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Abstract 

 

Alterations in DNA methylation patterns have been related to several diseases, 

including Rheumatoid Arthritis (RA). CD4+T-cells are critical players for the early 

pathogenesis of RA.  I hypothesise that modification of DNA methylation in 

CD4+T-cells happen early in RA and contribute to the disease progression by 

altering important physiological pathways. The aims of my thesis are 

1) to gain more understanding of early events/pathways in RA pathology by 

studying genome-wide DNA methylation  

2) to select potential CpG candidates for the development of a biomarker for the 

prediction of clinical outcomes. 

For the first aim, Illumina methylation genome-wide array data were analysed in 

naïve and memory CD4+T-cell and monocytes from 6 healthy control (HC) and 

10 early, drug naïve RA patients.  DNA methylation pattern in naïve CD4+T-cell 

confirmed the involvement of several pathways (mainly IL6/STAT3 linked to TNF-

α, and IFN signalling genes) in the early disease pathogenesis and importantly 

discovered novel pathways such as dysregulation of the commitment of Th17 

polarisation in naïve cells. My findings suggested a novel disease mechanism 

model in which IL6 induces atypical differentiation in a small subset of naïve 

CD4+T-cells, potentially associated with a subset of cells previously observed in 

vivo in RA patients by my supervisor. 

For the second aim, I used several publicly available methylation datasets  to 

develop selection strategies to identify CpGs candidate to develop as a biomarker 

assay for RA classification using a quantitative Methylation-Specific PCR (qMSP) 

technique. A TNF qMSP assay was successfully developed. It detected 

difference in methylation levels between RA and other arthritis with a good 

classification performance (n= 284, AUROC = 0.171 (95%CI: 0.115 - 0.227). This 

assay also showed potential to predict response to Methotrexate (pilot study). 

Further validation with a larger cohort will be necessary to included such assay 

in the management of early RA.  
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Chapter 1 General introduction 

 

1.1 Rheumatoid arthritis  

Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects 

synovial joints. It affects approximately 0.5-1.5% of the population in the UK and 

0.5-1% worldwide (1).   Prevalence is three-times higher in women than in men 

and it increases with age. The average age of onset lies between the ages of 45 

(during active life) and up to 65 years, but it can also affect younger people.  

Frequent signs and symptoms include pain, swelling, stiffness of joints, and 

fatigue (2).   

RA is part of a group of immune-mediated inflammatory diseases (IMID) and 

considered to be an autoimmune disease. It is characterized by persistent 

synovial inflammation (synovitis) and swelling of multiple joints (hands, knees and 

feet) in a symmetrical pattern, association with a particular Major 

Histocompatibility Complex (MHC) (HLA-DR), autoantibody production 

(Rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA)), cartilage 

and bone destruction, as well as systemic features (e.g. cardiovascular, 

pulmonary,  and depression) (3).  

There is not yet a cure for RA. It is a life-long condition. The treatment of RA aims 

to relieve patients from suffering and slowing down the disease course. However, 

despite the improved RA management strategies available nowadays, many 

patients still cannot attain the full benefits of current treatment options. This life-

long disease also has a considerable socio-economic burden with direct and 

indirect costs of over 2 billion £ /year in the UK (4). The costs are expected to 

increase further due to the rising need for more effective, but more expensive 

treatments notably biological compared to the first-line synthetic drug. The 

optimal management of RA as a life-long condition is a priority for patients, health 

authorities and societies. It relies mainly on early diagnosis and intervention, 

before the damage and disability become irreversible. 
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1.1.1 Etiology and pathophysiology of RA 

The exact cause of RA remains unclear. RA has a strong genetic background 

with heritable rate from parents around 40-65% for APCA+, while lower in APCA- 

disease. However, the monozygotic twin studies show that the chance of both 

having RA is only 15-30%, suggesting other non-coding factors play an important 

role in susceptibility (5). RA is hypothesised to be the effect of genetic 

susceptibility together with environmental triggers (5).   

There is a long known, strong association between RA and the human leukocyte 

antigen (HLA) also known as major histocompatibility complex (MHC)) loci, 

especially with the HLA‑DR gene of the B1*01 B1*04 and B1*10 alleles (6). 

These alleles are coding for chains of MHC molecules that may contain a 

common amino acid motif, known as the shared epitope (SE); which is 

significantly associated with the risk of developing RA. The SE effect on RA is 

thought to involve several mechanisms which are still not completely understood 

but may ultimately promote autoreactive immune responses (3). Evidence up to 

now suggests that it could promote autoreactive immune responses via (i) 

shaping the T-cell repertoire during thymic selection (7-9), (ii) antigen 

presentation with alteration in peptide affinity (10, 11) or (iii) increasing T-cell 

senescence(12). Alternatively molecular mimicry of microbial proteins (13) as 

well as a potential pro-inflammatory signalling function of the SE itself are further 

proposed effects unrelated to the SE activity in antigen recognition (14). 

With the advance of genome-wide association studies (GWAS), >100 additional 

RA-associated loci have been reported although with weaker associations (15-

20). Most of these loci are associated with adaptive immunity and inflammatory 

pathways, particularly, stimulation, activation and functional differentiation of T-

cells, implicating nuclear factor κB (NF-κB)–dependent signalling and other 

cytokine cascades (3). Many others are related to antigen presentation to T-cells. 

Environmental factors know to be of high risk to RA include smoking, gender-

related factor (as well as contraceptives intake), viral infection (e.g. Epstein-Barr 

virus, parvovirus), bacterial infection (e.g. Proteus and Mycoplasma) and 

exposure to certain substances (such as cigarette smoke, mineral oils) (21-27).  

Other factors such as gastrointestinal microbiome, or experience with adverse or 

traumatic life events could also influence RA (28-30). These environmental 

exposures are thought to trigger RA development in those individual who have a 

genetic susceptibility. For example, interaction between smoking and other forms 

of bronchial stress (e.g. exposure to silica) increase the risk of RA among 

individuals with susceptibility associated with the HLA–DR SE alleles (31). 
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The exact mechanism of how an interaction of environmental factors with genetic 

susceptibility leads to RA remains unclear but an overall key process resulting in 

loss of self-tolerance is needed. Despite a lot of research, no classic antigen 

(i.e. protein) has ever been clearly associated with RA although in the past 10 

years, a breakthrough defined post-translational modification (PTM) of certain 

protein epitopes (harbouring a consensus sequence (32)) as potential triggers of 

the auto-antibody response. These PTM are non-specific to the disease and 

occur as natural responses to cellular stress and inflammation (33, 34) while the 

immune response to this PTM (i.e. the development of IgG autoantibodies) is RA-

specific (i.e. not present in health or other diseases, despite a natural IgM 

repertoire of autoAb present on ~30% of people (35, 36).  

The consequence of this immune response developed against a modified self-

proteins includes antibody against citrullination, called anti-citrullinated protein 

antibodies (ACPA), carbamylation (anti-CarP), oxidation (glycation, oxidation, 

..etc) (37-39)). Another type of auto-antibody against the Fc portion of IgG, known 

as the Rheumatoid factor (RF) is also associated with RA (40, 41).  

The presence of circulating ACPAs (42), as well as other antibodies such as RF, 

anti-Carp and anti-oxidised collagen (38, 40, 43) and circulating pro-inflammatory 

cytokines and chemokines (44) can be detected up to 15 years before clinical 

disease onset (45), which points to immune activation during a preclinical phase 

to the disease, which is now a well-recognised step wise process (46, 47). 

However, there is still no clear conclusion about how the loss of self-tolerance 

at the systemic level, can lead to a localized inflammatory response  in the joint.  

A second series of events needs to happen, for which the cells involved and 

the possible triggers are not yet known although several hypotheses have been 

proposed, including dysregulation of T-cell differentiation, a role for cytokines, 

netosis, pain, osteoclast, Interferon-signalling and/or Th17-cells (3, 47-50).  

The clinical phases of RA, when signs and symptoms develop, takes place in the 

joints. Synovitis (i.e. inflammation of the Synovial membrane) results from 

lymphocytes infiltration into the synovium compartment (tissue and fluid).  Both 

adaptive immune cells (e.g. T-cells and B-cells), innate immune cells (e.g. 

monocytes/macrophages, mast cells, neutrophil and others), as well as resident 

cells (e.g. synovial fibroblasts (SF), chondrocytes, and osteoclasts) contribute to 

a cell-cell interaction network that promotes an inflammatory cascade, tissue 

remodelling and tissue damage. The release of chemokine recruits more immune 

cells. Cytokines induce the activation of macrophage-like synoviocytes and the 

activation/proliferation of synovial cells, (notably fibroblast-like synoviocytes 
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(FLSs)) causing an expansion of the synovial membrane and the release of pro-

inflammatory cytokines, and other substances (such as matrix 

metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), 

protease and nuclear factor κB ligand (RANKL)) promoting bone and cartilage 

damage. FLS (as well as immune cells) also have the potential to migrate from 

joint to joint to propagate disease (51). Furthermore, certain cytokines and in 

particular RANKL promote bone erosion by activation of osteoblast and 

chondrocytes (52). Other events during the disease process are micro-

environmental changes, such as the expression of adhesion molecules in 

synovial micro-vessels, the induction of angiogenesis (via secretion of vascular 

growth factors) in the synovial membrane allowing for even more immune cells 

infiltration (53). The prolonged inflammation promoting cartilage damage and 

bone erosion leads to the deformity and malfunction of the joints and other 

systemic consequences (3, 54-56).  

A summary of the development and progression of RA from the pre-clinical phase 

to clinical symptoms is shown in Figure 1-1. 
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Figure 1-1 Development and progression of RA from a healthy individual to 

a RA diagnosis. In the preclinical phase, genetic susceptibility, and environmental 

factors could both contribute to the risk of developing RA. The post translational 

modification of self-protein by exposure to a high-risk environment is thought to promote 

the loss of self-tolerance, especially in the individual with genetic susceptibility. This 

induced an auto-immune response as detected by the appearance of auto- autoimmunity 

against modified self-proteins such as ACPA, anti-Carp and anti-oxydised collagen. This 

can occur years before onset the clinical symptoms (systemic autoimmunity). The 

transition from pre-clinical phase to clinical phase which suggests the localisation of the 

immune reaction to joints occurs after a second series of events, which remains unclear. 

This include a phase of arthralgia (joint pain with no clinical evidence of inflammation) 

still considered pre-clinical and then the development of measurable symptoms notably 

inflammatory acute phase markers (CRP, ESR) and swelling of the joint (not only pain). 

In the clinical phase, there is the infiltration of immune cells in joints and initiation of the 

inflammatory cascade. Individuals whose symptoms persist for 6 weeks and meet the 

RA classification criteria will be considered early RA. The disease still continues to 

progress if uncontrolled by the initiation of a 1st line treatment (towards established RA), 

leading to permanent tissue damage and bone/cartilage erosion. 
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1.1.2 Immune Cells with pivotal roles in Rheumatoid Arthritis 

RA is a complex disease that involves many immune cells working and interacting 

together with stromal cells (i.e. SFs) in the joints. The major immune cells that 

are known to be involved in the perpetuation of RA pathogenesis are T-cells, B-

cells and macrophages. Although they all play a significant part in disease 

progression, their role may to be determinant, dominant or an accessory at 

different stages of the disease course. My PhD project focusses on T-cells and I 

will therefore describe these more below. 

 

1.1.2.1 Macrophages 

Macrophages are infiltrating the RA synovial membrane. They produce a variety 

of pro-inflammatory cytokines and chemokines (such as TNF-α and IL1-β) (57).  

These pro-inflammatory factors  activate a wide range of immune and non-

immune cells (stromal and endothelia cells). Macrophages also release matrix-

degrading enzymes and reactive oxygen intermediates that contribute to tissue 

damage and joint destruction (57). They can stimulate T-cell responses by acting 

as professional antigen-presenting cells (APCs), although in RA this is thought to 

be mainly the work of B-cells (58). The most abundantly produced cytokines in 

the RA synovium are produced by macrophages (including TNF, IL1, IL6, IL10, 

IL12, IL18, IL15, IL10, GM-CSF, M-CSF and TGFβ) which remain up-regulated 

for prolonged periods and account for the development of chronicity and the 

persistence of inflammation (57, 59). This stresses the important role of 

macrophages in the pathophysiology of RA, especially in the clinical stage when 

the inflammatory cascade is the main disease feature. As such, studies of RA 

patients synovial tissue while in clinical remission have shown that macrophages 

frequency and activation status are largely reduced (60). 

Histology/histochemistry studies notably showed that a score (OMERACT score) 

based on expression of macrophage markers can provide a measure of disease 

activity in RA (61). 

 

  



7 
 

1.1.2.2 B-cells 

B lymphocytes play several important roles in the pathogenesis of RA including  

autoantibody (autoAb) production, T-cell activation via their APC function, 

cytokine production and involvement in bone homeostasis (62, 63).   

The obvious evidence of a B-cell contribution to RA is that they are responsible 

for the production of APCA and other autoAbs (as discussed above, which are 

known to form after the triggering of PTM associated with the loss of self-

tolerance). These autoAbs also contribute to immune complex formation and 

complement activation in the joints (64). Animal models have suggested an 

arthrogenic role for these autoAbs, although it is not totally clear in humans (65).  

The therapeutic benefit of B-cells depletion in RA suggested that their function in 

RA pathogenesis involved additional mechanisms beyond autoAb production, 

notably as antibody levels are not changing significantly after B-cell depletion or 

according to response (66, 67). B-cells can promote T-cells activation through 

their efficient capacity for antigen-presenting and the expression of costimulatory 

molecules. Growing evidences show that B cells also contribute to the joint 

expression of several chemokines and cytokines (such as IL12, IL23, as well as 

IL1-β and TNF-α) that promote lymphocytes activation in the joints, the formation 

of ectopic lymphoid structures, angiogenesis, and synovial hyperplasia (68, 69). 

B-cells were also reported to be a source of RANKL involved in bone homeostasis 

(70), while autoAb recognizing citrullinated vimentin were reported to promote the 

differentiation of mononuclear cells into osteoclasts (50). These showed that B-

cells may have a plethora of roles in both the pre-clinical phase (with autoAb 

production) and in the clinical phase of RA. 
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1.1.2.3 T-cells 

T lymphocytes play significant roles in the RA pathogenesis both in the preclinical 

and in the clinical phase. T lymphocytes are cells of the adaptive immune system. 

T-cells mature in the thymus where they are “trained” to become a functional T-

cells through various processes including (i) the rearranging of the T-cell receptor 

(TCR) gene fragment to generate a wide variety of TCR allowing for responses 

to a large diversity of pathogens, (ii) a positive selection to ensure the optimal 

binding to MHC class I and Class II molecule to the TCR and the commitment of 

cells to present either a CD4+ or CD8+ costimulatory molecule, and (iii) the 

negative selection to ensure the tolerance to self-antigen. The mature naive T-

cells leave the thymus and then circulate in the blood to the secondary lymphoid 

organ.   

In a pathogen invasion situation, T-cells are activated by the engagement of the 

TCR and antigen-MHC-I or II complexes on the surface of the APC which have 

picked-up this pathogen, as well as express co-stimulatory signals. They then 

proliferate and differentiate into effector cells and maintain a small proportion of 

cells differentiated into memory T-cell.   

CD4+T-cell or T-helper cells engage with MHC II on APC. Once activated they 

can differentiate into different subtypes of effector T-helper cells based on the 

context in which APC were activated (i.e., B-cells or Macrophages and the type 

of pathogen), whereas CD8+T-cell, or T-killer cells which engage with MHC-I are 

mainly responsible for the elimination of pathogens  that have infected cells.  

CD4+T-cells are intimately involved in cell-mediated immune responses and 

have long been known to be involved in RA development and progression. In 

1982, the “T-centric” hypothesis in which T-cells get activated by a hypothetical 

arthrogenic agent (viral, bacterial or autoantigen) and then orchestrate the 

inflammatory response and development of RA (71) was raised. Later in the 

1990’s, a “cell-network” hypothesis involving macrophages (56, 72) gained more 

favour, and the T-cells centric hypothesis dropped out of fashion notably as no 

common T-cell antigen could be identified (73). More recently, advances in 

genomics technologies brought novel evidence supporting the strong association 

of T-cells with RA. 

 

Genetic evidence  

Strong evidence for the role of T-cells in RA pathogenesis is that many RA 

susceptibility loci are T-cell related genes, either directly engaged in the T-cells 

activation process or in related signalling pathways. The HLA-DRB gene, which 
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codes for the SE has the strongest association with RA (6). This SE is part of the 

MHC-class-II molecule expressed on APC, which directly contacts the TCR 

complex on CD4+T-cell during their maturation (positive and negative selection 

in the thymus) as well as during the antigen activation process in mature T-cells 

in the periphery. How this SE affects T-cells is still not clear but some evidence 

shows that it could shape the TCR repertoire and possibly promote autoreactive 

immune responses as discussed above (3, 7-14, 74). 

A second major breakthrough from these genetic studies was to bring more 

insight into RA aetiology.  In the past decade, GWASs in various RA patients 

populations and their meta-analysis together with post-GWAS multi-Omics data 

uncovered over 100 RA-susceptibility loci (16-19). Molecular pathway analysis of 

these 100 non-MHC RA-risk loci  revealed that they are lying mostly within genes 

involved in T-cell biology related pathways, also in antigen presentation pathways 

and cytokine signalling pathways (16, 19, 75-78). The most well-studied RA 

susceptibility loci/genes are, for example: 

➢ PTPN22 (Protein tyrosine phosphatase, non-receptor type 22) which 

encodes an enzyme involved in signalling pathways associated with the 

immune response, alters the responsiveness of T and B cell receptors, 

associated with several autoimmune diseases.  

➢ CTLA4 (cytotoxic T-lymphocyte-associated protein 4 or CD152) which 

encodes a receptor that functions as an immune checkpoint and 

downregulates immune responses on T cells after activation. 

➢ IL2RA and IL-2RB (Interleukin-2 receptor alpha and beta chains) which 

involve in stimulating T-cell proliferation. 

➢ STAT4 (Signal transducer and activator of transcription 4) which required for 

the development of Th1 cells from naïve CD4+ T cells and IFN-γ production 

in response to IL-12. 

➢ PADI4 (Peptidyl Arginine Deiminase 4) coding for the enzyme responsible for 

citrullination, involved in the cellular response to stress, creating potential 

antigens that bind to RA-associated MHC proteins. 
 

Recently (in 2020), the largest so far Trans-ethnic GWAS meta-analysis which 

recruited more than 300,000 individuals (RA and controls) from European and 

Asian ancestors has been performed (79).  The  study identified 11 new loci and 

confirmed 71 known- non-HLA susceptibility loci, with another 90 association 

signals related to RA. The majority of variants in RA were shared between the 

two ancestries groups, which have highly distinct linkage disequilibrium 

architecture, suggesting a true insight into RA aetiology. They also integrated the 
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GWAS results with other omics data for transcription factor binding sites and 

histone modification marks, performing enrichment analysis of RA variants. Large 

heritability variants presented preferential relationships with binding sites of the 

transcription factors associated with T-cell receptor signalling. The histone 

modification marks (such as H3Kme3 involved in chromatin accessibility), were 

strongly associated with RA-risk loci specific of CD4+T-cells including stimulation, 

memory and/or regulatory T-cells in agreement with previous trans-ethic GWAS 

meta-analyses performed on >100,00 individuals reported earlier (19). This 

further emphasized the key role for T-cells in the initiation and/or perpetuation of 

RA.  

Note that although more than 100 RA-risk loci have been identified, a large 

proportion of RA heritability is still unexplainable (19, 78, 79).  The Discovery of 

new RA susceptibility loci and the incorporation of other biologically relevant 

analyses such as transcriptomic and epigenetic analyses remains necessary for 

a more complete understanding of RA pathogenesis (80). 

 

Evidence of abnormalities in the CD4 T cell repertoire  

Contraction in the TCR diversity of CD4+T-cells and clonal populations in the 

CD4 compartment were reported in RA  (81).  

Clonal expansion was, at first explained as a consequence of specific responses 

to synovial self-antigens, however this hypothesis of an antigen drive 

autoimmunity in RA is unlikely to be absolutely true because such clonal 

expansions were not limited to the memory compartment, but involves also naïve 

T cells (82, 83). The loss of TCR diversity and the clonal expansion appeared to 

be due to accelerated ageing of the immune system in RA patients, whereby 

thymic function is lost earlier than in healthy people as suggested by the decline 

of TCR rearrangement excision circles (TREC, an indicator of newly generated T 

cells from thymus) notably in early, drug naïve RA patients (82, 84). A further 

reduction in diversity in the T-cells repertoire may result from a clonal expansion 

in order to fill the void left by CD4+ T-cell lymphopenia in RA (85). However, the 

autoreactivity may result from other processes as well. The abnormal CD4+T-

cells repertoire was also shown to results from the shaping of TCR by the SE 

(possibly by presenting self-peptides to CD4+ T cells in the thymus (7, 9, 82, 86) 

as well as preferential binding of citrullinated peptide by the SE alleles (73). This 

might result in selecting TCRs that are more reactive to self-antigens and lead to 

autoimmunity later. 
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Evidence of accelerated in T-cell senescence 

Premature senescence of T-cells in RA is associated with telomeres loss (12). 

The insufficient upregulation of telomerase activity was also reported in RA and 

telomere erosion was found in both the naïve and memory T-cell compartments 

as well as in progenitor cells (87). Loss of telomere length eventually leads to loss 

of gene on the end of chromosomes which can further affect the function of the 

cells. 

 

Evidence of defect in T-cell differentiation 

Defects of T-cell differentiation were observed in RA. The clonal expansion of 

unusual CD4+T-cells (CD4+ CD28- T cells) characterized by lacking CD28 cell 

surface molecule, functionally important for T-cells activation, have been in 

observed in the blood of RA patient (88). The presence of large numbers of such 

unusual T cells is likely to influence immune responsiveness and alter 

mechanisms of inflammation (88-90).   

Defects in CD4+T-cells differentiation was also studied by my supervisor 

research group. The loss of naïve cells and the appearance of atypical CD4+T-

cells that are expressing both naïve and memory differentiation markers 

(CD45RB, CD45RA, CD45RO and CD62L), namely inflammation related cells 

(IRC) (91-93), was observed in the blood of early, drug naïve as well as 

established RA patients. The correlation between the frequency of this  unusual 

cell subsets and levels of C-reactive protein (CRP) and the reduced TREC 

content compared to naive cells, while still being high in IRC, suggested that 

inflammation drives the proliferation of naive T cells and encourages their 

differentiation into atypical IRC. These are also hyper-responsive to antigen and 

mitogen stimulation while remaining naïve with respect to an antigen experience 

(92, 93). They also persist in remission (94, 95). 

 

Evidence of abnormal T-cell polarization  

Naïve CD4+T-cells differentiate and polarize to different effector; helper T-cells 

subsets (Th, e.g. Th1, Th2, Th17, Th9, Th22), follicular helper T-cells (Tfh) or 

inducible Regulatory T-cells - (iT-reg), according to the stimuli they receive. Each 

effector subset release a different pattern of cytokines Figure 1-2.  The abnormal 

polarization of these cells or the cytokines/chemokines releasing from them are 

important in cell-mediated immunity and can contribute to the pathogenesis of 

RA.  
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Th1 cells release pro-inflammatory cytokines such as IFN-γ, IL2 and TNF-α and 

promote the activation of other immune cells such as macrophages, B cells, and 

CD8+ cytotoxic T-cells, required for host defense against intracellular viral and 

bacterial pathogens. Although the pro-inflammatory cytokine of Th1 cells could 

contribute to inflammatory cascade in autoimmune reactions, they might not be 

involved in RA pathogenesis as the differentiation of naïve CD4+Tcells toward 

Th1 was found to be impaired in RA (96, 97) with impaired commitment and 

expression of T-bet, the master regulator of Th1 polarisation (98, 99). 

Th2 cells produce IL4, IL5, IL9, IL13, and IL17E/IL25 which are important for the 

induction and development of humoral immunity and play an important role in 

coordinating the immune response to large extracellular pathogens. 

Differentiation of naive CD4+T cells towards Th2 appears intact in RA (99, 100). 

Apart from the classic Th1 and Th2 subsets, newly identified cell subset such as 

Th17, Th9 and Th22 have also been implicated.  Th17 cells have significant roles 

in RA pathogenesis. This subset produces potent pro-inflammatory cytokine such 

as IL17A, 17F, IL21, IL22 and TNF-α (101). The presence of numerous Th17-

cells and high levels of IL17 in the joints of RA patients was reported (102-104). 

These promote the activation of fibroblasts and chondrocytes, induces 

expression of the osteoclast differentiating factor RANKL. Besides, Th17 are able 

to suppress the differentiation of iTreg which have a role in regulating or 

suppressing other immune cells, thus shifting T-cell homeostasis toward 

inflammation (105). Despite this, studies about the role of Th17-cells in RA 

pathogenesis have suggested that Th17 cells may play a central role in the early 

disease-onset stages of RA from the at-risk stages up to diagnosis, but have 

limited effect later in the disease course (102, 106-108), notably in line with the 

lack of therapeutic efficacy of anti-IL17 Ab in RA (109). 

An increased frequency of Th9 cells and of the expression of IL9 was reported in 

the synovial tissues and fluid of RA patients (110). Th9 cells released IL9 which 

is involved in prolonging the survival of neutrophils in the synovium, stimulated 

the production of MMP-9 and facilitated Th17 cell differentiation (111).  

Th22 cells, which secrete IL22, are more likely to be recruited in the skin and 

contribute to host defines against microbial pathogens and promote tissue repair 

or remodeling (112).  

Treg cells are responsible for immune suppression, maintaining immune 

homeostasis and self-tolerance, which is mediated by regulating the activity of 

the effector T-cells via releasing of the suppressor cytokines IL10 and TGF-β. In 

early and preclinical RA, Treg cell function is impaired, while Treg cell counts are 
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also reduced (48, 91, 113, 114). The balance between Th17/Treg is tilted toward 

more Th17 cells, suggesting  an association with RA development (115). 

Tfh cells release cytokine such as IL4, IL21, and IFN-α, promote the survival and 

proliferation of B cells in germinal center and their production of antibodies. An 

increased  frequency of peripheral Tfh cells was reported in RA patients (116). 

This high level of Tfh also correlated with increasing ACPA levels  suggesting  the 

possible involvement of Tfh cells in the disease progression of RA (116).  

 

 

 

 

 

Figure 1-2 CD4+T-cells subsets Naïve CD4+T-cells can differentiate into a 

number of specific cells subset according to the signals provided by the 

microenvironment (i.e. polarising cytokine milieu). The differentiation/polarisation 

requires signalling through cytokine receptor/JAK/STAT complex resulting in  the 

induction of the expression and epigenetic commitment of transcription factors as 

master regulator of the engagement in polarisation (Tbet, GATA3, RORyt and 

RORa, AHR, BCL6,  Foxp3).  The diagram shows required cytokine signal, 

transcription factors of specific cell subset included Th1, Th2, Th9, Th17, Th22, 

Tfh, and Treg as well as the cytokine production profile. 
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Evidence of disturbed cytokine production 

Cytokines are responsible for the communication between the parts of the 

immunes system and  have an important role in RA pathogenesis. Cytokines can 

affect proliferation, differentiation/polarisation, and the survival of T-cells, all 

functionalities that contribute to RA pathogenesis.  

Cytokines are very important mediators in RA as proven by the success of 

therapies blocking their effect such as anti-TNF (117, 118), anti-IL6 (119) as well 

as JAK-inhibitor (120) more recently, while anti-IL1 was less effective (121, 122) 

and surprisingly anti-IL17 was not at all (123, 124).  

Effector CD4+T-cells release cytokines that promote inflammation (e.g., TNF-α, 

IFN-γ) or cytokine that promotes B-cell maturation (e.g., IL6 notably). However, 

the main source of cytokines expressed in the synovium in established RA (e.g. 

TNF-α, IL6, IL1, IFN-γ) are macrophages and FLS (125). This was the main 

argument to suggest a passive role for T-cell in promoting inflammation (in the 

late 90’s) however, this was observed once the disease is already fully 

established. 

T-cells also contribute to RA pathogenesis through other cytokine production.  A 

clear example is the production of potent pro-inflammatory cytokines such as 

IL17A (126), IL17F (127), IL21 (128), and IL22 (129) and TNF-α (101, 130) by 

Th17 cells. IL17 promotes recruitment of other cells such as monocytes and 

neutrophils in the synovium, which in turn can further fuel inflammation in RA 

(131). They also promote activation of fibroblasts and chondrocytes, and 

osteoclast differentiation via  RANKL (132).  

Type-I interferon (IFN) signalling related gene expression has been described in 

many Autoimmune disease (AIDs) including RA (133). There is a substantial body 

of evidence to indicate the contribution of type-I IFN activity in RA, however with 

a role for IFN-β, whilst most other AIDs place a greater emphasis on IFN-α (134-

136). IFN-β in the joint is notably capable of protecting T-cells from undergoing 

apoptosis and thus has been associated with the development and maintenance 

of chronic inflammation (137).  IL7 which is highly expressed in the joints of RA 

patients, is also a major cytokine involved in CD4+T-cell survival, and is also 

highly expressed in RA synovial tissue (138-140).  
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Evidence of alteration in cross-talk between different cell types  

The most recent models of RA pathogenesis suggests that T-cell mediates/ 

orchestrate the action of other cells contributing to disease. T-cells have 

interactions with other cell types that are abundantly found in RA synovium; 

macrophages, FLSs as well as cells such as Dendritic cells (DCs), endothelial 

cells, and B-cells have been described which I summarised in Figure 1-3.   

Macrophages have been thought to be central to RA due to the fact they produce 

much of the cytokines involved in the inflammatory cascade. More recent data 

demonstrated that they actually share this role with FLS which are also central to 

RA. They notably undergo hyperplasia and express altered levels of cytokines, 

chemokines driving influx of immune cells, and matrix-degrading enzymes 

contributing to joint destruction (2).  

DCs are potential key regulators of the induction of immunity in their capacity as 

professional APC (141). In RA synovium, where immune cells are accumulated, 

T-cells can be activated through the presentation of auto-antigens by APCs, co-

stimulation (e.g. via pathways dependent on CD28, CD154 or CD47), or the local 

release of cytokines (e.g. IL12, IL6, IL21) by adjacent cells (142). In turn, T-cells 

can themselves produce as well as promote cytokine production by other cells, 

in particularly TNF-α production by macrophages as well as other cytokines such 

as IL1-β, IL12, IL15 IL18 through cell-cell contact interactions (83, 142, 143). 

Activated T-cells can induce monocyte differentiation into osteoclasts via up-

regulation of receptor activator of RANKL contributing to bone erosion (144).  

Activated T-cells can also induce the release of TNF-α, IL15, MMPs by FLS as 

well as FLS proliferation (142, 145). Since the cytokines in the synovium can also 

induce more T-cells activation, positive feedback loops are  also created which 

maintain a vicious cycle and perpetuate the inflammatory state.  

T-cells also crosstalk to endothelial cells lining blood vessel. Endothelial cells 

response to Vascular endothelial growth factor (VEGF) the factor that leads to 

angiogenesis notably produced by cells when hypoxia develops when the 

synovium increase in cell content.  Under the influence of IL2, Ag or hypoxia, T-

cell can release VEGF, activate endothelial cells and promote angiogenesis as 

well as increasing expression of adhesion molecule and changing the 

permeability of vessels, allowing more immune cells infiltration  into the synovium. 

VEGF in turn, also affects T-cells differentiation toward Th1 (146). 

The accumulation of T cells and B cells in the synovium results in tissue 

organisation into lymphocyte aggregates, some with features of ectopic germinal 

centres (147). These can promote further recruitment of B cells via IL-21 
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production and promotes B-cells survival, proliferation and maturation (147), 

although this was demonstrated in tissue from the established disease.  

All types of interactions have therefore been described in RA but whether all 

mechanisms are relevant during the initiation, the progression to chronicity or the 

established phase of disease phase remains to be determined. It is likely that a 

specific time line of events is directing early progression while, after the 

establishment of chronicity, many more pathways may get activated untimely 

driving the development of heterogeneity in the disease and leading to many 

different patient phenotypes associated with different ability to respond to certain 

treatments better than others. 

 

Figure 1-3 The cross-talk between CD4+T-cells and different cell types in 
the RA synovium.  
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Modern T-cell targeted therapy 

Treatment for RA have evolved considerably over the past 2 decades. 

Historically, a number of lymphocytotoxic therapies have been employed in RA, 

ranging from total lymphoid irradiation to using monoclonal antibodies (mAbs) 

such as Campath (a T-cell depleting antibody) (148). In the early 2000’s, 

autologous stem cell transplantation was used, in which patients received an 

infusion of their own pluripotent stem cells following aggressive chemotherapy, 

usually with cyclophosphamide (149). An initially unexpected ‘side effect’ of 

these depleting therapies was prolonged peripheral blood lymphopenia, 

particularly of the CD4+ T-cells subset (up to 7 years after therapy) while CD8+ 

T-cells and B-cells were rapidly reconstituted (150). Furthermore, 

lymphocytotoxic therapy was followed by oligoclonal lymphocyte expansions in 

the blood and synovium of RA patients, presumably from peripheral memory T-

cell populations (151).   

Immunosuppressive drugs have been used since the early 2000’s, mainly 

methotrexate (MTX) (152, 153) which was then used as the standard of care 

for the treatment in RA a few years later (154, 155), while hydroxichlorochine 

(HCQ) or sulfazalasine (SSZ) were used if MTX was not well tolerated. These 

however mainly worked in early stage disease and allowed about half of the 

patients to achieve a state a clinical remission (156) that may be relatively long 

lasting for some, particularly if introduced very early in the disease course (i.e. 

less than 6 month after the development of symptoms) (157). For the other half, 

patients develop resistance to these agents, requiring additional drug options. 

With early treatment being accepted as best practice, remission was observed 

in many more patients and allowed the development of a new concept, the 

window of opportunity in early RA (158). The goal of therapy therefore became 

the induction of remission as early as possible in the disease course (159), with 

national/international guidelines (160, 161) promoting this treat to target 

approach (i,.e. aiming for remission) ,. This is now achieved by the introducing 

MTX 1st, then escalating to MTX+HCQ if remission is not achieved 3 months 

later and then up to triple therapy adding SSZ later (160),  as the new 2018 

NICE national guidelines 

Finally, modern drugs were developed, some notably targeting T-cells with 

renewed success. The therapeutic modulation of T-cell co-stimulation (e.g. 
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abatacept- a CTLA4-lg fusion that block the CD28:CD80/86 costimulatory 

pathway(162)) or the profound immunodepletion of CD4+T-cells (e.g. keliximab, 

anti-CD4 monoclonal antibody (163) also confirm the significant role of T-cells in 

RA pathogenesis (164) while anti TNF agents (receptor blocking Ab, infliximal or 

adalunimab) or soluble receptor decoy (etanercpt) have now proven their efficacy 

for more than 10 years. The latest Ab therapy was an anti-IL6 agents (e.g. 

Tocilizumab, sarilumab) while the downstream signalling inhibition of the many 

cytokine pathways, the JAK-inhibitors (e.g baricitinib, tofacitinib) are small 

molecules that also both showed effective results for the treatment of patients 

with RA (165, 166). 

In conclusion, the evidence (added to the success of drug targeting T-cells) 

suggested many significant roles of T-cell in RA pathogenesis.  The strong link 

between the immunogenetic risk associated with RA, the contraction of TCR 

repertoire  which can contribute to the loss of self-tolerance suggested a most 

significant role for T-cells in the initiation of disease,  the pre-clinical and the early 

phases of RA pathogenesis.  Defective of T-cells differentiation as shown in 

atypical CD4+T-cell subsets and the polarization of CD4+T-cells toward Th17 are 

then hypothesized to be part of a second hit, involved the transition from pre-

clinical phase to clinical phase.  Once chronicity has established itself 

(established RA), T-cells appear to have a more passive role as the 

cytokine/chemokine present in the join are mainly the production of macrophages 

and stromal cells. 

Altogether, T-cells, B-cells, dendritic cells, endothelial cells fibroblasts and 

macrophages all have a role to play in RA pathogenesis, while some may be 

dominant at different time in the course of the disease.  

Recently, the advances of single-cell technology helped pinpoint further the 

importance of sub-population of cells with an inflammatory state contributing to 

RA pathogenesis (167-169). The integration of single-cell RNA sequencing, 

single-cell mass-cytometry, bulk RNA sequencing and flow cytometry data for 

CD4+T-cell, CD8+T-cell, B-cell, monocytes, and synovial fibroblasts from tissue 

biopsies of RA patient (167) identified several cell sub-populations of immune 

cells. The new cell subsets that were observed in RA were peripheral helper T 

(TPH PDCD1+) cells and follicular helper T (TFH) cells, CD8+T-cells expressing 

highly IFN-, senescent memory CD4+T-cells, autoimmune B cells 
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(ITGAX+TBX21+), pro-inflammatory monocytes and sub-lining fibroblasts 

(THY1(CD90)+ HLA-DRAhi). Further change in the detailed phenotypeof these 

sub-populations of cells seem to be associated with RA pathogenesis, for 

example, change of homing capacities  and effector functions of CD4+T-cells, a 

more inflammatory status of monocytes (expression of IL1) and fibroblasts 

producing IL6. More functional studies will have to be conducted to fully 

understand the role of these cell subsets in RA.  

Nonetheless, considering the strong evidence supporting a possible role for T-

cells as central to early pathogenesis in RA, this will be the focus of my PhD.  
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1.1.3 Unmet needs in RA 

The cause and early pathogenesis of RA still remains unclear. The obvious 

events  after the onset of disease, are an inflammatory cascade of immune cells 

activation, fuelling positive feedback loops.  The prolonged inflammation in joints 

leads to the destruction of tissue, cartilage and bone resulting in irreversible 

structural disabilities with time and pain.  Despite recent advances, there is still 

no cure for RA. Treatments currently still aimed to relieve  inflammation (i.e. 

treating symptoms but not the cause) and to slow down disease progression. 

Taking into account the progressive stages of the disease development while the 

disability are irreversible and RA a life-long condition, early diagnosis and early 

and effective treatment to stop the progression of the disease at its very beginning 

are  crucial to make a real difference for patents.  

In clinical practice, the main useful biomarkers commonly used to diagnose RA 

nowadays is the presence of autoantibodies such as RF, but more specifically 

antibodies to citrullinated peptides (ACPA) (170). However, ACPA positivity still 

has limitations and around ~40% of patients at presentation (i.e. not yet meeting 

the diagnostic criteria for RA), do not show the presence of ACPA (171). The 

delays in being able to be identified patients presenting with joint inflammation 

symptoms as an RA patient (i.e. meeting the criteria for such classification), 

prevents them from receiving a suitable treatment early, with a great reduction in 

clinical benefit for the rest of their life. Therefore, the development of novel 

biomarkers that could help in diagnosing RA (either used alone or together with 

other markers) remains very important, particularly for a large proportion of 

ACPA- RA patients. 

In addition, major heterogeneity exists between patients and an effective 

treatment for one patient may not be effective for another. This emphasizes 

another urgent clinical need for the discovery, validation, and development of 

stratification biomarker to classify patient subgroups for the better use of 

therapies. Elucidation the genes/ pathway involve at the beginning of RA will also 

help point to target for biomarker development (diagnosis/or others)  and also 

provide more understanding of disease pathogenesis, which will be beneficial for 

new target for treatment. 

RA was postulated to develop on a high-risk genetic background in combination 

with environmental exposures, notably smoking (172). Environmental risks are 

often causing a modification of the epigenome of cells (173). After cancer, 

Immune-mediated inflammatory disorders (IMIDs) and in particular, RA, became 

the topic of many research studies analysing epigenetic modifications. The recent 

analysis of the DNA methylation patterns in synoviocytes from RA patients 
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demonstrated a significant shift towards hypomethylation (174-176). Some of 

these modifications were further observed in circulating T-cells(173) suggesting 

that T-cells may also be  the target of epigenetic modifications that may lead to 

disease and also have biomarker value (due to their accessibility as blood 

samples) while providing new understanding of the disease pathogenesis. 
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1.2 Epigenetic (DNA methylation) 

 

Epigenetics regroups a number of mechanisms that regulated gene activity 

without a change in the DNA sequence itself. Epigenetic marks can be inherited 

in daughter cells (i.e. after cell division) or via the germline to the offspring.  It 

determines which genes in a genome are turned ON or OFF thus it is very 

important to normal cellular processes (177, 178).  A few examples are the role 

of epigenetic in cell differentiation (179, 180), the formation of tissue-specific 

cellular phenotypes (181, 182), X chromosome inactivation in female (183, 184).  

Although in general the epigenetic marks are stable and propagated over multiple 

cell divisions, at some specific DNA sites/regions they can be modified under the 

influence of the environment (e.g. nutrition, stress, medication), thus serving as 

an important mechanism for the adaptation of cells to changes in their 

environment (185). However, such alteration to the original patterns may also 

lead to pathogenic situations; especially in conditions that could not be fully 

explained by genetic variations (e.g. moderate concordance between identical 

twin studies), or conditions with a strong impact of the environment on disease 

development (186).  The environment can indeed influence epigenetic marks 

over time in particular when associated with a genetic background including 

variants in the epigenetic machinery enzymes, which might contribute to the 

disease risk. This has been largely documented, particularly in cancer (179, 187-

189) and more recently in IMIDs and in RA (173). 

 

1.2.1 Epigenetic mechanism 

Epigenetic mechanisms affect gene transcription without changing the DNA 

sequence itself (177). There are 2 major epigenetic mechanisms; DNA 

methylation, and histone modifications (while interference with small RNA (e.g. 

small interfering RNA, microRNAs, non-coding RNAs) are also sometimes 

considered under the epigenetic umbrella) both causing gene expression 

changes.   

In Eukaryotic cell, Chromosomal DNA is well-wrapped around proteins, the 

histones, which packed into a set of eight histone proteins formed a nucleosome 

structure that coiled, results into chromatin to accommodate a large amount of 

DNA in a small space and protect the genetic material (Figure 1-4).  The 

chromatin structure can regulate gene transcription by altering the availability of 

regulatory regions (e.g. promoters and enhancers) for the transcription machinery 

to bind to. An open chromatin structure, called Euchromatin, allows DNA-binding 
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proteins and Transcription factor (TF) to interact with regulatory DNA sequences 

and activate gene transcription. On the other hand, a closed condensed 

chromatin structure, the Heterochromatin, whereby the DNA is packed tightly 

around protein complexes, prevents TF interaction with regulatory sequences, 

leading to gene silencing (190-192).  

DNA methylation and Histone modifications regulate gene expression via 

different molecular mechanisms but both aim to control the close or open 

chromatin structure allowing the transcription machinery to do its job, whereas 

miRNA regulate gene expression by either repressing the translation of already 

transcribed mRNA or causing the degradation of multiple target mRNAs (193, 

194) 

Among these mechanisms, due to its relative stability in somatic cells and the 

ease of experimental detection, DNA methylation is the most studied epigenetic 

modification at the genome-wide level both in health and in diseases (195)  and 

is the focus of my thesis. 

 

DNA methylation 

DNA methylation is a modification of the DNA by which a methyl group is added 

to the 5’ position of cytosine (C) forming 5-methylcytosine (5-mC). DNA 

methylation mainly occurs in CpG dinucleotide (Cytosine-phosphate-Guanine, 

CpG site, Figure 1-4). DNA methyltransferases (DNMTs) are a family of enzymes 

that catalyse methylation by transferring the methyl group from S-adenyl 

methionine (SAM) to 5-mC (Figure 1-4).  DNMT3a and DNMT3b add methylation 

pattern to unmodified DNA (de novo DNA methylation)(196) whereas DNMT1 is 

primarily responsible for the maintenance of existing methylation on CpG loci, 

especially during cell proliferation (197, 198).  CpGs are distributed throughout 

the genome. CpGs can stand alone as an “isolate CpG” dinucleotides, or present 

clustered together in a CpG-rich regions called a CpG island, which are usually 

located in the promoter region of genes (199, 200). Methylation of CpG sites 

located in a gene promoter therefore often coincide with suppression of gene 

transcription as methylation of these sites tend to promote a closed conformation 

of the chromatin (201, 202). Indeed, Methylated DNA regulation of gene 

transcription process by either itself, physically blocking the binding of the TF 

(203, 204) or through the binding to proteins specifically recognizing methylated 

DNA such as Methyl-CpG-binding domain proteins and the DNA 

methyltransferases themselves (205, 206). The binding of these proteins recruits 

additional proteins such as histone deacetylases and other chromatin remodeling 
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proteins to the  region, facilitating  chromatin compaction  and reinforcing a close 

chromatin structure forbidding the transcription process (205). 

 

 

Figure 1-4 DNA packaging and DNA methylation. 

A) The addition of a methyl (-CH3) group to DNA at 5’ of cytosine base 
forming 5-methylcytosine (5-mC ).      

B) Methylation occur at cytosine-phosphate-guanine (CpG) position of double 
strand DNA.  

(adapted from Molecular Biology, Chromatin Compaction, by Joëlle Brodeur and 
Martin Toussaint. 2006. DNA Methylation associated with diseases) 
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1.2.2 Methylation and diseases 

Methylation plays a critical role in maintaining normal cellular processes including 

embryonic development, cell specificity, differentiation of cell, ageing, and many 

other processes (reviewed in (207)).   

Abnormal patterns of methylation can lead to the pathological conditions 

including cancer, auto-immunity, metabolic disorders and many others.  The 

effect of such abnormalities has largely been studied in cancer. On one hand, 

global hypomethylation of CpGs in tumour cells (often closely associated with 

repeated DNA elements) (208) disrupts the “normal” state of large regions of the 

chromatin, resulting in genomic instability and contributing to cell transformation. 

On the other hand, hypermethylation of CpG islands is also observed in a 

number of tumour suppressor genes promoter resulting in their silencing and the 

further contribution to transformation (188, 209, 210). Hypermethylation of APC, 

RASSF1A and TP53, promoter region has been reported as a common marker 

for early detection of cancer or evaluation of cancer development (211). 

The original “injury” associated with such epigenetic modifications is still unknown 

for many diseases although environmental factors are likely to be causal 

particular in malignancies (173). Certain factors that have long been associated 

with cancer (for example carcinogens such as arsenite, chlorobenzene, nickel) 

do not have mutagenic abilities (as observed for other class of molecules that can 

directly alter the genetic code), however, they were shown to exert their effect 

through epigenetic mechanisms (212-214). These reagents may also be able to 

target the epigenetic machinery itself. Such epigenetic modifications are 

therefore now called epimutation and are as important in tumorigenesis as 

genetic mutations (173, 187, 210, 215). Punctual mutations are also not likely to 

cause major functional disruption if they are not directly associated with a 

mechanism allowing the development of the cancer (or other diseases). On the 

other hand, methylated cytosine create a “lesion” that cannot easily be 

discriminated by the mismatch mutation DNA repair mechanisms and may result 

in an increase G:T transition (i.e. a mutation)(216, 217), while, genetic mutations 

also often target genes implicated in the epigenetic machinery (218, 219). It was 

then suggested that an earlier involvement of epimutations and epigenetic 

mechanisms may allow DNA damages to persist unchecked by lowering the 

“proof reading” capability of cells (220). DNA damage accumulating over time 

would then lead to further increase mutations and vice versa. Another essential 

observation was then, the discovery of epimutations present in the tissue 

surrounding tumours (221, 222). This therefore suggested a wider local 

perturbation reflecting an initial epigenetic injury at a wider levels. A localised 

genetic event (potentially in a single cells) may then developed in this 
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predisposed tissue and turn into a transformed clone of cells and then into a 

cancer.  

These observations led to the conclusion that mutations may not be the early 

events leading to cell transformation but a later consequence of an overall genetic 

instability initially created by epimutations. The nature of the original epigenetic 

injury is still elusive in certain forms of cancer, but in diseases like autoimmune 

disorders and particularly RA, inflammation appears a likely candidate while 

genetic events points to T-cells.  

 

DNA Methylation in RA 

In RA, there is increasing evidence showing alterations in methylation patterns. 

These modifications have been studied in SF, peripheral blood mononuclear cells 

(PBMC), and different subsets of immune cells and reviewed in (173, 185, 223).  

Early studies showed that  

➢ SF showed global hypomethylation, causing overexpression of 

inflammatory cytokines (224-226) as well as aberrant re-expression of 

LINE-1 elements (175, 176) a retrotransposon that contributes to the 

general genome instability. Overexpression of IL-6, an inflammatory 

cytokine that stimulates many inflammatory responses, was further 

specifically associated with the hypomethylation of CpG Island in its 

promoter (227, 228).  

A few studies performed a close analysis of the change in methylation patterns 

in different immune subsets.  In general, it appears that hypomethylation affected 

genes that are activated during immune responses, hence likely towards 

perpetuating the disease.  

In T-cell,  

➢ demethylation of the CD40L gene, crucial for immune activation of B-cells 

was observed, (229-231).   

➢ hypermethylation in CTLA-4, protein receptor that functions as an immune 

checkpoint an essential molecule for Treg function (232, 233) suggesting 

impaired Treg, which play a role in suppressing the immune system 

➢ decrease in methylation of the FoxP3 gene, (the master regulator for the 

development and suppressive function of Treg) was associated with 

therapeutic effect of MTX (234), resulting in Foxp3 upregulation and 

consequently increase CTLA-4 normalization of RA Treg function.  
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In addition to the genes involved in immune response,  

➢ various genes involved in the methylation and demethylation machinery 

itself (such as DNMT1, TET1, TET2 and TET3) have also been reported 

to be altered at the DNA methylation levels in RA, which could have a 

major direct effect on the methylation status of more genes in T-cells (235).  

These initial observations clearly suggested that methylation change could be 

involved in RA pathogenesis. The advance in microarray technology later 

facilitated the study of DNA methylation changes associated with RA genome-

wide.  

➢ 383 hyper- and 785 hypo-methylated CpGs were reported on CD4+T-cell 

from long lasting RA patients. These candidate CpGs were related to 

genes particularly involved in transcript alternative splicing and protein 

modification in addition to methylation changes in HLA genes (e.g. HLA-

DRB6, HLA-DQA1 and HLA-E) and other genes were also highlighted 

including HDAC4, NXN, TBCD,TMEM61, ITIH3, TCN2, PRDM16, 

SLC1A5 and GALNT9 (236). 

➢ A second Genome-wide DNA methylation study again in long lasting RA 

patients from another group, identified 509 and 252 CpGs in T- and B-

lymphocytes, respectively (237). ARSB, DUSP22, GALNT9  were 

highlighted in T-cells and ADAMTS17, ASB1, BARX2  in B-cells.  They 

also emphasized the distinct changes in methylation pattern specifically 

associated with these two cells population in RA.   

Most of the studies of DNA methylation in RA have focused on established RA, 

where different courses of disease progression, different treatments and the 

accumulated burden of chronic inflammation  will have contributed to altered DNA 

methylation patterns while generating much heterogeneity at the same time. DNA 

methylation changes at the early stage of RA, while still naïve for disease 

modifying drug, have then gained attention.   

➢ studies from SF, circulating T-cell, and B-cell in the early stages of RA 

demonstrated that DNA methylation alteration could occur early in the 

course of the disease and contributes to its development (238-240). The 

genes highlighted were  related to the wnt signaling pathway for SF, DNA 

binding protein and transcription factor in T-lymphocytes, and kinase 

activity and plasma cell functions in B-lymphocytes   study that compared 

DNA methylation change in early and established RA in T-cells showed  

o ~50 CpGs  that were common between the two stages  

o 218 CpGs  that are dominant in one of the stage.  
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Methylation changes that were dominant at the established stage are more likely 

to be  the consequence of the progression as well as reflect the variations in the 

disease course and its response to various treatment over time, whereas 

methylation changes at the early (drug naïve) stage are more likely to be 

important to the initiation of the disease and contribute to its pathogenesis.  

 

1.2.3 The role of Inflammation in triggering epigenetic changes  

Epigenetic could be influenced by environmental exposures. Various factors such 

as air pollution, tobacco smoke, malnutrition, and all sources of stress could 

induce epigenetic change leading the pathological condition (241). Several 

pieces of evidence from oncology research showed that inflammation can 

contribute to tumorigenesis via alteration of epigenetic profile of cytokine genes 

for example. IL1β was reported to increases the risk of gastric cancer via the 

induction of aberrant DNA methylation profile in a mouse model (242). IL-6-

induced inflammation was shown to promotes tumorigenesis in the oral cavity by 

altering LINE-1 element’s methylation (243). The proposed mechanism was that 

IL6 regulates the expression of the DNMT genes, which encoding the 

methyltransferase enzymes responsible for establishing and maintaining DNA 

methylation, thereby regulating  DNA methylation of other genes (244) and 

contributing to genetic instability and cancer progression. There is also other 

evidence (although with no clear mechanism) suggesting that oxidative stress 

and other pro-inflammatory cytokines (e.g. TNF-α and IFN-γ) could also induced 

methylation changes in cancer (review in (245)).   

A study in RA also supports a role for inflammation-induced DNA methylation 

changes (246).  It showed that chronic exposure to IL1 potentially contributes to 

global hypomethylation in RA SF also through the regulation of DNMT 

expression.  

Altogether inflammation could be an important factor in driving aberrant DNA 

methylation, contributing to the progression of disease. Smoking, bacteria or virus 

infections and injury are well-known environmental risk factors for RA.  It is 

possible that the inflammation caused by exposure to these factors triggers 

epigenetics change which together with RA genetic susceptible loci may be 

leading to pathogenesis.  
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1.3 The study of DNA methylation  

 

There are several methods to study DNA methylation. The methods of choice in 

my project were adapted to the purpose of each part of my study towards  

➢ the discovery of novel epigenetic change as an exploratory study of DNA 

methylation in different cell subsets from early drug naive RA patients  

➢ the determination of regions/genes of interest with specific alteration in 

DNA methylation patterns. 

➢ the analysis of a specific mark in more details towards a clinical 

applications (i.e. as a biomarker)  

For an exploratory study, the recent advances in technology for next-generation 

sequencing and microarrays have allowed the epigenetic study of the whole 

genome with high resolution from a large number of samples. The technology 

that has been the most widely used for DNA methylation is genome-wide 

microarray as it provides a cost-effective platform and is easy to use 

experimentally (247-249).  Bisulfite conversion of unmethylated cytosine to uracil 

on DNA chains helps distinguish between methylated and un-methylated 

cytosine while the Microarray technology enables the study of multiple specific 

CpG sites spread all over the genome.  

The technology that was used to determine DNA methylation in samples in my 

project is the Illumina Infinium Human Methylation 450 Bead Chips array (Illumina 

Inc., CA, USA)(250, 251).  It allows to assess methylation levels in more than 

485,000 CpG sites per sample at a single-nucleotide CpG levels of resolution. It 

is designed to cover 99% of all known genes (by RefSeq) and 96% of identified 

CpG islands, with additional coverage for the regions flanking them (called 

shores/shelves) (251-253).  This technology allows a wide view of the genome 

methylation status to make sense in biological terms and offers the opportunity 

to find all the methylation marks that are linked to a disease for example. 

Computational tools are essential for handling the large and complicated datasets 

generated by microarrays. A limited range of publications describing 

computational analytical tools and packages were available in the public domain 

for the analysis of methylation microarray-derived data particularly beyond the 

initial stage of technical processing of the data  and notably at the time I started 

my PhD.  The programming language R is one of the most powerful open source 

tool for data analysis and statistical computing.  The capabilities offered by R are 

extensive, particularly when used in combination with packages from 

Bioconductor (254, 255), the open-source software repository that provides tools 
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for the analysis and comprehension of high-throughput genomic data.  

Nonetheless, in order to get a biologically meaningful result, which highly 

depends on the research question, a specific strategy is needed to develop an 

analysis pipeline after the basic tools for pre-data processing are applied.    

In contrast to genome wide array, the assessment of methylation at a specific site 

of interest, can employ several techniques.  These are either based on the 

enzymatic reaction or DNA bisulfite conversion, then followed by downstream 

molecular techniques such as  PCR and sequencing, pyrosequencing (256, 257), 

methyl specific PCR (258), quantitative Methylation-Specific PCR (qMSP) (259, 

260), or Methylation-Sensitive High Resolution Melting (261).  Which method to 

choose depends on the amount and quality of the DNA sample, the sensitivity 

and specificity requirements of the study, the robustness and simplicity of the 

method, the availability of specialized equipment and reagents, and 

bioinformatics software, and cost (248).  The method of choice in my project, is 

bisulfite sequencing and qMSP which will be described in more detail in the 

relevant chapter.   
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Chapter 2 Overall Rational and hypothesis  

 

The early pathogenesis of RA is still not clear and the series of events leading to 

disease remain to be elucidated as well as timed with respect to each other. In 

RA management, the diagnosis and treatment are not 100% effective. 

Understanding How and When genes/pathways involved in RA disease 

progression, will provide novel understanding about the pathogenesis which may 

be beneficial in many aspects including the discovery of new targets for treatment 

and for biomarker development.  

DNA Methylation alteration are now central to new hypothesis about their role in 

leading to disease rather than being a consequence of genetic instability 

(alteration being detected before other molecular events). As DNA methylation 

can be influenced by the environment, modification detected could provide the 

missing link between such triggers and the resulting measurable events leading 

to disease. Methylation change detected in RA so far were shown to be 

associated with known pathological pathways, suggesting that they are indeed 

truly reflecting the disease situation and could provide more understanding of RA 

pathogenesis.  

Considering that many RA susceptible loci are related to T-cell biological 

functions, all the other supporting evidences described for an pivotal role of T-

cells in the initiating phase of RA progression, the importance of aberration in T-

cell subsets at the disease initial stage (including the biomarker values associated 

with such disturbances),   I  hypothesised that methylation change in T-cells may 

occur early and can drive the disease towards chronicity.  

Therefore a study of DNA methylation in T-cells at the early stages of RA (drug 

naïve) was initiated by my supervisor. CD4+T-cells comprise several subsets, 

naïve and memory, regulatory, polarised helper cells … etc, which are different 

in nature and importantly use epigenetic changes as part of their differentiation 

commitment.  Considering that methylation change associated with the disease 

should be distinct from the epigenetic changes resulting from the differentiation  

of these cell subtypes, there could be more potential for discovery in taking a 

closer look at naive CD4+T-cells.  

The work performed over 20 years by my supervisor also pointed to changes 

and/or defect in naïve CD4+ T-cells (48, 92, 94, 95). This study, therefore used 

an illumina methylation genome-wide technology, for an exploratory study of RA 

pathogenesis, measuring  DNA methylation of early, drug naive RA compared to 

HC, in naïve and memory CD4+ T-cells.  Monocytes were also included as a 
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reference for another immune cell that respond to inflammation stimuli and also 

has an important role in RA.  

The aim of my project is first to identify changes in DNA methylation in these cells 

in early RA, to understand more about RA pathogenesis and second to select a 

CpG target for biomarker development.  

 

My thesis is therefore based on a general hypothesis and one main assumptions: 

General hypothesis   

➢ Change in DNA methylation in CD4+ T-cells happen early in RA and may 

drive the disease development by altering important physiological pathways.  

Assumption  

➢ Naïve CD4+T-cells are the main cells targeted by such changes  

My project is organised in 2 main part  

1. gain more understanding of early events/pathways in disease pathology 

by studying genome wide data on DNA methylation  

2. select potential CpG candidates for the development of a biomarker for the 

prediction of clinical outcome using the qMSP technic. 
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Chapter 3 Materials and Method 

 

This chapter describes the general material and method used in my thesis. All 

detail of reagents, kits, buffer and instruments used in this research can be found 

in Appendix 1.  

 

3.1 Ethics, Patients 

My project used samples from healthy volunteers and patients who were enrolled 

from an early arthritis clinic (EAC) into an observational register (named 

IACON/RADAR) of the Inflammatory Arthritis disease continuum at the Chapel 

Allerton (ChA) hospital in Leeds. All subjects and healthy volunteers gave 

informed written consent. The observational IACON/RADAR study obtained 

ethical permission in 2010 under the REC number: 09/H1307/98 (ethical approval 

letter attached in Appendix 2). 

