
A Framework for the Runtime Analysis
of Algorithm Configurators

George Thomas Hall

The University of Sheffield
Faculty of Engineering

Department of Computer Science

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

September 2021

Declaration

I, George Thomas Hall, confirm that the Thesis is my own work. I am aware of the Univer-
sity’s Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This
work has not been previously been presented for an award at this, or any other, university.

George Thomas Hall
September 2021

Abstract

Despite the widespread usage of algorithm configurators to tune algorithmic parameters,
there is still little theoretical understanding of their performance. In this thesis, we build
a theoretical foundation for the field of algorithm configuration to enable the derivation
of specific statements regarding the performance of algorithm configurators. We use the
devised framework to prove tight bounds on the time required by specific configurators to
identify the optimal parameter values of randomised local search and simple evolutionary
algorithms for standard benchmark function classes. Our framework allows us to derive
insights regarding the impact of the parameters of algorithm configurators, in particular the
cutoff time and performance metric used to compare configurations, as well as to characterise
parameter landscapes. In the general case, we present necessary lower bounds and sufficient
upper bounds on the cutoff time if the time taken to reach a specific target fitness value is
used as the performance metric. For specific simple algorithm configuration scenarios, we
show that our general lower bounds are tight and that the same optimal parameter values
can be identified using smaller cutoff times if the performance metric is instead taken to be
the fitness value obtained within the available time budget, which also reduces the required
amount of problem-specific information. Our insights enable the design of mutation operators
that are provably asymptotically faster for unimodal and approximately unimodal parameter
landscapes and slower by only a logarithmic factor in the worst case. In addition to our
contributions to the theory of algorithm configuration, the mathematical techniques derived
in this thesis represent a substantial improvement over the state-of-the-art in the field of
fixed-budget analysis.

Acknowledgements

Completing a PhD is far from a solitary affair. I would like to take this opportunity to thank
the many people whose support has helped me over these past few years.

First, I must thank my supervisor, Pietro Oliveto. Pietro has always gone above and
beyond in his efforts to guide me, and in doing so I am sure that he will have turned me into
a better researcher. His eye for detail and desire for rigour when I would have settled for less
will undoubtedly hugely improve everything that I produce after my PhD. He has always
been willing to offer support whenever I need it, and for this I am immensely grateful.

My second supervisor, Dirk Sudholt, has also been incredibly helpful throughout this
process. Dirk has been exceedingly generous with both his time and expertise, joining the
vast majority of my research meetings and co-authoring all three publications from my PhD.
I am sure that the work produced during my PhD is much stronger thanks to Dirk’s continued
input over the last few years.

I am also indebted to Zemin Ning, with whom I worked several years ago. Working with
Zemin was my first serious introduction to the world of research, and had he not shown me
the fun to be had and suggested that I pursue an academic career for myself then I probably
would not have started down the path that culminated in writing this thesis.

I am very grateful to Pan Peng and Manuel López-Ibáñez for devoting a significant
portion of their time to reading my thesis and examining me on it. They have helped to
make it stronger thanks to our discussions in my viva. Thanks must also go to John Clark
for being my thesis committee chair over the course of my PhD and for asking thought-
provoking questions whenever we met, often suggesting perspectives on topics that we had
not considered before.

The wider Algorithms Group at Sheffield – Ali, Andrei, Daniel, Dirk, Dogan, Donya,
Edgar, Mario, Marios, Pan, Pietro, and Sebastian – fostered a friendly collegiate atmosphere
which was a pleasure to be a part of. Extra thanks must be extended to those with whom I
attended conferences: thank you for all the happy memories at a number of foreign locales!

I would also like to thank the members of my office at Regent Court for the sociable and
enjoyable atmosphere that they created, although I will not name particular people here to
avoid missing anyone by accident!

viii

I am grateful to the friends I made along the way for all the happy memories. In particular,
I would like to mention the people I joined for lunch and in the pub – Abdullah, Adam, Ali,
Alison, Andy, Ben, Dave, Donya, George, Jose, Mario, Mat, Michael, Neil, Owain, Phil,
Tom, and Wil. On many days, I only made the commute to Sheffield in order to join you for
lunch or in the pub, which hopefully speaks to my enjoyment your company.

I have also spent a significant proportion of this process outside of Sheffield and so my
thanks also go to my friends from earlier in life for their support in this pursuit and for
providing such nice ways to spend my time when I was not working. Particular thanks must
go to Adam, Glen, Josh, and Tom, with whom I spent almost all of my in-person social time
during the restriction-heavy final days of my PhD.

Needless to say, I am immensely grateful to my family, both immediate and extended,
for their continued support throughout this process and the interest that they have shown in
what I have been up to. Naturally, particular thanks must go to my parents, Lisa and Martin,
and my sister, Amy, for their unwavering support throughout my life. I hope that you all feel
responsible for the parts that you have each played in this endeavour.

Finally, I thank my girlfriend Amelia for her immense support every day of this process.
She has been there to hear my problems no matter how many times she has heard them
before, tolerated my at times excessive working hours without complaint, and has done a
fantastic job of keeping my morale up during some challenging times. Writing at the end of
a very strange 18 months, I cannot think of anyone with whom I would rather have been so
isolated.

Table of contents

Nomenclature xv

I Introduction and Background 1

1 Introduction 3
1.1 Overview and Motivation . 3
1.2 Structure of this Thesis . 12
1.3 Contributions of this Thesis . 15
1.4 Underlying Publications . 17

2 Algorithm Configuration 19
2.1 Introduction . 19
2.2 Randomised Search Heuristics . 19

2.2.1 Types of Parameters . 21
2.3 The Algorithm Configuration Problem . 22
2.4 Algorithm Configurators . 23
2.5 Algorithm Configuration Evaluation . 25

2.5.1 Performance Metrics . 27
2.5.2 Cutoff Time . 29

2.6 Configuration Evaluation Methodologies 31
2.6.1 Static Runs . 31
2.6.2 Dynamic Runs . 32
2.6.3 Surrogate Models (No Runs) . 34

2.7 Configuration Generation Methodologies 35
2.7.1 One-shot methods . 35
2.7.2 Black-box methods . 35
2.7.3 Experimental design . 36

x Table of contents

2.7.4 Surrogate model-based techniques 37
2.8 Detailed Algorithm Configurator Descriptions 38

2.8.1 ParamILS . 38
2.8.2 Iterated F-Race and irace . 40
2.8.3 SMAC . 41
2.8.4 Structured Procrastination . 42
2.8.5 Other Non-Incumbent-Driven Configurators 44

2.9 Theory of Algorithm Configuration . 46
2.9.1 Generalisation Analysis . 46
2.9.2 Convergence Analysis . 49
2.9.3 Worst-Case Performance Analysis 50

2.10 Conclusions . 56

3 Mathematical Tools, Configurators, Target Algorithms, Problems Classes 57
3.1 Introduction . 57
3.2 Mathematical Tools . 58

3.2.1 Runtime Analysis . 58
3.2.2 Probability Theory . 59
3.2.3 Useful Inequalities . 62
3.2.4 Tail Inequalities . 63
3.2.5 Random Walks and Gambler’s Ruin 65
3.2.6 Drift Analysis . 67
3.2.7 Black-Box Complexity . 69
3.2.8 Fixed-Budget Analysis . 70

3.3 A Simple Algorithm Configurator: ParamRLS 72
3.3.1 The ±{1, . . . ,m} Local Search Operator 73
3.3.2 Evaluation of Configurations . 75

3.4 Target Algorithms . 76
3.4.1 Randomised Local Search . 77
3.4.2 The (1+1) EA . 78
3.4.3 Scaling and Probabilistic Smoothing (SAPS) 79

3.5 Target Problem Classes . 79
3.5.1 RIDGE . 80
3.5.2 ONEMAX . 82
3.5.3 LEADINGONES . 84

3.6 Conclusions . 86

Table of contents xi

II Analysis of Algorithm Configurators 87

4 Fixed-Target Performance Metric Requires Appropriate Cutoff Times 89
4.1 Introduction . 89
4.2 A Lower Bound on the Necessary Cutoff Time 90
4.3 An Upper Bound on the Sufficient Cutoff Time 92
4.4 Conclusions . 95

5 On the Configuration of the Neighbourhood Size of Randomised Local Search 97
5.1 Introduction . 97
5.2 On the Configuration of RLSk for RIDGE* 98

5.2.1 The Optimisation Time of RLSk for RIDGE* is Tightly Concentrated 99
5.2.2 Configurators Using the Optimisation-Time Performance Metric

Require Quadratic Cutoff Times 101
5.2.3 ParamRLS-F can Identify the Optimal Neighbourhood Size Using

Arbitrary Cutoff Times . 103
5.3 On the Configuration of RLSk for ONEMAX* 108

5.3.1 Fixed-Budget Analysis of RLSk and ONEMAX* 109
5.3.2 Optimisation-Time Requires Superlinear Cutoff Times 122
5.3.3 ParamRLS-F Identifies the Optimal Neighbourhood Size with Arbi-

trary Cutoff Times . 123
5.4 Conclusions . 126

6 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm129
6.1 Introduction . 129
6.2 On the Configuration of the (1+1)χ EA for RIDGE 130

6.2.1 Analysis of the (1+1)χ EA for RIDGE 131
6.2.2 Optimisation-Time Requires at Least Quadratic Cutoff Times . . . 135
6.2.3 Linear Cutoff Times Suffice for Best-Fitness 136

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 138
6.3.1 The Parameter Landscape of the (1+1)χ EA for LEADINGONES is

Unimodal Under Best-Fitness . 139
6.3.2 Any Configurator Using the Optimisation-Time Performance Metric

is Blind for κ ≤ 0.772075n2 . 152
6.3.3 Best-Fitness Identifies the Optimal Mutation Rate Independent of

the Cutoff Time . 153
6.4 Conclusions . 154

xii Table of contents

7 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality 155
7.1 Introduction . 155
7.2 The Harmonic Mutation Operator . 156
7.3 General Lower Bounds for Default Mutation Operators 158
7.4 Performance of the Harmonic Mutation Operator 160
7.5 Experimental Analysis . 163

7.5.1 Experimental Setup . 164
7.5.2 Results . 167

7.6 Conclusions . 171

III Conclusions 173

8 Conclusions and Outlook 175
8.1 Summary of Work . 175
8.2 Future Work . 178

References 181

Appendices 191

List of Algorithms

1 Simulated annealing . 20
2 The (µ +λ) EA . 20
3 ParamILS . 39
4 IterativeFirstImprovement . 40
5 irace . 40
6 SMAC . 41
7 Structured Procrastination . 43
8 LEAPSANDBOUNDS . 44
9 CAPSANDRUNS . 45
10 Structured Procrastination with Confidence 46

11 ParamRLS . 74
12 ParamRLS-F . 76
13 ParamRLS-T . 77
14 RLSk . 78
15 The (1+1)χ EA . 78

16 ParamHS . 157

Nomenclature

Configurator Symbols

κ The cutoff time.

r The number of runs per configuration comparison.

Mathematical Objects and Abbreviations

N The natural numbers: {1,2, . . .}.

N0 The natural numbers and 0: {0}∪N.

R The real numbers.

R+ The positive real numbers.

R+
0 The non-negative real numbers.

w. o. p. with overwhelming probability.

u.a.r. uniformly at random.

Other Abbreviations

LO LEADINGONES.

xi The i-th bit of the bit string x.

Part I

Introduction and Background

Chapter 1

Introduction

1.1 Overview and Motivation

When faced with a new computational problem, an algorithm developer may choose to
design an algorithm with good performance guarantees for the specific application. However,
this approach requires a good understanding of the problem at hand and the availability of
resources (e.g. time and money) required for the design of the problem-specific algorithm.

General-purpose algorithms, such as randomised local search [60], evolutionary algo-
rithms [46], and simulated annealing [77] provide an alternative approach. Whilst they have
not been designed with performance guarantees for specific problem classes, they have the
advantage that the user need not have an in-depth understanding of the problem for their
application. In the case of randomised search heuristics, typically only two decisions must be
made: how to represent solutions to the problem and how to measure the quality of solutions
(i.e. a fitness function).

However, it is well understood that the performance of general-purpose algorithms for
specific problems is very sensitive to the settings of their often numerous parameters [65,
80, 110]. According to the no free lunch theorem, optimising these parameters for one
problem necessarily leads to degraded performance for others [118]. It is therefore often
crucial to choose appropriate parameter values (parameter configurations1) when applying a
general-purpose algorithm to a problem in order to achieve efficient optimisation (i.e. the
identification of high quality solutions in a short amount of time).

In the past, it has been common practice to set the values of these parameters manually,
either by evaluating a large number of configurations and identifying the one with the best
performance, or by using parameter values that have performed well in similar application

1Throughout this thesis we often abbreviate this to “configurations”.

4 Introduction

contexts [45]. However, the former approach is time-consuming and error prone, whilst the
latter comes with the risk that the chosen values will not work well in the new setting. Manual
approaches may also be biased by the human element involved (reducing reproducibility)
and are likely to lead to only a small number of configurations being evaluated (with the
evaluations themselves using only a limited set of problem instances) [91].

According to Adenso-Díaz and Laguna, “there is anecdotal evidence that about 10% of
the total time dedicated to [the] designing and testing of a new heuristic or metaheuristic is
spent on development, and the remaining 90% is consumed by fine-tuning parameters” [1].
Knuth tells us of the difficulty of selecting good parameter values for SAT solvers: “Parameter
optimization for general broad-spectrum use is a daunting task, not only because of significant
differences between species of SAT instances but also because of the variability due to random
choices when solving any specific instances. It’s hard to know whether a change of parameter
will be beneficial or harmful, especially when running times are so highly erratic” [80].

Despite the importance of choosing good parameter values and the difficulty of doing
so, it was only at the end of the last century that the issue began to be seriously addressed
by the scientific community [22]. This resulted in methods such as parameter control [75],
where parameter values are updated dynamically, and hyper-heuristics [19], where entire
algorithms are evolved during the optimisation process.

An increasingly popular method to select good parameter configurations of a target
algorithm is to automate the aforementioned manual approach, thereby treating the identifi-
cation of good parameter configurations as an optimisation problem which can be tackled
using established techniques. Such automated methods are called algorithm configurators
(alternatively, parameter tuners), and the task that they address is that of algorithm configu-
ration (alternatively, parameter tuning)2. Popular examples of algorithm configurators are
ParamILS [62], irace [91], and SMAC [64]. Hutter et al. list three advantages of automated
algorithm configuration over the manual approach [62]:

• It facilitates the development of complex algorithms with many parameters since it
eliminates the time-consuming task of setting them wisely.

• It allows algorithms to be used in domains where the user does not have prior knowl-
edge of the impact of each parameter on the performance of the algorithm. Even when
the user has some knowledge about the problem, it is still simpler to configure an
algorithm automatically rather than manually.

2In this thesis, we use the terms “parameter tuning” and “algorithm configuration” interchangeably, and do
likewise with “parameter tuner” and “algorithm configurator”. Hoos, however, expresses a preference to use
“parameter tuning” when there are few parameters and they are mostly real-valued and “algorithm configuration”
when there are many parameters and they are not necessarily real-valued [59].

1.1 Overview and Motivation 5

• It allows algorithms to be compared more fairly. If an algorithm outperforms its
competitors after all have been configured then it is stronger evidence that it is genuinely
better for the problem, rather than simply having better default parameter values.

This approach has now become the standard, and automated algorithm configurators
have successfully been used to compare algorithms in numerous settings, for example SAT
solving [65].

Despite the widespread usage of algorithm configurators such as irace and SMAC in
recent years (for example, see [91] for an extensive list of contexts where irace has been
applied), there is little rigorous understanding of their performance, both in terms of the
time that they require to identify good parameter values and the expected quality of the
parameter values that they return. In addition, there are no rigorous investigations of how the
outcome is affected by the settings of the configurator itself. Thus there is no guidance for
practitioners on how to set up the configurator or for how long to run it before it is likely to
return satisfactory parameter values. Furthermore, due to the lack of rigorous investigations
into the performance of algorithm configurators, it is unclear when the sophisticated features
of state-of-the-art configurators are necessary or when simpler (potentially faster) approaches
would suffice. Hence practitioners may be using unnecessarily complex tuners at the expense
of efficiency.

The only existing runtime analyses for algorithm configurators provide lower bounds
on the time required to identify near-optimal configurations in the worst case [78, 79, 115,
116]. However, such analyses do not allow the estimation of the extent to which algorithm
configurators are successful in the typical optimisation scenarios encountered in practice,
and thus their use to practitioners is limited. Importantly, since such analyses lead to the
design of configurators that are tailored to have near-optimal performance in the worst case,
they do not contribute to the understanding of the reasons behind the numerous successes
of widely-used configurators such as irace and SMAC. In this thesis, we build a theoretical
foundation to enable the derivation of specific statements regarding the performance of
algorithm configurators for specific algorithm configuration scenarios. This framework
highlights the reasons for good and bad performance of algorithm configurators by providing
rigorous statements about the expected time required by given configurators to identify the
optimal parameter values of algorithms for specific problem classes. Such understanding
provides insights that can guide the design of algorithm configurators.

Given a problem class and target algorithm, the aim of an automated algorithm configu-
rator is to identify the parameter values that optimise performance of the algorithm for the
problem class. Naturally, which parameter values are optimal (i.e. optimise the performance
of the target algorithm) depends on the measure used to evaluate the performance of the

6 Introduction

target algorithm. For this reason, it is necessary to use a performance metric, the choice
of which depends on what is most valuable to the user (for example minimising the time
taken to reach a target solution quality, or maximising the solution quality obtained within
a time budget). Note that different choices of performance metric may result in different
configurations being optimal. A natural performance measure is the time required to identify
the global optimum. We refer to such a performance metric as Optimisation-Time. Under this
metric, the optimal configuration is the set of parameter values that minimises the (usually
mean) time required by the target algorithm to identify the global optimum of the problem
class instances. However, Optimisation-Time is rarely a relevant performance measure in
practical applications, where the expected runtime to reach the global optimum is often
prohibitively large. In such cases, more sensible measures of algorithm performance may
be the expected time required to reach a solution of a minimal acceptable quality (i.e. an
approximate solution) or the solution quality that can be identified within an available time
budget. In this thesis, we refer to these performance metrics as Fixed-Target and Best-Fitness,
respectively. We will evaluate the performance of algorithm configurators that use the three
most common performance metrics (Optimisation-Time, Fixed-Target, and Best-Fitness) and
provide relationships between the settings of the algorithm configurator and the time required
to identify the corresponding optimal configuration.

Since it is rarely the case that the performance of each configuration is known ahead of
time, it is usually necessary to measure it empirically. This gives rise to two main issues. First,
the distribution of the instances of the problem class may be unknown, making it challenging
to design a representative training set (i.e. the number of problem instances that may be
encountered in practice is prohibitively large). Second, if a solution of minimal quality is
sought (i.e. the Fixed-Target performance metric is used), it is unlikely that all configurations
will be able to identify a solution of this quality efficiently (i.e. in polynomial time). Thus it is
necessary to use a cutoff time to control for how long a configuration is run when evaluating
its performance for a problem instance. If the time taken to reach a given solution quality is
employed as the performance metric, then this prevents slow configurations (i.e. that require
at least exponential time to reach the target) from making the entire configuration process
require exponential time. On the other hand, when using solution quality as the performance
metric (i.e. Best-Fitness), then the cutoff time can simply be set to the time budget for which
the user is willing to run their algorithm in practice.

In the algorithm configuration literature, there is no rigorous guidance on how to choose
the cutoff time and performance metric. The cutoff time is typically set arbitrarily with
little justification of the chosen value. Furthermore, there are no rigorous studies indicating
what constitutes a “correct” value for the cutoff time and the price to be paid for choosing

1.1 Overview and Motivation 7

an “incorrect” value. The first aim of this thesis is to provide statements regarding how to
choose the cutoff time with respect to the performance metric. Whilst for the Best-Fitness
performance metric the choice is natural (i.e. the time for which the user will run their tuned
algorithm), we provide rigorous necessary lower bounds and sufficient upper bounds on
the cutoff times required when Fixed-Target is used in general. In particular, we prove
that any algorithm configurator that uses Fixed-Target requires a cutoff time that is at least
large enough to allow at least one configuration to reach the target solution quality of at
least one training instance with overwhelming probability (i.e. the probability that it fails
to do so decreases exponentially in the problem size). If the cutoff time is smaller than
this, then the configurator will be blind (i.e. it will behave as if all configurations have the
same performance and hence return a random configuration). Whilst this result may not
appear particularly surprising, it allows us to prove that, if Optimisation-Time is used, then a
cutoff time of at least (n lnn)/2 is necessary to configure any unary unbiased algorithm (i.e.
an algorithm that perturbs all genes with equal probability) for any optimisation problem
with up to exp(

√
n/ log2 n) optima (where n is the problem size), otherwise the tuner will be

blind. On the other hand, if the optimal configuration reaches the optimum before every other
configuration with overwhelming probability for each instance of the problem class, then a
cutoff time large enough to allow this configuration to do so is sufficient for any configurator
that samples any given configuration with some positive probability (e.g. ParamILS when
configuring an algorithm with only one parameter) to identify this configuration in finite
time. We will show that this sufficient condition is tight even for a very simple benchmark
problem class called RIDGE, whilst a quadratic cutoff time is necessary for a large range of
target solution qualities when using the Fixed-Target performance metric (i.e. a considerably
larger cutoff time is required compared to the (n lnn)/2 lower bound that holds in general).

These analyses thus highlight the substantial negative impact of choosing an inappropri-
ately small cutoff time when using the Fixed-Target performance metric and demonstrate
the danger of employing this performance metric in the absence of the problem-specific
knowledge necessary to set it appropriately. This limits the applicability of Fixed-Target in
scenarios where algorithm configurators are commonly applied, where the user may have
limited or even no knowledge of the problem at hand (“black-box” optimisation).

We then provide the first indication that choosing the performance metric most similar
to the goal of the user may not be optimal, proving that the configuration with the smallest
expected optimisation time can also be identified by using solution quality as the performance
metric (i.e. Best-Fitness) and breaking ties between configurations by favouring the one
that made progress least recently. This disproves an assumption implicit in the algorithm
configuration literature that the best choice of performance metric is the one that corresponds

8 Introduction

to the goal of the user (e.g. if the goal of the user is to minimise the expected time to reach a
target solution quality then they should use this quantity as the performance metric).

We then turn our attention towards the analysis of algorithm configurators for specific
configuration scenarios, which will allow us to make statements regarding the performance of
algorithm configurators for different classes of target algorithm and problems. In particular,
assuming that a given configurator is able to identify the optimal configuration, we answer
the question of how long it is necessary to run it for it to do so. We follow the framework
which was successfully used to conduct the initial theoretical analyses of randomised search
heuristics for function optimisation [69]. Hence our aim is to identify a minimal algorithm
configurator that captures the essential characteristics of the more complex ones that are
successfully employed in practice. As was the case with the foundational theoretical analyses
of randomised search heuristics, analysing the behaviour of this simple configurator will
allow us to build a collection of techniques that can be used to analyse increasingly realistic
configurators.

The minimal configurator that we design for our purposes is a simplified version of
ParamILS. We call it ParamRLS since it searches the space of parameter values using ran-
domised local search, rather than the iterated local search employed by ParamILS. ParamRLS
captures the configuration generation / evaluation loop at the heart of any algorithm con-
figurator and thus it is reasonable to assume that positive results for ParamRLS imply that
more sophisticated configurators would also succeed. If ParamRLS uses the Fixed-Target
performance metric then we call it ParamRLS-T, and if it uses the Best-Fitness performance
metric and breaks ties in favour of the configuration that made progress least recently then
we call it ParamRLS-F.

We analyse the performance of ParamRLS on a range of increasingly complex con-
figuration scenarios. Two characteristics of a target algorithm are likely to simplify its
configuration (and the analysis thereof). First, the configuration of algorithms with only
a single parameter is likely to be simpler to analyse than the configuration of algorithms
with multiple parameters as potentially complex inter-parameter interactions will not occur.
Second, the configuration of discretely-valued parameters is likely to be simpler to analyse
than the configuration of continuously-valued parameters since the difference between the
performance of continuous parameters can be made arbitrarily small, whereas this is not
usually the case for discrete parameters. Since it satisfies both these criteria, we first analyse
the configuration of the neighbourhood size k of randomised local search (RLSk).

In order to simplify our theoretical work further, when selecting problem classes for
which to configure a target algorithm it is desirable that the performance of a configuration
be the same for each member of the class. This simplifies the analysis as we need not design

1.1 Overview and Motivation 9

a representative training set nor analyse the performance of the target algorithm for each
member of the problem class. All problem classes considered in this thesis satisfy this
criterion.

We first analyse the configuration of RLSk for the standard RIDGE benchmark problem
class. This is a natural first configuration scenario to consider since the amount of progress
made by a configuration in each iteration is independent of the current solution quality, and
thus the neighbourhood size that maximises solution quality within a given time budget will
also do so for any other. In particular, we show that the optimal neighbourhood size under
each considered performance metric is k = 1. Hence our question is whether ParamRLS can
identify the optimal parameter value for RLSk for this simple problem class, and, if so, what
is the expected time required for it to do so. We rigorously prove that if the Best-Fitness
performance metric is used then ParamRLS will return k = 1 regardless of the cutoff time
within an expected quadratic (in the number of parameter values) number of configuration
comparisons in the worst case, and within an expected linear number of comparisons for large
enough cutoff times. We prove that even the smallest possible cutoff time of 1 is sufficient
for ParamRLS-F to return k = 1, provided that each configuration is run n3/2 times in each
evaluation, and that for cutoff times of at least n1+ε , for any constant ε > 0, a single run per
evaluation is sufficient to do so (this cutoff time guarantees that, in a comparison between
two configurations, the one with k closer to 1 will win with overwhelming probability). Thus
ParamRLS-F is not only able to configure RLSk with respect to the Best-Fitness performance
metric for any cutoff time, but is also able to configure it with respect to Optimisation-
Time using cutoff times that are up to a quadratic factor smaller than that required by
any configurator that actually uses this metric. On the other hand, we also prove that all
configurators that use Optimisation-Time are blind for cutoff times of at most (1− ε)n2, for
any constant ε > 0, which constitutes a lower bound on the necessary cutoff time for any such
configurator that is larger than the general lower bound of (n lnn)/2 proved earlier. We prove
that for large enough cutoff times ParamILS is able to identify the optimal configuration
within a linear number of comparisons after the conclusion of its initialisation procedure.

In practice, however, the configuration that maximises progress towards the optimum may
change during execution. We therefore next consider a problem class with the more realistic
characteristic that the performance of each neighbourhood size is no longer independent
of the current solution quality. For this purpose, we analyse the configuration of RLSk for
the standard ONEMAX problem class, where the fitness of a bit string is the number of
bits which match a hidden optimal string. When k is restricted to the set {1,2,3,4,5}, we
prove that ParamRLS-F can identify that k = 5 maximises solution quality for small linear
cutoff times within 17 configuration comparisons in expectation, whereas for larger linear

10 Introduction

and all superlinear cutoff times it identifies that k = 1 maximises solution quality, again
within 17 comparisons in expectation. Thus ParamRLS-F is able to efficiently identify the
optimal configuration with respect to the Optimisation-Time performance metric (i.e. k = 1)
using linear cutoff times whilst, as proven earlier, any Optimisation-Time-based configurator
requires a cutoff time of at least (n lnn)/2. Again, we prove that for large enough cutoff times
ParamILS is able to identify the optimal configuration within a linear number of comparisons
after the conclusion of its initialisation procedure.

Overall, we have proven that ParamRLS can efficiently identify the optimal neighbour-
hood sizes of the simple RLSk algorithm for simple unimodal problem classes. Our analysis
reveals that, whilst problem knowledge is required for the proper application of the Fixed-
Target performance metric, no advantage is obtained by using this metric, even if seeking
a configuration that identifies a fixed solution quality in the smallest amount of time. In
particular, in both considered scenarios, ParamRLS-F not only identifies the configuration
that achieves the highest fitness within the cutoff time, but also identifies the configuration
with the smallest expected optimisation time.

We then consider the more complex algorithm configuration scenario of tuning the
mutation rate χ of the well-known (1+1) EA, that in each iteration perturbs each gene of an
individual with probability χ/n, where n is the size of the individual.

We once again analyse the configuration of the target algorithm for RIDGE since the
performance of each parameter value only changes by a small amount during execution. In
this case, χ = 1 is optimal under all three considered performance metrics. We prove that
any Optimisation-Time-based configurator is blind for cutoff times up to (1− ε)en2, for any
constant ε > 0. On the other hand, cutoff times that are smaller by a linear factor are sufficient
for ParamRLS-F to return χ = 1 within a linear number of configuration comparisons in
expectation, again meaning that ParamRLS-F is able to return the configuration with the
smallest expected optimisation time using smaller cutoff times than those required by all
configurators that explicitly optimise this metric.

We then analyse the configuration of the (1+1) EA for a problem class, LEADINGONES,
where the performance of each configuration varies with respect to the current solution quality.
Similarly to the neighbourhood size of RLSk when optimising ONEMAX, the mutation rate
that maximises expected progress decreases as the optimum of LEADINGONES is approached.
It is known that χ ≈ 1.59 results in the smallest expected optimisation time [18] and is thus
optimal under the Optimisation-Time performance metric and under Best-Fitness when a
large enough cutoff time is used. For smaller cutoff times, we expect larger mutation rates
to be optimal with respect to the Best-Fitness metric. We prove that all Optimisation-Time-
based configurators are blind for cutoff times of at most 0.772n2, whilst ParamRLS-F is

1.1 Overview and Motivation 11

able to identify the mutation rate that achieves the highest solution quality within the cutoff
time for almost all quadratic cutoff times (and all cutoff times that are at least quadratic),
doing so within 61 configuration comparisons in expectation. Furthermore, ParamRLS-F
will efficiently return the optimal χ for cutoff times of at least 0.722n2 (i.e. ≈ 0.05n2 smaller
than those required by any Optimisation-Time-based configurator), again doing so within 61
comparisons in expectation.

The analyses of the configuration of RLSk and the (1+1) EA require us to be able to
determine the outcome of comparisons between two configurations given a time budget.
However, existing result on the performance of algorithms operating on a given time budget
(fixed-budget analyses [70]) are either concerned only with the expected solution quality
after a given time or provide bounds that are not tight enough for our requirements. In this
thesis, we make substantial improvements over the state-of-the-art in fixed-budget analysis,
providing bounds on the solution quality after a given time budget that are both tighter and
that hold with a higher probability than those found in the literature.

We conclude this thesis by building upon the insights gained from the above analyses to
design a mutation operator for faster algorithm configuration. Such work demonstrates how
the theoretical understanding of the behaviour and performance of general-purpose algorithms
can lead to the design of provably better ones. Given the simplicity of ParamRLS, the only
component that may be modified to achieve better performance is the mutation operator. The
above analyses enabled us to provide rigorous answers to the question of what structure
is present in algorithm configuration problems. They revealed that, for the configuration
scenarios considered in this thesis, the parameter landscape (the structure over the range
of parameter values induced by the configurator) seen by ParamRLS-F is either unimodal
or approximately unimodal (i.e. rugged with an underlying gradient towards the optimum).
We prove that, in such cases, both ParamRLS and ParamILS require a linear number of
configuration comparisons in expectation to identify the optimal configuration. Intuitively,
this happens because ParamRLS only makes small steps within the parameter space, and is
thus slow to follow the gradient, and ParamILS makes steps of random sizes, and thus does
not take account of the gradient whatsoever. We modify ParamRLS to use a search operator
that favours small step sizes but is also able to make larger ones with a small probability. We
prove that, if the parameter landscape is approximately unimodal, then ParamRLS modified
to use such an operator identifies an optimal configuration asymptotically faster than both
ParamILS and ParamRLS using their default search operators, and is not much slower than
them in the worst case (e.g. if the parameter landscape is deceptive with a gradient that leads
away from the optimum). We verify empirically that these speed-ups also occur for the
configuration of two parameters of a SAT solver.

