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Abstract 
 

It has recently been suggested that b-dystroglycan localises to the nucleus in a range 

of cell types. At the nucleus it is thought that b-dystroglycan plays a role in 

maintaining nuclear morphology and regulating structural nuclear proteins lamin B1 

and emerin in mouse C2C12 myoblasts. It is hypothesised that b-dystroglycan is 

involved in regulating the mechanical properties of nuclei through interactions with 

lamin B1 and emerin or by adding additional support to the Linker of Nucleoskeleton 

and Cytoskeleton complex. This hypothesis was investigated using CRISPR/Cas9 

disruption of the dystroglycan gene (DAG1) in human myoblast cells. In this DAG1 

disrupted cell line, the previous reports of abnormal nuclear shape were not 

observed, however, it was found that both nuclear and cell size was greater in DAG1 

disrupted cells. This increase in size was also rescued by the addition of exogenous 

dystroglycan. The increase in size was not due to a senescence phenotype as 

previously suggested, however, the reason for an increase in size has yet to be fully 

understood.  

 

As with nuclear shape, the previously reported abnormal levels and localisation of 

lamin B1 and emerin in DAG1 disrupted C2C12 cells were not observed in the human 

myoblasts. Further, following analysis of nuclear mechanical properties of DAG1 

disrupted and control cells using atomic force microscopy it was found that there was 

no difference in nuclear mechanics at a whole cell level. However, when nuclei were 

isolated from the whole cell environment, the DAG1 disrupted nuclei were less stiff 

than control nuclei. 

 

The results described here suggest that disruption of the DAG1 gene has little effect 

on nuclear shape, regulation of nuclear proteins or nuclear mechanics. This suggests 

previously published results from C2C12 mouse myoblasts are not universal across 

cell lines and species and may require broader investigation. 
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1 Introduction 

 

1.1 Dystroglycan 

 

1.1.1 DAG1 Gene and Biosynthesis 

 

The human DAG1 gene is 2685 base-pairs (excluding introns) and is located on 

chromosome 3 at band p21. The gene consists of three exons and two introns, the 

smaller intron is located 5’ of the ATG region while the larger intron is 3’ of the ATG 

region (Figure 1.1) (Gee et al., 1993; Ibraghimov-Beskrovnaya et al., 1993; Smalheiser 

and Schwartz, 1987). The gene organisation is highly conserved across the metazoan 

phyla with the large intron 3’ of the ATG region conserved across the whole phyla. 

The small intron 5’ of the ATG region is conserved except in cnidaria, placozoa or 

porifera (Brancaccio and Adams, 2017).  

 

The DAG1 gene is transcribed into a single mRNA which encodes the dystroglycan 

(DG) precursor protein. DAG1 is ubiquitously expressed in human adult and foetal 

tissue (Ibraghimov-Beskrovnaya et al., 1993). In addition to the ubiquitous 

expression in human tissue, DAG1 is highly conserved in vertebrates and somewhat 

conserved in invertebrates (Table 1.1). Despite a lack of sequence similarity the 

general domain structure of the protein is conserved across the metazoan phyla 

(Adams and Brancaccio, 2015). As the majority of studies involving DG use either 

human or mouse cell lines or mouse models, further reference to DG will discuss 

mammalian DG unless otherwise stated and the human numbering system will be 

used.  

 

Table 1.1 List of species DG has been identified in and the protein and DNA similarity to human DG. 

Species NCBI Gene ID Gene 
Name 

% Protein 
Identity 

% DNA 
Identity 

Vertebrates 
H. sapiens 1605 DAG1 100 100 
P. troglodytes 460372 DAG1 99.4 99.6 
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M. mulatta 706179 DAG1 97.7 98.0 
C. lupus 476623 DAG1 95.2 88.8 
M. musculus 13138 Dag1 93.5 87.0 
B. taurus 281439 DAG1 93.2 87.8 
R. norvegicus 114489 Dag1 92.9 86.0 
G. gallus 100049058 DAG1 77.2 73.0 
X. tropicalis 549272 dag1 69.9 66.9 
X. laevis Xenbase Gene ID: 

XB-GENE-
1015774 

dag1 67.3  

D. rerio 286829 dag1 64.8 63.3 
Invertebrates 

D. melanogaster  UniPort: Q8STB9 Dg 32.8  
C. elegans UniPort: Q22629 dgn-1 23.72  

 

The translation of the DAG1 mRNA produces a 97kDa precursor protein which 

consists of a signal peptide (aa 1-29), a-DG subunit (aa 30-653) and a b-subunit (aa 

654-895) (Figure 1.1b). The cleavage of the precursor protein into the a- and b-

subunits occurs between Gly653 and Ser654 and occurs upon translocation to the 

endoplasmic reticulum (ER) (Akhavan et al., 2008; Deyst et al., 1995; Esapa et al., 

2003; Holt et al., 2000). The cleavage event is the result of an autoproteolytic SEA 

(sea urchin, enterokinase, agrin) domain identified in DG.  SEA domains have been 

mostly characterised in mucin proteins such as MUC1 (Macao et al., 2006). Although 

the exact mechanism of cleavage has not been described for DG, it has been 

determined that the cleavage occurs between Gly653 and Ser654 located in the loop 

connecting sheets b2 and b3 of the SEA domain (Akhavan et al., 2008). The cleavage 

site of MUC1 is also located between a Gly and Ser on the connecting loop of b2 and 

b3 and the cleavage is facilitated by conformational strain within the loop region 

(Macao et al., 2006). It is highly likely that DG autoproteolysis occurs via the same 

mechanism. Interestingly, one study suggests that the inhibition of the proteasome 

via lactacystin prevents cleavage of the DG precursor, however, this has not been 

tested in other members of the SEA domain family (Esapa et al., 2003).  
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Figure 1.1 Schematic of DAG1 gene and DG protein. (a) schematic of the DAG1 gene. (b) Schematic of the DG 
protein. 

 

Following the cleavage of precursor DG into the a- and b-subunits within the ER, the 

two subunits are translocated to the plasma membrane (PM) via the secretory 

pathway. During this translocation both subunits are subject to post-translational 

modifications, specifically glycosylation (Barresi and Campbell, 2006). Glycosylation 

is not required for cleavage of the DG precursor (Holt et al., 2000) and DG targeting 

to the PM was not dependent on precursor cleavage (Esapa et al., 2003). Post-

translational modifications will be discussed in detail in the following sections 

however, there is contradicting evidence as to whether glycosylation is essential for 

localisation of DG to the PM. Holt (2000) and colleagues found that upon treatment 

with tunicamycin, an inhibitor of N-linked glycosylation, there was aberrant b-DG 

localisation. Without treatment b-DG localised to the PM and following tunicamycin 

treatment b-DG showed perinuclear localisation. However, this study did not address 

the contribution of O-linked glycosylation. On the other hand, Esapa (2003) and 

colleagues showed that inhibiting both N- and O-linked glycosylation did not prevent 

the targeting of a-DG to the PM. This would appear to disagree with data from Holt’s 

(2000) study, however, both studies are looking at the localisation of the two 

different subunits. Taken together these two studies suggest abnormal glycosylation 

may have different effects on the localisation of a- and b-subunits.  

 

1.1.2 a-dystroglycan 

 

1.1.2.1 Structure 

 

5’ 3’
Exon 1

Intron 1
Exon 2

Intron 2
Exon 3

Pre-ATG SP a-dystroglycan b-dystroglycan Stopa

N CSP a-dystroglycan b-dystroglycan
(1-29) (30-653) (654-895)

Gly653-Ser654

a

b
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The structure of a-DG was first investigated in 1995 with the use of electron 

microscopy (EM). Brancaccio and colleagues used isolated a-DG from chicken cardiac 

muscle and were able to determine that a-DG had a dumbbell shape. The N- and C-

terminus of a-DG formed globular domains separated by an elongated disordered 

region termed the mucin-like region (Brancaccio et al., 1995). Based on sequence 

analysis the mucin region contained more than 40 Ser/Thr residues and a high 

number of Pro residues (Brancaccio et al., 1995). Due to the highly disordered mucin-

like region it has so-far not been possible to generate any high-resolution structural 

information of full-length a-DG. The globular N-terminus of human and murine a-DG 

has been determined to a high resolution using X-ray crystallography (Bozic et al., 

2004; Bozzi et al., 2015; Covaceuszach et al., 2017a, 2017b). However, no structure 

has been determined for the central mucin domain or the globular C-terminal 

domain.  

 

1.1.2.2 Glycosylation of a-Dystroglycan 

 

As discussed above a-DG is post-translationally cleaved from the DAG1 precursor 

protein, a-DG then goes through extensive glycosylation before reaching the PM. 

Glycans that are associated with glycoproteins such as a-DG can be divided into two 

groups depending on the amino acids they link to. Glycans that are linked to 

asparagine residues are termed N-glycans while glycans linked to either a serine or 

threonine residue are termed O-glycans. For N-linked glycans a N-acetylglucosamine 

(GlcNAc) moiety is linked to the Asn residue via an aspartylglycosylamine linkage. 

Classically for O-linked glycans, a N-acetylgalactosamine (GalNAc) moiety is linked to 

the Ser or Thr residue via the hydroxyl group. In addition to the Ser/Thr-GalNAc there 

are alternative types of O-glycosylation such as O-mannosylation which is found 

extensively in a-DG (Nilsson et al., 2010; Stalnaker et al., 2010). 

 

The extent of a-DG glycosylation was originally determined by SDS-PAGE. The 

predicted Mw of a-DG is ~74kDa however the observed Mw is significantly higher than 

that with a mass of between 100-156kDa in kidney, 120kDa in brain, peripheral nerve 
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and smooth muscle, 140kDa in cardiac muscle, 150kDa in lung tissue, 156kDa in 

epithelia and skeletal muscle and 190kDa in Torpedo electric organ (Barresi and 

Campbell, 2006; Martin, 2003). In addition to differences between tissues there are 

also differences within tissues at different developmental stages (Leschziner et al., 

2000). This disparity between apparent Mw and predicted Mw is due to the extensive 

glycosylation of a-DG which appears to be tissue specific. It was initially confirmed 

that a-DG contains N-linked glycans. However, when a-DG was treated with N-

glycosidase F which specifically removes N-glycans, the apparent Mw only decreased 

by 4kDa, suggesting the majority of glycosylation is the O-linked form (Ervasti and 

Campbell, 1991). Further investigation of a-DG revealed that a high proportion of O-

glycans were O-mannosyl glycans (Chiba et al., 1997; Sasaki et al., 1998).  

 

a-DG consists of three main types of O-glycans which have been designated Core 

M1, M2 and M3 (Figure 1.2). These three core structures all consist of Ser/Thr linked 

mannose and have similarities in their biosynthesis. The structure of Core M1 

consists of a GlcNAc linked to the mannose, Core M2 is branched with two GlcNAc 

moieties linked to the mannose and Core M3 consists of GlcNAc and a 

phosphorylated mannose (Yoshida-Moriguchi et al., 2013). For all of these core O-

glycan scaffolds, additional sugar moieties can be added (Meng et al., 2018).  

 

In addition to O-mannosyl links there is also extensive O-GalNAc glycosylation of a-

DG, however, the exact mechanisms of this have not been as extensively studied as 

O-mannosylation. A large number of the potential glycosylation sites of a-DG have 

been identified (Table 1.2) while three studies have looked at the types of a-DG O-

linked glycosylation in skeletal muscle of rabbit (Stalnaker et al., 2010), mouse 

(Harrison et al., 2012) and human (Nilsson et al., 2010). These studies agree that the 

type of glycosylation (O-mannosyl and O-GalNAcsyl) is not residue specific, both 

types have been detected using mass spectrometry (MS) at all identified O-

glycosylation sites apart from Thr367 and Thr369 which have only identified O-Man-

linked glycans (Nilsson et al., 2010). This suggests that the type of glycosylation does 

not depend on the primary sequence of a-DG. 
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Figure 1.2 Structure of Core M1, M2 and M3 O-glycans associated with a-DG. (a) Structure of core M1, (b) core 
M2, (c) core M3, (c) extended core M3. 

 

Table 1.2 List of possible glycosylation sites of a-DG. Confirmed glycosylation sites are indicated by “Yes” with 
the reference for the study that identified it. (1) Hara et al., 2011; Yagi et al., 2013, (2) Nilsson et al., 2010, (3) 
Yoshida-moriguchi et al., 2010, (4) Stanlnaker et al 2010. 

Possible Site of 
Glycosylation 

Identified 
(Reference) 

Possible Site of 
Glycosylation 

Identified 
(Reference) 

T317 Yes (1) T423 No 
T319 Yes (1) T424 No 
T322 No S430 Yes (4) 
T328 No T431 No 
T329 No T436 No 
S336 No S438 No 
T341 No T439 No 
T343 No S441 No 

Core M1 R

Dol-P-Man

POM1/2
S/T

S/T

UDP-GlcNAc

POMGNT1

S/T

Multiple

S/T

R RCore M2
Dol-P-Man

POM1/2
S/T

S/T

UDP-GlcNAc

POMGNT1

S/T

GnT-IX

S/T

UDP-GlcNAc

Multiple

S/T

Core M3
Dol-P-Man

POM1/2
S/T

S/T

UDP-GlcNAc

POMGNT1

S/T

UDP-GalNAc

B3GALNT2

S/T

POMK

S/T

Core M3 - Extended
CDP-RboP

FKTN
S/T

M3

S/T

M3

CDP-RboP

FKRP

S/T

M3

TMEM5

S/T

M3

B4GATI

S/T

M3

LARGE

S/T

M3

n

Mannose

GlcNAc

GalNAc

RboP

Xyl

GlcA
Phosphate

a

b

c

d
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S344 No T442 No 
T351 No T443 No 
T353 No T444 No 
T367 Yes (2) T445 No 
T369 Yes (2) T446 Yes (4) 
T372 Yes (2) T450 Yes (4) 
T379 No T455 Yes (2) 
T381 Yes (3) T463 Yes (4) 
T388 Yes (3) T464 Yes (4) 
S391 Yes (4) S467 No 
T395 Yes (4) T469 Yes (4) 
T396 No T473 Yes (4) 
T404 No S475 Yes (4) 
T406 No T478 Yes (4) 
T414 No T482 No 
T418 No T483 Yes (4) 
T421 No T484 Yes (4) 
T422 No S485 No 

 

1.1.2.3 Interactions of a- Dystroglycan 

 

The known primary-binding partners of a-DG consist almost entirely of proteins with 

laminin globular (LG) domains. The LG domain was originally identified in laminins 

and the term comes from the five tandem domains, with repeat cystine residues, 

found at the C-terminus of all laminin a chains and each domain is generally 

separated by short linker sequences (Beck et al., 1990; Timpl et al., 2000). In addition 

to laminins a number of other proteins within the extracellular matrix (ECM) also 

contain LG domains (Figure 1.3) (Talts et al., 1998). 

 

1.1.2.3.1 Laminins 

 

Laminins consist of three peptide chains termed a, b and g with the LG domains being 

found on in the a-chain (Figure 1.3). In humans there are 5 types of laminin; laminin-

1, laminin-2, laminin-3, laminin-4 and laminin-5 and a-DG is capable of binding all 

except laminin-3 but with varying affinities (Table 1.3) (McDearmon et al., 2006; Pall 

et al., 1996; Smirnov et al., 2002; Talts et al., 2000).  
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Table 1.3. Table of the binding affinities for a-DG and different types of laminin. References: (1) Pall et al., 
1996, (2) Smirnov et al., 2002, (3) Talts et al., 2000, (4) McDearmon et al., 2006. 

a-DG Tissue Laminin-1 Laminin-2 Laminin-4 Laminin-5 
Skeletal Muscle 8nM (1) 8-18nM (1,2) 400nM (3)  
Central Nervous 
System 

20nM (4)  60-80nM (4) 80-1000nM 
(4) 

 

In the late 1990’s and early 2000’s there was conflicting research as to how a-DG 

binds to and interacts with laminin. Initially, Ervasti and Campbell (1993) 

demonstrated that following treatment with N-glycanase a-DG retained laminin 

binding, suggesting N-glycosylation is not required for laminin binding. A number of 

studies have also shown that neither the N- or C- terminal of a-DG are capable of 

laminin binding (Brancaccio et al., 1997; Sciandra et al., 2001; Di Stasio et al., 1999). 

Taken together, these studies would suggest that the interaction between a-DG and 

laminin occurs in the highly glycosylated mucin region. Reports confirm this and 

suggest that the interaction is dependent upon glycosylation (Michele et al., 2002). 

However, in 2004 Bozic and colleagues provided data from solid-phase binding 

assays that suggested the N-terminal fragment (aa28-313) and just the N-terminal 

IG-like domain (aa28-168) was capable of binding murine laminin-1 (Bozic et al., 

2004). This would suggest that the glycosylation was not required for binding, 

however, no data was provided to indicate binding affinities, so it is not known 

whether this binding is physiologically relevant. Overall, this early data would suggest 

that a-DG interacts with laminin via the mucin-like region and is dependent upon 

glycosylation.  

 

In addition to glycosylation, it has also been shown that the interaction between a-

DG and laminins requires Ca2+ ion binding and the essential amino acids required for 

laminin binding are positioned close to the Ca2+ ion (Timpl et al., 2000). It has been 

demonstrated that Ca2+ binding to LG4 of the a-chain of laminin-2 but not LG5 was 

required for efficient binding between laminin and a-DG (Wizemann et al., 2003).  A 

1.4Å structure has more recently been determined for the LG4 domain from the a-

chain of laminin-2 in complex with the polysaccharide that is both generated by 

LARGE and present upon a-DG. This structure shows that a Xyl-GlcA disaccharide, 
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also termed matriglycan, straddles the Ca2+ ion (Briggs et al., 2016). This study 

confirms both the requirement for Ca2+ binding and the presence of the glycans, in 

particular LARGE generated matriglycan.  

 

It is clear that the interaction between a-DG and laminins is dependent upon the 

glycosylation state of a-DG and the coordination of a stabilising Ca2+ ion, but there is 

a final feature of the LG domains that contribute to the relative binding affinities of 

different laminins. This additional feature is the presence of tandem LG domain 

repeats. However, the presence of these tandem repeats does not guarantee a-DG 

binding. For laminin-1 there are two sets of repeats; LG1-3 and LG3-4. LG1-3 does 

not bind a-DG whereas LG4-5 binds with high affinity. It is also worth noting that LG4 

is capable of binding with high affinity without LG5 but LG5 cannot bind in the 

absence of LG4 (Durbeej et al., 2001). Laminin-2-5 all have the LG1-3 repeats but only 

in laminin-2 and laminin-4 is there evidence of binding at these regions. Additionally, 

all laminins (1-5) have the LG4-5 tandem repeats and all except laminin-3 (no a-DG 

binding) have some degree of a-DG binding. Taken together this suggest that the 

tandem LG repeats are important for a-DG binding but not essential. 

 

1.1.2.3.2 Other LG Domain Containing Proteins 

 

As discussed above the matriglycan component of a-DG is required for the binding 

of the LG domains of laminin and this interaction is stabilised by Ca2+ ions. 

Additionally, there are a number of other ECM proteins that contain LG domains and 

are capable of binding glycosylated a-DG (Figure 1.3). These ECM proteins include; 

agrin (Bowe et al., 1994; Campanelll et al., 1994; Gee et al., 1994) where LG1 and LG2 

are required for binding while LG3 shows very weak binding (Gesemann et al., 1996; 

Stetefeld et al., 2004); Perlecan (Friedrich et al., 1999; Talts et al., 1999) which binds 

glycosylated a-DG with the three LG domains and all three are required for tightest 

binding (Friedrich et al., 1999); Pikachurin consists of three LG domains but only LG2 

and LG3 are required for high affinity binding to glycosylated a-DG (Kanagawa et al., 

2010); Neurexin is also capable of binding glycosylated a-DG (Sugita et al., 2001), 
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neurexin contains six LG domains but both LG2 and LG6 are capable of binding a-DG 

in an isolated manner and does not depend on a tandem array of LG domains 

(Sheckler et al., 2006); Finally, Slit2 is capable of binding glycosylated a-DG but only 

consists of a single LG domain (Wright et al., 2012). 

 

 

1.1.2.3.3 Non-LG Domain Interactions 

 

In addition to the LG domain containing proteins there are also a small number of a-

DG interactors that do not rely on the classical LG domain interaction. Biglycan is a 

Laminin a1

N CNTR EGF-L LN-IV EGF-L LN-IV EGF-L LNa D1 LNa D2Coil
LG1 LG2 LG3 LG4 LG5

Agrin

N CNTR Kazal Domain LN-IVEGF-L SEA LG1 LG2 LG3EGF-L EGF-L EGF-L

Perlecan

N CSEA IG-L LN-IVEGF-L LG1 LG2 LG3EGF-L EGF-L EGF-LLN-IV EGF-L LN-IV IG-LEGF-L

Pikachurin

N CFibronectin Type III Domain LG1 LG2 LG3EGF-L EGF-LEGF-L

Neurexin a1

N CLG1 LG2 LG3EGF-L EGF-L LG4 LG5 EGF-L LG6 Neurexin Domain

Slit2

N CNTR Leu- and Cys-rich repeats LG1 EGF-LEGF-L Cys knot

Laminin IV domain (LN-IV)
Epidermal Growth Factor-Like (EGF-L)
Laminin Globular Domain (LG)

Figure 1.3 Schematic of the interacting partners of a-DG containing laminin globular domains. 
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small sulphate proteoglycan that interacts with a-DG despite containing no LG 

domain, the interaction also does not depend on a-DG glycosylation. The interaction 

between a-DG and biglycan occurs via a-DGs C-terminal domain (Bowe et al., 2000). 

Possibly the most important interaction a-DG makes is with the transmembrane 

(TM) domain protein b-DG which anchors it to the membrane. The interaction 

between a- and b-DG occurs via the C-terminal region of a-DG and the extracellular 

N-terminal region of b-DG, this interaction is non-covalent and has a Kd between 1-

10µM (Ervasti and Campbell, 1991; Sciandra et al., 2001; Di Stasio et al., 1999). 

 

In addition to the beneficial interactions that a-DG makes with laminin, agrin, 

perlecan, pikachurin, neurexin, Slit2, biglycan and b-DG, it is also the receptor for 

viral and bacterial pathogens. a-DG acts as a receptor for the causative agent of 

leprosy, Mycobacterium laprae, this interaction requires laminina2 as a cofactor 

(Rambukkana et al., 1998). Additionally, a-DG is the receptor for old world arena 

viruses such as lymphocytic chorionic meningitis virus (LCMV) and Lassa fever virus 

(LFV), these viruses bind directly to a-DG via the Gp1 viral protein. Neither LCMV nor 

LFV are able to bind recombinant a-DG which suggests that glycosylation is required 

for effective binding (Imperiali et al., 2005; Kunz et al., 2001, 2005). 

 

1.1.3 b-dystroglycan 

 

1.1.3.1 Structure 

 

The b component of DAG1 consists of 242 amino acids (654-895 of the precursor 

protein, human numbering) and has a predicted Mw of 26.6kDa. On SDS-PAGE it 

migrates with an apparent Mw of ~43kDa, this disparity is possibly due to 

glycosylation, relatively high basic amino acid content (particularly lysine), poly 

proline regions, the fact it is a TM protein or a combination of all of these factors. b-

DG consists of an extracellular N-terminal region, a TM region and a cytoplasmic C-

terminal region (Figure 1.4).  
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The structure of the extracellular N-terminal region of b-DG has been the most 

studied region. Di Stasio (1999) and colleagues produced an N-terminal recombinant 

fragment of murine b-DG consisting of amino acids 654-750 (equivalent to 652-748 

in humans) (Di Stasio et al., 1999). Using circular dichroism, they determined that the 

fragment consisted of relatively few secondary structural elements and that at least 

the extreme N-terminal region of the fragment was flexible. This was later expanded 

upon, again using the 654-750 murine b-DG fragment and was investigated using 

circular dichroism, Fourier-transform inferred spectroscopy and the secondary 

structure prediction method GOR. They identified an a-helix between positions 674-

684 and a b-sheet between positions 702-726. They also identified a smaller b-sheet 

and a few b-turns but the majority of the fragment could not be assigned secondary 

structure suggesting that the N-terminal fragment (654-750) is flexible and 

N CExtracellular Domain
654 895749

TM
775

Cytoplasmic Domain

N-linked glycosylation
Asp661

MMP Cleavage
His715-Leu716

NLS & Juxtamembrane
778RKKRKGK782

NES
778RKKRKGK782

WW Binding
889PPPY892

WW Binding
860APPY863

SH3 Binding
891PYVP894

SH2 Binding
863YpQPP866
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892YpVPP895
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828PPEY831
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b

Figure 1.4 Schematic of b-DG. (a) Domain organisation and important residues and regions within those 
domains. (b) Schematic indicating the location of key binding sites and the proteins that interact at each binding 
site. 
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disordered (Boffi et al., 2001). The high probability that the N-terminal b-DG 

fragment is disordered makes it difficult to crystallise which is one possible reason 

that a crystal structure has not been determined.   

 

In addition to a disordered N-terminal region, b-DG also consists of a TM and an 

intracellular C-terminal domain. b-DG is a type 1 TM protein owing to the single pass 

TM domain with an extracellular N-terminus and an intracellular C-terminus (Ott and 

Lingappa, 2002). There have been no structural studies of the C-terminus of b-DG 

and this is likely due to the high level of flexibility within this region. The C-terminus 

is highly enriched for proline residues and consists of 120 residues. Within the C-

terminus in the juxtamembrane region is a nuclear localisation signal (NLS) at 

position 776-782 (Lara-Chacón et al., 2010) and a number of protein binding motifs 

that will be discussed in detail below. 

 

1.1.3.2 Post-Translational Modifications 

 

b-DG is not subject to the high levels of glycosylation characteristic of a-DG however, 

there are some post-translational modifications that play an important functional 

role. The modifications of b-DG include glycosylation, phosphorylation, 

ubiquitination and protein cleavage.  

 

1.1.3.2.1 Glycosylation 

 

The glycosylation of b-DG was first determined in 1991, it was found that when b-DG 

was treated with N-glycosidase F there was a reduction in mass of 2kDa, suggesting 

the presence of N-linked glycans (Ervasti and Campbell, 1991). It was later suggested, 

based on the primary structure of mouse b-DG, that an N-glycosylation consensus 

motif in the N-terminus at Asn661 was present as were three O-glycosylation sites at 

Ser725, Ser728 and Ser729 however, neither Ser725 or Ser729 are conserved in other 

mammalian b-DG sequences (Di Stasio et al., 1999).  
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1.1.3.2.2 Phosphorylation 

 

At least two types of phosphorylation have been identified experimentally in b-DG, 

phosphorylation of threonine at position 790 (Bian et al., 2014; Zhou et al., 2013) and 

tyrosine phosphorylation at position 892 which is located within the important PPxY 

binding motif (James et al., 2000; Sotgia et al., 2001). The functional relevance of the 

Thr790 is not known but Y892 has been studied extensively. The phosphorylation of Y892 

is regulated by the binding of extracellular ligands to a-DG, namely, laminin and agrin 

(James et al., 2000; Sotgia et al., 2003). The binding of laminin or agrin results in the 

phosphorylation of Y892 by the Src kinase and Src-family kinases (Sotgia et al., 2003). 

The tyrosine phosphorylation has two important effects i) it results in the 

internalisation of b-DG for degradation or for localisation to intracellular 

compartments (Lara-Chacón et al., 2010; Sotgia et al., 2003) and ii) it acts as a 

molecular switch in order to regulate the binding partners of b-GD (Bozzi et al., 2009; 

Ilsley et al., 2001). 

 

1.1.3.2.3 Protein Cleavage 

 

As described in section 1.1.3.1, b-DG is identified as a ~43kDa protein by SDS-PAGE, 

however, two other species of b-DG have been identified according to their 

migration on SDS-PAGE at Mw ~30kDa and 26kDa (Figure 1.4). All three of these 

fragments are identified by the monoclonal antibody MANDAG2 which is specific for 

the extreme C-terminus region of b-DG (Leocadio et al., 2016; Yamada et al., 2001).  

 

The 30kDa fragment has been identified in peripheral nerve, kidney, lung and smooth 

muscle but was apparently absent in skeletal muscle, cardiac muscle and brain 

(Yamada et al., 2001). In this same study they determined that the 30kDa fragment 

was the result of matrix metalloproteinase (MMP) activity which proteolytically 

cleaved the extracellular N-terminal of b-DG (Yamada et al., 2001). Using inhibitor 

and knockout assays it was determined that the MMPs responsible for the cleavage 

of b-DG are the gelatinases, also known as MMP-2 and MMP-9 (Agrawal et al., 2006; 
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Zhong et al., 2006). One of the MMP-9 cleavage sites is between His715 and Leu716 

which results in the release of a peptide consisting of 61 amino acids (Bozzi et al., 

2009). Cleavage sites for MMP-2 and additional sites of MMP-9 have yet to be 

identified.  

 

Further cleavage of the 30kDa fragment has been described based on the 

identification of a 26kDa fragment. The generation of this fragment was dependent 

upon cell density in LNCaP prostate cancer cells and it was suggested that high cell 

density increased cleavage of the 30kDa fragment into the 26kDa fragment (Leocadio 

et al., 2016). The functional protease involved in this cleavage is g-secretase which 

cleaves b-DG at the juxtamembrane region releasing the cytoplasmic C-terminal 

domain (Leocadio et al., 2016). It has also been shown that g-secretase plays a similar 

role in a number of other type 1 membrane proteins (Hemming et al., 2008). 

Recombinant b-DG cytoplasmic domain also migrates at 26kDa on SDS-Page despite 

only consisting of 120 amino acids (Chen et al., 2003; Mathew et al., 2013). 

 

1.1.3.3 Interactions 

 

b-DG has a plethora of binding partners, with the exception of a-DG binding the N-

terminal region (Sciandra et al., 2001; Di Stasio et al., 1999), all known interactions 

occur in the cytoplasmic C-terminal region. The C-terminal region is packed with 

potential binding sites (Figure 1.4), including binding sites for WW domain containing 

proteins, Src-homology 3 (SH3) domain containing proteins and Src-homology 2 

(SH2) domain containing proteins. All of these binding sites are in close proximity and 

often overlap which requires intricate regulation to ensure effective signal 

transduction and cytoskeletal organisation. The juxtamembrane region of C-terminal 

b-DG is involved in a number of protein interactions.  

 

1.1.3.3.1 Proteins Containing WW Domains 
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The WW domain, so named after two tryptophan residues separated by 20-21 amino 

acids (Bork and Sudol, 1994) is a key binding domain that interacts with b-DG, via the 

PPxY binding motif. Recently the PPxY-WW interaction has been shown to also 

include PY motifs in addition to the classical PPxY motif (Lin et al., 2019). The most 

well studied PPxY (or PY) binding motif is found at the extreme C-terminus of b-DG 

(Figure 1.4a) and consists of the PPPY (889-892) sequence in human b-DG but there 

is also PPEY at position 828-831 and APPY at 860-863. There are multiple proteins 

that interact with b-DG via a WW-PPxY interaction; dystrophin (Jung et al., 1995), 

utrophin (James et al., 2000), caveolin-3 (Sotgia et al., 2000), YAP (Morikawa et al., 

2017), KIBRA (Lin et al., 2019), MAGI-2 (Sumita et al., 2007), MAGI-3 (Lin et al., 2019), 

neuroligin-2 (Sumita et al., 2007) and WWP1 (Cho et al., 2018) (Figure 1.4b). 

 

Dystrophin is the most well characterised of the WW domain proteins known to 

interact with b-DG. Dystrophin is found almost exclusively in muscle and plays an 

essential role in connecting the extracellular matrix with the intracellular 

cytoskeleton via the dystrophin-associated protein complex (DAPC) which will be 

discussed in detail below. The WW domain of dystrophin is located in the C-terminus 

within a cystine-rich domain (Bork and Sudol, 1994) and the crystal structure of C-

terminal dystrophin in complex with the b-DG binding site has been solved to 1.9Å 

(Huang et al., 2000). Based on the structural analysis it was found that the WW 

domain of dystrophin embeds within an adjacent EF-hand-like domain and b-DG 

binds to the surface produced from the WW domain and EF-hand domain (Huang et 

al., 2000). In addition to the presence of the EF-hand domain the interaction between 

the WW domain of dystrophin and the PPPY domain of b-DG is stabilised by Ca2+ ions 

(Ervasti and Campbell, 1991). The regulation of the interaction between dystrophin 

and b-DG occurs via phosphorylation of Y892 (discussed above), this phosphorylation 

event prevents the binding of dystrophin (Ilsley et al., 2001). 

 

Utrophin is both a structural and functional paralogue of dystrophin and is found in 

muscle and non-muscle cells. As with dystrophin, utrophin consists of a WW domain 

in the C-terminus and requires the presence of an EF-hand domain to stabilise the 



 32 

interaction. Additionally, the phosphorylation of Y892 negatively regulates the 

utrophin-b-DG interaction as phosphorylation resulted in loss of utrophin binding in 

co-immunoprecipitation (Co-IP) assays (James et al., 2000).  

 

In the early 2000’s the protein caveolin-3 was identified as WW domain containing 

protein that interacts with b-DG (Sotgia et al., 2000). Caveolin-3 is a muscle specific 

protein that associates with small invaginations of the PM known as caveolae. A 

number of other caveolin proteins also contain WW domains including caveolin-2 but 

based on Co-IP assays there is no interaction between b-DG C-terminal fragment or 

caveolin-2 (Sotgia et al., 2000). This study also suggests that caveolin-3 and 

dystrophin compete for the b-DG PPPY binding site. However, interestingly the 

interaction between caveolin-3 and b-DG is not regulated by tyrosine 

phosphorylation. This was tested with phosphorylation at both Y892 and Y886 and 

binding was unaffected by either (Sotgia et al., 2000).  

 

The Hippo pathway, identified in Drosophila, is involved in regulating organ size and 

responding to mechanical stimuli. This pathway relies on WW domain and PPxY motif 

containing proteins. Recently, b-DG has been identified as a binding partner for the 

WW domain containing proteins KIBRA and YAP. These play opposing roles in the 

Hippo pathway with KIBRA inhibiting the pathway while YAP, a transcriptional 

cofactor, is a downstream effector of the pathway. YAP was initially identified as a b-

DG binding protein in 2017 where it was shown to be involved in murine 

cardiomyocyte proliferation (Morikawa et al., 2017). More recently, a mass spec 

analysis of DG in Drosophila identified Yki (YAP homologue) and Kbr (KIBRA 

homologue) as interaction partners of b-DG (Yatsenko et al., 2020). Perhaps the most 

compelling evidence is the detailed structural analysis of the interaction between 

KIBRA and the C-terminal binding region of b-DG (Lin et al., 2019). In this paper they 

determined that highest affinity binding between WW domain and PY motifs occur 

when both tandem WW domain and tandem PY motifs are only separated by a short 

linker sequence. KIBRA and b-DG fit this category and bind with an Kd of ~96nM. The 

authors did not asses binding between YAP and b-DG but did find that the two WW 
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domains found in YAP were separated by a much longer linker sequence suggesting 

a lower affinity between b-DG and YAP compared with b-DG and KIBRA (Lin et al., 

2019). 

 

In the case of MAGI-2 and neuroligin-2, MAGI2 is a synaptic scaffold molecule while 

neuroligin-2 is a post-synaptic protein involved in the maturation of GABAergic 

synapses. Both proteins were identified in rat hippocampal neurones where they 

were demonstrated to interact with b-DG (Sumita et al., 2007). Interestingly, their 

binding was not restricted to the PPPY motif at position 889-892, they were also able 

to bind to the PPEY and APPY sequences located N-terminally of the C-terminal motif 

(Sumita et al., 2007). As with MAGI-2, MAGI-3 is a scaffold protein and contains 

tandem WW domains. These tandem WW domains allow binding with b-DG with a 

Kd of 2.7µM (Lin et al., 2019).  

 

The WW domain proteins discussed thus far are either structural proteins, in the case 

of dystrophin, utrophin, caveolin-3, MAGI-2/3 and neuroligin-2, or involved in signal 

transduction, in the case of KIBRA and YAP. WWP1 on the other hand is a protein 

that itself regulates levels of b-DG (Cho et al., 2018). It is a member of the NEDD4 E3 

ubiquitin ligase family which ubiquitinates proteins targeting them for subsequent 

degradation. Cho and colleagues found that WWP1 interacts with b-DG via the WW 

domains. Both dystrophin and utrophin compete for the binding site and decrease 

binding of WWP1. The mutation of Y831 or Y892 in b-DG resulted in decreased 

interaction, suggesting WWP1 is able to bind to either of the PY motifs. In this study 

they also investigated other members of the NEDD4 family which are also WW 

domain containing proteins, they found that WWP2, Itch, Smurf1/2, NEDD4 and 

NEDD4L all resulted in decreased levels of b-DG but a direct interaction was not 

investigated (Cho et al., 2018). Conversely, it was found that NEDD4L doesn’t interact 

with b-DG in SPOT assays, direct biochemical interactions, immunoprecipitation or 

immunofluorescence assays (Piggott, 2014). 

 



 34 

1.1.3.3.2 Proteins Containing SH3 Domains 

 

Many proteins identified as b-DG binding proteins contain a SH3 domain, SH3 domain 

containing proteins are generally involved in cell signalling resulting in the regulation 

of the cytoskeleton. SH3 domain proteins bind proline-rich regions. The SH3 domain 

proteins that interact with b-DG include Grb2 (Yang et al., 1995), Tks5 (Thompson et 

al., 2008) and vinexin (Thompson et al., 2010a) (Figure 1.4b).  

 

Grb2 is an important protein involved in signalling, by linking receptor tyrosine 

kinases with small GTP binding proteins that are involved in cytoskeletal organisation 

induced by growth factors. The b-DG-Grb2 interaction was identified in 1995. It was 

identified in both brain tissue (Cavaldesi et al., 1999) and skeletal muscle and was 

confirmed in vitro with a GST-fusion protein interaction assay and in vivo with a Co-

IP assay from rabbit skeletal muscle and brain tissue (Yang et al., 1995). The 

interaction between b-DG and Grb2 occurs between the extreme C-terminus of b-

DG and the SH3 domains of Grb2 but the N-terminal SH3 domain binds b-DG with a 

higher affinity than the C-terminal SH3 domain. The Kd of the interaction between 

the 20 amino acids at the C-terminus of b-DG and Grb2 was in the nanomolar range 

(between 240-280nM) (Russo et al., 2000). The binding site on b-DG was identified 

as the PxxP motif that overlaps with the PPxY motif involved in WW domain binding. 

Additionally, the binding of Grb2 was found to be inhibited by binding of dystrophin 

to b-DG (Russo et al., 2000).  

 

The SH3 domain protein Tks5 was identified as a b-DG interaction partner using a 

phage display library (Kärkkäinen et al., 2006). This interaction was then verified 

using a combination of Co-IP and GST pulldown assays and co-localisation was 

determined using immunofluorescence microscopy (Thompson et al., 2008). Tks5 

plays a key role in actin bundling and regulation of podosomes, which are involved in 

cell motility and extracellular matrix degradation. The Tks5-b-DG interaction is 

dependent upon phosphorylation of b-DG as the interaction requires 

phosphorylation to facilitate the interaction (Thompson et al., 2008). Other than the 
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original research by Thompson and colleagues there has been no further research 

into this interaction, thus the exact sites of interaction have yet to be described.  

 

Vinexin is a vinculin binding partner and is localised to focal adhesions, as with Tks5, 

vinexin was identified via a SH3 phage display library and was then validated using 

GST-SH3 domain affinity column, Co-IP and SPOT arrays (Thompson et al., 2010a). 

The specific vinexin-b-DG interaction occurs between the 3rd SH3 domain of vinexin 

and the proline-rich SH3 binding motif PYVP at position 891-894 which overlaps with 

the WW binding domain motif PPPY. The cytoskeletal protein vinculin was also 

associated with the b-DG-vinexin complex however, there was no direct interaction 

detected between b-DG and vinculin suggesting the b-DG-vinexin-vinculin complex 

is stabilised by vinexin binding both b-DG and vinculin (Thompson et al., 2010a). 

 

1.1.3.3.3 Proteins Containing SH2 Domains 

 

SH2 domain proteins, as with SH3 domain proteins are generally involved in signalling 

pathways. SH2 domains are capable of binding phosphorylated tyrosine residues 

which generally have a proline or leucine residue at the +3 position from the 

phosphotyrosine. There are a number of these sites present on the cytoplasmic 

domain of b-DG with the most prominent of these being the YVPP sequence (892-

895) which overlaps with the PPPY binding motif. As discussed above, Src kinase is 

responsible for the phosphorylation of tyrosine residues on b-DG and this 

phosphorylation event is responsible for switching the PPPYVPP (889-895) from a 

WW domain binding motif to a SH2 binding motif (Sotgia et al., 2001, 2003). In order 

to investigate SH2 domain proteins that bind b-DG Sotgia and colleagues (2001) 

carried out GST-tagged pulldown experiments and probed for a number of both 

catalytic and adaptor SH2 containing proteins. From this screen they identified five 

proteins that bound in a phosphotyrosine-dependent manner, these included; c-Src, 

Fyn, Csk, NCK1 and SHC1 (Sotgia et al., 2001). C-Src, Fyn and Csk are all tyrosine 

protein kinases whereas NCK1 and SHC1 are both scaffold proteins but all SH2 

domains identified are involved in signal transduction with many displaying overlap 
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between pathways that involve other b-DG binding proteins such as Grb2 and MAPK 

(Ahmed and Prigent, 2017; Chaki and Rivera, 2013). The binding of all five SH2 

domain proteins were dependent upon phosphorylation of C-terminal b-DG and 

more specifically they required the PPxY motif at the extreme C-terminus (Sotgia et 

al., 2001). 