In EAC, patients were examined using various clinical assessments (joint counts 

notably), diagnostic blood tests (for autoantibodies, inflammation markers), 

medical history, physical questionnaires of well-being, patient ability to perform 

daily tasks and imaging (ultra sound) in order to be classified toward a specific 

type of arthritis and to receive proper treatment. These parameters at the first visit 

(referred to as baseline) and follow-up visits (3, 6 and 9 months and yearly) were 

recorded in databases.  Blood samples were collected, processed, and stored by 

the ChA tissue bank team for research purposes at baseline and 6 months.   

At the first visit, some patients expressed features that met the classification 

criteria for RA or another type of arthritis (psoriatic, reactive, or osteoarthritis), 

another type of inflammation (gout, connective tissue inflammation) and can be 

allocated a specific diagnosis, while others remain unclassified (i.e 

undifferentiated arthritis, UA). Some patients also spontaneously resolve 

symptoms and are discharged. In some cases, it took up to 2-3 years to be able 

to be diagnose RA.   

For this project, I used different  

➢ sample groups : HC, RA, other arthritis or UA,  

➢ sample types : fresh blood, serum, frozen PBMC, frozen whole blood 

➢ time points : baseline or week 24 



34 
 

in different experimental designs. The demographic and clinical details of the 

samples used in the different lines of work are described in the corresponding 

results chapters. 

 

3.2 Analytical resources  

My project needs access to several types of analytical tools and resources. Most 

of the bioinformatics work was performed with the R programming languages 

(262) and R packages available in Bioconductor (255), an open source software 

providing tools for the analysis and comprehension of high-throughput genomic 

data.  The R packages and other analytical tools used in my project are listed in 

Table 3-1.    
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Table 3-1 Analytical tools and data resource for the analysis 

Analytical tools     

R Package Package source and description Package web link 

dplyr (263) R package for data manipulation https://CRAN.R-project.org/package=dplyr 

reshape2 (264) R package for data restructure and aggregation https://CRAN.R-project.org/package=reshape2 

rms (265) R package for Regression model strategies https://CRAN.R-project.org/package=rms 

qqman (266) R package for generate Manhattan plot https://cran.r-project.org/web/packages/qqman/ index.html 

gplots (267) 
R package for data visualisation; Heat maps/ 
hierarchical clustering  

https://CRAN.R-project.org/package=gplots 

ggplot2 (268) R package for data visualisation https://cran.r-project.org/web/packages/ggplot2/index.html 

Minfi (269) 
R/Bioconductor package for DNA methylation 
data pre-processing, analysis and visualisation 

http://bioconductor.org/packages/release/bioc/html/minfi.html 

FDb.Infinium Methylation. 
hg19 (270) 

R/Bioconductor package for annotation Illumina 
Infinium DNA methylation probes 

http://bioconductor.org/packages/FDb.Infinium Methylation.hg19/ 

genefilter (271) 
R/Bioconductor package for statistical analysis 
from high-throughput experiments 

https://www.bioconductor.org/packages/release/bioc/html/genefilter.html 

bumphunter (272) 
R package for data Differentially methylated 
region (DMR) finding 

https://www.bioconductor.org/packages/release/bioc/html/bumphunter.html 

DMRcate (273) R package for data DMR finding http://bioconductor.org/packages/release/bioc/html/DMRcate.html 

Web-based tool     

Bio venn (274) 
web-based tool for comparison and 
visualization of biological lists using area-
proportional Venn diagrams 

http://www.biovenn.nl/ 

Panther (275) web-based tool for gene classification http://pantherdb.org/ 

https://cran.r-project.org/web/packages/qqman/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/FDb.Infinium
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String network analysis (276) 
web-based tool and database of known and 
predicted protein-protein interactions 

https://string-db.org/ 

Other Software    

Primer Express™ Software 
v3.0.1 (Applied Biosystems™)  

Primer design software Applied Biosystems™ 

Methyl Primer Express™ 
Software v1.0 

Primer design software Applied Biosystems™ 

MethPrimer 2.0 Primer design software http://www.urogene.org/methprimer2 

Bi search web server Primer design software http://bisearch.enzim.hu/  

Sequencing Analysis 5.2 
(Applied Biosystems ),  

Sequencing analysis software Applied Biosystems™ 

The Design and Analysis II   qPCR  analysis software Themo fisher could application. 

Data resource     

UCSC database 
  

Genome browser 
  

UCSC Genome Browser: Kent WJ, Sugnet CW, Furey TS, Roskin KM, 
Pringle TH, Zahler AM, Haussler D. The human genome browser at 
UCSC. Genome Res. 2002 Jun;12(6):996-1006.  

NCBI GEO dataset 
database for methylation data and gene 
expression data 

https://www.ncbi.nlm.nih.gov/gds 

 

http://bisearch.enzim.hu/
http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996
http://www.genome.org/cgi/content/abstract/12/6/996
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3.3 Initial procedures for obtaining Genome-wide DNA 

methylation data: Samples procedure and data acquisition 

 

Before I started my PhD, a Genome-wide DNA methylation array (Illumina 

Infinium Human Methylation 450 Bead Chip) was performed by an external 

contractor (Hologics, Manchester) on peripheral naive CD4+T-cell, memory 

CD4+T-cells, and monocytes from 6 HC and 10 early patients (who meet the 

EULAR-2010 classification criteria for RA (1)), being naïve for disease-modifying 

anti-rheumatic drug (DMARD) and having an active disease with at least 3 

swollen joints and raised inflammation markers (CRP>10 mg/L). The raw data 

were provided to my supervisor as 48 idat files. I performed an analysis of this 

data set.  

The detail of samples processing, and data acquisition are described in the 

appendix 3.  These were performed by a research technician before my arrival in 

Leeds. 
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3.4 Genome-wide DNA methylation data analysis 

A data analysis pipeline was designed using a combination of R (V3.3.1)(262), 

Bioconductor R packages, in-house R scripts, and other analytical tools. An 

overall analysis and experimental workflow show in Figure 4-1in part 1 

introduction. 

 

3.4.1 Quality control and Data pre-processing 

A total of 48 genome-wide DNA methylation profiles (from 3 cells subset of 6 HC 

and 10 early RA patients) were retrieved in IDAT files and were loaded into R.  

Each sample provided reads for signal intensities (for both methylated and 

unmethylated DNA) for the 485,512 CpG site (each specifically associated with 

a probe). Data quality control analysis and pre-processing were performed with 

the R package Minfi (269). Plots of Methylation levels (in form of β-values) for 

density including all 48 samples and bean plots for each individual sample were 

generated using the same R package.  

CpG probes which were identified to be common SNPs and cross-reactive probes 

that have been shown to hybridise to multiple locations in the genomes were 

filtered out to prevent false interpretation of the methylation signal 

difference(277). Methylation levels for each CpG site were presented as β-value 

or M-value according to the analysis to be performed.  

• β-values are the ratio of the fluorescence intensity between the methylated 

and unmethylated probes, ranging from 0 (all copies of the CpG in the 

sample are un-methylated) to 1 (all copies of the CpG in the sample are 

methylated). 

• M-values are log-transformed β-values preferably used for statistical 

testing(278).  
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3.4.2 Initial exploration of data 

3.4.2.1 Visualizing Multivariate Data 

Multidimensional scaling (MDS) for (i) each cell types, (ii) genders, and (iii) RA 

versus HC was performed to examine the source of variation in the dataset and 

were plotted using the mdsplot function in the minfi package in R(269).  

 

3.4.2.2 Identification of Differentially Methylated individual CpG site (T-

test,  Manhattan plot, heatmap) 

2-sided t-tests (on M-value) were performed on every CpG using the function 

rowttest in the genefilter package (271) for significance of the difference in 

methylation between HC and RA.  

A manhattan plot for illustrating the levels of significance of differentially 

methylated CpGs between HC and RA was plotted using -log10(P-values) for 

each probe on the array against its chromosomal position using R package 

“qqman’’ (266). Three thresholds defining high/medium/low level of significance 

for differentially methylated CpG were set at p-value ≤ 0.0001, ≤ 0.001, and ≤ 

0.01, respectively. 

A hierarchical clustering and a heatmap of the significant DM CpG (P-value ≤ 

0.01) between HC and RA was generated for visualising the DNA methylation 

level and observing the relationship between groups (HC/RA). This was 

generated from β-values using the heatmap2 function of the gplot package (267).   

 

3.4.2.3 Annotation of CpG Island and Gene information associated with 

individual CpG/probe  

The relevant information related to CpG Island and gene associated with each 

probe (gene symbol), were retrieved before further analysis to select candidate 

CpGs with biological meaning.  Each CpG sites/probe was related to annotation 

for CpG Island information on position, size, enrichment of CpG, number of 

probes in the island, and the associated gene using using getAnnotation in the 

minfi package (269) and the getNearestTSS function in 

FDb.InfiniumMethylation.hg19 package (270). It is worth noticing that this 

package associates the nearest Gene transcript to a CpG, however, this may not 

be its true biological association. 
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3.4.3 Developing tool to identify Differential Methylation (DM) 

To identify clusters of DM CpG, a custom R scripts to score each individual CpG 

and prioritise them was developed (the concept and details will be described the 

results section, full code available on request). 

 

3.4.4 Further analysis to understand the biological relevance of DM 

gene to RA pathogenesis. 

Several tools were used to understand the relevance of DM. This included Gene 

Expression Omnibus (GEO) repository to retrieve publicly available gene 

expression data, and STRING database (279, 280) to examine the interaction the 

proteins associated with DM.  I worked in collaboration with other students in my 

supervisor research group for some of this analysis.  This will be clearly 

mentioned in each particular section of the result part. 
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3.5 Sample preparation 

3.5.1 Isolation of peripheral blood mononuclear cells (PBMC) from 

human peripheral blood (Ficoll) 

A sample of peripheral blood (PB) was collected from all participants in EDTA 

containing vacuette blood bottles. The PBMCs were isolated by density gradient 

separation using LymphoprepTM, according to the manufacturer's instructions.  

Briefly, PB was dilute 1:1 with PBS before slowly layer on to the lymphoprep (with 

ration 1 lymphoprep: 2 diluted PB) at RT and centrifuged at 2,400 rmp, with no 

break for 20 min at RT.  The cloudy lymphocyte layer was then aspirated and 

transferred to new falcon tube containing cold PBS before centrifuge at 1,800 

rpm, 10 min at 4oC.  The supernatant was discarded, and cell pellets were 

washed twice with cold PBS before centrifuging at 1500 rpm, for 10 min, at 4oC. 

After removing the supernatant, cell pellets were kept on ice until ready to for 

further steps.  Cell counting was performed during the washing step or after finish 

as described below.   

Fresh PBMS samples were used for fluorescence-activated cell sorting.  

 

3.5.2 Cell counting and viability Testing with Trypan Blue Exclusion 

Method 

Cell number and viability was assessed by Trypan blue on the basis that living 

cells possess intact cell membranes that exclude the dye while dead cells do not.  

The cell suspension was mixed with 0.4% trypan blue dye in 1:1 dilution. 

Live/dead cells were counted with a haemocytometer with a light microscope.  

 

3.5.3 Fluorescence-Activated Cell Sorting (FACS) 

FACS is a technique that identifies and purifies a cell subset form a mixture of 

cell populations.  It used the capability of flow cytometry to detect the specific light 

scattering characteristics of each cell and the fluorescent labelled attached to cell 

surface molecules by specific antibodies.   

In this project, I sorted 5 cell subsets: CD4 T-cells, CD8 T-cells, NK cells, B-cells, 

and monocytes.  In brief the, PBMC were isolated from fresh EDTA blood and 

stained with antibodies using a standard cell surface staining protocol. (see 

below).  
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3.5.4 Standard cell surface staining protocol  

Cell pellets were resuspended in blocking buffer for 30 min at 4oC. Blocking buffer 

was removed by centrifuging at 500g, for 5 mins at 4oC (same for other centrifuge 

steps) and the supernatant was poured out. Cells were resuspended in 1x 106 

cells/100 µL of FAC buffer were stained with antibodies according to the purpose 

of the experiment (see detail below), for 30 min at 4oC in the dark. Stained cells 

were then centrifuged to discard the excess antibodies and washed once with 

FACS buffer before resuspending in 200 µL of FACS buffer for analysis on the 

FACS machine.    

For cell sorting, cell stained with a single cell surface marker (i.e., 1 antibody only) 

were used first for setting gates. Then cells stained with a mixture of all antibodies 

were sorted on the Influx FACS machine, operated by the Flow Cytometry and 

Imaging facility support staff. Antibodies used for staining each cell type and an 

example for gating are showed in Figure 3-1,A (antibodies detail are described in 

Appendix 4). 

For purity (see below), cells were stained with a single antibody (anti-CD4) or 

together with anti-CD3 (optional) and analysed on Attune machine, against light 

scattering. Antibodies used for staining and an example for gating are showed in 

Figure 3-1, B.  
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A:  Cell sorting 

Antibodies for cell sorting assay 

Staining tube Antibody Dye Volume used/ 1x106 cells 

Single staining 1 CD3+ FIT C 6 µL 

Single staining 2 CD4+ APC-cy7 4 µL 

Single staining 3 CD8+ A700 4 µL 

Single staining 4 CD14+ Pacific Blue 6 µL 

Single staining 5 CD19+ APC 10 µL 

Single staining 6 CD56+ PE 10 µL 

Mix staining Combination of all 6 antibodies above 

 

Gating detail for cell sorting  

Target cell Antibody Dye 

CD4+T-cell CD3+ FITC 

CD4+ APC-cy7 

CD8+T-cell CD3+ FIT C 

CD8+ A700 

B-cell CD19 APC 

NK cell CD56+ 

CD3 - 

PE 

(no FITC) 

NKT cells CD56+ 

CD3+ 

PE 

FITC 

Monocyte CD14+ Pacific Blue 
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B: CD4+T-cells purity check 

Antibodies for CD4+T-cells purity check  

Staining tube Antibody Dye Volume used/ 1x106 

cells 

Single staining 1 CD4+ V500 5 µL 

Single staining 2 

(optional) 

CD3+ FIT C 6 µL 

 

 

Figure 3-1 Cell sorting and CD4+T-cells purity check 

A) Antibodies staining condition detail and gating for cell sorting and B) CD4+T-

cells purity check  assays.  
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3.5.5 Working from frozen PBMC 

The Frozen PCMC were taken out from the -150oC freezer ChA tissue bank.  

Cells were rapidly thawed by gently swirling the vial in the 37oC water bath until 

only a small crystal was left in the vial.  Cells were then transferred to a 15 ml 

tube and diluted with ice-cold PBS.  Cells were maintained in a cold condition for 

all of the following step. The Cell suspension was centrifuged at 500g for 5 min 

at 4oC before the freezing milieu was discarded. Cells were then washed with ice-

cold PBS and centrifuged.  Cell counting was performed after the final wash.  

Of note, after thawing, frozen cells may be sticky and clumped as there was a lot 

of cell death and cell debris.  Such PBMC could be used directly for DNA 

extraction. However, for CD4 T-cell isolation, well-separated cells are needed 

and the clumped PBMC cells needed to be discarded. Filtering aggregated 

suspensions through a 37 µm cell strainer or using a DNase treatment was tested 

as an alternative option. 

 

3.5.6 CD4-T-cell isolation by magnetic bead and purification check by 

flow cytometer and purity check 

CD4+ T-cells were isolated from frozen PBMC using the immuno-magnetic 

negative selection, Human CD4+ T Cell Isolation Kit (EasySep™). The principle 

is to label unwanted cells with antibody that will form complexes with magnetic 

particles before using a magnet to separate the magnetically labelled cell from 

the untouched target cells, here the CD4+T-cell. CD4+T-cell isolation was 

performed according to the kit protocol with optimisation for frozen cells. In short, 

PBMC were suspended at 5 x 107 cells/mL in recommend buffer (PBS containing 

2% FBS and 1 mM EDTA) adjusting volume depending on cell counts in 

polystyrene round-bottom tube. 50 µL/mL of the Isolation cocktail of antibodies 

were added to the cells and incubated for 5 min, at RT.  

The magnetic beads (RapidSpheres™), were then added at 50 µL/mL to the 

sample.  The sample was mixed and toped-up with the buffer to 2.5 ml before 

placing the tube into the magnet for 3 min to allow magnetically labelled cell to 

attach to the tube’s wall.  The non-labelled cells (CD4+T-cells) were then poured 

out into a new tube. After isolation, the purity of the isolated CD4+T-cells was 

checked by flow cytometry using a single antibody (anti-CD4) labelled with V500 

(5 µL per test). Cells were stained according to the standard protocol described 

above and analysed as per the gate described in Figure 3-1. Cells were also 

counted as described above. 
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CD4+T-cells with purity more than 90% were used in further experiments.  Cells 

were immediately processed for DNA isolation or stored as cell pellets at -80oC 

for future use.  

Notes;  

• Contaminants were mainly unidentifiable debris (i.e. not other cell types) 

hence the needs to eliminate such samples as they would be containing 

large amount of DNA from unknown cells. 

• In case of having a limited number of target cells, after pouring the CD4+T-

cells fraction out, the tube with labelled-unwanted cells on the wall was 

removed from the magnet and were resuspended with 2.5 mL recommend 

buffer. The tube was then placed again into the magnet to gain more CD4 

T cells that might stayed in the bottom of the tube. This did not affect the 

purity of isolated cells, but gained more CD4+T-cells.  

 

3.5.7 DNA isolation and quality check 

Genomic DNA of target cells (from both fresh or frozen cells) were extracted using 

a silica-membrane-based DNA purification principle (QIAamp DNA Blood Mini 

Kit). DNA isolation was performed according to the manufacturer’s protocol.  

Briefly, Cell pellets, up to 5 x 106 cells resuspended in in 200 µL PBS were added 

to 20 µl of Proteinase K, followed by 200 µL of lysis buffer (Buffer AL) in a 

microcentrifuge tube and incubated at 56oC for 10 min. DNA was precipitated by 

adding and mixing well with 200 µl of 100% ethanol. The sample was transferred 

to a QIAamp Mini spin column, then centrifuged to separate the supernatant at 

15000 g for 1 min (used for all centrifugations). The DNA which is adsorbed onto 

the QIAamp silica membrane in the column was washed using 2 centrifugation 

steps with 2 different wash buffers, (Buffer AW1 and Buffer AW2), to remove any 

residual contaminants. Purified DNA was then incubated with Buffer AE for 10 

min before being centrifugated to elute the DNAfrom the QIAamp Mini spin 

column.  

DNA quality and concentration were asserted using a spectrophotometer 

(ND1000). An absorbance ratio (OD280/OD260) at 1.8 – 2 was accepted as pure 

DNA and such samples were used for further experiment. Poor quality DNA was 

also used although data were analysed separately to ensure alignment with good 

quality samples.  Isolated DNA was stored at 4oC for use within 1-2 week or at -

20oC for long-term storage.  
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3.6 ELISA  

Frozen serum samples were retrieved our departmental tissue bank from -80°C 

freezers.  Two commercial Sandwich enzyme-linked immunosorbent assays 

(ELISA) kits were used to measure cytokines: IL-21 and IL-34 (Biolegend, UK). 

ELISA was performed according to the manufacturer’s instructions. Briefly, 50 µL 

of the standard or sample was added pre-coated plated with a monoclonal mouse 

anti-the specific human antibody and incubated while shaking at 200 rpm for 2h. 

The plate was washed 4 times with wash buffer before adding 100 µLof the 

Human detection antibody solution and incubate while shaking for 1h. The 

sample was washed and then incubated with 100 µL of Avidin-HRP for 30 min 

followed the wash and 100 µL of substrate solution for 10 min. 100 µL of stop 

solution was added in the final step and the absorbance was read at 450nM. The 

cytokine concentration was calculated by comparing the absorbance to the 

standard curve in the log-log graph.  Non-parametric Mann-Whitney U-test was 

performed on data comparing HC and RA. Statistical analysis was performed in 

SPSS V24.  
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3.7 Bisulfite sequencing  

3.7.1 Method Principle of bisulfite sequencing 

Bisulfite sequencing is considered the gold standard technique used to study 

DNA methylation in a region of interest at a single nucleotide resolution (281). It 

is the combination of two techniques: bisulfite conversion and sequencing. 

Bisulfite conversion help distinguish the unmethylated from the methylated 

cytosines. The sequencing technology provided effective access to the nucleic 

acid sequence.  

Bisulfite sequencing includes 3 main steps:  

➢ bisulfite conversion,  

➢ PCR amplification,  

➢ sequencing and methylation status analysis. 

 

Bisulfite conversion 

The conversion of cytosine using Bisulfite makes it possible to map un-

methylated cytosine as these are change into a different base while methylated 

Cytosine (in a CpG site) are protected from that conversion (282). The reaction 

of bisulfite conversion involved denaturation of genomic DNA, deamination of 

unmethylated cytosine residues and desulfonation (Figure 3-2). This treatment 

causes the unmethylated cytosines to convert into uracil, which will then be 

amplified as a thymine in a following PCR, while methylated cytosines remain 

intact (Figure 3-3).  Conversion allows to distinguish between methylated and 

unmethylated-cytosine in a base level, enabling DNA methylation studies.   
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Figure 3-2 The chemical reaction that underlies the bisulfite conversion of 

cytosine into uracil. (modified from (283)) Genomic DNA is denatured and 

treated with sodium bisulfite (sodium hydrogen sulfite NaHSO3,) leading to the 

conversion of cytosines tocytosine sulfonate, which is converted touracil 

sulfonate, and then desulphonated to uracil while the methylated cytosines 

remain intact. 

 

 

 

Figure 3-3 DNA sequence after Bisulfite conversion and PCR amplification.  

The free cytosine (shown in black) and unmethylated cytosine at CpG site (shown 

in orange) are converted to uracils by bisulfite and changed to thymine after PCR 

reaction.  In contrast, methylated cytosines at CpG sites (shown in blue) remain 

cytosines after the conversion and PCR.  
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PCR amplification  

A second important step is PCR amplification of the target region from the 

bisulfite-converted DNA.  In this step, the target region should be amplified 

regardless of methylation status. Therefore, primers should be designed in a 

region that do not contain CpG site. It is however difficult to achieve this as DNA 

methylation studies when looking at CpG rich region or CpG island. If unable to 

avoid any CpG site, the CpG site should then be located at the 5’ end of the 

primer where the mixed bases (either cytosine and thymine) should not interfere 

too much with priming and allowing DNA amplification.  

 

Primer design guideline for bisulfited converted DNA  

Unlike normal PCR, designing the PCR reaction for bisulfite converted template 

is challenging. Conversion of many unmethylated cytosines to thymine reduces 

DNA complexity. Furthermore, as a result of the conversion, DNA remains 

relatively denatured by high temperature (i.e. no longer fully complementary 

double strand). DNA also becomes highly fragmented.   

Primer design is critical for a successful amplification and thus should be done 

considered these facts.  

➢ As DNA is not complementary, primers for the sense strand are different 

from the anti-sense strand.  The methylation status of CpG could be 

accessed using primer design for either of them. The lower complexity of 

the DNA increase the possibility of promiscuous binding, making it difficult 

to design PCR with high specificity. Primer, therefore, need to be longer 

(26-30 bases) than normal PCR and the melting temperature should be 

higher (>55oC) than for PCR (and even higher for qPCR, see later). In the 

complete bisulfite treatment reaction, all free cytosines (cytosine at non-

CpG site) are converted to thymine. Thus, the free cytosine should be 

included in primer sequences to ensure amplifying of the fully converted 

DNA.   

➢ Fragmented template DNA (by the bisulfite treatment) limit the length of 

PCR product. Primers should aim for the amplicon between 150-300 bp.  

In addition, designing bisulfite converted PCR primers should also follow the 

basic rule of PCR, For example,  

➢ the forward and reverse primers should have a compatible melting 

temperature,  

➢ they should not form duplexes with each other or themself,  
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➢ they should be specific for the target region, and not for other regions in 

the genome. 

Aside from primer design, PCR condition could also contribute to the successful 

amplification. It is recommended to use  

➢ Hot Start polymerase to improve the reaction specificity.   

➢ Because DNA is no longer complementary Increase the PCR cycle to 35 

- 40 cycles (it takes longer before the reverse primer can bind to its 

complementary template which is generated just from the forward primer. 

 

Sequencing and methylation status analysis. 

The third step is the sequencing of the amplified target region. The sequencing 

remains based on the dideoxynucleotide chain termination and capillary 

electrophoresis-based separation of the sequencing products. The results are 

displayed as an electropherogram in which a sequence of peaks each 

representing a base-position and the four colours identifying the base (A, T, C or 

G).   

The DNA methylation status at each CpG site can be interpreted by analysing 

the electropherogram peak. The CpG site (after conversion) can be observed by 

reference to its position in the original DNA sequence (unconverted). 

Unmethylated free cytosines are converted to thymine while methylated 

cytosines in CpG remain the same or not if the CpG is un-methylated. At the 

individual CpG site, the presence of a C-peak therefore indicates a methylation 

at CpG site, the presence of a T-peak indicates an un-methylation CpG site, the 

presence of a mixture of both C and T-peaks indicates partial methylation at that 

CpG position.    

It is important to consider that at each individual CpG site in the genome, a 

cytosine can either be methylated or unmethylated.  DNA samples are derived 

from the DNA of populations of cells, some that could have methylated CpG, and 

some cells that could have unmethylated at each CpG site. Therefore, the 

methylation status of individual CpG refers to the proportion (hence usually 

described as a percentage) of cell in that population in which cytosine are 

methylation at that CpG site. 
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3.7.2 Method detail of bisulfite sequencing 

3.7.2.1 Bisulfite conversion 

To differentiate between unmethylated and methylated cytosine in DNA 

methylation studies, Bisulfite conversion was performed using the EZ DNA 

Methylation-Gold Kit  following the manufacturer’s protocol. In short, 500 ng of 

genomic DNA in 20 µL PBS and 130 µL of the CT conversion reagent were mixed 

to a final volume of 150 µL in PCR tubes and placed into a Gradient Thermal 

Cycler programmed to denature at 98 ºC and incubate at 64ºC for 10 min and 2.5 

h, respectively. Samples were then transferred to the Zymo-Spin™ IC Column 

for desulphonation and clean-up through adding 200 µL of desulphonation buffer 

followed by several washing and centrifugation steps (15000 g for 30 at RT).  

Pure Bisulfite-converted DNA was eluted from the column matrix with 20 µL of 

Elution Buffer and used for immediate analysis for PCR/sequencing or stored at 

-20ºC for later use. Note: Bisulfite converted DNA is less stable, it is better to use 

within 1-2 week.  The Quantity of bisulfite converted DNA was measured by 

nanodrop using the value of 50 μg/mL for Ab260nm =1.0) 

 

3.7.2.2 Direct Bisulfite sequencing 

Bisulfite sequencing was used to access DNA methylation status at target CpG 

sites of the candidate genes.  

 

3.7.2.2.1 Primer design for Bisulfite-converted DNA 

Primers were designed to amplify a region containing the candidate CpG sites to 

be tested for methylation status from Bisulfite converted Genomic DNA according 

to the primer design guideline.  Design could use either sense or antisense DNA 

strands.  

First, the genomic DNA sequence of candidate regions was obtained from UCSC 

or NCBI database (Human Genome Assembly GRCh37.p13). The sequence was 

then bisulfite converted in silico, using the sequence manipulating function in the 

online platform, MethPrimer 2.0.  Forward and Reverse primers were designed 

using 3 primer design softwares (MethPrimer 2.0, Bisearch, and Methyl Primer 

Express™ Software v1.0). The primer sequences were modified to obtain the 

suitable Tm (between 55 and 60 oC) and to avoid self-dimers/hairpins or primer-

dimers.   



 
53 

 

The PCR product was checked in silico to ensure the specificity to the genome, 

absence of homology with other sequences of bisulfite-converted human genome 

DNA, using the blasting function of the Bisearch primer-design and search tool.   

All primers were synthesised by Thermo Fisher Scientific, reconstituted to a 

concentration of 100 uM in sterile water.  Primers were aliquoted stored at -20oC. 

The detail of each primer described in the appropriate result sections.    

 

 

3.7.2.2.2 PCR Amplification of target DNA   

The target DNA regions containing the candidate CpGs was amplified from 

Bisulfite converted DNA by PCR with the specific-design primer pair. In order to 

obtain the amplified product, PCR conditions were optimised from a standard 

PCR mixture and conditions as recommend by the manufacturer’s instructions of 

the HotStarTaq DNA Polymerase and HotStarTaq Master Mix Kit and described 

in Table 3-2. All reactions were performed in the TC-512 gradient thermocycler 

machine. The PCR product size and primer specificity were analysed by Agarose 

gel electrophoresis and visualized under the UV light (see agarose gel section).   

In order to ensure the specificity and a good yield of each PCR product for each 

primer pair, the following factor were optimised.  

➢ Aneling temperature,  

➢ Mg2+ concentration,  

➢ Primer concentration (labelled in blue in Table 3-2).   

Successfully amplified PCR products were used immediately in the next step or 

were stored at 4oC for use within 2-3 days. 
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Table 3-2 Composition of PCR reaction and PCR cycling program 
recommended by the manufacturer 

 

A : Composition of PCR reaction recommended by the manufacturer 

 

 

B: PCR cycling program recommended by the manufacturer 

 

 

  

Stock conc. Reagent Final conc. vol/1 reaction

10X PCR Buffer* 1x 2

25mM MgCl2 1.5 mM (vary at  1.5-3 mM) 0*

10 mM of each dNTP mix 200 uM of each 0.4

100 uM Primer A 0.5 uM (vary 0.1-0.5 uM) 0.1

100 uM Primer B 0.5 uM (vary 0.1-0.5 uM) 0.1

5 Unit/ul HotStartTaq DNA polymerase 2.5 U/reaction 0.5

Distilled water 14.9

Template DNA < 1ug/100 ul reaction 2

Total Volumn 20

*Buffer contain 1.5 mM

PCR cycle

Initial activation 95 °C 15 min

Denaturation 94 °C 0.5-1m 25-30 cycles

Annealing 50-68 °C 0.5-1m

Extension 72 °C 1 m

Final extension 72 °C 10 min
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3.7.2.2.3 Agarose gel electrophoresis  

The PCR products were analysed by Agarose gel electrophoresis.  1.5% w/v of 

Agarose gel was prepared in Tris-borate-EDTA buffer (TBE) and 5µl ethidium 

bromide /100 ml of Agarose gel.  5 µL of PCR product and 1 µL of 6X gel loading 

dye were mixed and loaded into a well of the Agarose gel.  50 bp or 100 bp DNA 

ladder were used as size marker.  The agarose gel electrophoresis was run at 

100 V for 20-45 min in 1x TBE buffer and visualized the under the UV light 

(ChemiDoc Imaging Systems,). 

 

3.7.2.2.4 Sequencing  

Purification of the PCR product 

The amplified PCR product (amplicon) from converted DNA was purified prior to 

performing the direct sequencing in order to remove unincorporated primers and 

dNTPs that might interfere with the sequencing result.  2.5 µL of PCR product 

was added with 1 µL of ExoProStar enzyme, which include Exonuclease I and 

Alkaline Phosphatase, and incubated at 37oC, for 15 min, and then at 80oC, for 

15 min for enzyme inactivation. 

 

Sequencing reaction 

The purified PCR amplicon was used as the template for sequencing using 

BigDye™ Terminator v3.1 Cycle Sequencing Kit.  The mixture and thermocycling 

condition of the standard reaction was described in Table 3-3. The sequencing 

reaction for each target region was performed according to the standard 

recommendation of the manufacturer's protocol. The reaction was performed in 

TC-512 thermocycler machine. 

Before loading the sequencing reaction onto the analyzer, the product of the 

sequencing reaction was cleaned-up using ethanol precipitation. Briefly, 10 µL of 

the reaction product was added with 3 µL sodium acetate (3M, pH 5.2) and 30 µL 

95% ethanol. After incubation at RT for 30 min, the DNA was then centrifuged at 

2254 g, for 30 min.  DNA pellets were washed with 70% ethanol and dried for 1 

minute at 95°C.  The purified pellets were re-suspended in 20 µL of HiDi 

formamide and sequenced on the 3130xl Genetic Analyzer.    
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Table 3-3 Composition of sequencing reaction and thermo cycling program 
recommended by the manufacturer 

 

A : Composition of sequencing reaction  

 

 
 
 

B:  Thermo cycling program  

 
 
 

  

Reagent vol/1 reaction (uL)

Ready Reaction Mix (RRM) 4 ul

Primer 3.2 uM (forward only ) 1 ul

Nuclease free water 4 ul

DNA Template 1 ul

Total volume 10 ul

Thermo Cycle

Initial denaturation 96ºC 1min

Denaturation 96ºC 10 sec 28 cycles

Annealing 50ºC 5 sec

Extension 60ºC 4 min

Hold at 15ºC
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To obtain the best quality sequences for specific PCR product, optimisation was 

performed on these following parameters:  

➢ DNA template concentration,  

➢ Primer concentration,  

➢ RRM enzyme concentration,  

➢ thermocycling conditions.   

The controls used to optimize each step prior to use the patient DNA samples 

were : 

➢ fully Methylated DNA, in which 100% of CpG are methylated, based on 

DNA from Human cells or from Hela cells.  

➢ fully Un-Methylated DNA, in which 100% of CpG are methylated, based 

on DNA from Human cells  

 

 

3.7.2.3 Bisulfite sequencing analysis 

Sequencing data were obtained in a *.ab1 file format from the 3130xl Analyzer. 

The Data analysis software, Sequencing Analysis 5.2 (was used to process the 

raw data of which the results were displayed as an electropherogram of the base 

pair sequence (each base is represented by a peak in a different colour).   

The percentage of methylation at individual CpG sites was calculated by dividing 

the height of the peak of cytosine signal (i.e. protected from conversion by the 

methylation) by the height of both the peak of thymine (converted as not protected 

by methylation) added to the height of the cytosine peak signal, and multiply by 

100 as in the formula below. 

 

% of Methylation = [ C Peak/ (C Peak + T Peak)] x 100 

 

Of note: The completeness of the bisulfite conversion reaction can be confirmed 

by the absence of free cytosine peak (i.e., a cytosine that is not at CpG site) as 

all free cytosine should be converted to Thymine.  
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3.8 TNF-α promotor Bisulfite sequencing condition 

The conditions for the TNF-α promotor region sequencing after Bisulfite 

conversion were optimised with another student (co-author) and presented in my 

manuscript (284).  Briefly, CD4 T-cells were isolated (CD4+ T cell enrichment kit 

STEMCELL) with ~ 97% purity. DNA was extracted (QIAamp DNA blood mini kit), 

and bisulfite converted using the EZ DNA methylation-GoldTM kit. To amplify a 

small region in the promoter of the TNF gene, a polymerase chain reaction (PCR) 

was performed (containing HotStarTaq enzyme, dNTPs, buffer, QIAGEN), 500 

nM of forward and reverse primers (F5’-GAGTGTGAGGGGTATTTTTGATGTT-

3’), (R5’-CTCTCCCTCTTAACTAATCCTCTA CTATCC-3’), 1mM MgCl2 and 2 µL 

of converted DNA. PCR conditions were 1 cycle of denaturation (10 min at 95°C), 

followed by 40 cycles of amplification (94°C for 10s, 59°C for 20s and 72°C for 

45s), and a final extension (72 °C for 10 min). The PCR product (2.5 µL) was 

added to 1 µL of ExoProStar enzyme (IllustraTM ExoProStarTM) and placed in 

the thermocycler for 1 cycle of 15 min at 37°C, followed by 15 min at 80°C. The 

PCR product was finally diluted with 3.5 µL of nuclease-free water before use in 

the sequencing step. BigDye Terminator (V3.1 Cycle sequencing kits,) was used 

for sequencing: 0.25 µL of “Ready Reaction Mix”, 3.5 µl of ABI sequencing buffer 

and 0.16 µM primer (forward and reverse reaction done separately) were add to 

1 µL of PCR product in 10 µL total volume. The mix was placed on a thermocycler 

for 28 cycles (96°C for 10 sec, 50°C for 5 sec, and 60°C for 4 min). The samples 

were then precipitated with ethanol and the DNA pellets dried for 1 minute at 

95°C. Pellets were re-suspended in 20 µL of HiDi formamide and sequenced on 

the 3130xl Genetic Analyzer. 
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3.9 Development of qMSP (Quantitative methylation-specific 

PCR) 

3.9.1 Method Principle of qMSP 

qMSP is a fluorescence-based, real-time qPCR method to detect DNA 

methylation at a locus in genomic DNA (258, 259).  This technique employed the 

capability to distinguish methylated cytosine from normal cytosine after bisulfite-

conversion and the capability of highly sensitive quantification of a target region 

by qPCR (258, 259, 282, 285).  The detection of methylation status relies on 

methylation-specific primers (and also the probe when using TaqMan-based 

detection). The concept is therefore to prime and amplify only when a target locus 

is either methylated or unmethylated. This imply that specific CpG itself(s) is/are 

usually targeted by the assay (rather than a whole region)(286). The methylated 

(or demethylated) status of the target locus can be determine using the Ct value 

from the specific reaction (target-Ct) and the quantitative part needs to be 

calculated as the relative methylation value (Ct) of that specific CpG to the 

implication of a reference gene that is not dependent on methylation (reference-

Ct)(286, 287).  

 

There are two types of fluorescent reporter molecules to detect qPCR products 

for this technique, the SYBR green and the TagMan chemistry. 

SYBR green-based detection  

The SYBR green method uses a double-stranded DNA binding fluorescence dye 

to monitor the amplification of the PCR product (included in the PCR reaction 

reagents) (288).  As the PCR progresses, more PCR product is generated. The 

SYBR green dye binds to double-stranded DNA amplicon, which results in an 

increase of fluorescence intensity proportionally to the amount of PCR product 

(289, 290). The SYBR green method is relatively low costs and easy to design. 

However, the binding of SYBR green dye is non- specific (it binds to any double-

stranded DNA in the reaction) which can lead to false-positive fluorescence 

detection notably if primer dimers or other type of double strand DNA are present. 

Thus, well-designed primer and a post-PCR analysis for the amplicon’s specificity 

is very important.   This can be achieved using melting curve analysis and 

Agarose gel electrophoresis after the reaction to ensure the reaction specificity 

(i.e. the presence of a unique amplicon and the absence of primer dimers or 

heteroduplex)(291).    
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Melting curve analysis (Figure 3-4)  

After a SYBR green PCR reaction, a melting curve analysis can determine the 

PCR specificity by observing how the fluorescence signals change while 

increasing the temperature.  As the temperature raise, double-strand DNA which 

has incorporated the fluorescence dye molecules, dissociates into single-strand 

DNA and the dye molecules is released (hence not able to fluoresce any longer).  

Sudden decrease of fluorescence signal are detected when the melting 

temperature (Tm) of dsDNA amplicon is reached.  Because this Tm is directly 

related to the length and GC content of the amplicon, the melting characteristics 

can be used to distinguished different sizes of DNA products (i.e. the amplicon 

versus primer dimers).  Primer dimers are shorter than the expected PCR product 

thus have a lower Tm. Plotting the change in fluorescence / change in 

temperature (–ΔF/ΔT) against temperature provides a good view of melting 

dynamics. The peaks show a sudden change in signal when a Tm is reached.  A 

single peak indicates a single product while multiple peaks indicate more than 

one product (288, 291).  

 

 

 

Figure 3-4 Melting curve analysis. A) A single peak indicative of a single PCR 

product. B) Multiple peaks indicative of more than one PCR product being 

produced. 

 

 

  

A. B. 
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Tag-Man based detection  

The Tag-Man method (292) was designed to improve specificity of the Real-time 

PCR by introducing an oligonucleotide probe in the reaction. This probe is 

designed to the bind DNA sequence between the two primers (in the amplicon) 

and contains a fluorescent reporter dye on the 5' end of the probe and a quencher 

dye on the 3' end. While the probe is intact, the proximity of the quencher dye 

prevents the fluorescence emitted by the reporter dye through fluorescence 

resonance energy transfer. During the PCR reaction, the probe binds to the target 

sequence (single stranded amplicon). When the Taq polymerase synthesising 

the new DNA strand from the forward primer reaches the probe, it cleaves the 

probe using its intrinsic 5’ nuclease activity.  The destruction of the probe causes 

the separation of the reporter dye from the quencher, allowing the reporter to 

produce a fluorescent signal.  Each time a new PCR amplicon is created, the 

reporter and quencher are separated, and the fluorescence increases 

proportionally (288).  

Fluorescence, therefore, increase proportionally with the product allowing 

effectively monitor of the reaction throughout the run (288).  TagMan provides 

more specific detection and no need for post PCR check-up however it comes 

with the high cost and needs more effort for assay design. 
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qPCR analysis (Figure 3-5)  

PCR theoretically doubles the number of amplicons with each amplification cycle.  

The fluorescence can be detected and recorded by the instrument at every cycle 

as the reaction progresses. The instrument then generates amplification curves 

by plotting fluorescence against the cycle number showing the accumulation of 

PCR products over the duration of the entire reaction.  

 

 

Figure 3-5 qPCR amplification plot of the target gene (blue) and reference 

gene (red) assay. qPCR amplification plot demonstrates the change in 

fluorescence over the number of cycles. It shows in sigmoidal curve compose of 

3 phases.  The cycle threshold (Ct) value of each reaction is defined as the cycle 

number when the fluorescence of a PCR product can be detected above the 

background signal in the exponential phase. The relative amount of PCR product 

of the target gene can be measured by comparing Ct of target gene reaction to 

the reference gene reaction (ΔCt). 

 

The PCR amplification curve develops over 3 phases :  

➢ initially a background phase at the beginning of the reaction where there 

is no fluorescence as the amount is below detection capacity of the 

instrument,  

➢ an exponential phase where the amplification is at full efficiency, and 

fluorescence levels double at each cycle to the next, 

➢ a plateau phase where the reaction is limited by the exhaustion of 

reagents.  
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Data collected during the exponential phase of the reaction allows the user to 

determine the initial quantity of the amplification target precisely.   

A reaction threshold needs to be set in the exponential phase where the level of 

fluorescence is directly proportional to the cycles and where the PCR efficient is 

theoretical 100% efficient.  The quantity of an amplification determined by a 

certain amount of florescent is chosen ( a level significantly away from the 

background phase) that is related to a specific cycle of the PCR reaction : a cycles 

threshold or Ct,  which is the cycle number at which the chosen fluorescent levels 

is achieved.  Ct values are directly related to the starting amount of target 

sequence. The higher the Ct value, means that more cycles are needed to 

amplified the amount of PCR product needed to reach the fluorescence level 

chosen.  

Relative amount of PCR product are usually used to described data. This is done 

by using a reference gene to be amplified under the same condition but for which 

the initial amount is only related to the amount of input material. It is used to 

normalize samples. For gene expression this is usually performed using 

housekeeping gene(s), which expression is not regulated by any factor and 

therefore is the same in every cells. In the case of qMSP it should be a region of 

DNA that does not include any CpG hence not susceptible to change in 

methylation status.  

 

qMSP Reaction  

qMSP reactions are an adaptation of the qPCR Principe.  Both SYBR green  and 

TaqMan chemistries can  be used. Two types of reactions are needed for a 

quantitative assay: one assay, methylation-dependent for a CpG of interest and 

a methylation-independent assay for a control gene for normalization. 

The detection of the methylation status of the target genes by qMSP relies on 

methylation-specific primers that are designed to prime and amplify only when 

the target CpG is either methylated or unmethylated.   The assay is developed 

by designing primers covering a region with several CpG sites. The more CpG 

sites (with the same methylation status), the more specific the assay. This applied 

to both design for a SYBR green or TaqMan assay. 

To achieve accurate and reliable qPCR results when working with the patient 

DNA samples which vary in initial template quantity and integrity, especially after 

bisulfite treatment, normalization of the target CpG against a control assay (for a 

region not susceptible to change in DNA methylation) is critical to adjust for these 
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difference in quantity and quality of DNA input.  The Internal control for qMSP 

could be any sequence of DNA that is not containing CpGs. The control region 

assay can be performed in a separate reaction parallel to the reactions of the 

target gene for an individual patients sample. 

 

Quality control and assay development 

Optimizing qMSP reaction as well as working on multiple samples (multiple 

plates) requires the use of standard DNA sample with known levels of methylation 

that is achieved using completely methylated or completely unmethylated DNA 

derived from cells (or cell lines) and commercially available. During optimization 

it is needed to see the specificity of methylation-dependent primers and for 

creating a dilution curve to access the assay efficiency. No template control is 

also used in the assay development and to check contamination or any false 

positive signal (particularly when using SYBR green to detect primer dimers). 

 

Efficiency of the PCR assay  

In an Ideal PCR reaction, the amount of template should double in every cycle 

during exponential amplification. The efficiency, which is an ability to double the 

amount of template in every cycle, should be 100%. However, in the practical 

PCR reaction, the experimental factors such as the secondary structure, non-

optimal reagent, PCR inhibitor can influence the reaction efficiency (293). 

Therefore, the efficiency of the newly developed reaction should be tested before 

the assay can be used.   

PCR efficiency of each assay could be obtained from the dilution curve which is 

the plot between the log of the serial of DNA concentration and its Ct value.  

Fitting the standard curve to linear regression model provides information on the 

slope, y-intercept and correlation coefficient (R2) of the curve.  The reaction 

efficiency was calculated from the slope using the formula below. 

 

Efficiency = 10(–1/slope) – 1 

 

Efficiency varies between reactions and primers pairs / concentration. The 

reactions should have efficiency as close to 100% (a slope of –3.32) as possible. 

Efficiencies between 90% and 110% were considered a good reaction and then 

was chosen to continue to work with the real clinical sample (288). 
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The y-intercept corresponds to the theoretical limit of detection of the reaction. It 

may be useful for comparing different amplification systems and targets. R2 could 

provide how well the data fit the regression model. The closer to 1 the better. In 

some case, data at the edge of dilution series (either at high or low concentration) 

could be removed from the plot to improve the R2.  The range of DNA 

concentration in which R2 still in a good fit implies the sensitivity of that PCR 

assay. It provides the dynamic range of DNA template that can be used in PCR 

reaction where it does not affect the efficiency. 

 

3.9.2 Method detail of qMSP 

qMSP is used to quantify the methylation status in region containing a candidate 

CpG site.  The Development of qMSP started with assay design, reactions 

optimisation and efficiency test which were done using fully unmethylated and 

methylated control DNA.  The Optimized assay was then used to quantify 

methylation of the target locus in genomic DNA from patients samples. The 

design and optimisation were performed for two qPCR detection method, SYBR 

green and Tag-Man, as separately described below.  

 

3.9.2.1 Design and optimisation of a SYBgreen assay 

3.9.2.1.1 Assay set up 

For the individual samples, two types of reaction are required in order to 

determine the methylation of the target genes using qMSP assay. 

➢ a PCR reaction for the gene of interest which is a methylation-

dependent reaction designed to interrogate the methylation status of a 

specific CpG. 

➢ a PCR reaction for an internal control which is a methylation- 

independent reaction designed to normalise the target gene reaction to 

the input DNA in the sample.  

 

3.9.2.1.2 Primer design  

qMSP primer was designed following the basic rules for amplifying bisulfite-

treated DNA.  This includes increasing the reaction specificity by increasing 

primer length or introducing more Guanine in the primer sequence), decreasing 

the PCR product size, and/or increasing cycle number (294). 
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For the PCR reaction of the target genes, qMSP primers were aimed for detecting 

the demethylated DNA at the specific CpG site targeted.  Thus, the primers were 

designed to recognize the unmethylated CpG site targeted and located at 3’ end 

of the primer. Because unmethylated cytosines were converted to Thymine (after 

DNA bisulfite conversion), the primers sequence for the CpG site were then 

designed to detect TG not CG. 

For the PCR reaction of the internal control, the qMSP primers should amplify 

bisulfite modified DNA independently its methylation status. They were therefore 

designed to avoid regions containing CpG sites.   Example of primers design on 

target gene and control genes shows in Table 3-4.   

 

To do this, First, the genomic DNA sequence of candidate genes was obtained 

from NCBI database. The sequence was then bisulfite converted in silico using 

the sequence manipulating function in MethPrimer 2.0.  Forward and Reverse 

primer were designed using the, Primer Express 3.0.  The primers sequences 

were manually modified to obtain the best Tm difference, %GC, position of the 

CpG site in the primer, the number of free cytosines, and most importantly to 

ensure no primer dimers/loop or secondary structure.   

The In silico PCR product was checked to ensure specificity as the absence of 

homology present with other sequences on the bisulfite-converted human 

genome, using the blasting function in Bisearch primer-design and search tool.   

All primers were synthesised by Thermo Fisher Scientific, reconstituted to a 

concentration of 100 uM in sterile water.  Primers were aliquoted stored at -20oC. 

The detail of each primer pair was described in the result section and Appendix 

5. 
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Table 3-4 Example of SYBR green qPCR primers design on target gene and  
control genes.   

 

3.9.2.1.3 General SYBgreen-based qMSP reaction  

After bisulfite conversion, genomic DNA was amplified using locus-specific PCR 

primers. Power SYBR™ Green PCR Master Mix was used. The standard PCR 

mixture and Thermo cycle condition recommend by the manufacture’s protocol 

were followed as described in Table 3-5 and Figure 3-6. The PCR reaction was 

performed in MicroAmp™ Optical 96-Well Reaction and run on QuantStudio 5 

Real-Time PCR Systems.  To confirm the reaction specificity, melting curve 

analysis was also performed on the same machine right after the PCR reaction. 

This informs on the presence of a single PCR amplicon (hence specificity) as well 

as presence of primer dimers even if the design was meant to limit them. The 

data was collected and analyses by " The Design and Analysis II " module.  The 

threshold cycles (Ct) method was used to quantify the product and normalise it 

to the control PCR. After the thermal cycling reaction, Gel electrophoresis was 

also performed to validate the data obtained from a melting curve.  
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Table 3-5 Reaction composition and qPCR cycling program of SYB Green-
based qMSP  

 

A: Composition of qMSP reaction 

 

 

 

B: qPCR cycling program 

 

 

 

 

 

 

Figure 3-6 Diagram of SYBgreen-based qMSP cycling program  

  

Stock conc. Reagent Final conc. Vol/reaction (ul)

2X SYBR mastermix 1X 12.5

vary F primer 50-900 nM 2.5

vary R primer 50-900 nM 2.5

 10 ng/ul DNA template 50 ng/ul 5

Distilled water 2.5

Total Volumn 25 ul 25

qPCR cycle

Step Temperature Time

Initial activation 95 ºC 10 min

Denaturation 95 ºC 15 s

Annealing/Extension 60 ºC 60 s

95 ºC 15 s

60 ºC 60 s

95 ºC 1 s

Melt curve

40 cycles
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3.9.2.1.4 Optimisation  

For each SYBR green based qMSP reaction, several factors need to be optimised 

to obtain a efficient assay.  The fully unmethylated DNA control was used during 

this optimisation process. 

➢ Primer concentration: The purpose of this procedure is to determine the 

minimum primer concentrations giving the maximum ΔRn.   

o F and R primer were tested between 50 mM-900 nM 

according to the primer matrix below. 

 

 

 50 nM 300 nM 900 nM 

50 nM    

300 nM    

900 nM    

 

 

➢ Annealing temperature is optimal in SYBR green qPCR assay at 59-

60oC. Adjusting annealing temperature of the primers was performed to 

increase the reaction specificity in all primer set.   

o The reaction was run at different annealing temperature 

±3oC from the standard annealing temperature at 60oC.  

It is important for SYBR green reaction to ensure of the absence of primer 

dimer or any non-specific product that can lead to the false positive signal.  

 

3.9.2.1.5  Efficiency and specificity of the PCR assay for un-methylated DNA  

PCR efficiency of both the target gene and internal control reactions were 

assessed by creating a dilution curve.  A serial dilution of fully methylated and 

unmethylated DNA controls was performed at a concentration range from 0.01 

ng to 50 ng. The reaction was performed in triplicate for each condition. Ct value 

of each  points in the dilution series was collected and plotted against the log of 

DNA concentration to generate a standard curve for both the target and reference 

genes. The assay efficiency of both assays was calculated as mentioned earlier. 

PCR specificity for the target gene and the control gene could also be observed 

from this experiment. The internal control reaction should be able to amplify both 

methylated and unmethylated DNA sample with the same efficiency, while the 
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target gene reaction should only be able to amplify specifically the unmethylated 

DNA.  

 

3.9.2.2 Design and optimisation of Tag-Man assay  

3.9.2.2.1 qMSP Assay set up 

Two types of reaction are again required in order to determine the methylation of 

the target genes using qMSP assay. 

➢ a PCR reaction for the gene of interest which is a methylation-dependent 

reaction designed to interrogate the methylation status of the targeted 

CpG. 

➢ a PCR reaction for the control gene which is a methylation-independent 

reaction designed to normalise the target gene reaction to the input DNA 

in the sample.  

 

3.9.2.2.2 Primer/probe design  

qMSP primers were designed following the same basic rules.  

However, for this TaqMan PCR reaction for the target CpG, qMSP primers and 

probe were aimed for detecting and amplifying  the methylated DNA at specific 

CpG sites (mainly due to need for high melting temperature difficult to achieve on 

the unmethylated sequence).  Because of methylated cytosine will still  remain 

as a cytosine after bisulfite conversion, the primers should be designed include 

3-5 CG sites and should detect CG (not TG as in the previous SYBR green assay 

that was detecting the un-methylated DNA).  Location of the CpG site at 3’end of 

primer help increases specificity.   Probe also can be designed to include CG site 

to increase the reaction specificity.  For the PCR reaction of internal control, 

qMSP primers should amplify bisulfite modified DNA independent of methylation. 

They were therefore designed to avoid CpG rich regions.    

The genomic DNA sequence surrounding the candidate CpG was obtained and 

converted as previously described. Forward primer, Reverse primer and probe 

were designed using the TagMan MGB quantification function of the primer 

design software, Primer Express 3.0.  The primers/probe sequences were 

manually modified to obtain the better Tm difference, %GC, position of CpG site, 

and the number of free cytosines.  The In silico PCR product was checked to 

ensure the specificity to the converted genome as before.  All primers were 

synthesised by Thermo Fisher Scientific, reconstituted to a concentration of 100 
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uM in sterile water.  TagMan custom probe-MGBNFQ were synthesised by 

Applied Biosystems reconstituted to a concentration of 2.5 uM in sterile water.  

Primers and probe were aliquoted stored at -20oC. The detail of each primer pair 

and probe design, are described in the relevant results sections   

 

3.9.2.2.3 Tag-Man PCR reaction 

After bisulfite conversion, genomic DNA was amplified using locus-specific PCR 

primers and TaqMan™ MGB Probe. TaqMan™ Universal Master Mix II, (no UNG 

version) was used. The standard PCR mixture and Thermo cycle condition 

recommend by the manufacture’s protocol are described in Table 3-6 and Figure 

3-7. The PCR reaction was performed as before. The data was collected and 

analysed as before. 
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Table 3-6 Reaction composition and qPCR cycling program of TaqMan-
based qMSP  

 

A: Composition of qMSP reaction 

 

 

 

B: qPCR cycling program 

 

 

 

 

Figure 3-7 Diagram of TaqMan-based qMSP cycling program.  

  

Stock conc. Reagent Final conc. Vol/reaction (ul)

2X universal mastermixII no UNG 1X 10

vary F primer 50-900 nM 2

vary R primer 50-900 nM 2

2.5 uM Taqman probe 250 nM 2

DNA template 10 ng/uL 2

Distilled water 2

Total Volumn  20 ul 20 ul

Step Temperature Time

Initial activation 95 ºC 10 min

Denaturation 95 ºC 15 s

Annealing/Extension 60 ºC 60 s
45 cycles



 
73 

 
3.9.2.2.4 Optimisation 

For each TagMan reaction, several factors needed to be optimised the same was 

as the SYBR green reaction.  The fully methylated DNA control was however, 

used during the optimisation process. 

➢ Primer concentration: tested between 50 mM-900 nM.  

➢ Annealing temperature: tested ±3oC from the standard 60oC. 

 

3.9.2.2.5 efficiency of the PCR and specificity for methylated DNA  

PCR efficiency of TagMan assay was performed the same way of for the SYBR 

green-based qMSP as described earlier.  

PCR specificity checking for the control gene reaction in TagMan assay was also 

the same with SYBR green-based assay. However, the TagMan target gene 

reaction should be able to amplify specifically to methylated DNA instead of 

unmethylated DNA.  

 

3.9.3 Assay performed on patients samples 

Once I had optimised the final condition for the assay, it was used to access 

methylation of the target CpG in genomic DNA.  

For each sample, target gene reactions were run in parallel to the control reaction 

and were performed in duplicate/triplicate. Fully methylated and unmethylated 

control DNA were included on each plate as a positive and negative control. 

 A no-template control was also added to ensure no contamination. 
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3.9.4 qMSP quantification 

The relative level of methylation in the target gene could be measured using Ct 

value of the reactions.  It is presented as a percentage of methylation (% M).  The 

formula to calculate it is as followed. 

 

Percentage of methylation (%M)  = Relative level of methylation x 100 

     = 2 -ΔΔCt x 100 

By; 

ΔCt sample  = Ct sample target gene - Ct sample internal control 

 

ΔCt calibrator =  Ct calibrator target gene - Ct calibrator internal 

control 

 

ΔΔCt  =  ΔCt sample - ΔCt calibrator 

 

Relative level of methylation  =  2 -ΔΔCt 

 

Sample   is an individual bisulfite converted DNA sample. 

Calibrator   is the standard fully methylated bisulfite converted DNA refer 

as 100% methylation 

Target gene   is the methylation-dependent reactions of each target genes 

Internal control  is the methylation-independent reactions of the internal 

control to normalized target gene reaction with the input DNA 

of the individual sample. 
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3.10    Statistics  

Highly specific statistics were applied all the way through the thesis and were 

described in the relevant sections. This notably applies to the bioinformatics 

analysis performed in my thesis. The development of a Biomarker requires 

specific tools as well which are described here in details.  

Different statistic tests were used for comparing the % of methylation between 

different patients groups according to each analysis. Non-parametric tests were 

used, Mann-Whitney U (MWU)(unpaired), Wilcoxon signed-rank test (paired), 

and Dunn test (≥3 groups) followed by Kruskal–Wallis test for multiple corrections 

were used as data were not normal distributed. The statistical significance was 

obtained when the p values are 0.05 or less. Statistical analysis was performed 

using R software 3.5.2.  

 

Statistic involved in evaluation of Biomarker performance 

A biomarker can predict whether or not that patient has a particular outcome (a 

disease, or a risk for something or a particular response to treatment).  Several 

statistical characteristics are used to evaluate biomarker performance. Receiver 

Operator curve (ROC) and area under the curve are used to access the predictive 

or discrimination ability of biomarker (295).  Performance characteristics such as 

sensitivity and specificity describe how well the test is able to identify patients 

with the target outcome, while positive and negative predicted value gives 

information about the value of a specific test (296).  These scores are calculated 

by comparing the biomarker predicted  result to the actual outcome (as further 

detailed below).   

 In order to obtain a predicting value for a biomarker, a model of the interaction 

between the outcome (or response variable) and the biomarker (predictor 

variable) have to be developed. The statistical tools used to help with this analysis 

are usually logistic regressions. 

 

Logistic regression is used to examine the relationship between a dependent 

categorical variable (the outcome) and one (or more) independent variable(s). It 

is a method of choice to evaluate biomarkers in clinical research when looking at 

a binary outcome (297) e.g. a biomarker used to determine whether or not (“yes” 

or “no”) patients are having the outcome (a disease, or a “ good response” or 

“poor response” to an intervention).  This kind of analysis is known as a binary 

logistic regression.  
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Logistic regression fit models for the probability of an event occurring (the clinical 

outcome) depending on the values of the independent variables (the biomarker 

and other variables).  Logistic regression also attempted to  

1) estimate the probability (P) that an event occurs vs does not occur,  

2) predict the effect of an independent variable(s) on a binary outcome (increase 

or reduce the risk),  

3) classify observations in a particular category or another (i.e. high/low risk). 

 

Odds ratios (OR) obtained from logistic regression can be used to describe the 

strength of associations of biomarkers with clinical events. OR describe how odds 

of having a particular outcome change with an increase of 1-unit in the biomarker 

measurement (297, 298).  OR = 1 means there is no association between the 

marker and the clinical outcome. OR > 1 means greater odds of association 

between the marker and the clinical outcome, while OR < 1 indicate an 

association in the opposite direction (i.e., protective against the outcome). 