12 Introduction

1.2 Structure of this Thesis

In Chapter 2, we introduce the algorithm configuration problem. As an example applica-
tion, we introduce the field of randomised search heuristics and explain why setting their
parameters appropriately is essential, thus motivating the algorithm configuration field. We
then formally define the algorithm configuration problem and review the related literature.
We discuss different implementations of the two key components of algorithm configurators:
methodologies to evaluate the performance of configurations and methodologies to generate
new ones. We review historical approaches to automated algorithm configuration before
giving an overview of the three most popular configurators in the literature: ParamILS [62],
irace [91], and SMAC [64]. We conclude the chapter by reviewing the state-of-the-art in the
theory of algorithm configuration. We classify the small amount of existing theoretical work
into three categories: generalisation analyses, which determine the number of training in-
stances required to ensure that the returned configuration performs well on unseen instances;
convergence analyses, which determine whether a configurator will identify an optimal
configuration in finite time; and worst-case performance analyses, which derive the time
required to guarantee that a near-optimal configuration is returned in the most challenging
configuration scenarios.

Chapter 3 provides precise definitions of all the technical ingredients required in the rest
of this thesis. We begin with an introduction to the mathematical tools from the literature that
we will use in our analyses. We then define the simplified algorithm configurator, ParamRLS,
that we analyse. Finally, we define and motivate our choices of target algorithms and problem
classes used in this thesis to evaluate the performance of algorithm configurators.

In Chapter 4, we present general results related to the use of the Fixed-Target performance
metric. We prove a lower bound on the cutoff time that is necessary to prevent any configura-
tor using this performance metric from being blind (i.e. behaving as if each configuration
has the same performance and hence returning a random configuration). When configuring
a unary unbiased search algorithm for any problem class where each instance has up to
exp(
√

n/ log2 n) optima (where n is the problem size), we prove that if the cutoff time is at
most (n lnn)/2 then any configurator using the Fixed-Target performance metric will be blind.
We then show that setting the cutoff time large enough to allow the optimal configuration to
reach the target solution quality for all training instances with overwhelming probability is a
sufficient condition for Fixed-Target-based configurators to identify the optimal configuration
if the optimal configuration beats all others with overwhelming probability. We emphasise
the significance of this result by using it to bound the time required by ParamILS to identify
the optimal configuration in such cases. However, we conclude the chapter by showing that

1.2 Structure of this Thesis 13

similar behaviour can be achieved by using the Best-Fitness performance metric, and thus
the above results do not constitute an advantage of Fixed-Target.

In Chapters 5 and 6 we shift our focus to specific algorithm configuration scenarios
and analyse the expected time required by the ParamRLS algorithm configurator to identify
the optimal parameter values of specific target algorithms for standard benchmark problem
classes. We primarily analyse the impact of the choice of the cutoff time κ on the ability of
the configurator to optimise the chosen performance metric.

In Chapter 5, we consider the configuration of the neighbourhood size k of randomised
local search (RLSk) for the standard RIDGE and ONEMAX problem classes. For RIDGE,
the neighbourhood size k = 1 maximises expected progress regardless of the distance to
the optimum, and hence this configuration is optimal under both the Fixed-Target and Best-
Fitness performance metrics for any cutoff time. This problem class allows us to evaluate
the impact of the cutoff time in scenarios where the optimal parameter value is independent
of the chosen metric. Our results show that Best-Fitness allows ParamRLS to identify the
optimal parameter value independent of the cutoff time, whereas an appropriate value of
the cutoff time is crucial for the configurator to be successful when using the Fixed-Target
performance metric.

In particular, we prove that for cutoff times of κ = n1+ε , ParamRLS-F identifies that
k = 1 is optimal, in an expected number of configuration evaluations that is linear in the
number of permitted values of k. Remarkably, even if the smallest possible cutoff time
of κ = 1 is used, if configurations are run at least n3/2 times in each evaluation then it
is still possible to identify that k = 1 is optimal. On the other hand, we prove that any
configurator that uses Optimisation-Time as the performance metric is blind for all cutoff
times κ ≤ (1−ε)n2, although ParamRLS-T and ParamILS using Optimisation-Time are both
able to identify that k = 1 is optimal with cutoff times κ ≥ (1+ ε)n2. Since ParamRLS-F
is able to return k = 1 for any cutoff time, it is able to identify the optimal configuration
with respect to the Optimisation-Time performance metric for any cutoff time, thus allowing
it to perform the same task as Optimisation-Time-based configurators using cutoff times
that are smaller by a quadratic factor, resulting in smaller overall configuration times. We
then turn our attention to the configuration of RLSk for ONEMAX with permitted values
of k ∈ {1,2,3,4,5}. Since, for RLSk maximising ONEMAX, smaller neighbourhood sizes
maximise the expected progress as the distance to the optimum decreases [36], we prove that
ParamRLS-F is able to identify the neighbourhood size that achieves the highest expected
fitness within the cutoff time for cutoff times satisfying 0.02n ≤ κ ≤ 0.72n and for cutoff
times κ ≥ 0.975n it identifies that k = 1 achieves the highest expected fitness. The linear
cutoff time sufficient for ParamRLS-F to identify that k = 1 is optimal under the Optimisation-

14 Introduction

Time performance metric is a logarithmic factor smaller than the general lower bound on the
cutoff time required by any Optimisation-Time-based configurator, again resulting in smaller
overall configuration times.

In Chapter 6, we analyse the configuration of the mutation rate χ of the (1+1) EA. This
constitutes a more complex configuration scenario than that of tuning RLSk since the mutation
rate of the (1+1) EA is continuous whereas the neighbourhood size of RLSk is discrete, and
thus the difference between the performance of configurations can be arbitrarily small. As in
Chapter 5, we first analyse the configuration of the (1+1) EA for RIDGE. Similarly to the
optimal neighbourhood size of RLSk for this problem class, a single parameter value (in
this case χ = 1) maximises expected progress regardless of the position in the search space.
Hence this configuration is optimal under both the Fixed-Target and Best-Fitness performance
metrics. We prove that a cutoff time of κ ≥ εn is sufficient for ParamRLS-F to return χ = 1
within in a linear number of configuration evaluations, in expectation. All configurators using
Optimisation-Time, however, are blind if a cutoff time of κ ≤ (1− ε)en2 is used, whilst, as
shown above, linear cutoff times suffice for ParamRLS-F to identify the optimal configuration
under this performance metric. We then consider the configuration of the mutation rate for
the LEADINGONES problem class. In this case, we discretised the parameter space to contain
the values χ ∈ {0.1,0.2, . . . ,2.9,3.0}. We expect χ = 1.6 to be optimal for large cutoff
times since χ ≈ 1.59 . . . yields the smallest optimisation of any mutation rate [18], and for
smaller cutoff times we would expect larger χ to be favoured, as with the neighbourhood
size of RLSk for ONEMAX. We prove that this is indeed the case: for practically all
quadratic cutoff times, and all cutoff times that are at least quadratic, we show that the
optimal configuration under the Best-Fitness performance metric is returned by ParamRLS-F
after 61 configuration evaluations, in expectation. Notably, a cutoff time of κ ≥ 0.722n2

is sufficient for ParamRLS-F to return the optimal configuration under the Optimisation-
Time performance metric. We showed that configurators that use the Optimisation-Time
performance metric, on the other hand, are blind for cutoff times κ ≤ 0.772n2 (i.e. ≈ 0.05n2

greater than the cutoff time sufficient for ParamRLS-F to configure the (1+1) EA with respect
to this performance metric).

In Chapter 7, we investigate the performance improvements that can be obtained by
modifying ParamRLS and ParamILS to use a local search operator that is designed to have
good performance on unimodal parameter landscapes. We first prove that the default operators
used in both configurators require at least an expected linear number of configuration
evaluations before they identify the optimal configuration. We then show that using a
search operator designed to have good performance on unimodal functions [31] allows the
configurator to identify the optimal configuration in expected polylogarithmic time if the

1.3 Contributions of this Thesis 15

parameter landscape is approximately unimodal, and in logarithmic time in expectation if it is
unimodal, whilst only being a logarithmic factor slower than the standard mutation operators
in the worst case. We extend the theoretical results beyond single-parameter configuration
scenarios with an empirical analysis, confirming the superiority of the proposed mutation
operator in the more complex scenario of configuring two parameters of a SAT solver.

In Chapter 8, we summarise the work conducted in this thesis, present our conclusions,
and discuss directions of potential future work.

1.3 Contributions of this Thesis

In this thesis, we provide the theoretical foundations for the time complexity analysis of
automated algorithm configurators. The main contributions of this thesis are the following:

1. We provide rigorous general upper and lower bounds on the values of the cutoff
time required by algorithm configurators using the Fixed-Target performance metric
(Chapter 4). In particular:

• It is necessary that the cutoff time is large enough to allow at least one con-
figuration to reach the target solution quality for at least one training instance,
otherwise a random configuration will be returned. A cutoff time large enough to
allow the optimal configuration to reach the target solution quality for all training
instances with overwhelming probability is sufficient to guarantee convergence to
this configuration for algorithm configurators that can sample any configuration
with a positive probability.

• As a corollary, for Optimisation-Time the cutoff time must be at least (n lnn)/2
for the efficient configuration of any unary unbiased algorithm for target problem
classes with instance size n with up to exp(

√
n/ log2 n) optima per instance.

2. We show that the given lower bound on the cutoff time when using Optimisation-Time
is tight when configuring RLSk for ONEMAX, and may be considerably worse even for
extremely simple configuration scenarios such as RLSk for RIDGE (Chapters 5 and 6).
In particular, we prove that any configurator that uses Optimisation-Time requires
cutoff times of at least (1−ε)n2 and (n lnn)/2 when configuring RLSk for RIDGE and
ONEMAX, respectively, otherwise it is blind. We prove that any such configurator
requires cutoff times of at least (1−ε)en2 and 0.772n2 when configuring the (1+1) EA
for RIDGE and LEADINGONES, respectively, again being blind otherwise.

16 Introduction

3. We provide the first rigorous statements regarding the performance of algorithm con-
figurators for specific algorithm configuration scenarios (Chapters 5 and 6). We do
so for the configuration of both randomised local search algorithms and evolutionary
algorithms using global mutation operators for standard benchmark function classes. In
particular, when configuring the neighbourhood size of RLSk for RIDGE and ONEMAX

using Best-Fitness, cutoff times of 1 and 0.02n suffice, respectively, to identify the
configuration that maximises solution quality within the cutoff time. When config-
uring the mutation rate of the (1+1) EA for RIDGE and LEADINGONES, εn (for a
sufficiently large constant ε > 0) and 0.000001n2, respectively, suffice to do so. A
quadratic number of configuration comparisons is sufficient for ParamRLS-F to do
so in expectation when configuring RLSk for RIDGE, and in all other cases a linear
number of comparisons suffices.

4. We give rigorous proofs of the counter-intuitive insight that the Best-Fitness perfor-
mance metric allows the configurator to identify the configuration that minimises the
optimisation time in considerably smaller expected time than is possible when using
Optimisation-Time (Chapters 5 and 6). We show this for various simple configuration
scenarios. In particular, we derive ranges of cutoff times that are sufficient for config-
urators using the Best-Fitness performance metric to identify the configuration with
the smallest expected optimisation time. When configuring the neighbourhood size
of RLSk for RIDGE and ONEMAX, cutoff times of 1 and 0.975n suffice, respectively.
When configuring the mutation rate of the (1+1) EA for RIDGE and LEADINGONES,
cutoff times of εn (for a sufficiently large constant ε > 0) and 0.722n2 suffice, re-
spectively. These cutoff times are smaller than the expected optimisation time of
any configuration (asymptotically smaller in all cases except tuning the (1+1) EA for
LEADINGONES) and thus smaller than the cutoff time required by any Optimisation-
Time-based tuner, allowing a Best-Fitness-based configurator to identify the config-
uration with the smallest expected optimisation time configuration faster than any
that uses Optimisation-Time. We show that in the worst case ParamRLS-F again
requires at most a quadratic (in the number of configurations) number of configuration
comparisons to do so when configuring RLSk for RIDGE, and in all other cases a linear
number of comparisons suffices, in expectation.

5. Since our analyses require tight bounds that hold with high probability on the solution
quality achieved by given configurations, we considerably improve upon the state-of-
the-art in the field of fixed-budget analysis (Chapters 5 and 6). In particular, for RLSk

optimising ONEMAX and the (1+1) EA optimising LEADINGONES, we derive tight

1.4 Underlying Publications 17

intervals that with overwhelming probability contain the fitness of a configuration after
a given time budget, for large ranges of budgets. These bounds are tighter (linear rather
than superlinear) and hold with higher probability (overwhelming rather than constant
or high) than existing fixed-budget analyses of these scenarios, and the ranges of time
budgets for which they hold (almost all linear for ONEMAX and almost all quadratic
for LEADINGONES) also exceed those of the state-of-the-art.

6. Our analyses provide rigorous statements regarding the algorithm configuration fitness
landscapes for specific configuration scenarios (Chapters 5 and 6). In particular, we
prove that the parameter landscape seen by ParamRLS-F is unimodal when configuring
RLSk for RIDGE and when configuring the (1+1) EA for RIDGE and LEADINGONES.
When configuring RLSk for ONEMAX, we prove that the parameter landscape seen
by ParamRLS-F is approximately unimodal. Whilst recent experimental works have
suggested that the parameter landscapes in the configuration of SAT and TSP solvers
are (approximately) unimodal, this is the first time that such claims are rigorously
proven for specific scenarios.

7. We exploit our theoretical results by designing a theory-driven mutation operator
for algorithm configurators and prove that it considerably outperforms the standard
mutation operators for both unimodal and approximately unimodal configuration
landscapes, whilst in the worst case it is slower only by at most a logarithmic factor
(Chapter 7).

1.4 Underlying Publications

The work presented in this thesis is based on the following publications (where authors are
ordered alphabetically). In publications with k authors, the contribution of each author can
be roughly quantified as 1/k.

• Chapter 4 (Fixed-Target Performance Metric Requires Appropriate Cutoff Times) and
Chapter 5 (On the Configuration of the Neighbourhood Size of Randomised Local
Search) are based on:

1. George T. Hall, Pietro S. Oliveto, and Dirk Sudholt (2019). On the impact of
the cutoff time on the performance of algorithm configurators. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2019) (907-
915) [51].

18 Introduction

2. George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. On the impact of the cutoff
time and the performance metric for algorithm configuration (journal extension,
under review).

• Chapter 6 (On the Configuration of the Mutation Rate of a Simple Evolutionary
Algorithm) is based on:

3. George T. Hall, Pietro S. Oliveto, and Dirk Sudholt (2020). Analysis of the
performance of algorithm configurators for search heuristics with global muta-
tion operators. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2020) (823–831) [52]. Nominated for the best paper award
in the track “General Evolutionary Computation and Hybrids”.

• Chapter 7 (Faster Algorithm Configuration by Exploiting Parameter Space Unimodal-
ity) is based on:

4. George T. Hall, Pietro S. Oliveto, and Dirk Sudholt (2020). Fast perturbative
algorithm configurators. In Proceedings of the 16th Parallel Problem Solving
from Nature Conference (PPSN XVI) (19–32) [53].

Chapter 2

Algorithm Configuration

2.1 Introduction

In this chapter, we provide an overview of the field of automatic algorithm configuration and
the need for the time complexity analysis of algorithm configurators. We start by introducing
the field of general-purpose optimisation and algorithms designed for this task, in particular
randomised search heuristics (Section 2.2). This will allow an appreciation of the (often
numerous) parameters that must be set for their application and the importance of choosing
their values appropriately. We proceed by defining the algorithm configuration problem
precisely in Section 2.3, followed by an overview of the field and a classification of parameter
tuners in Sections 2.4 to 2.8. Finally, in Section 2.9, we outline existing theoretical analyses
of algorithm configuration.

2.2 Randomised Search Heuristics

When faced with a computational problem for which no algorithm exists, a user must decide
whether to design an algorithm for the problem or to use a general-purpose one. The first
approach requires a good understanding of the problem at hand in order to construct an
algorithm that is correct and has good performance guarantees. For complex problems,
gathering such knowledge and the algorithm design process itself are often time-consuming
tasks (perhaps even prohibitively so). Hence it is often more practical – even necessary – to
instead employ a general-purpose algorithm: a method designed to be applicable to a wide
variety of problems and that can therefore be readily applied to the task at hand. Examples
of such algorithms are local search, randomised local search, and simulated annealing
(Algorithm 1), in addition to nature-inspired approaches such as evolutionary algorithms

20 Algorithm Configuration

(Algorithm 2). General-purpose algorithms have been successfully applied in a wide variety
of settings, and are able to relieve the user of the burden of designing an algorithm tailored to
the specific problem [46]. Furthermore, they do not require that the user have an in-depth
understanding of the problem at hand. This characteristic is particularly useful in black-box
optimisation, where information about the problem (other than a measure of the quality of a
solution) is either too complex to be appropriately understood or is unavailable entirely.

Algorithm 1: Simulated annealing for the maximisation of a function f (adapted
from [71]). The function C(t) is the cooling schedule, a function that controls the
probability of accepting worse solutions at time t.
1 t← 1
2 x1←initial individual
3 while termination criterion not satisfied do
4 y← individual generated from xt

5 with probability min
{

1,exp
(

f (y)− f (x)
C(t)

)}
do xt+1← y

6 otherwise xt+1← xt
7 t← t +1

Algorithm 2: (µ +λ) EA for the maximisation of a function f (adapted from [3]).

1 Initialise population of µ individuals u.a.r.; Let multiset X0 be population at time 0.
2 while termination criterion not satisfied do
3 X ′← X (t)

4 for i = 1, . . . ,λ do
5 Choose x ∈ X ′ using a selection operator
6 Create x′ by flipping each bit of x with probability p
7 X ′← X ′∪{x′}
8 Create multiset X (t+1) by deleting λ individuals in X ′ with lowest f -value
9 t← t +1

The algorithms mentioned above (e.g. randomised local search and evolutionary algo-
rithms) are examples of randomised search heuristics (RSHs). This class of algorithms makes
random choices during the optimisation process in order to explore the space of possible
solutions given little knowledge about the problem at hand, usually requiring only a way to
represent solutions, a means to generate new solutions, and a method of evaluating solution
quality. Given a problem class, however, it is often not obvious which RSH is preferable (i.e.
which will have better performance). Furthermore, even once an algorithm has been decided
upon, there are still issues that must be resolved before it may be applied.

2.2 Randomised Search Heuristics 21

One of the most important and challenging choices to be made is how to set the values of
its often numerous parameters (e.g. the cooling schedule in simulated annealing; the selection
pressure, the mutation rate, and the parent and offspring population sizes in the (µ +λ) EA).
Often, a randomised search heuristic will only be capable of providing satisfactory solutions
to a problem if its parameters are set appropriately.

The general-purpose nature of randomised search heuristics may lead us to hope that it is
possible to design an algorithm (and a configuration of its parameters) that performs well
for all problems. Unfortunately, however, the no free lunch (NFL) theorem roughly states
that when averaged over all optimisation problems, all randomised search heuristics have the
same performance [118]. In other words, no RSH outperforms any other over all optimisation
problems. Therefore, if Algorithm A has better performance than Algorithm B on one set
of problems then the NFL theorem implies that A necessarily has worse performance than
Algorithm B when averaged over all other problems. The NFL theorem demonstrates the
need for parameter tuning: if we treat two configurations of an algorithm as two different
algorithms entirely then it becomes clear that parameter settings that perform well on one
set of problems will be outperformed by other configurations on other problem sets. Since
no configuration performs well over all problems, it is advisable to configure an algorithm
for the problem class on which we want to apply it. One may object by claiming that only
subclasses of problems appear in practice, and that these do not satisfy the conditions of
the NFL theorems. Nevertheless, it is widely understood that the success of RSHs depends
crucially on the chosen parameter values both from theoretical analyses for specific problems
(e.g. [25]) and experience in practical applications [45].

In this thesis, we assume that we have decided which algorithm we want to use, and
focus on the task of identifying optimal parameter values for specific problem classes. In
recent years, several approaches to algorithm configuration have seen widespread use, most
prominently ParamILS, irace, and SMAC (see Sections 2.8.1, 2.8.2, and 2.8.3, respectively).
However, how well these algorithm configurators actually perform in terms of the quality
of the identified parameter values within a given time budget is unclear. In this thesis, we
create the theoretical foundations to allow the performance of algorithm configurators to be
quantified.

2.2.1 Types of Parameters

There are several types of algorithmic parameter. It is common for a configurators to deal
with each type of parameter in a different way. We follow López-Ibáñez et al. in defining
three types of parameter:

22 Algorithm Configuration

• Categorical: There is no order in the values of the parameter (e.g. the selection
mechanism used in an evolutionary algorithm).

• Ordinal: Similar to categorical parameters, but the values have an implicit order (e.g. a
parameter with values {low, medium, high}).

• Numerical: There is an explicit order in the values of the parameter (e.g. the mutation
rate and number of offspring in an evolutionary algorithm).

In addition to these classes, a parameter is called conditional if it is only relevant if
another parameter takes a certain value. For example, suppose that an evolutionary algorithm
has a categorical parameter controlling whether crossover is used. Then any parameter that
controls the crossover procedure itself is only relevant if the first parameter is set to true.
The second parameter is therefore conditional on the value of the first.

2.3 The Algorithm Configuration Problem

In this section, we define the algorithm configuration problem in a formal manner, following
the definition given by Stützle and López-Ibáñez [111].

Denote the algorithm to be configured (the target algorithm) as A and the (possibly
infinite) set of all permitted configurations of A as Θ (the parameter space). Denote the
algorithmA with its parameters set according to some configuration θ ∈Θ asA(θ). The aim
of algorithm configuration is to identify the configuration θ ∗ that optimises the performance
ofA for some problem class Π, consisting of a certain (possibly infinite) number of instances.

Formally, let I be the distribution of the problem instances3 over Π, and let CI(A(θ))
denote the (performance) cost of the configuration A(θ) when run on Π, with respect to the
instance distribution I. Then the algorithm configuration problem is that of identifying a
configuration θ ∗ such that

θ
∗ ∈ argmin

θ∈Θ
CI(A(θ)).

In practice, two main problems often arise when establishing the cost of a configuration.
The first problem is that the distribution I of the instances over Π is unknown. This issue
is generally dealt with by trying to identify a training set of problem instances that is

3An instance distribution may be used to capture the likelihood of certain instances arising in practice.
Birattari uses the example of an algorithm to be configured for the travelling salesperson problem (TSP) [14].
The problem class Π is an infinite set of instances of the TSP and I captures the likelihood that each instance
is encountered in practice. For example, if the application domain is a delivery company, problem instances
including a visit to a block of flats are far more likely to occur in practice than instances including a visit to the
middle of the ocean.

2.4 Algorithm Configurators 23

representative of the problem class such that the optimal configuration identified is also
optimal over all possible problem instances in Π (i.e. it generalises well).

It is therefore common to assess the performance of the returned configuration by running
it on a distinct test set of problem instances. It is crucial that both the training set and the test
set are representative of the distribution of problem instances that will be encountered by the
target algorithm when it is applied in practice. However, considerable problem knowledge is
required to ensure this.

The second problem is that for most problem classes of interest (e.g. NP-Hard problems),
it cannot be expected that any configuration θ will allow an algorithm A to optimise all
instances efficiently (i.e. in polynomial time). Hence using the actual optimisation time as a
cost measure is often infeasible (unless it is assumed or known that the instances encountered
are ‘easy’). To overcome this issue, several performance metrics have been proposed in the
literature (discussed in Section 2.5.1). The choice of the performance metric depends on
what is more valuable to the final user of the algorithm (often taken to be optimisation time
or solution quality reached within a time budget).

Throughout this thesis, we use the term parameter landscape4 to refer to the fitness
landscape induced over the parameter space by a configuration evaluation procedure (i.e. the
performance metric and other configurator settings). We say that a parameter landscape is
unimodal if and only if every non-optimal configuration has a neighbouring configuration
(under an appropriate definition of neighbourhood) that is evaluated to have a lower cost than
it with overwhelming probability.

2.4 Algorithm Configurators

In this section, we detail the state-of-the-art in algorithm configuration. Virtually all algorithm
configurators may be decomposed into two components: a methodology to generate new
configurations and a methodology to evaluate how well a given configuration performs. In a
recent review of the field, Huang et al. remark “Different generating techniques (also referred
to as sampling methods) and evaluation approaches form different tuning algorithms” [61].
Figure 2.1 gives a general framework for algorithm configurators5. High-level modularity

4Tanabe notes that this terminology is not universal, however “parameter landscape” appears to be the most
popular choice in the literature [112].

5We diverge from the taxonomy laid out by Huang et al. in [61] in that we do not use the distinction of
simple generate evaluate configurators (where a set of configurations is generated and the best-performing
one is identified), iterative generate-evaluate configurators (where this process is iterated, i.e. where new
configurations are generated based on the best performers in the previous iteration), and high-level generate-
evaluate configurators (where good configurations are generated by another fast configuration process, and
then the best-performing among these is identified). We do not use this taxonomy since all three classes are

24 Algorithm Configuration

can be observed: the two highlighted components (i.e. generation and evaluation) can be
altered to create new configurators.

Target algorithm
and parameter

space

Instances set Evaluate new
configurations

Return best
configuration

Generate new
candidate

configurations

Select new
population

Optimiser
Black-box
(fitness

evaluation)

Performance metric

Algorithm configurator:

Fig. 2.1 The general framework of algorithm configurators (based on Figure 1 in [61]). New
configurators can be created by modifying the generate and evaluate procedures.

Any general-purpose optimisation algorithm may be used for the configuration genera-
tion component of an algorithm configurator, and thus, in principle, there exist at least as
many configuration generation techniques as there are optimisation algorithms. Apart from
the search space in which they operate (i.e. that of parameter values), what distinguishes
algorithm configurators from traditional function optimisers is therefore the configuration
evaluation module. Whilst in function optimisation the evaluation of solution quality is
often a straightforward (albeit perhaps time-consuming) deterministic task, estimating the
performance of an algorithm configuration on a problem class is far from trivial as it is often
not possible to run it on all problem instances and its performance on each instance depends
on the amount of time for which it is run. Hence, in contrast to traditional black-box optimi-
sation, the configuration evaluation module has to ‘learn’ how well a candidate configuration
performs, a task for which, in principle, any machine learning algorithm may be used. As in
traditional machine learning, a training set of instances is provided as input and the aim of
the evaluation module is to use the training set to estimate the performance of the candidate
configuration in practice (i.e. on unseen instances).

In the following sections, we give a survey of the components that comprise an algorithm
configurator. We first give an overview of commonly-used methods for the evaluation of
configurations, in Section 2.5, and examine methods used to reduce the number of times that
each configuration is run during the tuning process in Section 2.6. We then, in Section 2.7,
examine different optimisers that have been used in the literature for the configuration
generation procedure. Following this general overview, we then examine in detail the
working principles of the three most prominent algorithm configurators: ParamILS [62],

effectively equivalent: high-level generate-evaluate configurators are simple generate-evaluate configurators
with a sophisticated initial generation mechanism, and simple generate-evaluate configurators are iterative
generate-evaluate configurators that are run only for a single iteration.

2.5 Algorithm Configuration Evaluation 25

irace [91], and SMAC [64] (in Sections 2.8.1, 2.8.2, and 2.8.3, respectively), in addition to
a recent family of theory-inspired, configurators designed to have worst-case performance
guarantees (Sections 2.8.4 and 2.8.5).

2.5 Algorithm Configuration Evaluation

In practice, one must decide how to determine the cost of a configuration, CI(A(θ)). We
now give an overview of the decisions that must be made when evaluating a configuration
and then examine the ways in these choices may be optimised in practice.

Ideally, as is often the case in randomised search heuristics, the computation of the fitness
of a solution (in this case a configuration) will not be noisy (that is, the evaluation of the
same configuration will always have the same outcome). However, this is rarely the case
in algorithm configuration. In fact, there are two sources of potential stochasticity when
evaluating the performance of a configuration. Firstly, its performance may vary greatly
when run on different problem instances (this variance will be distributed according to the
distribution of problem instances I). Secondly, the runtime of a randomised algorithm (such
as a randomised search heuristic) is a random variable with its own inherent variance due to
the random choices that are made during its execution.

It is common to take CI(A(θ)) to be the cost of running the configuration A(θ) on
the problem instance πi, which we denote C(A(θ),πi), averaged over problem instances
distributed according to I. That is, CI(A(θ)) = Eπi∼I [C(A(θ),πi)]. If configuring a
stochastic algorithm, as is often the case in the algorithm configuration literature and is
indeed the case throughout this thesis, it is not possible to derive this quantity analytically
and instead it must be estimated computationally by running A(θ) over multiple problem
instances. We call a single computation of CI(A(θ)) an evaluation.

The different choices that have to be made to perform a computational evaluation ofA(θ)
lead to several algorithm configurator parameters:

• The definition of the training set of problem instances Π′ ⊆Π.

• The number of runs r per evaluation (i.e. the number of times an instance is drawn
using the distribution I and the configuration run on it).

• The method used to aggregate performance measures over multiple runs of a configu-
ration.

• The performance metric (i.e. which quality measure to use to assess the performance
of different configurations for an instance πi, e.g. “the best-found solution within a

26 Algorithm Configuration

time budget” or “the time required to reach a solution of at least a given quality”). It
is important to note that different performance metrics may yield different optimal
configurations.

• The cutoff time κ (i.e. the time for which a configuration is executed in a single run in
an evaluation).

Let T be the runtime of the configurator, defined as the number of configuration com-
parisons that it carries out before it is able to return the optimal configuration θ ∗. In this
thesis, we estimate T for different algorithm configuration scenarios. Since for all considered
configuration scenarios it is the case that, with overwhelming probability, the optimal config-
uration will not lose a comparison once sampled, T is taken to be the number of comparisons
before it is sampled for the first time.

If κ and r are static then the configuration time is B = T ·κ · r, and calculating T suffices
to fully determine the tuning budget required to identify the optimal configuration. Naturally,
many configurators attempt to reduce the amount of time required to learn the relative
performance of a set of configurations as quickly as possible, and thus may reduce r and κ

(i.e. not use the same values for each evaluation). In this case, B ≤ T ·κ · r. Note that if the
performance of each configuration is known (i.e. it is provided by some oracle), and thus
need not be determined computationally, then B = T .

We now examine how to set each of these parameters. We give the most attention to the
performance metric and cutoff time parameters since these play a central role in our analyses
in this thesis.

Training set The training set should be chosen such that it is representative of the context
in which the algorithm will be applied. That is, performance on the training set should
correlate with performance on the instance sets that the target algorithm will encounter in
practice. This goal is common in machine learning, and is referred to as generalisation. If the
instance distribution is known, then generalisation is trivial. Hence optimising the parameters
of an algorithm for a given (or chosen) distribution is a much easier task than what happens
in more realistic scenarios where the instance distribution also has to be learned.

Number of runs The required number of runs per evaluation r varies with the configuration
scenario: it is reasonable to assume that cases where the performance of the target algorithm
over the training set has high variance require larger r than cases where this variance is small.

In ParamILS, these runs are distributed uniformly across the training set [62]. For
example, in ParamILS, if r = 100 and the training set is of size 10, then the configuration will

2.5 Algorithm Configuration Evaluation 27

be run exactly 10 times on each training instance. Thus, increasing r leads to a configuration
being run on each instance a higher number of times. It is therefore advisable to increase r in
proportion to the variance of the performance of configurations on the same training instance.

Aggregation method The aggregation of the results of numerous runs is most commonly
implemented as the mean performance over all runs, although other statistical parameters
may be used.

2.5.1 Performance Metrics

We now describe the most common performance metrics used in the literature. In optimi-
sation, the user often seeks the best solution identifiable within an available time budget.
Indeed, it is common to use a MAXTIME parameter as a stopping criterion for an algorithm
(where MAXTIME indicates the amount of time available for the optimisation). In such cases,
it is natural to use the Best-Fitness performance metric.

Best-Fitness: Returns the best solution quality identified within the cutoff time. In the
event that two configurations reach the same fitness value within the cutoff time, a natural
tie-break is to favour the configuration that reached this fitness first. In this thesis, we
assume that this tie-break is always used when Best-Fitness is used. This performance metric
avoids the need to specify a target solution quality in advance. The irace configurator was
originally designed for use with the Best-Fitness performance metric [21]. We say that the
configuration with the highest expected solution quality within the cutoff time (and thus
sought by Best-Fitness) is F-optimal.

However, Best-Fitness may not be the ideal performance metric in other settings. For
instance, in some applications solutions of at least a given quality must be sought. In such
cases, the Fixed-Target performance metric is more natural.