 

1.1.3.3.4 Proteins Binding the Juxtamembrane Region of b-Dystroglycan 

 

The juxtamembrane region of b-DG refers to the region immediately following the 

TM domain and consists of a cluster enriched for the basic amino acids Arg and Lys. 

This region is located at the opposite end of the cytoplasmic domain to the WW, SH2 

and SH3 binding motifs. As with the binding motifs discussed above, the 

juxtamembrane region is capable of binding both signalling and structural proteins, 

in particular; MEK2, ERK (Spence et al., 2004a), rapsyn (Cartaud et al., 1998) and ezrin 

(Spence et al., 2004b) (Figure 1.4b).  

 

Mitogen-activated protein kinase kinase 2 (MEK2) and extracellular signal regulated 

kinase (ERK) are both involved in the Ras-Raf-MEK-ERK kinase cascade pathway 

which is involved in regulating proliferation, differentiation, migration, senescence 

and apoptosis and is mis-regulated in a number of diseases including cancers (Sun et 

al., 2015). It was determined by yeast-two-hybrid and pulldown assays that the b-DG 

interacts with both MEK2 and phosphorylated (activated) ERK1 (Spence et al., 

2004a). The exact site of b-DG-ERK1/MEK2 interaction has been predicted but not 

experimentally determined, ERK1 and MAK2 bind small clusters of basic residues 

(Tanoue et al., 2000) which are present in the juxtamembrane region of b-DG, 

additionally the juxtamembrane region has a predicted MAPK binding site (Gouw et 

al., 2018).  

 

Receptor associated protein at synapse (rapsyn) is a scaffold protein localised to the 

neuromuscular junction (NMJ) where it plays an essential role in clustering and 

anchoring the acetylcholine receptor (AChR) (Gautam et al., 1995). The interaction 
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between b-DG and rapsyn was investigated in the in Torpedo electric organ where 

there is a high concentration of AChR. Using a combination of affinity 

chromatography and ligand blot assays it was determined that the fragment 

consisting of just the juxtamembrane region of b-DG was necessary for binding of 

rapsyn (Cartaud et al., 1998). 

 

Ezrin is a protein involved in the linking of TM proteins with the actin cytoskeleton 

via an actin binding domain. The direct interaction between b-DG and ezrin was 

determined using a combination of GST pulldown and Co-IP assays (Spence et al., 

2004b). The juxtamembrane binding site was identified by mutating the RKKRK basic 

sequence to AAAAA which resulted in loss of b-DG-ezrin interaction and also resulted 

in loss of actin-rich surface protrusions within cultured cells (Spence et al., 2004b). 

This interaction is likely to be important for maintaining the connection between the 

extracellular matrix and the cytoskeleton.  

 

1.1.3.3.5 Interacting Partners with Unknown Binding Sites 

 

As evidenced above, b-DG is capable of interacting with a large number of proteins 

at both the extreme C-terminus of the cytoplasmic domain and at the 

juxtamembrane region. However, there are some proteins that have been 

demonstrated to be b-DG interacting partners, but the specific site of interaction has 

yet to be determined. These include actin (Chen et al., 2003), plectin (Rezniczek et 

al., 2007), integrinb1, tubulin, talin (Cerecedo et al., 2008), myosin IIA (Buisson et al., 

2014) and plakoglobin (Eid Mutlak et al., 2020) (Figure 1.4b).  

 

1.1.4 The Role of Dystroglycan at the Plasma Membrane 

 

1.1.4.1 Components of the Dystrophin/Utrophin Associated Protein Complex 

 

The DAPC, and the dystrophin glycoprotein complex (DGC) are interchangeable 

terms describing the PM complex that has dystrophin at its centre, additionally the 
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complex containing utrophin is termed the utrophin associated protein complex 

(UAPC). Based on personal preference the term DAPC (or UAPC) will be used 

henceforth. The DAPC contains multiple components, some of which form their own 

subcomplexes but broadly the core components can be separated into three groups 

(i) the extracellular component (ii) the membrane components, and (iii) the 

cytoplasmic components. There is only a single extracellular component of the DAPC 

and that is a-DG which interacts with extracellular proteins including laminin, 

perlecan and agrin and is non-covalently bonded to b-DG (see section 1.1.2.3). The 

membrane proteins associated with the DAPC are b-DG, sarcoglycans and sarcospan 

while the cytoplasmic proteins include dystrophin, dystrobrevins and syntrophins 

(Figure 1.5).  

 

 

Figure 1.5 Schematic of the components and organisation of the DAPC. Dystroglycan 
forms the central component of the DAPC. a-DG interacts with the ECM proteins and is 
anchored to the membrane through interactions with b-DG. b-DG then directly 
interacts with dystrophin which is the key protein in interacting and organising the 
cytoskeleton. Figure was made using BioRender. 
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1.1.4.1.1 Membrane Components 

 

The structure and interacting partners of b-DG have been discussed in detail in 

section 1.1.3. Additionally, b-DG is the predominant TM protein involved in 

anchoring the DAPC/UAPC at the PM as it provides the direct connection between 

the extracellular a-DG and the cytoplasmic dystrophin (Ervasti and Campbell, 1991; 

Ibraghimov-Beskrovnaya et al., 1992).  

 

In addition to b-DG the sarcoglycans and sarcospan make up the membrane 

components of the DAPC/UAPC. The sarcoglycans, which are single pass TM proteins, 

form a heterotetrameric complex (Chan et al., 1998) where a-, b-, g- and 𝛿-

sarcoglycan form the main complex in skeletal muscle but both ε- and ζ-sarcoglycan 

are found in the smooth muscle and replace the a- and g-sarcoglycans respectively 

(Imamura et al., 2005; Wheeler et al., 2002). Sarcospan is an additional component 

of the sarcoglycan complex and consists of four TM regions (Crosbie et al., 1997) and 

is required for stabilising interactions within the DAPC (Crosbie et al., 1999; Yoshida 

et al., 2000). 

 

1.1.4.1.2 Dystrophin and Utrophin 

 

Dystrophin is the central cytoplasmic component and the namesake for the DAPC. It 

is anchored to the PM, and the rest of the DAPC, in part by the interaction with b-DG 

as discussed in section 1.1.3.3. Dystrophin is encoded by the DMD gene which is 

controlled by three upstream promoters; the brain (Boyce et al., 1991), the muscle 

(Chelly et al., 1990) and the Purkinji (Holder et al., 1996) promoters which allow 

tissue specific expression. These promoters result in the expression of full-length 

dystrophin which is termed Dp427. In addition to upstream promoters there are four 

internal promoters which result in the expression of shorter isoforms of dystrophin 

including; Dp260, Dp140, Dp116 and Dp71, the smallest isoform Dp40 is the result of 

alternative splicing of the Dp71 transcript (D’souza et al., 1995; Górecki et al., 1992). 

The different isoforms are expressed in different tissues with Dp260 expressed in the 
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retina (D’souza et al., 1995), Dp140 expressed in both the brain and the kidney (Lidov 

et al., 1995), Dp116 expressed in the Schwann cells of peripheral nerves (Byers et al., 

1993) and Dp71 is the most abundant of all the isoforms and most uniformly 

expressed but found at highest levels in the neurones and glia within the brain (Blake 

et al., 1992). 

 

The full-length Dp427 contains four main domains: a C-terminal region which consists 

of a-helical coiled-coils (Blake et al., 1995a) which is only found in dystrophin and 

related proteins (Tinsley et al., 1992); Adjacent to the C-terminal region is the cystine-

rich domain containing the WW binding domain that interacts with b-DG (Bork and 

Sudol, 1994); The region next to the WW binding domain consists of a long flexible 

central rod domain made up of spectrin-like repeats and contains more than 2800 

amino acids arranged in triple helical repeats (Koenig and Kunkel, 1990); The final 

region is the N-terminus which contains two calponin homology (CH) regions which 

are responsible for binding actin filaments, this N-terminal domain is also referred to 

as actin binding domain 1 (ABD1) (Way et al., 1992) (Figure 1.6). The smaller 

dystrophin isoforms are lacking the N-terminal region and parts, or all, of the central 

rod domain.  

 

 

Dystrophin

N CNTR CTRCysSpectrin-like repeats

H1 H2 H3 H4

N CCTRCys

N CCTRCys

N CCTRCys

N CCTRCys

Dp427

Dp260

Dp140

Dp116

Dp71

N CCys Dp40

Utrophin

N CNTR CTRCysSpectrin-like repeats

H1 H2 H3 H4

Figure 1.6 Schematic depicting the domain organisation of different dystrophin isoforms and utrophin. 
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Dystrophin plays the essential role of binding actin filaments as part of the DAPC. The 

DAPC is capable of binding 24 actin monomers per dystrophin molecule. This is due 

to both ABD1 found in the N-terminus but also a second ABD identified in the central 

rod domain (Rybakova et al., 1996). It was found that multiple spectrin repeats were 

rich in basic residues which facilitates the interaction with actin filaments  (Amann et 

al., 1998; Rybakova et al., 2000). Investigation into the binding affinities of the 

isolated ABDs within dystrophin had a binding affinity in the µM range while full 

length dystrophin had a binding affinity in the nM range suggesting the whole protein 

is required for high affinity binding of actin (Rybakova and Ervasti, 1997). In addition 

to actin binding, the DAPC was also shown to decrease the rate of actin 

depolymerisation, thus stabilising the actin filament. The interaction between 

dystrophin and actin filaments was similar to that observed between the DAPC and 

actin suggesting that dystrophin is the key protein for the DAPC-actin interaction 

despite other members of the complex having proposed actin binding abilities 

(Rybakova et al., 1996).  

 

In addition to actin binding, dystrophin also plays a role in binding other cytoskeletal 

elements and linking them to the DAPC. Dystrophin is capable of interacting with the 

cytolinker protein plectin which is involved in linking together actin filaments, 

microtubules and intermediate filaments. The interaction between dystrophin and 

plectin occurs via the cystine-rich domain adjacent to the C-terminal domain 

(Rezniczek et al., 2007). The intermediate filament synemin has also been suggested 

to interact with dystrophin in vitro, in particular the interaction requires the central 

rod region and the interaction site overlaps the actin binding site (Bhosle et al., 2006). 

A direct interaction between dystrophin and the intermediate filament cytokeratin 

19 has been identified, this interaction involves the N-terminal ABD1 (Stone et al., 

2005, 2007). There is also indirect evidence suggesting that dystrophin is involved in 

microtubule interactions as the WW domain of dystrophin co-sediments with 

microtubules and when dystrophin is absent in mice the microtubule lattice is less 

organised than control mice (Prins et al., 2009). Taken together, these studies 

suggest that dystrophin not only binds actin but is able to interact both directly and 

indirectly with other members of the cytoskeleton. However, these interactions 
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appear to occur in regions responsible for actin binding suggesting different 

cytoskeletal components compete for dystrophin interaction sites.  

 

Dystrophin is capable of interacting with cytoskeletal proteins and other proteins 

within the DAPC, but it has also been reported that dystrophin is capable of binding 

membrane phospholipids. It was found that dystrophin lacking ABD1 was still capable 

of localising to the PM (Corrado et al., 1996), as was a construct lacking the WW 

domain required for b-DG interaction (Gardner et al., 2006). This suggests the b-DG-

dystrophin interaction is not essential for localising dystrophin to the PM. 

Dystrophin’s ability to localise to the PM is in part due to the direct interaction with 

membrane phospholipids that contain phosphatidylserine and phosphatidylcholine 

(DeWolf et al., 1997). Tryptophan residues were identified as important for the 

dystrophin-lipid interaction (Le Rumeur et al., 2003, 2007) while the coiled-coil 

region that includes repeat 1-3 strongly binds lipids and result in conformational 

changes in dystrophin which affects the binding of actin (Legardinier et al., 2008; 

Mias-Lucquin et al., 2020; Dos Santos Morais et al., 2018). 

 

Utrophin is a homolog of dystrophin with highly conserved structural organisation. 

As with dystrophin, the transcript responsible for producing utrophin is controlled by 

a number of promoter sequences both upstream and within the gene (Burton et al., 

1999; Dennis et al., 1996) and there is also evidence suggesting shorter isoforms of 

utrophin are produced (Blake et al., 1995b; Lumeng et al., 1999; Wilson et al., 1999). 

The full length utrophin protein consists of the same domains as dystrophin including 

the C-terminal a-helical coiled coils, an adjacent cystine-rich region involved in 

binding b-DG, a central rod domain consisting of spectrin-like repeats and an N-

terminal ABD (Blake et al., 1992; Khurana et al., 1990; Love et al., 1991) (Figure 1.6).  

 

As with dystrophin, utrophin is capable of binding other DAPC/UAPC proteins 

including b-DG which is discussed above (James et al., 2000), sarcoglycans 

(Matsumura et al., 1992), a-dsytrobrevin-1 (Peters et al., 1998) and syntrophins 

(Kramarcy et al., 1994; Peters et al., 1997a). The C-terminal ABD domain of utrophin 
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is very similar to the ABD of dystrophin (Keep et al., 1999a, 1999b; Moores et al., 

2000) and binds with high affinity to actin filaments (Winder et al., 1995). However, 

utrophin does not appear to have the ABD2 present in the central rod domain of 

dystrophin, it lacks the basic repeat region present in dystrophin (Amann et al., 

1999). Despite this, utrophin is still capable of binding actin with high affinity and 

with a ratio of 14 actin monomers for every 1 utrophin molecule (Rybakova et al., 

2002). The interactions between dystrophin and cytolinker plectin and the 

intermediate filament synemin are also found in utrophin (Bhosle et al., 2006; 

Rezniczek et al., 2007). However, the indirect interaction between dystrophin and 

microtubules was not observed for utrophin (Belanto et al., 2014). 

 

1.1.4.1.3 Additional Cytoplasmic Components 

 

The two key cytoplasmic components of the DAPC/UAPC other than 

dystrophin/utrophin are dystrobrevin and syntrophin. There are two types of 

dystrobrevins; a- and b-dystrobrevins which are encoded by the DTNA and DTNB 

genes respectively (Blake et al., 1996; Peters et al., 1997b). Both a- and b-

dystrobrevins have homology with the cystine-rich C-terminal region of dystrophin 

which contains the WW domain (Ambrose et al., 1997; Blake et al., 2002; Loh et al., 

1998). Dystrobrevins are capable of binding DAPC/UAPC components dystrophin 

(Butler et al., 1992; Sadoulet-Puccio et al., 1997; Suzuki et al., 1992), utrophin 

(Nawrotzki et al., 1998), sarcoglycans (Yoshida et al., 2000) and syntrophins (Dwyer 

and Froehner, 1995), in addition to cytoskeletal components synemin (Mizuno et al., 

2001), syncoilin (Newey et al., 2001; Poon et al., 2002), desmin (Sandoval et al., 

1983), a-actinin (Bellin et al., 1999) and vinculin (Bellin et al., 2001). 

 

The syntrophin family consists of a-, b- and g-syntrophins and each of these are 

expressed in different tissues (Adams et al., 1993; Ahn et al., 1996; Peters et al., 

1997a; Piluso et al., 2000). The syntrophins contain a PDZ binding domain as well as 

a domain unique to syntrophins termed SU domain. As with dystrobrevins, 

syntrophins are capable of binding DAPC/UAPC components including dystrophin, 
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utrophin (Ahn and Kunkel, 1995; Suzuki et al., 1995) and dystrobrevin (Dwyer and 

Froehner, 1995; Newey et al., 2000) while also able to interact directly with the actin 

cytoskeleton (Iwata et al., 2004).  

 

1.1.4.2 Functions of the DAPC/UAPC 

 

1.1.4.2.1 Mechanical Support of the Sarcolemma 

 

As discussed above dystrophin and the DAPC are localised at the sarcolemma 

(Zubrzycka-Gaarn et al., 1988) where it makes up, along with integrins, the costamere 

which links the basal lamina to the sarcomere within the muscle fibre (Porter et al., 

1992; Straub et al., 1992). This physical connection occurs via the basal lamina 

components interacting with a-DG, a-DG in turn binding b-DG and associating with 

the sarcoglycan-sarcospan subcomplex, the b-DG-sarcoglycan-sarcospan TM 

complex interacts with dystrophin, dystrobrevin and syntrophins which in turn 

interact with the cytoskeleton linking the whole complex with the sarcomere. (Figure 

1.5) The loss of the central dystrophin molecule results in the general loss of the 

DAPC components and reduces this linkage. The mdx mouse model lacks the 

dystrophin gene and many muscle specific phenotypes have been described 

including reduced force generation (Consolino and Brooks, 2004; Dellorusso et al., 

2001), increased permeability to membrane impermeable dyes following force 

generation (Petrof et al., 1993), increased release of creatine kinase (Bulfield et al., 

1984), increased centrally nucleated fibres (Coulton et al., 1988) which is an indicator 

of muscle fibre regeneration and increased muscle fibre necrosis (Matsuda et al., 

1995) compared with control mice. Together this data suggests that the loss of DAPC 

at the sarcolemma results in muscle damage which emphasises the role the DAPC 

plays in maintaining muscle membrane integrity. 

 

1.1.4.2.2 Non-mechanical Roles of DAPC/UAPC 
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The DAPC/UAPC is known to play an essential role in synaptic formation and 

organisation, particularly in the NMJ. The NMJ is a specific synapse that is formed 

between the neurone and the muscle. The role of the DAPC/UAPC at the NMJ 

involves the binding of agrin to a-DG, this binding event results in the localisation of 

the DAPC/UAPC to the NMJ in addition to the rapsyn-dependent clustering of 

DAPC/UAPC with AChR (Gautam et al., 1995; Rybakova et al., 2002).  

 

A great deal of research has gone into understanding the interactions and the 

functional role of DAPC/UAPC and membrane channels; including ion channels and 

aquaporins (AQP). It is apparent that the interaction between the DAPC/UAPC and 

these channels is predominantly mediated through the syntrophins, and particularly 

via their PDZ domains. The DAPC/UAPC has been shown to interact with voltage-

gated channels such as Nav1.5 (Gavillet et al., 2006); non-voltage-gated ion channels 

such as TRPC1 (Vandebrouck et al., 2006) and TRPC4 (Sabourin et al., 2009); inward-

rectifier potassium channels such as Kir4.1 (Connors et al., 2004); and aquaporins, 

specifically AQP4 (Amiry-Moghaddam et al., 2003; Neely et al., 2001). 

 

1.1.5 Dystroglycan and Disease 

 

1.1.5.1 Muscular Dystrophy  

 

Muscular dystrophies (MD) are characterised generally by muscle weakness and 

wasting and can include ocular or mental abnormalities. The most common type of 

childhood MD is Duchenne MD and is caused by a lack of dystrophin resulting in loss 

of the DAPC (Ervasti et al., 1990). As well as dystrophin, mutations in other 

DAPC/UAPC components can also lead to various types of MDs (Duclos et al., 1998). 

However, here we focus on MDs caused by mutations in DG or mutations in proteins 

involved in the regulation and post-translational modifications of DG – together 

these diseases are termed dystroglycanopathies.  
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1.1.5.1.1 Dystroglycanopathies 

 

Based on the Online Mendelian Inheritance in Man (OMIM) categorisation of 

diseases, muscular dystrophy dystroglycanopathies (MDDG) can be separated into 

three classes; (A) congenital MD (CMD) with brain/eye abnormalities, (B) CMD with 

mild brain abnormalities and (C) limb-girdle MD (LGMD) with A being the most and 

C being the least severe. The cause of MDDGs is predominantly hypoglycosylation of 

a-DG which reduces the ligand binding affinity and destabilises the ECM-

cytoskeleton link. They can also be classified as 1°, 2° and 3° dystroglycanopathies, 

depending on whether mutations affect dystroglycan itself, genes involved in the 

glycosylation of dystroglycan or genes involved in the metabolic pathways supplying 

precursors for the glycosylation enzymes. 

 

One of the most severe forms of MDDG is Walker-Warburg syndrome (WWS) which 

is a CMD and often results in death before the age of 1 year old. There has been one 

recorded example of WWS being caused by a mutation in DAG1. This mutation was 

a deletion of a cytosine at position 743 identified in 5 patients within a family, the 

deletion resulted in an absence of both a- and b-DG subunits (Riemersma et al., 

2015). Other mutations have been identified in a number of enzymes involved in a-

DG glycosylation (see section 1.1.2.2) including; POMT1 (Beltrán-Valero de Bernabé 

et al., 2002), POMT2 (Van Reeuwijk et al., 2005), fukutin (Beltrán-Valero de Bernabé 

et al., 2003), FKRP (Beltran-Valero de Bernabé et al., 2004), LARGE (van Reeuwijk et 

al., 2007), POMGNT2, POMK (Jae et al., 2013) and B3GALNT2 (Al Dhaibani et al., 

2018). WWS is clearly a heterogenous disease based on the number of gene 

mutations associated, however, it has been shown that the relationship between 

disease severity and a-DG glycosylation is also heterogenous. Patients with 

mutations in POMT1, POMT2 or POMGNT1 have good correlation between a-DG 

glycosylation and disease severity whereas patients with mutations in fukutin or 

FKRP have no significant relationship between a-DG glycosylation and disease 

severity (Jimenez-Mallebrera et al., 2009). However, generally patients with WWS 

have reduced levels of a-DG glycosylation (Beltrán-Valero de Bernabé et al., 2002). 
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Muscle-eye-brain (MEB) disease, as with WWS, is a severe CMD but with additional 

ocular defects or symptoms of epilepsy and lissencephaly. Patients life expectancy 

varies between 10-30 years (Santavuori et al., 1989). As with WWS there has only 

been one documented account of a mutation in DAG1 resulting in MEB disease (Geis 

et al., 2013). The mutation (c.2006G>T) is a missense mutation that results in a 

phenylalanine replacing a cystine at position 669 which is located within the b-DG 

subunit (Geis et al., 2013). This mutation has been investigated at the cellular level 

using the equivalent mutation in murine DG. Signorino and colleagues found that the 

mutation resulted in accumulation of the uncleaved precursor protein in the ER 

(Signorino et al., 2017). MEB disease is also a heterogenous disease as mutations 

have been identified in the a-DG processing enzymes; POMT2 (Mercuri et al., 2006), 

FKRP (Beltran-Valero de Bernabé et al., 2004) and POMGNT2 (Yoshida et al., 2001). 

These mutations result in the hypoglycosylation of a-DG (Kano et al., 2002).  

 

Fukuyama-type congenital muscular dystrophy (FCMD) is found almost exclusively in 

Japanese patients and is classified as an autosomal recessive disorder that can result 

in muscle, neuronal and eye abnormalities (Toda et al., 2000). The gene involved in 

this type of CMD is almost exclusively fukutin with the majority of patients having a 

3kb insertion into the 3’ untranslated region resulting in reduced mRNA stability and 

reduced protein levels (Kobayashi et al., 1998). As with other CMDs described above, 

FCMD results in a decrease in glycosylation of a-DG (Hayashi et al., 2001). 

 

LGMD is less severe than the other MDs discussed here but is still characterised by 

muscle weakness and sometimes associated with cardiomyopathy and mental 

insufficiency (eg LGMD2I). The disease onset ranges from adolescence to adulthood 

(Brockington et al., 2001). Two separate mutations in DAG1 have been found in 

patients with LGMD. In 2011 Hara and colleagues identified a missense mutation 

resulting in the substitution of a threonine residue for a methionine at position 192 

located in the a-DG subunit (Hara et al., 2011). The mutation was identified in a 

woman with LGMD who displayed some cognitive impairment. They further 
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characterised the mutation by investigating the equivalent mutation in a murine 

model and found the mutation prevents LARGE binding, thus inhibiting a-DG 

glycosylation (Hara et al., 2011). The second DAG1 mutation was identified more 

recently in 2018 by Dai and colleagues. They identified a homozygous missense 

mutation in a 64 year old Chinese male who suffered from mild LGMD. The mutation 

(c.2326C>T) results in the substitution of arginine for cystine at position 776. This 

substitution is within the NLS signal region of b-DG, however based on 

immunoblotting evidence the mutation significantly reduced levels of a-DG (Dai et 

al., 2018). In addition to mutations in DAG1, mutations have also been identified in 

FKRP (Brockington et al., 2001) and POMK (Strang-Karlsson et al., 2018). In LGMD 

patients instead of a complete absence of DG there appears to be a reduction in 

molecular mass suggesting glycosylation is reduced (Brown et al., 2004). 

 

In addition to those discussed above, two additional DAG1 mutations have been 

identified in a 7 year old male patient. However, he shows very mild MD phenotype 

with no evidence of muscle weakness or wastage. There is immunohistological 

evidence including few regenerating fibres and mild fibrosis that are suggestive of a 

MD phenotype. Both mutations, V74I and D111N, are located within the N-terminus 

of a-DG and resulted in reduced a-DG glycosylation. The reduced glycosylation 

phenotype was tested in DAG1 knockout cell lines and neither of the mutant forms 

rescued the phenotype but both resulted in regular expression and localisation of b-

DG (Dong et al., 2015). 

 

1.1.5.2 Cancer 

 

The interactions between cells and the ECM are important when it comes to the 

progression of many cancer types, a loss or reduction in connectivity can result in 

tumour cell metastasis. With DG playing a key role in connecting cells with the ECM 

it is logical to assume that a reduction of DG or impaired function would lead to 

increased tumour metastasis. DG was first implicated in having a role in cancer as 

early as 1993 when it was determined that the DAG1 gene was mapped to a genomic 
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region suggested to be involved in tumour suppression (Ibraghimov-Beskrovnaya et 

al., 1993). Since then, a number of reports have focused on the expression and 

localisation of DG in many cancer cell types. High-grade primary prostate and breast 

cancers showed reduced levels of DG (Henry et al., 2001). Sgambato and colleagues 

also looked at breast cancers and colon cancers and found that levels of DG were 

reduced compared to control tissue. Interestingly, they find that the mRNA levels are 

unaffected but protein levels are decreased suggesting an increase in protein 

degradation, they also suggest that levels of DG negatively correlate with tumour 

grade and stage (Sgambato et al., 2003).  

 

The above studies have looked at DG as a whole, while some studies have decided to 

focus on either a- or b-DG. Sgambato and colleagues looked at the levels of a-DG in 

cervical, vulval and squamous tumours. They found in normal control cells more than 

80% were a-DG positive while this decreased depending on grade and invasiveness 

with only 2.6% of invasive cervical tumours being a-DG positive (Sgambato et al., 

2006). Shen et al (2012) investigated the expression of a-DG in gastric cancer and 

found that levels of DG decreased during tumour progression. They also found that 

a-DG expression correlated with patient survival, however, b-DG expression did not 

(Shen et al., 2012). In addition to a-DG protein levels, Shimojo et al (2011) 

investigated levels of a-DG glycosylation in prostate cancer. They argue that it is in 

fact a reduction in glycosylation which results in a decrease in laminin binding that 

correlates with increased tumour stage rather than a decrease in a-DG protein levels 

(Shimojo et al., 2011). Taken together, this data suggests that both a-DG protein 

levels and glycosylation states play a role in the progression of various types of 

cancer.  

 

b-DG has also been investigated for its role in various cancer cell types – some studies 

have focused on the relative protein levels while others have focused on various 

post-translational modifications. When levels of b-DG in oesophageal tumours were 

compared with healthy tissue it was found that the protein levels were decreased in 

the tumour cells however, the levels of mRNA were unchanged suggesting increased 
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degradation (Parberry-Clark et al., 2011) This was also observed in oral cancers with 

MMPs being implicated as the mechanism for b-DG degradation (Jing et al., 2004). 

Additionally, in a large scale study it was found that b-DG expression in oesophageal 

and colorectal adenocarcinomas, uretic transitional cell carcinoma and breast cancer 

was reduced or absent (Cross et al., 2008) while it was found in prostate cancer that 

b-DG expression was decreased and then re-expressed following metastasis 

(Mathew et al., 2013). 

 

As well as altered levels of b-DG in multiple cancer types there have been a number 

of reports of increased b-DG cleavage in cancer cells. The 30kDa fragment (discussed 

in section 1.1.3.2.3) was found to be expressed at higher levels in human breast 

cancer cell lines compared with controls. However, when they investigated a number 

of cancer cell lines some only had the 30kDa fragment, some had both the 43kDa and 

30kDa fragment and some simply had the 43kDa fragment (Losasso et al., 2000). 

Building on this, Cross et al (2008) found one prostate cancer cell line (PC3) had just 

the 43kDa fragment while another prostate cancer cell line (DU145) had both the 

30kDa and 43kDa fragments suggesting the differential cleavage of b-DG is not a 

universal sign of cancer. Additionally, Mitchell et al (2013) looked at the prostate cell 

line LNCaP and found that the cleavage events were cell density dependent. Work 

from the Winder lab suggest that the cleavage of b-DG in various cancer cells results 

in the localisation of the 30kDa fragment to the nucleus, however, the role the b-DG 

fragments may play in the nucleus of cancer cells has yet to be investigated (Mathew 

et al., 2013; Mitchell et al., 2013). 

 

1.2 Nuclear Dystroglycan 

 

1.2.1 Dystrophin Associated Protein Complex in the Nucleus 

 

Components of the DAPC were identified as nuclear, following the discovery of 

isoforms of Dp71 that appeared to preferentially localise to the nucleus of C2C12 

myoblasts and N1E-115 neuroblastoma cell lines (González et al., 2000). The two 
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isoforms were initially termed Dp71f and Dp71d; Dp71f was spliced at exon 78 while 

Dp71d was not (Aleman et al., 2001). Both isoforms were found in the nucleus but to 

varying degrees. The allocations of Dp71f and Dp71d were further divided into sub-

groups (Aragón et al., 2016) but we will discuss them in terms of Dp71f and Dp71d 

below. The nuclear localisation of Dp71 was further investigated by Marquez and 

colleagues in a study of PC12 neuronal cells. They found that during differentiation 

of PC12 cells the Dp71f was localised throughout the cell while Dp71d was localised 

almost exclusively to the nucleus (Marquez et al., 2003). In addition to the 

predominantly cytoplasmic localisation of Dp71f and nuclear localisation of Dp71d 

identified in C2C12, N1E-115 (González et al., 2000) and PC12 (Marquez et al., 2003) 

cells, this localisation difference is also observed in HeLa (Fuentes-Mera et al., 2006), 

a variety of mammary epithelial (Oppizzi et al., 2008), hippocampal neurone 

(Rodríguez-Munoz et al., 2015) and HEK293 (Nishida et al., 2016) cell lines. The 

nuclear import of Dp71d is not dependent upon a classical NLS but is instead 

dependent upon a ZZ domain, specifically ZZ-4 and requires Zn2+ to facilitate the 

import. Importin a2 and b1 were identified as the key importins required for nuclear 

localisation while CRM1 was required for nuclear export (Suárez-Sánchez et al., 

2014).  

 

While it is evident that Dp71, particularly Dp71d, localises to the nucleus of multiple 

cell types there is still limited understanding as to the physiological function of this 

localisation. Multiple studies have investigated the localisation of other DAPC 

components in order to determine whether Dp71 functions as part of a nuclear DAPC 

or if it has an independent nuclear function. To this end it was found that b-DG, b-

sarcoglycan, a/b-dystrobrevin, a/b-syntrophin and nNOS were identified in the 

nucleus of HeLa cells and found to form a nuclear DAPC complex (Fuentes-Mera et 

al., 2006); b-DG, a/b-dystrobrevin and a/b-syntrophin formed a DAPC in the nucleus 

of PC12 cells while a-, b- and 𝛿-sarcoglycan were not identified in the nucleus 

(Villarreal-Silva et al., 2010); b-DG, a/b-dystrobrevin and a/b-syntrophin also 

associate to form a nuclear DAPC in hippocampal neurones (Rodríguez-Munoz et al., 

2015). Additionally, the nuclear DAPC components were analysed in C2C12 
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myoblasts and C2C12 myotubes where it was found that a nuclear DAPC was present 

in both myoblasts and myotubes despite a lack of Dp71 expression in myotubes 

(Gonzalez-Ramirez et al., 2008). Taken together this evidence would suggest that 

nuclear Dp71 is associated with a nuclear DAPC in a range of cell lines and that the 

association of a nuclear DAPC does not explicitly require Dp71. 

 

In addition to determining whether Dp71 is associated with a nuclear DAPC a number 

of other studies have focused on understanding the role of Dp71 in the nucleus by 

studying the localisation within the nucleus, protein interactions and the 

consequences of perturbing Dp71 expression. In determining the localisation of Dp71 

within the nucleus Fuentes-Mera and colleagues used a high salt extraction method 

on HeLa cells to isolate the nuclear matrix which consists of the structural nuclear 

lamins, in addition to other proteins. Using this method they identified that Dp71, b-

DG and b-dystrobrevin associated with the nuclear matrix and also identified 

interactions between Dp71 and lamin B1 (Fuentes-Mera et al., 2006). In addition to 

HeLa cells, this interaction between Dp71 and lamin B1 was also implied in PC12 cells 

where Dp71 and lamin B1 were found to colocalise (Rodríguez-Muñoz et al., 2008; 

Villarreal-Silva et al., 2011). In addition to the interaction between Dp71 and lamin 

B1, Suarez-Sanchez and colleagues identified an interaction between Dp71 and the 

nuclear envelope (NE) protein emerin using Co-IP assays. Taken together this 

evidence would suggest that Dp71 localises just inside the NE where it associates 

with the nuclear lamina protein lamin B1 and the NE protein emerin.  

 

A number of studies have investigated the physiological effects of perturbing Dp71 

expression, an important point here is that the methods used resulted in the 

depletion of all Dp71 isoforms not just the predominantly nuclear Dp71d isoform. It 

was found that upon depletion of Dp71 in PC12 cells there was a decrease in total 

levels of b-DG, a/b-dystrobrevin and ε-sarcoglycan while levels of a1-syntrophin 

were unaffected but the localisation shifted to mostly nuclear (Villarreal-Silva et al., 

2010). When Dp71 depleted cells were compared with suitable controls they were 

found to have decreased cell proliferation but no difference in cell death. The 

depletion of Dp71 results in an increased number of cells in G0/G1 with delayed 
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G0/G1 to S phase transition. The Dp71 depleted cells also have a decrease in the 

levels of lamin B1 and no effect on levels of emerin or lamin A/C (Villarreal-Silva et 

al., 2011). Additionally, there is weak evidence suggesting that emerin may be 

mislocalised in Dp71 depleted cells (Suárez-Sánchez et al., 2014; Villarreal-Silva et al., 

2011). As the depletion of Dp71 results in the depletion of other nuclear DAPC 

components including b-DG it is important to determine whether the decrease in 

Dp71 is responsible for these observable phenotypes, or if it is the subsequent 

depletion of another DAPC component. 

 

1.2.2 Nuclear Import and Export of b-dystroglycan 

 

As described above, b-DG is translocated to the nucleus either independently or as 

part of a nuclear DAPC. However, a number of studies have aimed to understand the 

precise nuclear translocation pathway of b-DG. The initial study into the nuclear 

translocation of b-DG identified a bipartite NLS in the juxtamembrane position that 

consists of the sequences 776RKKRKGK782 and 793KK794 (Oppizzi et al., 2008). The 

mutation of these sequences resulted in a predominant cytoplasmic localisation. It 

was also identified that the nuclear translocation of b-DG was independent of 

glycosylation and precursor protein cleavage (Oppizzi et al., 2008). The presence and 

function of the NLS was also confirmed by Lara-Chacon and colleagues but they 

suggest only the 776RKKRKGK782 sequence was required and not the 793KK794 (Lara-

Chacón et al., 2010), this was also confirmed using mutational analysis. In this study 

they went a few steps further in identifying the import pathway by confirming the 

NLS sequence was able to translocate a tetra-GFP construct to the nucleus suggesting 

the sequence is solely responsible for nuclear translocation and is not dependent 

upon the rest of the b-DG protein. Through sequential mutational experiments they 

determined that the R779 and K780 were the key residues responsible for nuclear 

import. Additionally, it was determined that nuclear import was dependent upon 

nuclear pore complex (NPC) function and Ran activity and is mediated by an 

interaction between the NLS of b-DG and importin a/b with a KD of <1nM (Lara-

Chacón et al., 2010). 
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The importin a/b interaction with the NLS of b-DG was confirmed by another group 

who also found that the cytoskeletal organisation protein ezrin bound to the NLS of 

b-DG. However, when constitutively active ezrin was used there was an increase in 

nuclear localisation of b-DG while inactive ezrin resulted in cytoplasmic accumulation 

(Vásquez-Limeta et al., 2014). Mutation of the ezrin NLS did not inhibit nuclear 

accumulation of b-DG however, the deletion of the actin binding domain of ezrin did, 

suggesting that cytoskeletal organisation may play a role in the translocation of b-DG 

to the nucleus, this was validated by cytoskeletal disruption using cytochalasin B 

(Vásquez-Limeta et al., 2014).   

 

In order to determine whether the nuclear pool of b-DG was being internalised at 

the PM or was simply transported to the nucleus following post-translational 

modifications, non-permeable biotinylation experiments were carried out (Gracida-

Jiménez et al., 2017; Vásquez-Limeta et al., 2014). It was found that the nuclear b-

DG was in part generated from the PM. In an elegant set of experiments, it was 

successfully shown that b-DG had to pass from the ER to the Golgi before it is 

transported to the nucleus. It is also shown that the PM pool of b-DG then goes 

through clathrin-mediated endocytosis where it then enters the ER. The protein 

Sec61b is then required, through direct interactions, to export b-DG from the ER into 

the cytoplasm where it can then interact with Impa/b and be transported through 

the NPC into the nucleus (Gracida-Jiménez et al., 2017). Ultimately, the model for the 

translocation of b-DG to the nucleus is a retrograde one where it has to be 

transported to the PM where it is then internalised, incorporated into the ER and 

then released to the cytoplasm where it can ultimately enter the nucleus through the 

NPC with the assistance of Impa/b (Figure 1.7). 
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Figure 1.7 Schematic illustrating the trafficking of b-DG from the PM to the NE via the ER. Nuclear translocation 
of b-DG involves the retrograde trafficking from the PM to the NE. b-DG is post-translationally modified in the ER 
and then transported to the PM. At the PM b-DG is internalised and either transported to the NE or degraded. b-
DG transport into the nucleus requires a NLS and interacts directly with importin a/b. 

  

It has been established previously that phosphorylated b-DG, specifically 

phosphorylation at Y892, results in the increased internalisation of b-DG (Lipscomb 

et al., 2016; Sotgia et al., 2001). Thus, it stands to reason that phosphorylation may 

play a role in the nuclear translocation. However, there are conflicting results in the 

literature. In one study a phosphatase inhibitor is used to increase levels of 

phosphorylated b-DG and found an increased nuclear accumulation (Lara-Chacón et 

al., 2010). Furthermore, they used a mutant which replaced the Y892 with a 

phenylalanine which cannot be phosphorylated and somewhat surprisingly also 

found nuclear accumulation (Lara-Chacón et al., 2010). One experiment suggests 

unphosphorylated b-DG results in nuclear accumulation while the other suggests 

phosphorylation of b-DG results in nuclear accumulation. Additional evidence is 

found in the form of using a c-Src inhibitor, as c-Src is one of the kinases responsible 

for b-DG phosphorylation, inhibition of c-Src results in decreased phosphorylation of 

b-DG. This decrease in phosphorylation results in a decrease in nuclear b-DG 

suggesting phosphorylation may be required for nuclear translocation to the nucleus 

(Gracida-Jiménez et al., 2017). Taken together, these three experiments suggest a 

slightly different explanation than either author suggested. It would seem that while 

phosphorylation may be important for nuclear accumulation of b-DG it is not at the 

nucleoplasm

cytoplasm

ECM
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Y892 site and may be one, or a combination of other phosphorylation sites 

responsible for this regulation.  

 

There are some similarities between the nuclear import of Dp71 (see section 1.2.1) 

and b-DG, primarily the interaction between the protein and Impa/b which 

facilitates the translocation through the NPC. Additionally, there are some 

similarities between the nuclear export of Dp71 and b-DG, namely the interaction 

with the nuclear exporter CRM1 (Suárez-Sánchez et al., 2014; Vélez-Aguilera et al., 

2018). Nuclear accumulation of b-DG occurs when cells are treated with leptomycin 

B (LMB) which specifically inhibits CRM1. A direct interaction between b-DG and 

CRM1 was also demonstrated using multiple pull-down assays. This interaction 

occurs between the nuclear export signal (NES) of b-DG and CRM1. The NES is located 

within the transmembrane region consisting of 763ILLIAGIIAM772 where 763ILL765 were 

determined to be the key hydrophobic residues - based on mutation experiments. 

Given the NES is located within the transmembrane region it was also shown that 

nucleoplasmic b-DG had a much higher turnover rate than the PM pool (Vélez-

Aguilera et al., 2018). 

 

1.2.3 Role of b-dystroglycan in the Nucleus  

 

1.2.3.1 Nuclear Structure and Nuclear Protein Interactions 

 

It is clear that b-DG is present in the nucleus and that it localises to the NE via the TM 

domain. Given that the NE is a double membrane it needs to be determined whether 

b-DG resides in both the outer nuclear membrane (ONM) and the inner nuclear 

membrane (INM) or if it is actually restricted to one of these. Using immuno-electron 

microscopy, it was determined that nuclear b-DG localises to just the INM and wasn’t 

found at the ONM. Interestingly, when the soluble nuclear proteins were removed 

by an extraction buffer b-DG remained and appeared to be associated with the 

nucleoskeleton (Martínez-Vieyra et al., 2013). Additionally, nuclear b-DG has been 
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identified in the nucleoplasm and at the nucleoli (Azuara-Medina et al., 2019; 

Martínez-Vieyra et al., 2013). 

