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Abstract 

A small subset of aerosol particles can induce ice-nucleation in supercooled 

liquid droplets. These ice-nucleating particles (INP) are responsible for the 

primary, heterogeneous nucleation of ice in clouds, and knowledge of their 

concentrations, sources and characteristics is necessary to accurately 

represent these mixed-phased clouds in models. This is particularly 

important in regions such as the central Arctic Ocean, where there are 

persistent mixed-phased clouds that help shape the radiative budget of the 

Arctic but very few measurements of INP, none of which are at cloud 

altitude. 

This thesis aimed to tackle the dearth of central Arctic INP data through the 

design and use of novel instrumentation, and a field campaign aboard an 

icebreaker which saw measurements of INP measurements made at both 

ship and cloud level close to the North Pole (88-90°N). Firstly, a high-

volume, size-selective aerosol sampler capable of being deployed for hours 

at a time at altitudes and temperatures relevant for mixed phased clouds 

was designed and tested. This sampler was used on a 2-month campaign to 

the central Arctic ocean from August-September 2018, alongside ship-based 

INP measurements. The central Arctic INP concentrations at sea-level were 

highly variable, with concentrations as low as could be expected in the 

Southern Oceans, and as high as those measured in rural farmland. The 

INP were found to be heat-sensitive, and the most active samples originated 

from the Arctic coasts of Russia. The samples with the least INP activity 

were from the pack ice and Canadian Arctic. The concentrations measured 

at cloud-level were often decoupled from those at the surface, 

demonstrating the necessity for more airborne measurements of INP. 

Additionally, the INP at cloud-level were often smaller than expected, at 

<0.25 μm in aerodynamic diameter. Finally, in order to better probe the 

characteristics of sampled INP in the future, a microfluidic device capable of 

sorting ice crystals containing INP active at a specific temperature from the 

bulk sample was developed.  
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1. Introduction 

1.1. The importance of clouds in Earth’s atmosphere  

Clouds are a key regulator in the Earth’s energy balance between incoming, 

and outgoing radiation. Their radiative effects are dependent on a number of 

factors, including their phase, altitude and optical thickness. The competition 

between incoming shortwave radiation from the sun and outgoing longwave 

radiation from the planet is therefore greatly influenced by the presence and 

types of clouds (Hartmann et al., 1992; Storelvmo et al., 2015). The radiative 

impact of clouds is called the cloud-radiative effect, and is of current interest 

due to the importance of this mechanism in the warming of the Earth. 

Modelling the behaviour of clouds in order to predict future trends is 

complicated, with competing processes which are not fully understood.  

Clouds can exist in the ice phase, the liquid phase or a mix of the two, called 

mixed-phase clouds. On a large scale, the phase is predominantly driven by 

location in the troposphere, with clouds much higher up more likely to 

contain more ice, such as cirrus clouds, which are thin, wispy, and entirely 

composed of ice. These clouds are optically thin, and so, in general, transmit 

more solar radiation than the optically thick, liquid or mixed-phase Stratus 

clouds within the mid to low troposphere (Hartmann et al., 1992).  

Mixed-phase clouds are of particular interest owing to the variation in 

radiative and precipitative effects with the changing ratio of ice and water in 

the cloud. However, the phase sensitivity of mixed phase clouds is complex, 

and additional factors besides temperature, such as secondary ice 

production and seeding from higher altitude clouds, dictate the amount of ice 

and water content in these clouds (Storelvmo, 2017).  

The ice content of a cloud strongly influences the lifetime, optical thickness, 

and radiative forcing of the cloud, as seen in Figure 1.1. A cloud consisting 

of mostly ice crystals has a lower albedo (reflectivity) than a cloud which is 

mostly liquid water. Therefore a cloud with large ice crystals allows more 

shortwave solar radiation to be transmitted to the Earth. This usually results 

in a net warming effect. The opposite is true of mostly liquid clouds, which 

usually exhibit a net cooling effect. However, the processes dictating cloud 

ice content are, as yet, not well characterised, and mixed-phase clouds are 

often only crudely represented in global models (Prenni et al., 2007; 

Storelvmo, 2017). 
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Figure 1.1- Radiative effect of clouds influenced by ice and liquid water 
content. 

1.2. Ice nucleation 

Liquid water is metastable at temperatures below 0 °C, where ice then 

becomes the most stable phase. Water which exists below 0 °C is therefore 

referred to as supercooled, due to its instability. In small volumes of water 

where nucleation sites are less likely to be present, a sample can supercool 

to well below 0 °C. Cloud-sized droplets may reach below -33 °C (Herbert et 

al., 2015) in the absence of particles, and below this temperature, 

spontaneous nucleation will become increasingly probable. 

1.2.1. Primary and secondary ice formation 

The transition from supercooled liquid water droplet to ice crystal occurs 

when the energy barrier for nucleation is overcome. The transition can be via 

primary or secondary processes. Primary nucleation in droplets involves the 

nucleation of ice, either spontaneously (homogeneous nucleation) or via the 

presence of a particle (heterogeneous nucleation). Secondary production, 

however, is induced in supercooled water droplets by other ice crystals. 

There are multiple ways in which ice crystals may induce freezing in a liquid 

droplet, such as collision fragmentation, rime splintering and droplet 

shattering (Field et al., 2016). Primary ice nucleation is responsible for the 

initial formation of ice crystals in a liquid cloud, and where nucleation 

requires a particle it is highly dependent on the type of particle. 
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1.2.2. Classical nucleation theory 

One of the classic ways used to describe the nucleation of ice is classical 

nucleation theory (CNT) (Gibbs, 1948; Mullin, 2001). This theory is based on 

the assumption that nucleation is a time dependant, stochastic process, with 

uniform nucleation probability throughout the liquid in homogeneous 

solutions, or on the particle in heterogeneous suspensions.  

1.2.2.1. Homogeneous ice nucleation 

The homogeneous nucleation of water can be described by the energy 

changes as the constituent molecules coagulate to form clusters. The 

excess, or Gibbs free energy ΔG of the system between the cluster and the 

bulk liquid can be described by the sum of the free energies of the surface 

ΔGs and volume ΔGv between the cluster and the liquid (Mullin, 2001): 

𝚫𝑮 =  𝚫𝑮𝐬 +  𝚫𝑮𝐕    Equ 1.1 

The growth in cluster size is thermodynamically favourable in supercooled 

water above a critical cluster size, rc, but there is a cost associated with 

forming a liquid-ice interface. Assuming the cluster is a sphere of radius r 

with a surface interfacial tension γ, the surface term, ΔGs, a positive quantity 

representing the cost of forming the surface, can be described by: 

𝚫𝑮𝒔 = 𝟒𝛑𝒓𝟐𝜸     Equ 1.2 

The volume term, ΔGV, can be described by: 

𝚫𝑮𝐕 =  
𝟒

𝟑
𝝅𝒓𝟑𝚫𝑮𝛎𝐮    Equ 1.3 

Where ΔGνu is the free energy per unit volume of the transformation, and is a 

negative quantity representing the energy gain of forming clusters in a 

supercooled environment. Therefore, because of the free energies 

competing as cluster size increases, the total Gibbs free energy ΔG of the 

cluster is at a maximum at rc, which is the minimum size of a stable cluster. 

This can be found by setting the derivative of ΔG with respect to r to zero: 

𝚫𝑮 =  𝟒𝛑𝒓𝟐𝜸 +  
𝟒

𝟑
𝝅𝒓𝟑𝚫𝑮𝛎𝐮   Equ 1.4 

𝒅𝚫𝑮

𝒅𝒓
=  𝟖𝛑𝒓𝜸 + 𝟒𝝅𝒓𝟐𝚫𝑮𝛎𝐮 = 𝟎  Equ 1.5 

Rearranging for the critical radius, rc: 

𝒓𝒄 =
−𝟐𝜸

𝚫𝑮𝛎𝐮
     Equ 1.6 

Combining with Equ 1.1 to find the maximum Gibbs free energy, ΔGcrit: 
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𝚫𝑮𝒄𝒓𝒊𝒕 =  
𝟏𝟔𝝅𝜸𝟑

𝚫𝑮𝛎𝐮
𝟐 +  

−𝟑𝟐𝝅𝜸𝟑

𝟑𝚫𝑮𝛎𝐮
𝟐 =  

𝟏𝟔𝝅𝜸𝟑

𝟑𝚫𝑮𝛎𝐮
𝟐   Equ 1.7 

Particle size and solubility can be related using the Gibbs-Thomson 

relationship: 

𝐥𝐧 𝑺 =  
𝟐𝜸𝝂

𝒌𝑻𝒓
     Equ 1.8 

Where S is the supersaturation ratio with respect to the nucleating phase of 

ice, 𝜈 is the molecular volume of water in ice, 𝜸 is the concentration of the 

solution over the equilibrium saturation at temperature T, and k is the 

Boltzmann constant. This can be used to express ΔGνu: 

𝚫𝑮𝛎𝐮 =  
−𝟐𝜸

𝒓𝒄
=  

−𝒌𝑻 𝐥𝐧 𝑺

𝝂
   Equ 1.9 

Therefore, ΔGcrit can be defined as: 

𝚫𝑮𝒄𝒓𝒊𝒕 =  
𝟏𝟔𝝅𝜸𝟑𝝂𝟐

𝟑(𝒌𝑻 𝐥𝐧 𝑺)𝟐     Equ 1.10 

The rate of nucleation, JHom, defines the number of nucleation events per 

unit time and volume, and is an important outcome of classical nucleation 

theory. JHom can be expressed in the form of the Arrhenius equation: 

𝑱𝑯𝒐𝒎 = 𝑨𝑯𝒐𝒎𝒆
−𝚫𝑮

𝒌𝑻 =  𝑨𝑯𝒐𝒎 𝒆
−𝟏𝟔𝝅𝜸𝟑𝝂𝟐

𝟑𝒌𝟑𝑻𝟑 (𝐥𝐧 𝑺)𝟐    Equ 1.11 

Where AHom is a reaction constant, also known as the pre-exponential factor. 

This nucleation rate per volume, JHom can then be compared to experimental 

values, where the rate of nucleation per unit volume is explicitly measured.  

1.2.2.2. Heterogeneous ice nucleation 

It is incredibly difficult to remove any impurities in a sample of water that may 

alter the freezing process. Therefore, in larger (> mL) volumes of water it is 

rare to achieve true spontaneous, or homogeneous, nucleation. 

Heterogeneous nucleation is much more common and relies on the 

presence of at least one particle, or coagulation of particles, to overcome the 

free energy barrier. Such a particle is usually referred to as an ice-nucleating 

particle (INP). For heterogeneous nucleation to occur at higher temperatures 

than for homogeneous nucleation, the free energy of producing a cluster of 

critical size must be smaller than the free energy for homogeneous 

nucleation ΔGcrit. Heterogeneous nucleation is additionally dependant on the 

surface interactions with the particle. The alteration in the free energy of 

heterogeneous nucleation caused by interactions with the surface can be 

described using a wetting angle, where here this angle is that which exists 

between the crystalline nucleus forming and the particle surface, θ,: 



- 5 - 

𝝓 =  
(𝟐+𝐜𝐨𝐬 (𝜽))(𝟏−𝐜𝐨 𝐬(𝜽))𝟐

𝟒
   Equ 1.12 

Where ϕ denotes the factor of alteration in the free energy of critical cluster 

formation under heterogeneous compared to homogeneous conditions. 

When θ is equal to 180°, ϕ is equal to 1, meaning the particle has absolutely 

no effect on the nucleation. Conversely, if θ is equal to 0°, then ϕ is 0, and 

the particle is the most efficient possible ice nucleator, reducing the energy 

barrier to zero. Therefore: 

  𝚫𝑮𝒉𝒆𝒕 𝒄𝒓𝒊𝒕 =  𝝓𝚫𝑮𝒉𝒐𝒎 𝒄𝒓𝒊𝒕   Equ 1.13 

Which can then be substituted into the Arrhenius equation: 

𝑱𝒉𝒆𝒕 = 𝑨𝑯𝒆𝒕𝒆
−𝝓𝚫𝑮

𝒌𝑻 =  𝑨𝑯𝒆𝒕 𝒆
−𝟏𝟔𝝅𝜸𝟑𝝂𝟐

𝟑𝒌𝟑𝑻𝟑 (𝐥𝐧 𝑺)𝟐  
(𝟐+𝐜𝐨 𝐬(𝜽))(𝟏−𝐜𝐨 𝐬(𝜽))𝟐

𝟒
 Equ 1.14 

There are numerous assumptions in place when applying CNT, including 

that the clusters are spherical, that the nucleating ability throughout the liquid 

is uniform, and that the surface of the particle is uniform in heterogeneous ice 

nucleation. Despite this, the experimental values for homogeneous 

nucleation align with the theoretical surprisingly well (Koop and Murray, 

2016; Tarn et al., 2021), but there are other descriptions , such as the 

singular description, which may be more appropriate for comparison to 

heterogeneous nucleation experiments on real world samples.  

1.2.3. Singular description for heterogeneous nucleation 

The singular description assumes the effects of time dependence are 

negligible compared to particle-to-particle variability, and so describes 

nucleation probability as a function of temperature only (Vali, 1971). A site at 

which nucleation occurs is referred to as an active site, and is the area of the 

particle surface on which nucleation is thought to be induced at a specific, 

characteristic temperature for that site. The activity of the sites can be 

influenced by the surface topography and/or the surface chemistry (Connolly 

et al., 2009; Vali, 2014; Whale et al., 2017; Kiselev et al., 2017; Holden et 

al., 2019), and so the determination of factors which influence these active 

sites is difficult.  

In a sample of mixed particle types, this description makes the determination 

of the INP concentration significantly simpler by removing time dependence, 

and assuming that the INPs are Poisson distributed, where those with the 

highest characteristic temperature will dominate nucleation in a droplet as 

the temperature is reduced. A cumulative nucleation spectra in terms of 

active sites per unit volume can be obtained from experimental fraction 
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frozen data (the fraction of droplets frozen at each measured temperature) 

over a range of temperatures, using a form of the time-independent singular 

model (Vali, 1971): 

𝑲(𝑻) =  −
𝐥𝐧(𝟏−𝒇(𝑻))

𝑽
    Equ 1.15 

Where the cumulative quantity, K(T), is the density of active sites per unit 

volume of sample, V, and f(T) is the fraction of droplets frozen as a function 

of temperature, which increases as the temperature decreases. 

The cumulative spectra is useful for determining the characteristics of INPs 

in a sample, as the quantity can be scaled to different experimental volumes. 

It is possible to calculate a concentration of INPs per volume of air sampled 

onto a filter, or a concentration of INPs per unit volume of a liquid sample for 

instance. 

The differential spectra, k(T), describes the density of active sites per unit 

volume per temperature interval, ΔT: 

𝒌(𝑻) =  
− 𝐥𝐧(𝟏−𝒇(𝑻))

𝑽∙∆𝑻
    Equ 1.16 

The differential spectra gives a number of sites active within a temperature 

interval of a sample, and so may be used to account for the effects of 

background contaminants in a sample where water was added, as well as to 

produce error predictions (Vali, 2019).  

The singular description is well used in current ice nucleation studies and 

can describe most of the experimentally produced results (Vali, 2014). 

Additionally, the relatively simple representation of INP activity with a 

characteristic temperature allows for easier integration into climate models. 

Hence, for the following chapters, this singular description is used to 

calculate and describe INP concentrations.  

1.2.4. Other descriptions for heterogeneous nucleation 

It is worth noting the existence of the modified singular description, which 

attempts to correct for the difference observed when conducting experiments 

at different cooling rates (Vali and Stansbury, 1966; Vali, 2008). The 

modified singular approach introduces the reliance on the cooling rate, R, to 

describe the differential spectra as (Vali, 1994):  

𝒌(𝑻) =  −
�̅�

𝑹𝑽
𝒆−�̅�𝑻    Equ 1.17 

Where �̅� and �̅� are constants which depend on the ice nucleating material 

present. More recent models for heterogeneous ice nucleation which have 
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been developed include the framework for reconciling observable stochastic 

time-dependence (FROST) framework (Herbert et al., 2014), which is based 

on CNT, and the soccer ball model (Niedermeier et al., 2011; Niedermeier et 

al., 2014) which uses CNT to reconcile the differences between stochastic 

and singular models.  

 

1.2.5. Modes of heterogeneous ice nucleation 

There are up to four modes of heterogeneous ice nucleation (shown in a 

simplified form in Figure 1.2): i) deposition, ii) contact, iii) condensation and 

iv) immersion (Vali et al., 2015).  

i) In deposition mode, nucleation occurs on the surface of the INP 

when water vapour in the surrounding environment is 

supersaturated with respect to ice. Therefore no bulk liquid water 

needs to be present for this to occur, as opposed to during 

contact, condensation and immersion freezing.  

ii) Contact freezing occurs as an INP comes into physical contact 

with the surface of a supercooled liquid water droplet. Contact 

nucleation is efficient, but the precise mechanism behind the 

nucleation is still unclear (Maeda, 2021). 

iii) Condensation mode freezing requires particles onto which water 

can condense. As the liquid forms around the particle, it 

immediately freezes (Hoose and Möhler, 2012). 

iv) Immersion mode freezing requires a particle to be immersed in 

supercooled water, but these particles are not necessarily a cloud 

condensation nuclei (CCN), which activate as a cloud droplet first 

(although it is more common for the particle to serve as a CCN 

and then cause ice nucleation). The particle is suspended in water 

and nucleation occurs when the characteristic freezing 

temperature of that INP is reached.  

There has been debate about whether condensation freezing should be 

separated from the immersion and deposition modes when describing the 

microphysics of nucleation, and this is still ongoing (Vali et al., 2015). 

Additionally, it has been suggested that deposition mode nucleation may 

actually occur due to the presence of small amounts of supercooled liquid 

water in nanoscale pores and cracks on the particle surface which have 

formed through capillary condensation, a process known as pore 

condensation freezing (PCF) (Marcolli, 2014; Wagner et al., 2016; David et 
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al., 2019). The size of the pore and concavity of the surface due to the pore 

shape result in an inverse kelvin effect, which means water may form in an 

environment subsaturated with respect to water.  

In mixed-phase clouds, it is thought that immersion mode dominates the 

primary ice production, with secondary influences from contact freezing 

(Murray et al., 2012; Hande and Hoose, 2017). It has also very recently been 

determined that different ice nucleation modes are preferential for different 

active sites (Holden et al., 2021). Holden et al., demonstrated immersion and 

deposition nucleation had very little correlation between their active sites. 

The modes of heterogeneous nucleation are still not completely understood, 

and therefore it is helpful to classify the conditions under which ice 

nucleation experiments have been performed. 

For field and laboratory experiments relevant to mixed-phased clouds, one 

of the most common ways to determine the ice-nucleating activity of an 

aerosol or liquid sample is via immersion freezing experiments (detailed in 

Section 1.4. It is an accessible and useful method to study atmospheric and 

lab samples of potential INPs (Hoose and Möhler, 2012; Murray et al., 2012; 

Wex et al., 2015; Hiranuma et al., 2015; Kanji et al., 2017; DeMott et al., 

2017). The experiments described in the results chapters were conducted in 

immersion mode. 
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Figure 1.2 - The modes of ice nucleation in the atmosphere. Figure 
extracted from Kanji et al. (2017). 

1.3. Aerosol sampling and characterisation 

In order to better understand and predict the behaviour of mixed-phased 

clouds, a deeper understanding of the factors affecting their ice content is 

required (Schmale et al., 2021). In order to achieve this, more 

measurements need to be undertaken of INP concentrations in differing 

environments in order to elucidate INP characteristics and sources. Only 

through more measurements can an understanding of how INP will affect 

local clouds in the future be achieved.  

The sampling of atmospheric aerosol for use in ice-nucleation studies can be 

accomplished in a number of ways, which usually involve the pulling of air 

into a chamber (Möhler et al., 2001; Möhler et al., 2021), volume of water 

(e.g via an impinger) (Carvalho et al., 2008; Mirzaee et al., 2016; Šantl-

Temkiv et al., 2017), or through a filter via the use of a pump (Lindsley, 

2016; Sanchez-Marroquin et al., 2019). Depending on the amount of flow 

required, pumps of different sizes and powers can be used, where smaller, 

lighter and less power-hungry pumps can be used if volumes on the order of 

around 1 L∙min-1 of air are acceptable, for instance in high-aerosol 

environments. However, in low aerosol environments, it can be more 

efficient to sample on the order of 100 L∙min-1 of air instead of increasing the 
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sampling time. There is a balance to this, however, as some techniques may 

be overloaded by too much aerosol, for instance, when sampling aerosol 

onto a filter the filter may eventually become blocked.  

1.3.1. Filter-based sampling 

Filter sampling is the method of pulling sample air through a filter of specific 

pore size or fibre density in order to capture aerosol particles onto the filter, 

which can then be recovered for later analysis (Lindsley, 2016). In the case 

of porous filters (or fibrous filters with pore size equivalents), the pores can 

be of a size which is much larger than the smallest particles which can be 

captured (Soo et al., 2016).  

There are at least five mechanisms for the capture of particles on-filter: 

interception, impaction, diffusion, electrostatic attraction and sedimentation 

(Lindsley, 2016). Interception occurs when particles close to or larger than 

the pore size come into contact with the filter material as they follow the air 

stream, whereas impaction occurs when the inertia of a particle is great 

enough that it continues moving forwards onto the filter when the air stream 

changes direction (see Section 1.3.2). Diffusion is important for very small 

particles (≤ 0.1 μm) which are affected by random Brownian motion. The 

Brownian motion causes motion in the airstream and allows the deposition of 

particles onto the filter. Electrostatic attraction is used to attract charged 

aerosol particles onto charged filters. Sedimentation occurs due to 

gravitational forces acting on larger particles, and is particularly important for 

filters facing upwards interacting with particles flowing downwards with 

respect to gravity.  

High-flow rate airstreams are less affected by sedimentation as flow forces 

overcome gravitational forces. Each of these mechanisms affect a different 

size of particle and the interaction between them means the total collection 

efficiency is similar to that shown in Figure 1.3 (where electrostatic attraction 

isn’t shown as it is difficult to model). Across all of the mechanisms by which 

particles can be captured by a filter, there is a high collection efficiency for 

both larger and smaller particles, with a dip of lower efficiency at particle 

sizes around a few hundred nanometres in diameter. The location and size 

of the dip in efficiency is related to the filter material, pore size, flow rate and 

a number of other factors including the size and shape of the aerosol.  
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Figure 1.3 – Simulated collection efficiencies for a filter. The filter is 
fibrous, 1 mm thick with 2 µm fibers using an air velocity of 0.1 m s-1, 
with air flowing downwards, and electrostatic interaction not included 
due to difficulty in modelling. Figure extracted from Lindsley (2016). 

 

1.3.2. Impaction-based sampling 

In addition to sampling through a filter via pores or fibres, some samplers 

use the impaction mechanism to capture particles onto thin films. For 

example, cascade impactors have a series of stages around or through 

which particles of below a certain size can pass. Particles with a larger 

aerodynamic diameter cannot follow the streamlines and are impacted upon 

the impaction plates of that stage. Through this mechanism (shown in Figure 

1.4), aerosol can be size-separated and collected onto films for analysis. An 

after filter collects the particles which are small enough to flow around all of 

the stages at the set flow rate, either for analysis, or to prevent the pump 

from becoming clogged.  
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Figure 1.4 - Schematic of a cascade impactor and the streamlines 
interacting with the stages. The smaller particles with less inertia are 
more likely to reach the higher N stages, as larger particles are 
impacted first.  

 

Aerosol can also be passed through a single impactor of specific size cut off, 

only allowing particles below a specific size to pass through before 

interaction with filters, films or other collection media. The most common 

size cut-offs are 10 μm (PM10) or 2.5  μm (PM2.5), because of the relevance 

of these sizes in medical fields to determine aerosol effects on lungs. The 
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smaller PM2.5 aerosol is more likely to settle deeper in the lungs, whereas 

the larger PM10 aerosol would interact more with upper airways 

(Darquenne, 2012). Particle size also significantly affects residence time in 

the atmosphere, with particles a few hundred nanometres in size having a 

residence time, or lifetime, in the atmosphere on the order of weeks, 

whereas larger, 10 μm particles may have a residence time of only hours 

(Jaenicke, 2007).  

 

1.4. INP measurement techniques 

INPs are rare aerosol particles, making up a very small subset, only 10-5 – 

10-3, of the bulk atmospheric particle population (Rogers et al., 1998). 

However, in a cloud droplet, only one INP is required to induce nucleation. 

This makes determining the particles responsible for the nucleation very 

difficult when the sample population is mixed, such as for atmospheric 

aerosol or field samples where techniques like manual subdivision of 

samples is employed to isolate INPs (Hill et al., 2016) , or other techniques 

such as mass spectroscopy (Pratt et al., 2009) and SEM (Sanchez-

Marroquin et al., 2019) are used to characterise the aerosol. Even once an 

INP has been identified, there may exist individual active sites on the surface 

which may have different characteristic critical temperatures (Holden et al., 

2019). Additionally, the length of storage of INPs once collected has a 

noticeable effect on their ice-nucleating activity (Beall et al., 2020), making 

the analysis of atmospheric samples even more difficult. Despite this, there 

are a number of methods for collecting atmospheric aerosol in a way which 

allows the ice-nucleating activity to be probed, from filter sampling, to 

impactors, impingers and on-line INP instrumentation (described below) 

(Kanji et al., 2017; Cziczo et al., 2017; DeMott et al., 2018).  

The characteristics of sampled bulk aerosol can then be correlated to INP 

activity and estimations of the sources of the INPs can be made. Probing the 

concentrations, origins and types of INPs in a lab or field environment 

usually requires the use of equipment which induces and monitors the 

freezing of INPs in a controlled environment. This section focuses on the 

immersion freezing mode, which is arguably the most atmospherically 

relevant for mixed-phase clouds due to the importance of the presence liquid 

droplets for ice formation in clouds and the relative rarity of contact 

nucleation (Murray et al., 2012; Hande and Hoose, 2017). Some 

experimental methods begin with particles of aerosol onto which a liquid 
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droplet can be formed and frozen by inducing supersaturation with respect to 

water and ice, such as cloud chambers and some Continuous Flow Diffusion 

Chambers (CFDCs). Other methods may immerse collected aerosol 

particles in liquid, or use liquid sample to form droplets. After particles are 

immersed in liquid droplets the temperature is reduced and freezing induced, 

before the detection of freezing events, which can be carried out in a variety 

of ways.  

There are instruments which measure INP concentrations at or close to real-

time, and these instruments are usually referred to as on-line instruments. 

Conversely, there are instruments which gather aerosol over a sampling 

period (usually hours to days), and then the INP analysis is performed on the 

entire sample.  

1.4.1. On-line techniques 

On-line instruments for the measurement of atmospheric INPs allow 

concentrations to be gathered close to real-time, and allow easier access to 

long-term monitoring. This is extremely attractive in environments with high 

INP and aerosol concentrations which change quickly, or for low-aerosol 

environments where long-term measurements may elucidate seasonal 

cycles or changes. However, higher time resolution often means a lower 

detection limit. Two of the most used on-line instruments for ice nucleation 

research are continuous flow diffusion chambers (CFDCs) and cloud 

chambers.  

1.4.1.1. Continuous flow diffusion chambers (CFDCs) 

A CFDC is an instrument which induces specific temperature and humidity 

conditions, where a sheath flow constrains an aerosol flow to a region of 

well-defined temperature and humidity. The control of saturation conditions 

with respect to ice (for probing deposition and immersion modes), and 

sometimes water (for probing immersion mode), is achieved by a 

temperature gradient between the walls (shown in a simplified schematic in 

Figure 1.5), which are either parallel plates or concentric cylinders. In the 

upper section of a CFDC the aerosol particles are allowed to nucleate and 

grow. The ice crystals which form are significantly larger than the aerosol 

particles, and grow faster than any water droplets which form due to the 

relative supersaturation with respect to ice. Some CFDCs expose the 

aerosol to conditions which force evaporation of remaining liquid droplets, 

enhancing the differences between the ice crystals and particles. A particle 

detector/counter will then determine the number of ice crystals and this can 
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be compared to the total aerosol concentration in order to determine the INP 

concentration at the set conditions. 

There are a few drawbacks to this technique, mainly the effects of icing on 

the walls allowing frost to form and ice crystals from the walls to enter the 

flow which are counted as ice crystals. The need to regularly replace the ice 

on the walls requires downtime. Additionally, because the INP 

concentrations can only be achieved for one temperature at a time, it can be 

difficult to determine an appropriate temperature for the sampled aerosol. 

There is a trade-off between having a low enough temperature to give a 

signal, but a high enough temperature to detect rarer INP types. However, 

the advantages of being able to measure INP concentrations in real-time 

mean that CFDCs are still one of the most common on-line ice-nucleation 

instruments, especially on-board aircraft (Rogers et al., 2001; DeMott et al., 

2015). Additionally, autonomous instrumentation is being developed, 

decreasing the user burden and opening the door for long-term CFDC based 

INP measurements (Brunner and Kanji, 2021). 

 

 

Figure 1.5 - Idealised schematic showing the principle of operation of a 
CFDC. A temperature gradient between an ice-coated wall and a 
warmer wall allows control of the supersaturation of the environment 
with respect to ice. The particle-laden flow is centred between the walls 
and particle-free sheath flows ensure the particles stay within the 
laminar region of the flow where the conditions are controlled. Figure 
extracted from Garimella et al. (2017). 
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1.4.1.2. Expansion chambers 

Cloud chambers work on the principle of adiabatic expansion to cool gas 

inside the chamber via the reduction of pressure. The schematic in Figure 

1.6 shows the flow of aerosol through the system during an expansion where 

ice crystals are formed in the chamber and counted with an optical particle 

counter (OPC) (Garimella et al., 2017). The cloud chamber is named so 

because it simulates the conditions experienced when particle filled gas 

rises through the atmosphere. Similarly to CFDCs, immersion and deposition 

modes can in principle both be probed depending on the saturation 

conditions with respect to water and ice set within the chamber before the 

expansion. Cloud chambers such as the Aerosol Interactions and Dynamics 

in the Atmosphere (AIDA) chamber are used in laboratory studies of 

collected aerosol and specific known INP types. Cloud chambers suffer from 

similar drawbacks to CFDCs in that they have reduced sensitivity compared 

to off-line techniques when sampling in low INP environments. Large-volume 

chambers have been built, such as the AIDA chamber, but the cleaning 

cycle in between expansions is a long process, and it is not portable. Based 

on the same principles as the AIDA chamber, a new portable instrument 

called the Portable Ice nucleation Experiment (PINE) chamber was 

developed in order to allow cloud chambers to be deployed on campaigns 

with limited space availability, such as those based on aircraft and ships 

(Möhler et al., 2021). There are several positives of long term measurements 

close to real-time, such as reduced user burden, increased time and 

temperature resolution for measurements, the ability to gain seasonal data 

and information about the effects of sporadic events on the INP populations.  
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Figure 1.6 – A schematic demonstrating the working principle of a 
cloud chamber during an expansion. The chamber is shown filled 
with liquid droplets and ice crystals, and air is pulled out of the chamber 
to enter an optical particle counter. Figure adapted from Möhler et al. 
(2021). 

 

1.4.2. Off-line techniques 

Off-line methods of atmospheric ice nucleation studies involve the collection 

of aerosol over a time period, before analysis of the sample as a whole. This 

gives much lower time resolution than on-line instrumentation (samples on 

the order of hours to days as opposed to minutes for on-line 

instrumentation), but has the advantages of generally being much more 



- 18 - 

portable and therefore easier to take into the field, being cheaper to buy and 

more accessible, and allowing rarer INPs to be more easily detected due to 

the ability to increase the sample size. An accessible technique for the off-

line study of immersion mode ice nucleation uses a cold stage and is 

referred to as a drop freeze assay. One of the main drawbacks in 

conventional drop freeze assays is the difficulty in accessing the lowest 

temperature INPs due to the introduction of impurities to the sample. Ideally 

a mixture of off-line and on-line techniques would be deployed whenever 

possible, especially since this would increase both the time and the 

temperature resolution of measurements. However, for field studies of 

atmospheric aerosol, off-line techniques remain some of the most 

accessible, especially for low INP environments.  