Logistic regression model provides the probability (P) of the event at a giving 

value of the overall sets of biomarker/variable included in the model.  To provide 

the predicting performance result of the model, a probability threshold needs to 

be set.  When the probability is greater than the set threshold, the event is 

predicted to happen otherwise it is predicted not to happen.  

 

Confusion matrix or classification matrix 

The prediction ability or classification performance of the logistic regression 

model can be described using a confusion matrix which is a table comparing the 

actual outcomes to the model (predicted outcomes) with the actual outcome itself 

(observed outcome)(295) Figure 3-8. At a selecting threshold, the model predicts 

positive or negative events.  After comparing these number to the actual 

outcomes, the number of True positives (TP), True negatives (TN), False 

positives (FP), and False negatives (FN) events are obtained (confusion matrix) 

and can be used to calculate the performance of the binary classification test as 

below and in Figure 3-8; 

➢ Sensitivity, also referred to as true positive rate, measures the 

proportion of actual positives that are correctly identified. 

➢ Specificity, also referred to as true negative rate, measures the 

proportion of actual negatives that are correctly identified.  
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➢ Accuracy measures the total number of predictions that are correct.  

➢ Positive predictive value (PPV) is the probability that the disease is 

present given a positive test result. 

➢ Negative predictive value (NPV) is the probability that the disease is 

absent given a negative test result.  

Sensitivity and Specificity are used as criteria for biomarker validation in the 

development process, however, for the clinician who has a test result in hand, 

PPV and NPV are more useful.   

Difference threshold setting will affect the model result.  The threshold should be 

selected according to the use of the test or the specific scenario where more false 

negative or false positive may be more or less acceptable.   

 

ROC 

The overall performance of a particular biomarker ( or that of a model) can be 

evaluated by summarizing the results created by different sensitivity/specify 

thresholds in one curve.  This curve, called receiver operating characteristic curve 

(ROC, Figure 3-9), plots True Positive Rate (or sensitivity) versus False positive 

rate (or 1- specificity) at all possible threshold.  This curve shows the overall tread 

off between specificity and specificity (295) and can be used for determining the 

best cut off value for predicting whenever a new observation is a YES or a NO.   

 

The area under the ROC curve (AUC or AUROC) are used to evaluate the 

overall prediction or classification performance of a logistic regression model 

(297). The AUROC value can range from 0 to 1. An area close to 1 (comprised 

between 0.5-1) indicates a perfectly correct prediction of the outcome of the 

test/model and increasing performance in classification getting closer to 1 and 

while an area of 0.5  indicated a random prediction. An area tending to 0 

(comprised between 0 - 0.5) indicates a perfectly correct prediction against the 

outcome (i.e. a protective value) and best performance in classification tending 

to 0.    

AUROC notably helps investigators compare between different logistic models to 

decide which (or which biomarkers) is best or to determine whether the new 

biomarker has  an added value compared to the exist biomarkers or risk factors. 
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Figure 3-8 Confusion matrix and the derivation of main diagnostic 
parameters  

 

 

 

Figure 3-9 ROC curve. Comparing ROC curve with different classification and 

prediction performance.  
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Chapter 4 Results Part1 : Genome-wide DNA methylation data 

analysis 

 

4.1 Introduction  

 

To gain more understanding of whether DNA methylation is involved early in the 

RA pathology, I analysed DNA methylation patterns of ~480,000 CpGs, in 3 cell 

types (naive CD4+T-cells, memory CD4+T-cells, and monocytes) from 6 HC and 

10 early RA patients obtained from an Illumina methylation genome-wide array.  

In this chapter, I will describe the profiles of DNA methylation in HC and RA in 3 

cell subsets and the strategy that I developed to find differentially methylated CpG 

(DM-CpG) as an exploratory phase.  I will then describe the further downstream 

analysis and some experiments performed to validate the analytic results and to 

link DM observed in RA to disease pathogenesis.  An overall analysis and 

experimental workflow is shown in Figure 4-1. 

This dataset (48 genome-wide DNA methylation profiles) was obtained by my 

supervisor prior to my arrival in her group. I analysed it using the combination of 

standard analysis workflow for this platform and in-house R scripts.  

I would like to make a point at the beginning of this chapter that parts of this work 

have been published in a manuscript entitled “Differential CpG DNA methylation 

in peripheral naïve CD4+ T-cells in early rheumatoid arthritis patients” on 07 April 

2020 in Clinical Epigenetics journal.  The manuscript also included some works 

done in collaboration with others members of the group and data from my 

supervisor’s previous work. The content included in my Thesis represents the 

work I have performed and the data obtained in collaboration will be mention 

where appropriated in the chapter’s discussion or otherwise in the appendix. 

Demographic and clinical data details of the HC and RA samples used to sort the 

3 cell subsets analysed by the 450 K DNA methylation genome-wide array are 

described in Table 4-1. This is typical of an early RA presentation although my 

supervisor took particular care in selecting patients with at least 3 swollen joints 

and raised inflammatory makers (CRP>10 mg/L) hence a slightly long disease 

duration (13 months).  
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Table 4-1 Demographic and clinical data for the control and RA patients used in 
the DNA methylation bead array  

 

Cohort-1 :  HC (n=6) RA (n=10) 

age (years)* 42 (38-47) 50 (40-74) 

M/F 3/3 7/3 

ACPA (Pos/Neg) na 6/4 

Duration (months)* na 13 (3-24) 

TJC na 10 (3-16) 

SJC na 3 (3-11) 

CRP (mg/L) na 20 (10-40) 

Data are presented as the median (range) 
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Figure 4-1 DNA methylation data analysis workflow. 
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4.2 Objective 

 

For the first part of my PhD, my overall aim is to gain more understanding of 

early events/pathways involved in disease pathology by studying genome wide 

data on DMA methylation.  

 

The hypothesis behind this is that alterations in DNA Methylation are central to 

the early events leading to RA pathogenesis rather than a consequence of its 

development and may therefore drive the development of chronicity. Secondly 

these alterations will affect CD4+T-cells, and preferentially naïve cells, 

considering on one hand that T-cells genes are the mainly targeted by the genetic 

susceptibility associated with RA and on the other, that naïve cells are more 

epigenetically uncommitted Th0 cells. Inflammation represents the hypothetical 

epigenetic injury trigger, leading to these epigenetic alterations.  

 

Objectives are to: 

• Explore genome-wide DNA methylation data in naïve and memory 

CD4+T-cell as well as monocytes in early RA compared to HC 

o Establish list of DM CpGs in the 3 cells types 

• Validate DM CpGs  

o DNA level (using bisulfite sequencing) 

o RNA level (compared with publicly available gene expression data) 

o Protein level (using Elisa) 

• Validate DM selection strategy using publicly available tools (R packages) 

o Obtain final list of DM CpGs aligned to genes symbols 

• Develop a strategy to apprehend methylation changes with a biological 

meaning towards understanding better the early RA pathogenesis.  

o Establish a list of pathways targeted by DM  

o Explore in silico functional interactions between DM gene products.  

• Additional work for understanding the biological meaning of DM (using 

flow-cytometry) is also included in the discussion of this part-1 of my thesis 

that has been performed in collaboration with other students (included on 

publication).  
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4.3  Result 

4.3.1 Preliminary exploration of DNA methylation data  

4.3.1.1 Quality control of the dataset 

After constructing -value histograms and bean plots, two samples (naïve 

CD4+T-cells of HC group) showed an abnormal distribution of the methylation 

level (β-value), (Figure 4-2) and had to be removed from the datasets.   

On each DNA methylation profile, the probes which were related to common SNP 

and/or known to have cross-reaction effect were identified in the QC procedure  

and a total of 45,022 CpG sites were filtered out prior to any further analysis 

resulting in the final dataset of 440,490 CpG sites in 46 samples (4 HC and 10 

RA of CD4+ naïve T-cell samples, 6 HC and 10 RA of CD4+ memory T-cell 

samples, and 6 HC and 10 RA of CD14+ monocyte samples).  
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Figure 4-2 Quality control and data pre-processing  A) β-value histograms 

and B) Bean plot for the 48 samples (naïve CD4+ T-cell (6HC,10RA), memory 

CD4+ T-cell (6HC, 10RA), and CD14+ monocyte (6HC, 10RA)). DNA methylation 

value should be distributed between only 2 values; 0-unmethylated or 1- 

methylated. The 2 samples (naïve CD4+T-cells of HC group) with intermediate 

density values (black arrows) failed the quality analysis and were excluded.  
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4.3.1.2 Preliminary exploration 

The datasets were initially explored by multi-dimensional scaling (MDS) plot.  The 

samples clustered tightly by cell type separating monocytes from naïve and 

memory T-cells (Figure 4-3,A). MDS did not segregate samples with respect of 

any gender bias (Figure 4-3,B, after exclusion of Chromosome X and Y data) or 

for disease groups (HC/RA) (Figure 4-3,C), although, there was some degree of 

segregation by PCA between HC and RA in monocytes that was not observed in 

T-cell subsets. 

Methylation patterns are therefore more specific to the cell type than it is to other 

factors such as gender or disease.  Interestingly, the PCA/MSD analysis resulted 

in a large separation between the 2 types of CD4+T-cell (naïve and memory) 

away from the monocytes. All further analysis to determine differences in 

methylation between HC/RA will be performed in the individual cell subsets.   

The methylation difference between disease and HC for each CpG was examined 

using t-tests, in the individual cell subset datasets. This generated p-values for 

each CpG.  In every test, there is always a chance that a result indicates a 

difference between two groups while no real difference actually exists  (false 

positive, or type I error).  In statistical analyses where a large numbers of tests 

are performed, the number of false positives increase and controlling of this 

number is highly recommended. However, correcting  for multiple testing using 

the false-discovery-rate (FDR) method was too conservative in my study, and led 

to a very low number of significant In order to obtain a predicting value for a 

biomarker, a model of the interaction between the outcome (or response variable) 

and the biomarker (predictor variable) have to be developed. The statistical tools 

used to help with this analysis are usually logistic regressions. Therefore in the 

exploration phase, I decided not to apply the FDR and non-adjusted p-values 

were used. 
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Figure 4-3 Preliminary exploration of datasets using MDS  for A) cell 

subset, B) gender and C) RA versus HC.  Data were clearly segregated by cell 

types. Analysis by gender (in individual cell types) showed no discrimination 

similarly to analysis by disease for T-cells although monocytes showed some 

degree of separation (arrows).  
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The levels of DM that could have a significant effect were then explored in an 

ordered manner on each chromosome.  The overall methylation differences 

between HC and RA across the genome were explored using Manhattan plots in 

the 3 individual cell types. The plots highlighted clouds of data points departing 

from the axis (high values for –log10(p-value) above a region with very high 

density of dots (low values for –log10(p-value). Three thresholds were set for 

different levels of the p-value; highly significant (p ≤ 0.0001), medium significant 

(p ≤ 0.001) and low significant (p < 0.01). The p-value indicates the probability of 

detecting a false-positive. Setting the cut-off p-value at a lower level (highly 

significant) help obtaining results with lower chance of being a false positive, thus 

more reliable results.  In this dataset where the total test number of each cell 

subset is 440,490 CpGs, the false-positive rate from using a highly significant 

threshold would be 44 CpG while at the medium and low significant would present 

at 440 and 4,404 CpGs, respectively.  In the Manhattan plot, there was a number 

of data-points (Table 4-2 561 data point in naïve cells) distributed at a higher-

magnitude values for highly significance set at above -4 (Figure 4-4. 

corresponding to p ≤ 0.0001), a larger number of data-points with medium 

significance (2,891, 0.0001< p ≤ 0.001), and an even larger with low significance 

(14,568 , 0.001 ≤ p < 0.01) above the main region of highly dense data-points    

The number of CpGs passing each threshold were much more than the expected 

number of false positive suggesting that there are real differential methylations of 

the CpGs between HC and RA, which did not just happened by chance.  This plot 

separates differentially methylated-CpGs (DM-CpGs) more clearly from the 

background. The number of  DM-CpGs for the 3 cell types shows in Table 4-2. 

In naïve T-cells, the number of DM-CpGs (18,020, p ≤ 0.01) was the highest 

(4.1% of total tested CpG). Of this number 3.11%, 16.04% and 80.84% were 

categorised into high, medium, and low threshold of significance, respectively. 

After annotation, I analysed the distribution of DM-CpGs with respect to their 

location in gene structures for (i) core of CpG-islands (ii) shelves/shores of an 

island or (iii) in open sea (i.e. outside of a defined island).  An equal distribution 

of DM-CpG in each category was observed.  There is also similar proportion of 

hypo and hyper-methylation, with a slight bias toward hypomethylation.   

In memory T-cells the main difference was that DM preferably occurred in the 

core of islands (50%) and were mainly hypermethylation (93% of all DM) which 

could possibly suggest more generalised gene silencing. In monocytes, DM was 

of lower significance altogether (Table 4-2).   

A hierarchical clustering analysis displayed as heatmaps (Figure 4-5) showed a 

clear segregation of patients and HC for individual cell subset, as well as major 
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hypermethylation (green in HC versus red in RA) in memory T-cells. Overall, 

these explorations demonstrate distinct patterns of methylation changes between 

cell types and between HC and RA.   
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Table 4-2 Summary of differential methylation at individual CpG level  

 

 Naïve CD4 

T-cell 

Memory CD4 

T-cell 

Monocytes 

Number (%) of differentially methylated  % 

total probes tested (440 490) 

18 020 

4.09 % 

14 197 

3.22 % 

6 490 

1.47 % 

Number  (%)* of probes with  

high significance (p ≤ 0.0001) 

medium significance (0.0001<p ≤ 0.001) 

low significance (0.001<p ≤ 0.01) 

 

561 (3.11%) 

2 891 (16.04%) 

14 568 (80.84%) 

 

440 (3.10%) 

1 885 (13.28%) 

11 872 (83.62%) 

 

130 (2.00%) 

672 (10.35%) 

5 688 (87.64%) 

Number and (%)*of probe associated with  

core island  

shelves/shore island  

outside of CpG island 

 

6 141 (34.08%) 

5 873 (32.59%) 

6 006 (33.33%) 

 

7 120 (50.15%) 

3 948 (27.81%) 

3 129 (22.04%) 

 

1 985 (30.59%) 

2 060 (31.74%) 

2 445 (37.67%) 

Hypermethylation in RA : n, (%)* 8 425 (46.75%) 13 218 (93.10%) 3 525(54.31%) 

Hypomethylation in RA : n, (%)* 9 595 (53.25%) 979 (6.9%) 2 965 45.69%) 

Number of probe (%)** associated with an 

island/shelve/shore  

hypermethylated 

hypomethylated 

outside of an island ( Open sea)        

hypermethylated 

hypomethylated 

 

 

1 201 (34.79%) 

1 111 (32.18%) 

 

176 (5.10%) 

964 (27.93%) 

 

 

1 842 (79.23%) 

114 (4.9%) 

 

299 (12.86%) 

70 (3.01%) 

 

 

209 (26.06%) 

310 (38.65%) 

 

190 (23.69%) 

93 (11.60%) 

* (%) of all probes with p≤ 0.01    ** (%) of all probes with p≤ 0.001 
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Figure 4-4 Manhattan plot  displaying the -Log10(p-values) against the 
position on chromosome of ~480,000 individual CpG for A) naïve T-cells, 
B)memory T-cells, and C) monocytes. 3 thresholds of significance were derived 
from the plot (high, medium, and low).
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Figure 4-5 Hierarchical clustering and Heatmap representation of DM-CpG (p<0.01) between 10 RA patients (red bar) and 6 HC (blue 
bar) for A) naïve T-cells, B) memory T-cells, and C) monocyte. Note the high proportion of hypermethylation in memory T-cells  (93%) 
compared to 46% in naïve T-cells and 54% in monocytes
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4.3.1.3 Differential methylation patterns 

To evaluate the possible effect of DM on gene structure, I manually inspected a 

few regions on the genome for the top p-value CpGs. Three typical patterns were 

identified (Figure 4-6);  

➢ DM at a single CpG usually located in the core of a CpG island (example 

A),  

➢ clusters of DM-CpGs in the shore/shelf of an island (example B),  

➢ an isolated CpG in open sea (not always associated with a specific gene) 

(example C).     

Example A illustrates the effect of the most significant DM-CpG observed 

(CpG06292898; p=1.06e-17) which occurs on a single CpG located in a 321 bp-

long CpG island with no other difference found for the other 7 probes located in 

the island.  Although this probe showed a very clear difference in methylation 

between HC and RA and there are several binding sites for transcription factors 

(such as SP1, TFAP2c, PAX-5 or E2F1) localised nearby this CpG (although not 

directly overlapping), that could nonetheless be influenced by this methylation.  It 

may or not have a substantial biological effect, as a single CpG may not produce 

sufficient physical effect on the structure of the chromatin to affect gene 

expression. 

Example B illustrate the effect of 16 medium significant DM-CpGs (p-values 

(0.0003<p<0.001)) located on the edges of a 47bp CpGs island.  They were 

clearly clustered between 2 regions covering about 900 bp on the left 

shore/shelve of the island and 150 pb on the right.  The close proximity of many 

differential hypo-methylations suggests they could locally have a cumulative 

effect on the chromatin and affect gene expression.    

Example C is an isolated, highly significant DM-CpG (p=5.78e-13) far from any 

recorded island/gene or the next CpG interrogated by a probe (over 10,000 bp 

away). An effect of this is difficult to understand and hardly supportive of a direct 

gene expression change, although other distal effects can be imagined such as 

contribution to an enhancer (which are not specifically targeted by this 450K 

array).  
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Figure 4-6 Examples of 3 typical patterns of the differential methylation. 
Example-a : DM at a single CpG. usually located in the core of a CpG island. 
Example-b : clusters of DM-CpGs in the shore/shelf of an island.  
Example c : an isolated CpG in open sea (not always associated with a specific 
gene).     
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4.3.2 Design of rules to prioritise clusters of differential CpG 

methylation 

Considering the physical impact that DNA methylation could have on the 

chromatin packaging and DNA accessibility to the transcriptional machine, to 

continue my project, rather than relying only on the significance of DM between 

HC and RA for individual CpG loci, I decided to find clusters of significant 

differentially methylated CpG (DM-CpG-clusters) also called differentially 

methylated region (DMR).   

I designed rules to define and prioritise DM-CpG-clusters and wrote a R code to 

analyse datasets automatically and systematically (R-code available on request).  

The rules were designed with respect to the significance of individual CpGs and 

the distance (in bp) between them (Figure 4-7, A). Hypomethylation and 

Hypermethylation CpG/probe were investigated separately.  

➢ The first rule was aiming at filtering only probes with a high significance for 

DM 

o Rule1 :  score = 1 if the p-value of the considered  probe is 

highly/medium significant (p ≤ 0.001) 

➢ The second rule determined how many high/medium significant probes 

were located in a proximal region set within three nucleosome length 

(~750bp) 

o Rule2 :  score = number of probes with a p-value ≤ 0.001 and 

located within -/+ 750 bp of the considered probe. 

➢ The third rule determined how many low significant probes were located 

in the same proximal region,  

o Rule3:  score = number of probes with 0.001<p-value ≤ 0.01 and 

located within -/+ 750 bp of the considered probe. 

➢ The fourth rule determined how many probes at all level of significance 

were located in a distal region, covering three further nucleosome lengths 

o Rule4: score = number of probes with p-value ≤ 0.01 and located 

between -/+ 750 bp to -/+1500 bp of the considered probe. 

Further prioritising criteria were set. The probes which are highly/medium 

significant (p-value ≤ 0.001) and have at least one proximal high/medium 

significant probe (p-value ≤ 0.001) [Rule 1 score=1 and Rule 2 score ≥1] were 

selected.  Lists of selected probes for all three cell types were generated.  This 

resulted in low number of candidate probe obtained and no overlap for any probe 

was found between the 3 cell types. Therefore, that selection criteria may have 

been too strict.   
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More flexible filtering criteria were then set.  This filtered probes that were 

highly/medium significant (p-value ≤ 0.001) and had at least one proximal 

significant probe at any level of significant (p-value ≤ 0.01) [Rule 1 score=1, and 

Rule 2 or 3 score ≥1]. The number of DM-CpGs-clusters with a score of >2 are 

listed in Table 4-3. 

To further prioritize DM-CpG-clusters for a list of candidates for each cell subset, 

CpG were then prioritized using the sum of each rule : total score = score 

rule1+2+3+4). An example shows in Figure 4-7,B.  

In monocytes, most clusters only showed the initial selecting CpG associated with 

only 1 other DM-CpG (final score=2). In contrast, in naïve T-cells, some clusters 

showed up to 7 selecting CpGs and scores up to 13, suggesting much larger 

effects on a wider region of the DNA. Intermediate results were observed in 

memory T-cells (score up to 9). 
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Figure 4-7 Design of rules to prioritise clusters of differential CpG methylation   
A)  Rule design for prioritising CpG. Rule-1 score 1 point vs. none, selecting only CpG-probes that had a high/medium significant p-value 
(represented by a red bar, p≤0.001). Probes of high/medium significance in a proximal region of +/-750bp (about 3 nucleosomes) were 
counted in rule-2 (1 point for each probe). Probes of low significance (blue bars, 0.001<p≤0.01)  were separately counted in the same 
proximal region as rule-3 (1 point for each probe). Finally, rule-4 counted probes at all levels of significance (red and blue) in a distal region 
covering a further +/-750pb (1 point for each probe).
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B) Example of a CpG island scoring.  The top panel describe the structure of the 
B3GALT4 gene  (blue box) and its CpG island (green box). The position of 
individual CpG (as cg.x codes, orange and purple) are displayed below the island.  
The methylation profile in RA (red line) and HC (blue line) are displayed in the 
second plot. 4 highly significant DM-CpG are circle in green (2 hypomethylated 
(shores) and 2 hypermethylated (core). Score resulting from the selection of 
these 4 CpG (rule-1) are displayed in the bottom 2 panel where –log10(p-values) 
are displayed against the chromosome sequence centred on the +1 transcription 
of the gene. 3 of selected CpG scored 3 points due to the presence of 2 more 
significantly DM-CpG in the area while the 4th CpG score 13 points due to a dense 
cluster of DM-CpG surrounding it. 
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4.3.3 Clustered and isolated DM-CpG in the 3 cell subsets 

DM-CpG-clusters were then identify using the scoring system.  The lists of gene 

associated with these clusters were derived. This process generated 648 genes 

for naïve T-cells (detailed in Table 4-3) 354 for hypomethylation and 294 for 

hypermethylation, 605 genes for memory T-cells and 58 genes for monocytes.  

Emphasising this is still an exploration of data  (including the heatmap and 

Manhattan plots previously described), naïve cells showed the most DM 

compared to other cells types and a bias towards more hypomethylations, which 

seems reasonable in terms of biological meaning as naïve cells are prompt 

toward response resulting in their differentiation into a particular helper T-subset. 

Thus they are particularly receptive to epigenetically clues and many sets of gene 

are available to be turned ON or OFF by changing DNA methylation levels.   

The gene that received the highest score from the scoring system was beta-1,3-

galactosyl transferase-4 (B3GALT4) in naïve T-cells (score=13, hypomethylated 

DM-CpG-cluster). The 2nd and 3rd highest score for hypomethylated DM-CpG-

cluster were TNF-α, which presented no DM in memory cells or monocytes, and 

the Src-homology adaptor (ABI3) gene, (also specific to naïve cells). For memory 

T-cells, most of the DM-CpG-clusters were hypermethylated (600 genes) vs 

hypomethylated (5 genes).  This hypermethylation suggested gene silencing 

which may aligned with the reported anergic characteristic of memory CD4+T-

cells in RA patients (299) although this would need to be confirmed. The DM-

CpG-clusters show the lowest scores in monocytes, which may suggest that 

epigenetic modification is not a mean of regulating cell function in such short live 

cell type.   

Although DM-CpG clusters are likely to affect gene activity, highly significant CpG 

which no other significant CpG nearby (isolated DM-CpG), were still included in 

further analysis as they may have an effect on gene activity if the CpG is located 

in a distant transcriptional factor binding site  for an enhancer. Isolated-DM-CpGs 

(P<0.0001, detailed in Table 4-3) kept were annotated with gene symbol (via 

array annotation). 266 hypomethylated genes were related to these isolated-DM-

CpG in naïve cells (top 3 associated genes being FOXF1, PARD6B, MAFF) and 

133 hypermethylated genes (top 3: CHGA, SKI, FSTL1).  

Several of the genes on these lists appeared familiar to known biological 

processes implicated in RA. We further used ranking based on the p-value of the 

t-test to prioritise these isolated-DM-CpGs. Similar data for memory T-cells and 

monocytes are summarised in Table 4-3. Full lists of DM-CpG-clusters and 

isolated-DM-CpG in all cell subsets are available in (Data S1-3).  
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Table 4-3 Summary of the prioritisation of clusters of DM-CpG and 
associated genes. 

 
 Naïve CD4 

T-cells 

(n= 4HC,10RA) 

Memory CD4 

T-cells 

(n= 6HC,10RA) 

Monocytes 

 

(n=6HC,10RA) 

Hypermethylation 
Score range 

 

DM-CpG-clusters 

Number of CpG with a score≥3 

Number of CpG with a score=2 

  

Score≥ 3 mean   

Corresponding Number of gene (all 

clusters) 

 

Isolated-DM-CpG 

Number of gene associated with a CpG in:  

island/shelve/shore  

in Open sea       

 
0-9 

 

 

143 

277 

 

3.91 

354 

 

 

 

 

121 

12 

 
0-9 

 

 

305 

414 

 

3.85 

600 

 

 

 

 

249 

18 

 
0-4 

 

 

6 

15 

 

3.5 

19 

 

 

 

 

34 

14 

Hypomethylation 

Score range 

 

DM-CpG-clusters 

Number of CpG with a score≥3 

Number of CpG with a score=2 

  

Score≥ 3 mean       

 

Corresponding Number of gene (all 

clusters) 

 

Isolated-DM-CpG 

Number of gene associated with a CpG in:  

island/shelve/shore  

in Open sea       

 
0-13 

 

 

197 

223 

 

4.31 

 

294 

 

 

 

 

139 

127 

 
0-2 

 

 

0 

7 

 

na 

 

5 

 

 

 

 

24 

17 

 
0-4 

 

 

15 

33 

 

3.26 

 

39 

 

 

 

 

28 

13 

 

  



 
100 

 

I then analysed the distribution of genes that were common to the different cell 

types (Venn diagrams displayed in Figure 4-8). For the DM-CpG-clusters, only 1 

hypermethylated gene, 4-aminobutyrate aminotransferase (ABAT), was common 

to all 3 subsets and none for hypomethylation, suggesting differential effect of the 

disease on each cell subset while suggesting that the effect common to all 3 in 

this unique gene may be very strong. I considered that this finding may  be 

artefactual although, this gene is associated with 9 DM-CpGs in naïve cells, 6 in 

memory and 4 in monocytes (most p<0.001).  

Hypomethylated CpG associated genes common to both T-cell subset were no 

more numerous with only 1 gene but more for hypermethylation with 72 genes. 

For the isolated-DM-CpG, a similar analysis suggested again no overlap for either 

hypo or hyper-methylated gene between the 3 subsets.  

Limited overlap was also observed between the T-cell subsets.  The lack of 

commonality in methylation (only 1 gene) in 3 cells subsets and limited 

commonality between T-cell subsets points to the uniqueness of disease 

associated methylation change in each cells subsets in RA. 

The most immediately recognisable DM genes associated with RA were 

cytokines/receptors including TNF/TNFRs, some IFN-signalling related genes, 

HLA-related genes, STAT family, and some integrin that has been known to 

involve in RA (Table 4-4).  DM cytokine/receptor were numerous in naïve T-cells; 

several were repeated in memory T-cells and monocytes.  
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Figure 4-8 Venn diagram displaying the overlap between cell subsets for 

clustered and isolated DM-genes, hypo or hyper-methylated. Number in each 

section represent the number of overlapping genes. 
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Table 4-4 DM of  cytokine genes in early RA  

Gene 
Symbol 

naive cells memory cells monocytes 

INTERLEUKIN  FAMILY 

high 
significance 

IL1B, IL31,  
IL2RA IL6R, IL21R 

    

medium  
significance 

IL13,IL16, IL24, IL34, 
IL1R2, IL2RB, IL10RA, 
IL17RC, IL17REL, 
IL18BP, IL1RAPL1 

IL6,  
IL17REL, IL17RA 
IL20RB  

IL1RN  
IL12A 

low 
significance 

IL6, IL10, IL12A, IL15, 
IL17C, IL17D, IL19, IL21, 
IL25, IL36G, IL1RN, 
IL4R, IL15RA,IL17RA, 
IL20RB, IL21R, 
IL21RAS1, IL27RA 

IL1B, IL12A, IL15, 
IL17D, IL24, IL37, 
IL1R2, IL4R, IL6R, 
IL12RB1, IL15RA, 
IL21RAS1, 
IL17RD 

IL16, IL37, 
IL17RC 

TUMOUR NECROSIS GROWTH FACTOR  FAMILY 

high 
significance 

TNF, TNFSF10,  
TNFRSF1B 

TNFRSF10C TNFAIP2 

medium 
significance 

TNFSF11, TNFSF14, 
TNFRSF8, TNFAIP3, 
TNFAIP8 TNFRSF13B, 

TNFRSF19 
TNFRSF13B, 
TNFRSF13C 

 TNFRSF1B 

low 
significance 

TNFSF18, TNFAIP2, 
TNFAIP8L1, TNFRSF1A, 
TNFRSF6B, TNFRSF9, 
TNFRSF10B, 
TNFRSF10C, 
TNFRSF18, TNFRSF19, 
TNFRSF21 

TNFAIP8, 
TNFAIP8L3, 
TNFAIP8L1,  
TNFRSF9, 
TNFRSF10B, 
TNFRSF18, 
TNFRSF25 

TNFAIP3, 
TNFRSF18, 
TNFRSF19, 
TNFRSF25 

INTERFERON  FAMILY 

high 
significance 

IFNGR2     

medium 
significance 

IFNL4     

low 
significance 

IFNA2, IFNA7, IFNG, 
IFNGR1, IFNAR1, 
IFNAR2 

IFNGR2, IFNGR1,    

TRANSFORMING GROWTH FATOR FAMILY 

medium 
significance 

 TGFA, TGFB2AS1, 
TGFB1I1 

TGFB3 TGFBR3L  TGFA 

low 
significance 

TGFB1, TGFBI, 
TGFBR1, TGFBR2, 
TGFBR3, TGFBR3L 

TGFB1, TGFBR2, 
TGFBR3,  

TGFB1, 
TGFB2AS1 
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4.3.4 Validation of DM gene 

After  establishing lists of DM-gene, the next step would be the validation of this 

data.  I wanted to confirm that DM-genes identified on the Illumina methylation 

array dataset really have altered methylation levels, and/or whether such 

changes are able to affect downstream process such as transcription into mRNA 

or expression of protein.  

 

4.3.4.1 Bisulfite sequencing of the TNF gene promoter in CD4+T-cells 

Some of the genes on the DM-list above were already shown to be DM in RA in 

published research using bisulfite sequencing (228) and pyrosequencing (224), 

although not in early, drug naïve RA. These notably included TNF(300), IL6, IL6R 

(227, 228, 301).   

I chose to use the bisulfite sequencing technique to validate DM of a CpG island. 

I selected the TNF-α gene given its high score (second highest score from the 

scoring system) and its central and unequivocal role in RA pathology, for further 

validation in early drug naïve RA patient (Error! Reference source not found., 

A). This work was done in collaboration with a Master student in the group (co-

author on the publication).  

A 273 bp regions (indicated by a grey box on the TNF gene structure on Figure 

4-9, B) in the TNF gene promotor encompassing 8 CpGs (3 of which present on 

the illumine 450K array) was amplified by PCR and sequenced from DNA isolated 

from total CD4+T-cells DNA (average purity of the CD4+T-cells population 

97.5%) following cell sorting using magnetic beads from 7 HC and 9 RA patients.  

Details of the patients used in this study are included in Table 4-5. 

Table 4-5 Demographic and clinical data for the control and RA patients 
used in the TNF bisulfite sequencing 

Cohort 2 : bisulfite sequencing HC (n=7) RA (n=9) 

age (years)* 55 (48-63) 46 (31-65) 

M/F 1/6 3/6 

ACPA (Pos/Neg) na 7/2 

Duration (months)* na 15 (5-24) 

TJC na 5 (3-18) 

SJC na 3 (1-6) 

CRP na 10 (<5-83) 

Data are presented as the median (range) 



 
104 

 

Hela cell control DNA, used as reference, was fully methylated at each of the 8 

CpGs. In HC (n=7), I observed on average about 50% methylated/de-methylated 

CpG  at each position, suggesting 2 populations of cells, one with methylated and 

one with un-methylated DNA of about equal proportion (Figure 4-9, A). In early, 

drug naïve RA patients (n=9), the overall proportion of cells with un-methylated 

DNA reached on average 90% (i.e. 10% of cells with methylated CpGs) at all 8 

CpGs suggesting that most CD4+T-cells have altered their TNF gene, early in 

the RA disease process. 

Looking back at the Illumina methylation dataset in this region of the TNF gene 

promoter (Figure 4-9, B, region in amount of the +1 of transcription), naïve 

CD4+T-cells showed partial demethylation with an average β-values of 50% 

methylation). DM was observed in RA with consistent hypomethylation of the 

whole region with on average a 7.1% less in β-values (range -2.3% to -20.8%). 

In contrast, this region is almost fully demethylated (average 22% β-values) in 

memory cells, while in monocyte the region was also fully demethylated (average 

8% β-values) with no significant difference between HC and RA for both cell 

subsets.    

The DNA methylation level of ~45%in total CD4+T-cells DNA observed by 

bisulfite sequencing is the result of the contribution of the methylation level from 

both naïve and memory CD4-T-cells.  While  there was no DM between HC and 

RA in memory CD4-T-cells, our data,  confirm that in RA a large proportion of 

naïve T-cells have hypomethylated the TNF gene-promoter compared to HC, 

resulting in 90% of demethylated DNA in that region in a total CD4+T-cell DNA 

sample. 
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Figure 4-9 DNA bisulfite sequencing of the TNF-α promoter region  

A) A region of 273 bp in the promotor of TNF gene was selected for direct bisulfite 

sequencing of DNA extracted from total CD4+T-cell from HC and early drug naïve 

RA patients.  Results of the sequencing covering 8 CpG (including the 3 used by 

the illumine 450K array highlighted by (*)), showed on average ~45% methylation 

in HC (n=7, blue dots) reduced to ~10% methylation in RA (n=9, red dots).  Box 

plot represent the median and 25%/75% of the distribution of % of DNA 

methylation in each group. Statistical analysis comparison of HC and RA were 

performed using the MWU test (**p<0.01, (***p<0.001). 

B) The TNF gene structure is presented at the top, showing the gene (black box) 

with bp numeration starting at the +1 of transcription (green box). CpG density in 

the Illumina 450K array are displayed below. 3 Illumina CpG included in bisulfite 

sequencing are highlighted by (*). Methylation levels (β-values) of CpG 

associated with the TNF gene obtained from the array results for naïve, memory 

CD4+T-cells and monocytes, plotted in order along chromosome 6. The region 

sequenced (273 bp- dark grey box) was located in the gene promoter. The 

median β-values of most CpG showed significant hypomethylation in RA patients 

(red line) compared to HC (blue line) in naïve T-cells. This region was highly de-

methylated in memory cells and in monocytes although with no DM observed 

between HC and RA patients. 
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4.3.4.2 Differential gene expression compared to differential gene 

methylation in CD4+T-cells 

To validate the downstream effect of DM between HC and RA patient in mRNA 

level (302, 303), I compared the DM-gene list to a differentially expressed gene 

list obtained from similar early, drug naïve RA patients.  This work was done in 

collaboration with another student in the group (co-author on the publication). We 

selected two publicly available gene expression datasets for CD4+T-cell (as there 

is no data available for naïve CD4+T-cells) from early, DMARDs naïve RA patient 

and HC (302, 303). After normalisation and aggregation of the 2 datasets 

(detailed is in the Appendix 6), we obtained a list of differentially expressed genes 

(DEG) (with adjusted p-value ≤ 0.05, FDR ≤ 0.05, fold change ≥1.5) between HC 

and RA. These genes included JAK1, TNF-family, ICOS, CD69, several MAP-

kinases and their regulators, TGF-β1, c-FOS and JUN, HLA-related molecules, 

several IFN-signalling genes (IRFs, IFITMs), some TLRs, cytokines/chemokines 

their receptors and PADI4. These were aligned with the original findings 

published with the datasets (302, 303). 

From the lists of DM-genes (DM-CpG-cluster with score ≥3 and highly significant 

isolated-DM-CpG (p≤0.0001)), 102 DEG genes could be matched using gene 

symbols after removing microRNA, open reading frames and other ambiguous 

gene symbols. These included 33 over-expressed and 69 under-expressed 

genes in early RA.   

Amongst the hyper-methylated genes, JAK1, transcription factors (TOX2, 

ZNF683), cytokine (IL12A), growth factor receptor (FGR1), adhesion protein 

(ITGA4), ubiquitination (FBXL3), galactose transferase (b4GALT2), chromatin 

structural proteins (amphoterin/HMGB1 and Protein AF10/MLLT10) were the 10 

top over-expressed genes, while heat shock protein (HSP72), transcription factor 

(ZNF213, ZNF219), regulator of transcription (TORC1/CRTC1, LMO4), AP1-

signalling (AP1S2), signalling adaptor (SHKBP1, WLS, ASAP1), ubiquitination 

(UBAp2L) and galactose transfer (b3GALT4), kinases (STK10, PRKCD) were 

under-expressed as summarised in Figure 4-10.  

Hypo-methylated genes were matched for over expression with IL2RA, interferon 

signalling (IFITM1), phosphatases (PTPRC, PSTPIP1), as well as for under 

expression with STAT5A, kinases (MAP3K11, CSK, TRIB1) adaptor of signalling 

(SH3BP4, CISH, SH2B2), interferon response gene (IRF8), transcription factors 

(FGD2, TFEB), transporters (SLC1A5, SLC16A3, SLC43A2), regulator of 

apoptosis (DAXX, CORO1A). Taking the top genes based on fold differences in 

gene expression between RA and HC, the DM/DEG-genes associated with 
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known RA pathological pathways pointed to JAK1/STATs signalling, TNF-family, 

IFN-related signalling genes. 

 

 

 

Figure 4-10 Gene expression analysis. Venn diagram and Table of overlapping 

genes between DEG (fold change expression ≥1.5, with adjusted p-value ≤ 0.05) 

and DM-genes  (DM-CpG-cluster with score ≥3 and highly significant isolated-

DM-CpG (p≤0.0001).  
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4.3.4.3 Cytokine expression compared to DM-genes 

Many cytokines were present on the list of DM-genes (Table 4-4) including 

notably IL1-β, IL17C, IL21, IL34  TRAIL, RANKL, LIGHT, TNF, TGF-β1 as well 

as many of their receptors  (IL2RA/RB, IL6R, IL10RA, IL17RC, IFNGR2, TACI). 

Many of these cytokines were shown to be up-regulated at the protein levels in 

early RA patients (304-306); in particular IFN-γ, TNF-α, IL1-β, IL10, IL12, IL17, 

and IL6 for which there was also reports of association with DM at the gene level 

in established RA and at mRNA levels in PBMC cells from long lasting RA 

patients (228). There were DM genes on the list for 3 cytokines for which no data 

were available in early RA, IL21, IL34 and RANKL (for which the group since 

published data (307)).  I selected these 3 cytokines for measuring protein levels 

in serum sample using 3 commercial ELISA. The serum samples were from 

independent HC (n=10) and early RA patients (n=20) who had closed 

demographic and clinical characteristics compared to the samples used for the 

illumine array (Table 4-6).  This was due to the unavailability of matched serum 

sample and the benefit of having a larger samples size .  

Table 4-6 Demographic and clinical data for the control and RA patients used in 

the Elisa.  

Cohort 3 : ELISA HC (n=10) RA (n=20) 

age (years)* 51 (40-63) 60 (41-75) 

M/F 4/6 7/17 

ACPA (Pos/Neg) na 14/6 

Duration (months)* na 4 (1-24) 

TJC na 12 (5-22) 

SJC na 11 (0-22) 

CRP na 20 (<5-60) 

Data are presented as the median (range) 

All 3 cytokines showed higher levels in early RA (all p<0.001, Figure 4-11, A). 

Combined  with data generated by my supervisor in previous published work 

(308) showing higher levels of IL1-β, IL6, IL10, IL12, IL17A, IFN-gamma and 

TNF-α (all p<0.001) in HC (up to 20 samples) and early, DMARDs naïve RA 

patients (up to 40 samples) (Figure 4-11,B ), these data  confirmed  the possible 

effect of DM genes at protein level for these cytokines.  

Altogether, both validations (DEG and ELISA) showed that many of DM-gene on 

the list, demonstrate associated change of expression at mRNA or protein levels, 

suggesting a pathophysiological contribution of such changes in DNA methylation 

in early RA.  
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Figure 4-11 Levels of expression of several cytokines in HC and early RA 
patients.  

A) Novel data are displayed. Serum samples were tested for cytokines levels 

using ELISA. The samples were collected from HC ((grey box plot in each pair, 

n=10) and early RA (black box plot, n=20). All cytokines were significantly over 

expressed in RA (Mann-Whitney U-test , p≤0.001).   

B) Data recapitulated from previous studies (308). Data were generated by 

cytometry bead array or ELISA (unpublished) from variable number of samples 

from HC (up to 20) early drug naïve RA patients (up to 40).   
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4.3.5 In silico functional interactions between products of DM-genes 

in naïve CD4+T-cells.    

I next explored whether the DM genes in naïve CD4+T-cells (DM-CpG-clusters 

(≥3) and isolated-DM-CpG/genes (p≤0.0001) including 591 gene symbols would 

point to specific pathways and/or functions that could be associated with 

pathogenesis. I constructed hypothetical functional networks using the STRING 

database (279, 280) of known and predicted protein-protein interactions which 

mines direct and indirect physical interactions and/or functional associations from 

several knowledge-databases, including genomic context, laboratory 

experiments, co-expression and text mining.  The 70% confidence was used in 

interactions setting.  

I generated an initial network with several association/interaction nodes (Figure 

4-12, A). The network was shaped around interaction of several nodes centred 

on cytokines (TNF-α, IFN-γ, IL1-β and TGF-β). This software suggested a manual 

addition of several genes to strengthen nodes in the proposed STRING 

interactions. This notably included genes from the cytokine/receptor list (Table 

4-4, medium and lower significance) as well as intermediate kinases and 

downstream signalling molecules in cascades.  I interrogated methylation data 

manually for all suggested genes. I included or rejected suggested genes based 

on whether they had a DM-CpG cluster with a score=2 or an isolated-DM-CpG 

(P≤0.001).  

The genes suggested included several members of the IL17/IL17R axis. Th17 

cells develop from naïve T-cells resulting in full polarisation in memory T-cells. 

IL17 related genes were therefore added to strengthen this axis also because 

they were showing clear DM in memory T-cells. Other additions were accepted 

for isoforms of regulators of cytokine signalling (SOCS), caspases and regulators 

of apoptosis and finally, additional members of the interferon related gene 

signalling cascade. The final gene list (n=687) is detailed in supplementary files 

(Data S4), detailing all manual additions (96 genes).   

 

At the end of this analysis, my final STRING model (Figure 4-12, B) clearly 

displays an interaction network centred on several JAK1/STATs nodes, and 

defining several groups of genes : 

➢ a 1st linked to IL6/IL6R/STAT3 signalling (blue group of genes),  

➢ a 2nd for IL27RA/STAT2 (orange group) linking to downstream interferon 

signalling,  
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➢ a 3rd centred on IL2/IL15/STAT5 (dark blue group )  

➢ and a 4th on IL12/IL13/STAT4 (green group).  

Many other associations were suggested, notably with respect to  

➢ TGF-β signalling (pink group).  

➢ an IL17/IL17R related group of genes (duck green group)  

➢ as well as a one involving epigenetic programming (yellow group).   

Many of the links (grey lines) were associating proteins with IL6, which itself 

was linked to a  

➢ TNF-α signalling (purple group).  
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Figure 4-12 Functional interaction network (STRING analysis)  

 

 

A)The initial STRING model included 
genes symbol/proteins from the DM-
cluster-CpG with a score ≥3, and 
highly significant isolated-DM-CpG for 
both hypo- and hyper methylation.   
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B) The Final STRING model included 
the same genes symbol/proteins from  
DM-CpG, and manually added genes 
as suggested by the program when 
verified for cluster scores =2 or 
medium/high significant isolated-DM–
CpG.  

The network analysis displays 
JAK1/STATs nodes link to several 
signalling pathway :  

• JAK1 signalling node in red;  

• STAT3 node (blue) linked to  

• IL6 signalling (light green);  

• STAT2 and downstream interferon 
related signalling (orange);  

• IL15/IL2/STAT5 node (dark blue); 

• IL12/IL13/STAT4 (green);  

• TGF-Β signalling node (pink);  

• IL17/IL17R axis (duck green);  

• TNF-α related genes (purple);  

• DNA methylation/modification 
related genes (yellow). 
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I subsequently analysed the IL6 and TNF signalling cascades in more details 

(Figure 4-13, done in collaboration with another student in the group, co-author 

on the publication).  The component of the IL6 and TNF signalling cascades were 

retrieved form several data knowledge sources and assembled into a signalling 

cascade schematic.  The DM-genes (DM-CpG-cluster score>=2, isolated-CpG p-

value <0.001) were mapped to these schematic with green for hypo-methylation 

and red for hyper-methylation labels  (Figure 4-13, A and B).  Many DM-genes 

were directly involved in the TNF signalling cascade while similar and/or 

additional genes showed the same for the IL6 pathway.  

I also aligned DEG (with adjusted p-value ≤ 0.05, fold change ≥1.5) using the 

previous analysis (as described on page 106) onto these two signalling cascades 

(Figure 4-14, A and B, red as over-expressed and green as under-expressed in 

RA). This highlighted JAK1 and STAT3 and 4 and many more genes, which, 

following manual investigating into DM, also showed low/medium significant 

levels of DM at the DNA level which was not prioritised.  

Altogether, this work tied together many observations and focalised my 

investigations further into IL6 and TNF as central to early disease events.  
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Figure 4-13 DM-genes in signalling cascade for a) IL6 and b) TNF-α. 

Components of the signalling cascades were listed from several data knowledge 

sources, and assembled as a signalling cascade schematic. Hypomethylated 

DM-gene in RA are represented in green; hypermethylated DM-gene in red. 
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Figure 4-14 DEG-genes in signalling cascade for a) IL6 and b) TNF-α. 

Components of the signalling cascades were listed from several data knowledge 

sources, and assembled as a signalling cascade schematic. Under expressed-

gene in RA are represented in green; over expressed-gene in red. 
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STRING network analysis of memory T-cells and monocytes DM-genes.  

A similar STRING analysis was performed on the memory and monocyte 

datasets. Hypermethylation was mainly observed in memory T-cells, suggesting 

a potential global gene silencing effect (by analogy to the cancer field). The 

STRING analysis of DM genes (DM-CpG-clusters (score ≥3), isolated-DM-

CpG/genes (p≤0.0001), and some manually add gene if score ≥2 or p≤0.001 ) in 

a list of 502 gene symbols, suggested a single major network, centred on EP300 

(Figure 4-15, A). This node then linked to several other genes, SKG1, histone 

modification enzymes (Hist3H2A), transcription factors (HES5, PAX6, FoxO3) 

and signalling protein (TRAF6).  

EP300 encodes the histone acetyltransferase p300 that regulates transcription of 

genes playing an essential role in cell growth and/or differentiation, notably 

preventing tumor growth. EP300 contains a domain that recognizes acetylated 

lysine residues bromodomain that is known to be involved in IL6 signaling (309) 

and as a co-activator of hypoxia-inducible factor 1 alpha (HIF1A) resulting in 

VEGF induction. IL6 signalling therefore appears also central to the memory 

networks via EP300.  

Serine/threonine-protein kinase (SGK1) regulates ion transport and is under the 

control of stimuli including insulin (as seen here with the insulin receptor gene 

INSR), growth factors and glucocorticoids (310). It has been shown to contribute 

to several pathways including inflammation, cell proliferation and apoptosis (311).  

A similar analysis run for monocyte specific DM-genes (from a list of 187 gene 

symbols) revealed no particular dominant node (Figure 4-15, B).  Although 

IL6R/IL6 were not themselves DM in monocytes, EP300 remained central to the 

network generated for this subset. 

 

Overall from the STRING network construction, the same number of DM genes 

in naïve cells (687 DM genes entered) brings up more relationship and highlights 

several pathways than  in memory cells (502 DM genes).  The network contains 

genes that are both unknown and well-known  for being involved in RA or 

inflammation/immune responses.  The known genes shown in the network 

confirm linkage with established knowledge while they also support forming new 

theories about early pathological events in RA (This point will be further 

mentioned in the discussion).   

 



119 

 

 

 

 

 

 

Figure 4-15 STRING network of functional relationships between DM-genes 

in A) memory T-cells and B) monocytes. The small network related to IL6 

signalling and EP300 are heighted in pink. 
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4.3.6 Validation of the scoring system using available R-packages  

 

My DNA methylation analysis workflow used standard procedures of data 

management, with an in-house analysis for prioritising DM-CpG-cluster and 

isolated-DM-CpG. DM-CpG-cluster were scored based on the physical 

positioning of CpG/probes, and a t-test for comparing methylation level between 

HC and RA.  Therefore probe-poor regions may have been discarded due to lack 

of physical proximity in their positioning, rather than by lack of individual 

methylation different between HC and RA. I therefore also considered highly 

significant isolated DM-CpGs in the candidate lists.  However, For the analysis of 

high-throughput genomic data, it is usually suggested to correct for multiple 

hypothesis testing, estimation of the false discovery rate (FDR) controlling the 

family-wise error. Controlling for multiple comparisons in our data left us with very 

little significant CpGs the further analysis (most likely due to n=10), so I decided 

not to considered this in my primary analysis, this being an exploratory study 

whereby some false-positive results were an acceptable risk.   

In order to further validate the scoring system, I ran the DNA methylation dataset 

through two publicly available R packages; DMRcate (273) and Bumphunter 

(272). These 2 packages aim to find a differentially methylated region (DMR), 

based on a similar concept to my analysis finding DM-CpG-Cluster, although they 

use more stringent statistics.  

DMRcate uses moderated t-statistic to find significant individual CpG and then 

uses a function to agglomerate the nearby region from groups of significant CpG 

(273). It allows for several parameters to be adjusted such as the statistical 

significance (FDR adjusted p-value), the methylation difference itself (the β-value 

difference between group), and the length of the region to consider. The DMRs 

can then be annotated to the associated gene. Running this analysis using the 

recommended/default settings (FDR ≤ 0.05, 1000 bp, average Dβ-value ≥0.05), 

only 2 genes were DM in RA, CUTA (CutA divalent cation tolerance homolog), 

and B3GALT4 (Beta-1,3-Galactosyltransferase 4). Using customised settings 

with similar criteria to my scoring system (allowing results to  be compared) 

resulted in a list of genes including 251 hypo and 294 hyper-methylated genes 

respectively (Data S5). When compared to my scoring system list in naïve T-cells, 

results showed a large overlap with 106 genes commonly identified by both 

analyses (Figure 4-16).  
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Bumphunter finds regions of interest based on regression modelling and 

smoothing techniques as well as permutation to assess the statistical uncertainty 

for each DMR (272). I attempted to run this package despite our small number 

and obtained a list of “bumps” with 68 hypo and 92 hyper-methylated genes 

respectively (Data S5)  These were overlapping with my scoring system for 38 

genes.  

An overlap between the three strategies revealed 20 genes (14 hypo and 6 hyper-

methylation) in common (Figure 4-16). The most immediately recognisable genes 

were TNF, some IFN-signalling related genes; IFITM, PSMB9 and AIM2, and 

some transcriptional regulator; MEOX1, EOMES and HIC1.   

A similar analysis was performed for memory T-cell and monocytes subset 

(Figure 4-17, A and B). 27 hypermethylated were overlapped between 3 

strategies in memory T-cell while 4 (3 hypo and 1 hyper-methylation) overlapping 

genes found in monocytes. Interestingly, ABAT remained though for all strategies 

in 3 cell types. 
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Figure 4-16 Overlapping of naïve T-cells DM gene between 3 strategies.  The DNA 

methylation data of naïve T-cells were analysed using our scoring method, the 

DMRcate and the Bumphunter packages. Overlap between list of DM-genes are 

presented as Venn diagrams and gene symbols (Table). 
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Figure 4-17 Overlapping of DM gene between 3 strategies. The DNA 

methylation data of A) memory T-cells and B) monocytes were analysed using 

our scoring method, the DMRcate and the Bumphunter packages. Overlap 

between list of DM-genes are presented as Venn diagrams and gene symbols 

(Tables).    
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4.4 Discussion  

My study of genome-wide methylation analysis of T-cells helped gain more 

understanding of RA pathogenesis.  Despite being an exploratory study it could 

both confirm the involvement of known pathway (mainly TNF, IL6 and type-1 IFN) 

in the early disease pathogenesis and importantly discover up new candidate 

genes or pathways.  

The amount of methylation information offered also depend on the technology of 

choices. Here for this project, I use the 450K array, an improved version from 27k 

array, measuring  ~485,000 CpG on the genome although aiming mainly  at 

promoter regions and  gene body, which covered most of CpG islands identified 

in the human genome, their shelf and shore but very few CpG Island outside 

these structures. The methylation information provide is therefore  limited to the 

coverage and the probe design appropriate for this technology. 

To validate  results from my scoring concept I compared results generated with 

other analysis tools (DMRcate and Bumphunter). The overlapping number of DM-

gene between these two strategies and my scoring system was not very large.  

This is likely due to the statistical design behind DMR finding algorithms and the 

strictness of the selected criteria.  The main weakness of my scoring system was 

that it focused on statistical significance, not accounting for the actual difference 

in methylation level (delta β-value difference)  which was included in the other 

two packages. Therefore, highly significance CpG could present with small 

methylation difference. Relaxing setting criteria naturally provides more DM 

genes candidates but can overload list including false positives. On the other 

hand, too strict criteria resulted in no candidate at all. A balance between these 

therefore needed to be met, and the aim of my exploratory analysis, using relaxed 

criteria, was therefore to generate lists of candidate genes that could lead to 

further understanding about early events in the disease pathogenesis.  Indeed 

molecular and cellular functional investigation will be needed as further steps to 

definitely prove and explain how change in methylations of particular genes can  

explain the pathological mechanisms of the disease. Thus, my scoring system, 

which calculated a score on individual CpG (instead of picking up the whole 

region with high DM), will be useful in designing further study at a base-pair level 

to relate individual changes with functional effect. Another limitation of my scoring 

system (and also for the other packages) is that it focuses on regions with high 

CpG density. Genes with more probe will get better chances to be scored. Thus  

these are biased toward the chosen areas/genes coverage by the Illumina 
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probes. Thus the result might not be fully representative of the biological 

differences between HC and RA. 

Despite the limitations of my scoring system, data provided lists of DM-genes 

which were partly validated by the other packages and  highlighted several RA 

pathogenesis pathways. Combining this work with my supervisor previous work 

also pointed to the new insight into the RA pathogenesis  which were published 

in a manuscript entitled “Differential CpG DNA methylation in peripheral naïve 

CD4+ T-cells in early rheumatoid arthritis patients” on 07 April 2020 in Clinical 

Epigenetics journal.   

The initial exploration and analysis to identify DM gene in naïve CD4+T-cells, 

memory CD4+T-cells, and monocytes from of HC and early RA patient using my 

in-house scoring system showed that the DNA methylation alterations in RA for 

each cell types is quite unique. The very limited number of genes being commonly 

affected between in 3 cell subsets reinforced the fact that such epigenetic 

modifications are highly cell-specific, similarly to previously reported (312), and 

suggested different effect on each cell types in disease pathogenesis. 

The only overlapping DM-gene to all 3 subsets was ABAT, 4-Aminobutyrate 

aminotransferase enzyme. This gene is responsible for the catabolism of gamma-

aminobutyric acid (GABA), an essential inhibitory neurotransmitter, reducing 

neuronal excitability throughout the nervous system, and directly responsible for 

the regulation of muscle tone. T-cells express the GABA receptor and exposure 

to GABA is involved in regulatory loop reducing inflammation and promoting 

"regulatory" responses (313, 314). As such GABA has been implicated in 

autoimmune diseases in animal models including arthritis (315, 316). Hyper 

methylation in ABAT may therefore contribute to a loss of GABA’s regulatory 

effect in all blood cell types, promoting inflammation and autoimmunity. Being 

similarly regulated in all subsets, the DM of ABAT suggest a general effect on this 

particular gene, while cell subset specificity appears to be the rule for most 

others.  

Methylation changes in RA were observed more in naïve CD4+T-cells than 

memory CD4+T-cells or monocytes. DM cytokine/receptor genes were numerous 

in naïve T-cells while several were repeated in the other two cells. Consider the 

involvement of T-cells in the early stage of RA pathogenesis and that naïve T-cell 

is an immature cell with an ability to differentiated to particular effector cells 

depending on the stimuli, it is sensible that the methylation alteration in RA were 

targeting naïve T-cells;  especially on the cytokine/chemokine receptor genes 

which receive signals from the outside environment as well as for the cytokine 
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production itself which is a sign that naïve cells  may be changing toward a 

particular polarisation subtypes.   

Focusing on naïve CD4+T-cells as the most susceptible cell type to change in 

DNA methylation, a functional relationship network analysis of DM gene  

highlighted a central role for IL6/STAT3 with downstream effects on several 

pathways including TNF signalling, the potential for differentiation towards Th17 

cells and interferon signalling.  

IL6’s importance is well recognised in RA (165, 301), as is the effectiveness of 

the therapeutic IL6 blockade (119).  DNA methylation alteration of IL6/IL6R genes 

was reported in SF, PBMC, and T-cells of established RA patients (227, 228, 

301). IL6 has been shown to induce the DNA methylation change in cancer and 

SLE (243, 317).  Recent gene expression analysis in CD4+T-cells also suggested 

a role for IL6, very early in the RA disease process, notably compared to patients 

with inflammatory joint symptoms not progressing to RA (302).  Increased  IL6 

levels in serum of early, drug naive RA is well established  and was shown here 

using data from my supervisor (304-306). The functional effects of IL6 on CD4+T-

cells have been explored extensively (reviewed in (318)).  Specifically, in naïve 

CD4+T-cells, IL6 induces survival (319), proliferation (320) while memory 

CD4+T-cells respond mostly by expanding the effecter/memory pool (321).  

My data also suggests that naïve T-cell in early RA are prompted towards Th17 

development (which is clearly observed in memory cells at DNA methylation 

levels on the IL-17A gene (322)). The differentiation of Th17-cells in vivo remains 

unclear, while in vitro, it can be induced by variable combinations of the pro-

inflammatory cytokines IL1-β, IL21, IL23, IL6 with/without TGF-β (127, 323-326).  

My analysis showed that IL6/IL21/IL21R and TGF- β -1 gene (and the overall 

gene family of TGFβ) were DM in naïve T-cells. The RORC gene encoding for 

RORγt, the master regulator of the Th17 cell lineage itself, was also DM in naïve 

cells (>5% Δβ-values at 2 CpG sites).  Th2 differentiation appears intact in RA 

(327). In contrast, Th1 polarisation was shown to be compromised by a deficit in 

Tbet engagement in established RA (96, 97). Interestingly, no evidence of DM 

were observed on genes of the Th1 or Th2 differentiation cascades (while 

observed in the Th17 cascade) which add context to the observed difference in 

the Th17 axis. Defective Th1 polarisation in early RA could therefore be a 

mechanism resulting in Th17-cells developing preferentially.   

An IFN signalling gene node was also highlighted in my String network. 