 

The nucleoskeleton, as the name implies, makes up the structural component of the 

nucleus and is responsible for the overall shape and integrity of the nucleus in 

addition to being responsible for the mechanical properties. The key components of 

the nucleoskeleton are the lamins, lamins are type V intermediate filaments and are 

divided into A and B types. Both types form a meshwork of oligomers just below the 

NE where they are anchored to both the NE and the chromatin via protein 

interactions (Nmezi et al., 2019; Ranade et al., 2019; Shimi et al., 2015). As b-DG is 

an INM protein it is suggested that it may be involved in anchoring the lamins to the 

NE thereby ensuring the shape and integrity of the nucleus. It has been shown that 

when DG is perturbed, either by specific knockdown (KD) of b-DG or by knockout 

(KO) of the DAG1 gene, there is a resultant disruption to the nuclear shape. In the KD 

experiment there was a significantly higher proportion of nuclei determined 

abnormal, this included nuclei that had irregular shape, nuclear blebbing or was 

either double or half the size of the control nuclei (Martínez-Vieyra et al., 2013). This 

result was confirmed in the KO experiments; a significantly higher proportion of 

abnormal nuclei in the KO condition compared with the control were observed – 

abnormal was defined as fissured, kidney shaped or blebbed (Gómez-Monsiváis et 

al., 2020). An additional study of DG KO cells confirmed these observations, they 

found that a significantly higher proportion of KO nuclei have nuclear blebs (8% and 

10% for the KO samples and just 4% for the control), KO nuclei also have a 

significantly lower nuclear circularity compared with the controls and have a 

significantly larger nuclear area (Jimenez-Gutierrez et al., 2020). These experiments 

were all carried out in mouse C2C12 myoblasts. Taken together these perturbation 

experiments strongly suggest b-DG plays a role in the maintenance of nuclear shape 

and integrity in C2C12 myoblasts. 

 

As it is clear that b-DG is localised to various regions within the nucleus it is important 

to understand its various interacting partners in order to understand its function. 
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Using a combination immunofluorescence microscopy and classical biochemical 

techniques a number of binding partners have been identified. A direct interaction 

has been determined between b-DG and p80-coilin which is a protein associated with 

Cajal bodies within the nucleus (Martínez-Vieyra et al., 2013). Additional interactions 

have been identified between b-DG and a number of nucleoli proteins including 

Nopp140 (Martínez-Vieyra et al., 2013), upstream binding factor (UBF) and B23 

(Azuara-Medina et al., 2019). However, no direct interaction could be detected 

between b-DG and RNA polymerase I or SC35 a marker protein for splicing speckles. 

Additionally, no interaction could be confirmed between b-DG and the nuclear pore 

complex proteins Nup62 or Tpr. As b-DG was extracted as part of the insoluble 

nucleoskeleton it would be expected that it interacts with at least one component of 

the nuclear lamina. b-DG has been shown in multiple assays that it interacts directly 

with lamin A/C and lamin B1 (Martínez-Vieyra et al., 2013). In addition to the nuclear 

lamina, b-DG has been shown to interact directly with the INM protein emerin which 

also plays a role in connecting the nuclear lamina to the INM (Gómez-Monsiváis et 

al., 2020; Martínez-Vieyra et al., 2013). 

 

1.2.3.2 Regulation and Localisation of Emerin and Lamin B1 

 

1.2.3.2.1 Lamin B1 

 

As discussed above lamin B1 was identified as an interacting partner of Dp71 as well 

as b-DG. More recent studies have also confirmed the interaction between b-DG and 

lamin B1 and have also investigated how perturbing b-DG (or DG) affects the 

regulation and localisation of lamin B1. When investigating the effects on lamin B1 

following b-DG (or DG) perturbation either by KD, KO or use of a NES mutant resulting 

in excessive nuclear accumulation, it is reported that the overall protein levels of 

lamin B1 are reduced compared with controls (Gómez-Monsiváis et al., 2020; 

Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 2018). Despite the reduction in 

protein levels the mRNA transcript levels are unaffected suggesting that a lack of b-

DG may reduce the stability of lamin B1 resulting in faster turnover. This was indeed 
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confirmed in the NES mutant study where accumulation of nuclear b-DG resulted in 

accelerated protein turnover via the nuclear proteosome (Vélez-Aguilera et al., 

2018).  

 

The DG perturbation studies described have also identified mislocalisation of lamin 

B1 and some phenotypes associated with lamin B1. When b-DG was specifically 

knocked down it was found that lamin B1 was mislocalised from the nucleus and 

formed distinct aggregates surrounding the nucleus (Martínez-Vieyra et al., 2013). 

This same abnormal staining was observed upon nuclear accumulation of b-DG via 

the NES mutant (Vélez-Aguilera et al., 2018). These two studies taken together 

suggest that it isn’t just a decrease in b-DG levels responsible for maintaining correct 

lamin B1 localisation but also an increase which implies that the nuclear levels of b-

DG are finely tuned and disruption of this results in inappropriate localisation of 

lamin B1.  

 

It is important to note that despite lamin A/C being implicated as a binding partner 

of b-DG there is no evidence that reducing or eliminating b-DG results in a decrease 

in levels of lamin A/C or any abnormal localisation. However, it does appear that the 

nuclear accumulation of b-DG results in a decrease in total levels of lamin A/C but 

has no effect on mRNA levels or the protein localisation (Martínez-Vieyra et al., 2013; 

Vélez-Aguilera et al., 2018). 

 

1.2.3.2.2 Emerin 

 

As with lamin B1, emerin has been identified as a binding partner for b-DG in multiple 

studies and the mechanism of that interaction has been further elucidated. The 

interaction between the two NE proteins is facilitated primarily through their TM 

domains but additional regions – particularly the C-terminus of emerin – are required 

for tighter binding. The key residues within the TM domains, Met770 and Thr751 for 

b-DG and Ala238 and Phe236 for emerin were determined by computer modelling 

but are yet to be confirmed through mutagenesis assays. The dissociation constant 
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for the interaction between full-length b-DG and full-length emerin is 3.32nM as 

determined by surface plasmon resonance implying a very strong interaction 

(Gómez-Monsiváis et al., 2020).   

 

Multiple studies have investigated the effects on emerin caused by perturbing b-DG 

(or DG) and the results are similar to those observed for lamin B1. The KD, KO or 

nuclear accumulation of b-DG (or DG) resulted in a decrease in overall emerin levels 

with no effect on the mRNA levels (Gómez-Monsiváis et al., 2020; Martínez-Vieyra et 

al., 2013; Vélez-Aguilera et al., 2018). The turnover of emerin was also shown to be 

increased in DG KO cells suggesting a decrease in protein stability as observed for 

lamin B1. Interestingly, in Emery-Dreifuss muscular dystrophy (EDMD) patient 

samples lacking emerin there was a decrease in levels of b-DG and NE staining 

suggesting the regulation and localisation may be reciprocal (Gómez-Monsiváis et al., 

2020). 

 

As with lamin B1, the localisation of emerin was disrupted in b-DG (or DG) perturbed 

cells. These cells displayed an emerin staining pattern similar to lamin B1 upon DG 

perturbation with aggregates forming both within and around the nucleus and a 

distinct loss of the NE ring staining (Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 

2018).  

 

Emerin is required for a number of processes within the nucleus and essential for 

correct cell functioning. These include the maintenance of the centrosome 

(Salpingidou et al., 2007) and regulating b-catenin activity which is an intracellular 

signal transducer involved in the Wnt signalling pathway (Markiewicz et al., 2006). 

These processes were investigated in b-DG (or DG) perturbed cells; when b-DG was 

knocked down there was an increase in the average distance between nucleus and 

centrosome to a similar extent as observed in emerin-null cells; a significantly higher 

proportion of KD cells with multiple centrosomes (17%) compared with the control 

(2%) was also observed (Martínez-Vieyra et al., 2013). A similar increase in nuclear-

centrosome distance was observed in both DG KO cells and cells expressing the b-DG 
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NES mutant resulting in nuclear accumulation (Gómez-Monsiváis et al., 2020; Vélez-

Aguilera et al., 2018). In addition to centrosomal organisation emerin plays a role in 

the regulation of b-catenin. Upon nuclear accumulation of b-DG there was a 2-fold 

increase in b-catenin activity compared with the controls (Vélez-Aguilera et al., 

2018). However, this was not investigated in either the DG KO or the b-DG KD. 

Additionally, it hasn’t been confirmed that the increased nucleus-centrosome 

phenotype is due to the mislocalisation of emerin or whether b-DG may play a more 

direct role.   

 

1.2.3.3 Nucleoli Organisation and rRNA Transcription 

 

As nucleoli organisation has been attributed, in part, to lamin B1 (Martin et al., 2009); 

the evidence suggesting localisation of b-DG to the nucleoli and a direct interaction 

determined between b-DG and Nopp140 it would appear that b-DG may be playing 

some functional role at the nucleoli. This functional role has been hinted at in b-DG 

KD cells and DG KO cells where there was a decrease in average size of nucleoli 

compared with the relevant control (Jimenez-Gutierrez et al., 2020; Martínez-Vieyra 

et al., 2013). Additionally, when b-DG accumulates in the nucleus due to mutation of 

the NES it was determined that the nucleoli of these cells where both smaller in size 

and decreased in number (Vélez-Aguilera et al., 2018). 

 

More recently, a more detailed investigation into the role of b-DG at the nucleolus 

has been carried out which suggests b-DG may play a role in regulating transcription 

of rRNA (Azuara-Medina et al., 2019). In this study they identified a 30kDa fragment 

of b-DG which strongly localised to the nucleoli and increased in proportion relative 

to full-length b-DG following nucleoli stress. This fragment consists of the 

cytoplasmic domain of b-DG without the TM domain which they term the 

intracellular domain (ICD). Using multiple biochemical assays, they determined that 

both full-length b-DG and the ICD interact directly with nucleoli protein UBF and to a 

lesser extent B23. These interactions also demonstrated a preference for the ICD 

over full-length b-DG. They then investigated the effect of knocking down b-DG on 
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these proteins and found reduced levels of the nucleoli proteins UBF, B23 and 

fibrillarin despite no direct interaction between fibrillarin and b-DG. Additionally, 

overexpression of a GFP-b-DG ICD construct also resulted in mislocalisation of UBF 

but not B23 and results in a decrease in RNA polymerase I activity. Most interestingly, 

they suggest that KD of b-DG resulted in the nucleoli becoming larger and the total 

number decreasing compared with the control (Azuara-Medina et al., 2019). This is 

a direct contradiction of their previous results suggesting b-DG KD cells had smaller 

nucleoli (Martínez-Vieyra et al., 2013). These experiments were done in the same cell 

line (C2C12 mouse myoblasts) but with different RNAi molecules. The disparity 

between these two experiments calls into question the validity of these results. 

Despite this the authors further investigate the role of b-DG ICD at the nucleoli. They 

find KD of b-DG results in a decrease in levels of pre-rRNA 18S and an increase in 28S 

and further determine an interaction between b-DG and the promoter region of the 

rRNA. In this study they were unable to identify a nucleoli localisation or DNA binding 

sequence within the b-DG sequence suggesting that DNA binding is via interactions 

with other DNA binding proteins. Taken together, these experiments demonstrate a 

direct interaction between b-DG and nucleoli proteins with KD of b-DG resulting in 

decreased 18S and increased 28S rRNA expression while overexpression of GFP-b-

DG-ICD resulted in increased 18S and decreased 28S rRNA expression suggesting b-

DG plays a regulatory role in rRNA expression (Azuara-Medina et al., 2019). 

 

1.2.3.4 Cellular Senescence 

 

In two recent studies, it was noted that overexpression and the nuclear accumulation 

of b-DG in cells resulted in a decreased growth rate compared with controls (Azuara-

Medina et al., 2019; Vélez-Aguilera et al., 2018). These results have recently been 

further expanded with evidence from DG KO cells which provides evidence for a 

decreased growth rate in cells lacking DG (Jimenez-Gutierrez et al., 2020). The 

decreased growth rate was investigated further to understand what caused this 

phenotype. It was found that a higher proportion of KO cells were in G0/G1 phase 

compared with the controls (Jimenez-Gutierrez et al., 2020), this was also observed 
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in the NES mutant (Vélez-Aguilera et al., 2018). Cell cycle progress at G0/G1 phase is 

indicative of senescent cells and it was found, following a b-galactosidase senescence 

assay that 20-25% of DG KO cells were senescent compared with just 5% for wild type 

(WT) cells. This senescence phenotype was also confirmed using other senescence 

markers including an increase in nuclear and cell size, a decrease in heterochromatin 

as determined by H3K9me3 intensity and decrease in average nucleoli area. 

Additionally, cells were treated with the senescence inducing molecule sodium 

butyrate. Treatment for 10 days induced senescence in almost 100% of WT cells but 

after 5 days of treatment 60-70% of KO cells were senescent compared with just 30% 

of WT. These data suggest the DG KO cells are already primed for a senescence 

phenotype and become senescent more readily. In order to determine what causes 

the senescence they investigated the mitotic process and levels of DNA damage. 

During mitosis there were significantly more mitotic abnormalities in DG KO cells 

compared with control – this included multipolar mitotic spindles and 

multidirectional alignment of chromosomes. This data would be in agreement with 

the increased number of centrosomes observed in KD and NES mutant cells 

described above. Following cell treatment with thymidine to release the cell cycle 

into S phase they found an increase in DNA damage, DNA damage response, the 

proportion of cells with nuclear blebs and telomere shortening in DG KO cells 

compared with WT cells. Taken together these data suggest that errors during 

mitosis as caused by multipolar spindles and multidirectional chromosome alignment 

lead to increased DNA damage which results in increased DNA damage induced 

senescence (Jimenez-Gutierrez et al., 2020).  

 

1.3 Project Hypothesis 
 

Dystroglycan plays a central role in maintaining a mechanical link between the 

extracellular matrix and the cytoskeleton with b-DG being the key anchor for the 

whole DAPC. In mouse C2C12 myoblast cells, b-DG localises to the nucleus where it 

is suggested to interact with a range of nuclear proteins including components of the 

nucleoskeleton. Disruption of DG in this cell line results in abnormal localisation and 

levels of structural nuclear proteins lamin B1 and emerin. 
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Based on the results described in mouse C2C12 myoblasts, one aim of this project 

was to investigate if the same observations are made in human myoblast cell lines. 

Additionally, a potential disruption of structural proteins lamin B1 and emerin would 

be expected to result in a change in the mechanical properties of the nucleus. 

Therefore, the overall aim of this project was to understand whether disrupting DG 

in a human myoblast cell line affects the mechanical properties of nuclei. This was 

investigated using a combination of biochemical and microscopy techniques 

including fluorescence microscopy and atomic force microscopy.  
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2 Materials and Methods 

 

2.1 Bacteria and Molecular Biology 

 

2.1.1 Bacterial Growth 

 

Escherichia coli (DH5a) were grown in 5ml 2xYT liquid bacterial growth media (16g 

Tryptone, 10g Yeast extract and 5g NaCl made up to 1L with dH2O) at 37°C in a 

shaking incubator overnight. 

 

In order to generate competent bacteria 1ml of the overnight culture was transferred 

to 100ml of 2xYT and placed in the shaking incubator at 37°C. Cells were incubated 

until they reached an OD600 of between 0.4-0.6 AU, this was determined using a 

spectrophotometer (7315 spectrophotometer, Jenway). When the culture had 

reached the required density, the culture was centrifuged (Sigma 1-15K) at 700x g for 

10 minutes at 4°C in order to pellet the cells. The supernatant was discarded, and the 

cell pellet was resuspended in 10ml of ice cold CaCl2 at a final concentration of 

100mM and incubated at 4°C for 2 hours. The cell suspension was then centrifuged 

at 700x g at 4°C for 10 minutes in order to pellet the cells. The supernatant was 

discarded, and the pellet was resuspended in 2ml of 100mM CaCl2 and 15% glycerol. 

The cell suspension was then aliquoted into 100ml aliquots and flash frozen using 

liquid nitrogen. They were then stored at -80°C until they were used.  

 

2.1.2 Transformation of Competent Bacteria 

 

The competent DH5a cells described in section 2.1.1 were used for transformation. 

The cells were thawed on ice and then incubated on ice for a further 10 minutes. The 

plasmid DNA (100-200ng) was added to the competent cells and incubated on ice for 

30 minutes. Following the 30 minute incubation the bacterial cells were heat shocked 

at 42°C for 30 seconds and then returned to the ice for 2 minutes. Following heat 

shock, 500ml of non-selective 2xYT was added and the cell suspension was incubated 



 66 

at 37°C for 1 hour in the shaking incubator to allow recovery. The bacterial 

suspension was then centrifuged at 3000x g for 2 minutes to pellet the cells. The cell 

pellet was then resuspended in 100ml of 2xYT and plated on agar plates containing 

selection antibiotic. The plates were incubated at 37°C overnight.  

 

2.1.3 Bacterial Glycerol Stocks 

 

Transformed bacterial stocks were produced by selecting a colony from the agar 

plate and culturing it in 5ml 2xYT with the appropriate antibiotic. The culture was 

incubated overnight at 37°C in the shaking incubator. 750ml of the overnight culture 

was then added to 750ml of 50% glycerol and stored at -80°C.  

 

2.1.4 Plasmid Purification 

 

Plasmid purification was achieved using mini- or maxiprep kits (Qiagen) for either 

small- or large-scale purifications. The plasmids were purified from transformed E. 

coli cells. The purification was carried out as per the manufacturer’s instructions. The 

cells were lysed using an alkaline lysis solution. The DNA was then bound to an anion 

exchange membrane (miniprep) or resin (maxiprep) and a salt wash was used to 

remove any impurities. The DNA was then eluted from the membrane or resin and 

subjected to isopropanol precipitation to concentrate and desalt the DNA. The 

concentrated DNA was then dissolved in sterile dH2O and the concentration was 

determined using the NanoDrop Lite (Thermo Fisher Scentific, UK). The DNA solution 

was then stored at -20°C until use.  

 

2.1.5 DNA Sequencing 

 

DNA sequencing was carried out by MRC PPU DNA sequencing and services and 

results were interpreted using SnapGene Viewer.  
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2.2 Cell Culture 

 

2.2.1 Growth of Cells 

 

Human myoblast (Table 2.1) (Mamchaoui et al., 2011; Santos-Zas et al., 2017) cell 

lines were maintained in Skeletal Muscle Cell Growth Media (PromoCell). Cells were 

grown to 70-80% confluency, determined on an inverted microscope (CETI) at 10x 

magnification. They were grown at 37°C and 5% CO2 in a humidified environment. 

Cells were passaged using trypsin-EDTA (0.05% trypsin, 0.5mM EDTA, pH 7.4). 

Following dissociation of cells, media was added and centrifuged at 100x g (11030 

rotor, Sigma) for 3 minutes. Cells were resuspended in media and plated at the 

required density in plastic culture flasks (Greiner Bio-one). 

 
Table 2.1 List of cells used. 

Cell Type Original clone number Referred to in text 
Human Myoblast KM155  WT 
gRNA Control Clone 1.B8 Control 
DAG1 Knockout Clone 1.B6 DAG1 KO A 
DAG1 Knockout Clone OG DAG1 KO B 
DAG1 Knockout  Clone 2.D8 DAG1 KO C 
DAG1 Knockout Clone 1.G4 DAG1 KO D 
DAG1 Knockout Clone 1.G7 DAG1 KO E 

 
 
2.2.2 Cell Counting 

 

20µl of cell suspension was added to 20µl 0.4% Trypan Blue (Lonza, US) and 20µl of 

this mixture added to the haemocytometer. The haemocytometer is etched with 4 x 

1mm2 squares, the number of cells in each square was counted, cells that had taken 

up Trypan Blue were not counted. This was done using a 10x magnification on an 

inverted microscope (CETI). Each mm2 contains 100nl of liquid so to calculate the 

number of cells per ml the average number of cells must be multiplied by 104. The 

final viable cell count was calculated using this formula: 
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𝑇𝑜𝑡𝑎𝑙	𝑣𝑖𝑎𝑏𝑙𝑒	𝑐𝑒𝑙𝑙𝑠	𝑖𝑛	𝑎𝑙𝑙	𝑠𝑞𝑢𝑎𝑟𝑒𝑠
4 	× 	𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	(× 10!)

= 𝑇𝑜𝑡𝑎𝑙	𝑣𝑖𝑎𝑏𝑙𝑒	𝑐𝑒𝑙𝑙𝑠/𝑚𝑙 

 

2.2.3 Cell Seeding Based on Confluency 

 

Cell seeding based on confluency was used for cell density experiments. The initial 

cell density was determined using an inverted microscope (CETI) at 10x 

magnification. The area of the flask or dish that was being seeded was divided by the 

area of the initial flask to give a scaling value. The cells were centrifuged at 100x g 

(11030 rotor, Sigma) for 3 minutes and the pellet was resuspended in 10ml of media. 

The scaling value is the same as the volume of cell suspension in ml to get the same 

confluency as the initial flask, the correct confluency for each experiment was then 

calculated based on this.  

 

2.2.4 Cell Synchronisation with Thymidine Block 

 

As described by Jimenez-Gutierrez et al (2020). Cells were grown to 20-30% 

confluency as determined by an inverted microscope (CETI) at 10x magnification. 

Cells were treated with 2mM thymidine (Sigma-Aldrich) and cultured at 37°C, 5% CO2 

for 18 hours. Thymidine was then removed and replaced with fresh media and 

cultured for 9 hours. 2mM thymidine was then added and incubated for 18 hours. 

Cells were then either harvested for experiments and analysis or fresh media was 

added and harvested at indicated time points. 

 

2.2.5 Cell Synchronisation with Serum Starvation 

 

The system was similar to that outlined by Dreesen et al. (2013) and Villarreal-Silva 

et al. (2011). Cells were seeded at the required density and grown for 24 hours at 

37°C, 5% CO2 using Skeletal Muscle Cell Growth Media (PromoCell) with supplements 

added. Cells were then washed twice with 1 x phosphate buffered saline (PBS; 

137mM NaCl, 10mM phosphate, 2.7mM KCl, pH 7.4) and Skeletal Muscle Cell Growth 



 69 

Media (PromoCell) without supplements (serum free) was added and cells were 

incubated at 37°C, 5% CO2 for 24 hours. Following serum starvation for 24 hours cells 

were washed twice with 1x PBS and fully supplemented media was added. Cells were 

then harvested either immediately or at the indicated time points.  

 

2.2.6 Lipofectamine 2000 Cell Transfection 

 

Transfecting DNA into myoblast cell lines used Lipofectamine 2000 and was carried 

out as per the manufacturer’s instructions. Cells were seeded and grown to a high 

density (>80%) in antibiotic free cell growth media. Plasmid DNA (1-5µg) was added 

to 100µl low-serum media and 2µl (per well of a 12 well dish) lipofectamine 2000 

was added to 100µl low-serum media and incubated at room temperature for 5 

minutes. 100µl of lipofectamine and media mixture was added to 100µl of DNA and 

media mixture and incubated for 20 minutes at room temperature. Following 

incubation, the 200µl of lipofectamine, DNA and media mixture was added to each 

well containing cells. The cells were then incubated at 37°C and 5% CO2 for 6 hours 

before changing media. Cells were then grown for a further 18 hours to allow protein 

expression and then fixed and stained as described in section 2.5.1.  
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2.3 Atomic Force Microscopy 

 

2.3.1 Whole Cell Sample Preparation 

 

Cells were seeded at 60% confluency in 40 x 11 mm petri dishes (TPP®) and incubated 

at 37°C, 5% CO2 for 24 hours before measurements. For cell synchronisation 

experiments cells were seeded at 40% confluency and incubated at 37°C, 5% CO2 for 

24 hours. For synchronisation, serum free media was then added and incubated as 

above for 24 hours, regular media was added prior to measurements, the sample 

was measured within an hour of synchronisation release.  

 

2.3.2 Trichostatin A Treatment 

 

Cells were seeded at 40% confluency and incubated at 37°C, 5% CO2 for 24 hours. 

Cells were then washed and 300nM of Trichostatin A (TSA; Cell Guidance Systems, 

UK) in serum free media was added to the sample. Cells were incubated at 37°C, 5% 

CO2 for 24 hours. Prior to measurement the cells were washed with 1 x PBS and 

300nM of TSA in normal media was added to the sample. The sample was then 

measured within an hour of synchronisation release (Hobson et al., 2020).  

 

2.3.3 Cytochalasin D Treatment 

 

Cells were seeded at 40% confluency and incubated at 37°C, 5% CO2 for 24 hours. 

Cells were then washed and 500nM of Cytochalasin D (CytoD; Thermo Fisher 

Scientific, UK) in serum free media was added to the sample. Cells were incubated at 

37°C, 5% CO2 for 24 hours. Prior to measurement the cells were washed with 1 x PBS 

and 500nM of CytoD in normal media was added to the sample. The sample was then 

measured within an hour of synchronisation release.  

 

2.3.4 Poly-L-Lysine Coating of Dishes 
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0.01% Poly-L-lysine solution with molecular weight 150,000-300,000 Da (Sigma-

Aldrich) was added to the petri dish and incubated at room temperature for 30 

minutes. Poly-L-lysine solution was then removed, the petri dish was then washed 

twice with sterile H2O. The dish was then left at room temperature for at least 1 hour 

to dry to ensure complete coating of the surface.  

 

2.3.5 Nuclear Sample Preparation 

 

This protocol was adapted from the cell fractionation protocol described in Martínez-

Vieyra et al. (2013). Cells grown to 80% confluency in T175 flask were washed twice 

in ice-cold 1x PBS and scraped into 2ml of ice-cold 1x PBS. Cells were then centrifuged 

at 3,500x g at 4°C for 15 minutes (Sigma 1-15K). The pellet was then resuspended in 

0.5ml fractionation TM buffer (10mM Tris-HCl pH 8.0, 2mM MgCl2 0.5mM PMSF, 1x 

protease inhibitor cocktail (Roche)) and incubated on ice for 10 minutes. 0.5ml of 2% 

Triton X-100 (Sigma-Aldrich) in PBS was then added to the cell suspension and 

incubated on ice for 10 minutes. The cell suspension was then transferred to a 

Dounce homogeniser (Wheaton) and the cells were homogenised with between 18-

26 strokes, the membrane integrity was monitored using an inverted microscope 

(CETI) at 10x magnification. The cell suspension was then centrifuged at 3,500x g at 

4°C for 15 minutes. The supernatant containing the non-nuclear fraction was saved 

for further analysis. The pellet contained the nuclear fraction and was resuspended 

in 0.5ml of fractionation buffer I (0.32M sucrose, 3mM CaCl2, 0.1mM EDTA, 10mM 

Tris-HCl pH 8.0, 1mM DTT, 0.5mM PMSF and 0.5% NP-40).  0.5ml of fractionation 

buffer II (2M sucrose, 0.1mM EDTA, 10mM Tris-HCl pH 8.0, 1mM DTT and 0.5mM 

PMSF) was then added to the nuclear suspension and pipetted to ensure thorough 

mixing. In an ultra-centrifuge tube (Beckman) 1ml of fractionation buffer II was 

added and the nuclear suspension was laid on top with 3ml of fractionation buffer I 

being laid on top of the nuclear suspension. This produces a sucrose gradient which 

was then centrifuged at 80,000 rpm using the MLA-80 rotor at 4°C for 1 hour. The 

supernatant was then removed, the pellet was resuspended in 4ml PBS, this was then 

added to the poly-L-lysine (Sigma) coated 40 x 11 mm petri dishes (TPP®) and left to 

attach for at least 30 minutes. After at least 30 minutes the PBS was removed and 
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fresh PBS was added, PBS was then removed and cell growth media was added ready 

for measurements. 

 

2.3.6 AFM Cantilever Preparation 

 

Tipless MLCT-O10 AFM probes (Bruker) were used, all triangular cantilevers (A,C,D,E 

and F) were removed using tweezers while the rectangular cantilever was retained 

(spring constant between 0.020-0.025N/m, length between 195-205mm, width 

between 15-25mm). The cantilever was then mounted on the AFM (Nanowizard III, 

JPK Instruments). Microscope slides were cleaned using Piranha solution (80% (v/v) 

H2SO4, 20% (v/v) H2O2) for at least 1 hour, washed with isopropanol and allowed to 

dry. The UV-curing adhesive (Norland Optical Adhesive 81, Norland) was added to 

the microscope slide and spread using a scalpel blade, the 5µm diameter polystyrene 

spheres (Sigma) were added to the slide above the adhesive and the slide was then 

placed on the microscope (Nikon A1). Using the manual height adjustment, the 

cantilever was lowered to contact the adhesive and retracted, followed by lowering 

to remove excess adhesive and then again to pick up the sphere. The cantilever was 

then removed from the mount and the adhesive was cured using UV for at least 5 

minutes.  

 

2.3.7 Whole Cell Data Acquisition 

 

Data was acquired using the JPK Nanowizard III with either modified tipless MLCT-

010 (described in section 2.4.6) with a nominal spring constant of 0.02N/m or MLCT-

SPH-5UM (Bruker) with a nominal spring constant of 0.03N/m. The JPK Nanowizard 

was mounted on a Nikon A1 inverted microscope. Prior to measurements the 

cantilever was calibrated using the thermal vibration method to determine the spring 

constant. Prior to measuring the cells, the sensitivity of the cantilever in the cell 

growth media at 37°C was determined using the contact-based method. Using a 40x 

magnification on the optical microscope a single cell was identified and either the 

area over the nucleus or an area of the cytoplasm was measured with an approach 
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speed of 5µm/s and a setpoint of 3nN. Each area of the sample was measured at 

least 10 times to give an average of each sample point and allowed the removal of 

unsuitable curves while maintaining multiple useable curves for each sample point. 

For each experiment at least 15 cells were measured for each sample.  

 

2.3.8 Nucleus Data Acquisition 

 

As described in section 2.4.7 except only functionalised MLCT-O10 cantilevers were 

used with an extend speed of 3µm/s and a setpoint of 1nN. For each experiment at 

least 10 nuclei were measured for each sample.  

 

2.3.9 Data Analysis 

 

Data analysis was carried out using the JPK SPM data processing software. The curves 

for each sample point are processed as a batch where the baseline is subtracted to 

return everything to zero, the offset point is adjusted to determine the point of 

contact, the correct hight for cantilever bending is determined by subtracting the 

sensitivity measurement and converts the force-distance curve into a force-

indentation curve. Any unsuitable curves are identified manually and are discarded 

during this process and are not included in the later analysis. Following this the 

elasticity for each curve is determined from the indentation using the Hertz/Sneddon 

model. The average Young’s modulus for each sample point is then determined using 

Excel and exported into GraphPad Prism for statistical analysis.  
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2.4 Microscopy 

 

2.4.1 Immunofluorescence Microscopy 

 

Cells were seeded at required density in a 6 well or 12 well plate containing 13mm 

coverslips. 24-hours post-seeding the media was aspirated and cells were washed 

twice with 1x ice-cold PBS. 2ml of 3.7% (v/v) paraformaldehyde (PFA; Sigma-Aldrich) 

was added to each well and incubated at room temperature for 10 minutes to fix the 

cells. The PFA was then removed, and cells were washed twice with 1x ice-cold PBS. 

Cells were then permeabilised using 2ml of 0.2% Triton X-100 (Sigma-Aldrich) in PBS 

and incubated at room temperature for 3 minutes. The Triton X-100 solution was 

then removed and cells washed twice with 1x ice-cold PBS and kept at 4°C until 

staining. Coverslips were blocked using blocking buffer (3% BSA (w/v), 5% FBS (w/v) 

in PBS) for 1 hour in a humidified environment, following this 10µl of primary 

antibody (Table 2.2) diluted in blocking buffer was added to each coverslip and 

incubated for at least 2 hours in a humidified environment at 4°C. Coverslips were 

then washed three times in 1x PBS and 10µl of fluorescent conjugated secondary 

antibody (Table 2.3) diluted in blocking buffer was added to each coverslip and 

incubated at room temperature in a humidified environment for 1 hour. The 

coverslips were then washed twice in 1x PBS and once in dH2O and allowed to dry. 

Following drying they were mounted onto 4µl hydromount (National Diagnostics) 

containing 2.5% 1,4-Diazabicyclo[2.2.2] octane (DABCO; Sigma-Aldrich) as an 

antifade preservative and the nuclear counterstain DAPI (Sigma-Aldrich) at 10ng/ml 

on glass slides (Fisher, 0.8-1.0mm). Coverslips were secured using nail varnish and 

stored in the dark at 4°C until imaging.  

 

Table 2.2 List of primary antibodies used for immunofluorescence detection. 

Antibody Target Species Company Concentration 
MANDAG2 (b-DG) Mouse  Varied depending 

on batch 
1709 (phospho-b-
DG) 

Rabbit  1:20 

JAF1 (b-DG) Rabbit  1:500 
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LG5 (b-DG) Rabbit  1:500 
C-20 (b-DG) Goat Santa Cruz 1:250 
Lamin A/C Mouse Cell Signalling 

Technology (4C11) 
  

Lamin B1 Rabbit ProteinTech 1:500 
Lamin B2 Rabbit Cell Signalling 

Technology 
(D8P3U) 

1:500 

Emerin Rabbit Santa-Cruz (FL-
254) 

1:250 

gH2AX Mouse EMD Millipore 1:250 
H3K9me3 Rabbit BioVision 1:200 
GFP Mouse Roche 1:250 
HA-tag Rat Roche 1:250 

 
 
Table 2.3 List of secondary antibodies used for immunofluorescence detection. 

Antibody Target Species Company Concentration 
Anti-Mouse 
AlexoFlore 594 

Goat Life Technologies  1:500 

Anti-Rabbit 
AlexoFlore 594 

Goat Life Technologies 1:500 

Anti-Rabbit 
Alexoflore 488 

Donkey Life Technologies 1:500 

Anti-Goat Alexoflore 
488 

Donkey Life Technologies 1:500 

Anti-Rat Alexoflore 
488 

Rabbit Life Technologies 1:500 

 
 
2.4.2 Leica Fluorescence Microscope  

 

Fluorescent images were acquired using a Leica DMIRE2 inverted fluorescent 

microscope which was controlled by a Leica CTRMIC controller. Leica filters A4 (DAPI; 

excitation at 360nm and emission at 400nm), N2.1 (TexasRed, AlexaFluor 594; 

excitation515-560nm and emission at 580nm) and L5 (GFP, FITC, AlexaFluor 488; 

excitation at 480nm and emission at 505nm) were used. A Leica DC350F CCD camera 

was used and the images were acquired using Lieca Q-Fluoro software. 

 

2.4.3 Nikon A1 Confocal  
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Confocal images were acquired using the inverted Nikon A1 Confocal system for both 

slides and glass bottom dishes. The CFI Plan Apochromat VC 60x oil (NA 1.4) objective 

was used. The excitation sources were 405nm, 457-514nm argon laser, 561nm 

sapphire laser, 642nm diode laser. Image acquisition used Nikon Elements Software. 

 

Images were acquired with a pinhole of 1.0 Airy Units (A.U), a pixel size of 1024 x 

1024, a pixel dwell of 1.1 and a Z-step of 0.4µm for intensity measurement 

experiments and 0.125µm for nuclear volume analysis. For all immunofluorescent 

experiments the laser power was set to 5.0 and the gain was set to 0. The exposure 

time was varied depending on sample and intensity to ensure a dynamic range for 

intensity quantification. Images were then processed and analysed in Fiji (is just 

ImageJ) software.  

 

2.4.4 Live Cell Imaging for Cell Migration 

 

Live cell images were acquired using the inverted Ti eclipse Nikon Widefield system 

for glass bottom dishes and cell migration chambers. The Plan Apo 20x (NA 0.75) 

objective was used. The excitation source was SpectraX LED excitation (395nm, 

440nm, 470nm, 508nm, 561nm, 640nm) using the Quad filter for DAPI/GFP/RFP/Cy5 

with matching emission filter wheel. The detection source used was Andor Zyla 

sCMOS (2560 x 2160; 6.5μm pixels). The environmental conditions of 37°C with 5% 

CO2 were maintained using the Oko-lab environmental control chamber. Image 

acquisition used NIS Elements Software.  

 

Control and KO cells were stained with CellTracker™ Red CMTPX (Invitrogen) and 

CellTracker™ Green CMFDA (Invitrogen) respectively. Control and KO cells were then 

co-cultured in a glass bottom petri dish (Ibidi). The environmental control chamber 

was equilibrated at 37°C with 5% CO2 and the petri dish added. Each experiment was 

imaged over 15 hours with each XY position imaged every 10 minutes. For each time 

point a brightfield image was taken in addition to images in the red and green 

channels in order to identify the two cell types.  
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2.4.5 Propidium Iodide Staining for FACS 

 

Cells were washed twice with 1x PBS and treated with 25%(v/v) trypsin-EDTA and 

incubated at 37°C for 5 minutes. Cells were then collected in 7ml of 1x PBS and 

centrifuged at 700x g for 5 minutes to pellet the cells – the supernatant was 

discarded. Cells were resuspended in 0.5ml ice-cold PBS with 2mM EDTA. The cell 

suspension was then added drop-by-drop into ice-cold 70% (v/v) ethanol and 

incubated at 4°C for at least 24 hours and stored at 4°C until staining. Fixed cells were 

pelleted by centrifugation at 800x g for 10 minutes. Cells were washed twice with 1x 

PBS and collected by centrifugation. The cell pellet was resuspended in 1x PBS 

containing 200µg/ml ribonuclease A (Sigma-Aldrich) to prevent RNA staining, this 

was incubated on ice for 5 minutes. The propidium iodide (Sigma-Aldrich) was added 

to a final concentration of 50µg/ml and incubated for at least 3 hours at 4°C in the 

dark until it was imaged.  

 

2.4.6 Fluorescence-Activated Cell Sorting (FACS) 

 

All FACS experiments and data processing was carried out by the flow cytometry core 

facility in the medical school. 

 

2.4.7 Scanning Electron Microscopy 

 

All electron microscopy was carried out by Chris Hill in the electron microscopy 

facility. AFM cantilevers were mounted onto an aluminium SEM examination stub 

with Liet-C carbon sticky tab and Leit-C carbon moulding putty. The cantilever was 

gold coated using an Edwards 150b Gold Coater. The cantilevers were then examined 

and imaged using a Tescan Vega 3 LMU Scanning Electron Microscope. 
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2.5 Image Analysis 

 

2.5.1 Nuclear Morphology 

 

In order to quantify the 2D nuclear morphology (area and shape) a specific macro 

was written for FIJI. Briefly, the macro split the green, blue and red channels and if 

applicable the Z-stack for each channel was converted into a maximum projection in 

order to retain all the signal from all the slices. Then the script was instructed to wait 

for user so the intensity could be thresholded to ensure the full nuclear area was 

selected. The analyse particles (set to size >100µm, circularity >0.3 and exclude on 

edges was selected) command was used on the thresholded image. The 

measurements collected were area and shape descriptors (circularity, aspect ratio, 

roundness and solidity). The data was copied from Fiji into Excel and GraphPad Prism 

for statistical analysis.  

 

2.5.2 Nuclear/Cell Area Ratio 

 

In order to determine the ratio between nuclear/cell area the area of the nucleus 

was determined as outlined in section 2.5.1 but without using the measurement 

shape descriptors. The area of the whole cell was determined using phalloidin 

staining where the cell was manually traced. This produced the area of nuclei and the 

area of the whole cell which was then copied into Excel. The nuclear area was divided 

by the cell area to give a ratio per cell and this was then exported to GraphPad Prism 

for statistical analysis.  

 

2.5.3 Nuclear Fluorescence Intensity Quantification 

 

In order to determine nuclear intensity a script for Fiji was written. This script, as with 

those discussed previously, split the channels and where necessary produced a 

maximum projection image. The DAPI channel was then used to determine nuclear 

area and the mask for each nucleus was added to the ROI manager. The mean grey 
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value within that mask on the channel of interest was then measured. These data 

were then exported to Excel for further analysis. The mean grey value was then 

normalised to the largest value across that repeat. The normalised data was then 

exported to GraphPad Prism for statistical analysis.  

 

2.5.4 Cell Migration 

 

Generated time laps images were processed using FIJI using the Manual Tracking 

plugin and the Chemotaxis and Migration Tool 2.0 (ibidi) plugin. Each XY position was 

separated into an individual time laps image sequence and then the three channels 

were split. Cells were manually tracked and this data was then entered into the 

Chemotaxis and Migration Tool which then calculated migration velocity and total 

migration distance. This data was then exported to Excel to collate and organise and 

then imported into GraphPad Prism for statistical analysis. 
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2.6 Biochemistry 

 

2.6.1 Whole Cell Lysate Sample Preparation 

 

Cells were grown to required density and then washed twice with 1 x ice cold PBS 

and then lysed with radio immunoprecipitation assay buffer (RIPA; 150mM NaCl, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 25mM Tris pH 7.4) supplemented with 

appropriate protease and phosphatase inhibitors on ice for 15 minutes. Lysed cells 

were then harvested using a cell scraper. The lysed samples were then sonicated 

(Sanyo Soniprep 150) three times for 10 seconds with 10 seconds rest on ice between 

each. Samples were then centrifuged (Sigma 1-15K) for 15 minutes at 18,000x g at 

4°C. The supernatant was retained and either used immediately or stored at -20°C 

until use.  

 

2.6.2 Nuclear Fractionation Sample Preparation 

 

See section 2.3.5. 

 

2.6.3 Determining Protein Concentration 

 

The protein concentration of samples was determined using the MicroBCA™ protein 

assay kit (Thermo Scientific) as per the manufacturer’s instructions.  