1.4.2.1. Conventional cold stage techniques 

The term drop freezing assay comes from the method of generating 

(manually or via a machine) sample droplets onto a cold stage, before 

reducing the temperature of the stage and thus the droplets, and observing 

the droplet freezing events. The freezing process can be seen in Figure 

1.7a-d, where droplets which have been pipetted onto a substrate on a cold 

stage are frozen as the stage temperature is reduced, and detected via an 

optical camera. The sample can consist of unaltered collected liquid 

samples, such as river-water (Knackstedt et al., 2018), sea surface 

microlayer (Wilson et al., 2015; Irish et al., 2017; Ickes et al., 2020) or cloud 

water and precipitation (Pratt et al., 2009; Joly et al., 2013; Petters and 

Wright, 2015). However, the sample can also be made up of suspensions of 

particles such as mineral dusts in ultra-pure water (Atkinson et al., 2013; 

Hiranuma et al., 2015), or aerosol which has been collected on a filter and 

then washed into ultra-pure water (O’Sullivan et al., 2018; Tarn et al., 2018; 

Schneider et al., 2020; Adams et al., 2020) . The sample-filled droplets can 

be pipetted directly onto the stage, or onto a substrate such as coated glass, 

oil, or a filter (Whale et al., 2015; Tobo, 2016; Price et al., 2018; Polen et al., 

2018; Harrison et al., 2018a). Each substrate type is associated with slightly 

different levels of contamination, but the general principle remains the same. 

Usually dry air or dry Nitrogen gas is passed over the cold stage during the 

reduction in temperature in order to stop the formation of condensation on 

the plate or substrate, and therefore prevent contact freezing from interfering 

with immersion mode studies.  
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Figure 1.7 – Droplets (1 μL) pipetted onto a glass substrate being 
cooled on a cold stage. The droplets are shown as the temperature of 
the cold stage is reduced, where a) none of the droplets have frozen, b) 
one droplet has frozen, c) many droplets have frozen and d) all of the 
droplets have frozen. Figure extracted from Whale et al. (2015). 

 

Detection of freezing events can be achieved in a number of ways, owing to 

the changes in droplet temperature, optical scattering properties and heat 

release of the phase change. Infrared sensors can be used to measure the 

temperature of the droplets (which are usually in small wells for this type of 

experiment) as the stage temperature is reduced. As the phase of each 

droplet/well changes, the temperature is momentarily increased to the water-

ice equilibrium temperature of 0 °C due to the release of latent heat 

(Harrison et al., 2018b) and so infrared sensors can be used to detect this 

latent heat release upon freezing. This latent heat released can also be 
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detected by calorimetry (Westh et al., 1991; Han et al., 2008). The optical 

light scattering properties change as the droplet nucleates to form an ice 

crystal, and this alteration in properties is most obvious during the initial, 

dendritic stage of crystal growth owing to the number of new liquid-ice 

interfaces being formed. This can be easily detected using optical cameras 

in real-time. The ease and accessibility of observing nucleation in this way 

means there are a number of studies which use optical detection in drop-

freeze assays (Stopelli et al., 2014; Whale et al., 2015; Budke and Koop, 

2015; Tobo, 2016; Tarn et al., 2019; Miller et al., 2021). The results chapters 

also all used a form of optical detection in analysis of INPs. 

An advantage of drop freeze assays is the INP spectra with respect to a 

wide range of temperatures which can be produced in a single experiment. 

Using droplets of smaller sizes, such as pL droplets created using 

microfluidics (discussed in detail in Section 1.4.2.2) or a nebuliser are less 

likely to contain impurities or warmer INPs (Whale et al., 2015; Tobo, 2016; 

Tarn et al., 2018), and so smaller droplets can probe the colder end of the 

INP spectra (Vali, 1971). Conversely, μL- mL droplets deposited via pipetting 

have much higher backgrounds, but can more easily measure the rarer, 

warmer temperature INPs. In drop-freeze assays, usually only a small 

amount of collected sample is needed to perform one freezing experiment. 

This means that repeat runs can be performed, and also that subsets of the 

sample can be diluted or exposed to different conditions in order to 

determine the effect on ice-nucleating ability. The most common example of 

this is a heat test (described in later chapters), which involves taking a 

subset of a sample and exposing it to temperatures which would denature 

any proteins that may be present (Christner, Morris, et al., 2008; Christner, 

Cai, et al., 2008; Wilson et al., 2015; Hill et al., 2016; O’Sullivan et al., 2018). 

Therefore, the effectiveness of INPs which relied on proteins would be 

reduced or removed, and so biogenic, proteinaceous INPs could be 

identified. The ability to analyse a subset of the collected sample is 

extremely useful when there are fewer instruments available to collect 

aerosol for analysis.  

A drawback of the drop freeze assays is the high backgrounds due to 

contamination of substrates and water. It has been suggested that a 

silanised coverslip substrate is the most appropriate for drop freezing 

assays, due to their availability, cost efficiency and consistency in freezing 

behaviour (Polen et al., 2018). The ultra-pure water used to suspend 

particles for ice-nucleation studies can have a large influence on the 
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contamination of the sample. It is common to use Milli-Q systems to produce 

ultra-pure or bottled HPLC-grade water when Milli-Q systems are 

unavailable or unreliable. It is important that the ice-nucleating activity of the 

water used is determined before experimental runs, so that the backgrounds 

can be either represented or removed from the calculated INP 

concentrations. Additionally, drop freeze assays suffer from evaporation of 

the droplets, which can be mitigated by controlling the dry air flow and 

beginning cooling as soon as possible after the droplets have been 

deposited onto the stage. It would be advantageous to adapt the technique 

to reduce these drawbacks (high backgrounds and evaporation), whilst 

keeping the aspects of the technique that make is so accessible and usable 

with other analysis techniques. Microfluidic platforms provide many methods 

to achieve this, and are discussed in Section 1.4.2.2. 

Because of the large variation in methods for drop freezing assays, it is 

important to ensure that methods used are well explained and the raw data 

in the form of a fraction of droplets frozen at specific temperatures (from 

here on referred to as a fraction frozen curve) given wherever possible, to 

allow comparison with other studies (Polen et al., 2018).  

 

1.4.2.2. Microfluidic technology  

The control of fluid flow in miniaturised devices via microstructures is broadly 

referred to as microfluidics (Whitesides, 2006; Tarn and Pamme, 2013; 

Sackmann et al., 2014). In recent years microfluidics has been applied in a 

number of off-line ice-nucleation studies, owing to the reduced 

contamination pathways, smaller droplet sizes, and increased ability to 

automate and integrate processes (Reicher et al., 2018; Tarn et al., 2018; 

Reicher et al., 2019b; Tarn et al., 2020; Roy et al., 2021). Microfluidic 

devices are often referred to as lab-on-a-chip devices because of the 

breadth of analytical techniques that can be downscaled and integrated on a 

single chip. The “chip” in lab-on-a-chip referring to the small, microchanneled 

device, and is usually centimetres in size with structures on the μm scale. 

Once designed and fabricated, a microfluidic chip can be placed atop a cold 

stage and used in droplet freezing experiments. 

Fabrication 

In terms of fabricating a microfluidic device, a number of materials can be 

used to create the microstructures which will influence the fluid flow. The 

material chosen will affect chemical stability, thermal and optical properties, 
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or ease of fabrication (Ren et al., 2013). A soft, optically clear material like 

polydimethylsiloxane (PDMS) elastomer, is very commonly used in soft 

lithography for microfluidics (Effenhauser et al., 1997; Duffy et al., 1998; 

McDonald et al., 2000). Many devices are produced using photolithography, 

which creates microchannels by first exposing the desired channel design 

onto a layer of photoresist, usually via laser-writing or UV-light through a 

mask (Duffy et al., 1998; McCreedy, 2001). The unexposed photoresist is 

then removed, leaving a raised design onto which PDMS can be poured and 

cured. The PDMS is then peeled away, revealing the channel design. Inlet 

and outlet holes for one or more fluids are punched into the soft PDMS. The 

PDMS is then bonded to a substrate. This forms the chip, into which tubing 

can be placed to allow liquids to flow into and out of the chip’s channels, with 

flow rates controlled by syringe pumps. A simplified version of this process is 

shown in Figure 1.8. Hard materials, such as glass, can also be etched to 

create the channel design. In the case of glass, hydrofluoric acid, or a glass-

etching cream is used to etch the channels, before inlet and outlet holes are 

drilled and the etched glass is bonded to a glass substrate (Yuen and Goral, 

2012).  

 

Figure 1.8 - The method of producing PDMS microfluidic chips via soft 
lithography. There is first a master mold produced, often via 
photolithographic processes, where the design is raised from the 
surface at a height equal to the desired channel height for the chip. The 
PDMS is poured, cured and cut from the master before inlet and outlet 
holes are made and the chip is bonded to a glass substrate, ready for 
tubing to be fitted. Figure extracted from Akther et al. (2020). 
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Droplet microfluidics 

Numerous analytical techniques can be miniaturised and used on-chip. This 

is one of the reasons why microfluidics is already used in a wide range of 

fields, from environmental science (Tarn et al., 2019; Reicher et al., 2019a), 

food science (Kiani and Sun, 2011), to organic synthesis (Watts and Wiles, 

2012). One of the methods for storing and manipulating sample in a flow is 

by producing sample droplets. Microfluidics can be used to produce 

monodisperse sample droplets at rates of thousands per second, and allows 

the manipulation and analysis of those droplets on-chip (Teh et al., 2008; 

Casadevall i Solvas and deMello, 2011; Chou et al., 2015; Zhu and Wang, 

2017). Droplet microfluidics involves the creation of droplets, also referred to 

as the dispersed phase, in an immiscible medium which acts as a 

continuous phase. The dispersed phase is injected into the continuous 

phase and a mixture of flow rate control and channel design produces 

droplets in flow. Examples of channel designs which would be used to 

produce droplets include the T-junction (Figure 1.9a) or a flow focusing 

junction (Figure 1.9b). The T-junction only has one channel carrying the 

continuous phase, and produced droplets via shearing the dispersed 

medium. The flow-focusing junction contains two continuous phase channels 

which meet to pinch off the dispersed phase into droplets. Both methods can 

be easily fabricated in PDMS, but the T-junction droplets are likely to be a 

little more monodisperse, and the flow-focusing junction has higher flexibility 

in droplet size (Abate et al., 2009). These methods allow monodisperse 

droplets to be produced with high-throughputs and are simple to fabricate in 

common chip materials. An example of a droplet system is the generation of 

water-in-oil droplets, where water is the dispersed phase in the continuous 

oil medium, and using this technique, 100s to 1000s of monodisperse 

droplets can be produced per second.  
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Figure 1.9 – Examples of high-throughput droplet production 
techniques in microfluidics. a) The T-junction and b) the flow 
focusing junctions are the most common techniques used to 
produce monodisperse droplets at high rates. 

 

Some microfluidic systems have been developed for ice nucleation studies 

using water-in-oil droplets. Most use a method of production and storage of 

the droplets, wherein a population of droplets is produced on-chip, then held 

on/off the chip atop a cold stage and the droplet freezing events observed 

(Reicher et al., 2017; Tarn et al., 2018; Reicher et al., 2019a; Brubaker et al., 

2020; Tarn et al., 2020), similar to the cold stage techniques discussed in 

Section 1.4.2.1. Surfactant can be added to the continuous phase to prevent 

droplets from coagulating (Reicher et al., 2018; Tarn et al., 2020), but create 

and store techniques have also demonstrated that contact freezing does not 

significantly influence nucleation despite close packing of droplets (Tarn et 

al., 2018). Some techniques freeze droplets in continuous flow (Stan et al., 

2009; Stan et al., 2010; Tarn et al., 2020; Roy et al., 2021). Freezing in-flow 

provides a potential benefit over store and create, in that it is possible to 

perform single-droplet analysis after the droplet has frozen, though such 

analysis has not been seen in the literature at the time of writing. For this, a 
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sorting technique would need to be determined and applied, to separate the 

frozen ice crystals out from the droplets. 

Sorting 

The passive separation and sorting of populations of cells or particles based 

on a number of physical differences such as size, density, charge is possible 

using microfluidics (Sajeesh and Sen, 2014; Wyatt Shields IV et al., 2015; 

Bayareh, 2020). Sorting of these populations allows cells or particles with 

specific properties to be isolated or concentrated for further analysis or 

storage. It is also possible to use active sorting techniques such as 

magnetophoresis (Pamme and Wilhelm, 2006; Al-Hetlani et al., 2010), 

acoustophoresis (Petersson et al., 2007; Lenshof et al., 2012) or 

electrophoresis (Raymond et al., 1994; Johnson and Bowser, 2018) to sort 

populations of droplets/cells/particles. However, in the case of ice 

nucleation, it would be preferential to apply as few treatments to the sample 

as possible in order to avoid altering the properties of the INP. Therefore 

passive sorting is a more likely technique for use in ice-nucleation. Passive 

sorting, where no external instrumentation is needed to exert a force on the 

population to be sorted, can be achieved via a number of means. From split 

flow thin-cell fractionation (SPLITT) (Springston et al., 1987), to the use of 

centrifugal platforms (Haeberle et al., 2006; Strohmeier et al., 2015; Ukita et 

al., 2017), and filtering (Burger and Ducrée, 2012). An example of a passive 

sorting method for particles of differing sizes which could be used to sort ice 

crystals from liquid droplets in a microfluidic device, called pinched flow 

fractionation is shown in Figure 1.10 (Yamada et al., 2004). This method 

introduces particle filled liquid via one inlet and particle-free liquid via 

another inlet. The control of the flow in the two inlets presses the particles 

along one wall in a pinched section of the chip, and then as the chip 

expands, the particles differences in position are amplified as they enter 

different areas of the flow profile. The ability to passively isolate INPs via 

microfluidics in such a manner would allow downstream or off-chip analysis 

of INPs active at specific temperatures, using techniques such as DNA 

analysis (Garcia et al., 2012; Huffman et al., 2013; Hill et al., 2014; Šantl-

Temkiv et al., 2019) and Raman spectroscopy (Iwata and Matsuki, 2018). 

With the recent developments in continuous flow ice nucleation studies, a 

method of separating the droplets from the ice crystals formed at specific 

temperatures is a step towards a system which could produce, freeze and 

analyse droplets for ice nucleation on-chip. A method for this separation is 

presented and discussed in Chapter 4. 
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Figure 1.10 - An example of a passive sorting mechanism for differently 
sized particles via pinched-flow fractionation. a) Particle filled liquid 
enters the pinched section via one inlet, and particle-free liquid enters 
via another inlet, forcing the particles against one wall. b) The 
difference in the position of the particles is enhanced once they enter 
an expanding chamber. Figure extracted from Yamada et al. (2004). 

 

Microfluidics in ice nucleation 

In future studies, a total analysis system for ice nucleation studies is 

possible, and for field work is extremely desirable. A system like this could 

allow automated monitoring of INP concentrations on-chip. Sampling of 

aerosol can already be performed on-chip (Jing and Sui, 2017; Metcalf et al., 

2018), and such systems could be integrated with particle sorting processes, 

such as the one described in Chapter 4, to enable analysis of single particles 
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in-flow, or the capture of INP active at specific temperatures for off-chip 

analysis. Recent advances in the automated detection of freezing events 

would allow automated analysis of large amounts of freezing data via, for 

example, machine learning (Roy et al., 2021). Finally, the addition of 

automated sample analysis for isolated populations of INPs and inactive 

aerosol for specific temperatures could be used.  

1.5. Known types of ice-nucleating particles 

Although INPs make up a small subset of bulk aerosol, they are found in 

some of the most pristine, to the most polluted environments. There is not a 

definite picture of what makes a good INP, but in general surface chemistry 

and/or topography is known to be important in the nucleation and growth of 

ice on the particle surface (Pruppacher and Klett, 1997; Hoose and Möhler, 

2012; Murray et al., 2012; Kanji et al., 2017). For insoluble particles such as 

mineral dusts, the surface topography is known to play a factor in the ice-

nucleating activity, with specific active sites nucleating ice at a characteristic 

temperature (Vali, 2014; Kiselev et al., 2017; Holden et al., 2019). This may 

be due to the exposed crystalline surface providing an energetically 

favourable template for ice to arrange upon (Kiselev et al., 2017).  

For the biological particles or, bioaerosol made up of proteinaceous material, 

ice-nucleating macromolecules have been identified which have their own 

characteristic temperature of nucleation (Hartmann et al., 2013; Pummer et 

al., 2015). For both mineral dusts and bioaerosols, surface hydroxyl -OH 

groups may provide a surface for the templating of ice in a similar way to a 

lattice structure in mineral dusts. However, in this case the structure is 

brought about via the arrangement of water molecules as they create 

hydrogen bonds on the surface -OH groups, and by the efficient removal of 

latent heat (Pandey et al., 2016). This surface dependence means that, in 

some cases, the larger the INP, the more efficient it is at nucleating ice 

(Pruppacher and Klett, 1997), but this is not always the case (Mason et al., 

2016; Porter et al., 2020a).  

As discussed previously, larger aerosol particles have a significantly shorter 

residence time in the atmosphere, and so there is less propensity for larger, 

usually more efficient, ice nucleators to be transported long distances from 

their sources. Both mineral dusts and biological INP (whether from terrestrial 

or marine sources) make up the majority of observed active INP types in the 

regime relevant for mixed-phase clouds (Hoose et al., 2010; Vergara-

Temprado et al., 2017; O’Sullivan et al., 2018; Ladino et al., 2019), but there 
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are other INP types which may become important on shorter timescales, at 

specific locations, or at colder temperatures. 

1.5.1. Mineral dusts 

Mineral dust can refer to dust particles from deserts, volcanos and soils. 

Mineral dust INPs are one of the most atmospherically important INP types, 

due to the high emission rates and presence of sources around the globe 

(Hoose and Möhler, 2012; Murray et al., 2012). Larger dust particles are 

thought to have higher activity, presumably because of the greater surface 

area and so increased availability of active sites (Welti et al., 2009; 

Hartmann et al., 2016). The ice-nucleating activity of dusts has been 

observed to mostly occupy the INP temperature spectrum at temperatures 

<−15 °C (Murray et al., 2012), and is produced by a number of mineral types. 

One of the most ice-active minerals is potassium-rich feldspar (K-feldspar), 

and most of the activity observed in dust samples can be attributed solely to 

K-feldspar if it is present (Atkinson et al., 2013; Augustin-Bauditz et al., 

2014; Niedermeier et al., 2015; Boose et al., 2016; Harrison et al., 2016; 

Harrison et al., 2019). Due to the abundance and importance of K-feldspar in 

mineral dust samples, some parameterisations for the activity of mineral 

dusts only use the contribution from K-feldspar (Atkinson et al., 2013; 

Harrison et al., 2016; Vergara-Temprado et al., 2017).  

When discussing mineral dusts, it is usually assumed that low latitude dust 

(LLD) is the subject. This LLD comes from regions around the equator, vast 

deserts and arid environments. However, as this dust can be long-range 

transported, it is not only important for the regions where it is produced 

(DeMott et al., 2003; Huang et al., 2015; O’Sullivan et al., 2018). Although it 

is less likely to reach higher latitudes, it is very prominent in more local 

regions (McFarquhar et al., 2011; Price et al., 2018; Reicher et al., 2019b). 

High latitude dust (HLD) has more recently been identified as a potentially 

important source of ice-active dust in the higher latitudes (Tobo et al., 2019; 

Sanchez-Marroquin et al., 2020). The sources of HLD are very different than 

for LLD, as HLD is more associated with, for instance, glacial outwash plains 

and volcanic activity in Iceland than deserts near the equator. This is 

especially interesting looking to the future, when glaciers are expected to 

retreat further, exposing more areas for this dust to become aerosolised and 

affect the local atmosphere (Tobo et al., 2019).  
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1.5.2. Bioaerosol 

Bioaerosols refers to a wide range of airborne biological material, such as 

whole cells, viruses, fungal spores, biological fragments, and phytoplankton. 

The ice-nucleating ability of particles produced in terrestrial vegetation and 

marine waters has been known for a long time (Schnell and Vali, 1972; 

Schnell and Vali, 1975), but there was often debate about the importance of 

bioaerosols compared to the highly active and widespread mineral dusts 

(Hoose et al., 2010).  

Some of the most active INPs, the most efficient ice nucleators, are of 

biological origin. Bioaerosols can occupy the higher temperatures of the INP 

temperature spectrum, with some active at temperatures as high as -2°C 

(Christner, Morris, et al., 2008; Murray et al., 2012). This is not only 

important atmospherically, but also commercially. For instance, the 

bacterium Pseudomonas syringae is such an efficient ice nucleator that it is 

used in the commercial production of artificial snow under the brand name 

Snomax®. Therefore, even in cases where bioaerosols are not the overall 

dominant INP type, they may dominate ice-nucleating activity for lower 

altitude clouds at temperatures above -15 °C, where mineral dusts are less 

active (Spracklen and Heald, 2014).  

Sea spray aerosol (SSA) is one of the most abundant types of aerosol by 

mass on Earth, and vast ocean cover allows marine biogenic particles to be 

aerosolised via wave-breaking and bubble bursting (Wilson et al., 2015). 

Additionally, at higher latitudes such as the high Arctic and southern oceans 

where mineral dust influences are reduced, marine biogenic aerosol has 

been shown to become atmospherically important (Vergara-Temprado et al., 

2017; McCluskey et al., 2019). Phytoplankton and their exudates have long 

been considered an important source of marine organic aerosol, due to their 

ice-nucleating ability and their ubiquity in the sea surface microlayer that 

allows them to be aerosolised (Schnell, 1975; Schnell and Vali, 1976; Wang 

et al., 2015; Wilson et al., 2015; McCluskey et al., 2016; DeMott et al., 2016; 

Creamean et al., 2019; Ickes et al., 2020). Additionally, marine bacteria 

associated with phytoplankton blooms could also be an important INP, 

especially at higher temperatures (McCluskey et al., 2016). Phytoplankton 

exudates have been shown to enter Arctic clouds (Orellana et al., 2011), and 

so this rich source of SSA which can enter the atmosphere is likely important 

in modulating cloud processes in these remote regions. The size of SSA is 

usually small, on the order of 0.2-1 μm (Wang et al., 2015; DeMott et al., 
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2016), but they are also very hygroscopic, which reduces their residence 

time in the atmosphere.  

Terrestrial sources of bioaerosol range from forests (Schneider et al., 2020), 

decaying vegetation (Schnell and Vali, 1976; Conen et al., 2016), soils 

(O’Sullivan et al., 2014; Hill et al., 2016), melting permafrost (Creamean et 

al., 2020), and rivers (Knackstedt et al., 2018), to agricultural processes 

(O’Sullivan et al., 2018; Suski et al., 2018) and more. Biogenic INPs can also 

be lofted into the atmosphere during forest fires and biomass burning 

(McCluskey et al., 2014). In terrestrial bioaerosols, nanoscale fragments of 

biological material such as bacteria, fungal spores and pollen grains, are 

important INPs (O’Sullivan et al., 2015; O’Sullivan et al., 2016; Knackstedt et 

al., 2018). Where the intact host grain or spore can be on the micron scale, 

bound fragments on the nanometre scale may contain most of the activity, 

and there can be orders of magnitudes more nanoscale fragments present 

for each spore or grain (O’Sullivan et al., 2015).  

Detecting the presence of ice-nucleating biological material can be achieved 

using techniques such as modified Polymerase chain reaction (PCR) (Hill et 

al., 2014; Du et al., 2017), hydrogen peroxide treatment (O’Sullivan et al., 

2014), or lysosome treatment (Christner, Cai, et al., 2008). One of the most 

simple tests for the presence of proteinaceous material is the heat test, 

where a sample is exposed to temperatures close to 100 °C for a period of 

minutes to tens of minutes in order to denature proteins that may be 

responsible for the ice-nucleating activity of the sample (Christner, Morris, et 

al., 2008; Conen et al., 2012; Wilson et al., 2015; Hill et al., 2016; Conen et 

al., 2017; O’Sullivan et al., 2018). If the heat test does not remove the 

activity of the sample, it is then likely that non-heat labile material such as 

mineral dusts are responsible for the activity.  

The importance of bioaerosols for ice nucleation in the atmosphere is more 

accepted now, but measurements of biological INPs in the atmosphere are 

still lacking (Hill et al., 2017; Huang et al., 2021). This is partly due to the 

difficulty of sampling and storing biological material without altering its 

properties, and the difficulty in detecting whether the observed ice nucleation 

activity is due to biological material. However, more field measurements of 

INPs in general are necessary to better inform global and regional aerosol 

and climate models.  
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1.5.3. Other potentially important INP types 

Pollution aerosol, specifically small particles of black carbon (or soot) caused 

by incomplete combustion, is usually of interest due to its negative effects on 

health, and contribution to the warming of the planet (Darquenne, 2012; 

Bond et al., 2013). Black carbon can be produced naturally in events like 

forest fires, volcanic eruptions and Savannah fires. Not all black carbon is 

created equal, and some sources may produce combustion products which 

possess different ice-nucleating efficiencies.  

Fossil fuel burning and other anthropogenic combustion processes which 

produce black carbon have been shown to have little effect on ambient ice-

nucleating particle concentrations, especially in urban environments (Levin 

et al., 2016; Schill et al., 2016; Chen et al., 2017; Adams et al., 2020; Kanji 

et al., 2020; Schill et al., 2020). Although there is not a negligible impact, 

black carbon tends to be active at temperatures lower than mineral dusts 

and biogenic INPs, so may only become important at higher altitudes in 

conditions close to -38 °C (Kanji et al., 2020). Volcanic ash is an interesting 

source of INPs due to the violent method of aerosolisation and dispersion in 

the atmosphere, and is challenging to directly sample due to the extreme 

heat of materials close to an eruption and difficulty navigating airspace filled 

with volcanic ash. However, recent ice nucleation studies focusing on 

volcanic ash demonstrate there is ice-nucleating activity present, possibly 

correlated with the presence of ice-active minerals such as feldspar 

(Mangan et al., 2017; Jahn et al., 2019; Maters et al., 2019). Forest fires 

may also loft ice-active biological material into the atmosphere, and so in 

events such as forest fires, it is difficult to distinguish the contribution of 

black carbon and biogenic material without instruments which could identify 

these materials in the sample (Jahn et al., 2020; Schill et al., 2020).  

1.6. Ice-nucleating particles in the central Arctic 

The central Arctic refers to the central Arctic Ocean and the pack ice that 

covers it for most of the year; it is an exceptional environment, unlike any 

other on the planet. Because of the relative homogeneity of the sea ice, 

cloud cover plays an essential part in regulating Arctic climate and mixed-

phased clouds are prominent and persistent in the central Arctic. However, 

the concentrations and effects of INPs on mixed-phase clouds is not well 

defined (Murray et al., 2021), and they are not well represented in large-

scale models (Morrison et al., 2012; Pithan et al., 2016; Schmale et al., 
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2021) which has consequences for the prediction of the surface energy 

budget in the Arctic (Xie et al., 2013).  

There is a need for more measurements of INP in the central Arctic, but the 

distance from land, and the necessity to use specialised ships called 

icebreakers when traversing the environment makes measurements in this 

area difficult. Therefore the sources of aerosol, especially INPs in this part of 

the world are not well known. There are some land-based research stations 

located around the Arctic circle which although still remote, are a little easier 

to access. There have been some ice nucleation studies done using 

samples from these high Arctic stations, or land within the high Arctic circle 

(Flyger and Heidam, 1978; Mason et al., 2016; Conen et al., 2016; Si et al., 

2018; Creamean et al., 2018; Wex et al., 2019; Si et al., 2019; Šantl-Temkiv 

et al., 2019; Porter et al., 2020a; Creamean et al., 2020). There have also 

been a few aircraft campaigns looking to determine INP concentrations in 

the atmosphere (Prenni et al., 2007; Sanchez-Marroquin et al., 2020; 

Hartmann et al., 2020). Unfortunately, aircraft campaigns are difficult to 

conduct closer to the north pole on the remote pack ice, as land (and 

therefore fuel) is distant. There have been very few ship-based campaigns 

which could spend significant amounts of time on the central Arctic pack ice 

(Bigg, 1996; Bigg and Leck, 2001; Hartmann et al., 2021), and as yet no 

airborne INP measurements around the North Pole. However, because of 

the regularly stratified nature of the Arctic atmosphere (Brooks et al., 2017), 

it is important that the relationship and differences between INP 

characteristics at sea-level and at those at cloud-level are known. 

Many of the campaigns conducted around the high Arctic and more 

specifically the central Arctic ocean have hinted at marine biogenic sources 

of ice-nucleating particles (Bigg, 1996; Bigg and Leck, 2001; Hartmann et 

al., 2021). Results from a ship campaign to the central Arctic, close to the 

North Pole, are presented in Section 3, in which there is a more detailed 

discussion of previous campaigns and potential sources which affect central 

Arctic mixed-phase clouds.  

1.7. Project objectives 

This work has a main overarching goal, split into three objectives. The main 

aim of the project is to further the understanding and characterisation of ice-

nucleating particles in remote, low-aerosol environments such as the Central 

Arctic. To achieve this, atmospheric ice-nucleating particle concentrations 

were measured in the field with both currently available and novel 
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instrumentation. To support future studies, novel instrumentation that will 

improve the quality and quantity of information collected was designed, built 

and tested. Therefore three objectives of this work are described below, and 

where published work is presented, the contributions of each author will be 

detailed at the start of the relevant chapter. 

The project objectives were: 

1) The building of a high-flow rate, size-selective aerosol sampling 

system which could be remotely operated, and deployed above 

the surface mixed boundary layer. In preparation for a 2 month 

long field campaign to the central Arctic Ocean and North Pole, the 

Microbiology-Ocean-Cloud-Coupling in the High Arctic (MOCCHA 

2018) campaign, a sampler capable of being deployed at altitude in 

order to determine INP concentrations above the surface mixed 

boundary layer was desired. However, a high-flow rate sampler was 

deemed necessary, due to the low aerosol concentration, and low 

expected INP concentrations. Additionally, size-selection of aerosol 

would help to identify possible types of INP present. There is no 

available commercial instrumentation that fits this description, and so 

an instrument called the Selective Height Aerosol Research Kit 

(SHARK) was conceptualised, designed and built by both myself and 

Sebastien Sikora, with technical advice and guidance provided by 

Benjamin Murray and Ian Brooks. This instrument would, for the first 

time, allow comparison between ice-nucleating particle concentrations 

within and above the surface mixed layer of the central Arctic Ocean, 

towards the determination of the particles’ origin. The publication 

describing the design and operation of the SHARK and its capability 

when deployed across various environments was published in 

Atmospheric Measurement Techniques (Porter et al., 2020a). This 

paper makes up Chapter 2 of this thesis.  

 

2) To gather ice-nucleating particle concentration data in the high 

Arctic, specifically the central Arctic ocean, towards elucidating 

the characteristics and effects of the ice-nucleating particles 

present. The characterisation of Arctic ice-nucleating particles 

includes the determination of their sources and concentrations, in 

order to provide information which could be used to predict their 

potential effects on local clouds. The MOCCHA expedition to the 

central Arctic Ocean was conceptualised before I began my PhD 
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studies in 2016, but the planning, tasks and decisions for our project 

including determining which instruments we would deploy and in what 

situations, were left to me with the technical support and supervision 

of Benjamin Murray. I led the INP project on-ship with the help of a 

fellow PhD student, Michael Adams, and throughout the campaign we 

were supported by Ian Brooks (who was leading his own project on-

board), as there was extremely limited contact with Benjamin Murray 

who was ashore. Throughout the 2-month research cruise, a wealth 

of data was gathered including INP concentrations throughout the 

entire cruise at ship level, some size-resolved INP measurements at 

altitude, INP concentrations from testing fresh ocean samples 

sources at different depths, aerosol produced in a chamber designed 

to simulate oceanic turbulence, a floating chamber collecting bubble 

bursting aerosol and much more. Chapter 3 consists of a draft 

publication presenting INP concentration data at ship level and 

altitude (from the SHARK instrument), towards elucidating an origin of 

these particles. This paper will make up one of many exciting 

publications to come out of this interdisciplinary, international, and 

ongoing research effort.  

