 7), (1, 17),
and (4, 7).
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Figure 8.6: Density plot of the SOM shown in Figute 8.5. There appear to be three
foci of data, one dense focus centred around (5, 9), and two less dense foci centred
around (1, 3) and (0, 16). The borders between these foci are regions of low data
density, which correpsond to the low nodal density stripes observed in the SOM in
Figure 8.5.
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– Cluster C contains data from classes 1 and 2

• External Heterogeneity hypothesis

– Cluster A contains data from classes 1 and 2

– Cluster B contains data from classes 1 and 2

– Cluster C contains data from classes 1 and 2

Under the single subgroup hypothesis, two clusters relate to the disease status

classes encoded within the dataset, and the third cluster is a subgroup of one of

these. In this scenario either the cancer class divides into two clusters, such as

different grade or prognosis, or the normal class divides into two clusters, such as

non-malignant overgrowth and true normal.

Under the mixed subgroup hypothesis, two clusters relate to the disease status

classes encoded within the dataset, and the third cluster is a mixture of these two,

or one cluster relates to disease status class and two are a mixture of both classes. In

this scenario the unique clusters relate to one aspect which is different in each class,

such as components of oncogenic protein expression levels in different cell types, and

the mixed clusters relate to another aspect which is not different between classes,

such as mitochondria producing cellular energy.

Under the external heterogeneity hypothesis, all three clusters contain a mixture

of the disease status classes encoded within the dataset. In this scenario, an aspect

unrelated to disease status is the source of heterogeneity, such as the location within

the cell which is being sampled, the stage at which the cell resides within the cell

cycle, or different culture techniques.

To fully ensure that the SOM is clustering data into groups of PNT2-C2 and

LNCaP as expected, and to understand why three groups are being shown, the

data from the optimised SOM in Section 8.4 are unblinded to produce the SOM in

Figure 8.7. This SOM is built with an unsupervised training method and the labels

PNT2-C2 (normal prostate) and LNCaP (prostate cancer) are added only after data

unblinding.

8.5.3 Review of Unblinded Data

The SOM in Figure 8.7 shows the data for the two classes, PNT2-C2 (normal

prostate) and LNCaP (prostate cancer) are divided by a line of low density nodes

spanning across the map from upper centre to lower centre. There is a stripe of

low nodal density centred around (1, 7), which may represent a cluster border—in

the density plot in Figure 8.6, there are two lower density data foci around (1, 3)

and (0, 16), separated by this low density region. These two lower density data foci

contain data from the LNCaP class, and there is a high density focus around (5, 9)

which corresponds to the PNT2-C2 cluster.
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Figure 8.7: SOM u-matrix trained unsupervised on the Cleaned Prostate Cell Line
dataset with the optimum parameters defined in Section 8.4. Regions of low nodal
density around (2, 20), (1, 17), (2, 11), (4, 7), and (4, 3) divide the PNT2-C2 (normal
prostate) and LNCaP (prostate cancer) classes. A stripe of low nodal density around
(1, 7) within the LNCaP region may represent another border between clusters. Both
PNT2-C2 and LNCaP spectra map to node (5, 0).
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Cluster Location PNT2-C2 LNCaP Proportion

A Upper left 0 46 0.162
B Lower left 0 13 0.046
C Right 33 0 0.116

Table 8.4: Table summarising the number of PNT2-C2 and LNCaP observations
found within the centre of each of the three clusters in Figure 8.7. The final column
gives the proportion of the total observations (n = 284) found within that cluster
centre.

Figure 8.8 shows the density plot for the SOM in Figure 8.7 with the input data

overlaid. This image shows a region of low data density down the centre of the map,

which marks a divide between the majority of PNT2-C2 and LNCaP observations.

The PNT2-C2 data have one focus centred around (5, 9), whereas the LNCaP data

have two foci centred around (1, 3) and (0, 16) separated by a small region of low

data density.