Dysregulation of IFNs are often observed in autoimmunity (Systemic Lupus, 

Systemic Sclerosis, Sjogren’s Syndrome, Multiple sclerosis, Dermatomyositis, 
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Diabetes Mellitus type1, Psoriatic Arthritis) (133, 328-330) suggesting that an 

activated IFN-response gene expression profile is a common characteristic of 

chronic inflammatory diseases. In a study of at-risk individual for RA, genes 

specifically induced by type-1 IFN were indicative of the progression to the 

inflammatory arthritis stage (331). IFN signatures were so far only associated with 

outcome in (very) early RA and no longer predictive later in the disease course. 

As further supported by our data this suggests that IFN-signalling is associated 

with early pathogenesis, independently of whether this can be exploited clinically 

later in the disease course. Furthermore, links between IL6 signalling/production 

and type-I IFN-gene signatures (and vice versa) were also observed in other 

inflammatory diseases (332, 333), supporting a possible link in early RA 

development. 

Using several techniques, I also confirmed DM of the TNF gene promoter in 

CD4+T-cells of early RA, as well as higher protein levels of several cytokines.  

String network also shows many other DM gene in TNF family and its receptors.  

The central role of TNF on RA pathophysiology has long been established while 

my data provide further evidence at a new levels (i.e. DNA methylation) very early 

in the disease process as well as clearly establishing that this is uniquely 

associated with naïve CD4+T-cells. TNF has a pro-inflammatory influence on a 

wide variety of function. It activates leukocyte, endothelial cell, and SFs, inducing 

the production of cytokines, chemokines, adhesion molecules, and matrix 

enzymes, activation of osteoclasts and promote angiogenesis (3).  TNF can both 

act on T-cells and can be produced by T-cells (334).  TNF can induce the 

activation and proliferation of naïve and effector T-cells, can also promote 

apoptosis of highly activated effector T cells, and block Treg suppressive effect 

(334).  Although TNF-α is produced mainly by monocytes, interestingly,  my data 

shows no TNF DM in early RA on monocytes, and as well as memory T-cells. 

This might suggest that in the early events, DM of TNF in naïve cells suggest that 

they are the relevant cells in RA pathogenesis before other cell types.  This help 

supports the central role of naïve CD4+T-cells in the initial stage of RA 

pathogenesis. 

Apart from the genes that were previously known to associate with RA or related 

to an inflammatory partway, my analysis also brings up other DM genes that were 

so far unknown to be related to RA,  which, may have an important role in RA 

pathogenesis. This includes genes involved in epigenetic modification itself,  DNA 

methyltransferase (DNMT3B, SALL3), Histone deacetylase family (HDAC2, 

HDAC4), and Histone methyltransferase (EHMT2, PRDM14). The DNMT gene 
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family is responsible for both de novo DNA methylation or the maintenance of 

methylated DNA. It plays a critical role during CD4+T-cells development and 

differentiation where both DNMT and methylation are essential for the 

appropriate expression of specific genes that help to define lineage and dictate 

function of T cells (335).   

Similarly, Histone modification is also crucially involved in the expression of 

genes associated with the development of effector and memory T cells (336).  

Therefore abnormal methylation of these genes involved in the epigenetic 

machinery in naïve T-cells could lead to defective T-cells capabilities later which 

may change the  ability of T-cell to responds to stimuli and differentiated into 

particular effector cells.   

There are several other new genes that showed up on the string network linked 

to a known pathway not yet involved in RA. For example, Genes that regulated 

cell growth and differentiation within the TGFB/SKI signalling cascade; The 

ubiquitin system and the proteosome encoded gene (PSMB8, S20 subunit) 

linking the TNF, STAT2, IFN group of genes on string network  to an essential 

function, the immunoproteasome which processes MHC peptides.  

DNA methylation may contribute to pathogenesis via regulating gene activity.  

Analysis of the downstream process; gene expression and protein transcription, 

can help confirm the effect of DNA methylation on the ongoing pathology. To 

validate my list of DM gene, gene expression microarray data from early drug 

naïve RA patients was retrieved from publicly available sources and compared to 

my DM list. Many DM genes were matched with a DEG at mRNA level.  Serum 

Cytokine level information retrieved from my supervisor previous work and Elisa 

experiments on a similar sample set also showed changes of expression for 

several DM genes. In terms of technical and biological validation, it would have 

been more informative to study DNA methylation, mRNA transcription, and 

protein translation in the same patients or with a single cell transcriptome and 

methylome analysis, which has now gained more interest and is more affordable 

(notably compared to when my data were acquired).  However, utilising publicly 

available data also remains a useful option where sample resource are limited, 

while also allowing the use of larger sample numbers.  The compatibility of the 

patient cohorts needs to be considered with caution (both for demographic and 

clinical parameters) while the technology/platform used and the sample types 

needs to be adapted to each type of analysis. I took particular care when selecting 

patients from the tissue banks in order to match their characteristics as much as 

could be achieved.  No statistical difference was noted between the groups 
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(methylation array, gene expression, ELISA, TNF sequencing) except for a 

slightly longer symptom duration for the patients used in the array due to the 

choice of 3 swollen joint as a criteria. 

After the validation of the possible effect of DM genes at mRNA and protein levels 

and the interest raised toward a particular pathway (IL6 signalling), a functional 

study at the cellular level to help decipher the actual contribution of naïve CD4+T-

cells to RA pathology would be important. What assay to select depends on that 

function of the genes/pathways involved. However, this  functional study was not 

within the scope of my PhD. My project will nonetheless allow to design new 

hypothesis to be tested  in a functional study of the associated biological function 

altered by DM,  for which my supervisor is applying for funding. 

Within the publication of this part of my PhD, additional work was nonetheless 

performed in collaboration with other member of the group included as co-

authors. A model of unusual T-cell differentiation in RA was proposed by my 

supervisor group in 2002 (92).  My work and the additional work performed in 

collaboration with other member of the group allow us to propose an updated 

version of the original model of T-cell differentiation defect in RA (284). 

In 2002, my supervisor group reported the development of an atypical subset of 

naïve CD4+T-cells (CD45RA+ but CD45RO-/dull), in direct relation with levels of 

in vivo inflammation (measure by CRP), proliferating (1 or 2 cycles, evidence by 

TREC dilution) but remaining naïve with respect to antigen stimulation while 

becoming hyper-responsive to TCR (signal 1) + co-stimulation (signal 2) or 

mitogen (PHA) stimulation, having lost CD62L-.  These were hypothesised to 

results from differentiation following exposure to IL6 (amplified by IL2/TNF) (337), 

as reported by others (reviewed in (29)).  These also had important clinical 

significance as biomarker for  (I) classification from an early arthritis clinic (ii) in 

relation to the progression of RA from pre-clinical and early inflammatory stages 

and (iii) for the prediction of 1st line treatment induced clinical remission as well 

as the stability of remission once achieved (48, 94, 113, 114). 

Considering that methylation at a particular CpG position is a binary event 

(methylated/unmethylated), methylation levels in the form of β-value represent a 

proportion of cells in the sample that is methylated  at that CpG. The differences 

in β-values between RA and HC observed on the array therefore suggests the 

emergence of a subpopulation of cells that have altered their methylation status 

at such positions.  Our group therefore hypothesised that the methylation 

changes affecting cell surface molecules could allow  the identification of  the 

subset of naïve CD4+T-cells in which such modifications had happened.  
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I performed an analysis of the keyword associated with DM-genes and produced 

a list of potential cell surface marker (Table 4-7). From this list, markers were 

selected on the basis of their relevance.   

An additional experiment was performed to analyse DM cell surface molecule on 

peripheral blood of 10 HC and 35 early, drug naïve RA patients (Table 4-8, within 

the same parameters as previous patient groups) using flow cytometry. This 

experiment was performed by  members of a group (co-authors of the paper) 

(detailed method in Appendix 7).  The expression of cell surface molecule (listed 

below) was first analysed in naïve CD4+T-cells (identified  using CD45RA+ and 

CD45RO-, Figure 4-18, red square).   

➢ CD4, showing DM with a Δβ-value of 9.92% (p=1.80 x10-4) 

➢ CD62L, showing low DM with a Δβ-value of 1.26% (p=1.72x10-2) but 

directly down-regulated by IL6 at the gene expression level (337) 

➢ IL6R, showing DM with a Δβ-value of 17.05% (p=3.80x10-6), or 3.9% 

(p=1.30x10-5) 

➢ IL2R, showing DM with a Δβ-value of 21.47% (p=4.38x10-5) 

➢ CXCR4, showing DM with a Δβ-value of 13.23% (p=3.45x10-3) 

 

Table 4-7 DM cell surface molecules  

Cluster of 
differentiation 

Cytokine receptors 
Chemokine 

receptor 

HLA 
related 

markers 

IFN 
related 

signalling 
Others 

CD4 TGFBR1 IL15RA CXCR4 HLA-E IFNAR1 SELL/CD62 

CD27 TGFBR2 IL17RA CXCR5 HLA-J IFNAR2   

CD160 TGFBR3 IL17RC   
HLA-
DOA IFNGR1   

CD68 TGFBR3L IL17REL     IFNGR2   

CD300A TNFRSF10B IL1R2         

  TNFRSF10C IL1RAPL1         

  TNFRSF13B IL1RN         

  TNFRSF18 IL20RA         

  TNFRSF19 IL20RB         

  TNFRSF1A IL21R         

  TNFRSF1B IL27RA         

  TNFRSF21 IL2RA         

  TNFRSF6B IL2RB         

  TNFRSF8 IL4R         

  TNFRSF9 IL6R         

  IL12RB1 IL10RA         

Note; DM form naïve String DM gene list (DM-CpG-clusters (score ≥3), isolated-
DM-CpG/genes (p≤0.0001), and some manually add gene if score ≥2 or 
p≤0.001.  
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Table 4-8 Demographic and clinical data for the control and RA patients 
used in characterisation of a subpopulation of cells using  flow cytometry. 

 

Cohort 3 : Flow cytometry HC (n=10) RA (n=35) 

age (years)* 44 (26-59) 54 (26-76) 

M/F 5/5 7/13 

ACPA (Pos/Neg) na 15/5 

Duration (months)* na 4 (1.5-12) 

TJC na 9 (0-28) 

SJC na 5 (0-20) 

CRP na 6 (<5-151) 

Data are presented as the median (range) 

 

 

 

Figure 4-18 The expression of cell surface molecule  imported form our 

publication entitle Differential CpG DNA methylation in peripheral naïve CD4+ T-

cells in early rheumatoid arthritis patients, 2020 (284) 

Flow cytometry characterised naïve CD4+T-cell of HC and early RA patients. 

CD3+CD4+T-cells (orange gate) were first gated. Naïve cells were then gated as 

CD45RA+/CD45RO- (red square) and memory cells as CD45RA-/CD45RO+ 

(green circle) in a representative HC and RA patient.   
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The mean fluorescence intensity (MFI) of CD4, CXCR4 and IL2R expression was 

significantly higher in RA (p<0.0001) but not IL6R, which expression was very 

variable compare to HC (Figure 4-19).  The expression of CD62L is either positive 

(Figure 4-20, A, red circle) or negative (blue square). The % of CD62L- naïve 

CD4+T-cells was significantly higher in RA (median 1.3%, p<0.0001) compared 

to HC (median 0.15%) and particularly raised in 3 patients with high CRP (55, 75 

and 178 mg/L). This demonstrated that CD62L could identify 2 subpopulations of 

naïve T-cell in RA; the classical naive CD62L+ cells and CD62L- naïve T-cells as 

described by my supervisor in 2002 (92).  

The expression of CD4, IL6R, and IL2R was further analysed between CD62+ 

naïve, CD62L- naïve and memory CD4+T-cells (Figure 4-20, B, CD45RA- and 

CD45R+, green circle) in the 3 RA patients that showed  a clear CD62L- 

subpopulation.   There was (i) no significant difference of CD4 expression 

between 3 cell types, (ii) clearly a reduction of IL6R expression on CD62L- 

compared to CD62L+ naive cells as well as on memory cells, and (iii) a  

dichotomous IL2R expression on CD62L- (with a positive and a negative peak) 

compared to CD62L+naïve (all negative) while memory cells were mainly 

positive. 
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Figure 4-19 Expression of CD4, IL6R, IL2R and CXCR4  imported form our 

publication entitle Differential CpG DNA methylation in peripheral naïve CD4+ T-

cells in early rheumatoid arthritis patients, 2020 (284) 

Expression of CD4, IL6R, IL2R and CXCR4 in CD45RA+ naïve T-cells using 

Mean Fluorescence Intensity (MFI). Results are shown as box plot for 11 HC and 

35 RA patients. CD62L was either positive or negative and % of naïve CL62L- 

cells was recorded and displayed. Significant differences (Mann-Whitney U-test, 

p<0.05) are highlighted by stars. 
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Figure 4-20 Subpopulation of naïve CD4T-cells in RA patients  imported form 

our publication entitle Differential CpG DNA methylation in peripheral naïve CD4+ 

T-cells in early rheumatoid arthritis patients, 2020 (284) 

A) CD45RB and CD62L were further used to refine the phenotype of naïve 

CD4+T-cells.  CD45RB expression was consistently high in naïve cells but 

declined in experienced cells and was low in memory cells (green circles), with 

no major difference between HC and RA for this subset. CD62L expression is 

positive on naive cells (red circle, consistently in HC) but was either positive (red 

circle) or negative (blue square) in RA defining an subpopulation of naïve CD62L- 

cells also expressing reduced levels of CD45RB (blue circle).   

B)  Differential levels of expression for CD4, IL6R and IL2R are shown in a RA 

patients with a raised CD62L-naïve cells subpopulation (best representative 

patient displayed) for naïve (red) memory (green) and IRC (blue) cells. Levels of 

CD4 were not significantly different (n=3). The expression of the IL-6R was lower 

on CD62L- (MFI 7,300) compared to CD62L+ naive cells (17,600) as well as on 

memory cells (11,400). The IL2R expression was negative on CD62L+ naïve cells 

but presented 2 populations (negative <1000 fluorescence units and + fractions 

> 1000) for CD62L- naïve cells. Memory cells were mainly positive (72% of cells).   
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Binding to the IL6R by IL6 triggers the formation of a complex with gp130  

accompanied by the internalization of the IL-6/IL-6R/gp130-complex (338, 339).  

Therefore, levels of the IL6R at the cell surface may reflect a balance  between 

recently and past IL6-activated cells (lowered IL6R levels), and non-

activate/resting cells (high IL6R levels). Thus, a large distribution of IL6R levels 

as observed in total naïve cells is not  unexpected,  if this observation was used 

to support the hypothesis of a proportion of naïve cells undergoing IL6 driven 

differentiation. IL6 signalling was shown to directly reduce the expression of 

CD62L (337). As Such, the naïve cells that have lost CD62L expression, have 

also reduced their expression of the IL6R (suggesting exposure, signalling and 

internalisation of the receptor) for most of them, and may therefore directly 

represent the subset of naïve cells that are undergoing IL6 driven differentiation.  

IL6 was reported to increase the expression of DNMT1 which correlate with DNA 

methylation in T cells (244, 335), suggesting a direct link between inflammation 

and alteration in DNA methylation (340). The main conclusion of my work is 

therefore that IL6 could induce the change in DNA methylation of the DNMT1 

gene (Δβ-value of 8.86% (p=0.0224) as well as several other genes involved in 

the epigenetic machinery (i.e.DNMT3, SALL3, HDAC2 , HDAC4, PRDM14, and 

EHMT2 ) observed in early RA, resulting in an abnormal activity of these genes 

leading to abnormal DNA methylation in other genes (as well as other 

modifications that needs to be explored further as well).  

IL6 signalling also alters the chemokine receptor balance at the surface of T-cells, 

silencing CD62L while increasing chemokine receptor expression for pro-

inflammatory factors such as CCL1/MCP-1 or CCL12/SDF1 to allow cells to 

migrate to inflamed tissue (341). CD62L- naïve T-cells may also exhibit other 

changes resulting from alterations in DNA methylation, these cells, previously 

maned Inflammation related cells (IRC) in a publication from my supervisor’s 

group (94), were shown to have specifically increased their expression of CXCR4 

(also DM with a Δβ-value of 13.23%, p=3.45 x10-3), CXCR5 (Δβ-value of 5.50%, 

p=4.07 x10-5), CCR3 ( Δβ-value of 19.54%, p=8.73 x10-4). In addition, another 

recently described subpopulation of CD4+T-cell, Follicular T-cell (TFh), are also 

indirectly induced by IL6, via IL21 (342). These TFh cells display CXCR5+/PD1high 

phenotype (343, 344). They have recently been observed in RA (345). Both these 

markers were modestly DM (CXCR5 Δβ-value of 5.50%, p=4.07 x10-5 and  PD1 

Δβ-value of 6.69%, p=6.05 x10-3) while considering the IL21 ELISA results, and 

the high expression of CXCR5 expression previously reported on CD62L- naïve 

cells in RA patients (94), these data altogether further support the potential of 
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IL6/IL21 in generating CXCR5+ cells that may correspond to (i) CD62L- naïve 

cells, and/or (ii) TFh.  

The new data present in my thesis, enabled me to redefine the original model of 

the IL6 driven alteration in naive CD4+T-cells presented in 2002 by my supervisor 

(92) which proposed the perturbation of CD4+T-cells differentiation in early RA, 

as a result of IL-6 activation of naïve T-cells, introducing alteration of DNA 

methylation driven by IL-6 as a possible mechanism for the generation of the 

unusual population of CD62L – naïve CD4+T-cell (92, 94, 243, 337). DM in genes 

enables changes in the DNA accessibility to several genes in pathways such 

several signalling cascades (TNF, TGF, IL2/15/21) , Interferon signalling related 

genes expression, the polarisation of Th17 cells. The effects of these changes 

together with functional alteration in naïve CD62L- CD4+T-cells may then allow 

them to migrate to the joints and contribute to the development of chronicity via 

the acquisition of resistance to apoptosis as previously suggested (137, 346) and 

the local maturation of Th17 cells. In Figure 4-21, I therefore propose an updated 

version of the original model of T-cell differentiation defect in RA.   
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Figure 4-21 Hypothetical model of how IL6 and naïve CD4+T-cell may 

contribute to the development of chronicity.  Modified from our publication 

entitle Differential CpG DNA methylation in peripheral naïve CD4+ T-cells in early 

rheumatoid arthritis patients, 2020 (284). In health, naïve CD4+T-cells 

differentiate into effector cells and memory cells as displayed in the green box. 

Cell surface markers used to identify CD4+T-cells at different stages are 

displayed: naïve (CD45RBbrightCD45RA+CD45RO-CD62L+), effector cells, and 

memory cells. An atypical subset of naïve CD4+T-cells 

(CD45RBdullCD45RA+CD45ROdullCD62L-) is observed in early RA (light orange 

box)(92) sharing both characteristics of naïve (maintaining CD45RBhigh, 

CD45RA+) and memory (CD62L- and CD45ROdull/+) CD4+T-cells. In addition to 

the loss of expression for the lymph-node homing receptor (CD62L), other 

cytokine receptor expression was modified (e.g. IL6Rlow and IL2R+/-), as shown 

during my PhD. Previous work (92, 337, 347) suggesting that this atypical 

differentiation of naive T-cells in RA was possibly induced by IL6. It was also 

associated with functional changes such as hyper-responsiveness (92) and 

capacity for migration (expression of CXCR4 (94) confirmed during my PhD). My 

work shows that DNA methylation is a possible mechanism underlining the 

changes observed (as depicted in the dark orange box). It is reported that IL6 can 

induce change in epigenetic machinery gene (DNMT) (244, 335) which can affect 

the methylation profile of many genes/pathways as highlighted in the gene 

network shown on Figure 4-15. IL6 was also showed to directly reduce 

expression of CD62L to change the migration pattern of cells towards IL6 

expressing tissue (341). The cells undergoing these changes have acquired the 

capacity to move to tissues, display DM in genes related to type-I IFN-signalling 

and TNF- signalling as well as being prompted to differentiate towards Th17 

subset. Upon, migrating to the joint (CCL12/SDF1 attracting them via CXCR4 for 

example (94), while being CD62L-), they can encounter further signal (IL6 notably 

expressed by synovial fibroblasts) which will complete their transformation 

towards Th17 cells for example, while INF- (also expressed by synovial 

fibroblasts (137) can provide both a survival signal as well as further inflammatory 

signal. 
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Chapter 5 Results Part2 Biomarker development 

 

5.1 Introduction  

The second goal of my thesis was to develop a DNA methylation biomarker for 

RA diagnosis.  In this chapter, I introduced the biomarker of RA diagnosis 

currently used, the need of new biomarker, the method to detect DNA 

methylation, and the basic terminology used in biomarker research as well as 

some statistical analysis that related to biomarker development. 

 

5.1.1 Biomarker in RA 

RA is the most common inflammatory arthritis involving immune cells activation, 

cytokine, reactive oxygen species (ROS), and protease production.  Leaving the 

condition untreated or receiving an ineffective treatment, leads to the destruction 

of joints, loss of physical function, and wild spread of inflammation to the other 

part of the body. It is widely accepted in the rheumatology community that 

aggressive/effective treatment of RA in the early stages of disease offer a chance 

to control the disease in the long term when it is still susceptible to treatment, also 

known as the window of opportunity (348, 349), and importantly prior to the 

development of irreversible damages.  Early diagnosis and early access to 

effective treatment are keys to prevent the irreversible damage and improve 

disease course of RA patients while the evidence of the benefit of early treatment 

have been established (350-352)  

Early arthritis clinic (EAC) and inflammatory arthritis outcome 

Currently, patients who have pain, swelling and show signs of inflammation in 

their joints are sent to an EAC where an early inflammatory arthritis (IA) is 

diagnosed, treated and monitored.  RA is the most common inflammatory 

outcome observed in EAC.  The characteristics of RA were described in the 

general introduction.  Other IA commonly diagnosed are psoriatic arthritis, 

reactive arthritis, gout or undifferentiated arthritis (where the symptoms remain 

unclear and progressed very slowly), while a proportion of people also do not 

develop persistent symptoms and return to normal. However, at presentation all 

IA share the same features of inflammation such as pain, swelling, stiffness, 

redness, warm joints, affecting one or more articulations. Some patients shows 

specific features such as skin symptoms suggesting psoriatic arthritis or have 
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specific autoantibodies helping to differentiate from RA notably the antinuclear 

antibody (ANA) for systemic lupus erythematosus (SLE) and other connective 

tissue diseases for example.  However, not all patient express those specific 

features so there is always cases where it is difficult to establish a diagnosis. 

Furthermore, IA patients who develop RA are not all positive for RA features 

(notably ACPA or RF) rendering the overall classification of Ab-negative patients 

difficult.  

 

Other inflammatory arthritis 

Psoriatic arthritis is an asymmetric polyarthritis.  This often associated with 

psoriasis symptoms.  This arthritis is sometimes difficult to distinguish from RA 

as it has no specific autoantibodies marker and the joint symptoms of psoriatic 

arthritis may precede the onset of skin symptoms by many years. Evaluation and 

monitoring for other signs such as nail changes or sausage toe, spinal 

involvement, family history can help with the diagnosis. 

Reactive arthritis often presents as a monoarthritis in large joints, such as the 

knees ankles and feet and also involved the tenosynovium, entheses, and 

surroundings. Reactive arthritis is triggered by an infection in another part of the 

body (i.e. intestines, genitals or urinary tract). Unlike other types of IA, reactive 

arthritis lasts a relatively short time, usually around three months to a year, 

however, it can last longer in some patients and can have random flare-ups years 

after first symptoms. 

Undifferentiated arthritis (UA) is an inflammatory oligoarthritis or polyarthritis that 

cannot be classified in the early stage. Over time it may turn into remission 

spontaneously in about ~30% of patients or evolve into a chronic inflammatory 

disease, even sometimes progressing to RA with time(1). 

 

RA Classification 

RA should be suspected in the patient who presents with inflammatory 

polyarthritis. Medical history acquisition, physical examination, along with 

selected laboratory testing to identify features that are characteristic of RA or that 

suggest an alternative diagnosis is required for the initial evaluation of such 

patients.   

The new RA classification criteria proposed by the American College of 

Rheumatology and the European League Against Rheumatism developed 
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(ACR/EULAR) in 2010 (353) improve clarification form the old 1987 classification 

criteria, allowing patients to be classified at earlier stages.  In this criteria set, RA 

is defined based on the presence of synovitis in at least one joint that cannot be 

explained by the other diagnosis, and achievement a total score of ≥6 out of 10 

points. The score comes from 4 domains: Joint involvement (range 0–5), 

serological abnormality (range 0–3), Acute-phase reactant (range 0–1), and 

symptom duration (range 0–1) (353).   

➢ Joint involvement 

The number and site ( at small > large joints) with swelling or tenderness 

on examination that is indicative of active synovitis use in scoring. The 

higher number of joint involvement (especially the small joint) added up 

more point which can contribute to the score up to 5. 

➢ Serology marker 

The abnormality of two sera marker, RF  and ACPA are included in this 

criteria.  

o RF is an auto-antibody defined as the anti-bodies against Fc portion 

of IgG.  The predominate RF antibody is IgM but it can also be in 

the form of any isotype of immunoglobulins, i.e. IgA, IgG, IgM, IgE, 

IgD.  

o ACPA is an auto-antibodies against citrullinated peptides which is 

the result of posttranslational modification of arginine by the 

enzyme peptidyl arginine deiminase (PAD) in response to 

inflammation, apoptosis or keratinization (354).    

o A positive test in either of RF or APCA markers contribute to the a 

score by 2- 3 points. 

➢ Acute-phase reactant 

The elevated acute-phase response, either from C-reactive protein (CRP) 

or Erythrocyte sedimentation rate (ESR) contribute to the score by 1 point. 

Both are a marker for inflammation.   

o CPR primarily produced by a liver in response to increased levels 

of inflammatory cytokines, especially IL6.  The level of CPR in 

plasma increase at least 25 times during inflammatory conditions.  

The level of CPR increase or decrease rapidly upon the presence 

or absence of stimuli.  It is used as a clinical marker of acute phase 

inflammation and also a predictor of cardiovascular disease(355).  

o ESR is the rate at which erythrocyte in WB sample settles at the 

bottom of a test tube over a period of one hour. A higher rate than 

normal indicates inflammation.  ESR is a result of the balance 
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between pro-sedimentation factors, mainly fibrinogen, and those 

factors resisting sedimentation, the negative charge of the 

erythrocytes.  The higher proportion of fibrinogen which response 

to an inflammation cause erythrocyte stick to each other and 

sedimented quicker. 

➢ Duration of symptoms 

Duration of symptoms is the maximum duration of signs or symptoms of 

pain, swelling, stiffness of any joint that is clinically involved at the time of 

assessment self-report by patients. The symptom of duration ≥ 6 weeks 

contribute to a score of 1. 

 

Around 70% of IA patient who develop RA can be diagnosed by the 2010 criteria 

(sensitivity ~80-85%). There are still many people who experience a delay in 

diagnosis especially patient with no autoAb (i.e. no RF/ACPA).   RF is present in 

70-85% of people with RA but also in many other conditions (hence low specificity 

~ 40% (356, 357)). Although the negative result of RF or APCA does not exclude 

patient from an RA diagnosis, it slows down the process. People have to wait for 

more joint to become involved to meet the RA classification criteria and therefore 

have delayed access to treatment.  ACPA is an important marker to help with the 

classification of RA with high specificity of ( 95-98%) (356) while ACPA positivity  

was found in ~50-60% of patient with RA (356, 358, 359). 

 

Treatment of RA / IA 

The goal of the medication treatment for RA and other IA is to reduce the 

inflammation, relieve pain, and prevent or slow down disease progression that 

can cause joint damage and loss of function as well as other systemic 

manifestations.  Medication treatment for early RA and other arthritis including 

Disease-modifying antirheumatic drugs (DMARDs), Non-steroidal anti-

inflammatory drugs (NSAIDs), and steroid. 

DMARDs are a class of drugs that work as immunosuppressive and 

immunomodulatory agents(360).  It was indicated to relieve pain, reduce 

inflammation and slow the progression of the disease.  It was recommended by 

the 2016 EULAR recommendations for the management of early arthritis to used 

DMARDs as early as possible, preferably before the onset of erosions to reduce 

and prevent the risk of further joint damage(361). There are two classed of 

DMARDs, conventional synthetic DMARDs (cs-DMARDs) and biologic DMARDs 
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(b-DMARDs). cs-DMARDs broadly act as mild immunosuppressor 

(inhibit/reduced cell proliferation).  The commonly used drugs such as MTX, 

leflunomide, hydroxychloroquine, and sulfasalazine.    The b-DMARDs target a 

specific pathway of the inflammatory cascades on immune cells signalling. For 

example anti-TNF agents (adalimumab and infliximab), IL-6 inhibitor 

(tocilizumab), and Jak inhibitors (tofacitinib) or anti-costimulation (CTLA4-Ig). cs-

DMARDs have been used for over 2 decades and the side effects are already 

well known. It is available orally and inexpensive. As cs-DMARDs is a slow-acting 

drug, it takes several weeks to initiated effects,  NSAIDs or/and corticosteroids is 

given to patients to relieve pain and reduce inflammation while waiting for the 

effect of DMARDS or in case of flare stage (disease active stage). The response 

to the treatment is different from patients to patients.  It needs close monitoring 

to observe the patients response.  Drugs adjustment or change to more 

appropriate treatment is sometimes necessary.    

Increasing evidences show that b-DMARDs have consistently better efficacy for 

both early and established disease (362), however, it only available via injection 

or infusion and also pricey (£5-25k/years). Thus this prescribed with restriction 

(NICE guidelines) is only available for active RA characterised by a high disease 

activity index (DAS28 >5.1), and disease resistant to cs-DMARD. 

According to the latest recommendations of EULAR and the American College of 

Rheumatology(159), MTX is still the first-line drug for RA treatment. 

 

Clinical parameters to monitor the progression of the disease or the 

response to treatment  

The parameters used (notably in my project) to monitor disease progression or 

for the evaluation of the response to treatment are included but not limited to:  

Joint count 

Tender joint count (TJC) and swollen joint count (SJC) are the examination of an 

individual joint for signs of pain (for TJC) and swelling (for SJC). The number of 

affected joints are counted. The total number of joints that will be examined are 

various depend on the particular assessment. It could go up to 68 joints on some 

scales but in the most standard system in a patient care unit and research trials 

is the 28-joint count which includes shoulders (2), elbows (2), wrists (2), knees 

(2), proximal interphalangeal joints (10 joints), and metacarpophalangeal joints 

(10). 
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DAS-28 

Disease Activity Score (DAS) is a measure of disease activity in RA. DAS-28, 

Disease activity score examined in 28 joints is the most common used. The score 

is calculated based on TJC, SJC, the acute phase reactant (CRP or ESR), and 

the patient global assessment of health. A DAS28 of greater than 5.1 corresponds 

to high active disease, between 5.1 to 2.6 correspond to moderate and low 

disease activity, and less than 2.6 implied the remission. 

 

5.1.2 Epigenetic Biomarker 

Epigenetic pattern can be altered in response to the environment and therefore 

are reversible.  Such dynamic changes provide useful information on a specific 

condition at a specific time and may have use for medical management.  The use 

of epigenetic marks as biomarker therefore gained more attention and are already 

being used in the clinic for some disease reviewed in (363). 

An epigenetic biomarker can be defined as “any epigenetic mark or altered 

epigenetic mechanism that can be measured and evaluated as an indicator of 

biologic process, pathogenic process, or pharmacologic response to a 

therapeutic intervention. Epigenetic biomarkers are of interested in many 

diseases such as cancer, psychiatric and neurodegenerative disorders, and 

chronic inflammatory diseases including RA (364-367). 

A lot of work has been done in the cancer field. At the moment histone 

modifications at specific sites are still technically much more difficult to measure 

than DNA methylation. It is also not clear how stable these histone modifications 

are.  DNA methylation marks are therefore the most commonly used among other 

types of epigenetic change.   

Several DNA methylation biomarkers are already used clinically for cancer early 

detection, diagnosis, treatment monitoring and prediction of response, and 

prognosis (Table 5-1 and More candidate genes that have been approved for the 

clinical use and the candidate genes with a potential in the discovery research 

could be found in the reviews of Warwick J. Locke and Yunbao Pan(368, 369)). 

 In the RA field, the study of the epigenetic landscape is growing. Most of the 

work is in the discovery phase that still searches for differentially methylated 

genes between RA and heath or other IA diseases to identify promising 

biomarkers candidates.  
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Table 5-1 DNA methylation biomarkers are used clinically for cancer. 

 

Disease and purpose Gene / Epigenetic mod References 

Screening for Prostate 

cancer 

The measurement of GSTP1 or APC 

promoter methylation in plasma, 

serum, or urine samples. 

(370, 371) 

Biomarker for early 

clinical stage Colorectal 

cancer. 

 

DNA methylation of SEPT9 

detectable in the plasma is able to 

distinguish colorectal cancer and 

adenomas from normal and 

inflammatory colonic tissue. 

(372) 

Diagnostic for Lung 

cancer and prognostic 

patients suffering from 

malignancy 

SHOX2 methylation. Higher levels of 

SHOX2 methylation in pleural effusion 

samples demonstrated a shorter 

overall survival.   

(373) 

Predict the response to 

chemotherapy for 

Glioblastoma 

Methylation of the promotor of MGMT 

in blood or tumor biopsy is used to 

predict the response to alkylating 

chemotherapy such as 

Temozolomide 

(374) 

 

  



146 

 

 

 

Technique to study of DNA methylation at specific CpG/region 

Identified DM candidate CpG sites/genes with potential as a biomarker need to 

pass through a series of steps including verification of the methylation status, 

validation of methylation pattern in a large cohort successfully to establish their 

value as  biomarker in a development process. 

DNA methylation is a modification of cytosine that occurs only at CpG 

dinucleotide sites but that does not change the base itself. Several techniques 

can be used to study DNA methylation at a specific site, the main one being  

➢ bisulfite conversion followed by downstream methods such as  

o PCR and sequencing  

o Pyrosequencing  

o Methylation-Specific PCR (MSP) 

o quantitative Methylation-Specific PCR (qMSP)  

o PCR with high resolution Melting.   

In my thesis, the techniques that were selected for verification of DNA methylation 

status of the target sites were bisulfite sequencing, followed by the  development 

as a biomarker assay using qMSP.  

 

5.1.3 Biomarker Development 

The goal of biomarker research is to discover and validate assays that can be 

used in a clinical settings.  Biomarkers could be used to gain information of the 

presence or absence of disease (diagnostic biomarker), the patient prognosis 

(prognostic biomarker), the response to a specific intervention (predictive 

biomarker), the effects of ongoing treatment (therapy monitoring biomarkers), or 

future risk of disease development (risk markers)(375). 

In general, biomarker development begins with the discovery of a “mark” or 

“events” that changes with respect to a particular situation.  After the identification 

of such a “mark” the changes with respect to this situation need verification and 

then secondary validation in order to establish it as a potential candidate.  To see 

if the biomarker offers potential utility,  it needs to meet acceptability of 

performance characteristics both technically and with respect to its performance 

as an outcome indicator.  The assay once validated (again in an additional large 

number of samples) may be used in clinic prospectively before receiving an 

approval to use be used on a wider market (and/or be commercialised). 
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Characteristics of biomarkers  

Important universal characteristics for biomarker are non-invasiveness, easy to 

measure, robust, and inexpensive.  The sample should ideally be taken from 

readily available sources, such as blood or urine. It should be the less process 

samples (for example, using the WB or PBMC instead of specific cell subset that 

needs more steps for isolation or purification). The technology chosen for the 

assay should be easy to perform by routine clinical services (hence PCR over 

sequencing for example), give reliable result, and have low inter-user variability.  

The most important characteristic of the biomarker remains its fitness to propose. 

For example, a diagnostic biomarker should have high sensitivity (meaning being 

present in a high proportion of the patients with the disease) and specificity (being 

present ONLY in that disease) for the disease of interest.  It should be able to 

detect the small differences if quantitative, notably in the early stages of the 

disease where it may not (yet) be increased/reduced as much as in established 

condition, but importantly it also should be able to discriminate between the 

disease of interest from people with similar symptoms but with a different disease 

while it may have been identified compared to healthy people.  All of these 

suggest that the best biomarkers may be those underlying a disease mechanism 

however, it is not mandatory (376). 

To put in the content of my thesis, I aim to develop a DNA methylation biomarker 

assay for the classification of RA. This biomarker should be specific, 

discriminating RA patients form those with other inflammatory arthritis (IA) 

diseases. I therefore focused on DM CpG candidates in CD4+T-cells, which are 

key to RA pathogenesis and involved in early processes. The sample material for 

the assay would be easily accessible (hence blood, rather than tissue biopsies 

for example), while, whole blood (WB) or PBMC are more convenient than 

purified CD4+T-cells for translation into future clinical practice.  The technology 

of choice is a qMSP assay (based on qPCR) which is highly sensitive while 

practical and already used by hospital services. 
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5.2 Objectives 

For the second part of my PhD, my overall aim is to select potential CpG 

candidates for the development of a biomarker assay using the qMSP technic for 

RA classification.  

 

Objectives are: 

• Develop a strategy to select candidate CpG(s)/gene(s)  

• Validate/verify the methylation status of candidate CpG from the array data 

by sequencing 

o In HC 5 cell subsets  

o In HC vs early RA patient using CD4+T-cells  

• Choose the best candidate CpGs/genes based on the technical 

requirement of using qMSP 

o Develop the biomarker assay for the top candidate genes 

o Test the assay in the different sample types (WB, PBMC, CD4 cells) 

o Test the assay on small number of patients attending the Leeds 

early arthritis clinics (RA or non-RA) 

• Test large number of samples to demonstrate the potential of the 

biomarker assay (notably in autoAb negative patients)  

• Build a predictive model to demonstrate the added value of the biomarker  

• Replicate the overall work in a second cohort 

• Examine whether the assay may also have added value for prediction of 

response to 1st line therapy in early RA (MTX) 

 

  



149 

 

 

 

5.3 Result 

This chapter describes the whole process of how I have developed an epigenetic 

DNA methylation biomarker assay for RA classification from selecting the 

candidate CpG targeted by the assay through to the validation in patient samples.  

According to the role of DM identified in T-cell (compared to monocytes) in the 

early stage of RA presented in chapter 4.3 Part1 result, I decided to focus on 

methylation change in T-cells in RA patient to select a DM-CpG candidate to 

develop the biomarker assay.   

The technology chosen for the final assay is qMSP, using DNA from a blood 

samples. This assay is used the quantify the methylation status of the target CpG 

sites (the marker) by using specifically design primers that would only generate 

a qPCR product if the target DNA is either methylated or demethylated.   

For the assay development,  I also needs to consider how the assay can be used 

in daily practice, which means using the least processed samples (i.e. WB or 

PBMC) rather than purified CD4+T-cells to limit the number of steps that may 

introduce bias. qMSP detect total DNA methylation of the target site in the whole 

DNA sample.  The  challenge in developing such a biomarker assay is how to 

detect the methylation change that occurs in T-cells (which are my target cells) 

while working on the mix population of cells in the PMBC or WB sample.  CD4+T-

cells are account for 45-70% of PBMC and around 15% of cells in WB.  The 

difference in methylation status in T-cells may end-up being too dilute to be 

observed because there is also  a methylation signal from other cells type in the 

sample and this is a major restriction to the assay design.   

Designing the assay to enable detection of the DM in only the target cell in the 

presence of several cell types in the sample,  requires a strict process for the 

specific candidate CpG selection as a 1st step together with the general qMSP 

assay design.  The important  selection criteria  is that the methylation status of 

the candidate marker (CpG sites) in the target cell is different from the status in 

other cell types (ie completely demethylated in Target cells, while complete 

methylated in non-target cells - or vice versa). Specific primers would then only 

generate a qPCR product, if the target DNA is either methylated (or 

demethylated) so that only the methylation status of the target cell can be 

detected. A diagram in Figure 5-1 shows this overall principle.  

This principle has been successfully used to develop assays for quantifying 2 

types of T-cell subsets, namely Treg and Th17 cells in blood samples, resulting 

in commercial assay (377-379). In these situations, the Foxp3 and IL17 genes 



150 

 

 

 

showed specific demethylation in these 2 T-cell subsets respectively, while all 

other T-cells but also all other lymphocytes and monocytes in the blood, showed 

full methylation at the chosen candidate CpG site  targeted by the assays.   
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Figure 5-1 Principle of a qMSP assay  for the detection of DNA demethylation  

in a specific cell population (here in yellow), while working with DNA from a mix 

cell population sample (the blue cells added to the yellow cell). The requirement 

for this assay is that the CpG candidate  is epigenetically active (fully 

demethylated), exclusively in the target cells while fully methylated in other non-

target cells in the sample.   In target cells the cytosine will become uracil after 

bisulfite conversion, while in non-target cells, the CpG marker being methylated, 

cytosine are protected by the methyl group and will not be converted. Next, the 

primers are designed specifically to match the concerted sequence with 

demethylated CpG, it can then bind and amplify a PCR product in the target cells. 

While in the non-target cell, the same primer cannot bind due to mismatches, thus 

no PCR product is amplified.  This allows the detection of methylation  status of 

the specific cell population as a % of the  total mix cell population (quantified with 

a similar assay on a house keeping gene.  Figure adapted from the Epiontis 

website (377, 379).  
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The workflow of my biomarker development is illustrated in Figure 5-2. The first 

step was the identification of the CpG sites to be targeted in the assay (Figure 

5-2, A).  Genome-wide methylation array data (illumina 450K array) (which 

contain the methylation information of more than 485,000 CpGs ), were used as 

a resource to find the candidate CpG in CD4+T-cells that may have value as a 

biomarker to identify the difference of methylation between RA and other clinical 

groups.  Several data sets were used to refined strategic decision to inform the 

target CpG selection regarding non T-cell methylation status.    

➢ Our dataset (GSE121192) in early RA and HC  

➢ Other publicly available dataset were used including :   

o Different cell types    

o Different disease groups  

The second step was the target verification (Figure 5-2, B).  After obtaining a list 

of candidates CpG, the methylation status of these candidate CpG was then 

verified to establish whether the array data could be replicated by bisulfite 

sequencing.    

The third step is development of the qMSP assay itself, to detect DM of the 

candidate CpG site in sample (Figure 5-2, C).  This included the development of 

the PCR assay and the optimisation of the best type of samples to use (WB, 

PBMC or purified CD4T-cells) using a few DNA samples with known diagnostic 

information (i.e. HC versus RA or UA).   

The final step is assay validation in a real cohort of samples (Figure 5-2, D).  The 

value of the assay itself for the classification of patient and the performance of 

the qMSP assay needs to be established in a relatively large number of samples.  

The added value of the assay over the current available biomarker/signs and 

symptoms (i.e. demographic and clinical parameter) used for RA classification 

then need to be demonstrated for the assays toward added clinical value.    
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Figure 5-2 Biomarker development workflow. A)Target identification, B) 

Target verification, C) assay development  and  D) assay validation. 
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5.3.1 Selecting candidate CpG Targets : Analysis of 450K DNA 

methylation dataset  

5.3.1.1 Selection strategy 1: CpG candidate from our dataset 

This strategy selects candidate CpG according to the qMSP assay principle  with 

demethylation in the target cells, while allowing the assay to work from a mixed 

cell population sample. The first requirement of this strategy is that the 

methylation status of candidate CpG in the target cell, (here, CD4+T-cells), is 

clearly different in all other cell types in the blood.  I chose to select CpGs that 

were demethylated in T-cells (ideally with a β-value ~ 0 to 0.2 in array data) while 

methylated in the other cells (ideally β-value ~ 0.8 to 1). Therefore, following DNA 

bisulfite conversion, the DNA sequence of T-cells will be distinct from that of all 

other non-targeted cells and could be amplified using specifically designed PCR 

primers for the demethylated sequence, while there will be no amplification from 

non-target cell DNA. This way, it is possible to detect the methylation signal just 

in T-cells. However, the limitation here, despite the benefit of having a highly 

specific T-cells methylation assay, is that if the candidate CpG is DM between 

HC and RA it may also be shared with other diseases as for example related to 

an inflammatory cascade. 

To select the candidate CpG sites that would allow RA patient to be differentiated 

from HC, I first analysed the Illumina 450K genome-wide methylation data (the 

same GSE121192 dataset from the previous chapter Table 5-2) which contain 

methylation data of 6HC and 10 early RA of naïve CD4+T-cell, memory CD4+T-

cell and monocytes. After pre-processing the dataset , quality checked, removing 

CpGs that were known SNP or removing the probes known to cause cross-

reaction, the list of DM CpGs between HC and RA in naïve CD4+T-cells 

(established as described in chapter 3.4 ), I selected several candidate CpG sites 

from over 485,000 CpG by utilising 3 filtering steps.   

1. DM between HC and early RA in naïve CD4+T-cells [p-value ≤0.0001, 

scoring rule1=1] and having at least 1 significant DM GpG nearby [scoring 

rule3>1]. 

2. Demethylated DNA in naïve CD4+T-cell of HC sample [β-value 0 to 0.6] 

3. Methylation in the monocytes dataset for HC sample [β-value 0.8 to 1] and 

no DM between HC and RA in monocytes.   
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Table 5-2 Illumina 450K dataset used in a different strategy. 

 

 

 

 

 

Figure 5-3 Results of the filtering criteria to select candidate CpG by my 1st 
strategy. 

 

 

  

Strategy Dataset ID/GEO accession Samples Cell types

Strategy 1 : 1 dataset GSE121192 (our data) 6 HC, 10 early RA Naïve CD4 T-cells, Monocytes

Strategy 2: 4 dataset GSE121192 (our data) 6 HC, 10 early RA Naïve CD4 T-cells, Monocytes

American research group 31 HC Naïve, Monocytes, B-cells

GSE71841 12 HC CD4+T-cell

GSE35069  

6 HC

CD4+T-cells, CD8+T-cells, NK cells, 

B-cells, Monocytes, Neutrophil, 

Eosinophil, Granolocytes

Strategy 3: 7 dataset GSE121192 (our data) 6 HC, 10 early RA Naïve CD4 T-cells, Monocytes

American research group 31 HC, 63 RA Naïve, Monocytes, B-cells

GSE71841 12 HC, 12 RA CD4+T-cell

GSE 111942 18 HC, 25 RA PBMC

GSE 87095 73 HC, 49 RA B-cells

GSE 117929 19 HC, 18 Ssc PBMC

GSE 82218 25 HC, 30 SLE PBMC

GSE 88824 14 HC, 13 MS WB

Ssc: Systemic sclerosis, SLE: Systemic lupus erythematosus, MS: Multiple sclerosis

Target cell 

condition

Non-target cell

 condition

Sample HC vs early RA HC vs early RA Sample

Cells Types naïve CD4+T-cell monocytes Cells Types

HC β-value ≤ 0.6 ≥ 0.8 HC β-value

DM, p-value ≤ 0.0001 ≥ 0.01 DM, p-value

DM, rule3 score ≥ 1

26 

CpGs

580 171,787

Candidate CpGs
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The filtering results workflow is shown in Figure 5-3.  Ideally, the β-value were set 

at 0 to 0.2 for demethylation, and 0.8 to 1 for methylated CpG. However, using 

these stringent criteria resulted in no CpG fitting these rules, thus I decided to 

relax to β-value range to 0 to 0.6 for selecting CpG sites within a demethylated  

CpG region.  

 

From a total of 485,00 CpG array data, 26 CpGs were selected using this first 

strategy. The list of CpGs and their details is presented in Appendix 8. The 

corresponding genes are listed below: (** indicates genes associated with 2 

CpGs,  bold symbols indicate the top 10 most disease related candidates) 

➢ TNF  (tumor necrosis factor), proinflammatory cytokine that has been 

implicated in a variety of diseases, including autoimmune diseases, insulin 

resistance, and cancer 

➢ KSR1 **(kinase suppressor of ras 1), related to RET signaling and RAS 

signaling pathway.  

➢ PBX2 (PBX homeobox 2), DNA-binding transcription factor activity and 

chromatin binding, pre-B-cell leukemia transcription factor 

➢ TERT (telomerase reverse transcriptase), catalytic subunit of the enzyme 

telomerase 

➢ IFITM1 (interferon induced transmembrane protein 1),IFN-induced 

antiviral protein 

➢ LOC100287036 (Uncharacterized LOC100287036) 

➢ BCKDK (branched chain keto acid dehydrogenase kinase), involved in 

BCKD the key regulatory enzyme of the valine, leucine and isoleucine 

catabolic pathways. 

➢ TRAF5 (TNF receptor associated factor 5), TNF receptor mediates TNF-

induced activation 

➢ GPRIN3** (GPRIN family member 3), G Protein-regulated inducer of 

neurite outgrowth 

➢ PTPRCAP (protein tyrosine phosphatase receptor type C associated 

protein), associated with tyrosine phosphatase PTPRC/CD45, a key 

regulator of T- and B-lymphocyte activation 

➢ ANKRD11 (ankyrin repeat domain 11), modulates histone acetylation and 

gene expression in neural precursor cells, encoded protein inhibit ligand-

dependent transactivation 
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➢ GIMAP7 (GTPase, IMAP family member 7), the GTP-binding superfamily 

and to the immuno-associated nucleotide (IAN) subfamily of nucleotide-

binding proteins 

➢ ITM2C (integral membrane protein 2C), related to this gene include 

amyloid-beta binding, may play a role in TNF-induced cell death and 

neuronal differentiation 

➢ S1PR1 (sphingosine-1-phosphate receptor 1),  involved signal of RAC1, 

SRC, PTK2/FAK1 and MAP kinases plays an important role in cell 

migration 

➢ INS-IGF2 (INS-IGF2 readthrough), related to AMP-activated Protein 

Kinase (AMPK) Signalling and Type II diabetes mellitus pathways 

➢ HPCAL1 (hippocalcin like 1),neuron-specific calcium-binding proteins 

family 

➢ KRAS (KRAS proto-oncogene, GTPase), ras gene family, may plays a 

role in promoting oncogenic events by inducing transcriptional silencing of 

tumor suppressor genes 

➢ SEPTIN9 (septin 9), involved in cytokinesis and cell cycle control 

➢ BCL9L (BCL9 like), Transcriptional regulator that acts as an activator 

promotes beta-catenin transcriptional activity and plays a role in 

tumorigenesis. 

➢ HLA-E (major histocompatibility complex, class I, E), involved in immune 

self-nonself discrimination. 

➢ NCK2 (NCK adaptor protein 2), bind and recruit various proteins involved 

in the regulation of receptor protein tyrosine kinases.  

➢ PDE2A (phosphodiesterase 2A), catalyse the hydrolysis of 3' cyclic 

phosphate bonds in the second messengers cAMP and cGMP 

➢ MICB (MHC class I polypeptide-related sequence B),  ligand for the 

NKG2D type II receptor activates the cytolytic response of natural killer 

(NK) cells, CD8 T cells. 

➢ ZBTB18 (zinc finger and BTB domain containing 18), transcriptional 

repressor of genes involved in neuronal development  
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This list was then manually narrowed down considering additional factors.  

1. The methylation structure of the region surrounding the candidate CpG. 

For assay design, the primers need to bind with high specificity to a region 

of 20-30 base pairs around the candidate CpG. Therefore, the Candidate 

CpG site should not be an isolated CpG in order to provide sequence 

specificity for the methylation status. The array targets CpGs in CpG island 

however, those are spaced relatively widely for the probes to be able to 

bind efficiently. The methylation status of the neighbouring CpG should 

have a similar methylation status with the candidate CpG. 

2. The effect size of the DM between HC and RA in naïve CD4+T-cell.  Apart 

from the statistical significance, the actual difference in β value (Δβ) is also 

important.  The bigger the Δβ between HC and RA, the better chance for 

the assay to pick up small difference by qPCR .  

3. Finally, the biological relevance of the gene associated with the CpG 

candidate was also considered. Genes known to be related to the disease 

would undeniable have more credit on a ranking process.  

 

From the 26 CpGs originally selected, the list was narrowed down to 10 candidate 

CpGs (highlighted in bold above) with the following ranking based on best fit to 

all rules from the top: 

 

1.    TNF  2.    IFITM1 3.    TERT 

4.    KSR1 5.    TRAF5 6.    KRAS  

7.    INS-IGF2 8.    PTPRCAP  9.    LOC100287036 
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5.3.1.2 Selection strategy 2: qMSP concept adding publicly available 

dataset  

My second strategy was to extend the same principle to publicly available 

methylation datasets in T-cells and other population of cells, to enrich the  

analysis and notably to consider additional blood cells rather than only 

monocytes. 4 publicly available dataset were selected (detailed in Table 5-2) 

which contained methylation data in HC. All together data included  

➢ naïve CD4+ T-cells,  

➢ total CD4+ T-cells,  

➢ NK cells, CD8 T-cells, B-cells, monocytes, as found in PBMC  

➢ Neutrophil, Eosinophil, and Granulocytes included in WB  

The Illumina 450K genome array analysis workflow was performed in a similar 

way for each dataset. The candidate CpG were selected using the same filtering 

rules.  

1. Demethylation in the target cells: naïve, and total CD4+T-cells in HC 

sample. [β-value 0 to 0.6].  

2. Methylation in the non-target cell; CD8+T-cells, NK cells, B-cells, 

monocytes, Neutrophil, Eosinophil, and Granulocytes in HC sample [β-

value 0.8 to 1]  

3. DM between HC and RA in CD4+T-cells [p-value ≤0.01, or Δβ > 0.10].  

 

 

 

 
 

Figure 5-4 Results of the filtering criteria to select candidate CpG by my 2nd 
strategy 

  

Sample HC HC HC HC HC HC Sample

Cells Types naïve CD4+T-cell CD4+T-cells Monocytes CD8+T-cells NK cells B-cells Cells Types

 β-value ≤ 0.6 ≤ 0.6 ≥ 0.8 ≥ 0.8 ≥ 0.8 ≥ 0.8 β-value

Result (CpG ) 208,499 200,074 171,787 157,114 151,102 157,114 Result (CpG )

HC HC HC Sample

Sample HC vs early RA Neutrophil Eosinophil Granulocytes Cells Types

Cells Types naïve CD4+T-cell ≥ 0.8 ≥ 0.8 ≥ 0.8 β-value

p-vlaue ≤ 0.01 173,786 171,497 174,184 Result (CpG )

Δβ ≥ 0.10

Target cells condition Non-target cells condition

5 

CpGs

2 CpGs

195,642 118,532

Candidate CpGs
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The filtering result workflow diagram is shown in Figure 5-4.  CpGs associated 

with 5 genes were selected after applying the filtering criteria 1 and 2 (detail in 

the Appendix 8). Adding the 3rd filtering criteria considering whether DM between 

HC and early RA in naive CD4+T-cells, resulted in only 2 CpGs remaining on the 

list associated with  the RPTOR and ATP6V1H genes.  

 

o  RPTOR (regulatory associated protein of MTOR complex 1), The encoded 

protein forms a stoichiometric complex with the mTOR kinase 

o ATP6V1H (ATPase H+ transporting V1 subunit H),component of a 

multisubunit enzyme that mediates acidification of intracellular organelles 

necessary for protein sorting, zymogen activation, receptor-mediated 

endocytosis, and synaptic vesicle proton gradient generation. 

o AP5Z1 (adaptor related protein complex 5 subunit zeta 1), involved in 

homologous recombination DNA double-strand break repair (HR-DSBR). 

o RERE (arginine-glutamic acid dipeptide repeats), co-localizes with a 

transcription factor in the nucleus, and its overexpression triggers apoptosis, 

may associates with histone deacetylase 

o CD40LG (CD40 ligand), a member of TNF superfamily, notably expressed 

on activated CD4+ T-cells 
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5.3.1.3 Selection Strategy3: Using Delta Beta (Δβ) value in our dataset 

and publicly available dataset 

In my 3rd Strategy, I selected candidate CpGs based on the size effect of the DM 

(i.e. different in methylation levels between HC and RA, the Δβ) in T-cells. Thus, 

it did not consider the methylation level (β-value) itself but focus on the difference 

(Δβ) between HC and RA.   

I acquired publicly available datasets that contained methylation level data in HC 

and RA from several cell types (i.e. all PBMC) as well as form other form of 

autoimmune / inflammatory diseases (i.e. SLE, Systemic sclerosis (Ssc), Multiple 

sclerosis (MS) although unfortunately none were available for diseases that can 

easily be confused with RA in the an EAC.  8 datasets were obtained (detail 

described in Table 5-2). Of note, the RA patients in these datasets were from 

different stage of the disease as there is no other early RA dataset available. The 

information used was therefore from establish RA patient (236, 312, 380, 381). 

The Illumina dataset was analysed using a similar workflow as mention earlier for 

Δβ   

The candidate CpGs were selected by the filtering steps below:  

1) Selecting CpG with Δβ ≥ 0.10 and p-value ≤ 0.01 between HC and RA  in 

naïve CD4+T-cells  

2) Keeping CpG with Δβ ≥ 0.05 and p-value ≤ 0.05 between HC and RA in (i)  

total CD4-T-cells and also (ii) in PBMC  

3) filtering out CpG with Δβ ≥ 0.10 or p-value ≤ 0.01 between HC and RA in 

NK cells, B-cells, monocytes  

4) Excluding CpG with Δβ ≥ 0.10 or p-value ≤ 0.01 between HC and IA (SLE, 

Ssc, and MS) in  (i) PBMC  or (ii) WB as non-RA specific 



162 

 

 

 

 

 

Figure 5-5 Results of the filtering criteria to select candidate CpG by my 3rd strategy 

Sample HC vs early RA HC vs RA HC vs RA HC vs RA HC vs RA HC vs early/est RA HC vs SLE HC vs Ssc HC vs MS

Cells Types naïve CD4+T-cell naïve CD4+T-cell CD4+T-cells PBMC B-cells Monocytes PBMC PBMC WB

Δβ ≥ 0.10 ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.10 ≥ 0.10 ≥ 0.10 ≥ 0.10 ≥ 0.10

p-vlaue ≤ 0.01 ≤ 0.05 ≤ 0.05 ≤ 0.05 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01

Result (CpG) 1,508 204 549 824 9,963 19,829 66,592 100,204 4,122

Number of 

Target

DM CpG

Number of 

candidate CpG

Result 1: 0 0

Result 2: 1 1

Result 3: 27 11

Result 4: 27 12

Target DM condition Non-target DM condition

Combination of dataset

All Target DM dataset

Number of 

Non-Target

DM CpG

141,285
naïve CD4 T-cell (early RA) +CD4+T-cells + PBMC

naïve CD4 T-cell (early RA) + PBMC

naïve CD4 T-cell (early RA) +CD4+T-cells 

Candidate 

CpG

141,285 

CpGs

141,285 CpGs

Target DM CpGs - Non target DM CpGs = Number of cadidate 
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Selection using these criteria and the datasets above resulted in no CpG fitting 

the rules (Figure 5-5, result 1) mainly because selected list of DM CpGs in naïve 

CD4+T-cell (from two datasets; early RA and established RA), total CD4+T-cell, 

and PBMC did not share any candidate.  The filtering criteria needed to be 

relaxed.  

The datasets with highest priority in this analysis is data from PBMC because it 

is the most desirable type of sample for such assay.  It needs to be balanced 

against the 2nd important criteria which is to be selected from naïve CD4+T-cell 

from early RA patient as it is the only dataset from the type of patient that is 

relevant to the question asked (i.e. diagnostic). Indeed, to develop a diagnostic 

biomarker, it is important to detect the changes that occur in the early stage of 

the disease, while heterogeneity is likely to occur over the course of disease, 

further complicated by different treatment used and responded to or not.  To 

illustrate this, the direct comparison of DM CpG from early (my dataset) versus 

established RA (American research group dataset (312), personal 

communication with access to raw data granted) in purified naïve CD4+ T-cells 

showed only 44 CpGs in common.  

A series of different dataset combination for selecting candidate DM CpG was 

performed and the results are showed in Figure 5-5.   

