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Abstract

In this thesis, we study the proof-theoretical and computational strength of some

combinatorial principles related to Ramsey’s theorem: this will be accomplished chiefly

by analyzing these principles from the points of view of reverse mathematics and

Weihrauch complexity.

We start by studying a combinatorial principle concerning graphs, introduced in [59] as

a form of “inside-outside” Ramsey’s theorem: we will determine its reverse mathemat-

ical strength and present the result characterizing its Weihrauch degree. Moreover,

we will study a natural restriction of this principle, proving that it is equivalent to

Ramsey’s theorem.

We will then move to a related result, this time concerning countable partial orders,

again introduced in [59]: we will give a thorough reverse mathematical investigation

of the strength of this theorem and of its original proof. Moreover, we will be able to

generalize it, and this generalization will itself be presented in the reverse mathematical

perspective.

After this, we will focus on two forms of Ramsey’s theorem that can be considered

asymmetric. First, we will focus on a restriction of Ramsey’s theorem to instances

whose solutions have a predetermined color, studying it in reverse mathematics and

from the point of view of the complexity of the solutions in a computability theoretic

sense. Next, we move to a classical result about partition ordinals, which will undergo

the same type of analysis.

Finally, we will present some results concerning a recently introduced operator on the

Weihrauch degrees, namely the first-order part operator: after presenting an alterna-

tive characterization of it, we will embark on the study the result of its applications

to jumps of Weak Kőnig’s Lemma.
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Introduction

In 1972, Carl Jockusch, in the seminal paper [41], analyzed the computational content

of Ramsey’s theorem for n-tuples and k colors, which from now on we shorten to RTnk .

In many ways, that paper can be seen to be the starting point of the analysis of the

logical strength of principles from infinite combinatorics: this area of research has since

then greatly expanded, and this expansion has led to important developments in the

parts of mathematical logic that were used to study it, chiefly among them reverse

mathematics, proof theory and computability theory.

This thesis can be seen as a contribution to that research field: essentially the entirety

of this document is dedicated to the investigation of the strength of principles that are

somehow related to classical Ramsey’s theorem, as we will explain in due course.

We will start by introducing, in Chapter 1, the main tools that will be used in the

course of this analysis: they can be broadly divided into two groups, namely reverse

mathematics and computability theory. We point out that it is, of course, very

reductive to describe these two fields as “tools”: although there is no way we can

do them justice in this comparatively short document, it must be said that they are

very active areas of research, of great interest from both the mathematical and the

philosophical point of view.

To begin with, we will give a brief introduction to some of the so-called “big five”,

namely RCA0, WKL0, ACA0 and Π1
1-CA0. These are important subsystems of second-

order arithmetic, linearly ordered with respect to logical strength, with the very

interesting property that much of classical mathematics can be proved to be equivalent

to one of them. As noticed in the literature, there is an element of irony in the fact
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that it is Ramsey’s theorem for pairs, a theorem which can be seen as asserting the

impossibility of absolute chaos, that ruins this very tame picture: RT2
2 does not prove,

nor is proved by, WKL0 over RCA0, and we will see that several other combinatorial

principles related to RT2
2 have the same behavior.

We then move to see some more specific topics concerning the use of computability

theory to gauge the strength of principles: other than seeing some classical results

from computability theory and their interplay with reverse mathematics, we will also

introduce what may be considered the most recently added measure of logical strength

for principles, namely Weihrauch reducibility and its variants.

In Chapters 2 and 3, we will put the instruments introduced in Chapter 1 to use to

study two combinatorial principles introduced by Ivan Rival and Bill Sands in [59],

one of them concerning graphs and the other concerning partial orders: they both

stem from the idea of finding Ramsey-like principles that, given a certain structure,

predicate the existence of a substructure that is not only nice on its own, as RT2
2 does,

but also has some nice properties with respect to the larger structure we started with.

We will give a thorough reverse mathematical analysis of the principle relative to

graphs, and we will limit ourselves to state without proofs the main results relative to

its position in the Weihrauch degrees (all the proofs and much more can be found in

our paper [27]). We will instead focus on a weakening of that principle, which turns

out to be equivalent to RT2
2, and study it in the Weihrauch degrees.

In the case of the principle relative to partial orders, we will see that the reverse

mathematical analysis is much less streamlined, and in particular it will be convenient

to have different formulations of that principle in second-order arithmetic, not equiva-

lent to each other over RCA0. Although we will not manage to classify all of these new

principles, some interesting phenomena emerge: one of the formulations turns out to

be equivalent to ADS over RCA0, and thus provides, to the best of our knowledge, the

first example of a statement of genuine mathematical interest to be equivalent to ADS.

Again, for further details and discussions, we refer to our paper [26].

In Chapter 4, we move to the study of principles that can be considered “asymmetric”
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instances of Ramsey’s theorem, in the sense that all the instances are coloring with

codomain 2 such that every solution has color 0. We will start with the reverse

mathematical analysis of the principles bRTnk , which state that for every coloring

f : [N]n → 2 such that every f -homogeneous set for color 1 has size less than k,

then there is an infinite f -homogeneous set (obviously, for color 0). This is joint (and

ongoing) work with Emanuele Frittaion. After noticing that the number k is not very

relevant, we will see that the case n = 2 can be proved over RCA0 plus some induction,

whereas the case n = 4 is equivalent to ACA0. Although we did not find the precise

strength of the case n = 3, we will provide some bounds, which require the use of

rather advanced machinery recently introduced by Ludovic Patey in [58].

After this, we will move to another asymmetric Ramseyan principle, namely the

theorem asserting that ω2 is a partition ordinal. In this case as well, we will not

find the precise strength of this principle, but we will give some bounds and some

initial estimates on the complexity of the solutions of its computable instances.

Finally, Chapter 5 will be devoted to the study, carried out in joint work with Manlio

Valenti, of a newly introduced operation on the Weihrauch degrees, namely the first-

order part operator, defined by Damir Dzhafarov, Reed Solomon and Keita Yokoyama.

We will focus on the case that the problem whose first-order part is being considered

is the parallelization of a first-order problem (we refer to Definitions 1.2.8 and 5.1.1

for the meaning of these expressions): after providing an alternative characterization

of the Weihrauch degree of the first-order part of such problems, we will explicitly

compute the degree of 1(WKL(n)), i.e. the (strong) Weihrauch degree of the first-order

part of the nth jump of WKL. In keeping with the rest of the thesis, we will conclude

the Chapter noticing that this result can be seen as relevant in the study of problems

associated to combinatorial principles, in that it yields the Weihrauch degree of the

first-order part of R̂Tn2 , the parallelization of Ramsey’s theorem for n-tuples.



4 Introduction



1. Background material

In this Chapter, we briefly review the background material that will be needed in the

following Chapters. It consists of two parts, namely Section 1.1 and Section 1.2.

The first part, Section 1.1, deals with the basics of reverse mathematics: in this Section,

we define and sketch some important features of the main subsystems of second-order

arithmetic that will be used in the rest of the thesis. It is itself divided into two

parts: in the first, Subsection 1.1.1, we focus on some of the so-called “big five”, very

important and natural subsystems that are fundamental characters of what might

be called classical reverse mathematics. In the second, Subsection 1.1.2, we focus

on systems whose strength corresponds to either some form of induction or to some

Ramseyan principle. Other than for the results we state, this Section is important

because in it we define large swaths of the notation that we will use in the rest of the

thesis.

The second part, Section 1.2, deals with the interplay between computability theory

and the study of the strength of mathematical principles. Again, the Section develops

along two main axes: one of them, Subsection 1.2.4, deals with some classical results

and notions from computability and their impact in reverse mathematics. The other

one, corresponding to Subsections 1.2.2 and 1.2.3, introduces a different perspective in

the analysis of the strength of principles: based on the fact that many mathematical

theorems are Π1
2 statements, it relies on seeing principles as partial multifunctions.

We will formalize this idea and give a few basic results that will allow us to apply this

perspective to the problems we will deal with in the next Chapters.
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1.1. Reverse mathematics preliminaries

Reverse Mathematics is an ongoing research program started in the 1970s by Harvey

Friedman (see for instance [28]; we also recommend [63] for a historical introduction

to the topic): its goal is to investigate the strength of theorems, or principles (we

will use these two terms interchangeably) of “ordinary mathematics”, i.e. the areas of

mathematics in which characteristic elements of set theory do not play a crucial role:

examples are number theory, geometry, real and complex analysis. This is mainly

accomplished in the following way: we search for the minimal set existence axiom A

necessary to prove a theorem B. The fact that a candidate axiom is indeed the best

possible is often proved by “reversing” the usual mathematical process and deducing

the axiom A assuming the theorem B.

Here, we will mainly focus on two aspects of this field. In Section 1.1.1 we introduce

RCA0, WKL0, ACA0 and Π1
1-CA0, four of the so-called “big five”, the main subsystems

of second-order arithmetic that turn out to be equivalent to large swaths of ordinary

mathematics: they are very natural systems from many points of view, and constitute

standard benchmarks for the strength of theorems. Then, in Section 1.1.2, we turn our

attention to systems whose strength lies between RCA0 and ACA0. These theories arise

in two ways: either they are obtained by adding some amount of induction to RCA0,

or they capture the strength of some combinatorial principle related to the study of

Ramsey’s theorem over RCA0 (we shall call these theorems Ramseyan principles, even

if this is not a rigorous definition).

1.1.1. The main subsystems

In this Section, we recall the definitions and some of the main features of the main

systems of reverse mathematics that we are going to use in the rest of this thesis. A

standard reference for this topic (and for reverse mathematics in general) is [66].

The language of most of the theories that we are going to introduce is L2, the language

of second-order arithmetic. The constant, function, and relation symbols are 0, 1, <,
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+, ·, and ∈. It is a two-sorted language: objects of the first sort, the so-called first-

order elements or numbers are thought of as natural numbers, and will in general

be denoted by lower-case letters, whereas objects of the second sort, the second-order

elements or sets of numbers, are thought of as sets of natural numbers, and are usually

denoted by upper-case letters.

Special care must be taken when considering the symbol =, which is defined as a

relation on the elements of the first sort, i.e. between numbers. Equality between sets

(which we still denote by the same symbol) is defined by ∀X, Y (X = Y ↔ ∀x(x ∈
X ↔ x ∈ Y )).

The models M of the L2-theories we are going to introduce are given by the tuple

M = (NM ,SM , 0M , 1M , <M ,+M , ·M ,∈M),

where NM denotes the set of first-order elements of the model and SM denotes the set

of second-order elements of the model. If NM = ω, we say that M is an ω-model .

As usual, when it is clear which structure is currently being considered, we will dispense

with the use of the subscript M .

Related to L2 is L1, the language of first-order arithmetic, which consists of the

constant symbols 0 and 1, the relation symbol < and the binary functions · and

+: it is a one-sorted language, whose objects are called numbers, and an L1-structure

N is a tuple N = (NN , 0N , 1N , <N ,+N , ·N).

Although L1-theories will not play a prominent role in the rest of the thesis per se, we

will sometimes have something to say on the first-order part of L2-theories.

Definition 1.1.1. For every L2-theory T , the first-order part of the theory T is the

L1-theory whose theorems are the L1-formulas that are theorems of T .

It is currently an area of great interest in reverse mathematics to determine the

first-order parts of theories coming from the study of principles related to Ramsey’s

theorem.
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Remark 1.1.2. We now make explicit a notational aspect of the definitions given

above that might otherwise cause some confusion: throughout the thesis, we will

reserve the symbol ω for the natural numbers of the metatheory, which we always

assume to be ZFC. As suggested in the previous paragraph, the symbol N will instead

be reserved for the set of natural numbers of the theory under consideration: we will

always make sure that there is no possible confusion as to which theory that is meant to

be. In particular, when we are not working in subsystems of second-order arithmetic,

N = ω holds.

We now introduce the first of the subsystems of second-order arithmetic that we are

going to use.

Definition 1.1.3. RCA0 (for recursive comprehension axiom) is the L2-theory

consisting of the following axioms:

• a first-order sentence expressing that the numbers form a discretely ordered

commutative semi-ring with cancellation; the collection of these sentences is

often called P−.

• the Σ0
1 induction scheme (denoted IΣ0

1), which consists of the universal closures

(by both first- and second-order quantifiers) of all formulas of the form

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n),

where ϕ is Σ0
1; and

• the ∆0
1 comprehension scheme, which consists of the universal closures (by both

first- and second-order quantifiers) of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ.

The intuition behind RCA0 is that it allows us to build the computable sets (although

there are some major caveats when the first-order part is non-standard, as we will
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see in the next section). This intuition can be made precise with the observation

(see [66, Theorem II.1.7]) that a non-empty collection of subsets of ω is the second-

order part of an ω-model of RCA0 if and only if it is a Turing ideal (in particular,

REC = (ω, C, 0, 1, < +, ·,∈), where C is the set of the computable sets, is a model of

RCA0). This fact lies at the heart of the deep interplay between reverse mathematics

and computability theory.

There are several important (and natural) facts that RCA0 can prove, which makes

it a reasonable theory in which to work. One of them, which we will repeatedly

use without mentioning it, is the following fact: every infinite set X ⊆ N has an

enumeration, i.e. for every infinite set X RCA0 proves the existence of a function

pX : N→ N (also called principal function of X) such that ∀x ∈ X∃n ∈ N(pX(n) = x)

and ∀n,m ∈ N(n < m→ pX(n) < pX(m)). This is Lemma II.3.6 in [66].

Another fact that we are going to use repeatedly without explicitly mentioning it is

that RCA0 is able to implement the usual coding of finite sets and sequences of natural

numbers as a single natural number. We will denote by 〈·〉 the coding operation for

every finite sequence of numbers: for instance, the code for the pair of elements a, b ∈ N
is denoted 〈a, b〉, and the code for the triple a, b, c ∈ N is denoted 〈a, b, c〉. We refer to

[66, Chapter II.2] for more details and properties of the coding of finite sequences.

We point out that infinite sequences of numbers are but functions: in general, every

function f : N→ N is coded by the set {〈n, f(n)〉 : n ∈ N}.

We will use the same symbols to denote coding of sequences of sets. Given two subsets

of N A0 = {a0
0, a

0
1, . . . } and A1 = {a1

0, a
1
1, . . . }, we say that a set A is a code for

the sequence A0, A1, and we denote it by 〈A0, A1〉, if A = {2a0
0, 2a

0
1, . . . } ∪ {2a1

0 +

1, 2a1
1 + 1, . . . }. For any finite sequence of sets A0, A1, . . . , An, we can recursively

say when a set A, which we denote by 〈A0, A1, . . . , An〉, is a code for that sequence:

this happens if A = 〈A0, 〈A1, . . . , An〉〉. Finally, we notice that a similar procedure

allows us to code infinite sequences of sets into just one set: we say that the set

A is a code for the sequence (Ai)i∈N, where for every i ∈ N Ai = {ai0, ai1 . . . }, if

A =
⋃
i∈N{2i+1ai0+2i−1, 2i+1ai1+2i−1, . . . }. In this case, we denote A by 〈A0, A1, . . .〉.
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Notice that this procedure can be used to code infinite sequences of functions as well,

since functions are coded by sets of numbers.

Regardless of the coding that we chose, the important point of the paragraph above

is that we can see sets of numbers as codes for sequences of sets: in particular, RCA0

has access to some sequences of sets, if they are defined in a sufficiently uniform way.

Again, we refer to [66] for a more detailed discussion on this.

We make now explicit a convention that we will use for the rest of the thesis: for the

sake of readability, we will, in general1, not refer to sequences via their code. Namely,

we will use the notation (Ai)i∈N to denote the sequence of sets A0, A1, . . . , even if,

formally speaking, what we actually have while arguing in second-order arithmetic

is just a code for that sequence. The same goes for finite sequences of sets and of

numbers: we will in general prefer the notations (a0, a1, . . . , an) and (A0, A1, . . . , An)

over 〈a0, a1, . . . , an〉 and 〈A0, A1, . . . An〉. Similarly, we will denote infinite sequences

of numbers a0, a1, . . . as (ai)i∈N.

There will be no confusion in adopting the convention above. We point out, anyway,

that as a consequence we will sometimes refer to an element n ∈ N as (n), if we want

to stress that it has to be seen as a string (typically, this will happen when dealing

with trees).

Moreover, for every k ∈ N and any set X ∈ S, RCA0 proves the existence of [X]k, the

set of subsets of X of size k, of Xk, the set of strings (or finite sequences) of elements

of X of length k, of X<k, the set of strings of length less than k, and of X<N, the set of

strings (or finite sequences) of elements of X. All of these facts are essentially obvious

(we refer to [66, Chapter II] for the easy proofs and further details), and we stated

them explicitly mainly with the end of fixing the notation. On this note, we make

explicit a convention that we will use in the rest of the thesis: for every set N ⊆ N,

when we write (x, y) ∈ [N ]2 (instead of {x, y}, as would be appropriate), we mean

that x < y and {x, y} ∈ [N ]2.

1Of course, there will be cases in which we will have to use codings of sequences: an example is
the definition of the problem lim, where elements of the domain are seen as codes of sequences.
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We also notice that, for every three sets X, Y, Z ⊆ N with Z ⊆ X and every function

f : X → Y , RCA0 proves the existence of the restriction f�Z of f to Z, which of course

is just the function g : Z → Y such that, for every z ∈ Z, f(z) = g(z). The same goes

if X, Y, Z are subsets of Nn or of [N]n for some n.

Other notational conventions that we will use concerning strings are the following:

• if σ ∈ Xk for some k ∈ N, then we say that σ has length k, and we write |σ| = k.

• Given two strings σ, τ ∈ X<N, we say that σ is a prefix of τ , and we write

σ v τ , if |σ| ≤ |τ | and for every i < |σ| σ(i) = τ(i). Similarly, for every function

f : N→ X, we write σ v f to mean that for every i < |σ| σ(i) = f(i).

• Given two strings σ, τ ∈ X<N, we denote by σaτ the string obtained by

concatenating σ and τ : for all i < |σ| + |τ |, σaτ(i) = σ(i) if i < |σ|, and

σaτ(i) = τ(i− |σ|) otherwise.

RCA0 is the weakest system we will be working with, and hence it is the natural

system in which to give definitions. We now list some very standard objects of usual

mathematics by defining them over RCA0. Again, the main goal of this is to fix the

notation.

Definition 1.1.4. (RCA0)

• Let X ⊆ N be a non-empty set. A tree (on X) is a set T ⊆ X<N such that for

every τ ∈ T and for every σ ∈ X<N, if σ v τ , then σ ∈ T .

• A function f : N→ X is a path through T if for every k ∈ N there is a σ ∈ T ∩Xk

such that σ v f .

• For r ∈ N, the rth level of a tree T is the set Lr := {σ ∈ T : |σ| = r}.

• A tree is finitely branching if for every level r there is a kr such that |Lr| < kr.

• If T is a tree and σ ∈ T , we denote by Tσ the set {τ ∈ N<N : σaτ ∈ T}. It is

clear that Tσ is itself a tree.
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Remark 1.1.5. It is a convention frequently used in the literature to denote by [T ]

the set of paths through a tree T . We point out that we cannot give a definition of [T ]

in any subsystem of second-order arithmetic, since [T ] is a third-order object. Hence,

while we will use the notation [T ] in the rest of this document, we will only be able to

do so while arguing in the metatheory.

We are now ready to introduce the second theory that we are going to use. Before we

do that, we point out that, in line with most texts in mathematical logic, for every k

we will denote the set {0, 1, . . . , k − 1} by k.

Definition 1.1.6. WKL0 is the theory given by RCA0 plus the statement “for every

infinite tree T ⊆ 2<N, there is a path through T .

WKL0 allows us to carry out many arguments that, in a classical setting, would rely

on some form of compactness. We mention an example, namely Dilworth’s theorem,

regarding partial orders, that will be important in Chapter 3, after giving some relevant

definitions that will be used in the rest of the thesis.

Definition 1.1.7. (RCA0) Let P ⊆ N be a set and <P a binary relation on P . We

say that the pair (P,<P ) is a partial order if <P is antireflexive, antisymmetric and

transitive. We will sometimes refer to them as posets for short. We will denote by ≤P
the reflexive closure of <P .

(L,<L) is a linear order if it a partial order and moreover ∀p, q ∈ L(p ≤L q ∨ q ≤L p).

Let (P,<P ) be a partial order.

• Given p, q ∈ P , we write p GP q, if it holds either that p ≤P q or q ≤P p, and if

this happens we say that p and q are comparable.

• Given p, q ∈ P , we write p |P q if neither p ≤P q nor p ≥P q holds. In this case,

we say that p and q are incomparable.

• A set A ⊆ P such that ∀a, b ∈ A(a 6= b → a |P b) is called an antichain of

(P,<P ).
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• A set C ⊆ P such that (C,<P ) is a linear order is called a chain of (P,<P ).

• For every k ∈ N, k 6= 0, we say that (P,<P ) has width k if for every A ⊆ P , if

A is an antichain then |A| ≤ k, and there is an antichain B ⊆ P with |B| = k.

• For every k ∈ N, k 6= 0, we say that (P,<P ) has height k if for every C ⊆ P , if

C is a chain, then |C| ≤ k, and moreover there is a chain D ⊆ P with |D| = k.

Theorem 1.1.8 ([40], Theorem 3.23). The following statement is equivalent to WKL0

over RCA0: for every k ∈ N and for every partial order (P,<P ), if (P,<P ) has width

k, then there are sets C0, . . . , Ck−1 such that P =
⋃
i<k Ci and every Ci is a chain of

(P,<P ).

The next subsystem is ACA0, which stands for arithmetical comprehension axiom.

Definition 1.1.9. ACA0 is the theory given by RCA0 plus, for every arithmetical

formula2 ϕ(n) in which the set variable X is not free, the axiom given by the universal

closure of the following formula: ∃X∀n(n ∈ X ↔ ϕ(n)).

An equivalent formulation of ACA0 will be particularly useful when proving reversals.

Lemma 1.1.10 ([66], Lemma III.1.3). The following is equivalent to ACA0 over RCA0:

if f : N → N is an injection, then there is a set X such that ∀n(n ∈ X ↔ ∃s(f(s) =

n)).

The Lemma above can be informally stated as saying that ACA0 is equivalent to the

existence of the range f(N) for every function f . Obviously, more generally, for every

k, l ∈ N, every function f : [N]k → [N]l and every X ⊆ [N]k, ACA0 guarantees the

existence of the f -image of X f(X) = {y ∈ [N]l : ∃x ∈ X(f(x) = y)}. We will

sometimes refer to the same set as ran f .

The final subsystem we are going to use is Π1
1-CA0.

2We recall that an L2-formula is arithmetical if it contains no set quantifiers.
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Definition 1.1.11. Π1
1-CA0 is the theory given by RCA0 plus, for every Π1

1-formula

ϕ(n) in which the set variable X is not free, the axiom given by the universal closure

of the following formula: ∃X∀n(n ∈ X ↔ ϕ(n)).

Again, there are some equivalent formulations of the theory above that will come in

rather handy in the following chapters.

Definition 1.1.12. (RCA0) Let (P,<P ) be a partial order, and let X ⊆ P .

• We say that X is well-founded if it does not contain any infinite descending

sequence, i.e. a sequence (xi)i∈N such that for every i ∈ N (xi+1 <P xi). If X is

not well-founded, it will be said to be ill-founded .

• We say that X is reverse well-founded if it does not contain any infinite ascending

sequence, i.e. a sequence (xi)i∈N such that for every i ∈ N (xi <P xi+1). If X is

not reverse well-founded, it will be said to be reverse ill-founded .

Notice that every tree T ⊆ N<N can be seen as a partial order (T,v), i.e. the strings

of T are ordered by the extension relation. For historical reasons, though, it is more

frequent to see trees as posets ordered by the converse relation, namely w: hence,

according to this perspective, if a tree T has a path through it, we say that it is

ill-founded, otherwise we say that it is well-founded.

Lemma 1.1.13 ([66], Lemma VI.1.1, [50], Theorem 6.5). The following are equivalent

over RCA0:

• Π1
1-CA0

• Σ1
1-CA0

• for each sequence of trees (Tn)n∈N with Tn ⊆ N<N for every n, there is a set

X ⊆ N such that n ∈ X if and only if Tn is well-founded.

• LPP, which is the statement “each ill-founded tree T ⊆ N<N has a leftmost path,

i.e. a path f : N → N through T such that for every path g : N → N through T ,

it holds that

∀n(∀m < n(f(m) = g(m))→ f(n) ≤ g(n))”.
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1.1.2. Intermediate subsystems: bounding, induction and

Ramseyan principles

We will now focus on theories whose strength is not captured by any of the big five,

but instead lies somewhere between RCA0 and ACA0. We start by introducing the

bounding and induction axioms schemas.

Definition 1.1.14. • For every n ∈ ω, the Σ0
n bounding scheme (BΣ0

n) consists of

the universal closures of all L2-formulas of the form

∀a((∀n < a)(∃m)ϕ(n,m)→ ∃b(∀n < a)(∃m < b)ϕ(n,m)),

where ϕ is Σ0
n and a and b are not free in ϕ. BΠ0

n is defined analogously.

• For every n ∈ ω, the Σ0
n induction scheme (denoted IΣ0

n) consists of the universal

closures of all L2-formulas of the form

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n),

where ϕ is Σ0
n. IΠ0

n is defined analogously.

The axioms above are essentially first-order axioms: albeit, by expressing them using

L2-formulas, we are allowing for set parameters, the induction and bounding axioms

are very interesting objects even when restricted to L1-formulas, and have been in fact

thoroughly studied in the analysis of models of subsystems of first-order arithmetic, a

setting in which they arise quite naturally. We see now an example of this naturality:

IΣ0
n is equivalent to the Σ0

n- and Π0
n-last number principles over RCA0. We point out

that, technically, in [55] the equivalences are proved over P− + IΣ0
1, which is weaker

than RCA0.

Definition 1.1.15. For every n ∈ ω, the Σ0
n-least number principle scheme, denoted

LΣ0
n, consists of the universal closures of all L2-formulas of the form

∃xϕ(x)→ ∃x(ϕ(x) ∧ ∀y < x¬ϕ(y)),
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where ϕ is Σ0
n. LΠ0

n is defined analogously.

Lemma 1.1.16 ([55]). For every n ∈ ω, RCA0 ` IΣ0
n ↔ IΠ0

n ↔ LΣ0
n ↔ LΠ0

n.

There is another form of induction that will be of use in the following chapters.

Definition 1.1.17. For every k ∈ ω, the bounded Σ0
k-comprehension scheme consists

of the universal closures of all L2-formulas of the form

∀n∃X∀i(i ∈ X ↔ (i < n ∧ ϕ(i))),

where ϕ is Σ0
n and X is not free in ϕ.

Lemma 1.1.18 ([32]). For every k ∈ ω, RCA0 proves that IΣ0
k is equivalent to the

bounded Σ0
k-comprehension scheme.

As pointed out in [66], the Lemma above is quite interesting, since it allows to see

induction as a set-existence axiom.

As we already mentioned, it is clear that RCA0 ` IΣ0
1, and moreover that for every

n ∈ ω ACA0 ` IΣ0
n ∧ BΣ0

n. We will take care of the other cases in the next Lemma,

which sums up results that can be essentially found in [40, Chapter 6] and [55].

Lemma 1.1.19. • For every n > 0, RCA0 ` BΣ0
n+1 ↔ BΠ0

n.

• For every n > 0, RCA0 ` IΣ0
n+1 → BΣ0

n+1 → IΣ0
n.

• WKL 6` BΣ0
2.

Of the axioms above, BΣ0
2 turns out to be particularly relevant for the study of infini-

tary combinatorics, since, as we will see in the next Theorem, BΣ0
2 turns out to be

itself a Ramseyan principle.

Theorem 1.1.20 ([40], Theorem 6.4). The following are equivalent over RCA0:

• BΣ0
2
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• RT1
<∞, which is the statement “for every k ∈ N and for every function f : N→ k,

there is an infinite set H and an i < k such that f(H) = i”.

All the axioms seen in this section so far have the common feature that any model

of RCA0 such that its first-order part is ω is a model of these axioms. We now move

to something radically different: the subsystems of second-order arithmetic related to

Ramsey’s theorem. We start, of course, with Ramsey’s theorem itself.

Definition 1.1.21. • For every n, l ∈ ω \ 1, RTnl is the statement “for every

function f : [N]n → l, there is an infinite set H ⊆ N and an i < l such that

f([H]n) = i.

• For every n ∈ ω \ 1, RTn<∞ (or RTn) is the statement “for every l ∈ N and for

every function f : [N]n → l, there is an infinite set H ⊆ N and an i < l such

f([H]n) = i.

We will often call functions with a finite range colorings. Given a coloring f : [N]n → l,

any set H ⊆ N such that |f([H]n)| = 1 is said to be f -homogeneous .

It is easy to see that for every n ∈ ω \ 1 and for every l, l′ ∈ ω \ 2 RCA0 ` RTnl ↔ RTnl′ ,

so the number of colors (if it is a standard number) does not affect the strength of

the principles. As an example, we point out that this is one of the cases where we use

the fact that RCA0 proves that every infinite set has an enumeration: for instance, to

show that RCA0 ` RT2
2 → RT2

4, given any instance f : [N]2 → 4, we define a coloring

f0 : [N]2 → 2 as f0(x, y) = f(x, y) mod 2. Given any infinite f0-homogeneous set H,

we have then to use the fact that H has an enumeration in order to be able to apply

RT2
2 to f�H (and hence find an infinite f -homogeneous set), since RT2

2 only applies to

colorings with domain [N]2.

It follows from the previous paragraph that it is more interesting to focus on the

exponent n. It was implicitly shown in [41] that, for every n ≥ 3, RCA0 ` RTn2 ↔ ACA0.

In particular, this implies that for every n, l ∈ ω, ACA0 ` RTnl , and moreover it

is immediately seen that RT1
l is provable in RCA0. The case of RT2

2 is much more

difficult to deal with: although it is easily seen that ACA0 ` RT2
2 (as follows from the
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previous paragraph), it was shown in [49] that RCA0 + RT2
2 6` WKL0, with the use

of rather complicated techniques, and in a sense it has driven the development of a

large part of reverse mathematics and computability theory for a long period of time.

In particular, many principles were introduced and studied reverse mathematically in

order to get some insight on the strength of RT2
2. This process gave rise to the so-called

zoo below RT2
2. Many of the principles we will see in this thesis belong to that zoo.

Amongst the historically first new principles of the zoo to be introduced were COH

and SRT2
2, which were defined in the seminal paper [11].

Definition 1.1.22. • (RCA0) For every l ∈ N, a coloring f : [N]2 → l is stable if

for every x ∈ N there exists a y ∈ N such that for every z > y f(x, y) = f(x, z)

(which can informally be stated as the existence of limy→∞ f(x, y) for every x).

• SRT2
l (for stable Ramsey theorem) is the statement “for every stable coloring

f : [N]2 → l there exists an infinite f -homogeneous set.

• (RCA0) For sets A,C ⊆ N, C ⊆∗ A denotes that C \ A is finite, and A =∗ C

denotes that both C ⊆∗ A and A ⊆∗ C.

• (RCA0) For every set A ⊆ N, we denote by A the set N \A, i.e. the complement

of A.

• (RCA0) Let ~A = (Ai)i∈N be a sequence of subsets of N. A set C ⊆ N is called

cohesive for ~A (or simply ~A-cohesive) if C is infinite and for each i ∈ N, either

C ⊆∗ Ai or C ⊆∗ Ai.

• COH is the statement “for every sequence ~A of subsets of N, there is a set C ⊆ N
that is cohesive for ~A”.

We list the main results concerning the principles we just introduced.

Theorem 1.1.23. 1. RCA0 ` RT2
2 ↔ (SRT2

2 ∧ COH) ([11, Theorem 7.11] and [52,

Claim A.1.3])

2. RCA0 + COH 6` BΣ0
2 and RCA0 + SRT2

2 ` BΣ0
2 ([11, Theorem 9.1 and Theorem

10.5])
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3. RCA0 + SRT2
2 6` COH ([13, Corollary 2.8])

Other principles were then introduced, essentially analyzing the consequences of

Ramsey’s theorem in structures more complicated than just sets (see [39] and [3]).

For all the structures we are about to see, we recall that, due to the very nature of

formalization in second-order arithmetic, the domain of those structures is a subset

of the natural numbers (see e.g. Definition 1.1.7): for example, when dealing with a

linear order (L,<L), it is useful to remember that L ⊆ N. In particular, it makes sense

to say, for two elements x0, x1 ∈ L, that x0 < x1, due to this remark.

Definition 1.1.24. • ADS (for ascending/descending sequence principle) is the

statement “for every infinite linear order (L,<L), there is an infinite sequence

(xi)i∈N such that ∀i(xi < xi+1) and moreover either ∀i(xi <L xi+1) or ∀i(xi >L

xi+1) holds”.

• (RCA0) A linear order (L,<L) is said to be a stable linear order if every element

has either finitely many <L-predecessors or finitely many <L-successors.

• SADS (for stable ADS) is the statement “for every infinite stable linear order

(L,<L), there is an infinite sequence (xi)i∈N such that ∀i(xi < xi+1) and either

∀i(xi <L xi+1) or ∀i(xi >L xi+1).”

• CAC (for chain/antichain principle) is the statement “every infinite partial order

has an infinite chain or an infinite antichain.

• (RCA0) A partial order (P,<P ) is said to be stable if for every element p ∈ P ,

either

∃i(∀q ∈ P (q > i→ q >P p) ∨ ∀q ∈ P (q > i→ q|Pp)),

in which case p is said to be small, or

∃i(∀q ∈ P (q > i→ q <P p) ∨ ∀q ∈ P (q > i→ q|Pp)),

in which case p is said to be large.
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• SCAC (for stable CAC) is the statement “every infinite stable partial order has

an infinite chain or an infinite antichain”.

• (RCA0) Let T be a set and RT a binary relation on T . The pair (T,RT ) is said to

be a tournament if RT is antireflexive and for every s, t ∈ T with s 6= t, exactly

one of sRT t and tRT s hold. A tournament (T,RT ) is transitive if the relation

RT is transitive.

• EM (for Erdős-Moser principle) is the statement “for every infinite tournament

(T,RT ), there is an infinite set T ′ such that (T ′, RT ) is a transitive tournament.

Remark 1.1.25. We point out that, by the way we stated them, the principle ADS

(and hence SADS as well) only guarantees the existence of a function enumerating

an ascending or a descending sequence. Anyway, since we are assuming that that

function is <N-increasing, RCA0 proves that the range of that function exists. Hence,

when speaking of an ascending (or descending) sequence, we may refer to it as a set

{x0 < x1 < . . . }, and we shall often do so.

We now summarize the relationship between the principles of the zoo that we have

introduced so far.

Theorem 1.1.26. 1. RCA0 ` RT2
2 → CAC→ ADS→ SADS→ BΣ0

2 ([39],[12])

2. RCA0 ` ADS→ COH ([39])

3. RCA0 ` SRT2
2 → SCAC→ SADS ([39])

4. RCA0 ` RT2
2 ↔ (ADS ∧ EM) (essentially [3]).

1.2. Computable and uniform analysis of problems

The main focus of the previous section has been to show how to classify principles in

an essentially proof-theoretic way: the strength of a certain statement was determined

by gauging its consequences over a certain base theory.
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The fundamental idea underlying the ways of classifying theorems we will see in this

section is different: it relies on the fact that many theorems of mathematics are Π1
2

statements, i.e. they have the shape ∀X∃Y (ϕ(X) → ψ(X, Y )), for some arithmetical

ϕ(X) and ψ(X, Y ). For instance, in the case of RT2
2, the sentence ϕ(X) is “X is a

coloring of [N]2”, and ψ(X, Y ) is “Y is an infinite X-homogeneous set”.

This simple observation allows us to change our perspective in the following way:

instead of seeing principles as statements, we see them as functions, namely, using

the notation above, functions associating to the X’s such that ϕ(X) holds the Y ’s

such that ψ(X, Y ) holds. The strength of these functions will then be given by the

complexity of the information that can be coded using them, and what other functions

they can compute.

1.2.1. Computability theoretic notation

We now introduce some of the notation coming from computability theory that we

will use in the rest of the thesis. As far as we can tell, the notation is standard and

follows one of the canonical books on the subject, [67].

In the setting of computability theory, given two subsets A and B of ω, we call the

set 〈A,B〉 (where 〈·〉 is the coding of sequences of sets as defined in RCA0) the join

of A and B. We point out that in a large part of the literature a different notation is

used for the join of two sets, namely A ⊕ B, but the two notations describe exactly

the same set.

The Turing degree of a set A ⊆ ω will be denoted by degT A, and Turing degrees will

be denoted by boldface lower-case letter, e.g. d.

We recall that an oracle Turing machine Γ can be seen as a partial function Γ :⊆ ωω →
ωω that maps an oracle p ∈ ωω to the partial function Γ(p) : ω → ω such that n 7→
Γ(p)(n) whenever Γ(p)(n) converges. According to this perspective, we will call oracle

Turing machines Turing functionals. Turing functionals will be denoted by upper-case

Greek letters, like Φ and Ψ, and we will assume that a recursive enumeration of them
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is given: the notation Φe, for e ∈ ω, represents the eth functional in this enumeration.

We will be a bit more specific concerning the notation that we will use for Turing

functionals, since in Chapter 5 it will be practical to borrow some notational elements

from conventions used chiefly in computable analysis. As usual, for p ∈ ωω and

e, x, y ∈ ω, by Φe(p)(x) = y we mean that the eth Turing functional with oracle p

converges on input x and outputs y. Similarly, for p, q ∈ ωω and e ∈ ω, by Φe(p) = q

we mean that ∀n ∈ ω(Φe(p)(n) = q(n)). Sometimes, for notational ease, we will

denote by Φeap the functional Φe(p) (this will happen, for instance, when dealing with

operations on problems, where it is more practical to use just elements of ωω without

specifying if they should be seen as a concatenation of a number and a function). We

add this notational convention accordingly: for r, p, f, q ∈ ωω and e, x, y ∈ ω such that

f = eap, by Φf (r)(x) = y we mean that Φe(〈p, r〉)(x) = y, and similarly for Φf (r) = q.

1.2.2. Theorems as partial multifunctions and reducibilities

between them

As mentioned above, the main point of this Section is to study the behavior of theorems

when they are seen as functions: although this sentence is a good slogan, it gives an

imprecise description of what we are about to do. Suppose, for instance, that we

want to see Ramsey’s theorem as a function: by definition of function, this means

that we should be able to associate to every coloring f : [N]n → k a unique infinite

homogeneous set. This is too restrictive for what we want to do, as will be clear from

the following discussions. Hence, we introduce the concept of partial multifunction,

which turns out to better capture the intuitive idea of the “theorems as functions”

framework.

Definition 1.2.1. • Let X and Y be two sets. We say that P is a partial multifunc-

tion from X to Y , and we write P :⊆ X ⇒ Y , if P ⊆ X × Y .

• Given a partial multifunction P :⊆ X ⇒ Y and x ∈ X , we denote by P(x) the

set {y ∈ Y : (x, y) ∈ P}, and by dom(P) the set {x ∈ X : P(x) 6= ∅}.
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In this framework, it is customary to refer to partial multifunctions as problems . Every

problem P :⊆ X ⇒ Y will be described in the following way: for every instance, or

input x ∈ domP of P, we will describe what the solutions , or outputs are. As an

example, we use again RT2
2:

Definition 1.2.2. Let C be the set of colorings of pairs of [ω]2 with two colors, and

let Y = 2ω. R̃T2
2 is the following problem:

• Input: any element x of C.

• Output: an infinite x-homogeneous set.

When arguing in this setting, given a coloring f ∈ C, if H ∈ Y is infinite and f -

homogeneous, we will say that H is a R̃T2
2-solution to f . The same phrasing extends

to the other problems.

There is a small issue with the definition above: although the set of colorings of [ω]2 in

two colors is a perfectly well-defined set, we will have to perform computable operations

on its members. It is then more handy to see every f ∈ C directly as a member of ωω.

There is a very general way to solve this issue, namely using represented spaces and

realizers of problems.

Definition 1.2.3. • Let X be set. A representation of X is a surjective partial

function δX :⊆ ωω → X . The pair (X , δX ) is called a represented space.

• For every represented space (X , δX ) and every point x ∈ X , any point p ∈ ωω

such that δX (p) = x is said to be a name of x.

• Let (X , δX ) and (Y , δY) be represented spaces, and let P :⊆ X ⇒ Y be a partial

multifunction. A partial function P :⊆ ωω → ωω is a realizer for P if for every

q ∈ dom(P ◦ δX ), it holds that δY(P (q)) ∈ P(δX (q)).

Although we will not make a very deep use of them, it must be pointed out that

represented spaces are a very general and useful tool in many areas of mathematics,
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chiefly among them computable analysis. See for instance [69] for an introduction to

this subject.

Let us go back to the translation of RT2
2: it is very easy to define a representation

δC : ωω → C, for instance we can fix a (computable) bijective enumeration of [ω]2,

say r : ω → [ω]2, and stipulate that, for every p ∈ ωω, p is a name for the coloring

fp : [ω]2 → 2 defined as fp(r(n)) = (p(n) mod 2) for every n ∈ ω.

We notice that the representation δC has some extremely nice properties, namely it is

a computable surjection. Considering this, there would actually be no harm in seeing

the problem RT2
2 as having domain equal to ωω, and we shall do so.

Not every problem has the nice property of having domain equal to ωω. The fact that

this is the case for RT2
2 plays an important role when studying some of its features: for

instance, the fact that the Squashing Theorem ([18, Theorem 2.5]) can be applied to

RT2
2 relies on this property. We will say more on this aspect as we proceed to translate

principles into problems (see in particular Section 2.2).

Regardless of the fact that the domain of a problem is equal to ωω or is just a subset,

we translate the combinatorial principles introduced in the previous section to problems

P :⊆ X ⇒ Y such that δX = δY = idωω : this has the main advantage of making the

various proofs of reducibilities between principles significantly more straightforward.

This also corresponds to a tacit convention adopted, to the best of our knowledge, by

the vast majority of the literature on the interplay between reverse mathematics and

Weihrauch degrees.3

We can now give the “official” translations of RTnk and SRT2
k as partial multifunction.

Definition 1.2.4. For every n, k ∈ ω \ 1, let rn : ω → [ω]n be a computable bijective

enumeration of the n-tuples of elements of ω, and for every p ∈ ωω and x ∈ ω, let

fn,k,p : [ω]n → k be defined as fn,k,p(rn(x)) = (p(x) mod k).

3At this point, one might wonder whether it was really necessary to go through the hurdles of
introducing represented spaces at all: as we will see in the next sections, e.g. when we will define the
jump of a problem, the answer seems to be affirmative.
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• RTnk is the following multifunction:

– Input: any p ∈ ωω.

– Output: an infinite fn,k,p-homogeneous set.

• SRT2
k is the following partial multifunction:

– Input: any p ∈ ωω such that f2,k,p is stable.

– Output: an infinite f2,k,p-homogeneous set.

SRT2
2 is an example of a problem whose domain is not the whole space ωω.

We gave a very rigorous definition of the problems RTnk and SRT2
k to give an example

of how the process of finding a translation for combinatorial principles works. In many

other cases, however, we will give slicker definitions, and rely on the fact that finding

(computable) codings such that domains and codomains of problems can be seen as

subsets of ωω is, in most cases, a very easy task.

Definition 1.2.5. • COH is the following partial multifunction.

– Input: A sequence ~A = (Ai)i∈ω of subsets of ω.

– Output: An infinite set cohesive for ~A.

• WKL is the following partial multifunction:

– Input: an infinite binary tree T ⊆ 2<ω.

– Output: an infinite path f ∈ [T ].

As we were saying above, we will not actually care how we chose to code the sequence

~A as an element of ωω, or how we present infinite binary trees, as long as the coding

is “reasonable”.

We can now introduce the notions of reducibilities between problems that we will use

in the rest of the thesis. We will give them in full generality, although, as we mentioned

before, in most cases we will be able to avoid the explicit use of represented spaces.
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Definition 1.2.6. Let (X , δX ), (Y , δY), (W , δW) and (Z, δZ) be represented spaces,

and let P :⊆ X ⇒ Y and Q :⊆ W ⇒ Z be partial multivalued functions.

• P computably reduces to Q (written P ≤c Q) if for every p ∈ dom(P◦ δX ) there is

a p̃ ≤T p with p̃ ∈ dom(Q◦ δW) such that for every t̃ ∈ Q(p̃) there is a t ≤T 〈p, t̃〉
with t ∈ P (p), whenever Q is a realizer of Q and P is a realizer of P.

• P and Q are computably equivalent (written P ≡c Q) if P ≤c Q and Q ≤c P. In

this case, P and Q are said to have the same computable degree.