 

2.6.4 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

SDS-PAGE mini-gels were cast using the Bio-Rad casting system, each gel was cast 

individually and consisted of 12% resolving gel (2ml H2O, 4.15ml 40% Bis-Acrylamide, 

5µl TEMED, 100µl 10% ammonium persulphate and 3.75ml gel stock pH 8.8 which 

consists of 1.5M tris and 0.4% SDS) and a 5% stacking gel (3.525ml H2O, 800µl 40% 

Bis-Acrylamide, 15µl TEMED, 50µl 10% ammonium persulphate and 625µl gel stock 

pH 6.8 which consists of 1M tris and 0.75% SDS). Samples were boiled in Laemelli 
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sample buffer and loaded onto the cast mini-gels along with a molecular weight 

protein ladder. The mini-gels were run in Bio-Rad tanks that contained 1 x SDS 

running buffer (28.8g glycine, 6g Tris, 2g SDS, made up to 2L ddH2O), the samples run 

at a fixed voltage of 120 – 150V through the whole gel.    

 

2.6.5 Electrotransfer 

 

Proteins that were separated via SDS-PAGE were electroblotted from the mini-gels 

to Polyvinylidene fluoride (PVDF; Immobilon-P, Merck) membranes using a mini 

Trans-Blot electrophoretic transfer cell (Bio-rad). The SDS-PAGE gel was then added 

to 1 x Towbin (2.5mM Tris, 19.2mM glycine, 20%(v/v) methanol, 0.025% SDS) 

transfer buffer in addition to methanol activated PVDF, filter paper and fibre pads. 

The components were then assembled into the transblot caseate, an ice pack was 

added to prevent excessive warming and Towbin transfer buffer was added as 

described by the manufacturer’s instructions. The membranes were blotted at 100V 

for 75 minutes and then removed from the transfer apparatus. 

 

2.6.6 Western Blotting 

 

The electroblotted membranes were blocked using 5% (w/v) skimmed milk powder 

in tris-buffered saline with Tween 20 (TBST; 5mM Tris-Cl, 15mM NaCl, pH 7.6) for 1 

hour at room temperature with slight rocking. Then primary antibody (3-10ml), 

diluted in blocking buffer to the required concentration (Table 2.4), was added to the 

membrane and incubated at 4°C overnight with slight rocking. The membrane was 

then washed once with TBST for 10 minutes and then twice for 5 minutes. Following 

washing, secondary antibody conjugated to HRP (5-10ml) was diluted in blocking 

buffer to the required concentration (Table 2.5) and added to the membrane where 

it was gently rocked at room temperature for 1 hour. The membrane was then 

washed once with TBST for 10 minutes and twice for 5 minutes. A chemiluminescent 

signal was produced using ECL western blot detection kit (GE Life Sciences) with equal 

volumes of ECL I and ECL II being added to the membrane. This was incubated at 
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room temperature for 5 minutes and then imaged using the Bio-Rad ChemiDoc XRS+ 

system. The chemiluminescence signal was recorded over a time course of between 

5 seconds and 30 minutes. 

 
Table 2.4 List of primary antibodies used for western blotting. 

Antibody Target Species Company Concentration 
MANDAG2 (b-DG) Mouse  Varied depending 

on batch 
1709 (phospho-b-
DG) 

Rabbit  1:20 

JAF1 (b-DG) Rabbit  1:500 
LG5 (b-DG) Rabbit  1:500 
Lamin A/C Mouse Cell Signalling 

Technology (4C11) 
1:500 

Lamin B1 Rabbit ProteinTech 1:500 
Emerin Rabbit Santa-Cruz (FL-

254) 
1:1000 

Calnexin   Santa-Cruz (C-20)   
GAPDH Mouse Santa-Cruz (0411) 1:1000 

 
 
Table 2.5 List of secondary antibodies used for western blotting. 

Antibody Target Company Concentration 
Anti-Mouse HRP Sigma-Aldrich 1:10,000 
Anti-Rabbit HRP Sigma-Aldrich 1:10,000 
GAPDAH HRP Sigma-Aldrich 1:10,000 

 
 
2.6.7 Membrane Stripping 

 

Where the membrane was re-probed for a second protein then the antibodies were 

removed using mild stripping buffer (15g Glycine, 1g SDS, 10ml Tween 20 in 1L and 

pH adjusted with HCl to pH 2.2). The membrane was incubated twice with mild 

stripping buffer for 15 minutes at room temperature with gentle rocking. This was 

then followed by two 10 minute PBS washes and two 5 minute TBST washes. The 

membrane was then blocked and probed as described above.  

 

2.6.8 Quantification of Western Blots 
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Intensity analysis of western blot bands was carried out using the Bio-Rad Image Lab 

Software. The band was manually outlined using the outline tool, 3 background areas 

were also selected, the background setting was set to global to automatically 

subtract the background. The adjusted intensity along with other data was exported 

to Excel where the intensity was normalised to the adjusted intensity of the loading 

control GAPDH.  
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2.7 Cellular Stress Assays 

 

2.7.1 Oxidative Stress 

 

Cells were seeded at 80% confluency as described in section 2.2.3 and allowed to 

settle and adhere to the coverslip for 24 hours. H2O2 (Sigma) was then diluted in 

media and added to cells at the described concentrations and incubated at 37°C, 5% 

CO2 for the described time period. Following incubation, the cells on the coverslips 

were fixed and stained for immunofluorescence analysis. Nuclear shape and size 

were measured in addition to gH2AX intensity as outlined in sections 2.4.1 and 2.6. 

 

2.7.2 Osmotic Stress 

 

Hypertonic cell stress was induced using NaCl (Sigma) and Polyethylene Glycol 4000 

(PEG4000; Sigma). Cells were seeded at 80% confluency as described in section 2.2.3 

and allowed to settle and adhere to the coverslip for 24 hours. NaCl or PEG4000 was 

added at the described concentrations and incubated at 37°C, 5% CO2 for the 1 hour 

or 30 minutes respectively. Following incubation, the cells on the coverslips were 

fixed and stained for immunofluorescence analysis. Nuclear shape and size were 

measured in addition to gH2AX intensity as outlined in section 2.4.1 and 2.6. 

 

2.7.3 Mechanical Stress 

 

2.7.3.1 Transwell Migration Assay 

 

For these experiments 24-well Transwell migration inserts (Thermo Fisher) were 

used with either 8µm or 3µm pores. 1ml of media was added to the Transwell insert 

and incubated for 30 minutes prior to cell seeded. 2 x 106 cells/ml were seeded 

directly into the pre-warmed media and on top of the insert membrane, 1ml of media 

was also added to the bottom of the insert. Cells were then incubated at 37°C, 5% 

CO2 for 48 hours to allow sufficient cell migration. Following migration, cells were 
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fixed and permeabilised as described in 2.4.1. The side of the membrane not being 

imaged was scrapped with a cotton bud to remove the cells that were not being 

imaged. Each individual membrane was then cut from the insert in order to stain cells 

using immunofluorescence. Once the inserts were removed, they were stained and 

mounted as described in section 2.4.1. Membranes were then imaged and nuclear 

shape and gH2AX intensity were measured as outlined in sections 2.4.1 and 2.6. 

 

2.7.3.2 Passive Cell Compression 

 

Cells were grown in glass bottom petri dishes (ibidi) and allowed to settle and attach 

for 24 hours. 1% agarose solution was made using 1g agarose in 100ml of cell culture 

media and this was poured into a 10cm petri dish and allowed to set. Once set it was 

incubated at 37°C, 5% CO2 for 24 hours. After 24 hours cells were washed twice with 

PBS and fresh media containing Hoechst 33342 (Thermo Fisher) was added to the 

cells. 1.5cm discs of 1% agarose were cut out and placed over the top of the cells 

followed by a weighted insert (kindly provided by Ben Phillips, King lab). Cells were 

then incubated for 1 hour before imaging. Nuclear shape was then measured and 

analysed as described in section 2.6.  
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3 Investigating the effect of disrupting DG on nuclear 

morphology of human myoblast cells 

 

3.1 Introduction 

 

3.1.1 Nuclear Shape 

 

Nuclear shape is determined by the underlying structural components of the nucleus 

such as the nuclear lamina and the NE proteins (Chen et al., 2018; Lammerding et al., 

2006). Additionally, nuclear shape is organised and maintained by interactions with 

the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) 

complex (Lüke et al., 2008). The maintenance of overall nuclear shape is determined 

by the balance between the nucleoskeleton and the cytoskeleton with the LINC 

complex bridging the two.  

 

Experimentally, analysis of nuclear shape is generally reported in terms of nuclear 

circularity, nuclear sphericity or a nuclear contour ratio. The maintenance of nuclear 

shape is coordinated by the key structural components of the cells. Cytoskeletal 

actin, microtubules and intermediate filaments are required for maintaining nuclear 

shape as disruption of these structures results in abnormal shaped nuclei (Jacob et 

al., 2020; Patteson et al., 2019a; Sankaran et al., 2020). Additionally, the LINC 

complex which connects the cytoskeleton with the nucleoskeleton plays an essential 

role in maintaining nuclear shape as a reduction in levels of Klarsicht, ANC-1, Syne 

homology (KASH) domain protein nesprin 2G resulted in an increase in proportion of 

abnormally shaped nuclei (Lüke et al., 2008).  

 

In addition to the role of the cytoskeleton in nuclear shape maintenance, the 

nucleoskeleton also plays an essential role. Multiple studies have investigated the 

effect of disrupting lamins or emerin on nuclear morphology. When emerin is 

perturbed there is a clear nuclear shape phenotype, in KD cardiomyocytes there was 

a decrease in nuclear invaginations (Shimojima et al., 2017) while in emerin null 
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mouse embryonic fibroblasts (MEFs) there was a greater proportion of irregularly 

shaped nuclei compared with controls and a lower nuclear contour ratio which is a 

similar measurement to circularity (Lammerding et al., 2005). 

 

Lamin B1 is different, when lamin B1 is perturbed there is no increase in the number 

of abnormally shaped nuclei or contour ratio but there is a decrease in nuclear 

circularity. This was confirmed in two separate studies both using lmnb1-/- MEFs 

(Chen et al., 2018; Lammerding et al., 2006). The decrease in nuclear circularity was 

because lmnb1-/- MEFs had an increase in nuclear blebs (Chen et al., 2018). 

Additionally, it has been noted that overexpression of lamin B1 also results in a 

decrease in nuclear circularity but it is unclear if this is due to abnormal shape or 

nuclear blebs (Barascu et al., 2012). 

 

The contribution of lamin A/C on the nuclear shape has been well studied in lmna-/- 

MEFs which result in no expression of lamin A or lamin C. Similarly to emerin null 

MEFs, lmna-/- MEFs have more irregularly shaped nuclei and a lower contour ratio 

compared with lmna+/+ cells (Kim et al., 2017; Lammerding et al., 2005, 2006). 

Interestingly, when separating the functions of lamin A and lamin C it was found that 

cells lacking only lamin A had irregularly shaped nuclei and lower contour ratio while 

cells lacking only lamin C did not (Lammerding et al., 2006). Taken together this data 

suggests that lamin A and emerin are primarily responsible for the abnormal nuclear 

shape and not lamin C or B1. 

 

3.1.2 Nuclear Membrane Integrity 

 

Nuclear membrane integrity, or more specifically a loss of integrity, is often 

characterised by the presence of chromatin protrusions which are termed nuclear 

blebs, nuclear rupture events or membrane enclosed extranuclear DNA which are 

generally termed micronuclei. The presence of nuclear blebs, nuclear rupture events 

or micronuclei is indicative of a loss of membrane integrity or increase in DNA 

damage.  
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Nuclear blebs are weak points in the nuclear membrane which can go on to become 

sites of nuclear rupture (Chen et al., 2018). A cell population that had a higher 

proportion of nuclei with nuclear blebs would therefore be expected to have a higher 

proportion of nuclear rupture. This is confirmed in lmnb1-/- and lmna-/- cells, where 

lmnb1-/- cells have a greater number of nuclear rupture events compared with 

controls and lmna-/- cells. Additionally, a triple lamin KO – lamin A/C, B1 and B2 – 

resulted in increased nuclear ruptures. Interestingly, the treatment of triple KO cells 

with the actin perturbing agent Cytochalasin D rescues the nuclear rupture 

phenotype suggesting that the actin cytoskeleton plays a role in maintaining nuclear 

membrane integrity (Chen et al., 2018). Further evidence indicating the role of the 

cytoskeleton in membrane integrity is observed in vimentin null cells which also have 

greater numbers of nuclear rupture events (Patteson et al., 2019a).  

 

As mentioned above lamin B1 appears to play a key role in preventing nuclear blebs. 

In lmnb1-/- MEFs there is a larger proportion of nuclei with blebs compared with 

controls and lmna-/- MEFs. When comparing lmna-/- with controls there is an increase 

but not as significant as lmnb1-/-. This indicates lamin B1 plays more of a role in 

regulating nuclear membrane integrity than lamin A/C (Chen et al., 2018; 

Lammerding et al., 2006). When lamin localisation within the nuclear blebs was 

investigated it was found that lamin A/C staining within the bleb was continuous as 

observed throughout the nucleus whereas lamin B1 is not present in the bleb at all 

(Nmezi et al., 2019).  

 

The presence of chromatin outside the nuclear membrane is generally due to severe 

DNA damage resulting in the release of fragmented DNA or due to an error in 

chromosome segregation (Fenech et al., 2011; Soto et al., 2018). There is almost no 

evidence to indicate that micronuclei occur following genetic perturbation of lamins 

or emerin, but these proteins are often present in the micronuclei (Maass et al., 

2018). However, when the lamin B1 receptor was knocked down there was a greater 

number of cells with micronuclei compared with control cells (En et al., 2020). Lamin 

B1 receptor is a transmembrane protein that plays a role in binding and anchoring 

lamin B1 and tethering chromatin to the NE. It was also found that DIAPH3 KD cells 
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also had a greater proportion of cells with micronuclei and that these KD cells also 

had decreased levels of emerin and lamin A/C (Reis-Sobreiro et al., 2018). 

 

3.1.3 Nuclear Size 

 

Nuclear size is thought to scale with cell size (Edens et al., 2013). Nuclear size is an 

interesting parameter as many publications refer to it, particularly when 

investigating nuclear morphology. An increase or decrease in nuclear size is often 

used to imply a nuclear abnormality, however, the regulatory mechanisms that 

control nuclear size are not well characterised.  

 

The perturbation of cytoskeletal and nuclear proteins often results in changes in 

nuclear size. Reducing the levels of mDia2 resulted in an increase in nuclear height 

(Sankaran et al., 2020) while vim-/- MEFs have larger nuclear area and volume 

compared with controls (Patteson et al., 2019a). Additionally, the depletion of 

nesprin-2G results in larger nuclei as does a nesprin-2G mutant lacking the actin 

binding domain (Lüke et al., 2008). Taken together these data suggest that the 

cytoskeleton plays a role in regulating nuclear size.  

 

NE and nucleoskeleton proteins have also been implicated in the regulation of 

nuclear size, with increased nuclear area and volume being observed in emerin KD 

experiments and emd-/- MEFs (Lammerding et al., 2005; Shimojima et al., 2017). KO 

of another Lap2-Emerin-Man1 (LEM) domain protein, ANKLE2 which lacks a TM 

domain, also results in larger nuclear area compared with controls (Snyers et al., 

2017). Lamin A/C null MEFs display increased nuclear area and volumes compared 

with controls (Kim et al., 2017; Lammerding et al., 2005) and KD or overexpression of 

lamin B1 also results in a significant change in nuclear size compared with controls 

(Barascu et al., 2012; Jevtić et al., 2015). 

 

Understanding how nuclear size is regulated is an area that remains poorly 

understood, however, there have been recent studies using fission yeast in an 

attempt to understand the genetics and mechanics of nuclear size regulation. Fission 
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yeast make use of a homeostatic process to maintain their nuclear/cytoplasmic (N/C) 

ratio. Following size perturbation using a Pom1 (a kinase involved in regulating cell 

division) deletion to induce asymmetric division the N/C ratio is rapidly restored 

(Cantwell and Nurse, 2019a). In a genetic screen looking for mutant yeast with higher 

or lower N/C ratios than WT yeast, 25 genes were identified (Cantwell and Nurse, 

2019b). Among the identified genes were many involved in RNA and mRNA 

processing and gene expression. LINC complex proteins were also identified but 

resulted in opposing phenotypes – kms1 which is the fission yeast KASH protein 

results in a higher N/C ratio while sad1 the Sad and UNC-84 (SUN) domain protein 

results in a lower N/C ratio suggesting the link between the cytoskeleton and 

nucleoskeleton plays an important role in regulating nuclear size (Cantwell and 

Nurse, 2019b). The protein lem2 which is a NE protein containing a LEM domain has 

also been implicated in maintain the N/C ratio in fission yeast. It is suggested to do 

this by regulating the flow of membrane between ER and the NE (Kume et al., 2019). 

 

Two recent studies by Jevtić and colleagues have looked at nuclear size regulation in 

mammalian cell lines and have suggested lamins and nuclear import/export play 

important roles in size regulation. The first of these studies originally identified the 

effect of lamins on nuclear size in Xenopus egg nuclei and found that nuclear size 

varied depending on lamin concentrations. Low concentrations of lamin A, B1 or B2 

resulted in increased nuclear size while higher concentrations resulted in a decrease 

in nuclear size. This was also investigated in HeLa and MRC-5 cells where 

overexpression of lamin A/C, B1 or B2 resulted in increased nuclear size while KD of 

lamin A/C, B1 or B2 resulted in decreased nuclear size (Jevtić et al., 2015). The second 

study involved using an siRNA screen to identify proteins that resulted in a decreased 

nuclear area. They identified multiple proteins including SUN3 but focused on ELYS 

which is a nucleoporin that plays an important role in NPC formation. KD of ELYS 

resulted in smaller nuclei but also resulted in decreased levels of lamin B2 and 

mislocalisation of lamin B1. Conversely, overexpression (OE) of ELYS resulted in an 

increase in nuclear area. They also identified nuclear import and export as important 

mechanisms for maintaining nuclear size as when nuclear import was blocked 

nuclear size decreased and blocking nuclear export resulted in increased nuclear size 
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(Jevtić et al., 2019). Taken together these two studies imply a mechanistic role for 

nuclear lamins and nuclear import/export in the maintenance of nuclear size.   

 

It is important to note that a larger nuclear size is likely to be correlated with a larger 

cell size (Edens et al., 2013). Some of the studies above have focused on abnormal 

nuclear size compared with cell size as reported by the N/C ratio, however, many 

have not discussed the possibility that increased or decreased cell size may be the 

reason for the observed nuclear phenotype. This is important as cell size and 

correspondingly nuclear size increase when cells become senescent (Sadaie et al., 

2015). Lamin B1 is strongly implicated in the cell senescence phenotype with both 

increases and decreases in lamin B1 levels being associated with senescence 

phenotypes (Barascu et al., 2012; Dreesen et al., 2013; Freund et al., 2012).  

 

3.1.4 Hypothesis and Aims 

 

It has been suggested by the Cisneros lab that KD of b-DG or KO of the DAG1 gene 

results in multiple nuclear phenotypes including a larger proportion of abnormally 

shaped nuclei, lower nuclear circularity, reduced nuclear integrity, increased nuclear 

and cell size, reduced levels of lamin A/C, lamin B1 and emerin and aberrant 

localisation of lamin B1 and emerin. They have also identified a number of nucleolar 

morphological defects in cells with reduced levels of DG. All of these nuclear and 

nucleolar phenotypes have been observed in C2C12 mouse myoblast cell lines 

(Azuara-Medina et al., 2019; Gómez-Monsiváis et al., 2020; Martínez-Vieyra et al., 

2013; Vélez-Aguilera et al., 2018). 

 

The aim of the experiments presented in this chapter is to validate these results in a 

human myoblast cell line that has a disrupted DAG1 gene and therefore has no 

expression of b-DG. The original experiments in the C2C12 cell lines lack any rescue 

experiments, therefore the secondary aim here is to rescue any observed nuclear 

phenotypes to conclusively demonstrate the contribution of b-DG in maintaining and 

regulating nuclear morphology. 
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3.2 Results 

 

3.2.1 b-DG localises to the nucleus in KM155 human myoblast cell lines 

 

It has been frequently reported that b-DG is localised both within the nucleus and at 

the NE in multiple cell lines (Fuentes-Mera et al., 2006; Gonzalez-Ramirez et al., 2008; 

Martínez-Vieyra et al., 2013; Villarreal-Silva et al., 2010). The nuclear localisation of 

b-DG in the KM155 human myoblast cell line was examined using both 

immunofluorescence imaging (Figure 3.1) and cell fractionation followed by western 

blotting analysis (Figure 3.2). To demonstrate the localisation visually, five different 

antibodies against b-DG were used, all of which detect the C-terminal cytoplasmic 

region of b-DG. Four of these antibodies; MANDAG2, JAF1, LG5 and C-20 are specific 

for b-DG irrespective of the phosphorylation state. 1709 on the other hand is specific 

for the phosphorylated version of b-DG at the Y892 residue. Despite all of these 

antibodies binding to very similar regions of b-DG there are some noticeable 

differences in the staining patterns. The clearest NE staining can be observed using 

MANDAG2 and 1709 which both display a clear nuclear ring (Figure 3.1). Cells stained 

with LG5 or JAF1 have a more prominent perinuclear staining with the nucleus clearly 

outlined. However, there is still clear nuclear staining, but the NE ring staining is more 

difficult to observe using these antibodies. The commercially purchased C-20 

antibody gives slightly different staining than the other antibodies, with very striking 

nucleoli staining and an almost complete absence of NE staining. All these antibodies 

clearly bind to b-DG as determined by peptide SPOT arrays (Jacobs, 2017), however, 

they have high levels of background signal when used for immunofluorescence 

assays. Despite this it can be concluded that b-DG appears to be localised to the 

nucleus as cells stained with all of the b-DG antibodies have nuclear staining with 

some evidence of NE and nucleoli staining.  
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Figure 3.1 Immunofluorescence staining with the b-DG antibodies MANDAG2, LG5, JAF1, C20 and 1709 
demonstrate nuclear localisation. Representative immunofluorescence images where b-DG staining is visible at 
the NE as indicated by black arrows. It is also present to some extent at the nucleoli as indicated by white arrows. 
MANDAG2 and 1709 have clear NE ring staining, JAF1 and LG5 have perinuclear staining and C-20 has nucleoli 
staining. All antibodies indicate nucleoplasmic staining. Scale bar = 20µm. 

 

The localisation of b-DG to the nucleus of KM155 human myoblast cells was also 

confirmed using a fractionation experiment (Figure 3.2). Here, cells are separated 

into cytoplasmic and nuclear fractions using a combination of detergent and 

centrifugation. The non-fractionated sample (or whole cell lysate; WCL) was used as 

a positive control for both fractions. The purity of the fractionations was determined 
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by probing for the exclusively cytoplasmic protein GAPDH, the exclusively nuclear 

protein lamin A/C and the ER marker calnexin. The cytoplasmic marker was detected 

in both WCL sample and the cytoplasmic sample while the nuclear marker was 

detected in the WCL sample and the nuclear sample confirming the success of 

fractionation. Additionally, the ER marker calnexin was used as a finer quality control. 

As the ER is closely associated with the NE it is important to ensure that the nuclear 

proteins do not include ER proteins. The presence of calnexin in the WCL sample and 

the cytoplasmic sample but not the nuclear sample suggests that the nuclear sample 

is not contaminated by ER proteins. Based on these controls these data suggest that 

the strong b-DG band in the nuclear sample is due to the presence of b-DG in the 

nucleus and not due to contaminants from the cytoplasm or ER. Interestingly, only 

one b-DG band was identified in the WCL, nuclear and cytoplasmic fractions. This 

band was between the 36kDa and 55kDa marker suggesting it is the full-length 43kDa 

protein being detected. This suggests that b-DG is present in the nucleus of KM155 

human myoblast cells as full-length protein rather than the smaller fragments. 

Alternatively, the smaller fragments may have been present at a much lower 

concentration that was not detected.  
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Figure 3.2 Cell fractionation demonstrates the nuclear localisation of b-DG. Whole cell lysate (WCL), 
cytoplasmic (Cyto) and nuclear (Nuc) samples were probed for the cytoplasmic marker GAPDH, the nuclear 
marker lamin A/C and the ER marker calnexin to demonstrate purity of fractions. The b-DG antibody MANDAG2 
produced a band at 43kDa in all three samples indicating nuclear localisation in KM155 human myoblast cells.     
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Taken together the immunofluorescence and fractionation evidence suggests the 

localisation of full-length b-DG to the nucleus of KM155 human myoblasts. However, 

we cannot rule out the possibility that shorter fragments of b-DG are also present at 

much lower concentrations.  

 

3.2.2 DAG1 disruption results in loss of b-DG protein 

 

The DAG1 gene of KM155 human myoblasts was disrupted using CRISPR/Cas9 as 

described in Matthew Cook’s thesis (Cook, 2021). The disrupted gene results in a loss 

of b-DG, therefore cells with disrupted DAG1 will be termed DAG1 KO for 

convenience. In addition to multiple DAG1 KO cell lines termed KO A, B, C, D, E and 

F, a gRNA control cell line referred to henceforth as control (or simply C) was also 

generated. The resultant levels of b-DG were determined in all of these cell lines 

using immunofluorescence staining (Figure 3.3) and western blot analysis (Figure 3.4) 

to determine their suitability for further experiments and also verify the specificity 

of each of the b-DG antibodies.   

 

For the immunofluorescence assay, control and KO cells were stained with each of 

the five antibodies specific for b-DG; MANDAG2, JAF1, LG5, C-20 and 1709. Each of 

these antibodies resulted in different levels of staining in the KO cells. MANDAG2 

staining of control cells resulted in signal detected throughout the cell, in both the 

cytoplasm and nucleus in addition to PM, NE and ER staining. Conversely, when the 

KO cells were stained with MANDAG2 there was a slight decrease in intensity 

throughout the cell. Interestingly, the NE ring staining present in the control cells is 

not present in the KO cells, neither is the strong PM staining (Figure 3.3).  These 

observations suggest that MANDAG2, as expected, is specific for b-DG. Staining with 

LG5 indicates more non-specific binding compared with MANDAG2, in the control 

sample the staining is throughout the cell but is most intense at the perinuclear 

region where the nucleus is clearly identifiable, there is also intense staining at the 

PM. In the KO cells the perinuclear staining is lost and the nuclei are no longer 
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discernible from the background staining, the PM staining is also reduced. There is 

reduced overall staining in all KO samples except KO B which appears to have a similar 

intensity to the control sample which again suggests issues with specificity. When 

control and KO cells were stained using JAF1 there is a very clear difference in staining 

intensity, the control cells had intense perinuclear and PM staining similar to LG5 

with the nuclei clearly identifiable. In the KO cells stained with JAF1 there is a stark 

reduction in all cellular staining where the PM and nucleus are no longer visible from 

the background. In the case of C-20 staining in the controls there is general staining 

throughout the cell with the most intense signal at the nucleoli. In the KO cells 

stained with C-20 there is very little difference compared with the controls – there is 

a slight reduction in overall intensity but there is still prominent nucleoli staining 

suggesting the nucleoli signal is an artifact and not due to binding with b-DG. When 

control and DG KO cells were stained with 1709, which is specific for the 

phosphorylated version of b-DG, there is an overall reduction in signal intensity in 

the KO cells compared with the control. In the control cells there is intense staining 

throughout the cells with increased intensity at the PM and NE, this is not present in 

the KO cells (Figure 3.3). All these data together indicate that the CRISPR/Cas9 

disruption of the DAG1 gene results in reduced levels of b-DG, but it is not possible 

to conclude that there is a complete loss of protein due to the poor signal to noise 

ratios inherent in the use of these particular antibodies. Additionally, it gives some 

information on which antibodies are best for investigating b-DG via 

immunofluorescence. The data would suggest that MANDAG2, JAF1 and 1709 are 

the best antibodies, with the lowest background noise levels for 

immunofluorescence assays. 

 

In addition to immunofluorescence analysis the control and KO cells were 

characterised using western blotting analysis (Figure 3.4). Here, whole cell lysate of 

control and KO samples were prepared and tested for levels of b-DG using the 

antibodies MANDAG2 and LG5 with GAPDH as a loading control. For the two b-DG 

antibodies there was a band present at 42kDa, with no other bands detected at any 

other molecular weight, in the control sample while there was no detectable band in 
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the KO sample (Figure 3.4). Based on this evidence it is clear that b-DG is perturbed, 

and the levels are reduced to the extent that it is not detectable in this assay. This 

does not confirm that there is no expression of DG it simply confirms that the levels 

are below the detectable limit of this assay.  

 

 

Control KO E

MANDAG2

LG5

JAF1

C-20

1709

KO A KO B KO C KO D

Figure 3.3 Disruption of the DAG1 gene in human myoblasts results in a reduction in b-DG 
immunofluorescence staining. Representative immunofluorescence images of control and DAG1 KO clones A-E 
stained with b-DG antibodies MANDAG2, LG5, JAF1, C-20 and 1709. Cells were grown for 24 hours prior to 
fixation and staining with DAPI and b-DG. Representative image of each cell line stained with each antibody. 3 
independent repeats were carried out with at least 3 images per sample. Scale bar = 20µm. 
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3.2.3 The effect of DAG1 disruption on nuclear shape in KM155 cells 

 

There are multiple parameters that can be used to indicate the shape of the nucleus 

in 2D, these are primarily nuclear circularity, nuclear aspect ratio and nuclear 

roundness. During analysis of nuclear shape all of these parameters are measured, 

however, for simplicity and consistency circularity will be discussed henceforth. The 

reason for this is that circularity generates a greater deviation from 1 for nuclei with 

protrusions and abnormal shapes compared with simply elongated nuclei. 

 

Nuclear circularity was measured in a number of ways to ensure accurate results. The 

majority of the data was generated using DAPI staining and imaged using a Leica 

fluorescent microscope (Figure 3.5). The nuclear circularity of control and five DAG1 

KO clones (A-E) were measured (Figure 3.6). The average circularity of all DAG1 KO 

clones was lower than that of the control but for clones A-C this difference was not 

significant. However, for clones D and E the difference was significant with a P value 

of 0.0012 and 0.0007 respectively. The difference between the control and KO clones 

D and E is unlikely to be due to a lack of DG and more likely to be a side effect of the 

KO process, this will be discussed below. 
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Figure 3.4 Disruption of the DAG1 gene in human myoblasts results in a loss of b-DG in a western blot 
analysis. Whole cell lysate of control and DAG1 KO clones A-E probed for b-DG using MANDAG2 or LG5. GAPDH 
was used as a loading control. The two separate blots are used to demonstrate the variation in quality of 
MANDAG2 between batches. MANDAG2 and LG5 only detected a band in the control samples and not in any of 
the DAG1 KO clones.    
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Control DAG1 KO A DAG1 KO B

DAG1 KO C

DAG1 KO D DAG1 KO E

Figure 3.5 Representative nuclei from control and DAG1 KO clones. Cells were grown for 24 hours before fixing 
and staining with DAPI to identify nuclear region. Cells were imaged using the Leica fluorescence microscope. 
Scale bar = 20µm. 
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This lack of difference between control and DAG1 KO clones A-C was further 

confirmed with the use of confocal microscopy to confirm the type of microscopy did 

not affect the result. Additionally, nuclei stained with the nuclear marker lamin B1 

was measured using the Leica fluorescent microscope and the confocal to again 
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Cell Line Average SD
P value 

compared 
with control

Significance

Control 0.8325 0.0243 N/A N/A
DAG1 KO A 0.8260 0.0182 0.7884 ns
DAG1 KO B 0.8157 0.0207 0.4467 ns
DAG1 KO C 0.8113 0.0340 0.3201 ns
DAG1 KO D 0.7588 0.0613 0.0012 **
DAG1 KO E 0.7550 0.0600 0.0007 ***

Figure 3.6 Average nuclear circularity of control and DAG1 KO clones A-E using DAPI to identify the nuclear 
region. Cells were grown for 24 hours before fixing and staining with DAPI to identify nuclear region. Cells were 
imaged using the Leica fluorescence microscope and the nuclear shape determined for analysis. Small black 
points indicate values from individual cells while larger coloured points indicate the average for each 
independent experiment. 7 independent experiments were carried out with at least 25 individual nuclei 
measured per experiment. Graph shows mean and standard deviation. A significant difference was determined 
between the control and DAG1 KO D-E as determined by one-way ANOVA test p = 0.0014. p values for multiple 
comparisons using Dunnett’s multiple comparisons test are in the table. Control n = 789, KO A n = 781, KO B n = 
772, KO C n = 784, KO D n = 738, KO E n = 752. 
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validate the methodology. When control and DAG1 KO clone A cells were stained 

with DAPI and imaged on the confocal microscope there was again no difference 

between the two samples (Figure 3.7a). In agreement with this when control and 

DAG1 KO clone A and B cells were stained for lamin B1 and imaged using either the 

Leica fluorescent microscope (Figure 3.7b) or the confocal microscope (Figure 3.7c) 

the nuclear circularity result was the same – there is no difference between the 

circularity of the DAG1 KO clones and the circularity of control cells.  

 

 
Figure 3.7 Average nuclear circularity of control and DAG1 KO clones A and B using DAPI or lamin B1 to identify 
the nuclear region and imaged using two different microscopes. (a) Cells were grown for 24 hours before fixing 
and staining with DAPI to identify nuclear region. Cells were imaged using the Nikon A1 confocal and the nuclear 
shape determined for analysis. Coloured points indicate the average value for each independent experiment. 7 
independent experiments were carried out with 183 control and 177 KO A nuclei measured. Graph shows mean 
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and standard deviation. A significant difference was not determined between the control and DAG1 KO A as 
determined by t test p = 0.9429. (b) Cells were grown for 24 hours before fixing and staining with lamin B1 and 
DAPI to identify nuclear region. Cells were imaged using the Leica fluorescence microscope and the nuclear shape 
determined for analysis. Small black points indicate values from individual cells while larger coloured points 
indicate the average value for each independent experiment. 3 independent experiments were carried out with 
83 control, 76 KO A and 96 KO B nuclei measured per experiment. Graph shows mean and standard deviation. A 
significant difference was not determined between the control and DAG1 KO A or B as determined by one-way 
ANOVA test p = 0.1476. p values for multiple comparisons using Dunnett’s multiple comparisons test are in the 
table. (c) As above, except Nikon A1 confocal was used. A significant difference was not determined between the 
control and DAG1 KO A or B as determined by one-way ANOVA test p = 0.9688. p values for multiple comparisons 
using Dunnett’s multiple comparisons test are on the graph. Control n = 102, KO A n = 100 and KO B n = 114. 

 

Circularity gives an indication of how close the nuclei are to a perfect circle in 2D but 

it does not provide any 3D information. The 3D equivalent of circularity is sphericity 

which indicates how close the nuclei are to a perfect sphere. Using multiple Z-stacks 

from a confocal image the nuclei can be reconstructed and a value for sphericity can 

be determined. As this is a more time intensive experiment only control and DAG1 

KO B cells were compared (Figure 3.8). As with nuclear circularity there is no 

difference in sphericity values between the control or DAG1 KO sample which 

confirms that the results observed in 2D also hold true in 3D. 

 

 

In addition to measuring the circularity and sphericity of control and DAG1 KO nuclei 

the proportion of cells with micronuclei was also assessed. Inspecting >800 cells per 
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Figure 3.8 Average nuclear sphericity of control and DAG1 KO clone B using DAPI to identify the nuclear 
region. Cells were grown for 24 hours before fixing and staining with DAPI to identify nuclear region. Cells were 
imaged using the Nikon A1 confocal and the 3D nuclear shape determined for analysis. Small black points 
indicate values from individual cells while larger coloured points indicate the average value for each 
independent experiment. 3 independent experiments were carried out with 45 control and 49 KO B nuclei 
measured. Graph shows mean and standard deviation. A significant difference was not determined between 
the control and DAG1 KO B as determined by t test p = 0.9066. 
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cell line the results are similar to those observed for nuclear circularity. There is no 

difference between the percentage of control cells and the percentage of DAG1 KO 

clone A-C cells with micronuclei. 0.61% of control cells had micronuclei while DAG1 

KO A, B and C cells had 0.94%, 1.12% and 1.39% respectively. In the case of DAG1 KO 

D and E the percentage of micronuclei was larger with KO D having 4.27% and KO E 

having 7.66% (Figure 3.9). 

 

 

Taken together this data suggests that the majority of DAG1 KO cell lines have a 

normal nuclear shape as compared with control cells. However, two of the five DAG1 

KO cell lines have abnormal nuclear shape, and this will be discussed in further detail 

below. 

 

3.2.4 Comparing the nuclear and cell size of control and DAG1 KO cells 

 

When discussing nuclear size, nuclear area is the main parameter. As with nuclear 

circularity the nuclear area of control and DAG1 KO cells has been determined in 

multiple ways to confirm accuracy of the methodology. Determination of nuclear 

area was carried out predominantly by staining with DAPI and imaging with the Leica 
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Figure 3.9 Percentage of control or DAG1 KO clone A-E cells that had micronuclei. Images were manually 
inspected and the number of cells containing micronuclei and the total number of cells was determined. 
Control n = 789, KO A n = 781, KO B n = 772, KO C n = 784, KO D n = 738, KO E n = 752, a very low percentage 
having micronuclei. (Inset) Zoomed in view of 0-10%. 
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fluorescence microscope. When nuclear area was measured for control and all DAG1 

KO clones (A-E) there was a clear difference in nuclear area (Figure 3.10). The average 

nuclear area of control cells was 149±7µm while the average nuclear area for DAG1 

KO clones A-E were 163±6µm, 177±7µm, 173±19µm, 221±34µm and 220±32µm 

respectively. The difference between the average control area and each of the KO 

averages was statistically significant for all cell lines except clone A where the average 

nuclear size was consistently larger than the control, but the difference was not 

statistically significant. 

 

Nuclear area was also measured using DAPI stained nuclei imaged on the confocal 

microscope (Figure 3.11a) and lamin B1 stained nuclei on both the Leica fluorescence 

microscope (Figure 3.11b) and the confocal microscope (Figure 3.11c). Each of these 

results gives different absolute values for nuclear area but they all show the same 

overall result – there is no difference between control and DAG1 KO clone A but a 

significant difference between control and DAG1 KO clone B. 

 

After confirming the DAG1 KO cell lines had a larger nuclear area than the controls 

the nuclear volume was then investigated. This is important to understand if the KO 

nuclei were simply flatter and wider, giving them a larger cross-sectional area, or if 

they have an increased volume. Control and DAG1 KO B cells were imaged following 

DAPI staining to define the nucleus. The resultant Z-stacks were then processed to 

generate a 3D reconstruction of each nuclei (Figure 3.12a). The volume of each 

reconstructed nucleus was then measured for the two samples (Figure 3.12b). The 

control nuclei had an average nuclear volume of 583±62µm3 while the DAG1 KO B 

nuclei had an average nuclear volume of 741±27µm3. The difference between these 

two values is statistically significant as determined by a Student’s t test with a p value 

of 0.0152. Based on this data it can be concluded that the nuclei of the KO cells have 

a larger volume as well as a larger area.  
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Figure 3.10 Average nuclear area of control and DAG1 KO clones A-E using DAPI to identify the nuclear region. 
Cells were grown for 24 hours before fixing and staining with DAPI to identify the nuclear region. Cells were 
imaged using the Leica fluorescence microscope and the nuclear area determined for analysis. Small black points 
indicate values from individual cells while larger coloured points indicate the average for each independent 
experiment. 7 independent experiments were carried out with control n = 789, KO A n = 781, KO B n = 772, KO C 
n = 784, KO D n = 738, KO E n = 752. Graph shows mean and standard deviation. A significant difference was 
determined between the control and DAG1 KO B-E as determined by one-way ANOVA test, p = <0.0001. p values 
for multiple comparisons using uncorrected Fisher’s least significant difference test are in the table. 

 

 

Cell Line Average SD
P value 

compared 
with control

Significance

Control 148.8 6.6 N/A N/A
KO A 163.2 5.6 0.2569 ns
KO B 176.7 6.9 0.0185 *
KO C 173.4 18.6 0.0310 *
KO D 220.6 33.8 <0.0001 ****
KO E 219.8 32.1 <0.0001 ****
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Figure 3.11 Average nuclear area of control and DAG1 KO clones A and B using DAPI or lamin B1 to identify the 
nuclear region and imaged using two different microscopes. (a) Cells were grown for 24 hours before fixing and 
staining with DAPI to identify nuclear region. Cells were imaged using the Nikon A1 confocal and the nuclear area 
determined for analysis. Coloured points indicate the average value for each independent experiment. 3 
independent experiments were carried out with control n = 77 and KO B n = 77. Graph shows mean and standard 
deviation. A significant difference was determined between the control and DAG1 KO B as determined by t test, 
p = 0.0032. (b) Cells were grown for 24 hours before fixing and staining with lamin B1 and DAPI to identify nuclear 
regions. Cells were imaged using the Leica fluorescence microscope and the nuclear area determined for analysis. 
Small black points indicate values from individual cells while larger coloured points indicate the average value for 
each independent experiment. 3 independent experiments were carried out with 83 control, 76 KO A and 96 KO 
B nuclei measured. Graph shows mean and standard deviation. A significant difference was determined between 
the control and DAG1 KO A or B as determined by one-way ANOVA test, p = 0.0082. p values for multiple 
comparisons using Dunnett’s multiple comparisons test are on the graph (c) As above, except Nikon A1 confocal 
was used. A significant difference was determined between the control and DAG1 KO A or B as determined by 
one-way ANOVA test, p = 0.0222. p values for multiple comparisons using Dunnett’s multiple comparisons test 
are on the graph. Control n = 102, KO A n = 100 and KO B n = 114. 
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As the nuclei of DAG1 KO cells are larger in both area and volume, the next important 

question is whether it is just the nuclei that are larger or is it in fact the cells are 

larger, and the nuclei are simply scaling with the cells. This question was addressed 

by staining cells with phalloidin to identify the whole cell. Control cells were 

compared with both DAG1 KO clones A and B with similar results to those observed 

for nuclear area (Figure 3.13a). The two KO clones had larger cell areas than the 

control cells. Control cells had an average area of 1494±341µm2 while DAG1 KO 

clones A and B had an average cell area of 2077±239µm2 and 2199±453µm2 

respectively. As with nuclear area, both clones have a larger average cell area 

compared with the control but only for clone B is this difference statistically 

significant. Additionally, when the nuclear/cell area ratio is calculated for all cell lines 

there is no difference in the ratio for either KO clone compared with the control 

(Figure 3.13b). This indicates that the increased nuclear size is also accompanied by 

an increase in cell size – thus the nucleus size scales with the cell size in all cell lines. 