Analysis of Figures 8.7 and 8.8 favours the single subgroup hypothesis, as two

clusters around (1, 3) and (0, 16) contain data from LNCaP, and one cluster around

(5, 9) contains data from PNT2-C2.

8.5.4 Cluster Spectral Plots

Investigation of the three clusters is performed by comparing the spectra at their

centre, these spectra being the most typical of the pattern in each cluster. The

selected spectra are those of data points which map to nodes within the three data

density foci in Figures 8.6 and 8.8, and are summarised in Table 8.4.

Sample Spectra

Figure 8.9 shows the average spectra for the entire Cleaned Prostate Cell Line

dataset and for each cluster shown in the SOM in Figure 8.7.

The average spectrum (solid black line) shows a large peak around 2940 cm−1

with two shoulders on its upstroke (2850 cm−1 and 2870 cm−1), and a small peak

around 3060 cm−1. The cluster A average spectrum (dashed magenta line) follows

the same basic shape as the sample average spectrum; however, the intensity of the

shoulder at 2850 cm−1 and the upstroke between 2870 cm−1 and 2910 cm−1 are

lower. The cluster B average spectrum (blue dot and dashed line) follows the same

basic shape as the sample average spectrum, but has a much higher intensity at the

shoulder at 2850 cm−1, a higher intensity at the shoulder at 2870 cm−1, and a lower

intensity at the main peak at 2940 cm−1. The cluster C average spectrum (dotted

orange line) follows the pattern of the sample average spectrum.
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Figure 8.8: Density plot of the SOM in Figure 8.7 with the input data overlaid.
There is a region of very low density spanning the plot from upper centre to lower
centre, which divides the PNT2-C2 cluster around (5, 9) and the LNCaP clusters
around (1, 3) and (0, 16). There is a second region of low density between the two
LNCaP clusters around (1, 7).
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Figure 8.9: Average Raman spectra for the Cleaned Prostate Cell Line dataset.
The solid black line represents the average spectrum for the entire sample, with a
large peak around 2940 cm−1 and a small peak around 3060 cm−1. There are two
shoulders to the upstroke of the large peak at 2850 cm−1 and 2870 cm−1.
The magenta dashed line represents the average spectrum from cluster A at the
upper left of the SOM in Figure 8.7, which has a lower intensity at the shoulder at
2850 cm−1 and at the upstroke between 2870 cm−1 and 2910 cm−1, and otherwise
follows the pattern of the sample average spectrum.
The blue dot and dashed line represents the average spectrum from cluster B at the
lower left of the SOM in Figure 8.7, which has a higher intensity for the shoulders
at 2850 cm−1 and 2870 cm−1, and a lower intensity of the peak at 2940 cm−1 than
the sample average spectrum.
The orange dotted line represents the average spectrum from cluster C at the right
of the SOM in Figure 8.7, which follows the pattern of the sample average spectrum.
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Observed Difference Discussion

There is a difference in the pattern observed for the spectra in clusters A and B,

all of which are derived from LNCaP cell lines. The data are statistically converged

(see Section 8.3.2), and so are representative of the constituent cell line populations

across replicates. The different patterns seen could occur for a number of reasons.

Firstly, the laser providing the incident light for the analysis could be sampling

a different part of the cell, such as the cytoplasm instead of the targeted nucleus.

The laser used has a wavelength of 532 nm and the numerical aperture (NA) of

the objective lens used is × 63 / 1.0. Calculation of the lateral spatial resolution

of a laser spot, d, is shown in Equation 8.2 [30]. For the experimental setup used

to gather data in these prostate cell line experiments, d = 0.61× 532/1.0 ≈ 0.3µm.