• P strongly computably reduces to Q (written P ≤sc Q) if for every p ∈ dom(P◦δX )

there is a p̃ ≤T p with p̃ ∈ dom(Q ◦ δW) such that for every t̃ ∈ Q(p̃) there is a

t ≤T t̃ with t ∈ P (p), whenever Q is a realizer of Q and P is a realizer of P.

• P and Q are strongly computably equivalent (written P ≡sc Q) if P ≤sc Q and

Q ≤sc P. In this case, P and Q are said to have the same strong computable

degree.

• P Weihrauch reduces to Q (written P ≤W Q) if there are Turing functionals Φ,Ψ

such that the functional p 7→ Ψ(〈p,Q(Φ(p))〉) is a realizer for P whenever Q is a

realizer for Q, i.e. if

∀q ∈ dom(Q ◦ δW)(δZ(Q(q)) ∈ Q(δW(q)))→

∀p ∈ dom(P ◦ δX )(δY(Ψ(〈p,Q(Φ(p))〉)) ∈ P(δX (p))).

• P and Q are Weihrauch equivalent (written P ≡W Q) if P ≤W Q and Q ≤W P.

In this case, P and Q are said to have the same Weihrauch degree.

• P strongly Weihrauch reduces to Q (written P ≤sW Q) if there are Turing

functionals Φ,Ψ such that the functional p 7→ Ψ(Q(Φ(p))) is a realizer for P

whenever Q is a realizer for Q, i.e. if

∀q ∈ dom(Q ◦ δW)(δZ(Q(q)) ∈ Q(δW(q)))→

∀p ∈ dom(P ◦ δX )(δY(Ψ(Q(Φ(p))) ∈ P(δX (p))).
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• P and Q are strongly Weihrauch equivalent (written P ≡sW Q) if P ≤sW Q and

Q ≤sW P. In this case, P and Q are said to have the same strong Weihrauch

degree.

As an easy example, we can look at the relationship between SRT2
2 and RT2

2: we

immediately have that SRT2
2 ≤sW RT2

2, just by using Φ = Ψ = id. On the other hand,

it is also easy to see that RT2
2 6≤c SRT

2
2, since every computable instance of SRT2

2 has

a ∆0
2 solution, whereas, by [41, Corollary 3.2], there is a computable instance of RT2

2

without Σ0
2 solutions. By the next easy lemma, this is enough to determine whether

the other reductions hold or not.

Lemma 1.2.7. For every partial multifunctions P and Q,

P ≤sW Q⇒ P ≤W Q⇒ P ≤c Q

and

P ≤sW Q⇒ P ≤sc Q⇒ P ≤c Q

There is, in general, no relation between≤sc and≤W. For a more detailed discussion on

this subject, and on the topic of the interplay between reducibilities for combinatorial

principles, we refer for instance to [37].

1.2.3. Operations on problems

A very interesting feature of the principles-as-functions approach is that it allows us to

define operations on problems: as we will see, these operations are not only interesting

by themselves, but are also a fundamental tool in determining the position of various

principles in the computable and Weihrauch degrees. A standard reference for this

topic is [6].

Definition 1.2.8. Let (X , δX ), (Y , δY), (W , δW) and (Z, δZ) be represented spaces,

and let P :⊆ X ⇒ Y and Q :⊆ W ⇒ Z be partial multifunctions.
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• The product space of (X , δX ) and (Y , δY) is (X × Y , δX×Y), where for every

p, q ∈ ωω we set δX×Y(〈p, q〉) = (δX (p), δY(q)).

• P×Q, called the parallel product of P and Q, is the following partial multifunction

P× Q : X ×W ⇒ Y × Z:

– Input: a pair (x,w) ∈ domP× domQ.

– Output: an element of P(x)× Q(w).

• The space of finite words over X , denoted (X ∗, δX ∗), is such that X ∗ =⋃
i∈ω{i} × X i and for every n ∈ ω, p0, . . . , pn−1 ∈ ωω, δX ∗(n

a(p0, . . . , pn−1)) =

(n, δX (p0), . . . , δX (pn−1)).

• P∗, called the finite parallelization of P, is the following problem P∗ : X ∗ ⇒ Y∗:

– Input: a point (n, x0, . . . , xn−1) ∈ (dom(P))∗.

– Output: an element of {n} × P(x0)× · · · × P(xn−1).

• For every represented space (X , δX ), we let the representation δXω of X ω be given

as follows: for every infinite sequence (pi)i∈ω ∈
(
ωω
)ω

, we let δXω(〈p0, p1, . . .〉) =

(δX (p0), δX (p1), . . . ).

• P̂, the parallelization of P, is the following partial multifunction P̂ : X ω ⇒ Yω:

– Input: a sequence (xi)i∈ω ∈ (domP)ω.

– Output: an element of P(x0)× P(x1)× . . .

As customary, we will use the shorthand X n to mean the space

n times︷ ︸︸ ︷
X × · · · × X with the

obvious representation, and Pn to mean the problem

n times︷ ︸︸ ︷
P× · · · × P.

In the lemma below we list some properties of the operations above: they can be

summarized by saying that the operations are indeed “reasonable”, meaning that they

behave on degrees as one would expect. We refer to [4] for the proofs and further

comments on this.
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Lemma 1.2.9. • The operators ∗ and ̂are Weihrauch-degree theoretic, i.e. for

every two problems P, Q with P ≤W Q, P∗ ≤W Q∗ and P̂ ≤W Q̂, and idempotent,

i.e. (P∗)∗ ≤W P∗ and
̂̂
P ≤W P̂.

• The parallel product of problems is associative, commutative and Weihrauch-

monotone in both components, i.e., for all problems P, Q, P̃ and Q̃ with P ≤W Q

and P̃ ≤W Q̃, it holds that P× P̃ ≤W Q× Q̃.

Again, we will use these results without explicitly mentioning them.

By using the operations above, we can proceed to define cylinders, i.e. problems that

are powerful enough to code their instances in their solutions.

Definition 1.2.10. • id : ωω ⇒ ωω is the identity problem, i.e. the problem such

that id(p) = p for every p ∈ ωω.

• Given two represented spaces (X , δX ) and (Y , δY) and a partial multifunction

P :⊆ X ⇒ Y , we say that P is a cylinder if P× id ≤sW P.

• For every partial multifunction P, its cylindrification is the problem P× id.

The reason why we care about cylinders is the following:

Lemma 1.2.11 ([6], Proposition 3.5). For every partial multifunctions P and Q, if Q

is a cylinder and P ≤W Q holds, then P ≤sW Q.

The lemma above will be tacitly used many times in the rest of this thesis: every time

we will have to prove that P ≤sW Q, if Q is a cylinder, we will just have to prove that

P ≤W Q.

We now turn to the composition of problems. As we will see, here things seem to work

out less smoothly than with the operations we saw above.

Definition 1.2.12. Let (X , δX ), (Y , δY) and (Z, δZ) be represented spaces, and let

P :⊆ X ⇒ Y and Q :⊆ Y ⇒ Z be partial multifunctions. We let Q ◦ P be the partial

multifunction Q ◦ P : X ⇒ Z defined as follows:
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• Input: an x ∈ X such that P(x) ⊆ dom(Q).

• Output: an element of {z ∈ Z : ∃y ∈ Y(y ∈ P(x) ∧ z ∈ Q(y))}

We notice that the definition above is not simply the result of translating the definition

of composition of relations to the case of partial multifunctions, since we are requiring

that P(x) ⊆ dom(Q). This restriction has the advantage of making it straightforward

to find a realizer for Q ◦ P, namely a composition of a realizer for Q after a realizer

for P. This would not have been the case if we had gone for the regular composition

of relations. Anyway, we also notice that this choice does not affect the result if P

and Q are partial functions: hence, we can still see this definition of composition as

an extension of the definition of composition of functions.

It is easy to see that the notion of composition above is associative, but it lacks the nice

properties the other operators had: most notably, it is not Weihrauch degree theoretic,

and is not monotone in either of the components. We refer to [31] for further details

on this.

One of the reason why this is the case is that the composition Q◦P is, so to speak, not

flexible enough to handle the composition of multifunctions when seen as problems:

intuitively, what we are looking for is an operation such that, given an input for

P, provides and output y ∈ P(y), then, after possibly performing some computable

operations on y, applies Q to it and gives an output. But by the definition we gave

above, there is no obvious way to perform any transformation on y before we feed it

to Q, and this is an issue.

Hence, we will need a more nuanced notion of composition between principles. In

order to do this, we start by defining what the right degree of the composition is.

Definition 1.2.13. Let (X , δX ), (Y , δY) and (Z, δZ) be represented spaces, and let

P :⊆ X ⇒ Y and Q :⊆ Y ⇒ Z be partial multifunctions. We define the compositional

product of P and Q to be the following degree:

Q ∗ P = max
≤W

{degW(Q̃ ◦ P̃) : P̃ ≤W P, Q̃ ≤W Q}
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There are several things to be said about the definition above. First of all, we are

defining taking the max (with respect to the order ≤W) over something that we have

not proved to be a set. Secondly, even assuming that {degW(Q̃◦P̃) : P̃ ≤W P, Q̃ ≤W Q}
is a set, there is no guarantee that it has a ≤W-maximum. We refer the reader to [7]

for proofs that these issues can be solved, i.e. that {degW(Q̃ ◦ P̃) : P̃ ≤W P, Q̃ ≤W Q}
is a set and it has a ≤W-maximum.

Now, the compositional product Q ∗ P has the properties we were looking for.

Lemma 1.2.14 ([7]). Q ∗ P is associative and Weihrauch-monotone in both

components.

Finally, we see that the Weihrauch degree Q ∗P actually corresponds to the degree we

were looking for, i.e. it corresponds to the intuitive idea of composition of problems

that we gave above. To do this, we will find a representative of the degree we define

above. In a slight abuse of notation, we will use the same symbol to denote them.

Lemma 1.2.15 (see [7] and [70]). Let (X , δX ), (Y , δY) and (Z, δZ) be represented

spaces, and let P :⊆ X ⇒ Y and Q :⊆ Y ⇒ Z be partial multifunctions, and let P

and Q be realizers for P and Q, respectively. Let us consider the partial multifunction

Q ∗ P :⊆ ωω ⇒ ωω:

• Input: a pair (x, p) ∈ ωω × ωω such that x ∈ dom(P ) and for every y ∈ P (x),

Φp(y) ∈ dom(Q).

• Output: a pair (y, z) such that y ∈ P (x) and z ∈ Q(Φp(y)).

Then, the partial multifunction Q ∗P is the compositional product (which, we recall, is

a Weihrauch degree) of P and Q.

As one can easily check, the Lemma above confirms the intuition we gave about what

the composition of two partial multifunctions should be.

We conclude this section by defining the jump of a problem.
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Definition 1.2.16. • We define the problem lim :⊆ ωω → ωω in the following

way:

– Input: a p ∈ ωω such that for every i ∈ ω limn→∞ pi(n) exists, where

(pi)i∈ω ∈ (ωω)ω is the sequence of elements of ωω such that p = 〈p0, p1, . . .〉.

– Output: q ∈ ωω such that for every i ∈ ω q(i) = limn→∞ pi(n).

We remark that lim is actually a partial function.

• Let (X , δX ) be a represented space. We define the representation δ′X :⊆ ωω → X ,

which we call jump of the representation δX , as δX ◦ lim. We denote by X ′ the

space X when given the representation δ′X .

• Let (X , δX ) and (Y , δY) be represented spaces, and let P be a partial multifunc-

tion. The jump of P, denoted P′, is the problem P′ : X ′ ⇒ Y with the same

inputs and outputs as P. We denote the nth jump of P, i.e. the problem obtained

from P by applying to it n jumps, by P(n).

In essence, the jump P′ of problem P is the same problem as P if we forget about the

fact that we are dealing with represented spaces: the thing that differentiates P′ from

P is that, for the former, the names of the points in the domain are given in a much

more complicated way than for the latter.

There are many analogies between the jump operator we just introduced and the

“standard” jump of a set in classical computability theory: we refer to [5] for more on

this topic. There are, however, many respects in which they do not behave similarly at

all: just to mention one, the jump operator is not Weihrauch-degree theoretic, whereas

the Turing jump is of course Turing-degree theoretic.

In the following Theorem, we will list the main features of the jump operator that we

will use in the rest of the thesis. Proofs for them can be found in [6] and in [5].

Theorem 1.2.17. 1. For every two problems P and Q such that P ≤sW Q, it holds

that P′ ≤sW Q′. Hence, the jump is strong Weihrauch-degree theoretic.

2. For every problem P, P′ ≤W P ∗ lim.
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3. For every cylinder P, P′ is a cylinder as well, and P′ ≡W P ∗ lim.

4. For every two problems P and Q, we have that (P×Q)′ ≡sW P′×Q′, (P̂)′ ≡sW (̂P′),

and (P∗)′ ≡sW (P′)∗.

1.2.4. Other computability theoretic notions

In this subsection, we introduce several notions coming from classical computability

theory that have been seen to be very useful tools in the study of the strength of

combinatorial principles.

We start by recalling what lown sets and degrees are.

Definition 1.2.18. For every n > 0, we say that a set A (respectively, a degree a) is

lown if it holds that A(n) ≡T ∅(n) (respectively, a(n) ≡T ∅(n)). Low1 sets and degrees

will be called simply low, for shortness.

An important property of lown degrees is that they behave very well under relativiza-

tion: as one easily checks, a degree that is lown over a lown degree is simply lown.

Next, we introduce PA degrees: these are a fundamental topic in computability theory,

and the literature on them is vast. We refer, in particular, to [19] and to [65] for more

on this topic.

Definition 1.2.19. Given two Turing degrees a and b, we say that b is PA over a if

every infinite subtree T ⊆ 2<ω that is computable in a has a path f ∈ [T ] such that

f ≤T b.

There are many equivalent definitions of PA degrees. A particularly interesting one

is the one that gives them their name: a degree is PA (over ∅) if is the degree of a

complete consistent extension of Peano Arithmetic.

It is immediately clear why these degrees are interesting in reverse mathematics: every

computable instance of WKL has a solution computable in a PA degree. This is

particularly important when combined with the fundamental Low Basis Theorem of
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Jockusch and Soare (see [42]), which says that there are low PA degrees: by an easy

construction, one can use this fact to produce an ω-model of WKL0 consisting only of

low sets.

There is another very useful properties that makes PA degrees a preferred tool for

constructions of sets whose jumps have to be controlled, as we will see in Chapter 4.

Lemma 1.2.20. Let us fix some n ∈ ω, and let d be a Turing degree PA over ∅(n). Let

a certain enumeration of the Π0
n+1-predicates of first-order arithmetic be given, say it

is {ϕ0, ϕ1, . . . }, and let 〈·〉 be a coding of all the finite sequences of numbers: say that

for every x, x = 〈i0, . . . inx〉. Then, there is a partial function d :⊆ ω → ω computable

in d such that for every x, if at least one of the ϕij is true, for j ≤ nx, then ϕd(x) is

true.

Proof. This is an immediate generalization of [11, Lemma 4.2]

PA degrees are very strongly related with another class of interesting Turing degrees,

namely DNR degrees. We recall that by Φe we mean the eth Turing machine, according

to some fixed effective enumeration of them.

Definition 1.2.21. • Given a function p ∈ ωω, a function f ∈ ωω is DNR relative

to p if, for every e ∈ ω, f(e) 6= Φe(p)(e). A degree is DNR over degT(p) if it

computes a DNR function relative to p.

• Given a function p ∈ ωω and a number k > 1, we say that a function f ∈ ωω is

DNRk relative to p if it is DNR relative to p and ran f ⊆ {0, . . . , k−1}. A degree

is DNRk relative to degT(p) if it computes a function that is DNRk relative to p.

It is immediate to see that every DNRk function or degree is also DNR, whereas one

can show that there are DNR degrees that are not DNRk for any k. Moreover, the

following theorem holds:

Theorem 1.2.22 ([43]). For every k > 2, a degree a is DNRk (relative to ∅) if and

only if it is PA (over ∅).
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DNR degrees are another useful benchmark for the strength of principles, thanks to

their many connections to other well known sets of degrees. In keeping with this, we

introduce the problem DNR, which we will use in Chapter 2.

Definition 1.2.23. DNR is the following partial multifunction:

• Input: any function p ∈ ωω.

• Output: a function f ∈ ωω that is DNR relative to p.

Finally, we introduce an important computability theoretic property of problems,

namely cone avoidance: this property is a fundamental tool in the study of the

reverse mathematics of combinatorial principles (the original proof by Seetapun that

RCA0 + RT2
2 6` ACA0 was actually a proof that RT2

2 admits cone avoidance) and is a

major current focus of the reverse mathematical community (for instance, the recent

fundamental papers [58] and [10] on the strength of a large class of Ramseyan princi-

ples can be seen as a contribution to the study of cone avoidance). For the sake of

readability, we will state it for problems whose domain and codomain is (a subset of)

ωω: we will only discuss cone avoidance in this setting in the rest of the thesis.

Definition 1.2.24. A problem P :⊆ ωω ⇒ ωω admits cone avoidance if, for every set

Z ⊆ ω, every set C 6≤T Z and every Z-computable P-instance x, there is a P-solution

y to x such that C 6≤T 〈Z, y〉.

As hinted above, one of the main reasons why this property is of interest to reverse

mathematicians is that, roughly speaking, for a Π1
2 L2-statement P, if the associated

partial multifunction P̃ :⊆ ωω ⇒ ωω admits cone avoidance, then RCA0+P 6` ACA0. To

see this, it is enough to notice that, setting Z = ∅ and C = ∅′ in the Definition above,

cone avoidance allows one to build an ω-model of RCA0 +P that does not contain any

set that is Turing-equivalent to ∅′, which is enough to conclude that that model is not

a model of ACA0. We refer to [36] for more details on these kind of arguments.

Finally, we mention that it is also interesting to study a strengthening of the

property above, unsurprisingly called strong cone avoidance, which is obtained from
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Definition 1.2.24 by removing the condition that the P-instance x be Z-computable.

Although we mention this property in Chapter 4, we will never actually use it.



2. Rival-Sands theorem for graphs

In their paper [59], Rival and Sands presented what may be called a rather unusual

perspective on the celebrated Ramsey’s theorem for pairs: they noticed that, when

applied to an infinite graph G = (V,E), Ramsey’s theorem gives complete information

on the internal structure of a certain subgraph H of G, but it provides no information

on the external behavior of this subgraph, namely the relationship between points of

H and points of V \ H. They then set off to amend this, and proved the following

Theorem, which they themselves described as a trade-off:

Theorem 2.0.1 ([59], Theorem 1). Every infinite graph G = (V,E) contains an

infinite subset H ⊆ V such that every vertex of G is adjacent to precisely none, one or

infinitely many of the vertices of H. Moreover, every vertex of H is adjacent to none

or infinitely many of the vertices of H.

In essence, the Theorem above guarantees the existence of a subset H of V such that

it is particularly nice with respect to both its internal and its external structure: in

this sense, it can be considered a sort of “inside-outside Ramsey’s theorem”. The

price to pay for gaining information on the behavior of the points in V \H is that the

internal structure of H will not be as regular as the one of the sets whose existence is

guaranteed by Ramsey’s theorem: in their paper, Rival and Sands show that not much

can be done to strengthen the theorem above, and that it is, in a sense, optimal. They

do, however, point out that by considering a more restrictive class of graph, namely

comparability graphs of partial orders of finite width, then the Theorem above can

take a much nicer form: this modification of Theorem 2.0.1 will be the main focus of

Chapter 3.
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In this Chapter, we focus on the logical strength of Theorem 2.0.1, restricted to

countable graphs: we will call it Rival–Sands theorem for graphs. In our exposition,

we closely follow our paper [27]: we point out that, as in that paper, the content of

this Chapter is joint work with Dr. Marta Fiori Carones and Dr. Paul Shafer.

In Section 2.1, we focus on the reverse mathematics of Theorem 2.0.1: when formalized

as the principle RSg, the Theorem turns out to be equivalent to ACA0. Interestingly,

a rather natural modification of it, which we call wRSg, turns out to be equivalent

to RT2
2 over RCA0: we present this result, which is joint work with Jeffry Hirst and

Steffen Lempp.

We then set out to determine the position of the problems associated to RSg and wRSg

in the Weihrauch lattice: in order to do that, in Section 2.2, we review some known

facts about the relationships between problems associated to combinatorial principles,

and we prove some new results. In Section 2.3, we state the main result concerning

RSg, without proving it (a complete proof can be found in [27]). Finally, in Section 2.4,

we focus on the behavior of the problems associated to wRSg and the closely related

problem wRSgr in the Weihrauch lattice.

2.1. The reverse mathematics of RSg

We give our reverse mathematical analysis of the Rival–Sands theorem for graphs. As

anticipated above, we show that the Rival–Sands theorem for graphs and its refined

version are equivalent to ACA0 over RCA0 and that these equivalences remain valid

when the theorem is restricted to locally finite graphs. We also show that the inside-

only weak Rival–Sands theorem for graphs and its refined version are equivalent to

RT2
2 over RCA0.

Definition 2.1.1. • (RCA0) Let V ⊆ N be a set and E be a subset of [V ]2. Then

we say that (V,E) is a graph.

• (RCA0) For a graph G = (V,E) and an x ∈ V , N(x) = {y ∈ V : {x, y} ∈ E}
denotes the set of neighbors of x.
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We notice that, by our definition, our graphs will always be countable, undirected and

without loops or multiedges.

We now formalize Theorem 2.0.1 in reverse mathematics: as will be apparent from

the definition, using the notation of the Theorem, we find it interesting to analyze

separately a version of it in which, in a certain sense, only the external structure of

the subgraph H is considered, namely the principle RSg. In this sense, the second

principle that we introduce, RSgr, is closer to the full statement of Theorem 2.0.1.

Definition 2.1.2. • The Rival–Sands theorem for graphs (RSg) is the statement

“for every infinite graph G = (V,E), there is an infinite H ⊆ V such that for

every x ∈ V , either H ∩N(x) is infinite or |H ∩N(x)| ≤ 1”.

• The Rival–Sands theorems for graphs, refined (RSgr) is the following statement:

“for every infinite graph G = (V,E), there is an infinite H ⊆ V such that

– for every x ∈ V , either H∩N(x) is infinite or |H∩N(x)| ≤ 1; and moreover

– for every x ∈ H, either H ∩N(x) is infinite or H ∩N(x) = ∅.”

As we pointed out at the beginning of this Chapter, RSg and RSgr can be seen as a

sort of a trade-off: we give up on some internal structure of the set H in order to gain

information on the relationship between H and V \ H. But how much structure are

we exactly giving up on? In order to try to answer this question, we introduce two

new principles, wRSg and wRSgr: they are obtained by restricting the claim of RSg

and RSgr, respectively, to just the set H.

Definition 2.1.3. • The weak Rival–Sands theorem for graphs (wRSg) is the

statement “for every infinite graph G = (V,E), there is an infinite H ⊆ V

such that for every x ∈ H, either H ∩N(x) is infinite or |H ∩N(x)| ≤ 1”.

• The weak Rival–Sands theorem for graphs, refined (wRSgr) is the following

statement: “for every infinite graph G = (V,E), there is an infinite H ⊆ V

such that for every x ∈ H, either H ∩N(x) is infinite or H ∩N(x) = ∅.”
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We notice that it is immediately clear from the definitions above that

RCA0 ` (RSgr→ RSg→ wRSg) ∧ (RSgr→ wRSgr→ wRSg).

We now start with the study of the reverse mathematical strength of these principles.

We begin by putting an upper-bound on the strength of RSgr (and hence, all the other

principles). The original proof of the Rival–Sands theorem in [59] involves detailed

elementary reasoning that can be formalized in ACA0 with a little engineering. We

give a quick new proof using cohesive sets.

Theorem 2.1.4. ACA0 ` RSgr

Proof. Let G = (V,E) be an infinite graph. Let F = {x ∈ V : N(x) is finite}, which

may be defined in ACA0. There are two cases, depending on whether or not F is finite.

If F is finite, simply take

H = V \
⋃
x∈F

N(x),

and observe that, by BΣ0
2 (which is implied by ACA0), H contains almost every member

of V . Consider an x ∈ V . If x ∈ F , then H ∩ N(x) = ∅. If x /∈ F , then N(x) is

infinite, so H ∩N(x) is also infinite. So in this case, for every x ∈ V , either H ∩N(x)

is infinite or H ∩N(x) = ∅.

Suppose instead that F is infinite. Let pF be the principal function of F , i.e. the

function such that for every n, pF (n) is the nth element of F . Moreover, for every

x ∈ V , let Mx be the set defined by y ∈ Mx ↔ pF (y) ∈ N(x). Let B be an infinite

cohesive set for the sequence ~M = (Mx)x∈V , and let C = pF (B). Then, C is an infinite

cohesive set for (N(x))x∈V and a subset of F .

As we work in ACA0, we may define a function f : V → {0, 1} by

f(x) =

0 if C ⊆∗ N(x)

1 if C ⊆∗ N(x).
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Define H = {x0, x1, . . . } ⊆ C ⊆ F by the following procedure. Let x0 be the first

element of C. Suppose that x0 < x1 < · · · < xn have been defined. Let Y =⋃
i≤nN(xi), which is finite because each xi is in F . For each y ∈ Y , if f(y) = 0, then

C ⊆∗ N(y); and if f(y) = 1, then C ⊆∗ N(y). By BΣ0
2, which is a consequence of

ACA0, there is a bound b such that for all y ∈ Y and all z ∈ C with z > b, if f(y) = 0

then z ∈ N(y) and if f(y) = 1, then z ∈ N(y). Thus choose xn+1 to be the first

member of C \ Y with xn < xn+1 and such that, for every y ∈ Y , if f(y) = 0, then

xn+1 ∈ N(y); and if f(y) = 1, then xn+1 ∈ N(y). This completes the construction.

To verify that H is an RSgr-solution to G, consider a v ∈ V . If H ∩N(v) 6= ∅, let m

be least such that xm ∈ N(v) (and hence also least such that v ∈ N(xm)). If f(v) = 0,

then every xn with n > m is chosen from N(v), so |H ∩N(v)| = 1. If f(v) = 1, then

every xn with n > m is chosen from N(v), so H ∩ N(v) is infinite. Thus for every

v ∈ V , either H ∩ N(v) is infinite or |H ∩ N(v)| ≤ 1. Furthermore, if v ∈ H, then

H ∩N(v) = ∅ because if m < n, then xn is chosen from N(xm).

Before giving the reversal for the Rival–Sands theorem, we observe that RCA0 suffices

to prove its refined version for highly recursive graphs.

Definition 2.1.5. • (RCA0) For a set X ⊆ N, let Pf(X) denote the set of (codes

for) finite subsets of X.

• (RCA0) A graph G = (V,E) is locally finite if N(x) is finite for each x ∈ V .

• (RCA0) A graph G = (V,E) is highly recursive if it is locally finite, and addition-

ally there is a function b : V → Pf(V ) such that b(x) = N(x) for each x ∈ V .

Every highly recursive graph is locally finite by definition. That every locally finite

graph is highly recursive requires ACA0 in general.

Proposition 2.1.6. RCA0 ` The Rival–Sands theorem for highly recursive graphs,

refined.

Proof. Let G = (V,E) be a highly recursive infinite graph, and let b : V → Pf(V ) be

such that b(x) = N(x) for all x ∈ V . Define an infinite H = {x0, x1, · · · } ⊆ V with
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x0 < x1 < · · · as follows. Let x0 be the first member of V . Given x0 < x1 < · · · < xn,

let Y be the finite set

Y = {xi : i ≤ n} ∪
⋃
i≤n

b(xi) ∪
⋃
i≤n

y∈b(xi)

b(y)

consisting of all vertices that are of distance ≤ 2 from an xi with i ≤ n. Choose xn+1

to be the first member of V \ Y with xn < xn+1. Then no two distinct members of H

are of distance ≤ 2, so H is a RSgr-solution to G.

Next, we determine the strength of RSg and RSgr.

Theorem 2.1.7. The following are equivalent over RCA0.

1. ACA0

2. RSg

3. RSgr

4. The Rival–Sands theorem for locally finite graphs.

5. The Rival–Sands theorem for locally finite graphs, refined.

Proof. Notice that (3) trivially implies (2), (4), and (5). Therefore (1) implies (2)–(5)

by Theorem 2.1.4. Notice also that (2), (3), and (5) each trivially imply (4). Thus to

finish the proof, it suffices to show that (4) implies (1).

By Lemma 1.1.10, it suffices to show that RSg for locally finite graphs implies that

the ranges of injections exist. Thus let f : N→ N be an injection. Let G = (N, E) be

the graph where E = {(v, s) ∈ [N]2 : f(s) < f(v)}, which exists by ∆0
1 comprehension.

To see that G is locally finite, consider a v ∈ N. The function f is injective, so there

are only finitely many s > v with f(s) < f(v). Therefore there are only finitely many

s > v that are adjacent to v.
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Apply RSg for locally finite graphs toG to get an infiniteH ⊆ N such that |H∩N(x)| ≤
1 for every x ∈ H. Enumerate H in increasing order as x0 < x1 < x2 < · · · . We show

that, for any n ∈ N, if ∃s(f(s) = n), then (∃s ≤ xn+1)(f(s) = n). Suppose that

f(s) = n. Then s is adjacent to all but at most n of the vertices v < s. This is

because if v < s, then (v, s) /∈ E if and only if f(v) ≤ f(s). The function f is an

injection, so there are at most n = f(s) many vertices v < s with f(v) ≤ f(s). Thus

there are at most n vertices v < s to which s is not adjacent. At most one neighbor

of s is in H, and therefore there are at most n + 1 many vertices in H that are < s.

Thus xn+1 ≥ s. Thus n is in the range of f if and only if (∃s ≤ xn+1)(f(s) = n). So

the range of f exists by ∆0
1 comprehension.

We finish this section by showing that both the weak Rival–Sands theorem and its

refined version are equivalent to RT2
2 over RCA0. This was proved in collaboration

with Jeffry Hirst and Steffen Lempp.This is a rather interesting result: it can be read

as saying that, although it is true that the internal structure of the set H given by

RSg is not combinatorially as nice as the one given by Ramsey’s theorem, it does not

lose anything from the point of view of coding power.

Theorem 2.1.8 (Fiori-Carones, Hirst, Lempp, Shafer, Soldà). The following are

equivalent over RCA0.

1. RT2
2

2. wRSg

3. wRSgr

Proof. For an infinite graph G, every RT2
2-solution to G is also a wRSgr-solution to G,

so (1) implies (3). Trivially (3) implies (2). It remains to show that (2) implies (1).

We show that RCA0 +wRSg ` SRT2
2∧ADS, from which it follows that RCA0 +wRSg `

RT2
2 by Theorem 1.1.23 item 1 and Theorem 1.1.26 item 2. We start by showing that

RCA0 + wRSg ` ADS.
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Let L = (N, <L) be an infinite linear order. Let G = (N, E) be the graph where

E = {(x, y) ∈ [N]2 : x <L y}. Let H be a wRSg-solution to G. Then for every x ∈ H,

either H ∩N(x) is infinite or |H ∩N(x)| ≤ 1.

First suppose that |H ∩ N(x)| ≤ 1 for all x ∈ H. For x ∈ H, let y0, y1 ∈ H be such

that x < y0, y1. Then at most one of (x, y0) and (x, y1) is in E, so either y0 <L x or

y1 <L x. In particular, this implies that H has no <L-minimum element. We can then

define a descending sequence x0 >L x1 >L x2 >L · · · by choosing x0 to be the first

member of H and by choosing each xn+1 to be the first member of H that is <L-below

xn.

Now suppose that H ∩ N(x) is infinite for some x ∈ H, but further suppose that

|H ∩ N(y)| ≤ 1 for all but finitely many y ∈ H ∩ N(x). Let b be a bound such that

|H ∩N(y)| ≤ 1 whenever y ∈ H ∩N(x) and y > b. Let y0 < y1 < y2 < · · · enumerate

in increasing <-order the elements of H ∩N(x) that are > b. Then y0 >L y1 >L y2 >L

· · · is a descending sequence in L. This is because if yn <L yn+1 for some n, then

(yn, yn+1) ∈ E, so both x and yn+1 are in H ∩N(yn), which is a contradiction.

Finally, suppose that there is an x ∈ H with H ∩N(x) infinite and furthermore that

whenever x ∈ H and H ∩N(x) is infinite, then also H ∩N(y) is infinite for infinitely

many y ∈ H ∩ N(x). We define an ascending sequence x0 <L x1 < x2 <L · · · where

xn ∈ H and H ∩ N(xn) is infinite for each n. Recall that for x ∈ H, H ∩ N(x) is

infinite if and only if |H ∩ N(x)| ≥ 2 because H is a wRSg-solution to G. Let x0 be

any element of H with |H ∩N(x)| ≥ 2. Given xn ∈ H with |H ∩N(xn)| ≥ 2, we know

by assumption that there are infinitely many y ∈ H ∩ N(xn) with |H ∩ N(y)| ≥ 2.

Let 〈y, w, z〉 be the first (code for a) triple where y ∈ H ∩N(xn), xn < y, w 6= z, and

w, z ∈ H ∩ N(y). Then xn <L y because xn < y and (xn, y) ∈ E, so put xn+1 = y.

This completes the proof of ADS.

Now we show that RCA0 + wRSg ` SRT2
2. Note that RCA0 + wRSg ` BΣ0

2. This is

because RCA0 +wRSg ` ADS by the above argument and that RCA0 +ADS ` BΣ0
2 by

Theorem 1.1.26 item 2.

Let c : [N]2 → N be a stable coloring, and let G = (N, E) be the graph where E =
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{(x, y) ∈ [N]2 : c(x, y) = 1}. Let H be a wRSg-solution to G. Thus for x ∈ H,

H ∩N(x) is infinite if and only if |H ∩N(x)| ≥ 2.

First suppose that there are only finitely many x ∈ H with H∩N(x) infinite, and let b

be a bound such that |H∩N(x)| ≤ 1 whenever x ∈ H and x > b. Define a homogeneous

set K = {x0, x1, . . . } for c with color 0, where xn ∈ H and xn > b for each n. Let x0

be the first member of H with x0 > b. Given b < x0 < x1 < · · · < xn, choose xn+1

to be the first member of H with xn+1 > xn and (∀i ≤ n)(xn+1 /∈ N(xi)). Such an

xn+1 exists because H is infinite, but |H ∩
⋃
i≤nN(xi)| ≤ n+ 1 since |H ∩N(xi)| ≤ 1

for each i ≤ n. The set K is homogeneous because if m < n, then (xm, xn) /∈ E, so

c(xm, xn) = 0.

Now suppose that there are infinitely many x ∈ H with H ∩ N(x) infinite. Define a

homogeneous set K = {x0, x1, . . . } for c with color 1, where xn ∈ H and |H∩N(xn)| ≥
2 for each n. Let x0 be any element of H with |H∩N(x0)| ≥ 2. Given x0 < x1 < · · · <
xn, let 〈y, w, z〉 be the first (code for a) triple where xn < y, (∀i ≤ n)(y ∈ H ∩N(xi)),

w 6= z, and w, z ∈ H ∩ N(y). Then put xn+1 = y. To see that such a triple exists,

observe that (∀i ≤ n)(lims c(xi, s) = 1) because c is stable and for each i ≤ n, there

are infinitely many s with c(xi, s) = 1 because N(xi) is infinite. By BΣ0
2, there is a

bound b such that (∀i ≤ n)(∀s > b)(c(xi, s) = 1). We assume that there are infinitely

many y ∈ H with H ∩N(y) infinite, so there is a desired y ∈ H with y > max{b, xn}
and |H ∩ N(y)| ≥ 2. Such a y satisfies (∀i ≤ n)(y ∈ H ∩ N(xi)) because y > b, so

c(xi, y) = 1 for each i ≤ n, which means that (xi, y) ∈ E for each i ≤ n. The set K is

homogeneous because if m < n, then (xm, xn) ∈ E, so c(xm, xn) = 1. This completes

the proof of SRT2
2.

2.2. Combinatorial principles as partial multifunc-

tions

Before moving to the study of RSg, wRSg and wRSgr in the Weihrauch degrees, we

will introduce the problems corresponding to the combinatorial principles that we
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introduced in Section 1.1. Although many of the translations are trivial, others are

rather interesting, in that they highlight the differences existing between the reverse

mathematical and the Weihrauch theoretic measurement of the strength of a problem.

Most of the things that we are going to say are (implicitly or explicitly) already known,

with one exception: the relationship between Ramsey’s theorem for singletons and ADS

does not seem to have been studied before. We will give some new results about this

at the end of this section.

We have already introduced the problems corresponding to RTnk and SRT2
k in

Section 1.2.2, and we have seen how they behave in the various degrees in the case

that n = k = 2.

The next problem to consider is then COH, which we have already introduced:

although there are explicit results relating COH, RT2
2 and SRT2

2 (see e.g. [8]), we will

get these results as consequences of the relationship of COH with other principles.

We introduce now the problems corresponding to ADS, SADS and CAC.

Definition 2.2.1. • ADS is the following multivalued function.

– Input: An infinite linear order L = (L,<L).

– Output: An infinite S ⊆ L that is either an ascending sequence in L or a

descending sequence in L.

• SADS is the following multivalued function:

– Input: an infinite stable linear order L = (L,<P ).

– Output: an infinite set S ⊆ L that is either an ascending sequence in L or

a descending sequence in L.

• CAC is the following multivalued function:

– Input: an infinite partial order P = (P,<P ).

– Output: an infinite set S ⊆ P that is either an antichain or a chain in P .
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As noticed in [1], there is actually another possible way to translate ADS and SADS.

Definition 2.2.2. (RCA0) Let (L,<L) be a linear order.

• A set C ⊆ L is an ascending chain in L if for every y ∈ C, the set {x ∈ C : x <L

y} is finite.

• A set C ⊆ L is a descending chain in L if for every y ∈ C, the set {x ∈ C : x >L

y} is finite.

One could then, as was done in [1], consider the principle ADC, where one only requires,

upon being given an infinite linear order, that the solution be an infinite ascending

chain, and similarly for SADC.

Definition 2.2.3. • ADC (for the ascending/descending chain principle) is the

following multivalued function.

– Input: An infinite linear order L = (L,<L).

– Output: An infinite S ⊆ L that is either an ascending chain in L or a

descending chain in L.

• SADC (for the stable ascending/descending chain principle) is the following

multivalued function.

– Input: An infinite stable linear order L = (L,<L).

– Output: An infinite C ⊆ L that is either an ascending chain in L or a

descending chain in L.

As it is easy to see, RCA0 ` ADS ↔ ADC and RCA0 ` SADS ↔ SADC, and it is also

easy to prove that ADS ≡sc ADC and SADS ≡sc SADC. On the other hand, it was

proved in [1] that ADC <W ADS and SADC <W SADS (technically, what they showed

is a slightly different result, as we will see in a second, but the proof can be easily

adapted to the case at hand): the issue is that it is impossible to know in a uniform

way whether a ADC-solution S to a linear order L can be refined to an ascending or a

descending sequence.
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Another thing that should be noticed is that the problems ADS, ADC and so on that

we are defining here are not the same problems that are used in [1]: the difference is

that, in their case, there is a further condition on the domain of the problems. We

will only examine the case of ADS, ADC, SADS and SADC, but similar considerations

can be applied to the other problems as well.

For P = ADS,ADC, SADS, SADC, we define the problems P�L=ω as follows:

• Input: a linear order L = (ω,<L) such that L ∈ domP.

• Output: a P-solution to L.

The problems defined in [1] (and used in other places in the literature) are those

restricted to L = ω (and similarly for CAC). We will clarify now the relationship

between these principles.

Lemma 2.2.4. For P = ADS,ADC, SADS, SADC, the following hold:

1. P ≡W P�L=ω.

2. P is a cylinder, and it is actually the cylindrification of P.

3. P 6≤sW RT2
2, but P ≤W RT2

2.

Item 1 is obvious, and Item 2 is also very easy to prove: the idea is that, without any

restriction on the set L, we can use it to code arbitrarily large initial segments of itself

in its points. We will see an example of this in Proposition 2.4.3.

The fact that P ≤W RT2
2 is obtained by inspecting the proofs given in reverse

mathematics that RCA0 ` RT2
2 → P (we refer to [1] for more details). An interesting

way to approach the proof of the non-reduction in Item 3 is to introduce the concept

of cardinality of a problem.

Definition 2.2.5 ([6]). Let P :⊆ ωω ⇒ ωω be a partial multifunction. By #P we

denote the cardinal

sup{|M | : M ⊆ ωω ∧ ∀x, y ∈M(P(x) ∩ P(y) = ∅)}



2.2. Combinatorial principles as partial multifunctions 49

We call #P the cardinality of P.

The next Lemma explains why this concept is interesting to us.

Lemma 2.2.6. Let P :⊆ ωω ⇒ ωω and Q :⊆ ωω ⇒ ωω be partial multifunctions.

Then, if P ≤sW Q, it holds that #P ≤ #Q.

In particular, for every cylinder P, we have that id ≤sW P. But since clearly #id = 2ℵ0 ,

it follows that #P is necessarily 2ℵ0 as well. But, as proved in [8], #RT2
2 = 1: let f

and g be two RT2
2 instances, and let Hf be an infinite f -homogeneous set. Then, let us

consider g�[Hf ]2 : [Hf ]
2 → 2: every infinite g�[Hf ]2-homogeneous set is then an infinite

homogeneous set for both f and g. This proves that #RT2
2 = 1. Let us now go back

to the case P = ADS,ADC, SADS, SADC: since by Item 2 P is a cylinder, it follows

that P 6≤sW RT2
2.

The results above can be summarized by saying that, in the Weihrauch degrees, one can

ignore the difference between P and P�L=ω, whereas the situation is more complicated

for the strong Weihrauch degrees. Since we will focus on the Weihrauch degrees, this

will not be hugely important. Anyway, it is maybe noteworthy to notice that, as we

will see, RSg represents an exception to this phenomenon.

At the end of this section, we include a picture, Figure 2.1, summarizing the relation-

ships between the Weihrauch degrees relative to the problems we have seen so far. In

order for the picture to be complete, we still need some results which do not seem to

be explicitly found in the literature: we start with the first, which is the Weihrauch

equivalence between COH and CADS.

Definition 2.2.7. • CADS is the statement “for every infinite linear order (L,<L),

there is an infinite subset S ⊆ L such that (S,<L) is a stable linear order”.

• CADS is the following partial multifunction:

– Input: an infinite linear order (L,<L).

– Output: an infinite set S ⊆ L such that (S,<L) is stable.
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• CADS�L=ω is the following partial multifunction:

– Input: an infinite linear order L = (ω,<L).

– Output: an infinite set S ⊆ ω such that (S,<L) is stable.

The reason why CADS was introduced in [39] was to give a stable-cohesive decompo-

sition of ADS: it is obvious that RCA0 ` ADS↔ (SADS ∧ CADS). In [39, Proposition

2.9], it was proved that RCA0 ` COH → CADS, and in [39, Proposition 4.4] it was

shown that RCA0 + BΣ0
2 ` CADS → COH. We show here that these proofs actually

yield that CADS�L=ω ≡sW COH.

Proposition 2.2.8 (See [39], Propositions 2.9 and 4.4). CADS�L=ω ≡sW COH.

Therefore CADS ≡sW id× CADS�L=ω ≡sW id× COH.

Proof. We have that CADS ≡sW id×CADS�L=ω by an argument analogous to the proof

of Proposition 2.4.3 below. So it suffices to show that CADS�L=ω ≡sW COH.

For CADS�L=ω ≤sW COH, given a linear order L = (ω,<L), apply COH to the sequence

~A = (Ai)i∈ω where Ai = {n ∈ ω : i <L n}. Then any ~A-cohesive set C is also a CADS-

solution to L.

Hence, we just have to show that COH ≤sW CADS�L=ω. Let ~A = (Ai)i∈ω be a COH-

instance. Define a functional Φ( ~A) computing a linear order L = (ω,<L) as follows.

Given x and y, define x <L y if and only if (Ai(x) : i ≤ x) <lex (Ai(y) : i ≤ y), where

<lex denotes the lexicographic order on 2<ω. Let C be a CADS-solution to L, and let

Ψ be the identity functional. We claim that C is ~A-cohesive and hence that Φ and Ψ

witness that COH ≤sW CADS�L=ω.