 

 
Figure 3.12 Average nuclear volume of control and DAG1 KO clone B using DAPI to identify the nuclear region. 
Cells were grown for 24 hours before fixing and staining with DAPI to identify nuclear region. Cells were imaged 
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using the Nikon A1 confocal and the 3D nuclear volume determined for analysis. (a) Representative 
reconstructions using Imaris software. (b) Graph showing nuclear volume of control and DAG1 KO clone B. Small 
black points indicate values from individual cells while larger coloured points indicate the average value for each 
independent experiment. 3 independent experiments were carried out with 45 control and 49 KO B nuclei 
measured. Graph shows mean and standard deviation. A significant difference was determined between the 
control and DAG1 KO B as determined by t test, p = 0.0152. 

 

 

 
Figure 3.13 DAG1 KO cells are larger than control cells and cell size scales with nuclear size. Cells were grown 
for 24 hours before fixing and staining with DAPI and phalloidin to identify nuclear and cytoplasmic regions. Cells 
were imaged using the Leica fluorescence microscope and the nuclear and cellular area determined for analysis. 
(a) Whole cell area of control and DAG1 KO clones A-B. Small black points indicate values from individual cells 
while larger coloured points indicate the average for each independent experiment. 4 independent experiments 
were carried out with 66 control, 60 KO A and 72 KO B cells measured. Graph shows mean and standard deviation. 
A significant difference was determined by one-way ANOVA test, p = 0.0493. p values for multiple comparisons 
using Dunnett’s multiple comparisons test are on the graph (b) Nuclear area/cell area ratio for control and DAG1 
KO clones A-B. Small black points indicate values from individual cells while larger coloured points indicate the 
average for each independent experiment. 4 independent experiments were carried out with 66 control, 60 KO 
A and 72 KO B cells measured. Graph shows mean and standard deviation. A significant difference was not 
determined between the control and DAG1 KO clones A-B as determined by one-way ANOVA test, p = 0.1008. p 
values for multiple comparisons using Dunnett’s multiple comparisons test are on the graph. 

 

In order to determine whether the DAG1 KO nuclei are larger because of a lack of DG 

or simply because of off-target effects from generating the knockouts, full-length DG 

with a HA and a Myc tag (Cook, 2021) were transiently transfected into DAG1 KO B 

and C cells as they both display the larger nuclear phenotype. Control cells were 
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transiently transfected with a GFP construct while DAG1 KO cells were transfected 

with either GFP or DG constructs (Figure 3.14). Following transfection of GFP into 

control and DAG1 KO cell lines the nuclear area was measured and as with previous 

results of untransfected cells, the KO cell nuclei had a significantly greater area 

compared with the control (Figure 3.15a). This confirms that the transfection process 

does not affect the relative difference between nuclear area in control and DAG1 KO 

cell lines. Following this, control cells were transfected with GFP while both DAG1 KO 

clones were transfected with the HA/Myc tagged DG construct (Figure 3.15b). 

Addition of the DG construct to the DAG1 KO cells resulted in a reduction in nuclear 

area that did not differ significantly from that of the control cells. Additionally, there 

was a lower nuclear area for KO cell lines transfected with DG compared with when 

they were transfected with GFP (Figure 3.15c). The difference is statistically 

significant for DAG1 KO clone C and it is approaching significance for clone B with a 

p value of 0.0940. Taken together this data suggests that the addition of full-length 

DG rescues the large cell / large nuclei phenotype observed in untransfected and GFP 

transfected cells.  
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Figure 3.14 Representative images of control and DAG1 KO clones B-C transiently transfected with GFP or HA 
and Myc tagged DG. (a) Representative images of control, DAG1 KO A and B transiently transfected with GFP as 
determined by anti-GFP antibody, co-stained with DAPI and lamin B1 to identify the nuclear region. One 
representative image from each sample, at least 10 images were taken per sample per experiment with 4 
independent experiments. (b) Representative images of DAG1 KO A and B transiently transfected with HA & Myc 
tagged DG as determined by anti-HA antibody, co-stained with DAPI and lamin A/C to identify the nuclear region. 
One representative image from each sample, at least 20 images were taken per sample per experiment with 4 
independent experiments. Scale bar = 20µm. 
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Figure 3.15 Average nuclear area of control and DAG1 KO clones B-C following transient transfection of GFP or 
HA & Myc tagged DG. Cells were grown for 24 hours before transfection and allowed to express proteins for at 
least 24 hours. Cells were then fixed and stained with DAPI, lamin A/C or B1 to identify the nuclear region and 
GFP or HA to identify transfected cells. Cells were imaged using the Leica fluorescence microscope and the nuclear 
area determined for analysis. (a) Nuclear area of control and DAG1 KO clones B-C following GFP transfection. The 
graph shows the mean with standard deviation, 4 independent experiments with 202 control, 200 KO A and 217 
KO B cells measured. Graph shows mean and standard deviation. The difference between the samples was 
significant as determined by one-way ANOVA, p = 0.0172. p values for multiple comparisons using Dunnett’s 
multiple comparisons test are on the graph (b) Nuclear area of control and DAG1 KO clones B-C following GFP 
transfection for control and DG transfection for DAG1 KO clones. The graph shows the mean with standard 
deviation, 4 independent experiments with 136 control, 147 KO A and 122 KO B cells measured . Graph shows 
mean and standard deviation. The difference between the samples was not significant as determined by one-way 
ANOVA, p = 0.8921. p values for multiple comparisons using Dunnett’s multiple comparisons test are on the graph 
(c) Nuclear area of control and DAG1 KO clones B-C following GFP or DG transfection. The graph shows the mean 
with standard deviation, 4 independent experiments with 136 control, 147 KO A and 122 KO B cells measured. 
The differences between the samples was approaching significance as determined by one-way ANOVA, p = 
0.0669. The difference between DAG1 KO clone C GFP and DG transfected was significantly different, p = 0.0345 
while the difference between DAG1 KO clone B GFP and DG transfected was not quite significant p = 0.0940. 
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3.2.5 Is increased nuclear size and cell size in DAG1 KO cell lines due to an increase 

in cellular senescence? 

 

One indicator of cellular senescence is impaired proliferation as the cells do not 

progress through the cell cycle and divide. Therefore, the proliferative ability of 

control and DAG1 KO cells was established. When the proliferation of the cells was 

assessed, it was clear that there is no reduction in the proliferation rate of the 

majority of DAG1 KO cell lines compared with the control (Figure 3.16). For DAG1 KO 

cell lines A and B there was no difference between the proliferation rates compared 

with the control at either day 4, 6 or 8. In the case of DAG1 KO clone C the signal 

intensity was significantly lower than the control at day 4 but by days 6 and 8 there 

was no difference. For DAG1 KO clones D and E there is a lower proliferation rate 

with a lower signal intensity for days 4, 6 and 8 when compared with the control. This 

data, taken together indicates that the majority of DAG1 KO cell lines do not have 

impaired proliferation when compared with the control cells. 

 

In addition to proliferation, an increase in the levels of euchromatin can be used as 

an indicator of cellular senescence. A change in the amount of decondensed 

chromatin can be detected by staining for the histone modification H3K9me3. An 

increase in intensity of H3K9me3 is indicative of increased heterochromatin while a 

decrease in intensity is indicative of an increase in euchromatin. The levels of 

H3K9me3 were assessed for DAG1 KO cell lines and normalised to the control cells 

for each experiment. There was a large amount of variation in the levels with some 

experiments indicating an increased level while others indicated a decreased level. 

Overall, the average normalised intensity for all DAG1 KO cell lines (A-E) was ~1 

(Figure 3.17) indicating no significant difference between the control and any of the 

KO cell lines. This data suggests that the levels of heterochromatin and euchromatin 

do not differ significantly in the DAG1 KO cells when compared with the controls. 
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Increased levels of DNA damage can be a further indicator of cellular senescence. 

Staining for the histone modification gH2AX is a common method of identifying DNA 

damage within cells. When the levels of gH2AX were compared between control cells 

and DAG1 KO cell lines (A-E) there was no difference between control and KO cells 

A-C, whilst there was a significant increase in levels of gH2AX in DAG1 KO clones D 

and E (Figure 3.18). These data suggests that the majority of DAG1 KO clones have 

levels of DNA damage similar to that of control cells when detected using gH2AX. 

 

Taken together, these three pieces of evidence would suggest that the increased 

nuclear and cell size observed in DAG1 KO cell lines A-C is not due to an increase in 

Figure 3.16 Proliferation of control and DAG1 KO clones A-E over 8 days. Cells were seeded and allowed to 
grow for 2, 4, 6 or 8 days where they were fixed. Cells were then stained with DRAQ5 to stain cell nuclei and the 
signal intensity of DRAQ5 was used as a measure of proliferation. 3 independent experiments were carried out. 
Points shows mean and standard deviation. Only DAG1 KO clones D-E grew significantly slower than the control 
cells while there was no statistically significant difference between control and DAG1 KO clones A-C. Statistical 
analysis used two-way ANOVA with Dunnett’s multiple comparisons test, p values in the table. 
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cellular senescence. This is evidenced by similar proliferation rates to the control, no 

difference in heterochromatin levels and no difference in levels of DNA damage 

when compared with the control. On the other hand, DAG1 KO clones D and E show 

strong signs of cellular senescence as evidenced by the greatly decreased 

proliferation rates and the increased levels of DNA damage compared with control 

cells.   
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Figure 3.17 Relative H3K9me3 intensity for control and DAG1 KO clones A-E. Cells were grown for 24 hours 
before fixing and staining with DAPI and H3K9me3 to identify the levels of heterochromatin. Cells were imaged 
using the Leica fluorescence microscope and the nuclear H3K9me3 signal intensity was determined for analysis. 
Each coloured point indicates the average for each independent experiment which was normalised to the control 
value. 5 independent experiments were carried out with 173 control, 182 KO A, 169 KO B, 177 KO C, 156 KO D 
and 155 KO E nuclei measured. Graph shows mean and standard deviation. A significant difference was not 
determined by one-way ANOVA test, p = <0.9628. p values for multiple comparisons using Dunnett’s multiple 
comparisons test are in the table. Scale bar = 20µm. 
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Figure 3.18 Relative gH2AX intensity for control and DAG1 KO clones A-E. Cells were grown for 24 hours before 
fixing and staining with DAPI and an antibody against gH2AX to identify the levels of DNA damage. Cells were 
imaged using the Leica fluorescence microscope and the nuclear gH2AX signal intensity was determined for 
analysis. Each coloured point indicates the average for each independent experiment which was normalised to 
the control value. 5 independent experiments were carried out with 179 control, 179 KO A, 183 KO B, 188 KO C, 
162 KO D and 150 KO E nuclei measured. Graph shows mean and standard deviation. A significant difference was 
determined between the samples as determined by one-way ANOVA test, p = <0.0179. p values for multiple 
comparisons using Dunnett’s multiple comparisons test are in the table. Scale bar = 20µm. 
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3.2.6 Is increased nuclear and cell size in DAG1 KO cell lines due to changes in 

nuclear proteins lamin A/C, lamin B1 or emerin? 

 

Levels of lamin proteins have been implicated in the regulation of nuclear and cell 

size and it has also been shown previously that knockout or knockdown of DG can 

result in mislocalisation and a reduction in levels of lamin B1 and emerin in mouse 

C2C12 myoblasts (Jimenez-Gutierrez et al., 2020; Martínez-Vieyra et al., 2013). In 

order to investigate the total levels of these proteins in control and DAG1 KO cells, 

western blotting and immunofluorescence microscopy was used. Additionally, 

immunofluorescence microscopy was used to assess the protein localisation.  

 

3.2.6.1 Levels of lamin A/C in control and DAG1 KO human myoblasts 

 

Localisation of lamin A/C was investigated and was very clearly localised to the 

nuclear periphery in both control and DAG1 KO clones A and B (Figure 3.19a). Manual 

inspection of all images from control and KO samples did not identify any occurrences 

of lamin A/C localised anywhere other than the nuclear periphery or nucleoplasm. 

Therefore, quantification of this parameter was not carried out. Following the initial 

manual inspection for localisation the images were analysed to determine the 

relative intensity of lamin A/C in DAG1 KO nuclei compared with controls (Figure 

3.19b). The average relative intensity of lamin A/C for both DAG1 KO clones A and B 

was 0.75 and 0.78 respectively compared with a relative value of 0.96 for the control. 

Despite the average relative value being lower for the KO clones these differences 

were not statistically significant with p values of ~0.5.  

 

There was no clear difference in levels of lamin A/C in control and DAG1 KO cells 

when cells were grown at low cell density and therefore had minimal cell-cell 

contacts. It has been suggested that levels of lamins are regulated by cell density and 

cell-cell contacts. Therefore, levels of lamin A/C were also investigated in control and 

DAG1 KO cells grown at high cell density. Cells were grown to between 90% and 100% 

confluency and then stained for lamin A/C (Figure 3.20a). As with the cells at low cell 

confluency, manual inspection did not indicate any mislocalisation. Relative intensity 
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of lamin A/C at high cell confluency gave similar results to the low cell confluency 

experiments with the average intensity being slightly lower for the DAG1 KO clones 

but not significantly so (Figure 3.20b). Control nuclei had a relative lamin A/C 

intensity of 0.94 while DAG1 KO clones A and B had relative lamin A/C intensities of 

0.84 and 0.59 respectively however, neither of these differences were significant.  

 

 
Figure 3.19 Relative Lamin A/C intensity for control and DAG1 KO clones A-B at a low cell density determined 
by immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and lamin A/C to 
identify the levels of nuclear lamin A/C. Cells were imaged using the Nikon A1 confocal and the nuclear lamin A/C 
signal intensity was determined for analysis. Scale bar = 15µm. (a) Representative maximum projection images 
of lamin A/C stained control and DAG1 KO clone A and B cells grown at a low cell density. (b) Normalised lamin 
A/C intensity in control and DAG1 KO clones A-B. The different coloured points indicate the 4 independent 
experiments. Control n = 145, KO A n = 139 and KO B n = 162. Graph shows mean and standard deviation. There 
is no significant difference between the samples as determined by one-way ANOVA, p = 0.4988. p values for 
multiple comparisons using Dunnett’s multiple comparisons test are on the graph. 

 

In addition to there being no clear difference in levels of lamin A/C as determined by 

immunofluorescence staining, the total cellular levels of lamin A/C were further 

determined by western blot analysis. Whole cell lysate for each sample at high cell 

density was probed with lamin A/C antibody and GAPDH was used as a loading 
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observed with the immunofluorescence staining but overall, there was no 
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statistically significant difference between the control levels of lamin A/C and the 

DAG1 KO levels. DAG1 KO clone A had a slightly increased normalised level while 

clone B had a slightly decreased normalised level, however, neither of these 

differences are statistically significant. Taken together this data demonstrates that 

there is no difference in the levels of lamin A/C between control and DAG1 KO human 

myoblasts, indicating b-DG does not influence levels or localisation of lamin A/C in 

this cell type.  
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Figure 3.20 Relative Lamin A/C intensity for control and DAG1 KO clones A-B at a high cell density determined 
by immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and an antibody 
against lamin A/C to identify the levels of nuclear lamin A/C. Cells were imaged using the Nikon A1 confocal and 
the nuclear lamin A/C signal intensity was determined for analysis. Scale bar = 15µm. (a) Representative 
maximum projection images of lamin A/C stained control and DAG1 KO clone A and B cells grown at a high cell 
density. (b) Normalised lamin A/C intensity in control and DAG1 KO clones A-B. The different coloured points 
indicate the 4 independent experiments. Control n = 132, KO A n = 137 and KO B n = 129. Graph shows mean and 
standard deviation. There is no significant difference between the samples as determined by one-way ANOVA, p 
= 0.1950. p values for multiple comparisons using Dunnett’s multiple comparisons test are on the graph. 
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Figure 3.21 Relative Lamin A/C levels of control and DAG1 KO clones A-B at a high cell density determined by 
western blot. Western blot analysis of lamin A/C levels using densitometry analysis from BioRad ImageLab 
software and normalised to GAPDH. Representative blot from 6 independent experiments. Graph shows mean 
and standard deviation. There is no significant difference between the samples as determined by one-way 
ANOVA, p = 0.1572. p values for multiple comparisons using Dunnett’s multiple comparisons test are on the 
graph. 
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0.89 and 0.99 for DAG1 KO clone A and B respectively (Figure 3.22b). The difference 

between the control value and the two KO values does not differ significantly 

suggesting the levels of lamin B1 are not affected by an absence of DG.  

 

 
Figure 3.22 Relative Lamin B1 intensity for control and DAG1 KO clones A-B at a low cell density determined by 
immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and lamin B1 to identify 
the levels of nuclear lamin B1. Cells were imaged using the Nikon A1 confocal and the nuclear lamin B1 signal 
intensity was determined for analysis. Scale bar = 15µm. (a) Representative maximum projection images of lamin 
B1 stained control and DAG1 KO clone A and B cells grown at a low cell density. (b) Normalised lamin B1 intensity 
in control and DAG1 KO clones A-B. The different coloured points indicate the 3 independent experiments. 
Control n = 102, KO A n = 97 and KO B n = 110. Graph shows mean and standard deviation. There is no significant 
difference between the samples as determined by one-way ANOVA, p = 0.2910. p values for multiple comparisons 
using Dunnett’s multiple comparisons test are on the graph. 

 

In addition to the levels of lamin B1 at a low cell density, the levels were also assessed 

at a high cell density to determine whether DG affects the levels of lamin B1 when 
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any localisation to the cytoplasm in either control or DAG1 KO clones (Figure 3.23a). 
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for DAG1 KO clone A was 0.72. The variation for these experiments was much lower 
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than observed for the low cell density experiment. This is a clear difference however, 

given the same trend is not observed in both KO clones this is unlikely to be due to 

the lack of DG and may be due to some other factor.  

 

In order to confirm or contradict the finding that levels of lamin B1 are significantly 

reduced in DAG1 KO clone A when cells are grown at a high cell confluency western 

blot analysis was used (Figure 3.24). The total levels of lamin B1 were assessed using 

a lamin B1 antibody and GAPDH as a loading control and total levels were normalised 

to GAPDH. Contradictory to the immunofluorescence data the western blot data 

suggests there is no difference in the total levels of lamin B1 in either DAG1 KO clone 

A or B when compared with the control. The average levels are slightly higher in KO 

samples but again there was large variation meaning these small differences were 

not statistically significant. Taken together this data would indicate that the levels of 

lamin B1 do not differ in control or DAG1 KO human myoblasts.  
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Figure 3.23 Relative Lamin B1 intensity for control and DAG1 KO clones A-B at a high cell density determined 
by immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and lamin B1 to 
identify the levels of nuclear lamin B1. Cells were imaged using the Nikon A1 confocal and the nuclear lamin B1 
signal intensity was determined for analysis. Scale bar = 15µm. (a) Representative maximum projection images 
of lamin B1 stained control and DAG1 KO clone A and B cells grown at a high cell density. (b) Normalised lamin 
B1 intensity in control and DAG1 KO clones A-B. The different coloured points indicate the 3 independent 
experiments. Control n = 93, KO A n = 100 and KO B n = 98. Graph shows mean and standard deviation. There is 
a significant difference between the samples as determined by one-way ANOVA, p = 0.0053. p values for multiple 
comparisons using Dunnett’s multiple comparisons test are on the graph. 

 

 

gRNA control 
1.B8 

DAG1 KO 
1.B6 

Emerin

Lamin B1

Lamin A/C

Control DAG1 KO A

gRNA control 
1.B8 

DAG1 KO 
1.B6 

Emerin

Lamin B1

Lamin A/C

Control DAG1 KO A

Contro
l

DAG1 K
O A

DAG1 K
O B

0.0

0.5

1.0

1.5

N
or

m
al

is
ed

 N
uc

le
ar

 In
te

ns
ity

 (A
U

)

Lamin B1 Intenisty in DAG1 KO 
and Control Cells at High

Cell Confluency

0.0071

0.7784

a

b



 125 

 
Figure 3.24 Relative Lamin B1 levels of control and DAG1 KO clones A-B at a high cell density determined by 
western blot. Western blot analysis of lamin B1 levels using densitometry analysis from BioRad ImageLab 
software and normalised to GAPDH. Representative blot from 5 independent experiments. Graph shows mean 
and standard deviation. There is no significant difference between the samples as determined by one-way 
ANOVA, p = 0.7102. p values for multiple comparisons using Dunnett’s multiple comparisons test are on the 
graph. 
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emerin intensity was determined using immunofluorescence microscopy (Figure 
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emerin in DAG1 KO clones A and B when compared with control cells (Figure 3.25b). 
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statistically significantly different with p values >0.7 as determined by a one-way 

ANOVA test.  
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Figure 3.25 Relative nuclear Emerin intensity for control and DAG1 KO clones A-B at a low cell density 
determined by immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and 
emerin to identify the levels of nuclear emerin. Cells were imaged using the Nikon A1 confocal and the nuclear 
emerin signal intensity was determined for analysis. Scale bar = 15µm. (a) Representative maximum projection 
images of emerin stained control and DAG1 KO clone A and B cells grown at a low cell density. (b) Normalised 
emerin intensity in control and DAG1 KO clones A-B. The different coloured points indicate the 3 independent 
experiments. Control n = 92, KO A n = 104 and KO B n = 99. Graph shows mean and standard deviation. There is 
no significant difference between the samples as determined by one-way ANOVA, p = 0.7622. p values for 
multiple comparisons using Dunnett’s multiple comparisons test are on the graph. 
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Figure 3.26 Relative whole cell Emerin intensity for control and DAG1 KO clones A-B at a low cell density 
determined by immunofluorescence. Normalised whole cell emerin intensity in control and DAG1 KO clones A-
B. The different coloured points indicate the 3 independent experiments. Control n = 92, KO A n = 104 and KO B 
n = 99. Graph shows mean and standard deviation. There is no significant difference between the samples as 
determined by one-way ANOVA, p = 0.9377. p values for multiple comparisons using Dunnett’s multiple 
comparisons test are on the graph. 
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experiment had a large amount of variation with a different cell line having the 

largest value in each of the three independent experiments. This resulted in an 

average relative value of 0.60, 0.64 and 0.72 for control, DAG1 KO A and B 

respectively (Figure 3.27b). Based on this evidence there is no apparent difference in 

nuclear levels of emerin between DAG1 KO cell lines and control cells at high cell 
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Figure 3.27 Relative emerin intensity for control and DAG1 KO clones A-B at a high cell density determined by 
immunofluorescence. Cells were grown for 24 hours before fixing and staining with DAPI and emerin to identify 
the levels of nuclear emerin. Cells were imaged using the Nikon A1 confocal and the nuclear emerin signal 
intensity was determined for analysis. Scale bar = 15µm (a) Representative maximum projection images of emerin 
stained control and DAG1 KO clone A and B cells grown at a high cell density. (b) Normalised emerin intensity in 
control and DAG1 KO clones A-B. The different coloured points indicate the 3 independent experiments. Control 
n = 107, KO A n = 94 and KO B n = 97. Graph shows mean and standard deviation. There is no significant difference 
between the samples as determined by one-way ANOVA, p = 0.8934. p values for multiple comparisons using 
Dunnett’s multiple comparisons test are on the graph. 
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independent experiment resulted in a large amount of variation but gave the same 

result. There is no difference between the total levels of emerin when comparing 

DAG1 KO clones A and B with control cells. Taken together, these data indicated that 

the total levels of emerin are not affected by the presence or absence of DG in human 

myoblasts at either high or low cell density. It is also clear from the microscopy 

images that emerin is not mislocalised in DAG1 KO cell lines.  

 

 
Figure 3.28 Relative Emerin levels of control and DAG1 KO clones A-B at a high cell density determined by 
western blot. Western blot analysis of emerin levels using densitometry analysis from BioRad ImageLab software 
and normalised to GAPDH. Representative blot from 4 independent experiments. Graph shows mean and 
standard deviation. There is no significant difference between the samples as determined by one-way ANOVA, p 
= 0.7925. p values for multiple comparisons using Dunnett’s multiple comparisons test are on the graph. 
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3.3 Discussion 

 

The results described in this chapter aimed to answer the question of whether 

perturbing DG in human myoblast cells resulted in abnormally shaped nuclei. An 

additional aim was to determine whether previously reported data, suggesting b-DG 

was required for correct localisation and regulation of lamin B1 and emerin in mouse 

C2C12 muscle cells (Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 2018), was 

also true in human myoblasts.   

 

3.3.1 Limitations of b-DG antibodies 

 

The primary antibodies against b-DG used in this study have long been used in the 

detection of b-DG for both western blot and immunofluorescence analysis. However, 

it has become apparent there are a number of limitations in their use. For all 

antibodies used here; MANDAG2, LG5, JAF1, C-20 and 1709 the binding site is located 

within the C-terminal region of the cytoplasmic region. This region has been 

identified as the binding site for the majority of the interacting partners that binds b-

DG (see section 1.1.3.3). This being the case, the antibody binding site is likely to be 

in competition for binding with many other proteins which may reduce the efficacy 

of the antibody. The other issue with all of these antibodies is they have a high degree 

of background signal as can be seen in Figure 3.3. This is because all these antibodies, 

except MANDAG2 are polyclonal which results in a large amount of background 

signal due to the presence of non-specific antibodies in the serum. The other issue 

with these antibodies is the lack of batch-to-batch consistency which can cause 

difficulties when trying to reproduce data, this can be seen in part in Figure 3.4. 

 

Despite these issues, MANDAG2, LG5, JAF1 and 1709 appear to have reduced signal 

in the DAG1 KO cell lines as expected. However, C-20 appears to have almost 

identical staining in control and DAG1 KO cells, additionally, there appears to be very 

prominent nucleoli staining in cells both containing and lacking DG. This is a concern 

as many of the reports in the literature relating to the role of b-DG in the nucleus use 
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this antibody. In early studies C-20 was used in immunofluorescence colocalisation 

studies to suggest co-localisation with nucleoli proteins Nopp140 and SC35. 

Additionally, it was used in co-immunoprecipitation assays to suggest a direct 

interaction between b-DG and Nopp140 (Martínez-Vieyra et al., 2013). C-20 has also 

been used more recently in a paper discussing the potential role of b-DG in the 

nucleoli (Azuara-Medina et al., 2019). In addition to the issue of C-20 binding non-

specifically to the nucleoli, there is also data suggesting that a large amount of cross-

reactivity occurs between C-20 and other primary antibodies – particularly those 

raised in mouse or rabbit (Figure 3.29) (Matt Cook, personal communication). The 

evidence of cross-reactivity makes this antibody particularly unreliable for 

colocalisation analysis as presented in the Martínez-Vieyra et al. (2013) study 

described above. 

 

The b-DG antibodies used in this chapter have some limitations as discussed, one of 

the main issues with this is obtaining an accurate understanding of specific 

localisation of b-DG because of the background noise. However, despite this issue it 

appears that b-DG staining is present within the nucleus in KM155 and CRISPR/Cas9 

control cells and this nuclear staining is generally lost in the KO cells lacking b-DG. It 

is important when using these antibodies to be aware of these limitations and take 

this into consideration before making any conclusions.  
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Figure 3.29 Cross-reactivity between b-DG antibody C-20 and emerin antibody in KM155 human myoblast cells. 
Representative images of KM155 myoblasts stained with either C-20 alone or stained with C-20 and emerin 
together. There is clear nuclear envelope stanning for C-20 in the C-20 + emerin sample which is not present 
when C-20 is used alone. Scale bar = 20µm.  
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Changes in nuclear shape are often indicative of nuclear damage either mechanically 

or due to aberrant expression of nuclear lamina proteins including lamin A/C, B1 and 

emerin (Chen et al., 2018; Lammerding et al., 2006). Mutations in the DAG1 gene, 
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(Jacobs, 2017). In addition to this there have been multiple studies from the Cisneros 

lab group investigating the effects that perturbing b-DG has on the nucleus. In the 

original paper investigating this, they suggest that shRNA knockdown of b-DG 

resulted in an increase in abnormally shaped nuclei compared with the control 

(Martínez-Vieyra et al., 2013). However, the few images presented in this paper do 

not appear to be abnormally shaped. Additionally, nuclear abnormality has been 

assessed in an unblinded experiment which leaves it susceptible to bias. There is also 

no additional quantification such as nuclear circularity which would give a numerical 

value and allow a more confident conclusion to be drawn. In a follow up paper where 

the same group investigate the effects of knocking down a-dystrobrevin, another 

component of the DAPC, they conclude that the knock down results in more 

abnormally shaped nuclei (Aguilar et al., 2015) but this is assessed as above with no 

numerical values for shape.  

 

In the most recent publication from the Cisneros lab, where a possible senescence 

phenotype is investigated, CRISPR/Cas9 knockout C2C12 cells are generated, and 

nuclear shape is assessed. They find that the nuclear circularity index for two DAG1 

KO clones is lower than the WT (Jimenez-Gutierrez et al., 2020). One criticism of this 

experiment is they did not compare the circularity of the KO nuclei with a suitable 

CRISPR/Cas9 treated control. Therefore, it is not possible to be sure that the tiny 

reduction in circularity is not due to the CRISPR/Cas9 treatment rather than a lack of 

DG. This should also be further confirmed by a rescue experiment to confirm it is 

indeed DG responsible for the phenotype. The same study also looked for the 

presence of micronuclei in the WT and DAG1 KO cells and found that significantly 

more of the KO cells had micronuclei compared with the WT (Jimenez-Gutierrez et 

al., 2020). 

 

It is clear from these studies that despite the issues with the methodology, the 

general conclusion from the data presented is that knocking out/down DG results in 

a small change in nuclear shape in less than 50% of the cells. This data is in stark 

contrast to the data presented in this chapter and the data presented by other 

members of the Winder lab (Cook, 2021). The obvious difference between this study 
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and the previous ones is the cell type that is used. This study focuses on human 

myoblasts whereas the previous investigations by the Cisneros lab have focused on 

mouse C2C12 myoblasts. However, I believe the most likely explanation is that the 

C2C12 DAG1 KO cells used in the most recent study were senescent. In this chapter 

DAG1 KO cell lines D and E were the only cell lines to have a reduced circularity 

phenotype and these cells then went on to become senescent as will be discussed 

below. Given that three of the five DAG1 KO cell lines did not demonstrate this 

senescence phenotype it is more likely that this is a side effect of CRISPR/Cas9 or a 

result of clonal expansion. The fact only two KO cell lines were used means it is 

possible that their observed reduction in circularity is not a result of knocking out DG. 

A lack of a mock CRISPR/Cas9 control or a rescue experiment prevents any clear 

conclusions being made.        

 

3.3.3 Differences in observed nuclear size phenotype 

 

Unlike nuclear shape, the nuclear size of cells lacking DG has not been investigated 

until recently. The only report of nuclear size differences in cells with perturbed DG 

investigates the relationship between DG and cellular senescence as discussed in 

section 1.2.3.4 (Jimenez-Gutierrez et al., 2020). This study finds that the nuclei of 

C2C12 mouse myoblasts where DAG1 has been knocked out have a significantly 

greater area than WT nuclei. In addition, it is also found that the KO cells have a 

greater area when compared to WT (Jimenez-Gutierrez et al., 2020). This is in 

agreement with the data presented in this study where all DAG1 KO human 

myoblasts have larger nuclear and cellular areas compared with the control cells. 

Additionally, in this study we go on to show that the DAG1 KO nuclei are not just 

larger in 2-dimensions but indeed 3-dimensions as demonstrated by the greater 

nuclear volume in DAG1 KO clone B.  

 

The data presented by Jimenez-Gutierrez et al. (2020) would suggest that this 

increase in nuclear size is due to an increase in cellular senescence in the DAG1 KO 

cells. However, the data presented here do not fit with that general hypothesis. 

Either increased or decreased levels of lamin B1 are indicative of a senescent state 
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(Dreesen et al., 2013; Freund et al., 2012; Shah et al., 2013). A decrease in the levels 

of H3K9me3 which is indicative of reduced levels of heterochromatin is a common 

hallmark of cellular senescence (Deng et al., 2019; Sadaie et al., 2013), as is an 

increase in levels of DNA damage as indicated by gH2AX (Salunkhe et al., 2021; Zhang 

et al., 2016).  

 

Focusing on DAG1 KO clones A-C which exhibit a greater average nuclear and cellular 

size, however the experiments used to indicate senescence did not agree with the 

conclusion of a senescent phenotype. There is no reduction in the proliferation rate 

of KO cells compared with control, there is no difference in the relative levels of 

heterochromatin marker H3K9me3, the relative levels of gH2AX which is a marker of 

DNA damage or the relative levels of lamin B1. An additional argument against a 

senescent phenotype in DAG1 KO clones A-C is the evidence of a reversable 

phenotype. Rescue experiments of DAG1 KO clone B and C using tagged DG resulted 

in the rescue of the nuclear size phenotype. Given that cellular senescence is defined 

as irreversible cell-cycle arrest, if a lack of DG resulted in true cellular senescence this 

should not be rescued by the addition of exogenous DG.  

 

In the case of DAG1 KO clones D and E, they clearly have a significantly larger nuclear 

area than the control cells and are also the largest nuclei of all cell types measured 

with control nuclei being ~150µm2, DAG1 KO A-C ~170cm2 and DAG1 KO D-E 

~220cm2. In addition to this they had a significantly decreased proliferation rates 

compared with control cells – further they stopped growing altogether so they were 

unable to be used for the whole study. Additionally, clones D and E had increased 

levels of DNA damage as measured by levels of gH2AX. The only parameter these 

clones did not demonstrate an expected phenotype was levels of H3K9me3 where 

there was no difference in total levels between DAG1 KO clones D-E and the control. 

This is possibly due to antibody sensitivity as there was a large range of values across 

experiments for all cell lines used. Ideally, the DAG1 KO clones D-E would have been 

tested for cellular senescence using b-galactosidase senescence assay however, the 

cells stopped growing completely before this was carried out.  
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Based on the data presented here, there is very clear evidence that DAG1 KO clones 

D-E were senescent while clones A-C did not have the hallmarks of cellular 

senescence. This diversity of responses within a range of DAG1 KO cell lines calls into 

question the findings presented by Jimenez-Gutierrez et al. (2020). The data 

presented in that study is only based on two DAG1 KO clones, if by chance in this 

study only DAG1 clones D-E were used then we may have drawn the same 

conclusions. However, the lack of senescence phenotype observed in clones A-C 

suggests this is not the case. This calls into question the methodology of the Jimenez-

Gutierrez et al. (2020) study, the heterogenicity of clonal expansion is well 

established therefore it is prudent to use as many separate clones as possible before 

making any definitive conclusions. Additionally, rescue experiments should be 

attempted to further validate the role of DG and exclude the possibility of 

observations being due to clonal expansion. Finally, it is important to compare the 

DAG1 KO clones with passage matched clonally expanded controls in order to 

minimise differences, however, in the Jimenez-Gutierrez et al. (2020) study the DAG1 

KO clones were only compared with the WT C2C12 population.  

 

Ultimately, it is possible to conclude from these data presented here that 

perturbation of DG does lead to an average increase in nuclear and cellular size 

however, this increase is not due to cellular senescence. The exact reason for this 

increase in size is yet to be determined.   

 

3.3.4 Differences in observed nuclear envelope protein levels and localisation 

 

It has been suggested previously that nuclear b-DG is involved in interactions with 

lamin A/C, lamin B1 and emerin (Gómez-Monsiváis et al., 2020; Martínez-Vieyra et 

al., 2013). It has also been suggested that the perturbation of b-DG or the DAG1 gene 

results in reduced levels and mislocalisation of both lamin B1 and emerin but not 

lamin A/C. This then results in phenotypes associated with reduced levels of lamin 

B1 and emerin such as nuclear shape abnormalities and centrosome duplication 
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(Gómez-Monsiváis et al., 2020; Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 

2018).  

 

The results presented in these studies, conducted in the Cisneros lab, have shown 

consistently that in mouse C2C12 myoblasts either reduction or overexpression of b-

DG results in reduced levels of lamin B1 and emerin. However, this is in stark contrast 

to data presented in this study where there is no detectable difference in the levels 

of lamin A/C, lamin B1 or emerin in control and DAG1 KO cells. In addition to this 

there is no evidence to suggest any mislocalisation of lamin B1 and emerin in any cell 

lines investigated in this study. There are a few possibilities for the differences 

observed between the present study and previous studies. One possibility is the 

difference in cell lines used, in this study human myoblasts were used while previous 

studies have focused on mouse myoblasts. Despite mouse models being used 

extensively the disparity in results between this study and previous ones could be 

explained by this difference. However, when DG was knocked down in H2K mouse 

myoblasts, nuclear abnormalities were not reported suggesting there was no obvious 

nuclear morphology phenotype (Thompson et al., 2008). Alternatively, these 

differences could be a consequence of the different protocols used for the 

immortalisation of these cell lines.  

 

An alternative explanation of the difference could be due to methodological 

differences. In the mouse cell studies quantification of protein localisation involved 

unblinded manual determination of protein localisation which is susceptible to bias 

(Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 2018). This should have been 

quantified as a cytoplasmic intensity as this is simple to automate and reduces bias. 

However, in human myoblasts there was no evidence of protein mislocalisation in 

any of the cell lines tested so this automated analysis was not required. The total 

levels of lamin B1 and emerin were assessed using western blotting analysis in mouse 

myoblasts while in this study both immunofluorescence and western blotting 

analysis was used for human myoblasts. Finally, the type of control samples used 

were different when DAG1 was knocked out of mouse or human myoblasts. There 



 138 

are the same issues relating to clonal expansion and a lack of any rescue experiments 

as discussed in section 3.3.3.  

 

The phenotypes that have been described in this study and those from previous 

studies differ and this is likely to be a combination of differences in cell types and 

differences in methodological approach. Ultimately, the results presented here are 

robust enough to confidently conclude that in human myoblasts the knockout of the 

DAG1 gene does not result in either mislocalisation or a reduction in levels of lamin 

A/C, lamin B1 or emerin.  
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4 Investigating the effect of perturbing DAG1 on the inherent 

mechanical properties of myoblast nuclei using atomic force 

microscopy (AFM) 

 

4.1 Introduction 

 

4.1.1 Mechanical properties of cells and nuclei are determined by the cytoskeleton, 

nucleoskeleton and chromatin 

 

Measuring the mechanical properties of cells, particularly using atomic force 

microscopy, allows the determination of the stiffness of the different cellular 

compartments i.e. the cytoplasm and the nucleus. However, these two 

compartments are mechanically linked making it difficult to separate the specific 

contribution of each. It is well established that cells mechanically sense their 

environment and adjust the mechanical properties of the cells to match that of the 

underlying substrate, predominantly through the reorganisation of the actin 

cytoskeleton (Doss et al., 2020). In a recent study, multiple mammalian cell types 

were measured on PDMS substrates with varying stiffness from 0.5-3MPa and in all 

cell types the cell stiffness increased with increased substrate stiffness (Wala and 

Das, 2020). Similar results were observed when cells were grown on glass, 

polystyrene or poly-L-lysine coated glass. Polystyrene and Poly-L-lysine-coated glass 

have a lower Young’s modulus than glass and cells accordingly had reduced stiffness 

compared with those grown on uncoated glass (Caluori et al., 2018). However, it has 

been suggested that a decrease in cell stiffness at low substrate stiffness (<2kPa) is 

due to indenting the substrate as well as the sample but this can be accounted for 

depending on the model used to fit the data (Rheinlaender et al., 2020). 

 

Stiff cells grown on stiff substrates have increased levels of actin which is organised 

in more rigid actin cables (Doss et al., 2020; Wala and Das, 2020). Therefore, 

perturbation of the actin cytoskeleton results in a decrease in cellular stiffness. When 
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human bladder cancer cells T24 and RT4 (Wang et al., 2018) and mouse embryonic 

fibroblast NIH3T3 cells (Zhang et al., 2020) were treated with Cytochalasin D, 

treatment resulted in a significant decrease in cell stiffness compared with untreated 

controls. However, when cells in these studies were treated with nocodazole to 

perturb the microtubules there were differing effects. Wang et al. (2018) reported 

that nocodazole treatment resulted in a decrease in cellular stiffness but this 

decrease was not as severe as CytoD treatment (or a combination of CytoD and 

nocodazole). Conversely, Zhang et al. (2020) reported an increase in cellular stiffness 

following nocodazole treatment and they suggest this is because the depolymerised 

microtubules result in an increase in actin polymerisation ultimately resulting in 

stiffer cells. The discrepancy between these results is possibly due to difference in 

cell type or difference in measuring technique, Wang et al. (2018) used AFM while 

Zhang et al. (2020) used Brillouin microscopy. Despite the differences it is clear from 

these experiments that the microtubule network has a lower impact on the 

mechanical properties of cells compared with the actin cytoskeleton. Cytoplasmic 

intermediate filaments also make up part of the cytoskeleton and it has been found 

that vimentin, a type III intermediate filament, that forms a protective cage around 

the nucleus contributes to the cell stiffness (Patteson et al., 2019a). Measuring the 

stiffness of vim-/- mouse embryonic fibroblasts over the nucleus gave an average 

apparent Young’s modulus that was significantly lower than the vim+/+ control, 

suggesting intermediate filaments also contribute to the overall stiffness of a cell 

(Patteson et al., 2019b). 