The hypothesis that different parts of the cell are being sampled is unlikely due to

the fine spatial resolution of Raman spectroscopy being in the order of 1 µm, and

the size of human nuclei being in the order of 10 µm [92].

d =
0.61λ

NA
(8.2)

Secondly, being sure that sampling is occurring within the nuclei of cells, it

could be that the area being sampled is somehow in a different state. When DNA

is being replicated, the molecule relaxes and unwinds so it can be read and copied

by cellular machinery, becoming 2 nm thick [103]. When not being replicated, DNA

is wound around histone proteins to form 10 nm wide loops which coil to form

30 nm thick chromatin fibres [7]. When a cell prepares to divide, replicated DNA

must be faithfully and equally partitioned between daughter cells; to do so, the 30

nm chromatin fibres are coiled tightly to form a 700nm wide chromatid, half of a

1400 nm wide chromosome [7]. The three orders of magnitude difference in scale

of the width of DNA could potentially explain why Raman signals are different

when analysing cells within the same disease state. The difference in the density of

DNA and proteins may affect the vibrational energy levels of constituent molecules,

thereby altering the proportion of them in a Raman activatable state and thus the

resultant signal. However, this theory likely does not explain the cause of variation

as all cells were synchronised to senescence via starvation before sampling, and so

will have been in the same position within the cell cycle.

Thirdly, there could be diffraction artefacts affecting the measurement of the

Raman signal. Due to the regular spacing of fibres which are in the order of 700nm

width, it is possible that chromatids form a diffraction grating. If the regular spaces

between fibres are parallel and slightly wider than the wavelength of incident light (in

this case 532 nm), then light may be split into several beams travelling at different

angles. Therefore, any interactions causing Raman shifts may be altered or more

difficult to detect. However, this theory is unlikely to be physically plausible due to

the small cross-section of cell sampled with the Raman laser.
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Fourthly, the different patterns are seen for two groups of LNCaP cells, denoting

that one may be a subgroup of the other. These cells are an immortalised cancer

cell line, and it is biologically plausible that a mutation arose during passage of the

cells at some point, which has been propagated through some of the progeny cells,

giving two similar yet distinct groups. If this were true, it would be expected that

a change could be traced to a single point in time, whereby all progeny from that

point exhibit the new state. Dr Hancock has reviewed the data from each cluster

and confirmed that there is no obvious pattern to which samples are found in each

cluster, making this idea unlikely to explain the two subclusters found.

Observed Similarity Discussion

The data for PNT2-C2 and LNCaP were collected several months apart and by

different people—they are distinct datasets. Nevertheless, there is very little visual

difference between the average spectra for clusters B and C, despite cluster B being

derived from LNCaP data and cluster C being derived from PNT2-C2 data. Given

the similarity of these two average spectral shapes, the SOM must be detecting very

slight differences in their patterns in order to be able to correctly segregate them

into their respective clusters.

Node (5, 0) Spectral Plots

The node (5, 0) of the SOM in Figure 8.7 has both PNT2-C2 and LNCaP data

mapped to it. The spectra of these observations are plotted in Figure 8.10, showing

that each spectrum follows the general shape of the average spectrum shown in

Figure 8.9, although there are no clearly discernible shoulders to the upstroke of

the first peak, and the intensity of this peak is much lower than for the average

spectrum. These spectra map far away from the main three clusters and are similar

between classes.

8.5.5 Biological Plausibility of Cluster Differences

The data for LNCaP are statistically converged as evidenced by their low standard

error of the mean of 2.4270 ×10−6 to 7.4999 ×10−5, and so they are representative

of the LNCaP cell line population. The two clusters formed by the LNCaP data

likely represent cancer heterogeneities.

Mean spectral subtraction is performed to highlight the differences between the

mean spectra from clusters A and B. Each of these mean cluster spectra is subtracted

from the mean spectrum of the PNT2-C2 cluster, this being from a normal prostate

cell line and thus taken as a baseline value.