To see that C is ~A-cohesive, fix n and let Fn = {σ ∈ 2n+1 : (∃x ∈ C)(σ v (Ai(x) :

i ≤ x))}. Let σ0 <lex · · · <lex σk−1 list the elements of Fn in <lex-increasing order. For

each j < k, let xσj be the <-least element of C witnessing that σj ∈ Fn. Then

xσ0 <L · · · <L xσk−1
. The order (C,<L) is stable, so in C exactly one interval

[−∞, xσ0 ], [xσ0 , xσ1 ], . . . , [xσk−2
, xσk−1

], [xσk−1
,∞] is infinite, where [−∞, a] and [a,∞]

denote {x ∈ C : x <L a} and {x ∈ C : a <L x}. If [xσj , xσj+1
] is infinite for some
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j < k − 1, then almost every y ∈ C satisfies σj v (Ai(y) : i ≤ y). In particular,

An(y) = σj(n) for almost every y ∈ C, so either C ⊆∗ An or C ⊆∗ An. Similarly, if

[−∞, xσ0 ] is infinite then An(y) = σ0(n) for almost every y ∈ C; and if [xσk−1
,∞] is

infinite, then An(y) = σk−1(n) for almost every y ∈ C. Thus C is ~A-cohesive.

Finally, we will focus on the relationship between ADS and RT1
<∞. We introduce the

problem RT1
<∞, as well as other auxiliary problems that we will use in the proofs

below.

Definition 2.2.9. • RT1
<∞ is the following partial multifunction:

– Input: a function f ∈ ωω with bounded range.

– Output: an infinite f -homogeneous set.

• For every k > 0, cRT1
k is the following problem:

– Input: a function f : ω → k.

– Output: an i < k such that f−1(i) is infinite.

It is very easy to see that RT1
k ≡W cRT1

k and RT1
k 6≡sW cRT1

k for every k > 0.

Contrary to what happens in the reverse mathematical setting, we will see that

RT1
<∞ 6≤W ADS. We will do this by proving the stronger result that RT1

5 6≤W ADS.

Theorem 2.2.10. RT1
5 �W ADS. Therefore RT1

<∞ �W ADS.

Proof. As we mentioned, RT1
5 ≡W cRT1

5 and ADS is a cylinder, so it suffices to show

that cRT1
5 �sW ADS. Suppose for a contradiction that Φ and Ψ witness that cRT1

5 ≤sW

ADS. We compute a coloring c : ω → 5 such that the ADS-instance Φ(c) has a solution

S for which c−1(Ψ(S)) is finite, contradicting that Φ and Ψ witness that cRT1
5 ≤sW

ADS.

The computation of c proceeds in stages, where at stage s+1 we determine the value of

c(s). Thus we compute a sequence of strings (cs : s ∈ ω), where cs ∈ 5s and cs v cs+1

for each s. The final coloring c is c =
⋃
s∈ω cs.
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For each s, let Ls = Φ(cs)�s denote the partially-defined structure obtained by running

Φ(cs)(n) for s steps for each n < s. Write also Ls = (Ls, <Ls). Ls is not necessarily

a linear order, but it must be consistent with being a linear order because there are

functions c : ω → 5 extending cs.

For σ ∈ 2<ω, let set(σ) = {n < |σ| : σ(n) = 1} denote the finite set for which σ is a

characteristic string.

The computation of c begins in phase I, and it may or may not eventually progress to

phase II. The goal of phase I is to identify s,m∗ ∈ ω, kasc, kdec < 5, and σ∗, τ∗ ∈ 2<ω

such that

• set(σ∗) is an ascending sequence in Ls with kasc = Ψ(σ∗)↓;

• set(τ∗) is a descending sequence in Ls with kdec = Ψ(τ∗)↓;

• m∗ is both the <Ls-maximum element of set(σ∗) and the <Ls-minimum element

of set(τ∗).

Once s, m∗, kasc, kdec, σ∗, and τ∗ are found, the computation enters phase II and no

longer uses colors kasc and kdec. The point is that, at the end of the construction, if

L = Φ(c) has an ascending sequence above m∗, then it has an ascending sequence S

with σ∗ v S (by which we mean that, if χS is the characteristic function of S, then

σ∗ v χS) and hence with Ψ(S) = kasc. Similarly, if L has a descending sequence below

m∗, then it has a descending sequence S with τ∗ v S and hence with Ψ(S) = kdec. In

both cases, S is as desired because c−1(kasc) and c−1(kdec) are finite.

Computation in phase I proceeds as follows. We maintain sequences ~σ = (〈σ`, u`, i`〉 :

` < a) and ~τ = (〈τ`, d`, j`〉 : ` < b) satisfying the following properties at each stage s.

1. For each ` < a, set(σ`) is an ascending sequence in Ls, u` is the <Ls-maximum

element of set(σ`), and Ψ(σ`) = i`.

2. For each ` < b, set(τ`) is an descending sequence in Ls, d` is the <Ls-minimum

element of set(τ`), and Ψ(τ`) = j`.
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3. For each `0 < `1 < a, u`0 >Ls u`1 .

4. For each `0 < `1 < b, d`0 <Ls d`1 .

At stage 0, begin with c0 = ∅, ~σ = ∅, and ~τ = ∅. At stage s+1, let cs+1(s) be the least

i < 5 that is neither ia−1 (if a > 0) nor jb−1 (if b > 0). Next, search for an η ∈ 2<s

such that Ψ(η)↓ and either

(i) set(η) is an ascending sequence in Ls with <Ls-maximum element u, and u <Ls

ua−1 if a > 0; or

(ii) set(η) is an descending sequence in Ls with <Ls-minimum element d, and d >Ls

db−1 if b > 0.

If there is such an η, let η be the first one found. If η satisfies ((i)), let 〈σa, ua, ia〉 =

〈η, u,Ψ(η)〉 and append this element to ~σ. If η satisfies ((ii)), let 〈τb, db, jb〉 =

〈η, d,Ψ(η)〉 and append this element to ~τ . If there is no such η, then do not update ~σ

or ~τ .

Next, search for a θ ∈ 2<s such that Ψ(θ)↓ and either

(a) set(θ) ⊆ {u0, . . . , ua−1} is a descending sequence in Ls or

(b) set(θ) ⊆ {d0, . . . , db−1} is an ascending sequence in Ls.

If there is such a θ, let θ be the first one found. If θ satisfies ((a)), let u` be the

<Ls-minimum element of set(θ), which is also the <Ls-maximum element of σ`. Set

σ∗ = σ`, τ∗ = θ, m∗ = u`, kasc = i`, and kdec = Ψ(θ). If θ satisfies ((b)), let d` be the

<Ls-maximum element of set(θ), which is also the <Ls-minimum element of τ`. Set

σ∗ = θ, τ∗ = τ`, m∗ = d`, kasc = Ψ(θ), and kdec = j`. Go to stage s + 2 and begin

phase II. If there is no such θ, go to stage s+ 2 and remain in phase I.

The phase II strategy is to reset ~σ and ~τ to the σ∗, τ∗, m∗, kasc and kdec found at the end

of phase I and then rerun a portion of the phase I strategy. Upon beginning phase II,

reset ~σ and ~τ to ~σ = 〈σ0, u0, i0〉 = 〈σ∗,m∗, kasc〉 and ~τ = 〈τ0, d0, j0〉 = 〈τ∗,m∗, kdec〉.



54 2. Rival-Sands theorem for graphs

Throughout phase II, ~σ and ~τ satisfy the same items (1)–(4) from phase I. Computation

in phase II proceeds as follows. At stage s + 1, let cs+1(s) be the least i < 5 not in

{kasc, kdec, ia−1, jb−1}. Next, as in phase I, search for an η ∈ 2<s with Ψ(η)↓ that

satisfies either ((i)) or ((ii)). If such an η is found, then update either ~σ or ~τ as in

phase I and go to stage s+ 2. If no such η is found, go to stage s+ 2 without updating

~σ or ~τ . This completes the computation.

Let L = Φ(c) and write L = (L,<L). We find an ADS-solution S to L such that

c−1(Ψ(S)) is finite, contradicting that Φ and Ψ witness that cRT1
5 ≤sW ADS.

First, suppose that the computation of c never leaves phase I. Then there must be a

stage after which no further elements are appended to either ~σ or ~τ . This is because if,

say, elements are appended to ~σ infinitely often, then u0 >L u1 >L u2 >L · · · , which

means that there is a descending sequenceD ⊆ {u` : ` ∈ ω}. ThisD is an ADS-solution

to L, so Ψ(D)↓. Let θ ⊆ D be long enough so that Ψ(θ)↓. This θ eventually satisfies

item ((a)) of phase I, and the construction eventually finds θ. Thus the computation of

c eventually enters phase II, contradicting the assumption that it never leaves phase I.

So let s0 be a stage after which no further elements are appended to ~σ or ~τ . Then a,

b, ia−1 (if a > 0), and jb−1 (if b > 0) do not change after stage s0, and for every s > s0,

c(s) is the least i < 5 that is neither ia−1 (if a > 0) nor jb−1 (if b > 0). Let A be an

ADS-solution to L, and assume that A is ascending (the descending case is symmetric).

If a = 0 or if x <L ua−1 for all x ∈ A, then let η ⊆ A be long enough so that Ψ(η)↓.
This η eventually satisfies item ((i)) of phase I, so the computation adds an element

to ~σ at some stage after s0, which is a contradiction. Therefore it must be that a > 0

and that x ≥L ua−1 for some x ∈ A. As A is ascending, this means that x >L ua−1 for

almost every x ∈ A. Let S = set(σa−1) ∪ {x ∈ A : (x > ua−1) ∧ (x >L ua−1)}. Then

S is an ascending sequence in L. However, σa−1 v S, so Ψ(S) = ia−1. We have that

c(s) 6= ia−1 for all s > s0, so S is as desired.

Now, suppose that the computation of c eventually enters phase II at some stage s0.

Then c(s) is neither kasc nor kdec for all s > s0. Recall that ~σ and ~τ are reset at

the beginning of phase II. Suppose that elements are appended to ~σ infinitely often

in phase II. Then m∗ = u0 >L u1 >L u2 >L · · · , so there is a descending sequence
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D ⊆ {u` : ` ∈ ω}. Recall that set(τ∗) is a descending sequence with ≤L-minimum

element m∗ and Ψ(τ∗) = kdec. Let S = set(τ∗)∪{x ∈ D : (x > m∗)∧(x <L m∗)}. Then

S is a descending sequence with τ∗ v S. Therefore Ψ(S) = kdec. However, c(s) 6= kdec

for all s > s0, so S is as desired. If instead elements are appended to ~τ infinitely often

in phase II, then a symmetric argument shows that there is an ascending sequence S

with σ∗ v S and therefore with Ψ(S) = kasc.

Finally, suppose that there is a stage s1 > s0 after which no further elements are

appended to either ~σ or ~τ . We argue as in the case in which the computation of c

never leaves phase I. Notice that a, b, ia−1, and jb−1 do not change after stage s1,

and for every s > s1, c(s) is the least i < 5 that is not in {kasc, kdec, ia−1, jb−1}. Let

A be an ADS-solution to L, and assume that A is ascending (the descending case is

symmetric). If x <L ua−1 for all x ∈ A, then the computation must append an element

to ~σ at some stage after s1, which is a contradiction. Otherwise, x >L ua−1 for almost

every x ∈ A. Let S = set(σa−1) ∪ {x ∈ A : (x > ua−1) ∧ (x >L ua−1)}. Then S is an

ascending sequence in L with Ψ(S) = ia−1, but c(s) 6= ia−1 for all s > s1. Thus S is

as desired.

The theorem above leaves open the question of what can be said about RT1
k ≤W ADS

in the case that k < 5. We give a partial answer to this question.

We point out that in the following proof we will speak about order-types of orderings,

in a rather liberal way, as is standard in classical mathematics: a linear order L has

order-type ω if it is isomorphic to the order of the natural numbers, whereas is has

order-type ω∗ if it is isomorphic to the reversed order of the natural numbers. Finally,

given two orders A and B, A + B is the usual composition of orders such that every

element of A is smaller than every element of B. For all of them, we do not give an

explicit definition, since the one that we use is the standard one that can be found in

most classical books on the subject (see e.g. [60]).

We will not always be able to be this easy-going: see Definition 3.1.6 for a definition

of various order-types in RCA0.

Theorem 2.2.11. RT1
3 ≤sW ADC.
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Proof. RT1
3 ≡W cRT1

3 and ADC is a cylinder, so it suffices to show that cRT1
3 ≤W

ADC. Let c be a cRT1
3-instance. Define a functional Φ, where Φ(c) computes a linear

order L = (ω,<L) as follows. The computation of L proceeds in stages, where at

stage s the order <L is determined on {0, 1, . . . , s}. Throughout the computation, we

maintain three sets As,Ms, Ds ⊆ {0, 1, . . . , s}, with max<L(As) <L min<L(Ms) and

max<L(Ms) <L min<L(Ds), where min<L(X) and max<L(X) denote the minimum

and maximum elements of the finite set X with respect to <L. The sets As and Ds

are used to build an ascending sequence and a descending sequence in L in order to

achieve the following.

• If only two colors i < j < 3 occur in the range of c infinitely often, then L

has order-type ω + k + ω∗ for some finite linear order k, with the ω-part of L

corresponding to color i and the ω∗-part of L corresponding to color j.

• If only one color i < 3 occurs in the range of c infinitely often, then L has either

order-type ω + k or order-type k + ω∗ for some finite linear order k, with the

ω-part or the ω∗-part of L corresponding to color i.

To monitor the last two colors seen up to s (or the only color seen so far, if c is constant

up to s), let t < s be greatest such that c(t) 6= c(s), let lasts = {c(t), c(s)} if there is

such a t, and otherwise let lasts = {c(s)}. We assign the least color of lasts to As and

the other color (if it exists) to Ds.

At stage 0, let A0 = {0}, M0 = ∅, and D0 = ∅. Assign A0 color c(0) and assign D0 no

color. At stage s+1, first check if lasts+1 = lasts. If lasts+1 = lasts, then color c(s+1) is

assigned to either As or Ds. If c(s+ 1) is assigned to As, then set As+1 = As∪{s+ 1},
Ms+1 = Ms, and Ds+1 = Ds. Extend <L so that s+ 1 is the <L-maximum element of

As+1 and <L-below all elements of Ms+1 and Ds+1. If c(s+ 1) is assigned to Ds, then

set As+1 = As, Ms+1 = Ms, and Ds+1 = Ds ∪ {s+ 1}. Extend <L so that s+ 1 is the

<L-minimum element of Ds+1 and <L-above all elements of As+1 and Ms+1. Assign

As+1 the same color as As, and assign Ds+1 the same color as Ds. If lasts+1 6= lasts, then

set Ms+1 = {0, 1, . . . , s}. If c(s+1) is the least color of lasts+1, then set As+1 = {s+1},
set Ds+1 = ∅, extend <L so that s+ 1 is the <L-minimum element of {0, 1, . . . , s+ 1},
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assign As+1 color c(s+ 1), and assign Ds+1 the other color of lasts+1. If c(s+ 1) is not

the least color of lasts+1, then set As+1 = ∅, set Ds+1 = {s + 1}, extend <L so that

s+ 1 is the <L-maximum element of {0, 1, . . . , s+ 1}, assign Ds+1 color c(s+ 1), and

assign As+1 the other color of lasts+1. This completes the computation of L.

The linear order L is a valid ADC-instance, so let S be an ADC-solution to L. Define a

functional Ψ(〈c, S〉) by finding the <-least element x0 of S and outputting Ψ(〈c, S〉) =

c(x0). We show that c(x0) appears in the range of c infinitely often and therefore that

Ψ(〈c, S〉) is a cRT1
3-solution to c. Thus Φ and Ψ witness that cRT1

3 ≤W ADC.

If every color i < 3 appears in the range of c infinitely often, then c(x0) appears in

the range of c infinitely often. Suppose that exactly two colors i < j < 3 appear in

the range of c infinitely often. Then there is an s0 such that lasts = lasts0 = {i, j} for

all s ≥ s0. In this case, each s ≥ s0 with c(s) = i is added to As, and each s ≥ s0

with c(s) = j is added to Ds. Thus L is a linear order of type ω + k + ω∗ with ω-part

A =
⋃
s≥s0 As, ω

∗-part D =
⋃
s≥s0 Ds, and k-part Ms0 . If S is an ascending chain, then

it must be that S ⊆ A. We have that c(x) = i for all x ∈ A. In particular, c(x0) = i,

which occurs in the range of c infinitely often. If S is a descending chain, then it must

be that S ⊆ D. We have that c(x) = j for all x ∈ D. Thus c(x0) = j, which occurs in

the range of c infinitely often.

Finally, suppose that exactly one color i < 3 appears in the range of c infinitely often.

Then there is an s0 such that c(s) = i for all s ≥ s0 and hence is also such that

lasts = lasts0 for all s ≥ s0. If i is the least color of lasts0 , then s is added to As for

all s ≥ s0, and L is a linear order of type ω + k with ω-part A =
⋃
s≥s0 As and k-part

Ms0 ∪ Ds0 . It must therefore be that S ⊆ A. We have that c(x) = i for all x ∈ A.

Thus c(x0) = i, which occurs in the range of c infinitely often. If instead i is not the

least color of lasts0 , then s is added to Ds for all s ≥ s0, and L is a linear order of type

k + ω∗ with ω∗-part D =
⋃
s≥s0 Ds and k-part As0 ∪Ms0 . It must therefore be that

S ⊆ D. We have that c(x) = i for all x ∈ D. Thus c(x0) = i, which occurs in the

range of c infinitely often.

As promised, we summarize the results of this section in Figure 2.1.
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COH

DNR

RT2
2

CAC

ADS

CADS

SRT2
2

SCAC

SADS

SADC

RT1
<∞

Figure 2.1: Weihrauch reductions and non-reductions in the neighborhood of RT2
2. An

arrow indicates that the target principle Weihrauch reduces to the source principle. No
further arrows may be added, except those that may be inferred by following the arrows
drawn. No arrows reverse, except the double arrow indicating that COH ≡W CADS.
The reductions and non-reductions (often in the form of ω-model separations) not
proved here may be found in [1], [8], [22], [37], [38], [39], [48] and [57].

We conclude this section stating explicitly the remaining open question:

Question 2.2.12. Does RT1
4 ≤W ADS hold?

2.3. RSg in the Weihrauch lattice

We start by defining the problem RSg.

Definition 2.3.1. RSg is the following multivalued function.

• Input: An infinite graph G = (V,E).
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• Output: An infinite H ⊆ V such that, for all v ∈ V , either |H ∩ N(v)| = ω or

|H ∩N(v)| ≤ 1.

In the next Theorem, we state the main result concerning the problem RSg. For a

proof and further discussions concerning this result, we refer to [27, Section 5].

Theorem 2.3.2 ([27], Corollary 5.12). WKL′′ ≡sW RSg

The theorem above allows us to derive many interesting properties that RSg has. We

list some of them here.

• A Turing degree d computes an RSg-solution to the graph (G,E) if and only if

d has PA degree relative to (G,E)′′: this is a straightforward consequence of a

relativization of the Low Basis Theorem.

• RSg has a universal instance, i.e. there is a computable RSg-input (G∗, E∗) such

that for every RSg-solution H∗ to (G∗, E∗) and for every other computable RSg-

instance (G,E), there is an RSg-solution H to (G,E) with H ≤T H∗. Again,

this follows from known properties of WKL and its jumps.

• Since, by [8, Corollary 4.18], WKL(n) ≡W R̂Tn2 , it follows that RSg ≡W R̂T2
2.

• From the previous Item and the fact that the parallelization operator is idempo-

tent, we have that RSg ≡W R̂Sg. Moreover, since both RSg and its parallelization

are cylinders, it follows that RSg ≡sW R̂Sg.

We end this section by mentioning that one could define the problem RSgr analogously

to what was done for RSg. As proved in [27], it turns out that RSg ≡sW RSgr, so all

the observations we made above extend to RSgr as well.
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2.4. Weihrauch and computable reducibility of wRSg

and wRSgr

In this section, we compare the Weihrauch degree and the computable degree of

the weak Rival–Sands theorem to those of RT2
2, its consequences, and other familiar

benchmarks. The general theme is that although wRSg and RT2
2 are equivalent over

RCA0, wRSg is much weaker than RT2
2 in the Weihrauch degrees and in the computable

degrees.

Multivalued functions corresponding to the weak Rival–Sands theorem and its refined

version are defined as follows.

Definition 2.4.1. • wRSg is the following multivalued function.

– Input: An infinite graph G = (V,E).

– Output: An infinite H ⊆ V such that, for all v ∈ H, either |H ∩N(v)| = ω

or |H ∩N(v)| ≤ 1.

• wRSgr is the following multivalued function.

– Input: An infinite graph G = (V,E).

– Output: An infinite H ⊆ V such that for all v ∈ H, either |H ∩N(v)| = ω

or |H ∩N(v)| = 0.

We start noticing that, clearly, wRSg ≤sW wRSgr holds, because given a graph G,

every wRSgr-solution to G is also a wRSg-solution to G.

We do not know if this reduction reverses.

Question 2.4.2. Do wRSgr ≤W wRSg or wRSgr ≤W wRSg hold?

We do however show that, from a computable point of view, the two principles are

not too different: in Proposition 2.4.5 below, we will prove that wRSgr ≤c wRSg.
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As a first step in the study of wRSg and wRSgr, we want to determine whether they are

cylinders: as we show below, the answer turns out to be affirmative in both cases. A

deeper look at this question shows, however, an interesting difference between wRSg,

wRSgr and RSg, namely a certain lack of robustness for the first two problems, similarly

to what happened for the other principles we saw in Section 2.2: as we shall see, the

fact that wRSg and wRSgr are cylinders strongly depends on the conditions one puts

on the graph G one feeds them as an input, whereas this is not the case for RSg.

For P = wRSg,wRSgr,RSg, we define the problems P�V=ω as follows:

• Input: a graph G = (ω,E) with G ∈ domP.

• Output: a P-solution to G.

Although clearly wRSg�V=ω ≡W wRSg, we will see that wRSg�V=ω and wRSg�V=ω are

not cylinders. This is in contrast to what happens for RSg�V=ω, which can be shown

to be a cylinder.

Lemma 2.4.3.

1. wRSg�V=ω and wRSgr�V=ω are not cylinders.

2. wRSg ≡sW id×wRSg�V=ω and wRSgr ≡sW id×wRSgr�V=ω, so wRSg and wRSgr

are cylinders.

3. RSg�V=ω is a cylinder.

Proof. We prove both items for wRSg. The proofs for wRSgr are analogous.

For item (1), it follows from the discussion following Lemma 2.2.6 that it suffices to

prove that every pair of wRSg�V=ω-instances has a common solution: this implies that

#wRSg = 1. It follows that id 6≤sW wRSg�V=ω, so wRSg�V=ω is not a cylinder. Let

G0 = (ω,E0) and G1 = (ω,E1) be two wRSg�V=ω-instances. Let H0 be an infinite

homogeneous set for G0 (i.e., either an infinite clique or an infinite independent set).

Let G1�H0 = (H0, E1 ∩ [H0]2) be the subgraph of G1 induced by H0. Let H be an
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infinite homogeneous set for G1�H0. Then H is homogeneous for both G0 and G1, so

it is a wRSg�V=ω-solution to both G0 and G1.

For item (2), we first show that id × wRSg�V=ω ≤sW wRSg. Let p ∈ ωω, and let

G = (ω,E) be a wRSg�V=ω-instance. Let Φ be the functional given by Φ(〈p,G〉) =

Ĝ = (V, Ê), where V = {p�n : n ∈ ω} and Ê = {(p�m, p�n) : (m,n) ∈ E}. Let Ĥ be

a wRSg-solution to Ĝ. Define a functional Ψ(Ĥ) computing a pair (q,H) as follows.

To compute q, given n search for a σ ∈ Ĥ with |σ| > n and output q(n) = σ(n). To

compute H, take H = {n : q�n ∈ Ĥ}. The set Ĥ consists of infinitely many initial

segments of p, so in fact we computed q = p and H = {n : p�n ∈ Ĥ}. Furthermore, H

is a wRSg�V=ω-solution to G because the function n 7→ p�n is an isomorphism between

G and Ĝ. Thus Φ and Ψ witness that id× wRSg�V=ω ≤sW wRSg.

Now we show that wRSg ≤sW id × wRSg�V=ω. Let G = (V,E) be a wRSg-instance.

Let Φ be the functional given by Φ(G) = 〈p, Ĝ〉, where p : ω → V enumerates V in

increasing order, and Ĝ = (ω, Ê) is the graph with Ê = {(m,n) : (p(m), p(n)) ∈ E}.
Then 〈p, Ĝ〉 is a (id× wRSg�V=ω)-instance. Let 〈p, Ĥ〉 be a (id× wRSg�V=ω)-solution.

Define a functional Ψ(〈p, Ĥ〉) computing the set H = {v : p−1(v) ∈ Ĥ}. Then H is a

wRSg-solution to G because p is an isomorphism between Ĝ and G. Thus Φ and Ψ

witness that wRSg ≤sW id× wRSg�V=ω.

Item (3) follows from a close inspection of the proof of Lemma 5.9 and Corollary 5.12

of [27], from which one can deduce that actually RSg�V=ω ≡sW RSg, and hence in

particular that RSg�V=ω is a cylinder. See also the remarks at the end of section 5 of

the same paper.

We now turn to comparing wRSg and wRSgr to the Weihrauch and strong Weihrauch

degrees of other problems of the zoo below RT2
2. Many of the arguments in the rest of

this section are based on the observations made in the following Lemma.

Lemma 2.4.4. Let G = (V,E) be an infinite graph.

1. If K ⊆ V is an infinite set such that |K ∩ N(x)| < ω for every x ∈ K, then

〈G,K〉 computes an infinite independent set C ⊆ K.
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2. Let F = {x ∈ V : |N(x)| < ω}.

(a) If F is finite, then V \ F ≤T G is a wRSgr-solution to G.

(b) If F is infinite, then G has an infinite independent set C ≤T G
′.

3. Assume that no H ≤T G is a wRSgr-solution to G.

(a) Then G has an infinite independent set.

(b) Let D be a finite independent set, and let σ ∈ 2<ω be a characteristic string

of D: |σ| > max(D) and (∀n < |σ|)(σ(n) = 1 ↔ n ∈ D). Then σ extends

to the characteristic function of a wRSgr-solution to G.

Proof. (1): Suppose that K is infinite and that |K ∩N(x)| < ω for every x ∈ K. To

compute an infinite independent set C = {x0, x1, . . . } ⊆ K from 〈G,K〉, let x0 be the

first element of K, and let xn+1 be the first element of K that is > xn and not adjacent

to any of {x0, . . . , xn}.

(2): Let F = {x ∈ V : |N(x)| < ω}. If F is finite, then I = V \ F is infinite, I ≤T G,

and |I ∩N(x)| = ω for every x ∈ I. Thus I ≤T G is a wRSgr-solution to G. Suppose

instead that F is infinite. Then there is an infinite F0 ⊆ F with F0 ≤T G′ because

F is r.e. relative to G′. F0 satisfies |F0 ∩ N(x)| < ω for every x ∈ F0, so there is an

infinite independent set C ≤T 〈G,F0〉 ≤T G
′ by (1) with K = F0.

(3): Assume that no H ≤T G is a wRSgr-solution to G. For (3a), if G has no infinite

independent set, then there would be a wRSgr-solution H ≤T G by (2). For (3b),

let σ ∈ 2<ω be a characteristic string of a finite independent set D. Again, let F =

{x ∈ V : |N(x)| < ω} and let I = V \ F . If I is finite, then F is infinite, F ≤T G,

and, by definition, |F ∩ N(x)| < ω for every x ∈ F . Thus by (1), there is an infinite

independent C ≤T 〈G,F 〉 ≡T G. This contradicts that no H ≤T G is a wRSgr-solution

to G. (In this case, one may alternatively show that σ extends to a wRSgr-solution to

G.)

Now suppose that I is infinite. Further suppose that there is an x ∈ I with |I∩N(x)| <
ω. That is, x has infinitely many neighbors, but only finitely many neighbors of x
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have infinitely many neighbors. In this case, let K = N(x) \ I. Then K is infinite and

|K ∩N(y)| < ω for every y ∈ K. Furthermore, K ≤T G because |I ∩N(x)| < ω. Thus

by (1), there is an infinite independent C ≤T 〈G,K〉 ≤T G. This again contradicts

that no H ≤T G is a wRSgr-solution to G.

Finally, suppose that I is infinite and that |I ∩ N(x)| = ω for every x ∈ I. Let n be

greater than |σ| and the maximum element of
⋃
v∈D∩F N(v). Let H = D ∪ {x ∈ I :

x > n}. It is clear that σ ⊆ H. To see that H is a wRSgr-solution to G, consider

a v ∈ H. Either v ∈ D ∩ F or v ∈ I. If v ∈ D ∩ F , then |D ∩ N(v)| = 0 because

D is independent, and |{x ∈ I : x > n} ∩ N(v)| = 0 by the choice of n. Hence

|H ∩ N(v)| = 0. If v ∈ I, then |I ∩ N(v)| = ω by assumption, and therefore also

|{x ∈ I : x > n} ∩ N(v)| = ω. So |H ∩ N(v)| = ω. Thus H is a wRSgr-solution to

G.

First, we show that wRSgr ≤c wRSg, as promised at the start of the section.

Lemma 2.4.5. wRSgr ≤c wRSg. Hence wRSg ≡c wRSgr.

Proof. Let G = (V,E) be a wRSgr-instance. Then G is also a wRSg-instance, so let

H be a wRSg-solution to G. We show that there is a wRSgr-solution Ĥ to G with

Ĥ ≤T 〈G,H〉.

Let I = {x ∈ H : |H ∩ N(x)| = ω}. Notice that also I = {x ∈ H : |H ∩ N(x)| ≥ 2}
because H is a wRSg-solution to G. Therefore I is r.e. relative to 〈G,H〉. Now consider

three cases.

Case 1: The set I is finite. Let K = H \ I. Then K is infinite, K ≡T H, and

|K ∩N(x)| < ω for every x ∈ K. Thus by Lemma 2.4.4 item (1), there is an infinite

independent Ĥ ≤T 〈G,K〉 ≡T 〈G,H〉, which is a wRSgr-solution to G.

Case 2: There is a v ∈ I with |I∩N(v)| < ω. Let K = (H∩N(v))\I. Then K is infinite

and K ≤T 〈G,H〉 because H ∩N(v) is infinite, H ∩N(v) ≤T 〈G,H〉, and I ∩N(v) is

finite. Furthermore, |K ∩N(x)| < ω for every x ∈ K. Thus by Lemma 2.4.4 item (1),

there is an infinite independent Ĥ ≤T 〈G,K〉 ≤T 〈G,H〉, which is a wRSgr-solution

to G.
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Case 3: I is infinite and |I ∩ N(v)| = ω for every v ∈ I. In this case we compute

a set Ĥ ≤T 〈G,H〉 with Ĥ ⊆ I and |Ĥ ∩ N(x)| = ω for each x ∈ Ĥ. This Ĥ is

thus a wRSgr-solution to G. To compute Ĥ = {x0, x1, . . . }, let x0 be the first element

of I. To find xn+1, decompose n as n = 〈m, s〉, search for a y ∈ I ∩ N(xm) with

y > xn, and set xn+1 = y. Such a y exists because xm ∈ I and every element of I

has infinitely many neighbors in I. The search for y can be done effectively relative

to 〈G,H〉 because I is r.e. relative to 〈G,H〉. Finally, |Ĥ ∩N(x)| = ω for each x ∈ Ĥ
because xn+1 is adjacent to xm whenever n is of the form 〈m, s〉.

We may situate wRSg in the computable degrees by combining Lemma 2.4.4 and the

proof of Theorem 2.1.8 with established results concerning RT2
2 and its consequences:

this will be done in the following Proposition.

Proposition 2.4.6. In the computable degrees, wRSg is

• strictly below RT2
2 and lim;

• strictly above ADS and SRT2
2;

• incomparable with CAC.

Proof. Trivially wRSg ≤sW RT2
2, hence wRSg ≤c RT2

2. That RT2
2 6≤c wRSg is because

every wRSg-instance G has a solution H ≤T G
′ by Lemma 2.4.4 item (2), whereas by

[41], Theorem 3.1 there are recursive RT2
2-instances with no solution recursive in ∅′.

lim is strongly Weihrauch equivalent, hence computably equivalent, to the Turing jump

function J. Every wRSg-instance G has a solution H ≤T G
′ by Lemma 2.4.4 item (2),

so wRSg ≤c lim. That lim �c wRSg follows from the cone-avoidance result for RT2
2:

by [62], Theorem 2.1, every recursive infinite graph has a homogeneous set, hence

wRSg-solution, that does not compute ∅′.

For ADS ≤c wRSg and SRT2
2 ≤c wRSg, see the proof of the RCA0 ` wRSg → RT2

2

direction of Theorem 2.1.8. The arguments showing that wRSg implies ADS and SRT2
2

over RCA0 describe computable reductions from ADS and SRT2
2 to wRSg. For the non-

reductions, by the results of [39], Section 2, there are ω-models of ADS that are not
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models of RT2
2 and therefore not models of wRSg. Hence wRSg �c ADS. By impressive

recent work of Monin and Patey [53] , there are also ω-models of SRT2
2 that are not

models of RT2
2 and therefore not models of wRSg. Hence wRSg �c SRT

2
2.

That CAC �c wRSg is because again every wRSg-instance G has a solution H ≤T

G′, whereas by [35], Theorem 3.1 there are recursive CAC-instances with no solution

recursive in ∅′. That wRSg �c CAC follows from the fact that there are ω-models of

CAC that are not models of RT2
2 and therefore not models of wRSg, as shown in [39],

Section 3.

We remark that Proposition 2.4.6 implies that COH <c wRSg as well because COH ≤c

ADS (by Proposition 2.2.8, for example).

We return to the Weihrauch degrees and first show that SADC �W wRSgr. As SADC

is below both ADS and SRT2
2 in the Weihrauch degrees (see [1], for example), this

implies that the computable reductions ADS <c wRSgr and SRT2
2 <c wRSgr cannot be

improved to Weihrauch reductions. We also show that DNR �W wRSgr.

Theorem 2.4.7. SADC �W wRSgr.

Proof. Suppose for a contradiction that SADC ≤W wRSgr is witnessed by Turing

functionals Φ and Ψ. By a well-known result independently of Tennenbaum and

Denisov (see [60], Theorem 16.54, for example), there is a recursive linear order

L = (ω,<L) with L ∼= ω + ω∗ that has no infinite recursive ascending or descending

sequence. If ` ∈ L has finitely many <L-predecessors, then say that ` is in the ω-part

of L; and if ` has finitely many <L-successors, then say that ` is in the ω∗-part of L.

Notice that no infinite r.e. set is contained entirely in the ω-part of L, as such a set

could be thinned to a recursive ascending sequence. Similarly, no infinite r.e. set is

contained entirely in the ω∗-part of L.

The linear order L is a recursive SADC-instance, so G = Φ(L) is a recursive wRSgr-

instance. Write G = (V,E). G cannot have a recursive wRSgr-solution because if there

were a recursive solution H to G, then Ψ(〈L,H〉) would be a recursive SADC-solution

to L, which would be an infinite recursive set either entirely contained in the ω-part of
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L or entirely contained in the ω∗-part of L. Therefore G has an infinite independent

set C by Lemma 2.4.4 item (3a). This C is a wRSgr-solution to G, so Ψ(〈L,C〉) is

a SADC-solution to L. In particular, Ψ(〈L,C〉) is infinite. Fix any x ∈ Ψ(〈L,C〉),
and assume for the sake of argument that x is in the ω-part of L (the ω∗-part case is

symmetric). Let R be the r.e. set

R =
{
y : there is a finite independent set D ⊆ V with x, y ∈ Ψ(〈L,D〉)

}
.

Notice that if y ∈ Ψ(〈L,C〉), then any sufficiently long initial segment D of C witnesses

that y ∈ R. Thus Ψ(〈L,C〉) ⊆ R. In particular, R is infinite. However, R is r.e., so

it cannot be entirely contained in the ω-part of L. Therefore there must be a y ∈ R
that is in the ω∗-part of L. Let D be a finite independent set witnessing that y ∈ R.

By Lemma 2.4.4 item (3b), the characteristic string of D extends to the characteristic

function of a wRSgr-solution H to G. However, x, y ∈ Ψ(〈L,H〉), x is in the ω-

part of L, and y is in the ω∗-part of L. Thus Ψ(〈L,H〉) can be neither an infinite

ascending chain nor an infinite descending chain. Thus Φ and Ψ do not witness that

SADC ≤W wRSgr, so SADC �W wRSgr.

Theorem 2.4.8. DNR �W wRSgr.

Proof. The proof is similar to the proof of Theorem 2.4.7. Suppose for a contradiction

that DNR ≤W wRSgr is witnessed by Turing functionals Φ and Ψ. Let p : ω → ω be

any recursive function. Then p is a recursive DNR-instance, so G = Φ(p) is a recursive

wRSgr-instance. Write G = (V,E). G cannot have a recursive wRSgr-solution because

if there were a recursive solution H to G, then Ψ(〈p,H〉) would be a contradictory

recursive DNR-solution to p. Thus G has an infinite independent set C by Lemma 2.4.4

item (3a). This C is a wRSgr-solution to G, so Ψ(〈p, C〉) is DNR relative to p.

Compute a function g : ω → ω as follows. On input e, g(e) searches for a finite

independent set D ⊆ V such that Ψ(〈p,D〉)(e)↓ and outputs the value of Ψ(〈p,D〉)(e)
for the first such D found. The function g is total because Ψ(〈p, C〉) is total: for any

e, any sufficiently long initial segment D of C is a finite independent set for which

Ψ(〈p,D〉)(e)↓. The function g is recursive, so it is not DNR relative to p. So there is



68 2. Rival-Sands theorem for graphs

an e such that g(e) = Φe(p)(e). By the definition of g, there is a finite independent

set D such that Ψ(〈p,D〉)(e) = g(e) = Φe(p)(e). By Lemma 2.4.4 item (3b), the

characteristic string of D extends to the characteristic function of a wRSgr-solution H

to G. Then Ψ(〈p,H〉)(e) = Φe(p)(e), so Ψ(〈p,H〉) is not a DNR-solution to p. Thus

Φ and Ψ do not witness that DNR ≤W wRSgr, so DNR �W wRSgr.

Remark 2.4.9. We notice that the proofs of Theorems 2.4.7 and 2.4.8 are based on

the same strategy: namely, we exploit the fact that wRSgr is not able to produce a

non-computable solution and, at the same time, answer another question (what this

question is depends on the nature of the non-reduction that is being proved). It is

perhaps interesting to point out that a similar result holds in general for RT2
2: in [23],

it was proved that LPO × NON 6≤W RT2
2, where NON : ωω ⇒ ωω is the problem such

that, on input f , a g is output such that g 6≤T f , and LPO, which stands for limited

principle of omniscience, will be introduced below (see Definition 2.4.13).

On the positive side, we show that COH ≤sW wRSg and that RT1
<∞ ≤sW wRSg.

Theorem 2.4.10. COH ≤sW wRSg.

Proof. It suffices to show that CADS ≤W wRSg because CADS ≡W COH by Proposi-

tion 2.2.8 and because wRSg is a cylinder by Proposition 2.4.3.

Let L = (L,<L) be a CADS-instance. Define a functional Φ(L) computing the graph

G = (V,E) where V = L and

E = {(m,n) : (m,n ∈ V ) ∧ (m < n) ∧ (m <L n)}.

The graph G is a valid wRSg-instance, so let H be a wRSg-solution to G. We define a

functional Ψ(〈L,H〉) computing a set C ⊆ L which will be a suborder of L either of

type ω∗, of type 1 + ω∗, or of type ω + k for some finite linear order k.

Using Φ, we may compute Φ(L) = G. Using G and H, we may enumerate the set

R = {x ∈ H : |H ∩ N(x)| ≥ 2}. We claim that if |R| ≥ 2, then every x ∈ R has

infinitely many <L-successors in R. To see this, suppose that |R| ≥ 2, let x ∈ R, and
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let z ∈ R be different from x. Then |H ∩ N(x)| ≥ 2 and |H ∩ N(z)| ≥ 2. Therefore

|H ∩N(x)| = ω and |H ∩N(z)| = ω because H is a wRSg-solution to G. Let w denote

the <L-maximum of x and z. Then any sufficiently large y ∈ H ∩ N(w) satisfies

y > x, y > z, y >L x, and y >L z. Thus any such y is in R because y ∈ H and

x, z ∈ H ∩N(y). Therefore there are infinitely many y ∈ R with y >L x.

To compute C = {x0, x1, . . . }, first enumerate H in <-increasing order as h0 < h1 <

h2 < · · · . For each s, let Hs = {h0, . . . , hs}. Take xn = hn until possibly reaching an

s0 for which there are distinct u, v ∈ Hs0 with |Hs0 ∩N(u)| ≥ 2 and |Hs0 ∩N(v)| ≥ 2.

If such an s0 is reached, then Hs0 witnesses that u, v ∈ R. Thus R is infinite by the

claim, so we may switch to computing an ascending sequence in R. Search for a y ∈ R
with y > xs0−1 and set xs0 = y. Having determined xs for some s ≥ s0, search for a

y ∈ R with y > xs and y >L xs, which exists by the claim, and set xs+1 = y.

We now show that C is a suborder of L either of type ω∗, of type 1 + ω∗, or of type

ω + k for some finite linear order k. First suppose that there is an s0 for which there

are distinct u, v ∈ Hs0 with |Hs0∩N(u)| ≥ 2 and |Hs0∩N(v)| ≥ 2. Then {xn : n ≥ s0}
is an ascending sequence in L, so C is a suborder of L of type ω + k for some finite

linear order k. If there is no such s0, then C = H, which in this case is a suborder of L

either of type ω∗ or of type 1 + ω∗. To see this, suppose for a contradiction that there

are a < b such that both ha and hb have infinitely many <L-successors in H. Then

there are infinitely many n with hn >L ha, hb. In particular, there are n > m > b

with hm >L ha, hb and hn >L ha, hb. But then ha, hb ∈ Hn; ha, hb ∈ N(hm); and

ha, hb ∈ N(hn). So for s0 = n there are u = ha and v = hb with |Hs0 ∩N(u)| ≥ 2 and

|Hs0 ∩N(v)| ≥ 2, contradicting that there is no such s0.

The proof that RT1
<∞ ≤sW wRSg is similar to Hirst’s proof that RCA0 + RT2

2 ` RT1
<∞

from [40].

Proposition 2.4.11. RT1
<∞ ≤sW wRSg.

Proof. It suffices to show that RT1
<∞ ≤W wRSg because wRSg is a cylinder by Proposi-

tion 2.4.3. Let c be an RT1
<∞-instance. Define a functional Φ(c) computing the graph
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G = (ω,E) where E = {(m,n) : c(m) = c(n)}. The graph G is a valid wRSg-instance,

so let H be a wRSg-solution to G. Let Ψ(〈c,H〉) be a functional that computes

G = Φ(c), searches for an x ∈ H with |H∩N(x)| ≥ 2, and outputs the set H∩N(x) for

the first such x found. There must be such an x because G is a disjoint union of finitely

many complete graphs (depending on the size of the range of c), and thus H must

have infinite intersection with one of these components. The set H ∩N(x) is infinite

because H is a wRSg-solution to G, and it is monochromatic because c(y) = c(x) for

all y ∈ H ∩N(x).

We are ready to summarize the position of wRSg and wRSgr in the Weihrauch degrees.

Notice that the uniform computational content of wRSg and wRSgr is considerably less

than that of RT2
2: RT2

2 is above both DNR and SADC in the Weihrauch degrees, but

wRSgr is above neither of these problems.

Theorem 2.4.12. In the Weihrauch degrees, wRSg and wRSgr are

• strictly below RT2
2;

• strictly above COH and RT1
<∞;

• incomparable with lim, SRT2
2, SADC, and DNR.

Proof. Trivially wRSgr ≤sW RT2
2. That RT2

2 �W wRSgr follows from the stronger

non-reduction RT2
2 �c wRSgr of Proposition 2.4.6.

We have that COH ≤sW wRSg and that RT1
<∞ ≤sW wRSg by Theorem 2.4.10 and

Proposition 2.4.11. These reductions are strict (indeed, the corresponding computable

reductions are strict) because there are ω-models of COH that are not models of RT2
2,

hence not models of wRSg, by the results of [39], Section 2, for example; and because

every recursive RT1
<∞-instance has a recursive solution.

We now show the incomparabilities. Straightforward arguments show that SADC ≤sW

SRT2
2 and that DNR ≤sW lim, so it suffices to show that wRSgr is above neither SADC

nor DNR and that wRSg is below neither SRT2
2 nor lim. Theorems 2.4.7 and 2.4.8
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2

SCAC

SADS

SADC

RT1
<∞

Figure 2.2: Weihrauch reductions and non-reductions in the neighborhood of RT2
2,

including wRSg and wRSgr. An arrow indicates that the target principle Weihrauch
reduces to the source principle.

give SADC �W wRSgr and DNR �W wRSgr. We have that wRSg �W SRT2
2 because

COH ≤sW wRSg as mentioned above, but COH �W SRT2
2 by [22], Corollary 4.5.