Fixed-Target: Returns the time taken by a configuration to reach a given solution quality,
most commonly the optimum (in which case it is called Optimisation-Time). Throughout
this thesis, we refer to the time taken by a configuration to reach the target solution quality
its “runtime”. In order to avoid potentially running a configuration for an infinite amount of
time on unsolvable problem instances, it is common to use a cutoff time when evaluating the
quality of a configuration under this performance metric. Given a cutoff time κ , the cost of a
configuration is the time taken to reach the target solution quality if this time is no greater
than κ , and otherwise it is taken to be P ·κ for a penalisation constant P . The Fixed-Target
(specifically, Optimisation-Time) performance metric is typically used in applications of
ParamILS [62] and SMAC [64]. The worst-case-tailored configurator LEAPSANDBOUNDS

is also designed for use with the Fixed-Target performance metric [115]. We say that the

28 Algorithm Configuration

configuration that has the smallest expected runtime is T-optimal, and if the target solution
quality is the optimum then we also refer to this configuration as O-optimal.

When using the Fixed-Target performance metric, if the runtimes from multiple runs are
averaged then the resulting performance measurement is called penalised average runtime
(PAR) [62]. A penalisation constant of 10 is commonly used in the literature, and in this case
the performance measurement is called PAR10.

Whilst Best-Fitness and Fixed-Target are the two most commonly used performance
metrics in the literature, variants of Fixed-Target have been proposed in attempts to provide a
more robust measure of performance.

Penalised quantile runtime (PQR): A recent variant of the Fixed-Target performance
metric intended to reduce the effect of anomalous runtimes on the fitness of a configuration
(e.g. a configuration A with one very slow run and otherwise fast runs may have a worse
mean runtime than another configuration B even if all runs of B are only slightly faster than
the slow run of A) [16]. Given p ∈ [0,1] and m runs of a configuration, PQR returns the
penalisation constant P multiplied by the cutoff time κ if fewer than ⌊mp+1⌋ runs reach the
target solution quality within the cutoff time, and otherwise returns the (100 · p)-th quantile
of its runtimes.

κ-Fixed-Target: This performance metric also reduces the effect of anomalously chal-
lenging problem instances by capping the runtime on any problem instance at time κ [78].
Hence the optimal configuration in terms of this performance metric is the configuration
with the smallest expected runtime when all runtimes greater than κ are taken to be κ . The
optimal configuration under this performance metric is therefore the one with the small-
est penalised average runtime with cutoff time κ and a penalisation constant of 1. This
metric is subtly different from the conventional Fixed-Target metric: under Fixed-Target,
the optimal configuration is the one with the smallest uncapped runtime, whereas under
κ-Fixed-Target it is the one with the smallest runtime capped at time κ . Fixed-Target is thus
equivalent to ∞-Fixed-Target. Structured Procrastination [78] and Structured Procrastination
with Confidence [79] are designed for use with the κ-Fixed-Target performance metric.

δ -Percentile-Fixed-Target: The δ -Percentile-Fixed-Target performance metric again
mitigates the impact of extremely difficult problem instances by taking the performance
of a configuration to be the time that it requires to reach the target solution quality for a
1−δ fraction of problem instances [116]. Fixed-Target is thus equivalent to 0-Percentile-
Fixed-Target. This metric differs from penalised quantile runtime since the cost of running
a configuration is unbounded: unlike in PQR, there is no cutoff time within which the
configuration must optimise an instance, but rather the measurement of the performance
of a configuration is as large as is necessary for it to reach the target for the specified

2.5 Algorithm Configuration Evaluation 29

proportion of instances. CAPSANDRUNS is designed for use with the δ -Percentile-Fixed-
Target performance metric [116].

Hypervolume-based performance metrics: López-Ibáñez and Stützle configure algo-
rithms to have good anytime performance (i.e. to optimise their capability to produce good
solutions regardless of the amount of time for which they are run). They consider the solution
quality obtained by a configuration in conjunction with the time required to obtain it [92].
They optimise for this metric using the hypervolume measure common in multi-objective
optimisation [120], which, informally, in this context measures the extent to which a con-
figuration is able to identify solutions of high quality in less time than its competitors. This
measure converts the multi-objective optimisation problem into a single-objective problem to
which established configuration techniques can then be applied.

Multi-objective performance metrics: Bossek et al. argue that the Fixed-Target perfor-
mance metric represents a measure of performance that is a combination of the optimisation
time of an algorithm and its probability of success (within the cutoff time). Instead of
converting this multi-objective problem into a single-objective one, as done by López-Ibáñez
and Stützle with the hypervolume-based metric, they propose minimising these quantities
explicitly (removing the potential impact of the choice of penalisation constant) using a
multi-objective performance metric [16].

2.5.2 Cutoff Time

The cutoff time is the amount of time for which a configuration is executed in a single run
of an evaluation. Algorithm configurators may use either a static cutoff time or a dynamic
one that is adapted during the configuration process. The choice of cutoff time and whether
it may be set dynamically depends on the choice of performance metric (i.e. Best-Fitness
is incompatible with a dynamic cutoff time as it seeks the configuration that achieves the
highest solution quality within the cutoff time: a dynamic cutoff time would change the
optimal configuration throughout the tuning process). Algorithm configurators for which an
upper bound on the maximum cutoff time is fixed throughout the algorithm configuration
process have been referred to as incumbent-driven [78]. Kleinberg et al. define the class of
incumbent-driven configurators as follows.

Definition 1 (Incumbent-Driven Configurators [78]). A configurator is incumbent-driven
if the cutoff time of each run of a configuration is static (i.e. set at the beginning of the
configuration process) or dynamic and chosen to be at most the runtime of a previously-run
configuration.

30 Algorithm Configuration

Configurators with no such pre-determined upper bound have been referred to as non-
incumbent-driven [78]. Typically, they initially use small cutoff times and increase them if
necessary to allow configurations to reach the target solution quality.

Static cutoff times

Without additional problem knowledge, or if the Best-Fitness performance metric is being
used, it is reasonable to set the cutoff time as the maximum amount of time for which the user
is willing to run the target algorithm in practice (MAXTIME), since different configurations
may be the ones that find solutions of better quality for different time budgets.

If the Fixed-Target performance metric (or a variant) is used, and if a bound on the
expected time taken by reasonable configurations to reach the target solution quality is
known, then the cutoff time may be set to this value. Otherwise, it may be chosen using trial
and error.

Adaptive cutoff times

Two opposing techniques have been used in the literature to adapt the cutoff time throughout
the configuration process when the Fixed-Target performance metric (or a variant) is used.
The first approach is to pre-define a maximum cutoff time for each run and try to use a
smaller cutoff time if possible (this method is incumbent-driven). The second methodology,
used by non-incumbent-driven configurators, starts with small cutoff times and increases
them if a larger cutoff time is required for a configuration to reach the target solution quality.

Decreasing cutoff times (adaptive capping) A technique called adaptive capping can
reduce the time spent evaluating configurations that are performing poorly if the Fixed-
Target performance metric is used [62]. As implemented in ParamILS [62] and SMAC [64],
adaptive capping terminates the run of a configuration once it becomes impossible for it to
obtain a mean time to reach the target that is smaller than the configuration against which it
is being compared (in trajectory-preserving adaptive capping); or smaller than the current
best-found configuration (in aggressive adaptive capping). For example, if, in an evaluation
involving 100 runs, the configuration θ1 takes a total of 100 seconds to reach the target
solution quality (and thus has a mean runtime of 1 second), its competitor, θ2, can be run
with a cutoff time of 100+ ε seconds on the first problem instance since after that point it
becomes impossible for it to obtain a lower mean runtime than θ1. This upper bound on the
cutoff time can be reduced further with each run of the configuration as the lower bound on
its runtime increases. Adaptive capping is also implemented in irace [91], where the cutoff

2.6 Configuration Evaluation Methodologies 31

time is set to the time within which the configuration must optimise the instance in order to
improve on the median runtime of the set of best-performing configurations [21].

Increasing cutoff times (non-incumbent-driven configurators) In this approach, small
cutoff times are used initially and are only increased if the configuration fails to reach the
target solution quality within it [78]. In this way, a configurator is able to use small cutoff
times when these are sufficient and large cutoff times when necessary.

Using an incumbent-driven approach presents a problem when used in combination
with the Fixed-Target performance metric, since setting the cutoff time too small means
that a configurator is unable to differentiate between configurations. By increasing the
cutoff time when it proves too small for a configuration to reach the target solution quality,
non-incumbent-driven configurators effectively attempt to learn appropriate cutoff times for
configuration/instance pairs and avoid having to identify appropriate cutoff times in advance.

2.6 Configuration Evaluation Methodologies

Conducting many observations of the performance of a configuration can be a time-consuming
process. In many cases, however, it may be possible to reduce the time spent evaluating a
configuration if it is clearly performing worse than the configuration(s) against which it is
being compared. We now give an overview of the most common methods to do so. We first
define the naïve approach to selecting the number of runs (i.e. where no effort is made to
reduce the number of runs even if there is a clear difference between two configuration) and
then review the most common means of reducing the number of runs in the evaluation of a
configuration.

2.6.1 Static Runs

The simplest method to deal with the stochasticity in the evaluation process is to keep the
number of runs in an evaluation static. When evaluated, a configuration is run the same
number of times regardless of its performance relative to other configurations. Therefore
more time than necessary may be spent in an evaluation where the outcome could have been
determined earlier. This evaluation technique is employed, for example, by the BasicILS
version of ParamILS [62]. Throughout this thesis, the analysed configurators use this simple
approach to create a performance baseline for algorithm configuration.

32 Algorithm Configuration

2.6.2 Dynamic Runs

Many configurators reduce the number of runs of poorly-performing configurations. We now
review the most prominent approaches.

1. Intensification This method terminates the evaluation of a configuration as soon as it
begins to perform worse than the configuration against which it is being compared. When
comparing a newly-sampled configuration against one whose performance has already been
evaluated, the newly-sampled configuration is evaluated on the same sequence of problem
instances as its opponent and after each problem instance the evaluation is terminated if the
newly-sampled configuration has a worse aggregated performance. If the end of the sequence
of instances is reached (i.e. both configurations have been evaluated on the same sequence
of instances) and the new configuration has still not been shown to perform worse then it is
concluded that the new configuration is at least as good as its opponent. Intensification is
used in the FocusedILS (i.e. default) version of ParamILS [62] and in SMAC [64].

2. Racing (F-Race) As with intensification, racing aims to reduce the time spent evaluating
underperforming configurations and thus to spend more time deciding between those with
better performance. Racing was introduced by Maron and Moore to compare models in
machine learning [95]. It was adapted to the context of algorithm configuration by Birattari
et al. as F-Race [15] and is employed by the popular irace configurator [91]. According to
Huang et al. “The essential idea of [the] racing method is to evaluate candidate configurations
incrementally on a stream of instances. As soon as sufficient (statistical) evidence is gathered
against some candidates, these configurations are discarded, and the race continues on [with]
the surviving candidates” [61].

In a single race, F-Race compares the performance of each configuration on a sequence
of problem instances. That is, for some sequence of instances π1,π2, . . . ,πm, F-Race first
computes the performance of all configurations in the race on π1, and then on π2, and so on.
At some point, it begins to eliminate configurations that can be shown to be performing worse
than their rivals by an amount that is statistically significant. We illustrate a race between
eight configurations (θ1, . . . ,θ8) in Figure 2.2. Each dot represents where a configuration was
run on a specific problem instance. All configurations were tested on the first three problem
instances, before θ8 was eliminated. More configurations are eliminated in later rounds. The
race is eventually won by θ1, θ2, and θ3 after they have been evaluated on twelve instances.

The fact that F-race evaluates configurations concurrently can yield significant speedups
in comparison to intensification, which compares configurations against one that has already
been evaluated. For example, when using the Fixed-Target performance metric, intensification

2.6 Configuration Evaluation Methodologies 33

Fig. 2.2 A race between eight configurations.

will be slower than F-race if the configuration that has already been evaluated, θ1, is much
slower than the newly-generated configuration θ2 against which it is being compared, as
much time has already been spent evaluating the performance of the slow θ1. This problem is
avoided in F-race since both θ1 and θ2 are evaluated simultaneously, and thus the evaluation
can be terminated once it becomes clear that θ2 outperforms θ1.

Extending this logic, racing can compare more than two configurations in a more efficient
manner than intensification, resulting in considerable time savings if a small number of these
configurations clearly outperform the others after being evaluated on only a small number of
problem instances. Whilst F-Race will terminate the evaluation once it has identified this
behaviour, intensification, on the other hand, is only able to identify the optimal configuration
using a series of pairwise comparisons, with the best-performing configuration being used
as the opponent in comparisons against the remaining configurations. However, if no
configurations with good performance are evaluated until near the end of the evaluation
process, then time will be wasted on deciding between configurations with bad performance.

3. Sharpening In this method, all configurations are initially evaluated on the same number
of problem instances. However, at some pre-determined time the number of instances on
which each configuration is run is doubled. This may happen many times during the

34 Algorithm Configuration

configuration process. As a result, better configurations will be evaluated on more instances
than worse ones. This method is used by Bartz-Beielstein et al. in sequential parameter
optimisation (SPO) [10], but only given a name in a survey by Smit and Eiben [109]. Unlike
racing and intensification, it has not seen much use in the literature.

4. Hyperband Hyperband is a method for reducing the number of runs when evaluating
configurations in hyperparameter optimisation (HPO), a subset of algorithm configuration
problems concerned with choosing the “hyperparameters” of a machine learning algorithm
that best learn the “parameters” of a dataset6 [44].

Hyperband iterates a simpler HPO algorithm called SuccessiveHalving [68]. Given a
set of configurations, SuccessiveHalving repeatedly eliminates the worst-performing 1− 1

η

fraction and then multiplies the number of runs used to evaluate the remaining ones by η (by
default, η = 2, giving SuccessiveHalving its name). However, when using SuccessiveHalving
the user must decide the trade-off between the number of hyperparameter configurations
to evaluate (i.e. exploration) and the number of runs used to evaluate each one (i.e. ex-
ploitation). Hyperband automates this decision by running SuccessiveHalving with different
exploration/exploitation trade-offs.

The approach used by Hyperband cannot be applied to algorithm configuration in general
as typically target algorithms do not have a training stage in the evaluation process where
the number of runs can be reduced (i.e. optimisation algorithms, unlike machine learning
algorithms, do not need to be trained in order to be evaluated: see footnote 6) [78].

2.6.3 Surrogate Models (No Runs)

The evaluation of the performance of a configuration is usually the most time-consuming
component of algorithm configuration. Some configurators therefore replace the majority of
evaluations on the actual training set with the evaluation of a less costly ‘surrogate’ function
that predicts the performance of the configuration. This method therefore eliminates runs in
the majority of configuration evaluations since in most cases configurations are evaluated
using a surrogate model. Model-based configuration evaluations are used in the configuration
generation procedures of SPOT and SMAC. We cover these procedures and the model-based
framework in Section 2.7.4.

6In general, the configuration evaluation process in hyperparameter optimisation has two stages. First, the
target algorithm with its hyperparameters set according to the configuration is trained on a training dataset, and
second, its performance is assessed by running the trained algorithm on the test dataset. Hyperband adapts
the size of the training set, aiming to avoid wasting time training poorly-performing configurations on large
datasets.

2.7 Configuration Generation Methodologies 35

2.7 Configuration Generation Methodologies

In this section, we give an overview of the optimisers used to select and generate new
configurations. As this can be done using standard black-box optimisation algorithms, there
are in principle at least as many choices for methods for configuration generation as there are
optimisation algorithms.

2.7.1 One-shot methods

The most simple algorithm configurators only involve a single round of configuration gen-
eration. In some cases, such as F-Race [15] and Structured Procrastination [78], the best
member of a given set of candidate configurations is determined, an approach called one-shot
optimisation [29]. If all possible configurations in this set are generated and evaluated, then
the configurator is an example of full factorial design [48]. However, since generating and
evaluating all possible configurations will be time-consuming for large parameter spaces,
random sampling may be used instead, with samples being drawn either from the input
set of candidate configurations or generated given constraints on the parameter space. If
information about the parameter space is already known, then this can be used to guide the
sampling procedure, otherwise configurations may be sampled uniformly at random. F-Race
has been modified to sample configurations uniformly at random given bounds on the range
of each parameter, and the configurator using this technique was shown to outperform its full
factorial variant [7].

2.7.2 Black-box methods

Due to the black-box optimisation nature of algorithm configuration, many tuners use heuris-
tic methods to generate new configurations. One of the earliest efforts to address the algorithm
configuration problem was a heuristic approach (specifically, a genetic algorithm). Grefen-
stette proposed a meta-GA to optimise the parameter values of another genetic algorithm [49].
In the meta-GA, a population of 50 configurations was run on a set of problem instances and
then the best-performing configurations were used as the parents for the parameters of the
next generation of GAs. A static number of runs were used to evaluate configurations. The
tuned algorithm exhibited a 3% performance improvement over a GA using parameter values
recommended by de Jong in an earlier work [30].

A more sophisticated approach also using a genetic algorithm for generating new config-
urations was proposed by Ansótegui et al. with the introduction of the gender-based genetic
algorithm (GGA) [2]. GGA assigns each offspring configuration one of two genders: either

36 Algorithm Configuration

competitive or non-competitive. The configurations in the top ten percent of the competitive
population (with respect to fitness) are then recombined with the same number of config-
urations from the non-competitive population (chosen uniformly at random). An ageing
mechanism is used to encourage diversity of configurations by removing from the population
any configuration that is older than a pre-determined limit. Configurations are evaluated
using racing, as this allows for the parallel evaluation of many configurations. Ansótegui et
al. show that GGA considerably outperforms a standard (i.e. non-gender-based) genetic algo-
rithm. When both tuners are run for the same number of iterations, GGA terminates twenty
times earlier and returns configurations that are of a substantially higher quality than those
returned by the standard GA. They also show that it outperforms the well-known ParamILS
configurator (see Section 2.8.1) when configuring the SAT solvers SAPS, SPEAR, and SAT4J.
Both configurators were run for the same time budget and the configurations generated by
GGA had better performance than those yielded by ParamILS [2]. However, despite these
promising initial results, GGA has failed to gain widespread use, and configurators such as
irace and SMAC have been shown to outperform it considerably [64, 105].

Other types of evolutionary algorithms have also been applied to the problem of config-
uration generation. For example, Yuan et al. used the state-of-the-art evolution strategy (a
family of evolutionary algorithm for continuous search spaces) CMA-ES [54] to generate
configurations of swarm intelligence algorithms, evaluating configurations using either a
static number of runs or racing [119]. Yuan et al. compared the configurations generated
by CMA-ES against those generated by two black-box approaches common in numerical
optimisation, BOBYQA [102] and mesh adaptive direct search (MADS) [4]. BOBYQA is
shown to generate configurations that outperform those generated by CMA-ES and MADS,
and those generated by CMA-ES outperform those generated by MADS.

The popular configurators ParamILS and irace both use heuristic methods to generate new
configurations. ParamILS employs iterated local search (ILS) [93] and irace generates new
configurations using an estimation of distribution algorithm (EDA) [83]. These approaches
are discussed in more detail in Sections 2.8.1 and 2.8.2, respectively.

2.7.3 Experimental design

The field of experimental design is concerned with how to best investigate the “response”
of a system (in this case, the target algorithm) to different “factors” (in this case, parameter
values) [48]. The CALIBRA configurator employs a method from experimental design,
called “Taguchi fractional factorial experimental designs” [107], to follow ever-improving
paths of configurations. Taguchi fractional factorial experimental designs are a systematic
method to vary the factors of a system such that a small number of experiments are needed

2.7 Configuration Generation Methodologies 37

to identify the response of the system to each factor. In each iteration, CALIBRA creates
nine new configurations using the Taguchi method and identifies the best-performing of
these. It then iterates this process, initially generating nine new configurations based on this
configuration. It restarts the search process once it reaches a local optimum. However, the
Taguchi framework is only applicable to scenarios with five factors, and thus CALIBRA is
limited to configuring only five parameters. Therefore, whilst it has been shown to improve
the performance of a number of algorithms, for example simulated annealing and tabu search,
for combinatorial optimisation problems such as job scheduling [1], its restriction to the
configuration of five parameters appears to have limited its widespread adoption.

2.7.4 Surrogate model-based techniques

This family of methods uses a model of the parameter landscape to sample new configurations.
These are then evaluated on the training set, and this information is used to update the model
and the process is iterated, with the new model being used to generate new configurations. A
general framework for this approach is given in Figure 2.3. Recall that surrogate models are
not only a means of generating new configurations but also a means of evaluating them (by
predicting their performance), as discussed in Section 2.6.3.

Generate model

Generate promising
configurations
using model

Run promising
configurations

Fig. 2.3 The surrogate-model-based configuration generation framework.

Hutter et al. call a configurator that generates new configurations in this manner a
sequential model-based optimiser (SMBO) [64]. In this approach, the configurator generates
an initial set of configurations and evaluates them on the training set. The tuner then fits a
model to the performance data obtained from these evaluations. Using this model, the tuner
generates a set of new configurations in areas of the model with low confidence or which
appear to be close to the optimum, called the “areas of greatest expected potential gain”. The
configurator then evaluates this new set of configurations on the training set, and generates
a new model to reflect the new information which has been learned. The process is then
repeated, beginning by generating a new set of parameters based on this new model.

Bartz-Beielstein et al. were the first to apply this methodology to algorithm configuration
with a technique called sequential parameter optimisation (SPO) [10], implemented in the

38 Algorithm Configuration

SPO Toolbox (SPOT) [11]. Evaluation of configurations is carried out using sharpening.
However, SPOT can only optimise parameters for single problem instances: it is unable to
tune an algorithm for classes of problems, as is often desired in real-world applications. In
addition, it could initially only handle numerical parameters (although this shortcoming has
subsequently been addressed by extending it to be able to handle numerical ones [12]).

To address these shortcomings, Hutter et al. introduced SMAC [64] (discussed in detail
in Section 2.8.3). The models used by SMAC allow it to optimise categorical parameters in
addition to numerical ones. Furthermore, SMAC is able to optimise parameter values over
multiple problem instances.

2.8 Detailed Algorithm Configurator Descriptions

In this section, we first present ParamILS in detail, which until recently was the state-of-the-
art, and for which we derive performance guarantees in this thesis. We then examine the two
most widely-used configurators in the literature, irace and SMAC, giving an in-depth look at
the state-of-the-art. The final two sections give an overview of a recently-introduced class of
configurators that, uniquely for the algorithm configuration literature prior to this thesis, has
performance guarantees.

2.8.1 ParamILS

ParamILS generates new configurations using an iterated local search [62]. In contrast to
many other tuners, it maintains a population of only a single configuration.

We give the pseudocode for ParamILS in Algorithm 3. Essentially, after having selected
the best initial configuration out of R+1 randomly-generated ones, ParamILS repeats the
following loop:

1. Apply an iterated local search procedure, called IterativeFirstImprovement, to the
current solution, thus locating a local optimum;

2. Perturb the identified local optimum by performing a random walk of length s through
the parameter space (that is, perform s random moves where in each move it selects a
configuration that differs from the current one in a single parameter value);

3. Re-initialise the search procedure with probability prestart.

The IterativeFirstImprovement procedure is described in Algorithm 4 and defines the
neighbourhood of a configuration as all configurations that differ from it in a single parameter

2.8 Detailed Algorithm Configurator Descriptions 39

value. Given an input configuration θ , the procedure visits its undiscovered7 neighbours (all
the neighbours that have not been evaluated in the current call of IterativeFirstImprovement)
UndiscNbh(θ) in a randomised order and then accepts the first one it finds that is at least as
good as it. It then performs the same procedure on this newly discovered configuration. This
process is repeated until it reaches a configuration with no undiscovered neighbours that are
at least as good as it.

One of two different approaches may be applied for configuration evaluation. A simple
approach, called “BasicILS”, uses a static number of runs, whereas “FocusedILS”, uses
intensification. Both methods optionally use adaptive capping. The configuration evaluation
procedure is called better(θ1,θ2) in Algorithms 3 and 4 and returns true if and only if
configuration θ1 is evaluated to be better than configuration θ2.

In this thesis, we will use ParamILS as the basis for the design of a bare-bones algorithm
configurator, called ParamRLS (Section 3.3), which we use to set up the mathematical basis
for the time complexity analysis of algorithm configurators.

Algorithm 3: ParamILS pseudocode, adapted from [62].
Input: Initial configuration θ0 ∈Θ, parameters R, prestart, and s.
Output: Best parameter configuration θ found.

1 for i = 1, . . . ,R do
2 θ ← random θ ∈Θ

3 if better(θ ,θ0) then θ0← θ

4 θinc← θils← IterativeFirstImprovement(θ0)
5 while not TerminationCriterion do
6 θ ← θils
7 for i = 1, . . . ,s do

// Random perturbation step of size s
// Nbh contains all neighbours of a configuration

8 θ ← random θ ′ ∈ Nbh(θ)

9 θ ← IterativeFirstImprovement(θ)
10 if better(θ ,θils) then θils← θ

11 if better(θils,θinc) then θinc← θils
12 with probability prestart do θils← random θ ∈Θ

13 return θinc

7The consideration of undiscovered neighbours fixes a typo in the pseudocode given in [62] which could
lead to an infinite loop if equally good configurations belong to the same neighbourhood. The pseudocode
in Algorithm 4 follows the implementation of ParamILS available at http://www.cs.ubc.ca/labs/beta/
Projects/ParamILS.

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

40 Algorithm Configuration

Algorithm 4: IterativeFirstImprovement(θ) procedure, adapted from [62].
1 repeat
2 θ ′← θ

3 forall θ ′′ ∈ UndiscNbh(θ ′) in randomised order do
// UndiscNbh contains all undiscovered neighbours of a configuration

4 if better(θ ′′,θ ′) then θ ← θ ′′; break

5 until θ ′ == θ

6 return θ

2.8.2 Iterated F-Race and irace

The Iterated F-Race (I/F-Race) configurator maintains a population of configurations and
repeatedly generates new ones from probability distributions biased towards the best perform-
ers, where sets of configurations are evaluated using F-Race (outlined in Section 2.6.2) [7].
This approach makes it an estimation of distribution algorithm (EDA), a class of evolution-
ary algorithms [83]. The I/F-Race framework is implemented, generalised, and improved
upon in the irace configurator [91]. One improvement of irace over I/F-Race is to use an
elitist iterated racing procedure, which ensures that the best-performing configurations have
been evaluated on the highest number of problem instances (similarly to intensification –
Section 2.6.2). We give the pseudocode of irace in Algorithm 5.

Algorithm 5: irace pseudocode, adapted from [91]. Given parameter space Θ, total
allowed tuning budget B. Bi is the budget allocated to race i, Bused stores current
budget used.
1 Θ1← SampleUniform(Θ) // Initialise u.a.r.

2 Θelite← Race(Θ1,B1) // Θelite now contains winners of first race.
3 j← 1
4 while Bused ≤ B do
5 j← j+1
6 Θnew← Sample(Θ,Θelite) // Sample new configurations from distributions biased

towards Θelite.
7 Θ j←Θnew∪Θelite

8 Θelite← Race(Θ j,B j) // Θelite now contains winners of j-th race.

9 return Θelite

Given a parent configuration, irace samples new values for numerical parameters from a
truncated normal distribution8. The mean of this distribution is taken to be the value of the

8A variant of the normal distribution for which the probability density function is 0 outside a given range of
permitted values.

2.8 Detailed Algorithm Configurator Descriptions 41

parameter in the parent configuration and its standard deviation decreases with the length of
time that the tuner has been running. Categorical parameters are sampled from distributions
that are biased towards the value of that parameter in the parent configuration. In this case,
the distribution is updated each time a new configuration is sampled and is inherited by the
child configuration.

Historically, irace has focused on the maximisation of solution quality (i.e. the Best-
Fitness performance metric) rather than the minimisation of runtime. However, the addition
of adaptive capping to irace has enabled it to achieve competitive performance also when
run using the Fixed-Target performance metric [21].

2.8.3 SMAC

The sequential model-based optimiser (see Section 2.7) SMAC (‘sequential model-based
algorithm configuration’) uses a model of the parameter landscape in order to generate
new configurations that are expected to have good performance [64]. It evaluates these
newly-generated configurations on the training set and generates a new model to reflect the
information that has been learned. SMAC uses a variant of intensification to evaluate the
performance of configurations. A configuration is initially run on only one instance, then
on two, then four, and so on. When the length of the sequence list is doubled, if the new
configuration has a higher cost than the current best-found, then it is eliminated and the
evaluation is terminated. We give the pseudocode for SMAC in Algorithm 6.

Algorithm 6: Pseudocode for SMAC, adapted from [64]. Given parameter space Θ,
the array D stores information about performance of configurations from previous
evaluations.
1 (D,Θinc)← Initialise(Θ)
2 repeat
3 M← FitModel(D)
4 Θnew← SelectConfigurations(M,Θinc) // Select configurations with highest expected

positive improvement based on modelM.
5 (D,Θinc)← Intensify(Θnew,Θinc,M,D) // Identify best configuration in Θnew.

6 until termination condition is satisfied
7 return Θinc

SMAC generates new configurations by identifying those with high expected positive
improvement (EPI) over the best configuration seen so far. Intuitively, EPI is maximised
for configurations where the model of the parameter space has high uncertainty and low
predicted cost. This allows SMAC to balance exploration and exploitation. SMAC uses a

42 Algorithm Configuration

multi-start local search from the ten previously-run configurations with the highest EPI in
order to find ten new configurations with locally optimal EPI. In addition, it samples 20,010
configurations uniformly at random. It compares the newly-sampled configurations against
the current best-found (using evaluations on the training set rather than predictions using the
model) and replaces it if a better-performing configuration has been discovered.

Experimental evidence suggests that SMAC yields better algorithm configurations than
ParamILS and GGA for a range of tuning problems [64]. According to the recent re-
view by Huang et al., “SMAC is the currently most powerful automatic parameter tuning
method” [61].

2.8.4 Structured Procrastination

In this section, we provide an overview of Structured Procrastination (SP), the first non-
incumbent-driven configurator. In Section 2.8.5, we outline variants of this configurator
that have subsequently been developed. We detail this class of configurators because it has
worst-case performance guarantees that we will review when describing the state-of-the-art
in the theory of algorithm configuration in Section 2.9.3.

By default, all configurators in this class are examples of one-shot optimisation (defined
in Section 2.7.1): given a set of permitted configurations, they attempt to identify the member
of this set with the best performance. They are all designed for use with variants of the
Fixed-Target performance metric. Structured Procrastination seeks the optimal configuration
according to the κ-Fixed-Target performance metric.

Structured Procrastination maintains a list of configurations and, associated with each of
them, a queue of problem instances and cutoff times. In each queue, the instance with the
lowest associated cutoff time is always at the head. SP also estimates the mean runtime of each
configuration based on its execution thus far. In each iteration, it runs the configuration with
the smallest estimated mean runtime on the problem instance at the head of its corresponding
queue. If the run is successful (i.e. the configuration reaches the optimum of the problem
instance within the associated cutoff time) then this problem instance is removed from the
queue. Otherwise, the cutoff time associated with the instance is doubled and the instance is
sent to the back of the queue. Upon termination, SP returns the configuration with the smallest
mean runtime. The user must first specify the amount by which the returned configuration
can be worse than the optimal one, ε , and also the probability ζ with which this guarantee can
fail to hold. When the algorithm is terminated, it returns the value of δ for which its chosen

2.8 Detailed Algorithm Configurator Descriptions 43

configuration is (ε,δ)-optimal9 with probability at least 1−ζ . We give the pseudocode for
SP in Algorithm 7.

Algorithm 7: Structured Procrastination, adapted from [78].

Input :Parameter space Θ, precision parameter ε ∈ (0, 1
3), failure probability

ζ ∈ (0,1), lower and upper runtime bounds κ0 and κ̄ , sequence j1, j2, . . . of
(instance, seed) pairs.

1 β ← log2(κ̄/κ0)
2 for θ ∈Θ do
3 kθ ← 0
4 ℓθ ← ⌈12ε−2 ln(2β |Θ|/ζ)⌉
5 Qθ ← empty double-ended queue
6 for ℓ= 1, . . . , ℓθ do
7 Rθℓ← 0
8 Insert (ℓ,κ0) at tail of Qθ

9 repeat
10 i← argminθ ′∈Θ

{
1

k
θ ′

∑
k1
ℓ=1 Rθ ′ℓ

}
11 Remove (ℓ,κ) from head of Qi // i.e. jℓ is instance at head of Qi

12 if Riℓ == 0 then
13 ki← ki +1
14 qi← ⌈12ε−2 ln(3β |Θ|(ki)

2/ζ)⌉
15 if RUN(i, jℓ,κ) terminates in time t ≤ κ // RUN(i, jℓ,κ): run config. i on jℓ with cutoff κ

16 then
17 Riℓ← t

18 else
19 Riℓ← κ

20 Insert (ℓ,2κ) at tail of Qi

21 while |Qi|< qi do
22 ℓi← ℓi +1
23 Ri,ℓi ← 0 Insert (ℓi,κ) at head of Qi

24 until termination criterion satisfied

25 return θ ∗← argmaxθ∈Θ

{
∑

kθ

ℓ=1 Rθℓ

}
, δ =

√
1+εqθ∗
kθ∗

9We define the notion of (ε,δ)-optimality precisely in Section 2.9.3. Briefly, a configuration is (ε,δ)-
optimal if with probability at least 1−δ its average runtime is larger than that of the optimal configuration by a
factor of at most 1+ ε .