 

Nuclear stiffness is determined by a combination of the nuclear lamina and 

chromatin (Hobson et al., 2020; Zhang et al., 2020). The contribution of lamin A to 

the mechanical properties of the nucleus was initially investigated in the nuclei of 

Xenopus oocytes due to their large nuclei (so reducing the impact of chromatin) and 

lack of endogenous lamins. Using this system it was found that the nuclear stiffness 

increased in a dose-dependent manner following lamin A expression (Schäpe et al., 

2009). Mutant lamins have also been investigated using this method, the mutation 

E145K found in Hutchinson-Gilford progeria syndrome resulted in increased nuclear 

stiffness compared with WT lamin (Kaufmann et al., 2011). This has also been 
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observed in human patient samples (Apte et al., 2017). The fact a single mutation in 

lamin A can result in a significant increase in nuclear stiffness emphasises the 

important role lamins play. Further evidence that lamins play an essential role in 

regulating nuclear stiffness is observed in autosomal dominant leukodystrophy 

patient samples. These samples have reduced levels of lamin B1 in addition to a 

decrease in nuclear stiffness. Further, depletion of lamin B1 in HEK293 and neuronal 

N2a cells resulted in a decrease in nuclear stiffness while overexpression of lamin B1 

resulted in an increase (Ferrera et al., 2014).  

 

In addition to lamins, chromatin significantly contributes to the stiffness of nuclei. 

The stiffness of the nucleus is regulated by the relative ratios of heterochromatin and 

euchromatin. The addition of trichostatin A, a small molecule inhibitor of histone 

deacetylase, results in an increase in the proportion of heterochromatin compared 

with euchromatin and a decondensing of the chromatin. Treatment of multiple cell 

lines with TSA prior to mechanical measurement results in a significant decrease in 

nuclear and cellular stiffness (Krause et al., 2013; Mazumder et al., 2008; Zhang et 

al., 2020). This decrease in stiffness occurred in a dose-dependent manner (Krause 

et al., 2013; Zhang et al., 2020). When cells were compressed with an extremely stiff 

AFM cantilever the nuclei were compressed to 20% of the original height while 

treatment with TSA resulted in an additional 5% decrease in height, suggesting the 

importance the chromatin plays in maintaining nuclear rigidity (Krause et al., 2013). 

 

Manipulating the levels of lamins and the state of chromatin influences the nuclear 

stiffness, however, these two components do not act independently of each other. 

When chromatin is no longer tethered to the INM by lamins and other INM proteins 

there is a reduction in nuclear stiffness (Schreiner et al., 2015). Additionally, 

chromatin in cells lacking lamin A/C have perturbed chromatin viscoelasticity with a 

decrease in local harmonic force (how much force is generated by the movement of 

chromatin) (Vivante et al., 2020). Two recent studies have looked at how the nuclear 

lamina and the chromatin respond to mechanical force of different types. They find 

that short extensions (following nuclear stretching) result in chromatin responding 

while longer extensions (>3µm) result in a response from the nuclear lamina 
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(Stephens et al., 2017). This observation was also confirmed using combined AFM 

and light sheet imaging to observe the chromatin and nuclear lamina. This study also 

found that chromatin responded to short extensions (indentations) while the nuclear 

lamina responded to longer extensions (Hobson et al., 2020). Ultimately, all these 

studies show that the mechanical properties of cells are regulated by an intricate 

balance between the cytoskeleton, nuclear lamina and chromatin. 

 

4.1.2 Hypothesis and Aims 

 

Previously published data discussed in section 1.2.3 suggests that disruption of DG 

results in a reduction of nuclear lamin proteins lamin A/C and B1 as well as 

mislocalisation of lamin B1 in mouse C2C12 cells. Both lamin A/C and lamin B1 have 

been reported to influence the mechanical properties of cells and nuclei. Therefore, 

the hypothesis is that perturbation of DG and subsequently the nuclear lamina would 

result in a decrease in nuclear stiffness. Despite the fact we do not see any observable 

effect on the nuclear lamina following DAG1 KO in human myoblast cells it is 

important to investigate any difference in mechanical properties of control and KO 

cell lines.  

 

The aims of the experiments presented in this chapter were to measure the Young’s 

modulus of control and DAG1 KO cell lines and directly compare these. Additionally, 

cells were treated with CytoD and TSA to determine the contribution of chromatin 

and the cytoskeleton. Further, isolated nuclei were measured to determine the 

mechanical properties of the nuclei in the absence of any cytoskeletal influence. 

 

4.2 Results 

 

4.2.1 Optimising the functionalisation of tipless cantilevers with 5µm polystyrene 

beads 
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The advantages of using a spherical tipped cantilever over sharp tips for mechanical 

measurements of cells has been well established (Zemła et al., 2020). One advantage 

is the more uniform distribution of applied force across the cell or organelle. This is 

not the case when a sharp tip is used as it results in localised force application and 

therefore a measurement of a smaller area of the cell. This localised application also 

increases the chance of damaging the sample. 

 

The rectangular MLCT-O10 probe was used for cell and nuclear measurements 

discussed in this chapter as it had a low spring constant (nominally 0.02N/m) 

comparable to the stiffness expected for cells and nuclei (Zemła et al., 2020). The 

MLCT-O10 cantilevers are tipless (Figure 4.1a) and required functionalising with a 

polystyrene bead that had a 5µm diameter. 5µm beads were chosen as that is the 

approximate size of the nuclei in KM155 human myoblasts. Multiple attempts were 

required to generate a procedure that could reliably produce functionalised 

cantilevers that were suitable for use. The first attempts involved using microscope 

slides cleaned with isopropanol and air dried, the adhesive and the beads stored in 

water were added to the slide. When the beads had dried the cantilever was dipped 

in the adhesive and then approached the surface over a single bead to pick it up. This 

method did not result in picking up the bead as it remained on the surface of the 

slide. The second method involved cleaning the slide with Piranha solution to reduce 

adhesion between the bead and the slide which would allow the bead to be picked 

up by the adhesive coated cantilever, but this was also unsuccessful. The third 

method was the same as the second, except the beads were washed extensively in 

ethanol before adding them to the slide. This was also unsuccessful. The following 

method was the same except the ethanol cleaned beads were allowed to air dry 

before adding to the slide. This was successful in terms of the cantilever coated in 

adhesive was able to pick up the bead from the slide. Despite the bead being stuck 

to the cantilever there was an excess of adhesive that resulted in adhesive covering 

most of the bead which is unsuitable for measurements as the spherical geometry is 

lost (Figure 4.1b). The final and successful method involved cleaning the slides with 

Piranha solution and washing the beads in ethanol and allowing the ethanol to 

evaporate before adding them to the slide. The cantilever then approached and 
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contacted the adhesive and contacted the surface of the slide twice following contact 

with the adhesive to remove any excess and leaving just a thin layer on the cantilever. 

This left just enough adhesive to pick up and maintain the bead in place but not 

enough to run over the sides of the bead (Figure 4.1c). 

 

 
Figure 4.1 SEM of MLCT-O10 cantilevers. (a) MLCT-O10 cantilever prior to functionalisation with 5µm bead. (b) 
MLCT-O10 cantilever functionalised with 5µm bead with excess glue. (c) MLCT-O10 cantilever successfully 
functionalised with 5µm bead. 

 

 

 

a

b

c
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4.2.2 Force mapping of a single control cell in order to determine height and 

stiffness of different cellular regions 

 

Force mapping of an entire cell allows determination of multiple parameters across 

the whole cell; it provides information on height/topography and a corresponding 

map of Young’s moduli (E). Generating a force map of a control cell indicates the 

highest point of the cell is ~4.2µm and this corresponds to the nucleus (Figure 4.2). 

Based on this height analysis the lowest cytoplasmic hight is ~2µm with it increasing 

moving towards the nucleus. This is important information as it means indentation 

must always be <2µm over the cytoplasmic region which it always was in subsequent 

experiments. 

 

 
Figure 4.2 Topographical height map of gRNA control cell. (a) Map of cell height measured using a cantilever 
with 5µm bead. Measured with a setpoint of 3nN and a loading rate of 7µm/s. (b) 3D projection of the height 
map indicating the central nuclear region has the greatest height. Representative of 3 cells imaged. 

 

a
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From these measurements a map of Young’s modulus across the whole cell was also 

generated (Figure 4.3). The stiffest areas are at the cellular periphery as this is likely 

to include, in part, the stiffness of the underlying substrate (Figure 4.3a). When the 

Young’s moduli is thresholded to <12kPa and <6kPa the main body of the cell is within 

this range, with the nucleus being the softest region and the stiffness increasing 

moving further towards the cell periphery (Figure 4.3b,c).  

 

 
Figure 4.3 Modulus maps of a gRNA control cell. Modulus map of an entire cell measured using a cantilever with 
a 5µm bead. Measured with a setpoint of 3nN and a loading rate of 7µm/s. Force map thresholded at (a) 19.4kPa, 
(b) 11.1kPa and (c) 5.55kPa. Representative of 3 cells imaged. 
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4.2.3 Investigating the mechanical properties of asynchronous populations of 

control and DAG1 KO cells 

 

Following cell seeding the cells were incubated at 37°C for at least 24 hours to ensure 

secure attachment to the plastic petri dish. Measurements were taken in cell growth 

media at 37°C to keep the cells as close to physiological conditions as possible. Each 

cell was identified using the optical microscope associated with the AFM and 10 

measurements were taken either directly above the centre of the nucleus or away 

from the nucleus to measure the cytoplasmic stiffness (Figure 4.4a). The 

measurements produce a force-indentation curve (Figure 4.4b) from which the 

Young’s modulus can be calculated following the fitting of the Hertz model. To 

determine whether taking the average of 10 measurements resulted in a change in 

stiffness between the first and final measurements the E was determined following 

one approach and retraction cycle of the cantilever and then again using the 50th 

approach and retraction cycle (Figure 4.4c). The first measurement was normalised 

to 1 and the 50th measurement was normalised accordingly with no significant 

difference between the value determined after 1 cycle and the value determined 

after the 50th cycle which confirms the stability of the E after 10 measurements. 

Additionally, the extent to which the nuclear stiffness was affected by cell contacts 

was also determined. In order to test this, control cells that were either isolated from 

all other cells or in contact with at least one other cell, were measured (Figure 4.4d). 

The average E for cells with no contacts and those with contacts did not differ 

significantly. This data indicates it is not essential to only measure cells that are 

isolated from contact.  

 

In the case of the nuclear measurements, the average Young’s modulus of 

asynchronous control cells was slightly lower than that of all the KO clones (Figure 

4.5).  However, none of these differences were statistically significant as determined 

by a one-way ANOVA test. The fact that the Young’s modulus of all three DAG1 clones 

were not significantly different from the control indicates b-DG, and DG more 

broadly, does not influence the nuclear stiffness of an asynchronous population of 

human myoblast cells.  



 148 

 

 
Figure 4.4 Measurements of whole cells using AFM. (a) Example brightfield images demonstrating the optical 
view using the AFM. In each image the cantilever is at the bottom. The nuclear regions measured are indicated 
with red crosses and cytoplasmic regions are indicated with blue crosses. (b) Example indentation curves of 
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control cells, the black curve indicates the approach while the grey curve indicates the retract. (c) Nuclear stiffness 
of gRNA control cells measured using the first measurement and the 50th measurement with each value for the 
50th measurement being normalized to the first measurement. n = 6, no significant difference using students t-
test, p = 0.2991. (d) Nuclear stiffness of gRNA control cells either in contact or isolated from other cells. 0 contacts 
n = 70, >1 contact n = 83, no significant difference using students t-test, p = 0.3998. 

 
Figure 4.5 No difference in average nuclear Young’s modulus between control and DAG1 KO cell lines in 
asynchronous populations. Nuclei were measured using a functionalised cantilever. Small black points indicate 
values from individual cells while larger coloured points indicate the average for each independent experiment. 
5 independent experiments were carried out with 125 nuclei measured per sample. Graph shows mean and 
standard deviation. A significant difference was not found between any of the samples as determined by one-
way ANOVA test p = 0.4372. p values for multiple comparisons using Dunnett’s multiple comparisons test are in 
the table. 

Cell Line Average SD
P value 

compared with 
control

Significance

Control 2.4068 0.4726 N/A N/A
DAG1 KO C 2.6484 0.4565 0.7672 ns
DAG1 KO D 2.8256 0.2605 0.3661 ns
DAG1 KO E 2.7752 0.4812 0.4724 ns
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Results from the measurements of the cytoplasmic regions of control and DAG1 KO 

cells are similar to the nuclear region measurements. Control cells have an average 

cytoplasmic Young’s modulus slightly lower than the DAG1 KO cells (Figure 4.6) but 

as observed with nuclear stiffness, the difference was not statistically significant. 

These data show that the perturbation of DG has no effect on the cytoplasmic 

stiffness in asynchronous myoblasts.  

 

 
Figure 4.6 No difference in average cytoplasmic Young’s modulus between control and DAG1 KO cell lines in 
asynchronous populations. Cells were measured using a functionalised cantilever. Small black points indicate 
values from individual cells while larger coloured points indicate the average for each independent experiment. 
5 independent experiments were carried out with 125 cells measured per sample. Graph shows mean and 
standard deviation. A significant difference was not found between any of the samples as determined by one-
way ANOVA test p = 0.8078. p values for multiple comparisons using Dunnett’s multiple comparisons test are in 
the table. 

 

Cell Line Average SD
P value 

compared with 
control

Significance

Control 2.7134 0.5498 N/A N/A
DAG1 KO C 2.7656 0.6224 0.9992 ns
DAG1 KO D 2.8728 0.3399 0.9777 ns
DAG1 KO E 3.1078 0.4812 0.759 ns
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The nuclear and cytoplasmic data was then combined to determine whether there is 

a difference between the nuclear stiffness and the cytoplasmic stiffness within each 

cell line (Figure 4.7). Generally, the average cytoplasmic stiffness is greater than that 

of the nucleus but there is no statistically significant difference between these values. 

This is in agreement with previously reported data in human fibroblasts (Apte et al., 

2017). Overall, these data indicate no difference between cytoplasmic or nuclear 

stiffness in asynchronous control or DAG1 KO cells. 

 

 
Figure 4.7 Comparison between nuclear and cytoplasmic Young’s modulus of asynchronous control and DAG1 
KO cell lines. This data is a combination of the data from figures 5 and 6. A significant difference was not found 
between any of the samples as determined by one-way ANOVA test p = 0.7009. p values for multiple comparisons 
using Šídák's multiple comparisons test are in the graph. 

 

4.2.4 Investigating the mechanical properties of synchronised control and DAG1 KO 
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As there appeared to be a slightly higher, although non-significant, average stiffness 

for both nucleus and cytoplasm in the DAG1 KO cells compared with the control in 

an asynchronous population, the effect of synchronising the cells prior to AFM 
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cells (Figure 4.8a). Cells were then synchronised using serum starvation which 

prevents progression from G1 phase of the cell cycle ensuring the population is 

almost entirely in G1 phase (Figure 4.8b). Prior to serum starvation 63% of cells were 

in G1 phase, 15% in G2, and 22% in S phase while release from serum starvation 

resulted in >95% of cells being in G1 phase even 6 hours post-release (Figure 4.8b). 

 

 
Figure 4.8 Cell cycle synchronisation of control cells using double thymidine block and serum starvation. (a) 
Synchronisation using double thymidine block did not result in cells synchronised in G1 phase as expected. (b) 
Synchronisation using serum starvation successfully synchronised cells in the G1 phase and >95% remained in G1 
phase for the full 6 hours following release from serum starvation.   

 

Following serum starvation cells were again measured either directly over the 

nucleus or adjacent to the nucleus to generate a measure of nuclear and cytoplasmic 

stiffness. Using the functionalised cantilever discussed in section 4.2.1, control cells 

and the DAG1 KO clones A and B were measured. The results are similar to those 

observed in asynchronous cells whereby the KO clones had slightly stiffer nuclei 

compared with the controls (Figure 4.9), however, only clone A is significantly stiffer 

with a p value of 0.0324. 
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Figure 4.9 Average nuclear Young’s modulus of control and DAG1 KO cell lines in G1 synchronised populations 
using functionalised cantilevers. Nuclei were measured using a functionalised cantilever. Small black points 
indicate values from individual cells while larger coloured points indicate the average for each independent 
experiment. 7 independent experiments were carried out with 181 nuclei measured per sample (except KO A 
where n = 173). Graph shows mean and standard deviation. A significant difference was not found between any 
of the samples as determined by one-way ANOVA test p = 0.0517. p values for multiple comparisons using 
Dunnett’s multiple comparisons test are in the graph, this suggests the difference between control and DAG1 KO 
clone A is significantly different but not the difference between control and clone B. 

 

Given that only one of the two DAG1 KO clones was significantly stiffer than the 

control further validation was required in order to understand if it is a genuine 

phenotype of knocking out DAG1. To this end a commercial cantilever with a rounded 

tip (Figure 4.10;inset) was used to repeat the measurements on all DAG1 KO clones. 
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The measurements obtained with this cantilever are more reliable than the 

functionalised ones as it is possible to be certain prior to measurements that the 

probe is located at the centre of the cantilever allowing precise orientation of the 

probe directly above the nucleus. The resultant stiffness of the nuclear regions of all 

KO clones does not maintain the slightly stiffer phenotype observed using the 

functionalised cantilever. The resultant nuclear stiffness of control cells is lower than 

that determined using the functionalised cantilevers. The DAG1 KO clones also had 

lower average Young’s moduli compared with the functionalised cantilever (Figure 

4.10). None of the average moduli for DAG1 KO clones are significantly different from 

the average of the control cells which confirms the conclusion that perturbing DG 

does not affect the nuclear mechanical properties of G1 synchronised myoblasts.  

 

In addition to the nuclear mechanical properties of G1 synchronised myoblasts the 

cytoplasmic mechanical properties were also investigated. When using the 

functionalised cantilever the average modulus of clone A is slightly higher than the 

control while clone B is slightly lower than the control however, neither of these are 

significantly different from the control (Figure 4.11). This was also confirmed using 

all available DAG1 KO clones and using the commercial cantilever (Figure 4.12). Only 

the difference between the control and DAG1 KO clone B was significant but given 

the evidence from the functionalised cantilever experiment this is very likely to be 

an artefactual outlier. These data strongly suggests that disruption of the DAG1 gene 

does not significantly influence the mechanical properties of the cytoplasm in 

myoblasts.  
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Figure 4.10 Average nuclear Young’s modulus of control and DAG1 KO cell lines in G1 synchronised populations 
using commercial cantilevers. Nuclei were measured using a commercial cantilever (inset). Small black points 
indicate values from individual cells while larger coloured points indicate the average for each independent 
experiment. 6 independent experiments were carried out with 90 individual nuclei measured per sample. Graph 
shows mean and standard deviation. A significant difference was not found between any of the samples as 
determined by one-way ANOVA test p = 0.6389. p values for multiple comparisons using Dunnett’s multiple 
comparisons test are in the table. 

Cell Line Average SD
P value 

compared with 
control

Significance

Control 2.440 0.686 N/A N/A
DAG1 KO A 2.141 0.257 0.9715 ns
DAG1 KO B 2.449 0.699 >0.9999 ns
DAG1 KO C 2.608 1.115 0.9965 ns
DAG1 KO D 2.207 0.240 0.9905 ns
DAG1 KO E 1.879 0.153 0.7127 ns

Performance Summary of Large Radius MLCT
Wafer A000-03

**Lever A is non-functional

Die # F (kHz) k (N/m) F (kHz) k (N/m) F (kHz) k (N/m) F (kHz) k (N/m) F (kHz) k (N/m) Averages
01-16 9.47 0.029 5.99 0.017 11.29 0.058 24.20 0.169 62.56 0.982 Tip Radius 4.4 um
05-11 9.44 0.031 5.96 0.018 11.26 0.036 23.85 0.179 61.71 0.920 Tip Setback 14 um
05-22 9.50 0.029 6.02 0.018 11.34 0.052 24.03 0.164 61.54 0.937 Tip Height 10.2 um
08-02 9.79 0.036 6.14 0.019 11.41 0.047 23.41 0.201 59.24 0.791 Lever Thickness 571 nm
08-17 9.91 0.039 6.20 0.020 11.74 0.055 25.46 0.194 67.00 1.114
08-31 10.73 0.039 6.19 0.021 11.57 0.054 24.54 0.198 62.94 1.335
11-11 10.23 0.048 6.41 0.023 12.18 0.056 26.21 0.235 68.04 1.281
11-22 9.92 0.035 6.25 0.021 11.83 0.060 25.53 0.187 66.73 1.125
14-22 9.13 0.026 6.00 0.016 11.47 0.052 24.33 0.207 62.94 1.071

Avg 9.79 0.035 6.13 0.019 11.57 0.052 24.62 0.193 63.63 1.062
Min 9.13 0.026 5.96 0.016 11.26 0.036 23.41 0.164 59.24 0.791
Max 10.73 0.048 6.41 0.023 12.18 0.060 26.21 0.235 68.04 1.335

St Dev 0.48 0.007 0.15 0.002 0.30 0.007 0.92 0.022 2.95 0.175

Lever B Lever C Lever D Lever E Lever F

- Bruker Confidential -
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The nuclear and cytoplasmic data were combined, as previously, to determine the 

relationship between the nuclear and cytoplasmic stiffness within each cell line. As 

seen with unsynchronised cells the average cytoplasmic stiffness of synchronised 

cells is greater than that of the nucleus but not significantly so in most cases. In the 

case of the control, KO A and KO B cell lines measured with the functionalised 

cantilever the difference between the nuclear and cytoplasmic stiffness is 

significantly different in the control and DAG1 KO A cells (Figure 4.13). However, 

when we use the commercial cantilever there is no difference between the 

cytoplasmic and nuclear stiffness in control cells (Figure 4.14). The only difference 

that is significant in this data set is between the nuclear and cytoplasmic stiffness of 

the DAG1 KO B cell line. Taken together this data suggest that there is no real 

difference between the nuclear and cytoplasmic stiffness of control or KO cell lines 

following G1 phase cell synchronisation.  

 

 
Figure 4.11 Average cytoplasmic Young’s modulus of control and DAG1 KO cell lines in G1 synchronised 
populations using functionalised cantilevers. Cells were measured using a functionalised cantilever. Small black 
points indicate values from individual cells while larger coloured points indicate the average for each independent 
experiment. 7 independent experiments were carried out with 35 cells measured per sample. Graph shows mean 
and standard deviation. A significant difference was not found between any of the samples as determined by 
one-way ANOVA test p = 0.0725. p values for multiple comparisons using Dunnett’s multiple comparisons test 
are in the graph. 
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Figure 4.12 Average cytoplasmic Young’s modulus of control and DAG1 KO cell lines in G1 synchronised 
populations using commercial cantilevers. Cells were measured using commercial cantilevers. Small black points 
indicate values from individual cells while larger coloured points indicate the average for each independent 
experiment. 6 independent experiments were carried out with 90 individual cells measured per sample. Graph 
shows mean and standard deviation. A significant difference was found between the samples as determined by 
one-way ANOVA test p = 0.0002. p values for multiple comparisons using Dunnett’s multiple comparisons test 
are in the table. 

Cell Line Average SD
P value 

compared with 
control

Significance

Control 2.626 0.482 N/A N/A
DAG1 KO A 2.384 0.256 0.934 ns
DAG1 KO B 3.411 0.529 0.0318 *
DAG1 KO C 3.114 0.555 0.3256 ns
DAG1 KO D 2.325 0.426 0.8509 ns
DAG1 KO E 1.834 0.219 0.0624 ns
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Figure 4.13 Comparison between nuclear and cytoplasmic Young’s modulus of G1 synchronised control and 
DAG1 KO cell lines measured with functionalised cantilevers. This data is a combination of the data from figures 
9 and 11. A significant difference was found between the samples as determined by one-way ANOVA test p = 
0.0051. p values for multiple comparisons using Šídák's multiple comparisons test are in the graph. 

 

 

Figure 4.14 Comparison between nuclear and cytoplasmic Young’s modulus of G1 synchronised control and 
DAG1 KO cell lines measured with commercial cantilevers. This data is a combination of the data from figures 
10 and 12. A significant difference was found between the samples as determined by one-way ANOVA test p = 
0.0030. p values for multiple comparisons using Šídák's multiple comparisons test are in the graph. 
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4.2.5 Investigating the mechanical properties of synchronised control and DAG1 KO 

cells following trichostatin A treatment 

 

TSA inhibits histone deacetylases, this results in an increase in DNA acetylation and 

ultimately a decondensing of the chromatin. The decondensed chromatin results in 

an increased nuclear size and a reduction in nuclear stiffness. Treating with TSA prior 

to AFM experiments provides information on the effects of condensed 

heterochromatin on the inherent mechanical properties of the nucleus. In order to 

determine the concentration to use for AFM experiments, TSA was added to control 

cells at concentrations ranging from 5nM to 300nM and incubated for 24 hours. The 

nuclei were then stained with DAPI and the nuclear size was determined (Figure 

4.15). The average nuclear area increases for all treatments with those at 100nM, 

200nM and 300nM being significantly greater than the DMSO treated controls. Based 

on this, 300nM TSA was used for subsequent AFM experiments.  

 

 
Figure 4.15 Treatment with Trichostatin A results in an increase in nuclear area. Nuclear area for each treatment 
was normalised to the DMSO treated control. n = 3 independent experiments measuring 77 DMSO, 75 5nM, 83 
50nM, 74 100nM, 79 200nM and 83 300nM treated cells. A significant difference was found between the samples 
as determined by one-way ANOVA test p = 0.0315. p values for multiple comparisons using Dunnett’s multiple 
comparisons test * = <0.0332, ** = <0.0021. 
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DAG1 KO clones A and B were used as representatives for the KO cell lines and 

compared with control cells. The measurements were carried out using the 

functionalised cantilevers. As with untreated cells there is no difference in the 

nuclear stiffness of control and KO cell lines (Figure 4.16). This suggests TSA 

treatment does not affect the mechanical properties of control and DAG1 KO cells 

differently. However, when we look at the nuclear stiffness of untreated and TSA 

treated cells there is a clear and significant decrease in the TSA treated cells as 

expected (Figure 4.17). Again, when the nuclear and cytoplasmic stiffness of the 

three cell lines were compared the cytoplasmic average stiffness is slightly greater 

than the nuclear average stiffness, this difference is not significant for control or 

DAG1 KO A cells but the difference between nuclear and cytoplasmic stiffness in 

DAG1 KO B cells is statistically significant (Figure 4.18).  

 

 
Figure 4.16 Average nuclear Young’s modulus of control and DAG1 KO cell lines following 300nM Trichostatin 
A treatment using functionalised cantilevers. Nuclei were measured using a functionalised cantilever. Small 
black points indicate values from individual cells while larger coloured points indicate the average for each 
independent experiment. 5 independent experiments were carried out with 100 individual nuclei measured per 
sample. Graph shows mean and standard deviation. A significant difference was not found between any of the 
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samples as determined by one-way ANOVA test p = 0.9764. p values for multiple comparisons using Dunnett’s 
multiple comparisons test are in the graph. 

 
Figure 4.17 Treatment of 300nM Trichostatin A for 24 hours results in a decrease in nuclear Young’s modulus 
in control and DAG1 KO cell lines. This data is a combination of the data from figures 9 and 16. A significant 
difference was found between the samples as determined by one-way ANOVA test p = <0.0001. p values for 
multiple comparisons using Šídák's multiple comparisons test are in the graph. 

 
Figure 4.18 Comparison between nuclear and cytoplasmic Young’s modulus of control and DAG1 KO cell lines 
following 300nM Trichostatin A treatment using functionalised cantilevers. A significant difference was found 
between the samples as determined by one-way ANOVA test p = 0.0132. p values for multiple comparisons using 
Šídák's multiple comparisons test are in the graph, only DAG1 KO B was significantly different. 
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4.2.6 Investigating the mechanical properties of synchronised control and DAG1 KO 

cells following Cytochalasin D treatment 

 

CytoD is used to perturb the actin cytoskeleton, it prevents association and 

dissociation of actin monomers from the actin filament. Disrupting the actin 

cytoskeleton prior to AFM measurements enables the determination of the nuclear 

stiffness without the contribution of the actin cytoskeleton. A range of 

concentrations of CytoD were tested from 50nM to 1000nM and cells were incubated 

for 24 hours. Cells were then stained with phalloidin to determine the extent of actin 

perturbation (Figure 4.19). The actin cable staining was lost following all CytoD 

treatments and the phalloidin staining became more diffuse as the concentration of 

CytoD increased. At 1000nM the phalloidin staining is very diffuse but this 

concentration was not used as almost all cells had multiple nuclei, at 500nM only a 

few cells had multiple nuclei and there was no evidence of actin cables, this 

concentration was used for subsequent AFM experiments.  

 

As with TSA treatment, the CytoD experiments used DAG1 KO clones A and B as 

representative and were compared with the control cells. Measurements were 

carried out using the functionalised cantilever. Following CytoD treatment there is 

no statistically significant difference in the Young’s modulus of DAG1 KO nuclei 

compared with the controls (Figure 4.20). Similarly, when the cytoplasmic region of 

CytoD treated cells were measured, there was no statistically significant difference 

between the Young’s modulus of control and DAG1 KO cells (Figure 4.21). As 

expected, both the nuclear and cytoplasmic stiffness decreased significantly 

following CytoD treatment for both control and DAG1 KO clones (Figure 4.22). 

Additionally, the actin cytoskeleton perturbation does not affect the relationship 

between nuclear and cytoplasmic stiffness (Figure 4.23). In control and DAG1 KO cell 

lines the cytoplasmic stiffness is slightly greater than the nuclear stiffness but not 

significantly so, as seen for all other treatment conditions. Overall, this data suggests 

that cells lacking DAG1 do not have a significant change in nuclear or cytoplasmic 

stiffness following actin cytoskeleton perturbation compared with control cells.  
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Figure 4.19 Treatment with varying concentrations of cytochalasin D result in perturbation of actin filaments. 
Control cells stained with DAPI to identify the nucleus, and phalloidin was used to determine the amount of 
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filamentous actin. Representative images of each CytoD concentration taken from 3 independent experiments. 
Scale bar = 20µm. 

 
Figure 4.20 Average nuclear Young’s modulus of control and DAG1 KO cell lines following 500nM cytochalasin 
D treatment using functionalised cantilevers. Nuclei were measured using a functionalised cantilever. Small 
black points indicate values from individual cells while larger coloured points indicate the average for each 
independent experiment. 7 independent experiments were carried out with 140 individual cells measured per 
sample (except KO A where n = 138). Graph shows mean and standard deviation. A significant difference was not 
found between any of the samples as determined by one-way ANOVA test p = 0.0663. p values for multiple 
comparisons using Dunnett’s multiple comparisons test are in the graph. 

 

Nuclear Young’s Modulus
 of synchronised, CytoD treated

 DAG1 KO and Control Cells 

0.8253

0.0578

Contro
l

DAG1 K
O A

DAG1 K
O B

0

1

2

3

4

Av
er

ag
e 

Yo
un

g’
s 

M
od

ul
us

 (K
Pa

)



 165 

 
Figure 4.21 Average cytoplasmic Young’s modulus of control and DAG1 KO cell lines following 500nM 
cytochalasin D treatment using functionalised cantilevers. Cells were measured using a functionalised 
cantilever. Small black points indicate values from individual cells while larger coloured points indicate the 
average for each independent experiment. 7 independent experiments were carried out with 35 individual cells 
measured per sample. Graph shows mean and standard deviation. A significant difference was not found 
between any of the samples as determined by one-way ANOVA test p = 0.4184. p values for multiple comparisons 
using Dunnett’s multiple comparisons test are in the graph. 
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Figure 4.22 Treatment with 500nM Cytochalasin D for 24 hours results in a decrease in nuclear and cytoplasmic 
Young’s modulus in control and DAG1 KO cell lines. (a) This data is a combination of the data from figures 9 and 
20. A significant difference was found between the samples as determined by one-way ANOVA test p = <0.0001. 
p values for multiple comparisons using Šídák's multiple comparisons test are in the graph. (b) This data is a 
combination of the data from figures 11 and 21. A significant difference was found between the samples as 
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determined by one-way ANOVA test p = <0.0001. p values for multiple comparisons using Šídák's multiple 
comparisons test are in the graph. 

 
Figure 4.23 Comparison between nuclear and cytoplasmic Young’s modulus control and DAG1 KO cell lines 
following 500nM CytoD treatment using functionalised cantilevers. A significant difference was not found 
between the samples as determined by one-way ANOVA test p = 0.2071. p values for multiple comparisons using 
Šídák's multiple comparisons test are in the graph. 
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When nuclear area is plotted against nuclear Young’s modulus of control cells there 

is no correlation between the two variables (Figure 4.24). The correlation coefficient, 

r, is negative, with a value of -0.092 and an r2 value of 0.00848. An r and r2 value this 

small would be indicative of a very weak correlation if there is any correlation at all. 

However, the p value is 0.2577 meaning this weak correlation is not statistically 

significant and it can only be concluded that there is no correlation between nuclear 

area and nuclear Young’s modulus in control cells.  

 

 
Figure 4.24 There is no correlation between nuclear size and nuclear Young’s modulus in control cells. Data 
from control cells using a commercial cantilever was pooled to determine any correlation between nuclear area 
and nuclear stiffness. n = 153, Pearson correlation r = -0.09206, r2 = 0.008475, p value = 0.2577. 

 

The range of the nuclear area in control cells is smaller than the range observed in 

the DAG1 KO cells – there are some DAG1 KO nuclei much larger than any seen in 

control cells. Based on this a correlation between nuclear area and nuclear Young’s 

modulus was carried out for all cell types combined (Figure 4.25). These data suggest 

a slight positive correlation with an r value of 0.086 and an r2 value of 0.00742. The 

p value for this correlation is 0.0236 indicating the slight positive correlation is 

statistically significant. However, given that the correlation coefficient is so small it is 

unlikely that this has any biological significance. Taken together these data would 

suggest there is no compelling evidence for a biologically relevent correlation 

between the nuclear area and nuclear Young’s modulus in human myoblast cell lines. 
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Figure 4.25 There is no correlation between nuclear size and nuclear Young’s modulus in control and DAG1 KO 
cells. Data from all cells (control and DAG1 KO) using a commercial cantilever was pooled to determine any 
correlation between nuclear area and nuclear stiffness. n = 691, Pearson correlation r = -0.08612, r2 = 0.007416, 
p value = 0.0236. 
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appeared to be some PM rupture but still cytoplasm, as determined by emerin 

staining, associated with all the nuclei (Figure 4.26b). The next method used a similar 

method involving the Dounce homogeniser to mechanically separate the cytoplasm 

and nucleus but this had the additional step of centrifuging the cells through a low 

concentration of sucrose in order to strip remaining cytoplasm from the nucleus 

(Dahl et al., 2005). This produced the most success with little intensity following 

phalloidin staining (Figure 4.26c) but there was clearly some cytoplasmic remains still 

associated with the nucleus when viewed with brightfield (Figure 4.26d).  

 

The final method used was an adaptation of the relatively successful method 

involving mechanical lysis and sucrose gradient. This method used the same system 

but with a higher sucrose concentration which results in a greater viscosity that helps 

to strip excess cytoplasm and cytoskeleton from the nuclei (Martínez-Vieyra et al., 

2013). Following nuclear isolation, the validity of the preparation was assessed by a 

combination of microscopy and western blotting analysis. Initially the quality was 

assessed by staining with DAPI and phalloidin to identify the nuclear and cytoplasmic 

components (Figure 4.27a). Based on this it is clear that the majority of the nuclei 

were lacking any surrounding phalloidin staining (white arrows) while there were still 

a few remaining nuclei that had at least some filamentous actin associated with the 

nuclei (grey arrows). Those cells that appeared to be F-actin free were also looked at 

using a brightfield microscope to determine if there was any associated cytoplasm 

that did not contain F-actin (Figure 4.27b). In addition to immunofluorescence and 

brightfield microscopy analysis, the purity was assessed using western blotting 

(Figure 4.28). In this assay GAPDH was used as a cytoplasmic marker, lamin A/C was 

used as a nuclear marker and calnexin was used as a marker of the ER. From this it is 

clear that the nuclear fraction only contains the nuclear proteins lamin A/C and 

neither the cytoplasmic nor ER markers were present in this fraction. Conversely, the 

cytoplasm contains the cytoplasmic marker protein GAPDH and the ER protein 

calnexin with no signal for the nuclear marker lamin A/C. This confirms the purity of 

the whole preparation suggesting that even the ER has been removed from the NE. 

Based on all these data combined, the protocol produces sufficiently clean nuclei to 

be used to measure isolated nuclei with AFM.  
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Figure 4.26 Nuclear isolation methods. (a) Representative brightfield microscopy of nuclear isolation following 
osmotic lysis, left image is untreated cell, right image is lysed cells where a large amount of cytoplasm is still 
present. Scale bar = 20µm. (b) Representative immunofluorescence images stained with DAPI and emerin 
following mechanical lysis using a Dounce homogenizer for varying numbers of strokes. (c) Representative 
immunofluorescence images stained with DAPI and calnexin following mechanical lysis followed by low-molarity 
sucrose gradient. Scale bar = 5µm. (d) Representative brightfield microscopy images of nuclei following 
mechanical lysis followed by low-molar sucrose gradient. 
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Figure 4.27 Refined method of nuclear isolation involved mechanical lysis followed by high-molar sucrose 
gradient evaluated by microscopy. (a) Representative nuclear isolation preparation stained with DAPI and 
phalloidin to identify the nucleus and any surrounding actin filaments indicative of cytoplasmic contamination. 
Cells lacking any phalloidin staining are indicated with white arrows while cells with some phalloidin staining 
remaining are indicated with grey arrows. Scale bar = 10µm. (b) Representative brightfield microscopy images of 
isolated nuclei with no surrounding cytoplasmic contaminants. Scale bar = 5µm. 
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Figure 4.28 Refined method of nuclear isolation involved mechanical lysis followed by high-molar sucrose 
gradient evaluated by western blotting. Western blot analysis of nuclear and cytoplasmic fractions following 
mechanical lysis. GAPDH was used as the resident cytoplasmic protein marker, lamin A/C was used as the resident 
nuclear protein marker and calnexin was used as the resident ER marker protein. This representative blot 
indicates that the nuclear fraction did not contain the cytoplasmic or ER marker proteins. 

 
4.2.9 Investigating the mechanical properties of nuclei isolated from control and 

DAG1 KO myoblast cells 

 

In order to measure the mechanical properties of the isolated nuclei, the nuclei need 

to be harvested just before AFM measurements with as little time between isolation 

and measurement as possible to prevent nuclear deterioration over time. To this 

end, following isolation, nuclei were allowed to settle and attached to the poly-L-

lysine coated dish for 30 minutes. The dish was then washed twice to removed 

unattached nuclei or cell debris. Each nuclear sample was then measured for no 

longer than one hour before a new sample was prepared.  

 

Preliminary AFM data was generated using the commercial MLCT pyramidal tip 

rather than the functionalised or commercial cantilevers discussed above. This 

preliminary data was generated to give an idea of nuclear mechanical properties 

prior to cantilever functionalisation. The data from 5 control cells and 5 DAG1 KO B 

cells suggested the KO cells were significantly softer than the control (Figure 4.29a). 

The average stiffness of control nuclei was 372±95 Pa while the average KO nuclei 
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was 116±68 Pa. These data suggest there may be a difference between the two 

samples with additional experiments and repeats required to validate the 

preliminary finding. 

 

Mechanical measurements of control nuclei in addition to DAG1 KO A and B nuclei 

were carried out using functionalised cantilevers. As with the preliminary data the 

KO nuclei were significantly softer than the control nuclei (Figure 4.29b). The average 

nuclear stiffness for the control sample was 318±60 Pa while DAG1 KO A and B nuclei 

were 151±24 Pa and 152±37 Pa respectively. The two data sets are in good 

agreement despite the preliminary data only including a total of 5 nuclei per sample. 

Taken together these data strongly suggest that isolated nuclei from DAG1 KO cells 

are significantly softer than the control nuclei.  
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Figure 4.29 Isolated nuclei from DAG1 KO cells are less stiff than isolated nuclei from control cells. (a) 
Mechanical properties of isolated nuclei from control and DAG1 KO B as measured by a pyramidal MLCT 
cantilever. n = 5 nuclei, p = 0.0012, students t-test. (b) Mechanical properties of isolated nuclei from control and 
DAG1 KO A and B as measured by a functionalised MLCT cantilever. Small black points indicate individual nuclei 
while larger coloured points indicate the average of each experiment. Two individual outlier points from the 
control column were excluded to enable better visualisation, these values were 1121 Pa and 2553 Pa.  n = 3 
independent experiments with 35 individual cells measured per sample (except control where n = 36). Statistical 
analysis using one-way ANOVA test p = 0.0047. p values for multiple comparisons using Dunnett’s multiple 
comparisons test are in the graph. 
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4.3 Discussion 

 

The results described in this section were aimed at answering the question of 

whether a lack of DG results in a difference in mechanical properties of myoblasts 

when compared with appropriate controls. There has been some data presented in 

the literature which suggests the knock down of b-DG or the complete KO of the 

DAG1 gene in mouse C2C12 myoblasts results in reduction or aberrant localisation 

of the key structural nuclear proteins lamin B1 and emerin (Jimenez-Gutierrez et al., 

2020; Martínez-Vieyra et al., 2013). Given that these proteins contribute to the 

mechanical properties of the nucleus it would be expected that disruption of DG 

would result in a reduced nuclear Young’s modulus.  