 

3) To design and create a method by which droplets containing low 

concentrations of sampled atmospheric aerosol could be 

separated, depending on the presence of an INP. The specific 

analysis of ice-nucleating particles, isolated from a collected aerosol 

sample is difficult, due to the rarity of INPs in bulk aerosol. 

Additionally, contamination in ice nucleation studies is difficult to avoid 

in conventional pipetted droplet cold stage techniques. Microfluidics 

provides a relatively new method of producing monodisperse droplets 

on a chip for freezing studies in INP analysis. Due to the small size, 

high-throughput and potential for modular additions with on-chip 

analysis, there is still much potential in microfluidics as a technique 

for studying ice nucleation. Chapter 4 presents a method for the 

production, freezing and eventual separation of supercooled liquid 

droplets from frozen ice crystals in continuous flow on a single chip. 

The method of droplet production and the size of the droplets mean 

contamination is less likely than in conventional cold stage 

techniques, and the freezing of these droplets occurs in flow, meaning 

this process can be run continuously to determine INP concentrations 

for a relatively large sample volume. Finally, the separation technique 
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is the novel aspect of this design, allowing ice crystals containing INP 

to be separated in flow from the rest of the un-frozen sample and 

collected from a different outlet. This would allow for further analysis 

of the respective populations, in order to determine differences 

between the ice-active and ice-inactive particles. I had suggested 

developing a separation technique at the beginning of my PhD, and 

began designing and testing separation chips with helpful insights 

from Mark Tarn. A microfluidic chip and Peltier element-based cold 

stage for the production and freezing of droplets in continuous flow 

was developed and described in another publication (Tarn et al., 

2020). The separation chip built on this design and used the 

differences in buoyancy between the liquid droplets and frozen ice 

crystals to passively separate the droplets. The article describing the 

technique was published in Lab on a Chip (Porter et al., 2020b). 

 

1.8. Other work completed during PhD studies 

Ickes et al., (2020) This paper involved a campaign of work comparing the 

ice-nucleating activity of lab-grown algae cultures and collected marine 

microlayer samples at the aerosol interaction and dynamics in the 

atmosphere (AIDA) facility in the Karlsruhe Institute of Technology (KIT). I 

brought Arctic microlayer samples which were collected by our group in 

2015 to KIT, along with ice-nucleation instrumentation. I planned and carried 

out the warm-temperature INP experiments with support from MPA. I 

analysed all the warm-temperature INP data from the manuscript and 

contributed to discussions and the writing of the manuscript.  

Adams et al., (2020) This paper investigated the effects of black carbon 

produced in a yearly cultural bonfire event on INP concentrations, and 

assessed that black carbon produced during the festival had no real impact 

on the INPs. I carried out experiments over the nights, and contributed to the 

discussions and writing of the paper. 

O’Sullivan et al., (2018) This paper describes a field campaign based in UK 

farmland. It was concluded that biogenic INP are important in this region 

using a mixture of experiments and modelling. I carried out experiments and 

contributed to the analysis, discussions and writing of the paper.  
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Microfluidics papers: Tarn et al., (2018); Tarn et al., (2020); Tarn et al., 

(2021). These three papers involve the analysis of INP using microfluidic 

devices. The 2018 paper used a create-and-store method to analyse data 

collected during the work in Adams et al., (2020) and O’Sullivan et al., 

(2018). The 2020 paper describes the Lab-on-a-chip-NIPI (LOC-NIPI) device 

which allows the production and freezing of droplets in-flow. The device was 

validated on Pollen and Snowmax®, and used to probe homogeneous 

nucleation. The 2021 paper utilised results from the 2020 paper to determine 

a parameterisation for the volume nucleation rate coefficient, JV(T). I carried 

out experiments and contributed to discussions and the writing of the 

papers. 

Harrison et al., (2018a) This publication describes the development and 

validation of a large-volume freezing assay which detects ice-nucleation 

events via infrared (IR). The latent heat release upon freezing is detected in 

IR. The device was validated on K-feldspar and NX-illite. I collected and 

analysed a sample and contributed to the discussions and writing of the 

paper.  

Zinke et al., (2021) This paper describes the development and testing of a 

novel cloud-water sampler which was deployed in the central Arctic. The 

cloud water sampler was deployed on a tethered balloon and collected water 

for chemical composition and INP analysis. I analysed samples for INP 

activity and contributed to discussions and the writing of the paper. 

Adams et al., (In prep) This paper describes the first field deployment of the 

PINE chamber and validates it against other field instruments. It presents 

novel INP results in a boreal forest environment. I helped run experiments 

and contributed to the analysis and discussions. 

Adams et al., (In prep) This paper compares measured INP concentrations 

against simulated concentrations in a boreal forest environment. It 

characterises the speciation of the INP types present over a two-month 

period. I ran experiments and contributed to the analysis. During this 

campaign I supervised a student who was completing  a project abroad. 

Harrison et al., (In prep) This manuscript describes a field campaign 

carried out in Barbados, investigating the effects of transport over the 

Atlantic on Saharan dust. I attended the field campaign, collecting and 

analysing samples, and I have contributed to discussions.  
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Abstract. Ice-nucleating particles (INPs) affect cloud development, lifetime 

and radiative properties, hence it is important to know the abundance of 

INPs throughout the atmosphere. A critical factor in determining the lifetime 

and transport of INPs is their size, however very little size-resolved 

atmospheric INP concentration information exists. Here we present the 

development and application of a radio-controlled payload capable of 

collecting size-resolved aerosol from a tethered balloon for the primary 

purpose of off-line INP analysis. This payload, known as the SHARK 

(Selective Height Aerosol Research Kit), consists of two complementary 

cascade impactors for aerosol size-segregation from 0.25 to 10 µm, with an 

after-filter and top stage to collect particles below and above this range at 

flow rates up to 100 L min−1. The SHARK also contains an optical particle 

counter to quantify aerosol size distribution between 0.38 and 10 µm, and a 

radiosonde for the measurement of temperature, pressure, GPS altitude, 

and relative humidity. This is all housed within a weatherproof box, can be 

run from batteries for up to 11 h and has a total weight of 9 kg. The radio 

control and live data link with the radiosonde allow the user to start and stop 

sampling depending on meteorological conditions and height, which can, for 

example, allow the user to avoid sampling in very humid or cloudy air, even 

when the SHARK is out of sight. While the collected aerosol could, in 

principle, be studied with an array of analytical techniques, this study 

demonstrates that the collected aerosol can be analysed with an off-line 

droplet freezing instrument to determine size-resolved INP concentrations, 

activated fractions and active site densities, producing similar results to 

those obtained using a standard PM10 aerosol sampler when summed over 

the appropriate size range. Test data, where the SHARK was sampling near 

ground level or suspended from a tethered balloon at 20 m altitude, is 

presented from four contrasting locations having very different size resolved 
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INP spectra: Hyytiälä (Southern Finland), Leeds (Northern England), 

Longyearbyen (Svalbard), and Cardington (Southern England). 

2.1. Introduction 

Atmospheric ice-nucleating particles (INPs) are not well understood, with 

knowledge of their concentration, sources, temporal variability, transport and 

size in its infancy (Murray et al., 2012; Kanji et al., 2017). This is of 

importance because clouds between 0 °C and around −35 °C can exist in a 

supercooled liquid, mixed-phase (ice and water) or glaciated (ice only) state 

depending in part on the presence or absence of INPs (Kanitz et al., 2011; 

Vergara-Temprado et al., 2018). In the absence of INP, cloud droplets can 

supercool to below ~−35°C (Herbert et al., 2015), but INP can trigger 

freezing at much higher temperatures (Kanji et al., 2017). These particles 

usually have concentrations that are orders of magnitude smaller than cloud 

condensation nuclei (CCN), and have a disproportionate impact on clouds 

because the nucleated ice crystals grow rapidly and precipitate out (Murray, 

2017; Lohmann, 2017). In a shallow cloud, heterogeneous ice nucleation 

can result in dramatic reductions in cloud albedo by removal of supercooled 

liquid water (Storelvmo, 2017; Vergara-Temprado et al., 2018), whereas in 

deep convective clouds it can influence a web of microphysical processes in 

a complex way (Rosenfeld et al., 2011; Kanji et al., 2017; Deng et al., 2018). 

Hence, a greater understanding of INP lifetime, transport and distribution in 

the vertical profile is needed in order to better understand and model cloud 

processes and their response to a changing climate. 

 

The size of an aerosol particle significantly affects its lifetime and therefore 

transport in the atmosphere, with particles of a few hundred nanometres 

potentially having a lifetime of weeks, whereas particles of 10 µm have a 

lifetime of only hours (Jaenicke, 2007). While composition is recognised to 

be an important controller of ice nucleation ability (Kanji et al., 2017), it has 

also been generally thought that the larger an aerosol particle, the more 

likely it is to serve as an INP (Pruppacher and Klett, 1997). However, the 

lifetime of coarse mode aerosol particles decreases rapidly with increasing 

size. Consistent with larger particles being better ice nucleators, 

parameterisations of INPs in the atmosphere have been proposed wherein 

the INP concentration is related to the concentration of aerosol particles 
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larger than 0.5 µm (DeMott et al., 2010; Tobo et al., 2013; DeMott et al., 

2015). However, most atmospheric measurements of INPs report the sum of 

INPs below some threshold size set by an inlet or size cut, specified by the 

aerosol sampler used. For instance, DeMott et al. (2017) provides a 

comparison between a selection of instruments for the collection and 

subsequent INP analysis of aerosol, where the aerosol samplers have either 

a defined size cut-off or have collection efficiencies that decrease in 

magnitude above a defined size. Nevertheless, there are examples of field 

studies in which INPs have been size-resolved (Berezinski et al., 1988; Welti 

et al., 2009; Santachiara et al., 2010; Huffman et al., 2013; Mason et al., 

2016; Si et al., 2018; Reicher et al., 2018; Creamean, Kirpes, et al., 2018). 

These studies generally show that while the fine mode aerosol particles are 

more abundant, coarse mode aerosol particles often contribute more to the 

INP population. In addition, the activated fraction (nn) of coarse mode 

aerosol is usually greater than fine mode aerosol. However, in some field 

studies (Mason et al., 2016; Si et al., 2018), fine aerosol sometimes 

contributes more to the INP population than the coarse mode. Therefore, 

there is a need to determine INP sizes when quantifying atmospheric INP 

concentrations, as size is important for transport and lifetime and is therefore 

required to accurately model global INP populations.   

 

Measurements of INPs in and above the boundary layer are crucial to 

understanding the contribution of local sources to the ice-nucleating activity 

in clouds, compared to transported aerosol. Aircraft measurements (e.g. 

Price et al., 2018; Rogers et al., 2001) and mountaintop observatories (e.g. 

Conen et al., 2015) have been used to quantify INP populations above the 

boundary layer. For example, it has been shown that there are differences in 

the INP concentrations measured when in and out of the boundary layer at 

the High Altitude Research Station Jungfraujoch (Switzerland) (Conen et al., 

2015; Lacher et al., 2018).  While these measurements are undoubtedly 

useful, mountaintop measurements are only possible in locations with 

sufficiently tall yet accessible mountains, and aircraft sampling is expensive 

and not necessarily possible in remote regions.  It is therefore essential that 

instrumentation is available that can be used to sample aerosol at selected 

altitudes (including ground level) in order to determine INP concentrations 

throughout the vertical profile. Unmanned aerial vehicles (UAVs) are 

becoming more widely used in atmospheric science; these allow the 
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collection of aerosol at altitude at significantly lower cost than with manned 

aircraft, but are limited by relatively short battery lives, usually under 1 h, and 

potential propeller interference (Villa et al., 2016; Jacob et al., 2018). 

 

Tethered kite and balloon systems have historically been used to make 

atmospheric measurements and collect aerosol samples with much longer 

sampling times (many hours are readily achievable) at altitudes up to 2 km 

and 5 km for tethered balloons and kites respectively (Armstrong et al., 

1981; Balsley et al., 1998). An advantage of a balloon or kite system is that 

an instrument can be held at a chosen altitude for many hours without the 

balloon interfering with measurements, as the instrument can be suspended 

on a line many meters below the balloon. They can also stay inflated and in 

use for periods of many weeks, making them ideal for longer campaigns in 

remote environments. A new instrument called the Honing On VERtical 

Cloud and Aerosol properTies (HOVERCAT) (Creamean et al., 2018) 

provides the capability to sample aerosol for subsequent INP analysis on a 

tethered balloon or UAV, allowing both variable altitudes and static collection 

of non-size resolved aerosol smaller than 10 µm at 1.2 L min−1. In the past, 

aerosols have been size-segregated using cascade impactors on a tethered 

balloon system (Reagan et al., 1984; Hara et al., 2013), but balloon-borne 

cascade impactor systems have not yet been adapted for the purpose of 

size-resolved INP analysis. The downsides of balloon-based platforms 

include the need for wind speeds below around 64.4 km h−1 to avoid damage 

to the balloon, and the possibility of ‘icing’ of the balloon and lines when 

deployed in a cold and humid environment, which could add to the weight of 

the payload and cause the system to sink, or fall slowly. Nevertheless, 

balloon and kite-borne measurements remain a valuable way to obtain 

continuous, high resolution measurements over a period of many hours in a 

single location at a range of altitudes. 

 

In this paper, the design, testing and operation of a payload named the 

Selective Height Aerosol Research Kit (SHARK) is presented. It consists of 

two separate cascade impactor systems, operating at 9 and 100 L min−1, for 

the size-sorting of ambient aerosol particles from 0.25 to 10 µm, with an 

after-filter and top stage to collect particles below and above this range for 

off-line INP (or other) analysis. The SHARK also features an optical particle 
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counter (OPC) and a radiosonde, which provides real-time measurements of 

relative humidity (RH), temperature, Global Positioning System (GPS) 

altitude and pressure. Weighing 9 kg, the payload is suitable for use with a 

21 m3 or larger tethered balloon such as in Figure 1.1 a where the SHARK is 

shown in-flight. The use of a tethered balloon and a high-capacity battery 

allow aerosol to be collected for up to 11 h at a user-selected altitude.  

 

Figure 2.1- The SHARK. (a) The SHARK payload on a tethered balloon 
connected to ground by a winch. The photograph was taken during 
deployment in the High Arctic. (b) The components inside the SHARK 
payload labelled on a photograph. The payload featured a large 
impactor inlet at the top of the platform for Impactor 2, with the OPC 
inlet facing the front, and a small impactor inlet at the bottom for 
Impactor 1. The radiosond was at the bottom of the box, and the outlet 
valve for the pump system is shown at the back of the SHARK, where 
the 100 L min−1 pump for Impactor 2 vents. 

2.2. The design and development of the SHARK 

2.2.1. Instrument description 

The SHARK, shown in Figure 1.1, comprises two cascade impactors and 

corresponding pumps, alongside an OPC (OPC-N2, Alphasense, UK) and 

radiosonde (S1H2-R, Windsond, Sweden), all mounted within a 

weatherproof enclosure with a tail fin to orient it into the wind. A photograph 

of the internal components of the SHARK are shown in Figure 1.1b. The two 

cascade impactors were employed to collect particles across different size 

bins: Impactor 1 from 0.25-2.5 µm and Impactor 2 from 1-10 µm. Impactor 1 

is a cascade impactor (U.S. Patent No. 6,786,105, Sioutas, SKC, UK), which 

requires a flow rate of 9 L min−1 and operates with a portable pump (Leland 

Legacy, SKC, UK). Impactor 2 is also a cascade impactor (MSP Model 128, 

TSI, USA), which requires a flow rate of 100 L min−1 at a pressure drop of 
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0.6 kPa (Marple et al., 1991; Misra et al., 2002), and for which a radial flow 

impeller (Radial Blower U51, Micronel, UK) was used in reverse as a 

lightweight pump (~120 g). These pumps maintain the volumetric flow rate 

through the impactors as temperature and atmospheric pressure change 

with altitude. The pump for Impactor 1 was calibrated to apply this 

adjustment to at least 2.3 km (Leland Legacy Sample Pump: Operating 

Instructions, SKC), although the presence of the after-filter may reduce the 

battery life at this altitude. The pump for Impactor 2 is supplied by a larger 

battery and should be able to maintain flow to at least the same altitude as 

the Impactor 1 pump, and over a longer period of time. The SHARK records 

the volume of air sampled through Impactor 1 during the flight, and so if the 

pump battery was depleted, or the pressure drop became too great before 

Impactor 2 had finished sampling, the Impactor 1 pump would shut down 

and store the recorded value for later analysis. Further testing of the SHARK 

would be required to define a maximum altitude limit that each SHARK 

component could operate at. In order to provide RH, temperature, GPS 

altitude and pressure data in real-time, the sensors and transmitter from a 

radiosonde were integrated into the system. The OPC measured aerosol 

size distributions, which were saved in the on-board memory. Servo-

controlled caps covered the sample inlets and outlets to reduce 

contamination during ascent and descent, as well as to protect the 

components from cloud water. The operation of the SHARK components 

was controlled remotely via a radio link using an Arduino microcontroller 

board (16 km range); once the SHARK was at the desired altitude according 

to the constantly transmitting radiosonde, the inlet caps opened 10 s prior to 

the pumps and OPC starting in order to initiate aerosol sampling and 

monitoring. The payload components, including the servo inlet covers and 

Arduino control boards, were powered by a 5000 mAh battery (4S 14.8 V 

LiPo, Overlander, UK). The components were assembled into the SHARK 

payload with the static (i.e. no wind) weight budget of 10 kg for a 21 m3
 

balloon (Skyhook Helikite, Allsopp Helikites Ltd., UK) in mind, hence the 

SHARK weighs 9 kg when fully instrumented. 

  

The cascade impactors allow for the collection of size-segregated aerosol 

(further details are provided in Section 2.2) onto thin films (0.25 mm 

thickness) for subsequent off-line analysis, which can be used alongside 

information about the aerosol size distributions obtained via the OPC and 
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atmospheric conditions from the radiosonde. Our initial focus concerns the 

analysis of the ice-nucleating properties of the collected aerosol, but an 

array of analytical techniques could be applied to characterise the size-

selected aerosol, including mass spectrometry, DNA analysis, scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) 

(Garcia et al., 2012; Huffman et al., 2013; Ault and Axson, 2017; Laskin et 

al., 2018). 

 

Figure 2.2- Collection efficiencies of each size bin of the two cascade 
impactors in the SHARK. (a) The size bins for each stage of Impactor 
1 and 2 at flow rates of 9 and 100 L min−1, respectively. (b) Impactor 
efficiency curves for each stage. Impactor 1 has four stages (1b-e) and 
one after-filter (1a), while Impactor 2 has three stages (2d-f). Stages 1d 
and 2d as well as 1e and 2e should be approximately equivalent in 
terms of the aerosol size ranges collected. 
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2.2.2. Size-segregated collection of aerosol  

Two separate cascade impactors were installed, each operating over 

different size ranges. This enabled size-resolved aerosol sampling onto 

substrates across both the fine and coarse modes at high flow rates, while 

keeping power consumption low enough to be run from batteries. Single 

impactor systems designed to operate across the accumulation and coarse 

modes simultaneously require a relatively large pressure drop that would 

typically require a prohibitively large (and heavy) pump and battery for this 

application.  

 

Impactor 1 sorts aerosol into five size categories: <0.25 µm (this size bin is 

defined by the impactor after-filter and is hereafter referred to as 1a), 0.25-

0.5 µm (from stage 1b), 0.5-1.0 µm (from stage 1c), 1.0-2.5 µm (from stage 

1d), and >2.5 µm (from stage 1e). The size categories b to e correspond to 

the impactor stages where the 50 % collection cut-off diameter (d50) is the 

lower bound of each bin. The size bins and collection efficiencies for each 

impactor were digitised from data provided by the manufacturers, (Misra et 

al., 2002; Product Information Sheet - MSP) and are shown in Figure 2.2. 

Several collection substrates were tested by Misra et al. (2002), and the 

dataset from the Teflon substrates was chosen to represent Impactor 1 here 

as that substrate most closely resembled those used in this study. For 

Impactor 1, the particles were collected on 25 mm diameter filters of pore 

size 0.05 μm (Nuclepore Track-Etched Membrane polycarbonate filters, 

Whatman, UK). Filters were used as impactor substrates rather than films 

since they have very low background contamination and are easier to obtain. 

Size category 1a corresponds to an after-filter situated after Impactor 1, 

which comprised a 47 mm diameter polycarbonate filter with a pore size of 5 

µm (Nuclepore Track-Etched Membrane) to maintain the flow rate. The 

collection efficiency of the after-filter was estimated to be 50-100 % at 0.25 

µm and below (Soo et al., 2016). Impactor 2 collected aerosol particles into 

three size categories: 1.0-2.5 µm (2d), 2.5-10 µm (2e), and >10 µm (2f), also 

illustrated in Figure 2.2. 75 mm diameter filters of pore size 0.05 μm 

(Nuclepore Track-Etched Membrane polycarbonate filters) were used in 

Impactor 2. An after-filter could not be used with this impactor since its 
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inclusion increased the required pressure drop to beyond what the pump 

could supply at 100 L min-1.  

 

A further benefit of using these two impactors in tandem is that, in the size 

ranges where they overlap of 1.0-2.5 µm (stage d) and 2.5-10 µm (stage e), 

the impaction efficiencies are very similar, allowing a direct comparison 

between the two impactors in this size range. The stages are labelled a 

through f for the smallest to largest impactor stage sizes (including the after-

filter), such that 1d and 2d refer to stage d (1.0-2.5 m) on Impactors 1 and 

2, respectively (see Figure 2.2). Background runs were produced by placing 

the substrates in the SHARK as if setting up to sample, before removing and 

analysing them as normal to determine the contamination introduced 

through the installation and recovery of the substrates. 

 

Particle bounce, the bouncing of particles off the impaction substrate and the 

collection of these particles on the lower stages, has previously been 

identified as a factor that can cause biases when aerosol is collected by 

cascade impactors (Dzubay et al., 1976; Cheng and Yeh, 1979). The 

collection efficiency curves shown in Figure 2.2 for Impactor 1 already 

account for some degree of particle bounce, having been determined 

experimentally by Misra et al., (2002) using monodispersed polymer 

particles on a variety of substrates. However, the efficiency curves for 

Impactor 2 are based on theoretical predictions (Rader and Marple, 1985) 

and so do not account for any bounce effects. Since two of the stages of 

Impactors 1 and 2 overlap (stages d and e), it is possible to comment on the 

possible effects, or lack thereof, of particle bounce, based on the results 

obtained using each of the comparable stages. This is briefly addressed in 

section 2.3.4 where we show good agreement between these two impactors. 

2.2.3. Size distribution measurements  

The OPC produced binned particle size distributions from 0.38-17 µm every 

1.38 s at a typical flow rate of 1.2 L min−1. The OPC was remotely operated 

through the use of its serial link via an Arduino microcontroller board. 

Particle size, surface area and mass concentration data were produced from 

the raw OPC data, and these then used to calculate the fraction of the 

aerosol that act as an INP (activated fraction, nn(T)), and to weight the INP 

data to particle surface area , generating the ice-active site density per 
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surface area (ns(T)) of aerosol. The particle density used was 1.65 g cm−3, 

as assumed by the OPC software, and they were assumed to be spherical. 

No correction was made for the hygroscopic growth of aerosol particles as 

this required assumptions about the chemical nature of the particles, and 

hygroscopic growth effects were minimised by avoiding sampling when the 

RH was above about 80 % (see next section).  

2.2.4. Radiosonde data 

Utilising the radio control built into the payload, real-time data informed 

decisions of when to turn the pumps on and off to sample. Continuous 

monitoring of the radiosonde data allows the user to avoid sampling under 

conditions where RH approached 100 %, at which point aerosol particles 

become excessively swollen with water or activated to cloud droplets. 

Hence, the influence of hygroscopic growth or cloud droplets on the 

collected aerosol could be minimised. The temperature and pressure 

measurements allowed the volume of air sampled by the impactors and 

OPC to be corrected to standard conditions (1 atm at 0 °C). 

2.2.5. Housing and instrument orientation 

The weatherproof housing consisted of an acrylonitrile butadiene styrene 

(ABS) polymer box with dimensions of 560 mm x 380 mm x 180 mm (IP67, 

Fibox). Holes to mount the impactors and OPCs were drilled so that 

Impactor 2 sat vertically upright and Impactor 1 was oriented 180° to 

Impactor 2 so that it faced downwards, ensuring that both impactors were 

always oriented 90° to the wind. The OPC was at 90° to both impactors and 

facing towards the front of the box, into the wind (see Figure 2.3a-c) See 

section 2.6 for the rationale of the positioning of the OPC and impactor 

inlets. The tail fin, which is mounted to the lid of the box, was designed to 

keep the SHARK orientated into the wind, and was fabricated from rigid 

polyvinyl chloride (PVC) sheet.  Impactor 1 had its own mounting screws by 

which it was attached to the box, whilst for Impactor 2 a custom mount was 

built. Securing ropes were threaded through reinforced holes in the box and 

connected via a carabiner for quick and easy attachment to the balloon 

instrument line, as seen in Figure 1.1a. Modular foam was used to keep all 

components in place during flight. 
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Figure 2.3- SHARK sampling efficiencies (a) The sampling efficiencies of 
Impactor 1, with and without wind, when sampling at 90° to the wind 
direction. (b) The sampling efficiencies of Impactor 2, with and without 
wind, when sampling at 90° to the wind direction. (c) The sampling 
efficiency of the OPC, with and without wind, when sampling at 0° and 
90° to the wind direction (the OPC was deployed at 0° to the wind, 
based on this calculation). Solid lines denote model predictions within 
the formulas’ validity range, and dotted lines represent approximations 
(Von Der Weiden et al., 2009). 
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2.2.6. Inlet sampling efficiencies via particle loss modelling 

Calculation of the particle losses associated with the instrument inlets due to 

excessive wind speeds in various configurations were used to inform the 

design of the SHARK and to minimise sampling biases in higher wind 

conditions. The calculations were done using an open source particle loss 

calculator program in Igor Pro, the details and assumptions for which are 

presented in Von Der Weiden et al., (2009). The particle loss characteristics 

of the impactor and OPC inlets at their required flow rates were calculated 

for a wind speed of 0 and 24 km h−1, the latter used as a maximum 

representative wind speed for operation. The wind speeds required for 

optimum performance are <8 km h−1 for the impactors and OPC, but the 

system may experience higher wind speeds. Hence, we use this modelling 

to guide our choice of positioning of the instrument relative to wind direction 

in order to minimise sampling biases at the inlets. The modelling also allows 

us to better understand which impactor stages (and OPC size bins) will be 

most affected by such biases. We make no attempt to correct the 

measurements for sampling biases, since this correction itself would carry 

substantial uncertainty, but used the calculations to inform us of the best 

configuration for the various inlets.  

 

The inlet sampling efficiencies in the orientations chosen for the final design 

of the SHARK are shown in Figure 2.3. It is important to note that, due to 

their dissimilar inlet dimensions and operational flow rates, Impactors 1 and 

2 are affected differently by the wind. The particle losses for the largest 

stages of each impactor are the most affected.  Stages a to d on both 

impactors are only minimally affected by losses.  The losses are more 

significant in stage e on both impactors, but the losses on 1e are greater 

than on 2e with a 50% cut off at around 5.5 µm and a negligible sampling 

efficiency above about 8 µm on 1e. These calculations also demonstrate that 

the losses are wind-speed dependent, but that in situations where there is 

significant wind, the results from Impactor 2 will be less influenced by losses 

than Impactor 1 at sizes above 2.5 µm 

 

The OPC suffers up to 1.6 times oversampling for 10 µm particles when 

sampling into 24 km h−1 wind, but when oriented at 90° to the wind the 
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collection efficiency of  >6 µm particles approaches 0 % (see Figure 2.3c). 

Therefore, the OPC has been positioned in the SHARK to be oriented into 

the wind to ensure data is collected for the whole size range, with the caveat 

of a sub-isokinetic oversampling of larger particles.  

2.3. Results and Discussion 

The SHARK has been deployed at ground level and on a tethered balloon 

during development and testing at four locations for the collection and 

monitoring of aerosol: Cardington (UK), Hyytiälä (Finland), Leeds (UK), and 

Longyearbyen (Svalbard). Details of the sampling locations, periods, and 

instrumentation can be found in Table A1 of the Supplementary Information 

(SI). In this section, we present the results for this set of four SHARK 

deployments to illustrate the capabilities of the SHARK for quantifying ice-

nucleating particle spectra as well as demonstrating that the technique is 

consistent with more established methods. 

 

Figure 2.4-Windsond and optical particle counter (OPC) data for a flight 
during a campaign to the High Arctic. (a) The altitude of the SHARK 
payload throughout the 4.5 hour flight. The sampling start and end 
times are indicated as solid lines. The SHARK reached 450 m above 
Mean Sea Level (MSL) and in the last hour of flight was lowered to 350 
m due to ice formation on the balloon, instrument and tether. (b) The 
humidity during the flight was monitored to ensure the SHARK was not 
sampling during unfavourable conditions. The SHARK was brought 
back down to ground level once the sampling had been stopped. (c) 
The ambient temperature was monitored alongside the dewpoint 
temperature. (d) Total particle counts throughout the sampling period, 
as monitored by the OPC. 
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Figure 2.5-Size distribution data produced from OPC measurements. 
(a) Particle number, (b) particle surface area and (c) particle mass size 
distribution data above the surface temperature inversion during a test 
run of the SHARK suite whilst deployed on a tethered balloon in the 
High Arctic. Comparisons to previous studies at Arctic sites are shown 
(Hegg et al., 1996; Seinfeld and Pandis, 2016; Freud et al., 2017). The 
August aerosol number size distributions for all listed sites in Freud et 
al., including Zeppelin, Nord, Alert, Barrow and Tiksi are shown. The 
data from Hegg et al., at altitudes of 0.7 km and 0.4 km in Prudhoe 
Bay, Alaska, are presented. The size distributions from Seinfeld and 
Pandis are calculated given the parameters for multimode distributions 
given in Table 8.3.  

 

2.3.1. Meteorological and aerosol size distribution data from 

a SHARK flight 

An example of the radiosonde and OPC data that was collected during a 

SHARK flight is shown in Figure 2.4. The data was from a sampling event in 

the High Arctic in the summer of 2018, during which the meteorological data 

from the radiosonde and aerosol particle data from the OPC were collected 

alongside impactor films for INP analysis (the INP results will be published 

elsewhere). Throughout the 4.5 h flight the altitude, humidity and 

temperature were closely monitored to inform decisions on sampling. The 

sampling start and end times are indicated as solid lines in Figure 2.4. The 
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SHARK reached 450 m above Mean Sea Level (MSL) and in the last hour of 

flight lowered to 350 m due to ice formation on the balloon, instrument and 

tether. The RH during the flight was monitored to ensure the SHARK did not 

sample in humidity approaching saturation; the impactor and OPC 

manufacturers’ specified thresholds for the components is 95 % RH, but we 

aim to only sample with the RH below this value (~80 %) in order to reduce 

the influence of hygroscopic growth on aerosol size. After sampling was 

stopped, the SHARK was brought down to ground level, resulting in the 

humidity rising. The ability to stop the sampling during the flight meant the 

impactors were covered and the pumps turned off during the descent and so 

did not sample the more humid environment. The ambient temperature was 

monitored alongside the dewpoint temperature to follow the surface 

inversions. The temperature inversion was used to determine where to 

stabilise the SHARK and begin sampling, as sampling was desired above 

the surface inversion for this run. 

 

The total particle counts per 1.38 s interval from the OPC are shown in 

Figure 2.4d. Processing of the OPC data yielded the results shown in Figure 

2.5 for the particle number (dN/dlogDp), particle surface area (dS/dlogDp) 

and particle mass (dM/dlogDp) size distribution data for the sampling period, 

where Dp is the particle diameter. We present this data to demonstrate that 

the OPC produces reasonable data when used facing into wind while 

suspended from a balloon at altitude. Unfortunately, there is no direct 

comparison with other aerosol size distribution measurements at the 

sampling location. While the particle number concentration decreases 

roughly linearly with size, the surface and mass concentration curves have a 

mode at around 4 µm in Figure 2.5b and Figure 2.5c. This is consistent with 

previous studies conducted within the boundary layer in the Arctic (Hegg et 

al., 1996; Seinfeld and Pandis, 2016; Freud et al., 2017). 