➢ Result 2: Selecting DM CpG common to naïve CD4+T-cell (early RA), CD4+T-

cell, and PBMC  based on [Δβ + p-value] for target DM CpGs gave 1 candidate 

CpG associated with  

o IRF8 (interferon regulatory factor 8),  transcriptional activator or repressor 

binds to the upstream regulatory region of type I IFN and IFN-inducible 

MHC class I genes 

 

➢ Result 3: Selecting DM CpG common to naïve CD4+T-cell (early RA) and 

PBMC based on [Δβ + p-value] for target DM CpGs gave 11 candidate CpGs 

(full list described in Appendix 8.), the top 5 most relevant genes being; 

o HDAC4 ***(histone deacetylase 4), alters chromosome structure and 

affects transcription factor access to DNA 

o MIR21** (microRNA 21), involved in post-transcriptional regulation of 

gene expression (most validated target are tumour suppressors) 

o PSMB9 (proteasome 20S subunit beta 9), An essential function of a 

modified proteasome, the immunoproteasome, is the processing of class 

I MHC peptides 
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o PTMA (prothymosin alpha), may mediate immune function by conferring 

resistance to certain opportunistic infections 

o S100P (S100 calcium binding protein P), involved in the regulation of a 

number of cellular processes such as cell cycle progression and 

differentiation  

Note;  ** genes associated with 2 CpGs 

*** genes associated with 3CpGs 

 

➢ Result 4: Selecting DM CpG common to naïve CD4+T-cell (early RA) and 

CD4+T-cells on [Δβ + p-value] for target DM CpGs gave 12 candidates CpG 

(full list described in Appendix 8) the top 5 most relevant genes; 

o STAT5A (signal transducer and activator of transcription 5A), mediates 

cellular responses to the cytokines and other growth factors.  

o PPTC7 (protein phosphatase targeting COQ7), T-Cell Activation Protein 

Phosphatase 2C 

o ZBTB17 (zinc finger and BTB domain containing 17), ranscription factor 

involved cell cycle progression and plays a critical role in early lymphocyte 

development 

o NAMPT(nicotinamide phosphoribosyl transferase), involved NAD+ 

biosynthesis, reported to be a cytokine (PBEF) that promotes B cell 

maturation and inhibits neutrophil apoptosis. 
o NCK2 (NCK adaptor protein 2), may involve in the regulation of receptor 

protein tyrosine kinases pathways and  IL-2 Pathway 
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5.3.1.4 Concept discussion and decision making as to which candidate to 

pursue. 

All strategies for the selection of candidate CpG shared a common focus on the 

methylation difference between HC and early RA in naïve CD4+T-cells which 

were showed to play major role in an early stage of disease development. It was 

therefore based on the hypothesis that such methylation change occurred early 

in RA and are related to the disease pathology.   

Strategy 1 privileged my original dataset, being highly specific for naïve CD4+T-

cells DM between HC and early RA, but with the major caveat that a qMSP assay 

may not work on mixed cell population as the DNA methylation status at the 

candidate CpG may be “diluted” in the template DNA without naïve CD4+T-cell 

purification or at least total CD4+ sorting before DNA extraction. Mitigating for this 

by filtering out CpG that were NOT highly methylated in other cells types was 

nonetheless part of the strategy, which following additional consideration for 

primer design and resulted in a list of 10 candidates, of which some clearly had 

been related to the disease before. This design should allow a qMSP to be 

successful on DNA extracted from CD4+T-cell and potentially from PBMC but 

less likely on WB. 

 

Strategy 2 attempted to improve the detection of methylation signal from T-cells 

while working with a mix population of cells by using more data resources for 

other cell types to select CpG with a methylation status that was specific to T-

cells compared to other cells in PBMC. This generated a list of 5 candidates, that 

did not seem very relevant to the RA disease pathogenesis (except maybe 

CD40L) but maybe over biased towards the lineage indeed (i.e. CD4+T-cells).  

 

Strategy 3 worked differently from strategy 1 and 2. It simply selected candidate 

CpGs based on the difference in methylation levels (Δβ) between HC and RA in 

T-cells being large enough so that it could still be observed when diluted (i.e. in 

PBMC/WB). Thus, candidate CpG are those with large Δβ in naïve-CD4+T-cells, 

total CD4+T-cells, and PBMC while not showing Δβ in other cell types (i.e. CD8, 

B or NK cells) and not showing Δβ in other diseases.  Ideally only early RA 

methylation data should be used and clearly established RA data had to be 

disregarded. Altogether, the strategy 3 gave a list of 22 candidate CpGs.  
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Obtaining sufficient methylation information to support the analysis according to 

these strategies was a major limitation.  The results from strategy 1 used only my 

methylation dataset as resource for selection, but was highly selective For 

strategy 2, aimed  for WB (or PBMC) as input material, which needed the 

methylation status of the candidate to be 100% methylated in all other types of 

cells to confirm that the demethylation in T-cells was really distinct between HC 

and RA. This was extremely limiting as the list of gene fitting these rules was 

maybe (“too”) highly CD4+T-cell specific and no longer disease related.   

The limitation for strategy 3 analysis was the lack of data truly relevant resources 

as ideally, it needed data of both HC and early RA  in many cell types also PBMC 

or WB  to account for the dilution effect in DNA from mixed cell population and 

also needed data of other early IA (rather than SLE and MS) to exclude DM 

shared with other IA, hence not absolutely specific for RA.  There was too few 

datasets available to make this analysis as perfect as I would have wanted.   

There was no overlap between the results of strategy 1 and 3 suggesting that 

they restricted the selection process in different ways bringing different strength  

to each selection list.  

8 candidates CpGs from 3 strategies were chosen for the next steps, for target 

verification and assay development as listed below :  

 

➢ TNF : The methylation pattern of the candidate CpG associated with the 

TNF gene (and the neighbour CpG +/- 500 bp from the array data) showed 

ideal methylation pattern for assay design. the region was demethylated in 

naïve CD4 T-cells (median β-value= 50%) while methylated in monocytes 

(86%). The DM between HC and RA in naïve CD4+T-cells was also high 

(Δβ= - 22%). This is  also a promising target as TNF involvement with RA is 

well known. Furthermore, I had already  confirmed the DM by bisulfite 

sequencing (Thesis result part1,) in total CD4+T-cells in early RA patient in 

the overall region surrounding the candidate CpG.  

➢ IFITM1 : Methylation pattern at candidate CpG of (median β-value = 52% 

for naïve CD4+T-cells and β= 86% for monocytes HC) and the nearby CpG 

were good for assay design. The DM between HC and RA in naïve CD4+T-

cells is also high (Δβ= -20%). 

➢ RPTOR  and ATP6V1H : The methylation pattern of the 2 CpG associated 

with RPTOR and ATP6V1H meet all criteria of strategy 2and also show 
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good DM in naïve CD4+T-cells (Δβ = - 14% for RPTOR and - 21% for 

ATP6V1H. 

➢ IRF8:  IRF8 obtained from the most strictness criteria that DM in naïve CD4-

T-cells (Δβ = 14%), CD4+T-cells (Δβ = 7%)  and PBMC (Δβ = 5%).   

➢ HDAC4:  HDAC4 associated with 3 candidate CpGs. This CpGs located in 

a close proximity location in the genome and have high Δβ between HC and 

RA in naive CD4+T-cells (average Δβ = -15%)  and PBMC (average Δβ = -

7% )  which could facilitate the biomarker assay design to detect the 

methylation change.   

➢ MIR21: associated with 2 candidate CpGs, DM in naïve CD4+T-cells 

(average Δβ = -16%) and PBMC (average Δβ = - 6%), and 1 CpGs DM in 

naïve and total CD4+T-cells but not PBMC. 

➢ PSMB9: show good DM in naive CD4+T-cells (average Δβ = -21%) and 

PBMC (average Δβ = -9%).  The neighbour CpGs (+/- 500 bp from the 

candidate CpG) show similar methylation pattern. 

The visual display of the methylation pattern in different cell types for selected 

candidates ( and the CpG in +/- 1000 bp proximity) are showed as heatmaps of 

β-value and as Δβ (Figure 5-6 and Figure 5-7).
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Figure 5-6 Heatmap of illumina dataset methylation level (β value) in candidate 

genes selected from strategy 1 and 2in different cell types for the top candidate CpG 

(highlight in green) and +/- ~1000 bp neighbour CpG. The methylation levels (beta-

values) display from yellow for no methylation to blue high levels (as shown in the 

legend on the right side). The candidate CpGs/genes selected from strategy 1 (TNF 

and IFITM1) and 2 (RPTOR, ATP6V1H) should show low methylation level (0-0.6) in 

the target cells; naïve CD4+T-cells and CD4+T-cells and have high methylation level 

(0.8-1) in the non-target cells; monocytes and CD8+T-cells, NK cells, B-cells, and 

granulocytes.  
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Figure 5-7 Heatmap of illumina dataset methylation differences (Δβ) in candidate 

genes selected from strategy 3 between HC and RA patients from different cell types 

of top candidate CpG (and +/- 1000 bp neighbour CpG). The Δβ display from dark 

green for the hyper-methylation (more than 10% difference in Δβ) to dark red for hypo-

methylation (more than 10%) in RA. The candidate from strategy 3 (IRF8, HDAC4, 

MIR21, and PSMB9) are expected to have high Δβ (dark colours) in naïve CD4+T-cells 

and PBMC or CD4+T-cells, altogether with low Δβ (light colours) in other cells type.  
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5.3.2 Target verification : Bisulfite sequencing validation for the 

IFITM1  

The methylation status of the region surrounding the candidate CpGs selected 

by the analysis should be verified to develop the assay. The illumina DNA 

methylation data of CpGs related to IFITM1 was plotted against the position in 

genome (Figure 5-8). This allowed to define a region of 232 bp for sequencing .   

The assay was optimised for this target region amplification and sequencing 

steps using fully methylated bisulfite converted control DNA. The successful 

assay was then used to access methylation in HC/patient samples in different 

cell types.  

 

5.3.2.1 Bisulfite sequencing assay optimisation 

Primer design 

The Forward and reverse primers were designed to amplify the sense strand of 

bisulfite converted DNA from the CpG-island of the IFITM1 gene in the region of 

±150 bp from the candidate CpG. The expected PCR product was 232 bp 

covering 15 CpGs (Figure 5-9). By the rules for primer design for  bisulfite 

sequencing, primers should amplify the region regardless of its methylation status 

so they should not contain any CpG.  However, because of the location of the 

candidate CpGs in the island, it was difficult to design primer without CpG site.  

One unavoidable CpG was allowed in the reverse primer 3’ end. The sequence 

and other details of primers and expected PCR product were described in the 

Appendix 5. 
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Figure 5-8
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Figure 5-9 Bisulfite sequencing primers position on the IFITM1 gene 

sequence. | represents an individual CpG position on the sequence. * marks the 

position of candidate CpG.  Forward and Reverse primer present in blue arrow. 

The expected PCR product is 232 pb presented in bold black line.  
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Optimisation of the PCR amplification  

Amplification of the target and the purity of the PCR product before the 

sequencing reaction are important. PCR reaction was adjusted from the standard 

PCR mixture and conditions to obtain a specific PCR product with a good 

quantity. Range of annealing temperature, Mg2+ concentration, and primer 

concentration were optimised to obtain the optimum PCR condition. The 

optimisation was perform using bisulfite converted methylated DNA control. 

 

➢ Annealing temperature 

Temperature ranging 58-61°C were tested (Figure 5-10,A).  Agarose gel 

electrophoresis showed the correct product size (232 bp).  Higher aneling 

temperatures increased the reaction efficiency up to 60°C and then reduced it.  

➢ Mg2+  concentration 

Increasing Mg2+ concentrations between 1.5, 2, 2.5, and 3 mM were then tested 

(Figure 5-10,B). A 2 mM Mg2+, is the lowest concentration that produces a high 

amount of PCR product  and was chosen to use in PCR reaction. 

➢ Primer concentration 

 Increasing primer concentrations between 0.125, 0.25, 0.5, 0.75, and 1 mM were 

then tested (Figure 5-10,C).  Primer concentration at 0.25 mM produces the 

highest DNA band intensity and was chosen to use in PCR reaction. 

The final fully optimised conditions for the amplification of the IFITM1 target CpG 

island region are described in the Table 5-3. 
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Figure 5-10 Agarose gel electrophoresis showing PCR product of the 

IFITM1 gene amplicon for sequencing A)  at various angling temperature and  

B) Mg2+ concentration , and C) primer concentration. The temperature, Mg2+ 

and primer concentrations that are bold indicated as the selected condition. 
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Table 5-3 PCR Conditions and cycles for the IFITM1 gene amplification. 

 

 

 

  

Stock conc. Reagent Final conc. vol/1 reaction (uL)

10X PCR Buffer* 1x 2

25mM MgCl2 2 mM 0.4

10 mM of each dNTP mix 200 uM of each 0.4

2.5 uM Forward Primer 0.25 uM 2

2.5 uM Revers Primer 0.25 uM 2

5 Unit/ul HotStartTaq DNA polymerase 2.5 U/reaction 0.5

Distilled water 10.7

Template DNA < 1ug/100 ul reaction 2

Total Volumn 20

*Buffer contain 1.5 mM

PCR Cycle

Initial denaturation 95ºC 15 min

Denaturation 94ºC 10 s

Annealing 60ºC 20 s 40 cycles

Extension 72ºC 45 s

Final extension 72ºC 10 min
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Sequencing reaction optimisation   

After successfully amplifying the  IFITM1 target region and cleaning the product, 

the sequencing reaction was performed. The pre-optimized sequencing condition 

previously used for the TNF gene failed to produce a readable sequence for the 

IFITM1 target product (Figure 5-11,A).  Further optimisation was needed for this 

target.   

Various factors may affect the efficiency of reaction including (but not limited to) 

the enzyme, primer or template concentrations.  Varying conditions for these 

factors was tested. The best condition was chosen based on the raw intensity, 

the shape of raw intensity, or/and the electropherogram peak.  The control 

sequencing reaction (using the company template DNA and primer) was also 

performed as a reference for a good sequencing example (Appendix 9). 

➢ Primer concentration  

Various primer concentrations at 40, 80, 160 nM were tested. Considering the 

raw intensity, reducing primer concentration slightly increased the sequencing 

signal intensity. However, only the beginning of the PCR product could be 

sequenced. (Appendix 9). 

➢ DNA Template concentration 

Various amounts of PCR product (0.5, 1, 2, 4 µL) were tested. Lower amount of 

DNA template slightly increased the signal intensity. However, only the beginning 

of the PCR product could be sequenced again (Appendix 9).  Adjusting the DNA 

template and primer concentration at this state did not show major improvement.   

➢ Sequencing enzyme 

Various enzyme concentrations between 0.0625, 0.125, and 0.25X of the ready 

reaction mix were tested. Increasing enzyme concentration notably helped 

improve the signal.  At 0.25X concentration, the whole length of the PCR product 

could be sequenced.  Using this concentration with the primer and template 

optimal concentration, the electropherogram with well-defined peaks and good 

signal-to-noise ratios were obtained (Appendix 9). 

 
The final sequencing conditions are summarised  in Table 5-4. Example of good 
quality sequencing results following full optimisation are displayed in Figure 
5-11, B. 
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Figure 5-11 Sequencing raw intensity and electropherogram using the A) standard 

protocol of the IFITM1 CpG island with poor sequencing data while in B) example of good 

quality sequencing results following full optimisation. Raw intensity shows the signal of 

overall sequencing product and no sign for signal saturation or low signal, dye blobs, and 

primer dimers. The electropherogram peak represents a single nucleotide in the DNA 

sequence. Each nucleotide showed in a different colour; A-green peaks, T- red peaks, 

C-blue peaks and G -black peaks. The good quality sequencing shows well-formed, 

distinctive single. coloured peaks.  CpG positions were labelled.  Methylated cytosine 

shows as CG and the unmethylated cytosine shows as TG.   Arrow points an example 

of equally methylated and unmethylated cytosine.  
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Table 5-4 An optimised sequencing condition for IFITM1 target region. 

 

 

 

 
  

Stock conc. Reagent Final conc. vol/1 reaction (uL)

2.5X Ready Reaction Mix (RRM) 0.25X 1 ul

5X ABI 5Xsequencing buffer 0.75 X 1.5 ul

0.4 uM Primer (forward only ) 0.04 uM 1 ul

Nuclease free water 5.5 ul

DNA Template 1 ul

Total volume 10 ul

PCR Cycle

Initial denaturation 96ºC 1min

Denaturation 96ºC 10 sec 28 cycles

Annealing 50ºC 5 sec

Extension 60ºC 4 min

Hold at 15ºC
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5.3.2.2 IFITM1 bisulfie sequencing performed on patients sample 

The candidate CpG in the IFITM1 genes was selected based on a bioinformatic 

strategy. Ideally, the candidate CpG need to be demethylation in T-cell while 

fully methylated in other cells and it also need to be DM between HC and RA in 

T-cell. The candidate CpG methylation status needed to be checked before 

further use for a biomarker assay development.  Bisulfite sequencing was used 

to access methylation status of different cells. 

 

5.3.2.2.1 DNA methylation of 5 cell subsets  

To ensure that the methylation status is demethylated in T-cells but not in other 

cells at our candidate CpG, the DNA of 5 cells subset was tested.  CD4+T-cells, 

CD8+ T-cells, NK-cells, B-cells and monocytes were used for IFITM1 bisulfite 

sequencing.  PBMC from 3 healthy donors were collected and sorted into 5 cell 

subsets using FACS following cell surface staining for CD4, CD8, CD19, CD56, 

and CD14.  Sorted cells purity was > 95%. DNA from all samples was extracted  

and bisulfite converted. The bisulfite sequencing of IFITM1 gene was performed 

using the optimised conditions mention above.  Methylation of the individual 14 

CpGs out of 15 CpGs in the target region (232 bp) in individual cell subset was 

quantified as % of methylation and presented in Figure 5-12,A.  The methylation 

of one CpG was not quantified due to the its position near the beginning of the 

sequence.   

At the candidate CpG (2nd CpG), levels of methylation observed in monocytes 

(mean 96.53± SD 0.04%) were as expected and were similar to that of B-cells 

(97.28±0.63%). The sequencing result of methylation in CD4+T-cells (81.28 ± 

5.65%), CD8+T-cells (84.48±4.31%) and NK cells (82.81±3.23%) were in the 

same range. These methylation level were higher than expected. This pattern 

appeared the same throughout the other 13 CpGs in the sequencing region. This 

results were not totally unexpected as when I retrieved data from publicly 

available sources, it showed that CD4 as well as CD8 and NK cells showed <60% 

methylation, (Figure 5-12,B).  The methylation levels of theCD4+T-cells in this 

region were not sufficiently distinct from that of these 3 other cell types so that a 

signal coming from these cells could  prevent the detection of methylation 

differences form the CD4T-cells. Thus this region of IFITM1 is unlikely to be a 

good target for qMSP design.  
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Figure 5-12 IFITM1 DNA methylation  

(A) Bisulfite sequencing result from 5 sorted cells subset of HC (n=3).  The 

average percent of methylation at the individual 14 CpG in IFITM1 PCR 

product (232 bp) shows in the plot. The 2rd CpG which is the candidate 

CpG and the only CpG with illumine methylation data available is labelled 

with *.   

(B) Publicly available Illumina methylation data of 5 cells subsets.  

the candidate CpG  (*) and the approximal CpGs 

.  IFITM1 

sequencing region (blue box) is aligned to the chromosome (CpG 

coordinates 315,655 to 315,886).  The sequencing region contain only one 

illumina CpG.  
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5.3.2.2.2 DM of the IFITM1 gene between HC and RA in CD4+T-cells 

Despite the limitation described above, the methylation analysis between HC and 

RA patients was performed using bisulfite sequencing from DNA of purified CD4+ 

T-cells.  CD4+T-cell were isolated from 18 HC and 16 RA frozen PBMC by 

magnetic bead negative isolation. DNA was extracted, quantified and bisulfite 

converted and used  in IFITM1 bisulfite sequencing.  Samples were part of the 

IACON cohort.     

At the candidate CpG position (2nd CpG), methylation in HC and RA was 83.81 

± 6.41% and 80.40 ± 4.35%, respectively (Figure 5-13,A).  The results therefore 

confirm a trend for hypomethylation in RA at the candidate position as well as 

and overall in all others CpGs of the region (except for last CpG ). This is only 

statistically significant in 2 CpGs (5th CpG p=0.045 and 9th CpG p= 0.037) despite 

very small -value (~ 4%) compared to what was observed in naïve CD4+T-

cells. 

An unexpected observation was made. That the results of the sequencing data 

at the candidate CpG site in HC showed a correlation between methylation and 

age, older age subjects tending to have lower methylation. (Figure 5-13, B, rho=-

0.425, p-value=0.1159). This may reflect the overall accumulation of experienced 

memory cells with age in total CD4+T-cells. 

 

RA patients had an age range different from HC (mean 40.08 ± SD14.55 year old 

for HC, 59.88 ±13.00 year old for RA).  The lower methylation observed in RA 

patients may therefore be biased due to the effect age on methylation.  Reducing 

the number of HC to the 11 oldest and keeping the youngest RA patients who 

were far outside  the age range, a 2nd analysis was performed(Figure 5-13, F).  

Over a similar age range, the overall levels of methylation of the candidate CpG 

no longer showed association with age. There was, however, no significant DM 

between HC and RA in the target region in CD4+T-cells although on average the 

methylation level (β value) was lower in RA. This bisulfite sequencing results 

suggest that additional confounding parameters would need to be considered 

when analysing data from real cohorts.   
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Figure 5-13 IFIMT1 bisultfite sequencing result of CD4+T-cells. 

A) The percent of methylation (mean ± SD) of HC and RA at the individual 

14 CpGs on IFITM1 region.  The 2nd CpG is the candidate CpG (Black 

circle).  Statistical analyses comparison of HC and RA were performed 

using the MWU test (*p<0.05, green circle). 

B) The association of age and methylation at the 2nd CpG of HC and RA 

using the linear regression model of overall patient. 

C) The association of age and methylation at the 5th CpG of HC and RA 

using the linear regression model of overall patient. 
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D) The association of age and methylation at the 9th CpG of HC and RA 

using the linear regression model of overall patient. 

E) The association of age and methylation at the 5th CpG of HC and RA 

using the linear regression model of patient in age range 35 to 70. 

F) The percent of methylation (mean ± SD) of HC and RA age range from 

35 to 70 at the individual 14 CpGs on IFITM1 region.   
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Altogether, IFITM1 sequencing in 5 cell subsets highlight the issue in the design 

strategy if not using purified CD4+T-cells. Levels of DNA methylation in total 

CD4+T-cells were higher than observed in naïve CD4+T-cells creating a second 

issue. This confirmed that the principles under strategy 1 (i.e. to detect DM in T-

cells while working with mix population of cells in PBMC or WB) was not optimal 

for IFIMT1.   Strategy 2 which was design to mitigate such issue indeed did not 

retain IFITM1, confirming that the concepts associated with both strategies were 

sound .  In addition, IFITM1 sequencing results in HC and RA in CD4+T-cells 

showed no DM when results were adjusted for age.  Based on these result, I 

decided that the IFITM1 gene was not suitable to use for a full biomarker assay 

development.  

 

At this point in my project and due to the difficulty and time consuming aspects of 

optimising multiple bisulfite sequencing assays and the limitation of my study 

time, I decided to give priority to candidate CpGs from strategy 2 and 3 moving 

forward to developing methylation detection by qMSP assay directly.  
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5.3.3 Development of qMSP assay for target genes  

This section describes the development of an assay for detecting DNA 

methylation of candidate CpGs.  Development of qMSP based on a SYBR green 

detection method was first attempted, however, the successful final assay was 

based on a TagMan detection method. Some of  the candidates were not tested 

due to the nature of sequence surrounding the candidate CpG not allowing primer 

design after bisulfite conversion.  

The TNF gene (top candidate from startegy-1) had confirmed DM by sequencing 

(284). Although there is evidence that the TNF methylation status in other cell 

subsets is going to interfere with the assay in mix cell population, the DM between 

HC and RA was quite significant over a relatively large region. Thus, I believe this 

gene was  worth  keeping on the list of assay development.  

 

The design of assays was attempted for :  

Strategy-1 Strategy-2 Strategy-3 

TNF RPTOR HDAC4, MIR21 

 

5.3.3.1 Optimisation of qMSP for unmethylated DNA target and internal 

control genes, using a SYBR-green based assay 

Primer design 

For the target gene assays, forward and reverse primers were designed to detect 

un-methylated CpG in the candidate genes.  The internal control assay aimed to 

normalise the amount of input DNA was designed to avoid CpG site ensuring 

DNA methylation independent amplification.  Two internal control assays were 

designed using GAPDH and ACTB genes. Designing good qMSP primers to meet 

all primer design rules is difficult.  For some genes, ideal condition could not be 

met, and several version of the primer-set had to be designed (12 pairs). The 

sequences and other details of all primers were listed in the Appendix 5.  
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Optimisation of PCR condition 

The assay optimization of target genes and internal control genes followed the 

same workflow. First, I began with primers optimisation to find the right 

concentration of primers giving the highest fluorescent intensity without 

promoting the formation of primer dimer or non-specific product. Then the primer 

specificity for un-methylated DNA (target gene), and the methylation independent 

amplification (control assay) were checked by comparing the amplification of 

reaction using 100% un-methylated and 100% methylated control DNA as input 

template.  Amplification plot (Ct value), melting curve analysis, and agarose gel 

electrophoresis were considered together to determine the best PCR conditions.  

The final step was testing the reaction efficiency using dilution curves. Of 12 

primer sets, some were dropped in the middle of the workflow. To avoid an 

overload of data, I decided to present  in this part, the optimization of 2 primer 

sets as examples of representative optimisation,1 for target gene assay and  the 

other for internal control assay.   

 

 

Primer validation of target gene assay :  HDAC4 primer-set 

3 primer concentrations (varied from 50-900 nM) of forward and reverse primers 

with 9 combinations were tested. Amplification plot and Ct value of each primer 

condition are show in Figure 5-14,A.  The Highest primer concentration at 

F900/R900 nM gave the best amplification(Ct = 25.72).  Melting curve analysis 

was performed after the PCR reaction to check the specificity of the amplification.  

A single peak (single temperature) in the melting curve analysis, which normally 

means one size of PCR product was observed, suggesting the absence of primer-

dimer or nonspecific amplification, at all primer concentrations (Figure 5-14,B). 

Agarose gel electrophoresis was performed to visually inspect the PCR product 

and to confirm the amplification specificity. The results from agarose gel 

electrophoresis, however, contradicted the melting curve data (Figure 5-14,C).  

At higher reverse primer concentrations, primer-dimer/nonspecific products were 

observed in the gel while a single peak was present by the melting curve analysis. 

The fluorescent signal that was detected and used to obtain a Ct value was, in 

fact, the mixed-signal from the target DNA product and non-target PCR product. 

A negative control (No template control, NTC) was also performed at each primer 

condition. The agarose gel electrophoresis showed a double stranded DNA band 

at ~50 bp, suggesting primer dimers (as well as amplification of un-methylated 

DNA at ~200 bp, Figure 5-14,D).  Although in an ideal reaction, non-
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specific/primer-dimer should be absent in the no-template PCR reaction, in 

practice sometimes this might appeared as a result of consuming of PCR reagent 

resource on a short double stranded DNA product or resulting from annealing of  

primers on each other’s. 

Therefore,  F50/R50 primer concentration that gave the right PCR product with 

more Ct difference between un-methylated DNA and no template control than the 

other conditions was kept forward. The melting curve analysis applied after SYBR 

green-based detection qPCR,  for this primer pair, however, doesn’t seem to be 

useful.  A single peak for both the target PCR product and the non-specific 

product/primer dimer appeared at the same temperature in the melting curve plot, 

while showing a different size in agarose gel. This emphasize the need for using 

agarose gel electrophoresis.    
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Figure 5-14 Primer optimisation of HDAC4 gene.  A) Amplification curve B) 

Melting curve with a single peak at 74oC and C) agarose gel electrophoresis with 

1 PCR product at ~200 bp size and primer dimer at <50 bp) of different 

concentration of forward and reverse primer using UM DNA control as template. 

D) different concentration of forward and reverse primer using UM DNA control 

and no DNA input (label in N). E) Melting curve for NTC showing same pick 

~74oC,  as for the un-methylated DNA PCR product 
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Primer optimisation  for  Control gene assay:  ACTB 

The same strategy was applied, although additional primer concentrations were 

tested at F50/R100 and F50/R200 mM.  The best concentration combination for 

amplification was F50/R200 mM producing the right PCR product (~200 bp) and 

no primer dimer in both 100% un-methylated DNA and NTC. Primer dimer were 

seen when using higher concentration primers on both the agarose gel (~50 bp) 

and as a 2nd peak on melting curve (arrow). The result from the amplification plot, 

melting curve analysis and agarose gel electrophoresis therefore agreed with 

each other for this primer pair (Figure 5-15).  

As mention earlier, the same optimisation workflow was applied for other primer 

sets. In some case, optimising the annealing temperature was attempted to 

improve the result. Lowering temperature was aimed at facilitated amplification, 

and improved the Ct value and band intensity, while the higher temperatures were 

expected to help reduce the non-specific products. Unfortunately, in most cases 

varying the annealing temperature did not ameliorate results. 
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Figure 5-15 Primer optimisation of ACTB gene.  A) agarose gel 

electrophoresis with 1 PCR product at ~200 bp size and primer dimer at <50 bp), 

B) Amplification curve, and C) Melting curve with a single peak or double peak 

(arrow pointed the 2rd peak) of different concentration of forward and reverse 

primer using UM DNA control and no DNA input (label in N) as template.  
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5.3.3.1.1 Specificity for un-methylated DNA 

After obtaining the best working primer conditions for each primer set, the 

reaction was also tested using 100% methylated control DNA versus 100% un-

methylated control DNA to ensure specificity to un-methylated target genes and 

ensure equal  amplification (independent of methylation) for the internal control 

assay. The 12 primer pairs were tested.  The results are presented on agarose 

gel electrophoresis picture (Figure 5-16).   

For the target gene assays, the only primer set that was able to discriminate 

between un-methylated and methylated control DNA was HDAC4. For all other 

candidate genes, the designed primer sets were not sufficiently specific to un-

methylated sequence and showed some levels of amplification for methylated 

DNA. 

For internal control gene assays, GAPGH V1 and V2 primer sets could amplify 

methylated and unmethylated control DNA equally well, however, non-specific 

band appeared in the NTC.  ACTB v1 was also able to equally amplify methylated 

and unmethylated DNA in the absence of primer-dimer (in both reactions with 

template and NTC).  

At this stage, it appear that only ACTB and HDAC4 could fulfil the condition for 

an optimal qMSP assay using SYBR green. 
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Figure 5-16 Agarose gel electrophoresis shows assay specificity of A) 

Internal control genes and B) Target genes of each primer set using different DNA 

templates; UM (100% un-methylated control DNA), M (100% methylated control 

DNA), NTC (no template control).  
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5.3.3.1.2 SYBR green qPCR efficiency 

The last step for assay optimisation was to test qPCR reaction efficiency. 

Standard curve generated by serial dilution of DNA template was performed for 

2 primer genes (ACTB and HDAC4). For the individual assay, dilution curve was 

plotted against template concentration and it’s Ct value and was then fitted to a 

linear regression model. Assay efficiency was calculated from the slope of the 

regression line  (Figure 5-17). 

The efficiency of all assay was over 150% (i.e. more than 2 PCR product by cycle) 

which is not an acceptable efficiency. Too high/low PCR efficiency is usually 

caused by the presence of non-specific/primer dimer product registering 

fluorescence or PCR inhibitor. Nonspecific amplification could be the obvious 

cause for too high efficient in HDAC4. However, this too high efficiency was still 

observed in ACTB assay (with no non-specific product).  This suggest that 

double-strand DNA in the reaction that is not detectable by agarose gel 

electrophoresis or the melting curve analysis may still register fluorescence.  
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Figure 5-17 Standard curve shows PCR reaction efficiency  of A) internal 

control gene; ACTB and B) target gene; HDAC4 using DNA control as template. 

UM (100% unmethylated control DNA), M (100% methylated control DNA), NTC 

(no template control).    
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Technical discussion 

All SYBR green assay optimisation results including primer validation, assay 

specificity test and assay efficiency test of all primer sets are summarised in Table 

5-5. Overall results for developing of qMSP assay using SYBR green-based 

detection method were disappointing. SYBR green-based detection is usually 

performant,  cost-effective and relatively easy to design and set up, relaying only  

on good forward and reverse primers design for different assays. However, in this 

particular case, the SYBR green primer design did not provide sufficient 

specificity. This dye binding to any double-stranded DNA formed during PCR 

(including primer-dimer, and nonspecific product) also  generated false-positive 

signals.  Well-designed primers and assay optimisation to avoid primer dimer or 

amplifying of the non-target sequence were therefore a limiting factor in this 

strategy due to the reduced complexity in the DNA sequence following bisulfite 

conversion.   

Altogether only 4 genes (HDAC4, TNF, MIR21, RPTOR) were  allowing primers 

design (out of the 8 top candidate CpGs selected form 3 strategies) while other 

candidate genes had inadequate nucleotide sequence for primer design or have 

a limited number of neighbouring CpG to ensure specificity of the primer to un-

methylated DNA. Some candidate CpG were also located in the area having  (i) 

a long run of identical nucleotides (i.e. PSMB9),  (ii) a very low GC content 

causing  very low primer tm, (iii) repeat nucleotide pair that like to form a 

secondary structure. Some candidate CpGs were an isolated CpG i.e. ATP6V1H.   

One CpG site in primer was not enough to ensure  specific amplification 

discriminating between un-methylated and methylated sequences.  In this 

experiment, It was very clear that a number of CpG on forward and reverse primer 

highly affects the reaction specificity (summary Table 5-5) and the, only  assay 

discriminating UM and M-DNA  was that which contain 6 CpG in the primer set 

(HDAC4).  An attempt to increase reaction specificity such as increase the 

annealing temperature did not seem to help.   

For all these reasons added to the issue of over 100% efficiency of the PCR 

reaction and time pressure, I decided to stop developing SYBR green-based 

detection qPCR assays and to switch to Tag-man based detection.  
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Table 5-5 Summary of SYBR green qMSP assay optimisation result  

including primer validation, assay specificity test of 12 primer sets.  The ideal 

reaction of internal control gene and target genes were also illustrated. 

  

Assay specificity

Genes
Total 

number of 

CG in F+R 
Temp(°C)

F/R primer 

conc (ng)

Primer 

dimer
Metylation Specificity Ct (UM/M) NTC

Ideal reaction 60 F/R no
Equal amplification

UM / M
none no amp / 40

GAPDH V1 0 60 F50/R50 yes nearly equal detected

GAPDH V2 0 60 F50/R50 yes equally amp detected

ACTB V1 0 60 F50/R200 no equally amp none

ACTB V2 0 60 F900/R50 no nearly equal none

ACTB V3 0 61 F50/R300 no nearly equal none

Ideal reaction 60 F/R no Specific for UM only >6 cycles no amp / 40

HDAC4 V1 6 60 F50/R50 yes Specific for UM ~4 detected

HDAC4 V2 4 60 F900/R900 no no ~5 none

HDAC4 V3 4 60 F50/R50 no no ~5 none

TNF V1 5 60 F50/R300 no no (seems lilkely) ~3 none

TNF V2 2 60 F50/R300 no no <1 detected

MIR21 1 60 F300/R50 no no <1 detected

RPTOR 2 60 F300/R50 no no no amp none

Primer validation Results
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5.3.3.2 Optimisation qMSP condition for target and internal control genes 

using TagMan based assay 

 

qPCR using TaqMan-based detection may help improve the reaction specificity 

that occurred with SYBR green based assay by introducing a probe tagged with 

fluorescence. This ensures that the fluorescent signal comes truly from the target 

product (i.e. no issue with primer dimer or non-specific product).  Introduction of 

the probe also allows more CpG sites in the assay helping to increase 

discriminating power of between un-methylated and methylate DNA.  

Again, I designed 2 types of the assay, one for target genes and one for the 

control gene used to normalise the amount of template DNA input.  Throughout 

the process, 100% methylated or/and 100% unmethylated DNA control were 

used as an input DNA template.  

The assay development followed the same workflow. First, beginning with 

primers design and primer validation to find the right concentration of primers that 

give the highest fluorescent intensity. Then checked primer specificity to 

methylated DNA for the target gene assay, and the methylation independent 

amplification for control assay, then the final step comparing the reaction 

efficiency.  However, I also made the decision to design assays for detecting 

methylated DNA for the target gene assay to increase GC content in primers and 

probes. 

 

5.3.3.2.1 Primers and probes design 

I aim to design 3 target genes assay and 2 internal control gene assay.   

Schematic diagram of primer and probe design of each genes and the position of 

the candidate CpG presents in Figure 5-18. The sequences and other details of 

all primers were listed in the Appendix 5.   
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Figure 5-18 Schematic diagram of primer and probe design  of the target 

genes; A) TNF, B) IRF8, C) HDAC4 and the internal control genes; D) GAPDH, 

E) ACTB.  
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5.3.3.2.2 Optimisation of PCR condition 

Primer validation 

Primer validation was aiming to find the right concentration of forward and reverse 

primers that give the best Ct (yield the lowest Ct). 9 primer concentration of 

forward and reverse primers combination varied from 50-900 nM were tested 

using 10 ng of 100% methylated DNA control.  

For TNF for example, all combination of primer concentration gave very similar 

results (Figure 5-19) while for GAPDH gene, low concertation of R-primer had a 

clear effect on the amplification independently of the amount of F-primer (Figure 

5-20).   

The final primer conditions that gave the best Ct values were chosen at 

F900/R900 nM for TNF, HDAC4, and ACTB assay, F300/R900 for GAPDH, and 

F300/R300 for IRF8.  

 

The specificity of the assay for methylated DNA 

For target gene assay, the specificity for methylated CpG was preliminarily 

observed by comparing the amplification result of 100% methylated DNA control 

to 100% un-methylated DNA control.  The specificity for the methylated sequence 

was confirmed for TNF and HDAC4 assay as showed by good amplification (Ct 

=28.97± 0.02, and Ct=29.72 ± 0.08) for 10 ng methylated DNA control with no 

amplification at all for 10 ng un-methylated DNA template (Figure 5-19, blue line). 

These assays were future tested for PCR efficiency.   

On the other hand, the IRF8 assay was not totally specific for methylated DNA 

and showed amplification with the un-methylated template. Primer concentration 

at F300/R300 mM which provided the lowest Ct value (Ct= 29.58±0.16) for the 

methylated DNA showed a large cycle different between of two types of DNA 

template (~11 cycles difference) (Figure 5-21). This suggest a possible 

amplification of a 2-11 magnitude which may be considered neglectable. These 

conditions were therefore used for further optimisation steps.  

The methylation independence for GAPDH and ACTB assay was confirmed by 

the equal amplification using methylated and un-methylated DNA (data in 

Appendix 10). 
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Figure 5-19 Amplification plot of A) HDAC4 and B) TNF assay  using forward 

and reverse primer at different concentration (nM). M: 100% methylated control 

DNA, UM: 100% un-methylated control DNA (highlighted by an arrow), NTC: no 

template control. For both assays, the primer concentration at F900/R900 nM 

was chosen for the further test.  The assay specific to the methylated sequence 

was confirmed by no amplification of the un-methylated template. 
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Figure 5-20 Amplification plot of A) GAPDH and B) ACTB assay using 

forward and reverse primer at different concentration (nM). M: 100% methylated 

control DNA, UM: 100% unmethylated control DNA, NTC: no template control. 

The primer concentration at F300/R900 and F900/F900 nM was chosen for the 

further test for GAPDH and ACTB assay, respectively.   
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Figure 5-21 Amplification plot of IRF8 assay A) using forward and reverse 

primer at different concentration (nM). M: 100% methylated control DNA, UM: 

100% un-methylated DNA control (an arrow), NTC: no template control. The 

present of un-methylated DNA amplification suggested no specific to methylated 

DNA of IRF8 assay  B) using methylated and un-methylated DNA at best primer 

concentration, F300/R300 mM.  Nonspecific to the methylated sequence was 

observed at 11 cycles slower. 

 

  



 
205 

 

 

 

Varying annealing temperature  

To improve the IRF8 assay, I also relied to optimise the  qPCR by varying the 

annealing temperature ranging from 58 °C to 64°C.  Increase temperature from 

60 °C to 61 °C helped improve the reaction specificity to methylated DNA (adding 

1.6 more cycle difference between un- and methylated DNA) (Figure 5-22).  

Although increasing temperature improves the Ct-different it ,however, increases 

the actual Ct value from 29 to 34 which is too high. The slope of the amplification 

plot was also less linear suggesting lower efficiency.   

A two-step annealing, performing the PCR at high temperature for 5 sec, follows 

by the normal temperature at 60°C for 55 sec were tested. Using this technique 

helped  maintain the Ct value for methylated DNA at <30 but did not stop 

amplifying un-methylated DNA  with 9 cycle (61°C, 5 sec and 60 °C, 55 sec 

condition) difference between methylated and un-methylated DNA.   

Overall the best condition for IRF8 assay selected for further step used  

F300/R300 nM, PCR annealing/extension temperature at 62°C,5 sec then 60°C, 

55 sec. This gives Ct of 29.58 and 12 cycle difference between M and UM DNA. 

. 
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Figure 5-22 Amplification plot of IRF8 assay at different annealing 

temperature. M: 100% methylated control DNA, UM: 100% unmethylated control 

DNA, NTC: no template control.  
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5.3.3.2.3 TagMan qPCR efficiency 

qPCR efficiency of target gene assay (HDAC4, TNF, and IRF8) and internal 

control assay (GAPDH and ACTB) were accessed using a dilution curve.  The 

amplification of serial dilution of 100% methylated and un-methylated DNA 

controls at a concentration range from 0.2 ng to 50 ng was performed 

(amplification plot in appendix 11).  The Ct value from each condition of the 

individual assay was obtained and plotted against Log (DNA concentration (ng/ 

µL)) (Figure 5-23 for GAPDH, ACTB, HDAC4, TNF, and Figure 5-24 for IRF8).  

Fitting the standard curve to linear regression model provides the slope used to 

calculate PCR efficiency (Figure 5-23). The regression showed true linearity over 

the whole range of concentration suggesting that the amount of DNA input could 

be quite variable (as extracted from real patient’s sample) without composing the 

result.  A Good range of efficiency was observed (90-110% being optimal)  from 

four assays, GAPDH (M:97.74%, UM: 99.07%), ACTB(M: 93.33%, UM: 99.50%), 

HDAC4 (M: 100.39%, UM: not amplified) and TNF (M: 95.71%, UM: not 

amplified), suggesting a good  2-fold amplification of the amount of DNA at every 

cycle and good reliability of the assay. R2 also very close to 1 suggested that the 

model fit well with data. 

For the internal control gene, methylated and un-methylated DNA were equally 

amplified and also showed a similar efficiency.  The efficiency difference between 

un- and methylated DNA were less for GAPDH (1.33%) compared to ACTB 

(6.17%) assay. As a result I chose to use GAPDH as my internal control for further 

work with patient samples. 

For the target gene, HDAC4 and TNF assays were proven specific for the 

methylated sequence at all DNA concentration.  The overall Cts were quite close 

but not totally overlapping for TNF with those for GAPDH and HDAC4 for 100% 

methylated DNA, suggesting small adjustment would be needed when testing 

real samples.  

However, for IRF8 assay (Figure 5-24), the reaction was less specific to the 

methylated sequence as expected, but the amplification still showed good 

linearity on methylated DNA with a stable difference with un-methylated DNA 

although maybe on a slightly reduced range from 0.5-20 ng of DNA.   The reaction 

efficiency was however outside of the acceptable range (M:124.45%, UM: 

83.33%). Therefore, I decided not to use this IRF8 assay, and to concentrate on 

HDAC4 and TNF  for the work with patient samples. 
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Figure 5-23 PCR efficiency of 4 assays 

A) Dilution curve and linear regression trend line of 4 assays; GAPDH 

(green), ACTB (blue), HDAC4 (orange) and TNF (pink).  All assay show a 

good efficiency and good fit of the regression model to the data.  

B) Table descript Ct value from different assay using 100% methylated and 

unmethylated DNA control at different concentration and information form 

liner regression model (R2, slope) and PCR efficiency of each assay. 

  

HDAC4 V1

M UM M UM M UM M UM

50.00 1.70 28.23 28.09 28.89 28.68 27.13 26.92

20.00 1.30 29.38 29.44 30.29 29.95 28.13 27.79

10.00 1.00 30.59 30.27 31.41 31.08 29.06 28.84

5.00 0.70 31.59 31.34 32.24 31.75 30.19 29.95

2.00 0.30 32.85 32.62 33.68 33.15 31.39 31.26

1.00 0.00 33.54 33.85 34.63 34.78 32.32 32.33

0.50 -0.30 34.89 34.92 36.07 35.36 34.06 33.51

0.20 -0.70 36.45 35.95 36.47 34.70 34.98

R
2

0.996 0.998 0.997 0.994 0.991 0.996

Slope -3.377 -3.345 -3.193 -3.334 -3.313 -3.429

Efficiency (% ) 97.74% 99.07% 93.33 99.50% 100.39% 95.71%
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n
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DNA 

(ng/uL)

Log10 (DNA 

ng/uL)

GAPDH v10 ACTB v4 TNF v4 (seq)
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Figure 5-24 PCR efficiency of IRF8 assays 

A) Dilution curve and linear regression trend line of IRF8.  The assay shows 

a poor efficiency. 

B) Table descript Ct value from different assay using 100% methylated and 

unmethylated DNA control at different concentration and information form 

liner regression model (R2, slope) and PCR efficiency of each assay. 

 

  

M UM

50.00 1.70 29.13 37.29

20.00 1.30 29.00 35.96

10.00 1.00 29.98 37.22

5.00 0.70 30.70 37.82

2.00 0.30 32.13 39.47

1.00 0.00 33.28 41.40

0.50 -0.30 34.36 41.92

0.20 -0.70 35.18 46.31

R
2

0.097 0.084

Slope -2.848 -3.799

Efficiency (% ) 124.45% 83.33%

DNA 

(ng/uL)
Log10 (DNA 

ng/uL)

IRF8 v2
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5.3.3.3 Optimised TagMan qPCR assay  

The summary of TaqMan qMSP assay optimisation result including primer 

validation, assay specificity test and assay efficiency of all assay is described in 

Table 5-6.  The ideal reaction requirement for Target gene assay and internal 

control assay also described. 

The successful design assay that will be used to perform on patient samples 

were HDAC4, TNF, and GAPDH. The qMSP reaction composition and cycling 

condition displayed in Table 5-7. 

 

TagMan qMSP technical discussion  

As mention before, not all candidate genes have the potential to be used for 

qMSP assay design. PSMB9 have an inadequate number of neighbour CpG 

around the candidate CpG. PRTOR, ATP6V1H and MIR21 candidate CpG are 

located in an area that are not facilitating primer binding. Because of these 

limitations and also time restrictions, the candidates with lower potential or more 

complicated design could not be developed. 

The TagMan based detection method increases the specificity of PCR by the 

introduction of fluorogenic-labelled probes allowing an added layer for the target-

specific signal detection compared to SYBR green assay which detects 

(any)double-strand nucleotide. 

4 assays; TNF, HDAC4, GAPDH, and ACTB were successfully optimised while 

the IRF8 assay was not optimal most likely due to the lack of sufficient 

specificity/number of CpG sites in the methylated sequence. Optimisation by 

increasing the annealing temperature to improve the reaction specificity had 

limited  usefulness. Experiments using another IRF8 primer set which included 

one more CpG was also tested but show no improvement (detailed in 

Appendix11, IRF8 V.2).  
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Table 5-6 Summary of TaqMan qMSP assay optimisation result including 

primer validation, assay specificity test and assay efficiency test of 6 primer sets.  

The ideal reaction of internal control gene and target genes were also illustrated. 

 

 

 
 
 
 
 
 

Table 5-7 Optimised Tag-man qMSP reaction composition and cycling 
condition. 

 

 

 

 

  

Assay specificity

Genes

Total number 

of CG in 

F+R+P 

Temp(°C)
F/R primer 

conc (ng)

Probe conc 

(ng)
Metylation Specificity ΔCt (UM/M) NTC

Ideal reaction 60 F/R P
Equal amplification

UM / M
none no amp 

GAPDH 0 60 F300/R900 250 equally amp UM and M

ACTB 0 60 F900/R900 250 equally amp UM and M

Ideal reaction 60 F/R no Specific for UM only
>6 cycles

no amp 

HDAC4 4 60 F900/R900 250 Specific for M no amp for UM

TNF 6 60 F900/R900 250 Specific for M no amp for UM

IRF8 3 62 5s,60 55s F300/R300 250 no ~10

IRF8 V2 4 60 F50/R50 250 no ~8

T
a
rg

e
t 

g
e
n

e
s

no amp

Primer validation Results

 C
o

n
tr

o
l 

g
e
n

e
s

<1 no amp

qPCR TagMan assay

Stock conc. Reagent

GAPDH HDAC4 TNF

2X universal mastermixII no UNG 1X 1X 1X

vary F primer 300 nM 900 nM 900 nM

vary R primer 900 nM 900 nM 900 nM

2.5 uM Taqman probe 250 nM 250 nM 250 nM

DNA template 20 ng/uL 20 ng/uL 20 ng/uL

Total Volumn  20 ul

Final concentration

PCR cycling condition

Step Temperature Time

Initial activation 95 C 10 min

Denaturation 95 C 15 s

Annealing/Extension 60 C 60 s
50 cycles
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Similar to the SYBR green assay discussion, several factors are involved in the 

success of qMSP reaction. The nature of the lower DNA complexity after bisulfite 

conversion is a major challenge .  A dinucleotide repeats or long run of identical 

nucleotides near the candidate CpG cause the difficulty in designing good primer. 

The low CG content also affects primer binding and tm.  In qMSP assay, primers 

could be designed to detect either methylated or un-methylated sequence.  By 

choosing to design assay on methylated DNA, the use of CG instead of TG bases 

in primer sequence increase primer tm making  the reaction more specific. Thus, 

designing primer to detect methylated sequence proved a good choice as it  

resulted in better assay performances.   

The TagMan qPCR technology either the one for gene expression assay or qMSP 

assay was known for its high-throughput quantification, high sensitivity, and 

reproducibility(259, 382).  The TagMan qMSP assay were showed to accurately 

determine the relative prevalence of a particular pattern of DNA methylation.  

For quantification, the methylation level in samples relies on the relative 

quantification method with normalisation to an internal control gene. It is also 

important to ensure that the assay efficiency of all genes are equal (or nearly 

equal) and within the acceptable range of 90-110%.  

For the sensitivity of the assay, the dilution curve analysis confirmed the good 

working range of DNA input between 0.2 ng to 50 ng of  DNA.  For the patient 

samples with unknown methylation level, I therefore decided to use 20 ng 

considering that the detection of 0.2 ng was still in linear range and is theoretically 

equivalent to 1% methylation in 20 ng DNA. This amount of DNA input is also in 

line with others published assays (10 to 100 ng) (260, 287, 383, 384). 

In the next step, the well-optimised qMSP assay; TNF and HDAC4 were tested 

in patient samples to determine whether they can be used as a diagnostic 

biomarker for RA or they used as a marker to predict the response to the 

treatment. 
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5.3.4 Performance of the qMSP assays in RA and Non-RA 

classification performed on patients samples 

To prove whether methylation of the HDAC4 and TNF promotor at the candidate 

loci can be used as biomarkers for the classification of RA, the optimised qMSP 

assays were tested on patient samples with different diagnoses including RA, 

versus non- RA arthritis (e.g., possibly UA, PSA, reactive arthritis, connective 

tissue or gout),  as well as in healthy donors.  

The experimental design and analysis are described in the flow chart below. 

 

 

Figure 5-25 Flow chart for testing the qMSP assay performance as 
diagnostic biomarker   
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5.3.4.1 Determination of the best type of materiel to use in patients : WB, 

PBMC or CD4+T-cells 

For biomarker development, the design of the biomarker assay would benefit 

from the least processed sample, in order to limit variability introduced during 

additional processing steps.  To decide which type of samples is best suited to 

use for a quantitative assay, different samples types: CD4+T-cell, PBMC and WB 

were preliminarily tested in a small group of patient with a different diagnosis (HC, 

RA and UA).  Samples could not be matched for the same individual, however, 

they were selected based on a similar age range. All samples were part of the 

IACON cohort. WB DNA had previously been extracted for a similar study (378). 

Frozen PBMC cells  and CD4+T-cells isolated from frozen PBMC by magnetic 

bead negative selection were also used.  The number of sample and the age 

range for each group of samples for the different diagnosis are described in Table 

5-8. 

DNA isolated from these cells was bisulfite converted and used in the qMSP 

assay.  For each sample, target gene reactions were run in parallel to the control 

reaction. 100% methylated, 100% unmethylated DNA controls, and NTC were 

included in each plate. Methylation level (%) were quantified from the relative to 

100% methylated DNA control as described in the method section. % Methylation 

for both the TNF and HDAC4 qMSP quantification are described in Table 5-8 and 

illustrated by boxplot in Figure 5-26.  
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Table 5-8 Description of results for levels of methylation (%) of the TNF and 

HDAC4 gene determined by qMSP in different clinical groups   

 

 

Statistical analyses comparing clinical groups were performed using MWU test or 

the Kruskal-Wallis test followed by Dunn’s multiple comparison test, for the TNF 

and HDAC methylation assays  for each cell type.  Results were not corrected as 

only used for establishing best type of samples to use. 

  

A    TNF

Mean SD Mean SD

HC CD4+T-cells 6 39.15 7.27 4.76 0.56

RA CD4+T-cells 6 44.50 7.50 2.18 0.90

HC PBMC 6 41.83 5.53 6.59 1.73

RA PBMC 6 39.67 6.77 3.80 1.35

UA PBMC 6 41.67 4.23 5.71 1.01

RA WB 9 55.78 15.79 6.07 2.03

UA WB 5 43.00 9.57 6.19 1.59

Comparison test MWU test

Cell type P value

CD4+T-cells HC RA 0.0022

PBMC HC RA 0.0152

PBMC HC UA 0.4848

PBMC RA  UA 0.0260

WB RA  UA 0.7972

B    HDAC4

Mean SD Mean SD

HC CD4+T-cells 6 39.15 7.27 16.31 6.34

RA CD4+T-cells 6 44.50 7.50 8.40 3.26

HC PBMC 6 41.83 5.53 15.21 5.40

RA PBMC 6 39.67 6.77 14.85 4.70

UA PBMC 6 41.67 4.23 13.53 2.05

Comparison test MWU test

Cell type P value

CD4+T-cells HC RA 0.0260

PBMC HC RA 1.0000

PBMC HC UA 0.8180

PBMC RA  UA 0.9370

Comparison

Age
Sample type

Diagnosis n

Diagnosis n

Methylation (%)

Methylation (%)

Sample type
Age

Comparison
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Figure 5-26 Boxplot of the levels of methylation (%)  in CD4+T-cells, PBMC 

and WB in different clinical groups for the TNF (A) and HDAC4 (B) assays. 

Statistical analyses were performed using MWU test ( 2 groups) or the Kruskal-

Wallis test followed by Dunn’s multiple comparison test (3 groups), (**p<0.001, 

*p<0.05, ns non-significant). 
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For TNF qMSP assay  

The methylation levels (mean±SD) in HC CD4+T-cells and PBMC were 4.76 ± 

0.56% and 6.59 ± 1.73%, respectively; in RA they were 2.18 ± 0.90% and 3.80 ± 

1.35%. Of note, the methylation levels quantified by the qMSP assay showed 

lower readings compared to the methylation levels (%) detected in publicly 

available Illumina methylation wide array dataset (~40% for CD4+T-cells and 

~45% for PBMC in HC) or our bisultfie sequencing data (~45% for CD4+T-cells 

in HC). This difference in % of methylation detected between the 2 techniques 

will future discuss in the discussion part.   

Nevertheless, The TNF qMSP methylation levels in RA were clearly lower than 

in HC  in CD4+T-cell (2.2 fold reduction in median/mean, p=0.002) as well as in 

PBMC (1.7 fold, p= 0.0152).  The higher fold-reduction in methylation in CD4+T-

cells suggested that DM in this locus is highly T-cells specific. The lower fold-

reduction in PBMC is likely to results from a “dilution” effect on the overall 

methylation levels, as CD4+ T-cells represent about >50% of PBMC.   

In PBMC, DM between RA and UA (3.80 ± 1.35% and 5.71 ± 1.01%) was 

observed, with a 1.5 fold reduction (p=0.026) while no significant DM was 

detected between HC and UA. This suggesting that the TNF methylation in PBMC 

can differentiate between RA and non-arthritis group thus has the potential to be 

used as a diagnostic biomarker which would be easier access source of material 

than purified CD4+T-cells.   

In WB, The difference in methylation between RA (mean 6.07 ± 2.03%) and UA 

(6.19 ± 1.59%) samples was not statistically significant (p=0.797).  

 

For HDAC4 genes,  

Methylation levels in RA were lower than HC in CD4+T-cells (p = 0.026), however 

no difference in PBMC. DM between HC and RA was clear in CD4+ T-cells (1.94 

fold reduction in CD4+T-cells) suggesting that DM in HDAC4 is also highly 

CD4+T-cells specific. The lack of DM using PBMC suggests that the signal was 

highly diluted by other cells in PBMC (compared to the TNF gene signal notably). 

This was an important observation, suggesting that in RA the lower methylation 

of the TNF gene in PBMC DNA may also results from lower methylation in 

CD8+T-cells, B-cells or NK cells in RA although data publicly available however 

in established RA are not suggesting significant DM in any individual cells types.  
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There was also no change in HDAC methylation levels between RA compared to 

UA in PBMC samples. The HDAC4 qMSP assay cannot differentiate RA group 

from UA or even RA from HC. This suggest that HDAC is not likely to be a have 

value as a biomarker of RA diagnosis, although it confirms that DM is important 

as well as CD4+T-cell specific from a disease mechanism point of view.  

These results altogether, suggested that WB cannot be used for a diagnostic 

biomarker test, as the dilution effect of having DNA from non-CD4+T-cells in the 

samples was limiting the ability to detect changes.  Therefore, PBMC which is the 

next least processed type of sample allowing discrimination was chosen for 

further use to study the value of the TNF qMSP assay as a diagnosis biomarker.  
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5.3.4.2  Discovery cohort for determining the potential of the qMSP assay 

as diagnosis biomarker  

 

DM of the TNF gene promoter between RA and other arthritis using qMSP 

assays  

I then examined whether the TNF (and HDAC4) qMSP assay had  the potential 

to be used as a diagnostic biomarker, using PBMC DNA of patients with RA, other 

types of arthritis (non-RA), as well as healthy individuals.  

A total of 158 frozen PBMC from 65 RA, 64 non-RA (including 11 reactive arthritis, 

37 undifferentiated arthritis (UA), and 16 psoriatic arthritis (PSA)), and 29 HC was 

obtained from our tissue bank. DNA was isolated, bisulfite converted, and used 

as template for the TNF qMSP assay as described earlier.   

This group was selected from the IACON register and were collected recruited 

between 2010-2014. It will be further referred as to the IACON Discovery cohort.  

 

For the TNF  assay (Figure 5-27,A, Table 5-9,A) 

Two samples which had unreliable TNF qMSP value due to poor  quality DNA 

were removed from further analysis leaving 29 HC, 64 RA and 63 Non-RA 

samples (11 reactive arthritis, 36 UA, 16 PSA). Methylation between each 

diagnosis group was significantly different (p=3.5x10-9). Comparing RA to 

individual groups, there was a significant DM with HC (reduction of the median % 

of methylation, -DM= - 3.37% p=1.97 x 10-5), reactive arthritis  (-DM= -3.80 %, 

p= 4.21x10-4), UA (-DM= -3.12%, p= 4.26x10-7) but not with PSA (p=0.155) 

despite higher % of methylation in PsA (-DM= - 2.07%).  In addition, there was 

no significant DM between HC and the reactive or UA groups.  