Figure 8.11 shows the mean subtracted spectrum for cluster A and Figure 8.12

shows the mean subtracted spectrum for cluster B. The large deflections seen for
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Figure 8.10: Spectra mapping to node (5, 0) in Figure 8.7. The solid orange lines
belong to PNT2-C2 (normal prostate) spectra and the magenta dashed lines belong
to LNCaP (prostate cancer) spectra. Each spectrum follows the general shape of
two peaks at 2940 cm−1 and 3060 cm−1. There are no clearly discernible shoulders
to the upstroke of the first peak, and the intensity of the first peak is lower than for
the average spectrum shown in Figure 8.9.
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Figure 8.11: Resultant spectrum from subtracting the average cluster A (LNCaP)
spectrum from the average cluster C (PNT2-C2) spectrum. As PNT2-C2 is taken
as the baseline normal, positive deflections correspond to decreased intensity and
negative deflections correspond to increased intensity in the average LNCaP signal
compared to the average PNT2-C2 signal.
There is a broad positive deflection between 2840 cm−1 and 2930 cm−1, with two
large peaks at 2850 cm−1 and 2860 cm−1. There is a broad negative deflection
between 2935 cm−1 and 3010 cm−1, with a deep trough at 2950 cm−1 and a broad
trough at 2965–3010 cm−1. There is a small negative deflection at 3020 cm−1.
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Figure 8.12: Resultant spectrum from subtracting the average cluster B (LNCaP)
spectrum from the average cluster C (PNT2-C2) spectrum. As PNT2-C2 is taken
as the baseline normal, positive deflections correspond to decreased intensity and
negative deflections correspond to increased intensity in the average LNCaP signal
compared to the average PNT2-C2 signal.
There is a deep negative deflection at 2850 cm−1, a broad negative deflection at
2875-2905 cm−1, a large positive deflection with a peak at 2920 cm−1 and a small
negative deflection at 3010 cm−1.
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the two spectra are analysed with reference to a standard library of Raman signals

generated from biomolecules [74,93], to try to elucidate the underlying bimolecular

changes responsible for the differences in signal.

• Cluster A

– Positive deflection at 2840 cm−1 (saturated lipid)

– Negative deflection at 2940 cm−1 (lipid chains)

• Cluster B

– Negative deflection at 2850 cm−1 (saturated lipid)

– Positive deflection at 2915 cm−1 (lipid chains)

• Clusters A and B

– Negative deflection at 3015–3025 cm−1 (unsaturated lipids)

As the mean subtracted spectra are generated by removing the PNT2-C2 average

spectrum from the LNCaP average spectrum, positive deflections correspond to

decreased signal intensity and negative deflections correspond to increased signal

intensity in the LNCaP compared to the PNT2-C2 signal. Cluster B appears to have

more saturated lipids than normal, with fewer or shorter lipid chains; conversely,

cluster A appears to have less saturated lipid than normal with more or longer lipid

chains. Both have more unsaturated lipid than normal, and cluster A has more than

cluster B.

8.6 Summary

This chapter has explored the use of SOM analysis of blinded high dimensionality

spectral data. It has shown that the SOM is very sensitive to outlying data points,

and that optimisation of SOM training parameters can yield reliable results. Two

clusters were expected during SOM training with the cleaned Prostate Cell Line

dataset, yet three clusters were found: spectral analysis shows that two clusters

share the same input data class (LNCaP, prostate cancer), each with a different

average spectral shape. Interestingly, the third cluster (PNT2-C2, normal prostate)

has a spectral shape which, by eye, is the same as one of the LNCaP clusters, yet

the SOM is still able to separate PNT2-C2 from LNCaP data.

The two clusters found for LNCaP display different Raman signal intensity at

wavenumbers which correspond to lipids: cluster A has more unsaturated lipids

and a higher total amount of lipid than cluster B, which appears to have more

saturated lipids. These bimolecular differences could contribute to a phenotypic

difference within the cells, as lipids are involved in cellular signalling and increased

consumption of saturated fatty acids has been linked to more aggressive forms of

prostate cancer [78].