 

This previously published data was the reason for carrying out these AFM 

measurements on DAG1 KO human myoblasts. However, these cells do not exhibit 

the same lamin B1 or emerin phenotype which is discussed in detail in chapter 3. The 

results described in this chapter, demonstrate no clear difference in the Young’s 

modulus of control and DAG1 KO cells. These data fit with the data described in 

chapter 3 suggesting perturbation of DG does not affect the levels or structural 

organisation of the lamins in human myoblasts. 

 

4.3.1 Comparison of Young’s moduli 

 

AFM has many advantages for measuring mechanical properties of cells however, it 

is very difficult to compare moduli between different studies as there are many 

factors that influence the final value (such as type of cantilever used, loading rate 

used, sample preparation, type of atomic force microscope and model used to 

determine the Young’s modulus) (Caluori et al., 2018; Schillers et al., 2017; Weber et 

al., 2020). Despite the difficulties in comparing results across different studies, AFM 

is extremely useful for producing an apparent Young’s modulus which can be 

compared across samples that have been handled and measured consistently (Zemła 

et al., 2020). Therefore, the values that other studies have determined for similar or 
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the same cell types may vary drastically depending on the parameters used. 

However, comparing these can give an indication of whether the measured data in 

this study is within the right range.  

 

There have been no studies measuring the mechanical properties of the human 

myoblast cells used in this study, however, there are some data for mouse myoblasts. 

Mouse C2C12 myoblasts and myotubes were measured using a triangular tip, this 

study presented a Young’s modulus of 3.15±0.24 kPa for myoblasts and 6.06±0.57 

kPa for myotubes while myoblasts treated with blebistatin had a modulus of 

2.37±0.30kPa (Streppa et al., 2018). This data is in good agreement with that 

presented here despite the difference in tip used. However, another earlier study 

using a cone shaped tip suggests the Young’s modulus is between 11-45 kPa 

(Collinsworth et al., 2002). These two studies demonstrate the range in values that 

can be determined from different studies.  

 

4.3.2 Reasons for variations in measurements 

 

Throughout these data sets there are occasional occurrences of differences being 

statistically significant in one of the KO cell lines. There are three examples of this: 

(1) The nuclear measurements from the synchronised sample measured with the 

functionalised cantilever, DAG1 KO A is significantly different from the control; (2) 

the cytoplasmic measurements from the synchronised sample measured with the 

commercial cantilever, DAG1 KO B is significantly different from the control and (3) 

the nuclear measurements from the CytoD treated sample measured with the 

functionalised cantilever, DAG1 KO B is significantly different from the control.  

 

The most likely explanation for the differences between the two nuclear samples (1 

and 3) is due to the use of the functionalised cantilever. The main problem with the 

functionalised cantilevers is a lack of consistency between cantilevers as the bead is 

unlikely to be stuck in the same position for each cantilever. Additionally, the 

functionalised cantilevers appeared to accumulate cell debris from the sample more 

readily than the commercial cantilever. This meant that each cantilever could only 
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be used once on one sample (or sometimes less). Conversely, the commercial 

cantilever was generally used for all samples within each repeat which allowed a 

more accurate comparison. Additionally, if only one of the KO samples demonstrated 

this difference this was generally regarded as a clonal artefact, but additional 

experiments with the commercial cantilever were carried out where possible to 

confirm this. It was only when both KO samples differed significantly from the 

control, as with the isolated nuclei experiments, that this was considered as a 

genuine difference.  

 

The other variable result observed was using the commercial cantilever to measure 

the cytoplasmic stiffness of synchronised cells and DAG1 KO B appeared to be 

significantly different than the control. This was not observed in any of the other cell 

lines, nor was it observed in the same cell line when measured with the 

functionalised cantilever. This combined evidence suggests this result was due to 

experimental variation rather than a clonal artifact. The most likely explanation for 

this is measuring an area of the cytoplasm that was too close the cell periphery 

resulting in the measurement including the contribution of the underlying substrate. 

It is also possible that simply by chance a stiffer subset of the KO cells was measured.  

 

4.3.3 Differences in Young’s modulus of isolated nuclei 

 

Measuring the Young’s modulus of isolated nuclei from control and DAG1 KO clones 

A-B resulted in a significantly lower moduli for both DAG1 KO clones when compared 

with the control nuclei. Here, it is clear from both the preliminary data and the follow 

up data using two DAG1 KO cell lines that the KO isolated nuclei are softer than the 

control nuclei. It is possible that the two larger outlier values in the control sample 

resulted in skewed averages. However, when these outlier values are removed the 

difference between the control and DAG1 KO samples was still significantly different. 

Ideally a rescue experiment where full-length b-DG or a mutant b-DG lacking the 

nuclear localisation signal would be used to confirm that the finding is due to b-DG 

and not either a-DG or an off-target effect of the CRISPR knockout. Unfortunately, 
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due to time and technical limitations this has not been possible. Additionally, 

confirmation with the commercial cantilevers was not possible due to the probe size 

being greater than that of the isolated nuclei. Based on the data presented in chapter 

3 demonstrating that the structural nuclear proteins are not affected by knocking out 

DAG1 the observed difference in nuclear Young’s modulus is not easily explained. 

Additionally, the relative levels of heterochromatin and euchromatin are unaffected 

in DAG1 KO cells compared with controls which means this is not the reason for the 

differences observed in the isolated nuclei experiments.  

 

It would be possible to attempt to measure the relative contributions of the nuclear 

lamina or chromatin by varying the osmolarity of the buffer as has been done 

previously (Dahl et al., 2005). By subjecting the nuclei to a hypotonic solution, the 

nuclei swell and the contribution of the chromatin is reduced however, the 

contribution of the increased water pressure would need to be considered. 

Alternatively, it would be possible to treat the nuclei with DNase in order to remove 

the DNA and reduce the chromatin contribution. It is harder to remove the lamina 

while leaving the chromatin intact but nucleoli have been isolated for AFM 

measurements (Louvet et al., 2014). However, this additional information is unlikely 

to provide any clear answers given that no difference in the levels or localisation of 

any nuclear lamina proteins has been detected.  

 

One explanation could be down to the sensitivity of the different experiments used. 

It may be that the levels of lamin B1 are slightly reduced in DAG1 KO cell lines but 

this difference is too small to be detected by fluorescence microscopy or western 

blotting (chapter 3). Whereas the sensitivity of the AFM may be detecting these 

minute differences. These differences are lost in the whole cell measurements 

because cells have a Young’s modulus in kPa range while the isolated nuclei are 

measured in Pa. Thus, the difference of 200 Pa between control and KO isolated 

nuclei is lost in the background of whole cells which are much stiffer.    

 

Although there might not be an obvious explanation for the differences observed at 

the isolated nuclei level it is important to consider what the physiological 
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implications may be. As myoblasts differentiate into myotubes to form muscle fibres 

they are put under large amounts of mechanical pressure. Maintaining nuclear shape 

is required for correct cellular function (Mandigo et al., 2019) so maintaining a stiffer 

nucleus may be required for retaining correct nuclear shape. In the following chapter 

the response to a range of mechanical stressors will be investigated in order to 

determine whether a lower nuclear stiffness plays any role in resisting or responding 

to mechanical stress.     
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5 Investigating the role of DG in maintaining nuclear 

morphology and DNA integrity following mechanical stress 

 

5.1 Introduction 

 

Mammalian cells are capable of adapting to varying types of mechanical stimulus and 

there are many mechanisms involved in converting mechanical stimulus into a 

biochemical signal that cells can respond to. The external mechanical environment 

can be sensed through membrane proteins which result in downstream signalling 

through pathways such as the Hippo pathway which results in the regulation of cell 

proliferation and cell survival (Zou et al., 2020). Additionally, direct mechanical force 

can be transmitted through focal adhesions, through the cytoskeleton and directly 

to the chromatin within the nucleus via the LINC complex and nuclear lamina (Crisp 

et al., 2006). The nucleus plays a central role in the response to mechanical cues and 

the response to excessive mechanical stress. The nuclear response produced differs 

depending on the type of mechanical stress and the relative intensity or persistence 

of that stress (Gilbert et al., 2019; Nava et al., 2020; Raab et al., 2016). In order to 

test the effect of mechanical stress, there are three major types of mechanical stress 

that mammalian cells can easily be subjected to in vivo; (1) cell/nuclear 

compression/deformation, (2) cell stretching and (3) being subjected to sheer forces. 

Compression occurs during development but also commonly in migrating cells that 

have to negotiate through narrow gaps in ECM, this is particularly relevant for 

metastatic cancer cells (Denais et al., 2016). Stretching occurs in many tissues but is 

extreme and consistent in muscle and skin tissue. This means cells require 

mechanisms in order to cope with the constant strain. Sheer stress is common in 

endothelial cells lining the blood vessels. It is important that cells are able to detect 

and respond to these mechanical stressors to maintain tissue homeostasis.  

 

5.1.1 Extreme cell/ nuclear compression results in an accumulation of DNA damage 
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Investigating the effects of compression on cells can be carried out in either an active 

or a passive manner. Active compression involves cells moving through 

gaps/pores/channels that are significantly smaller than the nucleus. The nucleus is 

the stiffest and largest organelle and represents the rate limiting component in 

migration through confined spaces (Mukherjee et al., 2020). The alternative, passive 

compression, simply involves cells growing in situ while a compressional force is 

applied on top of the cells. This allows a better understanding of the effects of the 

mechanical stress in isolation without additional variables such as migration.  

 

Cell migration through a confining environment has generally made use of the 

Transwell migration assay. This involves seeding cells onto a membrane with pores 

of a defined size. The cells then migrate through these pores, and it is possible to fix 

and stain either the top (unmigrated cells) or the bottom (migrated cells) of the 

membrane and image these as with normal immunofluorescence techniques. These 

types of experiments have been done extensively in many cell types with the majority 

responding in the same way. When mammalian cells migrate through 3µm pores the 

nuclei are constricted and result in aberrant nuclear morphology including decreases 

in nuclear area (Patteson et al., 2019a), changes in nuclear aspect ratio (Irianto et al., 

2017; Patteson et al., 2019a) and an increase in nuclear blebs (Irianto et al., 2017; 

Mukherjee et al., 2020; Patteson et al., 2019a; Pfeifer et al., 2018; Xia et al., 2019). 

The nuclear blebs are lamin A/C positive but lamin B1 negative as seen in nuclear 

blebs that have not resulted from mechanical stress (Pfeifer et al., 2018). In addition 

to nuclear morphology changes following migration through 3µm pores, there are 

also direct effects on the DNA and chromatin. There is an increase in DNA damage as 

determined by gH2AX intensity in migrated cells compared with non-migrated cells, 

while there is also mislocalisation of key repair protein Ku80. The DNA damage is not 

due to replication stress and is replication independent (Irianto et al., 2017; 

Mukherjee et al., 2020; Patteson et al., 2019a; Pfeifer et al., 2018; Xia et al., 2019). 

Additionally, there are gross chromosome changes including changes in chromosome 

copy number and changes in transcription profiles (Irianto et al., 2017; Xia et al., 

2019). The increased DNA damage and transcriptional changes are not permanent 

and generally recover back to baseline levels within 24 hours post migration. 
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However, when key DNA double strand break repair proteins are knocked down 

there are increased levels of DNA damage following migration and this damage is 

persistent (Irianto et al., 2017; Pfeifer et al., 2018). Finally, there are changes in the 

cell-cycle following migration through 3µm pores. The cell-cycle is arrested following 

migration however, this is reversable as the cell-cycle is reinitiated following DNA 

damage repair (Pfeifer et al., 2018; Xia et al., 2019). The cell-cycle arrest is also 

partially alleviated by addition of an antioxidant suggesting accumulation of ROS 

contributes to the DNA damage response (Xia et al., 2019). In all of these experiments 

an appropriate control was used, cells migrated through 8µm pores which does not 

result in nuclear compression. In these control experiments none of the nuclear 

abnormalities, increases in DNA damage or arrested cell-cycles were observed 

indicating these responses are specific to confined migration (Irianto et al., 2017; 

Patteson et al., 2019a; Pfeifer et al., 2018; Xia et al., 2019).  

 

One limitation of using the transwell migration assays discussed above is that it is not 

possible to visualise the cells as they migrate through the constricting pores. An 

alternative method for investigating migration through narrow pores is the use of 

microfluidic devices that allow real-time video microscopy to monitor progression 

through the pores (Keys et al., 2018). Using this method it was also found that nuclear 

morphology was affected and the levels of DNA damage increased following 

migration through constricting pores (Raab et al., 2016; Shah et al., 2020). 

Additionally, it is possible to obtain a greater depth of information on how these 

responses occur compared with the transwell assays. Shah and colleagues tested 

multiple cell lines and found two different mechanisms of DNA damage accumulation 

and each of these was found exclusively with none of the tested cell lines 

demonstrating both mechanisms. The first mechanism involved replication stress 

and replication fork failure which resulted in an accumulation of the DNA damage 

marker gH2AX following migration. The second mechanism involved nuclear rupture 

resulting in exchange of nuclear and cytoplasmic proteins, resulting in a loss of DNA 

repair factors in the nucleus and an increase in damaging cytoplasmic components 

such as nucleases (Shah et al., 2020). Pfeifer et al. (2018) found no evidence of 

replication stress, but they were using a breast cancer cell line that demonstrated 
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the nuclear rupture mechanism described by Shah et al. (2020). Additional studies 

using the microfluidic migration devices identified ESCRT III complex as a key 

component of nuclear envelope repair following a nuclear rupture event (Raab et al., 

2016). 

 

All of these migrational compression studies confirm that extreme compression of 

the relatively large nucleus results in an accumulation of DNA damage and this can 

occur either by exchange of nuclear/cytoplasmic components or by replication 

stress. However, the cells are able to deal with these DNA breaks by inhibiting the 

cell-cycle while DNA repair proteins repair the damage, and the cells are then 

released back into the cell-cycle. This mechanism allows cells to continue migrating 

through narrow gaps and also helps to explain some of  the increase in genetic 

variation in metastatic cancer cells (Denais et al., 2016; Irianto et al., 2017). 

 

These studies described above have all investigated the effects of cell/nuclear 

compression during active migration. When compression of cells grown in situ was 

investigated the results are similar. Using a custom-built device which compresses 

cells between two pieces of PDMS, the distance between the two PDMS plates was 

determined by the addition of glass beads with a well-defined height. It was found 

that compressed cells accumulated DNA damage within 30 minutes and the amount 

of damage increased as the compression height was decreased. There was some 

evidence of nuclear envelope rupture, but the majority of cells had increased levels 

of DNA damage without evidence of nuclear rupture. This was also observed using 

AFM combined with light-sheet microscopy, nuclei were compressed to a height of 

~2µm and DNA damage accumulated without the need for nuclear rupture (Shah et 

al., 2020). This approach was also used in another study where AFM was used to 

compress the nucleus and they found increased levels of cGAS which binds to 

cytoplasmic DNA suggesting nuclear rupture resulting in DNA leakage (Cho et al., 

2019). Additional studies find increased levels of cell death as levels of compression 

are increased. The levels of DNA damage were not investigated but it is likely that 

cell death increased as levels of DNA damage passed a threshold level (Patteson et 
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al., 2019a). Together these studies suggest that compression of cells/nuclei whether 

it is active or passive results in an increase in DNA damage. 

 

5.1.2 Cyclic cell stretching results in cyto- and nucleoskeleton reorganisation in 

order to minimise DNA damage 

 

Cyclic cell stretching results in a cellular response that aims to decouple the nucleus 

from the recurrent stress, but the types of response differ depending on the 

frequency of stretching. Following cyclic stretch at both high and low frequencies 

nuclear morphology of human epidermal stem cells is affected whereby the nucleus 

becomes more wrinkled and has a decrease in nuclear envelope tension (Nava et al., 

2020). However, unlike with cell compression there is little evidence of nuclear 

envelope rupture in healthy cells. However, when lamin A/C is knocked down there 

is increased nuclear rupture during cyclic stretching (Cho et al., 2019). Nuclear size is 

also affected; at low-frequency cyclic stretching the cell size increases but the nuclear 

size does not, whereas at high-frequency stretching, the cell size remains the same 

but the nuclear size decreases (Gilbert et al., 2019). It has been shown that this 

change in nuclear size but not cell size is the result of nuclear decoupling, there is a 

decrease in levels of SUN2, a component of the LINC complex which links the nucleus 

to the cytoskeleton, thus preventing the force from being transmitted to the nucleus, 

especially at high-frequency stretching (Gilbert et al., 2019). This nuclear decoupling 

results in changes in transcription profiles resulting in increased levels of cytoskeletal 

proteins and decoupling also prevents the accumulation of DNA damage. Cyclic 

stretching results in a slight decrease in levels of DNA damage, however, 

overexpression of SUN2 which results in the nucleus being recoupled to the cell and 

subjected to the stretching forces results in an increase in DNA damage above basal 

levels (Gilbert et al., 2019; Heo et al., 2015). Based on this evidence it would suggest 

that the nuclear decoupling prevents stretching forces being transmitted to the 

nucleus and maintains DNA integrity.   

 

In addition to nuclear decoupling the cells are also able to realign the cytoskeleton in 

the direction of low-frequency stretching which reduces the strain transmitted to the 
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nucleus (Nava et al., 2020), similar to what is seen in response to sheer stress. 

Importantly, the chromatin state also responds to the cyclic stretching by becoming 

less condensed. At low-frequency stretching the chromatin becomes less condensed 

and remains this way until the stretching has stopped. However, at high-frequency 

stretching the levels of heterochromatin decrease initially and then return to 

baseline levels during prolonged stretching (Nava et al., 2020). These 

heterochromatin changes allow the nucleus to disperse the force thus preventing 

excessive DNA damage. The chromatin decondensing is controlled by Ca2+ signalling 

(Heo et al., 2015) that enters through the Peizo1 ion channel. Preventing Ca2+ 

signalling or knockdown of Peizo1 prevents the chromatin from decondensing and 

results in an increase in DNA damage during cyclic stretching (Nava et al., 2020). The 

data from these studies would suggest that cells have the ability to respond to cyclic 

stretching and prevent DNA damage occurring.  

 

5.1.3 Sheer stress results in changes in nuclear architecture 

 

Biological sheer stress is most commonly associated with fluid flow, such as blood, 

lymph, urine and synovial fluid for example. Endothelia are the cells most commonly 

exposed to constant mechanical forces in the form of sheer stress due to blood flow. 

The sheer stress experienced can be classed as laminar or disturbed. Laminar flow 

results in consistent flow rate in a single direction. Disturbed or oscillatory flow is any 

flow that is not laminar, it is often changing direction and rate of flow, this occurs 

around branches or obstructions in the blood vessels (Ji, 2018; Zhu et al., 2020). The 

type of sheer stress has been shown to result in changes in transcription and this is 

regulated by the JAK/STAT pathway (Mahmoud et al., 2017; Zhu et al., 2020).  

 

As with other forms of mechanical stress, sheer stress results in changes in nuclear 

morphology which is controlled by sheer stress-induced changes to the nuclear 

lamina. In MDCK epithelial cells subjected to sheer stress there was a decrease in 

both nuclear area and volume, this was controlled by the mechanosensitive channel 

Piezo1 (Jetta et al., 2019). In addition to changes in nuclear area and volume, nuclear 

shape was also affected by sheer stress. Nuclei had a decrease in nuclear circularity 



 187 

following shear stress. The longer the cells were subjected to sheer stress the lower 

the value for nuclear circularity, the opposite was reported for elongation factor 

suggesting the nuclei become more elongated following sheer stress (Jiang and Ji, 

2018; Philip and Dahl, 2008). These observed changes in nuclear shape were 

accompanied by changes in levels and localisation of lamin A/C. Following sheer 

stress, lamin A/C staining became more intense at the NE compared with unstressed 

controls (Philip and Dahl, 2008). Additionally, the total levels of lamin A/C increased 

following 6 hours of sheer stress (Jiang and Ji, 2018). These studies suggest that sheer 

stress results in changes in nuclear morphology and changes in localisation and levels 

of lamin A/C. 

 

There have been a limited number of investigations into the effects of sheer stress 

on levels of DNA damage and how cells might adapt to minimise levels of DNA 

damage. However, it has been found that following sheer stress there is an increase 

in the percentage of apoptotic cells. The percentage of apoptotic cells also increases 

with the amount of time cells are subjected to sheer stress (Pan et al., 2017). 

Additionally, the levels of DNA fragmentation were investigated following sheer 

stress. The percentage of DNA fragmentation increased both with sheer level and 

with time (Triyoso and Good, 1999). Taken together these studies suggest that sheer 

stress results in nucleoskeletal reorganisation, changes in nuclear morphology and 

increased levels of apoptosis and DNA damage. 

 

5.1.4 Hypothesis and aims 

 

Data described in previous chapters suggests there is no difference in levels of 

nucleoskeletal proteins in DAG1 KO cells compared with controls and this is also 

confirmed in the data that suggests the stiffness of DAG1 KO nuclei within whole cells 

does not differ from that of the controls. However, it was found that when the nuclei 

are separated from all cytoskeletal influence the DAG1 KO nuclei were significantly 

softer than the control nuclei. This then leads to the question of whether the 

difference in nuclear stiffness has any physiological relevance.  
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The aim of this chapter is to investigate the response of DAG1 KO cells to mechanical 

compression and to determine whether the response differs from that of control 

cells. Cells have been subjected to active compression as they migrate through 3µm 

transwell pores in addition to passive compression with the addition of weighted 

inserts. Following these experiments the nuclear morphology was assessed in 

addition to the levels of DNA damage as determined by gH2AX staining.  

 

5.2 Results 

 

5.2.1 Determining baseline levels of DNA damage and nuclear morphology prior to 

mechanical and chemical stress 

 

Before conducting experiments to determine the effects mechanical or chemical 

stress has on DAG1 KO and control cells it is important to understand the baseline 

levels of DNA damage. The levels of gH2AX were therefore determined using 

immunofluorescence microscopy (Figure 5.1a,b) as were the values for nuclear area 

(Figure 5.1c), nuclear circularity (Figure 5.1d) and nuclear aspect ratio (Figure 5.1e). 

Although these experiments were carried out in chapter 3 it was important to ensure 

the results were consistent before starting this set of experiments.  

 

In the case of levels of DNA damage as indicated by gH2AX staining the nuclear 

intensity appeared to be slightly lower in DAG1 KO clones A and B compared with 

control cells. The difference between control and DAG1 KO A was insignificant 

however, the difference between the control and DAG1 KO B was just below the 

significance cut off of p = 0.05. The difference between the control and KO B was 

0.0495 as determined by one-way ANOVA test (Figure 5.1b).  
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Figure 5.1  Baseline averages for nuclear morphology and levels of gH2AX in control and DAG1 KO clones A and 
B without additional cell stress. (a) Representative images of cells grown for 24 hours before fixing and staining 
with DAPI (blue) and gH2AX (red) to identify nuclear morphology and levels of DNA damage. Cells were imaged 
using the Leica fluorescence microscope. Scale bar = 20µm. (b) Nuclear levels of gH2AX without additional cell 
stress. Each coloured point indicates the average value for each independent experiment. 15 independent 
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experiments were carried out with 392 control, 401 KO A and 377 KO B cells measured. Graph shows mean and 
standard deviation. The one-way ANOVA test returned a p value of 0.0575 which is not below the significance 
threshold of 0.05. Using a Dunnett’s multiple comparison test the difference between control and DAG1 KO clone 
B was significant with a p value of 0.0495. (c) Nuclear area without additional cell stress. As before. The one-way 
ANOVA test returned a p value of 0.0061 which is below the significance threshold of 0.05. Using a Dunnett’s 
multiple comparison test the difference between control and DAG1 KO B was significant with a p value of 0.0031 
while the difference between control and DAG1 KO A was not significant (p = 0.2939). (d) Nuclear circularity 
without additional cell stress. As before. The one-way ANOVA test returned a p value of 0.7156 which is below 
the significance threshold of 0.05. Dunnett’s multiple comparison test was also carried out, p values are on the 
graph. (e) Nuclear aspect ratio without additional cell stress. As before. The one-way ANOVA test returned a p 
value of 0.3871 which is below the significance threshold of 0.05. Dunnett’s multiple comparison test was also 
carried out, p values are on the graph.  

 

When nuclear morphology was compared between control and DAG1 KO clones A 

and B the results were as observed in chapter 3. In the case of nuclear area, both 

DAG1 KO clones had a larger average nuclear area than the control but this difference 

was only significantly different between control and DAG1 KO B (Figure 5.1c). The 

nuclear shape parameters circularity and aspect ratio were investigated and as with 

chapter 3 there was no significant difference in the circularity or aspect ratio of 

control cells compared with DAG1 KO clones A and B (Figure 5.1d,e). Despite the 

differences not being significant the average nuclear circularity is slightly higher for 

DAG1 KO clones than for control and the average nuclear aspect ratio is slightly lower 

for DAG1 KO clones compared with controls.  

 

Given that there are differences (even if not statistically significant) between control 

and DAG1 KO cells, the values for all mechanical and chemical stress experiments 

have been normalised to the untreated value for each cell line. This will allow the 

identification of relative changes between the cell lines rather than absolute 

changes.  

 

5.2.2 Investigating the response of control and DAG1 KO cells to oxidative stress 

following treatment with H2O2 

 

In order to determine if DAG1 KO cells respond to mechanical stress differently to 

control cells, it is important to understand if the two cell types respond differently to 

non-mechanical stress. Oxidative stress as induced by treatment with H2O2 was used 

to investigate any differences in response between control and DAG1 KO clones. In 
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order to determine the most appropriate concentration of H2O2 to use, control and 

DAG1 KO A cells were subjected to a range of concentrations and cell viability was 

crudely assessed by calculating the percentage of trypan blue negative cells following 

treatment (Figure 5.2). Untreated cells had almost 100% viability as did those cells 

treated with 0.1mM H2O2, following treatments with 1mM and 2mM cell viability 

dropped to just above 50% and the percentage of viable cells continued to drop for 

3mM, 4mM and 5mM. Based on this, 2mM was chosen as it is clearly sufficient to 

induce a response and there was still >50% cell viability.  

 

 
Figure 5.2 Optimisation of H2O2 concentration. Control and DAG1 KO A cells were treated with varying 
concentrations of H2O2 and percentage of cell viability was assessed. 2 independent experiments were carried 
out with at least 100 cells counted per sample per experiment. Graph shows mean and actual range. The 
differences between control and DAG1 KO A were tested using multiple t tests with none of the p values being 
<0.05. 

 

Control cells and DAG1 KO clones A and B were either untreated (0mM) or H2O2 

treated (2mM) for 1 hour. Cells were then fixed and stained for gH2AX as a read out 

of DNA damage and nuclear morphology was assessed (Figure 5.3a). As expected, 

the intensity of gH2AX staining increased significantly following H2O2 treatment in all 

cell types (Figure 5.3b). When comparing the relative levels of gH2AX following H2O2 

treatment in control and DAG1 KO A cells there is no significant difference. However, 

the difference between control and DAG1 KO B was significant as tested by one-way 
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ANOVA (p = 0.0381). This difference is possibly due to clonal variation however, if the 

difference in response is not present in both DAG1 KO clones then it is not considered 

a genuine consequence of knocking out the DAG1 gene.  

 

 
Figure 5.3 Average nuclear levels of gH2AX in control and DAG1 KO clones A and B with and without H2O2 
treatment. (a) Representative images of cells grown for 24 hours before treating with 0mM or 2mM H2O2 and 
then fixing and staining with DAPI and gH2AX to identify nuclear morphology and levels of DNA damage with and 
without H2O2 treatment. Cells were imaged using the Leica fluorescence microscope. Scale bar = 20µm (b) 
Normalised nuclear levels of gH2AX following treatment with 0mM or 2mM H2O2. 4 independent experiments 
were carried out. Control 0mM n = 102, 2mM n = 107. KO A 0mM n = 110, 2mM n = 123. KO B 0mM n = 117, 
2mM n = 104. Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.0004 
which is below the significance threshold of 0.05. for multiple comparisons, a Šídák's multiple comparisons test 
was used and the p values can be seen on the graph. 
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lower in treated cells compared with untreated for control and DAG1 KO cells alike. 

This difference was significant in both control and DAG1 KO A but not in DAG1 KO B 

(Figure 5.4a), this could be due to clonal variation or the fact that DAG1 KO B nuclei 

are significantly larger to start with. Relative nuclear area of treated cells was also 

compared between control and DAG1 KO cells. The difference between control and 

DAG1 KO A was significant while the difference between control and DAG1 KO B was 

not. Again, only significant differences observed between control and both KO clones 

were considered to be different due to a lack of DG.  

 

 
Figure 5.4 Nuclear morphology of control and DAG1 KO clones A and B with and without H2O2 treatment. (a) 
Normalised nuclear area with and without treatment with 2mM H2O2. 4 independent experiments were carried 
out. Control 0mM n = 102, 2mM n = 107. KO A 0mM n = 110, 2mM n = 123. KO B 0mM n = 117, 2mM n = 104. 
Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.0468 which is below 
the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was used and 
the p values can be seen on the graph. (b) Normalised nuclear circularity with and without treatment with 2mM 
H2O2. As before. The one-way ANOVA test returned a p value of 0.2766 which is not below the significance 
threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was used and the p values can 
be seen on the graph. (c) Normalised nuclear aspect ratio with and without treatment with 2mM H2O2. As before. 
The one-way ANOVA test returned a p value of 0.3131 which is not below the significance threshold of 0.05. For 
multiple comparisons, a Šídák's multiple comparisons test was used and the p values can be seen on the graph. 

 

When testing the effect of H2O2 treatment on nuclear shape it was found that neither 

nuclear circularity nor nuclear aspect ratio was different in treated or untreated cells 

in any of the cell lines (Figure 5.4b,c). Additionally, when comparing H2O2 treated 

control with DAG1 KO clones there was no significant difference in either nuclear 

circularity or nuclear aspect ratio.  
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Taken together these data suggest that following H2O2 treatment there is no clear 

difference in how DAG1 KO clones respond compared with control cells when 

assessing levels of gH2AX staining and nuclear morphology.  

 

5.2.3 Investigating the response of control and DAG1 KO cells to osmotic stress 

following treatment with NaCl and PEG 

 

In addition to treating cells with H2O2 in order to subject them to oxidative stress, 

cells were also subjected to two forms of osmotic stress. The addition of NaCl results 

in the hyperosmotic stress of the cells and therefore nuclei too as they lose water, 

resulting in a reduction in volume and a crinkled nuclear morphology. Additionally, if 

cells are treated with polyethylene glycol (PEG) with a molecular mass of 4000 Da 

then cells are also hyperosmotically stressed but they also experience compressional 

forces. It is suggested that this osmotic pressure is similar to the forces exerted by 

cytoskeletal contractility (Damodaran et al., 2018; Khavari and Ehrlicher, 2019). It is 

also suggested that osmotically stressing cells and nuclei with PEG allows cell 

compression to be investigated without the need for complex technical set ups and 

direct contact with the cells (Zhou et al., 2009). Furthermore, this system can be used 

to determine the relationship between compression and volume in order to observe 

and track force changes in 3D cell systems (Khavari and Ehrlicher, 2019).  

 

In order to determine an appropriate concentration of NaCl to use, control cells were 

treated with a range of concentrations between 0mM and 500mM and the nuclear 

area was measured (Figure 5.5). There were slight decreases in the average nuclear 

area when between 20mM and 100mM was used. The clearest reduction in nuclear 

area was following addition of 500mM NaCl as expected, however, there was a 

decrease in the number of viable cells in this condition. Therefore, it was decided 

that cells would be treated with both 200mM and 500mM as both conditions 

resulted in a significant decrease in nuclear area. 
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Figure 5.5 Optimisation of NaCl concentration based on nuclear area of control cells. Control cells were treated 
with varying concentrations of NaCl and nuclear area was assessed. 2 independent experiments were carried out 
with 110 0mM, 118 20mM, 100 50mM, 123 100mM, 104 200mM and 102 500mM treated cells. Graph shows 
mean and standard deviation. The one-way ANOVA test returned a p value of <0.0001 which is below the 
significance threshold of 0.05. For multiple comparisons, a Dunnett's multiple comparisons test was used, p 
values; * = <0.0332, ** = <0.0021, *** = <0.0002 and **** = <0.0001. 

 

In order to determine if control cells respond to osmotic stress any differently to 

DAG1 KO cells, control and both DAG1 KO clones A and B were subjected to 0mM, 

200mM or 500mM NaCl and the levels of gH2AX were determined (Figure 5.6). When 

the total nuclear levels of gH2AX were assessed, it was clear that the lower NaCl 

concentration did not affect the relative levels, however the higher concentration 

did. This was consistent across control and DAG1 KO cell lines (Figure 5.6b). When 

relative levels of gH2AX in control and DAG1 KO cells subjected to osmotic stress 

were compared there was no significant difference between the control and either 

DAG1 KO clone.  
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Figure 5.6 Average nuclear levels of gH2AX in control and DAG1 KO clones A and B following 0mM, 200mM or 
500mM NaCl treatment. (a) Representative images of cells grown for 24 hours before treating with NaCl for 1 
hour followed by fixing and staining with DAPI and gH2AX to identify levels of DNA damage at varying NaCl 
treatments. Cells were imaged using the Leica fluorescence microscope. Scale bar = 20µm. (b) Normalised nuclear 
levels of gH2AX following 0mM, 200mM or 500mM NaCl treatment. 4 independent experiments were carried 
out. Control 0mM n = 111, 200mM n = 115 and 500mM n = 103. KO A 0mM n = 126, 200mM n = 119 and 500mM 
n = 121. KO B 0mM n = 105, 200mM n = 131 and 500mM n = 109. Graph shows mean and standard deviation. 
Following a two-way ANOVA test a Dunnett’s multiple comparison test was used to determine the difference 
between 0mM, 200mM and 500mM treatment in each cell line (p value; * = <0.0332, ** = <0.0021). A Turkey’s 
multiple comparison test was used to determine the difference between cell lines in each treatment condition – 
p values are on the graph. 
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In addition to levels of gH2AX, changes in nuclear morphology were also investigated 

in all three cells lines subjected to 0mM, 200mM or 500mM NaCl. As previously, 

nuclear morphology was assessed using the parameters nuclear area, nuclear 

circularity and nuclear aspect ratio. The nuclear area significantly decreased in all cell 

lines when either 200mM or 500mM NaCl was added to the culture medium, except 

in the control cells treated with 500mM (Figure 5.7a). In the control sample treated 

with 500mM NaCl there was a decrease in nuclear area however, this decrease was 

not statistically significant. Importantly, there was no difference in the relative 

nuclear area between control and DAG1 KO clones when treated with either 200mM 

or 500mM NaCl. A similar trend is observed in the nuclear circularity experiment. The 

nuclear circularity is significantly lower in all cell lines following treatment with 

200mM or 500mM NaCl while there is no significant difference between the control 

and either DAG1 KO clone following 200mM or 500mM NaCl treatment (Figure 5.7b). 

When nuclear aspect ratio was compared following NaCl treatment there was no 

difference between the untreated and the 200mM treated conditions for either 

control or DAG1 KO B however, there was a significant difference between untreated 

and 200mM treated DAG1 KO A cells (Figure 5.7c). When cells were treated with 

500mM NaCl there was a significant increase in nuclear aspect ratio compared with 

untreated cells and this was the case for control and DAG1 KO cells alike. When the 

200mM condition was compared, there was a significant difference between control 

and DAG1 KO A but not DAG1 KO B suggesting this was not a DG specific difference 

and likely due to clonal variation. For the 500mM condition there is no significant 

difference between the control and either DAG1 KO. Overall, these data suggest that 

DAG1 KO cells respond to osmotic stress caused by an increase in NaCl concentration 

in the same way as control cells.  

 

As with NaCl the appropriate concentration of PEG4000 was assessed by treating 

control cells with a range of concentrations and measuring the nuclear area (Figure 

5.8). Interestingly, treating with 5% had no effect on cell area whereas treating with 

10% and 20% resulted in a significant decrease in cell area in a dose dependent 

manner. However, treatment with 30% resulted in no significant decrease in nuclear 

area while 40% resulted in a slight but significant decrease in nuclear area. Based on 
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this, 20% and 40% PEG4000 was used as both resulted in a decrease in nuclear area 

but interestingly, not in a concentration dependent manner.  

 

 
Figure 5.7 Nuclear morphology of control and DAG1 KO clones A and B following 0mM, 200mM or 500mM NaCl 
treatment. (a) Normalised nuclear area (b) normalised nuclear circularity and (c) normalised nuclear aspect ratio 
following 0mM, 200mM or 500mM NaCl treatment. 4 independent experiments were carried out. Control 0mM 
n = 111, 200mM n = 115 and 500mM n = 103. KO A 0mM n = 126, 200mM n = 119 and 500mM n = 121. KO B 
0mM n = 105, 200mM n = 131 and 500mM n = 109. Graph shows mean and standard deviation. Following a two-
way ANOVA test a Dunnett’s multiple comparison test was used to determine the difference between 0mM, 
200mM and 500mM treatment in each cell line (p value; * = <0.0332, ** = <0.0021, *** = <0.0002). A Turkey’s 
multiple comparison test was used to determine the difference between cell lines in each treatment condition – 
p values are on the graph. 
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In order to determine if there is a difference in response between control and DAG1 

KO cells following osmotic and slight compressional stress by PEG4000 treatment, 

cells were subjected to either 0%, 20% or 40% PEG4000 for 30 minutes. Cells were 

then fixed and stained for gH2AX in order to determine levels of DNA damage and 

assess changes in nuclear morphology (Figure 5.9a). Treating all cell lines with 20% 

PEG4000 had no effect on the levels of gH2AX as these did not differ significantly 

from the untreated cells (Figure 5.9b). Additionally, there was no difference in the 

levels between control and DAG1 KO clones following treatment with 20% PEG4000. 

Somewhat surprisingly, following treatment with 40% PEG4000 there was a decrease 

in the average gH2AX intensity in all conditions, this decrease was significant for 

control and DAG1 KO clone B but not statistically significant for DAG1 KO clone A. 

When the difference between control and DAG1 KO clones was investigated, there 

was no significant difference in the relative gH2AX levels between control and KO 

clones (Figure 5.9b).  

 

 
Figure 5.8 Optimisation of PEG4000 concentration based on nuclear area of control cells. Control cells were 
treated with varying concentrations of PEG4000 and nuclear area was assessed. 2 independent experiments were 
carried out with 109 0%, 114 5%, 106 10%, 111 20%, 136 30% and 113 40% treated cells. Graph shows mean and 
actual range. The one-way ANOVA test returned a p value of <0.0001 which is below the significance threshold 
of 0.05. For multiple comparisons, a Dunnett's multiple comparisons test was used,  p values; * = <0.0332, ** = 
<0.0021, *** = <0.0002 and **** = <0.0001. 
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In addition to measuring DNA damage levels in cells treated with PEG4000, the 

nuclear morphology was also assessed. In the case of nuclear area there was a 

decrease in nuclear area for all cell lines following treatment with 20% PEG4000. 

However, this decrease was not statistically significant for control cells but was for 

both DAG1 KO cell lines (Figure 5.10a). Importantly, there was no statistical 

difference in the nuclear area of control and DAG1 KO clones following treatment 

with 20% PEG4000. Surprisingly, following treatment with 40% PEG4000 there was 

no decrease in nuclear area for any cell line and there was no difference in the area 

of control or DAG1 KO cells (Figure 5.10a). In regard to nuclear circularity and nuclear 

aspect ratio there was no change in shape in any cell lines following treatment with 

either 20% or 40% PEG4000. There were also no differences in the nuclear circularity 

or aspect ratio of DAG1 KO clones when compared with controls (Figure 5.10b,c).  
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Figure 5.9 Average nuclear levels of gH2AX in control and DAG1 KO clones A and B following 0%, 20% or 40% 
PEG4000 treatment. (a) Representative images of cells grown for 24 hours before treating with PEG4000 for 30 
minutes followed by fixing and staining with DAPI and gH2AX to identify levels of DNA damage at varying PEG4000 
treatments. Cells were imaged using the Leica fluorescence microscope. Scale bar = 20µm. (b) Normalised nuclear 
levels of gH2AX following 0%, 20% or 40% PEG4000 treatment. 4 independent experiments were carried out. 
Control 0% n = 115, 20% n = 117 and 40% n = 124. KO A 0% n = 100, 20% n = 107 and 40% n = 102. KO B 0% n = 
137, 20% n = 127 and 40% n = 113. Graph shows mean and standard deviation. Following a two-way ANOVA test 
a Dunnett’s multiple comparison test was used to determine the difference between 0%, 20% and 40% treatment 
in each cell line (p value; * = <0.0332, ** = <0.0021, *** = <0.0002). A Turkey’s multiple comparison test was used 
to determine the difference between cell lines in each treatment condition – p values are on the graph. 
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Figure 5.10 Nuclear morphology of control and DAG1 KO clones A and B following 0%, 20% and 40% PEG4000 
treatment. (a) Normalised nuclear area (b) normalised nuclear circularity and (c) normalised nuclear aspect ratio 
following 0%, 20% or 40% PEG4000 treatment. 4 independent experiments were carried out. Control 0% n = 115, 
20% n = 117 and 40% n = 124. KO A 0% n = 100, 20% n = 107 and 40% n = 102. KO B 0% n = 137, 20% n = 127 and 
40% n = 113.  Graph shows mean and standard deviation. Following a two-way ANOVA test a Dunnett’s multiple 
comparison test was used to determine the difference between 0%, 20% and 40% treatment in each cell line (p 
value; * = <0.0332, ** = <0.0021, *** = <0.0002). A Turkey’s multiple comparison test was used to determine the 
difference between cell lines in each treatment condition – p values are on the graph. 
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In order to investigate how control and DAG1 KO cells respond to migration through 

restricting spaces, it is important to first understand the migration capabilities of 

these cell types. It has been demonstrated previously that reduced levels of b-DG in 

myoblasts result in reduced migration velocity while overexpressing b-DG increases 

migration velocity (Thompson et al., 2010b). The effect of disrupting the DAG1 gene 

on cell migration has been investigated in this study. Control and DAG1 KO cells were 

plated in the same glass bottom dish following treatment with CellTracker in order 

to identify the two cell lines. The cells were then imaged every 10 minutes for 15 

hours in order to track the cell movement in normal cell culture conditions. Following 

analysis of this data it was found that DAG1 KO did indeed have impaired cellular 

migration (Figure 5.11). Migration velocity was significantly reduced in both DAG1 

KO clones A and B when compared with control cells (Figure 5.11a). As would be 

expected from cells that migrate more slowly, DAG1 KO cells also migrated a shorter 

total distance than the controls (Figure 5.11b). Anecdotally, the control cells still 

migrated the greatest distance despite 58% migrating out of the frame of view within 

the 15 hours, while only 16% and 23% of DAG1 KO clones A and B respectively 

migrated out of the frame of view within 15 hours.  