A clearer view of DM between RA and the overall non-RA group (including 

reactive arthritis, UA, and PSA) was also showed in Figure 5-27,B (-DM= -

3.02%, p=4.1x10-9). This result confirmed that TNF qMSP has the ability to 

segregate RA patient from non-RA arthritis, although less efficiently between RA 

and PsA. Whether it can be used to predict a diagnostic of RA will further be 

investigated using logistic regression in the next section. 
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For the HDAC4  assay (Figure 5-27,C, Table 5-9,B) 

Two samples which had unreliable HDAC4 qMSP value due to poor DNA quality 

were removed from the further analysis. There were also one missing data  

leaving the total of 29 HC, 64 RA and 62 Non-RA samples (10 reactive arthritis, 

36 UA, 16 PSA). Large SDs in the methylation levels were observed between 

groups, (especially reactive arthritis). After performing a statistical analysis, 

methylation between each diagnosis group showed overall significant differences 

(p=0.0452).  Individually, this analysis resulted in a significant, although very 

small -DM between RA and UA (-DM= -7.07%, p=0.0257) while not significant 

between RA and reactive group (-DM= -6.8%, p=1.00) or PSA group (-DM= -

5.59%, p=1.00). Altogether. DM between RA and non-RA group was almost 

significant (-DM= -5.59%, p=0.0027). This data suggested that HDAC4 qMSP 

assay may be used as diagnosis biomarker, although the test performance are 

unlikely to provided added value as it only allows segregation of RA from arthritis 

with a rather low inflammatory profile (UA) but not reactive and psoriatic arthritis. 
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Figure 5-27 Box plot of the levels of DNA methylation (%) for  A, B) TNF   and  

C, D) HDAC4  genes using the qMSP assays in different diagnosis groups. 

Statistical analyses were performed using the Kruskal-Wallis test followed by 

Dunn’s multiple comparison test or the MWU test (***p<0.0001, *p<0.05, ns non-

significant). 
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Table 5-9 Descriptive statistic and statistical comparison of the levels of 

DNA methylation (%)  for A) TNF and B) HDAC4  genes in different clinical 

groups Statistical analyses were performed using the Kruskal-Wallis test followed 

by Dunn’s multiple comparison test.   

 

  

A    TNF
Methylation (%)

Median (IQR)

HC 29 6.79 (4.31 - 8.97)

Reactive arthritis 11 7.22 (6.09 - 11.23)

UA 36 6.54 ( 5.11 - 8.71)

RA 64 3.42 (2.42 - 4.92)

PSA 16 5.49 (8.82 - 6.56)

Comparison test 

Kruskal-Wallis chi-squared = 45.286, df = 4, p-value = 3.4 x 10
-9

Dunn (1964) Kruskal-Wallis multiple comparison

p value

HC RA 1.97 x 10
-5

HC Reactive 1.0000

HC UA 0.7530

HC PSA 0.7064

RA  Reactive 4.21 x 10
-4

RA  UA 4.26 x 10
-7

RA  PSA 0.1555

B    HDAC4
Methylation (%)

Median (IQR)

HC 29 13.83 (10.50 - 21.77)

Reactive arthritis 10 18.63 (8.12 - 42.26)

UA 36 18.90 (12.80 - 22.98)

RA 64 11.73 (9.19 - 16.78)

PSA 16 17.42 (12.10 - 18.50)

Comparison test 

Kruskal-Wallis chi-squared = 9.73, df = 4, p-value = 0.0452

Dunn (1964) Kruskal-Wallis multiple comparison

p value

HC RA 1.0000

HC Reactive 1.0000

HC UA 1.0000

HC PSA 1.0000

RA  Reactive 1.0000

RA  UA 0.0257

RA  PSA 1.0000

Comparison

Diagnosis n

Diagnosis n

Comparison
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Modelling of the potential added value of the TNF qMSP assay for an early 

diagnosis of RA 

In this section, I determine whether TNF methylation detected by our qMSP assay 

has added value for the early classification of RA using binary logistic regression 

analysis.  In clinical practice, RA patients are classified using criteria developed 

by the American College of Rheumatology and the European League Against 

Rheumatism developed (353). In this criteria set, RA is defined based on the 

presence of synovitis in at least one joint that cannot be explained by the other 

diagnosis, and achievement a total score of ≥6 out of 10 points. The score comes 

from 4 domains: number and site of involved joints (range 0–5), serological 

abnormality (ACPA or RF, range 0–3), elevated acute-phase response (range 0–

1), and symptom duration (range 0–1) (353). Using these criteria helped 

diagnosing RA earlier but there is still a need for more biomarker especially in 

ACPA negative patients.   

To determine whether TNF methylation levels have a significant contribution to 

classification I used a model including other demographic and clinical variables 

such as age, gender, smoking, autoAb status, TJC, SJC, CRP or DAS. The 

autoantibodies RF and ACPA which are already part of 2010 RA Classification 

criteria were excluded from analysis variables to avoid redundancy and over 

fitting modeling with ACPA notably.  

The analysis was performed first in the overall patient group and then separately 

for ACPA negative patients, which is the group that would have  most benefit from 

my work.  

 

 

Univariate predictive value of theTNF qMSP assay  

The TNF qMSP results obtained for 127 DNA samples from patients classified as 

64 RA and 63 non-RA (included UA, reactive and PSA) (after 2 poor quality 

samples were removed as described earlier), were used in this analysis.  

The different in TNF methylation levels (%) between  RA and Non-RA group was 

highly significant (-DM= -3.02%, p= 4.1x10-9), with lower values in RA group. 

(Figure 5-28, A).  I then performed a predictive analysis choosing a univariate 

logistic regression approach to establish the characteristics of the qMSP assay 

alone (unadjusted). 
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First, the TNF methylation level (%) variable was tested in an binary logistic 

regression to determine its relationship with the diagnosis of RA. Higher levels of 

methylation being protective, the OR for being RA was 0.62 (95% CI: 0.49 - 0.74), 

p = 2.1 x 10-6 suggesting the odds of being RA reduces by 0.62 with each unit 

increase in TNF methylation. The ROC (Figure 5-28, B) was built to describe the 

performance of the assay. The model showed an AUROC =0.197 (95% CI: 0.119 

- 0.276) which can be considered a good classification model between the RA 

and Non-RA groups.  

A second analysis was performed using these results after dichotomization to 

determine if this could improve the performance of the model. This used the 

results of the TNF qMSP assay as a risk category: high and low risk, based on 

above TNF qMSP regression model. Using a cut-off of 80% specificity (a clinically 

acceptable risk) corresponding to a value of 4.49% of methylation, a new variable 

for TNF methylation level was created (as below / above 4.49% methylation) and 

used to define the risk categories as high (below) versus low risk (above).  

The unadjusted logistic regression and ROC curve analysis were performed  

using the TNF risk category (Figure 5-28,C and D). The OR for being RA using 

the high/low-risk category was 8.46 (95%CI: 3.87 - 19.58, p =2.16 x 10-7), which 

was better than using the continuous variable. On the other hand the AUROC of 

TNF risk category (0.741, 95%CI: 0.664, 0.817) was less good than TNF qMSP 

results model, suggesting slightly lower classification performance. 

Descriptive performances of the qMSP risk category were calculated (displayed 

on Figure 5-28,C). Sensitivity was 67.8% suggesting that over than half of the 

study population shows positivity (high risk) for the biomarker. PPV and NPV 

were 77.2 and 71.4%, respectively. This mean 77.2% of the individual positive 

for the marker are actual being RA, and 71.4 % of the negative individual are truly 

not RA patients. Altogether this suggest good discrimination and 74.0% of 

individual in the groups being correctly diagnosed based on the risk associated 

with the patients.  

  



 
225 

 

 

 

 

Figure 5-28 Univariate predictive value of the TNF qMSP assay 

A) qMSP TNF methylation data for the RA and Non-RA group. Crossbar 

presents median of methylation level (%). The statistical analysis 

compares the difference between groups was performed using the MWU 

test. The association between TNF methylation and the classification of RA 

was determined using unadjusted logistic regression determining an odd 

ratio (OR) 
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B) The overall performance of the TNF qMSP levels was determined by an 

AUCROC (95% CI) analysis. 

C) TNF methylation risk category defined as high/row risk of RA using a cutoff 

of the continuous levels of methylation at 4.49% for 80% specificity. The 

confusion matrix of the classification results compared to the actual 

diagnosis result is displayed. Sensitivity, specificity, NPV, and PPV are 

described in the table. The relationship between the TNF risk categories 

and RA was determined using unadjusted logistic regression.  

D) The overall performance of the TNF qMSP risk categorization was 

determine by an AUCROC (95% CI) analysis. 
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Univariate value of the HDAC4 qMSP data  
 

A similar analysis was performed for HADAC4 qMSP data. The difference in 

HDAC4 methylation levels (%) between  RA and Non-RA group was significant 

(Δ-DM = -6.05%, MWU p = 0.0016), with lower values in RA group. (Figure 5-29, 

A). An unadjusted binary logistic regression analysis gave the OR of 0.95 (95% 

CI: 0.91 - 0.98, p = 0.0064) suggesting that HDAC4 methylation has a small value 

for the classification of RA.  The AUROC =0.336 (95% CI: 0.241 - 0.432, Figure 

5-29, B) was not particularly good and furthermore, close to 0.5 (random 

classifier).  

The second analysis using HDAC4 risk category defined a cut-off (80% 

specificity) corresponding to a methylation value of 10.66 %, was performed. The 

unadjusted logistic regression gave a non-statistical significant OR value for 

being RA of 2.67 (95%CI: 1.21 - 6.14, p =0.0168, Figure 5-29, C) and the AUROC 

of 0.599 (95%CI:0.521 - 0.677, Figure 5-29, D) suggesting that HDAC4 high/low-

risk category had less value for the classification RA and non-RA groups.  

Compared to the TNF qMSP assay, the HDAC4 assay showed a very limited 

capacity to distinguish between RA and non-RA groups. Therefore no further 

analysis of both the continuous and categorical variables resulting from the 

HDAC4 assay were performed. 
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Figure 5-29 Univariate predictive value of the HDAC4 qMSP assay 

A) qMSP HDAC4 methylation data for the RA and Non-RA group. Crossbar 

presents median of methylation level (%). The statistical analysis 

compares the difference between groups was performed using the MWU 
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test. The association between HDAC4 methylation and the classification of 

RA was determined using unadjusted logistic regression determining an 

odd ratio (OR) 

B) The overall performance of the HDAC4 qMSP levels was determined by an 

AUCROC (95% CI) analysis. 

C) HDAC4 methylation risk category defined as high/row risk of RA using a 

cutoff of the continuous levels of methylation at 10.66% for 80% 

specificity. The confusion matrix of the classification results compared to 

the actual diagnosis result is displayed. Sensitivity, specificity, NPV, and 

PPV are described in the table. The relationship between the HDAC4 risk 

categories and RA was determined using unadjusted logistic regression.  

D) The overall performance of the HDAC4 qMSP risk categorization was 

determine by an AUCROC (95% CI) analysis. 
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Adjusted analysis of the TNF qMSP assay with other parameters 

 

Altogether, the unadjusted analysis suggested that the TNF DNA methylation risk 

category was better for the prediction based on OR but less so based on AUROC 

results, therefore further analysis will keep testing both the continuous levels and 

the risk category variables to establish the added value of using a TNF qMSP 

assay. Several demographic and clinical parameters are known to be associated 

with RA classification (2, 385-387) and could present co-variance with the qMSP 

assay, therefore limiting its added value while individually, it is highly predictive.   

Demographic and clinical parameters data recorded in this group of 127 patients 

include age, gender, smoking, positivity for RF, ACPA, tender joints count (TJC), 

swollen joints count (SJC), CRP level, a routinely used disease activity score 

(DAS28), and symptoms duration at inclusion for each patients. These were 

retrieved from the IACON and EAC database.  

The descriptive and the individual statistical significance of these data in a 

comparison between RA and non-RA group (MWU and X2 tests) are presented 

in Table 5-10 and plotted in Figure 5-30.  All parameters apart from gender and 

symptom duration were significantly different between the RA and Non-RA group. 

Age and smoking are known risk factor associate with RA, as well as the disease 

characteristic variables (TJC, SJC, CRP), and DAS28, which were higher in RA 

group. The symptom duration which is also part of the chronic inflammatory 

disease classification, show no difference between RA and non-RA groups as 

these were all early IA patients awaiting a classification. The autoantibodies, RF 

and ACPA which are the serological biomarker used as classification criteria are 

obviously associated with RA patients. Because of this, autoantibodies were 

excluded from further multivariate analysis. Altogether, this small groups of 127 

patients was representative of the wider population of people with early IA 

symptoms.   
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Table 5-10 Description of demographic and clinical parameters in overall 

patient  (both APCA positive and negative groups). The descriptive statistic 

(median (IQR) or frequency) and statistical significant (MWU or X2 tests) 

comparison between RA and non-RA group are presented.  * indicated variables 

with a few missing data. 

 

  

Variable Non-RA RA p-value

n= 63 n= 64

Age 40 (33-49) 61.5 (46.75-73) 1.91 x 10
-9

Gender (M/F) 18/45 13/51 0.3806

Smoking (never/smoker) 32/25 * 20/40 * 0.0217

RF (positive/negative) 6/55 * 31/33 5.90 x 10
-6

ACPA (positive/negative) 2/61 29/31 * 2.72 x 10
-8

Duration 6 (3-12) 4 (2-8) 0.2595

Tender joint count 2 (1-6) 9 (5-15.25) 2.64 x 10
-7

Swollen joint count 1 (0-2) 5.5 (1.75-9 3.91 x 10
-7

CRP 0 (0-10.8) 12 (0-23.25) 0.0022

DAS28 2.9 (2.3-3.95) 5.05 (3.68-5.63) 9.6 x 10
-8
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Figure 5-30 Demographic and clinical parameters of 127 patients  shown as 

dot plot (for continuous variables) and the frequency bar plot (for categorical 

variables). Statistical significance (MWU or X2 tests) comparison RA and non-RA 

group are presented.    
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Binary logistic regressions were first performed for all variables individually, to 

determine their unadjusted relationship with the diagnosis of being RA.  

Unadjusted p-value and OR of individual factor  are listed in 1st column of  Table 

5-11.   

The variables that affected RA (OR not equal to 1) and statistically significant (p-

value <0.001) included age, smoking, RF, ACPA, TJC, SJC, CPR, and DAS28 

while gender and symptom duration were not. Of note, in this small cohort,  the 

highest significant OR were obtained for APCA and RF as expected.  

ROC curve for these variables were generated (Figure 5-31) and the descriptive 

characteristics of the individual variable model using a cut-off at 80% specificity 

were calculated (specificity, PPV, NPV) (Table 5-11). The prediction value of 

some clinical variable such as RF, ACPA, and CRP was particularly high 

(AUROC 0.693, 0.726, and 0.654, respectively) in this small group of 127 

patients.  

RF and ACPA which are specific biomarkers for RA showed the strongest 

association with RA as expected. The other known risk factor (i.e. age, gender, 

and smoking) and the disease activity parameters also showed association with 

RA.  

I then verified whether there was any association between the levels of TNF gene 

DNA methylation (%) and demographic or clinical variables to address possible 

cofounding effects. I use Point biserial correlation for categorical variables 

(gender, RF, ACPA, smoking) and Spearman correlation test for continuous 

variables (age, symptom duration, TJC, SJC, CRP and DAS28). The correlation 

coefficient between TNF qMSP result and all demographic or clinical variables 

are low and not statistically significant (Table 5-12). Although age showed a 

correlation coefficient (rho= -0.41, p= 2.01 x 10-6), it was still below the 0.600 

threshold for being considered a relevant relationship with TNF methylation. 

This result suggested that there was no obvious relationship between TNF 

methylation and other parameters. The association between TNF methylation 

and RA status may therefore be not redundant with any other risk factors, thus 

allowing to have added value in a model already using these variables.  
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Table 5-11 Logistic regression of individual clinical parameters in 125 patients.  Regression details, overall performance, and 
performance using categorization (at a cut-off at 80% specificity) are illustrated.   

 

 

 

Table 5-12 The relationship between TNF methylation and demographic or clinical variables. The distributions of the variables were 

tested for normality using the Shapiro-Wilkinson test.  For the continuous variables, the correlation was tested using Spearman’s correlation 

due to the skewed distribution. For the categorical variable, the correlation was tested using point biserial correlation. 

Sensitivity Specificity PPV NPV

Independent Variable OR ( 95% CI) p-value Cut-off value (95% CI) (95% CI) (95% CI) (95% CI)

Age 1.09 (1.06, 1.13) 1.07 x 10
-7 0.809 (0.733, 0.884) 51.0 68.8 (55.9, 79.7) 80.9 (69.1, 89.8) 78.6 (65.9, 86.8) 71.8 (59.5, 84.0)

Smoking: smoker 2.56 (1.22, 5.48) 0.0140 0.614 (0.525, 0.703) smoker 66.7 (53.3, 78.3) 56.1 (42.4, 69.3) 61.5 (47.8, 74.3) 61.5 (47.7, 73.8)

RF : positive 8.61 (3.44, 24.89) 1.5 x 10
-5 0.693 (0.621, 0.765) positive 48.4 (35.8, 61.3) 90.2 (79.8, 96.3) 83.8 (69.0, 89.7) 62.5 (49.7, 82.6)

ACPA: positive 28.53 (7.89, 183.84) 1.14 x 10
-5 0.726 (0.658, 0.793) positive 48.3 (35.2, 61.6) 96.8 (88.9, 99.6) 93.5 (79.4, 96.1) 66.3 (53.3, 94.3)

TJC 1.15 (1.08, 1.24) 3.55 x 10
-5 0.775 (0.689, 0.861) 8.0 65 (51.6, 76.9) 80.7 (68, 89.9) 78 (64.4, 86.4) 68.6 (55.7, 82.4)

SJC 1.30 (1.16, 1.49) 4.14 x 10
-5 0.775 (0.689, 0.861) 4.0 58.3 (44.9, 70.9) 80.7 (68.1, 89.9) 76.1 (61.9, 84.7) 64.8 (51.7, 79.8)

CRP 1.03 (1.01, 1.06) 0.0079 0.654 (0.561, 0.748) 18.0 37.5 (25.7, 50.4) 80.0 (67.7, 89.2) 66.7 (51.1, 77.3) 54.5 (40.9, 71.3)

DAS28 2.37 (1.71, 3.46) 1.24 x 10
-6 0.801 (0.716, 0.886) 4.2 71.4 (57.8, 82.7) 82.0 (68.5, 91.4) 81.6 (68.0, 89.5) 71.9 (58.4, 85.7)

Gender: male 0.63 (0.27, 1.43) 0.2800 NA

Symtom duration 0.98 (0.94, 1.01) 0.3020 NA

Regression

AUROC (95% CI)

Variable Coefficience p-value

Age -0.41 0.0000

Smoking -0.20 0.0319

RF -0.21 0.0201

ACPA -0.16 0.0846

TJC -0.28 0.0019

SJC -0.32 0.0005

CRP -0.15 0.0972

DAS28 -0.33 0.0006

Gender -0.09 0.3284

Symtom duration 0.12 0.1764
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Figure 5-31 ROC curve of demographic and clinical parameters of overall 
patient  for ; (A) continuous variables (B) categorical variables.  
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The individual characteristics of the TNF qMSP assay (Figure 5-28) suggest that 

they have similar performance to demographic and clinical variables and may 

therefore contribute to improving models. All variable that showed an association 

with RA in unadjusted logistic regression (excluding RF and ACPA which are part 

of the 2010 EULAR RA classification criteria) were used in a multiple logistic 

regression allowing several variables to be considered at the same time.  

Different models using multiple binary logistic regression including only the 

clinical variables to be considered were first developed. Because DAS28 utilize 

CRP and TJC / SJC, It would be redundant if DAS28 and those were included in 

the same model. Thus, two types of model were developed, one including the 

significant variables age and smoking with TJC, SJC, and CPR (clinical model 1), 

and another model using age and smoking with DAS28 instead (clinical model 

2). All variable used in each model and the model performance are described in 

Table 5-13.   

OR in the clinical model 1 showed the dominant contribution of Age (OR =1.07, 

p=0.0003) while clinical model 2 showed both age (OR = 1.07, p=0.0003) and 

DAS28 (OR = 1.91, p=0.0008).  Clinical Model 2 also gave a slightly better fit 

(higher R2) and shows slightly better performance for discriminating RA and Non-

RA (higher AUROC). This implies that using DAS28 instead of TJC, SJC, and 

CPR might be a better option in predicting RA in this particular group of patients 

as it is relatively small (n=127). However, this effect was not clear thus I kept 

testing both models in further analysis. 

I developed a second version of each model (model-1.2 and model-2.2) adding 

the TNF qMSP assay results into the clinical models to see whether it improved 

the overall model performance. Adding TNF to the clinical model 1 and 2 

improved the model’s performance (higher AUROC and R2). AUROC increase 

from 0.856 to 0.902 in clinical model 1 and from 0.861 to 0.904 in clinical model 

2. 

For a third version of each model (model-1.3, model-2.3), I added the TNF 

variable as categorical data (TNF risk category) to see whether this improved the 

model performance compared to the continuous variable. Adding TNF risk 

category to the clinical model 1 and 2 improved the model’s performance of 

clinical model alone (AUROC are 0.881 and 0.895 for the clinical model 1.3  and 

2.3, respectively). This suggested that using the categorical TNF measurement 

(risk category ) had added value for both clinical models, however, the continuous 

TNF methylation level (TNF qMSP model-1.2 and model-2.2) showed better 

performance in classifying RA and non-RA groups.  
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In a last version of each model (model-1.4, model-2.4) I tested the impact of 

adding the HDAC4 qMSP data on top of the TNF qMSP data.  HDAC4 was not 

providing any added value to model 1 but maybe a very small (neglectable) 

improvement in model 2 (AUROC +0.001).   
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Table 5-13 Different multiple logistic regression models of overall patient 

show the add up value of qMSP assays to the clinical model. 

   

 

Overall patient

Clinical model 1 Clinical model 1 + TNF qMSP Clinical model 1 +TNF +HDAC4 qMSP

Variable OR p value OR p value OR p value

2.5 % 97.5% 2.5 % 97.5% 2.5 % 97.5%

Age 1.07 1.03 1.11 0.0003 1.06 1.02 1.11 0.0017 1.06 1.03 1.12 0.0017

Smoking: smoker 1.54 0.57 4.17 0.3899 1.42 0.49 4.16 0.5172 1.42 0.48 4.16 0.5209

TJC 1.08 1.00 1.18 0.0516 1.08 0.99 1.19 0.0782 1.08 0.99 1.19 0.0772

SJC 1.08 0.94 1.27 0.2808 1.05 0.90 1.23 0.5626 1.05 0.91 1.24 0.5415

CRP 1.02 1.00 1.06 0.1702 1.02 0.99 1.06 0.2248 1.02 0.99 1.06 0.2111

TNF qMSP 0.69 0.55 0.85 0.0012 0.68 0.52 0.85 0.0018

HDAC4 qMSP 1.01 0.95 1.08 0.6519

R
2 0.492 R

2 0.589 R
2 0.591

AUROC 0.856 AUROC 0.902 AUROC 0.902

Clinical model 1 + TNF risk category

Variable OR p value

2.5 % 97.5%

Age 1.07 1.03 1.11 0.0012

Smoking: smoker 1.17 0.40 3.36 0.7738

TJC 1.09 1.00 1.19 0.0565

SJC 1.06 0.92 1.25 0.4261

CRP 1.02 0.99 1.05 0.3017

TNF risk category 4.77 1.75 13.75 0.0028

R
2 0.558

AUROC 0.881

Clinical model 2 Clinical model 2 + TNF qMSP Clinical model 2 +TNF +HDAC4 qMSP

Variable OR p value OR p value OR p value

2.5 % 97.5% 2.5 % 97.5% 2.5 % 97.5%

Age 1.07 1.03 1.11 0.0003 1.07 1.03 1.12 0.0025 1.07 1.03 1.12 0.0024

Smoking: smoker 1.26 0.44 3.51 0.6598 1.12 0.36 3.44 0.8376 1.12 0.35 3.44 0.8442

DAS28 1.91 1.33 2.85 0.0008 1.85 1.24 2.89 0.0037 1.87 1.25 2.93 0.0035

TNF qMSP 0.67 0.52 0.83 0.0009 0.66 0.50 0.83 0.0013

HDAC4 qMSP 1.02 0.95 1.08 0.6294

R
2 0.497 R

2 0.610 R
2 0.611

AUROC 0.861 AUROC 0.904 AUROC 0.905

Clinical model 2 + TNF risk category

Variable OR p value

2.5 % 97.5%

Age 1.07 1.03 1.12 0.0010

Smoking: smoker 0.92 0.29 2.77 0.8786

DAS28 1.82 1.22 2.83 0.0047

TNF risk category 5.43 1.89 16.82 0.0022

R
2 0.572

AUROC 0.895

Model 2.3

(95% CI) (95% CI)

(95% CI)

Model 1 Model 1.2 

Model 2 Model 2.2

(95% CI) (95% CI)

Model 1.3 

(95% CI)

Model 1.3 

(95% CI)

Model 2.2

(95% CI)
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Overall the best model (2.2) was that including DAS28 and the TNF qMSP data 

(AUROC 0.904) probably as fitting best the small number of patients (n=127) 

compared to the model 1.2. However in all models, some variables contributed 

non-significantly (smoking, CRP, TJC and SJC in model 1 and smoking in model 

2). I re-run these models using an forward regression approach which suggested 

to keep the same variables indeed but improved slightly the OR and p-values of 

the remaining variables but showed a the slightly less good AUROC.    

 

 

  

Model 1

Variable OR p value OR p value OR p value

2.5 % 97.5% 2.5 % 97.5% 2.5 % 97.5%

Age 1.09 1.06 1.34 1.07 x 10
-7 1.08 1.05 1.13 1.75 x 10

-5 1.09 1.05 1.13 4.1 x 10
-6

TNF 0.66 0.53 0.81 1.58 x 10
-4 6.39 2.61 16.56 7.27 x 10

-5

R
2 0.386 R

2 0.527 R
2 0.505

AUROC 0.809 AUROC 0.876 AUROC 0.869

Model 2

Variable OR p value OR p value OR p value

2.5 % 97.5% 2.5 % 97.5% 2.5 % 97.5%

Age 1.07 1.04 1.12 0.0003 1.07 1.03 1.12 0.0023 1.07 1.03 1.12 0.0010

DAS28 1.94 1.36 2.88 0.0005 1.87 1.26 2.90 0.0029 1.81 1.22 2.78 0.0042

TNF 0.67 0.52 0.83 0.0089 5.34 1.89 16.17 0.0020

R
2 0.495 R

2 0.610 R
2 0.572

AUROC 0.863 AUROC 0.903 AUROC 0.894

Age Age + TNF qMSP Age +TNF risk

(95% CI) (95% CI) (95% CI)

Age+DAS28 Age + DAS28 + TNF qMSP Age + DAS28+ TNF risk

(95% CI) (95% CI) (95% CI)
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Analysis repeated in ACPA negative patient  

As mention earlier the ACPA test, used for diagnosis of RA nowadays, (and RF 

to a lower extend) is the most useful biomarker.  People who test positive for 

ACPA are very likely to develop RA (98% specificity (356)), but only about half of 

people with RA show positivity for this this antibody (~50-60% sensitivity in 

population cohorts (356, 358, 359)).  This result in ACPA-negative patients 

experiencing delays in getting an early diagnosis and more importantly an early 

treatment. A novel diagnosis biomarker with an ability to classify patients with RA 

and Non-RA, especially in ACPA-negative patient group is of great clinical 

importance.  

The TNF qMSP biomarker evaluation was performed again in ACPA negative 

patients (n=92) of which 31 were classified as RA (which was indeed about half 

of the overall RA patients) and 61 were Non-RA.  The same analysis process was 

repeated in this group. The description and the individual statistical significance 

of the demographic and clinical data in a comparison between RA and non-RA 

group in APCA negative group are presented in Table 5-14 (MWU and X2 tests) 

and Figure 5-32.    

The TNF methylation was different in RA and significantly lower than Non-RA 

group (-DM = -3.28%, p=1.4x10-8) (Figure 5-33). Unadjusted logistic regression 

analysis was performed. TNF qMSP still predicted RA in ACPA negative group 

with an OR 0.49 (95%CI: 0.34 - 0.65, p =1.25x10-5) and an AUROC of 0.136 

(0.059-0.214). Similar to the overall patient group, TNF risk category had an OR 

of 14 (5.12- 42.8)  and an AUROC = 0.789 (0.699-0.879) did not help improve 

model ability compared to TNF qMSP.  
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Table 5-14 Description of demographic and clinical parameters in ACPA 

negative patient group. The descriptive statistic (median (IQR) or frequency) 

and statistical significant (MWU or X2 tests) comparison between RA and non-RA 

group are presented.  * indicated variables with a few missing data. 

 

 

 

  

Variable Non-RA RA p-value

n= 61 n= 31

Age 41 (34-50) 65 (53.5-75) 1.66 x 10
-9

Gender (M/F) 18/43 4/27 0.1319

RF (positive/negative) 5/55 * 8/23 0.0522

Smoking (never/smoker) 31/24 * 12/19 0.1778

Duration 6 (3-12) 4 (2-6) 0.0225

Tender joint count 3 (1-6) 11 (7-15.5) 7.43 x 10
-6

Swollen joint count 1 (0-2) 7 (2.5-11) 1.81 x 10
-6

CRP 2.5 (0-11.6) 8 (0-19.2) 0.0832

DAS28 2.9 (2.3-4) 5.1 (4.15-5.9) 1.27 x 10
-5
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Figure 5-32 Demographic and clinical parameters of ACPA negative 

patients shown as dot plot (for continuous variables) and the frequency bar plot 

(for categorical variables). Statistical significance (MWU or X2 tests) comparison 

RA and non-RA group are presented.   
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Figure 5-33 Univariate predictive value of the TNF qMSP assay for ACPA 

negative patients 

A) qMSP TNF methylation data for the RA and Non-RA group. Crossbar 

presents median of methylation level (%). The statistical analysis 

compares the difference between groups was performed using the MWU 
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test. The association between TNF methylation and the classification of RA 

was determined using unadjusted logistic regression determining an odd 

ratio (OR) 

B) The overall performance of the TNF qMSP levels was determined by an 

AUCROC (95% CI) analysis. 

C) TNF methylation risk category defined as high/row risk of RA using a cutoff 

of the continuous levels of methylation at 4.16% for 80% specificity. The 

confusion matrix of the classification results compared to the actual 

diagnosis result is displayed. Sensitivity, specificity, NPV, and PPV are 

described in the table. The relationship between the TNF risk categories 

and RA was determined using unadjusted logistic regression.  

D) The overall performance of the TNF qMSP risk categorization was 

determine by an AUCROC (95% CI) analysis. 
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Similarly, unadjusted binary logistic regression was performed for all other clinical 

variables (Table 5-15 and Figure 5-34).  The variables that predicted RA include 

age, TJC, SJC, CRP, DAS28, TNF methylation. RF and smoking variables were 

no longer significantly associated with RA (OR p-value > 0.05) in this ACPA 

negative group.   

Two multiple logistic regression models were developed using age and either 

TJC, SJC, CRP (clinical model 3) or DAS28 (clinical model 4).  Similar to the 

overall patient group, age still be the variable that associated with RA the most. 

TNF qMSP was added in both model (model-3.2 and model-4.2) (Table 5-16) and 

resulted in an AUROC improvement of +4.2% for model 3 and of +4.7 % for model 

4.  

TNF risk category was also added in in both model (model-3.3 and model-4.3) 

(Table 5-16).  Compared to TNF qMSP, the TNF risk category showed less 

improvement to both clinical model (AUROC increased by +3.3% for model 3 and 

of +3.9 % for model 4).  
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Table 5-15 Logistic regression of individual clinical parameters in ACPA negative patients. Regression details, overall performance, 
and performance using categorization (at a cut-off at 80% specificity) are illustrated.   
 

 

 

 

Figure 5-34 ROC curve of demographic and clinical parameters of ACPA negative patient ; A) continuous variables B) categorical 
variables. 

Sensitivity Specificity PPV NPV

Independent Variable OR ( 95% CI) p-value AUROC (95% CI) Cut-off value (95% CI) (95% CI) (95% CI) (95% CI)

Age 1.14 (1.09, 1.21) 9.07 x 10
-7 0.886 (0.814, 0.958) 51.0 80.1 (62.5, 92.5) 80.3 (68.1, 89.4) 67.6 (52.2, 86.1) 89.1 (76.6, 94.4)

Smoking: smoker 2.04 (0.84, 5.12) 0.1184 NA smoker

RF : positive 3.82 (1.15, 13.86) 0.0309 0.587 (0.502, 0.673) positive 25.8 (11.9, 44.6) 91.7 (81.6, 97.3) 61.5 (39.2, 78.7) 70.5 (48.0, 88.4)

TJC 1.16 (1.08, 1.25) 0.0001 0.791 (0.693, 0.89) 8.0 71.0 (52.0, 85.8) 80.0 (67.0, 89.6) 66.7 (50.4, 83.1) 83.0 (68.4, 91.4)

SJC 1.32 (1.16, 1.54) 9.37 x 10
-5 0.806 (0.701, 0.911) 4.0 64.5 (45.4, 80.8) 80.0 (67.0, 89.6) 64.5 (48.0, 80.8) 80.0 (64.6, 89.6)

CRP 1.03 (1.00, 1.05) 0.0684 0.607 (0.486, 0.728) 18.4 29.0 (14.2, 48.0) 79.3 (66.6, 88.8) 42.9 (28.1, 62.9) 67.6 (45.9, 81.3)

DAS28 2.39 (1.63, 3.79) 4.42 x 10
-5 0.804 (0.691, 0.918) 4.2 74.1 (53.7, 88.9) 81.6 (68.0, 91.2) 69 (51.4, 86.1) 85.1 (70.0, 93.0)

Gender: male 0.35 (0.09, 1.07) 0.0859 NA

Symtom duration 0.99 (0.95, 1.02) 0.5744 NA

Regression



 
247 

 

 

 

Table 5-16 Different multiple logistic regression models of ACPA negative 
patients show the add up value of qMSP assays to the clinical model. 

 

 

 

  

APCA negative patient

Variable OR p value OR p value

2.5 % 97.5% 2.5 % 97.5%

Age 1.11 1.06 1.18 5.55 x 10
-5 1.11 1.05 1.19 0.0016

TJC 1.06 0.92 1.22 0.3770 10.90 0.92 1.28 0.3148

SJC 1.09 0.92 1.32 0.3330 1.05 0.87 1.31 0.6069

CRP 1.01 0.98 1.06 0.7750 1.00 0.97 1.04 0.8307

TNF qMSP 0.54 0.34 0.78 0.0031

R
2 0.625 R

2 0.735

AUROC 0.907 AUROC 0.949

Variable OR p value

2.5 % 97.5%

Age 1.11 1.06 1.19 0.0004

TJC 1.07 0.92 1.24 0.5128

SJC 1.08 0.89 1.32 0.3975

CRP 1.01 0.98 1.06 0.8712

TNF risk category 2.13 0.76 2.78 0.0031

R
2 0.712

AUROC 0.940

Variable OR p value OR p value

2.5 % 97.5% 2.5 % 97.5%

Age 1.13 1.07 1.21 0.0001 1.12 1.05 1.22 0.0017

DAS28 1.60 0.99 2.70 0.0630 1.50 0.88 2.71 0.1498

TNF qMSP 0.54 0.32 0.79 0.0053

R
2 0.648 R

2 0.757

AUROC 0.914 AUROC 0.961

Variable OR p value

2.5 % 97.5%

Age 1.15 1.08 1.27 0.0006

DAS28 1.36 0.75 2.55 0.3153

TNF qMSP 18.13 3.35 162.11 0.0024

R
2 0.758

AUROC 0.953

Clinical model 4 + TNF risk category

Model 4.3

(95% CI)

Model 4 Model 4.2

(95% CI) (95% CI)

(95% CI) (95% CI)

Clinical model 4 Clinical model 4 + TNF qMSP

(95% CI)

Clinical model 3 + TNF risk category

Model 3.3

Model 3 Model 3.2

Clinical model 3 Clinical model 3 + TNF qMSP
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For both the overall patient and the ACPA negative patient group, comparing the 

model performances generated from different models suggested that using 

DAS28 instead of the 3 variable (TJC, SJC, and CRP) allowed for a better 

prediction, probably due to the fact that we only had 127 patients. The most 

predictive clinical models without TNF (model-2 and model-4) or with TNF ( model 

2.2 and model 4.2) were directly compared in Figure 5-35.   Higher AUROC and  

R2 obtained for the model with TNF suggests an increase of the overall model 

performances for the classification of RA.  A confusion matrix which compared 

the model prediction result vs the actual result at a particular probability cut-off, 

here chosen again at 80% specificity (as a clinically acceptable risk), are showed 

in the table in Figure 5-35.  Descriptive characteristics (specificity, PPV, NPV and 

accuracy) were calculated.  Adding TNF qMSP to the clinical model 2 and 4 

improve the model accuracy by +2.8 % (from 80.2 to 83.0%) for the overall patient 

group, and +5.2% (from 80.3 to 85.5%) for the ACPA negative group.   

To further confirm the add-up value of the TNF methylation assay to the clinical 

model, an analysis was performed to test the difference between the AUC of the 

2 models, with and without TNF.  

Bootstrapping, which is a resampling technique repeatedly sampling an observed 

dataset to create a large number of a bootstrap dataset can help better estimate 

statistics on a population, and was employed. 2000 bootstrap datasets were 

generated with replacement from the original dataset (n=127). The AUC for both 

the clinical model (model 2) and clinical model with TNF (model 2.2) were 

generated for each bootstrap sample. Mean and 95% CI of bootstrap-AUC were 

retrieved with 0.8708 (0.8693, 0.8723) and 0.9149 (0.9137, 0.9162) for model 2 

and 2.2, respectively.  The absence of overlap between the confidence interval 

of two distributions of AUCs suggests a significant difference between the 2 

AUCs. Paired T-test also confirmed the significant difference (p <2.2 x10-16) with 

an 95% CI of difference in means of -0.0451 to -0.0433. The significant difference 

between the clinical model with and without TNF was also observed in ACPA 

negative patients (model 4 : mean-AUC 0.9236 (0.9222, 0.9251) and model 4.2 

0.9625 (0.9615, 0.9634)). Paired T-test also confirmed the significant difference 

(p <2.2 x10-16, 95% CI -0.0398 to -0.0379). 

Overall, introducing the TNF methylation to the other clinical variable helped 

improve the classification performance for both the overall patient group and the 

ACPA negative group.  This suggested TNF qMSP assay has added value and 

the potential to be used as a diagnostic biomarker.    
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Figure 5-35 The RA classification model and its performance.  The clinical 

model with and without TNF overall performance and performance at cut-off 

giving 80% specificity were illustrated for the overall patient group and ACPA 

negative patient group. ROC curve of the clinical model without (black line) and 

with TNF qMSP(red line) shows in the right. 

  

Overall patient

Clinical model 2 Clincal model 2 +TNF

Model 2 Model 2.2

AUROC 0.8607 (0.7914, 0.93) 0.9043 (0.8489, 0.9597)

R
2 0.497 0.61

At 80% specificity:

cut off 0.5457 0.4934

Specificity 80.0 (66.3, 89.9) 80.0 (66.3, 89.9)

Sensitivity   80.3 (67.6, 89.8) 85.7 (73.8, 93.6)

PPV 81.8 (68.9, 90.6) 82.7 (70.2, 92.1)

NPV 78.4 (64.9, 89.1) 83.3 (70.1, 91.8)

Accuracy 80.2 (71.3, 87.3) 83.0 (74.5, 89.6)

Confussion matrix Reference Reference

Prediction        RA         Non-RA        RA         Non-RA

    RA  45           10         48          10

    Non-RA 11            40          8           40

ACPA negative patient

Clinical model 4 Clincal model 4 +TNF

Model 4 Model 4.2

AUROC 0.9138 (0.8459, 0.9817) 0.9607 (0.919,1)

R
2 0.648 0.757

At 80% specificity:

cut off 0.2826 0.1629

Specificity 79.6 (65.7, 89.8) 79.6 (65.7,89.8)

Sensitivity   81.5 (61.9, 93.7) 96.3 (81, 99.9)

PPV 68.8 (51.9, 88.1) 72.2 (56.0, 99.1)

NPV 88.6 (74.2, 94.6) 97.4 (86.2, 98.9)

Accuracy 80.3 (69.5, 88.5) 85.5 (75.6, 92.6)

Confussion matrix Reference Reference

Prediction        RA         Non-RA        RA         Non-RA

    RA          22           10         26          10

    Non-RA         5            39          1           39
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5.3.4.3 Validation of RA vs Non-RA classification performance of TNF 

qMSP in a replication cohort.  

Measuring the RA/Non-RA classification performance of the TNF qMSP model 

using the data used to train model ( “in-sample fit”) might lead to over-optimistic 

results. To further confirmed the RA/Non-RA classification performance of TNF 

qMSP assay, I therefore performed the experiments and analysis in more 

samples, referred to as a RADAR replication group. This group recruited between 

2015-2018, was selected from the RADAR register which is a continuation of the 

IACON register. However, clinical practice had evolved over time and this register 

was only included patient with clear IA symptoms while most alternative diagnosis 

were no longer consented (hence the proportion of non-RA patients was smaller).  

 

I applied the trained TNF qMSP model as well as the TNF methylation cut-off 

level obtained from the discovery cohort analysis and applied it to the replication 

cohort.  This cohort recruited 157 patients with a PBMC samples from the RADAR 

cohort (continuation of the IACON register) including 126 RA but only 31 non-RA 

arthritis (mainly PsA and UA) as the inclusion criteria in this more recent register 

excluded better patients with profiles suggesting non-persistence and other 

diagnoses (based on clinical experience rather than any particular criteria).  

  

The significantly lower TNF methylation in RA patient compared to Non-RA group 

was confirmed in this dataset (-DM = -1.91%, p=8.36 x10-9, Figure 5-36)  

although slightly lower than in the discovery cohort (-DM= -3.03%, p= 4.1x10-9).  

Unadjusted logistic regression analysis to determine the relationship between the 

diagnosis of being RA with TNF qMSP data confirmed their relationship with OR 

0.49 (95%CI: 0.36 - 0.64, p= 9.04 x 10-7).  The classification performance as 

presented by AUROC 0.165 (0.071 - 0.260) was slightly better compared to the 

discovery cohort.  

Using the TNF methylation cut-off (4.49%) obtained from the first analysis 

(discovery cohort) to discriminate high and low risk for RA, confirmed good 

classification of TNF assay as showed in confusion matrix (Figure 5-36,C). The 

specificity, sensitivity, and accuracy are over than 80% confirming the good 

prediction of TNF qMSP for RA.   



 
251 

 

 

 

 

Figure 5-36 Univariate predictive value of the TNF qMSP assay for overall 
patients in replication cohort. 

A) qMSP TNF methylation data for the RA and Non-RA group. Crossbar 
presents median of methylation level (%). The statistical analysis 
compares the difference between groups was performed using the MWU 
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test. The association between TNF methylation and the classification of RA 
was determined using unadjusted logistic regression determining an odd 
ratio (OR) 

B) The overall performance of the TNF qMSP levels was determined by an 
AUCROC (95% CI) analysis. 

C) TNF methylation risk category defined as high/row risk of RA using a TNF 
cut-off obtaining from the previous trained model (in discovery cohort).. 
The confusion matrix of the classification results compared to the actual 
diagnosis result is displayed. Sensitivity, specificity, NPV, and PPV are 
described in the table.  

D) The overall performance of the TNF qMSP risk categorization was 
determine by an AUCROC (95% CI) analysis. 
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The added-value of TNF qMSP assay on top of other clinical variables on the 

classification performance for this replication cohort could unfortunately not be 

performed.  I am unable to obtain a complete demographic and clinical dataset 

form these patients due to COVID situation, and the access to the patient 

database being restricted, I could not retrieve it personally either.  There is 

currently over 50% missing data for most clinical variable (as shown in Table 

5-17) which prevent me to perform further analysis. It is also unlikely to be 

appropriate to use any method for missing data imputation for this large number. 

Further analysis after obtaining as much data as could be retrieved from NHS 

servers is included in the future plan notably to allow me to submit this work to 

the journal for publication in the few month after submitting my thesis. 

 

 

Table 5-17 Demographic and clinical parameters of the replication cohort. 

The descriptive statistic (median (IQR) or frequency) and statistical significant 

(MWU or X2 tests) comparison between RA and non-RA group were presented.   

 

 

[number NA]  indicated the missing data (number of individual). 

 
  

Variable Non-RA RA 

n= 31 n= 126

Age 52 (35.5, 61.5) 57.5 (49.3, 68.0)

Gender (M/F) 11/20 40/86

Smoking (never/smoker) 14/17 49/75 [2 NA]

RF (positive/negative) 2/14 [15 NA] 50/38 [38 NA]

ACPA (positive/negative) 3/14 [14 NA] 50/36 [40 NA]

Duration 6 (3.7, 8.6) [4 NA] 6.4 (3.7, 11.9) [7 NA]

Tender joint count 5.5 (2.8, 13) [11 NA] 7 (2, 15) [25 NA]

Swollen joint count 3.5 (1, 4.25) [11 NA] 4 (2, 9) [26 NA]

CRP 0 (0, 5) [26 NA] 5 (25, 44.8) [98 NA]

DAS28 4.2 (4, 4.5) [28 NA] 4.4 (3.4, 5.7) [102 NA]
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5.3.4.4 Validation of RA vs Non-RA classification performance of TNF 

qMSP assay using bootstrapping for optimism correction 

In any statistical analysis, there is always a risk of model overfitting. The optimism 

can be estimated by comparing the model performance obtained from the data 

itself (using the same dataset to develop the model and obtain an AUC) to an 

internal/external validation (using a difference dataset to test model). This is what 

I did initially between the discovery and the validation cohort. Although both 

samples set were small, this produced similar results.  

In the absence of a second cohort, an alternative is to create a large number of 

the datasets using the original cohort by bootstrapping. This can be compared to 

the original dataset (here combining both discover and replication cohorts). I 

therefore performed such analysis, which allowed me to calculate a correction for 

optimism using the approach described in (388-390) as displayed Figure 5-37, 

A). 

The combination of both datasets (discovery and the replication cohorts) was 

used in this analysis, here referred to as the original qMSP data (n=284, included 

190 RA and 94 non-RA). The significantly lower TNF methylation in RA patients 

compared to the non-RA group was confirmed in this dataset (Δ-DM = -2.9%, 

p=1.96x10-19, Figure 5-38,A).  

The analysis was then developed stepwise : Figure 5-37,A 

1. A TNF qMSP model-1 was developed from the original qMSP dataset and 

the same dataset was applied to the model to generate an AUC, referred 

to as the original-AUC, which was calculated at 0.171221.  

2. 2000 bootstrap dataset were generated. 

3. Each bootstrap dataset was used to develop a 2nd model. This model-2 

performance was tested using: 

a. The original qMSP dataset to generate a modeled-AUC   

b. The same bootstrap dataset to generate a bootstrap-AUC. 

4. The optimism was calculated as the average of 2000 differences between 

the modeled-AUC and bootstrap-AUC.   

In this analysis, optimism was obtained at -0.000209 (Figure 5-37,B). The 

optimism corrected AUC was then calculated at AUC of = 0.171221-(-0.000209) 

= 0.1714301.  
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After optimism correction, the AUC of TNF qMSP model was therefore lower by 

0.000209 compared to the apparent-AUC, suggesting a small drop in the 

classification performance, but still a very good classification model.  

Overall, the validation of RA classification of TNF qMSP assay either in the 

validation cohort or using bootstrapping and optimism correction using the 

combination cohort, confirmed good performance of this assay and showed 

promising results for the further applicability of this assay.   
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Figure 5-37 Optimism correction using bootstrapping approach: 

A) Bootstrap approach for optimism correction. 

B) Optimism correction result. 
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Figure 5-38 Univariate predictive value of the TNF qMSP assay in the 

combination of discovery and replication cohort.  

A) qMSP TNF methylation data for the RA and Non-RA group. Crossbar 

presents median of methylation level (%). The statistical analysis 

compares the difference between groups was performed using the MWU 

test. The association between TNF methylation and the classification of RA 

was determined using unadjusted logistic regression determining an odd 

ratio (OR) 

B) The overall performance of the TNF qMSP levels was determined by an 

AUCROC (95% CI) analysis (Original-AUC). 
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5.3.5 Performance of the qMSP assays as a marker for MTX 

response performed on patients samples 

I further performed an analysis to see whether TNF and HDAC4 qMSP could be 

extended to the prediction of early RA patient’s response to MTX.  

MTX is the first-line drug in the early treatment of RA. MTX is known to inhibit 

methionine S-adenosyltransferase (MAT), therefore theoretically reducing the 

availability of the methyl donor, S-adenosyl methionine (SAM), used for the DNA 

methylation by DNMT (234, 391-393). Altogether, with the likely effect to induce 

DNA de-methylation, there is however mix evidence showing both increasing and 

inhibitory effect of MTX on DNA methylation depending on studies. High-dose 

MTX in cancer treatment was reported to decrease SAM and increase in global 

methylation (394). Low-dose of MTX for RA treatment was reported to result in 

demethylation of FoxP3 gene in Treg (234) without association with outcome of 

treatment, but on the other hand, to reverse global DNA hypo-methylation (225, 

235).  

In RA patients using WB, Nair and colleagues showed 2 CpG sites with change 

in DNA methylation at 4 weeks after MTX treatment, correlating with response to 

MTX treatment (395).Another study of leukocyte in early RA treated with MTX 

observed that changes in global DNA methylation were not associated with MTX 

response over 3 months but higher baseline global DNA methylation was 

associated with poor response (396). Therefore, there may be loci-specific versus 

global DNA methylation effect of MTX that are not yet fully understood. 

Some patients who receive MTX respond well and achieve remission (defined by 

DAS28<2.6 at 6 month post treatment initiation)  while some do not respond to 

this drug (397). This has important consequences for patients as delaying 

efficacious control of RA results in prolonged inflammation and lead to long-term 

disability and premature mortality. To predict having a good response for the first-

line drug is very important for the patients. Therefore the marker for predicting the 

response to MTX is of necessity 
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This analysis aimed to investigate whether TNF (or HDAC4) gene methylation 

analysis could be associated with differential response to MTX (comparing 

baseline and 6 month samples) and whether the qMSP assays for these two 

genes could be used to predict the patient’s response to MTX and be developed 

as a prognostic or stratification biomarker to tailor the use of MTX only in patients 

who may clearly benefit from it.  

32 RA patients who received MTX (from the discovery cohort) were examined 

based on having available clinical data for the 6 months following treatment 

initiation. Of these patients, 15 achieved remission at 6 months and 17 were still 

presenting active disease (non-remission). PBMC were collected at baseline and 

week 24, and PBMC DNA was used in the TNF and HDAC4 qMSP assays.   

Overall, TNF methylation levels at week 24 were significantly lower than at 

baseline (-DM= -0.91%, Wilcoxon Signed-Ranks test, p=0.0026) (Figure 5-39, 

A), although this was not observed in all patients.  For the HDAC4 assay, the 

methylation levels were also significantly reduced at week 24  (-DM= - 2.51%, 

Wilcoxon Signed-Ranks test, p=0.0498) (Figure 5-39, B). 
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Figure 5-39 Box plot of the levels of DNA methylation (%) for A) TNF and B) 

HDAC4 genes using the qMSP assays at baseline and week 24. Statistical 

analyses for paired samples were performed using the Wilcoxon Signed-Ranks 

test. 
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Considering each MTX response group individually (Figure 5-40,A, Table 5-18), 

the methylation dynamic between baseline to week 24, did not show any obvious 

difference. Both groups showed significant reduction in TNF methylation levels at 

week 24 compared to baseline (-DM= -2.25%, p=0.0103 for remission and -

DM= -1.19%, p=0.0150 for non-remission).  

The dynamic of the methylation of HDAC4 in the two MTX response group also 

showed no difference (Figure 5-40, B). HDAC4 methylation of both groups was 

significantly lower at week 24. (-DM= -2.2%, p=0.0302 for remission and -DM= 

-4.3%, p=0.0150 for non-remission).   

Therefore, despite disease remission, the loss of methylation in the TNF and 

HDAC4 genes continues degrading over 6 months, suggesting that TNF DNA 

methylation might not be directly related to the mechanism of response for this 

drug.  

However, at baseline these data also suggested higher % of methylation of the 

TNF gene in patients achieving remission (Figure 5-41 and Table 5-19,    n=20, 

4.71 ± 2.38 % of methylation) compared to those who do not (n=21, 3.26 ± 1.33 

%, p=0.0184), while this was not the case for HDAC4. This suggested the 

potential for an association between baseline levels of TNF methylation and 

response to MTX.   

A binary logistic regression was performed.  Higher baseline TNF methylation (%) 

show association with remission (OR = 1.59, 95% CI: 1.09 - 2.55, p =0.0319) 

(Figure 5-42). The AUROC was 0.714 (95% CI: 0.553 - 0.876) suggesting the 

good classifying performance of the TNF qMSP. At a chosen cut-off for an 80% 

specificity set at 4.65% of methylation, descriptive performance of the risk 

categories for remission/non-remission were calculated for specificity, PPV, NPV 

(displayed in Figure 5-42). PPV and NPV were 62.9% and 71.4%, respectively.  

Altogether this suggest good discrimination and 65.9% of individual in the groups 

being correctly predicted.  
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Figure 5-40 Box plot of the % of methylation in remission and non-
remission groups at different visiting point for  the A)TNF and B) HDAC4  

qMSP assays. Statistical analyses for paired samples were performed using the 

Wilcoxon Signed-Ranks test comparing the methylation between baseline and 

week 24 of each MTX response group. 

 

 

 

Table 5-18 Descriptive statistic of TNF methylation of remission and non-
remission group at baseline and week 24.  

 

 

 

 

Mean SD Median (IQR)

Baseline Remission 15 5.18 2.52 5.30 (3.62, 6.31)

Week 24 Remission 15 3.31 1.63 3.05 (2.68, 3.54)

Baseline Non-remission 17 3.77 1.78 3.45 (2.54, 4.69)

Week 24 Non-remission 17 2.64 1.24 2.26 (1.82,3.32)

Visit MTX response n
Methylation (%)
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Figure 5-41 Boxplot of DNA methylation levels (%) of the TNF genes at 

baseline, in remission and non-remission group. Statistical analyses were 

performed using the Mann-Whitney U test comparing the methylation between 

remission and non-remission group. 

 
 
 
 
 

Table 5-19 Descriptive statistic of TNF methylation of remission and non-

remission group at baseline.   

 

 

  

Mean SD Median (IQR)

Baseline Remission 20 4.71 2.38 4.65 (3.38, 5.69)

Baseline Non-remission 21 3.26 1.33 2.93 (2.16, 4.35)

Visit MTX response n
Methylation (%)
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Figure 5-42 TNF qMSP logistic regression.  The table presents the overall 

performance of the models and performance at cut-off giving 80% specificity.  

ROC curve of TNF qMSP shows in the right. 

 

  

TNF (qMSP)

OR 1.59 (1.09, 2.55)

p-value 0.0319

AUROC 0.714 (0.553, 0.876)

At 80% specificity:

Probability cut off 0.575

Value at cut off 4.65%

Specificity 80.9 (58.1 - 94.6)

Sensitivity   50.0 (27.2 - 72.8)

PPV 62.9 (42.4 - 80.6)

NPV 71.4 (41.9 - 91.6)

Accuracy 65.9 (49.4 - 79.6)
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Although TNF qMSP alone shows promising potential to predicting the MTX 

response, it needs to be evaluated for added value compared to other 

demographic and clinical parameters.   

I first explored the relationship between the response to MTX and the individual 

demographic and clinical parameters including age, gender, RF, ACPA, TJC, 

SJC, CRP, DAS, and symptoms duration to the using binary logistic regression. 

Unfortunately, none of these parameters shows any trend for significant 

association with MTX response (OR 95% CI within 1, p>0.05) as this is far too 

small a group to be able to detect any association (descriptive statistic of all 

parameters between remission and non-remission group and the value from 

logistic regression can be found in Table 5-20).  However, it also aligns with 

current literature, showing no particularly strong association of any demographic 

or clinical parameter at baseline with response of MTX. The fact that the TNF 

qMSP data showed association suggest they may be quite a powerful tool if able 

to show prediction in this group. 

Again, a replication cohort was intended (using the RA patients of the replication 

cohort treated with MTX) but no data could be retrieved in time to allow this 

analysis to be performed, while it is planned in the future to allow me to publish 

this data.  

Overall, this analysis showed no difference in the continued reduction of the TNF 

gene methylation from baseline to week 24 between the remission and non-

remission patient treated with MTX.  At baseline, differences in TNF methylation 

levels between the 2 groups (despite small number n=41) were clearly observed. 

An unadjusted Logistic regression analysis showed predictive value for the TNF 

methylation levels at baseline and MTX response, with quite high and promising 

performances that needs replication in more samples.    

A replication of this work in the RADRA cohort has not been possible due to lack 

of follow-up during the COVID pandemic and the lack of data to access MTX 

treatment outcome at 6 month.  
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Table 5-20 Descriptive statistic and logistic regression of MTX response 

and Demographic and clinical parameters. The descriptive statistic (median 

(IQR) or frequency) and statistical significant (Mann-Whitney U test or chi-square 

test) comparison between remission and non-remission group were presented.   

 

 

  

Independent Variable Remission Non-Remission p-value OR (95% CI) p-value

n= 20 n= 21

Age 61 (42.5, 72) 52 (46, 64) 0.6385 1.01 (0.97 - 1.05) 0.5633

Gender (M/F) 6/14 3/18 0.4022 1.90 (0.50 - 8.62) 0.3806

Smoking (never/smoker) 6/14 7/14 1.0000 1.17 (0.31 - 4.48) 0.8187

RF (positive/negative) 6/14 10/10* 0.3329 0.42 (0.11 - 1.53) 0.2010

ACPA (positive/negative) 8/12 9/12 1.0000 0.89 (0.25 - 3.10) 0.8528

Symtom duration 5 (3.8 - 9) 5 (2 - 12) 0.7631 0.922 (0.81 - 1.04) 0.1966

Tender joint count 7.5 (2.8 - 12.3) 11 (9 - 14) 0.1778 0.97 (0.88 - 1.05) 0.4258

Swollen joint count 1.5 (0.8 - 7.5) 6 (3 - 9) 0.1034 0.93 (0.82 - 1.04) 0.2775

CRP 7.5 (0 - 19.3) 12 (5 - 21) 0.4594 0.99 (0.96 - 1.01) 0.3851

DAS 4.2 (3.3 - 5.2) 5.4 (4.2 - 5.9) 0.0296 0.62 (0.35 - 0.99) 0.0605

Descriptive statistic Regression
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5.4 Biomarker development summary/discussion 

An epigenetic DNA methylation biomarker assay for RA classification was 

developed through the biomarker development workflow from target 

identification, target verification, assay development, and assay validation steps.  

3 strategies for target identification were designed with different benefits and 

limitations but all shared a common focus on RA specificity, based on the 

hypothesis that such change in methylation occurred early in RA. Of all candidate 

CpGs, 8 top candidates (associated with the TNF, IFITM1, RPTOR, ATP6V1H, 

IRF8, HDAC4, MIR21, and PSMB9 genes) which show more potential as 

diagnostic biomarker were highlighted.  

A target verification step to verify the methylation status and ensure specificity 

and suitability for assay design, was performed using bisulfite sequencing.  The 

verification for IFITM1 unfortunately failed.  This pointed to the weakness of the 

target selection strategy-1 and the need for more DNA methylation data resource 

form other cells types. (which was part of the design of strategy 2 and 3). 

However, due to the tedious process of bisulfite conversion optimisation of each 

target sequence and the limitation of my study time, the verification for other 

genes (except from TNF which had already been sequenced to confirm its 

methylation status) was skipped and continue directly using the qMSP assay 

development process.  

Several qMSP assays were developed to detect the DNA methylation status of 

the target sequence which include the candidate CpGs and it’s surroundings 

(where primers bind).  Assay development was attempted for 5 genes (TNF, 

HDAC4, PRTOR, MIR21, and IRF8) by either SYBR green or TaqMan based 

qMSP while primer design for the other two (ARP6V1H and PSMB9) was 

unsuccessful due to the sequence around the CpG location being inadequate for 

a qPCR reaction. the TNF and HDAC4 qMSP assays (using TaqMan-based 

detection) were successfully developed with good assay efficiency and 

sensitivity.  