88



These experiments and analyses show that the SOM method can be a useful tool

for analysing spectral data given optimum parameters and highlight the feasibility

of using this method in biomedical research.
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Chapter 9

Conclusions and Discussion

9.1 Summary

The research question proposed in Chapter 3 is:

“Can self-organising maps distinguish between cancerous and non-can-

cerous prostate cells?”

The experiments laid out in this thesis form a feasibility study for the use of

SOMs to analyse high dimensionality data from complex biological systems. The

MiniSom module [101] has been studied and inherited to form the basic class of

the MySom module written for this thesis. This module is used to analyse data

to train and display SOMs, and its source code is freely available at github.com/

thenakedcellist/prostate/blob/master/mysom/mysom.py.

The preliminary experiments in Chapters 5 and 6 demonstrate the use of the

MySOM module to analyse low and high dimensionality data, respectively, and how

to interpret the SOMs produced. Each of the experiments within these chapters uses

an unblinded dataset with a known outcome, which is used to validate MySom’s

outputs.

The experiments in Chapter 7 show that the SOM is able to cluster even a small

dataset (n = 30) of Raman spectra gathered from normal and cancer prostate cell

lines appropriately by class. Visual interpretation of the SOMs and density plots to

discern clusters is discussed.

The final experiments in Chapter 8 show that the SOM is able to cluster blinded

Raman spectroscopic data gathered from normal prostate and prostate cancer cell

lines (n = 284) by class. The method is shown to be sensitive to outlying data, and

analysis of the raw data allows removal of an aberrant signal. A parameter sweep

then allows a SOM to be built which best represents the dataset: three clusters are

uncovered, the normal class in one cluster and the cancer class organised into two

subclusters. Analysis of the spectra within the subclusters found by the SOM shows
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subtle differences associated with lipid levels which could explain their segregation.

The SOM method shows the potential for use as a diagnostic test as it can cor-

rectly cluster Raman spectral data from normal prostate and prostate cancer cells.

It also manages to segregate two subclusters of cancer cell data based on patterns

corresponding to different lipid compositions. These different lipid profiles show bio-

logical plausibility for a difference in disease aggressiveness [78], and therefore could

represent a different disease stage or progression. The results of this SOM analysis

could be used to direct further experimentation into mechanisms of oncogenic action

driven by different cellular lipid profiles, which could ultimately inform prognosis.

9.2 Conclusion and Discussion

9.2.1 Contributions to Knowledge

This work is the first to use SOMs to analyse Raman spectra gathered from human-

derived cell lines, and demonstrates the ability of SOMs to cluster data based on

the cell type. Methods for selecting the optimum parameters for SOM training to

allow good representation of the input data are discussed, and the SOMs are able

to discern subclusters of a single group.

9.2.2 Software Engineering Practice

Good software engineering practices are followed to ensure that experiments are well

structured and code is rigorous.

Experiments were theorised and designed using pseudocode, to enable a clear

visualisation of the logic used, and to aid in translating from pseudocode into source

code. The pseudocode outlining the MySom process can be found in Appendix A.

The MySom module is accompanied by a functional test suite built with pytest

(version 6.1.1) [59]. Testing is performed each time code is refactored and new

functions are added. Assert statements are used within the code to stop a code run

should input data be in an incorrect format, rather than allowing code to execute

and potentially misrepresent the data.

A version control system is used to ensure a full history of code changes is

preserved. The source code for this project is available on GitHub at github.com/

thenakedcellist/prostate.
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9.3 Future Works

9.3.1 Feature Selection

Three clusters are revealed in the Cleaned Prostate Cell Line dataset by the SOM

method, and visual inspection of these clusters to understand the differences between

them is performed in this work. The next appropriate step is to perform statistical

analyses on these clusters, to gain an idea of which spectral bands are the most

significantly different among them and hence deterministic of cluster membership.