 

Given that DAG1 KO cells migrate more slowly, it is not possible to determine how 

well KO cells migrate through narrow pores compared with control cells using a 

transwell migration assay. However, it is possible to determine how the cells respond 

to constricted migration by assessing levels of DNA damage and quantifying the 

nuclear morphology. Cell migration through pores was initially carried out using 

transwell membranes containing 8µm pores (Figure 5.12a). 8µm pores are large 

enough that even the larger DAG1 KO B nuclei are not compressed during migration. 

This experiment was used as a control to ensure that any differences observed when 

cells migrated through narrow 3µm pores is due to the constriction and not due to 

the process of migration. Following migration through 8µm pores, control and DAG1 

KO clones were fixed and stained for gH2AX (Figure 5.12). When comparing the 

relative levels of gH2AX between cells at the bottom (migrated) or the top 

(unmigrated) of the membrane there was no significant difference in any of the cell 
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lines (Figure 5.12b). Additionally, there was no difference in the relative levels of 

gH2AX when either DAG1 KO clone was compared with the control (Figure 5.12b).  

 

 
Figure 5.11 Migration velocity and distance in control and DAG1 KO clones A and B. (a) Cell velocity. (b) Total 
migration distance in 16 hours. Each coloured point indicates an individual cell. 2 independent experiments were 
carried out with 160 control, 150 KO A and 143 KO B cells. Graph shows mean and standard deviation. The one-
way ANOVA test returned a p value of <0.0001 which is below the significance threshold of 0.05. Dunnett’s 
multiple comparison test was also carried out, p values are on the graph. 
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control and DAG1 KO B but there is a small but significant difference between control 

and DAG1 KO clone A (Figure 5.13a). 

 

 
Figure 5.12 Average nuclear levels of gH2AX in control and DAG1 KO clones A and B before and after migration 
through 8µm pores. (a) Representative images of cells on either the top (unmigrated cells) or bottom (migrated 
cells) of the Transwell membrane. Cells were stained with DAPI and gH2AX to determine nuclear morphology and 
levels of DNA damage. Cells were imaged using a Leica DMIRE2 fluorescence microscope. Scale bar = 20µm. (b) 
Normalised nuclear levels of gH2AX in migrated or non-migrated cells. 6 independent experiments were carried 
out. Control top n = 159, bottom n = 162. KO A top n = 172, bottom n = 154. KO B top n = 166, bottom n = 182.  
Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.4686 which is not 
below the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was used 
and the p values can be seen on the graph. 
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Figure 5.13 Nuclear morphology of control and DAG1 KO clones A and B before and after migration through 
8µm pores. (a) Normalised nuclear area in migrated or non-migrated cells. 6 independent experiments were 
carried out. Control top n = 159, bottom n = 162. KO A top n = 172, bottom n = 154. KO B top n = 166, bottom n 
= 182. Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.0005 which 
is below the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was 
used and the p values can be seen on the graph. (b) Normalised nuclear circularity in migrated or non-migrated 
cells. As above. The one-way ANOVA test returned a p value of 0.2884 which is not below the significance 
threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was used and the p values can 
be seen on the graph. (c) Normalised nuclear aspect ratio in migrated or non-migrated cells. As above. The one-
way ANOVA test returned a p value of 0.1287 which is not below the significance threshold of 0.05. For multiple 
comparisons, a Šídák's multiple comparisons test was used and the p values can be seen on the graph. 
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Figure 5.14 Average nuclear levels of gH2AX in control and DAG1 KO clones A and B before and after migration 
through 3µm pores. (a) Representative images of cells on either the top (unmigrated cells) or bottom (migrated 
cells) of the Transwell membrane. Cells were stained with DAPI and gH2AX to determine nuclear morphology and 
levels of DNA damage. Cells were imaged using a Leica DMIRE2 fluorescence microscope. Scale bar = 20µm (b) 
Normalised nuclear levels of gH2AX in migrated or non-migrated cells. 6 independent experiments were carried 
out. Control top n = 174, bottom n = 182. KO A top n = 173, bottom n = 168. KO B top n = 154, bottom n = 147.   
Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.4153 which is not 
below the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was used 
and the p values can be seen on the graph. 
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reduced nuclear area compared with unmigrated cells (Figure 5.15a). When 

comparing nuclear area of migrated cells there was no difference in the relative area 

between control and DAG1 KO A but there was a significant difference between 

control and DAG1 KO B (Figure 5.15a). When nuclear circularity was quantified, there 

was a clear significant difference between cells on the top and the bottom of the 

membrane for all cell types (Figure 5.15b). The significant reduction in nuclear 

circularity indicates that migration results in a loss of nuclear shape. However, the 

extent of nuclear circularity change between control and DAG1 KO clones following 

migration is not significantly different. A similar trend was observed when nuclear 

aspect ratio was measured (Figure 5.15c). A consistent increase in nuclear aspect 

ratio was measured in migrated cells compared with non-migrated cells for both 

control and DAG1 KO cells. There is also no statistically significant difference between 

the relative aspect ratios of control or DAG1 KO A migrated cells. However, there is 

a significant difference between the control and DAG1 KO B migrated cells, but this 

difference is very small (Figure 5.15c). 

 

 
Figure 5.15 Nuclear morphology of control and DAG1 KO clones A and B before and after migration through 
3µm pores. (a) Normalised nuclear area in migrated or non-migrated cells. 6 independent experiments were 
carried out. Control top n = 174, bottom n = 182. KO A top n = 173, bottom n = 168. KO B top n = 154, bottom n 
= 147. Graph shows mean and standard deviation. The one-way ANOVA test returned a p value of 0.0029 which 
is below the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test was 
used and the p values can be seen on the graph. (b) Normalised nuclear circularity and (c) normalised nuclear 
aspect ratio in migrated or non-migrated cells. As before. The one-way ANOVA test returned a p value of <0.0001 
which is below the significance threshold of 0.05. For multiple comparisons, a Šídák's multiple comparisons test 
was used and the p values can be seen on the graph. 
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Taken together, the data from migration through 8µm pores suggest that migrating 

through a non-constricting environment results in a small reduction in nuclear area 

but has no effect on levels of gH2AX or nuclear shape. While migration through the 

constricting 3µm environment does not result in a reduction in nuclear area and does 

not affect the levels of gH2AX but does result in large and significant changes in 

nuclear shape. Importantly, this data demonstrates that DAG1 KO cells do not 

respond differently than control cells to confined migration when DNA damage and 

nuclear morphology are measured.  

 

5.2.5 Investigating the response of control and DAG1 KO cells to nuclear 

compression in situ 

 

In addition to investigating the response to active compression as cells migrate 

through narrow pores, passive compression was also tested by placing a weighted 

insert on top of growing cells in situ. The weighted inserts had a mass of ~14g which 

equates to ~800 Pa of compressive force. Due to the technical limitations, it is not 

possible to fix and stain cells following cell compression, so cells were imaged live 

after 1 hour of compression (Figure 5.16a). Therefore, it was only possible to assess 

nuclear morphology in this assay while levels of DNA damage were not determined. 

Following 1 hour of compression the relative nuclear area was reduced significantly 

in compressed cells compared with non-compressed cells, this was true for control 

and both DAG1 KO clones (Figure 5.16b). Additionally, there was a significant 

difference between compressed control cells and compressed DAG1 KO A cells 

however, there was no difference between control and DAG1 KO B cells. In regard to 

nuclear circularity there was a significant decrease in compressed compared with 

non-compressed cells for both control and DAG1 KO A samples however, no 

difference between the two DAG1 KO B conditions (Figure 5.16c). The difference in 

circularity between compressed control and DAG1 KO A samples was not significant 

whereas the control and DAG1 KO B samples differed significantly. Overall, this data 

suggests that there are nuclear morphology changes following passive compression, 
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as with active compression, but there is no consistent difference in the response 

between control cells and DAG1 KO cells.  

 

 
Figure 5.16 Nuclear morphology of control and DAG1 KO clones A and B subjected to passive compressional 
stress. (a) Representative images of either compressed or uncompressed cells. Cells were stained with Hoechst 
33342 to determine nuclear morphology of live cells. Cells were imaged using a Leica DMIRE2 fluorescence 
microscope. Scale bar = 20µm. (b) Normalised nuclear area of compressed or uncompressed cells. 4 independent 
experiments were carried out. Control uncompressed n = 119, compressed n = 123. KO A uncompressed n = 133, 
compressed n = 107. KO B uncompressed n = 127, compressed n = 102. Graph shows mean and standard 
deviation. The one-way ANOVA test returned a p value of <0.0001 which is below the significance threshold of 
0.05. For multiple comparisons, a Šídák's multiple comparisons test was used and the p values can be seen on 
the graph. (c) Normalised nuclear circularity of compressed or uncompressed cells. As before. The one-way 
ANOVA test returned a p value of 0.0005 which is below the significance threshold of 0.05. For multiple 
comparisons, a Šídák's multiple comparisons test was used and the p values can be seen on the graph. 

 

It is possible to use AFM to subject cells/nuclei to compressive forces. This is generally 

used in concert with high-resolution imaging to study biochemical responses to 

Control DAG1 KO A DAG1 KO B

Uncompressed

Compressed

Unco
mpres

se
d

Compres
se

d

Unco
mpres

se
d

Compres
se

d

Unco
mpres

se
d

Compres
se

d

0.6

0.8

1.0

1.2

N
or

m
al

is
ed

 N
uc

le
ar

 A
re

a 
(A
U

)

Nuclear Area of Control and DAG1
 KO Clones Following

 Cell Compression

Control

KO 1.B6

KO OG
<0.0001 <0.0001 <0.0001

0.0031

0.4362

Unco
mpres

se
d

Compres
se

d

Unco
mpres

se
d

Compres
se

d

Unco
mpres

se
d

Compres
se

d
0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

is
ed

 N
uc

le
ar

 C
irc

ul
ar

ity
 

(A
U

)

Nuclear Circularity of Control and
 DAG1 KO Clones Following

 Cell Compression

Control

DAG1 KO A

DAG1 KO B0.0003 0.0096 >0.9999

0.1414

0.0003

a

b c



 211 

compression (Cho et al., 2019). Additionally, it has been suggested that mechanical 

stress in the form of cell stretching may result in changes to nuclear stiffness (Ahrens 

et al., 2019). Therefore, in this study AFM was used to compress the cells over the 

nuclear region with a force of ~1 kPa and then the change in nuclear stiffness was 

measured over a period of 30 minutes. A preliminary assessment using a single 

control cell suggested that there was an initial increase in nuclear stiffness following 

compression followed by a decrease to a lower stiffness than the starting value 

(Figure 5.17a). The next question following this is whether this was a consistent trend 

for all control cells and then further, is it consistent in DAG1 KO clones as well. This 

was tested with at least 12 cells for each sample. This initial trend noticed in a lone 

control cell was not consistently the case when multiple cells were measured 

resulting in an almost consistent normalised value of 1 throughout the full 30 

minutes (Figure 5.17b). The same results were observed for DAG1 KO clones A and 

B, the normalised value remained at ~1 during the 30-minute time period (Figure 

5.17b). No statistical test was carried out as there was so much overlap between 

values. These data suggest that there is no clear trend in mechanical response to low-

level nuclear compression produced by an AFM cantilever in control or DAG1 KO 

cells.  

 

 
Figure 5.17 Mechanical response to cell compression. (a) Preliminary test of a single control cell. The cell was 
compressed over the nuclear region and the nuclear stiffness was measured every 5 minutes for 30 minutes. (b) 
Mechanical response to nuclear compression of control and DAG1 KO clones A and B were measured using AFM. 
The nuclear stiffness was measured every 5 minutes for a total of 30 minutes. 
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5.3 Discussion 

 

The work presented in this chapter has aimed to determine if the response to 

mechanical stress differs in DAG1 KO cells when compared with control. On the 

whole, the data presented here would suggest that this is not the case, the DAG1 KO 

cells appear to respond to chemical, osmotic and compressional stress in a broadly 

similar way as controls. There are multiple examples throughout this chapter where 

one of the DAG1 KO clones responds differently to the control, however it is only 

those differences that are consistent across both KO clones that would be considered 

a genuine difference. This was not the case for any experiments described in this 

chapter and any differences observed could be due to clonal variation or other 

artefactual variation.  

 

5.3.1 Discrepancies from PEG4000 treatment 

 

PEG has been used previously to osmotically stress mammalian cells and in these 

studies an increase in PEG concentration results in an increase in osmotic pressure 

and ultimately a decrease in nuclear volume (Khavari and Ehrlicher, 2019; Zhou et 

al., 2009). There is no evidence of a bimodal response where nuclear size decrease 

with concentration up to a point where it then increases again as observed in this 

study (shown in Figure 5.8). The observation of a bimodal response was further 

confirmed following treatment with 20% and 40% PEG4000 where not all cell types 

had a significantly reduced nuclear area following 20% treatment and none of the 

cell types had a significantly reduced area following the 40% treatment. One 

explanation for the disparity between these results and those previously published 

is that lower molecular weight PEG was used for the two studies mentioned 

previously. Zhou et al. (2009) used 400 Da PEG while Khavari and Ehrlicher (2019) 

used 1500 Da PEG. However, this is unlikely to be the reason as in both these cases 

the range of concentrations used result in pressures between 0.5 MPa and 5 MPa 

(Cohen et al., 2009) and these all resulted in a decrease in nuclear volume. The 
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concentrations of 20% and 40% of PEG4000 result in pressures of 0.72 MPa and 4.3 

MPa respectively (Cohen et al., 2009). These values sit between the values tested in 

the previous studies. Therefore, it is unlikely that the molecular weight of the PEG 

used would explain this discrepancy. An alternative explanation is that the cells did 

not have long enough to equilibrate in the PEG containing media, however, this again 

is unlikely to be the reason as Khavari and Ehrlicher (2019) observe their results 

within 20 minutes of incubation while cells in this study were incubated for 30 

minutes prior to staining and imaging. The only other difference between the 

experiments carried out here and those described previously is that at least one of 

the studies used detached cells that were imaged on a thin layer of agar (Khavari and 

Ehrlicher, 2019) while in this study cells were attached to stiff glass coverslips. This 

could explain the discrepancy in these results as it has been shown that both cell and 

nuclear size decreases on softer matrix (Swift et al., 2013a), so this could potentially 

exacerbate the nuclear size differences. Ultimately, it is unclear why the nuclear area 

in this study doesn’t follow a dose dependent regime as PEG concentration increases.       

 

Unlike nuclear area, following treatment with PEG, there is no previous evidence to 

indicate how DNA damage is affected by PEG. Therefore, it is unknown whether the 

result suggesting the levels of DNA damage decreased in cells treated with 40% PEG 

are consistent across other cell types. However, one would expect that following 

osmotic stress and possible low levels of compressive stress there would be an 

increase in levels of gH2AX as observed in NaCl osmotic stress experiments (shown 

in Figure 5.6). Conversely, in cells treated with 40% PEG there is a decrease in levels 

of gH2AX in both control and DAG1 KO clone B cells (shown in Figure 5.9). As 

mentioned before, this has not been investigated in mammalian cells, however it has 

been studied in plants. PEG is used in plants to better understand growing conditions 

and it has been found that levels of antioxidant proteins increase following treatment 

with PEG, however, this is at much lower concentrations than those used in this study 

and plants likely have very different mechanisms for dealing with osmotic stress 

(Jamshidi Goharrizi et al., 2020; Sahoo et al., 2020). One explanation is that the 

increase in osmotic pressure results in loss of nuclear water and therefore results in 

macromolecular crowding (Finan et al., 2009) and this may reduce the mobility of 
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DNA damage response factors resulting in a reduction in gH2AX. However, this is 

unlikely for two reasons; (1) an increase in gH2AX is observed in cells treated with 

500mM NaCl which results in extreme osmotic stress and (2) there is no decrease in 

nuclear area when cells are treated with 40% PEG suggesting the nuclei are not 

osmotically stressed to the point of extreme macromolecular crowding. As with the 

unexpected nuclear area results there is no clear explanation for the observed 

decrease in gH2AX following treatment with 40% PEG.  

 

5.3.2 Observations from Transwell migration experiments 

 

It is clear from the data presented in this chapter that DAG1 KO cells do not respond 

to migrating through narrow pores any differently than control cells when DNA 

damage and nuclear morphology is assessed. However, there are two results from 

these experiments that were not as expected. The first is that nuclear area decreased 

in control and DAG1 KO A cells but not DAG1 KO B cells following migration through 

8µm pores but following migration through 3µm pores conversely only DAG1 KO B 

cells had a decreased area (as shown in Figure 5.13a and Figure 5.15a). The second 

unexpected result is that following migration through 3µm pores there was no 

increase in levels of gH2AX which has been observed across many previous studies 

(Irianto et al., 2017; Mukherjee et al., 2020; Patteson et al., 2019a; Pfeifer et al., 2018; 

Xia et al., 2019), but there was evidence of abnormal nuclear morphology. 

 

One possible explanation for why there is a decrease in nuclear area following 

migration through 8µm pores but not 3µm pores is due to cell density. Cell density is 

one of the key regulators of cell and nuclear size as it is regulated by YAP (Mugahid 

et al., 2020). High cell density results in a decrease in nuclear size. Cells were seeded 

at an extremely high cell density at the start of the experiment and then allowed to 

grow and migrate freely for 48 hours. In the 8µm experiment cells are able to migrate 

through the pores with relative ease which results in a large number migrating 

through the pores. This could result in a high cell density at the bottom and a lower 

cell density at the top. The high cell density at the bottom would result in a reduction 
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in nuclear size at the bottom and less so at the top which would explain the results 

in Figure 5.13a. On the other hand, it is difficult and requires a lot more time for cells 

to migrate through the 3µm pores which could mean there is a higher cell density at 

the top and a lower cell density at the bottom or at least a more equal density 

distribution. This would either result in the cells at the top being slightly smaller due 

to high cell density or neither top nor bottom having sufficiently high cell density to 

affect nuclear size, resulting in the more equal values observed in Figure 5.15a. This 

does not explain the difference seen in DAG1 KO clone B but any differences here 

could be due to the fact the nuclei and cells were larger to start with or could simply 

be down to clonal variation.  

 

An alternative explanation for the nuclear area differences above and below the 

filter, could be due to selectivity. In the relatively large population of cells there will 

be some smaller and some larger cells, some of these larger cells may be larger than 

the pore size and therefore do not migrate through while smaller cells migrate 

through quickly, resulting in an accumulation of the smaller cells on the bottom of 

the 8µm pore membrane. In the case of the 3µm pores, all cells are too large for the 

pores, so this selection pressure is reduced. The fact that DAG1 KO clone B doesn’t 

fit the trend for either 3µm or 8µm pores provides support for this suggestion. This 

clone is, on average, significantly larger than the other two cells. It is possible that 

there are far fewer smaller cells, making the selection pressure less of a factor. 

Ultimately, it is not possible to determine the reason behind this observation using 

Transwell migration assays, it would require live visualisation of the cells migrating 

through channels in order to answer this question.  

 

The question of why the levels of gH2AX did not increase following migration through 

3µm pores is more perplexing. It is clear from previous reports that DNA damage 

increases following constricting migration and that this damage can accumulate 

through multiple rounds of migration (Pfeifer et al., 2018) or it can be repaired and 

returned to baseline levels (Irianto et al., 2017). Given that there is an obvious 

difference in the nuclear shape between the top and the bottom as described in 
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other studies (Irianto et al., 2017; Patteson et al., 2019a; Pfeifer et al., 2018; Xia et 

al., 2019), it is clear that the correct side of the membrane is being imaged and that 

the cells on the bottom of the membrane have indeed migrated through the pores. 

Two possible explanations for this difference are (1) the increased level of 

background intensity has resulted in a large amount of variation between 

independent experiments and (2) cells may have repaired the DNA damage prior to 

cell fixing and staining.  

 

Six independent experiments were carried out for the 3µm Transwell migration assay 

and for all three cell lines at least 4 of the 6 values indicated an increase in levels of 

gH2AX compared with the unmigrated cells. However, some of these experiments 

resulted in a value <1 indicating there was less gH2AX in the migrated nuclei 

compared with the unmigrated. This suggests that there is a general trend for an 

increase in levels of gH2AX but this was not consistently the case. It is possible that 

this discrepancy is due to increased background intensity on both the top and the 

bottom of the membrane as the membrane appeared to retain more antibodies and 

therefore more fluorophore than would normally be seen on glass coverslips.  

 

The other possible explanation for the lack of difference in DNA damage between 

migrated and unmigrated cells is the amount of time that cells were allowed to 

migrate. Cells were seeded and then incubated for 48 hours before fixing and 

staining. This time frame was chosen as after 24 hours there were almost no cells on 

the bottom of the membrane in any condition, this would not give a sufficient 

number of cells for any meaningful statistical analysis. Previous reports using this 

assay have only allowed cells to migrated for 24 hours (Irianto et al., 2017; Pfeifer et 

al., 2018; Xia et al., 2019), however, they have used cancer cell lines which are both 

far softer than myoblasts and more migratory (Efremov et al., 2014; Krause et al., 

2013; Lekka and Pabijan, 2019). Importantly, it has been shown that DNA repair 

following migration through narrow pores/channels occurs within 24 hours and can 

occur even more rapidly than that (Raab et al., 2016; Shah et al., 2020). This means 

that the methodology used in this study is not capable of identifying differences in 
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levels of DNA damage due to the longer time scale it takes for cells to migrate but 

the relatively quick time scale in which cells can repair DNA damage following 

constricted migration.  

 

The transwell migration assay provides a good starting point for investigating cell 

migration through narrow channels however, the main limitation is the inability to 

track the migration in real time. In an ideal situation it would be possible to observe 

the migration of control and DAG1 KO cells live using a microfluidic device with 

defined pore sizes as described in section 5.1.1. However, due to the technical and 

financial requirements to establish these devices it was not possible within the 

bounds and timescale of this project. If this had been achievable it would have been 

used to observe cell migration directly and it would be possible to track levels of DNA 

damage as they occur.  

 

5.3.3 Limitations of passive cell compression assay 

 

As with active cell compression the ideal set up for carrying out passive cell 

compression assays is to use a specifically designed device like that described by Shah 

et al. (2020). This allows the specific adjustment for compression to a pre-determined 

height, it allows removal and reapplication of compressional stress and it allows cells 

to be fixed and stained which allows additional information to be obtained (Shah et 

al., 2020). Similar to the migration microfluidic device, the technical, financial and 

time requirements to establish this process was not possible for this project. Despite 

this the methodology used was sufficient to provide information on nuclear 

morphology and this was in general agreement with the constricted migration data. 

In both cases compression resulted in a reduction in nuclear circularity for both 

control and DAG1 KO A cells. There was also a significant reduction in nuclear area 

when cells were passively compressed which may indicate this might be the case as 

cells migrate through constricted environments, however, nuclear area recovers 

more rapidly than nuclear circularity when the cells have finished migrating.   
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The other limitation with the passive compression assays is the AFM method used. 

Ideally, the AFM would have the capabilities to carry out high-resolution fluorescence 

imaging with either an associated light sheet or confocal microscope. This would 

allow the tracking of key cytoskeletal/nucleoskeletal proteins and levels of DNA 

damage as the cells respond to nuclear compression. The other limitation, 

particularly with the experiment outlined here, is the flexibility of the cantilever. The 

most accurate way to carry out this experiment would be to use a very stiff cantilever 

to compress the cells to ensure all compressional forces was imparted on the cell and 

not dissipated through the cantilever. However, the cantilever needs to be soft in 

order to accurately measure the mechanical properties of the soft cell and it is not 

possible to easily switch between cantilevers in a relevant time frame to carry out 

this experiment. Therefore, these limitations may have had tangible impacts on the 

results observed.  

 

5.3.4 Other forms of mechanical stress that were investigated 

 

In addition to cell compression there are other forms of mechanical stress that can 

be applied to cells. Cell stretching is a popular form of generating cell stress and this 

can be applied either as a single stretching event or applied as cyclic stretching. 

Additionally, cells can be stretched uniaxially or biaxially. An attempt to establish a 

cell stretching set up for this study was made, however, this was unfortunately 

unsuccessful due to time constraints. If these attempts had been successful, this 

would have been the preferred method of mechanical stress applied to myoblasts as 

this is closest to the type of stresses they would be subjected to in vivo. Myoblasts 

are subjected to passive stretching as they migrate along muscle filaments which are 

contracting and relaxing. Additionally, they have the potential to differentiate into 

myotubes which are subjected to constant stretching and relaxation cycles during 

muscle contraction (Chen et al., 2020; Soltow et al., 2013).  

 

An alternative form of mechanical stress is shear stress – this can be most easily 

applied by simply pumping media over cultured cells and this can replicate shear 

stress forces exerted on endothelial cells during blood flow (Deguchi et al., 2005; 
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Jetta et al., 2019). In this study a set up for applying shear stress was established, 

however, actual experiments were not carried out. There are two main reasons for 

this; (1) there is very little physiological relevance as myoblasts are unlikely to be 

subjected to forms of shear stress and (2) this was only going to be investigated if 

DAG1 KO cells responded differently to control cells following compressional forces 

in order to determine if the response was specific to compression or was universal 

for multiple forms of mechanical stress.  

 

Compressional stress was used as the form of mechanical stress applied in this study 

because it was an affordable, commercially available way of investigating mechanical 

properties that has been reported extensively in the literature. Therefore, there was 

no requirement to design a new technically demanding protocol. Additionally, cell 

compression, particularly through confined migration, may be physiologically 

relevant. Myoblasts are involved in migration through basement membrane during 

embryogenesis and there is eclectic research implicating DG in cancer and cancer 

progression as discussed in section 1.1.5.2. In the context of cancer, confined 

migration is extremely important in transformation from non-malignant to malignant 

forms. 

 

In summary, the results presented in this chapter suggest that cells lacking DG do not 

respond differently to cells expressing DG when subjected to chemical, osmotic or 

mechanical stress. These data, along with data presented in chapter 4, suggest that 

DG has minimal effects on nuclear mechanics and nuclear response to mechanical 

stress in human myoblasts. 
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6 Discussion 

 

There has been fairly extensive research into the nuclear role of b-DG, however, the 

majority of this research has been conducted by a single group. The published articles 

investigating nuclear b-DG vary in quality with some being rigorous and very 

convincing while others lack appropriate controls to draw any genuine conclusions. 

This range of quality makes it difficult to comprehensively understand the role b-DG 

has in the nucleus. In addition to the varying quality of published literature, this 

present study and Matt Cook’s study (Cook, 2021) directly contradict many of the 

findings in the literature. This further complicates the overall understanding of a role 

for b-DG in the nucleus.  

 

Based on all the available evidence it is probable that b-DG is found in the nucleus, 

however, whether it resides at the NE or if it is present transiently is not immediately 

clear. Additionally, the role of b-DG at the nucleus is not conclusive and it is possible 

that we, as investigators, have not yet asked the right questions to allow us to fully 

dissect the nuclear function.  

 

6.1 Role of DG in the nucleus  

 

6.1.1 Nuclear localisation of b-DG 

 

b-DG has been frequently reported to localise to the nucleus in a range of cell lines 

from multiple organisms including human and mouse  (Fuentes-Mera et al., 2006; 

Gonzalez-Ramirez et al., 2008; Mathew et al., 2013; Rodríguez-Munoz et al., 2015; 

Villarreal-Silva et al., 2010). Further, in this study b-DG has been shown to be present 

in the nucleus of KM155 human myoblast cells as shown by immunofluorescence 

staining and western blotting of nuclear and cytoplasmic cell fractions (chapter 3, 

Figure 3.1 and Figure 3.2). However, when a range of full-length tagged DG constructs 

were used to better identify subcellular localisation without the use of b-DG 

antibodies, there appeared to be little nuclear localisation (Cook, 2021; Leocadio-
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Victoria, 2015). This lack of nuclear localisation could be due to incorrect processing 

due to the addition of tags, but processing was investigated and fragment sizes were 

as expected, however, it is possible the tags altered or affected other forms of post-

translational modifications.  These results call into question the validity of b-DG 

antibodies when trying to determine nuclear localisation. GFP tagged b-DG has also 

been used previously, this comes with its own processing caveats but there is 

compelling evidence that mutating the nuclear exit signal in a b-DG-GFP construct 

results in consistent nuclear accumulation. These results also indicated that the 

mutant b-DG-GFP construct accumulated in the nucleoplasm and was not restricted 

to any particular nuclear compartment (NE or nucleoli) (Vélez-Aguilera et al., 2018).     

 

Mass spectrometry has been used abundantly to identify interacting proteins or 

proteins that reside in specific cellular compartments. Looking at available mass 

spectrometry data it is possible to probe for the presence of b-DG at the nucleus. In 

multiple studies when either the nucleus or just NE fractions from a range of cell 

types including muscle were subjected to mass spectrometry analysis there was no 

evidence of DG (Buchwalter et al., 2019; Korfali et al., 2012; Schirmer et al., 2003; 

Swift et al., 2013b; Wilkie et al., 2011). Additionally, when the interactomes of 

nuclear envelope proteins LEM2, MAN1 and emerin were assessed DG was not 

associated with any of these proteins (Moser et al., 2020). Further, a BioID 

experiment using ONM protein Nesprin-1a was carried out, DG was not identified 

(Gimpel et al., 2017). However, this would be expected if b-DG localises to the INM. 

VAPB, which is a membrane protein that localises to both the ER and the INM, was 

used to identify proteins at the INM and DG was not identified, but interestingly 

dystrophin was (James et al., 2019). This is in agreement with earlier studies 

investigating the nuclear localisation of the short dystrophin isoform Dp71 (Fuentes-

Mera et al., 2006; González et al., 2000; Marquez et al., 2003; Oppizzi et al., 2008). 

Despite the lack of evidence of nuclear DG in mammalian cell lines investigated using 

mass spectrometry data there is some evidence of nuclear DG from Drosophila when 

studied with mass spectrometry. In this study the DG interactome was investigated 

and identified multiple nuclear proteins. A number of histones were associated with 
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DG as were two NE proteins; baf and msp300 - equivalent to mammalian nesprins 

(Yatsenko et al., 2020). However, one issue with this particular study is they did not 

look at the nuclear fraction specifically, these interactions were determined from 

whole cell lysates which means the interactions could occur in other organelles such 

as the ER during processing, or they could occur following nuclear/cell rupture. Thus, 

these interactions are not necessarily indicative of nuclear localisation of DG. 

 

In addition to localisation studies by either visualisation or mass spectrometry 

analysis the functional nuclear data must also be considered. There have been 

reports of increased nuclear-centrosome distance in b-DG knockdown cells 

(Martínez-Vieyra et al., 2013), DAG1 KO mouse cells (Gómez-Monsiváis et al., 2020) 

and cells subjected to nuclear accumulation of b-DG (Vélez-Aguilera et al., 2018). 

Additionally, increased nuclear-centrosome distance has also been observed in the 

DAG1 KO human myoblasts used in this study (Cook, 2021). Emerin is thought to play 

a key role in regulating nuclear-centrosome distance (Salpingidou et al., 2007), 

however, it has been shown both in this study and by Matt Cook (Cook, 2021) that 

the level and localisation of emerin is not changed in DAG1 disrupted cells. This 

change in nuclear-centrosome distance had been previously attributed to a 

mislocalisation of emerin (Gómez-Monsiváis et al., 2020; Martínez-Vieyra et al., 

2013; Vélez-Aguilera et al., 2018), however, the same observation in KM155 human 

myoblasts where localisation of emerin is not affected suggests this is not the case. 

This leads to the question that if b-DG is not localised to the nucleus and is not 

involved in regulating emerin localisation how does a lack of, or accumulation of, b-

DG result in this increased distance. This question requires further study as DG may 

be involved in regulating the levels or localisation of an as yet unidentified protein 

involved in regulating nuclear-centrosome distance.  

 

In addition to nuclear-centrosome distance, nuclear stiffness is also different in DAG1 

KO cells compared with control. This is not the case when the nuclei are measured 

within the whole cell environment, but isolation of the nuclei allowed small 

differences to be measured (chapter 4, Figure 4.29). As these nuclei are separated 
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from all cytoplasmic and cytoskeletal influence the observed differences must come 

from a difference in the nucleus itself. There are a limited number of studies that 

investigate isolated nuclei stiffness and even fewer that look at the influence of 

different nuclear proteins. However, one study does suggest that reduced levels of 

lamin B1 result in a decrease in isolated nuclear stiffness and an increase in lamin B1 

results in increased stiffness (Ferrera et al., 2014). However, the levels of lamin B1 in 

DAG1 KO cells used in this study do not differ significantly from the control so this is 

unlikely to be the explanation. It is possible that this small difference in nuclear 

stiffness is related to the difference in nuclear size, however, it is not possible to 

conclude that from this study. Further experiments are required to gain a better 

understanding of the impact DG has on isolated nuclear stiffness. 

 

Based on the data presented in this study and that of studies published previously it 

is difficult to convincingly conclude either way whether under normal wild type 

conditions b-DG is localised to the nucleus or not. There is certainly strong evidence 

for nuclear localisation however, it is difficult to understand why b-DG is not detected 

in any mass spec experiments. Despite this there are sparse but clear phenotypic 

differences (nuclear stiffness, nucleus-centrosome distance) between the nuclei of 

cells lacking b-DG and cells expressing it. This therefore suggests that b-DG does 

localise to the nucleus, however, its exact function is still yet to be identified.  

 

6.1.2 Regulation of the levels and localisation of lamin B1 and emerin 

 

As mentioned above it has been frequently reported that both lamin B1 and emerin 

are mislocalised and total levels reduced in cells with perturbed levels of DG (Gómez-

Monsiváis et al., 2020; Jimenez-Gutierrez et al., 2020; Martínez-Vieyra et al., 2013; 

Vélez-Aguilera et al., 2018). The perturbations involved in these studies include b-DG 

knockdown, DAG1 KO or nuclear accumulation of b-DG and each of these result in a 

reduction and mislocalisation of lamin B1 and emerin. However, all of these 

experiments have been carried out in mouse C2C12 myoblasts and has not been 

tested in other cell lines. In this present study the levels and localisation of emerin 
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and lamin B1 appear unaffected by DAG1 KO in human myoblasts (chapter 3, figure 

3.22-3.28). This would suggest that these observations in C2C12 cells are not 

necessarily consistent across cell types or different organisms. Both levels and post-

translational modifications of DG vary between cell types so it is possible that 

differences in levels and post-translational modifications may result in different 

phenotypes. In order to further elucidate the role of b-DG in the regulation of lamin 

B1 and emerin it would be sensible to knock down b-DG in a range of cell types from 

a range of different organisms in order to understand the prevalence of this 

phenotype in multiple cell types. It would also be useful to carry out mutagenesis 

studies in order to determine which parts of DG are required for this regulation, 

phosphorylation states can also be investigated with the use of phosphomimetic 

mutants. An investigation into which cell types b-DG is required for correct 

localisation of emerin and lamin B1 is an important question to answer for the field.   

 

6.1.3 Contribution to mechanical properties of myoblast nuclei 

  

This study is the first to investigate the potential role DG has on the mechanical 

properties of the nucleus. This study was prompted by the available evidence 

suggesting that a lack or reduction of DG resulted in abnormally shaped nuclei 

(Jacobs, 2017), reduced levels of lamin B1 and emerin and potential interactions 

between b-DG and lamin A/C, B1 and emerin (Gómez-Monsiváis et al., 2020; 

Jimenez-Gutierrez et al., 2020; Martínez-Vieyra et al., 2013; Vélez-Aguilera et al., 

2018). Lamin A/C, B1 and emerin play key structural roles in the NE and are largely 

responsible for the mechanical properties of nuclei (Ferrera et al., 2014; Lammerding 

et al., 2006; Rowat et al., 2006), based on this previous evidence it was hypothesised 

that cells/nuclei lacking DG would have altered nuclear mechanical properties.  

 

There are multiple techniques that can be used for assessing mechanical properties 

of cells such as optical stretching (Guck et al., 2001), magnetic twisting cytometry 

(Tajik et al., 2016), micropipette aspiration (Dahl et al., 2005; Davidson et al., 2019) 

and more recently the contact-free imaging method Brillouin microscopy (Zhang et 
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al., 2020). However, AFM was used due to the medium throughput (greater than 

micropipette aspiration but lower than magnetic twisting cytometry, optical 

stretching and Brillouin microscopy), the ability to measure cells in their usual culture 

conditions (which isn’t possible using optical stretching) and the availability of 

specialist equipment (Brillouin microscopy is still in its infancy and being developed). 

The other advantage of using AFM is the well-defined and well-established 

mathematical models which are used to calculate mechanical properties, such as 

Young’s modulus, from force indentation curves (Bouchonville and Nicolas, 2019).   

 

Using AFM, the mechanical properties of myoblast nuclei, either with or without 

functional DG, were investigated extensively (chapter 4). The results suggest that the 

mechanical properties of nuclei without DG did not differ significantly from the 

control nuclei when tested with two types of cantilevers and following treatments 

including cell synchronisation, chromatin decondensation and actin cytoskeleton 

perturbation. There are no published data to compare these results to, as nuclei of 

KM155 human myoblasts have not been measured previously and there has been no 

comparison of nuclei with or without DG in any cell lines. The results from this study 

allow the conclusion that DG does not influence the mechanical properties of nuclei 

when in a whole cell environment. These data fit with data presented in chapter 3 

suggesting that levels of key structural proteins lamin A/C, B1 and emerin are also 

unaffected by disruption of DG. However, when nuclei were isolated from the 

surrounding cytoplasm and cytoskeleton there was a small but significant decrease 

in Young’s modulus for both DAG1 KO cells measured. This suggest that DG may 

indeed play a role in the mechanical properties of myoblast nuclei, but the 

contribution is so small that it becomes insignificant in the background of a whole 

cell.  

 

As the impact of DG on the mechanical properties of the nucleus appeared so small 

it was important to investigate whether it plays any part in responding to mechanical 

stimuli. Following compression, cells lacking DG did not respond any differently to 

cells expressing DG. This suggests that the small difference in nuclear mechanical 

properties does not make a functional difference when cell compression was 
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assessed. Ideally, cells would have been subjected to mechanical stretching, but it 

was not possible to establish this technique despite extensive efforts.  

 

6.2 Conclusions and future work 

 

In summary, the work presented in this thesis aimed to understand the functional 

relevance of b-DG in the nucleus and determine whether it played a role in 

determining the mechanical properties of human myoblast nuclei. Based on the 

detailed analysis it is possible to conclude that disruption of DG in these cells results 

in an increase in nuclear and cell area that can be rescued by the addition of 

exogenous DG. It is also possible to conclude that DG may contribute to the 

mechanical properties of nuclei, however, the magnitude of this contribution is small 

and is not relevant at a whole cell level using the testing regimes employed here. It 

is also possible to conclude from this study that, at least in human myoblasts, DG is 

not involved in maintaining nuclear shape, regulating levels or localisation of lamin 

A/C, B1 or emerin or responding to mechanical compression. 

 

The evidence presented in this work provides no compelling reason to continue 

investigating a mechanical role for DG in the nucleus. However, there are other 

avenues that can be investigated in terms of the role of DG. The most interesting of 

these is the consistent observation that cells where DG is disrupted are larger, as is 

the nucleus. Jimenez-Gutierrez et al., (2020) suggest this difference in size is due to 

cellular senescence however, there are some methodological issues with this 

investigation. Additionally, the results presented in this present study suggest that 

cellular senescence is not consistently observed in cells lacking DG and that this 

phenotype can be rescued by the addition of exogenous DG. Further investigations 

could involve rescue experiments with a range of DG constructs such as one lacking 

the NLS to determine whether nuclear localisation of DG is involved. Additionally, it 

is important to get a handle on the extent of nuclear localisation of b-DG across a 

range of cell types and organisms, this will be required in the attempt to better 

understand the role b-DG plays in the nucleus.   
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