For the biomarker assay value, the TNF and HDAC4 qMSP assays were tested 

with clinical samples for their performance in RA classification; to differentiate 

between RA and other early arthritis.  

The TNF and HDAC4 methylation levels quantified by the qMSP assay showed 

a lower percentage of methylation readings compared to the methylation 

detected by the Illumina array and bisulfite sequencing. This might be because 

the calibration of my qMSP assay was based on the relative fold of methylation 
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of the sample normalised to the levels observed in the 100% methylated DNA 

control.  Theoretically, when an equal amount of control DNA (100% methylated  

DNA control) is compared to the test sample, the methylation levels in the sample 

is expressed as a relative methylation change compared to the standard (100%  

methylation control). However, in my experiment, the 100% methylation DNA 

control was commercially obtained (although several batches were used at a 

defined concentrations) as an already bisulfite converted template, while the test 

sample was bisulfide converted on-site.  After bisulfite conversion, the DNA 

quality and quantity may be less due to the nature of the bisulfte conversion 

process (note that measuring bisulfite converted DNA concentration using 

nanodrop may also not give as a fully reliable result now that the DNA sequence 

is composed of 5 bases rather than 4).  As the initial amount of template for the 

reference reaction (100% DNA control) and the sample reactions are unlikely to 

be absolutely equal, the value obtained following the calibration (as detailed in 

method part) may have been affected slightly by the overall process. 

Nevertheless, the TNF qMSP assay showed good classification performance in 

PBMC DNA sample in a discovery cohort (for both the overall patient cohort n= 

127 and for the ACPA negative patients n= 92). It also showed added-value in 

classification for the TNF qMSP assay when compared with current clinical 

models. On the other hand, the HDAC4 qMSP assay showed differences in 

methylation between RA and non-RA in PBMC DNA  but was not specific enough 

to improve RA classification. This result was unexpected as HDAC4 was a 

candidate selected by strategy 3 which emphasised the detection of Δβ of RA in 

PBMC. Besides, 3 proximal CpGs associated with HDAC4 were on the candidate 

list.  The failure of HDAC4 qMSP assay in clinical samples points to;   

(i) some weakness in the target identification steps, which did not include 

sufficient data resources in other early form of arthritis in the different 

cell types.  This issue was difficult to address due to the limited 

availability of data resource but points to the need for datasets relevant 

to the question in order to design successful assays (i.e. early stage of 

disease, other early inflammatory disease related to RA classification, 

all cell types) which could be leveraged with more reachable/affordable 

array technology, and more tool for the analysing of DNA methylation 

across platforms, better target selecting strategies that are fitted to the 

research question. 

(ii) the importance of the target verification step. DNA methylation data of 

candidate CpG retrieve form the array (and the immediate surrounding 
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CpGs which do not appear in the array data as spaced) need to be 

confirmed as they all affect primer/probe design and binding. Similar 

methylation status of the CpGs surrounding the candidate is important 

(discrepancy/variability in methylation status of the overall region will 

indeed prevent assay design).  A careful verification of the candidate 

CpG/surrounding region before developing the qMSP assay would 

help this issue.   

 

TNF qMSP classification performance was also confirmed in the replication 

cohort (n= 157). Validation of this assay’s performances using bootstrapping and 

optimism correction also confirmed its good AUC. This established that the 

TNFqMSP model developed in a discovery cohort had a good classification 

performance and can be used for the prediction of RA diagnosis in a large 

sample. It has to be noted that the samples of the discovery and replication cohort 

selected for this project have a similar background since both cohorts recruited 

samples from patients who attended the EAC at Chapel Allerton Hospital in 

Leeds, UK, however at 2 different points in time and with an evolution of clinical 

practice between the 2 groups. To translate this assay into the clinical practice, 

hence applying it to various population background (taking into account ethnicity 

for example as well as recruitment capacities differing between health care 

system of different countries), more data would be needed for developing/training 

the prediction model, determination of the suitable cut-off value, as well as more 

validation.  In addition, as DNA methylation can be influenced by the environment, 

distinct populations may have different methylation baselines. Therefore re-

defining local/country specific cut-offs for this biomarker might be necessary for 

each population. 

The use of TNF qMSP assay was also extend from classification to the prediction 

of MTX response. The small cohort I tested (n= 41), showed that TNF methylation 

of PBMC DNA detected at baseline could predict the response of MTX treatment.  

This was a promising result, however, it needs more validation in the larger cohort 

which includes the future plan. This was also an unexpected result (although it 

was also observed for the IL17A assay by my supervisor (378), as the CpG 

chosen was not selected with this clinical question in mind, which may have 

needed another type of strategy. This is further discussed in my general 

discussion.  
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Chapter 6 General Discussion  

 

My thesis was developed around 2 main aims. My findings can be summarised 

as follows: 

 

◼ Part1 aimed to gain more understanding of the early molecular and cellular 

events in the RA disease pathogenesis. The analysis of Illumina 450K 

genome-wide array form naïve or memory T-cell CD4+T-cells and 

monocyte of early RA patients demonstrated that methylation change 

occurred at an early stage in RA and display specific patterns for each cell 

type. Naïve CD4+T-cells are the most susceptible to such modifications 

although DNA methylation alterations points to a role for IL6 signalling in 

early RA pathogenesis in the 3 cell types. This has a particular central role 

in naïve CD4+T-cells, with diversification towards other pathways (notably 

TNF, IFN-signalling, Th17 differentiation) very early in the disease course. 

My findings allow to propose DNA methylation as a mechanism for the 

model of IL6 induced T-cell differentiation previously observed in RA by 

my supervisor. 

 

◼ Part2 aimed to select potential candidates for further development as a 

biomarker for diagnostic in early RA. The selection of candidate CpG was 

based on having a methylation pattern that is specific to CD4+T-cells, to 

RA versus other IA that is detectable in an easily accessible sample (i.e. 

blood). The technology chosen was a qMSP assay. An assay measuring 

change in the TNF gene methylation by qMSP was successfully developed 

to work with PBMC DNA sample. The assay could differentiate between 

RA and other non-RA IA patients referred to an EAC. A regression analysis 

showed that this assay itself has a good classification performance but 

importantly also has added-value as a diagnostic biomarker in a 

classification model including other demographic, risk factors and clinical 

variables. This TNF qMSP assay also shows a potential to be used as a 

marker to predict the response to MTX using the DNA sample at baseline, 

differentiating responders from non-response with a good classification 

performance.  
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The study of epigenetic modifications which has been proposed as an early event 

associated with the development of certain diseases (187, 210, 215) before other 

molecular mechanism (e.g. gene expression, protein production) and clinical 

manifestations is very useful for both gaining a deeper understanding of disease 

pathogenesis and developing biomarkers. (238, 240, 312, 380). DNA methylation 

is an important modification that shapes the chromatin and is the focus of my 

project. In a study of methylation alteration associated with early (drug naïve) 

disease pathogenesis, the question that is often addressed is whether 

methylation changes are a cause or a consequence of the disease process. 

There is still no valid answer to this question caution was raised about interpreting 

result of epigenetic associations with disease (238, 398). RA is a disease which 

like many others has been associated with many epigenetic modifications (190). 

Since the beginning of my PhD several further pieces of evidence have supported 

that epigenetic modifications is important causative in early RA and not a 

consequence of long lasting disease duration (or medication) (238, 240).   

The Methylation change I have identified occurred at the early stage of the 

disease in naïve/memory CD4+T-cells and monocytes in RA patients. Several 

other studies using SF, T-cell, and B-cell (238-240) have also been reported in 

early RA. In my view, study methylation changes at the early event in the drug 

naïve sample could lead to the pathway that contributes to disease development 

or at least could help understand the event at a closer look to the origin. It is 

beneficial to both pathology and biomarker study.  

Methylation changes were detected in peripheral blood cells.  RA is an 

autoimmune disorder that primarily affects joints. In the past, most of the 

epigenetic studies were focused on cells at the disease site e.g., the joint, using 

SFs, macrophages, or T-cells. As immune cells circulate around the body and RA 

is considered a systemic disease, peripheral blood (PB) which is an easily 

accessible sample, has great potential as a good tissue source with sufficient 

representability for the overall events in disease pathogenesis. As such many 

biomarkers were developed for RA that use blood (plasma or cells). A study of 

methylation changes which define a DNA methylation signature in RA in SF was 

confirmed in circulating naïve CD4+T-cells suggesting that the blood is suitable 

as a tissue source of epigenetic signatures. Easily accessible samples can 

facilitate research (especially in the biomarker field) and the fact that certain 

events could be detected in both the local and systemic compartments validate 

the approach I used. 
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My study observed methylation changes in 3 cell subsets: naïve CD4+T-cells, 

memory CD4+T-cells and monocytes. The unique pattern of methylation changes 

in each cell type emphasizes independent possible roles for each cell in RA 

pathogenesis. Studying cell-specific methylation profile therefore provides more 

information and is more useful for understanding disease pathology than profiles 

obtained in WB or PBMC due to the complexity introduced by mixed cells 

population in the sample. On the other hand, DNA methylation profile of WB or 

PBMC are more likely to be useful for a biomarker development as it can be 

translated into a more practical technical test.  

Fewer DM genes were observed in memory CD4+T-cells and monocytes 

compare to naïve CD4+T-cells. The majority of DM genes in memory T-cell 

showed hypermethylation suggesting a silencing effect by analogy with 

cancer.  Monocytes are cells that respond to stimuli fast with whole program of 

gene expression but which have a short life span. If methylation alterations are 

meant to foster the development of the RA disease, it is reasonable to 

hypothesise that such modification should preferably occur in cell type with a 

long-life span. Considering that naive CD4+ T-cells are prone to be activated and 

to differentiate from variable stimuli to various T helper cell or regulatory cell 

subsets, it is also conceivable that methylation changes occur preferably in this 

cell type as they may be more sensitive to change than memory cells.  

DNA methylation of circulating naïve CD4+T-cell (and also other specific cell 

types) was previously studied in established RA(est-RA) by another group (312). 

They analysed DNA methylation from 63 fully established RA and 31 HC in naïve 

T-cell, memory T-cells, B-cells, and monocytes using the same Illumina 450K 

array. The difference of methylation profile in est-RA compared to HC only 

identified 16 DM-CpG in naïve and 1 DM-CpG in memory CD4T+cells, with 

limited DM in other cell types, Overall, these findings were similar to what I 

observed in early RA, emphasizing  the relevance of naïve CD4+T-cells in RA. 

The top 10 DM genes in est-RA in naïve CD4+T-cells included TYK2, PRKAR1B, 

ABCC4, COMT, CAI2, MCF2L, GALNT9, C7orf50, however, these showed no 

overlapping with my DM gene list in early RA patients.  The difference in the 

statistical approach and the stringency of the analysis might be a factor explaining 

the difference in the result from two studies. However, the methylation dynamics 

over the time course of disease since its development is also likely to be an 

important factor. The methylation changes associated with different disease 

stage are indeed different with evidence of different patterns seen in a study 

comparing DNA methylation of SF in HC, very early RA (symptom duration less 
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than 3month) and est-RA (238). That study confirmed significant DM genes in 

early RA (compare to HC) and also identified DM gene at each disease stage, 

clearly shown using a PCA analysis. Some of these methylation alterations 

occurred in important functional pathways that were shared between early and 

established-RA (cadherin, integrin (cell adhesion) and WNT signalling pathways, 

components, the actin cytoskeleton and antigen presentation) but some were 

more dominant at a particular disease stage for example cell apoptosis/anti-

apoptosis pathway are more dominant in early RA, while cell adhesion, 

potassium/calcium transport pathway are more dominant in established-RA.   

In my opinion, methylation changes at established stages of disease are less 

likely to be important for disease progression, while reflecting better 

consequences of the disease and effects of treatment (and leading to 

heterogeneity), while methylation change at the early stages (drug naïve) suggest 

a specific immune cell activation is likely to be important to the establishment of 

disease and resulting in the activation of relevant signalling cascades.  

 

My study is the first to present DNA methylation of naïve CD4+T-cell in early RA 

patients.  The strength of this study is that the methylation was studied in early 

RA patients and use specific cell types. My work provided a novel understanding 

of pathways involved at the beginning of pathogenesis highlighting IL6, TNF, 

Th17, IRF and allowed me to update the model of dysregulated naïve CD4+T-

cells differentiation in RA with epigenetic modifications possibly driven by IL6 as 

a molecular mechanism (the detail discussed in discussion part 1).  

DNA methylation in naïve CD4+T-cells was also studied in other autoimmune 

conditions such as SLE and primary Sjögren’s syndrome (399, 400) using 

methylation wide array. Methylation changes in SLE (compared to HC) were 

mainly related to interferon regulated genes e.g., IFIT1, IFIT3, MX1, STAT1, 

IFI44L, USP18, TRIM22 and BST2. In Primary Sjögren’s syndrome, DM also 

showed to involve interferon regulated genes e.g. STAT1, IFI44L, USP18 and 

 IFITM, solute carrier proteins, and also LTA, which is a protein of the TNF family. 

Methylation changes in interferon related genes that are dominant in both these 

diseases was also observed in RA (however amongst other pathways) suggested 

a pathway common between all 3 autoimmune diseases. Methylation changes in 

pathways that are unique to RA therefore suggests a DNA methylation signature 

specific to this particular disease. 
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Gene not coding for proteins were also included amongst the DM-genes. Micro-

RNA (MIR) are important regulator of gene expression. MIR21 is an interesting 

gene at the top of MIR showing DM. DM changes were detected in 15 CpG 

(hypomethylation) associated with MIR21 (in the array) in naïve cells (Δβ= - 0.26, 

p-value = 4.49 x10-4). MIR21 could also have a strong association with the 

disease pathogenesis. Most of the genes targeted by MIR21 are related to IL6 

signalling. Another study showed dysregulation of MIR21 expression in PBMC 

and CD4+T-cells in association with an imbalance in Th17 and Treg cells in RA 

patients. Increased expression of STAT3, one of the key transcription factor for 

Th17 differentiation was also showed suggesting that the possible involvement 

of MIR21 in RA pathogenesis uses STAT3 axis to disturb the balance of 

Th17/Treg cells (401). Furthermore screening of 750 MIR in pre-clinical RA serum 

samples (ACPA+ individual with arthralgia) by another group in our department, 

showed changes in MIR21 expression (both using a MIR array and RT-qPCR) 

associated with progression to clinical symptoms and the development of RA 

(402).  A summer placement student in the group further confirmed the increased 

expression of MIR21 in serum samples from early RA patients using qPCR with 

an added value as a diagnostic biomarker for RA classification. 

 

In the biomarker development part of my Thesis which aimed to develop a RA 

diagnostic biomarker, the candidate CpG were selected based on showing 

methylation changes specific for RA. One of the strategies for selecting a 

candidate planned to use available DNA methylation profiles from other IA to 

exclude the methylation changes that could be common with RA. Of all the 

candidates recruited from the various selection strategies, TNF was the only gene 

that passed through all biomarker development steps. The TNF qMSP assay 

developed could be used to accurately classify the patient with progression to RA 

form other early IA and provide a good value as a diagnostic biomarker.  

DNA methylation change in the TNF gene was studied in other fields notably 

cancer, neurodegenerative diseases, diabetes, and obesity. In Colorectal cancer 

tumour, DNA methylation induced silencing of the TNF gene, associated with the 

lower expression of TNF and showed the possibility that it could act as 

biomarkers for prognosis and future immunotherapeutic strategies 

(403).  Hypermethylation of the TNF gene promoter in PBMC of type1 diabetes 

patients was positively associated with homocysteine metabolism and showed 

the possibility to be develop as a marker of early risk (404). PBMC TNF-α 

promoter methylation was also reported to be a good inflammatory marker 
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predicting hypocaloric diet-induced weight loss in overweight patients (405). 

Despite the potential to be further developed as a biomarker most of TNF DNA 

methylation as a biomarker remained in the discovery phase that still needs future 

confirmation and validation. No assay has yet been reported and my TNF qMSP 

therefore has the potential to provide a test for much more than only RA. 

There is yet no official approval of any qMSP assay in clinical use for RA; and 

many studies are still in the discovery phase. In my project, I developed one 

assay following the principle of qMSP. The use of other candidate genes was 

limited in RA, however, the IL17 gene is another good example of the potential of 

qMSP. The IL17 gene family was shown to be DM in RA patients, as showed by 

my observations and that was used by my supervisor to initiate a collaboration 

with a company. This work confirmed the value of a qMSP assay for the IL17A 

gene as diagnostic biomarker in early drug naïve RA and for MTX induced 

remission (378). DNA methylation level of the IL17 gene in WB DNA quantified 

by qMSP was reduced in early RA patient compared to other IA patients. The DM 

of the TNF gene was specific to naive CD4+T-cells while not detected in other 

cells although some may have contributed to the assay results. As such, my 

qMSP assay was sufficiently sensitive to detect DM in CD4+T-cell DNA and 

PBMC but not in WB. This is reflecting the difference between the highly specific 

epigenetic commitment of the IL17A gene in Th17 cells (YES versus NO), 

compared to variable TNF gene methylation (less versus more). The ability of my 

assay to differentiate between RA and other arthritis groups nonetheless 

confirmed the potential of DNA methylation assays to be used as a diagnostic 

biomarker / predictor of MTX induced remission in RA.   

In RA disease management, gaining access to the right treatment is as important 

as early diagnosis. Identifying biomarkers that predict treatment response in RA 

is a clinical priority especially for the first-line drug used in RA treatment, MTX. In 

my project, although the initial design of TNF qMSP assay was meant to be 

developed as a diagnostic biomarker, the TNF qMSP was also tested for its ability 

to predict the response to MTX. This was achieved although my data are only a 

1st exploration of this potential. On the other hand, MTX was known to affect DNA 

methylation itself. In recent research (2019), analysing RA patients EWAS data 

for good and poor response to MTX at week-0 and week-4 using WB proposed 2 

CpG (associate with RPH3AL and WDR27) with change in DNA methylation 

between 2 time points for response of MTX (395). As the methylation of these 2 

CpG was not different at baseline, it was suggested that the changes in 

methylation at week-4 were due of the effect of MTX acting differently on patients. 
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In my work, the assay showed that the TNF methylation change over time (from 

baseline to 6 months after treatment) was not different between the good and 

poor MTX response group. This is suggesting that methylation of CpGs in TNF 

gene at least, are not be directly affected by MTX but continue to be affected by 

the disease.  However, these two response groups showed difference in the initial 

levels of TNF gene methylation at baseline.  Higher TNF methylation (which is 

closer to health) was observed in the group achieving remission. This better 

status at the starting point might simply indicate patients with a less advanced 

disease and therefore being more responsive to the treatment. This was not 

reflected by other clinical markers (joint count, CRP) or demographic (disease 

duration) and therefore unique to the TNF qMSP assay. Higher TNF level at 

baseline therefore showed good value for the prediction of response for MTX 

treatment in a regression analysis. Further work on additional patient (ongoing) 

is needed to confirm the predictive value of TNF qMSP for MTX response.  

The association of response to MTX with baseline methylation level rather than 

the methylation change over time observed here was also reported in a study of 

leucocyte DNA methylation in early RA patient (396). They observed that 

changes in global DNA methylation was not associated with MTX response over 

3 months while the higher baseline global DNA methylation was associated with 

MTX poor response and a smaller reduction in DAS28 (396). The difference in 

direction of association (high methylation to a good or poor response) between 

this study and my study may be loci-specific as opposed to a global effect of MTX 

on DNA methylation that are not yet fully understood. 

It would be interesting to see whether my TNF qMSP assay could also be applied 

to monitoring methylation change in other diseases treated with MTX.  The study 

of the response of Osteoarthritis (OA) to MTX is ongoing. OA is considered a low-

inflammatory disease with very slow progression, that needs a sensitive 

biomarker for detecting and monitoring changes that may be introduced by 

treatment.   
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Chapter 7 Conclusion and future perspective 

 

Altogether my data confirmed the proposed hypothesis suggesting that 

methylation change occurred early in RA pathogenesis, preferentially in naïve 

CD4+T-cells. These changes affect several pathways (mainly IL6/STAT3 linked 

to TNF-α, IFN signalling genes, and Th17 differentiation) confirming a role for 

these important physiological pathways toward disease development. The 

methylation changes also occurred in genes of the epigenetic machinery itself, 

which in turn could affect further the overall DNA methylation process.  My data 

together with work performed in collaboration with others researchers in the group 

brought more strength to the overall idea that IL6 induce a form of T-cell 

differentiation leading to the development of an atypical subset of naïve CD4+T-

cells resembling in vivo abnormally differentiate cells observed in the past, and 

contributing  to RA pathogenesis. 

Understanding more about the mechanism involved in disease pathogenesis 

helps point to new target/pathways for treatment, especially the IFN-signalling 

and the Th17 polarisation where potential drugs may be tested at the right time 

in the right patients. Furthermore, this also suggest that the epigenetic machinery 

itself may be a good target for  prevention strategies in pre-clinical RA.  

A TNF qMSP assay was successfully developed which showed excellent  

performance at RA classification. An additional biomarker will be helpful for RA 

diagnosis, especially in an ACPA negative patients, who might benefit the most 

from an earlier classification and access to treatment. The TNF qMSP assay also 

shows a promising result for predicting MTX response, which if confirmed, will be 

beneficial to stratify the right patient  for access to right the treatment at the right 

time towards fulfilling the promises of personalised medicine. This biomarker 

work provided very strong foundation for further validation in a larger cohort and 

showed the potential for going into clinical use and improving the management 

of patients with RA. 

 

  



 
278 

 

 

 

List of References 

1. Symmons D, Turner G, Webb R, Asten P, Barrett E, Lunt M, et al. The 
prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a 
new century. Rheumatology (Oxford). 2002;41(7):793-800. 
2. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of 
rheumatoid arthritis. Am J Manag Care. 2012;18(13 Suppl):S295-302. 
3. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. The New 
England journal of medicine. 2011;365(23):2205-19. 
4. National-Audit-Office. Services for People With Rheumatoid Arthritis 
(House of Commons, Report by the Comptroller and Auditor General, Session 
2008-2009). The Stationery Office; 2009. 
5. Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. 
Arthritis Res. 2002;4 Suppl 3:S265-72. 
6. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. 
An approach to understanding the molecular genetics of susceptibility to 
rheumatoid arthritis. Arthritis Rheum. 1987;30(11):1205-13. 
7. Goronzy JJ, Zettl A, Weyand CM. T cell receptor repertoire in rheumatoid 
arthritis. Int Rev Immunol. 1998;17(5-6):339-63. 
8. Allen S, Turner SJ, Bourges D, Gleeson PA, van Driel IR. Shaping the T-
cell repertoire in the periphery. Immunol Cell Biol. 2011;89(1):60-9. 
9. Roudier J. Association of MHC and rheumatoid arthritis. Association of RA 
with HLA-DR4: the role of repertoire selection. Arthritis Res. 2000;2(3):217-20. 
10. Wucherpfennig KW, Strominger JL. Selective binding of self peptides to 
disease-associated major histocompatibility complex (MHC) molecules: a 
mechanism for MHC-linked susceptibility to human autoimmune diseases. J Exp 
Med. 1995;181(5):1597-601. 
11. Hill JA, Wang D, Jevnikar AM, Cairns E, Bell DA. The relationship between 
predicted peptide-MHC class II affinity and T-cell activation in a HLA-
DRbeta1*0401 transgenic mouse model. Arthritis Res Ther. 2003;5(1):R40-8. 
12. Schonland SO, Lopez C, Widmann T, Zimmer J, Bryl E, Goronzy JJ, et al. 
Premature telomeric loss in rheumatoid arthritis is genetically determined and 
involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci U S A. 
2003;100(23):13471-6. 
13. La Cava A, Nelson JL, Ollier WE, MacGregor A, Keystone EC, Thorne JC, 
et al. Genetic bias in immune responses to a cassette shared by different 
microorganisms in patients with rheumatoid arthritis. The Journal of clinical 
investigation. 1997;100(3):658-63. 
14. Holoshitz J, Ling S. Nitric oxide signaling triggered by the rheumatoid 
arthritis shared epitope: a new paradigm for MHC disease association? Ann N Y 
Acad Sci. 2007;1110:73-83. 
15. Yarwood A, Han B, Raychaudhuri S, Bowes J, Lunt M, Pappas DA, et al. 
A weighted genetic risk score using all known susceptibility variants to estimate 
rheumatoid arthritis risk. Ann Rheum Dis. 2015;74(1):170-6. 
16. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density 
genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat 
Genet. 2012;44(12):1336-40. 



 
279 

 

 

 

17. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et 
al. Genome-wide association study meta-analysis identifies seven new 
rheumatoid arthritis risk loci. Nat Genet. 2010;42(6):508-14. 
18. Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, et al. Meta-
analysis identifies nine new loci associated with rheumatoid arthritis in the 
Japanese population. Nat Genet. 2012;44(5):511-6. 
19. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of 
rheumatoid arthritis contributes to biology and drug discovery. Nature. 
2014;506(7488):376-81. 
20. Danila MI, Laufer VA, Reynolds RJ, Yan Q, Liu N, Gregersen PK, et al. 
Dense Genotyping of Immune-Related Regions Identifies Loci for Rheumatoid 
Arthritis Risk and Damage in African Americans. Mol Med. 2017;23:177-87. 
21. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, 
inflammation and autoimmunity. Journal of autoimmunity. 2010;34(3):J258-65. 
22. Alpizar-Rodriguez D, Pluchino N, Canny G, Gabay C, Finckh A. The role 
of female hormonal factors in the development of rheumatoid arthritis. 
Rheumatology (Oxford). 2017;56(8):1254-63. 
23. Amini L, Kalhor M, Haghighi A, Seyedfatemi N, Hosseini F. Effect of oral 
contraceptive pills on rheumatoid arthritis disease activity in women: A 
randomized clinical trial. Med J Islam Repub Iran. 2018;32:61. 
24. Mikuls TR, Thiele GM, Deane KD, Payne JB, O'Dell JR, Yu F, et al. 
Porphyromonas gingivalis and disease-related autoantibodies in individuals at 
increased risk of rheumatoid arthritis. Arthritis Rheum. 2012;64(11):3522-30. 
25. Bo M, Jasemi S, Uras G, Erre GL, Passiu G, Sechi LA. Role of Infections 
in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. 
Microorganisms. 2020;8(10). 
26. Anzilotti C, Merlini G, Pratesi F, Tommasi C, Chimenti D, Migliorini P. 
Antibodies to viral citrullinated peptide in rheumatoid arthritis. J Rheumatol. 
2006;33(4):647-51. 
27. Sverdrup B, Kallberg H, Bengtsson C, Lundberg I, Padyukov L, Alfredsson 
L, et al. Association between occupational exposure to mineral oil and rheumatoid 
arthritis: results from the Swedish EIRA case-control study. Arthritis Res Ther. 
2005;7(6):R1296-303. 
28. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers 
VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract 
Res Clin Rheumatol. 2017;31(1):3-18. 
29. Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the 
microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013;15(3):314. 
30. Gross J, Oubaya N, Eymard F, Hourdille A, Chevalier X, Guignard S. 
Stressful life events as a trigger for rheumatoid arthritis onset within a year: a 
case-control study. Scand J Rheumatol. 2017;46(6):507-8. 
31. Klareskog L, Stolt P, Lundberg K, Kallberg H, Bengtsson C, Grunewald J, 
et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger 
HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified 
by citrullination. Arthritis Rheum. 2006;54(1):38-46. 
32. Anderton SM. Post-translational modifications of self antigens: 
implications for autoimmunity. Curr Opin Immunol. 2004;16(6):753-8. 
33. Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG. Detection and 
isolation of human serum autoantibodies that recognize oxidatively modified 
autoantigens. Free Radic Biol Med. 2013;57:79-91. 



 
280 

 

 

 

34. Burska AN, Hunt L, Boissinot M, Strollo R, Ryan BJ, Vital E, et al. 
Autoantibodies to posttranslational modifications in rheumatoid arthritis. 
Mediators Inflamm. 2014;2014:492873. 
35. Vincent C, Nogueira L, Clavel C, Sebbag M, Serre G. Autoantibodies to 
citrullinated proteins: ACPA. Autoimmunity. 2005;38(1):17-24. 
36. Vincent C, Serre G, Lapeyre F, Fournie B, Ayrolles C, Fournie A, et al. 
High diagnostic value in rheumatoid arthritis of antibodies to the stratum corneum 
of rat oesophagus epithelium, so-called 'antikeratin antibodies'. Ann Rheum Dis. 
1989;48(9):712-22. 
37. Scinocca M, Bell DA, Racape M, Joseph R, Shaw G, McCormick JK, et al. 
Antihomocitrullinated fibrinogen antibodies are specific to rheumatoid arthritis 
and frequently bind citrullinated proteins/peptides. J Rheumatol. 2014;41(2):270-
9. 
38. Shi J, van de Stadt LA, Levarht EW, Huizinga TW, Hamann D, van 
Schaardenburg D, et al. Anti-carbamylated protein (anti-CarP) antibodies 
precede the onset of rheumatoid arthritis. Ann Rheum Dis. 2014;73(4):780-3. 
39. Holers VM. Autoimmunity to citrullinated proteins and the initiation of 
rheumatoid arthritis. Curr Opin Immunol. 2013;25(6):728-35. 
40. Aletaha D, Alasti F, Smolen JS. Rheumatoid factor, not antibodies against 
citrullinated proteins, is associated with baseline disease activity in rheumatoid 
arthritis clinical trials. Arthritis Res Ther. 2015;17:229. 
41. Sokolove J, Johnson DS, Lahey LJ, Wagner CA, Cheng D, Thiele GM, et 
al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-
mediated inflammation in rheumatoid arthritis. Arthritis & rheumatology. 
2014;66(4):813-21. 
42. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der 
Horst-Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the 
symptoms of rheumatoid arthritis: a study of serial measurements in blood 
donors. Arthritis Rheum. 2004;50(2):380-6. 
43. Strollo R, Ponchel F, Malmstrom V, Rizzo P, Bombardieri M, Wenham CY, 
et al. Autoantibodies to posttranslationally modified type II collagen as potential 
biomarkers for rheumatoid arthritis. Arthritis Rheum. 2013;65(7):1702-12. 
44. Deane KD, O'Donnell CI, Hueber W, Majka DS, Lazar AA, Derber LA, et 
al. The number of elevated cytokines and chemokines in preclinical seropositive 
rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. 
Arthritis Rheum. 2010;62(11):3161-72. 
45. Isaacs JD. The changing face of rheumatoid arthritis: sustained remission 
for all? Nat Rev Immunol. 2010;10(8):605-11. 
46. Gerlag DM, Raza K, van Baarsen LG, Brouwer E, Buckley CD, Burmester 
GR. EULAR recommendations for terminology and research in individuals at risk 
of rheumatoid arthritis: report from the Study Group for Risk Factors for 
Rheumatoid Arthritis. Ann Rheum Dis. 2012;71. 
47. Mankia K, Emery P. A new window of opportunity in rheumatoid arthritis: 
targeting at-risk individuals. Curr Opin Rheumatol. 2016;28(3):260-6. 
48. Hunt L, Hensor EM, Nam J, Burska AN, Parmar R, Emery P, et al. T cell 
subsets: an immunological biomarker to predict progression to clinical arthritis in 
ACPA-positive individuals. Ann Rheum Dis. 2016;75(10):1884-9. 
49. Catrina AI, Ytterberg AJ, Reynisdottir G, Malmstrom V, Klareskog L. 
Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. 
Nature reviews Rheumatology. 2014;10(11):645-53. 



 
281 

 

 

 

50. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. 
Induction of osteoclastogenesis and bone loss by human autoantibodies against 
citrullinated vimentin. The Journal of clinical investigation. 2012;122(5):1791-802. 
51. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in 
rheumatoid arthritis. Immunol Rev. 2010;233(1):233-55. 
52. Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T. The molecular 
mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res. 
2002;4(5):281-9. 
53. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara 
S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 
2015;18(4):433-48. 
54. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, 
et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. 
55. Firestein GS. Pathogenesis of Rheumatoid Arthritis: The Intersection of 
Genetics and Epigenetics. Trans Am Clin Climatol Assoc. 2018;129:171-82. 
56. Firestein GS. The immunopathogenesis of rheumatoid arthritis. Current 
Opinion in Rheumatology. 1991;3(3):398-406. 
57. Siouti E, Andreakos E. The many facets of macrophages in rheumatoid 
arthritis. Biochem Pharmacol. 2019;165:152-69. 
58. Roosnek E, Lanzavecchia A. Efficient and selective presentation of 
antigen-antibody complexes by rheumatoid factor B cells. J Exp Med. 
1991;173(2):487-9. 
59. Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR. 
Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2(3):189-202. 
60. Smith MD, Kraan MC, Slavotinek J, Au V, Weedon H, Parker A, et al. 
Treatment‐induced remission in rheumatoid arthritis patients is characterized by 

a reduction in macrophage content of synovial biopsies. Rheumatology. 
2001;40(4):367-74. 
61. Ohrndorf S, Glimm A-M, Burmester G, Backhaus M. Musculoskeletal 
ultrasound scoring systems: assessing disease activity and therapeutic response 
in rheumatoid arthritis. International Journal of Clinical Rheumatology. 2011;6:57-
65. 
62. Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A. B cells in 
rheumatoid arthritis: from pathogenic players to disease biomarkers. Biomed Res 
Int. 2014;2014:681678. 
63. Silverman GJ, Carson DA. Roles of B cells in rheumatoid arthritis. Arthritis 
Res Ther. 2003;5 Suppl 4:S1-6. 
64. Trouw LA, Haisma EM, Levarht EW, van der Woude D, Ioan-Facsinay A, 
Daha MR, et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid 
arthritis patients activate complement via both the classical and alternative 
pathways. Arthritis Rheum. 2009;60(7):1923-31. 
65. Dusad A, Duryee MJ, Shaw AT, Klassen LW, Anderson DR, Wang D, et 
al. Induction of bone loss in DBA/1J mice immunized with citrullinated autologous 
mouse type II collagen in the absence of adjuvant. Immunol Res. 2014;58(1):51-
60. 
66. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, 
Emery P, Close DR, et al. Efficacy of B-cell-targeted therapy with rituximab in 
patients with rheumatoid arthritis. The New England journal of medicine. 
2004;350(25):2572-81. 



 
282 

 

 

 

67. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in 
autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 
2020. 
68. Pistoia V. Production of cytokines by human B cells in health and disease. 
Immunol Today. 1997;18(7):343-50. 
69. Schultze JL, Michalak S, Lowne J, Wong A, Gilleece MH, Gribben JG, et 
al. Human Non-Germinal Center B Cell Interleukin (IL)-12 Production Is Primarily 
Regulated by T Cell Signals CD40 Ligand, Interferon γ, and IL-10: Role of B Cells 
in the Maintenance of  T Cell Responses. Journal of Experimental Medicine. 
1999;189(1):1-12. 
70. Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K, et al. 
Cytokine mRNA profiling identifies B cells as a major source of RANKL in 
rheumatoid arthritis. Ann Rheum Dis. 2011;70(11):2022-8. 
71. Lanchbury JS, Pitzalis C. Cellular Immune-Mechanisms in Rheumatoid-
Arthritis and Other Inflammatory Arthritides. Current Opinion in Immunology. 
1993;5(6):918-24. 
72. Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T cell in 
initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis 
Rheum. 1992;35(7):729-35. 
73. Law SC, Street S, Yu CH, Capini C, Ramnoruth S, Nel HJ, et al. T-cell 
autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis 
patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther. 
2012;14(3):R118. 
74. De Almeida DE, Ling S, Pi X, Hartmann-Scruggs AM, Pumpens P, 
Holoshitz J. Immune dysregulation by the rheumatoid arthritis shared epitope. J 
Immunol. 2010;185(3):1927-34. 
75. Orozco G, Viatte S, Bowes J, Martin P, Wilson AG, Morgan AW, et al. 
Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended 
UK genome-wide association study. Arthritis & rheumatology. 2014;66(1):24-30. 
76. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, et 
al. Replication of putative candidate-gene associations with rheumatoid arthritis 
in > 4,000 samples from North America and Sweden: Association of susceptibility 
with PTPN22, CTLA4, and PADI4. Am J Hum Genet. 2005;77(6):1044-60. 
77. Cobb JE, Plant D, Flynn E, Tadjeddine M, Dieude P, Cornelis F, et al. 
Identification of the Tyrosine-Protein Phosphatase Non-Receptor Type 2 as a 
Rheumatoid Arthritis Susceptibility Locus in Europeans. Plos One. 2013;8(6). 
78. Kim K, Bang SY, Lee HS, Bae SC. Update on the genetic architecture of 
rheumatoid arthritis. Nature reviews Rheumatology. 2017;13(1):13-24. 
79. Ha E, Bae SC, Kim K. Large-scale meta-analysis across East Asian and 
European populations updated genetic architecture and variant-driven biology of 
rheumatoid arthritis, identifying 11 novel susceptibility loci. Ann Rheum Dis. 2020. 
80. Suzuki A, Terao C, Yamamoto K. Linking of genetic risk variants to 
disease-specific gene expression via multi-omics studies in rheumatoid arthritis. 
Semin Arthritis Rheum. 2019;49(3S):S49-S53. 
81. Waase I, Kayser C, Carlson PJ, Goronzy JJ, Weyand CM. Oligoclonal T 
cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. 
Arthritis Rheum. 1996;39(6):904-13. 
82. Wagner UG, Koetz K, Weyand CM, Goronzy JJ. Perturbation of the T cell 
repertoire in rheumatoid arthritis. Proc Natl Acad Sci U S A. 1998;95(24):14447-
52. 



 
283 

 

 

 

83. Castro-Sánchez P, Roda-Navarro P. Physiology and Pathology of 
Autoimmune Diseases: Role of CD4+ T cells in Rheumatoid Arthritis.  Physiology 
and Pathology of Immunology: InTech; 2017. 
84. Koetz K, Bryl E, Spickschen K, O'Fallon WM, Goronzy JJ, Weyand CM. T 
cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A. 
2000;97(16):9203-8. 
85. Symmons DPM, Farr M, Salmon M, Bacon PA. Lymphopenia in 
Rheumatoid Arthritis. Journal of the Royal Society of Medicine. 1989;82(8):462-
3. 
86. Goronzy JJ, Bartz-Bazzanella P, Hu W, Jendro MC, Walser-Kuntz DR, 
Weyand CM. Dominant clonotypes in the repertoire of peripheral CD4+ T cells in 
rheumatoid arthritis. The Journal of clinical investigation. 1994;94(5):2068-76. 
87. Colmegna I, Diaz-Borjon A, Fujii H, Schaefer L, Goronzy JJ, Weyand CM. 
Defective proliferative capacity and accelerated telomeric loss of hematopoietic 
progenitor cells in rheumatoid arthritis. Arthritis Rheum. 2008;58(4):990-1000. 
88. Martens PB, Goronzy JJ, Schaid D, Weyand CM. Expansion of unusual 
CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum. 1997;40(6):1106-
14. 
89. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM. Functional subsets 
of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 1998;41(12):2108-16. 
90. Schmidt D, Goronzy JJ, Weyand CM. CD4+ CD7- CD28- T cells are 
expanded in rheumatoid arthritis and are characterized by autoreactivity. The 
Journal of clinical investigation. 1996;97(9):2027-37. 
91. Lawson CA, Brown AK, Bejarano V, Douglas SH, Burgoyne CH, 
Greenstein AS, et al. Early rheumatoid arthritis is associated with a deficit in the 
CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology 
(Oxford). 2006;45(10):1210-7. 
92. Ponchel F, Morgan AW, Bingham SJ, Quinn M, Buch M, Verburg RJ, et 
al. Dysregulated lymphocyte proliferation and differentiation in patients with 
rheumatoid arthritis. Blood. 2002;100(13):4550-6. 
93. Ponchel F, Vital E, Kingsbury SR, El-Sherbiny YM. CD4+ T-cell subsets in 
rheumatoid arthritis.[Report]. International Journal of Clinical Rheumatology 7(1). 
2012:37-53. 
94. Burgoyne CH, Field SL, Brown AK, Hensor EM, English A, Bingham SL, 
et al. Abnormal T cell differentiation persists in patients with rheumatoid arthritis 
in clinical remission and predicts relapse. Annals of the Rheumatic Diseases. 
2008;67(6):750-7. 
95. Gul HL, Eugenio G, Rabin T, Burska A, Parmar R, Wu J, et al. Defining 
remission in rheumatoid arthritis: does it matter to the patient? A comparison of 
multi-dimensional remission criteria and patient reported outcomes. 
Rheumatology (Oxford). 2020;59(3):613-21. 
96. Kawashima M, Miossec P. Defect of Th1 immune response of whole blood 
cells from active patients with rheumatoid arthritis (RA). Arthritis Research & 
Therapy. 2003;5:S14-S. 
97. Kawashima M, Miossec P. Effect of treatment of rheumatoid arthritis with 
infliximab on IFN gamma, IL4, T-bet, and GATA-3 expression: link with 
improvement of systemic inflammation and disease activity. Ann Rheum Dis. 
2005;64(3):415-8. 
98. Ponchel F, Brown AK, Field SL, Quinn M, Conaghan P, Emery P, et al. T-
bet expression in rheumatoid arthritis patients with early, disease-modifying anti-



 
284 

 

 

 

rheumatic drug naïve disease is low and correlates with low levels of IL-7 and T-
cell dysfunctions. Arthritis Research & Therapy. 2005;7(Suppl 1):P18-P. 
99. Churchman SM, El-Jawhari JJ, Burska AN, Parmar R, Goeb V, Conaghan 
PG, et al. Modulation of peripheral T-cell function by interleukin-7 in rheumatoid 
arthritis. Arthritis Res Ther. 2014;16(6):511. 
100. van Roon JAG, Glaudemans CA, Bijlsma JWJ, Lafeber F. Differentiation 
of naive CD4(+) T cells towards T helper 2 cells is not impaired in rheumatoid 
arthritis patients. Arthritis Research & Therapy. 2003;5(5):R269-R76. 
101. Benghiat FS, Charbonnier LM, Vokaer B, De Wilde V, Le Moine A. 
Interleukin 17-producing T helper cells in alloimmunity. Transplant Rev (Orlando). 
2009;23(1):11-8. 
102. Arroyo-Villa I, Bautista-Caro M-B, Balsa A, Aguado-Acín P, Nuno L, 
Bonilla-Hernán M-G, et al. Frequency of Th17 CD4+ T cells in early rheumatoid 
arthritis: a marker of anti-CCP seropositivity. PLoS One. 2012;7(8):e42189. 
103. Shen H, Goodall JC, Hill Gaston J. Frequency and phenotype of peripheral 
blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis & 
Rheumatism. 2009;60(6):1647-56. 
104. Truchetet M-E, Mossalayi MD, Boniface K. IL-17 in the rheumatologist’s 
line of sight. BioMed research international. 2013;2013. 
105. Behrens F, Himsel A, Rehart S, Stanczyk J, Beutel B, Zimmermann SY, 
et al. Imbalance in distribution of functional autologous regulatory T cells in 
rheumatoid arthritis. Ann Rheum Dis. 2007;66(9):1151-6. 
106. Lim HW, Lee J, Hillsamer P, Kim CH. Human Th17 cells share major 
trafficking receptors with both polarized effector T cells and FOXP3+ regulatory 
T cells. The Journal of Immunology. 2008;180(1):122-9. 
107. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et 
al. Phenotypic and functional features of human Th17 cells. The Journal of 
experimental medicine. 2007;204(8):1849-61. 
108. Chalan P, Kroesen B-J, van der Geest KS, Huitema MG, Abdulahad WH, 
Bijzet J, et al. Circulating CD4+ CD161+ T lymphocytes are increased in 
seropositive arthralgia patients but decreased in patients with newly diagnosed 
rheumatoid arthritis. PloS one. 2013;8(11):e79370. 
109. Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and Precision 
Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front Med 
(Lausanne). 2018;5:364. 
110. Ciccia F, Guggino G, Rizzo A, Manzo A, Vitolo B, La Manna MP, et al. 
Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid 
arthritis. Rheumatology (Oxford). 2015;54(12):2264-72. 
111. Chowdhury K, Kumar U, Das S, Chaudhuri J, Kumar P, Kanjilal M, et al. 
Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 
cells in rheumatoid arthritis. Arthritis Res Ther. 2018;20(1):18. 
112. Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA. TH17 
and TH22 cells: a confusion of antimicrobial response with tissue inflammation 
versus protection. J Allergy Clin Immunol. 2012;129(6):1438-49; quiz50-1. 
113. Ponchel F, Burska AN, Hunt L, Gul H, Rabin T, Parmar R, et al. T-cell 
subset abnormalities predict progression along the Inflammatory Arthritis disease 
continuum: implications for management. Sci Rep. 2020;10(1):3669. 
114. Ponchel F, Goeb V, Parmar R, El-Sherbiny Y, Boissinot M, El Jawhari J, 
et al. An immunological biomarker to predict MTX response in early RA. Annals 
of the Rheumatic Diseases. 2014;73(11):2047-53. 



 
285 

 

 

 

115. Niu Q, Cai B, Huang ZC, Shi YY, Wang LL. Disturbed Th17/Treg balance 
in patients with rheumatoid arthritis. Rheumatol Int. 2012;32(9):2731-6. 
116. Ma J, Zhu C, Ma B, Tian J, Baidoo SE, Mao C, et al. Increased frequency 
of circulating follicular helper T cells in patients with rheumatoid arthritis. Clin Dev 
Immunol. 2012;2012:827480. 
117. Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, 
present and future. Int Immunol. 2015;27(1):55-62. 
118. Geiler J, Buch M Fau - McDermott MF, McDermott MF. Anti-TNF treatment 
in rheumatoid arthritis. Current Pharmaceutical Design. 2011;17(29):3141 - 54. 
119. Tanaka Y, Martin Mola E. IL-6 targeting compared to TNF targeting in 
rheumatoid arthritis: studies of olokizumab, sarilumab and sirukumab. Annals of 
the Rheumatic Diseases. 2014;73(9):1595-7. 
120. Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid 
arthritis. Rheumatology (Oxford). 2019;58(Suppl 1):i17-i26. 
121. Nikfar S, Saiyarsarai P, Tigabu BM, Abdollahi M. Efficacy and safety of 
interleukin-1 antagonists in rheumatoid arthritis: a systematic review and meta-
analysis. Rheumatol Int. 2018;38(8):1363-83. 
122. Clark W, Jobanputra P, Barton P, Burls A. The clinical and cost-
effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a 
systematic review and economic analysis. Health Technol Assess. 2004;8(18):iii-
iv, ix-x, 1-105. 
123. Patel DD, Lee DM, Kolbinger F, Antoni C. Effect of IL-17A blockade with 
secukinumab in autoimmune diseases. Ann Rheum Dis. 2013;72 Suppl 2:ii116-
23. 
124. Martin DA, Churchill M, Flores-Suarez L, Cardiel MH, Wallace D, Martin 
R, et al. A phase Ib multiple ascending dose study evaluating safety, 
pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-
17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther. 
2013;15(5):R164. 
125. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in 
rheumatoid arthritis. The New England journal of medicine. 2001;344(12):907-
16. 
126. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, 
et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct 
from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123-32. 
127. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick 
JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune 
inflammation. J Exp Med. 2005;201(2):233-40. 
128. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. 
Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. 
Nature. 2007;448(7152):480-3. 
129. Chung Y, Yang X, Chang SH, Ma L, Tian Q, Dong C. Expression and 
regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res. 
2006;16(11):902-7. 
130. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell 
effector cytokines in inflammation. Immunity. 2008;28(4):454-67. 
131. Shahrara S, Pickens SR, Dorfleutner A, Pope RM. IL-17 induces monocyte 
migration in rheumatoid arthritis. J Immunol. 2009;182(6):3884-91. 



 
286 

 

 

 

132. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, 
et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell 
activation and bone destruction. J Exp Med. 2006;203(12):2673-82. 
133. Psarras A, Emery P, Vital EM. Type I interferon-mediated autoimmune 
diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology 
(Oxford). 2017;56(10):1662-75. 
134. Crow M. Type I interferon in organ-targeted autoimmune and inflammatory 
diseases. . Arthritis Res Ther. 2010;12:S5. 
135. Roelofs MF, Wenink MH, Brentano F, Abdollahi-Roodsaz S, Oppers-
Walgreen B, Barrera P, et al. Type I interferons might form the link between Toll-
like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid 
arthritis (RA). . Annals of the rheumatic diseases 2009;68:1486-93. 
136. Van Holten J, Smeets T, Blankert P, PP. T. Expression of interferon β in 
synovial tissue from patients with rheumatoid arthritis: comparison with patients 
with osteoarthritis and reactive arthritis. . Annals of the rheumatic diseases 
2005;64:1780-2. 
137. Pilling D, Akbar AN, Girdlestone J, Orteu CH, Borthwick NJ, Amft N, et al. 
Interferon-beta mediates stromal cell rescue of T cells from apoptosis. European 
journal of immunology. 1999;29(3):1041-50. 
138. Harada S, Yamamura M, Okamoto H, Morita Y, Kawashima M, Aita T. 
Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from 
patients with rheumatoid arthritis. Arthritis Rheum. 1999;42:1508-16. 
139. van Roon JAG, Verweij MC, Wenting-van Wijk M, Jacobs KMG, Bijlsma 
JWJ, Lafeber F. Increased intraarticular interleukin-7 in rheumatoid arthritis 
patients stimulates cell contact-dependent activation of CD4 + T cells and 
macrophages. Arthritis Rheum. 2005;52. 
140. Churchman SM, Ponchel F. Interleukin-7 in rheumatoid arthritis. 
Rheumatology. 2008;47(6):753-9. 
141. Wehr P, Purvis H, Law SC, Thomas R. Dendritic cells, T cells and their 
interaction in rheumatoid arthritis. Clinical & Experimental Immunology. 
2019;196(1):12-27. 
142. McInnes IB, Leung BP, Liew FY. Cell-cell interactions in synovitis. 
Interactions between T lymphocytes and synovial cells. Arthritis research. 
2000;2(5):374-8. 
143. Brennan F, Foey A. Cytokine regulation in RA synovial tissue: role of T 
cell/macrophage contact-dependent interactions. Arthritis Res. 2002;4 Suppl 
3:S177-82. 
144. Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E, et al. 
Activated human T cells directly induce osteoclastogenesis from human 
monocytes: possible role of T cells in bone destruction in rheumatoid arthritis 
patients. Arthritis Rheum. 2001;44(5):1003-12. 
145. Sawai H, Park YW, He X, Goronzy JJ, Weyand CM. Fractalkine mediates 
T cell-dependent proliferation of synovial fibroblasts in rheumatoid arthritis. 
Arthritis Rheum. 2007;56(10):3215-25. 
146. Mor F, Quintana FJ, Cohen IR. Angiogenesis-inflammation cross-talk: 
vascular endothelial growth factor is secreted by activated T cells and induces 
Th1 polarization. J Immunol. 2004;172(7):4618-23. 
147. Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front 
Immunol. 2018;9:1924. 



 
287 

 

 

 

148. Isaacs JD, Manna VK, Rapson N, Bulpitt KJ, Hazleman BL, Matteson EL, 
et al. CAMPATH-1H in rheumatoid arthritis--an intravenous dose-ranging study. 
Br J Rheumatol. 1996;35(3):231-40. 
149. Tyndall A, Gratwohl A. Hemopoietic blood and marrow transplants in the 
treatment of severe autoimmune disease. Current Opinion in Hematology. 
1997;4(6). 
150. Isaacs JD, Greer S, Sharma S, Symmons D, Smith M, Johnston J, et al. 
Morbidity and mortality in rheumatoid arthritis patients with prolonged and 
profound therapy-induced lymphopenia. Arthritis Rheum. 2001;44(9):1998-2008. 
151. Jendro MC, Ganten T, Matteson EL, Weyand CM, Goronzy JJ. Emergence 
of Oligoclonal T-Cell Populations Following Therapeutic T-Cell Depletion in 
Rheumatoid-Arthritis. Arthritis Rheum. 1995;38(9):1242-51. 
152. Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, 
et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. The New England 
journal of medicine. 1985;312(13):818-22. 
153. Szanto E. Low-dose methotrexate treatment of rheumatoid arthritis; long-
term observation of efficacy and safety. Clin Rheumatol. 1989;8(3):323-20. 
154. American College of Rheumatology Subcommittee on Rheumatoid 
Arthritis G. Guidelines for the management of rheumatoid arthritis: 2002 Update. 
Arthritis Rheum. 2002;46(2):328-46. 
155. Kennedy T, McCabe C, Struthers G, Sinclair H, Chakravaty K, Bax D, et 
al. BSR guidelines on standards of care for persons with rheumatoid arthritis. 
Rheumatology. 2005;44(4):553-6. 
156. Verstappen SM, Jacobs JW, van der Veen MJ, Heurkens AH, Schenk Y, 
ter Borg EJ, et al. Intensive treatment with methotrexate in early rheumatoid 
arthritis: aiming for remission. Computer Assisted Management in Early 
Rheumatoid Arthritis (CAMERA, an open-label strategy trial). Ann Rheum Dis. 
2007;66(11):1443-9. 
157. van den Broek M, Lems WF, Allaart CF. BeSt practice: the success of 
early-targeted treatment in rheumatoid arthritis. Clinical and experimental 
rheumatology. 2012;30(4 Suppl 73):S35-8. 
158. Quinn MA, Emery P. Window of opportunity in early rheumatoid arthritis: 
possibility of altering the disease process with early intervention. Clinical and 
experimental rheumatology. 2003;21(5 Suppl 31):S154-7. 
159. Smolen JS, Landewe R, Bijlsma J, Burmester G, Chatzidionysiou K, 
Dougados M, et al. EULAR recommendations for the management of rheumatoid 
arthritis with synthetic and biological disease-modifying antirheumatic drugs: 
2016 update. Ann Rheum Dis. 2017;76(6):960-77. 
160. National Institute for Health and Clinical Excellence (NICE). Rheumatoid 
arthritis in adults: management (NG100)2018. Available from: 
https://www.nice.org.uk/guidance/ng100. 
161. Smolen JS, Aletaha D, Bijlsma JWJ, Breedveld FC, Boumpas D, 
Burmester G, et al. Treating rheumatoid arthritis to target: recommendations of 
an international task force. Annals of the Rheumatic Diseases. 2010;69(4):631. 
162. Mackie S, Vital E, Ponchel F, Emery P. Co-stimulatory Blockade as 
Therapy for Rheumatoid Arthritis. Curr Rheumatol Reports. 2005;7:400-6. 
163. Mason U, Aldrich J Fau - Breedveld F, Breedveld F Fau - Davis CB, Davis 
Cb Fau - Elliott M, Elliott M Fau - Jackson M, Jackson M Fau - Jorgensen C, et 
al. CD4 coating, but not CD4 depletion, is a predictor of efficacy with primatized 

https://www.nice.org.uk/guidance/ng100


 
288 

 

 

 

monoclonal anti-CD4 treatment of active rheumatoid arthritis. (0315-162X 
(Print)). 
164. Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in 
rheumatoid arthritis. Clinical and experimental rheumatology. 2007;25(5 Suppl 
46):S4-11. 
165. Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. BioMed 
research international. 2014;2014. 
166. Angelini J, Talotta R, Roncato R, Fornasier G, Barbiero G, Dal Cin L, et al. 
JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present 
and an Outlook on the Future. Biomolecules. 2020;10(7). 
167. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. 
Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by 
integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 
2019;20(7):928-42. 
168. Fonseka CY, Rao DA, Raychaudhuri S. Leveraging blood and tissue 
CD4+ T cell heterogeneity at the single cell level to identify mechanisms of 
disease in rheumatoid arthritis. Current Opinion in Immunology. 2017;49:27-36. 
169. Cai S, Ming B, Ye C, Lin S, Hu P, Tang J, et al. Similar Transition 
Processes in Synovial Fibroblasts from Rheumatoid Arthritis and Osteoarthritis: 
A Single-Cell Study. Journal of Immunology Research. 2019;2019:4080735. 
170. Rantapaa-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, 
Stenlund H, et al. Antibodies against cyclic citrullinated peptide and IgA 
rheumatoid factor predict the development of rheumatoid arthritis. Arthritis 
Rheum. 2003;48(10):2741-9. 
171. Spasovski D. Evaluation, hallmark, clinical relevance and role of anti 
citrullin antibody, IgG and IgM rheumatoid factor with serological parameters of 
disease activity or both as overall sifted test in undifferentiated seronegative 
arthropathy with or without joint inflammation and bone structure differences. 
Boost, over helling or amplification to classification criteria to rheumathoid 
arthritis? JOJ uro & nephron. 2016;1(2): 555557. 
172. Angelotti F, Parma A, Cafaro G, Capecchi R, Alunno A, Puxeddu I. One 
year in review 2017: pathogenesis of rheumatoid arthritis. Clinical and 
experimental rheumatology. 2017;35(3):368-78. 
173. Ponchel F, Burska AN. Epigenetic Modifications: Are we Closer to Clinical 
Applicability? Journal of Pharmacogenomics & Pharmacoproteomics. 
2016;07(02). 
174. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M. DNA 
hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 
2009;60(12):3613-22. 
175. Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM, 
et al. The L1 retroelement-related p40 protein induces p38delta MAP kinase. 
Autoimmunity. 2004;37(1):57-65. 
176. Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, 
et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial 
tissue: association with genomic DNA hypomethylation and influence on gene 
expression. Arthritis Rheum. 2000;43(12):2634-47. 
177. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms 
and clinical perspective. Semin Reprod Med. 2009;27(5):351-7. 
178. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8. 



 
289 

 

 

 

179. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian 
development. Science. 2001;293(5532):1089-93. 
180. Holliday R, Pugh JE. DNA modification mechanisms and gene activity 
during development. Science. 1975;187(4173):226-32. 
181. Sandovici I. Establishment of Tissue-Specific Epigenetic States During 
Development. In: Naumova AK, Greenwood CMT, editors. Epigenetics and 
Complex Traits. New York, NY: Springer New York; 2013. p. 35-62. 
182. Szutorisz H, Canzonetta C, Georgiou A, Chow C-M, Tora L, Dillon N. 
Formation of an Active Tissue-Specific Chromatin Domain Initiated by Epigenetic 
Marking at the Embryonic Stem Cell Stage. Molecular and Cellular Biology. 
2005;25(5):1804-20. 
183. Sado T, Fenner MH, Tan SS, Tam P, Shioda T, Li E. X inactivation in the 
mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on 
imprinted and random X inactivation. Dev Biol. 2000;225(2):294-303. 
184. Payer B, Lee JT, Namekawa SH. X-inactivation and X-reactivation: 
epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Hum 
Genet. 2011;130(2):265-80. 
185. Ospelt C, Gay S, Klein K. Epigenetics in the pathogenesis of RA. Seminars 
in immunopathology. 2017;39(4):409-19. 
186. Ospelt C. Epigenetic biomarkers in rheumatology - the future? Swiss Med 
Wkly. 2016;146:w14312. 
187. Baba S, Yamada Y, Hatano Y, Miyazaki Y, Mori H, Shibata T, et al. Global 
DNA hypomethylation suppresses squamous carcinogenesis in the tongue and 
esophagus. Cancer science. 2009;100(7):1186-91. 
188. Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. 
Annual review of pharmacology and toxicology. 2005;45:629-56. 
189. Herman JG, Baylin SB. Gene silencing in cancer in association with 
promoter hypermethylation. The New England journal of medicine. 
2003;349(21):2042-54. 
190. Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, 
Alekseeva EA, et al. Epigenetic Changes in the Pathogenesis of Rheumatoid 
Arthritis. Frontiers in genetics. 2019;10:570. 
191. Cooper G. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): 
Sinauer Associates; 2000. 
192. Li B, Carey M, Workman JL. The role of chromatin during transcription. 
Cell. 2007;128(4):707-19. 
193. Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic 
regulation: insight into molecular mechanisms. Int J Mol Sci. 2011;12(12):8661-
94. 
194. Venkatesh S, Workman JL. Histone exchange, chromatin structure and 
the regulation of transcription. Nat Rev Mol Cell Biol. 2015;16(3):178-89. 
195. Phillips T. The Role of Methylation in Gene Expression. Nature Education 
1(1):116. 2008. 
196. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and 
Dnmt3b are essential for de novo methylation and mammalian development. Cell. 
1999;99(3):247-57. 
197. Moore LD, Le T, Fan G. DNA methylation and its basic function. 
Neuropsychopharmacology. 2013;38(1):23-38. 