PCA and k-means clustering could be re-performed with the expectation of finding

three clusters.

Following from the methods of Rauber and Merkl [82], and Tan [94], it may be

possible to design a tool such as LabelSOM which is able to highlight spectral bands

of importance to cluster membership. This method will require much investigation

and calibration with the data, as the original experiments were performed with

binary data, so a cut-off value of 0.5 could easily be used to classify a feature as

influential or not. As spectral data are continuous, appropriate cutoff values for

classifying a feature as important must be thoroughly tested.

9.3.2 Statistical Analyses

The next logical step following the experiments discussed here is statistical analysis

of the SOM as a diagnostic method.

Confusion Matrix

Depending on how coarsely or finely spread the bounds defining density regions on

the density plot are, points near the edges of clusters may be classified as within the

cluster or outside of it. If the data can be clearly denoted as belonging to either the

normal or disease group (no “unknown” labelling) on visual interrogation, then it is

a binary classifier and can be recorded in a confusion matrix and used to calculate

sensitivity (true positive rate) and specificity (true negative rate) for the SOM as a

diagnostic classifier. This method of appraising binary classifiers is used commonly

throughout medical science.

Receiver Operating Characteristic Curves

As the granularity of the density plot can be changed, so too can the status of some

points near the edges of clusters—with a fine resolution edge points may be classed

as outside of the cluster, whereas with coarser resolution they may be included

within the cluster. Changing the granularity of the density plot will therefore alter

the sensitivity and specificity of the SOM at the given density threshold.
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Figure 9.1: An example receiver operating characteristic curve (adapted from [2]).
The area under the curve (AUC) is 0.7295, indicating that the diagnostic test under
examination can correctly classify 72.95% of samples it is given.

A receiver operating characteristic (ROC) curve can be drawn plotting sensitivity

against 1 − specificity (false positive rate) to find the threshold which gives the

optimum values of sensitivity and specificity. An example ROC curve is given in

Figure 9.1.

The nature of the disease under study, prostate cancer, is one which may be

debilitating to many people who suffer from it, and fatal to an unfortunate minority.

Therefore, maximising sensitivity while minimising error overall would be preferred,

as the test would rarely misclassify an individual as healthy when they have the

disease, although this preference may bias toward false positive results. A ROC

curve can be used to decide on the optimum threshold to be used for the SOM

density plots to achieve the desired levels of sensitivity and specificity.

Overfitting

One consideration of any simulation is overfitting of the resultant model. The

Cleaned Prostate Cell Line dataset used in these experiments is not small, but

given the vast heterogeneity of biological systems there is a risk of overfitting the

SOM model to the random error intrinsic to the dataset, rendering it unable to be

generalised to new data.

K-fold cross-validation can be used to assess for overfitting [39]. The dataset is

split into K equal parts, and each Kth part is used to test the model trained on

the other K − 1 parts. The errors of each of the K iterations of the experiment can

then be combined to give an idea of the prediction error of the model.
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9.3.3 Investigation of Raman Spectra

The average Raman spectra (Figure 8.9) from the two LNCaP (prostate cancer)

clusters in the SOM (Figure 8.7) show very slight differences, which may be the cause

for their segregation by the SOM. Analysis of mean subtracted spectra (Figures 8.11

and 8.12) suggests that these differences are due to differing lipid levels between the

cells in each cluster.

Further analysis of these spectra and comparison to a standard library should

reveal the biochemical species which are responsible for the observed Raman shift.

Once defined, a biologically plausible reason for the differences in these species, such

as increased production of a molecule involved in cancer signalling, or decreased

production of a molecule involved in cellular repair, can be investigated.

9.3.4 Developing the SOM Method for Clinical Practice

This work outlines the first steps in an ongoing process of learning about the intra-

cellular mechanisms of prostate cancer and diagnostic test development. It forms a

feasibility study that has proven the SOM to be a useful analytic tool, and research

groups are encouraged to investigate its use for high dimensionality data analysis

within complex biological systems.
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Appendix A

MySOM Pseudocode

Algorithm A.1 shows the pseudocode for the MySom module. It inherits the features

of MiniSom [101], requires input of SOM parameters and the dataset under study,

and produces consistent output plots.