44 Algorithm Configuration

2.8.5 Other Non-Incumbent-Driven Configurators

Inspired by SP, Weisz et al. created the non-incumbent-driven configurator LEAPSAND-
BOUNDS (LB) [115], and then subsequently built upon it with CAPSANDRUNS (CR) [116].
LB and CR are designed for use with the Fixed-Target and the δ -Percentile-Fixed-Target
performance metrics, respectively.

LB estimates the runtime of the optimal configuration (initially as 16κ0/7 for a given
lower runtime bound κ0) and then attempts to find a configuration with a smaller mean
runtime than this by estimating the mean runtime of all configurations using runs with this
cutoff time. If it finds any such configurations then it returns the one with the smallest mean
runtime. If it cannot find such a configuration then it doubles its estimate of the optimal
runtime (i.e. doubles the cutoff time) and repeats the search. LB allows the runtime estimation
routine for each configuration to be terminated early if the variance of its runtimes across
problem instances is low. We give the pseudocode for LB in Algorithm 8.

Algorithm 8: LEAPSANDBOUNDS, adapted from [115].

Input :Parameter space Θ, precision parameter ε ∈ (0, 1
3), percentile parameter

δ ∈ (0,1), failure probability ζ ∈ (0,1), lower runtime bound κ0, instance
distribution I.

1 κ ← 16
7 κ0,k← 0,J ← empty list

2 while True do
3 k← k+1

4 b← ⌈44log2

(
6|Θ|k(k+1)

ζ

1
δε2

)
⌉

5 Add b−|J | new instances sampled from I to J
6 for θ ∈Θ do
7 Q̄θ ← RUNTIMEEST(θ ,J ,δ ,κ) // Calcuate mean runtime of config. θ using cutoff κ

8 if minθ Q̄θ < κ then
9 return argminθ Q̄θ

10 κ ← 2κ

Like LB, CR operates in two phases. In the first phase, it estimates a cutoff time for each
configuration within which it will solve at least a 1−δ fraction of instances. In the second
phase, it uses these cutoff times to compute the mean runtime of each configuration. It does
so using a modified Bernstein race10 [96] in which if it becomes clear that the configuration
cannot outperform the best-found configuration then the evaluation is stopped. CR computes
the average runtime for each configuration and returns the configuration with the smallest

10Bernstein races are modified version of F-Races that additionally allow the evaluation process to be
terminated early if there is low variance in the runtime of configurations.

2.8 Detailed Algorithm Configurator Descriptions 45

corresponding value. Like LB, CR terminates the evaluation of the runtime of a configuration
if these times exhibit low variance. Additionally, CR stops evaluating configurations if
they can be shown to perform significantly worse than another configuration. We give the
pseudocode for CR in Algorithm 9.

Algorithm 9: CAPSANDRUNS, adapted from [116].

Input :Parameter space Θ, precision parameter ε ∈ (0, 1
3), percentile parameter

δ ∈ (0,1), failure probability ζ ∈ (0, 1
6), instance distribution I.

1 Θ′←Θ

2 for configuration θ ∈Θ in parallel do
3 tθ ← QUANTILEEST(θ ,1−δ ,ζ) // Estimate 1−δ -th percentile of runtimes of θ

4 if QUANTILEEST(θ ,1−δ ,ζ) aborted // i.e. θ will not be faster than best-found
5 then
6 Remove θ from Θ′

7 else
8 Run RUNTIMEEST(θ , tθ ,ε,ζ), abort if |Θ′|= 1 // Est. runtime of θ with cutoff tθ
9 if RUNTIMEEST(θ , tθ ,ε,ζ) rejected θ // i.e. θ will not be faster than best-found

10 then
11 Remove θ from Θ′

12 else
13 Ȳ (θ)← return value of RUNTIMEEST(θ , tθ) // Upper bound on runtime of θ

14 return θ ∗ = argminθ∈Θ′ Ȳ (θ) and tθ∗

LB and CR differ from SP since the latter always assumes the worst-case scenario and
therefore runs each configuration long enough to be able to distinguish between it and its
opponents in the worst case. LB and CR make no such assumption, as can be seen in their
ability to terminate evaluations early if it is already clear that the configuration is not optimal.
Thus LB and CR are likely to perform better than SP in non-worst-case scenarios. Unlike SP,
however, LB and CR are not anytime: the user must specify δ at the beginning of the process
and then wait until the method terminates, whereas SP successively tightens δ throughout
the run, and hence the best-found configuration can be returned at any time.

Recently, Kleinberg et al. created a modification of SP, called Structured Procrastination
with Confidence (SPC) that “maintains the anytime property [of SP] while aiming to observe
only as many [runs] as necessary to separate the runtime of each configuration from that
of the best alternative” [79]. They show that SPC exhibits near-optimal worst-case running
time (as with SP) but, unlike SP, it also has near-optimal runtime in non-worst-case scenarios.
They prove that SPC is faster than SP in configuration scenarios where many configurations
have poor performance. They conduct experiments comparing SPC against SP and LB for

46 Algorithm Configuration

the configuration of the SAT solver minisat and the results suggest that it is able to identify
good configurations (in the top 1%) in a fraction of the time required by LB. Unfortunately,
there is no comparison against CR since they were developed concurrently.

Similarly to SP, SPC maintains a queue of problem instances and cutoff times for each
configuration. However, unlike the mean runtime that is tracked by SP, SPC instead maintains
a lower confidence bound on the runtime of each configuration which becomes tighter the
more times the configuration is run. In each iteration of the main loop, the configuration with
the smallest lower bound is selected and run on the (problem instance, random seed) pair
at the head of its associated queue. If the optimum is reached within this cutoff time then
the lower bound is updated, otherwise the cutoff time is doubled and the instance sent to the
back of the queue. At the end of the tuning process, the configuration that has been run on
the most problem instances is returned. We give the pseudocode for SPC in Algorithm 10.

Algorithm 10: Structured Procrastination with Confidence, adapted from [79].
Input :Parameter space Θ.

1 for θ ∈Θ do
2 Cθ ← new configuration tester for θ // Class for testing configuration θ .
3 Cθ .initialise() // Create double-ended instance queue

4 while termination criterion not satisfied do
5 θ ← argminθ ′∈Θ{Cθ ′.GetLCB()} // identify config. with smallest lower confidence bound
6 Cθ .ExecuteStep() // Execute a run of configuration θ

7 return configuration with most instances either completed or in queue

2.9 Theory of Algorithm Configuration

In this section, we provide an overview of the literature regarding the theory of algorithm
configuration. We classify the literature into three broad themes: analyses of the necessary
size of the training set and distribution of runs across it to ensure good generalisation of
the performance of the identified configuration (Section 2.9.1); proofs of convergence for
SMAC and the FocusedILS version of ParamILS (Section 2.9.2); worst-case runtime analyses
(Section 2.9.3).

2.9.1 Generalisation Analysis

An important choice when running an algorithm configurator is how to distribute the con-
figuration budget across the training set (i.e. how many training instances to use and how

2.9 Theory of Algorithm Configuration 47

many times to run the target algorithm on each instance). Birattari provides a simple answer:
for a configuration scenario with an infinite training set and where we are willing to run a
configuration N times in each evaluation, a configuration should be run once on N distinct
problem instances [13]. This minimises the variance of the estimate of the performance of
the configuration.

Recently, Liu et al. built on this result by considering the more realistic scenario where
the training set is finite [90]. They assume that the training set is of size K and that we are
again willing to run a configuration N times in each evaluation. Liu et al. prove that to
minimise the variance of the obtained performance estimate a configuration should be run ni

times on instance i, where ni ∈ {⌊N
K ⌋,⌈

N
K ⌉} and ∑

K
i=1 ni = N. This implies that runs should be

distributed between problem instances as evenly as possible. These works provide theoretical
validation for the approaches used in ParamILS, SMAC, and irace.

Related to the optimal number of times to run a configuration on each training instance
is the question of how many training instances should be used to increase the probability
that configurations with good performance across unseen problem instances are identified.
Called the sample complexity, this quantity is commonly studied in the analysis of machine
learning algorithms (learning theory), where the impact of the size of the training set is of
interest. In the remainder of this section, we survey results that derive the sample complexity
of configuration evaluation.

Balcan et al. analysed the number of training instances required for the performance of
an algorithm during the configuration process to be close to its expected performance across
all problem instances (i.e. including unseen instances) [8]. They derive sample complexity
results for cases where the class of functions expressing the performance of the target
algorithm with respect to its parameters is piecewise-structured. This condition holds if the
parameter space can be split (using a set of boundary functions) into sections within which
the performance-expressing function is well-behaved (i.e. belongs to a function class of low
complexity, such as constant functions or linear functions). This structure has been shown to
arise in multiple real-world algorithm configuration scenarios [8].

The size of the training set required for good generalisation depends on the complexity
of both the class of boundary functions and the class that quantifies the performance of
the target algorithm within each section. The following theorem shows that the number of
training instances required to sample a configuration with performance that generalises well
grows with the complexity of these two function classes. The complexity of these classes
is defined in terms of pseudo-dimension and VC-dimension, measures which we define in
Appendix A (page 193).

48 Algorithm Configuration

Theorem 1 (Adapted from the text of Section 1.1 in [8]). Let C(θ ,πi) denote the performance
of configuration θ on problem instance πi. Let F = {C(θ ,πi) | πi ∈Π} and let G be a class
of functions that partitions the parameter space into sections within which the performance
of the target algorithm is described by a function in F . If there are at most k boundary
functions, and if the performance of an algorithm is in [0,H] then, with probability 1−δ , the
difference between the average performance of the algorithm on the training set of size N
and its expected performance is

Õ

(
H

√
1
N

(
Pdim(F∗)+VCdim(G∗) lnk+ ln

1
δ

))
,

where F∗ and G∗ are the duals of F and G, respectively, and Pdim and VCdim are pseudo-
dimension and VC-dimension, respectively, and where Õ ignores logarithmic factors.

Balcan et al. generalise this result, showing that good generalisation guarantees can
also be obtained in cases where the class of performance-quantifying functions (i.e. F in
Theorem 1) is not piecewise-structured [9]. Letting C(θ ,πi) denote the performance of
configuration θ on problem instance πi, they show that if the class F = {C(θ ,πi) | πi ∈Π}
can be approximated by a function classH under the L∞-norm (i.e. the absolute difference
between F andH is small at all points in the parameter space), and ifH is of low complexity,
then the number of training instances required for good generalisation is small. However,
if this approximation only holds under the Lp-norm, for some p < ∞ (i.e. the difference
between the two function classes is small under the Lp-norm but not under the L∞-norm),
then they show that it is not possible to obtain such guarantees.

Theorem 2 formalises the first of these claims, showing that the upper bound on the
absolute difference between the performance of a configuration during the tuning process
and its performance across the complete set of problem instances decreases as the complexity
of the dual of the approximating function classH decreases. The complexity of a function
class is this time quantified in terms of empirical Rademacher complexity, which we define
in Appendix A (page 193).

Theorem 2 (Combination of Theorems 4.2 and 4.3 in [9]). Given a training set S of size N,
let C(θ ,πi) denote the performance of configuration θ on training instance πi and C(θ)
denote the performance of θ over all problem instances Π, distributed according to I. Then,
with high probability over the draw of the training set S , for any configuration θ ,

∣∣∣∣∣ 1
N ∑

πi∈S
C(θ ,πi)−C(θ)

∣∣∣∣∣= Õ

(
1
N ∑

πi∈S
sup

πi

|C(θ ,πi)−hπi(θ)|+RS(H∗)+
√

1
N

)
,

2.9 Theory of Algorithm Configuration 49

where hθ (πi) is an approximation of C(θ ,πi) that holds under the L∞-norm,H= {hθ (πi) |
πi ∈Π}, H∗ is the class of dual functions of H, and RS(H∗) is its empirical Rademacher
complexity given the training set S. Õ suppresses logarithmic factors.

We do not reproduce the negative result of Balcan et al. that demonstrates that similar
claims of good generalisation do not hold if the approximation of the dual function class
holds only under the Lp-norm, for some p < ∞, since the theorem statement would introduce
much unnecessary notation. However, we will briefly give an intuition of the result. The
positive claim (Theorem 2) holds because if F can be approximated byH under the L∞-norm
and the dual function class ofH,H∗, has low complexity, then F also has low complexity,
which implies the claim. However, if the approximation only holds under the Lp-norm, for
some p < ∞, then this is not the case: it is possible forH∗ to have low complexity and F to
have high complexity.

2.9.2 Convergence Analysis

Hutter et al. prove that both SMAC and the FocusedILS version of ParamILS converge to
an optimal configuration when operating in a finite parameter space [62, 63]. These results
require that the cost of a configuration is measured using a consistent estimator, i.e. that
grows closer to the true value of the cost as the number of runs of the target algorithm
increases:

Definition 2. An estimator of the cost of a configuration θ after running it N times, ĉN(θ),
is a consistent estimator of the cost of the configuration, c(θ), if and only if, ∀ε > 0,

lim
N→∞

Pr(|ĉN(θ)− c(θ)|< ε) = 1.

This definition allows us to now state the convergence results of Hutter et al.:

Theorem 3 (Combination of [62, Theorem 9] and [63, Theorem 4]). Consider FocusedILS
or SMAC configuring an algorithm using a consistent estimator of the cost of a configuration.
If the configuration space is finite, then the probability that the configurator finds the optimal
configuration approaches one as the time spent running the configurator approaches infinity.

For both configurators, the proof of this theorem uses the following reasoning. First,
each iteration of the configurator takes finite time and thus the number of times that each
configuration has been evaluated approaches infinity as the number of iterations of the
configurator grows. Second, after many comparisons between two configurations, the
configuration with the lower cost will be evaluated to be better than the worse configuration

50 Algorithm Configuration

tends toward 1 (since the cost estimator is consistent). Third, since the configuration space is
finite, all pairwise comparisons of configurations will have been carried out as the number of
iterations of the configurator tends to infinity. Combining these observations, we conclude
that the probability that the optimal configuration has been found approaches 1 as the total
number of iterations of the configurator tends to infinity.

2.9.3 Worst-Case Performance Analysis

In the following, we call a pair consisting of a problem instance and a random seed simply an
“instance”, thus making the runtime of a randomised algorithm on an instance deterministic.
Let the runtime of the configuration θ on the instance πi be denoted by R(θ ,πi)

11 and denote
the τ-capped runtime of θ on πi as R(θ ,πi,τ) = min{R(θ ,πi),τ}. Thus the τ-capped run-
time of a configuration on an instance is the time required by the configuration to reach the
target solution quality for the instance if this time is at most τ , and is otherwise it is equal to τ .
We define Rτ(θ) = Eπi∼I [R(θ ,πi,τ)] as the expected τ-capped runtime taken over the distri-
bution of instances I . Given some runtime κ̄ that we are never willing to exceed, the optimal
configuration with respect to the κ-Fixed-Target performance metric (and thus the configura-
tion that Structured Procrastination seeks) is defined as θ ∗SP = argminθ{Rκ̄(θ)}. Hence, θ ∗SP

is the configuration with the smallest expected κ̄-capped runtime, i.e. the configuration with
smallest expected runtime when runtimes greater than κ̄ are taken to be κ̄ .

Kleinberg et al. [78, 79] provide the following definition of an near-optimal solution to
the algorithm configuration problem:

Definition 3 ((ε,δ)-SP-optimality [78, 79]). A configuration θ is (ε,δ)-SP-optimal if there
exists some threshold τ such that Prπi∼I(R(θ ,πi) > τ) ≤ δ and Rτ(θ) ≤ (1+ ε)Rκ̄(θ

∗
SP).

Otherwise, we say θ is (ε,δ)-SP-suboptimal.

By Definition 3, a configuration is (ε,δ)-SP-optimal if there exists a cutoff time τ within
which it reaches the target solution quality for all but a δ fraction of problem instances in a
κ̄-capped time that is no more than a factor of (1+ ε) larger than the κ̄-capped runtime of
the optimal configuration θ ∗SP.

The following theorem provides a lower bound on the expected time required by any
algorithm configurator to identify an (ε,δ)-SP-optimal configuration.

11We do not denote the runtime of a configuration as T (θ ,πi), as would more closely follow the literature
related to the theory of evolutionary computation, since: (1) we use T throughout this thesis to denote the time
required by a configurator to identify an optimal configuration and want to avoid confusion here; (2) we want to
be consistent with the literature regarding worst-case analysis of configurators, which employs the notation
used in this section.

2.9 Theory of Algorithm Configuration 51

Theorem 4 (Worst-case configuration time under the κ̄-Fixed-Target performance metric,
adapted from Theorem 6.1 in [78]). Suppose an algorithm configuration procedure is guar-
anteed to select an (ε,δ)-SP-optimal configuration with probability at least 1/2. In the
setting with a finite number |Θ| of configurations, the worst-case configuration time of any
configurator is at least Ω

(
|Θ|
δε2 Rκ̄(θ

∗
SP)
)

, in expectation.

This lower bound can be understood as capturing the need to sample an (ε,δ)-SP-optimal
configuration (accounting for the |Θ| term), and then needing to run this configuration enough
times to sample a run whose runtime exceeds κ̄ (accounting for the 1/δ term) and needing
to observe enough slow runs to be able to estimate their probability of occurring within a
factor of 1−2ε (accounting for the 1/ε2 term) [78]. The factor of Rκ̄(θ

∗
SP) is because all

configurations must be run long enough to allow at least one (the optimum, θ ∗SP) to reach the
target solution quality.

Kleinberg et al. show that, in the worst case, all incumbent-driven algorithm configurators
(defined formally in Section 2.5.2) using the Fixed-Target, κ̄-Fixed-Target, or δ -Percentile-
Fixed-Target performance metric have arbitrarily bad performance with high probability [78].
This includes all configurators where the cutoff time is static and those that attempt to reduce
it (e.g. with adaptive capping).

Theorem 5 (Worst-case incumbent-driven configuration time, adapted from Theorem 3.2
in [78]). For any incumbent-driven configurator, any γ > 0, let R1 and R2 be the runtimes of
two configurations. Then for R1 < R2, there is an algorithm configuration problem in which
a γ fraction of all possible configurations have an average runtime no greater than R1, but,
with probability at least 1− γ , the configuration procedure will require time at least R2 to
identify a configuration with runtime R1.

Note that a cutoff time of at least R2 must be used in order to distinguish between non-
optimal configurations. Consider a configuration scenario where, when an instance is of
size n, an 1/n fraction of configurations have runtime R1 = n and all others have runtime
R2 = nn (for simplicity, assume that the target algorithm is deterministic). Then, in terms of
Theorem 5, γ = 1/n and thus, with probability at least 1−1/n, the configurator will require
time at least nn to return an optimal configuration with runtime n.

Kleinberg et al. show that, on the other hand, in the worst case the expected configuration
time of the non-incumbent-driven Structured Procrastination (SP) is only larger than the
lower bound given in Theorem 4 by a logarithmic factor [78]. The version of the bound that
we state below is a simplification due to Weisz et al. [115].

Theorem 6 (Runtime of Structured Procrastination [115]). For any δ > 0 and cutoff time κ̄

that we are not willing to exceed, Structured Procrastination identifies an (ε,δ)-SP-optimal

52 Algorithm Configuration

configuration in time

O
(

Rκ̄(θ
∗
SP)
|Θ|
ε2δ

log
(
|Θ| log κ̄

ζ ε2δ

))
,

with probability at least 1−ζ .

The logarithmic factor by which this upper bound is larger than the worst-case lower
bound given in Theorem 4 is due to the number of problem instances that SP must run a
configuration on before it can identify it as (ε,δ)-SP-optimal with the required probability
of 1−ζ .

Weisz et al. prove a similar upper bound on the runtime of LEAPSANDBOUNDS (LB) [115].
However, their definition of optimality (and near-optimality) is subtly different from that
used by Kleinberg et al. in their analysis of SP. Instead of defining the optimal configuration
in terms of κ̄-capped runtimes, Weisz et al. do so in terms of uncapped runtimes (this
is equivalent to simply using the Fixed-Target performance metric). That is, Weisz et al.
define the optimal configuration θ ∗LB = argminθ{R∞(θ)}. Under this definition, the optimal
configuration θ ∗LB has the smallest expected runtime over the distribution of instances without
any runs being capped. This has the disadvantage that even the optimal configuration θ ∗LB

could have infinite runtime, but if this is not the case then this definition arguably provides a
more meaningful indicator of which configuration is optimal since its uncapped nature means
that the optimal configuration will also be optimal for larger cutoff times (unlike with the
κ̄-Fixed-Target metric, where larger values of κ̄ may yield different optimal configurations).

Definition 4 ((ε,δ)-LB-optimality [115]). A configuration θ is (ε,δ)-LB-optimal if there
exists some threshold τ such that Pri∼I(R(θ , i) > τ) ≤ δ and Rτ(θ) ≤ (1+ ε)R∞(θ

∗
LB).

Otherwise, we say θ is (ε,δ)-LB-suboptimal.

The following upper bound on the configuration time of LB replaces the κ̄ term (the
largest cutoff time that we are willing to use) in the upper bound for SP (Theorem 6) with the
term R∞(θ

∗
LB). R∞(θ

∗
LB) will be be equal to κ̄ if κ̄ is large enough to allow all configurations

to reach the target solution quality. Theorem 7 also removes the logarithmic dependency
on ε−2δ−1 present in Theorem 6.

Theorem 7 (Theorem 13 in [115]). LEAPSANDBOUNDS identifies an (ε,δ)-LB-optimal
configuration in time

O
(

R∞(θ
∗
LB)
|Θ|
ε2δ

log
(
|Θ| logR∞(θ

∗
LB)

ζ

))
,

with probability at least 1−ζ .

2.9 Theory of Algorithm Configuration 53

Kleinberg et al. derive the following upper bound on the runtime of Structured Procrasti-
nation with Confidence (SPC).

Theorem 8 (Theorem 3.4 in [79]). Fix ε and δ and let S be the set of (ε,δ)-SP-optimal
configurations. For each πi ̸∈ S suppose that πi is (επi,δπi)-SP-suboptimal, with επi > ε and
δπi > δ . Then if the total configuration time is

Ω

(
Rκ̄(θ

∗
SP)

(
|S| · log(ζ log(1/δ))

ε2δ
+ ∑

πi ̸∈S

log(ζ log(1/δπi))

ε2
πi

δπi

))
,

then SPC will return an (ε,δ)-SP-optimal configuration when it is terminated, with high
probability in ζ .

This upper bound on the configuration time of SPC is smaller than those for SP and
LB (Theorems 6 and 7) since, for every configuration, the runtimes of SP and LB include
a term of ε−2δ−1 whereas, in the runtime of SPC, this term is replaced with the term
ε−2

πi
δ−1

πi
(smaller than ε−2δ−1 since επi > ε and δπi > δ) for each configuration i that is not

(ε,δ)-SP-optimal.
When analysing CAPSANDRUNS, Weisz et al. again redefine the runtime of a configu-

ration (and hence the notion of near-optimality) as they note that the κ̄-capped runtime of
a configuration, as used in the analysis of SP and SPC, can be significantly larger than the
time required by the configuration to reach the target solution quality for a 1−δ fraction of
problem instances. Therefore upper bounds on the configuration time that involve κ̄-capped
runtimes (e.g. Theorems 6 and 8) are larger than those that could be derived by replacing
the dependency on κ̄-capped runtimes with a dependency on the time required to reach the
target solution quality for a 1−δ fraction of instances. Weisz et al. thus define the runtime
of a configuration as the time that it requires to reach the target solution quality for a 1−δ

fraction of instances [116]. This time is never larger than the definition of runtime used in
LB (i.e. R∞(θ)) and can only be larger than the definition of runtime used in SP and SPC (i.e.
Rκ̄(θ)) if κ̄ is not large enough to allow the configuration to reach the target solution quality
for a 1−δ fraction of problem instances.

We now formally define the notion of runtime used in the analysis of CR. Let us denote
δ -quantile of the runtimes of configuration θ as tδ (θ) = inft∈R{t | Prπi∼I(R(θ ,πi)> t)≤ δ}.
That is, tδ (θ) is the smallest time at which θ has failed to reach the target solution quality for
at most a δ fraction of instances. Define the runtime of configuration θ below the δ -quantile
as Rδ (θ) = Rtδ (θ)(θ) and define the configuration with the smallest expected runtime over a
1−δ fraction of instances as θ ∗CR(δ) = argminθ Rδ (θ). That is, θ ∗CR(δ) is the configuration
that reaches the target solution quality for a 1−δ fraction of instances in the smallest expected

54 Algorithm Configuration

time. Thus θ ∗CR(δ) is the optimal configuration with respect to the δ -Percentile-Fixed-Target
performance metric. Weisz et al. use the following definition of (ε,δ)-optimality:

Definition 5 ((ε,δ)-CR-optimality as in [116]). A configuration θ is (ε,δ)-CR-optimal if
Rδ (θ)≤ (1+ ε)R(θ ∗CR(δ/2)). Otherwise, we say θ is (ε,δ)-CR-suboptimal.

The presence of θ ∗CR(δ/2) instead of θ ∗CR(δ) in the above definition is necessary to allow
the required property to be verified with high probability [116].

The upper bound on the runtime of CAPSANDRUNS is considerably more complex than
the other runtime bounds seen thus far, but as a result it expresses the impact of the complexity
of the configuration scenario on the runtime of the configurator. In the following, let θ̂ denote
the configuration with the smallest runtime out of all configurations not eliminated in the
first phase of CAPSANDRUNS. For any configuration θ , denote the amount by which

it is suboptimal by ∆θ = 1− Rδ/2(θ∗CR(δ/2))
Rδ (θ)

and let σ2
τ denote the variance of its runtimes

using cutoff time τ , its maximum relative variance as σ̂2(θ) = supτ∈[tδ (θ),tδ/2(θ)]
σ2

τ (θ)

R2
τ (θ)

, and
maximum relative range as ρ(θ) = supτ∈[tδ (θ),tδ/2(θ)]

τ

Rτ (θ)
.

Theorem 9 (Theorem 1 in [116]). For a failure parameter ζ ∈ (0,1/6), with probability at
least 1−6ζ , CAPSANDRUNS finds an (ε,δ)-CR-optimal configuration in total configuration
time

O

(
R

δ

2

(
θ
∗
CR

(
δ

2

))[
|Θ|
δ

log
|Θ|
ζ

+ ∑
θ∈Θ

(
max

{
max{σ̂2(θ), σ̂2(θ̂)}

max{ε2,∆2
θ
}

,
max{ρ(θ),ρ(θ̂)}

max{ε,∆θ}

}
·(

log2 |Θ|
ζ

+ log
|Θ|
ζ

log
max{ρ(θ),ρ(θ̂)}

max{ε,∆2
θ
}

))])
.

This bound shows that it is possible for CAPSANDRUNS to identify a near-optimal
configuration in less time than the worst-case bound stated in Theorem 4 if the configuration
problem has favourable characteristics (i.e. it is easy to differentiate the performance of
different configurations) [116]. This does not contradict the lower bound claim of Theorem 4
since that theorem seeks a configuration that is (ε,δ)-SP-optimal whereas Theorem 9 seeks
a configuration that is (ε,δ)-CR-optimal.

We now make explicit the features of the upper bound in Theorem 9 that make it possible
to fall below the lower bound given in Theorem 4. Firstly, the configuration time scales
with the reciprocal of the sub-optimality gaps ∆θ instead of with 1/ε2, and thus the runtime
can be reduced if many configurations are significantly suboptimal. Secondly, it removes
the large (δε2)−1 term and replaces it with separate terms for ε and δ , thus reducing the
configuration time further if one of these terms is chosen to be small despite the other being

2.9 Theory of Algorithm Configuration 55

large. Finally, the term 1/ε is multiplied by the range ρ(θ), whereas 1/ε2 is only multiplied
by the much smaller relative variance σ̂2(θ).

Approximation worst-case analysis has also been provided for the Hyperband configurator
(outlined in Section 2.6.2) that optimises the hyperparameters of machine learning algorithms.
Li et al. present bounds on the difference between the optimal hyperparameter configuration
and the one returned by Hyperband [88] after using a total budget of τ (in terms of the
resource being allocated dynamically, most commonly the number of runs used to evaluate
a configuration). Adopting the bandit-theory-related language used in [88], we identify
configuration θ with ‘arm’ θ , and assume that if we ‘pull’ the θ -th arm k times then we
observe a loss ℓθ ,k. Thinking of the loss of an arm as the error of the model learned by
the target algorithm with the corresponding hyperparameter configuration, we can see that
choosing the optimal hyperparameter configuration is equivalent to identifying the arm with
the smallest loss. Assume that:

• For each θ ∈ N, the limit limk→∞ ℓθ ,k exists and is equal to νθ ;

• Each νθ is a bounded i.i.d. random variable with cumulative distribution F .

Let ν∗ be the arm with the smallest loss (i.e. the optimal hyperparameter configuration)
and let γ(j) be the pointwise smallest monotonically decreasing function that bounds from
above the deviation of the loss of an arm from its limit value as the number of pulls j
increases. Also assume that there exists some constant α > 0 such that γ(j)≃ 12 (1/ j)1/α

and that there exists a constant β > 0 such that F(x)≃ (x−ν∗)
β if x≥ ν∗ and 0 otherwise.

Then the sub-optimality of the configuration returned by Hyperband after a total budget of τ

(i.e. after using τ of the resources that are being distributed, e.g. number of instances used to
train the model) can bounded from above as follows:

Theorem 10 (Adapted from Theorem 5 in [88]). For any τ ∈ N, let θ̂τ be the empirically
best-performing arm output in the final round of Hyperband after exhausting a total budget
of τ . Fix δ ∈ (0,1). Then the sub-optimality of configuration θ̂τ is at most

ν
θ̂τ
−ν∗ ≤ c ·

(
(log τ)3log((log τ)/δ)

τ

)1/max{α,β}

for some constant c = exp(O(max{α,β})), and where log(x) := log(x) log log(x).

The bound on sub-optimality given in Theorem 10 is

12 f ≃ g if and only if there exists constants c,c′ such that cg(x)≤ f (x)≤ c′g(x).

56 Algorithm Configuration

O

((
(log(τ))6

τ

)1/max{α,β})
= o

(
τ
−1/2max{α,β}

)
,

implying that the gap between the optimal hyperparameter configuration and the one returned
by Hyperband decreases polynomially in relation to the budget τ .

The performance analyses outlined in this section provide upper bounds on the per-
formance of configurators in the worst case. They therefore do not give insights into the
performance of algorithm configurators in realistic scenarios, and hence cannot be used
to explain the success of configurators in practice. In this thesis, we develop the theoreti-
cal foundations of algorithm configuration to enable performance statements for algorithm
configurators in specific scenarios.

2.10 Conclusions

In this chapter, we have introduced the algorithm configuration problem and explained its
importance. We have shown that automated methods designed to identify good algorithm
configurations are composed of two components, a method to generate new configurations
and a method for their evaluation. We gave an overview of the way in which these components
are designed in practice, including methods used to dynamically update their settings with the
aim of reducing the time required to identify good configurations. We then gave an overview
of the most popular algorithm configurators in the literature. Finally, we detailed the state-of-
the-art of the theory of algorithm configuration. In the worst case, using small cutoff times
initially and then increasing them when necessary provides better approximations of optimal
configurations in a shorter time compared to using pre-defined upper bounds on the cutoff
time. However, this technique relies on the availability of appropriately large configuration
budgets which may not be assumed to be always available in real-world configuration
scenarios. In particular, no results are available regarding the approximation quality that any
algorithm configurator can guarantee efficiently (i.e. in a time that is a polynomial function
of the size of the configuration search space). In this thesis, we will set up the theoretical
foundations for such analyses for the cases where a minimal solution quality is sought (i.e.
the Fixed-Target performance metric) and where a fixed configuration budget is available (i.e.
the Best-Fitness performance metric).