Finally, wRSg �W lim because RT1
<∞ ≤sW wRSg as mentioned above, but RT1

<∞ �W

lim by [8], Corollary 4.20.

From Proposition 2.4.11 and Theorem 2.4.12, one may deduce that wRSg and wRSgr

are Weihrauch incomparable with a number of other principles, such as ADS, CAC, and

its stable version SCAC. Figure 2.2 depicts the position of wRSg and wRSgr relative

to a number of principles below RT2
2 in the Weihrauch degrees.

As RCA0 + wRSg ` RT2
2 but RT2

2 �W wRSg, it is natural to ask what must be added

to wRSg to obtain RT2
2. In particular, we ask how many applications of wRSg are

necessary to obtain RT2
2. Although we do not give an optimal answer, we give some

sensible bounds for it.
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We show that an application of two parallel instances of the limited principle of

omniscience (LPO) suffices to overcome the non-uniformities in the proof that SRT2
2 ≤c

wRSg, yielding that SRT2
2 ≤W (LPO×LPO)∗wRSg. In the case of wRSgr, one applica-

tion of LPO suffices: SRT2
2 ≤W LPO ∗ wRSgr. As RT2

2 ≤W SRT2
2 ∗ COH, we conclude

that RT2
2 ≤W (LPO×LPO)∗wRSg∗COH. It follows that RT2

2 ≤W wRSg∗wRSg∗wRSg
because below we observe that (LPO × LPO) ≤W wRSg, and COH ≤W wRSg by

Theorem 2.4.10. Thus three applications of wRSg suffice to obtain RT2
2. We do not

know if two applications suffice.

A function corresponding to LPO is defined as follows.

Definition 2.4.13. LPO is the following function.

• Input: A function p ∈ ωω.

• Output: Output 0 if there is an n such that p(n) = 0. Output 1 if p(n) 6= 0 for

every n.

We point out that in the following Theorem we do not strictly use the definition

of Q ∗ P as given in Lemma 1.2.14, for the sake of readability: namely, instead of

describing what the input (x, p) is for the compositional product, we simply describe

the procedure that p encodes. The discussion before Lemma 1.2.14 ensures that this

is a valid way of proceeding.

Theorem 2.4.14.

1. SRT2
2 ≤W LPO ∗ wRSgr.

2. SRT2
2 ≤W (LPO× LPO) ∗ wRSg.

Proof. For (1), let c : [ω]2 → {0, 1} be an SRT2
2-instance. Using c, compute the graph

G = (ω,E) with E = {(n, s) : (n < s) ∧ (c(n, s) = 1)}. Let H be a wRSgr-solution

to G. We use an application of LPO to determine whether or not H contains two

adjacent vertices. Using G and H, uniformly compute a function p : ω → {0, 1} by
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setting p(n) = 0 if any two of the least n elements of H are adjacent, and by setting

p(n) = 1 otherwise. Let b = LPO(p). If b = 1, then H is an independent set and hence

an SRT2
2-solution to c. Thus output H. If b = 0, then H contains a pair of adjacent

vertices. Notice that if u ∈ H has a neighbor in H, then H ∩N(u) is infinite because

H is a wRSgr-solution to G. Furthermore, such a u is adjacent to almost every vertex

in G because c is stable. Compute an infinite clique K = {x0, x1, . . . } uniformly from

G and H as follows. First, search for any x0 ∈ H with |H ∩ N(x0)| ≥ 1. Having

determined a finite clique {x0, . . . , xn} ⊆ H, search for the first vertex xn+1 ∈ H that

is adjacent to each xi for i ≤ n. Such an xn+1 exists because each xi for i ≤ n is

adjacent to almost every vertex of H. The resulting K is an infinite clique and hence

an SRT2
2-solution to c.

For (2), again let c : [ω]2 → {0, 1} be an SRT2
2-instance, and again compute the graph

G = (ω,E) with E = {(n, s) : (n < s) ∧ (c(n, s) = 1)}. Let H be a wRSg-solution to

G. Refine H to eliminate bars, i.e., pairs of vertices in H where each is the only vertex

of H adjacent to the other. To do this, compute an infinite Ĥ ⊆ H by skipping the

first neighbor of each vertex already added to Ĥ. Enumerate H in increasing order

as h0 < h1 < h2 < · · · . Let Ĥ0 = {h0}. Given Ĥn, consider hn+1. If there is a

u ∈ Ĥn such that hn+1 is the least element of H ∩ N(u), then skip hn+1 by putting

Ĥn+1 = Ĥn. Otherwise, put Ĥn+1 = Ĥn ∪ {hn+1}. Let Ĥ =
⋃
n∈ω Ĥn, which can be

computed uniformly from G and H because at stage n we determine whether or not hn

is in Ĥ. If x, y ∈ H are adjacent to each other but to no other vertices of H, then only

min{x, y} is in Ĥ. If x ∈ Ĥ has infinitely many neighbors in H, then it is adjacent to

almost every vertex in G because c is stable, and therefore x also has infinitely many

neighbors in Ĥ.

Call a clique of size three a triangle. The set Ĥ is either an independent set, contains

edges but no triangles, or contains triangles. Using G and Ĥ, uniformly compute two

LPO-instances p, q : ω → {0, 1} to determine if Ĥ contains edges or triangles. Set

p(n) = 0 if any two of the least n elements of Ĥ are adjacent, and set p(n) = 1

otherwise. Set q(n) = 0 if any three of the least n elements of Ĥ form a triangle, and

set q(n) = 1 otherwise. Let (a, b) = (LPO × LPO)(p, q). If (a, b) = (1, 1), then Ĥ
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contains no edges; if (a, b) = (0, 1), then Ĥ contains edges but not triangles; and if

(a, b) = (0, 0), then Ĥ contains triangles. Output (1, 0) is not possible because if Ĥ

contains triangles, then it also contains edges.

If Ĥ contains no edges, then it is an independent set and hence an SRT2
2-solution to

c. Thus output Ĥ.

Suppose that Ĥ contains edges but not triangles, and suppose that x, y ∈ Ĥ are

adjacent. If neither x nor y has any other neighbors in H, then only one of them

would be in Ĥ. Therefore either x or y has at least two, and therefore infinitely many,

neighbors in H. So either x or y has infinitely many neighbors in Ĥ. Thus there is a

z ∈ Ĥ with Ĥ ∩N(z) infinite. We can therefore compute an infinite independent set,

hence an SRT2
2-solution to c, uniformly from G and Ĥ by searching for a z ∈ Ĥ with

|Ĥ ∩N(z)| ≥ 2 and outputting Ĥ ∩N(z). We have just seen that such a z exists. If

|Ĥ ∩N(z)| ≥ 2, then |H ∩N(z)| ≥ 2, so H ∩N(z) is infinite, so Ĥ ∩N(z) is infinite.

Finally, Ĥ ∩N(z) is independent because Ĥ contains no triangles.

If Ĥ contains a triangle, then H contains a triangle, so there are distinct x, y ∈ H

with |H ∩ N(x)| ≥ 2 and |H ∩ N(y)| ≥ 2. Then H ∩ N(x) and H ∩ N(y) are both

infinite because H is a wRSg-solution to G. The coloring c is stable, which means that

x and y are adjacent to almost every vertex of G. Thus almost every vertex of H is

adjacent to both x and y, and therefore is adjacent to almost every other vertex of

H. Compute an infinite clique K as in (1), except this time start by searching for any

distinct x0, x1 ∈ H with |H ∩ N(x0)| ≥ 2 and |H ∩ N(x1)| ≥ 2. The resulting clique

K is an SRT2
2-solution to c.

Corollary 2.4.15. RT2
2 ≤W (LPO× LPO) ∗ wRSg ∗ COH. Therefore RT2

2 ≤W wRSg ∗
wRSg ∗ wRSg.

Proof. We have that RT2
2 ≤W SRT2

2 ∗ COH, and SRT2
2 ≤W (LPO × LPO) ∗ wRSg by

Theorem 2.4.14. Therefore RT2
2 ≤W (LPO × LPO) ∗ wRSg ∗ COH. That RT2

2 ≤W

wRSg ∗ wRSg ∗ wRSg follows because LPO × LPO ≤W wRSg and COH ≤W wRSg.

Theorem 2.4.10 gives us COH ≤W wRSg. It is straightforward to show that LPO ≤W
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RT1
2 and that RT1

2 × RT1
2 ≤W RT1

4 (see also [18], Proposition 2.1). Therefore

LPO× LPO ≤W RT1
2 × RT1

2 ≤W RT1
4 ≤W RT1

<∞ ≤W wRSg,

where the last reduction is by Proposition 2.4.11.

Hence three applications of wRSg (or of wRSgr) suffice to obtain RT2
2. We do not know

if two applications suffice.

Question 2.4.16. Does RT2
2 ≤W wRSg ∗ wRSg hold? Does RT2

2 ≤W wRSgr ∗ wRSgr
hold?
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3. Rival-Sands theorem for partial

orders

As we said in the introduction to Chapter 2, in their paper [59] Rival and Sands noticed

that, by restricting to only considering comparability graphs relative to partial orders

with finite width, Theorem 2.0.1 takes a nicer form. We will now explain what we

mean by this. What Rival and Sands proved was the following result:

Theorem 3.0.1. [[59]] Let (P,<P ) be an infinite partial order of finite width. Then,

there exists an infinite chain C ⊆ P such that each element of P is comparable with

none or with infinitely many elements of C.

Moreover, if P is countable, C may be chosen so that every element of P is comparable

with none or with cofinitely many elements of C.

The first part of the Theorem above can be recast in the language of comparability

graphs as follows:

Theorem 3.0.2. Let (P,<P ) be an infinite partial order of finite width, and let GP

be its comparability graph, i.e. the graph GP = (P,EP ) such that for every p, q ∈ P ,

pEP q if and only if p GP q. Then, there is an infinite set C ⊆ P such that C is a

complete subgraph of G and for every point p ∈ P , p is adjacent to either none or

infinitely many elements of C.

It is evident that the set C we find in this case is an improved version of the set H

provided by Theorem 2.0.1: we know everything about the internal structure of C
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(since it is a complete graph), and also the behavior of points of P \C is tamer in this

case.

Regardless of the reasons why Rival and Sands proved it, Theorem 3.0.1 is a combina-

torial result of independent interest, and its proof has little in common with the proof

of Theorem 2.0.1.

In this Chapter, we formalize and study Theorem 3.0.1 in reverse mathematics. As

we will see in Section 3.1, there are several subtleties in the formalization of Theorem

3.0.1 to be consider: this gives rise to several reverse mathematical principles. As we

will see, it is convenient to fix the width of the poset P we are working with: we will

call RSpoCDk and RSpoWk the two formalizations of Theorem 3.0.1 relative to posets of

width k that we will work with, and RSpoCD<∞ and RSpoW<∞ the generalization to posets

of every (finite) width.

In Section 3.2, we analyze the original proof by Rival and Sands from a reverse

mathematical perspective, and highlight that it requires the strong system Π1
1-CA0

to be carried out. In Section 3.3, we provide an easier, although still not optimal,

proof of RSpoW<∞ in ACA0: its main merit is to be arguably rather easy to follow, and

it introduces the main ideas that will be exploited in order to obtain the optimal proof.

In Section 3.4, we finally determine the strength of RSpoCD<∞, of RSpoW<∞ and of every

RSpoCDk and RSpoWk , with the noteworthy exception of RSpoCD2 and RSpoW2 : we show

that the former two principles are equivalent to ADS+ IΣ0
2, while the others are equiva-

lent to ADS.

In Section 3.5, we focus on the case of RSpoCD2 , and we show that it is strictly weaker

than the other RSpoCDk : we manage to show that, over RCA0, RSpoCD2 is equivalent to

SADS.

In Section 3.6, we focus on two principles that are related but different to RSpoCDk and

RSpoWk : the first is sRSpoCD2 , a principle obtained by putting more conditions on the

solution set we claim exists; the second is sRSpoN, which in a sense is an extension of

Theorem 3.0.1 to posets with no infinite antichains.
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Finally, in Section 3.7, we prove a small result on the extendibility of the results of

Rival and Sands to posets of higher cardinalities.

We point out that the results of this Chapter are joint work with Marta Fiori Carones,

Alberto Marcone and Paul Shafer, and many of them can be found in our paper [26].

3.1. From one principle to many

In this section, we start the study of Theorem 3.0.1 from the perspective of reverse

mathematics. We point out that, as usual, this implies in particular that we will have

to consider its restriction to countable posets. As we will see, one important aspect

in this analysis is that the strength of the theorem strongly depends on how it is

formalized in second order arithmetic.

The first element we focus on is what we exactly require of the solution chain C: it is

clear that, in our case (i.e., when we only consider countable partial orders), Theorem

3.0.1 can actually be split into two statements, according to the properties we want C

to satisfy. In analogy with the notion of homogeneous set used for Ramsey’s theorem,

we introduce the following definition.

Definition 3.1.1. (RCA0) Let (P,<P ) be a poset.

• A chain C ⊆ P is a (0,∞)-homogeneous chain for (P,<P ) if each p ∈ P is

comparable to none of the elements of C or to infinitely many of them.

• A chain C ⊆ P is a (0, cof)-homogeneous chain for (P,<P ) if each p ∈ P is

comparable to none of the elements of C or to cofinitely many of them.

For example, the first half of Theorem 3.0.1 can thus be reformulated as the statement

“for each infinite partial order (P,<P ) of finite width, there exists an infinite (0,∞)-

homogeneous chain C”.

The second element we focus on is the requirement about the width of the partial

order (P,<P ). Via Dilworth’s Theorem, the width w(P ) gives us a very valuable piece
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of information about the partial order: it tells us that it can be decomposed into w(P )

many chains.

Unfortunately, as we have already stated in Theorem 1.1.8, Dilworth’s Theorem is

equivalent to WKL0: in particular, it can be seen that there is a computable poset of

width two that does not admit a computable decomposition into two chains (see [40]).

Hence, we cannot use the Theorem freely while arguing in RCA0.

It is then interesting to look for weaker versions of Dilworth’s Theorem that are

provable in RCA0. With a different language, this was done by Kierstead in [44].

Kierstead was interested in extending the algorithmic or constructive content typical of

finite combinatorics to countable structures, following the approach of what we would

now call on-line combinatorics. His approach with respect to the non computability

of solutions of Dilworth’s theorem was thus to ask for a bound b such that each

computable poset (P,<P ) of width k can be decomposed into at most b computable

chains. In [44] the bound b is set to (5k − 1)/4 providing an on-line algorithm to

decompose each poset of width k into (5k− 1)/4 chains. The bound has recently been

greatly improved in [2].

With the help of Keita Yokoyama, we noticed that Kierstead’s proof can actually be

formalized in RCA0.

Theorem 3.1.2 (RCA0). For each k ∈ N and each poset (P,<P ) of width k, there are

5k (disjoint) sets P0, . . . , P5k−1 such that P =
⋃
i<5k Pi and each Pi is a chain.

Sketch of the proof. The main idea of the original proof is the following: let P be a

given poset of width n, we start out by finding a maximal chain M in it (we will prove

in Lemma 3.2.2 that this can be done in RCA0). Then, using M as a sort of frame of

reference, we can define an order <∗ on P ′ := P \M , of which <P is a refinement,

such that (P ′, <∗) has width n − 1 or less. In the case where n = 2, a convoluted

combinatorial argument shows then that every <∗-chain can be decomposed into at

most 5 recursive <P -chains.

If instead n > 2, by induction (of which the case n = 2 is the base case) we obtain
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that this poset can be partitioned into a certain number f(n) of chains dependent on

the width, thus obtaining the decomposition P ′ =
⋃
i<f(n) Ci. But then, by applying

the case n = 2 at most f(n) times to all of the width 2 posets M ∪ Ci, we obtain the

relation f(n + 1) ≤ 1 + 5f(n): noting that f(1) = 1, this relation easily yields that

f(n) ≤ 5n−1
4

, and so in particular f(n) ≤ 5n, a suboptimal result that we will use for

notational convenience.

Although this is not particularly obvious, the proof above can be formalized in RCA0:

the point is that the construction that we described can be carried out without really

using any induction by just building the various orders and chains as the construction

proceeds. Namely, the construction can be seen as in terms of an array of size at most∑
i<n+1 5i = 5n+1−1

4
, listing all of the orders involved that appear in the proof. The

last 5n component actually give the desired decomposition of P .

The above theorem turned out to be very useful in the study of Theorem 3.0.1: in

essentially all of our proofs, all we need is any decomposition of P into finitely many

chains. In this sense, Dilworth’s theorem provides us with too much information, i.e. it

gives us an optimal decomposition of P . In the light of this fact, we give the following

definition:

Definition 3.1.3. (RCA0) Let (P,≤P , C0, . . . , Ck−1) be a sequence of sets such that

(P,≤P ) is a poset, every Ci is a chain of P and P =
⋃
i<k Ci. We say that (P,≤P

, C0, . . . , Ck−1) has chain-decomposition-number k.

In what follows, we will essentially always abuse notation and simply say that P

has chain-decomposition-number k: although this is technically wrong (for instance

because the same P can have infinitely many chain-decomposition-numbers), the point

is that we do not care about the actual decomposition into chains, as long as there is

one with the stated number of elements.

Considering this, we can now formulate the different variations of Theorem 3.0.1 that

we will consider in the rest of the chapter.

Definition 3.1.4. For every k ∈ N, k 6= 0, we give the following definitions.
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• RSpoWk (for Rival-Sands theorem for posets-Width) is the statement “for every

infinite partial order (P,<P ) of width k there exists an infinite (0,∞)-

homogeneous chain C”.

• RSpoW<∞ stands for ∀kRSpoWk .

• RSpoCDk (for Rival-Sands theorem for posets-Chain Decomposition) is the

statement “for every infinite partial order (P,<P ) with chain-decomposition-

number k there exists an infinite (0,∞)-homogeneous chain C”.

• RSpoCD<∞ stands for ∀kRSpoCDk .

• sRSpoWk (for strong RSpoW) is the statement “for every infinite partial order

(P,<P ) of width k there exists an infinite (0, cof)-homogeneous chain C”.

• sRSpoW<∞ stands for ∀ksRSpoWk .

• sRSpoCDk (for strong RSpoCD) is the statement “for every infinite partial order

(P,<P ) of chain-decomposition-number k there exists an infinite (0, cof)-

homogeneous chain C”.

• sRSpoCD<∞ stands for ∀ksRSpoCDk .

We present some obvious relations between the principles we just introduced.

Lemma 3.1.5. 1. RCA0 ` ∀k(RSpoCD5k → RSpoWk → RSpoCDk ).

2. RCA0 ` RSpoW<∞ ↔ RSpoCD<∞.

3. WKL ` ∀k(RSpoCDk ↔ RSpoWk ).

4. RCA0 ` ∀k(sRSpoCD5k → sRSpoWk → sRSpoCDk ).

5. RCA0 ` sRSpoW<∞ ↔ sRSpoCD<∞

6. WKL ` ∀k(sRSpoCDk ↔ sRSpoWk ).
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Proof. We will only prove the first three items, the other three are analogous.

Let us fix k ∈ N. Since every poset of chain-decomposition-number k has width at

most k, it follows that RSpoWk → RSpoCDk . Moreover, by Theorem 3.1.2, every poset

of width at most k has chain-decomposition-number at most 5k. This ends the proof

of Item 1.

Item 2 follows immediately from Item 1.

Finally, Item 3 follows from the fact that WKL0 proves Dilworth’s Theorem, hence

over WKL0 width and chain-decomposition-number coincide.

We now make some observations about the shape of the solution to the principles

above. These remarks are implicit in the original paper [59].

Definition 3.1.6. (RCA0) Let (P,<P ) be a poset, and let C ⊆ P be a chain.

• We say that C has order-type ω if (C,<P ) is an infinite ascending chain (see

Definition 2.2.2).

• We say that C has order-type ω∗ if (C,<P ) is an infinite descending chain (see

Definition 2.2.2).

• We say that C has order-type ζ if C is an infinite chain such that the following

hold:

– For every p ∈ C, there are q0, q1 ∈ C such that q0 <P p <P q1.

– For every p, q ∈ C with p <P q, the set {r ∈ C : p <P r <P q} is finite.

• We say that C has order-type ω + ω∗ if C is an infinite chain such that the

following hold:

– Every element of C has either finitely many predecessors or finitely many

successors in C.

– There are infinitely many elements of C with finitely many predecessors in

C and there are infinitely many elements of C with finitely many successors

in C.
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For a certain c ∈ C, we will say that c is in the ω-part of C if c has finitely many

predecessors, and that c is in the ω∗-part of C if it has finitely many successors.

• We say that C has order-type ω + ω if it is the union of two infinite ascending

chains C0 and C1 such that every element of C0 is <P -below every element of

C1.

As one can notice, in the definition above we simply recasts the usual definitions of

chains of order-type ω, ω∗, ω + ω∗, ω + ω and ζ in the language of second order

arithmetic.

Remark 3.1.7. (RCA0) Let (P,<P ) be an infinite poset. Then the following hold:

1. Any chain C ⊆ P of order-type ζ is (0,∞)-homogeneous.

2. Any chain C ⊆ P of order-type ω or ω∗ that is (0,∞)-homogeneous is also

(0, cof)-homogeneous.

The proofs of both facts are obvious. Nevertheless, the relationship they provide

between the shape of a chain and its (0,∞)- and (0, cof)-homogeneity will play a

rather important role in the following Sections.

We conclude this Section by presenting some other useful consequences of

Theorem 3.1.2. If (P,<P ) is an infinite poset of width (or height) k, then it surely

contains an infinite chain (resp. antichain). One may wonder if these principles are

computably true, i.e. if they hold in REC. The answer is positive and Theorem 3.1.2

allows to give a straightforward proof of this.

Hence, we introduce the following principles, that can be seen as weakenings of CAC.

Definition 3.1.8. • For every k ∈ N, CCk is the principle “each infinite poset of

width k has an infinite chain”.

• CC<∞ stands for ∀kCCk.
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• For every k ∈ N, CAk is the statement “each infinite poset of height k has an

infinite antichain”.

• CA<∞ stands for ∀kCAk.

We now determine the strengths of these principles.

Lemma 3.1.9 (RCA0). 1. For every k ∈ ω, RCA0 ` CCk.

2. Over RCA0, BΣ0
2 and CC<∞ are equivalent.

3. For every k ∈ ω, RCA0 ` CAk.

4. Over RCA0, BΣ0
2 and CA<∞ are equivalent.

Proof. Let a fixed standard k be given, and let (P,<P ) be a partial order of width

k. By Theorem 3.1.2, we can decompose P into at most 5k chains. Since k ∈ ω,

RCA0 ` RT1
5k , and so at least one of the chains in the decomposition has to be infinite.

This proves Item 1.

The proof of Item 2 is similar: for any k ∈ N, given a poset (P,<P ) of width k,

Theorem 3.1.2 guarantees that there is a decomposition of P into at most 5k chains.

Since k is now no longer standard, we have to use BΣ0
2 in the form of RT1

<∞ (see

Theorem 1.1.20) to conclude that at least one of the chains is infinite. This proves

that RCA0 + BΣ0
2 ` CC<∞.

To see that CC<∞ implies BΣ0
2, we prove that RCA0 ` CC<∞ → RT1

<∞. Let f : N→ k

be a coloring, for some k ∈ N. We define the poset (P,<P ) setting p <P q whenever

c(p) = c(q) and p < q: (P,<P ) has width at most k, hence by CC<∞ it has an infinite

chain, which we call C. By construction, C is an infinite f -homogeneous set. This

proves Item 2.

Let (P,<P ) be a poset of height k for some fixed k ∈ ω. We define a coloring c : N→ k2

as follows: for each n ∈ N, we let c(n) = 〈|Xn|, |Yn|〉 where Xn is a chain of maximum

length such that it only contains elements both strictly<N-below and strictly<P -below

n, and Yn is a chain of maximum length only containing elements strictly <N-below
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and strictly <P -above n. By RT1
k2 , which again is provable in RCA0, we can find an

infinite c-homogeneous set, say H. To show that it is an infinite antichain, we just have

to show that no two elements of H are comparable: suppose p, q ∈ H with p <N q. If

it was the case that p <P q, then Xp ∪ {p} would be a chain <N- and <P -below q of

length |Xp| + 1 = |Xq| + 1, contradicting the c-homogeneity of H. Similarly one can

exclude that q <P q. This proves Item 3.

Similarly to what happened for CC<∞, we can adapt the proof of Item 3 to show that

RCA0 + BΣ0
2 proves CA<∞: one only has to substitute the application of RT1

k2 for a

standard k with RT1
<∞.

To prove the reverse implication, we again prove that RCA0 ` CA<∞ → RT1
<∞. Fix

k ∈ N and let c : N → k be a coloring. We define a poset (P,<P ) as follows: for

every p, q ∈ N, we let p <P q if and only if c(p) < c(q). It is immediate to check that

this is indeed a partial order and that it has height at most k. By CA<∞, let A be

an infinite antichain: one easily checks that A is an infinite c-homogeneous set. This

proves Item 4.

We conclude this section by noticing that the Lemma above can be used to prove what

could be considered an extended version of ADS.

Proposition 3.1.10. The following are equivalent over RCA0:

1. ADS.

2. The statement “for every k ∈ N and every poset (P,<P ) of width k, P contains

either an ascending or a descending sequence”.

Proof. 2 ⇒ 1 follows from the fact that linear orders are partial orders of width 1.

Let (P,<P ) be a partial order of width k, for some k ∈ N. Since RCA0 ` ADS→ BΣ0
2,

we can apply CC<∞ to get an infinite chain C ⊆ P . Then, we just have to apply ADS

to C. This proves 1 ⇒ 2.
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3.2. A reverse mathematical analysis of the original

proof

We give a brief analysis of the original proof by Rival and Sands for their result about

partial orders. As we will see, the proof is, in a certain sense, suboptimal, in the sense

that it seems to make essential use of principles that turn out to be equivalent to

Π1
1-CA0. Nevertheless, the proof contains many ideas upon which we will expand in

the following sections to find shorter and simpler proofs.

Sketch of the original proof of Theorem 3.0.1 in ZFC. Let Let (P,<P ) be a countably

infinite partial order of finite width k for some k. Suppose for a contradiction that

(P,<P ) contains no infinite (0,∞)-homogeneous chains.

By Proposition 3.1.10, P contains either an infinite ascending sequence or an infinite

descending sequence: we assume for simplicity that we are in the first case.

Then, we define a sequence (Si, Ci, Di)i≤k+1 of triples of subsets of P as follows. Let

S0 = P , and let C0 be a chain of P that is ⊆-maximal among the chain without a

maximum, and let D0 be a cofinal ascending sequence in C0. Suppose now that the

triple of sets (Si, Ci, Di) is given, we let Si+1 be the set of elements of P that are above

some elements of Di and are incomparable with cofinitely many elements of Di: that

such a set is non-empty, and actually infinite, follows from our assumption that P has

no infinite (0,∞)-homogeneous chains. Then, we define Ci+1 and Di+1 as in the case

i = 0.

Using the maximality of the Cj’s, one can show that (∀j ≤ i ≤ k + 1)(Di ⊆ Sj).

This property allows us to choose an antichain {d1, . . . , dk+1} with di ∈ Di for each

1 ≤ i ≤ k + 1, which contradicts that P has width k.

Although a large portion of the proof is formalizable in ACA0, there is one crucial bit

that seems not to be, namely, the definition of the Ci: we will see that constructing

chains of that kind is equivalent to Π1
1-CA0.



88 3. Rival-Sands theorem for partial orders

Definition 3.2.1. (RCA0) Call a chain C in a partial order (P,<P ) max-less if C

has no maximum element: (∀x ∈ C)(∃y ∈ C)(x <P y). The maximal max-less chain

principle (MMLC) is the statement “for every partial order (P,<P ), there is a max-less

chain that is ⊆-maximal among the max-less chains of P”. That is, there is a max-less

chain C ⊆ P for which C ⊆ D ⊆ P implies C = D for all max-less chains D of P . We

call such a C a maximal max-less chain in P .

First, we give some results and definitions that will be useful in the proof that Π1
1-CA0

and MMLC are equivalent over RCA0.

Lemma 3.2.2. RCA0 proves that in every partial order, there is a maximal chain and

a maximal antichain.

Proof. Let (P,<P ) be a partial order. We find a maximal chain D ⊆ P . First, if there

is a finite maximal chain F ⊆ P , then we may simply take D = F . So suppose that

no finite chain is maximal. Define a <N-increasing sequence (dn)n∈N by taking d0 to

be the <N-least element of P , and, for each n, taking dn+1 to be the <N-least element

p of P \ {d0, . . . , dn} such that (∀i ≤ n)(p GP di). Such a dn+1 always exists because

{d0, . . . , dn} is a finite chain and therefore is not maximal by assumption. It is easy

to see that the sequence (dn)n∈N is <N-increasing, thus its range D = {dn : n ∈ N}
exists as a set. The set D is clearly a chain in P . Suppose for a contradiction that

D is not maximal. Then there is an x ∈ P \D that is comparable with every d ∈ D.

Let n be maximum such that dn <N x. Then x ≤N dn+1 and (∀i ≤ n)(x GP di), so the

construction must have chosen dn+1 = x. Thus x ∈ D, which is a contradiction, and

therefore D is a maximal chain in P .

A similar argument with the roles of <P -comparable and <P -incomparable swapped

produces a maximal antichain in P .

Definition 3.2.3. • (ACA0) Let (P,<P ) be a partial order, and let X ⊆ P . The

downward closure of X in P , denoted as X ↓(P,<P ), is the set {p ∈ P : ∃x ∈
X(p ≤P x)}.
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• (ACA0) Let (P,<P ) be a partial order, and let X ⊆ P . The upward closure of

X in P , denoted as X ↑(P,<P ), is the set {p ∈ P : ∃x ∈ X(p ≥P x)}.

• (RCA0) The Kleene–Brouwer ordering of N<N is the binary relation <KB on N<N

such that τ <KB σ if either τ is a proper extension of σ or τ is to the left of σ.

That is,

τ <KB σ ↔ (τ A σ ∨ ∃n < min{|σ|, |τ |} (τ(n) < σ(n) ∧ (∀i < n)(σ(i) = τ(i)))).

We remark that, in the case X = {p} is a singleton, we will abuse notation and indicate

the downward and upward closure of {p} as, respectively, p ↓(P,<P ) and p ↑(P,<P ).

We are now ready for the main result of this section.

Theorem 3.2.4. The following are equivalent over RCA0.

1. Π1
1-CA0.

2. MMLC.

3. MMLC restricted to linear orders.

Proof. For 1 ⇒ 2, let (P,<P ) be a partial order. Let us consider the set X = {p ∈
P : p ↑(P,<P ) is reverse ill-founded}: it is easy to see that it is a Σ1

1 subset of P , and

hence we can form it using Π1
1-CA0 (see Theorem 1.1.13). We then apply Lemma 3.2.2

to (X,<P ) to obtain a maximal chain C in the partial order (X,<P ).

We first show that C is max-less. To see this, suppose for a contradiction that C has

a maximum element m. Then m ∈ C ⊆ X, so m ↑(P,<P ) is reverse ill-founded (in

P ). Thus there is an ascending sequence {m <P a0 <P a1 <P · · · } in P . Clearly, for

every i ∈ N, ai ∈ X, as witnessed by the ascending sequence {ai+1 <P ai+2 <P . . . }.
Then C ∪ {ai : i ∈ N} ⊆ X is a chain properly extending C, contradicting that C is a

maximal chain in X. Thus C is max-less.

We now show that C is maximal among the max-less chains of P . Suppose that D ⊆ P

is a max-less chain with C ⊆ D. Let d ∈ D. As D is max-less, we can recursively
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define an ascending sequence {d = d0 <P d1 <P · · · } of elements of D by taking dn+1

to be the <N-least element x of D with dn <P x: thus, d ∈ X. This shows that

D ⊆ X. That is, C and D are chains in X with C ⊆ D. Therefore C = D by the

maximality of C in X. Thus C is a maximal max-less chain in P .

It is clear that 2 ⇒ 3.

For 3 ⇒ 1, we show that MMLC restricted to linear orders implies LPP, which is

equivalent to Π1
1-CA0 by Theorem 1.1.13. Let T ⊆ N<N be an ill-founded tree, and

apply MMLC for min-less chains instead of max-less chains to the linear order (T,<KB)

to obtain a maximal min-less chain C in (T,<KB). Observe that C is <KB-upward-

closed, i.e. C ↑(T,<KB)= C. If σ, τ ∈ T , σ ∈ C, and σ <KB τ , then C ∪{τ} is a min-less

chain, so it must be that τ ∈ C by the maximality of C.

In any linear order, it is easy to see that the union of two min-less chains is a min-less

chain. The tree T is ill-founded by assumption, so T has an infinite path h. Then

{h�0 >KB h�1 >KB h�2 >KB · · · } is a descending sequence, so {h�n : n ∈ N} is a min-

less chain. Thus C ∪ {h�n : n ∈ N} is a min-less chain as well, so {h�n : n ∈ N} ⊆ C

by the maximality of C. Thus for every n, C contains a string of length n. Define a

sequence (σn : n ∈ N) by taking σn to be the <KB-least (i.e., leftmost) element of C

of length n.

We claim that σn @ σn+1 for all n, which we prove using IΣ0
1. We have that σ0 = ∅,

so σ0 @ σ1. By induction, assume that σ0 @ σ1 @ · · · @ σn. The chain C has no

<KB-minimum element, so there is a τ ∈ C with τ <KB σn. Let k = |τ |. If k ≤ n,

then σn ≤KB σk ≤KB τ , where σn ≤KB σk because σk v σn and σk ≤KB τ because

σk is the <KB-least element of C of length k. This contradicts that τ <KB σn. So

k > n. Furthermore, τ�n = σn because τ <KB σn, hence τ�n ≤KB σn, and σn is the

<KB-least element of C of length n. So τ A σn. Now consider σn+1. We have that

σn+1 ≤KB τ�(n+1) <KB σn because σn+1 is the <KB-least element of C of length n+ 1.

Again, σn+1�n = σn because σn+1 <KB σn and σn is the <KB-least element of C of

length n. Thus σn @ σn+1, as desired.

Let f =
⋃
n σn. Then f is a path through T . In fact, f is the leftmost path through
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T . To see this, suppose for a contradiction that g is a path through T that is to the

left of f . Then there is an n such that ∀i < n (g(i) = f(i)) and g(n) < f(n). Then

g�(n+1) <KB f�(n+1) = σn+1, and g�(n+1) ∈ C by the same argument as for h above.

This contradicts that σn+1 is the <KB-least element of C of length n. Thus f is the

leftmost path through T , which concludes the proof of LPP and hence the proof of the

Theorem.

Remark 3.2.5. By the sketch of the proof of Theorem 3.0.1, we can conclude that it

can be formalized in Π1
1-CA0. Even without our further analysis, however, it is known

from the literature that that proof cannot be optimal, in the sense that there is no

hope to find a reversal: no true Π1
2 statement can be equivalent to Π1

1-CA0 over RCA0

(see for instance [50, Corollary 1.10] for a proof of a stronger result).

3.3. An easy proof of RSpoW<∞ in ACA0

We give a proof of RSpoW<∞ in ACA0. This is not the optimal proof: in Section 3.4

we will show that RSpoW<∞ is equivalent to ADS + IΣ0
2 over RCA0. Anyway, in a

certain sense, the ACA0 proof seems to strike a good balance between axiomatic

simplicity and conceptual simplicity: the proof can be presented in ordinary mathemat-

ical language, meaning without reference to relative computability, technical uses

of restricted induction, or other technicalities typical in the reverse mathematical

approach.

It is based on Dilworth’s theorem, the observation made in Remark 3.1.7 that any

chain of order-type ζ is automatically (0,∞)-homogeneous, and the observation that

a linear order containing no suborder of type ζ can be partitioned into a well-founded

part and a reverse well-founded part. This last observation requires the full strength

of ACA0, as shown by Lemma 3.3.4.

In order to complete the proof of the Lemma, we will need a particular linear order with

some very nice properies, and whose construction we present in Construction 3.3.2.



92 3. Rival-Sands theorem for partial orders

Definition 3.3.1. (RCA0) Let f : N → N be an injection. A number n ∈ N is a true

number if f(k) > f(n) for all k > n. Otherwise, n is a false number. We say that

n ∈ N is true at stage m if ∀k (n < k ≤ m→ f(n) < f(k)). Otherwise, we say that n

is false at stage m.

The idea of true numbers appears to have originated with Dekker [17], who called

them minimal. True numbers are important because the range of f is computable in

the join of f with any infinite set of true numbers. In fact, if n is a true number, then

one can determine ran(f) up to f(n) by simply evaluating f on inputs 0, . . . , n.

Construction 3.3.2 (RCA0). Let f : N → N be an injection. Define a linear order

(L,<L) where L = {`n : n ∈ N} and for each n < m the following hold:

1. `n <L `m if f(k) < f(n) for some k such that n < k ≤ m (i.e., n is false at stage

m),

2. `m <L `n if f(n) < f(k) for all k such that n < k ≤ m (i.e., n is true at stage

m).

Given an injection f : N→ N, Construction 3.3.2 produces a stable linear order either

of type ω + ω∗ (if f has infinitely many false numbers) or of type k + ω∗ for some

finite k (otherwise). RCA0 proves that n is true if and only if n is in the ω∗-part of

L. Therefore, RCA0 proves that if there is an infinite subset of the ω∗-part of L, or,

equivalently, if there is an infinite descending sequence in L, then the range of f exists.

For further details, see the proofs of see [51], Lemma 4.2 and [29], Theorem 4.5.

We now introduce some terminology that will be useful in the rest of the chapter.

Definition 3.3.3. (RCA0) Let (P,<P ) be a partial order, and let A,B ⊆ P .

• We write A <P B if every element of A is strictly below every element of B:

∀a ∈ A ∀b ∈ B (a <P b). In the case of singletons, write a <P B and A <P b in

place of {a} <P B and A <P {b}.
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• We write A ≤∀∃ B if every element of A is below some element of B: ∀a ∈
A ∃b ∈ B (a ≤P b).

• We write A |P B if every element of A is incomparable with every element of B:

∀a ∈ A∀b ∈ B (a |P b). In the case of singletons, write a |P B and A |P b in

place of {a} |P B and A |P {b}.

For a partial order (P,<P ) and nonempty subsets A,B,C ⊆ P , RCA0 suffices to show

that A <P B <P C implies A <P C and that A ≤∀∃ B ≤∀∃ C implies A ≤∀∃ C.

Also, notice that A ≤∀∃ B simply means that A ⊆ B↓(P,<P ) (the existence of which,

in general, requires ACA0 to be proved).

Lemma 3.3.4. The following are equivalent over RCA0.

1. ACA0.

2. Every linear order (L,<L) with no suborder of type ζ can be partitioned as L =

W ∪R, where

• W <L R,

• W is well-founded,

• R is reverse well-founded.

Proof. For 1 ⇒ 2, let (L,<L) be a linear order with no suborder of type ζ. First, let

X = {x ∈ L : (∀y <L x)(∃z)(y <L z <L x)}. Intuitively, X is the set of points in L

that are the suprema of the points strictly below them. We claim that the downward

closure X↓(L,<L) of X is well-founded. To see this, suppose on the contrary that there

is a descending sequence D = (dn)n∈N in X↓(L,<L). Now define an ascending sequence

A = (an)n∈N above d1 as follows. As d0 ∈ X↓(L,<L), fix an x ∈ X such that d0 ≤L x.

Define

a0 = min<N{z : d1 <L z <L x}

an+1 = min<N{z : an <L z <L x}.
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Such an an exists for each n ∈ N because x ∈ X. Then (D \ {d0}) ∪ A is a suborder

of L of type ζ, which is a contradiction. Thus X↓(L,<L) is well-founded.

Let F be the set F = {y ∈ L \ X↓(L,<L) : {z ∈ L \ X↓(L,<L) : z <L y} is finite},
i.e. the set of elements of L \ X↓(L,<L) with only finitely many <L-predecessors in

L \X↓(L,<L) (which, we notice, might be empty). We claim that the set X↓(L,<L) ∪ F
does not contain infinite descending sequences, i.e. it is well-founded: suppose for a

contradiction that there exists such a sequence (dn : n ∈ N), then there is a b ∈ N
such that for every n > b, dn ∈ X↓(L,<L), since by definition the elements of F only

have finitely many predecessors in F . But then, the sequence (dn : n > b) would

be an infinite descending sequence in X↓(L,<L), which is a contradiction. We set

W = X↓(L,<L) ∪ F , and let R = L \W .

Since we proved that W is well-founded, we just have to prove that R is reverse well-

founded. First of all, we notice that if R is empty, then it is also reverse well-founded,

so we can suppose that R 6= ∅. We claim that R has no <L-minimal element. Suppose

for a contradiction that r0 ∈ R was such an element: then, the existence of r0 implies

that F was infinite, since otherwise r0 would itself have been an element of F . Hence,

since F is an infinite set of elements with only finitely many predecessors, F is a linear

order of order-type ω. Then, we claim that r0 ∈ X, which is a contradiction. To see

this, let y be any element of L <L-below r0: then, y ∈ W , and since we said that F is of

order-type ω, it is always possible to find a z ∈ F such that y <L z <L r0, which proves

that r0 ∈ X. This contradiction proves that R has no <L-minimal element. Finally,

suppose for a contradiction that there is an infinite ascending sequence (an)n∈N ⊆ R:

since R has no <L-minimal element, it is possible to build an infinite descending

sequence (dn)n∈N in R such that d0 = a0. The union of the range of these sequences

then gives an infinite chain of order-type ζ, which contradicts our assumptions on L.

This proves that R is reverse well-founded, and hence concludes the proof of 1 ⇒ 2.

For 2 ⇒ 1, let f : N → N be an injection. We show that the true numbers for f

form a set. This implies that the range of f exists as a set, which implies ACA0 by

Theorem 1.1.10.
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If f has only finitely many false numbers, then the set of all false numbers exists by

bounded Σ0
1 comprehension, in which case the set of true numbers also exists.

Suppose instead that f has infinitely many false numbers. Let (L,<L) be the linear

order defined as in Construction 3.3.2 for f . Recall that in this case L = {`n : n ∈ N}
is a linear order of type ω+ω∗, where, for each n, `n is in the ω-part if n is false and `n

is in the ω∗-part if n is true. We modify L by replacing each element in the ω∗-part by

an infinite descending sequence and by replacing each element of the ω-part by a finite

descending sequence. To do this, let S = {sn,m : n,m ∈ N and n is true at stage m}
(note that if m ≤ n, then n is true at stage m), and define

sn0,m0 <S sn1,m1 ⇔ (`n0 <L `n1) ∨ (`n0 = `n1 ∧m0 >N m1).

Observe that if n0 is false and n1 is true, then `n0 <L `n1 , so sn0,m0 <S sn1,m1 for every

m0 and m1. One then sees that no infinite ascending sequence in S can contain an

element sn,m where n is true, and no infinite descending sequence in S can contain

an element sn,m where n is false. It follows that S cannot contain a suborder of

type ζ because such a suborder would have to contain some element sn,m, and sn,m is

either in no ascending sequence or in no descending sequence, whereas it follows easily

from Definition 3.1.6 that in any ordering of order-type ζ has the property that every

element belongs to both an ascending sequence and a descending sequence.

We may therefore apply 2 to S, obtaining a partition S = W ∪R where W <L R, W

is well-founded, and R is reverse well-founded. We claim that sn,0 ∈ R if and only if n

is true. If n is true, then sn,m ∈ S for every m, and sn,0 >S sn,1 >S · · · is a descending

sequence in S. Thus sn,0 cannot be in W as then W would not be well-founded. So

sn,0 ∈ R. Conversely, if n is false, then, using the assumption that there are infinitely

many false numbers, we can define an ascending sequence `n = `k0 <L `k1 <L · · · in L

as follows. Set k0 = n. Given ki, search for the first pair 〈k,m〉 where `ki <L `k and

k is false at stage m, and set ki+1 = k. We then have the corresponding ascending

sequence sn,0 = sk0,0 <S sk1,0 <S · · · in S. Thus sn,0 cannot be in R as then R

would not be reverse well-founded. So sn,0 ∈ R if and only if n is true. Therefore
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{n : sn,0 ∈ R} is the set of true numbers for f , which completes the proof.

We now move to the promised proof of RSpoW<∞ in ACA0. In order to do that, it will

be useful to make some considerations on what it means for an ascending chain not

to be (0,∞)-homogeneous.