Each function of the algorithm is performed in the order given: relevant functions

may be omitted, such as data removal if the entire dataset is to be used, or data

normalisation if the input data are already normalised.
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Algorithm A.1 MySom Pseudocode

input: input data (Am,n), SOM parameters

1: function setup
2: MySom ← MiniSom ⊲ inherit from MiniSom [101]
3: instantiate empty SOM object
4: return SOM
5: end function

6: function initialise SOM(SOM, input data, SOM parameters)
7: SOM object ← SOM parameters
8: SOM object ← input data
9: if data are labelled as blinded data then

10: raise message(data are blinded)
11: else if data are labelled then
12: raise message(all values are labelled)
13: else if data are unlabelled then
14: raise message(all values are unlabelled)
15: else if some data are unlabelled then
16: raise message(some values are unlabelled)
17: end if
18: return SOM
19: end function

20: function remove observations(SOM, list of indices for removal)
21: remove selected index of input data from SOM
22: return SOM
23: end function

24: function normalise data(SOM)
25: for Am,n in SOM do
26: xi,j ← xi,j/‖ai,∗‖F ⊲ divide each row by Frobenius norm
27: end for
28: return SOM
29: end function
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30: function train SOM(SOM)
31: random weight initiation
32: for iteration t do
33: for row in input do
34: calculate euclidean distance to each node
35: BMU ← nearest node
36: update BMU weights to better approximate input vector
37: update weights of BMU neighbours
38: end for
39: update neighbourhood function radius, σ(t)
40: update learning rate, α(t)
41: end for
42: calculate quantisation error
43: calculate topographic error
44: return SOM, quantisation error, topographic error
45: end function

46: function plot SOM u-matrix
47: create u-matrix of node density
48: overlay input data on BMU
49: add random jitter to input data
50: return SOM u-matrix
51: end function

52: function plot SOM density function
53: create u-matrix of node density
54: overlay Gaussian kernel density estimate
55: if overlay data required then
56: overlay input data on BMU
57: add random jitter to input data
58: end if
59: return SOM density plot
60: end function

output: SOM u-matrix, SOM density plot
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Appendix B

Discarded SOMs from Blinded

Prostate Cell Line Experiment

In Chapter 8 a sweep was performed to find the optimum parameters for a SOM

trained on the Blinded Prostate Cell Line dataset. As discussed in Section 8.4,

the outputs of training are judged on errors and visual interpretation of the SOM

u-matrices and density plots.

The optimum parameter set is chosen as the one with the lowest total error,

for which the SOM plots show distinct borders between clusters and the density

plots show discrete data foci. Table B.1 is reproduced from Table 8.3 and shows the

twenty SOM parameter families with the lowest total error. Family 117 is selected

as the optimum parameter set, as those families with a lower total error do not show