Chapter 3

Mathematical Tools, Configurators,
Target Algorithms, Problems Classes

3.1 Introduction

In this chapter, we provide an overview of the ‘ingredients’ that we will use to build a
theoretical foundation to assess the performance of algorithm configurators. We begin with a
summary in Section 3.2 of the mathematical techniques from the literature that we employ to
construct this theoretical foundation. In Section 3.3, we present a bare-bones stochastic local
search algorithm configurator, which we call ParamRLS to indicate that it is a simplified
version of the popular ParamILS configurator. Its simplicity allows us to identify algorithm
configuration problem characteristics where minimal algorithmic sophistication suffices and
others where more complex configurators are necessary. By building upon the mathematical
tools developed for the analysis of ParamRLS, we will extend our analysis to the more
sophisticated ParamILS algorithm configurator. Throughout this thesis, the performance of
the algorithm configurators will be assessed by estimating the expected time they require
to identify optimal parameter values for some target algorithms for benchmark problem
classes from the literature designed to have characteristics commonly encountered in practice.
In Section 3.4, we present the two target algorithms – RLSk and the (1+1) EA– whilst in
Section 3.5 we describe the three standard benchmark problem classes – RIDGE, ONEMAX,
and LEADINGONES – for which their parameters are tuned.

58 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

3.2 Mathematical Tools

Over the last two decades, the framework has been laid for the rigorous theoretical analysis
of randomised search heuristics [69]. In this section, we review the tools and techniques
developed in this field that we use in this thesis. We begin by defining the terminology that
is common in the field and used throughout our work. We then review useful results from
probability theory. We finally give an overview of the techniques that are used in the analysis
of randomised search heuristics.

3.2.1 Runtime Analysis

The performance of an algorithm is often measured in terms of its runtime. In the context of
optimisation algorithms, this may be called the optimisation time. Given an algorithm A, an
instance i of an optimisation problem, and a set of optimal search points X∗, let the best-found
search point after t iterations be denoted as Xt . Then the optimisation time of this algorithm
on this problem instance is defined as T = min{t ∈ N | Xt ∈ X∗}.

The runtime of a randomised algorithm is a random variable. In runtime analysis, the
quantity of interest is often the expected value (defined in Section 3.2.2) of its runtime, called
its expected runtime. It is often also useful to analyse its runtime with a specified failure
probability (i.e. probability of not reaching the optimum within that time).

It is common to express the order of growth of the runtime as a function of the problem
size using asymptotic notation (also called Landau notation) [24]. This framework originated
in mathematics where it is used to classify the growth of a function. It can thus be used to
analyse the relative growth of functions that represent the runtimes of different algorithms in
relation to the problem size. If, as the problem size increases, the runtime of an algorithm can
be shown to grow asymptotically faster than the runtime of another, then we can conclude
that it is faster for all sufficiently large inputs.

Definition 6 (Asymptotic notation). Given two functions f ,g : N0→R we use the following
terms to express their relative growth.

• We say that f grows at most as fast as g if and only if there exist constants n0 ∈N0 and
c ∈R+ such that, for all n≥ n0, it holds that f (n)≤ c ·g(n). We write f (n) = O(g(n)).

• We say that f grows at least as fast as g if and only if g(n) = O(f (n)). We write
f (n) = Ω(g(n)).

• We say that f and g grow at the same rate if and only if f (n) = O(g(n)) and f (n) =
Ω(g(n)). We write f (n) = Θ(g(n)).

3.2 Mathematical Tools 59

• We say that f grows slower than g if and only if limn→∞ f (n)/g(n) = 0. We write
f (n) = o(g(n)).

• We say that f grows faster than g if and only if g(n) = o(f (n)). We write f (n) =
ω(g(n)).

In the theory of computation, an algorithm is typically considered efficient if its runtime
grows as a polynomial function of the size of its input and inefficient if this relationship is
instead superpolynomial.

Definition 7 (Classes of growth). A function f : N0→ R is:

• polynomial if and only if f (n) = O(nk) for some constant k ∈ R+
0 . We write f ∈

poly(n).

• superpolynomial if and only if f (n) = ω(nk) for every constant k ∈ R+
0 .

• exponential if and only if f (n) = Ω
(
2nk)

for some constant k ∈ R+.

• polynomially small if and only if 1/ f is polynomial.

• superpolynomially small if and only if 1/ f is superpolynomial.

• exponentially small if and only if 1/ f is exponential.

In this thesis, we also make frequent use of these classes of growth when calculating the
probabilities of events that are very likely (or very unlikely) to happen. In the strongest case,
we say that an event occurs ‘with overwhelming probability’, to indicate that the probability
that this event does not occur is exponentially decreasing. We now use the above terminology
to define this concept, along with its weaker counterpart ‘with high probability’.

Definition 8 (High/Overwhelming probability). We say that an event A occurs:

• with high probability (w.h.p.) if and only if 1− Pr(A) is polynomially small (i.e.
Pr(A) = 1−O(n−k) for some constant k ∈ R+).

• with overwhelming probability (w.o.p.) if and only if 1−Pr(A) is exponentially small
(i.e. Pr(A) = 1−2−Ω(nk) for some constant k ∈ R+).

3.2.2 Probability Theory

We now give an overview of the elements of probability theory that we use throughout this
thesis. Unless otherwise stated, all definitions and results in this section are given in the
review by Doerr [32].

60 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

Basic Definitions

A random variable is a function that captures the range of possible outcomes of some random
process. The probability with which it yields each outcome is defined by a probability
distribution. We call each value of X an outcome, and define an event to be a set containing
some number of outcomes. We denote the probability that an event A occurs by Pr(A) and
denote the probability that the random variable X takes the value x by Pr(X = x). Given a set
of events B = {b1, . . . ,bm}, we denote the probability that at least one event in B occurs by
Pr(b1∪ . . .∪bm). In this thesis, we assume that we deal with discrete random variables (i.e.
random variables that only yield a countable number of values). Some theorems discussed
later in this chapter require that a random process has been “adapted to a filtration Ft”. We
do not define this notion formally here since doing so would introduce several otherwise
unnecessary definitions. For our purposes, it suffices to interpret Ft as the history of the
process up to time t.

The expected value of a random variable X (interchangeably referred to as its expectation
in this thesis) is defined as E[X] = ∑i∈Y i ·Pr(X = i), where Y is the set of all outcomes of X .

Bernoulli Random Variables A Bernoulli random variable only takes the values 0 and 1.
The expected value of a Bernoulli random variable is hence E[X] = Pr(X = 1). Bernoulli
random variables are commonly used as indicator variables, where a variable takes the value 1
if an event of interest occurs and 0 otherwise.

Binomial Random Variables A binomial random variable counts the number of successes
in a given number of trials, for example the number of heads when a coin is flipped n times.
Let us define X as the random variable counting the number of successes in n trials where in
every trial a success occurs with probability p. We write X ∼ Bin(n, p) and have E[X] = np.

Geometric Random Variables A geometric random variable counts the number of trials
before a success is observed for the first time13. Given an infinite sequence of Bernoulli
random variables X1,X2, . . . with common success probability p, the corresponding geometric
random variable Y ∼ Geom(p) is defined as Y = min{k ∈ N | Xk = 1}. Then Pr(Y = k) =
(1− p)k−1 · p and E[Y] = 1/p. This gives rise to the waiting time argument: in expectation we
wait time 1/p for an event with success probability p to occur. For example, in expectation a
fair die must be rolled six times before a one is rolled.

13Geometric random variables are sometimes alternatively defined as the number of failures that occur before
the first success, thus corresponding to the random variable Y −1 in our definition.

3.2 Mathematical Tools 61

Union Bound

It is common to bound the probability that any event in a set occurs. Since it lacks any
assumptions, the union bound provides a simple and readily applicable means of doing so:

Theorem 11 (Union bound). Given a set of events {A1, . . . ,Am} in some probability space,

Pr(A1∪ . . .∪Am)≤
m

∑
i=1

Pr(Ai).

Linearity of Expectation

Given a number of random variables, the linearity of expectation allows us to derive the
expected value of a linear combination expected values. Like the union bound, it makes no
assumptions about the random variables at hand.

Theorem 12 (Linearity of expectation). Given a set of random variables {X1, . . . ,Xm} and a
set of real numbers {a1, . . . ,am}, let Y = ∑

m
i=1 aiXi. Then E[Y] = E[∑m

i=1 aiXi] = ∑
m
i=1 ai E[Xi].

Stochastic Domination

The concept of stochastic domination gives a rigorous definition to scenarios where we
intuitively feel that the value of one random variable is ‘smaller’ than another. For example,
consider a scenario where a player must choose which game to play given three options (this
example is adapted from [32]). In game A, they win one coin with probability 1/2 and three
coins also with probability 1/2. In game B, they win one coin with probability 1/4, two coins
with probability 1/4, and three coins with probability 1/2. In game C, they win 100 coins with
probability 1/20 and otherwise win nothing. Game B is clearly preferable to game A, since
the player is more likely to win more coins by playing game B rather than game A. However,
the question of whether to choose to play game B or game C is not so easy to answer. Whilst
the expected number of coins won in game C is greater than the expected number won in B,
the player may wish to play a game that guarantees a return of some coins (game B) rather
than a game where with probability 0.95 they win nothing (game C).

Whilst the latter choice is a matter of preference, the intuition that game B is preferable
to game A can be made formal using the notion of stochastic domination:

Definition 9 (Stochastic domination (adapted from Definition 1.8.1 in [32])). Let X and Y
be two random variables. We say that Y stochastically dominates X if for all α ∈ R we have
Pr(X ≤ α)≥ Pr(Y ≤ α).

The number of coins won in game B thus stochastically dominates the number won in
game A, explaining why we intuitively feel that one game is preferable to the other.

62 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

3.2.3 Useful Inequalities

In the analysis of randomised algorithms, it can be cumbersome to manipulate exact expres-
sions of probabilities. In this section, we review inequalities that can be used to bound these
probabilities in order to simplify the analysis. Unless otherwise stated, the statements of
these theorems are adapted from [32].

It is useful to be able to switch between polynomial terms and exponential terms. The
following inequalities, whilst simple, are often sufficient for our purposes.

Theorem 13. (i) For all x ∈ R, 1+ x≤ ex.

(ii) For all x < 1, ex ≤ 1+ x/(1− x).

The next two inequalities provide bounds on quantities that frequently arise in the analysis
of randomised algorithms, most commonly when dealing with the probability that an event
does not occur in a given number of trials:

Theorem 14. For all r ≥ 1 and 0≤ s≤ r,(
1− s

r

)r
≤ e−s ≤

(
1− s

r

)r−s

Theorem 15. For all x >−1,

exp
(

x
1+ x

)
≤ 1+ x.

For all x,y > 0,

exp
(

xy
x+ y

)
≤
(

1+
x
y

)y

≤ exp(x).

We also make use of the following bound on the probability that an event occurs at least
once in a given number of trials.

Theorem 16 (Adapted from Lemma 10 in [6]). Let pα be the probability of having at least
one success in α trials of a Bernoulli random variable with success probability p. Then

pα ≥
α p

1+α p
.

The binomial coefficients that appear regularly in our analyses are difficult to handle
directly due to the presence of factorials in their definitions. Bounds on their values are
therefore greatly useful to us. We make use of the following standard result:

Theorem 17. For all n ∈ N and k ∈ {1, . . . ,n},
(n

k

)k ≤
(n

k

)
≤
(ne

k

)k
.

3.2 Mathematical Tools 63

3.2.4 Tail Inequalities

Tail inequalities allow us to bound the probability that a random variable deviates from its
expected value by a given amount. This allows us to “turn expected run times into upper
bounds which hold with overwhelming probability” [114]. Furthermore, they are often used
when an algorithm is unlikely to take its worst-case runtime, i.e. an algorithm may have
exponential runtime in the worst case but may also identify the optimum in polynomial time
with overwhelming probability. Hence, if it is run many times it is very likely to be efficient
in the vast majority of cases.

Markov’s Inequality

This is the simplest tail bound commonly encountered in the literature. Its strength is that it
imposes only a single constraint on the random variable to which it is applied, only requiring
that it be non-negative.

Theorem 18 (Markov’s inequality). For a non-negative random variable X with E[X]> 0
and for all α > 0,

Pr(X ≥ α E[X])≤ 1
α
.

Whilst Markov’s inequality is useful as it is applicable in many scenarios, this comes at a
cost: the bound that it yields may not be as strong as desired. We now outline a family of
tail bounds that yield significantly stronger guarantees than Markov’s inequality, but in turn
impose further conditions that that limit the scenarios in which they may be applied.

Chernoff Bounds

Chernoff bounds are a family of powerful tail inequalities that provide much stronger
probability bounds on the value that a random variable may assume than those obtained using
Markov’s inequality. In the case of Theorems 19 and 20, the stronger bounds are achieved by
using the information that the random variable X is a sum of independent random variables
each of which only takes values in {0,1}.

We first give the bounds on the probability that a random variable deviates from its
expectation by a multiplicative factor.

Theorem 19 (Theorems 1.10.1 and 1.10.5 in [32]). Let X1, . . . ,Xm be independent random
variables taking values in {0,1}. Let X = ∑

m
i=1 Xi. Then, for 0≤ δ ≤ 1,

Pr(X ≤ (1−δ)E[X])≤ exp
(
−δ 2 E[X]

2

)

64 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

and, for δ ≥ 0

Pr(X ≥ (1+δ)E[X])≤ exp
(
−min{δ ,δ 2}E[X]

3

)
.

We occasionally use the following additive analogue of these bounds.

Theorem 20 (Theorem 1.10.7 in [32]). Let X1, . . . ,Xm be independent random variables
taking values in {0,1}. Let X = ∑

m
i=1 Xi. Then, for all δ ≥ 0,

Pr(X ≥ E[X]+δ)≤ exp
(
−2δ 2

m

)

Pr(X ≤ E[X]−δ)≤ exp
(
−2δ 2

m

)
.

We also make use of Chernoff bounds for sums of geometric random variables. As with
the earlier bounds, it is required that each random variable in the sum be independent.

Theorem 21 (Theorem 1.10.32 in [32]). Let X1, . . . ,Xm be independent geometric random
variables with a common success probability p > 0. Let X := ∑

m
i=1 Xi and µ := E[X] = m/p.

Then:

(i) For all δ ≥ 0,

Pr(X ≥ (1+δ)µ)≤ exp
(
−δ 2(m−1)

2(1+δ)

)
.

(ii) For all 0≤ δ ≤ 1,

Pr(X ≤ (1−δ)µ)≤ exp

(
− δ 2m

2− 4
3δ

)
.

Method of Bounded Martingale Differences

In some cases, it may be necessary to derive tail bounds for random variables that are more
complex functions of other random variables (i.e. not simply a sum). In these cases, Chernoff
bounds are not applicable. However, if each variable that contributes to the function has
only a limited influence on its value then it is still possible to bound the extent to which
this function deviates from its expectation. One means of dealing with such cases that
requires only that these random variables be bounded is the method of bounded martingale
differences.

3.2 Mathematical Tools 65

Theorem 22 (Method of bounded martingale differences (Theorem 3.67 in [108])). Let
X1, . . . ,Xm be an arbitrary set of random variables and let f be a function satisfying the
property that for each i ∈ {1, . . . ,m} there is a ci ≥ 0 such that

|E[f | X1, . . . ,Xi]−E[f | X1, . . . ,Xi−1]| ≤ ci.

Then

Pr(f ≥ E[f]+ t)≤ exp
(
− t2

2∑
m
i=1 c2

i

)
and

Pr(f ≤ E[f]− t)≤ exp
(
− t2

2∑
m
i=1 c2

i

)
.

Note that the Xi terms are not required to be independent.

3.2.5 Random Walks and Gambler’s Ruin

We now review two related topics that are useful when analysing the performance of algo-
rithms for functions with plateaus of fitness values (i.e. regions of the search space in which
all points have the same fitness). We first define key terms related to random walks, and we
then show how the theory related to the ‘gambler’s ruin problem’ can be used to analyse such
scenarios.

Random Walks

Given a set of states and a definition of a neighbourhood, a random walk is a process that
at each step moves from the current state to a neighbouring state chosen according some
probability distribution. A random walk that moves to any neighbouring state with the same
probability is called a symmetric random walk. A lazy random walk is a random walk that
additionally may remain in the same state with some positive probability. An absorbing state
is a state that, once reached, cannot be left (i.e. the probability of leaving it is 0).

Gambler’s Ruin

Consider a player and an adversary playing a game where in each round they both bet a coin
and then one of them wins both coins with some probability. The probability with which
either player wins a round does not change during the game. Determining the probability
that the player eventually loses all their coins to the adversary along with the expected time
for either participant to lose all their coins is called the gambler’s ruin problem [47]. The

66 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

gambler’s ruin scenario is therefore a random walk across the state space of the wealth of
the player where the neighbours of each non-absorbing state correspond to increasing or
decreasing the wealth of the player by a single coin.

Assume that the player and the adversary start with z and a− z coins, respectively. In
each round, the player wins both coins with probability p, with 0 < p≤ 1, and the adversary
with probability q = 1− p. Then the probability qz of the player’s ruin (that is, the probability
that the player eventually loses all their coins to the adversary) is

qz =

(q/p)a−(q/p)z

(q/p)a−1 , if p ̸= q

1− z
a , if p = q = 1/2

and the expected duration of the game Dz (i.e. the expected number of rounds before
either of the participants has lost all their coins to the other) is

Dz =

 z
q−p −

a
q−p

1−(q/p)z

1−(q/p)a , if p ̸= q

z(a− z), if p = q = 1/2

In this thesis, we analyse the expected hitting time of a random walk with a reflecting
barrier at one end of the search space (i.e. where there is only a single absorbing state). In
the context of gambler’s ruin, only the player is able to win the game: if the adversary is
about to win then they give the player a coin and continue playing. Figure 3.1 shows an
example of such a scenario.

1 2 3 · · · φ -2 φ -1 φ
0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5 0.5 0.5 0.5

0.75

Fig. 3.1 A lazy random walk. State 1 is the only absorbing state.

We analyse it using a method similar to that used by Bossek and Sudholt [17, Lemma 27].
Note that there are two differences with the scenario shown in Figure 3.1 and conventional
gambler’s ruin. Firstly, with each step there is a probability of 0.5 of remaining in a state.
This is not a large problem for the analysis: it will simply double the expected time to reach
either end of the state space. The more significant difference between the two scenarios is
that there is only one absorbing state (state 1), as opposed to the standard gambler’s ruin
scenario where there are two (corresponding to either the player or the adversary winning the
game).

3.2 Mathematical Tools 67

To deal with this, we instead consider the lazy random walk shown in Figure 3.2. Notice
that the new model has two absorbing states: 1 and 2φ . Note also that the time required to
reach the absorbing state in the first scenario is the same as the time required to reach either
absorbing state in the second, as the probability of remaining in the states φ and φ +1 in
Figure 3.2 is the same as remaining in state φ in Figure 3.1 and both lazy random walks with
one end at these states are identical to that presented in Figure 3.1. We can thus analyse the
expected time to reach state 1 in the first scenario by analysing the expected duration of the
game in the second scenario. Using these arguments, the theory of gambler’s ruin yields that,
in the worst case (i.e. when initialised at state φ), the expected hitting time of state 1 in the
first scenario is at most 2φ(φ −1).

1 2 3 · · · φ -2 φ -1 φ

φ+12φ 2φ -1 2φ -2 · · · φ+3 φ+2

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25 0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.5 0.5 0.5 0.5 0.5

0.50.5 0.5 0.5 0.5

Fig. 3.2 The modified lazy random walk from Figure 3.1. States 1, . . . ,φ have been duplicated
as states φ +1, . . . ,2φ . States 1 and 2φ are both absorbing states.

3.2.6 Drift Analysis

Introduced in a general form by Hajek [50], drift analysis was first applied to the analysis of
evolutionary algorithms by He and Yao [56]. Since its introduction, many variants have been
created to enable the analysis of evolutionary algorithms with a range of behaviours. It has
become one of the most popular and powerful techniques in the field [86].

All members of this family of techniques bound the runtime of an algorithm by bounding
the expected amount by which in each iteration the algorithm decreases (or increases) its
distance from some target (e.g. the optimum), called the drift.

There are many variants of this approach, for example those that allow bounds on the
optimisation time when the drift is additive [56], multiplicative [39], and variable [74].

68 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

However, in this thesis these latter, more sophisticated methods are unnecessary, since we
are generally uninterested in calculating optimisation times, being concerned instead with
bounding the fitness of the individual in an algorithm at any point in time (as discussed in
Section 3.2.8).

We first formally state the approach of drift analysis and then present the theorems used
in this thesis to bound the runtime of an algorithm using its drift.

Formal Outline of Drift Analysis

The outline given here follows that of Lengler [86]. Let (Xt)t≥0 be a sequence of non-negative
random variables with finite state space S ⊆ R+

0 where each Xt describes the distance to the
optimum at time t. Denote the minimum positive state as smin = min{S \0}. The drift of the
process is defined as E[Xt−Xt+1 | Xt = s]. The drift of the process at time t given Xt = s is
usually denoted as ∆t(s).

We are typically interested in calculating the first point in time where Xt = 0. That is, we
seek the time value τ = min{t | Xt = 0}. This value of t is commonly called the hitting time
of the process.

Additive Drift Analysis

Additive drift analysis was the form in which drift analysis was first applied to the analysis
of evolutionary algorithms [57]. It requires a bound on the drift that does not change over the
run. The following statement is based on the formulation by Lengler [86].

Theorem 23 (Additive Drift Theorem, Theorem 1 in [86]). Let Xt and τ be defined as in
Section 3.2.6. If there exists δ > 0 such that, for all states s ∈ {S \ 0} and for all t ≥ 0,
E[Xt−Xt+1 | Xt]≥ δ , then E[τ]≤ E[X0]/δ . Similarly, if there exists δ > 0 such that, for all
states s ∈ {S \0} and for all t ≥ 0 E[Xt−Xt+1 | Xt]≤ δ , then E[τ]≥ E[X0]/δ .

Negative Drift / Simplified Drift Theorem

In addition to deriving runtimes of randomised algorithms, drift analysis can also be used to
prove that an algorithm is likely to be inefficient for a problem. The standard negative drift
theorem was introduced by Oliveto and Witt and provides exponential lower bounds on the
runtime of an algorithm with drift that points away from the optimum [99, 100].

In this thesis, we use a variant of this technique, introduced by Rowe and Sudholt, that
allows for time steps where the value of the random process frequently does not change by
removing the condition on a continual drift away from the optimum that is present in the
original formulation of this result [106].

3.2 Mathematical Tools 69

Theorem 24 (Negative Drift with Self-loops (Theorem 4 in [106])). Suppose that for all
t ≥ 0 the following two conditions hold:

1. There exist integers a,b with 0 < a < b ≤ m and ε > 0 such that E[Xt+1−Xt] <

−ε(1−Pr(Xt+1 = k | Xt = k)) for all a≤ k ≤ b.

2. There exist constants r,δ > 0 (i.e. independent of m) such that for all k ≥ 1 and all
d ≥ 1 both Pr(Xt+1 = k−d | Xt = k) and Pr(Xt+1 = k+d | Xt = k) are at most

r · (1−Pr(Xt+1 = k | Xt = k))
(1+δ)d .

Let τ be the hitting time when starting from X0 ≥ b. Let m = b−a. Then there is a constant
c > 0 such that

Pr(τ ≤ 2cm/r) = 2−Ω(m/r).

Multiplicative Drift Tail Bounds

If the drift of a process is a multiplicative factor of its current value, then it can be analysed
using multiplicative drift analysis. In this thesis, we use the version with tail bounds derived
by Doerr and Goldberg [37]. The formulation we give here is due to Lengler [86].

Theorem 25 (Adapted from Theorem 18 in [86]). Let Xt , smin, and τ be defined as in
Section 3.2.6. If there exists δ > 0 such that, for all states s ∈ {S \0} and for all t ≥ 0,

E[Xt−Xt+1 | Xt = s]≥ δ s,

then for all r ≥ 0,

Pr
(

τ >

⌈
r+ ln(s0/smin)

δ

⌉)
≤ exp(−r).

3.2.7 Black-Box Complexity

Black-box complexity analyses describe the minimum number of fitness function evaluations
required by the best black-box search algorithm in a given class to optimise the hardest
instance of a given class of functions. They thus capture the intrinsic difficulty of optimising
the function class at hand.

Lehre and Witt performed such an analysis for the class of unary unbiased algorithms.
This class of algorithms generates new search points using a unary operator (i.e. an operator
that takes one search point as input and produce another search point as output) that does not

70 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

focus on any particular region of the search space (e.g. for solutions represented as bit strings,
all bit values and all bit positions are treated in the same way) [85]. Lehre and Sudholt
extended this model to include algorithms that generate search points in parallel, such as the
(µ +λ) EA (Algorithm 2) [84]. They proved a lower bound for any member of this class of
algorithms to optimise any function with up to an exponential number of optima.

Theorem 26 (Adapted from Theorem 21 in [84] with δ := 1/2). Every unary unbiased
black-box algorithm needs more than (n lnn)/2 fitness evaluations, with probability 1−
exp(−Ω(

√
n/ log(n))), to find a global optimum for all functions with exp(o(

√
n/ logn))

optima.

We use this result in Section 4.2 to prove a lower bound on the required cutoff time for
configurators using the Optimisation-Time performance metric.

3.2.8 Fixed-Budget Analysis

The majority of the existing theoretical analyses of randomised search heuristics are con-
cerned with estimating the time required to reach the optimum (or an approximation thereof).
However, this differs from how these algorithms are often used in practice. In particular, they
are anytime algorithms, i.e. they can be halted at any time and return a solution. Jansen and
Zarges argue that it would be of more interest to practitioners to calculate the quality of a
solution found when the algorithm is run for a specific time budget [73]. A similar line of
analysis is to calculate the improvement in the solution quality obtained by, for example,
doubling its original time budget. Works addressing these questions are called fixed-budget
analyses.

Due to its relatively recent introduction and high complexity, there are few techniques
for carrying out fixed-budget analysis. Many of the works in this area favour direct analyses
of specific problems rather than using more elegant, general frameworks. Since estimating
the solution quality achieved by different parameter settings within a given time budget is
crucial for the analysis of algorithm configurators, in this section we give an overview of the
few existing techniques for conducting fixed-budget analysis. We provide problem-specific
fixed-budget results when defining the target problem classes in Section 3.5. The fixed-budget
results available in the literature are insufficient for our purposes for some combination of
the following reasons:

• They are only concerned with bounds on the expected fitness value or bounds that hold
with non-overwhelming probability, whereas we require fitness bounds that hold with
overwhelming probability.

3.2 Mathematical Tools 71

• The bounds on the fitness are not precise enough.

• They do not deal with generalised parameter values, instead holding only for a single
configuration.

The first generalised framework for carrying out fixed-budget analyses was developed by
Doerr et al. It allows results from runtime analysis to be turned into fixed-budget results [38].
This method is based on the intuition that if there exists a function that yields the expected
time for an algorithm to reach some fitness value then the inverse of this function corresponds
to the expected fitness value at each time step. However, this intuition is only true for
deterministic algorithms: for stochastic algorithms it is easy to find counterexamples. The
following method uses this insight but is applicable to both stochastic and deterministic
algorithms.

First, expected optimisation times are transformed into expected times required by the
algorithm to reach an arbitrary fitness value. Second, deviation bounds (i.e. bounds on the
probability of this time deviating from its expectation by a given amount) are derived for
these times. Given a function that returns the time required to reach a given fitness value that
holds with some probability, the inverse of this function can then used to compute the fitness
value at a given time which holds with the same probability.

We now formalise this method following [38]. Let us denote by T (a) the time for the
algorithm to reach the fitness a. Let the probability pu and the function tu(a) be such that
P(T (a)≥ tu(a))≤ pu. Then, denoting the inverse of tu(a) as t−1

u (a), we have a lower bound
t−1
u (a) on the fitness at time t that holds with probability at least 1− pu: P(f (xt)≤ t−1

u (a))≤
pu. We can similarly derive corresponding upper bounds on the fitness at an arbitrary time t
by deriving pl and tl(a).

Lengler and Spooner also created a method to allow results from runtime analysis to be
used in a fixed-budget context if the algorithm exhibits multiplicative drift [87].

Theorem 27. (Theorem 1 in [87]) Let Xt be defined as in Section 3.2.6. If, for 0 < δ < 1 and
t ∈N, we can bound the expected progress of Xt as E[Xt−Xt+1 | Xt = x]≥ δx then, given X0

(the initial value of Xt), E[Xt | X0] ≤ X0e−δ t . Similarly, if E[Xt −Xt+1 | Xt = x] ≤ δx, then
E[Xt | X0]≥ X0e−2δ t .

Kötzing and Witt recently presented a method to calculate an upper bound on the value
of a stochastic process at a given point in time if it exhibits variable drift [82].

Theorem 28 (Theorem 5 in [82]). Let Xt and τ be defined as in Section 3.2.6, and let Xt be
adapted to a filtration Ft . Let h : S→ R≥0 be a differentiable and convex function such that

72 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

h̃ is monotone non-decreasing and h̃′(0) ∈ (0,1], where h̃ = x−h(x). If E[Xt−Xt+1 | Ft , t <
τ]≥ h(Xt), then

E[Xt | F0]≤ h̃t(X0)+
h̃(0)
h̃′(0)

,

and, in particular,

E[Xt]≤ h̃t(E[X0])−
h̃(0)
h̃′(0)

·Pr(t ≥ τ | F0),

where h̃t is the t-times composition of h̃.

Theorem 28 can be generalised to deal with the case where the drift is not monotone.

Theorem 29 (Fixed-budget variable drift (Theorem 7 in [82])). Let Xt and τ be defined as
in Section 3.2.6, and let Xt be adapted to a filtration Ft . Let h be a non-decreasing function
such that

E[Xt−Xt+1 | Ft ; t < τ]≥ h(Xt).

Define g : S→ R by

g(x) =

xmin

h(xmin)
+
∫ x

xmin
1

h(z)dz, if x≥ xmin

0, otherwise
.

Then it holds that

E[g(Xt | F0)]≤ g(X0)−
t−1

∑
s=0

Pr(s < T).

Pérez Heredia derives fixed-budget versions of additive and multiplicative drift theorems
using stochastic differential equations (SDEs) [58]. Applying these theorems to randomised
algorithms requires the assumption, called the diffusion approximation, that the behaviour
of the algorithm can be approximated by a family of well-studied stochastic processes.
There is evidence, both experimental and from comparing the fixed-budget results obtained
under this assumption with other results in the literature, that the diffusion approximation is
approximately satisfied for evolutionary algorithms [58]. Using this approximation, Pérez
Heredia derives a number of fixed-budget results on the behaviour of RSHs on standard test
problems.

3.3 A Simple Algorithm Configurator: ParamRLS

The first step towards creating a theoretical foundation for algorithm configuration is the
definition of a simple algorithm configurator. Similarly to the well-studied (1+1) EA in

3.3 A Simple Algorithm Configurator: ParamRLS 73

evolutionary computation, this basic parameter tuner should allow the performance analysis
to be simple whilst at the same time possessing the right modularity to enable the addition of
more sophistication, eventually allowing for the analysis of realistic algorithm configurators
as used in practice.

In particular, this basic configurator should have characteristics that allow the development
of general mathematical techniques created for its analysis that can be extended without too
much effort for the analysis of more sophisticated and realistic configurators. To this end, we
design a bare-bones version of the popular ParamILS configurator (Section 2.8.1) obtained
by stripping it down to the essentials and removing all additional features.

This configurator, which we call ParamRLS, allows us to assess a baseline performance
for algorithm configurators which can be reasonably considered to be a lower bound on the
expected performance of more sophisticated configurators.

ParamRLS captures the iterative evolutionary loop at the heart of all state-of-the-art
algorithm configurators. Specifically, it uses the following basic framework laid out for
ParamILS [62]:

1. Initialise with some configuration θ ;

2. Mutate θ by modifying a single parameter to create θ ′;

3. Accept the new configuration θ ′ if it performs at least as well as θ in a comparison;

4. Go to Step 2 until the termination criterion is satisfied.

We call the configuration θ that is mutated (and possibly replaced) in each iteration
the active parameter. ParamILS and ParamRLS both follow this simple framework. The
difference is that the former mutates configurations using an iterated local search mechanism
whereas the latter replaces this with a simplified stochastic local search step (i.e. where it
moves to a single neighbouring configuration in each iteration). The resulting configurator is
described in Algorithm 11.