If an ascending sequence A = {an : n ∈ N} in some partial order (P,<P ) is not

(0,∞)-homogeneous, then there is a p ∈ P that is comparable with some elements of

P , but only finitely many of them. As A is an ascending sequence, this means that

there is an n0 such that p >P an0 , but ∀n > n0 (p |P an). We think of such a p as

a counterexample to A being (0,∞)-homogeneous. Indeed, p is a counterexample to

{an : n ≥ n0} being (0,∞)-homogeneous.

Definition 3.3.5. • (RCA0) Let (P,<P ) be an infinite partial order, and let A =

{an : n ∈ N} be an ascending sequence in P . Then A≥n0 denotes the ascending

sequence {an : n ≥ n0}. Sequences of the form A≥n0 are called tails of A.

• (RCA0) Let (P,<P ) be a partial order, and let A = {an : n ∈ N} be an ascending

sequence in P . A p ∈ P is called a counterexample to A if there is an n such

that p >P an and p |P A≥n+1.

• (RCA0) An ascending sequence B = {b` : ` ∈ N} is called a counterexample

sequence for A if B contains counterexamples to infinitely many tails of A:

∀m∃n > m ∃` (b` >P an ∧ b` |P A≥n+1)

Again, we remark that, since we are dealing with ascending sequences, we can be

quite liberal and deal with what is technically the range of the sequences, since that

set exists in RCA0. See also Remark 1.1.25.

Suppose that A is an ascending sequence in a partial order (P,<P ) where no tail of A is

(0,∞)-homogeneous. Then for every n, there is a counterexample p to A≥n. The main

idea of the next proof is that if P has finite width, then we can make a counterexample

sequence out of such counterexamples.
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We remark that we will now prove a result that is more general than what we need

for the rest of the section: the reason is that we will use it in its full generality in

Section 3.6.

Lemma 3.3.6 (ACA0). Let (P,<P ) be a partial order with no infinite antichains. Let

A = {an : n ∈ N} be an ascending sequence, and assume that no tail of A is (0,∞)-

homogeneous for P . Then there is an ascending sequence B = {bn : n ∈ N} that is a

counterexample sequence for A.

Moreover, if P can be decomposed into the chains C0, . . . , Ck−1, We will be able to find

such a B inside Ci, for a certain i.

Proof. Since we are assuming that no tail of A is (0,∞)-homogeneous, for every tail

there is a counterexample p to it. For each n, let pn be the <N-least counterexample to

the tail A≥n. Let P̃ be the set of the pn we just described. By CAC, P̃ has an infinite

chain, say C, since the whole poset P does not contain infinite antichains. Let X be

the set of n ∈ N such that pn ∈ C.

Now, for every n ∈ X, we have that pn <P pm for all sufficiently large m ∈ X. To see

this, let n ∈ X. As pn is a counterexample to A≥n, there is a c ≥ n such that pn >P ac

and pn |P A≥c+1. Let m ∈ X be such that m > c + 1, and consider pm. The chain

C contains both pn and pm, so pn GP pm. As pm is a counterexample to A≥m, there

is a d ≥ m such that pm >P ad. Thus we cannot have have pm ≤P pn because this

would yield ac+1 <P ad <P pm ≤P pn, contradicting that pn |P ac+1. Note here that

c + 1 < m ≤ d, so ac+1 <P ad because A is an ascending sequence. Thus it must be

that pn <P pm.

We may then define the desired counterexample sequence B as follows. Let n0 be the

<N-least element of X. Given n`, let n`+1 be the <N-least element of X with n` < n`+1

and pn` <P pn`+1
. Finally, take b` = pn` for each `.

We end the proof by noticing that, if P can be decomposed into the chains C0, . . . , Ck−1,

then P̃ ∩Ci is infinite for at least one i < k, and so the chain C above can be replaced

by P̃ ∩ Ci, so that the final B will be a subset of Ci
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Notice that if B is a counterexample sequence to an ascending sequence A in some

partial order (P,<P ), then A ≤∀∃ B, but B 6≤∀∃ A.

Theorem 3.3.7. ACA0 ` RSpoW<∞.

Proof. Let (P,<P ) be an infinite partial order of width k and let C0, . . . , Ck−1 be the

decomposition into chains as given by Dilworth’s Theorem. Assume for a contradiction

that (P,<P ) does not contain a (0,∞)-homogeneous chain. Notice that any chain Z

of order type ζ is (0,∞)-homogeneous, as stated in Remark 3.1.7. Indeed, if p ∈ P is

comparable with some z ∈ Z, then it is either comparable with all elements above z

or with all elements below z. It follows that Ci, for each i < k, does not contain any

chains of order type ζ.

Notice that we can apply Lemma 3.3.4 uniformly to all the chains Ci (it is indeed easy

to see that the proof of the Lemma can be modified to yield the wanted decomposition

for any finite number of chains): we thus get the decompositions Ci = Wi ∪Ri, where

every Wi is well-founded, Ri is reverse well-founded and Wi <P Ri for every i < k.

We suppose that at least one of the Wi’s is infinite. If this is not the case, then at

least one of the Ri’s is infinite, and we could run an argument essentially identical

to the one we are about to present. By changing the enumeration if necessary, let

W0, . . . ,Wu−1, for some u < k, be the infinite Wi’s. For every j < u, we let W ′
j be

the subset of Wj formed by the points of Wj with infinitely many successors in Wj, so

formally W ′
j := {p ∈ Wj : ∀x∃y >N x(y ∈ Wj ∧ y >P p). Since the Wj’s are infinite

and well founded, so are the W ′
j ’s.

In every W ′
j , we can easily find a cofinal sequence of type ω, call it Aj: to do this,

simply let a0 be the <N-minimal element of W ′
j , and let an+1 be the <N-least point of

W ′
j that is <P -above an.

By assumption, each tail of every Aj, for each j ≤ u, is not (0,∞)-homogeneous, so let

Bj be the counterexample sequence to Aj given by Lemma 3.3.6. Let h : {0, . . . , u} →
{0, . . . , u} be the function such that Bj ⊆ Ch(j), for each j ≤ u. Since Bj is an

ascending sequence then it holds, for each j ≤ u, that Bj ⊆ Wh(j).
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Notice that, for each j ≤ u, it holds that Bj ≤∀∃ Ah(j) since Ah(j) is cofinal in Wh(j).

Since it holds that Ah(j) ≤∀∃ Bh(j), by choice of Bh(j), and since ≤∀∃ is transitive, it

holds that Bj ≤∀∃ Bh(j), for each j ∈ N. By transitivity we get that Bhn(j) ≤∀∃ Bhm(j)

for each j ≤ u and each n ≤ m ∈ N (hm(j) stands for the mth iteration of h(j), where

h0(j) = j).

We now notice that there are n < m ≤ u such that hn(0) = hm(0). But then, it

follows from the previous paragraph that Bhn+1(0) ≤∀∃ Bhm(0), as we can see applying

h m−n−1 times. But by assumption on m and n, it follows that Bhn+1(0) ≤∀∃ Bhn(0).

This implies that Bhn+1(0) ≤∀∃ Ahn+1(0), since Ahn+1(0) is cofinal in W ′
hn+1(0). But this

contradicts the fact that Bhn+1(0) is a counterexample sequence to Ahn+1(0). Hence, we

have our contradiction and the theorem is proved.

3.4. Equivalence with ADS + IΣ0
2 and ADS

In this section, the proof-theoretic strength of RSpoCD<∞ is finally determined: by

refining the counterexample-chasing argument already used in the proof of the principle

in ACA0, we will be able to givea proof over RCA0 of the equivalence of RSpoCD<∞ with

ADS + IΣ0
2. Moreover, we will further analyze the argument to show that, for every

fixed standard k ≥ 3, RSpoCDk is equivalent to ADS.

3.4.1. A proof of RSpoCD<∞

We start by proving a combinatorial result on finite trees, which lies at the heart of

the proof of RSpoCD<∞.

Lemma 3.4.1. (RCA0) Let us fix k ≥ 2, and let T be a finitely branching tree such

that every leaf of T is at level k, for every σ ∈ T , ranσ ⊆ k but every node has at

most k− 1 immediate successors. Moreover, let c : T → k be a coloring of T such that

• for every σ ∈ T and n < k, if τ = σa(n) ∈ T , then c(σ) 6= c(τ), and
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• for every σ ∈ T and n,m < k, if m 6= n and σa(n), σa(m) ∈ T , then c(σa(n)) 6=
c(σa(m)).

Then, there is a σ ∈ T that is not a leaf such that for every τ immediate extension of

σ there is an η w τ such that c(σ) = c(η).

Proof. We prove the statement by induction on k: it is clear that this can be done

using only IΣ0
1. We start with k = 2. In this case, notice that the only possible tree

satisfying the requirements above is T = {∅, (i), (i, j)}, for some i, j < 2. Since, by the

constraints on c, it holds that c(∅) = c((i, j)), it follows that ∅ is the required string.

Now, assuming that we already proved the statement for k, we prove it for k + 1.

Let T and c be as in the statement (with k substituted by k + 1). If for every

n < k+1 such that n ∈ T it holds that there is an extension ηn w n with c(∅) = c(ηn),

then the conclusion of the Lemma holds, as witnessed by ∅. So suppose that this

is not the case: this means that there is an n such that T(n) (which, we recall, is

the tree {σ ∈ T : (n) @ σ}) does not contain any η with c(∅) = c((n)aη). By our

assumptions on c, in particular this implies that every node on T(n) has at most k− 2

immediate successors. After renaming the strings if necessary, we see that T(n) satisfies

the hypotheses of the Lemma. We can thus apply the induction hypothesis to it, and

this concludes the proof.

We now give an informal presentation of how the Lemma above is going to be used

in the proof of ADS + IΣ0
2 ` RSpoCD<∞, with the aim of presenting clearly the various

concepts that we will introduce formally in the rest of the section. The idea is the

following: given a poset P with chain-decomposition-number k, we use ADS to find,

say, an ascending sequence in P , and we can assume that it is completely contained in

C0, one of the chains of P . There are two cases: if A is already a (0,∞)-homogeneous

chain, then we are done. If not, then, similarly to what we observed for the proof

in ACA0, there must be a counterexample sequences to A. We look at the same

time for counterexamples in all of the chains of P : using IΣ0
2, we can determine which

chains Ci contain an infinite ascending sequence Ai witnessing that A is not a solution.
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Intuitively, this corresponds to building the first level L1 of the tree T of the lemma

above: we color the root with 0, the index of the chain where A is, and we put in L1

all the indices of the chains containing a counterexample sequence to A, and we let

c((n)) = n for every such n (notice that 0 does not appear as a color on L1, since it is

impossible to find a counterexample to A in the same chain where A is). Again, if we

do not find any (0,∞)-homogeneous chain among these counterexamples, we repeat

the procedure, starting with the Ai instead of A. Again, if no (0,∞)-homogeneous

chain is found in the process, we can build a tree of height k, and we can thus apply

the Lemma: given the Aσ and the Aη associated to the σ and η’s of the Lemma, we will

show how to build a chain of order-type ω + ω in Cc(σ) that is a (0,∞)-homogeneous

chain, thus concluding the proof of the Theorem.

In order to carry out the proof as just described in a system weaker than ACA0, we

have first to weaken the notion of counterexample sequence.

Definition 3.4.2. (RCA0) Let P be an infinite poset and A,B ⊂ P be ascending

sequences in P , enumerated as A = {a0 <P a1 <P . . . } and B = {b0 <P b1 <P . . . }.

• We say that B is a local counterexample sequence to A if it holds that

1. ∀n ∈ N∃m ∈ N(bn >P am ∧ bn 6≥P am+1), and moreover

2. ∀n,m ∈ N(bn ≥P am → bn+1 ≥ am+1).

• We say that B is a strong local counterexample sequence if it is a local counterex-

ample sequence to A and moreover ∀n ∈ N∃m ∈ N(bn >P am ∧ bn|Pam+1).

The idea behind the definition above is that it is much easier to look for strong local

counterexamples sequences to A than it is to look for counterexamples sequences to A:

whereas in the latter case, before we could enumerate an element p in the counterex-

ample sequence, we had to check that p was incomparable to every element of A from a

certain point onward, here we essentially just have to find one element of A witnessing

the incomparability. As one can easily verify, every counterexample sequence is a

strong local counterexample sequence, but not viceversa.
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The reason why we further weaken the notion of counterexample is that local

counterexample sequences have the following property:

Property 3.4.3. (RCA0) Let P be a poset, A = {a0, a1, . . . } an infinite ascending

sequence and B = {b0, b1, . . . } a local counterexample sequence to A. Let A′ be an

infinite subsequence of A. Then there is an infinite subsequence B′ of B such that B′

is a local counterexample sequence to A′.

Proof. Let f : N→ N be the increasing function such that A′ = {af(0), af(1), . . . }. Let

g(n) : N → N be the increasing function such that for every n g(n) is the minimal r

such that af(n) <P br (such an r always exists). We claim that {bg(0), bg(1), . . . } is the

B′ we are after. Property 1 still holds, since if bg(n) 6≥P af(n)+1, then bg(n) 6≥P af(m) for

any m > n. Moreover, property 2 is obvious from the definition of g.

The property above does not necessarily hold if we require that B′ be a strong local

counterexample sequence to A′. However, strong counterexamples sequences do enjoy

some nice properties that we will come in handy in the future.

Property 3.4.4. (RCA0) Let P be an infinite poset, A ⊂ P be an ascending sequence

in P . Suppose that A′ is a subsequence of A and B is a strong local counterexample

sequence to A′. Then, it is a local counterexample sequence to A as well.

Moreover, if P has chain-decomposition-number k, P = C0 ∪ · · · ∪ Ck−1, and B is a

strong local counterexample sequence to A, then if A ⊆ Ai and B ⊆ Cj, we have that

i 6= j.

Although this will not play any role in the following, we also notice that the existence

of (strong) local counterexample sequences does not, as opposed to counterexample

sequences, characterize non-(0,∞)-homogeneous ascending sequences: there may well

be (0,∞)-homogeneous ascending sequences that admit strong local counterexample

sequences to them.

The next Lemma is essentially a weakening of Lemma 3.3.6: it says that, for a given

ascending sequence A of P , if no tail of A is (0,∞)-homogeneous, then we can find a
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strong local counterexample sequence to A. This weakening has the major advantage

of being provable in RCA0 + BΣ0
2. For later use, it will be practical to distinguish the

case in which our poset P has a standard chain-decomposition-number.

Lemma 3.4.5. 1. (RCA0) Let k ∈ ω, let P be an infinite poset of chain-

decomposition-number k and let A = {a0 <P a1 <P . . . } ⊆ P be an infinite

ascending sequence in P . If no tail A≥m of A is (0,∞)-homogeneous, then there

is an ascending chain B ⊆ P that is a strong local counterexample sequence to

A.

2. RCA0 +BΣ0
2 proves the same statement above for arbitrary k ∈ N, i.e. if we drop

the requirement that k ∈ ω

We point out that in this proof, due to the number of orderings involved, we will

denote the usual order < on N by <N.

Proof. We start with the proof of Item 1. The proof is similar to the one of Lemma

3.3.6. We define a function f : N → N2 as follows: f(0) is the pair (p0,m0) that is

<N2-least (in some ordering of N2 of type ω) such that p0 >P am0 and p|Pam0+1. Such

a pair has to exists: if A is not a solution, then there has to be a q comparable with

only finitely many elements of A, in particular there is a maximal ` such that q |P a`.
Hence, q >P a` since A is ascending, and q|Pa`+1. Such q and ` are the p0 and n0 we

are looking for.

Recursively, we define f(n+ 1) as the <N2-least pair (pn+1,mn+1) such that mn+1 >N

mn, pn+1 >P amn+1 , pn+1|Pamn+1+1 and pn+1 >N pn. The existence of such a pair can be

proved in a fashion similar to what has been done above: suppose for a contradiction

that no pair (pn+1,mn+1) as above exists, we claim that then a tail of A is (0,∞)-

homogeneous. It follows from our assumptions that for every m >N mn, if there is

a p ∈ P such that p >P am and p|Pam+1, then p <N pn. Let M be the finite set

M = {m ∈ N : ∃p <N pn(am <P p ∧ am+1|Pp)}. Then, M has a <N-maximal element,

say m̄. It is immediate to check that A≥m̄+1 is a (0,∞)-homogeneous tail of A, which

gives us the desired contradiction.
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Furthermore, we notice that the set S = {p ∈ P : ∃n((p, n) ∈ ran f)} can be shown to

exists in RCA0, since the points of S form an <N-ascending sequence.

By RT1
k, there is a chain Ci containing infinitely many elements of S. Finally, notice

that if (p,m), (q, n) ∈ ran f and p GP q, then p <P q if m <N n. To see this, notice that

if m <N n then q 6≤P p, otherwise p ≥P q ≥P an ≥P am+1, which is a contradiction.

Hence q >P p, and so the first components of S ∩ Ci can be seen as an ascending

sequence, which will then, thanks to the Property above, be a local counterexample

sequence to A. This concludes the proof of Item 1.

Item 2 has the same proof, except for the final step, where we use RT1
<∞ instead of

RT1
k.

In the following Lemma, we will show that we can iterate the operation of finding

local counterexample sequences in a very tame way, provided we are given enough

induction.

Definition 3.4.6. (RCA0) Let P be an infinite poset of chain-decomposition-number

k, and let ~A = (A0, . . . , Ah) be a sequence of ascending chains of P . We say that ~A is

a sequence of local counterexamples if for every i < h Ai+1 is a local counterexample

sequence to Ai, and for every i ≤ h there exists j < k such that Ai ⊆ Cj.

We recall that IΣ0
2 is equivalent to bounded Π0

2-comprehension (see Lemma 1.1.18).

Lemma 3.4.7. (RCA0+IΣ0
2) Suppose that P is a poset of chain-decomposition-number

k, for some k ∈ N, and suppose that A ⊆ C0 is an ascending sequence in C0. Then,

we can define a tree T ⊆ k<k+1 such that σ ∈ T if and only if there is a sequence of

ascending sequences ~A = (A0, . . . , A|σ|) such that A0 ⊆ A and for every 0 < i ≤ |σ|,
Ai ⊆ Cσ(i−1) and Ai is a local counterexample sequence to Ai−1.

Proof. We suppose for simplicity that P = N. We define a function f : k<N × N →
[N× N× N]<N by recursion on the number variable, with the following idea: at stage

n, we will have a finite set (in fact, this set will have cardinality smaller than n) of

triples (d, p, i), which should be read as “p is the dth element of an ascending chain in



3.4. Equivalence with ADS + IΣ0
2 and ADS 105

Cσ(i−1)”, and we only add the triple (d, p, i) to the set of triples if p belongs to A or

if it contributes to create a local counterexample sequence to the chain that is being

created by the points q such that, for some e, (e, q, i − 1) is in f(σ, n) (if i > 0). In

practice, we proceed as follows: given σ ∈ k<N, we start by setting f(σ, 0) = ∅ if 0 /∈ A,

otherwise we let f(σ, 0) = {(0, 0, 0)}. Suppose that we have already defined f(σ, n).

To define f(σ, n+ 1), there are various cases:

• if f(σ, n) = ∅ and n+ 1 /∈ A, we let f(σ, n+ 1) = ∅.

• if f(σ, n) = ∅ and n+ 1 ∈ A, set f(σ, n+ 1) = {(0, n+ 1, 0)}.

• if f(σ, n) 6= ∅, let b ≤ |σ| + 1 be the minimal i such that for no m < n + 1

(0,m, i) ∈ f(σ, n) holds. For every i < b let di be the maximal d such that

(d,m, i) ∈ f(σ, n) for some m < n, and let pi be the p such that (di, p, i) ∈
f(σ, n). Then:

– if n+ 1 ∈ A and n+ 1 >P p0, we set f(σ, n + 1) = f(σ, n) ∪ {(d0 +

1, n+ 1, 0)}.

– if n+ 1 /∈ A, we check for every 0 < i < b if n+ 1 >P pi and n+ 1 ∈
Cσ(i−1) hold, and if there is a d < di−1 such that, for the p ∈ P such that

(d, p, i− 1) ∈ f(σ, n) and the q ∈ P such that (d+ 1, q, i− 1) ∈ f(σ.n), the

following three conditions hold:

pi 6>P p, n+ 1 >P p, n+ 1 6≥P q.

Then:

∗ If there are such i’s, let ī be the minimal one and let f(σ, n + 1) =

f(σ, n) ∪ {(dī + 1, n+ 1, ī)}.

∗ If no index i as above is found, and if b 6= |σ| + 1, we check if n+ 1 ∈
Cσ(b−1) and if there are p, q, d such that {(d, q, b−1), (d−1, p, b−1)} ⊆
f(σ, n), n+ 1 >P p and n+ 1 6≥P q hold.

· If this is the case, we set f(σ, n+ 1) = f(σ, n) ∪ {0, pn+1, b)}.
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· If instead there are no such p, q, d’s, or if b = k+ 1, we let f(σ, n+

1) = f(σ, n).

Although the construction above might seem complicated, it is just formalizing the

obvious recursion used to build a sequence of local counterexamples step by step.

By bounded Π0
2-comprehension, we can then define the set T ⊂ k<k+1 such that

σ ∈ T ↔ (σ ∈ k<k+1 ∧ ∀i ≤ |σ|∀m∃di, ni > m((di, ni, i) ∈ f(σ, ni + 1))).

We claim that the T we just defined is the tree we wanted: σ ∈ T if and only if

there is a sequence of local counterexamples ~A = (A0, . . . , A|σ|) such that A0 ⊆ A and

Ai ⊆ Cσ(i−1) for 0 < i ≤ |σ|.

We start noting that, given σ ∈ T , it is easy to find the corresponding sequence ~A:

for every i ≤ |σ|, let Ai = {n ∈ P : ∃d ≤ n((d, n, i) ∈ f(σ, n + 1))}. By the fact

that σ ∈ T , we have that each one of the Ai’s is infinite. Moreover, the construction

of f ensures that they all are ascending sequences: for every i < |σ|, m, r ∈ P and

d, e ∈ N, if (d,m, i), (e, r, i) ∈ f(σ, n) for some n, then m <P r if and only if d < e.

It is also clear from the construction that A0 ⊆ A. Finally, we see that Ai is a local

counterexample sequence to Ai−1 for every i > 0: if i > 0, then we only add a new

triple (d, n, i) if we can find two points q >P p, both in Aσ(i−1) (or in A0 if i = 1),

such that n >P p and n 6≥P q, and moreover, if (d − 1,m, i) was also enumerated,

in the construction we also require that m 6>P p, which ensures that, if m >P r and

(e, r, i− 1) ∈ f(σ, n), then n >P s for the s such that (e+ 1, s, i− 1) ∈ f(σ, n), as we

wanted.

Suppose now that ~A = (A0, . . . , Ah) is a counterexample sequence such that A0 ⊆ A.

Let σ be the string given by σ(i − 1) = j, where j is such that Ai ⊆ Cj. We want

to prove that σ ∈ T . To do this, we first uniformly refine the Ai’s. Let α0 : N → N

be defined as follows: α0(0) is the <N-minimal element of A0, and α0(s + 1) is the

<N-minimal element of A0 that is larger than α0(s) according to both <N and <P .

Then, for every i > 0, we define simultaneously αi : N → N as follows: αi(0) is the

<N-minimal element a of Ai such that for some r αi−1(r) <P a and αi−1(r + 1) 6<P a
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(where such an r exists by the fact that ~A is a sequence of local counterexamples

and Property 3.4.3), and αi(s + 1) is the <N-minimal a ∈ Ai such that it is above

αi(s) according to <N and to <P and for some r, αi−1(r + 1) <N a, αi−1(r) <P a,

αi−1(r + 1) 6<P a and αi−1(r) 6<P αi(s) hold (again, the fact that such a point exists

is guaranteed by our assumptions on ~A and Property 3.4.3). Finally, we define the

function

g(n) = {(s, αi(s), i) : αi(s) ≤ n ∧ i ≤ h}.

It is easy to verify that for every n g(n) = f(σ, n). Since all of the αi have infinite

range, it follows that σ ∈ T .

Remark 3.4.8. We notice that the construction above is very uniform: in principle,

given an infinite branch B ∈ [k<N], we could extend f to produce for us an infinite

sequence (A0, A1, . . . ) of chains such that A0 ⊆ A, Ai+1 is a local counterexample

sequence to Ai and for i > 0 Ai ⊆ CB(i−1).

The final bit of the previous proof is the reason why we had to weaken strong local

counterexample sequences to local counterexample sequences: we needed to be able

to work with subsequences in order to carry out the verification that T behaves as we

want.

As a consequence of this weakening, observe that the T found in the previous proof

might contain many strings that are not useful for the proof of RSpoCD<∞: for instance,

it might be the case that 0k ∈ T . We will essentially solve this issue by refining T :

as we will see, considering the subtree T ′ ⊆ T of strings σ such that σ(0) 6= 0 and

σ(i) 6= σ(i + 1) contains the right amount of information in order to conclude that

RSpoCD<∞ holds.

Theorem 3.4.9. RCA0 + ADS + IΣ0
2 ` RSpoCD<∞

Proof. Let P be an infinite poset with chain-decomposition-number k. By BΣ0
2, at least

one of the chains of the decomposition of P is infinite, and without loss of generality we

can suppose that C0 is infinite. By applying ADS to C0, we find an infinite ascending
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or descending sequence A. Again without loss of generality, we can suppose that A is

ascending.

By Lemma 3.4.7, we can find the tree T ⊆ k<k+1 such that σ ∈ T if and only if we can

find a sequence of infinite ascending sequences (A0, . . . , A|σ|) such that A0 ⊆ A, A0 is

a local counterexample sequence to A and for every i Ai+1 is a local counterexample

sequence to Ai.

We let T ′ be the subtree of T defined as follows:

σ ∈ T ′ ↔ σ ∈ T ∧ σ(0) 6= 0 ∧ ∀i < |σ| − 1(σ(i) 6= σ(i+ 1)).

We have two cases:

1. T ′ has a leaf σ such that |σ| < k (notice that this includes the case that T ′ is

empty, since in this case ∅ is a leaf at level L0). By Lemma 3.4.7, this means

that we can build a sequence ~A = (A0, . . . , A|σ|) of local counterexamples such

that Ai ∈ Cσ(i−1) for all i > 0. We claim that a tail of A|σ| is a solution. Suppose

not, then by Lemma 3.4.5 Item 2 (which we can use since BΣ0
2 is a consequence

of IΣ0
2) there is a strong local counterexample sequence B ⊆ Ci, for some i < k,

to A|σ|. But then, σa(i) should be an element of T ′, since A|σ| 6⊆ Ci. This

contradicts the fact that σ is a leaf. Hence, a tail of A|σ| is (0,∞)-homogeneous.

2. Every leaf of T ′ is at level k. In this case, we define a coloring c : T ′ → k

as follows: if σ = ∅, we put c(σ) = 0, otherwise we let c(σ) = σ(|σ| − 1).

As one can easily check, T ′ and c satisfy the hypotheses of Lemma 3.4.1. Let

σ̄ be the string given by the Lemma, let Sσ̄ ⊆ k be the set of n’s such that

σ̄a(n) ∈ T ′ and, finally, for every n ∈ Sσ̄, let ηn be the extension of σ̄a(n)

such that c(σ̄) = c(ηn), whose existence is guaranteed by the Lemma. For every

~Aηn = (A0, . . . , A|ηn|), we define Bn := A|ηn|. Moreover, if σ̄ = ∅, we put B = A,

otherwise, if σ̄ 6= ∅ and Aσ̄ = (A0, . . . , A|σ̄|), we set B := A|σ̄|, and enumerate

it as B = {b0 <P b1 <P . . . }. We claim that there exists an m ∈ N such that

Sm := B≥m ∪
⋃
n∈Sσ̄ B

n
≥m (which is a set since every one of the component is) is
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a (0,∞)-homogeneous chain.

The fact that Sm is a chain is essentially given by Lemma 3.4.1: since c(σ̄) = c(ηn)

for every n ∈ Sσ̄, it follows that B,Bn ⊆ Cc(σ̄), for every n ∈ Sσ̄, and so in

particular B ∪
⋃
n∈Sσ̄ B

n ⊆ Cc(σ̄), which implies that every Sm is a chain.

Next, we prove that one of the Sm is (0,∞)-homogeneous, and we suppose

towards a contradiction that it is not. We start noticing the following obvious

fact: if p ∈ Cn for some n ∈ Sσ̄, or if p ∈ Cc(σ̄), then p is comparable with

infinitely many elements of Sm for every m ∈ N. Suppose then that for some m

Sm is not a solution: this means that there is a p ∈ P such that p is comparable

with some, but only finitely many, elements of Sm. What we just observed means

that any counterexample to Sm is in P \
⋃
i∈{c(σ̄)}∪Sσ̄ Ci. In particular, if this set

is empty, we are done, so we assume that it is non-empty. Moreover, we notice

that, if p a counterexample to Sm, then it is a counterexample to B≥m as well:

this follows from the fact that for every n ∈ Sσ̄ B ≤∀∃ Bn. But then, combining

the two previous observations, we can use Lemma 3.4.5 Item 2, applying it to

the ascending sequence B and to the poset P \
⋃
i∈Sσ̄ Ci: if no Sm is (0,∞)-

homogeneous, then there is a local counterexample sequence D ⊆ P \
⋃
i∈Sσ̄ Ci.

By BΣ0
2, we can assume that D ⊆ Cj for some Cj in the chain decomposition

of P . But this is contradiction: since D ⊆ P \
⋃
i∈Sσ̄ Ci, j /∈ Sσ̄, but since we

produced a local counterexample sequence in Cj, this contradicts Lemma 3.4.7.

Hence, for some m, Sm is a (0,∞)-homogeneous, as we wanted.

We conclude this section with a remark about the “shape” of the chain produced in

the Theorem above: whereas in the first case we find a (0,∞)-homogeneous chain of

order-type ω, this is not true for the second case. In particular, the argument above

does not give a proof of sRSpoCD<∞ (see Remark 3.1.7).

Here, the best that we can do is to present a dichotomy: we can always refine Sm to

be a (0,∞)-homogeneous chain of type ω or ω+ ω. To see this, notice that instead of⋃
n∈Sσ̄ B

n, the proof would have worked just as well if we had refined it to an ascending
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chain B′ cofinal in
⋃
n∈Sσ̄ B

n, which can clearly be found in RCA0, so that some tail of

B∪B′ is a (0,∞)-homogeneous chain. This yields a chain of order-type ω if B′ ≤∀∃ B,

and a chain of order-type ω + ω otherwise.

3.4.2. Reversals

In this subsection, we reverse the implications proved in the previous Theorem. We

start by showing that over RCA0 RSpoCD<∞ implies ADS: we will actually prove more,

namely that RSpoCD3 is already enough to have the implication. In the next section we

will see that this result cannot be strengthened: RSpoCD2 is strictly weaker than ADS.

Lemma 3.4.10. RCA0 + RSpoCD3 ` ADS. So in particular RCA0 + RSpoCD<∞ ` ADS.

Proof. Let (L,≤L) be a linear order and consider (L×3, <P ) with the product partial

order from 0 <3 1 and 2 <3 1: i.e., for every p, q ∈ P and i, j < 3, (p, i) ≤P (q, j)

if and only if p ≤P q and either i = j or j = 1. Since L × 3 has clearly width and

chain-decomposition-number 3, let C be a (0,∞)-homogeneous chain for L× 3.

For each i < 3 set Ci = C ∩ (L × i). By definition of <P it is easy to see that

C ⊆ C0 ∪C1 or C ⊆ C1 ∪C2. In fact (`, 0) and (`, 2) are incomparable for each ` ∈ L.

We claim that C1 has no maximum. Suppose on the contrary that (m, 1) is a maximum

of C1 and hence of C. Since C0 = ∅ or C2 = ∅ and both (m, 0) and (m, 2) are below

(m, 1), then at least one between (m, 0) and (m, 2) is comparable with some and finitely

many elements of C. This contradicts the assumption that C is (0,∞)-homogeneous.

Hence, if C1 6= ∅, we can recursively define an ascending chain in it.

Otherwise, by RT1
3 at least one between C0 and C2 is infinite. In this case either C0

or C2 has no minimum, otherwise there would be a point in (L, 1) incomparable with

all C but the minimum. It is thus possible to define recursively a descending chain in

C0 or C2, which is obviously a descending chain in L.

Since it a known fact that RCA0 + ADS ` BΣ0
2 (see for instance [39]), we have the

following corollary:
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Corollary 3.4.11. RCA0 + RSpoCD<∞ ` BΣ0
2

We can now proceed to the other reversal we need.

Lemma 3.4.12. RCA0 + RSpoCD<∞ ` IΣ0
2

Proof. We will prove that RSpoCD<∞ implies the least number principle for a formula ϕ

such that ϕ(i) ≡ ∀x∃yψ(x, y, i), where ψ is ∆0
0: suppose that there is a k ∈ N such

that ϕ(k) holds, we will find the least i such that ϕ(i) holds. We build a partial order

P of chain-decomposition-number k+1 as follows: for every triple (x, y, i) ∈ N2×[0, k],

(x, y, i) ∈ P if and only if ∀x′ ≤ x∃y′ ≤ yϕ(x′, y′, i) and ∀y′ < y∃x′ ≤ x¬ϕ(x′, y′, i)

hold, and we set (x, y, i) ≤P (x′, y′, j) if and only if (i ≥ j ∧ x ≤ x′). P can be

decomposed into k + 1 chains: every chain Ci, for i ≤ k, contains the elements of the

form (x, y, i). Moreover, P is infinite, since we know that ∀x∃yϕ(x, y, k) holds, and so

Ck contains infinitely many elements, as can easily be shown using IΣ0
1. Notice that,

for every x ∈ N and i ≤ k, there is at most one y such that (x, y, i) ∈ P . Finally,

we notice that every element of the order is above only finitely many other elements

of the order: for every x ∈ N and i ≤ k, (x, y, i) can be above at most x(k + 1 − i)
elements.

We apply RSpoCD<∞ to P , thus obtaining an infinite (0,∞)-homogeneous chain S. By

BΣ0
2, which is available to us thanks to the Corollary above, there is an i ≤ k such

that Ci ∩ S is infinite. We claim that i is minimal such that ∀x∃yϕ(x, y, i). First, we

show that ∀x∃yϕ(x, y, i) holds: if this was not the case, then ∃x̄∀y¬ϕ(x̄, y, i) holds.

But then, if (x, y, i) ∈ Ci, x < x̄, contradicting the hypothesis that Ci ∩ S, and so in

particular Ci, is infinite. Secondly, suppose for a contradiction that there is j < i such

that ∀x∃yϕ(x, y, j). Let (x, y, i) ∈ S, then there is a y′ ∈ N such that (x, y′, j) ∈ P :

then, (x, y′, j) >P (x, y, i), and for every x′ > x and y′′ ∈ N, (x, y′, j)|P (x′, y′′, i). So we

only have to prove that there are at most finitely many elements of S above (x, y′, j)

in order to reach a contradiction. We will do better and prove that actually there are

no points of S above (x, y′, j): if there was even one, it should necessarily be of the

form (x̃, y, j̃) for some y ∈ N, x̃ ≥ x and j ≥ j̃, with at least one inequality strict.

Since S ∩ Ci is infinite, there are w, z ∈ N, with w > x̃, such that (w, z, i) ∈ S. But
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then, (x̃, y, j̃)|P (w, z, i), contradicting the assumption that S is a chain. This proves

the claim.

We can now put together the results obtained so far.

Theorem 3.4.13. The following are equivalent over RCA0:

1. IΣ0
2 + ADS;

2. RSpoCD<∞;

3. RSpoW<∞.

Proof. 1 =⇒ 2 is Theorem 3.4.9, whereas 2 =⇒ 1 is given by Lemmas 3.4.10 and

3.4.12.

The fact that 3 =⇒ 2 is obvious, since RCA0 ` RSpoWk → RSpoCDk , and since we also

have that RCA0 ` RSpoCD5k → RSpoWk by Lemma 3.1.5, the proof is complete.

3.4.3. A proof in ADS

In this final part of the section, we prove that the proof RSpoCDk can be slightly modified

in order to remove the use of induction in the case that k is a standard natural number.

Let (P,<P ) be an infinite k-decomposable partial order, where k is a standard integer,

and let A be an ascending chain in C0 (the case of a descending A is of course perfectly

symmetric). The main idea of the proof is the following: since we do not have access

to Σ0
2 induction any more, we will not be able to build uniformly the counterexample

tree given us by Lemma 3.4.7. But, since we are assuming that k is standard, we can

proceed by “exhausting” the chains that can contain a counterexample sequence to A.

In order to do so, we will examine closely the structure of the proof of Theorem 3.4.9.

The main idea of the proof is the following: given the ascending sequence A, either

A already is a solution, or we can find an ascending chain B such that A ≤∀∃ B and

B can be extended to a solution. This is exactly the sort of statement that we will
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prove here, but with a different approach. More specifically, implementing also the

observation at the end of the previous section about the shape of the solutions we are

producing, we aim at proving the following statement for every standard k > 1:

(♣k) Let (P,<P ) be an infinite k-decomposable partial order, and A ⊆ P be

an infinite ascending chain. Then, there is a chain B = B0 ∪B1such that

• B0 is a chain of order-type ω such that A ≤∀∃ B0,

• B1 is either empty or a chain of order-type ω such that B0 <P B
1 (in

which case B0 ∪B1 is a chain of order-type ω + ω), and

• B is a (0,∞)-homogeneous chain for P .

We will show that ♣1 and ♣k−1→♣k hold: as we will explain in more detail later, this

is enough to prove that ♣k holds for every standard k > 1. We also remark that,

in the following proof, we will not explicitly use the assumption on the shape of B

(essentially, the second bullet point above), but we find it useful to keep in mind what

sort of (0,∞)-homogeneous chain we are aiming for.

Proof of ♣1 (RCA0). If k = 1, then P is actually a linear order, so A itself is (0,∞)-

homogeneous and we can set B0 = A and B1 = ∅.

Proof of ♣k−1→♣k (RCA0). By RT1
k, there is i < k such that Ci contains infinitely

many points of A. After a change of indices if necessary, we can assume that i = 0,

and we let A0 be the ascending chain A∩C0. We describe a procedure lasting at most

k−1 stages that is guaranteed to produce a solution: after s stages we have sequences

of sets (A0, . . . , As) and (F 1, . . . , F s) such that:

1. for all i ≤ s, Ai is an ascending sequence contained in Ch(i), where h : s+ 1→ k

is an injection (with h(0) = 0), such that A0 ≤∀∃ Ai;

2. for every 0 < i ≤ s, F i is an ascending sequence contained in C0, and F i ≤∀∃ F i+1

if i < s;
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3. Ai ≤∀∃ F i for every 0 < i ≤ s, and A0 <P F
1.

At each stage we may find a (0,∞)-homogeneous chain for P , in which case the

construction ends.

We describe the construction of the sequences in stages.

Stage 1. If A0 or any of its tails is (0,∞)-homogeneous, we are done. So suppose this

is not the case. Let A1 be a local counterexample sequence to A0, whose existence is

given by Lemma 3.4.5 Item 1, and suppose by RT1
k that it is contained in just one of

the chains of the decomposition of P , say Ci: that chain cannot be C0, so we can set

h(1) = i. Let us now consider P0 := P \C0, and apply ♣k−1 to this poset and the chain

A1, thus obtaining an infinite (0,∞)-homogeneous (in P0) chain B1 = B0
1 ∪B1

1 . If B1

or one of its tails is a solution for P as well, then ♣k is proved, since A0 ≤∀∃ A1 ≤∀∃ S1.

If this is not the case, then there are infinitely many points pi comparable with only

finitely many elements of B1 and, by definition of B1, they must all belong to C0.

In particular, there exists a local counterexample F 1 to B1 with F 1 ⊆ C0. Now, if

F 1 and A0 interleaved, i.e. if both F 1 ≤∀∃ A0 and A0 ≤∀∃ F 1 held, then B1 would

be a solution for P , since every p ∈ C0 is either below infinitely many points of A0,

and hence below infinitely many points of B1, or above infinitely many points of F 1,

and hence above infinitely many points of B1, so in either case p is comparable with

infinitely many points of B1, which would mean that B1 is (0,∞)-homogeneous. So

we can assume A0 and F 1 do not interleave: but then, A0 <P F 1 (if necessary after

removing finitely many points from F 1) since no point of F 1 can be below infinitely

many points of A0. It is clear that the conditions 1, 2 and 3 above are satisfied. This

ends stage 1.

Stage s + 1. We look for a local counterexample sequence to A0 ∪ F s in Ps := P \⋃
i<s+1 Ch(i), i.e. in the chains not yet containing an Ai: if we cannot find any local

counterexample, then in particular there is no real counterexample to A0 ∪ F s in Ps.

But then, A0 ∪ F s is a solution for P : by construction, for every i ≤ s, A0 ≤∀∃
Ai ≤∀∃ F i ≤∀∃ F s, so every point of p ∈ Ch(i) is above infinitely many points of

A0 (if p happens to be above infinitely many points of Ai) or below infinitely many
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points of F s (if p is below infinitely many points of Ai). Since we are assuming that

no (real or local) counterexample to A0 ∪ F s is to be found in Ps (and obviously

A0 ≤∀∃ A0 ∪ F s), our claim follows. Hence, we can assume that we can find a local

counterexample sequence As+1 in Ps. As before, we can suppose it is completely

contained in a chain Ci, and we set h(s+ 1) = i. Similarly to stage 1, by ♣k−1 we have

a solution Bs+1 for P0 such that As+1 ≤∀∃ Bs+1, and we look for a local counterexample

sequence to it, necessarily in C0: if we cannot find any, then it means that Bs+1 is

a solution, otherwise we will find a local counterexample sequence Ds+1 ⊆ C0. Now,

from enumerations Ds+1 = {ds+1
0 <P ds+1

1 <P . . . } and F s = {f s0 <P f s1 <P . . . },
we produce F s+1 = {f s+1

0 <P f
s+1
1 <P . . . } by setting f s+1

i := maxP{f si , ds+1
i } (recall

that F s ⊆ C0, which guarantees that F s+1 is well-defined): this way, F s ≤∀∃ F s+1 and

As+1 ≤∀∃ Ss+1 ≤∀∃ F s+1. This concludes stage s+ 1.

Suppose we never found a (0,∞)-homogeneous chain for P at an intermediate stage,

so that we produced sequences (A0, . . . , Ak−1) and (F 1, . . . , F k−1). We claim that

B = A0 ∪ F k−1 is a solution for P . To see this, it is enough to notice that every point

of every chain is comparable with infinitely many elements of A0 ∪ F k−1: suppose

p ∈ Ci, then by construction ∃j < k(h(j) = i), so p is either above infinitely many

points of Aj or below infinitely many points of Aj. In the first case, p is above infinitely

many elements of A0, whereas in the second p is below infinitely many points of F j,

and so of F k−1. We can then set B0 = A0 and B1 = F k−1. This concludes the

proof.

Theorem 3.4.14. For every standard k ≥ 3, RCA0 ` ADS↔ RSpoCDk ↔ RSpoWk .

Proof. ADS → RSpoCDk was proved in Lemma 3.4.10, and since by Theorem 3.1.2

RSpoCD5k → RSpoWk , considering that if k is standard so is 5k all we have to do is to

show that RCA0 ` ADS → RSpoCDk for standard k. To do so, we actually prove the

stronger statements ♣k for the corresponding k.

We can suppose, by changing indices if necessary, that the chain C0 in the decompo-

sition of P is infinite (at least one of the chains has to be, since the poset is infinite).

Then, by applying ADS, we can find either a ascending or a descending sequence A in
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C0. Suppose that A is ascending, the other case being symmetric, and we let A be the

ascending sequence in the statement of ♣k. Then, to prove ♣k, all we have to do is to

go through the proof of ♣1→♣2→ · · · →♣k−1→♣k, which can be done in RCA0, since

k is standard, and so the number of stages at every step of the construction above is

standard: the proof above can be seen as a very long list of possible candidates for a

solution, together with a proof that at least one of those candidates is a solution.

3.5. The case of RSpoCD2

In the previous section, we settled the question about the strength of RSpoWk and of

RSpoCDk for each k ≥ 3. As happens with Ramsey’s theorem, RSpoW2 and RSpoCD2 are

weaker principles.

3.5.1. Bounded version of SRT2

To prove the equivalence between RSpoCD2 and SADS we will use a weakening of SRT2
2,

which corresponds to put a uniform bound on the number of oscillations of the coloring

for every first component. This is made precise in the following definition.

Definition 3.5.1. • (RCA0) Let c : [N]2 → k be a coloring. We say that c is

n-stable if for each x ∈ N it holds that |{y | c(x, y) 6= c(x, y + 1)}| ≤ n.