 

2.3.2. Deriving size-resolved INP concentrations from the 

SHARK samples 

The ability to measure INP concentrations and properties using samples 

collected via the SHARK was tested by performing immersion mode droplet 

freezing assays on the sampled aerosols. Following a flight, impactor films 

were removed from both cascade impactors of the SHARK, then each 
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immersed in 5 mL of water and mixed on a vortex mixer for 5 min to wash 

the collected particles into suspension (O’Sullivan et al., 2018). This 

suspension was then analysed via a droplet freezing assay using the 

microlitre Nucleation by Immersed Particle Instrument (L-NIPI) (Whale et 

al., 2015), in which 40-50 droplets of 1 L volume were pipetted onto a 

hydrophobic glass slide atop a cold plate. A Perspex shield was placed over 

the cold stage and N2 gas introduced to purge the chamber of moisture as 

the cold plate was cooled to −40 °C at 1 °C min−1. The temperatures at 

which droplets froze were recorded using video analysis until the entire 

population had frozen. This allowed the fraction of droplets frozen as a 

function of temperature, fice (T), to be calculated (Whale et al., 2015; 

O’Sullivan et al., 2018) using the equation fice (T) =  Nf / Nt , where Nf is the 

number of frozen droplets at temperature T, and Nt is the total number of 

droplets. The INP concentration per volume of sampled air as a function of 

temperature, [INP]T, was then calculated for each film using fice (T), 

according to Equation 1 adapted from (Vali, 1971) to include weighting to the 

volume of air sampled:  

[INP]𝑇 =  −
ln (1−𝑓ice(𝑇))

𝑉droplet
 .  

𝑉wash

𝑉air
 ,                     (1) 

where Vdroplet is the droplet volume (i.e. 1 L), Vwash is the amount of water 

into which the filter is immersed to produce the suspension for analysis (i.e. 

5 mL), and Vair is the volume of air sampled. 

 

2.3.3. Testing the SHARK INP concentrations against a 

standard aerosol sampler 

In order to test whether the SHARK impactors were sampling in a 

representative manner, the SHARK was run concurrently with a filter-based 

particle sampler (BGI PQ100, Mesa Labs) and which is used as an EPA 

Federal Reference Method for PM10 (designation no. RFPS-1298-124). This 

sampler was equipped with a PM10 head and an optional cyclone impactor 

which provided a size cut at 2.5 µm. Aerosol was collected onto 0.4 µm pore 

size Nuclepore Track-Etched Membrane polycarbonate filters at a flow rate 

of 16.7 L min−1 (i.e. 1 m3 h−1). This type of filter collects particles across the 

full range of available aerosol sizes, even at sizes smaller than the pore 

diameter, with high collection efficiencies (Soo et al., 2016; Lindsley, 2016). 

These polycarbonate filters have also been successfully employed in other 

ice nucleation field measurements (Huffman et al., 2013; McCluskey et al., 
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2016; DeMott et al., 2016; Tarn et al., 2018; Harrison et al., 2018; Reicher et 

al., 2019). These substrates are known to have a low ice-nucleating ability 

and allow the collected particles to be released into suspension for 

subsequent INP analysis (O’Sullivan et al., 2018). The filters were analysed 

using the L-NIPI in the same manner as for the impactor films collected 

using the SHARK. The PQ100 filter sampler was deployed alongside the 

SHARK in Cardington (UK) and in Hyytiälä (Finland).  

 

Figure 2.6-The sum of INP concentrations, [INP]T, for labelled stages 
measured at: (a) Cardington (UK) and (b) Hyytiälä (Finland) alongside 
data from a standard sampler. Cardington data was taken from 
Impactor 2 whilst on a tethered balloon at 20 m above ground level, 
and is shown against a PM10 sampler at ground level. Hyytiälä data 
was collected using Impactor 1 at ground level, alongside a PM2.5 
sampler. The dotted lines indicate the sum of the INP concentrations 
for the SHARK impactor stages, calculated by weighting fice(T) to the 
volume of sampled air, and summing the concentrations in each 
temperature bin.  
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In order to compare the SHARK-derived, size-resolved INP data with the 

results of the PM10 or PM2.5 PQ100 filter sampler, the INP concentrations 

determined across the appropriate SHARK size categories were summed. In 

Figure 2.6a, data is presented from Cardington, where the sum of 2d and 2e 

from SHARK is compared with the filter sampler fitted with a PM10 head 

(Impactor 1 was not available during this test). The SHARK was suspended 

from a tethered balloon roughly 20 m from the ground, whereas the filter 

sampler was on the ground (inlet ~150 cm above the surface), where both 

samplers were within the well-mixed boundary layer. The agreement is very 

good apart from two highest temperature points from the filter sampler, but 

note that the Poisson uncertainties on these points are substantial and also 

that the two samplers were separated vertically by 20 m.  

 

We then show data from Hyytiälä in Figure 2.6b where we compare the INP 

spectrum from the filter sampler, with a PM2.5 cut-off installed, with the sum 

of stages 1b, 1c and 1d (the after-filter, stage 1a was not used on Impactor 1 

in this case). Here, both samplers were positioned within a few metres 

above the ground. Again, the agreement between the SHARK and the filter 

sampler was very good. For both Cardington and Hyytiälä, the smallest 

particles (<0.25 µm) were not sampled using the SHARK, but the agreement 

between the filter sampler and the SHARK implies that, in these cases, the 

smallest particles made a minor contribution to the overall INP population, 

which is what we would generally anticipate from the literature (Berezinski et 

al., 1988; Welti et al., 2009; Santachiara et al., 2010; Huffman et al., 2013; 

Mason et al., 2016; Si et al., 2018). The consistency between the SHARK 

and the filter sampler indicates that there are no major losses of aerosol in 

the SHARK sampler, at least relative to the PQ100 filter sampler. 
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Figure 2.7- Ice-nucleating particle (INP) analysis of samples collected 
in Leeds (UK) using the SHARK. (a) The fraction of droplets frozen as 
a function of temperature, fice(T), for each stage of Impactors 1 and 2. 
The handling blank is shown in grey. (b) The INP concentrations for 
stage ‘e’ of both impactors (2.5-10 μm), highlighting their excellent 
agreement.  

 

2.3.4. Consistency of INP concentrations between SHARK 

impactors 

An example of data from the size-resolved collection and analysis of INPs is 

shown in Figure 2.7, from a sampling run performed in Leeds (UK). The fice 

(T) curves for each impactor stage are illustrated in Figure 2.7a. As 

discussed in section 2.2.2, there are two stages, d and e, which have similar 

size cuts on both stages. Using stage e as an example, it can be seen that 

while the fraction frozen curves for the two samplers are shifted by about 3 

°C (Figure 2.7a), normalising to the volume of air sampled to yield [INP]T  in 

Figure 2.7b shows that the INP spectra derived from stages 1e and 2e are 

consistent with one another. Stage 2e covers a lower range of INP 

concentrations than stage 1e by about 1 order of magnitude, because the 

flow rate through this impactor was more than a factor of 11.1 (100 L min−1 / 

9 L min−1) higher and the probability of collecting rarer INP was increased by 

this factor. The agreement between the two impactors indicates that aerosol 

was collected with no significant losses/enhancements due to factors like 

particle bounce or wind observed. Based on the inlet particle loss 

calculations in Figure 2.3, higher losses may have been expected in 

impactor stage 1e, but these are not apparent here. 
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Figure 2.8-INP concentrations determined from each impactor stage of 
the SHARK at the four testing sites: (a) Cardington (UK), (b) Hyytiälä 
(Finland), (c) Leeds (UK) and (d) Longyearbyen (Svalbard). Handling 
blank data, which determine the baseline of the results, are shown in 
grey. Samples of the error bars are shown. 



- 75 - 

75 

 

 

Figure 2.9-Size-resolved ice-nucleating particle concentrations 
(sr[INP]T) for the four test sites: (a) Cardington (UK), (b) Hyytiälä 
(Finland), (c) Leeds (UK) and (d) Longyearbyen (Svalbard). The colour 
bars indicate the INP concentration. The dotted lines on the y-axis 
indicate the size cuts of the impactors. The data from Figure 2.8 is 
presented here in an alternative format, which has the advantage of 
more clearly and concisely displaying the features of the INP spectrum 
in each size bin than the plots in Fig 2.8. 
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2.3.5. Size-resolved ice-nucleating particle (srINP) spectra at 

four locations 

The derived size-resolved INP (srINP) concentrations for all four test sites 

are shown in Figure 2.8 and Figure 2.9. The fice(T) curves for these test sites 

can be found in Figures A1 to A4 of the SI. Figure 2.8 shows the INP 

concentration spectra in the classic form, wherein INP concentrations are 

plotted against temperature for each size bin, whereas Figure 2.9 shows the 

same data in novel srINP plots to allow more intuitive comparison of the INP 

concentration contribution from each stage with respect to temperature. In 

Figure 2.9, where there were measurements from two impactors for the 

same stage (e.g. d and e), the INP concentrations were merged by taking an 

average at temperature intervals of 0.5 °C (also for Figure 2.6).  The colour 

gradient in Figure 2.9 represents the temperature dependant concentration 

for each size bin and the overall steepness of the d[INP]T/dT curve. The 

steepness of the INP spectra can be useful in discriminating between 

different INP species. On inspection of Figure 2.8 and Figure 2.9, it can be 

seen that the spectra in the four locations have very different characteristics. 

Not only does the general shape of the spectra vary, but the size-

dependence is also very different in the four locations. Due to the sample 

size, these variations could be attributed to the different aerosol population 

in each location, the time of year and meteorology, which could affect the 

INP concentrations and spectra (Kanji et al., 2017; Wex et al., 2019; Tobo et 

al., 2019; Šantl-Temkiv et al., 2019). We now discuss the size-resolved INP 

concentration spectra from these tests, bearing in mind that these four tests 

were one-offs and should not be regarded as characteristic of those 

sampling sites, but rather illustrative of the importance of making size-

resolved measurements.  

 

The first site testing of a prototype of the SHARK in which all of the 

components were installed was conducted in Cardington (UK) on the 15th of 

May 2018, but only Impactor 2 was used (see Figure 2.6a and Figure 2.8a). 

The Cardington site is an airfield, with large areas of grassy land near a 

main road, and the sampling was conducted during spring. In order to 

demonstrate the utility of the SHARK to make balloon-borne INP 

measurements whilst providing a comparison with a commercial ground-

based sampler, the SHARK was sampling whilst suspended from a tethered 

balloon, flying roughly 20 m above the ground. The INP spectra (Figure 2.8a 
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and 9a) in this location are steep, increasing two orders of magnitude within 

2.5 °C, and are centred around −18 to −20 °C; the [INP]T for 2f and 2e 

increases by an order of magnitude in just ~1 °C. The INPs in this location 

were dominated by particles greater than 2.5 µm, whereas particles between 

1-2.5 µm made a smaller contribution and show a shallower d[INP]T/dT, 

seen in Figure 2.9a as a larger spread of data. We speculate that the coarse 

mode INPs at this site were of biological origin, such as fungal material, 

pollen or bacteria with a steep INP spectrum (Kanji et al., 2017).  Some 

fertile and agricultural soil samples have also been shown to be very active 

(Tobo et al., 2014; O’Sullivan et al., 2015; Hill et al., 2016; Steinke et al., 

2016), and a mechanism for emissions of soil material into the atmosphere 

has been proposed (Wang et al., 2016). However, the steep portion of the 

INP spectrum for fertile soils tends to be at temperatures above ~-10°C, 

warmer than observed in the Cardington sample. The steepness of the curve 

and the temperature are consistent with ice nucleation by pollen (Pummer et 

al., 2012; O’Sullivan et al., 2015; Tarn et al., 2018). Although the size of 

whole pollen grains are often larger than 10 m, pollen is known to release 

nanoscale materials that nucleate ice, which might be internally mixed with 

aerosol in this size bin. 

 

In Hyytiälä (Finland), a field site in the boreal forest, the INP spectra contrast 

quite strongly with those in Cardington (see Figure 2.6b and Figure 2.8b). 

Sampling took place on the 11th of March 2018, when the Hyytiälä site was 

snow-covered and sampling was performed at the surface (inlet ~150 cm 

above surface). In this case only Impactor 1 was used without the after-filter 

installed. The complex nature of the size-dependence of INP is clear here. 

Intriguingly, in this location, the INP concentration was greatest for the 

smallest stage used (1b; 0.25-0.5 µm), and accounted for the majority of the 

INPs between −17 and −22 °C. The fewest INP came from the next smallest 

stage 1c (0.5-1 µm), while at temperatures below −23 °C, stage 1e 

contained the majority of the INPs. These results indicate that the INP 

spectra are complex, and that concentrations of INPs do not always increase 

with increasing size as might be expected. Huffman et al. (2013) reported 

INP concentration measurements in a forest ecosystem, where the particles 

between 1.8 and 5.6 µm enhanced during rain. Hence, as in the present 

study, Huffman et al. (2013) showed that INP activity does not always 

increase with size. The highest INP concentrations in Hyytiälä were 
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measured for aerosol sizes of 0.25-0.5 µm, and we note that these 

accumulation mode INPs would have lifetimes of many days to weeks in the 

atmosphere and could therefore be transported to locations and altitudes 

where they may influence clouds. Clearly, this would be an interesting 

location for more measurements with the full SHARK payload to gain further 

information on the long term INP concentration variations and the aerosol 

sizes responsible for them. 

 

The testing in Leeds (UK) used both impactors at ground level with the 

SHARK suspended from a frame to allow orientation into wind. The Leeds 

sampling was conducted within the University of Leeds campus on a patch 

of grass on the 7th of June 2018 in close proximity to the School of Earth and 

Environment. In this test the full suite was deployed, including the impactors, 

after-filter and OPC. The particle number, surface and mass size distribution 

data for this test can be found in Figures A5 to A7 of the SI. It can be seen in 

Figure 2.8c that generally, the larger bins contained more active INP. The 

only exception to this occurred with the after-filter (< 0.25 µm), which had 

slightly higher INP concentrations below about −25 °C than the next two size 

bins (0.25-1.0 µm). As with the measurements in Hyytiälä, clearly more 

measurements illuminating the contribution of the smaller particles in similar 

environments would be beneficial since the atmospheric lifetime of these fine 

particles is relatively long. We note that a substantial proportion of INPs 

quantified just outside of Leeds in a previous study were heat-sensitive and 

therefore most likely of biological origin (O’Sullivan et al. 2018). In the future, 

conducting heat tests, as well as using Mass Spectrometry, SEM and DNA 

analysis with the size-resolved INP samples may help to identify the INP 

types in the various size fractions and highlight any differences between size 

ranges. 

  

The final test was in Longyearbyen (Svalbard) from the 7th deck of the 

icebreaker Oden, 25 m above the surface, when moored ~200 m from the 

shore, overnight from the 23rd to the 24th of September 2018. The full 

SHARK payload was used in this case, with the OPC, both impactors and 

the after-filter on Impactor 1. The particle number, surface and mass size 

distribution data for this test can be found in Figures A8 to A10 of the SI. The 

INP spectra in this location, shown in Figure 2.8d was quite distinct from the 
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other three locations in that all size fractions contributed similarly to the INP 

population and there is a very shallow slope of dln[INP]T/dT (Figure 2.9d). 

We detected INPs at temperatures of up to −10 °C with concentrations of 

around 0.01 INP L−1. These high-temperature INP concentrations are 

consistent with the summertime measurements reported at other Arctic 

locations, including Ny-Ålesund (Svalbard) (Wex et al., 2019).  The INP in 

this region potentially originate from a range of sources. Tobo et al. (2019) 

recently reported that dust and biological material from glacial valleys in 

Svalbard may be an important source of INPs in the region. We also note 

that we sampled while the Oden was moored in the port of Longyearbyen 

where local pollution sources may have been significant (Zhao et al., 2019). 

 

2.3.6. Ice-active surface site density, ns(T), and the activated 

fraction, nn(T) 

The addition of size distribution information to the INP concentration spectra 

allowed the calculation of the number of active sites per unit surface area, 

ns(T), and the activated fraction, nn(T), of the size-resolved samples.  These 

quantities are determined by weighting the srINP concentrations to the total 

surface area and the aerosol number in each size bin, respectively, as 

shown in Equations 2 and 3.  

𝑛s(𝑇) = −
ln (1−𝑓ice(𝑇))

𝐴s
 ,                                                          (2) 

where As is the total surface area of the particles per droplet in a L-NIPI 

droplet freezing assay. This was calculated for each impactor size range, 

using data from the relevant size bins of the OPC data.  

𝑛n(𝑇) = −
ln (1−𝑓ice(𝑇))

𝑁
 ,                                                       (3) 

where N is the total number of particles sampled by the impactor in each 

size bin, calculated using the number concentration in each size category as 

measured by the OPC, and the volume of air sampled by the impactor. The 

size bins from the OPC which have been included in the calculations were 

matched to those in the impactors. The bin boundaries for the OPC 

calculations were within tens of nanometres of the impactor bin boundaries. 

 

Calculating the ns(T) and nn(T) values from the INP data was only possible 

for some of the size ranges due to the sampling ranges of the 



- 80 - 

80 

 

instrumentation employed. The smallest particle diameter measured by the 

OPC is 0.38 µm, i.e. above the lower limit of impactor stage 1b, while the 

largest impactor stage, 2f ( >10 µm) has no defined upper bound. Therefore, 

the three bins (i.e. impactor stages) that were used to produce ns(T) and 

nn(T) were c (0.5-1.0 µm), d (1.0-2.5 µm) and e (2.5-10 µm). The ns(T) and 

nn(T) data were calculated for the field tests in Leeds and Longyearbyen; 

data from Cardington and Hyytiälä is not provided as the OPC was not in 

use at these sites. 

 

Figure 2.10-Plots showing (left) the activated fraction of aerosol (nn(T)) 
and (right) the number of active sites per surface area (ns(T)) for 
samples tested from two measurement sites: (a) Leeds (UK) and (b) 
Longyearbyen (Svalbard). The colours of the data points indicate the 
size bins of each impactor, and the different symbols represent the two 
impactors. Samples of the error bars are shown. 

 

The plots of activated fraction shown in Figure 2.10 are addressed first. For 

the Leeds sample, there is a difference in the nn(T) values between bins c to 

e (Figure 2.10a), where the smallest bin is 1-3 orders of magnitude lower 

than the largest bin, with the middle bin in the centre of the two. In 
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Longyearbyen (Figure 2.10b), the nn(T) for bin e is about a factor of 10 larger 

than bin c, but bins c and d produce very similar values of nn(T). Overall, 

these nn(T) plots show that the coarse mode aerosol generally have a higher 

fraction of aerosol that serve as INPs than the fine mode, but there is 

variability in the dependence on size between the two samples. In contrast 

to the nn(T) values, the size resolved ns(T) data for both Leeds and 

Longyearbyen show that the data from the three size categories are all 

within a factor of 2-10 (close to our uncertainty estimates). Given the activity 

of aerosol across these bins scales with surface area, this data might 

indicate the same INP species is active across each bin at these sites.  

2.4. Conclusions 

This paper describes a lightweight and portable payload, the SHARK, that is 

capable of collecting size-resolved aerosol particles alongside 

measurements of ambient temperature, relative humidity, pressure, GPS 

coordinates, aerosol number distribution and aerosol size distribution. The 9 

kg payload was designed for use on a tethered balloon for measurements at 

user-selected altitudes for up to 11 h via radio controlled instrumentation, but 

can be used wherever it can be suspended. During a SHARK flight, the 

atmospheric conditions the SHARK experiences can be monitored in real-

time via a radiosonde and sampling is controlled remotely, allowing the 

SHARK to be held at a user-defined height and to only sample under 

specific conditions (for instance above the surface boundary layer). 

 

The SHARK samples aerosol onto filter/film substrates using two cascade 

impactors to allow aerosol size-segregation from 0.25 to 10 µm, with an 

after-filter and top stage to collect particles below and above this range. One 

impactor samples at 9 L min−1, while the other samples at 100 L min−1. The 

filters were collected here for the off-line analysis of INP concentrations and 

properties, but they could equally be used for other analyses such as mass 

spectrometry, DNA analysis, SEM, TEM and ion chromatography. A 

comparison of ambient INP concentrations measured using the SHARK to 

those measured using PM10 and PM2.5 aerosol samplers at ground level 

demonstrated excellent agreement between the instruments. Field testing 

was conducted in four locations close to ground level, and suspended on a 

tethered balloon at 20 m to demonstrate the capabilities of the SHARK. 
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The size resolved INP concentration spectra reveal complex behaviour.  For 

example, in Hyytiälä the 0.25-0.5 µm aerosol size fraction had the most 

active INP, whereas in Leeds the INP concentration generally decreased 

with decreasing particle size. Ambient aerosol size distribution measured 

using the on-board OPC allowed the calculation of the activated fraction 

(nn(T)) and ice-active surface site density (ns(T)) data for the sampled INPs 

in the tests at Leeds and Longyearbyen. It was shown that ns(T) was 

consistent between 0.5 and 10 µm in these two locations at the times of 

sampling. It is the intention to make similar measurements in other locations, 

and at higher altitudes in the future. 

 

Generally, it is expected that larger aerosol are more likely to nucleate ice 

(Pruppacher, H.R. and Klett, 1997) and our results are consistent with other 

size resolved INP measurements which indicate that the size distribution of 

INP varies spatially and temporarily e.g. (Mason et al., 2016; Si et al., 2018). 

Quantifying the size of INP, possibly in conjunction with other analytical 

techniques, is a useful means of identifying different INP types and their 

sources (Huffman et al., 2013). In addition, knowledge of their size will allow 

the improved representation of INP in global aerosol models where size is 

key determinant of lifetime and transport (Atkinson et al., 2013; Perlwitz et 

al., 2015; Vergara-Temprado et al., 2017). Clearly, more systematic and 

widespread measurements of INP size is needed in the future in a range of 

target locations. 

 

The high sample flow rate, choice of low contamination aerosol collection 

substrates and long sampling durations mean that the payload is well suited 

for INP measurements, including those in low aerosol environments and 

locations with relatively low INP concentrations (down to below ~0.01 INP 

L−1 and at temperatures down to about −25 °C and below).  The SHARK is 

an accessible tool for quantifying size-resolved atmospheric INP 

concentrations from a tethered balloon. This will allow improved 

determination of INP sizes, properties, and sources, towards ultimately 

improving model representations of atmospheric INP distributions. 
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Data availability  

The data sets for this paper are available at https://doi.org/10.5518/744. 
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Abstract. Mixed-phase clouds over the central Arctic Ocean are intricately 

linked to the Arctic climate and sea ice extent. The lifetime and radiative 

properties of these clouds are critically dependent on the partitioning 

between ice and supercooled water, but the sources and concentration of 

aerosol particles that nucleate ice are poorly defined (Morrison et al., 2011; 

Murray et al., 2021). Here, we show that ice-nucleating particle (INP) 

concentrations close to the North Pole (88 – 90°N) throughout August and 

September 2018 were extremely variable, with the temperature in which 0.1 

INP L-1 were active ranging from –9 to -31°C. Back trajectory analysis (7 

days) shows that air with the most active INPs originated in the seas north of 

Russia, whereas air with the least active INPs circulated over the pack ice 

for most of the duration of the back trajectory. This suggests that there were 

strong coastal marine sources of INPs, possibly associated with wind-driven 

sea spray production or dust from various islands and the coast of Russia, 

whereas the pack ice, open leads, and the marginal ice zone were much 

weaker sources. Heat testing of samples revealed that the INPs originating 

from the coast of Northern Russia were most likely of proteinaceous, 

biological origin. Our measurements, in combination with boundary layer 

inversion temperatures, imply that INP concentrations active at cloud 

temperatures were usually less than 0.02 INP L-1 throughout the campaign, 

which is consistent with the persistence of Arctic mixed-phase clouds 

(Stevens et al., 2018). However, if the high concentrations we observed 

early in the campaign happened to coincide with a lower temperature period, 

we would anticipate in excess of 1 INP L-1, which would result in a 

substantial reduction in liquid water path with implications for Arctic surface 
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energy budget (Tan and Storelvmo, 2019). These findings suggest that 

Arctic cloud ice production, and therefore Arctic climate, might be sensitive 

to transport from latitudes that are experiencing marked climate change.  

 

The Arctic is warming twice as fast as the global average (Mcbean et al., 

2005; Cohen et al., 2014) and low-level Arctic clouds strongly influence the 

surface energy budget (Kay and L’Ecuyer, 2013). Low level mixed-phase 

clouds in the Arctic are frequent and persistent, exerting a significant long 

wave warming effect at the surface; the amount of ice and supercooled 

water in these clouds, and therefore their radiative effect, depends on an 

intricate balance of dynamical and microphysical processes (Morrison et al., 

2012). However, the representation of Arctic clouds and their climate 

feedbacks pose a large source of uncertainty in projections of Arctic climate 

and sea ice loss (Boucher et al., 2013; Tan and Storelvmo, 2019).  

A rare subset of the total aerosol particle population, ice-nucleating particles 

(INPs), can induce primary ice production in Arctic mixed-phased clouds 

when immersed in supercooled cloud droplets (Murray et al., 2012). In the 

summertime Arctic marine boundary layer, temperatures are usually much 

warmer than those required for homogeneous freezing of below about –33 

°C (Herbert et al., 2015), hence heterogeneous nucleation on INPs 

determines the production of ice in clouds (at least in the absence of ice 

precipitating from overlying clouds). There are numerous identified INP types 

that can induce nucleation over a large range of temperatures (Hoose and 

Möhler, 2012; Murray et al., 2012; Kanji et al., 2017; Murray et al., 2021). 

However, the sources and ice-nucleating properties of INPs in the Arctic, 

especially the high Arctic, are poorly defined.  

INP measurements have been made around the periphery of the Arctic circle 

from locations close to, or on, land (see compilations in refs (Welti et al., 

2020; Murray et al., 2021)), but relatively few measurements have been 

made in the summertime central Arctic Ocean. Recent research suggests 

that there are significant terrestrial sources of Arctic INPs including glacial 

dust from Svalbard and Iceland (Tobo et al., 2019; Sanchez-Marroquin et al., 

2020) terrestrial biological aerosol from boreal forests (Schneider et al., 

2021), and even particles released from thawing permafrost (Jessie M 

Creamean et al., 2020).There is also a plethora of other high latitude dust 

sources that have not been investigated in terms of their ice-nucleating 



- 92 - 

92 

 

ability (Bullard et al., 2016). Marine biogenic INPs emitted from the sea 

surface through bubble bursting are also thought to contribute to the INP 

population of the oceanic high-latitudes (Bigg, 1996; Bigg and Leck, 2001; 

Wilson et al., 2015; Vergara-Temprado et al., 2017; Irish et al., 2017; Wex et 

al., 2019; Ickes et al., 2020; Hartmann et al., 2020). Sea spray is thought to 

produce relatively low INP concentrations, but in the absence of other INP 

types it can dominate (DeMott et al., 2016; Vergara-Temprado et al., 2017; 

McCluskey et al., 2019). 

Ground level observations at several land-based sites around the Arctic 

throughout the seasonal cycle showed the highest (but variable) INP 

concentrations during spring, summer and autumn and the lowest 

concentrations in winter, when local sources are likely covered in snow and 

ice (Wex et al., 2019). The literature suggests that there are marine and 

terrestrial INP sources which are sensitive to ice and snow cover around the 

Arctic, but it is unclear how important these sources are for clouds in the 

summertime central Arctic. Based on back trajectory analysis of INP 

measurements made in the central Arctic, Bigg (1996) suggested that there 

was an open ocean source of INPs active at –15 °C. Bigg and Leck (2001) 

suggested the pack ice edge and bubble bursting in local leads throughout 

the pack ice can serve as a source of INPs. Indeed, it has been shown that 

there is a reservoir of INPs in the seas around the Arctic (Wilson et al., 2015; 

Irish et al., 2017) and INP concentrations in the central Arctic decrease 

during the transition from Arctic summer to autumn, possibly due to the 

reduced availability of ice-free marine sources (Bigg and Leck, 2001).  

While it is clear that there are strong sources of INPs in the low Arctic 

environment it is not clear if these INP are transported to the central Arctic. 

The current prevailing view is that aerosol within the summertime high Arctic 

boundary layer (often a shallow, well-mixed surface layer capped by a 

temperature inversion (Tjernström et al., 2012)) is thought to experience little 

effect from long-range transport (Kupiszewski et al., 2013), and with few 

sources of pollution in the central Arctic ocean (north of 80° in latitude), it 

has been suggested that local marine sources such as open leads may 

provide an important source of INPs (Bigg and Leck, 2001). However, it has 

also been suggested that aerosol particles can be entrained into the 

boundary layer by turbulence or via interaction with clouds (Morrison et al., 

2012; Igel et al., 2017). While the boundary layer in the central Arctic is 

typically several 100m to over 1km deep, it is often decoupled from the 
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surface, with a turbulent surface mixed layer and cloud mixed layer 

separated by a weakly stable non-turbulent layer at ~100-300m (Brooks et 

al., 2017), as shown in Figure 3.1. Hence, measurements at the surface are 

not necessarily representative of those in the cloud mixed layer. Aerosol 

particles can also be advected into the central Arctic boundary layer through 

horizontal transport, but cloud formation and subsequent precipitation 

efficiently removes aerosol particles, especially during the Arctic summer 

(Matsui et al., 2011).  

 

Figure 3.1 Central Arctic boundary layer structure and potential 
sources of INPs. 

 

Here, we present temperature-resolved measurements of INP 

concentrations in the central Arctic during the Microbiology-Ocean-Cloud-

Coupling in the High Arctic (MOCCHA) campaign which took place 

throughout August and September 2018. The campaign was part of the US-

Swedish Arctic Ocean 2018 expedition on board the Swedish icebreaker 

Oden. The bulk of the measurements took place while Oden was moored to 

an ice floe in the inner pack ice area and drifted passively near the North 

Pole (88-90°N). We use backward trajectories alongside other 

measurements to suggest that the largest source of the most active INPs 

reaching the North Pole is outside of the pack ice, and near the coast of 

Russia. 
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3.1. Ice-nucleating particle concentrations in the surface 

mixed layer 

Aerosol was sampled via a heated whole air inlet, 20 m above sea level, 

onto filters which were then analysed a matter of hours (or at most 1 day) 

later to derive INP concentration spectra (INP concentration as a function of 

temperature) using the Nucleation by Immersed Particle Instrument (see 

Methodology for details) (Whale et al., 2015). The concentration of INPs 

measured on-board the Oden was highly variable (Figure 3.2a), with INP 

activation temperatures ranging from -9 to -30 °C for a concentration of 

0.1 INP L-1, and concentrations varying from 6 × 10-3 INP L-1
 to 2 INP L-1 at -

15 °C. Placing the results from this cruise in context with other Arctic INP 

measurements, which are mostly from the periphery of the Arctic (Figure 

3.2b), shows that the measured temperature range of active INPs is almost 

as large as from the combined literature. In particular, the variability in our 

INP spectra from August and September 2018 are comparable to those 

reported in the year-round measurements at coastal stations reported by 

Wex et al.(2019). In particular, it is striking that the lowest ice-nucleation 

activity we report is consistent with the wintertime measurements reported 

by Wex et al., but their summertime and autumn INP concentrations were 

typically high unlike our measurements in the central Arctic. This is 

consistent with the sources of INP in the central Arctic being weak, relative 

to sources in the lower latitude terrestrial or coastal Arctic regions. It is also 

consistent with the suggestion of Wex et al. that INP sources are weakened 

with ice and snow cover. Our results for the North Pole contrast strongly with 

measurements of INP over the Southern Ocean, where INP concentrations 

are typically at the low end of the range we observed here (McCluskey et al., 

2018; Welti et al., 2020; Murray et al., 2021). Overall, our INP 

measurements indicate that the INP concentration spectra within the high 

Arctic surface mixed boundary layer can be extremely variable, perhaps far 

more variable than anywhere else on Earth. We revisit this issue later in the 

paper when we discuss our back trajectory analysis.  