3.3.1 The ±{1, . . . ,m} Local Search Operator

ParamRLS is designed to optimise numerical parameters. For some maximum step size m,
we call the local search operator “±{1, . . . ,m}” (for instance, if the maximum step size is 2
then we call the operator ±{1,2}). This operator mutates a configuration by first selecting a
parameter uniformly at random and then selecting a new value for this parameter from all
values at distance at most m. For example, consider using the ±{1,2} operator to mutate
a configuration of a single-parameter algorithm, where the parameter only takes values

74 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

Algorithm 11: ParamRLS (A,Θ,Π′,κ,r)
Input :target algorithm (A), parameter space (Θ), training instances (Π′), cutoff time

(κ), number of runs per evaluation (r).
1 θ ←initial configuration chosen uniformly at random // Step 1; initialise active parameter
2 while termination condition not satisfied do
3 θ ′← mutate(θ) // Step 2: choose θ ′ u.a.r. with replacement from neighbourhood of θ

4 θ ← better(A,θ ,θ ′,Π′,κ,r) // Step 3: compare θ and θ ′ w.r.t. performance metric

5 return θ

in {1,2, . . . ,10}. If mutating the configuration where the parameter has value 5, then the
mutation operator selects a new parameter value uniformly at random from the set {3,4,6,7}.

To enable the configuration of continuously-valued parameters, we follow ParamILS
and discretise the parameter space. We do so using a discretisation factor d, defining the
parameter space as the set{

1
d
,

2
d
,

3
d
, . . . ,φ ·

(
1− 2

d

)
,φ ·
(

1− 1
d

)
,φ

}
,

where φ is the largest permitted value for the parameter (a discretisation factor of d = 1
thus corresponds to discrete parameters). For example, if d = 3 and φ = 3 then the possible
values of the parameter are {

1
3
,
2
3
,1,

4
3
,
5
3
,2,

7
3
,
8
3
,3
}
.

If this parameter is selected for mutation, then, supposing that it currently has the value α ,
the ±{1, . . . ,m} operator chooses a new value uniformly at random from the set{

α− m
d
,α− m−1

d
, . . . ,α− 1

d
,α +

1
d
, . . . ,α +

m−1
d

,α +
m
d

}
.

We allow infeasible parameter values (i.e. values outside the parameter space) to be
generated, and assume that any perturbation that oversteps a boundary is considered infeasible
by ParamRLS and thus automatically loses any comparison against a feasible configuration.
This constitutes a pessimistic assumption in terms of the time taken to identify an optimal
configuration since it would be more efficient simply not to generate infeasible configurations,
but it has minimal impact on runtime and simplifies the analysis.

The operator ±{1} has previously been analysed for the optimisation of functions de-
fined over search spaces with larger alphabets than those that can be represented using bit
strings [33].

3.3 A Simple Algorithm Configurator: ParamRLS 75

The ±{1, . . . ,m} search operator differs from that used in ParamILS in four ways. First,
configurations are generated with replacement, whereas in the iterative first improvement
procedure of ParamILS (Section 2.8.1, Algorithm 4) configurations are generated without
replacement. Second, the neighbourhood size of ParamILS is considerably larger than that of
ParamRLS (i.e. in ParamILS, m = φ). Thirdly, the ±{1, . . . ,m} operator is able to generate
infeasible configurations whereas ParamILS is not. Finally, multiple parameters are dealt
with in a subtly different manner. In ParamRLS, a parameter is selected u.a.r. and then
perturbed, whereas in ParamILS, all configurations that differ in exactly one parameter
value may be selected with the same probability (i.e. there is a larger chance of perturbing
a parameter with relatively few values when using the search operator in ParamRLS rather
than the one in ParamILS).

3.3.2 Evaluation of Configurations

We call ParamRLS using the Best-Fitness performance metric ParamRLS-F whilst if it uses
the Optimisation-Time performance metric then we refer to it as ParamRLS-T. ParamRLS
evaluates configurations using a static number of runs, r, as in the BasicILS version of
ParamILS. Naturally, more sophisticated methodologies to reduce the number of runs per
evaluation (e.g. as in FocusedILS) may also be applied in ParamRLS, but we do not do so in
this thesis.

In practice, it may be desirable to cache the performances of configurations. However,
we assume throughout this thesis that no caching takes place. Apart from simplifying
the analysis, re-evaluating the performance of configurations may also be useful since it
allows the configurator to overcome local optima introduced by the noisy evaluation of
configurations.

In each run, ParamRLS-F executes θ and θ ′ on the same r problem instances and
compares the fitness value achieved within the cutoff time κ . A configuration is considered
to “win” a run if it achieves a higher fitness value than its opponent within the cutoff time.
If both configurations achieve the same fitness value, then the first configuration to do so
is considered the winner. The configuration that “wins” the most runs is the winner of the
overall comparison. If both configurations have won the same number of runs, then the
winner of the comparison is chosen uniformly at random. The pseudocode for ParamRLS-F
is given in Algorithm 12.

In ParamRLS-T, we denote the time taken by A(θ) to reach the target fitness value T for
instance π using cutoff time κ and penalty constant P by CapTargetTime(A(θ),κ,π,P,T).
In each run, CapTargetTime is computed for both configurations in the comparison. The
sum of these times is compared and the configuration with the lowest total runtime is

76 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

Algorithm 12: ParamRLS-F (A,Θ,Π′,κ,r)
Input :target algorithm (A), parameter space (Θ), training instances (Π′), cutoff time

(κ), number of runs per evaluation (r).
1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do
3 θ ′← mutate(θ)
4 repeat r times
5 π ← problem instance drawn from Π′ according to I
6 Fit←A(θ) fitness after κ iterations on π

7 Fit′←A(θ ′) fitness after κ iterations on π

8 ImprTime←time of last improvement of A(θ) on π

9 ImprTime′←time of last improvement of A(θ ′) on π

10 if Fit > Fit′ then W←W+1
11 else if Fit′ > Fit then W′←W′+1
12 else
13 if ImprTime < ImprTime′ then W←W+1
14 else if ImprTime′ < ImprTime then W′←W′+1

15 if W′ > W then θ ← θ ′

16 else if W == W′ then with probability 0.5 do θ ← θ ′

17 return θ

considered the winner of the comparison. In the case of a tie, the winner is chosen uniformly
at random. The pseudocode for ParamRLS-T is given in Algorithm 13.

As stated in Section 2.5, we define the runtime of an algorithm configurator as the number
of configuration comparisons that it requires before it is able to return the optimal configura-
tion for the considered performance metric. When using the Best-Fitness performance metric,
the optimal configuration is that which achieves the highest expected solution quality within
the cutoff time. When using the Fixed-Target performance metric, the optimal configuration
is that which in expectation takes the least time to reach the target solution quality (the global
optimum, in the case of the Optimisation-Time performance metric).

3.4 Target Algorithms

In this section, we introduce the simple target algorithms that will be used throughout this
thesis to evaluate the expected time required by algorithm configurators to identify their
optimal parameter values. For the theoretical analyses in this thesis, we select the two
most simple randomised search heuristics in the literature: randomised local search (RLS)
and the (1+1) evolutionary algorithm (the (1+1) EA). These simple algorithms both have

3.4 Target Algorithms 77

Algorithm 13: ParamRLS-T (A,Θ,Π′,κ,r)
Input :target algorithm (A), parameter space (Θ), training instances (Π′), cutoff time

(κ), number of runs per evaluation (r).
1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do
3 θ ′← mutate(θ)
4 TargetTime← 0 // runtime counter for A(θ)
5 TargetTime′← 0 // runtime counter for A(θ ′)
6 repeat r times
7 π ← problem instance drawn from Π′ according to I
8 TargetTime← TargetTime+CapTargetTime(A(θ),κ,π,P,T)
9 TargetTime′← TargetTime′+CapTargetTime(A(θ ′),κ,π,P,T)

10 if TargetTime′ < TargetTime then θ ← θ ′

11 else with probability 0.5 do θ ← θ ′

12 return θ

only a single parameter to be configured (i.e. the neighbourhood size and mutation rate,
respectively), and thus are ideal for conducting initial analyses to establish a theoretical
foundation of algorithm configuration. RLSk and the (1+1) EA both belong to the class of
unary unbiased black-box algorithms (Section 3.2.7). For the experimental work conducted
in Chapter 7, we additionally configure two parameters of the SAPS algorithm for the MAX-
SAT optimisation problem. This simple randomised local search has been used as a target
algorithm in several algorithm configuration papers [62, 64].

3.4.1 Randomised Local Search

Given a notion of distance between any two points in the search space, randomised local
search with neighbourhood size k (RLSk) evaluates a search point chosen uniformly at
random from the neighbourhood of size k around the current best-found solution and replaces
the best-found with it if it is no worse. That is, it follows a path of non-worsening neighbours
(possibly evaluating solutions more than once). Since it can only move between neighbouring
search points, randomised local search is liable to get stuck in local optima.

When a bit string representation is used, as is the case throughout this thesis, the neigh-
bourhood of size k of a bit string x is the set of all bit strings that are exactly a Hamming
distance of k from x (i.e. that differ from x in exactly k bits). We give the pseudocode for
RLSk operating on bit strings in Algorithm 14.

The neighbourhood of RLSk is most commonly set to 1 (i.e. RLS1) and this default
version of the algorithm is usually simply referred to as ‘RLS’. However, for different

78 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

Algorithm 14: RLSk for the maximisation of a function f [60].
1 initialise x // according to initialisation scheme
2 while termination criterion not met do
3 x′← x with exactly k distinct bits flipped, chosen uniformly at random
4 if f (x′)≥ f (x) then x← x′

problems and time budgets, different neighbourhood sizes are preferable. The aim of the
algorithm configurator is to identify the optimal neighbourhood size k for a given problem
class. In our analyses, we will estimate the expected time required by different algorithm
configurators to identify the optimal value for k according to the considered performance
metric.

3.4.2 The (1+1) EA

Evolutionary algorithms as used in practice are often complex and therefore challenging to
study theoretically. The (1+1) evolutionary algorithm ((1+1) EA) is a simplified evolutionary
algorithm designed to ease initial analyses that can subsequently be built upon to assess
the performance of more sophisticated variants. When using a bit string representation of
length n, in each iteration the (1+1) EA creates a new solution by flipping each bit in the
best-found solution independently with probability χ/n, for some mutation rate χ . As in
RLSk, this offspring replaces its parent if its fitness is no worse than it. We call the (1+1) EA
with mutation rate χ the “(1+1)χ EA”. We give the pseudocode for the (1+1)χ EA operating
on bit strings of length n in Algorithm 15.

Algorithm 15: The (1+1)χ EA for the maximisation of a function f [43].

1 initialise x // according to initialisation scheme
2 while termination criterion not met do
3 x′← x with each bit flipped with probability χ/n
4 if f (x′)≥ f (x) then x← x′

Even though it is unrealistic as it does not use a population of candidate solutions, the
(1+1) EA was defined to enable initial rigorous performance analyses of EAs [43], with
similar intentions to ours in the creation of ParamRLS for the initial analysis of algorithm
configurators. Indeed, the (1+1) EA has allowed the development of mathematical techniques
that nowadays enable the analysis of evolutionary algorithms used in practice [5, 41, 69, 97].

Like RLSk, the (1+1)χ EA is ideal for our purposes as it has only one parameter (the
mutation rate χ). However, configuring the (1+1)χ EA constitutes a more challenging task

3.5 Target Problem Classes 79

than configuring RLSk as the mutation rate is continuous, unlike the discrete neighbourhood
of RLSk. Thus ideally a configurator should be able to distinguish between arbitrarily small
differences in parameter values. Traditionally, a mutation probability of 1/n (i.e. χ = 1) is
recommended [117]. This has been proven to be optimal for all linear functions (i.e. where
the fitness of a bit string is a linear combination of the value of each bit) [117]. However,
for other problem classes, or even for identifying approximate solutions for linear functions,
other mutation rates are preferable. We will analyse the time required by ParamRLS to
identify the optimal mutation rate for the (1+1)χ EA optimising the benchmark problem
classes under different performance metrics.

3.4.3 Scaling and Probabilistic Smoothing (SAPS)

For solving the MAX-SAT problem, randomised local search algorithms typically use the
number of unsatisfied clauses as the fitness of a solution (i.e. an assignment of truth values to
the variables). To avoid getting stuck in local optima, the Scaling and Probabilistic Smoothing
(SAPS) algorithm uses an alternative measure of fitness by assigning weights to each clause
and defining the fitness of a solution as the sum of the weights of unsatisfied clauses [67].
These weights are updated during the optimisation process, and thus can transform the fitness
function, allowing local optima to be escaped.

In each iteration, SAPS first performs a search step, in which it selects the solution with
highest fitness from all those where a single variable appearing in an unsatisfied clause of
the parent solution has been flipped. It then, with probability wp, flips a variable selected
uniformly at random. Finally, it updates the weights of unsatisfied clauses. SAPS updates
weights in two stages, first scaling the weights of unsatisfied clauses by multiplying them by
the value α , and then, with probability Psmooth, moves each weight w closer to the mean of
all weights w̄ by applying the transformation w = (ρ ·w)+(1−ρ)w̄ (thus the parameter ρ

controls the extent to which weights are drawn towards the mean: ρ = 1 results in all weights
being set to w̄, whereas ρ = 0 results in no smoothing).

In the experimental section of Chapter 7, we configure α and ρ and leave Psmooth and wp
as their default values of 0.05 and 0.01, respectively.

3.5 Target Problem Classes

We now introduce the standard benchmark problem classes from evolutionary computation
for which we will assess the performance of the configurators when tuning the parameters of
RLSk and the (1+1)χ EA. An important reason for the selection of these particular problem

80 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

classes is that, for either target algorithm, a configuration will have the same performance
for any instance in the class. Thus performance may be assessed without worrying about
generalisation to unseen instances as it is not influenced by the chosen training set. For each
problem class, we therefore define the training set as consisting of only the canonical problem
instance (i.e. the problem instance commonly analysed in the evolutionary computation
literature), which we specify for each class.

3.5.1 RIDGE

The RIDGE problem is that of maximising the length of the prefix that matches a secret bit
string when the remainder of the bit string is the complement of the remainder of the secret
bit string. The member of the RIDGE benchmark problem class corresponding to the secret
bit string a consists of a ridge of bit strings with a prefix that matches a and where all bits not
in this matching prefix differ from a [43]14. On this ridge, fitness increases with the length
of the matching prefix. All points not on the ridge have a lower fitness than all points on it,
and thus once RLSk or the (1+1)χ EA is on the ridge it will never accept a newly-generated
search point that is not on it.

The function RIDGE(x) is defined as

RIDGE(x) =

n+∑
n
i=1 xi, if x is in the form 1i0n−i

n−∑
n
i=1 xi, otherwise

,

and the fitness of a bit string given the hidden bit string a is

RIDGEa(x) := RIDGE(x1↔ a1 . . .xn↔ an)

where “↔” is the “biconditional” operator (true if and only if both bits have the same
value) [42]. The RIDGE problem class thus consists of 2n functions, each corresponding to a
distinct secret bit string a ∈ {0,1}n.

The canonical instance of this problem class corresponds to a = 1n (i.e. the ridge contains
bit strings of the form 1i0n−i). Note that RIDGE1n(x) = RIDGE(x). Without loss of generality,

14Droste et al. define the fitness of a bit string using the “exclusive or” operator [42], whereas in this section
we use the biconditional operator. The two operators are complementary: the biconditional is true if and only
if two variables have the same value, whilst the exclusive or is true if and only if two variable differ. This
modification yields the more natural situation where the secret bit string corresponds to the optimum and thus
the goal is to maximise the quality of the bit string with respect to the secret bit string (this quality is specific to
each problem class). These two definitions yield the same problem classes: the instance corresponding to a
secret bit string in the definition of Droste et al. can be obtained using our terminology using the complement
of the secret bit string.

3.5 Target Problem Classes 81

we will use this instance for the analysis in this thesis. The performance will be the same on
any other instance of this class.

To ease the analysis, we assume throughout this thesis that the algorithm is initialised at
the beginning of the ridge (i.e. at the bit string ā, the complement of a). This assumption has
already been made in the literature in other settings, including for fixed-budget analyses [72]
and the analysis of hyper-heuristics [89].

Since RLSk always flips exactly k bits, it can only makes steps of size k towards the
optimum, as flipping bits other than the initial k that disagree with the secret bit string a will
generate a search point off the ridge. Therefore it is not possible to reach the optimum if n is
not a multiple of k. The optimal value of RIDGE which RLSk can reach is in fact ⌊n

k⌋k. In
order to avoid an infinite expected optimisation time, in this thesis we will consider reaching
a fitness of at least 2n−

√
n+1 as having optimised the function (i.e. the final

√
n points on

the ridge are all considered optimal), as this allows all configurations with 1≤ k ≤
√

n to
reach the optimum. We do not consider neighbourhood sizes of k >

√
n since these values

lead to an almost random search. We ensure that all optima have the same fitness by defining
RIDGE*a(x) := min{RIDGEa(x),2n−

√
n+ 1} and instead configure RLSk for this class

(again tuning for the canonical instance where a = 1n).
Once on the ridge, RLSk makes a step of exactly k towards the optimum with probability

1/
(n

k

)
(observe that this probability is independent of the current fitness). For 1≤ k ≤

√
n,

this probability is maximised for k = 1. By the waiting time argument, RLS1 therefore has
an expected optimisation time of (2n−

√
n+1) ·n = Θ(n2) for RIDGE*. The differences

in the improvement probabilities between different configurations are highly pronounced,
with RLSm requiring a linear amount of time more, in expectation, to make progress than
RLSm+1. This implies that it should be easy for an algorithm configurator to determine which
configuration in a comparison is better.

Similar behaviour can be observed for the (1+1)χ EA. Once on the ridge, the drift of the
individual is roughly (χ/n)(1− (χ/n))n−1, which is maximised for χ = 1. Note that, like
with RLSk, the expected progress of the algorithm does not depend on the current fitness.
The expected optimisation time when initialised at ā can be shown to be en2 using additive
drift analysis.

The fact that, for both target algorithms, the expected progress is independent of the
position in the search space and, for RLSk, the gap between the performance of different
configurations is highly pronounced, makes RIDGE (resp. RIDGE*) ideal for laying the
foundations to be built upon for the analysis of the more complex problem classes considered
later. In particular, these characteristics imply that the optimal parameter values for RLSk

82 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

and the (1+1)χ EA are k = 1 and χ = 1, respectively, independent of the chosen performance
metric.

Jansen and Zarges give bounds on the expected fitness of RLS1 when run for t steps [73]:

Theorem 30 (Theorem 7 in [73]). Consider RLS1 initialised at 0n optimising RIDGE1n . Then
after t iterations, with t ≤ (1− ε)n2 for some constant 0 < ε < 1,

t
(

1− 1
n

)
− e−Ω(n) ≤ E[RIDGE1n(xt)]≤ t

(
1− 1

n

)
.

For our analysis, we will need to extend this result to hold for any parameter value k
and derive bounds on the identified solution quality that hold with overwhelming probability
rather than in expectation. We must also derive similar results for the (1+1)χ EA.

3.5.2 ONEMAX

The ONEMAX problem is that of minimising the Hamming distance to a secret bit string.
The class therefore consists of 2n functions, each corresponding to a different secret bit
string a [42]. For each instance, the fitness of an individual increases with the Hamming
distance to a. The function ONEMAX(x) is defined as

ONEMAX(x) =
n

∑
i=1

xi,

which counts the number of ones in a bit string. The fitness of an individual for a problem
instance corresponding to the secret bit string a is given by

ONEMAXa(x) = ONEMAX(x1↔ a1 . . .xn↔ an).

Thus ONEMAXa(x) counts the number of bits in which x matches a. The canonical
member of this problem class corresponds to a = 1n, and therefore the fitness of a bit string
is the number of one bits:

ONEMAX0n(x) = ONEMAX(x).

As with RIDGE, it is not always possible for RLSk to reach the optimum of this function.
This occurs if the distance to the optimum is at most ⌊k/2⌋. To avoid infinite expected
optimisation times, we treat any search point with a distance to the optimum of at most ⌊φ/2⌋
as an optimum, where φ is the largest permitted value of k in the configuration scenario. It
is relevant for later analyses to note that this implies that the number of optima is therefore,

3.5 Target Problem Classes 83

using
(n

m

)
≤ (en/m)m,

⌊φ/2⌋

∑
i=0

(
n
i

)
≤
(⌊

φ

2

⌋
+1
)(

n
⌊φ/2⌋

)
≤
(⌊

φ

2

⌋
+1
)
·
(

e
⌊φ/2⌋

)⌊φ/2⌋
·n⌊φ/2⌋,

which is polynomial for φ = O(1). As with the definition of RIDGE*, we ensure that all
optima have the same fitness by defining ONEMAX*(x) := min{ONEMAX(x),n−⌊φ/2⌋}.

We analyse the configuration of RLSk for ONEMAX* and assume that the algorithm is
initialised uniformly at random. This analysis is more complex than analysing the configura-
tion of RLSk for RIDGE* since, for ONEMAX*, the optimal neighbourhood size depends
on the fitness of the individual. To maximise expected progress, it is necessary to use larger
neighbourhood sizes when far from the optimum and to decrease them when closer. This
is similar to real-world scenarios, where often it is preferable to increase the size of the
perturbation in correlation with the distance to the optimum. This behaviour implies that large
values of k will be optimal when the cutoff time is small (under the Best-Fitness performance
metric) or when the target solution quality is far from the optimum (under the Fixed-Target
performance metric), whereas small k will be preferable when using larger cutoff times or
when the target solution quality is close to the optimum. The challenge of detecting these
different optimal values of k makes it more challenging to configure for ONEMAX* than for
RIDGE*.

To simplify the analysis, when configuring RLSk for ONEMAX* we only allow k ∈
{1,2,3,4,5}. When at a distance of s from the optimum, RLS1 has drift of s/n, RLSk with
k ∈ {2,3} makes expected progress of approximately k(s/n)2 and RLSk with k ∈ {4,5}
makes expected progress in the range [k(s/n)3,2k(s/n)3]. The neighbourhood size k = 1
has an expected optimisation time of n logn+O(n), which follows from simple coupon
collector’s arguments15[98]. This is the smallest expected optimisation time among all
configurations of RLSk, and is in fact optimal within the class of unary unbiased black-box
algorithms [35, 36] up to lower order terms of ±O(n). RLSk with k ∈ {2,3,4,5} can be seen
to have an expected optimisation time of Ω(n2) by considering the expected time required
to make the final improvement for each configuration. Regardless of the fitness of the
individual, flipping 2c bits never yields higher drift than flipping 2c+1 bits (for any positive
integer c)16 [35, 36]

15Given a set of n “coupons” and the ability to buy a single coupon chosen u.a.r., the coupon collector’s
problem is that of calculating the expected number of purchases necessary before all n different coupons have
been collected. This corresponds to RLS1 optimising ONEMAX when initialised at 0n and thus provides an
upper bound on the expected optimisation time of RLS1 for the problem considered here.

16Although it is not necessarily optimal to maximise the drift in order to minimise the expected optimisation
time for ONEMAX [20].

84 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

In terms of fixed-budget analyses, Jansen and Zarges provide a bound on the expected
fitness of RLS1 for ONEMAX after t iterations [73].

Theorem 31 (Theorem 5 in [73]). Consider RLS1 initialised uniformly at random optimising
ONEMAX. Then after t iterations

E[ONEMAX(xt)] =
n
2
+

n
2
·
(

1−
(

1− 1
n

)t)
.

3.5.3 LEADINGONES

The LEADINGONES problem (occasionally abbreviated to ‘LO’ in this thesis) is that of
maximising the length of the prefix that matches the prefix of a secret bit string. We analyse
the configuration of the (1+1)χ EA for this problem class and assume that the algorithm is
initialised uniformly at random.

The LEADINGONES function is defined as

LEADINGONES(x) =
n

∑
i=1

i

∏
j=1

x j,

which counts the number of consecutive one bits at the start of a bit string. The fitness of
an individual for the LEADINGONES instance with secret bit string a is given by

LEADINGONESa(x) = LEADINGONES(x1↔ a1 . . .xn↔ an),

which returns the length of the longest prefix of the bit string that matches the prefix of a [42].
Therefore, the LEADINGONES problem class again consists of 2n functions, each cor-

responding to a different secret bit string. The canonical instance considered in this thesis
corresponds to the secret bit string a = 1n, where the fitness of an individual is the length of
the prefix of consecutive one bits. Note that LEADINGONES1n(x) = LEADINGONES(x).

It has been shown that a mutation rate of χ ≈ 1.59 yields the smallest expected optimi-
sation time (approximately 0.77n2) for the (1+1)χ EA and LEADINGONES [18]. As with
ONEMAX, in order to maximise expected progress it is necessary to use larger perturbations
as the fitness distance to the optimum increases, and hence runs with shorter cutoff times
(under the Best-Fitness performance metric) or with the target solution quality far from the
optimum (under the Fixed-Target performance metric) will favour larger values of χ , whereas
runs with larger cutoff times or where the target solution quality is close to the optimum will
favour smaller χ .

In terms of fixed-budget analysis, Jansen and Zarges derive bounds that hold with
probability 1−o(1) on the fitness of the (1+1)1 EA when optimising LEADINGONES [73]:

3.5 Target Problem Classes 85

Theorem 32 (Theorem 14 in [73]). Consider the (1+1)1 EA, initialised uniformly at random,
optimising LEADINGONES. Then, for a number of iterations t = cn2, for any constant c with
0 < c < 1/2,

Pr
(

ce−c (1+ exp(exp(−cexp(−c))))≤ LO(xt)

n
≤ c(1+ exp(−cexp(−c)))

)
= 1−o(1).

Doerr et al. used their general framework for fixed-budget analysis (outlined in Sec-
tion 3.2.8) to derive bounds on the fixed-budget fitness of the (1+1) EA [1] for LEADING-
ONES [38]. The bound with the tightest concentration is the following.

Theorem 33 (Consequence of Theorem 9 in [38]). If the following bounds do not exceed
n− logn then, with probability 1−2−Ω(nε), after t iterations optimising LEADINGONES the
fitness of the (1+1)1 EA can be bounded as

ln
(

n2−n
n2−n+2b−2d−o(d)

)
ln(1−1/n)

≤ LO(xt)≤
ln
(

n2−n
n2−n+2b+2d+o(d)

)
ln(1−1/n)

,

for any d = Ω(n3/2+ε), where ε is an arbitrarily small constant.

Theorem 28 (page 71) can be applied to bound the fixed-budget fitness of the (1+1) EA
[1] when optimising LEADINGONES.

Theorem 34 (Theorem 8 in [82]). Consider the (1+1)1 EA for LEADINGONES. After t
iterations, we have

E[LO(xt)]≥

2t
n −O(1), if t = O(n3/2)

2t
n − (1−o(1)), if t = o(n2)

n ln(1+ 2t
n2)−O(1), if t ≤ e−1

2 n2−n3/2

.

Applying Theorem 29 (page 72) in this context is shown to be simpler than using
Theorem 28, but, due to its weaker conditions on the drift (i.e. that the drift need not be
monotonically non-decreasing), the fitness bounds yielded are weaker.

Kötzing and Witt also derive tail bounds on the expected fitness of the (1+1)1 EA when
optimising LEADINGONES. We do not reproduce these bounds here as doing so would
introduce several extra definitions, but we do reproduce the result derived using these bounds:
an interval that contains the fitness at time t with probability at least 1− 1

n , derived using the
technique described by Doerr et al. in [38].

86 Mathematical Tools, Configurators, Target Algorithms, Problems Classes

Theorem 35 (Theorem 10 in [82]). Consider the (1+1)1 EA for LEADINGONES. Then, for
t = ω(n logn) and t ≤ (e−1)n2/2− cn3/2√logn, where c is a sufficiently large constant,

−n ln
(

1− 2t
n2 +O

(√
t logn
n3/2

))
≤ LO(xt)≤−n ln

(
1− 2t

n2 −O
(√

t logn
n3/2

))
,

with probability at least 1−1/n3.

For small t, these bounds are tighter than those given in Theorem 33. However, as t
increases they soon become less precise.

3.6 Conclusions

In this chapter, we introduced the prerequisites required for our analysis of algorithm config-
urators. We first provided an overview of the mathematical techniques from the literature that
we use in this thesis. We then defined the configurator ParamRLS and the target algorithms
and problem classes that will be used in the analysis, as well as providing the motivations
behind their selection.

Part II

Analysis of Algorithm Configurators

Chapter 4

Fixed-Target Performance Metric
Requires Appropriate Cutoff Times

4.1 Introduction

The Fixed-Target performance metric (Section 2.5.1) is arguably the most commonly used in
the algorithm configuration literature. This metric is designed to be applied when a minimal
solution quality is sought as it returns the time required by a candidate configuration to reach
the target solution quality. It requires the use of a cutoff time to terminate the evaluation
of poor parameter configurations that require a prohibitively long time to reach the desired
solution quality. A common approach for dealing with such configurations (used, for example,
in ParamILS) is the penalised average runtime methodology (PAR, see Section 2.5.1). For
instances where the target solution quality is not reached within the cutoff time, PAR returns
the cutoff time multiplied by a penalisation constant. If the cutoff time is so small that
a large proportion of the configurations do not reach the target solution quality, then the
algorithm configurator will struggle to identify a gradient towards high-quality configurations.
Naturally, the choice of an appropriate cutoff time requires problem-specific knowledge, both
in terms of the hardness of the problem instances that are expected to be encountered by the
target algorithm and in terms of the sensitivity of the performance of the target algorithm to
different parameter settings.

In this chapter, we investigate the impact of the cutoff time on the performance of
algorithm configurators that employ the Fixed-Target performance metric. We first provide
a formal proof that if the cutoff time is too small for any configuration to reach the target
solution quality, with overwhelming probability, then any configurator using the Fixed-Target
performance metric will behave as if all configurations have the same performance. This

90 Fixed-Target Performance Metric Requires Appropriate Cutoff Times

result allows us to derive a general lower bound on the cutoff time required by any algorithm
configurator to be efficient if the global optimum is chosen as the target solution quality (i.e.
the Optimisation-Time performance metric). This bound is of particular interest since this is
the most commonly selected target in practical examples of algorithm configuration [16].

We then turn to positive results by proving an upper bound on the cutoff time that is
sufficient for configurators that use global mutation operators to guarantee convergence to the
optimal configuration. We prove that if the cutoff time is large enough for the T-optimal con-
figuration to reach the target solution quality of every problem instance with overwhelming
probability, and if it does so for each instance in less time than all other configurations, also
with overwhelming probability, then the expected number of configuration samples required
by the configurator to return this configuration is linear in the size of the parameter space.
This bound is independent of whether any other configuration can reach the optimum within
the cutoff time. As a corollary, we show that ParamILS can identify the T-optimal configura-
tion of a single-parameter target algorithm using the identified bounds on the cutoff time. We
conclude the chapter by showing that, even if the O-optimal configuration is sought by the
user, the same performance can be achieved by using the Best-Fitness performance metric.
Thus the derived positive result does not highlight an advantage of using the Fixed-Target
performance metric over others.

4.2 A Lower Bound on the Necessary Cutoff Time

If the cutoff time is small enough such that with overwhelming probability no configuration
of the target algorithm reaches the sought solution quality for any member of the training set,
then any configurator using the Fixed-Target performance metric will clearly not be able to
distinguish between the performance of the different configurations. We call a configurator
that behaves in this way “blind”. We start by defining this notion formally and then provide a
simple proof of this fact.

Definition 10. We call a configurator blind if there is an event A that occurs with over-
whelming probability and, conditional on A, the configurator returns a configuration chosen
according to the probability distribution that would be generated if all configurations had the
same performance.

The event A characterises a ‘typical’ run of a tuner (i.e. a run with no occurrences of
extremely unlikely events); it is necessary since in an “atypical” run (i.e. where at least
one extremely unlikely event occurs), we may not know the output of the tuner. Our
notion of blindness implies that if ParamRLS (or ParamILS) is blind then their output is

4.2 A Lower Bound on the Necessary Cutoff Time 91

virtually indistinguishable from a uniform random distribution of parameter values after any
polynomial number of comparisons.

Theorem 36. Consider a configurator that uses the Fixed-Target performance metric tuning
a target algorithm A for a problem class where the largest instance has size n. Assume that
with overwhelming probability no configuration of the target algorithm A reaches the target
solution quality for any member of the training set within the cutoff time. Then, after a
number of comparisons that is polynomial in n, where each evaluation consists of at most
r ∈ poly(n) runs, the configurator is blind.