 
290 

 

 

 

198. Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence 
directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. 
Cell. 1992;71(5):865-73. 
199. Bird AP. DNA methylation and the frequency of CpG in animal DNA. 
Nucleic Acids Res. 1980;8(7):1499-504. 
200. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 
1986;321(6067):209-13. 
201. Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene 
expression. Science. 2003;301(5634):798-802. 
202. Haberland M, Montgomery RL, Olson EN. The many roles of histone 
deacetylases in development and physiology: implications for disease and 
therapy. Nature reviews Genetics. 2009;10(1):32-42. 
203. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS. 
Genome-wide conserved consensus transcription factor binding motifs are hyper-
methylated. BMC Genomics. 2010;11:519. 
204. Aoyama T, Okamoto T, Nagayama S, Nishijo K, Ishibe T, Yasura K, et al. 
Methylation in the core-promoter region of the chondromodulin-I gene determines 
the cell-specific expression by regulating the binding of transcriptional activator 
Sp3. The Journal of biological chemistry. 2004;279(27):28789-97. 
205. Defossez PA, Stancheva I. Biological functions of methyl-CpG-binding 
proteins. Prog Mol Biol Transl Sci. 2011;101:377-98. 
206. Sarkar S, Abujamra AL, Loew JE, Forman LW, Perrine SP, Faller DV. 
Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 
through ERK signaling. Anticancer Res. 2011;31(9):2723-32. 
207. Richardson B, Yung R. Role of DNA methylation in the regulation of cell 
function. The Journal of laboratory and clinical medicine. 1999;134(4):333-40. 
208. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 
2009;1(2):239-59. 
209. Dehan P, Kustermans G, Guenin S, Horion J, Boniver J, Delvenne P. DNA 
methylation and cancer diagnosis: new methods and applications. Expert review 
of molecular diagnostics. 2009;9(7):651-7. 
210. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting 
chromatin modifications. Molecular cancer therapeutics. 2009;8(6):1409-20. 
211. Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM. Role of 
physical activity in modulating breast cancer risk as defined by APC and 
RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer 
Epidemiol Biomarkers Prev. 2007;16(2):192-6. 
212. Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3 
lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol. 
2006;26(10):3728-37. 
213. Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An 
emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. 
Environ Health Perspect. 2011;119(1):11-9. 
214. Ravegnini G, Sammarini G, Hrelia P, Angelini S. Key Genetic and 
Epigenetic Mechanisms in Chemical Carcinogenesis. Toxicol Sci. 2015;148(1):2-
13. 
215. Zheng SC, Widschwendter M, Teschendorff AE. Epigenetic drift, 
epigenetic clocks and cancer risk. Epigenomics. 2016;8(5):705-19. 
216. Walsh CP, Xu GL. Cytosine methylation and DNA repair. Curr Top 
Microbiol Immunol. 2006;301:283-315. 



 
291 

 

 

 

217. Ehrlich M, Norris KF, Wang RY, Kuo KC, Gehrke CW. DNA cytosine 
methylation and heat-induced deamination. Biosci Rep. 1986;6(4):387-93. 
218. Elsayed GM, Fahmi AEA, Shafik NF, Elshimy RAA, Abd Elhakeem HK, 
Attea SA. Study of DNA methyl transferase 3A mutation in acute myeloid 
leukemic patients. Egyptian Journal of Medical Human Genetics. 2018;19(4):315-
9. 
219. Han M, Jia L, Lv W, Wang L, Cui W. Epigenetic Enzyme Mutations: Role 
in Tumorigenesis and Molecular Inhibitors. Front Oncol. 2019;9:194. 
220. Komori HK, Hart T, LaMere SA, Chew PV, Salomon DR. Defining CD4 T 
cell memory by the epigenetic landscape of CpG DNA methylation. J Immunol. 
2015;194(4):1565-79. 
221. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, 
Brandenburg S, et al. Loss of IGF2 imprinting: a potential marker of colorectal 
cancer risk. Science. 2003;299(5613):1753-5. 
222. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of 
human cancer. Nature reviews Genetics. 2006;7(1):21-33. 
223. Wang Z, Chang C, Lu Q. Epigenetics of CD4+ T cells in autoimmune 
diseases. Curr Opin Rheumatol. 2017;29(4):361-8. 
224. Fu LH, Ma CL, Cong B, Li SJ, Chen HY, Zhang JG. Hypomethylation of 
proximal CpG motif of interleukin-10 promoter regulates its expression in human 
rheumatoid arthritis. Acta pharmacologica Sinica. 2011;32(11):1373-80. 
225. Kim YI, Logan JW, Mason JB, Roubenoff R. DNA hypomethylation in 
inflammatory arthritis: reversal with methotrexate. The Journal of laboratory and 
clinical medicine. 1996;128(2):165-72. 
226. Maciejewska-Rodrigues H, Karouzakis E, Strietholt S, Hemmatazad H, 
Neidhart M, Ospelt C, et al. Epigenetics and rheumatoid arthritis: the role of 
SENP1 in the regulation of MMP-1 expression. Journal of autoimmunity. 
2010;35(1):15-22. 
227. Ishida K, Kobayashi T, Ito S, Komatsu Y, Yokoyama T, Okada M, et al. 
Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic 
periodontitis. Journal of periodontology. 2012;83(7):917-25. 
228. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG. Methylation status of a 
single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and 
rheumatoid arthritis. Arthritis Rheum. 2008;58(9):2686-93. 
229. Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y, et al. DNA demethylation 
of CD40l in CD4+ T cells from women with systemic sclerosis: a possible 
explanation for female susceptibility. Arthritis Rheum. 2012;64(7):2338-45. 
230. Liao J, Liang G, Xie S, Zhao H, Zuo X, Li F, et al. CD40L demethylation in 
CD4(+) T cells from women with rheumatoid arthritis. Clinical immunology. 
2012;145(1):13-8. 
231. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of 
CD40LG on the inactive X in T cells from women with lupus. J Immunol. 
2007;179(9):6352-8. 
232. Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, et al. Treg 
cell function in rheumatoid arthritis is compromised by ctla-4 promoter 
methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase 
pathway. Arthritis & rheumatology. 2014;66(9):2344-54. 
233. Liebling MR. Methylation of the CTLA-4 promoter and Treg cell dysfunction 
in rheumatoid arthritis: comment on the article by Cribbs et al. Arthritis & 
rheumatology. 2015;67(5):1406. 



 
292 

 

 

 

234. Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, et al. 
Methotrexate Restores Regulatory T Cell Function Through Demethylation of the 
FoxP3 Upstream Enhancer in Patients With Rheumatoid Arthritis. Arthritis & 
rheumatology. 2015;67(5):1182-92. 
235. de Andres MC, Perez-Pampin E, Calaza M, Santaclara FJ, Ortea I, 
Gomez-Reino JJ, et al. Assessment of global DNA methylation in peripheral 
blood cell subpopulations of early rheumatoid arthritis before and after 
methotrexate. Arthritis Res Ther. 2015;17:233. 
236. Guo S, Zhu Q, Jiang T, Wang R, Shen Y, Zhu X, et al. Genome-wide DNA 
methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid 
arthritis. Mod Rheumatol. 2017;27(3):441-7. 
237. Glossop JR, Emes RD, Nixon NB, Haworth KE, Packham JC, Dawes PT, 
et al. Genome-wide DNA methylation profiling in rheumatoid arthritis identifies 
disease-associated methylation changes that are distinct to individual T- and B-
lymphocyte populations. Epigenetics. 2014;9(9):1228-37. 
238. Karouzakis E, Raza K, Kolling C, Buckley CD, Gay S, Filer A, et al. 
Analysis of early changes in DNA methylation in synovial fibroblasts of RA 
patients before diagnosis. Sci Rep. 2018;8(1):7370. 
239. Clark A, Naamane N, Nair N, Anderson A, Skelton A, Diboll J, et al. P124 
Altered CD4+ T cell DNA methylation in early rheumatoid arthritis. Annals of the 
Rheumatic Diseases. 2018;77(Suppl 1):A67-A. 
240. Glossop JR, Emes RD, Nixon NB, Packham JC, Fryer AA, Mattey DL, et 
al. Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals 
DNA methylome changes in T and B lymphocytes. Epigenomics. 2016;8(2):209-
24. 
241. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund 
KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation 
of exposure-response relationships. Hum Genet. 2012;131(10):1565-89. 
242. Huang FY, Chan AO, Rashid A, Wong DK, Seto WK, Cho CH, et al. 
Interleukin-1beta increases the risk of gastric cancer through induction of 
aberrant DNA methylation in a mouse model. Oncol Lett. 2016;11(4):2919-24. 
243. Gasche JA, Hoffmann J, Boland CR, Goel A. Interleukin-6 promotes 
tumorigenesis by altering DNA methylation in oral cancer cells. International 
journal of cancer. 2011;129(5):1053-63. 
244. Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL. 
Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in 
human erythroleukemia cells. The Journal of biological chemistry. 
2001;276(43):39508-11. 
245. Hartnett L, Egan LJ. Inflammation, DNA methylation and colitis-associated 
cancer. Carcinogenesis. 2012;33(4):723-31. 
246. Nakano K, Boyle DL, Firestein GS. Regulation of DNA methylation in 
rheumatoid arthritis synoviocytes. J Immunol. 2013;190(3):1297-303. 
247. Bock C. Analysing and interpreting DNA methylation data. Nature reviews 
Genetics. 2012;13(10):705-19. 
248. Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right 
Method. Biology. 2016;5(1). 
249. Dirks RA, Stunnenberg HG, Marks H. Genome-wide epigenomic profiling 
for biomarker discovery. Clinical epigenetics. 2016;8:122. 



 
293 

 

 

 

250. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density 
DNA methylation array with single CpG site resolution. Genomics. 
2011;98(4):288-95. 
251. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. 
Evaluation of the Infinium Methylation 450K technology. Epigenomics. 
2011;3(6):771-84. 
252. Illumina. Infinium® HumanMethylation450 BeadChip  [Available from: 
https://www.illumina.com/products/methylation_450_beadchip_kits.html. 
253. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, 
et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the 
human genome. Epigenetics. 2011;6(6):692-702. 
254. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et 
al. Bioconductor: open software development for computational biology and 
bioinformatics. Genome Biol. 2004;5(10):R80. 
255. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et 
al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat 
Methods. 2015;12(2):115-21. 
256. Nyren P, Pettersson B, Uhlen M. Solid phase DNA minisequencing by an 
enzymatic luminometric inorganic pyrophosphate detection assay. Anal Biochem. 
1993;208(1):171-5. 
257. Diggle MA, Clarke SC. Pyrosequencing: sequence typing at the speed of 
light. Mol Biotechnol. 2004;28(2):129-37. 
258. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-
specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl 
Acad Sci U S A. 1996;93(18):9821-6. 
259. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et 
al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic 
Acids Res. 2000;28(8):E32. 
260. Liloglou T, Nikolaidis G. Quantitative Methylation Specific PCR (qMSP). 
Bio-protocol. 2013;3(16):e871. 
261. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting 
(MS-HRM): a new approach for sensitive and high-throughput assessment of 
methylation. Nucleic Acids Res. 2007;35(6):e41. 
262. R Core Team. R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2018. 
263. Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data 
Manipulation. R package version 0.8.5. 2020. 
264. Zhang Z. Reshaping and aggregating data: an introduction to reshape 
package. Ann Transl Med. 2016;4(4):78. 
265. Jr FEH. rms: Regression Modeling   Strategies. R package version 5.1-4. 
2019. 
266. Turner SD. qqman: an R package for visualizing GWAS results using Q-Q 
and manhattan plots. bioRxiv. 2014. 
267. Gregory RW, Ben B, Lodewijk B, Robert G, Wolfgang HAL, Thomas L, et 
al. gplots: Various R Programming Tools for Plotting Data. R package version 
301. 2016. 
268. Wickham H. ggplot2: Elegant Graphics for Data Analysis.  . Springer-
Verlag New York. 2016. 
269. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, 
Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for 

https://www.illumina.com/products/methylation_450_beadchip_kits.html


 
294 

 

 

 

the analysis of Infinium DNA methylation microarrays. Bioinformatics. 
2014;30(10):1363-9. 
270. Tim T, Jr. FDb.InfiniumMethylation.hg19: Annotation package for Illumina 
Infinium DNA methylation probes. R package version 220. 2014. 
271. Gentleman R, Carey V, Huber W, Hahne F. genefilter: genefilter: methods 
for filtering genes from high-throughput experiments. R package version 1581. 
2017. 
272. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al. 
Bump hunting to identify differentially methylated regions in epigenetic 
epidemiology studies. International journal of epidemiology. 2012;41(1):200-9. 
273. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, et 
al. De novo identification of differentially methylated regions in the human 
genome. Epigenetics & Chromatin. 2015;8(1):6. 
274. Hulsen T, de Vlieg J, Alkema W. BioVenn – a web application for the 
comparison and visualization of biological lists using area-proportional Venn 
diagrams. BMC Genomics. 2008;9(1):488. 
275. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et 
al. PANTHER: a library of protein families and subfamilies indexed by function. 
Genome Res. 2003;13(9):2129-41. 
276. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: 
Network Analysis and Visualization of Proteomics Data. J Proteome Res. 
2019;18(2):623-32. 
277. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke 
BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the 
Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203-
9. 
278. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison 
of Beta-value and M-value methods for quantifying methylation levels by 
microarray analysis. BMC Bioinformatics. 2010;11:587. 
279. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-
Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over 
the tree of life. Nucleic Acids Research. 2015;43(Database issue):D447-D52. 
280. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. 
The STRING database in 2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362-D8. 
281. Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers BC. An 
integrated workflow for DNA methylation analysis. J Genet Genomics. 
2013;40(5):249-60. 
282. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. 
A genomic sequencing protocol that yields a positive display of 5-methylcytosine 
residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827-
31. 
283. Louise W, Yanxia B, Heidi C, Theodore D. Enzymatic Methyl-seq: The 
Next Generation of Methylome Analysis [cited 2018. Available from: 
https://www.neb.com/tools-and-resources/feature-articles/enzymatic-methyl-
seq-the-next-generation-of-methylome-analysis. 
284. Pitaksalee R, Burska AN, Ajaib S, Rogers J, Parmar R, Mydlova K, et al. 
Differential CpG DNA methylation in peripheral naive CD4(+) T-cells in early 
rheumatoid arthritis patients. Clinical epigenetics. 2020;12(1):54. 

https://www.neb.com/tools-and-resources/feature-articles/enzymatic-methyl-seq-the-next-generation-of-methylome-analysis
https://www.neb.com/tools-and-resources/feature-articles/enzymatic-methyl-seq-the-next-generation-of-methylome-analysis


 
295 

 

 

 

285. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. 
Genome Res. 1996;6(10):986-94. 
286. Trinh BN, Long TI, Laird PW. DNA methylation analysis by MethyLight 
technology. Methods. 2001;25(4):456-62. 
287. Sestakova S, Salek C, Remesova H. DNA Methylation Validation 
Methods: a Coherent Review with Practical Comparison. Biol Proced Online. 
2019;21:19. 
288. AppliedBiosystems. Real-time PCR handbook2014. Available from: 
https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-
time-pcr-handbook.pdf. 
289. Navarro E, Serrano-Heras G, Castano MJ, Solera J. Real-time PCR 
detection chemistry. Clin Chim Acta. 2015;439:231-50. 
290. Ponchel F, Toomes C, Bransfield K, Leong FT, Douglas SH, Field SL, et 
al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the 
TaqMan assay for a relative quantification of gene rearrangements, gene 
amplifications and micro gene deletions. BMC Biotechnol. 2003;3:18. 
291. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis 
of DNA melting curves during the polymerase chain reaction. Anal Biochem. 
1997;245(2):154-60. 
292. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific 
polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of 
Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 
1991;88(16):7276-80. 
293. Ruiz-Villalba A, van Pelt-Verkuil E, Gunst QD, Ruijter JM, van den Hoff 
MJ. Amplification of nonspecific products in quantitative polymerase chain 
reactions (qPCR). Biomol Detect Quantif. 2017;14:7-18. 
294. Rodriguez A, Rodriguez M, Cordoba JJ, Andrade MJ. Design of primers 
and probes for quantitative real-time PCR methods. Methods Mol Biol. 
2015;1275:31-56. 
295. Ray P, Manach Yannick L, Riou B, Houle Tim T, Warner David S. 
Statistical Evaluation of a Biomarker. Anesthesiology. 2010;112(4):1023-40. 
296. Bossuyt PM. Clinical validity: defining biomarker performance. Scand J 
Clin Lab Invest Suppl. 2010;242:46-52. 
297. Grund B, Sabin C. Analysis of biomarker data: logs, odds ratios, and 
receiver operating characteristic curves. Curr Opin HIV AIDS. 2010;5(6):473-9. 
298. McHugh M. The odds ratio: calculation, usage and interpretation. Biochem 
Med. 2009;19(2):120-6. 
299. Skapenko A, Wendler J, Lipsky PE, Kalden JR, Schulze-Koops H. Altered 
memory T cell differentiation in patients with early rheumatoid arthritis. J Immunol. 
1999;163(1):491-9. 
300. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS. DNA 
methylome signature in rheumatoid arthritis. Ann Rheum Dis. 2013;72(1):110-7. 
301. de la Rica L, Urquiza JM, Gomez-Cabrero D, Islam ABMMK, Lopez-Bigas 
N, Tegner J, et al. Identification of novel markers in rheumatoid arthritis through 
integrated analysis of DNA methylation and microRNA expression. Journal of 
autoimmunity. 2013;41:6-16. 
302. Pratt AG, Swan DC, Richardson S, Wilson G, Hilkens CM, Young DA, et 
al. A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 
6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-
negative disease. Annals of the rheumatic diseases. 2012. 

https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf
https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-time-pcr-handbook.pdf


 
296 

 

 

 

303. Gruden K, Hren M, Herman A, Blejec A, Albrecht T, Selbig J, et al. A 
"crossomics" study analysing variability of different components in peripheral 
blood of healthy caucasoid individuals. Plos One. 2012;7(1):e28761. 
304. Straub RH, Paimela L, Peltomaa R, Scholmerich J, Leirisalo-Repo M. 
Inadequately low serum levels of steroid hormones in relation to interleukin-6 and 
tumor necrosis factor in untreated patients with early rheumatoid arthritis and 
reactive arthritis. Arthritis Rheum. 2002;46(3):654-62. 
305. Baillet A, Gossec L, Paternotte S, Etcheto A, Combe B, Meyer O, et al. 
Evaluation of Serum Interleukin-6 Level as a Surrogate Marker of Synovial 
Inflammation and as a Factor of Structural Progression in Early Rheumatoid 
Arthritis: Results From a French National Multicenter Cohort. Arthrit Care Res. 
2015;67(7):905-12. 
306. Madhok R, Crilly A, Watson J, Capell HA. Serum Interleukin-6 Levels in 
Rheumatoid-Arthritis - Correlations with Clinical and Laboratory Indexes of 
Disease-Activity. Annals of the Rheumatic Diseases. 1993;52(3):232-4. 
307. Burska AN, El-Jawhari JJ, Wu J, Wakefield RJ, Marzo-Ortega H, 
Conaghan PG, et al. Receptor activator of nuclear factor kappa-Beta ligand 
(RANKL) serum levels are associated with progression to seropositive/negative 
rheumatoid arthritis. Clinical and experimental rheumatology. 2020. 
308. Churchman SM, Geiler J, Parmar R, Horner EA, Church LD, Emery P, et 
al. Multiplexing immunoassays for cytokine detection in the serum of patients with 
rheumatoid arthritis: lack of sensitivity and interference by rheumatoid factor. 
Clinical and experimental rheumatology. 2012;30(4):534-42. 
309. Ntranos A, Casaccia P. Bromodomains: Translating the words of lysine 
acetylation into myelin injury and repair. Neurosci Lett. 2016;625:4-10. 
310. Lang F, Shumilina E. Regulation of ion channels by the serum- and 
glucocorticoid-inducible kinase SGK1. FASEB J. 2013;27(1):3-12. 
311. Baban B, Liu JY, Mozaffari MS. SGK-1 regulates inflammation and cell 
death in the ischemic-reperfused heart: pressure-related effects. Am J 
Hypertens. 2014;27(6):846-56. 
312. Rhead B, Holingue C, Cole M, Shao X, Quach HL, Quach D, et al. 
Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With 
Synoviocytes. Arthritis & rheumatology. 2017;69(3):550-9. 
313. Tian J, Chau C, Hales TG, Kaufman DL. GABAA receptors mediate 
inhibition of T cell responses. Journal of Neuroimmunology. 1999;96(1):21-8. 
314. Mendu SK, Bhandage A, Jin Z, Birnir B. Different Subtypes of GABA-A 
Receptors Are Expressed in Human, Mouse and Rat T Lymphocytes. Plos One. 
2012;7(8). 
315. Tian JD, Yong J, Dang H, Kaufman DL. Oral GABA treatment 
downregulates inflammatory responses in a mouse model of rheumatoid arthritis. 
Autoimmunity. 2011;44(6):465-70. 
316. Tian JD, Lu YX, Zhang HW, Chau CH, Dang HN, Kaufman DL. gamma-
aminobutyric acid inhibits T cell autoimmunity and the development of 
inflammatory responses in a mouse type 1 diabetes model. J Immunol. 
2004;173(8):5298-304. 
317. Garaud S, Le Dantec C, Jousse-Joulin S, Hanrotel-Saliou C, Saraux A, 
Mageed RA, et al. IL-6 modulates CD5 expression in B cells from patients with 
lupus by regulating DNA methylation. J Immunol. 2009;182(9):5623-32. 
318. Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clinical 
immunology. 2009;130(1):27-33. 



 
297 

 

 

 

319. Teague TK, Marrack P, Kappler JW, Vella AT. IL-6 rescues resting mouse 
T cells from apoptosis. The Journal of Immunology. 1997;158(12):5791-6. 
320. Lotz M, Jirik F, Kabouridis P, Tsoukas C, Hirano T, Kishimoto T, et al. B 
cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and 
T lymphocytes. Journal of Experimental Medicine. 1988;167(3):1253-8. 
321. Rochman I, Paul WE, Ben-Sasson S. IL-6 increases primed cell expansion 
and survival. The Journal of Immunology. 2005;174(8):4761-7. 
322. Ponchel F, Burska A, Raschke E, Olek S, Emery P. A8.11 Th17 cells as a 
diagnostic biomarker for rheumatoid arthritis (RA): Pilot data using an epigenetic 
QPCR assay. Annals of the Rheumatic Diseases. 2016;75(Suppl 1):A69-A. 
323. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in 
the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation 
of IL-17-Producing T Cells. Immunity. 2006;24(2):179-89. 
324. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-
6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 
cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 
2008;105(26):9041-6. 
325. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 
initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 
2007;448(7152):484-7. 
326. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. 
Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, 
amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331-41. 
327. Van Roon J, Glaudemans K, Bijlsma J, Lafeber F. Interleukin 7 stimulates 
tumour necrosis factor α and Th1 cytokine production in joints of patients with 
rheumatoid arthritis. Annals of the rheumatic diseases. 2003;62(2):113-9. 
328. Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. 
Nature reviews Rheumatology. 2018;14(4):214-28. 
329. Rodriguez-Carrio J, Alperi-Lopez M, Lopez P, Ballina-Garcia FJ, Suarez 
A. Heterogeneity of the Type I Interferon Signature in Rheumatoid Arthritis: A 
Potential Limitation for Its Use As a Clinical Biomarker. Front Immunol. 
2017;8:2007. 
330. Ronnblom L. The importance of the type I interferon system in 
autoimmunity. Clinical and experimental rheumatology. 2016;34(4 Suppl 98):21-
4. 
331. Lübbers J, Brink M, van de Stadt LA, Vosslamber S, Wesseling JG, van 
Schaardenburg D, et al. The type I IFN signature as a biomarker of preclinical 
rheumatoid arthritis. Annals of the rheumatic diseases. 2013;72(5):776-80. 
332. Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, et al. 
Interleukin-6 and type I interferon-regulated genes and chemokines mark disease 
activity in dermatomyositis. Arthritis Rheum. 2009;60(11):3436-46. 
333. Zimmermann M, Arruda-Silva F, Bianchetto-Aguilera F, Finotti G, Calzetti 
F, Scapini P, et al. IFNalpha enhances the production of IL-6 by human 
neutrophils activated via TLR8. Sci Rep. 2016;6:19674. 
334. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 
2018;101:14-8. 
335. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A 
critical role for Dnmt1 and DNA methylation in T cell development, function, and 
survival. Immunity. 2001;15(5):763-74. 



 
298 

 

 

 

336. He S, Tong Q, Bishop DK, Zhang Y. Histone methyltransferase and 
histone methylation in inflammatory T-cell responses. Immunotherapy. 
2013;5(9):989-1004. 
337. Unutmaz D, Baldoni F, Abrignani S. Human naive T cells activated by 
cytokines differentiate into a split phenotype with functional features intermediate 
between naive and memory T cells. Int Immunol. 1995;7(9):1417-24. 
338. Thiel S, Sommer U, Kortylewski M, Haan C, Behrmann I, Heinrich PC, et 
al. Termination of IL-6-induced STAT activation is independent of receptor 
internalization but requires de novo protein synthesis. Febs Lett. 2000;470(1):15-
9. 
339. Thiel S, Dahmen H, Martens A, Muller-Newen G, Schaper F, Heinrich PC, 
et al. Constitutive internalization and association with adaptor protein-2 of the 
interleukin-6 signal transducer gp130. Febs Lett. 1998;441(2):231-4. 
340. Nair N, Wilson AG, Barton A. DNA methylation as a marker of response in 
rheumatoid arthritis. Pharmacogenomics. 2017;18(14):1323-32. 
341. Weissenbach M, Clahsen T, Weber C, Spitzer D, Wirth D, Vestweber D, 
et al. Interleukin‐6 is a direct mediator of T cell migration. European journal of 
immunology. 2004;34(10):2895-906. 
342. Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, et al. IL-21 
and IL-6 are critical for different aspects of B cell immunity and redundantly 
induce optimal follicular helper CD4 T cell (Tfh) differentiation. Plos One. 
2011;6(3):e17739. 
343. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 
and Blimp-1 Are Reciprocal and Antagonistic Regulators of T Follicular Helper 
Cell Differentiation. Science. 2009;325(5943):1006-10. 
344. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. 
Generation of T follicular helper cells is mediated by interleukin-21 but 
independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138-49. 
345. Yu M, Cavero V, Lu Q, Li H. Follicular helper T cells in rheumatoid arthritis. 
Clinical rheumatology. 2015;34(9):1489-93. 
346. Firestein GS, Zvaifler NJ. How important are T cells in chronic rheumatoid 
synovitis? II. T cell-independent mechanisms from beginning to end. Arthritis 
Rheum. 2002;46(2):298-308. 
347. Unutmaz D, Abrignani S. Cytokines Can Activate Resting T-Lymphocytes. 
Chall Mod Med. 1994;8:49-52. 
348. Emery P. The Roche Rheumatology Prize Lecture. The optimal 
management of early rheumatoid disease: the key to preventing disability. Br J 
Rheumatol. 1994;33(8):765-8. 
349. Burgers LE, Raza K, van der Helm-van Mil AH. Window of opportunity in 
rheumatoid arthritis - definitions and supporting evidence: from old to new 
perspectives. RMD Open. 2019;5(1):e000870. 
350. Nell VPK, Machold KP, Eberl G, Stamm TA, Uffmann M, Smolen JS. 
Benefit of very early referral and very early therapy with disease-modifying anti-
rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology. 
2004;43(7):906-14. 
351. van der Linden MP, le Cessie S, Raza K, van der Woude D, Knevel R, 
Huizinga TW, et al. Long-term impact of delay in assessment of patients with 
early arthritis. Arthritis Rheum. 2010;62(12):3537-46. 
352. Kyburz D, Gabay C, Michel BA, Finckh A, physicians of S-R. The long-
term impact of early treatment of rheumatoid arthritis on radiographic 



 
299 

 

 

 

progression: a population-based cohort study. Rheumatology (Oxford). 
2011;50(6):1106-10. 
353. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, 
et al. 2010 rheumatoid arthritis classification criteria: an American College of 
Rheumatology/European League Against Rheumatism collaborative initiative. 
Ann Rheum Dis. 2010;69(9):1580-8. 
354. Lee DM, Schur PH. Clinical utility of the anti-CCP assay in patients with 
rheumatic diseases. Ann Rheum Dis. 2003;62(9):870-4. 
355. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of 
Inflammation and Infection. Frontiers in immunology. 2018;9:754-. 
356. Chang PY, Yang CT, Cheng CH, Yu KH. Diagnostic performance of anti-
cyclic citrullinated peptide and rheumatoid factor in patients with rheumatoid 
arthritis. Int J Rheum Dis. 2016;19(9):880-6. 
357. Bas S, Perneger TV, Kunzle E, Vischer TL. Comparative study of different 
enzyme immunoassays for measurement of IgM and IgA rheumatoid factors. Ann 
Rheum Dis. 2002;61(6):505-10. 
358. Bas S, Perneger TV, Seitz M, Tiercy JM, Roux-Lombard P, Guerne PA. 
Diagnostic tests for rheumatoid arthritis: comparison of anti-cyclic citrullinated 
peptide antibodies, anti-keratin antibodies and IgM rheumatoid factors. 
Rheumatology (Oxford). 2002;41(7):809-14. 
359. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, 
Breedveld FC, et al. The diagnostic properties of rheumatoid arthritis antibodies 
recognizing a cyclic citrullinated peptide. Arthritis Rheum. 2000;43(1):155-63. 
360. Benjamin O, Bansal P, Goyal A, Lappin SL. Disease Modifying Anti-
Rheumatic Drugs (DMARD).  StatPearls. Treasure Island (FL)2020. 
361. Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Alvaro-Gracia JM, et 
al. 2016 update of the EULAR recommendations for the management of early 
arthritis. Ann Rheum Dis. 2017;76(6):948-59. 
362. Nurmohamed MT, Dijkmans BA. Efficacy, tolerability and cost 
effectiveness of disease-modifying antirheumatic drugs and biologic agents in 
rheumatoid arthritis. Drugs. 2005;65(5):661-94. 
363. García-Giménez JL, Seco-Cervera M, Tollefsbol TO, Romá-Mateo C, 
Peiró-Chova L, Lapunzina P, et al. Epigenetic biomarkers: Current strategies and 
future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 
2017;54(7-8):529-50. 
364. Voyias PD, Patel A, Arasaradnam RP. Chapter 10 - Epigenetic Biomarkers 
of Disease. In: Tollefsbol TO, editor. Medical Epigenetics. Boston: Academic 
Press; 2016. p. 159-76. 
365. García-Giménez JL, Ushijima T, Tollefsbol TO. Chapter 1 - Epigenetic 
Biomarkers: New Findings, Perspectives, and Future Directions in Diagnostics. 
In: García-Giménez JL, editor. Epigenetic Biomarkers and Diagnostics. Boston: 
Academic Press; 2016. p. 1-18. 
366. Peedicayil J. Epigenetic biomarkers in psychiatric disorders. Br J 
Pharmacol. 2008;155(6):795-6. 
367. Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in 
autoimmune diseases. Clinical immunology. 2018;196:34-9. 
368. Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC, et al. DNA 
Methylation Cancer Biomarkers: Translation to the Clinic. Frontiers in genetics. 
2019;10:1150. 



 
300 

 

 

 

369. Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer 
diagnosis and therapeutics. Clin Exp Med. 2018;18(1):1-14. 
370. Chen Y, Li J, Yu X, Li S, Zhang X, Mo Z, et al. APC gene hypermethylation 
and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet. 
2013;21(9):929-35. 
371. Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM. Measurement 
of GSTP1 promoter methylation in body fluids may complement PSA screening: 
a meta-analysis. Br J Cancer. 2011;105(1):65-73. 
372. Payne SR. From discovery to the clinic: the novel DNA methylation 
biomarker (m)SEPT9 for the detection of colorectal cancer in blood. 
Epigenomics. 2010;2(4):575-85. 
373. Dietrich D, Jung M, Puetzer S, Leisse A, Holmes EE, Meller S, et al. 
Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and 
cytology in benign, paramalignant and malignant pleural effusions. Plos One. 
2013;8(12):e84225. 
374. Wick W, Weller M, van den Bent M, Sanson M, Weiler M, von Deimling A, 
et al. MGMT testing--the challenges for biomarker-based glioma treatment. Nat 
Rev Neurol. 2014;10(7):372-85. 
375. Bock C. Epigenetic biomarker development. Epigenomics. 2009;1(1):99-
110. 
376. Bennett MR, Devarajan P. Chapter 1 - Characteristics of an Ideal 
Biomarker of Kidney Diseases. In: Edelstein CL, editor. Biomarkers of Kidney 
Disease. San Diego: Academic Press; 2011. p. 1-24. 
377. Sehouli J, Loddenkemper C, Cornu T, Schwachula T, Hoffmuller U, 
Grutzkau A, et al. Epigenetic quantification of tumor-infiltrating T-lymphocytes. 
Epigenetics. 2011;6(2):236-46. 
378. Burska AN, Thu A, Parmar R, Bzoma I, Samans B, Raschke E, et al. 
Quantifying circulating Th17 cells by qPCR: potential as diagnostic biomarker for 
rheumatoid arthritis. Rheumatology (Oxford). 2019;58(11):2015-24. 
379. Precision-for-Medicine. Epiontis ID Immune Cell Monitoring. p. 
https://www.precisionformedicine.com/specialty-lab-services/immune-
monitoring/immune-monitoring-by-epiontis-id/. 
380. Zhu H, Wu LF, Mo XB, Lu X, Tang H, Zhu XW, et al. Rheumatoid arthritis-
associated DNA methylation sites in peripheral blood mononuclear cells. Ann 
Rheum Dis. 2019;78(1):36-42. 
381. Julia A, Absher D, Lopez-Lasanta M, Palau N, Pluma A, Waite Jones L, et 
al. Epigenome-wide association study of rheumatoid arthritis identifies 
differentially methylated loci in B cells. Hum Mol Genet. 2017;26(14):2803-11. 
382. Biosystems A. Gene Expression Assay Performance Guaranteed With the 
TaqMan Assays QPCR Guarantee Program. 
383. Kahn SL, Ronnett BM, Gravitt PE, Gustafson KS. Quantitative 
methylation-specific PCR for the detection of aberrant DNA methylation in liquid-
based Pap tests. Cancer. 2008;114(1):57-64. 
384. Husseiny MI, Kuroda A, Kaye AN, Nair I, Kandeel F, Ferreri K. 
Development of a quantitative methylation-specific polymerase chain reaction 
method for monitoring beta cell death in type 1 diabetes. Plos One. 
2012;7(10):e47942. 
385. Siebert S, Lyall DM, Mackay DF, Porter D, McInnes IB, Sattar N, et al. 
Characteristics of rheumatoid arthritis and its association with major comorbid 

https://www.precisionformedicine.com/specialty-lab-services/immune-monitoring/immune-monitoring-by-epiontis-id/
https://www.precisionformedicine.com/specialty-lab-services/immune-monitoring/immune-monitoring-by-epiontis-id/


 
301 

 

 

 

conditions: cross-sectional study of 502 649 UK Biobank participants. RMD 
Open. 2016;2(1):e000267. 
386. Kallberg H, Padyukov L, Plenge RM, Ronnelid J, Gregersen PK, van der 
Helm-van Mil AH, et al. Gene-gene and gene-environment interactions involving 
HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am J 
Hum Genet. 2007;80(5):867-75. 
387. Xu B, Lin J. Characteristics and risk factors of rheumatoid arthritis in the 
United States: an NHANES analysis. PeerJ. 2017;5:e4035. 
388. Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: Issues 
in developing models, evaluating assumptions and adequacy, and measuring 
and reducing errors. Statistics in Medicine. 1996;15(4):361-87. 
389. Bartlett J. Adjusting for optimism/overfitting in measures of predictive 
ability using bootstrapping 2014 [Available from: 
https://thestatsgeek.com/2014/10/04/adjusting-for-optimismoverfitting-in-
measures-of-predictive-ability-using-bootstrapping/. 
390. Bondarenko V. The Bootstrap Approach to Managing Model Uncertainty 
2015 [Available from: https://rpubs.com/vadimus/bootstrap. 
391. Nesher G, Moore TL, Dorner RW. In vitro effects of methotrexate on 
peripheral blood monocytes: modulation by folinic acid and S-
adenosylmethionine. Ann Rheum Dis. 1991;50(9):637-41. 
392. Wang YC, Chiang EP. Low-dose methotrexate inhibits methionine S-
adenosyltransferase in vitro and in vivo. Mol Med. 2012;18:423-32. 
393. Nesher G, Moore TL. The in vitro effects of methotrexate on peripheral 
blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis 
Rheum. 1990;33(7):954-9. 
394. Oosterom N, Griffioen PH, den Hoed MAH, Pieters R, de Jonge R, Tissing 
WJE, et al. Global methylation in relation to methotrexate-induced oral mucositis 
in children with acute lymphoblastic leukemia. Plos One. 2018;13(7):e0199574. 
395. Nair N, Plant D, Verstappen SM, Isaacs JD, Morgan AW, Hyrich KL, et al. 
Differential DNA methylation correlates with response to methotrexate in 
rheumatoid arthritis. Rheumatology (Oxford). 2019. 
396. Gosselt HR, van Zelst BD, de Rotte M, Hazes JMW, de Jonge R, Heil SG. 
Higher baseline global leukocyte DNA methylation is associated with MTX non-
response in early RA patients. Arthritis Res Ther. 2019;21(1):157. 
397. Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe D, 
Bombardier C. Methotrexate monotherapy and methotrexate combination 
therapy with traditional and biologic disease modifying antirheumatic drugs for 
rheumatoid arthritis: abridged Cochrane systematic review and network meta-
analysis. BMJ. 2016;353:i1777. 
398. Leoni C, Vincenzetti L, Emming S, Monticelli S. Epigenetics of T 
lymphocytes in health and disease. Swiss Med Wkly. 2015;145:w14191. 
399. Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, et al. 
Genome-wide DNA methylation study suggests epigenetic accessibility and 
transcriptional poising of interferon-regulated genes in naive CD4+ T cells from 
lupus patients. Journal of autoimmunity. 2013;43:78-84. 
400. Altorok N, Coit P, Hughes T, Koelsch KA, Stone DU, Rasmussen A, et al. 
Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with 
primary Sjogren's syndrome. Arthritis & rheumatology. 2014;66(3):731-9. 

https://thestatsgeek.com/2014/10/04/adjusting-for-optimismoverfitting-in-measures-of-predictive-ability-using-bootstrapping/
https://thestatsgeek.com/2014/10/04/adjusting-for-optimismoverfitting-in-measures-of-predictive-ability-using-bootstrapping/
https://rpubs.com/vadimus/bootstrap


 
302 

 

 

 

401. Dong L, Wang X, Tan J, Li H, Qian W, Chen J, et al. Decreased expression 
of microRNA-21 correlates with the imbalance of Th17 and Treg cells in patients 
with rheumatoid arthritis. J Cell Mol Med. 2014;18(11):2213-24. 
402. Ouboussad L, Hunt L, Hensor EMA, Nam JL, Barnes NA, Emery P, et al. 
Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis. 
Arthritis Res Ther. 2017;19(1):288. 
403. Ganapathi SK, Beggs AD, Hodgson SV, Kumar D. Expression and DNA 
methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic 
significance. Br J Cancer. 2014;111(8):1581-9. 
404. Arroyo-Jousse V, Garcia-Diaz DF, Codner E, Perez-Bravo F. Epigenetics 
in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients 
with type 1 diabetes mellitus. Br J Nutr. 2016;116(11):1861-8. 
405. Campion J, Milagro FI, Goyenechea E, Martinez JA. TNF-alpha promoter 
methylation as a predictive biomarker for weight-loss response. Obesity (Silver 
Spring). 2009;17(6):1293-7. 

 



 
303 

 

 

 

List of supplementary data 

 

(Excel file) 

Data S1-S3 : DM-CpG-clusters and isolated-DM-CpG of naïve, memory CD4+T-

cells and monocytes. 

Data S4: final gene list add in string network analysis for 3 cells subsets 

Data S5: Overlapping of DM gene list between 3 strategies; Scoring system, 

DMRcate, and Bumphunter. 

  



 
304 

 

 

 

Appendix 

 

Appendix 1  

Reagents, kits, buffer and equipment list. 

 

Reagents and kits

Technique Kit Reagent Company Cat No

CD4+isolation EasySep™ Human CD4+ T Cell Isolation Cocktail

EasySep™ Dextran

RapidSpheres™ 50103

Cell Isolation LymphoprepTM Alere Technologies AS 7801

PBS Sigma P4417

Trypan blue Gibco™ 15250061

FAC Buffer *

Modified FAC Buffer (+2mM EDTA)*

Blocking Buffer *

DNA isolation QIAamp Mini Spin Columns 

Collection Tubes (2 ml) 

Buffer AL

Proteinase K

Buffer AW1

Buffer AW2

Buffer AE 

M-dilution buffer

M-dissolving buffer

CT coversion reagent

Desulphonation buffer

Binding

Elution

Wash buffer

PCR HotStarTaq DNA Polymerase

10x PCR Buffer

25 mM MgCl2

dNTP Mix, PCR Grade (200 ul) Qaigen 201900

Nuclease-Free Water (10 x 50 ml) Qaigen 129114

Agarose Bioline BIO-41025

TBE BUFFER (10X) Applichem Lifescience A0972.1000

50 bp DNA ladder New England Biolabs B7025S

Hyper ladder 100bp Bioline BIO-33056

Gel loadding dye New England Biolabs N3236S

Ethidium Bromide (ETBr) Sigma E1385

Sequencing illustra™ ExoProStar™ GE healthcare US77705

ABI sequencing buffer

Ready reaction mix

3M sodium acetate (pH 5.2) Sigma S7899

Ethanol Sigma 32221

HiDi formamide Applied Biosystems 4401457

Standard DNA CpGmethylated Hela Genomic DNA New England biolabs N4007S

Cells-to-CpG Methylated & Unmethylated gDNA 

Control 100 ng/ul g DNA
Applied Biosystems 4445552

EpiTect PCR Control DNA Set (100) Qaigen 59695

qPCR Power SYBR™ Green PCR Master Mix Applied Biosystems 4368706

TaqMan™ Universal Master Mix II, no UNG Applied Biosystems 4440047

Notes, Buffer recipes

Bisulfite 

conversion

Agarose 

electrophoresis

500 mL (0.1% BSA in PBS (0.5g)+0.01% Sodium Azide +200 NaEDTA 0.5M

FAC Buffer + 2mM EDTA

Mouse serum(sigma-M5905)300 uL+ Human IgG(sigma-12511)100uL+FAC buffer1100 

FAC Buffer *

Modified FAC Buffer *

Blocking Buffer *

Zymo research

,Valencia, CA, US) 
D5006

Qaigen 203205

Applied Biosystems 4337454

Stemcell Technology 17952

Qaigen 51106

EasySep™ 

Human CD4+ 

T Cell 

QIAamp DNA 

Blood Mini Kit 

(250)

EZ DNA 

Methylation-

Gold Kit

HotStarTaq 

DNA 

Polymerase 

BigDye™ 

Terminator 



 
305 

 

 

 

 

 

  

Equipment/Machine

Name Company Cat no.

Attune Thermofisher

Influx FACS BD Biosciences

ND1000 Spectrophotometer NanoDrop Technologies

ChemiDoc Imaging Systems Bio-Rad Laboratories

Techne™ TC-512 Gradient Thermal Cycler Bibby Scientific

3130xl Genetic Analyzer Applied Biosystems

Quant Studio5 Applied Biosystems

MicroAmp optical 96-well reaction plate Applied Biosystems N8010560

MicroAmp optical adhesive flim Applied Biosystems 4311971

EasySep™ Magnet Stemcell Technology 18000
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Appendix 2 
 
Samples ethical permission 
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Appendix 3 

Supplementary method: Initial procedures for obtaining Genome-wide 

DNA methylation data: Samples procedure and data acquisition 

 

Blood Samples were collected from 6 HC and 10 early patients (who meet the 

EULAR-2010 classification criteria for RA (1)), being naïve for DMARD, and 

having an active disease with at least 3 swollen joints and inflammation markers 

(CRP>10) (using a ficoll method).  3 cell subtypes, Naïve (CD45RA+/CD45RO-) 

and memory (CD45RA-/CD45RO+) CD4+T-cell and monocytes were purified by 

cell sorting following antibody staining using standards protocols: anti-CD4 

(Clone RPA-T4, BD), anti-CD3 (Clone RPA-T8, BD), CD45RA (Clone MEM55, 

Serotec), CD45RO (Clone UCHL1, Serotec). Monocytes were purified based on 

the expression of CD14 detected by cell surface staining (CD14 Clone M5E2, 

BD). CD45RB/CD45RA/CD62L were used for selecting naïve and memory 

CD4+T-cells.  Genomic DNA was extracted and bisulfide converted before a 

genome wide DNA methylation array was performed using an Illumina Infinium 

Human Methylation 450 Bead Chip. Raw data from the Illumina array were then 

forwarded to the research group. 
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Appendix 4 

Flow cytometry antibodies staining detail  

 

 

  

Technique Target cell Antibodies Company Cat no.

Cells sorting CD4+T-cell FITC Mouse Anti-Human CD3 Clone HIT3a (RUO) BD 555339

aPC-Cy™7 Mouse Anti-Human CD4 Clone SK3 (CE-IVD) Biolegend 341115

CD8+T-cell FITC Mouse Anti-Human CD3 Clone HIT3a (RUO) BD 555339

Alexa Fluor® 700 Mouse Anti-Human CD8 Clone RPA-T8 (RUO) BD 557945

B-cell APC Mouse Anti-Human CD19 Clone  HIB19   (RUO) BD 555415

NK cell PE Mouse Anti-Human CD56 Clone B159  (RUO) BD 555516

Monocyte Pacific Blue™ Mouse Anti-Human CD14 Clone M5E2 (RUO) BD 558121

CD4+T-cell FITC Mouse Anti-Human CD3 Clone HIT3a (RUO) BD 555339

V500 Mouse Anti-Human CD4 Clone RPA-T4 (RUO) BD 560768

Purification 

check
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Appendix 5 

Primers detail for Bisulfite sequencing 

 

  

Gene Position F/R/Probe sequcene
Product 

size

Bisulfite sequecing

TNF Chr 6: 31,543,118-31,543,391 F 5' to 3' GAGTGTGAGGGGTATTTTTGATGTT 274

R 5' to 3' CTCTCCCTCTTAACTAATCCTCTA CTATCC

Expected Product

GAGTGTGAGGGGTATTTTTGATGTT

TGTGTGTTTTTAATTTTTTAAATTTT CGTTTTCGCGATGGAGAAGAAATCG

AGATAGAAGGTGTAGGGTTTATTATCGTTTTTTTTAGATGAGTTTATGGG

TTTTTTTATTAAGGAAGTTTTTCGTTGGTTGAATGATTTTTTTTTCGTTT

TTTTTTCGTTTTAGGGATATATAAAGGTAGTTGTTGGTATATTTAGTTAG

TAGACGTTTTTTTAGTAAGGATAGTAGAGGATTAGTTAAGAGGGAGAG

IFITM1 Chr 11: 315,655-315,886 F 5' to 3' TTAGGTGTGTTGGATTTTAGTAGTTG 232
R 5' to 3' CCCGTCACATTTCAAAACTA
R 5' to 3' CCTGTCACATTTCAAAACTA

Expected Product

TTAGG TGTGTTGGAT TTTAGTAGTT

GTTTTTTTTA GTTTAGTCGG TATTTTTTTT GTTTTTTTGG GGTGGGGGTA

GTTAATGGTT CG AGGGTGGG GCGTTCGCGA GGGTTTGGGA GGGTAGTTTT 

CGATCGGGAG TTTCGCGGGA GTTCGGGAAG AGGGTTTCGT TAGGTGGAGA 

TTTTTTTGGT GTAGTTAGCG AGGGTTTCGG GATTTCGTAG TTTTGAAATG TGACGGG
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Primers and probes detail for qMSP assay 

 

 

Gene Position F/R/Probe sequcene
Product 

size

qMSP-SYBRgreen

Target gene assay

HDAC4_V1 Chr 2: 240,196,959-240,197,150 F 5' to 3' GTTGGAGTTAGGTTGTTGGTAAAGTG 192

R 5' to 3' CCCAACCAACAACACCTCCAA

HDAC4_V2 Chr 2: 240,197,021-240,197,148 F 5' to 3' GATGTAAATTAAGAGGTAAGTAAATGA 128

R 5' to 3' CAACCAACAACACCTCCAA

HDAC4_V3 Chr 2: 240,196,858-240,196,984 F 5' to 3' GGTTGGAAGTTTTGTGGGTTGA 127

R 5' to 3' CACTTTACCAACAACCTAACTCCA

PRTOR 	Chr 17 : 78,786,209-78,786,379 F 5' to 3' TTGTGAAGTTTGAATTGTTTTGAGT 171

R 5' to 3' CAACAAAAACACTAAATAAATCACAACA

MIR21 Chr 17: 57,915,689-57,915,816 F 5' to 3' GTTATTTTAGGAGTATTTGGAGGTTTAATG 128

R 5' to 3' AATATAATTTCAACCCAAAACTTCCCAA

TNF_V1 Chr 6: 31,543,091-31,543,203 F 5' to 3' TTTTGGAATTGGAGTAGGGAGGA 113

R 5' to 3' CCTTCTATCTCAATTTCTTCTCCATCACAA

TNF_V2 Chr 6: 31,544,670-31,544,842 F 5' to 3' TTTGGAGATAATGTGAGAAGGATTTGT 173

Internal control assay

GAPDH v1 Chr 12: 6,645,437-6,645,570 F 5' to 3' TGATTGGGGGTGTTGGGTAGT 134

R 5' to 3' AATACAACATCTCCTTACCCCCAAA

GAPDH v2 Chr 12: 6,645,384-6,645,511 F 5' to 3' AGATTGTGGGTGGTAGTGTTT 128

R 5' to 3' CTTCCCTACCAAACTAACCTAACT

ACTB V1 Chr 7: 5,565,747-5,565,939 F 5' to 3' TTTAGTAGAGGGAAGGTAGGTTAGGTT 193

R 5' to 3' CCATAACTCACTACAACCTCAACTTT

ACTB V2 Chr 7: 5,564,028-5,564,200 F 5' to 3' TTGGTAAGAAGTAGGAGTTGTTGAAGTT 173

F 5' to 3' TTGGTAAGAAGTAGGAGTTGTTGAAGT

ACTB V3 Chr 7: 5,565,650-5,565,765 F 5' to 3' TGTTATGTATTAGGTGGTGTTTGGG 116

R 5' to 3' CTACCTTCCCTCTACTAAAAACT

qMSP-Taq-Man

Target gene assay

TNF Chr 6:31,543,091-31,543,211 F 5' to 3' TTTCGGAATCGGAGTAGGGAG 121

R 5' to 3' ACCCTACACCTTCTATCTCGATTTCTT

Probe TCGTTTTCGCGATGGAG

HDAC4 Chr 2:240,196,872-240,196,954 F 5' to 3' TGGGTCGAAGTTATTTTAGGTTTTTAGT 83

R 5' to 3' AACGACTTACCAAAAACAACCTCAA

IRF8 V2 Chr 16:85,979,046-85,979,116 F 5' to 3' TGAAGTAGTAGTTTCGGTATTGGGTTT 71

R 5' to 3' ACCAACCCACGCCAAAAA

Probe TAGTGGAGATCGGGAATGA

IRF8 V4 Chr 16:85,979,046-85,979,126 F 5' to 3' TGAAGTAGTAGTTTCGGTATTGGGTTT 81

R 5' to 3' CTACGTCCTTACCAACCCACG

Probe TAGTGGAGATCGGGAATGA

Internal control assay

GAPDH Chr 12:6,645,449-6,645,570 F 5' to 3' TTGGGTAGTTTTGGAGTTTTTAGTTG 122

R 5' to 3' AATACAACATCTCCTTACCCCCAA

Probe AGTTAGGTTAGTTTGGTAGGGAA

ACTB Chr 7:5,571,788-5,571,861 F 5' to 3' TGGTGATGGAGGAGGTTTAGTAAGT 74

R 5' to 3' TAACCACCACCCAACACACAAT

Probe TGGATTGTGAATTTGTGTTTG
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Appendix 6 

Supplementary method: Analysis of publicly available gene expression 

data 

Gene expression data were obtained from ArrayExpress (E-GEOD-20098, E-

GEOD-26163) (2, 3). Sample were CD4+T-cells, purified from peripheral blood 

of 47 early, drug naïve RA patients and 16 HC. These datasets were both 

generated using Illumina HumanWG-6 v3.0 expression beadchips and 

BeadStudio version 3.3.7 software (Illumina, San Diego, California, USA). Pre-

processing of raw data was performed using the Lumi package (4, 5) for data 

input, quality assessment, and normalisation (robust spline) on log2-transfromed 

data. The normalizeBetweenArrays function within the Limma Package was 

used to achieve consistency between the two arrays (6) (Figure below). The 

data was then filtered for probe signal intensity: probes which had a p value 

<0.05 in at least 10% of samples were retained and aggregated to genes using 

Limma’s avereps function. Linear models made using Limma version 3.34.9 

were used to assess differential gene expression (6, 7).  The empirical Bayes 

method was employed to moderate the standard errors of the estimated fold-

changes (6), and the arrayWeights function (8) measured how well the 

expression values followed the linear model. Correction for multiple testing was 

done by the Benjamini-Hochberg method; taking an adjusted p value of  <0.05 

(9).  

 

 

Gene expression analysis. Quality control and data pre-processing from 2 

datasets for gene expression in CD4+T-cell.  
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Appendix 7 
 
Supplementary method: Subset phenotyping by flow cytometry 

Flow cytometry was performed using standard cell surface staining protocol using 

fresh EDTA blood, following red cell lysis. Naïve CD4+T-cells were gated based 

on the expression of CD3/CD4/CD45RA/CD45RO (as described above). The 

expression of CD4, IL-6R (CD126 clone M5, BD), IL-2R (CD25 clone 2A3, BD), 

CXCR4 (CD184 clone 12G5, BD), IL-7R (CD127 clone R34.34, Beckman 

Coulter)) was measured on naïve CD4+T-cells using Mean Fluorescence 

Intensity (MFI). Expression of CD62L (clone 145/15, Miltenyi) was either positive 

or negative and the percentage of CD3+/CD4+/CD45RA+/CD62L- cells was 

recorded.  

Statistical Analysis  

Data were displayed as box-plot (ELISA or MFI). Non-parametric Mann-Whitney 

U-test was performed on data comparing HC and RA. Statistical analysis was 

performed in SPSS V24.  
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Appendix A8 
List of candidate CpGs from 3 strategies for RA classification biomarker 

 

Strategy 

 1
Probe ID

Nearest 

gene symbol
Gene name

cg27183791 ANKRD11 ankyrin repeat domain 11

cg05299836 BCKDK branched chain keto acid dehydrogenase kinase

cg15350899 BCL9L BCL9 like

cg01260502 GIMAP7 GTPase, IMAP family member 7

cg14665366 GPRIN3 GPRIN family member 3

cg13681468 GPRIN3 GPRIN family member 3

cg20105257 HLA-E major histocompatibility complex, class I, E

cg04618171 HPCAL1 hippocalcin like 1

cg16379091 IFITM1 interferon induced transmembrane protein 1

cg03718883 INS-IGF2 INS-IGF2 readthrough

cg02231590 ITM2C integral membrane protein 2C

cg12669088 KRAS KRAS proto-oncogene, GTPase

cg05246522 KSR1 kinase suppressor of ras 1

cg05784862 KSR1 kinase suppressor of ras 1

cg00759807 LOC100287036

cg23660197 MICB MHC class I polypeptide-related sequence B

cg20703928 NCK2 NCK adaptor protein 2

cg17851795 PBX2 PBX homeobox 2

cg23149454 PDE2A phosphodiesterase 2A

cg25256924 PTPRCAP protein tyrosine phosphatase receptor type C associated protein

cg03050965 S1PR1 sphingosine-1-phosphate receptor 1

cg14885762 SEPT9 septin 9

cg00576086 TERT telomerase reverse transcriptase

cg17741993 TNF tumor necrosis factor

cg06813419 TRAF5 TNF receptor associated factor 5

cg01105418 ZBTB18 zinc finger and BTB domain containing 18

Strategy 

 2
Probe ID

Nearest 

gene symbol
Gene name

cg01974478 AP5Z1 adaptor related protein complex 5 subunit zeta 1

cg12047375 ATP6V1H ATPase H+ transporting V1 subunit H

cg13400249 RERE arginine-glutamic acid dipeptide repeats

cg04162316 RPTOR regulatory associated protein of MTOR complex 1

cg24462702 CD40LG CD40 ligand

Strategy 

 3
Probe ID

Nearest 

gene symbol
Gene name

Result 2 cg02835823 IRF8 interferon regulatory factor 8

Result 3 cg13064571 C8orf44 chromosome 8 open reading frame 44

cg17002328 CCDC88C coiled-coil domain containing 88C

cg05903736 HDAC4 histone deacetylase 4

cg15058210 HDAC4 histone deacetylase 4

cg15978561 HDAC4 histone deacetylase 4

cg02835823 IRF8 interferon regulatory factor 8

cg12054453 MIR21 microRNA 21

cg16936953 MIR21 microRNA 21

cg16853860 PSMB9 proteasome 20S subunit beta 9

cg20793665 PTMA prothymosin alpha

cg22077313 S100P S100 calcium binding protein P

cg23458168 ZNF536 zinc finger protein 536

Result 4 cg01106881 DNPEP aspartyl aminopeptidase

cg02835823 IRF8 interferon regulatory factor 8

ch.2.207814544R KLF7 Kruppel like factor 7

ch.13.39564907R LINC00332 long intergenic non-protein coding RNA 332

cg24174557 MIR21 microRNA 21

cg26427498 NAMPT nicotinamide phosphoribosyltransferase

ch.2.105901354F NCK2 NCK adaptor protein 2

cg03206537 NEURL2 neuralized E3 ubiquitin protein ligase 2

cg08752433 PPTC7 protein phosphatase targeting COQ7

cg20388732 STAT5A signal transducer and activator of transcription 5A

cg00004B5:K25667ZBTB17 zinc finger and BTB domain containing 17
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Appendix 9 
 
Bisulfite sequencing 
 
A good sequencing example form the control sequencing reaction using the 
company template DNA and primer.   
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IFITM1 Sequencing reaction optimisation: primer concentration 
 

Sequencing raw intensity results using different primer concentration.  Low 

signal intensity is observed and the signal present only in the beginning part of 

the sequence.  Reducing primer concentration slightly increased the 

sequencing signal intensity. 
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IFITM1 Sequencing reaction optimisation: amount of template 
 

Sequencing raw intensity results using different amount of template.    Low 

signal intensity is observed and the signal present only in the beginning part of 

the sequence.  Reducing template input slightly increased the sequencing 

signal intensity. 

 

 

 
IFITM1 Sequencing reaction optimisation: enzyme concentration 
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Sequencing raw intensity results using different enzyme concertation. 

Increasing reaction enzyme notable help increase the signal intensity.  The 

whole length of the PCR product could be sequenced at higher enzyme 

concentration. 
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Appendix 10 
 
TaqMan qMSP assay development 
 

Amplification plot of  GAPDH, ACTB TaqMan qMSP assay using of 100% 

methylated and un-methylated DNA.  The methylation independence for the 

internal control assay; GAPDH and ACTB assay was confirmed. 

 

  



 
319 

 

 

 

Appendix 11 
 
TaqMan qMSP assay development 
 
Amplification plot of  HDAC4, TNF, GAPDH, ACTB TaqMan qMSP assay using 
serial dilution of 100% methylated and un-methylated DNA. The colours from 
yellow to pink corresponding to 0.2 ng to 50 ng of methylated DNA. and the 
colour form green to blue corresponding to the unamplifying un-methylated 
DNA. 
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