The nature of the INPs in the samples which exhibited the highest activity 

was examined by heating them. We tested for the presence of heat-sensitive 

material, which is an indication of proteinaceous biological ice-nucleating 

material (Christner, Morris, et al., 2008; Christner, Cai, et al., 2008; Wilson et 

al., 2015; Hill et al., 2016; O’Sullivan et al., 2018). The activity of samples 

that underwent the heat treatment was always reduced, with all of the 
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activity above -20 °C being removed (Figure 3.2a and Figure B1). Hence, it 

appears that the most active INP sampled close to the North Pole were most 

likely of biological origin.  
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Figure 3.2 - INP concentrations throughout the campaign. a) The 
number of INPs per litre of air sampled was calculated using data from 
off-line droplet freezing experiments, conducted within hours of the 
samples being taken. The spectra shown in blues represent samples 
that were heated to 90 °C for 30 min. The INP data from this study has 
had the backgrounds subtracted as described in the methods. 
Sampling times varied from 6 h to 3 days and were taken using a 
heated whole air inlet on the 4th deck (20-25 m above sea-level) of the 
Oden Icebreaker. Temperature uncertainties (not shown) for the droplet 
freezing experiments were estimated to be ±0.4 °C. The dates 
(DD/MM/YY) for the respective periods are: MIZ 02/08/18-03/08/18, 
Clean-air station 10/08/18-11/08/18, Ice-breaking 03/08/18-16/08/18, 
Ice floe 16/08/18-15/09/18, Ice-breaking 15/09/18-19/09/18, MIZ 
19/09/18. b) The data from this study are presented alongside literature 
data for ground, ship, and aircraft-based campaigns around the central 
Arctic Ocean. The insert presents the ship track during the campaign, 
with the dark red line denoting the drift whilst the ship was moored to 
an ice floe. 
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Figure 3.3 - Time series showing the temperature at which a 
concentration of 0.1 INP L-1 was measured throughout the 
campaign, a) alongside aerosol composition data and b) alongside 
airborne measurements. The tops of the grey bars represent the 
temperature of freezing for INPs at a concentration of 0.1 INP L-1, with 
the width of the bar representing the period over which air was 
sampled. The hatched grey bars are limiting values. a) The blue, green 
and red dots represent the average surface area of aerosol per litre, the 
dimethyl sulfide (DMS) concentration and the equivalent black carbon 
(eBC) concentrations measured in the aerosol, respectively. b) The 
crosses represent the temperature of freezing at 0.1 INP L-1 for 
different size cur-offs of aerosol, which are colour-coded with respect to 
the aerosol size range, and where the circle points represent limiting 
values for that size range. The red triangles represent a summation of 
these stages to give an estimate of the total INP population over all size 
ranges sampled during the flight. The dates for the respective periods 
are: MIZ 02/08/18-03/08/18, Clean-air station 10/08/18-11/08/18, Ice-
breaking 03/08/18-16/08/18, Ice floe 16/08/18-15/09/18, Ice-breaking 
15/09/18-19/09/18, MIZ 19/09/18. All INP data has been background 
subtracted as described in the methods.  

  



- 98 - 

98 

 

The time series in Figure 3.3 shows the temperature at which a 

concentration of 0.1 INP L-1 was measured, (T[INP]=0.1), and highlights the 

variability of INP concentrations at the North Pole in August and September 

of 2018. The highest ice-nucleating activity was observed earlier in the 

campaign, during a period in which the ship was breaking ice prior to being 

moored to an ice floe. It is reasonable to question whether the very high INP 

concentrations observed during the ice-breaking period resulted from the 

ice-breaking itself. During ice-breaking the ship was not always optimally 

pointing into the wind, and it involved frequent backward and forward 

motions. Hence, despite the precautions taken to eliminate sampling aerosol 

sourced from the ship (detailed in the methodology) it is difficult to 

completely exclude the possibility of contamination. In addition, breaking ice 

creates a degree of disruption at the sea surface which is conceivably a 

source of aerosol and INPs. There was also a period of very high ice-

nucleating activity a few days after the ice-floe station had been established, 

indicating that the high INP concentrations measured during the ice-breaking 

period were not controlled by the act of breaking ice and the disruption of the 

sea surface. Fortuitously, there was also a pause in ice-breaking when a 

clean air station was established (12th August), which coincided with high 

INP and aerosol loading (these measurements are discussed in a 

subsequent section). At this “clean-air station” the ship was moored facing 

into the wind and we were confident that sampling of ship pollution and ice-

breaking aerosol was eliminated, increasing confidence that these high 

values were indeed representative of the central Arctic Ocean. 

3.2. Ice-nucleating particle concentration above the surface 

mixed layer 

Eight flights with a balloon-borne size-resolved aerosol sampler that 

sampled particles up to 10 μm, the SHARK (Porter et al., 2020a), were 

conducted while the Oden was at the ice station (see SI for flight details). In 

these flights we used the live link to the on-board temperature and humidity 

measurements to ensure that we sampled above the surface mixed layer 

and thus in air decoupled from the surface but within the boundary layer. 

Hence, the flights occurred at 390 – 600 m throughout the campaign and we 

sampled for 3-6 hours. In addition, we only sampled when the RH was less 

than 80% to avoid sampling biases associated with hygroscopically swollen 

aerosol, which meant we only sampled in cloud free air.  
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Given the surface mixed layer is often decoupled from the rest of the 

boundary layer, these measurements in principle allow us to compare INP 

concentrations within and above the surface mixed layer. The total values of 

T[INP]=0.1 are shown in Figure 3.3 (red triangles), whereas the individual INP 

spectra are shown in Figure B4. It should be borne in mind that for practical 

reasons the sampling durations on the ship and on the SHARK were not the 

same, however it is still possible to draw conclusions from this comparison. 

There is evidence that there are substantial differences between the INP 

concentrations in the surface mixed layer compared to above it. For 

example, on the 5th and 8th September the T[INP]=0.1 was around -17 to -18°C 

above the surface mixed layer, whereas it was below -26°C within it. While, 

on the 20th August T[INP]=0.1 was around -23°C above the surface mixed layer, 

but -14°C within it. In contrast, on other days, such as the 23rd August and 

the 10th and 15th Sept the INP concentrations within and above the surface 

mixed layer were similar. Overall, out of the eight SHARK samples there was 

one SHARK sample that had much lower ice nucleating activity than that in 

the surface mixed layer, three samples with higher activity, three with similar 

activity and one that was ambiguous (due to being close to the baseline). 

This indicates that the air at the surface is sometimes coupled to the surface, 

allowing transport of aerosol throughout the boundary layer, but at other 

times the measurements at the surface are not representative of those 

above the surface mixed layer.  

The size resolved INP activity is also shown in Figure 3.3. Contrary to what 

might be expected, the smallest size ranges of < 0.25 μm and 0.25 – 0.5 μm 

particle diameter sometimes had the highest INP activity of our sampled size 

ranges. In most cases the coarse mode (2.5 – 10 μm) was in the baseline. 

The dominance of particles < 0.25 μm was particularly pronounced on the 

23rd August and the 8th and 9th September. In contrast, the coarse mode 

dominated on the 10th September.  

In many environments around the world, the coarse mode dominates the 

INP population, but the coarse mode has a relatively short lifetime in the 

Arctic boundary layer, being removed effectively by wet scavenging 

processes.  Hence, it is perhaps not so surprising that the fine mode aerosol 

(<0.25 μm) appears to be so important in this region. However, INP are 

typically thought of as being the larger particles in a size distribution (Mason 

et al., 2016; Porter et al., 2020a), but there are INP that fall into this size 

range that are also very active. For example, film droplet aerosol resulting 
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from wave breaking are produced in a range of sizes centred around 100 nm 

and are often rich in organic material (O’Dowd et al., 2004), that is known to 

include small ice nucleating entities (Schnell and Vali, 1975; Wilson et al., 

2015). Alternatively, ice-nucleating macromolecules from terrestrial 

biological sources internally mixed with other aerosol particles might fall into 

this size range (O’Sullivan et al., 2015; Pummer et al., 2015) and it has been 

proposed that fungal material, some of which is known to act as an INP 

(O’Sullivan et al., 2015), can fragment to form nanoparticles (Lawler et al., 

2020).  

3.3. Correlation between INP concentrations and dimethyl 

sulphide, equivalent black carbon and aerosol surface area 

To investigate possible sources of INPs we detected in the central Arctic, we 

have correlated the ice-nucleating activity of the aerosol with: i) dimethyl 

sulfide (DMS), a product of marine biological activity, particularly in the 

marginal ice zone (MIZ); ii) equivalent black carbon (eBC), based on aerosol 

absorption at 637 nm; and iii) aerosol surface area, derived from size 

distribution measurements. We present the time series for aerosol particle 

surface area, DMS and eBC concentration, as well as the Pearson’s r 

coefficient between ice-nucleation activity and each quantity in Figure 3.3a.  

DMS is found in the marine atmosphere, originating from the metabolite of 

some marine algae (Leck and Persson, 1996; Lohmann and Leck, 2005). 

Hence, the presence of DMS indicates that an air mass has origins in a 

location rich in biological activity, which may also be expected to correlate 

with marine biological INP sources. DMS is thought to be relatively short-

lived in the atmosphere, with a lifetime on the order of 1-3 days (Kerminen 

and Leck, 2001; Khan et al., 2016). Therefore, it is a useful indicator for the 

interaction of air masses with the MIZ at the outer edge of the pack ice 

region, and possibly the open leads within the pack ice if they were 

producing DMS at that time.  

The concentration of DMS during the cruise was highest in the outbound 24 

hour MIZ station, where the ship was close to open water, but was variable 

whilst in the pack ice (Figure 3.3), and remained relatively low in the inbound 

MIZ station (19th September) after the freeze-up began. The data in Figure 

3.3 clearly shows that there is no obvious correlation with DMS and INP 
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activity (r = 0.15) suggesting that MIZ marine biogenic sources exerted little 

influence on the measured INP concentrations.  

eBC is a quantity derived from aerosol absorption and is presented as the 

equivalent BC mass concentration which is needed to produce the observed 

absorption. It is worth bearing in mind that other aerosol types such as dust, 

brown carbon or other organic aerosol might also produce absorption, thus 

contaminating the small signal we observed. However, absorption by BC is 

much stronger than other materials at 637 nm, hence the signal is most 

likely dominated by BC. BC is produced through a range of combustion 

processes, including biomass burning, wildfires and fossil fuel combustion, 

which are all remote from the central Arctic (Bond et al., 2013). Other 

potential contributors to the absorption signal, such as dust or brown carbon 

are also remote from the central Arctic. Rigorous procedures were in place 

to ensure that BC (and other aerosol) from the ship stack did not affect 

measurements (see methods for details). Hence eBC is used here as an 

indicator of long-range transport. The literature indicates that BC is a 

relatively ineffective ice nucleator under mixed-phase cloud conditions (Chen 

et al., 2017; Vergara-Temprado et al., 2018; Adams et al., 2020; Kanji et al., 

2020; Schill et al., 2020), hence we would not necessarily interpret a positive 

correlation as an indication of ice nucleation by BC. However, combustion 

processes are thought to be a source of ice-nucleating aerosol, even if BC 

itself is not an effective INP (Umo et al., 2015; Jahn et al., 2020; Barry et al., 

2021). Hence, a correlation between BC and INP concentrations would 

indicate that aerosol particles transported along with BC from outside the 

central Arctic Ocean nucleate ice. Wildfires around the Arctic are a potential 

source of BC (Ding et al., 2013), and we note that during the cruise there 

were lasting Siberian wildfires, as can be seen using the NASA Worldview 

satellite imagery tool. There is also industry, shipping and mining as well as 

gas and oil extraction along the Arctic coast of Russia which may be sources 

of BC, e.g. through flaring (Stohl et al., 2013). 

The overall correlation between eBC and INP concentration (r = 0.65) is 

much stronger than for DMS. In fact, the eBC concentration appears to track 

the INP concentration in Figure 3.3 until the 27th August, after which point 

the INP concentrations stay relatively low whilst the eBC remains highly 

variable. However, the decoupling of eBC and INPs later in the campaign 

indicates that distant sources of BC are not always connected to distant 

sources of highly active INP.  
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The surface area concentration of the bulk aerosol follows a similar trend to 

the eBC concentrations, but with a slightly weaker correlation strength to the 

INP activity (r = 0.52). As for eBC, the aerosol surface area concentration 

tracks the INP concentration up to the 27th August, but later on the INP 

concentration remains generally low while surface area is highly variable. 

This indicates that the variability in INP concentrations at the North Pole is 

not simply driven by aerosol surface area, rather that some specific 

component(s) of the aerosol population are ice-active and these particles 

must be associated with specific sources at latitudes further south than the 

MIZ. Therefore, using the aerosol particle size as an indicator for INP 

concentrations is unlikely to be suitable for the central Arctic ocean.  

3.4. Trajectory analysis of aerosol collected in the central 

Arctic 

Backward trajectories over 7 days are presented in Figure 3.4a, and show a 

clear relationship between the origin of the aerosol and the measured INP 

concentrations. The origin of the air masses with the most active INPs is 

around the Russian Arctic coast including the Barents, Kara and Laptev 

Seas. Out of the 30 filter runs, those filters with the highest INP activity (the 

top 20 % of filters) sampled air masses originating over the Barents and 

Kara Seas. The next seven highest (23 %) filters, in terms of INP activity, 

sampled air originating from over the Laptev and East Siberian Seas. The 

next six filters with lower INP activity (20 % of filters) sampled air that 

originated off the eastern coast of Greenland from over both the pack ice 

and open ocean. The 11 filters with the lowest INP activity (bottom 37 % of 

filters) all sampled air which mostly originated from the pack ice adjacent to 

North America (also see Figure B2).  

The highest ice -nucleation activities from sampled aerosol originating along 

the Russian coast were also correlated with high wind speeds (Figure B2). 

This, together with the heat tests and size information presented above, 

point to a wind-driven marine biological source of INPs associated with 

organic rich film droplet sea spray aerosol. There are trajectories with high 

wind speeds over the North American continent, the pack ice and the coast 

of Greenland, but the ice-nucleating activity for these was not greatly 

enhanced. Hence, our results are consistent with a strong source of highly 

active INPs in the coastal marine waters of northern Russia which are 

aerosolised during windy conditions. These results are also consistent with 
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the eBC analysis, since those results indicated that the most active INPs 

were derived from sources distant to the central Arctic.  

 

Figure 3.4 - Backward trajectories over 7 days, starting at the ship 
location, for the INP samples taken throughout the campaign. 
Trajectories were launched every hour during the sampling period, and 
each point represents an hour in time along the back trajectory. The 
starting height for the trajectories was 32 m above sea level. Any points 
along the trajectories which were above the model boundary layer were 
removed, and any points preceding precipitation events (>0.1 mm h-1) 
were removed. a) The colour of the trajectories represents the 
temperature at which 0.1 INP L-1 was measured for that sampling 
period. b) The colour of the trajectories represents the wind speed for 
each point along the trajectory. 
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Marine waters elsewhere in the world are thought to produce relatively low 

concentrations of INPs (Vergara-Temprado et al., 2017, McCluskey et al., 

2018; Welti et al., 2020); however, our results suggest that the shallow seas 

off the Russian coast might be strong sources of highly active INPs. The 

marine waters off the coast of N. Russia are known to be biologically 

productive, which might produce marine INPs. Composition analysis also 

indicates that these samples were rich in Na, Cl and sulfate and were 

therefore likely of marine origin (See Table ). This region is also increasingly 

influenced by riverine input from Russia that is rich in organic material and 

silt (Ahmed et al., 2020), and much of the dissolved organic matter in the 

Arctic Ocean is derived from river input (Juhls et al., 2019). Recent research 

has also shown that melting permafrost which could enter river outputs 

harbour copious quantities of warm temperature INPs (Jessie M. Creamean 

et al., 2020). Hence, it is possible that the highest INP concentrations we 

detected at the North Pole were derived from marine waters rich in 

terrestrially derived biological INPs, although a measurement campaign to 

determine the relationship between river discharge and aerosolised INP in 

the high Arctic would be necessary to confirm this. The INP activity of 

sources along the Russian coast may have important implications for the 

future of INP concentrations, since permafrost is expected to increasingly 

melt in a warmer world. The removal of ice from the Arctic could also expose 

sources of ice-nucleating aerosol around the Arctic Ocean, where they can 

be aerosolised by the action of wind (Schmale et al., 2021).  

It is striking that the trajectories with the lowest INP concentrations spent 

most of the preceding seven days over the pack ice and to some extent over 

the MIZ. These results indicate that during this campaign open leads, sea 

ice and the MIZ were weak sources of INP.  
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Figure 3.5 - Using back trajectory analysis, the time that air masses 
spent over water, ice and land is shown. The colour represents the 
temperature at which an INP concentration of 0.1 L-1 was reached. 

 

Some of the back trajectories that had the highest INP concentrations 

passed over islands in the Barents and Kara seas, including Svalbard, Franz 

Josef Land, Novaya Zemlya and Severnaya Zemlya. Many of these 

locations have been identified as poorly defined dust sources (Bullard et al., 

2016) and dust from Svalbard has been shown to contain biological ice-

nucleating materials (Tobo et al., 2019). However, in a further analysis of the 

back trajectory data (Figure 3.5) we find that there was little to no correlation 

with time spent over land, whereas the ice-nucleating activity increased with 

time the air parcels spent over open ocean. Having said this, we cannot rule 

out relatively small island point sources being important sources of INP.  

Overall, the evidence indicates that there is a strong source of biogenic INPs 

the Barents, Kara and Laptev seas off the Russian coast that can be 

sporadically transported to the central Arctic. There was high wind along the 

trajectories off the Russian coast which would be consistent with both the 

production of INPs in sea spray and dust from the various islands in this 

region.  
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3.5. Implications for ice production in boundary layer 

central Arctic mixed-phase clouds 

In this section, we assess whether the measured INP concentrations are 

high enough to initiate a transition from liquid-dominated clouds to ice-

dominated clouds. Model simulations indicate that 1 ice crystal L-1 or more is 

required to remove the bulk of liquid water from an Arctic cloud, whereas 

lower concentrations still reduce the liquid water path (Vergara-Temprado et 

al., 2018; Stevens et al., 2018).Hence, we determine the concentration of 

INP active within the surface and cloud mixed layers.  

We refer to the INP concentration in the atmosphere that is active at the 

ambient temperature as [INP]ambient. This quantity combines the atmospheric 

temperature with the INP spectra to indicate the effects on ice crystal 

formation. This is, of course, a crude analysis and a full cloud model would 

be required to represent ice crystal formation and sedimentation as well as 

INP recycling and latent heat release, but it does give an indication of what 

the measured INP spectra might mean for ice production in clouds. For our 

analysis, we must also assume that the INP measurements at ship altitude 

are representative of INP concentrations at the top of the boundary layer, 

which is not always consistent with our balloon-based measurements. 

Nevertheless, this analysis is a useful way of estimating the effect that the 

measured INP concentrations might have on clouds in the region. The 

minimum temperature within the main boundary layer was determined from 

radiosonde profiles, made every 6 hours throughout the entire cruise 

(Prytherch et al., 2019; Vüllers et al., 2021). The INP concentration at this 

temperature was determined using the INP spectra in Figure 3.2. The 

calculated [INP]ambient for the duration of the cruise are shown in Figure 3.6, 

where the minimum temperature of the surface and cloud mixed layers are 

indicated for each filter period. 
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Figure 3.6 – Time series showing [INP]ambient for both the 
measurements taken at ship height (within the surface mixed 
layer) and using the SHARK (within the cloud mixed layer). The 
temperature of the mixed layers is shown alongside these 
measurements. When an INP concentration could not be determined at 
the mixed layer temperature, the highest measured [INP] value is 
shown to denote the limit of detection and is labelled as a limiting value. 
Limiting values are shown in open circles.  

 

Interestingly, despite the large variability in INP concentrations within the 

surface mixed layer throughout the cruise, [INP]ambient is less variable, and is 

usually at or below ~10-2 L-1. The periods of high INP concentration during 

the beginning of the campaign coincide with periods of higher ambient 

inversion temperatures, whereas later in the campaign the opposite is the 

case, which results in a relatively invariant [INP]ambient. Whether this is a 

coincidence, or if INP concentrations are correlated with ambient 

temperature, is unclear. For instance, it is possible that the efficiency with 

which clouds scavenge INPs at ambient temperature partially regulates the 

[INP]ambient, as a colder cloud may more efficiently remove INPs from the 

atmosphere compared to a warmer cloud. If the periods of high INP 

concentration were to coincide with lower temperatures in periods outside 

our campaign period, then we would anticipate a major impact on [INP]ambient 

and ice production in clouds. The [INP]ambient within the cloud mixed layer 

was also relatively consistent but appeared to be slightly larger than for the 

surface mixed layer, at ~10-1 L-1. However, all of the values in the cloud 

mixed layer are limiting values and so it is likely that the true values lie below 

the ones shown. 
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The relatively low [INP]ambient concentrations indicate that a mixed-phase 

cloud would probably not fully glaciate due to primary ice production on 

INPs. Nevertheless, we anticipate some ice production in clouds, which 

would reduce the liquid water path to some extent. The phase of clouds 

during this campaign are discussed in Vüllers et al. (Vüllers et al., 2021). 

Overall, the fraction of single layer clouds (where seeding from above is 

unlikely) that were mixed-phase versus ice-dominated were relatively 

consistent throughout the campaign, despite the strong decrease in 

temperature; this is consistent with our constant [INP]ambient estimate. 

3.6. Conclusions 

Arctic mixed-phase and supercooled clouds play a crucial role in Arctic 

climate, but the processes that dictate their characteristics are poorly 

understood. Here, we show that INP concentrations at 88 - 90°N are 

extremely variable, and throughout the AO18 campaign between the 1st of 

August 2018 and the 18th of September 2018 the temperature at which 

0.1 INP L-1 was reached varied between -9°C and -30 °C. The highest 20 % 

of observations, in terms of INP activity, related to air masses originating in 

the ice-free ocean environment off the Russian coast, while the lowest 37 % 

of observations related to air masses which originated over the pack ice 

north of Canada for most of the 7-day back trajectory. Trajectories of air with 

intermediate INP activity also originated over the ice-free ocean. These 

results indicate a strong dependence of the measured INP concentration on 

the origin of the air with pack ice, open leads and the MIZ apparently being 

weak sources of INP, whereas ice-free oceans were a significant source.  

The heat sensitivity of the most active INPs was consistent with their being 

of proteinaceous, biogenic origin. This together with the trajectory analysis 

indicates that there are strong biogenic sources of INP in region off the 

Russian coast. The sources may be related to wind driven sea spray 

production and dust emissions from the islands in this region, but more work 

is needed to understand the INP sources in this part of the Arctic.   

Tethered balloon flights showed that on four of the eight flights the INP 

concentrations were substantially different above the surface mixed layer 

compared to those measured at ship level within it. This is consistent with 

our understanding of Arctic boundary layer meteorology, where the surface 
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mixed layer is often decoupled from the cloud mixed layer (Brooks et al., 

2017).  

Calculating the concentration of particles which can activate at the ambient 

atmospheric temperature ([INP]ambient) showed that, despite large variations 

in temperature and INP activity, the [INP]ambient within the surface mixed layer 

was roughly constant at around 10-2 L-1, which is consistent with the 

persistence of Arctic mixed-phase clouds. The cloud mixed layer had a 

slightly larger calculated [INP]ambient at 10-1 L-1, but all of the values were 

limiting.  

Overall, it is striking that INP concentrations at the summertime North Pole 

vary from some of the lowest measured anywhere in the world, to as high as 

terrestrial locations rich in biological INPs. Since these INPs are transported 

from the seas off the Russian coast, they may be sensitive to changes in 

climate. In particular, reduced sea and land ice extent may open up more 

sources for more of the year around the Arctic, which may increase the 

future strength (and may already have done so) of the sources of INPs that 

are important for mixed-phase clouds in the central Arctic. More work needs 

to be undertaken to understand how changes in INP sources around the 

Arctic may influence Arctic clouds and future Arctic climate.  
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Methods 

To determine the INP concentration spectra relevant for mixed-phase clouds 

in the central Arctic, 48 days of sampling were conducted aboard the 

Swedish icebreaker Oden during Arctic summertime and into the early 

freeze-up period. The dates for the respective periods were: MIZ 02/08/18-

03/08/18, Clean-air station 10/08/18-11/08/18, Ice-breaking 03/08/18-

16/08/18, Ice floe 16/08/18-15/09/18, Ice-breaking 15/09/18-19/09/18, MIZ 

19/09/18. Filter samples were collected and analysed during the journey 

towards the North Pole from Svalbard whilst ice breaking, and whilst moored 

to an ice floe (the ship track is shown in Figure 3.2b, and the dates spent ice 

breaking and moored are shown in Figure 3.3).  

Filter sampling 

The filters (0.4 μm pore size, polycarbonate, Nuclepore Track-Etched 

Membrane Filters, Whatman) were collected from a heated whole-air inlet, 

with our filter sampling at 9 L min-1), mounted on the 4th deck of the ship, and 

were analysed as soon as possible, usually within 1 - 12 h of being removed 

from the inlet. The filter samples were not frozen before off-line INP analysis, 

due to concerns this may affect the INP activity, but were stored at +4 °C for 

the minimum time possible (1-12 h) before analysis, as longer storage at any 

temperature is also expected to affect the activity of the samples (Beall et 

al., 2020). The aerosol particles on the filters were washed into ultra-pure 

water (Millipore Alpha-Q, with a resistivity of 18 MΩ cm at 25 °C) to suspend 

the collected aerosol particles. These particle suspensions were then 

pipetted to form an array of 1 µL droplets on a cold stage, the Microlitre 

Nucleation by Immersed Particle Instrument, µL-NIPI (Whale et al., 2015). 

The cold stage cooled at a controlled rate of 1 °C min-1 until all droplets had 

frozen, and the freezing events were recorded in order to determine the 

concentration of INPs with respect to the volume of air that had been 

sampled through the inlet. Heat sensitivity of the collected INP samples was 

determined by heat treatment, where subsamples of the particle 

suspensions were heated to 100 °C for 30 min in 50 mL conical centrifuge 

tubes using a water bath, before being analysed. 

Filter samples from a balloon-borne sampler, the selective-height aerosol 

research kit (SHARK) (Porter et al., 2020a), were analysed in the same 

manner as above. The SHARK was deployed above the lowest temperature 

inversion, with all inlets covered until sampling was started via a radio signal 
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from the ground. Two cascade impactors (100 L min-1, MSP Model 128, TSI, 

USA; 9 L min-1 Sioutas, SKC Ltd., UK ) sampled aerosol whilst a radiosonde 

(S1H2-R, Windsond, Sweden) measured the temperature, pressure and 

relative humidity. The radiosonde was constantly operating to provide 

information to the user on the ground about the SHARK altitude and 

boundary-layer temperature and humidity structure as the SHARK was 

ascending. Sampling was paused if the relative humidity increased above 80 

%, and was stopped completely before the SHARK was brought back down.  

Tracer measurements 

To evaluate the concentration of dimethyl sulfide (DMS), black carbon 

equivalent (eBC) and aerosol size throughout the campaign, filter samples of 

DMS were collected and analysed onboard, while eBC measurements were 

obtained from a multi-angle absorption photometer (MAAP, Model 5012, 

Thermo Fisher Scientific Inc.). Particle size distribution measurements were 

made continuously using an aerosol spectrometer (WELAS 2300HP, Palas 

GmbH) for particles of size 0.15 - 9.65 µm, and a differential mobility particle 

sizer (DMPS) with a custom-built medium Vienna-type differential mobility 

analyzer (DMA) with a mixing condensation particle counter (MCPC, Model 

1720, Brechtel Manufacturing Inc.) for particles of size 10–921 nm. 

Transmission Electron Microscopy (TEM) analysis was also conducted on a 

grid collected during a period of the highest INP activity on the ice floe (19th 

August 21:02 – 21st August 22:08). 

Ship stack pollution 

Combustion products in the ship’s exhaust may influence INP populations 

(Thomson et al., 2018). In order to ensure that the INP concentrations 

measured were not affected by the ship stack emissions, rigorous sampling 

procedures were put in place. The aerosol sampling inlets faced the ship 

bow and the ship was manoeuvred to face into the wind whenever the wind 

direction changed, which minimised the probability of sampling ship stack 

emissions. In addition, an auto-stop for the inlet pumps was operated if 

aerosol concentrations increased suddenly (which would be indicative of 

sampling the ship stack plume), halting the sampling until aerosol size 

distributions returned to normal. As a precaution, the direction and speed of 

the wind was monitored closely, and sampling was stopped when there was 

a chance that the wind might introduce ship stack to the sampled aerosol. 

Finally, sampling was stopped if any activity that could produce aerosol was 
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planned, including the movement of the ship, ice coring, and helicopter 

flights. Smoking was also only allowed in certain areas of the ship, to ensure 

there was no influence on aerosol sampling. 

Backward trajectories 

In order to define the potential origin of measured INPs, backward 

trajectories of the air reaching the sampling location was conducted. The 10-

day (only 7 days of which are used here) back trajectories were calculated 

using the Lagrangian analysis tool LAGRANTO (Sprenger and Wernli, 2015) 

with wind fields from 3-hourly operational ECMWF analyses, interpolated to 

a regular grid with 0.5° horizontal resolution on the 137 model levels. The 

trajectory data contains the hourly positions (longitude, latitude, pressure) 

along the trajectory. To focus on the segments of the trajectories that can 

potentially be affected by surface aerosol emissions, the trajectories are only 

considered as long as they are within the model boundary layer. Additionally, 

removal of aerosol by precipitation, which may remove the signature of 

upwind aerosol sources, has been considered by removing all the trajectory 

points before the precipitation event (using a threshold of 0.1 mm h-1). The 

overall relationship with origin is unchanged by the addition of this filter, 

which indicates that the results were insensitive to precipitation events.  

Background subtraction 

The INP concentration data is shown with the contribution from the 

background accounted for. The background influence on the INP 

concentration was determined by collating the differential nucleus 

concentrations for water and handling blanks, and removing this from the 

sample differential nucleus concentrations as described in a discussion by 

Vali (Vali, 2019).  
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Abstract. The freezing of supercooled water to ice and the materials which 

catalyse this process are of fundamental interest to a wide range of fields. At 

present, our ability to control, predict or monitor ice formation processes is 

poor. The isolation and characterisation of frozen droplets from supercooled 

liquid droplets would provide a means of improving our understanding and 

control of these processes. Here, we have developed a microfluidic platform 

for the continuous flow separation of frozen from unfrozen picolitre droplets 

based on differences in their density, thus allowing the sorting of ice crystals 

and supercooled water droplets into different outlet channels with 94 ± 2% 

efficiency. This will, in future, facilitate downstream or off-chip processing of 

the frozen and unfrozen populations, which could include the analysis and 

characterisation of ice-active materials or the selection of droplets with a 

particular ice-nucleating activity. 

4.1. Introduction  

The heterogeneous nucleation of ice is of fundamental importance to fields 

as diverse as cryobiology,(John Morris and Acton, 2013) atmospheric 

science,(Hoose and Möhler, 2012; Murray et al., 2012) the pharmaceutical 

industry,(Geidobler and Winter, 2013) and food science.(Kiani and Sun, 

2011) However, our quantitative and mechanistic understanding and control 

over ice nucleation is poor. Many materials are completely inert when it 

comes to ice nucleation, and in the absence of the rare sites that catalyse 

ice nucleation, droplets of water can supercool. They remain in a 

supercooled liquid state down to ~−35 °C (depending on droplet volume), 

whereupon they can freeze homogeneously.(Pruppacher and Klett, 1997; 

Koop and Murray, 2016) This means that, in a population of droplets 

containing ice-nucleating material, some droplets will contain ice-active 

particles and freeze at warmer temperatures, while others might not and so 

remain in a supercooled state. This heterogeneity in ice nucleation makes 

freezing processes challenging to predict and control and has implications 

for a number of fields. 
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In cryopreservation, for instance, the survival of biological matter is strongly 

influenced by the freezing process. Some cryopreservation strategies avoid 

ice formation by cooling and vitrifying the samples, whereas others involve 

minimising the extent of supercooling by nucleating ice at as high a 

temperature as possible by inducing ice nucleation under controlled 

conditions.(John Morris and Acton, 2013; Elliott et al., 2017; Daily et al., 

2020) If some aliquots freeze or vitrify in an optimal manner while others do 

not, this could result in a mixture of samples containing cells or tissues of 

varying viability. In principle, if the samples that have undergone controlled 

ice nucleation could be selected and only those aliquots expected to contain 

viable biological matter stored, the quality and reproducibility of the 

cryopreserved samples would be improved. 