• For every n, k ∈ N, n-SRT2
k is the statement “Each n-stable coloring c : [N]2 → k

contains an infinite homogeneous set”.

• For every n ∈ N, n-SRT2
N stands for ∀k(n-SRT2

k).

We now gauge the strength of the principles that we stated above: although, to be

precise, only Item 1 will be used in the rest of this section, we find it interesting to

say a bit more about these new principles.

Lemma 3.5.2. 1. For each n, k ∈ ω, RCA0 proves n-SRT2
k.
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2. For each n ∈ ω, RCA0 proves that n-SRT2
N and BΣ0

2 are equivalent.

Proof. We prove Item 1 by induction on n. For the base case let c : [N]2 → k be

0-stable. For every j < k, we define Hj = {x ∈ N : c(x, x + 1) = j} for each j < k.

To check that Hj is c-homogeneous let x, y ∈ Hj; by definition on Hj it hold that

c(x, x+ 1) = j and c(y, y+ 1) = j, thus c(x, y) = j because c is 0-stable. By RT1
k there

exists j < k such that Hj is infinite.

Now, assume that the statement is true for n-stable colorings and let c : [N]2 → k be

(n+ 1)-stable.

If there is an x such that c�[N\{0,...,x}]2 is n-stable, then the coloring c�[N\{0,...,x}]2 contains

an homogeneous set H by induction hypothesis, and clearly H is c-homogeneous as

well.

Otherwise, there are infinitely many x such that |{y | c(x, y) 6= c(x, y + 1)}| = n + 1.

Then we can computably find an infinite set of such x’s and n + 1 points yx0 , . . . , y
x
n

such that c(x, yxi ) 6= c(x, yxi+1), for each i ≤ n, and such that for no other point this

property holds. For every j < k, we define Hj = {x ∈ N : c(x, yxn + 1) = j}, and by

RT1
k we can find an infinite subset of one of them, call this set H = {h0 < h1 < . . . }.

By choice of yxn, it holds that ∀y > yxn (c(x, yxn + 1) = c(x, y)), so H can be refined to

an infinite homogeneous set H̃ for c in the obvious way: at stage 0, enumerate h0 in

H̃, and at stage s + 1 enumerate the first h ∈ H such that h > yhsn . This concludes

the proof of Item 1.

Similarly to the proof of Lemma 3.1.9, the fact that BΣ0
2 implies n-SRT2

N follows from

an inspection of the proof of n-SRT2
k: all we need to do is to substitute the application

of RT1
k with one of RT1

<∞, since the number of colors can now be non-standard.

Hence, we just have to prove that 0-SRT2
N implies BΣ0

2 over RCA0, which is immediate:

given any coloring f : N→ N with range bounded by a certain k ∈ N, let c : [N]2 → k

be defined as c(x, y) = i if and only if f(x) = i. Since c is clearly a 0-stable coloring

and any c-homogeneous set is also f -homogeneous, we have the desired implication.

This concludes the proof of Item 2.
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There are still two principles that one might wish to consider: the first is ∀n(n-SRT2
N):

it can be seen that it is equivalent to IΣ0
2 over RCA0, although we do not include a

proof of this fact here.

The second principle would be ∀n(n-SRT2
k), for a certain fixed k ∈ ω. We do not

know the precise strength of this principle, but we are able to give some bounds:

clearly, it follows from the previous paragraph that it cannot be stronger than IΣ0
2,

since RCA0 ` ∀k(∀n(n-SRT2
N)→ ∀n(n-SRT2

k)). On the other hand, we also have that

∀n(n-SRT2
k) cannot be equivalent to IΣ0

2, since RCA0 ` SRT2
2 → n-SRT2

k for every

standard k, but RCA0 + SRT2
2 6` IΣ0

2 (see [13]).

We will see another principle with a similar behavior in the next Chapter.

3.5.2. SADS is equivalent to RSpoCD2 .

We now move to the proof of the equivalence between RSpoCD2 and SADS. The proof

of SADS→ RSpoCD2 is based on the following observation: the proof of Theorem 3.4.14

makes use of ADS only at the very start, i.e. to produce the ascending sequence (or,

equivalently, chain) that is then used in the rest of the argument. But, after we have

our ascending sequence, the proof of ♣2 goes through in RCA0.

The main idea of the following proof is hence to show that, in the case the poset P

has chain-decomposition-number 2, we can use SADS instead of ADS.

Theorem 3.5.3 (RCA0). SADS implies RSpoCD2 .

Proof. Let (P,<P ) be a poset and C0, C1 chains such that P = C0∪C1. Let {pn | n ∈
N} and {qn | n ∈ N} be enumerations of C0 and C1 respectively. Assume that P does

not contain (0,∞)-homogeneous chains.

We isolate two combinatorial claims that are used multiple times in the proof.

Claim 3.5.1. If there exist D ⊆ N infinite and n ∈ N such that for each d ∈ D and

for each m ≥ n it holds that pd |P qm, then P contains a (0,∞)-homogeneous chain.



3.5. The case of RSpoCD2 119

Proof. Let D ⊆ N and n ∈ N be as in the statement of the Claim. We define a

coloring f : D → 2n such that f(d) = 〈b0, . . . , bn−1〉 for bi = 0 if pd |P qi and bi = 1 if

pd GP qi, for each i < n. By RT1
<∞, which follows from SADS as proved in [12] (see

also Theorem 1.1.26), there exists a set H homogeneous for f .

We claim that S = {ph | h ∈ H} is (0,∞)-homogeneous. Notice that each element

of C0 is comparable with all elements of S, while each element of C1 \ {q0, . . . , qn−1}
is incomparable with all elements of S, since H ⊆ D. Moreover, for each i < n, qi is

either incomparable with all elements of S or comparable with all elements of S, by

homogeneity of H and by definition of f .

Claim 3.5.2. Suppose f : H → N is a function such that H ⊆ N is infinite and

ph GP qf(h), for each h ∈ H. If there exists H ′ ⊆ H infinite such that f�H′ is injective,

then P contains an ascending or descending chain.

Proof. Let f be a function with the required properties and H ′ ⊆ H be an infinite

set such that f�H′ is injective. There are either infinitely many h ∈ H ′ such that

ph <P qf(h) or infinitely many h ∈ H ′ such that ph >P qf(h). Suppose the former is

the case and let H̃ = {h ∈ H ′ | ph <P qf(h)}.

Consider the set S = {ph | h ∈ H̃}. Since S ⊆ C0, S is a linear order. If it is also stable,

then SADS finds an ascending or a descending chain in S and so in P . Otherwise,

let n ∈ H̃ be such that pn↓(C0,<P ) and pn↑(C0,<P ) are both infinite. We claim that for

each h ∈ H̃ such that pn ≤P ph, it holds that qf(h)↑(C1,<P ) is finite. Suppose this does

not hold and let qf(h)↑(C1,<P ) be infinite. Then pn↓(C0,<P ) ∪ qf(h)↑(C1,<P ) is a chain, it

contains infinitely many elements in both C0 and C1 and is thus (0,∞)-homogeneous,

contrary to the assumption.

Hence, we have proved that the set {qf(h) | pn ≤P ph, h ∈ H̃} is a descending chain.

If there exist infinitely many h ∈ H ′ such that ph >P qf(h), an analogous reasoning,

with the obvious changes, allows to get the desired conclusion.

Suppose one of the decomposition chains is finite and name it C1. By Claim 3.5.1,
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with D = N and n = |C1|, P contains a (0,∞)-homogeneous chain, contrary to the

assumption.

Suppose now both C0 and C1 are infinite. Define a coloring c : [N]2 → 4 as follows:

c(n,m) =



0 if ∀i ≤ m (pn |P qi)

1 if ∃i (n < i ≤ m ∧ pn <P qi)

2 if ∀i (n < i ≤ m→ pn ≮P qi) ∧ ∃i (n < i ≤ m ∧ pn >P qi)

3 if ∃i (i ≤ n ∧ pn GP qi) ∧ ∀i (n < i ≤ m→ pn |P qi)

Notice that, for each n ∈ N, c(n, ·) changes color at most twice. By 2-SRT2
4 (available

in RCA0, see Lemma 3.5.2) there exists an infinite homogeneous set H for c. Thanks

to H we define an ascending or descending chain in P .

We claim that H is not homogeneous for 0. Suppose on the contrary that it is and let

S = {ph | h ∈ H}. Clearly each p ∈ C0 is comparable with S, while each q ∈ C1 is

incomparable with S by the homogeneity ofH. It follows that S is (0,∞)-homogeneous

contrary to the assumption.

Suppose now that H is c-homogeneous for 1 and consider the set S = {ph | h ∈ H}.
Let f : H → N be such that, for each h ∈ H, f(h) is minimum such that h < f(h)

and ph <P qf(h). It follows straightforwardly from c-homogeneity for 1 that f is total.

Moreover, we claim that f is injective. Suppose that h < k and h, k ∈ H. Then,

again by c-homogeneity for 1 of H, there exists i < k such that ph <P qi, so f(h) < k.

Now consider c(k, j), for some j ∈ H, j > k: by c-homogeneity for color 1, there

exists r > k such that pk <P qr, so f(k) > k > f(h). By Claim 3.5.2 P contains an

ascending or descending chain.

If H is c-homogeneous for color 2, we can reason analogously, so we are left to the case

of H being c-homogeneous for color 3.

Notice that if c(h, k) = 3, for some h < k, h, k ∈ H, then there exists i ≤ h such that

ph GP qi. We consider two cases depending whether there exists n ∈ N such that, for

each h ∈ H, if ph GP qi, then i < n, or not. If the former is the case, then for each
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h ∈ H and for each m ≥ n it holds that ph |P qm and by Claim 3.5.1, with D = H, we

reach a contradiction.

If the latter is the case, it is not difficult to see that, since H is c-homogeneous for 3,

for each n ∈ N there exist h > n, h ∈ H, and i > n such that i < h and ph G qi. Define

f : H → N such that f(h) is the minimum i such that ph GP qi, for each h ∈ H. It

follows from the assumption that there exists an infinite set H ′ ⊆ dom(f) such that

f�H′ is injective. By Claim 3.5.2 P contains an ascending or descending chain.

Suppose P contains an ascending chain. Then ♣2 guarantees that there exists a (0,∞)-

homogeneous chain. If P contains a descending sequence D, then ♣2 applied on (P,>P )

and D guarantees that there exists a (0,∞)-homogeneous chain. Thus, we reach a

contradiction, and the claim is proved.

We observe that the proof above could easily be recast to a direct proof (i.e., not a

proof by contradiction). We presented it this way because we feel that the reductio ad

absurdum makes the argument somewhat more streamlined.

We now prove the reversal of the Theorem above. Again, this can be seen as a product

of a careful analysis of what happens in the case of RSpoCDk for k larger than 2.

Theorem 3.5.4. Over RCA0, SADS is equivalent to RSpoCD2 .

Proof. We are left to prove the reversal. Let (L,<L) be an infinite stable linear order.

Consider P = (L × {2}, <P ) with the product partial order (from 0 < 1). Clearly,

L× {2} has chain-decomposition-number two. Let C be (0,∞)-homogeneous and set

Ci = C ∩ (L× i) for each i < 2. By RT1
2 at least one between C0 and C1 is infinite

Suppose C0 is infinite. If each (c, 0) ∈ C0 has finitely many predecessors, then it

is possible to enumerate computably an ω chain contained in C0 and hence in L.

Otherwise, let (c, 0) ∈ C0 be such that c has infinitely many predecessors. Notice that

since L is stable, c has finitely many successors. We claim that if (c′, 0) ∈ C0, then

c′ has finitely many successors. Suppose on the contrary that (c′, 0) ∈ C0 has finitely

many predecessors. Notice that C1 must be finite, because (c, 0) has only finitely
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many successors and (c, 0) |P (d, 1) for each d <L c by definition of <P . Then (c′, 1)

is comparable with some and only finitely many elements of C, contrary to the fact

that C is (0,∞)-homogeneous. This proves that each element of C0 has finitely many

successors and so it is an infinite ascending chain contained in C0 and hence in L,

which can then be refined to an infinite ascending sequence.

If C1 is infinite and each element of C1 has finitely many successors, then C1 is an

infinite descending chain. Otherwise, arguing as in the previous paragraph it is possible

to show that C1 contains an infinite ascending chain. Since, as above, SADC is equiva-

lent to SADS over RCA0, the Theorem is proved.

Corollary 3.5.5. Over WKL, SADS is equivalent to RSpoW2 .

Proof. Let (P,<P ) be a poset of width two. By Dilworth’s theorem let C0 and C1 be

chains such that P = C0 ∪ C1. By Theorem 3.5.3 P contains a (0,∞)-homogeneous

chain.

Since the partial order (L × 2, <P ) defined in the proof of Theorem 3.5.4 has width

two, the same argument provides a reversal for RSpoW2 as well.

As a consequence of the previous theorem we get that RSpoW2 is strictly weaker than

ADS, since ADS and WKL+SADS are incomparable (see [39], Corollaries 2.16 and 2.28),

and not computably true. We do not know whether RSpoW2 is equivalent to SADS over

RCA0 as well or whether it lies strictly in between SADS and ADS, although we do

know that it has ω-models consisting of low sets, as a consequence of the fact that the

theory WKL0 + SADS has such models (again, this follows from results from [39]).

Question 3.5.6. Over RCA0, is SADS equivalent to RSpoW2 ?

3.6. Beyond RSpoCD and RSpoW

In the previous sections, we were able to characterize the strength of all the principles

of type RSpoCDk and RSpoWk , for k ∈ N ∪ {< ∞} (with the exception of RSpoW2 ), but
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we have so far said little about sRSpoCDk and sRSpoWk . In this section, we will try to

say something more on this subject, although, as we shall see, we will not be able to

find satisfactory bounds for the strength of the vast majority of the strong Rival-Sands

principles.

We will focus on two different directions: first we analyze the principle sRSpoCD2 , and

show that RCA0 + IΣ0
2 ` ADS→ sRSpoCD2 and RCA0 ` sRSpoCD2 → ADS. Although this

is clearly a limited result, we will show that it has some interesting consequences.

Secondly, we consider sRSpoCD<∞: although we are unable to provide a proof of it in a

system weaker than Π1
1-CA0, we will succeed in providing a proof in that system of a

more general principle, which we shall call sRSpoN.

3.6.1. sRSpoCD2

We start by proving that sRSpoCD2 implies ADS over RCA0. This is achieved with a

proof similar to that of Lemma 3.4.10.

Theorem 3.6.1 (RCA0). RCA0 ` sRSpoCD2 → ADS.

Proof. Let (L,<L) be a linear order and let P = (L × {2}, <P ) the order on the

Cartesian product of L, so that (`, i) <P (m, j) ⇔ ` <L m ∧ i < j. Such a poset

clearly has chain-decomposition-number 2, so let C ⊆ P be (0, cof)-homogeneous. For

each i < 2 set Ci = C ∩ (L× {i}).

We claim that if C0 is infinite, then C0 has no minimum, and can thus be refined

to a descending chain. Suppose on the contrary that C0 is infinite and that (m, 0) is

minimum in C0. By definition of <P it holds that (m, 0) <P (m, 1) and (n, 0) |P (m, 1),

for each n >L m. It follows that (m, 1) is comparable with some elements of C and

incomparable with infinitely many elements of C, contrary to the assumption that C

is (0, cof)-homogeneous.

Similar reasoning allows us to prove that if C1 is infinite, then C1 has no maximum,

and hence that L contains an ascending chain.
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This theorem has several interesting consequences.

Corollary 3.6.2. 1. For each k ≤ 2, sRSpoWk and sRSpoCDk imply ADS over RCA0.

2. (RCA0) Let us fix a k ∈ N, and let (P,<P ) be a partial order of chain-

decomposition-number k. Then, sRSpoCDk implies that P has an infinite ascending

sequence that is (0,∞)-homogeneous (and hence (0, cof)-homogeneous) for P .

Proof. Item 1 follows immediately from Theorem 3.6.1 and Lemma 3.1.5

We apply sRSpoCDk to the poset P , thus obtaining an infinite (0, cof)-homogeneous

C ⊆ P . Next, we notice that any infinite subset C ′ ⊆ C is still (0, cof)-homogeneous

for P . To see this, let us consider any element p ∈ P : if p was comparable with no

element of C, then of course p is comparable with no element of C ′; if instead p was

comparable with cofinitely many elements of C, there were only finitely many elements

of C p was not comparable with. Hence, there are at most finitely many elements of

C ′ that are not comparable with p, which proves that C ′ is (0, cof)-homogeneous for

P .

Since by Item 1 sRSpoCDk implies ADS, we can find an infinite ascending sequence in C,

call it S, and by the previous paragraph this is still an infinite (0, cof)-homogeneous

chain for P .

In essence, Item 2 above tells us that we do not lose in generality if we restrict our

search for (0, cof)-homogeneous chains to ascending chains, which is an interesting fact.

Moreover, we point out, on a more qualitative level, that Theorem 3.6.1 is enough to

conclude that sRSpoCD and RSpoCD are not, so to speak, the same principle: in fact,

we proved in the previous section that RCA0 ` SADS ↔ RSpoCD2 , whereas we now

know that RCA0 ` sRSpoCD2 → ADS.

Finally, we give an upper bound on the strength of sRSpoCD2 .

Lemma 3.6.3. ADS + IΣ0
2 ` sRSpoCD2
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Proof. Let P be an infinite poset with chain-decomposition-number 2. We assume for

the sake of simplicity that every n ∈ N is in P . Using ADS, we can find either an

ascending or a descending chain A in it: as usual, we suppose that it is ascending, the

other case being similar. By refining A if necessary, we can suppose that A ⊆ C0.

We will use the function f defined in Lemma 3.4.7. Let S be the set of strings

{1, 10, 101, 1010, . . . }, and, for i > 0, let σi be the element of S of length i. There are

two cases: either for every i and for every d there is an n such that (d, n, i) ∈ f(σi, n+1),

or not. We will find a (0, cof)-homogeneous chain in both cases.

Suppose first that we are in the latter case: then, by IΣ0
2, there is a minimal i such

that for some d, for every n it holds that (d, n, i) /∈ f(σi, n + 1). Notice that i > 0.

Then, let B be the set {n : ∃d ≤ n((d, p, i − 1) ∈ f(σi, n)). Then, B is an ascending

sequence, it is infinite by the definition of i, and a tail of it is (0,∞)-homogeneous by

Lemma 3.4.5 Item 1. Hence, that tail is (0, cof)-homogeneous.

Next, suppose that for every i and for every d there are a p and an n such that (d, p, i) ∈
f(σi, n). In this case, as B we consider the set {n : ∃i ≤ n((0, n, i) ∈ f(σi, n + 1))}.
The hypotheses of this case (and IΣ0

2) guarantee that B is infinite. Moreover, it is

an ascending sequence, since by construction {(0, n, i), (0,m, i + 1)} ∈ f(σi+1,m+ n)

implies n <P m. Moreover, B ∩ C0 and B ∩ C1 are both infinite. To show that B is

(0, cof)-homogeneous we can then argue as in the final part of the previous Theorem:

B is ascending and (0,∞)-homogeneous, since there can be no counterexample to it

thanks to the fact that B∩C0 and B∩C1 are infinite, so B is (0, cof)-homogeneous.

We end this subsection by saying that the result above actually extends to sRSpoW2 ,

although we will not give the proof here.

3.6.2. sRSpoN

So far, we have only studied partial orders (P,<P ) of finite width, i.e. posets such

that the size of all the antichains is bounded by a certain number k: after all, it is
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immediately seen that there are posets of infinite width without infinite antichains, let

alone infinite (0,∞)-homogeneous chains.

There is, however, an intermediate case: we could simply ask that the poset P does

not have infinite antichains. In this section, we will show that sRSpoCD extends to this

case as well, and we will prove this in Π1
1-CA0.

Definition 3.6.4. sRSpoN is the following statement: “for every partial order

(P,<P ) without infinite antichains, there is an infinite chain C ⊆ P that is (0, cof)-

homogeneous for P .

Clearly, RCA0 ` sRSpoN → sRSpoW<∞, hence sRSpoN implies, over RCA0, all the Rival-

Sands principles that we have examined so far in this chapter.

In order to prove the result, we will need to introduce some concepts related to the

structure of partial orders.

Definition 3.6.5. (RCA0) Let (P,<P ) be a partial order.

• A set A ⊆ P is said to be a strong antichain in P if A is an antichain with the

additional property that for every distinct a0, a1 ∈ A there is no p ∈ P such that

p >P a0 and p >P a1.

• A set I ⊆ P is an ideal of P if I↓(P,<P ) = I and for every i0, i1 ∈ I there is i2 ∈ I
such that i2 ≥P i0 and i2 ≥P i1.

• We say that P is an essential finite union of ideals if there are k ∈ N and ideals

I0, . . . , Ik−1 such that P =
⋃
j<k Ij and moreover ∀j < k

(
Ij 6=

⋃
l<k,l 6=j Il

)
.

We will make use of the following result.

Theorem 3.6.6. [[29], Lemma 3.3 and Theorem 4.1] (ACA0) Let (P,<P ) be a partial

order. Then, the following are equivalent:

• P does not contain infinite strong antichains.
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• P is an essential finite union of ideals.

We now move to the proof of the main result.

Theorem 3.6.7. Π1
1-CA0 ` sRSpoN.

Proof. Let (P,<P ) be a partial order without infinite antichains. By CAC, P contains

an infinite chain C, and by ADS applied to C there is an infinite ascending or

descending sequence S ⊆ C. We assume that S is ascending, the other case being

symmetrical.

We then consider the following set P̃ :

P̃ = {p ∈ P : p↑(P,<P ) is reverse ill-founded}.

Since being reverse ill-founded is a Σ1
1 condition, we can build the set P̃ using Π1

1-CA0

(see Theorem 1.1.13). Since S ⊆ P̃ , P̃ is infinite, and in particular non-empty.

Since P̃ ⊆ P , the poset (P̃ , <P ) does not have infinite antichains, so in particular

it does not have infinite strong antichains. Hence, by Theorem 3.6.6 (which we can

use since we are working in a system stronger than ACA0), we can assume to have an

essential finite ideal decomposition of P̃ , say given by the ideals I0, . . . , Ik−1.

We notice that none of the Ij has a maximal element. Suppose for a contradiction

that ij is a maximal element of Ij, i.e. ∀i ∈ Ij(i ≤P ij). Since ij ∈ P̃ , there is an

ĩ ∈ P̃ \ Ij such that ĩ >P ij. Let l < k be such that ĩ ∈ Il, then it would follow that

Ij ⊆ Il, which contradicts the properties of the ideals we are considering.

From the previous paragraph, it follows that every Ij is infinite. Let us enumerate I0

as {i0, i1, . . . }. We define an ascending sequence C := {c0 <P c1 . . . } as follows: let

c0 := i0 and cn+1 := imin{l:il>P cn,il>P in}. The fact that a cn+1 as we want exists follows

from the properties of ideals and the fact that I0 has no maximal element.

Finally, we claim that at least one tail of C is (0, cof)-homogeneous for P . Since C

is an ascending sequence, it is enough to verify that at least one tail of C is (0,∞)-

homogeneous (see Remark 3.1.7). Suppose for a contradiction that it is not, then
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by Lemma 3.3.6 there is an infinite ascending sequence D := {d0, d1, . . . } that is a

counterexample sequence to C.

Let l be such that for infinitely many i’s di ∈ Il. Then, clearly, D ⊆ Il, since D is a

chain. But by the definition o f C, it follows that I0 ⊆ D ↓(P̃ ,<P ), which contradicts

our assumption that P̃ is the essential union of the Ij’s.

We are not able to precisely gauge the strength of sRSpoN. Anyway, we can observe

that a lower bound to it is given by CAC: given any poset P , it either has an infinite

antichain, or it satisfies the hypotheses of sRSpoN, and hence contains an infinite chain.

3.7. A remark on cardinalities

Up to this point, due to the reverse mathematical approach we stuck to, we have only

dealt with countable structures. It is, anyway, legitimate to ask whether there are any

analogues to the principles we studied in this chapter and the previous one if we were

to drop the requirement that graphs and posets be countable.

These questions were asked, and largely answered, in [30]: for instance, in the case

of RSg, the shape that a possible extension to that theorem can have for graphs of

cardinality κ strongly depends on the regularity of κ.

Theorem 3.7.1 ([30], Theorems 1 and 2). • Let κ be an infinite regular cardinal

and let (G,E) be a graph with |G| = κ. Then, there exists a set H ⊆ G such

that |H| = κ and such that for every element g ∈ G, there are 0, 1 or κ many

elements of H adjacent to g.

• If κ is a singular cardinal, the previous result does not hold. However, for every

graph (G,E) with |G| = κ and for every α < κ, we can find a set H ⊆ G such

that |H| = κ and for every g ∈ G, g is adjacent to 0, 1 or at least α many

elements of H.

The situation for RSpoW and sRSpoW is slightly more complicated: after all, other

than removing the limitations on the size of the poset P , one could ask for instance if
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we can also relax the condition on the width of the poset, or how liberal one can be

when it comes to deciding what the analogues of (0,∞)- and (0, cof)-homogeneity are

in this setting.

To start addressing these questions, we give the following definition,which generalizes

the concept of (0,∞)-homogeneity.

Definition 3.7.2. Let κ be an infinite cardinal and let (P,<P ) be a partial order with

|P | = κ. We say that a chain C ⊆ P is (0, κ)-homogeneous for P if every element

p ∈ P is comparable with 0 or at least κ many elements of C.

As one can easily see, (0,∞)-homogeneity is just (0, κ)-homogeneity when κ = ω.

We start by seeing what happens with the “obvious” analogues of RSpoW: that is,

we want to see if, given a poset of size κ but of finite width, we can find a (0, κ)-

homogeneous chain of size κ. Again, regularity seems to play a prominent role.

Theorem 3.7.3 ([30], Theorems 3 and 4). • Let κ be an infinite regular cardinal,

and let (P,<P ) be an infinite poset of finite width with |P | = κ. Then there is a

chain C ⊆ P such that |C| = κ which is (0, κ)-homogeneous for P .

• Let κ be a singular cardinal. Then, there is a poset (P,<P ) of width 2 and with

|P | = κ such that it has no (0, κ)-homogeneous chains.

We now turn our attention to analogues of sRSpoW: in this case, there are at least

two approaches that seem legitimate: given a poset (P,<P ) of size κ, we could look

for (0, cof)-homogeneous chains of size κ (notice that the definition given in second-

order arithmetic still makes sense in this context), or, less restrictively, we could look

for a chain C of size κ such that every point p ∈ P is incomparable with either all

the elements of C or less than κ many elements of C (notice that, in this second

formulation, we would get (0, cof)-homogeneity if we put κ = ω). In the next lemma,

we show that none of this approaches leads to an interesting principle if cof(κ) > ω.

Lemma 3.7.4. Let κ be an infinite cardinal such that cof(κ) > ω. There exists a

poset (P,<P ) with |P | = κ and with w(P ) = 2 such that for every chain C ⊆ P with
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|C| = κ such that C is (0, κ)-homogeneous for P , there is a pC ∈ P such that pC is

comparable with κ many points of C and is not comparable with κ many points of C.

Proof. We consider the following partial order (P,<P ): let P be the set κ×ω×2, and

set (α, n, i) <P (β,m, j) if and only if:

• i = j, n = m and α < β, or

• i = j and n < m, or

• i = 0, j = 1 and n < m, or

• i = 1, j = 0 and n < m+ 1, or

• i = 0, j = 1, n = m and α < β, or

• i = 1, j = 0, n = m+ 1 and α < β.

It is not too difficult to verify that this relation is indeed a partial order. The idea is

that (P,<P ) is made up of two interleaving chains, each of order type κω.

In the following, we will call Pn,i the sets {(α, n, i) ∈ P : α < κ}.

Notice that P contains (0, κ)-homogeneous chains of size κ: for instance, the set

{(α, n, i) : α < κ, n ∈ {0, 1}, i = 0} is such a chain, as can be easily verified.

Let C be a (0, κ)-homogeneous chain of size κ. Since we are assuming that cof(κ) > ω,

there is at least one n ∈ ω and an i < 2 such that |Pn,i ∩ C| = κ.

Suppose for a contradiction that there is a unique n ∈ ω and a unique i < 2 such that

|Pn,i ∩ C| = κ. Let β be the least ordinal γ such that (γ, n, i) ∈ C. Then there are

two cases:

• if i = 0, (β, n, 1) >P (β, n, 0) and (β, n, 1)|P c for every other element of C ∩Pn,0;

but then, (β, n, 1) is comparable with fewer than κ many elements.

• If i = 1, (β, n + 1, 0) >P (β, n, 1) and (β, n + 1, 0)|P c for every other element of

C; but then, (β, n+ 1, 0) is comparable with fewer than κ many elements.
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Both cases contradict our hypothesis that C is (0, κ)-homogeneous for P .

We make now an observation that will be useful later: by the definition of P , it holds

for all n and i that if |Pn,i ∩ C| = κ, then |Pn,1−i ∩ C| < κ.

We are now ready to find the point pC we are looking for. Let n ∈ ω be minimal such

that there is an i < 2 such that |Pn,i ∩ C| = κ, and let let m be the minimal number

larger than n with the same property: say that |Pm,j ∩ C| = κ. Notice that such an

m has to exists, thanks to the observation above.

Let β be the minimal γ such that (γ, n, i) ∈ Pn,i ∩ C. Again, there are two cases:

• if i = 0, we set pC = (β, n, 1).

• If i = 1, we set pC = (β, n+ 1, 0).

In both cases, pC is incomparable with every element (bar one) of Pn,i ∩ C, and is

comparable with every element of Pm,j ∩ C. Hence, there are κ many elements of C

such that pC is incomparable with them as well as κ many elements of C that pC is

comparable with. This concludes the proof of the lemma.

We still do not know whether the result above can be extended to cardinals with

cofinality ω.

Finally, we can ask what happens if we relax the requirement on the width of the

poset. Again, at least in the case of cardinals with cofinality larger than ω, there seem

to be no obvious analogue of RSpoW.

Theorem 3.7.5 (essentially [30], Theorem 5). Let κ be an infinite cardinal with

cof(κ) > ω. Then there is a poset (P,<P ) of cardinality κ with no infinite antichains

that has no (0, κ)-homogeneous chains of size κ.

Again, we do not know what happens in the case of cofinality ω.
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4. Some asymmetric Ramseyian

principles

In this Chapter, we deal with some Ramseyan principles that can be regarded, in some

sense, as being asymmetric: the principles we are going to consider have as instances

colorings f : [N]n → 2 such that we require that no infinite f -homogeneous set has

color 1. Hence, we can say that there is a strong asymmetry between the color 0 and

the color 1.

This Chapter is divided in two parts. The first, corresponding to Section 4.1, deals with

what we might consider to be the most fundamental form of an asymmetric Ramsey’s

theorem: we study the principles bRTnk , which are the restrictions of Ramsey’s theorem

for n-tuples and two colors to the instances f such that the size of the f -homogeneous

sets for color 1 is bounded by the number k. We start by studying these principles

from the point of view of reverse mathematics: in Subsection 4.1.1, we prove that,

if n > 3, then bRTnk is equivalent to ACA0 over RCA0. This leaves open the cases of

n = 2 and n = 3 (since bRT1
k is easily seen to be provable in RCA0). We give some

bounds for the strength of both: we first prove that every instance of bRT2
k is provable

in RCA0 + IΣ0
2, which in particular implies that bRT2

k is computably true, and then

show that bRT3
k implies RT2

2 but not ACA0. This last result, which can be found in

Subsection 4.1.2, relies on a general framework recently developed by Ludovic Patey in

[58], to which we give a minimal introduction. Finally, we focus on the complexity of

the solutions for the principles bRTnk by analyzing the closely related principle uRTn.

We point out that the results of this Section are joint work with Emanuele Frittaion,

with some important contributions by David Belanger and Keita Yokoyama.
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In the second part, corresponding to Section 4.2, we analyze another, and arguably

historically more relevant, form of asymmetric Ramsey’s theorem, namely the result

that ω2 is a partition ordinal. Partition ordinals arise quite naturally in the pursuit to

generalize Ramsey theory to ordinals larger than ω, and were studied by combinatorial-

ists of the caliber of Erdős (see e.g. [25]). After a brief, largely historical introduction

in Subsection 4.2.1, in Subsection 4.2.2 we give two formalizations in second-order

arithmetic of the theorem ω2 −→ (ω2, 3) (we will explain this notation in due course),

namely SPL3 and SSPL3. We then examine two classical proofs of the theorem in

Subsection 4.2.3, and see that one of them can be modified to show that SPL3 and

SSPL3 are both provable in ACA0. Finally, in Subsection 4.2.4, we give some initial

results on the study of the complexity of the solutions of SPL3 and SSPL3.

4.1. Bounded Ramsey’s theorem

In this section, we will focus on principles that can be seen as forms of RTn2 where we

put some bounds on the size of the homogeneous sets for one of the two colors. As we

pointed out in the introduction to this Chapter, this is joint work with Emanuele

Frittaion (with contributions of Keita Yokoyama and David Belanger), and, as a

project, can still be considered to be in its initial phases.

4.1.1. Reverse Mathematics of bRT

Let us define the principles we will be studying in this section.

Definition 4.1.1. • for every n ≥ 2 and k ≥ n, bRTnk is the statement “for every

coloring f : [N]n → 2 such that for every f -homogeneous H ⊆ N with |H| ≥ k

f([H]2) = 0 holds there is an infinite f -homogeneous set”.

• for every n, bRTn is the statement “for every coloring f : [N]n → 2, if for

some k ∈ N every finite set H ⊆ N with |H| = k that is f -homogeneous is

f -homogeneous for 0, then there is an infinite f -homogeneous set”.
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We make one remark to the definition above: there would have been no harm in

including the case n = 1 in the definition, but since both bRT1 and bRT1
k are immedi-

ately seen to be consequences of RT1
2, we exclude this case and focus only on the

non-trivial principles.

We start by analyzing the behavior of the principles we just introduced in the reverse

mathematical context. Some facts are immediately clear, and we present them without

proof.

Lemma 4.1.2. The following can be proved in RCA0:

1. for every n ≥ 2, bRTnn holds.

2. for every l > k > n ≥ 2, bRTn → bRTnl → bRTnk

3. for every n ≥ 2, RTn2 → bRTn.

As we will see (and rather unsurprisingly), the exponent n is of utmost importance

when determining the strength of the principles bRTnk . We start with the simplest

non-trivial case, i.e. that of n = 2.

Lemma 4.1.3. RCA0 + BΣ0
2 ` bRT2

3

Proof. Let f : [N]2 → 2 be such that there are no f -homogeneous sets for color 1 of

size 3. There are two cases:

1. First, we suppose that there is x ∈ N such that for for infinitely many y f(x, y) =

1. Then, we claim that the set H := {y ∈ N : f(x, y) = 1} is an infinite

f -homogeneous set (for color 0). H is infinite by our assumption on x. Now,

suppose for a contradiction that we can find y0, y1 ∈ H such that f(y0, y1) = 1:

then, the set {x, y0, y1} would be an f -homogeneous set for color 1, which gives

us the required contradiction.

2. We can then assume that no x as above exists: hence, for every x, limy→∞ f(x, y)

exists and equals 0. Then, it follows from BΣ0
2 that for every finite set F that is
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f -homogeneous for color 0, we can find a y such that F∪{y} is f -homogeneous for

color 0. Hence we can recursively build an infinite f -homogeneous set H =
⋃
Hi

by starting with a pair of numbers a, b such that f(a, b) = 0 as H0 and then

settingHs+1 := Hs∪{x}, where x is minimal such thatHs∪{x} is f -homogeneous

for 0.

BΣ0
2 is also sufficient to pass from bRT2

k to bRT2
k+1.

Lemma 4.1.4. RCA0 + BΣ0
2 ` ∀k(bRT2

k → bRT2
k+1)

Proof. The proof is similar to the one of the Lemma above. Let f : [N]2 → 2 be a

coloring without f -homogeneous sets of size k+1. Suppose at first that there is an x ∈
N such that for for infinitely many y f(x, y) = 1. Let X := {y ∈ N : f(x, y) = 1}. The

set X is infinite by our assumption, and if H ⊂ X with |H| = k and is f -homogeneous,

then it is f -homogeneous for 0: if it was f -homogeneous for 1, then H ∪ {x} would

be f -homogeneous for 1 and would have size k + 1, which is a contradiction. We can

then apply bRT2
k to f�[H]2 to obtain an infinite f -homogeneous set.

If there is no x as above, then we can repeat the argument of Item 2 of the Lemma

above to construct an infinite f -homogeneous set.

We do not known whether any of the Lemmas above reverses. Moreover, it is also

unclear whether RCA0 ` bRT2
k → bRT2

k+1 holds: the difficulty here is, essentially, Item

2 of Lemma 4.1.3 above, where removing the use of BΣ0
2 does not seem easy.

The two Lemmas above are anyway enough to yield some immediate consequences:

Corollary 4.1.5. For every standard k, RCA0 + BΣ0
2 ` bRT2

k. Hence, for every

standard k, REC is a model of bRT2
k.

We now turn out attention to the more general case of bRT2. First of all, we show

that RCA0 does not imply it. The combinatorial argument used in the proof will be a

major tool in the rest of this section.
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Lemma 4.1.6. RCA0 + bRT2 ` BΣ0
2

Proof. Let g : N → N be a function of bounded range, with bound, say, k, for a

certain k ∈ N. By Theorem 1.1.20, it suffices to prove that there exists an infinite

g-homogeneous set. We define a function f : [N]2 → 2 as follows: for every x < y, we

put f(x, y) = 0 if g(x) = g(y), and f(x, y) = 1 otherwise.

We claim that for every finite set H of size k + 1, if H is f -homogeneous, then it is

f -homogeneous for color 0. Suppose for a contradiction that this is false, and so let

H ′ = {h0, . . . , hk} be an f -homogeneous set for 1 of size k+ 1. But since RCA0 proves

that for every k there is no injection from k+ 1 to k, there are i, j ≤ k with i 6= j such

that g(hi) = g(hj). Hence f(hi, hj) = 0, which contradicts our assumption on H ′.

Hence, we can apply bRT2 to f : let H be an infinite f -homogeneous set. Since it is

f -homogeneous for 0, by definition of f , it is also an infinite g-homogeneous set.

Again, we do not know if this implication can be reversed. The best known upper

bound on the strength of bRT2 is given by the following lemma, which we obtained

with the help of Keita Yokoyama. In order to do this, we will use the Erdős-Rado tree

associated to a coloring f .

Definition 4.1.7. (RCA0) Let f : [N]n → k be a coloring, for some non-zero n, k ∈ N.

The Erdős-Rado tree associated to f is the tree T f ⊆ N<N defined as follows. For every

string σ ∈ N<N, σ ∈ T f if and only if, the following three conditions hold:

1. (0, . . . , n− 2) v σ or σ v (0, . . . , n− 2),

and if |σ| > n− 1, for all s < |σ|, σ(s) is the such that

2. for all m < s, σ(m) < σ(s),

3. for all m1 < m2 < · · · < mn−1 < m ≤ s, f(σ(m0), . . . , σ(mn−1), σ(m′)) =

f(σ(m0), . . . , σ(mn−1), σ(s)), and
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4. there is no x < σ(s) such that for all m1 < m2 < · · · < mn−1 < s,

f(σ(m0), . . . , σ(mn−1), x) = f(σ(m0), . . . , σ(mn−1), σ(s)).

The fundamental property of T f is that, if g ∈ [T f ], then ran g is an infinite prehomo-

geneous set for f , i.e. an infinite set P ⊆ N such that for every a ∈ [P ]n−1 and every

x, y ∈ P \ [0, . . . ,max a], f(a ∪ {x}) = f(a ∪ {y}).

We give an intuition of why this is the case under the assumption that the domain of

f is [N]2 (which, on the other hand, is the only case we are going to care about in this

thesis): (0) can be regarded as the root of T f , since it is the only successor of ∅ by

definition. Then, suppose that f(0, 1) = 0 and f(0, 2) = 1: by checking the definition,

it is clear that (0, 1) and (0, 2) are both in T f , but that for instance (0, 1, 2) is not.

Hence, from now on, a number j will be put in the tree T f above 1 if f(0, j) = 0,

and above 2 if f(0, j) = 1 (although it is maybe not immediately obvious why every

number should appear in T f : we will show it in the Lemma below). It is then clear

that for every g ∈ T f and every x ∈ ran g, f(0, x) only depends on g(1), namely it

only depends on whether g extends (0, 1) or (0, 2). We could argue in a similar fashion

for every level of the tree.

For completeness, we give a proof of the fact that RCA0 is enough to prove that T f is

infinite and finitely branching.

Lemma 4.1.8 (Essentially [66], Lemma III.7.4 and [36], page 81). (RCA0) For every

coloring f : [N]n → k, T f is finitely branching and infinite.

Proof. To show that T f is finitely branching, it is enough to observe that every string

σ ∈ T f has at most one successor for every function g : [ranσ]n−1 → k.

To prove that T f is infinite, we prove that for every j ∈ N there is a string σ ∈ T f such

that σa(j) ∈ T f . Suppose for a contradiction that this is false. Then, by definition,

j > n− 2. Then, we notice that the string (0, . . . , n− 2)a(j) would satisfy Items 1, 2

and 3 of the Definition above. Hence, since by our assumption (0, . . . , n−2)a(j) 6∈ T f ,
it means that j is not the minimal number satisfying those properties, i.e. there is a

j′ < j such that f(0, . . . , n− 2, j′) = f(0, . . . , n− 2, j).
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Let T fj be the finite subtree of T f such that σ ∈ T fj if and only if σ ∈ T f and

∀i < |σ|(σ(i) < j). Let us enumerate T fj as {σ0, . . . , σ|T fj |−1} in such a way that

for every i, i′ < |T fj |, if σi v σi′ , then i ≤ i′. Let h < |T fj | be maximal such that

σah (j) satisfies Items 1, 2 and 3 of the Definition above. Such an h has to exists by

the observations made in the previous paragraph. Then, we claim that σah (j) ∈ T f .
To see this, suppose for a contradiction that σah (j) 6∈ T f : since by assumption σah (j)

satisfies Items 1, 2 and 3, this means that there is a j′ < j such that σah (j′) ∈ T f

and for all m1 < m2 < · · · < mn−1 < m ≤ |σh|, f(σh(m0), . . . , σh(mn−1), σah (j′)(m)) =

f(σh(m0), . . . , σh(mn−1), j).

Then, this means that σah (j′)a(j) would be an extension of σah (j′) satisfying Items 1,

2 and 3: to see that Item 3 is satisfied, notice that for all m1 < m2 < · · · < mn−1 <

m ≤ |σh|+ 1:

• if m < |σh|+ 1, then by the previous paragraph

f(σah (j′)a(j)(m0), . . . , σah (j′)a(j)(mn−1), σah (j′)a(j)(m))

= f(σah (j′)(m0), . . . , σah (j′)(mn−1), σah (j′)(m))

= f(σah (j′)(m0), . . . , σah (j′)(mn−1), j)

= f(σah (j′)a(j)(m0), . . . , σah (j′)a(j)(mn−1), j),

as we wanted, and

• if m = |σh|+ 1, then obviously

f(σah (j′)a(j)(m0), . . . , σah (j′)a(j)(mn−1), σah (j′)a(j)(m)) =

f(σah (j′)a(j)(m0), . . . , σah (j′)a(j)(mn−1), j)

This contradicts the minimality of h, and hence proves the Lemma.

We are now ready to give the upper-bound on the strength of bRT2.

Lemma 4.1.9. RCA0 + IΣ0
2 ` bRT2



140 4. Some asymmetric Ramseyian principles

Proof. Let f : [N]2 → 2 be a coloring such that for a certain number k every f -

homogeneous set of size k is f -homogeneous for 0, and let T f be the Erdős-Rado tree

associated to f . We fix an enumeration {σ0, σ1, . . . } of it with the property that if

σi v σi′ , then i ≤ i′.

Since by our assumption there are infinitely many s such that for no i0, . . . , ik−1 < |σs|
{σ(i0), . . . , σ(ik−1)} is f -homogeneous for 1, we can use IΣ0

2 (see Theorem 1.1.16)

to find the least h ≤ k such that for infinitely many s for no i0, . . . , ih−1 < |σs|
{σ(i0), . . . , σ(ih−1)} is f -homogeneous for 1.

From now on, to make the exposition more streamlined, we will use the following

convention: for every s,m ∈ N, with m > 1 the formula ϕ(s,m) stands for “for no

i0, . . . , im−1 < |σs| {σ(i0), . . . , σ(im−1)} is f -homogeneous for 1” (notice that for m = 0

or 1 the formula would make no sense). For instance, then, h above is defined as the

least number such that for infinitely many s ϕ(s, h) holds.