Proof. Since there are polynomially many comparisons, each of which consists of polynomi-
ally many runs, by the union bound no configuration will reach the target solution quality
for any member of the training set within the cutoff time, with overwhelming probability.
Therefore every configuration will have the same fitness.

A corollary of Theorem 36 allows us to provide a lower bound on the cutoff time required
by any algorithm configuration that uses the global optimum as the target solution quality for
the Fixed-Target performance metric. In particular, we now prove that any configurator that
uses the Optimisation-Time performance metric with a cutoff time of at most κ ≤ (n lnn)/2,
where n is the size of the largest instance in the training set, is unable to tune any unary
unbiased search heuristic when the training set consists of problem instances each with up to
exp(
√

n/ log2 n) optima. To prove the result, we apply the black-box complexity result of
Lehre and Sudholt (given in Section 3.2.7) that states that no unary unbiased search heuristic
optimises any such function within (n lnn)/2 iterations, with overwhelming probability.

Corollary 37. Consider any configurator that uses the Optimisation-Time performance
metric tuning any unary unbiased black-box target algorithm using a training set where
each instance has maximum problem size n and has up to exp(

√
n/ log2 n) optima. If the

cutoff time is κ ≤ (n lnn)/2 and the number of runs per evaluation r ∈ poly(n), then the
configurator is blind.

Proof. From Theorem 26 (Section 3.2.7) we have that all unary unbiased black-box algo-
rithms require at least (n lnn)/2 iterations to reach the optimum of any function with up to
exp(
√

n/ log2 n) optima, with probability 1− exp(−Ω(
√

n/ logn)). By the union bound, the
probability that none of the polynomially many runs of the algorithm reach the optimum
within (n lnn)/2 iterations is still overwhelming. Then Theorem 36 implies that the tuner is
blind.

92 Fixed-Target Performance Metric Requires Appropriate Cutoff Times

4.3 An Upper Bound on the Sufficient Cutoff Time

In this section, we derive upper bounds on the cutoff time that are sufficient for configurators
to return the T-optimal configuration.

We first prove that, if the cutoff time is set large enough such that the T-optimal con-
figuration reaches the target solution quality of each training instance with overwhelming
probability then any configurator that uses the Fixed-Target performance metric can identify
the optimal configuration.

We point out that the condition that the T-optimal configuration reaches the target for
all instances is required. For instance, the weaker condition that at least one configuration
reaches the target for all instances would not be strong enough since it is possible for a
non-T-optimal configuration to reach the target solution quality for all instances and for the
T-optimal configuration not to do so, e.g. if it performs badly on a small number of instances.

Theorem 38. Consider a configurator that uses the Optimisation-Time performance metric
tuning an algorithm A using a training set Π′ with instance sizes n. Assume that in each
iteration the configurator samples a new configuration and compares it against the best-
found so far. Assume also that there are |Θ| configurations of A, that the configurator
uses at most r runs per configuration evaluation, that the cutoff time is large enough such
that the T-optimal configuration, θ ∗, reaches the optimum of every instance π ∈ Π′, with
overwhelming probability, and that θ ∗ reaches the optimum of every instance π ∈Π′ in less
time than all other configurations, with overwhelming probability.

• If the configurator uses a mutation operator that samples configurations uniformly at
random, then in expectation the number of comparisons sufficient to return θ ∗ is |Θ|.
After running for t comparisons, the probability that the best-found configuration is θ ∗

is at least

(1− exp(−Ω(nε)))
rt ·
(

1−
(

1− 1
|Θ|

)t)
,

for some constant ε > 0.

• Assume that the configurator uses a global mutation operator: at every step it samples
every configuration with probability at least pmin > 0. Then, for every constant ε > 0,
after t =Ω(nε/pmin) comparisons, assuming rt ∈ poly(n), the best-found configuration
is θ ∗.

Proof. By the waiting time argument, the expected number of configuration samples required
before sampling θ ∗ is |Θ|. Since by assumption the cutoff time is large enough to allow θ ∗

to reach the optimum of each training instance with overwhelming probability and, also

4.3 An Upper Bound on the Sufficient Cutoff Time 93

by assumption, it reaches the optimum of each training instance in less time than all other
configurations, also with overwhelming probability, the probability that both of these events
occur in all of the at most rt comparisons (and thus a lower bound on the probability that
it will win all comparisons in which it is involved) is the product of two overwhelming
probabilities raised to the power rt, which is equal to

(1− exp(−Ω(nε)))
rt
,

for some constant ε > 0. The second term in the stated probability is the probability that θ ∗

is sampled at least once in t comparisons.
For the second claim, the probability that θ ∗ is not sampled within t = Ω(nε/pmin) steps

is at most
(1− pmin)

t ≤ e−t pmin ≤ e−Ω(nε).

Hence, with overwhelming probability θ ∗ is sampled within t steps. Once θ ∗ is sampled, it
is not beaten in any remaining comparison with overwhelming probability: as rt ∈ poly(n), a
union bound over polynomially many events that all occur with overwhelming probability (as
shown in the proof of the first claim) proves that the claimed events occur with overwhelming
probability.

We highlight again that Theorem 38 requires the assumption that the T-optimal con-
figuration reaches the target solution quality for all training instances with overwhelming
probability, since otherwise runs terminated at the cutoff time may result in it having a larger
estimated runtime than some non-T-optimal configurations. This condition is likely to be far
stronger than is required in practice (where it is only necessary that this configuration has
a smaller mean penalised optimisation time than its competitors over the sampled training
instances).

For configurators that sample configurations uniformly at random without replacement,
such as ParamILS when configuring single-parameter algorithms, it is possible to derive
stronger guarantees on the time required to identify the optimal configuration.

Corollary 39. Consider ParamILS for the configuration of an algorithm A with a single
parameter θ for a training set Π′ with instance sizes n, arbitrary polynomial values for R, s
and r, and arbitrary prestart. Assume that the parameter space has size φ and that φ is at most
polynomial in n. Assume that the cutoff time is large enough such that the T-optimal config-
uration, θ ∗, reaches the target solution quality for every instance π ∈Π′, with overwhelming
probability. Assume also that θ ∗ reaches the optimum of every instance π ∈Π′ faster than

94 Fixed-Target Performance Metric Requires Appropriate Cutoff Times

all other configurations with overwhelming probability. Then R+φ comparisons suffice for
ParamILS to return θ ∗, with overwhelming probability.

Proof. After the first R+ 1 comparisons, ParamILS starts the IterativeFirstImprovement
procedure. In this procedure, since the target algorithm has only a single parameter, the set
of unvisited neighbours of a configuration consists of all configurations which have not yet
been sampled during that call to the procedure. Since there are only φ configurations in the
scenario which we consider, this implies that θ ∗ is discovered within φ −1 comparisons with
probability 1.

Now, θ ∗ will be returned by IterativeFirstImprovement if, once sampled, it wins every
subsequent comparison. By assumption, the cutoff time is large enough such that this
happens with overwhelming probability in any given comparison. Taking a union bound
over R+φ comparisons, the probability that, once sampled, θ ∗ never loses a comparison is
overwhelming.

The above results imply that choosing the optimum as the target solution quality and
selecting a sufficiently large cutoff time allows configurators using the Optimisation-Time
performance metric to identify the O-optimal configuration after at most a linear number of
comparisons. This performance is also achieved by the Best-Fitness performance metric with
the same cutoff times and thus these results do not constitute an advantage of the Optimisation-
Time performance metric over Best-Fitness. This follows because ties (i.e. cases where both
configurations achieve the same fitness within the cutoff time) are broken in favour of the
configuration that made progress least recently, and thus if the O-optimal configuration
reaches the optimum first for all training instances with overwhelming probability, then it will
win any comparison against all non-O-optimal configurations with overwhelming probability,
even if the Best-Fitness performance metric is used.

Corollary 40. Consider a configurator using the Best-Fitness performance metric tuning
an algorithm A using a training set Π′ with instance sizes n. Assume that there are |Θ|
configurations of A, the configurator uses at most r runs per configuration evaluation.
Assume also that the cutoff time is large enough such that the O-optimal configuration θ ∗

reaches the optimum of every instance π ∈Π′ with overwhelming probability and that for
each instance it does so first, with overwhelming probability. Assume that the configurator
uses a global mutation operator (e.g. samples configurations uniformly at random). Then the
claims of Theorem 38 and Corollary 39 hold.

4.4 Conclusions 95

4.4 Conclusions

In this chapter, we have highlighted some important limitations for the general applicability
of the Fixed-Target performance metric. In particular, we have shown that any configurator
that uses this performance metric is highly dependent on the selection of an appropriate cutoff
time, the choice of which may require significant problem knowledge. We provided a formal
proof that if the cutoff time is so small that no configuration reaches the target solution quality
for any member of the training set, then the configurator will be blind. This implies that if
the cutoff time is no greater than (n lnn)/2 then no configurator using the Optimisation-Time
performance metric is able to configure any unary unbiased target algorithm when the training
set consists of problem instances each with no more than exp(

√
n/ log2 n) optima.

We also showed that if the cutoff time is large enough such that the T-optimal configura-
tion reaches the target solution quality with overwhelming probability, then in expectation,
for any configurator that samples configurations uniformly at random, a linear number of
samples is sufficient to identify this configuration. Thus we highlighted the importance of
setting the cutoff time appropriately when the Fixed-Target performance metric is employed.
Hence choosing a large enough cutoff time is necessary, otherwise the configurator will
return a random configuration, with overwhelming probability.

The great impact of the choice of cutoff time on the performance of configurators using
the Fixed-Target performance metric highlights numerous difficulties that may be encountered
when employed for the configuration of algorithms for real-world optimisation and serious
potential limitations for its use in practice. For example, it necessitates that the training set
consist of problem instances for which the time taken to reach the target solution quality is
known for the parameter value ranges under consideration. In the case of the Optimisation-
Time performance metric, we must additionally know the value of the optimum itself. These
requirements are not necessarily fulfilled in real-world applications, and also imply that
the training set must consist of easy problem instances since these are likely to be the ones
for which an algorithm that has not yet been configured is able to identify the optimum.
Hence ‘good generalisation’ with the Optimisation-Time performance metric may only be
reasonably expected if ‘easy’ instances are expected to be encountered by the target algorithm
after it has been tuned.

The main result of this chapter is that if the configuration that identifies the global op-
timum fastest is sought, then any configurator using the Fixed-Target performance metric
to tune a unary unbiased algorithm requires a cutoff time of at least Ω(n logn) for virtually
any problem class of interest, or the algorithm configurator will return a random configura-
tion. In the following chapters, we will show that considerably larger cutoff times may be
necessary for even extremely simple algorithm configuration problems. On the other hand,

96 Fixed-Target Performance Metric Requires Appropriate Cutoff Times

we demonstrate that other performance metrics may be far more effective for this purpose.
In particular, the Best-Fitness performance metric can identify the O-optimal configuration
using considerably smaller cutoff times (i.e. o(n logn)) than the lower bound proven in this
chapter for the Optimisation-Time performance metric.

Chapter 5

On the Configuration of the
Neighbourhood Size of Randomised
Local Search

5.1 Introduction

In the previous chapter, we provided necessary lower bounds and sufficient upper bounds
on the cutoff time for algorithm configurators using the Fixed-Target performance metric to
be efficient, independent of the particular algorithm configuration scenario. In this chapter,
we focus on two specific algorithm configuration scenarios and compare the performance
of simple algorithm configurators using the Fixed-Target performance metric to those that
use the Best-Fitness performance metric. In particular, we analyse the local search tuners
ParamRLS and ParamILS for the configuration of the neighbourhood size k of randomised
local search. Our aim is to characterise the impact of the cutoff time on the ability of the
algorithm configurators to identify the optimal neighbourhood size (with respect to the
performance metric) for the RIDGE* and ONEMAX* standard benchmark problem classes.

In Chapter 4, we proved that, when using the Optimisation-Time performance metric,
a cutoff time of at least (n lnn)/2 is required for any configurator to identify an O-optimal
configuration of any unary unbiased search algorithm for any problem class where every
training instance has at most exp(

√
n/ log2 n) optima and n is the size of the largest instance

in the training set. Whilst this lower bound on the required cutoff time holds for virtually any
target problem class of interest, we will show that even larger cutoff times may be necessary
to prevent a configurator using this performance metric from being blind. In particular, we
prove that any configurator that uses the Optimisation-Time performance metric requires

98 On the Configuration of the Neighbourhood Size of Randomised Local Search

cutoff times that are at least quadratic in the problem size when configuring RLSk for the
RIDGE* benchmark problem class. If the cutoff time is smaller, then any configurator
using this performance metric will be blind. This result confirms that considerable problem
knowledge is required to tune algorithms using the Optimisation-Time performance metric,
even for very simple algorithm configuration scenarios.

We then turn our attention to the Best-Fitness performance metric. We first show that
ParamRLS-F can efficiently identify that k = 1 is the F-optimal neighbourhood size for
RIDGE* independent of the cutoff time as long as sufficiently many runs are performed
in each evaluation (i.e. r is sufficiently large). We then use the ONEMAX* benchmark
problem class to show the power of the Best-Fitness performance metric. When tuning
RLSk for this problem class, and allowing k to take values in {1,2,3,4,5}, ParamRLS-F
identifies that k = 1 is the F-optimal neighbourhood size for any cutoff time of at least 0.975n
whilst for smaller cutoff times of 0.02n ≤ κ ≤ 0.72n it will identify that the F-optimal
parameter value is k = 5. This result highlights how the Best-Fitness performance metric can
identify the parameter value that maximises the solution quality for the available time budget.
Significantly, unlike when using the Fixed-Target performance metric, no problem-specific
information (such as the expected optimisation time or an estimate of the expected solution
quality after a given time budget) is required for the tuner to be effective. Our results imply
that, remarkably, even in the case where the parameter value that has the smallest expected
optimisation time (i.e. the O-optimal configuration) is sought, the Best-Fitness performance
metric can do so using considerably smaller cutoff times than those required by configurators
using Optimisation-Time, for both RIDGE* and ONEMAX*.

5.2 On the Configuration of RLSk for RIDGE*

In this section, we analyse the ability of ParamRLS and ParamILS to configure RLSk for the
RIDGE* benchmark problem class. This allows us to characterise the behaviour of these
configurators for different performance metrics and ranges of cutoff times for the simplest
benchmark problem class used in the theory of evolutionary computation. We allow k to take
values up to

√
n, since larger values of k degrade to random search.

We first show that any configurator using the Optimisation-Time performance metric will
be blind for any cutoff time κ ≤ (1− ε)n2, for constant ε > 0. Note that this negative result
for RIDGE* is stronger than the general negative results provided in Chapter 4 since it holds
for κ = O(n2) rather than κ = O(n logn).

We then prove that ParamRLS-F, on the other hand, identifies that k = 1 is F-optimal for
RLSk and RIDGE* for any cutoff time. If the cutoff time is large enough (i.e. κ = ω(n)), then

5.2 On the Configuration of RLSk for RIDGE* 99

even a single run per configuration evaluation suffices. For smaller cutoff times, ParamRLS-F
requires more runs per configuration evaluation to identify that RLS1 performs better than
any other RLSk for k > 1. We show this for the extreme case of κ = 1, where n3/2 runs per
evaluation suffice for ParamRLS-F to return k = 1 with overwhelming probability. Since
k = 1 is also O-optimal, this implies that any cutoff time is sufficient for ParamRLS-F to
return the O-optimal parameter value (whilst any configuration using Optimisation-Time
requires at least quadratic cutoff times).

Before we can analyse the performance of the configurators tuning RLSk for RIDGE*,
we must first understand how the value of k affects the performance of RLSk for this problem
class. We present this analysis in the following section. Without loss of generality, in the
following section and the rest of this thesis, all proofs assume that the target algorithm runs
on the canonical instance of the problem class (i.e. the training set only contains copies of
the canonical instance). This assumption does not affect any results since for all considered
problem classes and target algorithms the performance is independent of the problem instance.
We do not make this assumption explicit after this point.

5.2.1 The Optimisation Time of RLSk for RIDGE* is Tightly Concen-
trated

In this section, we derive the expected optimisation time of RLSk with respect to the neigh-
bourhood size k and show that it is minimised for k = 1. We then show that the optimisation
time is tightly concentrated around its expectation.

Lemma 41. For k ≤ n
2 , when initialised at 0n the expected optimisation time of RLSk for

RIDGE* is
⌈

n−
√

n+1
k

⌉(n
k

)
.

Proof. During a single iteration, it is only possible to increase the fitness of an individual by
exactly k since we must flip exactly the first k zeroes in the bit string (any other combination
of flips will mean that the string is no longer in the form 1i0n−i and will be rejected). We call
an iteration in which we flip exactly the first k zeroes in the bit string an improvement. There
are
(n

k

)
possible ways in which we can flip k bits and exactly one of these combinations flips

the first k zeroes. Therefore the probability of making an improvement at any given time is
1/
(n

k

)
.

By the waiting time argument, we wait
(n

k

)
iterations in expectation to make a single

improvement. Since the algorithm is initialised at 0n, we need to make ⌈(n−
√

n+1)/k⌉
improvements in order to reach the optimum. We therefore wait ⌈(n−

√
n + 1)/k⌉

(n
k

)
iterations in expectation until we reach the optimum.

100 On the Configuration of the Neighbourhood Size of Randomised Local Search

Corollary 42. A value of k = 1 leads to the smallest expected optimisation time for RLSk

for RIDGE* for any k ≤ n/2.

The following lemma shows that optimisation time of RLSk on RIDGE* is tightly concen-
trated around its expectation, i.e. with overwhelming probability deviations from

(n
k

)
(n/k)

by a factor greater than (1± ε) for every constant ε > 0, do not occur.

Lemma 43. With probability at least 1− exp(−Ω(n/k)), RLSk requires at least (1−
ε)
(n

k

)
(n/k) and at most (1+ ε)

(n
k

)
(n/k) iterations to optimise RIDGE*, for every constant

ε > 0 and large enough n.

Proof. Let X i equal 1 if RLSk makes an improvement in iteration i and equal 0 otherwise.
Let Xt denote the number of improvements made by RLSk within the first t iterations. That is,
Xt = ∑

t
i=1 X i. Recall that RLSk can only make improvements by exactly k when optimising

RIDGE* and therefore needs to make ⌈(n−
√

n+1)/k⌉ improvements to reach the optimum.
Since the probability of making an improvement is 1/

(n
k

)
when at any non-optimal point,

we have E[Xt]≤ t/
(n

k

)
, by the linearity of expectation (this is not an equality since progress

stops once we reach an optimum).
Let t = (1−ε)

(n
k

)n
k , for a constant ε satisfying ε > 0. For ε ≥ 1 the claim that the runtime

is at least t holds automatically since t ≤ 0. To prove the claim for ε < 1, we first observe
that E[Xt] ≤ (1− ε)n

k . We now apply Chernoff bounds (Theorem 19), treating this upper
bound on E[Xt] as an equality (this Chernoff bound remains correct despite an upper bound
on the expectation being used [32]):

Pr
(

Xt ≥
⌈

n−
√

n+1
k

⌉)
= Pr

Xt ≥

1+

⌈

n−
√

n+1
k

⌉
(1− ε)n

k
−1

E[Xt]

≤ exp

(
−Θ(1) ·Θ(n)

3 ·Θ(k)

)
= exp(−Ω(n/k)).

The above Chernoff bound holds as ⌈(n−
√

n+1)/k⌉/((1− ε)(n/k))− 1 = Θ(1) is
positive for large enough n.

We proceed similarly to obtain an upper bound on the runtime. However, since we cannot
use the upper bound on E[Xt] in the Chernoff bound for the lower tail (as we did above), we
instead assume that the algorithm is operating on an infinite bit string and thus can make
progress at any time, still with probability 1/

(n
k

)
. The time required by this modified process

to make ⌈(n−
√

n+1)/k⌉ improvements is identical to that required to do so by RLSk on
RIDGE*. This time, we let t = (1+ ε)

(n
k

)n
k , which yields E[Xt] = (1+ ε)n

k . Hence, again by

5.2 On the Configuration of RLSk for RIDGE* 101

Chernoff bounds:

Pr
(

Xt <

⌈
n−
√

n+1
k

⌉)
≤ Pr

(
Xt ≤

⌈
n−
√

n+1
k

⌉)

= Pr

Xt ≤

1−

1−

⌈
n−
√

n+1
k

⌉
(1+ ε)n

k

E[Xt]

≤ exp

(
−Θ(1) ·Θ(n)

2 ·Θ(k)

)
= exp(−Ω(n/k)).

The above Chernoff bound holds as 1−⌈(n−
√

n+1)/k⌉/((1+ ε)(n/k)) = Θ(1) con-
verges to 1−1/(1+ ε)< 1 for large enough n.

5.2.2 Configurators Using the Optimisation-Time Performance Metric
Require Quadratic Cutoff Times

In this section, we show that any configurator that uses the Optimisation-Time performance
metric is blind for any cutoff time of at most κ ≤ (1−ε)n2 (for any constant ε > 0). However,
larger cutoff times will allow the configurator to be effective.

Theorem 44. Consider any configurator that uses the Optimisation-Time performance metric
for the configuration of RLSk for RIDGE* with φ ≤

√
n. Assume that it runs for a number of

comparisons that is polynomial in n, uses cutoff time κ ≤ (1− ε)n2 (for any constant ε > 0).
Then, for any r ∈ poly(n), the configurator is blind.

Proof. By Lemma 43, no configuration will have reached the optimum within the cutoff time
with overwhelming probability (since this is the case for RLS1, which minimises

(n
k

)
(n/k)).

Therefore the claim follows by applying Theorem 36.

Since the optimisation time of RLSk for RIDGE* is so tightly concentrated around its
expectation, even a small increase in the cutoff time (i.e. from (1− ε)n2 to (1+ ε)n2) allows
configurators using the Optimisation-Time performance metric to be able to identify the
O-optimal neighbourhood size. We now prove that ParamRLS-T is able to do so for RLSk

optimising RIDGE* if the cutoff time is at least (1+ ε)n2.
We derive the expected number of comparisons required before the active parameter in

ParamRLS-T has been set to k = 1. We also bound the probability that the active parameter
has not been set to k = 1 after a given number of comparisons. Note that it is not sufficient
for the active parameter merely to be set to k = 1, since it is still possible for it to then change
again to a different value. We therefore require that the active parameter remains at this

102 On the Configuration of the Neighbourhood Size of Randomised Local Search

configuration for the remainder of the tuning time. We deal with this requirement in the same
theorem. For this result and the others in this section, the ±{1} mutation operator suffices
for ParamRLS to be efficient.

Theorem 45. Consider ParamRLS-T for the configuration of RLSk for RIDGE* with φ ≤
√

n.
Assume that it uses cutoff time κ ≥ (1+ε)n2 (for any constant ε satisfying ε > 0), r∈ poly(n)
runs per evaluation, and that it uses the local search operator±{1}. Then the expected number
of comparisons T before ParamRLS-T sets the active parameter to k = 1 for the first time is
at most 2φ(φ −1). After t ≥ 4φ(φ −1) comparisons, ParamRLS-T returns the parameter
value k = 1 with probability at least

1−2−Ω(t/φ 2)− t · r · exp(−Ω(n/φ)).

Note that this is exponentially small for t = Ω(φ 2nε), for polynomial t.

Proof. According to Lemma 43, RLS1 has reached the optimum of RIDGE* within (1+ε)n2

iterations (for any constant ε > 0), with probability 1−exp(−Ω(n)). Lemma 43 also implies
that, with probability 1− exp(−Ω(n/b))≥ 1− exp(−Ω(n/φ)), RLSa reaches the optimum
of RIDGE* before RLSb, for a < b. Thus, in ParamRLS-T with r runs per evaluation and t
comparisons tuning RLSk for RIDGE*, RLSb never beats RLSa (with a < b) in a comparison,
with probability at least 1− t · r · exp(−Ω(n/φ)).

Let us assume that the value of the active parameter performs a lazy random walk (see
Section 3.2.5) over the possible parameter values, with the parameter value 1 corresponding
to an absorbing state. That is, the value of the active parameter either increases or decreases
by 1 (assuming that this new value is permitted) with probability 1/4 each, and remains the
same with probability 1/2. When it is not possible to increase the value by 1 (i.e. when the
active parameter is k = φ), the active parameter decreases with probability 1/4 and otherwise
remains the same. This model is pessimistic since it is the case that arises in the scenario in
which neither configuration reaches the optimum within the cutoff time. Since, as shown
above, RLSb does not beat RLSa in a comparison with overwhelming probability if the
cutoff time is large enough such that both configurations reach the optimum, it holds that
this random walk assumption is therefore a worst-case scenario, and, provided that the cutoff
time is large enough, progress towards the state k = 1 will in fact be faster. Note that we
cannot assume that RLSa beats RLSb with overwhelming probability for all a and b > a
since, for some values of a, the cutoff time may not be large enough to ensure that RLSa has
reached the optimum with overwhelming probability.

Using standard random walk arguments (Section 3.2.5), the expected first hitting time of
state 1 is at most 2φ(φ −1), where the factor of 2 accounts for the probability of remaining

5.2 On the Configuration of RLSk for RIDGE* 103

at each state. By Markov’s inequality, the probability that state 1 has not been reached in
4φ(φ − 1) steps is at most 1/2. Hence the probability that state 1 is not reached during
⌊t/(4φ(φ −1))⌋ periods each consisting of 4φ(φ −1) steps is 2−⌊t/(4φ(φ−1))⌋ = 2−Ω(t/φ 2).

Once state 1 is reached, the configurator remains there unless RLS2 beats RLS1 in a run.
By the above arguments, this event does not happen in a specific comparison with probability
at least 1− t · r · exp(−Ω(n/φ)).

By the union bound, the probability that ParamRLS-T returns k = 1 after t ≥ 4φ(φ −1)
comparisons is at least 1−2−Ω(t/φ 2)− t · r · exp(−Ω(n/φ)).

We now prove a similar result for ParamILS tuning RLSk for RIDGE* when using the
Optimisation-Time performance metric.

Theorem 46. Consider ParamILS for the configuration of RLSk for RIDGE*, with k ∈
{1, . . . ,φ}, φ ≤

√
n. Assume that it uses the Optimisation-Time performance metric, cutoff

time κ ≥ (1+ ε)n2 for some constant ε > 0, and arbitrary values for s,R, and prestart. Then
after R+ φ comparisons, ParamILS returns the configuration k = 1 with overwhelming
probability.

Proof. By the same arguments as in the proof of Theorem 45, in a single run RLS1 will
reach the optimum of RIDGE* before any other configuration with probability at least
1− exp(−Ω(n/φ)), which is overwhelming since φ ≤

√
n. Hence, RLS1 wins a comparison

against RLSk with any k > 1, with overwhelming probability. The result then follows from
the general upper bound in Corollary 39.

5.2.3 ParamRLS-F can Identify the Optimal Neighbourhood Size Us-
ing Arbitrary Cutoff Times

We now turn our attention to ParamRLS-F for the configuration of RLSk for RIDGE*. We first
analyse the relative performance of RLSa and RLSb with a< b when optimising RIDGE*. We
derive a general bound which can be applied to any two random processes with probabilities
of improving that remain the same throughout the process, as is the case for RLSk optimising
the RIDGE* problem class. We then derive an upper bound on the probability that the process
with the higher probability of improving is ahead at some time t.

As with the positive result for ParamRLS-T, we derive the expected number of com-
parisons required before the active parameter in ParamRLS-F has been set to k = 1 and
calculate the probability that this does not occur within a given number of comparisons. In
Theorem 49 we prove that, for cutoff times κ = Ω(n1+ε) (for some constant ε > 0), one
run per configuration evaluation suffices for ParamRLS-F to return the configuration k = 1.

104 On the Configuration of the Neighbourhood Size of Randomised Local Search

We then prove that any cutoff time suffices for ParamRLS-F to return this configuration
if suitably many runs per evaluation are conducted. Hence ParamRLS-F can identify the
O-optimal configuration for any cutoff time.

Lemma 47. Let A and B be two random processes which both take values from the non-
negative real numbers, and both start with value 0. At each time step, A increases by some
real number α ≥ 0 with probability pa, and otherwise stays put. At each time step, B increases
by some real number β ≥ 0 with probability pb, and otherwise stays put. Let ∆a

t and ∆b
t

denote the total progress ofA and B in t steps, respectively. Let q := pa(1− pb)+(1− pa)pb,
qa := pa(1− pb)/q, and qb := pb(1− pa)/q. Then, for all 0≤ pb ≤ pa and α,β ≥ 0

Pr(∆b
t ≥ ∆

a
t)≤ exp

(
−qt

(
1−2qα/(α+β)

b qβ/(α+β)
a

))
.

Proof. Let q := pa(1− pb)+(1− pa)pb be the probability that exactly one process makes
progress in a single time step. Let qa := pa(1− pb)/q be the conditional probability of A
making progress, given that one process makes progress, and define qb likewise. Assume
that in t steps we have ℓ progressing steps. Then the probability that B makes at least as
much progress as A is Pr(Bin(ℓ,qb)≥ ⌈ℓα/(α +β)⌉). Then,

Pr(∆b
t ≥ ∆

a
t) =

t

∑
ℓ=0

Pr(Bin(t,q) = ℓ) ·Pr(Bin(ℓ,qb)≥ ⌈ℓα/(α +β)⌉) (5.1)

Note that pb ≤ pa is equivalent to qb ≤ qa. Thus, qb/qa ≤ 1. Hence

Pr(Bin(ℓ,qb)≥ ⌈ℓα/(α +β)⌉) =
ℓ

∑
i=⌈ℓα/(α+β)⌉

(
ℓ

i

)
qi

bqℓ−i
a

=
ℓ

∑
i=⌈ℓα/(α+β)⌉

(
ℓ

i

)
qℓα/(α+β)

b qℓ−(ℓα/(α+β))
a (qb/qa)

i−(ℓα/(α+β))

≤ 2ℓqℓα/(α+β)
b qℓ−(ℓα/(α+β))

a =
(

2qα/(α+β)
b qβ/(α+β)

a

)ℓ
.

Using the above in (5.1) and Pr(Bin(t,q) = ℓ) =
(t
ℓ

)
qℓ(1−q)t−ℓ yields

Pr(∆b
t ≥ ∆

a
t)≤

t

∑
ℓ=0

(
t
ℓ

)
qℓ(1−q)t−ℓ ·

(
2qα/(α+β)

b qβ/(α+β)
a

)ℓ
=

t

∑
ℓ=0

(
t
ℓ

)
(1−q)t−ℓ ·

(
2q ·qα/(α+β)

b qβ/(α+β)
a

)ℓ

5.2 On the Configuration of RLSk for RIDGE* 105

(using the binomial theorem)

=
(

1−q+2q ·qα/(α+β)
b qβ/(α+β)

a

)t

=
(

1−q
(

1−2qα/(α+β)
b qβ/(α+β)

a

))t

≤ exp
(
−qt

(
1−2qα/(α+β)

b qβ/(α+β)
a

))
.

This lemma allows us to derive a lower bound on the probability that RLSa has found
a better fitness value than RLSb after κ steps, and hence that it wins a comparison against
RLSb (with a < b) with a cutoff time of κ . Additional arguments for κ <

(n
a

)
allow us to

show in the next lemma that the probability that RLSa wins is always at least 1/2.

Lemma 48. For every 1≤ a < b = o(n), in a comparison in ParamRLS-F with a single run
on RIDGE* with cutoff time κ , RLSa wins the comparison against RLSb with probability at
least

max
{

1
2
, 1− exp

(
−κ/

(
n
a

)
· (1−o(1))

)
− exp(−Ω(n/b))

}
.

Proof. Using the notation from Lemma 47, we have pa = 1/
(n

a

)
and pb = 1/

(n
b

)
, which

implies pb = o(pa) since b = o(n). Furthermore, q ≥ 1/
(n

a

)
· (1− o(1)), qa = 1− o(1)

and qb = pb(1− pa)/q ≤ pb(1− pa)/(pa(1− pb)) ≤ pb/pa = b!(n−b)!
a!(n−a)! ≤ (b/(n− b))b−a.

This implies qa/(a+b)
b ≤ (b/(n− b))a(b−a)/(a+b). Using b/(n− b) = o(n)/n = o(1) and

a(b−a)/(a+b) ≥ a/(2a+1) ≥ 1/3, we obtain qa/(a+b)
b = o(1). By Lemma 47, RLSa is

ahead of RLSb with probability at least

1− exp
(
−κ/

(
n
a

)
· (1−o(1))

)
.