The formation of ice is also important for the Earth’s atmosphere and 

climate. The properties and lifetime of clouds is strongly influenced by the 

formation of ice, which can form homogeneously or can be triggered 

heterogeneously by ice-nucleating particles.(Kanji et al., 2017; Vergara-

Temprado et al., 2018) In atmospheric ice nucleation research, an aerosol 

sample from the lab or field may be analysed to determine the temperature 

at which nucleation occurs and the concentration of ice-nucleating particles 

in the sample.(Hoose and Möhler, 2012; Murray et al., 2012) However, the 

identification of these rare particles in a bulk sample of aerosol particles can 

be difficult. The separation of ice-nucleating materials from atmospheric 

samples would greatly facilitate their identification and characterisation, 

allowing a greater understanding of their sources and global transport. 

In these areas and more, an ability to separate frozen from supercooled 

droplets would be advantageous. A desirable mechanism for achieving such 

a separation would be to first trigger the nucleation of ice in supercooled 

water droplets at a defined sub-zero temperature. Only those droplets 

containing material with the ability to nucleate ice at that temperature would 

induce ice nucleation, leaving the remaining droplets unfrozen. Since ice and 

water have different densities (𝜌water > 𝜌ice), they are susceptible to 

separation based on their relative buoyancy in an immiscible medium 

(Figure 4.1a), and this principle may be used to separate frozen ice crystals 

from unfrozen water droplets. 
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Figure 4.1 Principle of the on-chip sorting of ice crystals and water 
droplets in continuous flow, based on their differences in 
buoyancy. (a) A schematic showing the buoyancy forces (Fbuoy) that 
give rise to different velocities in the y-direction (ubuoy), opposite to the 
direction of gravity (g), for the water droplets and ice crystals due to 
their different densities in an oil medium. When the droplets and 
crystals reach their terminal velocity, Fbuoy is balanced by the opposing 
viscous forces (Fvis). The droplets and crystals are driven in the x-
direction with a hydrodynamic velocity (uhyd) and experience a 
deflection velocity (udefl) to differing extents depending on their 
respective ubuoy values. (b) Water droplets and ice crystals 
experiencing different Fbuoy forces in a tall microfluidic chamber are 
sorted into different outlet channels. (c) The design of the microfluidic 
chip. Water-in-oil droplets were generated in a flow focussing nozzle on 
a warm plate, before passing over a cold plate at a set temperature that 
froze part of a population of droplets. The frozen and unfrozen droplets 
then entered a vertically oriented separation chamber for their density-
based sorting. 

Fahy et al.(Fahy et al., 1990) found that ice crystals that formed in a solution 

of 50 % w/w propylene glycol in water floated to the top of their container 

upon cooling to sub-zero temperatures, and later suggested that this effect 

could be leveraged to separate frozen from unfrozen droplets via 

centrifugation or drop-sorting techniques.(Fahy, 1995) Recently, Kamijo and 

Derda(Kamijo and Derda, 2019) developed a “freeze-float” droplet selection 

system for the sorting of ice-nucleating material populations. 1 μL droplets 

were suspended in low viscosity silicone oil on a cushion layer of fluorinated 

oil (𝜌fluorinated oil > 𝜌water > 𝜌silicone oil > 𝜌ice) within a cuvette, and then cooled to 

sub-zero temperatures. As droplets froze, they floated to the top of the 
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silicone oil layer, allowing their collection for analysis of their contents. 

However, the selection procedure was somewhat slow and only tens of 

droplets could be processed per experiment. 

Microfluidic technology offers a number of elegant options for performing 

particle and droplet separations in continuous flow,(Pamme, 2007; Lenshof 

and Laurell, 2010; Wyatt Shields IV et al., 2015; Xi et al., 2017) which can 

enable the high-throughput sorting of different species with high efficiency 

and in large numbers. In a typical continuous flow sorting platform, a mixed 

particle population will enter a channel or chamber and experience a lateral 

force, causing the populations to migrate laterally across the 

channel/chamber to differing extents for collection from different outlet 

channels. 

Several examples exist of the continuous density-based sorting of particles 

and cells in microfluidic devices in the vertical direction due to gravity,(Huh 

et al., 2007; Sugiyama et al., 2014) including the use of split flow thin-cell 

fractionation (SPLITT),(Springston et al., 1987) 3D-printed devices,(Norouzi 

et al., 2017) diamagnetic levitation,(Winkleman et al., 2007) and in numerical 

simulations.(Song et al., 2014) Density-based separations have also been 

performed in a horizontal orientation via the use of acoustic forces,(Lenshof 

et al., 2012; Nam et al., 2012; Jo and Guldiken, 2012; Xie et al., 2020) 

centrifugal platforms,(Haeberle et al., 2006; Strohmeier et al., 2015; Ukita et 

al., 2017) sedimentation pinched-flow fractionation in a centrifugal 

device,(Morijiri et al., 2011) and could potentially also be achieved in inertial 

microfluidics devices.(Sajeesh and Sen, 2014)  However, none of these 

examples, nor any other continuous separation methods to our knowledge, 

have been applied to the sorting of ice crystals from supercooled water 

droplets. 

Here, we demonstrate a microfluidic device for the density-based sorting of 

ice crystals from unfrozen water droplets (Figure 4.1b). The proof-of-concept 

device utilises our recently developed microfluidic apparatus for the 

generation and freezing of water-in-oil droplets for the analysis of ice-

nucleating particles (INPs), the Lab-on-a-Chip Nucleation by Immersed 

Particle Instrument (LOC-NIPI).(Tarn et al., 2020) In the new device 

described here, the generated ice crystals and supercooled water droplets 

enter a downstream separation chamber with multiple outlet channels to 

allow sorting in a “free-flow” format, similar to designs used in free-flow 

magnetophoresis,(Pamme and Manz, 2004) electrophoresis,(Raymond et 
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al., 1994; Johnson and Bowser, 2018) isotachophoresis,(Park et al., 2015) 

acoustophoresis,(Lenshof et al., 2012) and diamagnetophoresis.(Peyman et 

al., 2009; Zhao et al., 2016) Since the sorting mechanism leverages the 

intrinsic differences in density between the ice and water, the separation 

acts in a passive manner without the need for actively applied external 

forces and associated apparatus. 

The new platform was tested by generating droplets containing Snomax® 

Snow Inducer, comprised of highly ice-active material from the 

Pseudomonas syringae plant pathogen,(Hirano and Upper, 2000; Wex et al., 

2015) at a concentration that resulted in around half of the droplet population 

freezing, before observing the subsequent behaviour of the ice crystals and 

supercooled water droplets as they flowed through the separation chamber. 

This concept is particularly timely given the recent surge in microfluidic 

platforms being developed for the droplet-based study of ice nucleation 

(Stan et al., 2009; Edd et al., 2009; Sgro and Chiu, 2010; Stan, Tang, et al., 

2011; Riechers et al., 2013; Atig et al., 2018), including for applications such 

as cryobiology (Sgro et al., 2007; Weng et al., 2016; Weng et al., 2018; 

Eickhoff et al., 2019; Bissoyi et al., 2019) and atmospheric science 

(Peckhaus et al., 2016; Abdelmonem et al., 2017; Reicher et al., 2018; 

Häusler et al., 2018; Tarn et al., 2018; Zipori et al., 2018; Reicher et al., 

2019; Brubaker et al., 2020; Tarn et al., 2020; Knopf et al., 2020).  

4.1.1. Theory 

The migration of an object, such as a droplet, due to its buoyancy in an 

immiscible medium depends on the buoyancy force, Fbuoy, exerted upon it: 

 

Fbuoy = (𝜌p − 𝜌m) 𝑉p 𝑔 = Δ𝜌 𝑉p 𝑔    (4) 

 

where 𝜌p is the density of the droplet (kg m−3), 𝜌m is the density of the 

medium (kg m−3), Vp is the droplet volume (m3), and g is the acceleration 

due to gravity (9.81 m s−2). When the density of a droplet is greater than that 

of the liquid medium, Δ𝜌 is positive and the droplet will sediment, i.e. sink. 

However, if the medium is denser than the droplet then Δ𝜌 is negative and 

the droplet will cream, i.e. float (Figure 4.1a). 

As a droplet moves through a medium, it also experiences a viscous drag 

force, Fvis, that opposes its movement. In flow conditions with low Reynolds 
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numbers (Re << 1) and low particle Reynolds numbers (Rep < 0.2), this 

frictional force can be calculated using Stokes’ law: 

 

Fvis = 6 𝜋 𝜂 𝑟 ubuoy 𝐶W       (5) 

 

where η is the viscosity of the medium (kg m−1 s−1), r is the droplet radius 

(m), ubuoy is the velocity of the droplet in the y-direction due to sedimentation 

or creaming (m s−1), and CW is the viscous drag coefficient (dimensionless) 

on the droplet due to the walls of the microchannel. An analysis of the 

Reynolds number and particle Reynolds numbers in our microfluidic system 

is provided in Section 1 of the ESI, which yielded Re = 0.4 for the flow in the 

device and Rep < 0.18 for the water droplets and ice crystals, indicating that 

Equation 2 is applicable here. The equation for the calculation of CW is 

provided in Section 2 of the ESI.(Happel and Brenner, 1973; Iiguni et al., 

2004; Tarn et al., 2009) 

When the droplet reaches its terminal velocity as it moves through a 

medium, the viscous forces are equal but opposite to the buoyancy forces, 

i.e. Fvis = Fbuoy. Using this assumption, Equations 1 and 2 can be rearranged 

to allow the sedimentation/creaming velocity, ubuoy, of a droplet or particle to 

be determined:(Huh et al., 2007) 

 

ubuoy =
2 ∆𝜌 𝑔 𝑟2

9 𝜂 𝐶W
        (6) 

 

Equation 3 holds true when the Archimedes number, Ar, is less than 32.9, 

where Ar is defined in a similar manner to the Reynolds number but for 

particle movement in the vertical direction.(Kalman et al., 2019) The 

Archimedes numbers were calculated in our system to be Ar ≤ 4.6, as 

described in detail in Section 1 of the ESI, thus demonstrating the 

applicability of using Equation 3 to describe the vertical motion of the water 

droplets and ice crystals here. 

The droplet will also have a velocity in the x-direction due to the applied 

hydrodynamic flow, uhyd (m s−1). Therefore, the droplet has velocities in both 

the y-direction (ubuoy) and the x-direction (uhyd), and the resultant deflection 

velocity (udefl) is the sum of the two: 
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udefl = ubuoy + uhyd        (7) 

 

If uhyd is held constant by maintaining a constant flow rate in the microfluidic 

chip, then the extent of droplet deflection depends only on the y-direction 

velocity due to the gravitational force on the droplet, ubuoy. Thus, objects with 

differing densities, such as ice crystals and supercooled water droplets 

(Figure 4.1a), will experience different ubuoy velocities that result in their 

deflection (udefl) to differing extents, thereby allowing their separation in 

continuous flow (Figure 4.1b). 

Theoretical values for Fbuoy and ubuoy were calculated for supercooled water 

droplets and ice crystals using Equations 1-3 for a temperature range of 0 to 

−35 °C, in a medium of Novec™ 7500 Engineered Fluid, a fluorinated oil. 

Viscosity (η) and density (𝜌m) values for Novec™ 7500 were obtained using 

equations from the manufacturer’s product information, as shown in the ESI 

(Equations S5-S8). The density (𝜌p) of supercooled water and ice were 

calculated from Equations S10 (from Hare and Sorenson(Hare and 

Sorensen, 1987)) and S11 (from Pruppacher and Klett(Pruppacher and 

Klett, 1997)) in the ESI, respectively. The viscous drag coefficient (Cw) was 

calculated as described in Equation S4 in the ESI for a microchannel, with a 

z-direction width of 140 μm. 

The change in theoretical Fbuoy with temperature for a water droplet (115 μm 

nominal diameter, 796 pL) and an ice crystal (117.2-118.4 μm diameter 

depending on temperature, 842-869 pL) is shown in Fig. C3a in the ESI, and 

demonstrates the greater buoyancy forces on the ice crystals across the full 

temperature range of 0 to −35 °C, below which homogeneous freezing is 

expected to start occurring for water droplets of this size. The difference in 

Fbuoy between the ice crystals and water droplets, ΔFbuoy, is shown 

theoretically in Fig. C3b in the ESI, and provides the means by which the two 

can be separated in continuous flow. This effect is further reflected in the 

theoretical ubuoy values, as shown in Fig. C4a in the ESI, which indicates the 

increased velocity of ice crystals in the y-direction of the separation chamber 

compared to the water droplets. The difference in ubuoy between the water 

droplets and ice crystals, Δubuoy, determines the extent of the separation of 

the two components in flow, and this difference is shown theoretically in Fig. 

C4b in the ESI. The Fbuoy and ubuoy values for water and ice are negative, 
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indicating that they would each cream rather than sediment with respect to 

gravity, but are shown in ESI Figs. C3-C4 as positive values for simplicity. 

It must also be noted that whilst the cold stages could reach temperatures 

below −40 °C, the temperature of the separation chamber was controlled 

separately to the main channel where freezing occurred. The separation 

chamber was held at temperature slightly below 0 °C, which would prevent 

any ice crystals formed in the main channel from melting, but would also not 

trigger ice nucleation in the unfrozen supercooled water droplets. This also 

meant that separations would occur in the temperature regime at which the 

differences in ubuoy were maximised (e.g. between 0 to −5 °C).  

 

4.2. Experimental 

4.2.1. Chemicals 

3M™ Novec™ 7500 Engineered Fluid, a fluorinated heat transfer oil, was 

purchased from Fluorochem Ltd. (Hadfield, UK). Pico-Surf™ 1 fluorinated 

surfactant (5 % w/w in Novec™ 7500) was purchased from Sphere Fluidics 

Ltd. (Cambridge, UK), and further diluted to 0.2 % w/w in Novec™ 7500. 

Snomax® Snow Inducer (Snomax International, Englewood, CO, USA) 

was purchased from SMI Snow Makers AG (Thun, Switzerland) and 

prepared in purified water to a concentration of 0.01 % w/w. The 

purified water (18.2 MΩ cm at 25 °C, 0.22 μm filtered) was obtained via 

a Sartorius arium® pro water purification system. 

Poly(dimethylsiloxane) (PDMS, Dow Corning® Sylgard® 184 Kit) was 

purchased from Ellsworth Adhesives (East Kilbride, UK). MicroChem 

SU-8 2075 photoresist was purchased from A-Gas Electronic Materials 

Ltd. (Rugby, UK). 

 

4.2.2. Microfluidic chip design 

The microfluidic chip design was adapted from the continuous droplet 

freezing design of Tarn et al.,(Tarn et al., 2020) with the downstream 

addition of a wide separation chamber and corresponding inlet and outlet 

channels (Figure 4.1c). Briefly, the design featured a flow focussing nozzle 

(40 μm wide) for droplet generation, with pillar-based particle filters and 

fluidic resistors located between the inlets and the nozzle. The nozzle 
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expanded into a long, central main channel (300 μm wide) for the freezing of 

droplets as they flowed down the channel. The main channel then fed into a 

10.9 mm wide by 11.6 mm long separation chamber, which was also fed by 

an “upper control flow” inlet channel (200 μm) at the top of the chamber and 

a “lower control flow” inlet channel (200 μm) at the bottom via branching inlet 

channels. 

Branched outlet channels (218 μm wide each) were situated at the end of 

the separation chamber and consisted of an ice crystal outlet from the upper 

part of the chamber, a water droplet outlet from the middle of the chamber, 

and a waste outlet from the lower part of the chamber. The water droplet 

outlet was designed to have lower backpressure than the ice crystal outlet in 

order to capture any water droplets that were tending slightly towards the ice 

crystal outlet. Alignment marks were added to the design to enable 

alignment of the chip over a series of temperature-controlled plates on a cold 

stage platform. 
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Figure 4.2 Setup of the microfluidic sorting apparatus. (a) The 
microfluidic chip fabricated in poly(dimethylsiloxane) (PDMS) and with 
tubing connected. (b) Photograph of the microfluidic device situated in 
the cold stage platform. Alignment marks on the chip allowed its 
accurate placement over three temperature-controlled plates that 
aligned with the droplet generation nozzle, the main channel for droplet 
freezing, and the separation chamber. The cold stage platform was 
placed on its side so that the separation chamber was oriented 
vertically. 

4.2.3. Fabrication of the microfluidic device 

The microfluidic device was fabricated in PDMS, as described by Tarn et al. 

(Tarn et al., 2020), using standard soft lithography techniques (Effenhauser 

et al., 1997; Duffy et al., 1998; McDonald et al., 2000). A detailed description 

of the process is provided in Section 8 of the ESI. Briefly, the microfluidic 

chip design was patterned via a mask aligner onto SU-8 2075 photoresist 

that had been spin-coated onto a silicon wafer. Following photodevelopment, 

PDMS was poured onto the mould, degassed, and cured. The PDMS was 
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then peeled off the mould, access holes (1 mm Ø) were punched into it, and 

it was finally bonded to a glass microscope slide via plasma treatment to 

yield the final device with a channel depth of 140 μm (Figure 4.2a). 

 

4.2.4. Experimental setup 

A detailed description of the experimental setup (Figure 4.2b) is provided in 

Section 8 of the ESI, and largely employed the apparatus and setup of the 

LOC-NIPI described by Tarn et al.(Tarn et al., 2020) Polyethylene tubing 

(0.38 mm i.d. × 1.09 mm o.d.) was inserted into the access holes of the 

PDMS chip and the inlet tubing was connected to syringes located in syringe 

pumps (PHD Ultra, Harvard Apparatus, Biochrom Ltd., UK). The chip was 

placed into the chamber of a custom-built cold stage that had been turned 

on its side, such that the separation chamber of the chip was oriented 

vertically so that its width (10.9 mm) was now its height and its height (140 

μm) was now its width, and clips were used to hold the chip in place. A 

similar sideways orientation had been employed by Stan et al.(Stan, 

Guglielmini, et al., 2011; Stan et al., 2013) in their studies of the buoyancy 

and lift forces of water droplets and ice crystals. 

The cold stage platform comprised three temperature-controlled aluminium 

plates that were set into a 3D printed body. The plate temperatures were 

controlled using Peltier elements via a proportional-integral-derivative (PID) 

loop, and the Peltier elements were themselves cooled using liquid heat 

exchangers connected to a refrigerated recirculating chiller. The alignment 

marks of the microfluidic chip were used to ensure that each major section of 

the chip (i.e. the flow focussing junction, main channel where freezing 

occurred, and separation chamber) was situated across one of the plates 

(see Figure 4.1c). The previous version of the platform required the 

microfluidic chips to be coated with a layer of chromium on the underside in 

order to provide a reflective surface on which to visualise droplets using 

reflected light microscopy.(Tarn et al., 2020) Here, however, the aluminium 

plates of the cold stage were polished to render them much more reflective, 

meaning that droplets could be observed in the chip without the need for a 

chromium layer. 

A Perspex lid was placed onto the cold stage platform to form a chamber, 

and dry air was pumped into the chamber to purge it of moisture. 

Visualisation of the microchannels and separation chamber inside the 
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microfluidic device was achieved using a Navitar Zoom 6000® Lens System 

(Mengel Engineering, Denmark) with a Phantom Miro Lab 120 high-speed 

camera (Vision Research Ltd., Bedford, UK). 

  

4.2.5. Experimental procedure 

The channels of the microfluidic chip were first purged with Novec™ 7500 

Engineered Fluid to wet the channel and tubing surfaces and to remove air 

bubbles. Water-in-oil droplets were generated at the flow focussing nozzle of 

the chip by pumping an aqueous suspension of 0.01 % w/w Snomax® into 

the aqueous inlet at 0.1 μL min−1, while Novec™ 7500 Engineered Fluid was 

pumped into the oil inlet at 25 μL min−1. Novec™ 7500 was pumped into the 

upper control flow channel at a flow rate of 113-115 μL min−1 in order to 

control the flow rate in the x-direction that in turn would affect the deflection 

of water droplets and ice crystals in the chamber, as per Equation 4. 

However, the higher flow rate of the upper control flow compared to that of 

the droplet generation channel would also result in a downward flow in the y-

direction near to the entrance of separation chamber, which would likely 

have an effect on ubuoy and therefore udefl of the droplets and crystals. 

Novec™ 7500 was also pumped into the lower control flow channel only to 

purge the channel and fill the lower section of the separation chamber with 

fluid, but no flow from this inlet was necessary during experiments. 

The microfluidic chip was aligned on the cold stage platform and the 

aluminium plate temperatures were set to a specific temperature for each 

stage of the chip. The plate beneath the flow focussing junction was set to 

+3 °C to ensure that water did not freeze in the aqueous inlet channel or the 

nozzle. The cold plate beneath the main channel was set to a temperature of 

−17 °C in order to freeze approximately half of the Snomax®-containing 

water droplets as they flowed over the plate. The plate beneath the 

separation chamber was set at −8 °C, which was determined to yield a 

temperature in the separation chamber of −4.8 ± 0.2 °C. 

The measurement of the temperature inside the separation chamber was 

performed separately to the droplet experiments by inserting calibrated 

thermocouples into the central region of the chamber and then setting the 

flow rates and temperature setpoints to those used during droplet sorting 

(see Section 9 of the ESI for a more detailed description of the procedure). 

This allowed the fluid to flow over the tip of the thermocouples inside the 
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separation chamber in the region through which the droplets would traverse 

during the sorting experiments. Therefore, it was assumed that the 

temperatures measured by the thermocouples were equivalent to the 

temperature of the droplets in the separation chamber. These 

measurements were used to inform on the viscosity of the Novec™ 7500 oil 

and the densities of the Novec™ 7500 oil, supercooled water, and ice that 

were used in calculations of experimental Fbuoy values and of the 

theoretically expected Fbuoy and ubuoy values. However, we note that this 

temperature only applied to a specific region of the chamber, while the 

temperature throughout the chamber was likely varied and complex given 

the several sources of fast-flowing liquid entering from different points. 

Images and videos of the water droplets and ice crystals were collected as 

they exited the separation chamber under specific flow rates and plate 

temperatures. ImageJ software (https://imagej.nih.gov/ij/) was used to 

measure the diameters and velocities of the objects in the x-direction and y-

direction in the chamber to determine uhyd and ubuoy, respectively. For each 

run, 25 water droplets and 25 ice crystals were chosen at random for 

analysis of their diameter and velocity. A scale was determined using a 

known distance inside the chamber (i.e. the width of an outlet channel). The 

velocities were determined by averaging the change in positions in the x- 

and y-directions over the separation chamber across multiple images, and 

using the framerate to determine the time taken for this change. Droplet 

diameter and velocity values are quoted as an average over all of the runs, 

along with the combined uncertainty of the standard deviation in these 

measurements and the measurement resolution of the video analysis 

(±4 μm). 
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Figure 4.3 Photographs showing the lifetime of supercooled water 
droplets (circled in blue) and ice crystals (circled in red) as they (a) are 
generated at the flow focussing nozzle over a warm plate, (b) pass 
along the main channel above the cold plate and are potentially frozen 
(as demonstrated in this case), (c) enter the separation chamber at a 
temperature slightly below 0 °C and experience a brief downward 
motion due to the higher applied flow rate of the upper control flow, and 
(d) traverse the chamber and exit via different outlets depending on 
whether they are frozen or liquid. 

4.3. Results and Discussion 

4.3.1. Droplet generation, freezing and flow in the 

separation channel  

Aqueous droplets of Snomax® (0.01 % w/w) were generated in Novec™ 

7500 fluorinated oil and flowed over the cold plate and into the 

separation chamber of the microfluidic device. Snomax® Snow Inducer 

is a non-viable, lyophilised form of Pseudomonas syringae bacteria 

(Hirano and Upper, 2000) that is well-known for its exceptional ice-

nucleating ability (Wex et al., 2015; Polen et al., 2016), making it a very 

useful material for testing ice nucleation equipment and 

methodologies. The generated water-in-oil droplet diameters were 118 ± 6 

μm (870 ± 139 pL), and were produced at a rate of 1.5 ± 0.4 droplets s−1. 

This droplet production rate was appropriate for the current throughput of the 

current version of the LOC-NIPI platform,(Tarn et al., 2020) which is limited 

by the freezing step. Increasing the throughput significantly would require 
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the redesign of the freezing channel to maximise the time droplets spend 

over the cold plate. 

The generated droplets (Figure 4.3a) passed along the main channel and 

over the central cold plate (Figure 4.3b), with around half of the droplet 

population freezing as they travelled over the plate. In the lighting conditions 

employed, water droplets were visualised as being clear and colourless with 

a black outline, whilst ice crystals appeared as nearly transparent circles 

with small, black imperfections. Upon freezing, the ice crystals retained their 

spherical shape, although the formation of small spicules (a single, needle-

shaped protrusion that can form as part of the droplet freezing 

process)(Wildeman et al., 2017) was occasionally observed. These spicules 

would affect the drag of the ice crystals to some extent, and occasionally 

resulted in an ice crystal becoming temporarily stuck in the chamber, but this 

was only observed for a small number of crystals and have not been 

accounted for in our calculations. 

After exiting the cold plate region, the supercooled water droplets and ice 

crystals continued along the main channel and into the separation chamber. 

Due to the flow from the upper control channel being greater than that of the 

main channel, and the lower part of the chamber experiencing no applied 

flow, the droplets/crystals momentarily travelled downwards in the y-direction 

immediately upon entering the chamber (Figure 4.3c). Within ~5 mm of 

entering the 11.6 mm long chamber (in the x-direction), however, the 

droplets and crystals began to rise in the Novec™ 7500 oil due to the effect 

of buoyancy, whereupon their deflection direction could be controlled by the 

applied flow rate of the upper control flow (Figure 4.3d)  

4.3.2. Water droplet and ice crystal buoyancies  

The water droplets that entered the chamber had a measured uhyd velocity in 

the x-direction of 1,667 ± 82 μm s−1, while the ice crystals had a measured 

uhyd velocity of 1,817 ± 106 μm s−1. This demonstrated an increase of 9 ± 2 

% in uhyd velocity of the ice crystals compared to the water droplets due to 

the difference in diameter, and possibly also due to the effect of the ice 

crystals entering the higher velocity flow stream of the upper control flow. 

The migration of the droplets/crystals in the y-direction as they creamed in 

the separation chamber was measured to provide experimental ubuoy values, 

and these are provided in Table 1 for two identical microfluidic devices, 
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labelled Chip A and Chip B, with one experimental run performed in the 

former and three in the latter. 

 

Figure 4.4 (a) The experimental and theoretically expected differences 
in ubuoy between ice crystals and water droplets in the 
microfluidic device. Theoretical values were calculated based on 
the measured diameters of the water droplets, with the average 
diameter shown by the black line and the standard deviation 
represented by the grey band (b) The corresponding experimental 
and theoretical values of the differences in Fbuoy between the 
water droplets and ice crystals. Further details of the experimental 
runs are provided in Table 1. 
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Table 1. Average experimental y-direction velocity (ubuoy) and 
gravitational force (Fbuoy) values of liquid water droplets and ice 
crystals, together with the differences in ubuoy and Fbuoy between 
the two, for Chips A and B. Uncertainties in Δubuoy and ΔFbuoy were 
calculated in quadrature. 

Experimental 

run 
Chip 

Droplets/  

crystals 

ubuoy  

(μm s−1) 

Δubuoy   

(μm s−1) 

Fbuoy  

(nN) 

ΔFbuoy  

(nN) 

1 A 

Water 

droplets 
491 ± 23 

168 ± 45 

2.7 ± 0.3 

1.0 ± 0.7 
Ice 

crystals 
659 ± 21 3.8 ± 0.3 

2 B 

Water 

droplets 
528 ± 19 

107 ± 38 

3.0 ± 0.3 
0.7 ± 0.6 

 Ice 

crystals 
635 ± 20 3.7 ± 0.3 

3 

 
B 

Water 

droplets 
460 ± 19 

176 ± 39 

2.6 ± 0.3 

1.1 ± 0.6 
 Ice 

crystals 
636 ± 20 3.7 ± 0.3 

4 B 

Water 

droplets 
530 ± 11 

100 ± 22 

3.0 ± 0.3 

0.7 ± 0.5 
Ice 

crystals 
630 ± 12 3.7 ± 0.3 

Average 

Water 

droplets 
502 ± 40 

138 ± 55 

2.8 ± 0.6 

0.9 ± 0.8 
Ice 

crystals 
640 ± 37 3.7 ± 0.6 

 

The ice crystals experienced a greater ubuoy velocity in the y-direction as 

they creamed, an average increase of 28 ± 10 % compared to the water 

droplets, indicating the potential for their separation. The differences in 

experimental ubuoy between the ice crystals and water droplets, Δubuoy, 

which directly determines the ability to separate the two, are illustrated in 
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Figure 4.4a. Theoretically expected Δubuoy values were calculated from 

Equation 3, based on the average diameter of the water droplets, and are 

shown in Figure 4.4a as a black line (with the standard deviation shown as a 

grey band, based on the variation in droplet diameter). 

The experimental Δubuoy values from chips A and B matched the theory very 

well in two of the runs, and importantly for both chips, and were slightly lower 

than expected in two other runs despite an otherwise identical setup. The 

possible reasons for this will be discussed later.  The experimental Fbuoy 

values were also calculated from the measured ubuoy values using Equation 

2 (assuming that Fbuoy = Fvis), using viscosities and densities of supercooled 

water, ice crystals, and Novec™ 7500 determined as described in ESI 

Sections 3-6, and the temperature in the separation chamber discussed 

earlier. These experimental values are provided in Table 1. As expected 

given the ubuoy results, the Fbuoy forces were greater on the ice crystals than 

the water droplets. The differences in Fbuoy between the two are also 

provided in Table 1 and are plotted in Figure 4.4b alongside the theoretically 

expected ΔFbuoy values. Given that the ΔFbuoy were derived from the Δubuoy 

values, the same trends are unsurprisingly observed in the former as the 

latter. 

The lower than expected Δubuoy and ΔFbuoy values that occurred in some 

experiments likely stemmed as a result of the placement on the cold stage 

platform. Since the chips were located over the cold plates without the 

presence of any oil between the two to assist in heat transfer, the 

temperature in the chamber may have been higher than expected if the 

contact between the chip and the separation cool plate was poor. This could 

have occurred since the chip and the cold plates were oriented vertically and 

so their contact was not assisted by gravity (the chip was held in place with 

clips connected to the cold stage platform). Furthermore, hydrodynamic lift 

forces(Stan, Guglielmini, et al., 2011; Stan et al., 2013) have not been 

accounted for in our analyses due to the large height of the chamber when 

oriented vertically. However, in the event that the setup was not perfectly 

oriented in the vertical direction and the chip was slightly tilted to differing 

extents in different experiments, this could introduce effects of lift forces and 

affect the viscous drag caused by the channel walls. 

Some of these effects could be addressed in future iterations of the platform, 

e.g. by better controlling the orientation and clamping of the chip, and 

through the use of an oil between the chip and the platform to improve 
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thermal contact. Nevertheless, the results demonstrated that Δubuoy and 

ΔFbuoy were positive and close to the theoretically expected values, 

indicating that the separation of frozen and unfrozen droplets was feasible 

using this technique. 

 

Figure 4.5 Plot showing the collection efficiencies of ice crystals and 
water droplets into their respective outlet channels in the 
microfluidic sorting chamber. The results were generated from three 
individual experiments, comprising 105 ± 16 water droplets/ice crystals 
in total per run. 

 

4.3.3. Water droplet and ice crystal separations 

The magnitude of Δubuoy and ΔFbuoy between the water droplets and ice 

crystals is clear (see Figure 4.4), with the ice crystals migrating notably 

faster than water droplets in the y-direction in Novec™ 7500, and this 

difference was leveraged to enable their separation in the microfluidic 

chamber. As the objects travelled through the chamber and separated based 

on their ubuoy velocities, they each exited the chamber via one of the outlet 

channels (see Figure 4.3d and the ESI for video footage of droplet 

separation). The numbers of water droplets and ice crystals that exited via 
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the ice crystal outlet system and the water droplet outlet system were 

counted for a given droplet population, and this was used to determine the 

separation efficiencies. Results were obtained for three experimental runs 

(one in chip A and two in chip B), with 105 ± 16 water droplets/ice crystals 

counted in total per run, and are shown in Figure 4.5. 