clear SOM cluster borders or discrete data foci. Figures B.1–B.30 show the SOM

u-matrix and density plots for each of the families 81–63.
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Family Array σ α QE TE (QE + TE) |QE − TE|
81 15× 4 1.0 0.5 0.019604 0.0 0.019604 0.019604
82 15× 4 1.0 0.75 0.019908 0.0 0.019908 0.019908
83 15× 4 1.0 0.9 0.020134 0.0 0.020134 0.020134
111 23× 6 2.0 0.5 0.020138 0.0 0.020138 0.020138
61 17× 5 2.0 0.5 0.021557 0.0 0.021557 0.021557
62 17× 5 2.0 0.75 0.021627 0.0 0.021627 0.021627
64 17× 5 2.0 0.95 0.021776 0.0 0.021776 0.021776
86 15× 4 2.0 0.5 0.022923 0.0 0.022923 0.022923
106 23× 6 1.0 0.5 0.016016 0.007042 0.023058 0.008973
87 15× 4 2.0 0.75 0.023493 0.0 0.023493 0.023493
88 15× 4 2.0 0.9 0.023742 0.0 0.023742 0.023742
89 15× 4 2.0 0.95 0.023809 0.0 0.023809 0.023809
90 15× 4 2.0 0.99 0.023850 0.0 0.023850 0.023850
12 19× 5 2.0 0.75 0.021298 0.003521 0.024819 0.017777
63 17× 5 2.0 0.9 0.021612 0.003521 0.025133 0.018091
117 23× 6 3.0 0.75 0.022025 0.003521 0.025546 0.018504
91 15× 4 3.0 0.5 0.026191 0.0 0.026191 0.026191
93 15× 4 3.0 0.9 0.026643 0.0 0.026643 0.026643
48 14× 6 4.0 0.9 0.026652 0.0 0.026652 0.026652
66 17× 5 3.0 0.5 0.023308 0.003521 0.026829 0.019787

Table B.1: Table of the twenty SOM families in the parameter sweep with the lowest
total error. The values for family 117 are shown in bold as these are the optimum
SOM training parameters based on errors and visual interpretation of the output
plots. QE = quantisation error. TE = topographic error. All errors given are
median values for the ten family members.
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Figure B.1: Family 81 SOM u-matrix
showing no distinct cluster borders.

Figure B.2: Family 81 density plot
showing no discrete data foci.

Figure B.3: Family 82 SOM u-matrix
showing no distinct cluster borders.

Figure B.4: Family 82 density plot
showing no discrete data foci.
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Figure B.5: Family 83 SOM u-matrix
showing no distinct cluster borders.

Figure B.6: Family 83 density plot
showing no discrete data foci.

Figure B.7: Family 111 SOM u-matrix
showing regions of empty nodes with
no distinct cluster borders.

Figure B.8: Family 111 density plot
showing some separation of data foci.
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Figure B.9: Family 61 SOM u-matrix
showing regions of empty nodes with
no distinct cluster borders.

Figure B.10: Family 61 density plot
showing some separation of data foci.

Figure B.11: Family 62 SOM u-matrix
showing regions of empty nodes with
no distinct cluster borders.

Figure B.12: Family 62 density plot
showing some separation of data foci.
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Figure B.13: Family 64 SOM u-matrix
showing no distinct cluster borders.

Figure B.14: Family 64 density plot
showing no discrete data foci.

Figure B.15: Family 86 SOM u-matrix
showing no distinct cluster borders.

Figure B.16: Family 86 density plot
showing separation into discrete data
foci.
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Figure B.17: Family 106 SOM u-
matrix showing no distinct cluster bor-
ders.

Figure B.18: Family 106 density plot
showing no discrete data foci.

Figure B.19: Family 87 SOM u-matrix
showing no distinct cluster borders.

Figure B.20: Family 87 density plot
showing separation into discrete data
foci.
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Figure B.21: Family 88 SOM u-matrix
showing no distinct cluster borders.

Figure B.22: Family 88 density plot
showing separation into discrete data
foci.

Figure B.23: Family 89 SOM u-matrix
showing no distinct cluster borders.

Figure B.24: Family 89 density plot
showing separation into discrete data
foci.
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Figure B.25: Family 90 SOM u-matrix
showing no distinct cluster borders.

Figure B.26: Family 90 density plot
showing separation into discrete data
foci.

Figure B.27: Family 12 SOM u-matrix
showing regions of empty nodes with
no distinct cluster borders.

Figure B.28: Family 12 density plot
showing no discrete data foci.
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Figure B.29: Family 63 SOM u-matrix
showing regions of empty nodes with
no distinct cluster borders.

Figure B.30: Family 63 density plot
showing no discrete data foci.
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