Clearly, if 1 < n < m, ϕ(s, n) implies ϕ(s,m), and RCA0 is enough to prove this.

Notice that necessarily h > 1. On the other hand, if h = 2, then we are done: the set

S2 of indices s such that ϕ(s, 2) holds is an infinite ∆0
1 set, so we can prove its existence

in RCA0. Moreover, by the definition of T f , for every s, t ∈ S2 with s < t, it holds

that σs v σt: to see this, suppose this was not the case, and suppose that there are

s, t ∈ S2 with s < t such that σs 6v σt: then, σt 6v σs also holds by the way we defined

the enumeration of T f . Let σr be the longest segment they have in common (notice

that σr 6= ∅, since (0) v σr). But then, by the definition of T f , we can conclude that

f(σr(|σr| − 1), σs(|σr|) 6= f(σr(|σr| − 1), σt(|σr|). Hence, at least one of these values is

1, contradicting the definition of S2. Then, we can define the set
⋃

ran(σi) in RCA0,

which is an infinite f -homogeneous set.

Hence, we are left with the case that h > 2. By minimality of h, for every 1 < h′ < h

there are only finitely many s such that ϕ(s, h′) holds. By BΣ0
2, we can find a t such

that for every s ≥ t ¬ϕ(s, h− 1) holds. Let n be the maximal length of a string σr for

r < t.

Let Sh be the set of numbers s > t such that |σs| ≥ n+ 1 and ϕ(s, h) holds. As for S2
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above, this set is infinite and ∆0
1. For every s ∈ Sh, we define g(s) = τ , for τ ∈ Nn+1,

if τ v σs. Since RCA0 proves that g takes finitely many values (namely, 2n+1), it also

proves that g has bounded range, and so by BΣ0
2 there is an infinite set H ⊆ N that is

g-homogeneous, and let τ ′ be the string g(H).

Since T f is a tree, it follows that τ ′ ∈ T f , so let τ ′ be σq for some q ∈ N. Since

|τ ′| > n, it follows that ¬ϕ(q, h − 1) ∧ ϕ(q, h) holds, and the same holds for every

s ∈ H. Hence, similarly to what we did for S2, by the way T f is defined, we can

conclude that for every s, r ∈ H, if s < r then σs v σr. Hence, again similarly to the

case h = 2, we can conclude that
⋃
s∈H ran(σs) \ ran(τ ′) is an infinite f -homogeneous

set: to see this, recall that, by the discussion right before Lemma 4.1.8,
⋃
s∈H ran(σs) is

an infinite prehomogeneous set for f . Hence, to refine it to an infinite f -homogeneous

set, we have to remove the points x ∈
⋃
s∈H ran(σs) such that f(x, y) = 1 for some

y ∈
⋃
s∈H ran(σs) with y > x. But by how we defined τ ′, all those points are in

ran(τ ′).

We know that the Lemma above admits no reversal: since bRT2 is a consequence

of RT2
2 and by the results of [15] RT2

2 does not imply IΣ0
2 over RCA0, it follows that

RCA0 + RT2
2 6` IΣ0

2. We are currently unable to show whether, as seems likely, bRT2 is

equivalent to BΣ0
2 over RCA0: we do not know what the precise strength of bRT2 over

RCA0 is.

There is a rather substantial literature on combinatorial principles weaker than IΣ0
2,

and among these principles the so-called Ramsey theorem for singletons on trees,

denoted TT1, is of particular interest: introduced in [24], where it was also proved that

RCA0+IΣ0
2 ` TT1 and RCA0 ` TT1 → BΣ0

2, it was shown in [16] that RCA0+BΣ0
2 6` TT1

(and it was later shown, in [14], that TT1 is also strictly weaker than IΣ0
2). Although it

does not seem that the techniques developed for TT1 are easily applicable to the case

of bRT2, it would be interesting to investigate what the precise link between these two

principles is.

However, we have another result concerning the strength of bRT2.

Theorem 4.1.10. RCA0 ` EM→ bRT2



142 4. Some asymmetric Ramseyian principles

Proof. Let f : [N]2 → 2 be a coloring such that for some k, if F has size k and F

is f -homogeneous, then it is f -homogeneous for 0. We define the following binary

relation R on N: for numbers x < y, we set xRy if f(x, y) = 0, and yRx otherwise.

(N, R) is a tournament, since for every pair of points x, y ∈ N either xRy or yRx holds,

and R is antireflexive. Hence, we can apply EM to obtain an infinite set D on which

R is transitive. In particular, (D,R) is a linear order.

Now, we define the binary relation ≺ on D as follows: for every x, y ∈ D, we let x ≺ y

if and only if x < y and xRy (i.e. f(x, y) = 0). It is easy to check that (D,≺) is a

partial order.

We notice that D, when seen as a partial order, cannot have antichains of size larger

than k − 1: suppose for a contradiction that there is an antichain A = {a0 < a1 <

· · · < ak−1}. Then, since ai 6≺ aj, f(ai, aj) = 1 for every i < j < k, which contradicts

our assumption on f . Since, by [45, Proposition 16], RCA0 ` EM→ BΣ0
2, we can apply

CC<∞ (which, we recall, is equivalent to BΣ0
2 by Lemma 3.1.9) to get an infinite chain

C for the partial order D. C is clearly an infinite f -homogeneous set for color 0.

Although the result above does not narrow the interval of possible strength of bRT2

per se, it can be seen as a possible new approach to study it.

We now move to the study of bRTnk for n > 2. We start with an easy result.

Lemma 4.1.11. For every n ≥ 2, RCA0 ` bRTn+1
n+2 → bRTnn+1

Proof. Let f : [N]n → 2 be a coloring such that every set F with size n + 1 that is

f -homogeneous is f -homogeneous for 0. We define the coloring g : [N]n+1 → 2 by

putting

g(x0, . . . , xn−1, xn) = f(x0, . . . , xn−1).

Then given every set F = {y0 < · · · < yn+1}, if F were g-homogeneous for color 1,

then F \{yn+1} would be f -homogeneous for 1, which is a contradiction. Hence we can

apply bRTn+1
n+2 to g, thus obtaining an infinite g-homogeneous set H, which is clearly

also f -homogeneous.
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Next, we move to study the relationship between bRTn+1 and RTn.

Theorem 4.1.12. For every n ∈ ω, RCA0 ` bRTn+1
n+2 → RTn2 .

Proof. The proof is by induction on n.

The case n = 1 follows from the fact that RCA0 ` RT1
2. Alternatively, and more

uniformly, it follows from the argument by which Lemma 4.1.6 was proved: given a

coloring f : N→ 2, we define the coloring g : [N]2 → 2 by setting g(x0, x1) = 0 if and

only if f(x0) = f(x1). It is clear that there are no g-homogeneous sets of size 3, and

that every infinite g-homogeneous set is also an infinite f -homogeneous set.

Supposing now that we have proved the statement for n = m− 1, we will prove it for

n = m. Let g : [N]m → 2 be a coloring. Then, we define the coloring f : [N]m+1 → 2

as follows: for every m+ 1-tuple x0 < x1 < · · · < xm, we set

f(x0, x1, . . . , xm) =

0 if g(x0, . . . , xm−2, xm−1) = g(x0, . . . , xm−2, xm)

1 otherwise

Suppose that there is an f -homogeneous set F with |F | = m + 2, say F =

{y0 < y1 < · · · < ym < ym+1}. Since it is impossible that g(x0, . . . , xm−2, xm−1),

g(x0, . . . , xm−2, xm) and g(x0, . . . , xm−2, xm+1) are all pairwise different, it follows that

F is f -homogeneous for 0. Hence, we can apply bRTm+1
m+2 to f : let H be an infinite

f -homogeneous set for color 0.

We notice that g(x0, . . . , xm−2, x) = g(x0, . . . , xm−2, x
′) for every {x0 < · · · < xm−2 <

x < x′} ⊆ H. We can then define the coloring h : [H]m−1 → 2 by letting

h(x0, . . . , xm−2) = g(x0, . . . , xm−2, x), where x is the minimal element of H larger than

xm−2: by the observation above, every infinite h-homogeneous set is also an infinite

g-homogeneous set.

By Lemma 4.1.11, we know that RCA0 ` bRTm+1
m+2 → bRTmm+1. But by induction

hypothesis, we have that RCA0 ` bRTmm+1 → RTm−1
2 , hence bRTm+1

m+2 guarantees the

existence of an infinite h-homogeneous set H ′. By our considerations above, H ′ is also

a g-homogeneous set, thus proving the Theorem.
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By the fact that for every m > 2 and l ≥ 2 RCA0 ` ACA0 ↔ RTml , we have the

following result.

Corollary 4.1.13. For every n > 3, k > n, m > 2 and l ≥ 2, RCA0 ` bRTnk ↔
RTml ↔ bRTn ↔ RTm.

The case n = 3 is not covered by the previous result: although we do not find the

precise strength of bRT3
k or bRT3, we give an upper bound for it in the next section,

by proving that they do not imply ACA0 over RCA0.

4.1.2. bRT3
k admits cone avoidance

As we mentioned, the cases of bRT3
k and bRT3 are not covered by the result above,

although we can deduce that RCA0 ` ACA0 → bRT3 → bRT3
k → RT2

2.

In this section, we will show that, perhaps unsurprisingly, bRT3
k does not imply ACA0

over RCA0, and we will then extend the result to show that bRT3 does not imply ACA0

either. In order to accomplish this, we will use a very general framework introduced

by Patey in [58] to determine which Ramsey principles RTnk(V,W ) (which we will

introduce below) have (strong) cone-avoidance.

To begin with, we introduce the problems that will be analyzed in this section. As

anticipated, we will focus on the case n = 3.

Definition 4.1.14. • For every n > 1 and k > n, bRTnk is the following problem:

– Input: a coloring f : [ω]n → 2 such that, if H ⊆ ω is f -homogeneous and

|H| ≥ k, then f([H]n) = 0.

– Output: an infinite f -homogeneous set.

• For every n > 1, bRTn is the following problem:

– Input: a coloring f : [ω]n → 2 such that, for some k ∈ ω, if H ⊆ ω is

f -homogeneous and |H| ≥ k, then f([H]n) = 0.

– Output: an infinite f -homogeneous set.
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It is very easy to see that if we manage to show that bRT3
k admits cone avoidance

for every k, then bRT3 admits cone avoidance as well: this follows from the fact that

every instance of bRT3 is an instance of bRT3
k, for some sufficiently large k. Hence, we

will focus on the problems bRT3
k.

We now introduce the problems RTnk(V,W ).

Definition 4.1.15. • An RTnk-pattern P is a finite set of of tuples of the form

〈v,D〉, where v < k and D ∈ [ω]n.

• Given an RTnk -pattern P = {〈v0, D0〉, . . . , 〈vl−1, Dl−1〉}, a coloring f : [ω]n → k

and a set of integers E = {m0 < m1 < · · · < mr−1}, we say that E f -satisfies P

if for every s < l, letting Es = {mi : i ∈ Ds}, f(Es) = vs holds.

• A set H ⊆ ω f -avoids P if for no finite E ⊆ H E f -satisfies P .

• Given two collections of RTnk -patterns V and W , we denote by RTnk(V,W ) the

following problem:

– Input: a coloring f : [ω]n → k such that ω f -avoids every pattern in V .

– Output: an infinite set H ⊆ ω such that H f -avoids every pattern in W .

The definition above covers a large class of principles. For our purposes, it is enough

to notice that for every k > 3, bRT3
k can be reformulated as RT3

2(VbRT3
k
,WRT3

2
), where

• VbRT3
k

is the pattern {〈1, D〉 : D ∈ [k]3}: we just have to prevent f -homogeneous

sets for 1 of size k from existing.

• WRT3
2

is the set of patterns {{〈0, D0〉, 〈1, D1〉} : (D0, D1) ∈ [6]3×[6]3}: we impose

that every set of size 6 is f -homogeneous, which is clearly enough to assure that

every infinite set H f -avoiding WRT3
2

is f -homogeneous.

In general, it is easy to see (by adapting the definition above) that for every n, k ∈ ω
there is a set of RTnk -patterns WRTnk

such that RTnk(∅,WRTnk
) is RTnk . In the rest of this
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section, we will refer to this WRTnk
without specifying how it is obtained, since it is

inessential.

We now state the main result that we will use, and then move to explain its meaning.

Theorem 4.1.16 ([58], Corollary 3.16). For every n, k ∈ ω and V collection of RTnk-

patterns, RTnk(V,WRTnk
) admits cone avoidance if and only if T nk (V ) only contains

constant functions.

We now embark on the task of defining what sort of set T nk (V ) is. Since we will only

need the result above in the case of n = 3 and k = 2, we can limit ourselves to define

T 3
2 (V ), for the sake of readability.

Definition 4.1.17. • A function µ : ω → ω + 1 is strongly increasing left-c.e.

function if there is a uniformly computable sequence of functions µ0, µ1, . . . with

µs : ω → ω for every s ∈ ω and such that:

– for every s, x ∈ ω, µs(x) ≤ µs+1(x);

– for every x ∈ ω, lims µs(x) = µ(x);

– for every s ∈ ω and every x < y, µs(x) ≤ µs(y) and if µs+1(x) > µs(x),

then µs(y) > s.

• For a function µ : ω → ω + 1, a set H ⊆ ω is µ-transitive if for every x < y < z

with x, y, z ∈ H, µ(x) > y and µ(y) > z if and only if µ(x) > z.

• Given a strongly increasing left-c.e. function µ : ω → ω+ 1 with approximations

µ0, µ1, . . . , and a set D of three points D = {x0 < x1 < x2}, we let P3(µ,D)

be the graph {{0, 1, 2}, E}, where E = {{0, 2}} if µx2(x0) > x1, and E = ∅
otherwise.

The definitions above lie at the heart of the approach to the study of problems outlined

in [58]: to give a very rough sketch, the main idea of this approach (which builds

on similar tools developed in [10]) is to determine what strongly increasing left-c.e.



4.1. Bounded Ramsey’s theorem 147

functions can and cannot be coded into solutions of Ramseyan principles. Combina-

torially, this is done by studying graphs that contain enough information to encode

such functions.

Definition 4.1.18. • By P3 we will denote the set containing the two graphs

G0 = {{0, 1, 2}, ∅} and G1 = {{0, 1, 2}, {{0, 2}}}.

• CART3
k is the following problem:

– Input: a function f : [ω]3 → k.

– Output: an infinite set H ⊆ ω such that there exist a strongly increasing

left c.e. µ : ω → ω+ 1 such that H is µ-transitive and a coloring χ : P3 → k

such that for every D ∈ [H]3, f(D) = χ(P3(µ,D)).

• For every coloring χ : P3 → k, χ− CART3
k is the following problem:

– Input: a function f : [ω]3 → k.

– Output: an infinite set H ⊆ ω such that there exist a strongly increasing

left c.e. µ : ω → ω + 1 such that H is µ-transitive and such that for every

D ∈ [H]3, f(D) = χ(P3(µ,D)).

• Given two principles P and Q, we say that P ≤id Q if P ≤sW Q using the identity

functionals in both directions (i.e., every instance f of P is an instance of Q and

every Q-solution g to f is also a P solution to f).

• T 3
k (V ) = {χ : P3 → k : RT3

k(∅, V ) ≤id χ− CART3
k}.

The main feature of the problems CARTnk is that they are, in a sense, maximal among

the principles that admit cone avoidance (we refer to [58] for a rigorous explanation of

this sentence): this is also suggested by the fact that a restriction of it is an essential

ingredient in the definition of T 3
2 (V ) which we were after.

They are, however, somewhat difficult to work with, considering how involved their

definition is. Fortunately, at least for the case n = 3, there is a solution to this issue.

Definition 4.1.19. PACKEDk is the following principle:
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• Input: a function f : [ω]3 → k.

• Output: an infinite set H ⊆ ω such that there are two colors (not necessarily

distinct) is, il < k such that f [H]3 ⊆ {is, il} and, for every 4-tuple w < x < y < z

of elements of H, the following hold:

1. f(w, x, z) = f(x, y, z) = is if and only if f(w, y, z) = is;

2. if f(w, x, y) = is, then f(w, x, z) = is;

3. if f(w, x, y) = il and f(w, x, z) = is, then f(x, y, z) = is.

PACKEDk has the following nice property:

Lemma 4.1.20 ([58]). For every k, PACKEDk ≡id CART3
k.

We exploit the previous lemma in the next result.

Lemma 4.1.21. For every collection of RT3
k-patterns V , if RT3

k(∅, V ) is such that

every instance has at least one solution and RT3
k(∅, V ) 6≤id PACKEDk, then T 3

k (V )

contains only constant functions.

Proof. First of all, we notice that, by our assumption that every instance f of RT3
k(∅, V )

has a solution, it follows that every infinite homogeneous set is a valid solution to f :

to see this, for every j < k, consider the constant coloring fj : [ω]3 → {j}. The only

possible solution is an infinite fj-homogeneous set for color j, which means that the

set of patterns V does not prevent a solution from being homogeneous.

From the fact that RT3
k(∅, V ) 6≤id PACKEDk, we deduce that RT3

k(∅, V ) 6≤id CART3
k,

by Lemma 4.1.20. But by what we said above, it is clear that, if χ : P3 → k is

constant, then RT3
k(∅, V ) ≤id χ− CART3

k (this is easily verified; in any case, it follows

from [58, Statement 3.12]). Hence, there must be a non-constant χ′ : P3 → k such

that RT3
k(∅, V ) 6≤id χ′ − CART3

k. But since every non-constant coloring χ : P3 → k

can be obtained from χ′ by renaming the colors (since |P3| = 2), it follows that for

every non-constant coloring χ : P3 → k RT3
k(∅, V ) 6≤id χ−CART3

k. Hence, T 3
k (V ) only

contains constant functions.
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Lemma 4.1.22. For every k > 3, RT3
2(∅, VbRT3

k
) 6≤id PACKED2.

Proof. We define the function f : [ω]3 → 2 as follows: for every x < y < z, we set

f(x, y, z) = 1 if y < k − 1, and f(x, y, z) = 0 otherwise.

We claim that ω is a PACKED2-solution to f with colors is = 1 and il = 0. Let us

consider four numbers w < x < y < z.

1. We verify condition 1: f(w, x, z) = f(x, y, z) = 1 if and only if y < k − 1 if and

only if f(w, y, z) = 1, hence the condition is satisfied.

2. We verify condition 2: if f(w, x, y) = 1, then x < k − 1, hence f(w, x, z) = 1, so

the condition is satisfied.

3. We verify condition 3: since it never holds that f(w, x, y) 6= f(w, x, z), the

condition is vacuously satisfied.

Finally, we notice that the set {0, 1, . . . , k − 1} is an f -homogeneous set for color 1.

Hence, ω does not avoid VbRT3
k
, and so RT3

2(∅, VbRT3
k
) 6≤id PACKED2.

Thanks to this, we can finally state the result we were after.

Corollary 4.1.23. For every k, bRT3
k admits cone avoidance, and so does bRT3.

Proof. By Lemma 4.1.22, we have that RT3
2(∅, VbRT3

k
) 6≤id PACKED2, which by

Lemma 4.1.21 implies that T 3
2 (VbRT3

k
) only contains constant functions. Hence, by

Theorem 4.1.16, we have that RT3
2(VbRT3

k
,WRT3

2
), which is exactly the problem bRT3

k,

has cone avoidance.

As we already observed, since every instance of bRT3 is just an instance of bRT3
k for

some k, it follows that bRT3 has cone avoidance as well.

As anticipated, this has several reverse mathematical consequences.



150 4. Some asymmetric Ramseyian principles

Corollary 4.1.24. bRT3
4 does not imply ACA0 over RCA0, and this is witnessed by

an ω-model. Hence, bRT3 does not imply ACA0 over RCA0 either (as witnessed by the

same ω-model).

We end this section with a final remark: the framework described above can also be

used to show that bRT2
k admits strong cone avoidance for every k. Since the proof

would require the introduction of many other definitions, even if the combinatorial

argument would remain essentially unchanged, we will not prove this claim here.

4.1.3. Complexity of the solutions

We conclude the study of the principles bRT by investigating the complexity of the

solutions to their instances. In order to do that efficiently, we will introduce another

principle.

Definition 4.1.25. For every integer n ≥ 2, we let uRTn (for unbalanced Ramsey

theorem) be the multifunction defined as follows:

• Input: a coloring f : [ω]n → 2 such that, if H ⊆ ω is f -homogeneous and infinite,

then f(H) = 0.

• Output: an infinite f -homogeneous set.

Contrary to the previous ones, this problem is relatively old: some results about it are

contained in [41], which is still an excellent source of information on the subject (we

will put some of its ideas into practice in Lemma 4.1.31).

Remark 4.1.26. We point out that, in a certain sense, uRTn does not have a

correspondent problem in reverse mathematics: if we tried to introduce, for instance,

the L2 statement “for every f : [N]n → 2, if no infinite H1 ⊆ N is f -homogeneous for

color 1, then there is an infiniteH0 that is f -homogeneous for color 0”, which seems

to be a sensible translation of uRTn in second-order arithmetic, we obtain something

that is logically equivalent to RTn2 . Nevertheless, as we will see, uRTn as a problem

behaves very differently from RTn2 , as we will see below.
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The following lemma is obvious, but nevertheless quite useful for the rest of this section.

Lemma 4.1.27. For every n ≥ 2, k > n and l > k, we have that bRTnk ≤sW bRTnl ≤sW

bRTn ≤sW uRTn.

Notice that all the reductions in the previous Lemma are witnessed by the identity

functional, so we could have been even more specific and have used the notation ≤id,
introduced in the previous section, in the place of ≤sW. This is inessential for our

purposes, and so we stick to the more standard notions.

Thanks to the previous Lemma, we can use uRTn to find an upper bound on the

complexity of solutions bRTnk . As for lower bounds, RTn−1
2 would seem to be the

most natural benchmark: after all, in Theorem 4.1.12, we have shown that RCA0 `
bRTnk → RTn−1

2 holds for every k > n. Unfortunately, that proof makes a seemingly

essential use of induction, and so does not straightforwardly translate to a Weihrauch

or computable reduction.

Definition 4.1.28. For every k > 0, and every l > n, we denote by R(n, l, k) the

least number m such that every coloring c : [m]n → k, there is a c-homogeneous set of

size l.

Lemma 4.1.29. For every n ∈ ω and k > 0, we have that RTnk ≤sW bRTn+1
R(n,n+1,k).

Proof. Let f : [ω]n → k be an instance of RTnk . We define the coloring g : [ω]n+1 → 2

by setting, for every F ∈ [ω]n+1, g(F ) = 0 if F if f -homogeneous, and g(F ) = 1

otherwise. Now, we just have to notice that, by the definition of R(n, n+ 1, k), g is an

instance of bRTn+1
R(n,n+1,k), and that every infinite g-homogeneous set is also an infinite

f -homogeneous set.

We remark that an argument similar to the on in the proof above was used, for slightly

different purposes, in [41] and in [8].

The combination of Lemma 4.1.29 and [41, Theorem 5.1] yields the following Corollary.

Corollary 4.1.30. For every n > 2, there is an instance f of bRTnR(n−1,n,2) without

solutions Σ0
n−1 in f . Hence, this also holds for bRTnk with k > R(n− 1, n, 2).
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At present, we do not know if any strengthening of the Corollary above holds.

We now start looking for upper bounds on the complexity of the solutions. Yet again,

we will start our analysis with the case n = 2. Since in Section 4.1.1 we showed that

bRT2 can be proved in RCA0 + IΣ0
2, we already know that every computable instance

of bRT2 has computable solutions. In the next Lemma, we will show that this holds

for uRT2 as well.

Lemma 4.1.31 ([41]). Every instance f of uRT2 has a solution computable in f .

Proof. We follow the sketch of proof given in [41]. Given f as in the hypotheses, let

T f ⊆ ω<ω be the Erdős-Rado tree associated to f . Let I ⊆ T f be the set I = {σ ∈
T f : ∃∞τ ∈ T f (σ v τ)} of elements with infinitely many extensions. We claim that

there is string ρ ∈ I such that

∀n > |ρ|∃σn ∈ T f (|σn| = n∧ρ v σn∧∀x, y(|ρ| ≤ x < y < |σn| → f(σn(x), σn(y)) = 0)).

In plain words, the string ρ we want is a string such that for every length n > |ρ|, we

can find a string σn ∈ T f of length n such that ran(σn) \ ran(ρ) is f -homogeneous for

color 0.

Suppose for a contradiction that there is no such ρ, then for every σ ∈ I we can find

nσ > |σ| such that for every τ extending σ of length nσ there are xτ and yτ with

|σ| ≤ xτ < yτ < |τ | such that f(τ(xτ ), τ(yτ )) = 1. But then, by compactness, we can

find an infinite sequence τ0 @ τ1 @ . . . of such τ ’s. Let g =
⋃
n∈ω τn. By the properties

of T f , we have that ran g is a prehomogeneous set for f . But then, this means that for

every n ∈ ω and every m > n, we have that f(g(xτn), g(xτm)) = f(g(xτn), g(yτm)) = 1.

But then, the set {g(xτn) : n ∈ ω} would be an infinite f -homogeneous set for color 1,

contradicting our assumptions on f .

Hence, the exists a ρ as we described above. Given such a ρ, it is clear that we can

find an infinite f -homogeneous set H for color 0 computably in f : we simply have to

look, for every n > |ρ|, for the σn as in the definition of ρ. Arguing as in Lemma 4.1.9,

one can check that, for every |ρ| < n < m, σn v σm, which implies that
⋃
n>|ρ| σn is a
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branch in T f . Hence, again similarly to what we did in Lemma 4.1.9, we can conclude

that
⋃
n>|ρ| ran(σn) \ ran(ρ) is an infinite f -homogeneous set for color 0.

We now move to the case n > 2. A form of the main result that we have about this

case, namely Theorem 4.1.33, seems to have been known to Jockusch already in [41]

(see the final remarks of the paper). Anyway, no proof of it was given. We give a

simple proof of it (which, as far as we know, has not yet appeared in the literature),

based on recent results on the complexity of solutions for COH.

Lemma 4.1.32 ([56], Lemma 7.1.1). Let ~C be an instance of COH such that

degT(~C) = a, for some Turing degree a. Then, a degree b computes a COH-solution

to ~C if and only if b′ has PA degree over a′.

Theorem 4.1.33. Let f be an instance of uRTn, for n ≥ 3, and let c be a degree that

is PA over f (n−2). Then, f has a uRTn-solution computable in c.

Proof. We start with the proof of the case n = 3. Let f be a uRT3-instance, and let

c be PA over f ′. We define the following sequence of sets recursively in f : for every

pair {x0, x1} ∈ [ω]2, we define Cx0,x1 = {x ∈ ω : f(x0, x1, x) = 0}. By the relativized

Jump Inversion Theorem (see for instance [47]) there is a degree d such that f ≤T d

and d′ ≡T c. Letting ~C = (Cx0,x1 : {x0, x1} ∈ [ω]2) by Lemma 4.1.32, we can find a

COH-solution C to ~C recursively in d.

We now consider the coloring f̃ : [C]2 → 2 defined as f̃(x0, x1) = limy∈C f(x0, x1, y)

for every {x0, x1} ∈ [C]2: such a limit exists by definition of cohesive set, and is

computable in d′ ≡T c.

Now, notice that if H ⊆ C was an infinite f̃ -homogeneous set for color 1, then it would

also be f -homogeneous for the same color, which contradicts our assumption that f is

an instance of uRT3. Hence, f̃ is an instance of uRT2 relativized to c, and by Lemma

4.1.31 if has a solution computable in f̃ , and so in c.

We now move to the inductive step: suppose that the result holds for n, we prove it

for n+1. Let f be an instance of uRTn+1, and let c be PA in f (n−1). By the relativized
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Low Basis Theorem (see [42]), there is a degree g that is PA over f ′ and such that

g′ ≡T f
′′. Again by the relativized Jump Inversion Theorem, there is a degree h such

that f ≤T h and h′ ≡T g.

Again, for every {x0, . . . , xn−1} ∈ [ω]n, we define the set Cx0,...,xn−1 as Cx0,...,xn−1 =

{x ∈ ω : f(x0, . . . , xn−1, x) = 0}. Letting ~C = (Cx0,...,xn−1 : {x0, . . . , xn−1} ∈ [ω]2),

we can find an infinite ~C-cohesive set C computably in h by Lemma 4.1.32, and

computably in g we can find the coloring f̃ : [C]n → 2 defined as f̃(x0, . . . , xn−1) =

limy∈C f(x0, . . . , xn−1, y). As in the case n = 3, it is easy to see that any infinite set

H that is f̃ -homogeneous for 1 is f -homogeneous for the same color. Hence, f̃ is an

instance of uRTn relativized to g. But then, we can apply the inductive hypothesis:

since c is PA over f (n−1) ≡T (g′)(n−3) ≡T g(n−2) ≥T f̃ (n−2), c is also PA over f̃ (n−2),

and we conclude by induction.

We point out that the result above is optimal: in [37, Corollary 2.2], it is proved

that there exists a computable unbalanced coloring of [ω]3 such that all of its infinite

homogeneous sets have PA degree over ∅′.

The Theorem above, together with Lemma 4.1.27 and the relativized Low Basis

Theorem, immediately yields the next Corollary.

Corollary 4.1.34. For every n > 2 and k > n, and for every c of PA degree over

∅(n−2), every computable instance of bRTn and bRTnk has solutions of degree c. In

particular, they (and uRTn) have ∆0
n solutions.

4.2. A theorem about partition ordinals

In this section, we will present some results about the reverse mathematics of the

theorem, first proved by Specker in [68], that the ordinal ω2 is a partition ordinal:

after a brief general introduction to partitions ordinals, we will see how one of the

classical proofs gives a bound on the strength of the principles we are interested in.

Finally, we will make some remarks about the complexity of the solutions of these

principles.
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4.2.1. A brief introduction to the subject

Partition ordinals were introduced in the early stages of the development of what we

now call Ramsey theory: the first results and questions about them appeared already

in the seminal paper [25] by Erdős and Rado. For a general introduction to this topic,

we refer to [33].

To better discuss about this topic, it is practical to introduce the following standard

notation.

Definition 4.2.1. Given three ordinals α, β, γ, we write α −→ (β, γ) if it is true that

for every coloring f : [α]2 → 2, either there is an f -homogeneous set H0 ⊆ α such that

f([H0]2) = 0 and the order-type of H0 is β, or there is an f -homogeneous set H1 ⊆ α

such that f([H1]2) = 1 and the order-type of H1 is γ.

The negation of this relation is denoted as α 6−→ (β, γ).

For instance, Ramsey’s theorem for pairs can be more succinctly restated as ω −→
(ω, ω).

The notation above has the merit of making clearer what happens when we vary α,

β and γ: if we know that α −→ (β, γ) holds, then for every β′ ≤ β and γ′ ≤ γ

α −→ (β′, γ′) holds as well. Similarly, if α′ ≥ α, it is easily seen that α −→ (β, γ)

implies α′ −→ (β, γ)

It is natural to ask for which triple of ordinals (α, β, γ) the relation α −→ (β, γ) holds.

We will focus on countable ordinals.

It is very easy to see that for a vast class of triples (α, β, γ), the relation α −→ (β, γ)

cannot hold: denoting by |α| the cardinality of α, and letting π : α→ |α| be a bijection,

we claim that α 6−→ (|α| + 1, ω). To see this, for every two ordinals x < y < α, we

define a coloring f : [α]2 → 2 as follows:

f(x, y) =

0 if π(x) < π(y)

1 otherwise
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It is then clear that there are no infinite f -homogeneous sets for color 1, since any

such set would give rise to an infinite descending chain of ordinals. Equally, there are

no f -homogeneous sets for 0 of order-type |α| + 1: for any f -homogeneous set H for

color 0 and any x, y ∈ H, we have that x < y if and only if π(x) < π(y), which implies

that the order-type of H can be at most |α|.

Thus, thanks to the previous paragraph, we have a complete picture of what happens

in the case that α, β, γ are all countable and infinite:

• if β = γ = ω, then α −→ (β, γ) holds, as implied by Ramsey’s theorem for pairs;

• in every other case, we have that α 6−→ (β, γ) holds.

It becomes then interesting to investigate what happens if we require one of β and γ

to be finite. Clearly, if γ = 2, then α −→ (β, 2) holds for every β ≤ α. But, already

for γ = 3, the problem becomes very interesting.

Definition 4.2.2. We say that a countable ordinal α is a partition ordinal if the

relation α −→ (α, 3) holds.

This problem, that might look simple at first, turns out to be very complicated: as a

measure of its difficulty, we mention that Erdős himself, in 1987, promised 1000 dollars

for a characterization of the partition ordinals.

In this section, we will focus on the simplest result of this area, namely that ω2 is a

partition ordinal, a fact that we will prove in the following subsection. For complete-

ness, we mention that, although a complete characterization of partition ordinals has

not yet been given, several other results have been found in this area: just to mention

a few, Specker in [68] proved that for all n ∈ ω with n > 2, ωn 6−→ (ωn, 3). Chang,

in [9], proved that ωω is a partition ordinal. Larson, in [46], gave much simpler proofs

of the previous results. Finally, more recently, Schipperus in [61] proved a series of

results on what ordinals of the form ωω
α
, where α is a countable ordinal, are partition

ordinals.
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4.2.2. The principles and some easy results

We now introduce the principles that we will be working with.

Definition 4.2.3. • For every k ∈ N, the principle SPLk (in honor of Specker and

Larson) is the L2-statement “let ~R = {Ri : i ∈ N} be a sequence of disjoint

infinite sets such that R =
⋃
iRi, and let f : [R]2 → 2 be a coloring such that

there is no f -homogeneous set for color 1 of size k; then, there is an infinite

f -homogeneous set H ⊆ R such that for infinitely many i, H ∩Ri is infinite”.

• For every k ∈ N, the principle SSPLk (for “strong SPLk”) is the L2-statement

“let ~R = {Ri : i ∈ N} be a sequence of disjoint infinite sets such that R =
⋃
iRi,

and let f : [R]2 → 2 be a coloring such that there is no f -homogeneous set for

color 1 of size k; then, there is an infinite f -homogeneous set H ⊆ R such that

for infinitely many i, H ∩Ri is infinite, and such that for every i, if H ∩Ri 6= ∅,
then H ∩Ri is infinite”.

The idea behind the two principles above is simple: they both convey the fact that

ω2 −→ (ω2, k), although in slightly different ways. The initial ordering of type ω2 is

given by the infinite sequence of infinite sets ~R. The main difference between SPLk and

SSPLk is about the shape of the solution H: while for SPLk we only ask that infinitely

many Ri are intersected infinitely often, which classically still gives a solution of order-

type ω2 (essentially because a+ω = ω for any finite ordinal a), for SSPLk we essentially

require to be given the list of Ri that are intersected infinitely often by H, which gives

us much more information on the solution H.

We do not know much about SPLk. We summarize some immediate results in the

following Lemma.

Lemma 4.2.4. RCA0 ` ∀k(SSPLk → SPLk → bRT2
k). Hence, by Lemma 4.1.6, RCA0+

∀kSPLk ` BΣ0
2.

In particular, it is unclear whether SPLk is computably true, or even if RCA0 proves

it. We have something more to say about SSPL.
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Lemma 4.2.5. RCA0 + BΣ0
2 ` SSPL3 → SRT2

2.

Proof. Let c : [N]2 → 2 be a stable coloring, and let ~R be the partition given by

r ∈ Ri ↔ ∃i, a ≤ r(r = 〈i, a〉 ∧ i 6= a). Let R = N \ {r ∈ N : ∃i < r(r = 〈i, i〉)}. We

define the coloring f : [R]2 → 2 as follows: for every pair {x, y} ∈ [R]2 with x = 〈i, a〉
and y = 〈j, b〉 for some i, j, a, b, we set

f(x, y) =

0 if c(i, a) = c(j, b)

1 otherwise

There are no f -homogeneous sets for 1 of size 3: suppose for a contradiction that

{x0, x1, x2} is such a set, and let, for j < 3, xj = 〈ij, aj〉. Then, the three pairs {ij, aj}
would all have different colors according to c, which is a contradiction.

We can then apply SSPL3 to f : let H be the f -homogeneous set that SSPLk gives us.

By the fact that RCA0 proves that every infinite Σ0
1 set has an infinite ∆0

1 subset, we

can find an infinite set I ⊆ N such that for every i ∈ I, H ∩Ri 6= ∅.

Then, c�[I]2 is such that for every i, j ∈ I, limy c(i, y) = limy c(j, y). Hence, BΣ0
2 is

enough to refine I to a SRT2
2-solution for c.

As a corollary of the Lemma above, we have that SSPL3 is not computably true.

From now on, we focus on SSPL3, since, by the fact that we saw above, it seems to be

the more interesting translation of the theorem that ω2 is a partition ordinal.

4.2.3. Classical proofs

In this section, we give two proofs of the fact that ω2 is a partition ordinal. The first

one was given by Larson in [46]: it is very short and simple enough to be formalized

in second-order arithmetic, where it can be used to see that ACA0 ` SSPL3. The other

one, which is the original proof given by Specker in [68], is much longer and complex,

and we will not formalize it in second-order arithmetic. There are two main reasons for
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including it in this section: the first is that this proof arguably gives a more interesting

combinatorial idea of why ω2 a partition ordinal; the second is that there seem to be

no English translation of the original proof, which is in German.

Theorem 4.2.6 (Larson). RCA0 ` RT4
64 → SSPL3. Hence, ACA0 ` SSPL3.

Proof. Let ~R be an infinite sequence of infinite disjoint sets Ri with R =
⋃
iRi, and

let us enumerate every Ri as Ri = {ri0 < ri1 < . . . }. Let f : [R]2 → 2 be a coloring

with no f -homogeneous sets for color 1 of size 3.

For every quadruple a < b < c < d of elements of N, we define the following coloring

g : [N]4 → 64:

g(a, b, c, d) = 32f(rab , r
c
d) + 16f(rac , r

b
d) + 8f(rad, r

b
c) + 4f(rab , r

a
c ) + 2f(rab , r

b
c) + f(rac , r

b
c).

Let H be an infinite g-homogeneous set. By the fact that f did not have f -

homogeneous sets for color 1 of size 3, it is easy to see that H is g-homogeneous

for color 0.

Finally, let L ⊆ R be defined by ria ∈ L ↔ i, a ∈ H ∧ a > i. We notice right away

that for every j ∈ N, if L ∩Rj 6= ∅, then H ∩Rj is infinite. It is then easy to see that

L is an infinite f -homogeneous set: for any {x, y} ∈ L we can find a, b, c, d ∈ H such

that x = rab , y = rcd, with a ≤ c, a < b and c < d. Since in the definition of g we

have considered any possible configuration of a, b, c, d respecting the three conditions

we just mentioned, we can conclude that f(rab , r
c
d) = 0.

Remark 4.2.7. We notice that another proof of the result above could also have been

obtained in a slightly different fashion: starting from f , we could have defined the

intermediate function g0 : [N]4 → 2 as g0(a, b, c, d) = f(rab , r
c
d), observing that this

is an instance of bRT4
6. Given an infinite homogeneous set H0 for g0, we could have

then defined the coloring g1 : [H0]4 → 2 in a similar fashion as before. Continuing

like this, we could have found a proof that RCA0 ` bRT4
6 → SSPL3. Of course, since

RCA0 ` ACA0 ↔ bRT4
6, there is nothing to be gained from this alternative approach

from a reverse mathematical perspective. On the other hand, we will see in the next
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section that the proof we gave above seems to be a better tool to give an estimate of

the complexity of the solutions to computable instances of SSPL3.

Now, we move to the more convoluted original proof by Specker. As anticipated, we

will not formalize it in second-order arithmetic.

Theorem 4.2.8 (Specker). (ZFC) ω2 −→ (ω2, 3).

Proof. We identify ω2 with {(i, a) : i, a ∈ ω} ordered lexicographically, and for every

i ∈ ω we call Ri the set Ri = {(i, a) : a ∈ ω}. Let f : [ω2]2 → 2 be a coloring with no

f -homogeneous sets for color 1 of size 3. We suppose for a contradiction that there is

no infinite f -homogeneous set H ⊆ ω2 of order-type ω2.

We will prove the Theorem by proving the following Claim:

Claim 4.2.1. There are an infinite set I ⊆ ω and an infinite sequence of infinite sets

~U = {Ui : i ∈ I} such that for every i ∈ I Ui ⊆ Ri and moreover, if i0 is the minimal

element of I,

∀u ∈ Ui0∀v ∈
⋃
i∈I

Ui(u 6= v → f(u, v) = 0).

We notice that, if we do this, then we reach our contradiction: we can now use Ui0

as the initial segment of length ω of a solution H, and repeat the construction with⋃
i∈I\{i0} Ui in place of full ω2 (notice that, under the lexicographical order,

⋃
i∈I\{i0} Ui

and ω2 are isomorphic).

Hence, let us start the proof of Claim 4.2.1.

For every i ∈ ω, let µi : P(Ri) → 2 be a non-atomic finitely additive {0, 1}-measure

on Ri, i.e. a finitely additive measure on Ri such that it only takes values 0 or 1 and

every finite subset of Ri has measure 0.

Given the measures µi, for every i, j ∈ ω, we define the set

Bj
i = {x ∈ Ri : µj({y ∈ Rj : f(x, y) = 1}) = 1}.
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In a sense, the Bj
i are the “bad sets” that we will try to eliminate in the rest of the

proof.

Claim 4.2.2. There is an infinite set N ⊆ ω such that, for every i, j ∈ ω with i 6= j,

µi(B
j
i ) = 0.

Proof of Claim 4.2.2. We define the coloring c0 : [ω]2 → 2 as follows: for every pair

{i, j} ∈ [ω]2 with i < j, we set c0(i, j) = µi(B
j
i ). Notice that there can be no

c0-homogeneous set for color 1 of size 3: if there were i < j < k ∈ ω such that

f(i, j) = f(i, k) = f(j, k) = 1, then the sets Bj
i ∩ Bk

i and Bk
j would have measure 1,

and so we could find x ∈ Bj
i ∩ Bk

i , y ∈ Bk
j and z ∈ Rk such that f(x, y) = f(x, z) =

f(y, z) = 1, contradicting the hypotheses on f . Hence, any infinite c0-homogeneous

set is c0-homogeneous for color 0. Let N ′ be such a set.

Now, we define the coloring c1 : [N ′]2 → 2 as c1(i, j) = µi(B
i
j), for all i < j ∈ N ′.

Similarly as for c0, every infinite c1-homogeneous set is c1-homogeneous for 0, so let

N be such a set. It is clear that it satisfies the requirements we were looking for.

Claim 4.2.3. Let N = {n0 < n1 < . . . } be the set found in Claim 4.2.2, and so let n0

be the minimal element of N . Then, we can find an infinite set L ⊆ N \ {n0} and, for

every n ∈ L ∪ {n0}, an infinite subset R∗n of Rn and a non-atomic {0, 1}-measure µ∗n

on R∗n such that the following holds: if we define, for every i, j ∈ L ∪ {n0} with i 6= j,

Cj
i = {x ∈ R∗i : µ∗j({y ∈ R∗j : f(x, y) = 1}) = 1},

then, for every l ∈ L, C l
n0

= Cn0
l = ∅.

Proof of Claim 4.2.3. We start noticing that for every x ∈ Rn0 , there are only finitely

many n ∈ N such that µn({y ∈ Rn : f(x, y) = 1}) = 1: if there were an infinite set

Nx of such n’s, then we could consider the set

Hx = {y ∈ ω2 : ∃n ∈ Nx(y ∈ Nx ∧ f(x, y) = 1)},
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which would be an infinite f -homogeneous set of order-type ω2, thus giving us a

contradiction. Hence, for every x ∈ Rn0 , there is a bx ∈ N such that, for every n ≥ bx,

µn({y ∈ Rn : f(x, y) = 1}) = 0. In particular, this means that for every x ∈ Rn0 and

n ∈ N , if n > bx then x 6∈ Bn
n0

.

We now build the sets R∗n0
and M ⊆ N in stages: as we will see, M is a first approx-

imation of the L ⊆ N we are after. At every stage s, we will have two finite sets,

Rs
n0
⊂ Rn0 and M s ⊂ N , both of cardinality s, and in the end we will let R∗n0

=
⋃
sR

s
n0

and M =
⋃
sM

s. So at stage 0, let R0
n0

= M0 = ∅.

Suppose we have the sets Rs
n0

and M s = {m0 < m1 < · · · < ms−1}, we define the sets

Rs+1
n0

and Ss+1 as follows: let x ∈ Rn0 be minimal such that

x ∈ Rn0 \ (Bm0
n0
∪ · · · ∪Bms−1

n0
∪Rs

n0
).