In all cases, only ice crystals were found to exit the separation chamber via 

the ice outlet (i.e. no water droplets entered this outlet), with a collection 

efficiency of 94 ± 2 % of the total ice crystal population. This meant that, 

while 100 % of water droplets exited via the water outlet, a small number of 

ice crystals (6 ± 2 % of the ice crystal population) also exited the chamber 

through the water outlet. Therefore, it was successfully demonstrated that 

ice crystals and water droplets could be separated into different outlets in 

continuous flow with high efficiency and reproducibility across multiple runs 

and in two different chips. 

Continuous flow separations are affected by temperature, with changes in 

viscosity affecting not only the ubuoy component of the deflection velocity, 

udefl, but also the uhyd component (Tarn et al., 2009). It was found that the 

laboratory temperature could influence the migration of the droplets and 

crystals since the upper control flow rate into the chamber was so high that 

the Novec™ 7500 did not have time to fully equilibrate with the plate 

temperature, hence the temperature at which the fluid was held outside of 

the chip influenced its temperature inside the chip. This issue was largely 

eliminated in this particular instance by the use of air conditioning to control 

the laboratory temperature. In a future update of the chip design, this could 

be solved via the use of a longer serpentine inlet channel for the upper 

control flow inlet channel, which would allow a longer equilibration time over 

the separation cool plate prior to entering the separation chamber. 

Several other changes to the chip design and operation could also be 

implemented to achieve 100 % separation efficiency with respect to both 

water droplets and ice crystals. Several of the features of the current chip 

design were somewhat superfluous, being a product of testing various 

mechanisms and flow regimes during the development of the technique. 

Therefore, future iterations of the design would be far more refined. The 

extent of the initial separation of the droplets and crystals could be enhanced 

relatively easily by employing a gradual or sudden expansion into the 

separation chamber, which would accentuate the difference in ubuoy 

velocities between the water droplets and ice crystals.(Huh et al., 2007; 
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Song et al., 2014) Such improvements would also enable the application of 

much higher droplet throughputs, since droplet/crystal sorting could 

potentially still be achieved at much higher flow rates and droplet generation 

rates. This would help to enable high-throughput downstream processing or 

analysis, or would allow the rapid collection of enough sample volume for 

off-chip operations. 

Another possible means of enhancing the separation could be to adapt the 

methodology of Kamijo and Derda(Kamijo and Derda, 2019) to a microfluidic 

device. In this scenario, the upper control flow would comprise a low 

viscosity silicone oil (5 cSt at 25 °C), having a density between that of 

supercooled water and ice, rather than the Novec™ 7500 Engineered Fluid 

(𝜌fluorinated oil > 𝜌water > 𝜌silicone oil > 𝜌ice). As the droplets and crystals rose to the 

top of the Novec™ 7500 phase, the former would be unable to cross the 

interface into the silicone oil whilst the latter could cross and continue 

migrating in the y-direction. However, this strategy may be less simple than it 

sounds due to the very low theoretical ubuoy velocities the ice crystals would 

experience in such a medium. Hence, a system comprised fully of Novec™ 

7500 may still be the preferable option, particularly given the improvements 

proposed above. Section 10 of the ESI provides a more detailed analysis 

and discussion of the silicone oil strategy as well as its potential benefits and 

difficulties. 

4.3.4. Outlook for the application of water droplet-ice crystal 

sorting 

The density-based sorting of supercooled water droplets and ice crystals in 

continuous flow has been achieved for the first time in a microfluidic device, 

and quite possibly in any platform, with high separation efficiency. This 

technique could aid in a number of applications as outlined in the 

introduction. In particular, we can see immediate potential for use in two 

fields, namely low temperature biology(Daily et al., 2020) and atmospheric 

ice nucleation.(Hoose and Möhler, 2012; Murray et al., 2012) In the former 

case, it could be envisaged that water droplets containing cells could be 

exposed to “ideal” freezing conditions (e.g. with ice nucleation triggered at 

high temperatures to minimise supercooling)(John Morris and Acton, 2013) 

to ensure a high level of viability amongst the droplet population that froze in 

those specific conditions. Thereafter, those frozen specimens could be 

sorted and collected to ensure only cells with a high likelihood of viability 

were stored at low temperatures for future use. This might be a useful 
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method for reducing aliquot-to-aliquot variability in viability related to freezing 

temperature.(John Morris and Acton, 2013; Daily et al., 2020) While this 

approach is unlikely to be cost-effective for cells in plentiful supply, it might 

be useful for high-value cells such as human stem cells, which have 

potential for use in cancer treatments.(Chu et al., 2020) 

 A particularly useful application could be in the selection and concentration 

of biological ice-nucleating materials that exhibit exceptional ice-nucleating 

abilities at warmer temperatures, such as certain strains of bacteria, which 

would enable the subsequent culturing of a highly active form of ice 

nucleators. A similar approach might also be useful for identifying ice-

nucleating materials or organisms in the environment, such as pathogenic 

ice-nucleating strains of bacteria that can cause frost damage to 

plants.(Lindow et al., 1982) At present, this is achieved through laborious 

processes,(Hill et al., 2014; Šantl-Temkiv et al., 2015) for example involving 

repeatedly dividing a sample and selecting the aliquot that has the highest 

freezing temperature and therefore the most active ice-nucleating entity.(Hill 

et al., 2016) Also, plating out environmental samples on a growth medium 

and then testing the resulting colonies for their ice-nucleating activity is often 

performed, but this approach is only sensitive to organisms amenable to 

culture.(Šantl-Temkiv et al., 2015) In principle, the frozen-unfrozen droplet 

sorting technique presented here could be used to isolate ice-nucleating 

biological material, such as a bacteria cells, which might then be cultured or 

the DNA analysed directly for identification.  

The sorting technique could prove very powerful in its application to 

atmospheric ice nucleation. Currently, it can be very difficult to ascertain the 

identity of atmospheric ice-nucleating particles (INPs) given their rarity. 

While it is possible to determine the ice-nucleating activity of a collected 

aerosol sample using a droplet freezing assay, in which the sample is 

suspended in droplets of water that are subsequently frozen, it is much 

harder to determine which component of that sample actually triggered the 

nucleation event. By sorting frozen and unfrozen droplets whose ice 

nucleation was triggered at different temperatures, it should be possible to 

test the two collected outputs to determine which components were present 

in the frozen population that were not (or were present to a lesser extent) in 

the unfrozen population. In order to achieve separation of ice-active material 

from non-ice-active materials it would be necessary to use suspensions 

which were sufficiently dilute that they have around one insoluble aerosol 
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particle per droplet. Appropriate analyses on the collected droplet 

populations for INP identification could include scanning electron microscopy 

with energy dispersive X-ray spectroscopy (SEM-EDS),(McCluskey et al., 

2014; Wang et al., 2016; Kiselev et al., 2017; Ault and Axson, 2017; Reicher 

et al., 2019; Sanchez-Marroquin et al., 2019) DNA analysis,(Garcia et al., 

2012; Huffman et al., 2013; Hill et al., 2014; Šantl-Temkiv et al., 2019) 

Raman spectroscopy,(Iwata and Matsuki, 2018) and a variety of other 

microscopic and spectroscopic techniques used in aerosol particle 

analysis.(Ariya et al., 2009; Kolb and Worsnop, 2012; Ault and Axson, 2017; 

Laskin et al., 2018) The identification and characterisation of the INPs 

present in the frozen droplet populations would then help to inform on their 

sources and global transport. It can also be foreseen that such analytical 

techniques could be translated onto an integrated microfluidic platform that 

combines the droplet freezing and separation steps with upstream aerosol 

collection(Noblitt et al., 2009; Jing et al., 2013; Mirzaee et al., 2016; Damit, 

2017; Metcalf et al., 2018) and downstream analytical processing, potentially 

yielding a micro total analysis system (μTAS) (Reyes et al., 2002; 

Patabadige et al., 2016) for atmospheric INPs. Indeed, there are any number 

of on-chip microanalytical techniques that could be applied to the chemical 

or biological analysis of the separated populations. (Yew et al., 2019; Song 

et al., 2019) 

In addition to sorting droplets for collection, the separation of water droplets 

and ice crystals into different channels also provides an alternative avenue 

for determining the fraction frozen of a droplet population at a given 

temperature, fice(T). Fraction frozen data allows information to be gleaned 

from both homogeneous ice nucleation (i.e. pure water without the presence 

of INPs) and heterogeneous ice nucleation experiments. For example, 

several properties of an ice- nucleating material can be calculated from 

fice(T), including the ice nuclei concentration in the sample and the ice-active 

site density, which quantifies a material's effectiveness at nucleating ice. The 

current strategy of calculating fice(T) in the LOC-NIPI platform involves the 

counting of droplets in the main channel using a high-speed camera, and 

determining the number that freeze based on a colour change during a 

nucleation event.(Tarn et al., 2020) While it is possible to automate this 

detection step it is also somewhat challenging, with the image requiring a 

clear background and the video file sizes being relatively large. However, 

sorting the droplets and crystals into separate channels could facilitate a far 
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simpler analysis by incorporating single-point detection systems over the two 

outlet channels, allowing the simple counting of the number of objects that 

pass through each. This would require 100% separation efficiency to ensure 

accurate results but should be achievable given the improvements to the 

platform detailed earlier, and would eliminate the need for an expensive 

high- speed camera and image analysis. 

 

4.4. Conclusions 

We have developed a microfluidic platform, based on our LOC-NIPI ice 

nucleation analysis system, for the continuous sorting of ice crystals from 

supercooled water droplets. The ice crystals and water droplets were sorted 

based on the differences in their buoyancy as they traversed a separation 

chamber and exited via different outlet channels, with 94 ± 2 % separation 

efficiency achieved. Collection of the sorted populations will, in future, 

enable the concentration and isolation of the populations, and will allow 

further analysis to characterise their respective contents. 

This represents a powerful new technique in ice nucleation that can be used 

to separate droplets with specific ice-nucleating activity for a range of 

applications. Its use in cryobiology could allow high levels of viability to be 

maintained in cryopreserved biological samples by ensuring only the 

droplets that froze under specific conditions were collected. The ability to 

isolate and culture highly ice-active biomaterials, such as bacteria, could 

additionally enable the production of new standards of highly active ice-

nucleating agents. In atmospheric science, the technique could facilitate the 

identification and characterisation of ambient INPs via their separation from 

a bulk aerosol sample. This could help to revolutionise our understanding of 

the types, origins, and transport of different types of INPs around the 

globe.(Huh et al., 2007; Song et al., 2014) In addition to improvements in the 

separation efficiency of the platform, we can also envisage incorporation of 

upstream aerosol collection and downstream microanalytical techniques to 

yield an integrated analysis platform for ice nucleation applications. 
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5. Overview and conclusions 

The central Arctic is a unique environment, and due to the difficulty in 

obtaining measurements of INP in such a remote and low-aerosol location, 

information about the sources, concentrations and effects of INP on mixed-

phase clouds over the central Arctic ocean is lacking (Schmale et al., 2021). 

In part due to this lack of understanding, Arctic mixed-phase clouds are not 

well represented in large-scale models (Morrison et al., 2012; Pithan et al., 

2016; Schmale et al., 2021) and this has consequences for the prediction of 

the surface energy budget in the Arctic (Xie et al., 2013). This thesis aimed 

to address this challenge through the use of current and novel 

instrumentation to elucidate potential sources, characteristics and effects of 

the INP population over the central Arctic ocean. Firstly, with the 

development of a high-volume balloon-borne sampler that allows the 

collection of aerosol in different atmospheric layers, in order to determine the 

difference in INP populations between decoupled layers. This was followed 

by an intensive measurement campaign over the central Arctic ocean within 

the MOCCHA campaign, aboard the icebreaker Oden that culminated in a 

unique dataset which revealed valuable characteristics about high Arctic INP 

during the campaign. Finally, towards the isolation and identification of INP, 

a novel instrument was designed which would allow the non-disruptive 

separation of INP in a mixed sample. This chapter provides conclusions for 

each project objective and for the project as a whole. 

5.1. Project objective 1) The building of a high-flow 

rate, size-selective aerosol sampling system which 

could be remotely operated, and deployed above the 

surface mixed boundary layer 

It came to my attention early in the project that field campaigns that involved 

ground-based measurements were extremely useful because they allowed 

long-term monitoring of INP populations at interesting locations, and were 

accessible to many research groups. However, the relationship between 

ground-based INP concentrations and those which could affect low-level 

mixed-phase clouds is not well defined. For places such as the high Arctic 

where ground/ship-based measurements are already difficult to attain, 

aircraft measurements are even rarer. Factors such as the distance of the 
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central Arctic ocean from land, have resulted in there being no arial INP 

measurements made thus far near the North Pole (88-90°N). However, the 

regular appearance of stratified, separated mixed layers in the Arctic (Brooks 

et al., 2017), make the difference between ground and arial INP 

concentrations all the more important to understand.  

Knowing that I was planning to lead a research project on the MOCCHA 

campaign to the central Arctic, a sampler which was capable of determining 

INP populations above the surface mixed layer was of great interest to me. 

No commercially available options would have suited the purpose. We 

expected low INP concentrations based on previous campaigns, and so 

estimated that we needed to sample 10s-100s of litres of air per minute over 

a period of hours to observe an INP signal. Drones were an obvious choice, 

but their battery lives of the order of 30 minutes, and low payload capacities 

meant we quickly discounted them as an option until battery technology 

improved. Weather balloons are often used to launch radiosondes, and 

access to helium is available through gas cylinders. Tethered balloons 

provide an option for larger payloads than drones and can be kept airborne 

for periods of many hours. Therefore, a tethered balloon-borne system was 

designed, and called the selective height aerosol research kit, or SHARK. 

In order to attain the desired flow rates, cascade impactors were chosen. 

The pressure required to pull air over a set of cascading stages is much 

lower than to pull air through a filter. Therefore, the pump could be smaller, 

lighter, and operate for longer than using filter based collection of aerosol. 

This was ideal for an arial collection device. Additionally, the cascade 

impactors provided sample collection onto substrates which were made from 

the filters we used in our ground-based measurements using the μL-NIPI 

technique (Whale et al., 2015), and so could be directly compared. The 

cascade impactors also give information about INP concentrations in 

different size ranges, since aerosol of different diameter will be preferentially 

collected on different plates. Two cascade impactors were used to cover a 

larger size range. The smaller impactor for <0.25 (via an after-filter) to >2.5 

μm in diameter, and the larger impactor for 1 to >10 μm.  

Finally, the size of the payload allowed by tethered balloons allowed an 

optical particle counter to be mounted alongside the aerosol sampling 

instrumentation in order to be able to determine the INP concentrations with 

respect to aerosol size. All of these instruments were remotely operated 

from the ground, meaning sampling could be turned on and off when the 
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temperature or humidity around the instrument (which was being monitored 

via instrumentation within the SHARK housing) was not ideal for sampling, 

or during ascent and descent.  

The instrument was tested in four locations, and the results of this are 

detailed in Chapter 1. Although the chapter was focused on the building and 

design of the SHARK, the results from these campaigns paint an interesting 

picture of the way INP concentrations vary with aerosol size in different 

environments. It was shown that larger aerosol size does not always 

correlate with more active INP populations. 

In future, the SHARK should be used on field campaigns where ground/ship-

based measurements of INP are being taken, and a distinct atmospheric 

structure may affect the ability of ground-based INP to access mixed-phase 

clouds. For instance, in a boreal forest location, where INP relating to plant 

matter around the forest may/may not enter the cloud mixed layer. 

5.2. Project objective 2) To gather ice-nucleating 

particle concentration data in the high Arctic, 

specifically the central Arctic ocean, towards 

elucidating the characteristics and effects of the ice-

nucleating particles present 

The second, and arguably largest objective in this project was to conduct a 

field campaign to the central Arctic ocean, and determine potential sources 

of INP which could enter the mixed-phased clouds there. The radiative 

budget of the Arctic is partly modulated by persistent mixed-phased clouds, 

and so is of current interest due to the rapid changes the Arctic is 

experiencing owing to global warming (Serreze and Barry, 2011). 

Constraining the INP concentrations of the Arctic, and understanding how 

INP concentrations may change with the Arctic over time, is imperative to be 

able to understand the predict the effects on mixed-phase clouds there. To 

this end, a successful INP field campaign was completed during the Arctic 

summer of 2018 during the MOCCHA expedition. The results are presented 

and described throughout Chapter 2. 

The first and most fundamental dataset we wished to capture was the INP 

concentrations measured on-ship throughout the entire duration of the two-

month campaign, including the travel through open water, over the MIZ, 

during ice-breaking, and adrift with an ice-floe. We were hopeful that we 
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would be able to capture the effects of the autumnal freeze-up on INP 

concentrations, and were lucky enough to have achieved this. The picture of 

INP in the central Arctic ocean was very different to what we had expected. 

The variability was extreme,  with INP activation temperatures ranging from -

9 to -30 °C for a concentration of 0.1 INP L-1, and concentrations varying 

from 6 × 10-3 INP L-1 to 2 INP L-1 at -15 °C. We measured concentrations as 

low as would be expected in the Southern Ocean, to as high as those we 

had seen in UK farmland. This is higher than we would expect for such a 

pristine environment, where the aerosol concentrations were orders of 

magnitude lower than those in terrestrial environments like the rural UK. 

Some of the concentrations measured were similar to INP measurements 

made around the periphery of the Arctic ocean, at ground-based stations in 

the summer. Additionally, the samples which were tested for the presence of 

biogenic material through a heat-test, consistently demonstrated that the 

warmer temperature INP above around -15 to -20 °C was removed by 

heating and so likely related to ice-nucleating proteins of biogenic origin.  

The SHARK was deployed above the surface mixed layer. This culminated 

in eight total flights where the INP concentration was determined in the 

“cloud mixed layer”, which was just above and decoupled from the surface 

mixed layer. We assumed that the temperature inversion signalled the 

decoupling of the aerosol in both of these layers and so the measurements 

in the cloud mixed layer were compared to those taken on ship within the 

surface mixed layer. There was often a significant difference between the 

measurements within and above the surface mixed layer. Out of the eight 

SHARK samples, a single SHARK sample had much lower ice nucleating 

activity than that within the surface mixed layer, three samples had higher 

activity, three had similar activity and one that was close to the baseline. The 

INP concentration within the surface mixed layer, measured on-ship, was 

intermittently decoupled to the concentrations in the cloud mixed layer.  

Additionally, the size of INP above in the cloud mixed layer was captured, 

and interestingly, it was often the smallest aerosol, <0.25 μm which gave the 

highest measured INP concentrations. The larger, coarse mode aerosol, at 

2.5 – 10 μm, was often in the baseline, excluding one flight when this size 

range dominated. These smaller size ranges dominating INP concentrations  

could be expected for long-range transported aerosol.  

There was no correlation between the INP concentrations and DMS, a 

product of marine biogenic processes which was thought to be transported 
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to the ship location (88-90°N) from the MIZ. There was however, a positive 

correlation between transported eBC and INP (r = 0.65), indicating the more 

INP laden aerosol originated from further afield than the central Arctic ocean.  

The analysis of air parcel 7-day back trajectories concluded that air that was 

rich in highly active INP originated from the costal seas of Russia, whereas 

air parcels containing the least active INP were more local, and spent the 

majority of the trajectory over the pack ice.  

Thanks to consistent radiosonde launches, which we helped with when we 

could, we were able to calculate the INP concentration which would occur at 

ambient atmospheric temperature, [INP]ambient. Despite the large variability in 

INP concentrations within the surface mixed layer, [INP]ambient was far less 

variable, and was usually at or below ~10-2 L-1. Within the cloud mixed layer, 

[INP]ambient was on average slightly higher, between 10-1-10-2 L-1, however 

these were all limiting values, and so the actual values are likely to be below 

this.  

Overall, this part of the project culminated in a deeper understanding of 

Arctic INP close to the North Pole, and a characterisation of INP during the 

summer-autumn of 2018. This included determining that a likely potential 

source of highly active INP to the central Arctic ocean was the costal seas of 

Russia, whereas locally produced aerosol was less active. The biogenic 

nature of the INP and the correlation with costal locations away from the 

central Arctic ocean suggest that these sources may be susceptible to 

change with global warming. Finally, we concluded that the [INP]ambient 

determined from the expedition data was consistent with the observed 

persistence of Arctic mixed-phase clouds, and that INP concentrations 

measured within the surface mixed layer were intermittently decoupled from 

the cloud mixed layer. These conclusions should be used to encourage 

future measurement campaigns in the Arctic, specifically using samplers that 

can probe the cloud mixed layer, to gain a better insight into the temporal 

and spatial variability in INP close to the North Pole.  
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5.3. Project objective 3) To design and create a 

method by which droplets containing low 

concentrations of sampled atmospheric aerosol could 

be separated, depending on the presence of an INP 

The final part of the project was to determine a method for the non-invasive 

separation of INP active at a specific temperature. Such a method would 

facilitate comparisons between the sample populations which were and were 

not active at specific temperatures in a variety of instruments, or the probing 

of single INPs which were seen to freeze at the desired temperature. This 

type of separation would not only be useful for fundamental atmospheric ice 

nucleation research and field sample analysis, but for disciplines such as 

food science, medical science and cryobiology, and in the production of 

artificial snow. 

Very near the beginning of this body of work, I decided to try and use 

microfluidics to separate droplets from ice crystals in flow. This was owing to 

the unique LOC-NIPI platform being developed at the time, designed for the 

high throughput freezing of droplets in-flow, which would allow the 

integration of such a sorting device. After returning from the Arctic, I was 

able to spend time with the newly finished LOC-NIPI (Tarn et al., 2021) and 

test various configurations that would allow the autonomous sorting of 

droplets in flow.  

Initially, a weir design was trialled, attempting to use the difference in size 

and compressibility between the droplets and ice crystals to separate the 

populations. However, the tolerances needed to achieve this were beyond 

what was practical for a disposable device. Secondly, a density based-

approach based on the one shown by Kamijo and Derda, (2019) was trialled. 

This involved a separation chamber filled with different oil layers, where the 

upper oil layer had a density between that of water and ice, allowing only ice 

to pass into the upper oil layer of the chamber. The timescales for this were 

too long however, and so this was also not used. Finally, a variation of the 

density based chamber was produced. The chamber was filled with an oil 

which was less dense than both water and ice. The chamber was made to 

be long and tall enough to allow the passive, density-based sorting of the 

liquid droplets and ice crystals, and their subsequent collection via different 

outlets. The description of this technique is given in Chapter 3. 
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The density-based sorting technique proved to be 94 ± 2% effective at 

separating the ice and liquid droplets into different outlet channels. This was 

the first time that ice and water droplets had been successfully separated in-

flow on a microfluidic device. The nature of microfluidic devices means that 

this technique can be integrated into devices which contain other on-chip 

analysis, or used alone for the quick separation of populations which exhibit 

different ice-nucleating activity. 

Looking forward, this sorting technique could also be made more efficient. 

The chip design could be refined to include pinched-flow fractionation, and 

longer channels could be used to reduce temperature fluctuations. Then, 

ideally this technique would be used to identify the specific particles 

responsible for ice-nucleation within a sample, and therefore aid in the 

determination of the characteristics which make a good ice-nucleator, or the 

identification of which parts of an atmospheric sample are responsible for the 

ice-nucleating activity. This is especially useful for samples from low-aerosol 

environments such as the central Arctic ocean. This is because the entire 

sample can be used with little contamination, meaning relatively, there is a 

very low detection limit. Additionally, in low-aerosol environments it is harder 

to relate INP concentrations to changes in bulk aerosol, so being able to 

separate out the INPs would allow more in-depth analysis.  

5.4. Concluding remarks 

This thesis describes progress towards the characterisation of INP in remote 

and low-aerosol environments such as the central Arctic ocean. 

Instrumentation which will allow better access to relevant and important INP 

measurements and analysis, has been designed, developed and tested. The 

SHARK allows the determination of INP concentrations within the cloud 

mixed layer without the need for aircraft, and the passive sorting of INP from 

a bulk sample allows the analysis of INP in a way which has thus far not 

been available to the community. Fieldwork has been conducted which has 

elucidated properties and effects of INP in a location unlike anywhere on 

earth, which is changing faster than anywhere else.  

The INP population close to the North Pole (88-90°N), was extremely 

variable, and influenced by sources outside of the central Arctic ocean. Air 

packets which transported highly active, biogenic INPs to the surface mixed 

layer close to the North Pole originated in the costal seas of Russia. The 
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pack ice and MIZ were weak sources of INP. Additionally, the cloud mixed 

layer was often decoupled from the surface mixed layer in terms of INP 

population, highlighting the need for more arial measurements. The INP 

concentration calculated at ambient temperature stayed relatively constant 

throughout the campaign, and the values indicated the persistence of Arctic 

mixed-phase clouds, which has been observed.  

Future work would ideally see the instrumentation developed here used on 

further field campaigns to the central Arctic, building on the dataset shown 

here. Specifically, obtaining more measurements both in the cloud-mixed 

layer and the surface-mixed layer, and using the microfluidic sorting device 

to determine the chemical differences between aerosol particles that acted 

as INPs and those which did not. The development of an on-line microfluidic 

device for this purpose may allow the airborne, on-line collection and 

analysis of INP above the surface mixed-layer, which would drastically alter 

the speed at which valuable characteristics of Arctic INPs could be obtained.  
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Appendix A 

Supplementary information for:  

Resolving the size of ice-nucleating particles with a 

balloon deployable aerosol sampler: the SHARK 
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A.1 Sampling information 

Table A1. Details of SHARK sampling dates, times, locations components. 
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A.2 Fraction frozen curves for collected samples 

 

Figure A0.1. Fraction frozen curves for samples collected in Cardington 

(UK). 
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Figure A0.2. Fraction frozen curves for samples collected in Hyytiälä 

(Finland). 

 

Figure A0.3. Fraction frozen curves for samples collected in Leeds (UK). 
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Figure A0.4. Fraction frozen curves for samples collected in Longyearbyen 

(Svalbard). 

A.3 Aerosol data from sampling in Leeds (UK) 

 

Figure A0.5. Particle number size distribution data for samples collected in 

Leeds (UK). 

 

Figure A0.6. Particle surface area size distribution data for samples 

collected in Leeds (UK). 

 

Figure A0.7. Particle mass size distribution data for samples collected in 

Leeds (UK). 
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A.4 Aerosol data from sampling in Longyearbyen 

(Svalbard) 

 

Figure A0.8. Particle number size distribution data for samples collected in 

Longyearbyen (Svalbard). 

 

Figure A0.9. Particle surface area size distribution data for samples 

collected in Longyearbyen (Svalbard). 

 

Figure A0.10. Particle mass size distribution data for samples collected in 

Longyearbyen (Svalbard). 
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Appendix B 

Supplementary information for:  

Origin and variability of ice-nucleating particles close to 

the summertime North Pole 

Table B1. Concentration of major ions derived using ion 
chromatography for several of the filter samples. 

 

 

Table B2. Details of sampling dates, times and volumes for the SHARK 
samples in the cloud mixed layer. 

Sample Name Sampling time Concentration (µeq/L)

(mins) Fluoride MSA Chloride Nitrate Sulphate Sodium Ammonium Potassium Magnesium Calcium T at [INP]=0.1 L-1

180811 1264 0.0E+00 7.4E-04 1.0E-02 4.2E-04 1.6E-03 8.6E-03 1.4E-03 5.2E-04 1.7E-03 1.6E-03 -11.5

180816 1093 5.3E-04 5.3E-04 7.8E-04 7.2E-04 5.9E-04 9.3E-04 1.8E-03 4.1E-04 1.1E-04 1.3E-03 -23.5

180819 2065 1.9E-03 6.1E-05 2.8E-03 4.2E-04 9.6E-04 2.8E-03 2.2E-03 1.8E-03 9.3E-05 8.9E-04 -11.5

180831 4260 6.1E-04 4.0E-05 2.0E-03 1.9E-04 5.7E-04 1.7E-03 5.3E-04 4.2E-04 2.6E-04 3.5E-04 -30

180912 3274 3.7E-04 4.3E-06 6.7E-03 3.7E-04 1.1E-03 5.8E-03 9.4E-04 6.2E-04 1.1E-03 6.9E-04 -22

Date 
Sampling 
period 

Volume 
sampled by 
Impactor 1 
at  
9 L min−1 
(L) 

Volume 
sampled by 
Impactor 2 
at 100 L 
min−1 (L) 

Total 
volume 
sampled (L) 

180820 1040-1530 2610 29000 31610 

180823 1720-2020 1620 18000 19620 

180826 1730-2220 2610 29000 31610 

180904-
180905 

2000-0015 2295 25500 27795 

180908 1705-2005 1620 18000 19620 

180909 1315-1955 3600 40000 43600 

180910 1015-1535 2880 32000 34880 

180913 1745-2335 3150 35000 38150 
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Figure B0.1 - INP concentration results for heat-tested samples 
throughout the AO18 campaign. The number of INPs per litre of air 
sampled was calculated using data from droplet freezing experiments, 
conducted within hours of the samples being taken. The spectra shown 
in blues are samples that were heated to 90 °C for 30 min. The data 
has had the backgrounds subtracted and the limiting values are shown 
as smaller points. Samples were taken using a heated whole air inlet 
on the second deck of the Oden Icebreaker. Temperature uncertainties 
(not shown) for the droplet freezing experiments were estimated to be 
±0.4 °C. The dates for the respective periods are: Ice floe 16/08/18-
15/09/18, Ice-breaking 15/09/18-19/09/18. 
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Figure B0.2 – Backward trajectories over 7 days  with wind speed (left 
column) and temperature at 0.1 INP L-1 (right column) as the 
colour of the points.  
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Figure B0.3 - The number of ice-active sites per unit surface area, ns, 
for each whole air filter run. 
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Figure B0.4 - The size-separated filter results for the SHARK flights in 
the cloud mixed layer on the dates shown.  

 

 



- 175 - 

175 

 

Appendix C 

Supplementary information for:  

On-chip density-based sorting of supercooled droplets 

and frozen droplets in continuous flow 

C.1 Reynolds numbers and Archimedes number 

The Reynolds number, Re (dimensionless), of a flowing system of fluid is the 

ratio of the inertial force to the viscous force, where flow in a microfluidic 

channel is typically considered to be laminar when Re < 2,000-2,300 

(depending on the features of the system), turbulent when Re > 3,000-4,000, 

and transitional when 2,000 < Re < 3,000-4000 [1-3]: 

Re =
inertial force

viscous force
=

𝜌m 𝑢m 𝐷H

𝜂
     (S1) 

where ρm is the density of the fluid (kg m−3), um is the velocity of the fluid (m 

s−1), DH is the hydraulic diameter of the channel (m), and η is the viscosity of 

the fluid (kg m−1 s−1). In the case of a very wide or tall but flat channel having 

a width of a and a height of b where a << b, as in the case of the microfluidic 

device used here, then DH = 2a [4]. 

The Stokes’ law approximation that describes the viscous force on a particle 

moving through a fluid (see Equation 2 in the main paper) is only valid for 

fluid systems in the Stokes flow regime (also known as creeping flow), where 

the Reynolds number is so low (Re << 1) that the viscous forces dominate 

the inertial forces [1]. In order to assess whether the Stokes’ law 

approximation held true for our microfluidic system, the Re in the separation 

chamber was calculated assuming a constant temperature (−4.8 °C, which 

determined the values of ρm and η as described in Section 3 of the ESI) and 

flow velocity across the top ¾ of the separation chamber (to account for the 

approximate location of the interface between the flowing liquid and the 

stationary liquid at the bottom of the channel). Therefore, with an estimated 

channel height of 8,175 μm (the full height of the separation chamber was 

10,600 μm), the fluid velocity was determined to be 2.04 mm s−1 based on 

the applied flow rates in the chip. Using these assumptions, the flow in the 

separation chamber was determined to have an Re = 0.4. Therefore, while 

this was perhaps in the upper range of the Stokes flow regime, the 

assumptions should hold for the use of Stokes’ law as per Equation 2 in the 

main paper. 
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Also particularly pertinent to the Stokes’ law assumption is the particle 

Reynolds number, Rep (dimensionless), which describes the flow of fluid 

around a particle [5,6]: 

Rep =
inertial force

viscous force
=

𝜌m 𝑢p 𝐷p

𝜂
      (S2) 

where Dp is the particle diameter (m), and up is the velocity of the particle (m 

s−1), either in the x-direction as the velocity due to the hydrodynamic flow, 

uhyd, or in the y-direction as the velocity due to the particle’s buoyancy, ubuoy. 

Rep was calculated for both ubuoy and uhyd using the average velocity values 

and particle diameters for the experimental runs in each case, as shown in 

Table C1. 

 

Table C1. The particle Reynolds numbers, Rep (dimensionless), 
determined for water droplets and ice crystals in the x-direction 
and y-direction in the microfluidic separation chamber, based on 
the experimentally determined particle velocities and diameters. 

 Rep 

 
x-direction (uhyd) y-direction (ubuoy) 

Water droplets 0.15 0.05 

Ice crystals 0.17 0.06 

 

Stokes’ law holds true for Rep < 0.2-1 [5,6], and as Rep exceeds 1 the theory 

begins to deviate from experimental data [6]. In our system, the water 

droplets and ice crystals demonstrated Rep < 0.2 in both the x- and y-

directions, further indicating that the use of Stokes’ law in Equation 2 is 

appropriate. Most importantly, the Rep value in the y-direction due to ubuoy 

was much smaller than 0.2, and this is the relevant quantity regarding the 

use of Equations 1 and 2 in the main paper to describe the sedimentation or 

creaming of a particle due to gravity. 

Additionally, the settling regime of our system can be described by the 

Archimedes number, Ar (dimensionless). Ar is defined in a similar manner 

as Rep, in that it describes a force encouraging particle movement against a 

force resisting that movement, but is more specifically for the vertical 
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movement of a particle in that it is the ratio between the sinking force (the 

particle’s weight minus its buoyancy) and the viscous force [7,8]: 

Ar = (
sinking force

viscous force
)

2

=
𝜌m (𝜌p−𝜌m) 𝑔 (𝐷p)3

𝜂2
    (S3) 

where ρp is the density of the particle (kg m−3) and g is the acceleration due 

to gravity (9.81 m s−2). An Ar < 32.9 places the particle in fluid in the Stokes 

regime, the intermediate regime is 32.9 < Ar < 106,520, and Ar > 106,520 is 

the Newton regime [7]. Equation 3 in the main paper, which describes the 

sedimentation/creaming velocity (ubuoy) of a particle in a fluid, can only be 

used in its presented form when the particle is in the Stokes regime. In our 

system, the Ar values of the water droplets and ice crystals were calculated 

to be 3.8 and 4.6, respectively, hence they were in the Stokes regime and so 

Equation 3 holds true for the calculation of ubuoy. 

 

C.2 Viscous drag coefficient, CW 

The viscous drag coefficient, CW (dimensionless), describes the effect of 

viscous drag experienced by particles due to the surfaces of a microchannel 

through which they flow, and can be calculated using Equation S4 [9-11]: 

𝐶W = [1 − 1.004 (
𝑟

ℎz
) + 0.418 (

𝑟

ℎz
)

3

+ 0.21 (
𝑟

ℎz
)

4

− 0.169 (
𝑟

ℎz
)

5

]
−1

 (S4) 

where r is the particle radius (m), and hz is half the distance of the shortest 

dimension of the microchannel (m). In this case, the shortest dimension of 

the microfluidic separation chamber was its width of 140 µm, hence hz was 7 

× 10−5 m. CW was calculated for experimentally measured radii of the water 

droplets (average radius = 59.2 µm) and ice crystals (average radius = 60.9 

µm), yielding a CW value of 2.28 for the water droplets and ice crystals. 
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C.3 Properties of Novec™ 7500 Engineered Fluid 

The absolute (dynamic) viscosity,  (kg m−1 s−1; Pa s; Poise), of the 3M™ 

Novec™ 7500 Engineered Fluid (2-trifluoromethyl-3-

ethoxydodecafluorohexane; C7F15OC2H5; CAS No. 297730-93-9) was 

calculated from the kinematic viscosity, vk (m2 s−1), and the density, m (kg 

m−3), of the fluid at temperature T (°C) using Equation S5: 

𝜂 = 𝜈k 𝜌m        (S5) 

The kinematic viscosity, vk (m2 s−1), of the fluid temperature T (°C) inside the 

separation chamber of the microfluidic device was determined using 

Equations S6 and S7, which were adapted from the manufacturer’s product 

information [12]: 

𝜈k = [(𝑍 − 0.7) − exp(−0.7487 − 3.295(𝑍 − 0.7)    

+0.6119(𝑍 − 0.7)2 − 0.3193(𝑍 − 0.7)3)]  × 10−6  (S6) 

where 

𝑍 = 10^(1011.843−5.0874 log(𝑇 + 273.15))     (S7) 

The density, m (kg m−3), of the Novec™ 7500 Engineered Fluid at 

temperature T (°C) was calculated using Equation S8, obtained from the 

manufacturer’s product information [12]: 

𝜌m = −2.0845 𝑇 + 1665.8      (S8) 

The changes in viscosity and density of Novec™ 7500 Engineered Fluid with 

decreasing temperature below 0 °C are shown in Fig. C1 and Fig. C2, 

respectively. 
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C.4 Viscosity of supercooled water 

Although the calculation of the viscosity of supercooled water was not 

needed for any calculations related to the droplet sorting experiments, it was 

of general interest and is useful to compare to the viscosity of the Novec™ 

7500 Engineered Fluid. The viscosity of water, w (kg m−1 s−1), at 

temperature T (K) was calculated using the parameterisation of Dehaoui et 

al. [13], which both fit well with and extended the datasets of Hallett [14], 

Collings and Bajenov [15], and Osipov et al. [16], as shown in Equation S9. 

𝜂w = 𝜂0 ((
𝑇

𝑇𝑠
) − 1)

−𝛾

       (S9) 

where 0 = 1.38 × 10−4 kg m−1 s−1, Ts = 225.66 K, and  = 1.6438. 

 The viscosity of supercooled water at sub-zero temperatures 

(calculated using Equation S9) was compared to that of the Novec™ 7500 

Engineered Fluid (calculated using Equations S5-S8), which highlighted the 

small response to changes in temperature of the Novec™ 7500 compared to 

supercooled water (Fig. C1). 

 

Figure C0.1 The change in viscosity at sub-zero temperatures for 
Novec™ 7500 Engineered Fluid and supercooled water. 

  

 



- 180 - 

180 

 

C.5 Density of supercooled water 

The density of water, w (g cm−3), at temperature T (°C) below 0 °C was 

calculated using the parameterisation of Hare and Sorensen [17], whose 

values are used in the CRC Handbook of Chemistry and Physics [18], as 

shown in Equation S10. The w values were then converted to kg m−3 in later 

calculations and these values can be seen in Fig. C2. 

𝜌w = ∑ 𝑎𝑛 𝑇𝑛

6

𝑛=0

                                                                                                        (S10) 

where the an constants are as follows: 

a0 = 0.99986 

a1 = 6.690 × 10−5 

a2 = −8.486 × 10−6 

a3 = 1.518 × 10−7 

a4 = −6.9484 × 10−9 

a5 = −3.6449 × 10−10 

a6 = −7.497 × 10−12 
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C.6 Density of ice 

The density of ice, i (g cm−3), at temperature T (°C) was calculated using 

the parameterisation of Pruppacher and Klett [19], as shown in Equation 

S11, which is based on a fit of the data from La Placa and Post [20], 

Ginnings and Corruccini [21], and Lonsdale [22]. As such, it effectively also 

represents a fit of the i values in the CRC Handbook of Chemistry and 

Physics [18], which were taken from Eisenberg and Kauzmann [23] based 

on their computation of the X-ray diffraction data of La Placa and Post [20]. 

The i values calculated using Equation S11 were later converted to kg m−3 

for subsequent calculations. 

𝜌i = ∑ 𝑎𝑛 𝑇𝑛

2

𝑛=0

                                                                                                         (S11) 

where the an constants are as follows: 

a0 = 0.9167 

a1 = −1.75 × 10−4 

a2 = −5.00 × 10−7 

 

A comparison of the differences in density for Novec™ 7500 Engineered 

Fluid, water, and ice over a range of temperatures below 0 °C is shown in 

Fig. C2, based on calculations using Equations S8, S10, and S11, 

respectively.  
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Figure C0.2 The densities of Novec™ 7500 Engineered Fluid, water, 
and ice at sub-zero temperatures. 

C.7 Theoretical Fbuoy and ubuoy values 

Theoretical values for the buoyancy force, Fbuoy, and the velocity in the y-

direction of the microfluidic separation chamber due to the buoyancy, ubuoy, 

were calculated for liquid water droplets and ice crystals using Equations 1-3 

from the main paper. Viscosity and density values for the calculations were 

obtained using Equations S5-S8, S10, and S11 for Novec™ 7500 

Engineered Fluid, water, and ice, and a nominal water droplet diameter of 

115 m (equivalent to 796 pL) was selected. The change in Fbuoy with 

temperature for water droplets and ice crystals is shown in Fig. C3a, and 

demonstrates the greater buoyancy forces on the ice crystals across the full 

temperature range of 0 to −35 °C. The difference in Fbuoy between the water 

droplets and ice crystals (Fbuoy) is shown in Fig. C3b. This effect is further 

reflected in the ubuoy values, shown in Fig. C4a, which used the viscous drag 

coefficient, Cw, calculated as described in Equation S4 for the microfluidic 

separation chamber. This shows an increase in the ubuoy velocity of ice 

crystals in the y-direction of the separation chamber compared to the water 

droplets, illustrated in Fig. C4b as the difference in velocities (ubuoy) 

between the ice crystals and water droplets. The differences in Fbuoy and 

ubuoy between the water droplets and ice crystals provide the means by 

which the two species can be separated in continuous flow. The Fbuoy and 
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ubuoy values for water and ice are actually negative, indicating that they 

would each cream rather than sediment with respect to gravity, but are 

shown in Figs. C3 and C4 as positive values for simplicity. 

Figure C0.3 (a) The temperature-dependent change in theoretical 
buoyancy force in the y-direction, Fbuoy, for a water droplet of 115 

µm nominal diameter and an ice crystal (117.2-118.4 m diameter 
depending on the temperature, based on the volume increase 

upon the freezing of a 115 m water droplet) in Novec™ 7500 
Engineered Fluid. (b) The difference in Fbuoy between a water 
droplet and an ice crystal in Novec™ 7500 Engineered Fluid, 
based on the parameters in (a). 
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Figure C0.4 (a) The temperature-dependent change in the theoretical 

velocity in the y-direction, ubuoy, of a water droplet (115 m 

nominal diameter) and an ice crystal (117.2-118.4 m diameter 
depending on the temperature) in Novec™ 7500 Engineered Fluid. 
(b) The difference in ubuoy between a water droplet and an ice 
crystal in Novec™ 7500 Engineered Fluid, based on the 
parameters in (a).  
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C.8 Fabrication and setup of the microfluidic device 

C.8.1. Fabrication of the microfluidic device 

The fabrication of the microfluidic device was performed as described by 

Tarn et al. [24], using standard soft lithography procedures [24-26]. The chip 

design (see Fig. 1c in the main paper) was prepared using AutoCAD 2017 

software (Autodesk, Inc., San Rafael, CA, USA), from which an emulsion-on-

film photomask was printed by JD Photo Data (Hitchin, UK). A 140 m thick 

layer of MicroChem SU-8 2075 negative photoresist (A-Gas Electronic 

Materials Ltd., Rugby, UK) was spin-coated onto a silicon wafer (3” 

diameter, PI-KEM Ltd., Tamworth, UK) and baked on. The wafer was then 

exposed to ultraviolet (UV) light (210 mJ cm−2) through the film photomask 

using a mask aligner (Model 200, OAI). Following another baking step, the 

wafer was developed in photodeveloper solution (Microposit EC Solvent 

Developer, A-Gas Electronic Materials Ltd.), rinsed with isopropanol (Fisher 

Scientific, Loughborough, UK) and dried with nitrogen gas. The final SU-8 

structure of the microfluidic design on the silicon wafer was then profiled 

using a surface profiler (Dektak XT, Bruker), with the final thickness of the 

SU-8 structures being 140 ± 5 m in height. 

 Poly(dimethylsiloxane) (PDMS, Dow Corning® Sylgard® 184 Kit, 

Ellsworth Adhesives, East Kilbride, UK) was mixed in a 10:1 ratio of base 

elastomer to curing agent and poured onto the silicon wafer, before being 

degassed in a vacuum desiccator for 1-2 h and finally allowed to cure at 75 

°C for 1 h. The PDMS was then peeled off the silicon wafer and the 

microfluidic chips cut out using a scalpel. Access holes (1 mm Ø) were 

punched into the PDMS devices, which were then bonded to glass 

microscope slides (76 x 26 x 1 mm3, Academy Science Products, Kent, UK) 

following plasma treatment (Zepto Version B, Diener Electronic GmbH, 

Germany) and allowed to cure at 75 °C for 1 h (see Fig. 2a in the main 

paper). 

 

C.8.2. Setup and operation of the microfluidic device 

Polyethylene tubing (Smiths Medical, 0.38 mm inner diameter (i.d.) × 1.09 

mm outer diameter (o.d.), Harvard Apparatus, Biochrom Ltd., Cambridge, 

UK) was inserted into the inlet and outlet access holes of the PDMS 

microfluidic device (see Fig. 2a in the main paper). The inlet tubing had 
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syringe needles (26 G x 23 mm, Terumo Neolus®, VWR, Lutterworth, UK) 

inserted into their opposite ends to allow their connection to glass syringes 

(SGE, Sigma-Aldrich, UK), which were inserted into separate syringe pumps 

(PHD Ultra, Harvard Apparatus, Biochrom Ltd.). An aqueous sample of 0.01 

% w/w Snomax® Snow Inducer (Snomax International, purchased from SMI 

Snow Makers AG, Thun, Switzerland), a non-viable lyophilised form of 

Pseudomonas syringae bacteria, in a 1 mL glass syringe was pumped into 

the aqueous inlet channel at a flow rate of 0.1 L min−1 for droplet 

generation. A solution of 0.2 % w/w Pico-Surf™ 1 surfactant (prepared from 

a stock concentration of 5 % w/w, Sphere Fluidics Ltd., Cambridge, UK) in 

3M™ Novec™ 7500 Engineered Fluid (Fluorochem Ltd., Hadfield, UK) in a 1 

mL glass syringe was pumped into the droplet generation oil inlet at a flow 

rate of 25 L min−1 for the production of droplets. Novec™ 7500 Engineered 

Fluid, without the addition of surfactant, was pumped into the upper control 

flow inlet of the separation chamber at a flow rate of 113-115 L min−1. A 1 

mL syringe containing Novec™ 7500 Engineered Fluid was connected to the 

lower control flow inlet of the separation chamber and was used to assist in 

the flushing of the chamber with Novec™ 7500, but was thereafter not used 

although it remained in place on the syringe pump to prevent fluctuations in 

the flow regime from that inlet. The three outlet tubes connected to the outlet 

access holes of the separation chamber were fed into a waste vial 

containing a small amount of Novec™ 7500. 

 

C.8.3. Setup of the cold stage platform 

The microfluidic device, with the tubing connected, was turned sideways and 

inserted into a cold stage platform that had been also been turned sideways, 

such that the wide separation chamber was now oriented vertically (see Fig. 

2b in the main paper). The construction and operation of the cold stage 

platform and its associated temperature control unit are described in detail 

by Tarn et al. [24]. Briefly, the cold stage platform comprised three Peltier 

elements housed within a 3D printed body. Aluminium liquid heat 

exchangers located beneath each Peltier element allowed the flow of coolant 

(polyethylene glycol in water) through the system via a refrigerated 

recirculating chiller (WK 500, Lauda, UK) that was set to +5 °C. Polished 

aluminium plates were set upon each Peltier element and featured access 

holed that allowed the insertion of thermocouples. The Peltier elements and 

thermocouples were connected to a custom-built, four-channel temperature 
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control unit based on an Arduino Nano microcontroller (purchased from RS 

Components, Northants, UK) and bidirectional motor drivers (IBT_2 

BTS7960 43A High Power Motor Driver) controlled via a pulse width 

modulation (PWM) driver (PCA9685, Adafruit Industries, USA) that allowed 

the temperature of the aluminium plates to be controlled using a 

proportional-integral-derivative (PID) loop written in Python (Python Software 

Foundation, Delaware, USA). The electronics package in the temperature 

control unit featured improvements over the previous version used by Tarn 

et al. [24], with the wiring layout now integrated onto a printed circuit board 

(PCB; fabricated by Seeed Technology Co. Ltd., Shenzhen, People’s 

Republic of China), as shown in Fig. C5, rather than the hand-wired 

breadboard previously used, and featuring a universal serial bus (USB) 

isolator to reduce signal noise and interference. 

The three aluminium plates were located in serial such that the microfluidic 

chip lay across all three, allowing the first plate (37 mm × 33 mm) to control 

the temperature of the droplet generation region of the chip (at a setpoint of 

+3 °C), the middle plate (8 mm × 14 mm) to allow the freezing of water-in-oil 

droplets in the main channel (at a setpoint of −17 °C), and the final plate (37 

mm × 33 mm) to control the temperature of the separation chamber (at a 

setpoint of −8 °C). Whilst the previous version of the cold stage platform had 

required the underside of the microfluidic chips to be coated with a layer of 

chromium to aid visualisation via reflected light microscopy [24], here the 

aluminium plates were polished to render them reflective enough that 

chromium-coating of the chips was no longer required. 

The chip was held in place in the cold stage platform using clips, and a 

Perspex lid was placed on the stage to form a chamber around the chip, with 

the tubing fed through access holes to the syringe pumps and waste vials 

outside the chamber. The chamber was purged with compressed air that 

had been passed through a drying unit in order to remove moisture that 

would otherwise condense onto the chip upon cooling to sub-zero 

temperatures. A modular Navitar Zoom 6000® Lens System (Mengel 

Engineering, Denmark) with coaxial lighting provided by an OPT Machine 

Vision 3 W light-emitting diode (LED) light source (Mengel Engineering) ws 

used for visualisation of water droplets and ice crystals inside the 

microfluidic device. A Phantom Miro Lab 120 high-speed camera with PCC 

2.7 software (Vision Research Ltd., Bedford, UK) connected to the Navitar 

Zoom 6000® Lens System was used to record videos and take images of 



- 188 - 

188 

 

droplet/crystal separations at a frame rate of 25 fps. A photograph of the 

complete setup is shown in Fig. C6, while a close-up photograph of a 

microfluidic chip positioned over the three cold stage plates in the chamber 

of the platform can be seen in Fig. 2b in the main paper. 

 

Figure C0.5 Photograph of the updated electronics package of the 
temperature control unit used to power the Peltier elements in the 
cold stage platform. The new package included a printed circuit board 
(PCB) that contained the wiring layout, compared to the hand-wired 
breadboard of the previous platform [24], and also featured a USB 
isolator to reduce electrical noise and interference. 
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Figure C0.6 Photograph of the apparatus used to perform the 
continuous flow separation of liquid water droplets and ice 
crystals in a microfluidic device. The photograph highlights the cold 
stage platform in which the microfluidic chip was placed, the 
temperature control unit, syringe pumps, and the visualisation setup. 
The recirculating chiller used to pump coolant through the cold stage 
platform is out of shot, and was located beneath the bench.  
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C.9 On-chip temperature measurements 

On-chip temperature measurements of the Novec™ 7500 Engineered Fluid 

as it flowed through the microfluidic separation chamber were performed in 

order to inform calculations of Fbuoy and ubuoy, which incorporate the 

temperature-dependent fluid viscosity () and density (). The procedure 

was performed in a similar fashion to that described by Tarn et al. [24]. Two 

access holes (1 mm Ø) were punched into the chamber of the PDMS chip, 

one in the centre of the separation chamber and one above it (approximately 

¾ of the way up the chamber), prior to bonding the PDMS to a glass 

microscope slide. After bonding, the access holes allowed the insertion of 

two thermocouples (80 μm diameter, 5SRTC-TT-KI-40-1M series K-type, 

Omega Engineering Ltd., Manchester, UK) into the chamber, as shown in 

Fig. C7. 

The thermocouples were connected to a data logger (TC-08, ±0.025 °C, 

Pico Technology, St. Neots, UK), and had been calibrated against a 

platinum resistance thermometer (PRT; Netushin NR-141-N L10, RS 

Components, UK) connected to a custom-built Arduino-based temperature 

logger. This PRT, in turn, had been calibrated against a high-precision PRT 

probe (Model 5608, ±0.0013 °C, Fluke Corporation, USA) and temperature 

logger (Model 1560, Fluke Corporation, USA) that had been calibrated by 

the National Physical Laboratory (NPL, Teddington, UK). Following 

calibration, the thermocouples were estimated to have an uncertainty of 

±0.03 °C in their readings. Short sections of polyethylene tubing (0.38 mm 

i.d. × 1.09 mm o.d., Smiths Medical) were used as sleeves around the 

thermocouple wires and sealed with glue, allowing the thermocouples to be 

inserted easily into the access holes of the chip via the sleeves without any 

leakage.  

Temperature measurements in the separation chamber were taken under 

the same operating conditions (i.e. flow rates and cold stage plate 

temperatures) as were used in droplet separation experiments, albeit with 

only Novec™ 7500 Engineered Fluid being pumped into the chip (i.e. no 

aqueous sample, hence no droplets were formed during temperature 

measurements). The logged temperatures were corrected according to their 

calibration factors at each operating parameter, and the two temperature 

readouts (for the middle and top of the separation chamber) were averaged 

to obtain a typical temperature value for the chamber. 
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The variation in temperature in the measured region of the chamber under 

the operating conditions was no greater than 0.05 ± 0.03 °C, and this 

variation was largely caused by the duty cycle of the refrigerated 

recirculating chiller that was used to pump coolant through the cold stage 

platform. The difference in temperature between the two thermocouples was 

0.07 ± 0.07 °C at its greatest. At a separation cool plate set temperature of 

−8 °C, the temperature inside the measured region of the chamber was −4.8 

± 0.2 °C, and this was used to calculate experimental Fbuoy values from the 

experimental ubuoy, in addition to being used to calculate theoretical Fbuoy 

and ubuoy values for comparison. However, these calculations were made 

with the caveat that the temperature measurements taken at specific 

locations in the chamber were used to represent the chamber as a whole, 

while the temperatures at different parts of the chamber likely varied due to 

the multiple sources of fluids at different flow rates and temperatures 

entering the chamber. 

 

Figure C0.7 Setup of the microfluidic chip for on-chip temperature 
measurements of the Novec™ 7500 Engineered Fluid as it flowed 
through the separation chamber. Two K-type thermocouples were 
inserted into the chamber, one at the midpoint and one slightly above it, 
and the two readings were averaged to indicate the temperature in the 
chamber where the water droplets and ice crystals would pass.  
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C.10 Properties of low viscosity silicone oil 

The properties of low viscosity silicone oil (kinematic viscosity of 5 cSt at 25 

°C) were explored theoretically as a potential means of improving the 

separation of water droplets and ice crystals in future iterations of the 

microfluidic sorting platform. Kamijo and Derda [28] used a low viscosity 

silicone oil, DM-FLUID-5cs (polydimethylsiloxane (PDMS); (C2H6OSi)n) from 

Shin-Etsu Chemical Co., Ltd., containing 1 % v/v KF-6017 silicone-based 

emulsifier (Shin-Etsu Chemical Co., Ltd.) to assist in their static, cuvette-

based method of separating water droplets and ice crystals (1 L volume, 

≈1.24 mm diameter) via buoyancy forces. Their system comprised a cushion 

fluid of Novec™ 7500 Engineered Fluid beneath a layer of DM- FLUID-5cs 

silicone fluid. Water droplets, having a density between the Novec™ 7500 

and DM- FLUID-5cs, remained at the biphasic interface between the two 

fluids, but when droplets froze the resultant ice crystals had a density lower 

than both fluids, causing them to float to the top of the silicone oil and thus 

achieving separation. 

 This strategy could potentially be adapted to the continuous flow 

microfluidic sorting platform by pumping a low viscosity silicone oil, such as 

DM-FLUID-5cs, into the top of the separation chamber instead of Novec™ 

7500, as illustrated in Fig. C8. Assuming the ice crystals could cross the 

interface from the Novec™ 7500 into the silicone oil (surface tension of DM-

FLUID-5cs = 19.7 mN m−1 at 25 °C [29]), which may require the addition of a 

surfactant such as KF-6017 in the silicone oil phase, then the ice crystals 

could continue to migrate through the silicone oil in the y-direction whilst the 

water droplets would be unable to pass into the silicone oil and so remain at 

the same height throughout the chamber, thus potentially increasing the 

separation distances and efficiencies. 
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Figure C0.8 Schematic showing the principle of employing a low 
viscosity silicone oil as the upper control flow in the separation 
chamber of the microfluidic device. Here, water droplets would be 
unable to pass from the Novec™ 7500 Engineered Fluid into the 
silicone phase due to their being denser than the silicone oil, thereby 
providing a barrier to their migration in the y-direction. Ice crystals, on 
the hand, would have a lower density than the silicone oil and so would 
continue to travel in the y-direction, thus achieving separation. 

 

In a similar manner to above, in which the theoretical Fbuoy and ubuoy values 

of water droplets and ice crystals in Novec™ 7500 Engineered Fluid were 

calculated, here the theoretical values for water and ice in DM-FLUID-5cs, 

as a representative low viscosity silicone oil, were calculated based on data 

provided by the manufacturer [29]. The technical data sheet only provides a 

handful of data points for the kinematic viscosity and density of the silicone 

fluid below 0 °C, and not always at corresponding temperatures, but these 

data points were used to calculate the absolute viscosity for a limited 

number of temperatures using Equation S5. Fits were then applied to the 

available data points in order to approximate the absolute viscosity, s, and 

density, s, of DM-FLUID-5cs over a temperature range of 0 to −35 °C. 

An Arrhenius-type equation was generated for the absolute viscosity, s, by 

first plotting the available data in terms of ln(s) vs 1/T, with temperature in 

units of K, in order to obtain parameters for A (from the intercept) and B 

(from the slope). Thus, s (kg m−1 s−1) could be calculated for temperature T 

(K) as shown in Equation S12: 

𝜂s = 𝐴 e𝐵/𝑇        (S12) 

where A = 7.935 × 10−6 kg m−1 s−1, and B = 1889.608 K. A plot of DM-FLUID-

5cs viscosities calculated using Equation S12 is shown in Fig. C9a alongside 

the viscosities of water and Novec™ 7500. 
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A linear fit was applied to the available density data, s (kg m−3), for the DM-

FLUID-5cs fluid for temperature T (°C), as shown in Equation S13: 

𝜌𝑠 = −0.98237 𝑇 + 939.8938      (S13) 

A plot of the DM-FLUID-5cs density calculated using Equation S13 is shown 

in Fig. C9b alongside the densities of water, ice, and Novec™ 7500, and 

clearly demonstrates how the density of a low viscosity silicone oil such as 

DM-FLUID-5cs sits between the densities of water and ice for the 

temperature range shown. 

Figure C0.9 The properties of DM-FLUID-5cs, as a representative low 
viscosity silicone oil, calculated by fitting the data provided by the 

manufacturer [29]. (a) The viscosity, s, of DM-FLUID-5cs with 

temperature, and (b) the density, s, of DM-FLUID-5cs with 
temperature. The values of water, ice, and Novec™ 7500 Engineered 
Fluid are shown for comparison, using the data from Figs. C1 and C2. 

 

The calculated s and s values were used to estimate the Fbuoy and ubuoy 

values of ice crystals and water droplets in DM-FLUID-5cs using Equations 

1-3 in the main paper, assuming an initial water droplet diameter of 115 m 

that would yield ice crystals of 117.2-118.4 m. depending on the 

temperature). The Fbuoy results are shown in Fig. C10a, while the differences 

between the ice crystals and water droplets, ΔFbuoy, are shown in Fig. C10b, 

with the results for ice crystals and water droplets in Novec™ 7500 also 

shown for comparison. The results in Fig. C10 demonstrate that the Fbuoy 

forces in DM-FLUID-5cs are orders of magnitude lower than in Novec™ 

7500, and, importantly, even the ΔFbuoy values between a water droplet and 

ice crystal are much smaller in DM-FLUID-5cs compared to Novec 7500™. 
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Notably, the Fbuoy values for a water droplet in DM-FLUID-5cs are below 0 

nN, thus reaffirming that water droplets would sediment in DM-FLUID-5cs. 

Similar trends can be seen in the ubuoy values for water droplets and ice 

crystals, as shown in Fig. C11a, together with the Δubuoy values between the 

two shown in Fig. C11b. The results show that the water droplets and ice 

crystals would move far more slowly in DM-FLUID-5cs compared to being in 

Novec™ 7500, and the ubuoy values in DM-FLUID-5cs would be far smaller 

than in Novec™ 7500, due to both the smaller Fbuoy and the high viscosity 

of DM-FLUID-5cs. The water droplets are shown as having a velocity below 

0 m s−1, indicating that they would sediment in the y-direction rather than 

creaming when suspended in DM-FLUID-5cs, but in the context of the 

proposed experiment (see Fig. C8), the water droplets would not be able to 

enter the silicone phase in the first place based on their respective densities. 

Therefore, even given the fact that in a continuous sorting system the water 

droplets should be unable to cross into the silicone phase, the velocity of the 

ice crystals in the y-direction in the silicone oil may be too low (up to 8 m 

s−1) to achieve a better separation than when only using Novec™ 7500, or to 

achieve a reasonable separation at all, at least without changes to the chip 

and the method. For example, the silicone oil flow rate could be greatly 

decreased in order to provide much longer residence times of the ice 

crystals in the separation chamber, thus allowing the crystals to migrate 

further in the y-direction, although this would impact on the throughput. A 

further issue could be that, given that the current microfluidic device is 

prepared from PDMS, there may also be issues with trying to use a PDMS 

fluid in the chip, though this could be alleviated by fabricating the device 

from other materials. Thus, although the use of silicone oil to enable a 

separation, as envisaged in Fig. C8, may be a viable strategy, further work 

would be required to ensure that ice crystals could migrate far enough in the 

y-direction to achieve a separation given the low ubuoy velocities. Given this, 

continuing to use Novec™ 7500 as the only oil in the system is likely still the 

better strategy for the platform going forward. 
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Figure C0.10 (a) The theoretical buoyancy forces, Fbuoy, on a water 
droplet and an ice crystal in Novec™ 7500 Engineered Fluid 
fluorinated oil (solid lines) and DM-FLUID-5cs low viscosity 
silicone oil (dashed lines). The water droplet was assumed to have 

a diameter of 115 m, while the ice crystal had a temperature-

dependent diameter of 117.2-118.4 m based on the freezing of a 

115 m diameter water droplet. The negative values for the water 
droplets in DM-FLUID-5cs indicate that the droplets would 
sediment in this silicone oil phase instead of creaming. The data 
for water and ice in Novec™ 7500 are the same as shown in Fig. 
C3. (b) The difference in theoretical Fbuoy values between a water 
droplet and ice crystal in Novec™ 7500 Engineered Fluid 
fluorinated oil and DM-FLUID-5cs silicone oil. 
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Figure C0.11 (a) The theoretical velocities in the y-direction, ubuoy, of a 
water droplet and an ice crystal in Novec™ 7500 Engineered Fluid 
fluorinated oil (solid lines) and DM-FLUID-5cs silicone oil (dashed 
lines), based on the same parameters described in Fig. C10 for a 

water droplet of 115 m diameter. The data for water and ice in 
Novec™ 7500 are the same as shown in Fig. C4. (b) The difference 
in theoretical ubuoy values between a water droplet and ice crystal 
in Novec™ 7500 Engineered Fluid fluorinated oil and DM-FLUID-
5cs silicone oil.  
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