Notice that such an x exists, since by Claim 4.2.2 Bm0
n0
∪ · · · ∪ Bms−1

n0
has measure 0

(and Rs
n0

is finite by assumption). We let Rs+1
n0

= Rs
n0
∪ {x}.

Then, we let ms+1 be 1 +
∑

y∈Rs+1
n0

by, and we let M s+1 = M s ∪{ms+1}. This ends the

definition of the sets Rs
n0

and M s.

As said above, let R∗n0
=
⋃
sR

s
n0

and M =
⋃
sM

s. By the way in which we have

defined R∗n0
, we have that, for every m ∈M ,

{x ∈ R∗n0
: µm({y ∈ Rm : f(x, y) = 1}) = 1} = ∅,

since, for every x ∈ R∗n0
and m ∈M , either m is such that m > bx, or x 6∈ Bm

n0
.

Now, let µ∗n0
be any non-atomic {0, 1}-measure on R∗n0

. Suppose for a contradiction

that there are infinitely many m ∈M such that for infinitely many y ∈ Rm

µ∗n0
({x ∈ R∗n0

: f(x, y) = 1}) = 1.

Again, this would lead to a contradiction: let M ′ be the infinite set of the m’s as
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above, then the set

H = {y ∈ ω2 : ∃m ∈M ′(y ∈ Rm ∧ µ∗n0
({x ∈ R∗n0

: f(x, y) = 1}) = 1)}

would be an infinite f -homogeneous set of order-type ω2.

Hence, let L be the infinite (and actually cofinite in M) set of m ∈M \{n0} such that

there are at most finitely many y ∈ Rm with µ∗n0
({x ∈ R∗n0

: f(x, y) = 1}) = 1, and let

us set, for ease of notation,

Fl = {y ∈ Rl : µ∗n0
({x ∈ R∗n0

: f(x, y) = 1}) = 1}.

for every l ∈ L: by definition of L, every Fl is a finite set.

Finally, for every l ∈ L, let R∗l = Rl \Fl, and define the finitely additive measure µ∗l on

R∗l as, for every set S ⊆ R∗l , µ
∗
l (S) = µl(S) (it is clear that µ∗l is indeed a non-atomic

finitely additive {0, 1}-measure; see e.g. [34] for more general results).

It is immediately verified that the R∗n and L are as we wanted them.

We now have all the ingredients to prove Claim 4.2.1.

Proof of Claim 4.2.1. Let I = {n0}∪L, and enumerate I as I = {i0 < i1 < . . . } (hence

n0 = i0). By Claim 4.2.3, we have that for every i ∈ I with i 6= i0, Ci
i0

= Ci0
i = ∅.

We build the Ui in stages, by defining larger and larger finite approximations U s
i of

the sets Ui in such a way that at every stage s, only a finite number of U s
i will be

non-empty, but in the end, for every i ∈ I,
⋃
s U

s
i will be infinite.

At stage 0, we have U0
i = ∅ for every i ∈ I. Suppose now we have defined the U s

i , and

we will see how to define the sets U s+1
i . There are two cases:

• if s+ 1 = 〈0, k〉 for some k, then let x be minimal in R∗i0 such that x 6∈ U s
i0

and,

for every y ∈
⋃
i∈I\{i0} U

s
i (which is a finite set), f(x, y) = 0: such an x exists

since Ci0
i = ∅, and so µ∗i0({x ∈ R∗i0 : f(x, y) = 1}) = 0 for every y ∈ R∗i . Then

we set U s+1
i0

= U s
i0
∪ {x} and U s+1

i = U s
i for every i ∈ I \ {i0}.
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• if s+ 1 = 〈p, k〉 for some p 6= 0, then let x be minimal in R∗ip such that for every

y ∈ R∗i0 f(x, y) = 0. Similarly as above, such an x exists since Ci
i0

= ∅ for every

i ∈ I, i 6= i0. We set U s+1
ip

= U s
ip ∪ {x} and U s+1

i = U s
i for every i ∈ I \ {ip}.

Finally, we set U ′i0 =
⋃
s U

s
i0

, and, for every i ∈ I \ {i0}, we define Ui =
⋃
s U

s
i . The

last thing left to do is to refine U ′i0 to an f -homogeneous set: let Ui0 be the infinite

f -homogeneous set obtained by applying bRT2
3 to U ′i0 .

By the way we defined them, it is clear that ~U = {Ui : i ∈ I} is as wanted in the

statement of Claim 4.2.1.

As explained above, this is enough to prove the Theorem.

4.2.4. Computability theoretic considerations

In this section, we will say something on the complexity of the solutions of SSPL3. In

order to do that, as usual, we first introduce the partial multifunction associated to

SSPLk (the problem associated to SPLk could be defined in essentially the same way).

We will focus on the case k = 3.

Definition 4.2.9. For every k ∈ ω, SSPLk is the following partial multifunction:

• Input: A pair (~R, f), where ~R = {Ri : i ∈ ω} is a partition of ω into infinite

disjoints sets (i.e., we assume that every Ri is infinite, Ri ∩ Rj = ∅ for every

i 6= j, and that
⋃
iRi = ω), and f is a coloring f : [ω]2 → 2 such that no set of

size k is f -homogeneous for color 1.

• Output: an infinite f -homogeneous set H such that, for every i ∈ ω, H ∩Ri 6= ∅
implies that H ∩Ri is infinite and such that there are infinitely many i ∈ ω such

that H ∩Ri 6= ∅.

We pointed out in Remark 4.2.7 that there would be another way to prove

Theorem 4.2.6, which is actually the way in which the proof by Larson was originally
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presented. Anyway, proving the Theorem the way we did, using one single application

of RT4
64, allows us to conclude immediately, using the results from [41], that every

computable instance of SSPL3 has Π0
4 solutions, and so solutions computable in ∅(4).

Moreover, a closer inspection of the proof shows that we have actually proved that

SSPL3 ≤W uRT4, since the coloring g we define could very easily be transformed into

a coloring g′ : [ω]4 → 2 with no infinite g′-homogeneous sets for color 1. Hence, using

Corollary 4.1.34, we can actually conclude that every computable instance f of SSPL3

has a SSPL3-solution computable in any degree d such that d is PA over ∅(3), and so

even has ∆0
4 solutions.

Of course, this is an upper bound on the complexity of the solutions for computable

instances of SPL3 as well.

In this section, we approach the problem of estimating the complexity of the solutions

in a different, and in a certain sense more combinatorial, way. Although we do not

succeed in establishing a better upper bound for the complexity of the solutions to the

computable SSPL3 instance (~R, f), we manage to put some bounds on the complexity

of a sets K with the following property: K ⊆ ω is such that for every i, Ri ∩ K is

infinite and for every x ∈ K, limy∈Ri∩K f(x, y) exists.

We use the technique known as first jump control, introduced in [11]. We point out

that the language used in [11] is slightly different than the one we use here, making

a more explicit use of computable Mathias forcing than us. We refer to [36] and [21]

for excellent presentations of this technique (and to [64] for a general introduction to

computable forcing).

Lemma 4.2.10. Let (~R, f) be a computable instance of SSPL3. Then, there is a low2

set K ⊆ ω such that K ∩Ri is infinite for every i ∈ ω and such that for every x ∈ K
and i ∈ ω, limy∈K∩Ri f(x, y) exists.

Proof. Let d be a Turing degree that is PA over ∅′ and such that d′ ≡T ∅′′ (we already

mentioned in the proof of Theorem 4.1.33 that such degrees exists). We will build the

set K in stages, computably in d: at even stages, we will take care of the requirement

that for every x ∈ K and i ∈ ω, limy∈K∩Ri f(x, y) exists, and in odd stages we will
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ensure that K ′ ≡T d, which ensures that it is low2. For the first case, we will make

essential use of the properties of PA degrees, namely of Lemma 1.2.20.

In what follows, we will call a condition a pair (F,L), where F ⊂ ω is finite set and

L ⊆ ω is an infinite computable set such that F < L and for every i ∈ ω, L ∩ Ri is

infinite. The idea of the construction is that, for every stage s, if we start the stage

with the condition (Fs, Ls), we enlarge Fs using elements from Ls, thus obtaining a

new finite set Fs+1, and then we find an infinite subset Ls+1 of Ls, so that at the end

of stage s we will have another condition (Fs+1, Ls+1) to pass on to the next stage.

The set K we are after will be the union of all the first components of the conditions

we build in the construction.

At the start of the construction, we put F0 = ∅ and L0 = ω. Then, at stage s, given

the condition (Fs, Ls), we proceed as follows:

• if s is even: let is be the maximal i such that Fs ∩ Ri 6= ∅ (unless s = 0, in

which case we set is = 0). For every i ∈ ω, let xsi be the minimal element of

(Ri ∩ Ls) \ Fs (recall that we are assuming that Ri ∩ Ls is infinite), and let

Fs+1 = Fs ∪ {xsi : i ≤ is + 1}.

Then, we have to refine Ls to Ls+1. For every i ≤ is + 1, x ∈ Fs+1 and k ∈ 2,

we let ϕ(i, x, k) be the formula “the set {y ∈ Ri : f(x, y) = k} is infinite”,

which, we notice, is a Π0
2 formula. Now, let us enumerate Fs+1 as Fs+1 =

{x0, x1, . . . , x|Fs+1|−1}. For every i ≤ is + 1 and every σ ∈ 2|Fs+1|, we define

the predicate ψ(i, σ) as
∧
j<|Fs+1| ϕ(i, xj, σ(j)), which again is Π0

2. Now, notice

that, for every i ≤ is + 1, for at least one σ ∈ 2|Fs+1|, ψ(i, σ) holds: maybe the

easiest way of proving this is via a measure-theoretic argument, which we now

sketch. Let µi be a non-atomic finitely additive {0, 1}-measure on Ri, and let

us call Ci,x,k the set Ci,x,k = {y ∈ Ri : f(x, y) = k}, for every x ∈ Fs+1 and

k ∈ 2. Since Ci,x,k ∪Ci,x,1−k is cofinite in Ri, it follows that for some choice of k

µi(Ci,x,k) = 1. Hence, for a certain string σ ∈ 2|Fs+1|, µi
(⋂

j<|Fs+1|Ci,xj ,σ(j)

)
= 1,

which proves that the intersection is infinite.
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By Lemma 1.2.20, we can find one such σ uniformly in d: we call this σ σi. We

do this for every i ≤ is + 1. Finally, we refine Ls to Ls+1 as follows:

Ls+1 =
(
Ls \

⋃
i≤is+1

Ri ∪
⋃

i≤is+1

⋂
j<|Fs+1|

Ci,xj ,σi(j)
)
\ [0,maxFs+1].

Thus, we have defined the new condition (Fs+1, Ls+1). We notice that, by the

way we have defined Ls+1, it still holds that for every i ∈ ω Ls+1 ∩Ri is infinite,

and moreover for every i ≤ is + 1 and x ∈ Fs+1, limy∈Ri∩Ls+1 f(x, y) exists.

• if s is odd, say s = 2e + 1: we will decide the eth bit of the jump of K.

Computably in ∅′, we check whether there is a finite set F ⊆ Fs ∪ Ls such

that Fs ⊆ F and Φe(F )(e)↓. If such an F exists, then we put Fs+1 = F and

Ls+1 = Ls \ [0,maxF ], thus obtaining a new condition (Fs+1, Ls+1). Otherwise,

we let (Fs+1, Ls+1) = (Fs, Ls).

As anticipated, we let K =
⋃
s∈ω Fs, and we claim that it satisfies the properties we

required. It follows easily from an inspection of the even stages that K ∩Ri is infinite

for every i ∈ ω, since at step 2i + 2h we make sure that F2i+2h+1 ∩ Ri has at least h

elements. Moreover, for every x ∈ K, if for some even s x ∈ Fs, at stage (at most)

s+ 2i we make sure that limy∈K∩Ri f(x, y) exists.

Finally, we observe that we can compute K ′ using d: suppose that, for a certain e ∈ ω,

we want to determine the value of K ′(e), i.e. whether Φe(K)(e)↓ or not. To do this,

we just have to repeat the construction of K up to F2e+1, and notice that by the way

we defined F2e+2, Φe(K)(e)↓ ↔ Φe(F2e+2)(e), which can be verified computably in d.

Hence, this proves that K ′ ≤T d, and so that K ′′ ≡T ∅′′. This completes the proof of

the Lemma.

The Lemma above has a nice consequence: the sets Ax,k = {i ∈ ω : ∃∞y(f(x, y) = k},
which are clearly Π0

2 sets, are ∆0
2 relative to K. Hence, when we argue modulo K, we

can exploit the reduction in complexity of these sets, as we will do in the next Lemma.

It would now be nice to use this as an initial step to find a bound of the complexity of
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a set IK ⊆ ω such that for every i ∈ IK and every x ∈ Ri∩K, limy∈Rj∩K f(x, y) = 0 for

all but finitely many j ∈ Ik: again, this set would not be a SSPL3-solution (nor would

it lead to a solution in any obvious way that we could think of), but it seems to be an

essential ingredient, for instance, of the original proof given by Specker, where a similar

fact is used (see for instance the start of the proof of Claim 4.2.3). Unfortunately, we

are unable to do so, although we give a partial result on what we could consider all

the finite approximations of such a set in the Lemma below.

Before proving the Lemma, we point out that, for any computable instance (~R, f) of

SPL3 that does not have computable SPL3-solutions and for every K as above, ω is a

set like the IK we just described: to see this, suppose for a contradiction that there is

an x ∈ ω such that for infinitely many i ∈ ω, there are infinitely many y ∈ Ri such that

f(x, y) = 1. Then, the computable set {y ∈ ω : f(x, y) = 1} is a SPL3-solution to f ,

since it is an infinite f -homogeneous set for 0 with infinite intersections with infinitely

many Ri. Hence, we can conclude that no x as before exists, which means that for

every x ∈ ω, there are only finitely many i ∈ ω such that limy∈Ri∩K f(x, y) = 1, which

proves that we can take Ik = ω.

Lemma 4.2.11. Let (~R, f) be a low2 instance of SSPL3 such that for every x, i ∈ ω
limy∈Ri f(x, y) exists. If there is a finite set F ⊆ ω such that the set AF = {i ∈ ω :

∀x ∈ F (limy∈Ri f(x, y) = 0)} does not contain any infinite low2 set, then f has a low2

SSPL3-solution.

Proof. Suppose that there is a finite set F as in the hypotheses of the Lemma. As

we noticed above, for every finite set F , the set AF is ∆
0,(~R,f)
2 . By a straightforward

relativization of [11, Theorem 3.6], either AF or the complement of AF has a infinite

subset J that is low2 relative to (~R, f), i.e. (J ⊕ (~R, f))′′ ≤T (~R, f)′′. So by our

assumptions let J be an infinite low2 (relative to (~R, f)) subset of ω\AF . Computably

in J⊕ (~R, f), we can define the finite partition
⋃
x∈F Dx of J as follows: first, for every

x ∈ F , let Cx = {j ∈ J : ∃∞y ∈ Rj(f(x, y) = 1)}. We notice that every Cx is

∆
0,J⊕(~R,f)
2 . Then, for every x ∈ F , we set Dx = Cx \

⋃
z∈F,z<xCz. Since the collection

of the Dx is a finite partition of J in ∆
0,J⊕(~R,f)
2 sets, by a relativization of [11, Theorem
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3.7] there is a x̄ ∈ F such that Dx̄ contains an infinite set S that is low2 relative to

J ⊕ (~R, f), so that (S ⊕ J ⊕ (~R, f))′′ ≤T (J ⊕ (~R, f))′′.

Hence, computably in S ⊕ (~R, f), we can define the set H = {y ∈ ω : ∃s < y(s ∈
S ∧ y ∈ Rs)∧ f(x̄, y) = 1}. The set H is clearly a SSPL3-solution to (~R, f). Moreover,

since H ≤T S ⊕ (~R, f), we have that H ′′ ≤T (S ⊕ J ⊕ (~R, f))′′ ≤T (J ⊕ (~R, f))′′ ≤T

(~R, f)′′ ≤T ∅′′, thus proving that H is low2.
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5. First-order part of problems and

parallelization

In this Chapter, we give some results on the first-order part operator, an operator on

problems recently introduced by Dzhafarov, Solomon and Yokoyama: as we explain

in Section 5.1, the first-order part of a problem P correspond to the most complicated

problem (with respect to Weihrauch reducibility) that is reducible to P and first-order,

i.e. with range equal to ω.

Our study will focus on the first-order part of problems that are equivalent to

parallelizations of first-order problems. To this end, in Section 5.2, we define a new

operator, which we call unbounded ∗ operator : intuitively, this can be seen as an

operation intermediate between the finite parallelization ∗ and the infinite paralleliza-

tion .̂ After proving that the unbounded ∗ operator is Weihrauch-degree theoretic, we

show that it indeed offers an alternative characterization of the first-order part of the

parallelization of a first-order principle P, i.e. 1(P̂) = Pu∗.

Finally, in Section 5.3, we will see an example of the computation of the first-order

part of a principle: exploiting the known fact that WKL ≡W Ĉ2, we will see that

1WKL ≡W C∗2. We will then generalize this result and show that, for every n > 0,

1(WKL(n)) ≡sW (C∗2)(n).

We point out that the result of this Chapter are joint work with Manlio Valenti.



172 5. First-order part of problems and parallelization

5.1. The first-order part operator

Recently, Dzhafarov, Solomon and Yokoyama [20] introduced the first-order part of

a problem P: the main idea behind this operator is to produce, in the Weihrauch

degrees, something that is reminiscent of the operation of considering the first-order

part of a theory in reverse mathematics. One possible approach to do this is to study

problems that have ω as codomain, instead of ωω. This is precisely the intuition behind

Definition 5.1.1.

Before we give the Definition, we remark that in this Chapter we will fully adopt the

notational convention described in Subsection 1.2.1: namely, for p ∈ ωω, we will write

Φp to mean the Turing functional Φp(0)(p�ω\{0}), where, as customary, we assume given

an enumeration Φ0,Φ1, . . . of the Turing functionals.

Definition 5.1.1 ([20]). • We fix the following representation δω :⊆ ωω → ω for

the space ω: for every i ∈ ω, δω(x) = i if and only if x = iω, i.e. the infinite

string outputting i for every input.

• We say that a partial multifunction P is a first-order problem if the codomain of

P is ω. We denote by F the set4 of Weihrauch degrees of problems P :⊆ ωω ⇒ ω.

• For every problem P :⊆ X ⇒ Y , the first-order part of P is the partial multifunc-

tion 1P :⊆ ωω ×X ⇒ ω defined as follows:

– Input: a pair (p, x) ∈ ωω × X such that x ∈ domP and for every y ∈ P(x)

and every q ∈ δ−1
Y (y), we have that Φp(q)(0)↓.

– Output: an n ∈ ω such that for some y ∈ P(x) and some q ∈ δ−1
Y (y),

Φp(q)(0) = n.

Although the definition above is rather cumbersome, the degree of the first-order part

of a problem admits a nice characterization.

4Similarly to what was done to define the set of Weihrauch degrees, F is technically obtained by
only considering the degrees of problems with domain ωω.
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Theorem 5.1.2 ([20]). For every problem P,

1P ≡W max
≤W

{degW(Q) : degW(Q) ∈ F ∧ Q ≤W P}.

We will now focus on the study of the first-order part of a particular class of problems,

namely those that can be seen as parallelization of first-order problems, obtaining some

general results in Section 5.2. Although this is, in a certain respect, a fairly small class

of problems, it contains some important multivalued functions, like lim and WKL. The

first-order part of WKL and of its jumps will be thoroughly studied in Section 5.3.

5.2. The unbounded ∗ operator and parallelization

In this Section, we will offer an alternative characterization of the degrees of first-order

parts of problems that are parallelizations of first-order problems. This will be done

via the introduction of a new operator.

Definition 5.2.1. For every partial multifunction P :⊆ X ⇒ Y , we define the problem

Pu∗ :⊆ ωω ×X ω ⇒ Y∗, called the unbounded ∗ operator , as follows:

• Input: a pair (w, (xi)i∈ω) such that (xi)i∈ω ∈ dom P̂ and for every (yi)i∈ω ∈
P̂((xi)i∈ω), there is a k ∈ ω such that for every t ∈ δ−1

Yk ((yj)j<k), Φw(t)(0)↓.

• Output: a finite sequence (k, (yj)j<k), for some k ∈ ω, such that yj ∈ P(xj) for

every j < k and, for every t ∈ δ−1
Yk ((yj)j<k), Φw(t)(0)↓.

In a certain sense, the operator above corresponds to a form of finite parallelization

of the problem P, with one important difference: whereas P∗ requires the number of

parallel uses of P to be declared in advance, i.e. as part of the input, here we just require

that P is used finitely many times. This intuition is corroborated by the following easy

Lemma.

Lemma 5.2.2. For every problem P, Pu∗ ≤W P̂ and P∗ ≤W Pu∗.
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Proof. Let (w, (xi)i∈ω) ∈ domPu∗, and let (yi)i∈ω ∈ P̂((xi)i∈ω). In order to find a

Pu∗-solution, we just have to run, in parallel, the computations Φw(tn)(0), where tn ∈
δ−1
Yn((yi)i<n): by the assumptions on the domain of Pu∗, we know that at least one of

the computations will converge. Suppose that we find that Φw(tk)(0) converges, for

a certain k, then we just have to output the sequence (k, (yi)i<k). This proves that

Pu∗ ≤W P̂.

Now we prove that P∗ ≤W Pu∗. Given (n, x0, . . . , xn−1) ∈ dom(P∗), as a w we choose

any index that makes the computation check the first n components of the oracle before

converging to 0. Hence, we can define the forward functional as Γ(n, x0, . . . , xn−1) =

(w, ((xi)i∈ω), where (xi)i∈ω is obtained by repeating x0, . . . , xn−1 infinitely many times,

and the return functional is defined in the obvious way.

We will say something more about the relationship between the operators ∗, unbounded

∗ and ̂ at the end of this section.

Now, we show that the operator unbounded ∗ is rather robust: in the next two

Lemmata, we will see that the unbounded ∗ operator is Weihrauch-degree theoretic

and idempotent.

Lemma 5.2.3. For every two problems P :⊆ X ⇒ Y and Q :⊆ A ⇒ B, if P ≤W Q,

then Pu∗ ≤W Qu∗. Hence, the operator unbounded ∗ is Weihrauch-degree theoretic.

Proof. Suppose that the Weihrauch reduction P ≤W Q is witnessed by the pair of

functionals Γ, ∆, let (w, (xi)i∈ω) ∈ domPu∗, and let pxi be a name of xi for every

i ∈ ω.

Let w̃ be the index computed as follows: in w̃ we encode all the sequence (pxi)i∈ω and

w as well, say that w̃i = pxi and w̃−1 = w, for notational convenience. We have then

w̃ = w̃(0)a(w̃i)i∈{−1}∪ω, where w̃(0) is the index for the universal Turing functional Φ

such that the following happens: Φw̃(〈((ci)i∈ω)〉)(0) = Φw(〈((∆(ci, w̃i)i∈ω)〉)(0), for all

(ci)i∈ω ∈ ωω (namely, it is enough to find an index w̃(0) that replicates step by step

the computation on the right, since we have coded all the necessary data in w̃).
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Now, consider (w̃, (Γ(pxi))i∈ω), and notice that δωω×Aω(w̃, (Γ(pxi))i∈ω) =

(w̃, (δA(Γ(pxi)))i∈ω), by the way we defined the representations in Section 1.2.3.

We claim that (w̃, (δA(Γ(pxi))i∈ω) is an instance of Qu∗. To see this, let (bi)i∈ω ∈
Q̂(δA(Γ(pxi))i∈ω)). Then, for every name (pbi)i∈ω of (bi)i∈ω, (∆(pbi , pxi))i∈ω is a name

for an element of P̂((xi)i∈ω), so by our assumption on (w, (xi)i∈ω) there is a k(w,(xi)i∈ω)

such that the first k(w,(xi)i∈ω) components of (∆(pbi , pxi))i∈ω make the computation

of Φw((∆(pbi , pxi))i∈ω)(0) converge. But since we have that Φw((∆(ci, pxi))i∈ω)(0) =

Φw̃(〈((ci)i∈ω)〉)(0) by our definition of w̃, then we also have that the first k(w,(xi)i∈ω)

components of (pbi)i∈ω make Φw̃(〈((pbi)i∈ω)〉)(0) converge.

Finally, notice that then it is easy to go from a name of a Qu∗-solution to a name for

a Pu∗-solution via the functional ∆.

Lemma 5.2.4. For every problem P :⊆ X ⇒ Y, (Pu∗)u∗ ≤W Pu∗. Hence, the

unbounded ∗ operator is idempotent.

Proof. By unraveling the definition, we get that an instance of (Pu∗)u∗ is a sequence

(w, (wi, (x
i
r)r∈ω)i∈ω) such that (wi, (x

i
r)r∈ω)i∈ω ∈ dom (̂Pu∗) and for every (yi)i∈ω ∈

(̂P)u∗((wi, (x
i
r)r∈ω)i∈ω), there is a k ∈ ω such that for every t ∈ δ−1

(Y∗)k((yj)j<k),

Φw(t)(0) ↓, where for every j < k, yj = (kj, (zl)l<kj) such that for every tj ∈
δ−1

Ykj
((zl)l<kj), Φwj(tj)(0) ↓.

We define ŵ ∈ ωω as the index such that, for every sequence of sequences (cir)i,r∈ω ∈
(ωω)ω, Φŵ((cir)i,r∈ω)(0) does the following: at computation step s, for every i < s,

it checks whether for some k′i < s Φwi,s((c
i
r)r∈ω)(0) ↓ (we assume to have coded

the wi in ŵ). Letting Is be the set of i < s such that this happens, it then runs

Φw,s((k
′
i, (c

i
r)r∈ω)i∈Is)(0).

We now define the forward functional of the reduction to be given by

(pw, p(wi,(xir)r∈ω)i∈ω) 7→ (ŵ, (p(xir)r∈ω
)i∈ω) (where we have again used the convention that

px denotes a name of x). By our assumptions on (w, (wi, (x
i
r)r∈ω)i∈ω), it is clear

that we have defined an instance of Pu∗, and it is also easy to see how to from a

(name for a) Pu∗-solution of (ŵ, (p(xir)r∈ω
)i∈ω) to a (name for a) (Pu∗)u∗-solution to

(w, (wi, (x
i
r)r∈ω)i∈ω).
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Thanks to the Lemma above, we can conclude that the unbounded ∗ operator is a

closure operator with respect to Weihrauch reducibility.

We can now move to the relationship between the first-order part and the unbounded

∗ operators.

Theorem 5.2.5. For every first-order problem Q, we have that 1(Q̂) ≡W Qu∗.

Proof. First, we notice that if Q :⊆ X ⇒ ω is first-order, then the problem Qu∗ has

codomain ω<ω: hence, by a minor change of representation, we can see the problem

Qu∗ as a first-order problem. Since, by Lemma 5.2.2, Qu∗ ≤W Q̂, by Theorem 5.1.2 we

can conclude that Qu∗ ≤W
1(Q̂).

Hence, we just have to show that 1(Q̂) ≤W Qu∗. Let R :⊆ Y ⇒ ω be a first-

order problem such that R ≤W Q̂, as witnessed by the functionals Γ, ∆. Let

y ∈ domR, let py be a name of y, and let (zi)i∈ω ∈ Q̂(δXω(Γ(py))). Notice that,

by our choice of representation of ω, it follows that (zi)i∈ω has only one name,

p(zi)i∈ω . Since we know that ∆(py, p(zi)i∈ω)(0) has to converge, there is a k such that

∆(py, p(zi)i∈ω)(0) = ∆(py, p(zi)i<k)(0), where p(zi)i<k is a name of (zi)i<k, and actually

just a finite initial segment of p(zi)i<k is used. Hence, by letting wy ∈ ωω be the

index such that Φwy(σ)(0) = ∆(py, σ)(0) for every σ ∈ ω<ω, we get that (wy, (yi)i∈ω)

(where every yi equals to y) is an instance of Qu∗, and from any solution to that it is

immediate to compute an R-solution to y. Hence, we have that R ≤W Qu∗, and hence,

by Theorem 5.1.2, that 1(Q̂) ≤W Qu∗.

We can now add some considerations on the operator unbounded ∗: in Lemma 5.2.2, we

proved that for every problem P, it holds that P∗ ≤W Pu∗ ≤W P̂. Using the Theorem

above, we are able to show that Pu∗ does not collapse on either of the two other

operators: in the next section, we will show that for the problem C2 (which we will

introduce), we have that 1(Ĉ2) ≡W C∗2, so that, by the Theorem above, C2
u∗ ≡W C∗2,

and it is known that C∗2 6≡W Ĉ2 (see for instance [6, Section 7]). So, if the operator

unbounded ∗ had to collapse on one of the other two, it would have to be the finite

parallelization operator. But it is enough to consider 1lim to see that this cannot
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be the case: it is known that lim ≡W L̂PO (again, see [6]), so that by the Theorem

above 1lim ≡W LPOu∗. It is another known result that Cω ≤W lim (where Cω is the

closed choice on ω, which we shall not define: we refer to [6] for both a definition of

it and a proof of the result above), which, by Theorems 5.1.2 and 5.2.5, implies that

Cω ≤W LPOu∗. On the other hand, by [54, Lemma 5], we have that Cω 6≤W LPO∗,

which proves that LPOu∗ 6≡W LPO∗.

5.3. The first-order part of WKL(n)

In this section, we will compute the Weihrauch degree of the first-order part of the

jumps of WKL. A very important character in this computation will be the problem

C2, which we now introduce.

Definition 5.3.1. For every k ∈ ω, Ck is the following partial multifunction:

• Input: an infinite sequence x ∈ (k + 1)ω such that {0, . . . , k − 1} 6⊆ ranx.

• Output: a point y ∈ k such that y 6∈ ranx.

We notice right away that, since Ck can be seen as a partial multifunction with

codomain ω, we have that Ck is a first-order problem.

In general, for every represented space (X , δX ) which is also a topological space, we

could define the problem CX , called closed choice on X , as the problem that, given a

non-empty closed set of X , finds a point in that set: these are important and widely

studied problems, and we refer for instance to [6] for more on them. In this particular

instance, since we do not need these principles in their full generality, we have chosen

to limit ourselves to give the definition of closed choice in the case that the space is the

finite set k, and the closed set from which to chose a point is given by an enumeration

of its complement.

The main reason we are interested in C2 is given by the following Lemma

Lemma 5.3.2 ([6], Theorem 7.23). WKL ≡sW Ĉ2
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Hence, we could immediately apply the results from the previous section to get that

1WKL ≡W (C∗2)u∗. In the next Lemma, we will see that 1WKL admits a more familiar

description.

Lemma 5.3.3. 1(Ĉ2) ≡W C∗2

Proof. Since C∗2 ≤W Ĉ2 and C∗2 is first-order, it follows that C∗2 ≤W
1(Ĉ2), hence we

just have to show the other reduction.

In order to do this, by Theorem 5.1.2, it is enough to show that for every first-order

problem P :⊆ X ⇒ ω, for some represented space (X , δX ), if P ≤W Ĉ2, then we have

that P ≤W C∗2.

Suppose that the reduction P ≤W Ĉ2 is witnessed by the pair of functionals Γ, ∆.

Suppose that x is a valid input for P, and let px ∈ ωω be such that δX (px) = x.

We now claim that we can determine the number of parallel applications of C2 that

we need to use in order to find a P-solution for x. To do this, we start observing the

following thing: since we are assuming that P is first order, for every Ĉ2-solution z

to Γ(px), in order to find a P-solution y to x, the functional ∆ will only use a finite

amount of the oracle 〈z,Γ(px)〉, since y is just an element of ω: that amount will be

limited by the use of the computation ∆(〈z, px〉)(0).

We can then proceed in stages as follows. At every stage s, we first examine the set

Γ(px)({0, . . . , s}): by our assumptions, this is some initial segment of a sequence of

elements of 3ω. Notice that, by examining Γ(px)({0, . . . , s}), we can exclude some of

the possible answers of Ĉ2 to Γ(px): suppose that Γ(px) is the sequence of sequences

(xi)i∈ω, then if for some j,m ∈ ω and t < s we have that Γ(px)(t) = xj(m) = l, for

l < 2 then no function f : ω → 2 such that f(j) = l can be a Ĉ2-solution to Γ(px). If

this happens, we say that the function f has been excluded at stage s. We let Es
n be

the set of strings of length n that are initial segments of binary functions that have

been excluded at stage s. For every n, we let Gs
n be the set 2n \Es

n: we can see Gs
n as

the set of guesses for an initial segment of length n of a Ĉ2-solution to Γ(px) that are

still possible at stage s. Finally, we let Cs
n be the subset of Gs

n such that ∆(〈Cs
n, px〉)(0)

converges in less than s steps.
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Notice that, for a function f : ω → 2, if for every s and every n we have that

f�{0,...,n−1} 6∈ Es
n, then actually f ∈ Ĉ2(Γ(px)), by the definition of the problem C2.

We then claim that there are an n̄ and an s̄ such that every binary string of length n̄

is E s̄
n̄ ∪ C s̄

n̄: if this was not the case, for every n and s there would be a string not in

Es
n ∪ Cs

n. Then, for every n and s, let T sn = {f ∈ 2ω : f�{0,...,n−1} ∈ 2n \ (Es
n ∪ Cs

n)}:
every T sn is a non-empty closed subset of 2ω. Since it is easily seen that for every

n and s T s+1
n ⊆ T sn, it follows that for every n Tn =

⋂
s∈ω T

s
n is a non-empty closed

subset of 2ω. Similarly, one easily sees that, for every n, Tn+1 ⊆ Tn, which means

that T =
⋂
n Tn is a non-empty closed subset of 2ω. Let us now consider any f ∈ T :

as we have just observed, f ∈ Ĉ2(Γ(px)) follows from the fact that for every s and n

f�{0,...,n−1} 6∈ Es
n, but we also have that ∆(〈f, px〉)(0)↑ from the fact that for every s

and n f�{0,...,n−1} 6∈ Cs
n. This contradicts the fact that P ≤W Ĉ2 via Γ and ∆, and thus

proves the existence of s̄ and n̄ as we want.

Thus, we can prove that P ≤W C∗2 via the following procedure: we start by running

the procedure described above until s̄ and n̄ are found. Then, let Γ̃ be the Turing

functional that produces the C∗2-instance (n̄, (wi)i<n̄), where (wi)i<n̄ are the first n̄

sequences in the output of Γ(px). Then, the pair of functionals Γ̃, ∆ witnesses that

P ≤W C∗2.

By Lemma 5.3.2, Lemma 5.3.3 implies that 1WKL ≡W C∗2.

We now have to take care of the jumps. Doing this is rather delicate, since the jump

is not a Weihrauch-degree theoretic operator, as we noticed in Subsection 1.2.3. To

do this, we will see that there is a class of first-order problems that has the same nice

behavior as the cylinders with respect to the jump.

Definition 5.3.4. Let P : X ⇒ ω be a first-order problem. We say that P is a

first-order cylinder if for every first-order problem Q, Q ≤W P⇒ Q ≤sW P.

Lemma 5.3.5. For every problem P :⊆ X ⇒ Y, if P is a cylinder, then 1P is a

first-order cylinder.

Proof. Suppose that Q : Z ⇒ ω is a first-order problem such that Q ≤W
1P, as
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witnessed by functionals Γ, ∆. This means that, for every z ∈ domQ and every name

pz of it, Γ(pz) is a name for an instance of 1P, i.e. a pair (w, px) where px is the name

of some instance x of P. We start modifying Γ to the functional Γ̃ as follows: for every

z ∈ domQ, we put Γ̃(pz) = (〈w̃, pz〉, px), where w̃ is such that Φ〈w̃,pz〉(t)(0) = Φw(t)(0)

for every t ∈ ω: in essence, we are just making sure that a name for z is coded in the

input for 1P.

Since we are assuming that P is a cylinder, there are two functionals Γ0, ∆0 witnessing

that id×P ≤sW P. Then, we define our final functional Γf as Γf (pz) = (v,Γ0 ◦ Γ̃(pz)),

where v is an index such that

Φv(t)(0) = ∆(π1(π0(π0(∆0(t)))),Φπ0(π0(π0(∆0(t))))(π1(t)))(0)

for every t ∈ ωω, where for every i < 2, πi(〈x0, x1〉) = xi, i.e πi is the projection on

the ith component. We notice that the computation above is bound to converge by

the assumptions on (w, pz), and that every output of the computation above on input

(w, pz) gives a directly a Q-solution to z.

In general, although the formula above might seem cumbersome, the proof boils down

to showing that one can use id× P in the place of P uniformly and without access to

the initial inputs.

We now show that for cylinders, the jump and the first-order part operator commute.

Lemma 5.3.6. For every cylinder P, 1(P′) ≡sW (1P)′.

Proof. Since P is a cylinder, by Theorem 1.2.17 Item 3 we have that P ∗ lim ≡W P′.

Hence, (1P)′ ≤W
1P ∗ lim ≤W P ∗ lim ≡W P′. It follows that (1P)′ ≤W

1(P′) by

Theorem 5.1.2, and hence (1P)′ ≤sW
1(P′) by Lemma 5.3.5.

Hence, we just have to show that 1(P′) ≤sW (1P)′. We point out that this fact actually

holds in general, i.e. it does not depend on P being a cylinder. To see this, by unraveling

the definitions, we see that an instance of 1(P′) is a pair (w, (xi)i∈ω) such that the

sequence (xi)i∈ω converges to an input x for P. But then, we can define the sequence
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of pairs (wi, xi)i∈ω such that wi = w for every i, and this is a valid input for (1P)′,

any solution to which is clearly a 1(P′)-solution to (w, (xi)i∈ω). Hence, we have that

1(P′) ≤sW (1P)′.

Hence, by the Lemmas above and the fact that WKL is a cylinder, we have that

1(WKL′) ≡sW (1WKL)′. We now show that 1WKL and C∗2 are in the same strong

Weihrauch degree. This is equivalent to say that C∗2 is a first-order cylinder, since by

the Lemma above we have that C∗2 ≤sW
1WKL.

Lemma 5.3.7. C∗2 is a first-order cylinder.

Proof. The proof will rely on an argument similar to that of the proof of Lemma 5.3.3:

namely, a fundamental ingredient will be the fact that for C2, if a number is not a

valid solution for a certain instance, we get to know it in a finite amount of time.

Suppose that Q : Z ⇒ ω is a first-order problem such that Q ≤W C∗2 via the functionals

Γ, ∆. We proceed in stages as follows: suppose that n is such that n parallel applica-

tions of C2 suffice to solve Γ(pz) (notice that the bit of information corresponding to

the number n has to be produced right away, by the definition of C∗2). Then, at stage

s, for every σ ∈ 2n \ Es
n (we are using the same terminology of Lemma 5.3.3) we run

the first s steps of the computation ∆(pz, σ).

We claim that, for a certain stage s̄, for every σ ∈ 2n\E s̄
n, we have that ∆(pz, σ)(0)↓ in

less than s̄ steps: if this was not the case, we would have that there exists a C∗2-solution

σ to Γ(pz) for which ∆(pz, σ)(0)↑, which contradicts our assumptions on ∆.

Hence, in order to show that Q ≤sW C∗2, we can proceed as follows: we first compute

s̄ as in the paragraph above. Then, using the obvious fact that idω<ω ×C∗2 ≤sW C∗2, we

use C∗2 to compute an idω<ω × C∗2-solution to (pz�s̄,Γ(pz)), say (pz�s̄, y), and use it to

compute ∆(pz�s̄, y)(0) = ∆(pz, y)(0). This proves that Q ≤sW C∗2.

Finally, we are ready to compute the first-order part of WKL.

Theorem 5.3.8. For every n > 0, 1(WKL(n)) ≡sW (C∗2)(n).
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Proof. In Lemma 5.3.3, we saw that 1WKL ≡W C∗2. By Lemma 5.3.5, we have

that C∗2 ≤W
1WKL, and by Lemma 5.3.7 we also have that 1WKL ≤sW C∗2, so that

1WKL ≡sW C∗2.

Now, for every n > 0, by iterated applications of Lemma 5.3.6 we have that

1(WKL(n)) ≡sW (1WKL)(n). By the previous paragraph and the fact that the jump is

strong Weihrauch-degree theoretic, we can conclude that 1(WKL(n)) ≡sW (C∗2)(n).

As a final remark, we notice that, since for every n, k > 0 we have that R̂Tnk ≡W WKL(n)

by [8, Corollary 4.18], by the Theorem above we can also conclude that 1(R̂Tnk) ≡W

(C∗2)(n).
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Problem, 23
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Solution to a problem, 23
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Stable linear order, 19
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[32] P. Hájek and P. Pudlák. Metamathematics of First-order Arithmetic. Perspectives

in mathematical logic. Springer-Verlag, 1993.

[33] András Hajnal and Jean Larson. Partition relations. In Matthew Foreman and

Akihiro Kanamori, editors, Handbook of set theory. Vols. 1, 2, 3, chapter 2, pages

129–213. Springer, Dordrecht, Hamburg, 2010.

[34] Paul R. Halmos. Measure theory. Springer-Verlag New York, 1974.

[35] E. Herrmann. Infinite chains and antichains in computable partial orderings.

Journal of Symbolic Logic, 66(2):923–934, June 2001.

[36] Denis Hirschfeldt. Slicing the truth : on the computable and reverse mathematics

of combinatorial principles. World Scientific, Hackensack, NJ, 2015.

[37] Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability-theoretic

reduction between Π1
2 principles. Journal of Mathematical Logic, 16(01):1650002,

jun 2016.

[38] Denis R. Hirschfeldt, Carl G. Jockusch, Bjørn Kjos-Hanssen, Steffen Lempp, and

Theodore A. Slaman. The strength of some combinatorial principles related to

Ramsey’s theorem for pairs. In Computational Prospects of Infinity, pages 143–

161. WORLD SCIENTIFIC, June 2008.

[39] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than

Ramsey’s Theorem for pairs. Journal of Symbolic Logic, 72(1):171 – 206, 2007.



Bibliography 191

[40] Jeffry L. Hirst. Combinatorics in Subsystems of Second Order Arithmetic. Phd

thesis, The Pennsylvania State University, 1987.

[41] Carl G. Jockusch. Ramsey’s theorem and recursion theory. The Journal of

Symbolic Logic, 37(2):268–280, 1972.

[42] Carl G. Jockusch and Robert I. Soare. Π0
1 classes and degrees of theories. Transac-

tions of the American Mathematical Society, 173:33–33, 1972.

[43] Carl G. Jockusch Jr. and Robert I. Soare. Degrees of members of Π0
1 classes.

Pacific Journal of Mathematics, 40(3):605 – 616, 1972.

[44] Henry A. Kierstead. An effective version of Dilworth’s theorem. Transactions of

the American Mathematical Society, 268(1):63, November 1981.

[45] Alexander P. Kreuzer. Primitive Recursion and the Chain Antichain Principle.

Notre Dame Journal of Formal Logic, 53(2):245 – 265, 2012.

[46] Jean A. Larson. A short proof of a partition theorem for the ordinal ωω. Annals

of Mathematical Logic, 6(2):129–145, December 1973.

[47] Manuel Lerman. Degrees of unsolvability, volume 11. Cambridge University Press,

2017.

[48] Manuel Lerman, Reed Solomon, and Henry Towsner. Separating principles below

Ramsey’s theorem for pairs. J. Math. Log., 13(2):1350007, 2013.

[49] Jiayi Liu. RT2
2 does not imply WKL0. The Journal of Symbolic Logic, 77(2):609–

620, 2012.

[50] Alberto Marcone. On the logical strength of Nash-Williams’ theorem on transfi-

nite sequences. In Logic: From Foundations to Applications: European Logic

Colloquium, page 327–351, USA, 1996. Clarendon Press.

[51] Alberto Marcone and Richard A. Shore. The maximal linear extension theorem in

second order arithmetic. Archive for Mathematical Logic, 50(5-6):543–564, March

2011.



192 BIBLIOGRAPHY

[52] Joseph R. Mileti. Partition Theorems and Computability Theory. Phd thesis,

University of Illinois at Urbana-Champaign, 2004.

[53] Benoit Monin and Ludovic Patey. SRT2
2 does not imply RT2

2 in omega-models,

2019, arxiv.org/abs/1905.08427.

[54] Eike Neumann and Arno Pauly. A topological view on algebraic computation

models. Journal of Complexity, 44:1–22, 2018.

[55] J. B. Paris and L. A. S. Kirby. Σn-collection schemas in arithmetic. In Logic

Colloquium ’77 (Proc. Conf., Wroc law, 1977), volume 96 of Stud. Logic Founda-

tions Math., pages 199–209. North-Holland, Amsterdam-New York, 1978.

[56] Ludovic Patey. The reverse mathematics of Ramsey-type theorems. Phd thesis,
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