The above argument ignores that progress stops once a global optimum is reached. If
RLSa reaches a global optimum and RLSb does not, RLSa still wins. We use the union
bound to include a term reflecting the possibility that RLSb finds the global optimum. By
Lemma 43, if κ ≤ (1− ε)

(n
b

)
⌊n/b⌋, for some constant ε > 0, the probability that RLSb does

find the optimum is at most exp(−Ω(n/b)). For κ ≤ (1− ε)
(n

b

)
⌊n/b⌋ this proves a lower

bound of

1− exp
(
−κ/

(
n
a

)
· (1−o(1))

)
− exp(−Ω(n/b)). (5.2)

For larger κ we argue that by Lemma 43, the probability that RLSa finishes within the first
(1−ε)

(n
b

)
⌊n/b⌋ ≥ (1+ε)

(n
a

)
⌊n/a⌋ steps is 1−exp(−Ω(n/a))≥ 1−exp(−Ω(n/b)). Along

with the fact that RLSb with probability 1−exp(−Ω(n/b)) needs more than (1−ε)
(n

b

)
⌊n/b⌋

106 On the Configuration of the Neighbourhood Size of Randomised Local Search

steps, this proves that RLSa wins with probability at least 1− exp(−Ω(n/b)) for κ >

(1− ε)
(n

b

)
⌊n/b⌋.

We have proved the claim for all κ ≥
(n

a

)
, assuming n is large enough to make (5.2) at

least as large as 1/2. For κ <
(n

a

)
we additionally have to show that the probability of RLSa

winning a comparison against RLSb is at least 1/2. To this end, we argue that RLSb can
only win if it makes progress in κ steps. The probability for this is at most κ/

(n
b

)
, by the

union bound. RLSa wins for sure if it does make progress in κ steps and RLSb does not
make progress. The probabilities for these events are at least 1−

(
1−1/

(n
a

))κ ≥ κ/(κ +
(n

a

)
)

(using Theorem 16) and 1−κ/
(n

b

)
= 1−o(1), respectively. So the probability that they both

occur is at least
κ

κ +
(n

a

) · (1−o(1))≥ κ

2
(n

a

) · (1−o(1))>
κ(n
b

)
for large enough n. Hence, in all cases where at least one algorithm makes progress, RLSa is
more likely to win than RLSb. In all other cases there is a tie and the probability that RLSa

is declared winner is 1/2. This proves a lower bound of 1/2 for the probability that RLSa

wins.

Note that Lemma 48 implies that, for cutoff times κ = Ω(nε
(n

φ

)
) (for some constant

ε > 0), the parameter landscape seen by ParamRLS-F for the configuration of RLSk for
RIDGE* is unimodal.

We now use the lower bound on the probability that RLSa beats RLSb (where 1≤ a < b)
within κ steps given by Lemma 48 to analyse the time sufficient for ParamRLS-F to return
the (both F-optimal and O-optimal) neighbourhood size k = 1 of RLSk for RIDGE*.

Theorem 49. Consider ParamRLS-F for the configuration of RLSk for RIDGE* with φ ≤
√

n.
Assume that it uses cutoff time κ , a single run per evaluation (i.e. r = 1) and that it uses the
local search operator±{1}. Then the expected number of comparisons T before ParamRLS-F
sets the active parameter to k = 1 for the first time is at most 2φ(φ −1). After t ≥ 4φ(φ −1)
comparisons, ParamRLS-F returns the parameter value k = 1 with probability at least

1−2−Ω(t/φ 2)− t · (2−Ω(κ/n)+2−Ω(n)).

Note that this is overwhelming for t = Ω(φ 2nε), where t is polynomial, and κ = Ω(n1+ε),
for a positive constant ε .

Proof. By Lemma 48, the probability that RLSa beats RLSb in a comparison with any cutoff
time is at least 1/2. We can therefore model the tuning process as the value of the active
parameter performing a lazy random walk over the states 1, . . . ,φ (where state i corresponds
to the active parameter being set to the configuration k = i). We pessimistically assume that

5.2 On the Configuration of RLSk for RIDGE* 107

the active parameter decreases and increases by 1 with respective probabilities 1/4 and that
it stays the same with probability 1/2.

Using standard random walk arguments (Section 3.2.5) as in the proof of Theorem 45,
the expected first hitting time of state 1 is at most 2φ(φ −1). By Markov’s inequality, the
probability that state 1 has not been reached in 4φ(φ − 1) steps is at most 1/2. Hence
the probability that state 1 is not reached during ⌊t/4φ(φ −1)⌋ periods each consisting of
4φ(φ −1) steps is 2−⌊t/4φ(φ−1)⌋ = 2−Ω(t/φ 2).

Once state 1 is reached, the configurator remains there unless RLS2 beats RLS1 in a
run. By Lemma 48, this event happens in a specific comparison with probability at most
2−Ω(κ/n)+2−Ω(n). By a union bound over at most t comparisons, the probability that this
ever happens is at most t · (2−Ω(κ/n)+2−Ω(n)).

We remark that the probability bound from Theorem 49, and similarly for other later
results, can be refined for a superpolynomial number of comparisons t by considering
only the last nc steps, for some polynomial nc ≤ t, yielding a probability bound of 1−
2−Ω(min{t,nc}/φ 2)−min{t,nc} · (2−Ω(κ/n)+ 2−Ω(n)). We do not use this refined version in
order to simplify the statements.

We now show that even the smallest possible cutoff time of κ = 1 (i.e. where each
configuration is only run for a single iteration) is sufficient for ParamRLS-F to return k = 1
as long as there are sufficiently many runs per configuration evaluation.

Theorem 50. Consider ParamRLS-F for the configuration of RLSk for RIDGE* with φ ≤
√

n.
Assume that it uses cutoff time κ = 1, n3/2 runs per configuration evaluation (i.e. r = n3/2)
and that it uses the local search operator ±{1}. Then the expected number of comparisons T
before ParamRLS-F sets the active parameter to k = 1 for the first time is at most 2φ(φ −1).
After t ≥ 4φ(φ −1) comparisons, ParamRLS-F returns the value k = 1 with probability at
least

1−2−Ω(t/φ 2)− t · exp(−Ω(
√

n)).

Note that this is exponentially small for t = Ω(φ 2nε), for any positive constant ε , and
polynomial t.

Proof. We begin by showing that the active parameter value remains at k = 1 with over-
whelming probability once it has been set to this value for the first time. Define X as the
number of runs out of n3/2 runs, each with cutoff time κ = 1, in which RLS1 makes progress.
Define Y as the corresponding variable for RLS2. By standard Chernoff bounds (Theo-
rem 19) we can show that Pr(X >

√
n/2)≥ 1−exp(−Ω(

√
n)). We can also show that, again

by Chernoff bounds, Pr(Y <
√

n/2) ≥ 1− exp(−Ω(
√

n)). Therefore, with overwhelming

108 On the Configuration of the Neighbourhood Size of Randomised Local Search

probability, RLS1 has made progress in more of these n3/2 runs than RLS2. That is, with
overwhelming probability, RLS1 wins the comparison.

We can analyse this tuning process as a whole in the same way in which we analyse the
tuning process in the proof of Theorem 49. We first observe that, in order for RLSa to beat
RLSb (with a < b) in a run with cutoff time κ = 1, it is sufficient for it to have made an
improvement and for RLSb to have failed to do so. Letting A be the event that RLSa beats
RLSb in a run with cutoff time κ = 1, we have

Pr(A)≥ 1(n
a

) (1− 1(n
b

)) .

Let B denote the event that RLSb beats RLSa in a run with cutoff time κ = 1. Since RLSb

making progress is a necessary condition for event B to take place, we have Pr(B)≤ 1/
(n

b

)
.

For large enough n, we have that

1(n
a

) (1− 1(n
b

))≥ 1/
(

n
b

)

which implies that Pr(A) ≥ Pr(B). This means that, for any 1 ≤ x ≤ r the probability that
RLSa wins x runs in a comparison is at least the probability that RLSb wins x runs. Observing
that if a comparison does not end in a draw then the winner must have won more runs than
its competitor, we see that, since Pr(A)≥ Pr(B), the winner must be RLSa with probability
at least 1/2. This means that we can make the same pessimistic assumption as we do in
the proof of Theorem 49, i.e. that the value of the active parameter decreases and increases
by 1 with respective probabilities 1/4 and that it stays the same with probability 1/2. By
the same arguments as in the proof of Theorem 49, we derive that the expected number of
comparisons required to reach state k = 1 is at most 2φ(φ −1). Again by the same technique
as the proof of Theorem 49, we obtain that the probability that state k = 1 has not been
reached after t comparisons is 2−Ω(t/φ 2). Thus the probability that the tuner returns k = 1
after t comparisons is 1−2−Ω(t/φ 2)− t · exp(−Ω(

√
n)).

5.3 On the Configuration of RLSk for ONEMAX*

For the RIDGE* problem class analysed in the previous section, the configuration k = 1
is F-optimal regardless of the available time budget. Naturally, this is not necessarily the
case for other problem classes. In this section, we consider one such case and analyse the
performance of ParamRLS for the configuration of RLSk for ONEMAX*. If RLSk runs for

5.3 On the Configuration of RLSk for ONEMAX* 109

few fitness function evaluations, then an algorithm with a larger neighbourhood size performs
better (i.e. identifies better solutions) than one with a smaller one. On the other hand, if more
fitness evaluations (i.e. larger time budgets) are permitted, then RLS1 will identify better
solutions than configurations that use larger values of k. Hence, k = 1 is O-optimal.

Since, k = 2c+ 1 often (but not always: see Table 5.1, page 121) constitutes a local
optimum of the parameter landscape, it is necessary to use the local search operator ±{1,2}
to enable the active parameter to move from k = 2c+1 to k = 2c−1.

As ONEMAX* has at most polynomially many optima, by Corollary 37 any configurator
that uses the Optimisation-Time performance metric is blind when configuring RLSk using a
cutoff time of κ ≤ (n lnn)/2.

In this section, we show that ParamRLS-F, on the other hand, can identify whether k = 1
is F-optimal or whether a larger value for k performs better according to the time budget
specified by the chosen cutoff time. To prove our point it suffices to consider ParamRLS-F
with the parameter space k ∈ {1,2,3,4,5}, which also simplifies the analysis. We will prove
that, even for a single run per configuration evaluation, ParamRLS-F identifies that k = 1
is F-optimal for any κ ≥ 0.975n. Surprisingly, this time is considerably shorter than the
expected time required by any configuration to optimise ONEMAX* (i.e. Θ(n lnn)), and
hence ParamRLS-F is able to return the O-optimal configuration a logarithmic factor faster
than any configurator using the Optimisation-Time performance metric. If, however, the
cutoff time κ satisfies 0.02n ≤ κ ≤ 0.72n, then ParamRLS-F will identify that k = 5 is
F-optimal, as desired.

Before analysing ParamRLS-F, we first need to characterise the performance of RLSk for
ONEMAX* with each considered neighbourhood size with respect to the cutoff time. We do
so in the following section.

5.3.1 Fixed-Budget Analysis of RLSk and ONEMAX*

In this section, we show that RLSk with smaller neighbourhood sizes performs best (i.e.
achieves the highest solution quality) for large cutoff times, whilst larger neighbourhood
sizes are preferable for smaller cutoff times. This result is supported by previous analysis
showing that the drift-maximising number of bit flips decreases as the distance to the optimum
decreases [36]. We first derive precise bounds on the fitness values identified by different
configurations after a given cutoff time. Afterwards, we will use these bounds to identify
which configurations outperform others for different cutoff times. We begin by deriving
bounds on the drift of RLSk when optimising ONEMAX*.

110 On the Configuration of the Neighbourhood Size of Randomised Local Search

Lemma 51. The drift ∆k(s) of RLSk with current distance s to the optimum is

∆k(s) =
k

∑
i=⌊k/2⌋+1

(2i− k) ·
(

s
i

)(
n− s
k− i

)
/

(
n
k

)
.

In particular, for s≥ k,

∆1(s) =
s
n

∆2(s) =
2s(s−1)
n(n−1)

≤ 2
(s

n

)2

∆3(s) =
3s(s−1)
n(n−1)

≤ 3
(s

n

)2

∆4(s) =
8s(s−1)(s−2)(n− s/2−3/2)

n(n−1)(n−2)(n−3)
≤ 8

(s
n

)3

∆5(s) =
10s(s−1)(s−2)(n− s/2−3/2)

n(n−1)(n−2)(n−3)
≤ 10

(s
n

)3
.

Proof. We first calculate the probability of flipping a certain number of bits in a bit string
using RLSk. If the bit string currently has Hamming distance s to the optimum, then the
probability that a k-bit mutation flips exactly i bits that disagree with the optimum and k− i
bits that agree with the optimum is (

s
i

)(
n− s
k− i

)
/

(
n
k

)
(5.3)

This corresponds to a hypergeometric distribution with parameters s and n.
If a k-bit mutation flips i disagreeing bits and k− i agreeing bits, the distance to the

optimum decreases by i− (k− i) = 2i− k. This is only accepted if 2i− k ≥ 0, and progress
is only made if 2i− k > 0 or, equivalently, i > ⌊k/2⌋. The claim then follows from (5.3) and
the definition of the expectation.

By [36, Lemma 28] we have ∆2(s) = 2∆3(s)/3 and ∆4(s) = 4∆5(s)/5, hence we only
need to show the claims for ∆1(s),∆3(s), and ∆5(s). The formula ∆1(s) = s/n follows

5.3 On the Configuration of RLSk for ONEMAX* 111

immediately. For ∆3(s) we have

∆3(s) =
((

s
2

)(
n− s

1

)
+3
(

s
3

)(
n− s

0

))
/

(
n
3

)
=

(
s(s−1)(n− s)

2
+

3s(s−1)(s−2)
6

)
/

(
n
3

)
=

(
s(s−1)(n−2)

2

)
/

(
n
3

)
=

3s(s−1)
n(n−1)

.

In order to bound ∆3(s) we calculate that

3s(s−1)
n(n−1)

≤ 3
(s

n

)2
⇐⇒ s−1

n−1
≤ s

n
⇐⇒ s−1

s
≤ n−1

n

⇐⇒ 1− 1
s
≤ 1− 1

n
⇐⇒ s≤ n

which is trivially true. We can use a nearly identical argument to bound ∆2(s). For ∆5(s) we
have

∆5(s) =
((

s
3

)(
n− s

2

)
+3
(

s
4

)(
n− s

1

)
+5
(

s
5

)(
n− s

0

))
/

(
n
5

)
=

[(
s(s−1)(s−2)

6

)(
(n− s)(n− s−1)

2

)
+

3s(s−1)(s−2)(s−3)(n− s)
24

+
5s(s−1)(s−2)(s−3)(s−4)

120

]
/

(
n(n−1)(n−2)(n−3)(n−4)

120

)
=

s(s−1)(s−2)(10n2−5ns−55n+20s+60)
n(n−1)(n−2)(n−3)(n−4)

=
5s(s−1)(s−2)(2n− s−3)(n−4)

n(n−1)(n−2)(n−3)(n−4)
=

10s(s−1)(s−2)(n− s/2−3/2)
n(n−1)(n−2)(n−3)

.

By similar arguments to those used to bound ∆3(s) we can see that

10s(s−1)(s−2)(n− s/2−3/2)
n(n−1)(n−2)(n−3)

≤ 10
(s

n

)3 n− s/2−3/2
n−3

.

We therefore need to show that

n− s
2
− 3

2
≤ n−3

112 On the Configuration of the Neighbourhood Size of Randomised Local Search

which holds if and only if s ≥ 3. The stated bound holds if s < 3 since ∆5(s) will equal 0.
These two facts therefore prove the claim for all s. As above, we can use a nearly identical
argument to prove the bound on ∆4(s).

In order to derive tight bounds on the fitness of the individual after a given number of
iterations, we divide a run into periods of a fixed length and show that, with overwhelming
probability, at the end of each period the fitness is always contained within a narrow interval
of fitness values (Lemma 53). The location of these intervals depends on k. When the cutoff
time is large enough, these intervals become non-overlapping, which allows us to prove that
one algorithm is ahead of the other, with overwhelming probability.

In the proof of Lemma 53, we make an assumption about the current distance to the
optimum at the start of a new period to simplify the analysis. In brief, we assume that we
start the period at the smallest distance contained in the interval.

This assumption is in some sense pessimistic because it minimises the drift. However,
we now give a rigorous argument to show that the assumption also generally decreases the
distance to the optimum at the end of the period and thus is arguably better thought of as an
optimistic assumption17.

The following lemma states that, for any two distances i < j, the distance after t genera-
tions is generally smaller when starting close to distance i (according to a specific probability
distribution), compared to when starting at distance j.

Lemma 52. Consider RLSk optimising ONEMAX*, for an arbitrary value of k ≥ 1, during t
generations, for an arbitrary value of t. For every two integers i ≤ j there is a probability
distribution αi, j over distances to the optimum in [i− k+1, i] such that the distance to the
optimum of RLSk after t generations, when initialised according to αi, j, is stochastically
dominated by that of RLSk after t generations, when initialised with distance j.

Proof. If j = i, the statement is trivial if we take αi, j as the point distribution at i = j.
Assume i < j and note that RLSk has to pass through the distance interval of I =

[i− k+1, i] in order to progress from an initial distance j to a distance smaller than i− k+1.
For ℓ ∈ I, let pℓ be the probability that the first fitness reached in I is ℓ. The distance of
RLSk after t generations, when initialised at distance ℓ, is stochastically dominated by the
distance of RLSk after t generations, when initialised at distance j, if we condition on
traversing distance ℓ as the first distance in I; this is because the former algorithm runs for

17A universal statement such as “starting closer to the optimum is always better” is not true. For instance,
when considering RLS2 running on the unmodified ONEMAX function, starting at distance 1 to the optimum
means that the algorithm cannot reach the optimum as it will always flip at least one bit incorrectly. However,
RLS2 starting at distance 2 will eventually reach the optimum, given enough time. Hence, given enough time,
the algorithm achieves a better final distance when starting further away from the optimum.

5.3 On the Configuration of RLSk for ONEMAX* 113

all t generations from distance ℓ and the latter algorithm runs for fewer than t generations
from distance ℓ.

Note that we may have ∑ℓ∈I pℓ < 1 since there may be a positive probability that RLSk

does not reach the interval I at all. Conditional on not reaching I, the distance when
starting anywhere in I will be smaller than the distance of RLSk starting at distance j, with
probability 1. We therefore may construct αi, j by first assigning αi, j(ℓ) := pℓ and then
distributing the remaining probability mass 1−∑ℓ∈I pℓ arbitrarily to states in I.

We now split the run of RLSk into periods of linear length and establish intervals [ℓi,ui]

that with overwhelming probability contain the distance to the optimum at the end of period i.

Lemma 53. Consider RLSk on ONEMAX* with k = O(1) and a cutoff time κ ≥ 3.225n.
Divide the first 3.225n generations into 645 periods of length n/200 each. Define ℓ0 =

n/2−n3/4 and u0 = n/2+n3/4 and, for all 1≤ i≤ 645,

ℓi = ℓi−1−
n

200
∆k(ℓi−1)−o(n) and ui = ui−1−

n
200

∆k(ℓi)+o(n).

Then, with overwhelming probability at the end of period i for 0≤ i≤ 645, the current
distance to the optimum is in the interval [ℓi,ui] and throughout period i, 1≤ i≤ 645, it is in
the interval [ℓi−1,ui].

Proof. We prove the statement by induction. We first show that, at time 0, the current distance
to the optimum is in [n/2−n3/4,n/2+n3/4] with overwhelming probability. Let Xi = 1 if
bit i is equal to 1, and let it equal 0 otherwise. Then let X = ∑

n
i=1 = Xi be the number of 1-bits

at time 0. Since the bit string is initialised uniformly at random, E[X] = n/2. By applying
additive Chernoff bounds (Theorem 20) with δ = n3/4 we calculate that the number of 1-bits
at initialisation is in [n/2−n3/4,n/2+n3/4] with probability at least 1−exp(−Ω(

√
n)). The

same applies to the distance to the optimum at this time as this is given by n minus the
number of 1-bits.

Assume that at the end of period i− 1 the current distance to the optimum is d∗i−1 ∈
[ℓi−1,ui−1]. We now derive a lower bound on the distance to the optimum at the end of
period i (i.e. ℓi). We do so by first arguing that the assumption that d∗i−1 ∈ [ℓi−1,ui−1] can
be replaced by another assumption under which the current distance to the optimum is in
the interval [ℓi−1− k+1, ℓi−1]. According to Lemma 52, there is a probability distribution
αℓi−1,d∗i−1

over distances in [ℓi−1− k+ 1, ℓi−1] such that the distance to the optimum after
period i when starting from αℓi−1,d∗i−1

is stochastically dominated by the distance after period i
when starting this period from distance d∗i−1. In other words, starting in the region [ℓi−1−

114 On the Configuration of the Neighbourhood Size of Randomised Local Search

k+1, ℓi−1] is generally preferable to starting at distance d∗i−1. Hence, in order to determine
the next lower bound ℓi on the distance, we may optimistically assume that at the end of
period i−1, we are at some distance in the interval [ℓi−1− k+1, ℓi−1] and the probability
that we are at each distance in this interval is given by the distribution αℓi−1,d∗i−1

. The precise
distribution is immaterial: we will only use the fact that at the end of period i−1 the distance
to the optimum is in the interval [ℓi−1− k+ 1, ℓi−1]. When bounding ℓi, this replaces the
original assumption that the distance to the optimum is in [ℓi−1,ui−1].

Since the current distance to the optimum can only decrease and the expected progress is
increasing in the distance to the optimum, this new assumption implies that, during period i,
the expected progress in each step is at most ∆k(ℓi−1). We now use the method of bounded
martingale differences (Theorem 22, Section 3.2.4) to bound the total progress in n/200
steps. Let us optimistically assume that the expected progress is always ∆k(ℓi−1) throughout
this period. Let f (X1, . . . ,X n

200
) be a function yielding the progress over the period given

the amount of progress X j at each iteration j. Then f = ∑
n/200
j=1 X j and by the linearity of

expectation E[f] = n∆k(ℓi−1)/200. Also, E[f | X1, . . . ,X j] = ∑
j
m=1 Xm +∑

n/200
m= j+1 ∆k(ℓi−1).

Notice that, for any i, once the variable Xi is observed it subtracts a term of ∆k(ℓi−1) from
the expectation of f and can contribute a term of at most k. If no progress is made at time j
then X j = 0 and the change in the expectation of f is −∆k(ℓi−1). If progress of k is made (i.e.
X j = k), then the change in the expectation of f is k−∆k(ℓi−1). Thus

|E[f | X1, . . . ,X j]−E[f | X1, . . . ,X j−1]| ≤max{|−∆k(ℓi−1)|, |k−∆k(ℓi−1)|}
≤ k =: c j,

since 0≤ ∆k(ℓi−1)≤ k.
We are now ready to apply the method of bounded martingale differences. Applying said

method with δ = (n/200)3/4− k+1 yields

Pr(f ≥ n/200 ·∆k(ℓi−1)+(n/200)3/4− k+1)≤ exp

(
−((n/200)3/4− k+1)2

2nk2/200

)
= exp(−Ω(

√
n)).

That is, the total progress in n/200 steps is thus at most n/200 ·∆k(ℓi−1)+(n/200)3/4− k+
1 = n/200 ·∆k(ℓi−1)+o(n) with overwhelming probability. Hence we obtain ℓi = ℓi−1− k+
1− n

200∆k(ℓi−1)−o(n) = ℓi−1− n
200∆k(ℓi−1)−o(n) as a lower bound on the distance at the

end of period i, with overwhelming probability.

5.3 On the Configuration of RLSk for ONEMAX* 115

Since the distance in period i is at least ℓi, the expected progress in every step is at least
∆k(ℓi). Again using the method of bounded martingale differences, by the same calculations
as above, the progress is at least n/200 ·∆k(ℓi)−o(n) with overwhelming probability. This
establishes ui = ui−1−n/200 ·∆k(ℓi)+o(n) as an upper bound on the distance at the end of
period i. Taking the union bound over all failure probabilities proves the claim.

Iterating the recurrent formulas from Lemma 53 demonstrates that with overwhelming
probability the fitness values reached by different configurations differ by a linear amount
after 3.225n iterations.

Lemma 54. Define ℓi,k as the value ℓi in Lemma 53 that corresponds to RLSk. Define
ui,k similarly. After 3.225n steps, w. o. p. RLS1 is ahead of RLS2 and RLS3 by a linear
distance: u645,1 ≤ ℓ645,2−Ω(n) and u645,1 ≤ ℓ645,3−Ω(n) respectively. Furthermore, w. o. p.
RLS3 is ahead of RLS4 and RLS5 by a linear distance: u645,3 ≤ ℓ645,4−Ω(n) and u645,3 ≤
ℓ645,5−Ω(n) respectively. And w. o. p. the distance to the optimum is at most 0.13n for
RLS1, RLS3 and RLS5.

In order to prove Lemma 54, however, we must first show the following result.

Lemma 55. Define ℓi,k and ui,k as in Lemma 54. Then ℓi,2 ≥ ℓi,3 as well as ℓi,4 ≥ ℓi,5 and

ui,1 = ui−1,1−
ℓi,1

200
+o(n)

ℓi,3 ≥ ℓi−1,3−
3ℓ2

i−1,3

200n
−o(n)

ui,3 ≤ ui−1,3−
3ℓ2

i,3

200n
+o(n)

ℓi,5 ≥ ℓi−1,5−
10ℓ3

i−1,5

200n2 −o(n).

Proof. The inequalities ℓi,2 ≥ ℓi,3 and ℓi,4 ≥ ℓi,5 follow from the fact that for even k, ∆k(s)≤
∆k+1(s) for all distances s [36, Lemma 28].

The other results essentially follow from Lemma 53 along with the drift bounds from
Lemma 51. The equality for ui,1 follows immediately from ∆1(ℓi−1,1) = ℓi−1,1/n. The lower

bound for ℓi,3 follows from ∆3(ℓi−1,3)≤
3ℓ2

i−1,3
n2 and, likewise, the lower bound for ℓi,5 follows

from ∆5(ℓi−1,5) ≤
10ℓ3

i−1,5
n3 . The upper bound for ui,3 follows from ∆3(ℓi,3) =

3ℓi,3(ℓi,3−1)
n(n−1) ≥

3ℓ2
i,3

n2 −O(1/n). Along with a factor of n/200, the term −O(1/n) leads to an error term of
−O(1) that is absorbed in the −o(n) term.

We can now prove Lemma 54.

116 On the Configuration of the Neighbourhood Size of Randomised Local Search

Proof of Lemma 54. We first argue that it is safe to focus on the leading constants in the
recurrences given in Lemma 55, i.e. that the terms of o(n) can essentially be neglected.
Since the drift ∆k(s) is increasing in s, we have ∆k(s−o(n))≤ ∆k(s) and thus any negative
small order terms in ℓi,1/200, 3ℓi,3/(200n), and 10ℓi,5/(200n) can be ignored since the lower
bounds on the distance obtained by ignoring the negative small order terms will be smaller
(i.e. looser) than those which could be obtained by considering them. Every application of a
recurrence formula from Lemma 55 subtracts another term of −o(n). However, since we
only consider a constant number of applications, the total error term is still −o(n).

For the upper bounds, it is also not hard to show that ∆k(s+ o(n)) ≤ ∆k(s)+ o(1) for
k ∈ {1,3,5}, which introduces an additional +o(n) term in each application of a recurrence.
By the previous arguments, the total error in a constant number of applications sums up to
+o(n).

This implies that, modulo small order terms, the distance to the optimum in any period
can be bounded by considering the leading constants cℓ,i,k in ℓi,k and cu,i,k in ui,k, when
taking the inequalities as equalities. Then cℓ,0,k = cu,0,k = 1/2 for all k and cu,i,1 = cu,i−1,1−
cℓ,i,1/200;cℓ,i,3 = cℓ,i−1,3−3c2

ℓ,i−1,3/200;cℓ,i,5 = cℓ,i−1,5−10c3
ℓ,i−1,5/200; cu,i,3 = cu,i−1,3−

3c2
ℓ,i,3/200.

We solved these recurrences numerically18. After 645 periods of length n/200 (i.e.
after 3.225n iterations), we observe that all distance intervals are non-overlapping and are in
what we would assume will be their final ordering (i.e. RLS1 is the closest to the optimum,
followed by RLS3, then RLS5: see Figure 5.1 for a plot of these intervals, including ones not
relevant until the proof of Theorem 63). We show that this is indeed the final ordering in the
proof of Lemma 57. The resulting leading constants were (we also show cℓ,645,1 and cu,645,5

defined similarly, though we do not need them):

[cℓ,645,1,cu,645,1] = [0.019717738,0.022119149]

[cℓ,645,3,cu,645,3] = [0.085458797,0.089099249]

[cℓ,645,5,cu,645,5] = [0.120636109,0.126798327].

Noticing that these intervals are non-overlapping, with gaps of order Ω(1), implies the claim
for the stated comparisons of bounds for RLS1, RLS3, and RLS5, even when taking into
account error terms of o(n). The claims for RLS2 and RLS4 follow immediately from these
results along with Lemma 55.

18The code we used to do so and the data generated is available at https://george-hall-sheff.github.
io/rlsk_om_recurrences.

https://george-hall-sheff.github.io/rlsk_om_recurrences
https://george-hall-sheff.github.io/rlsk_om_recurrences

5.3 On the Configuration of RLSk for ONEMAX* 117

The additional statement about the distance being at most 0.13n follows since all cu,645,k

values are less than 0.13−Ω(1).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

A B C D E F

RLS1
RLS2
RLS3
RLS4
RLS5

(H
a
m

m
in

g
 D

is
ta

n
ce

 t
o
 O

p
ti

m
a
l
B

it
 S

tr
in

g
)

/
n

(Cutoff Time) / n

Fig. 5.1 Intervals within which the fitness of the individual in RLSk, with 1 ≤ k ≤ 5, is
contained w. o. p. Calculated using periods of length n/200. The distance intervals for each
configuration at the end of period i for 0 ≤ i ≤ 800 (corresponding to linear cutoff times
κ ≤ 4n) are displayed (note that each curve consists of 801 vertical lines indicating the
interval at the end of each considered period).

We point out that the techniques from the proof of Lemma 54 yield closed-form bounds
that with overwhelming probability contain the distance to the optimal bit string for RLS1

after a linear number of iterations. These statements are not used further in this thesis,
but we nevertheless state them here since they significantly improve on the state-of-the-art
fixed-budget bounds for RLS1 optimising ONEMAX (reviewed in Section 3.2.8).

Corollary 56. For constant i≥ 0, RLS1 after κ = (n · i)/200 iterations running on ONEMAX

has Hamming distance sκ to the optimal bit string that satisfies

n
2

(
199
200

)i

≤ sκ ≤ n ·

(
1
2

(
199
200

)i+1

+
1

400

)
,

with overwhelming probability. This implies that

n
2

(
199
200

)200κ/n

≤ sκ ≤ n ·

(
1
2

(
199
200

)(200κ/n)+1

+
1

400

)
,

with overwhelming probability.

118 On the Configuration of the Neighbourhood Size of Randomised Local Search

Proof. As analysed in the proof of Lemma 54, the upper and lower bounds on the coefficient
of the linear term in the distance to the optimal bit string after i periods of n/200 iterations
are cℓ,i,1 = cℓ,i−1,1− cℓ,i−1,1/200 and cu,i,1 = cu,i−1,1− cℓ,i,1/200, respectively. Recall that
cℓ,0 = cu,0 = 1/2. These recurrence relations have solutions

cℓ,i,1 =
1
2

(
199
200

)i

and

cu,i,1 =
1
2

(
199
200

)i+1

+
1

400
.

The first claims follow by multiplying these solutions by n, and the second follows by
replacing i with 200κ/n, the number of iterations that corresponds to the end of period i.

Lemma 54 states that, for κ = 3.225n, smaller odd parameter values win comparisons
using the Best-Fitness metric with overwhelming probability. The following lemma proves
that this is in fact the case for all cutoff times κ ≥ 3.225n.

Lemma 57. Let (a,b) be a member of the set {(1,2),(1,3),(3,4),(3,5)}, let κ ≥ 3.225n,
and let RLSa and RLSb both be run on ONEMAX* for κ iterations. Then with overwhelming
probability RLSa either has a higher fitness than RLSb or, if both algorithms have reached
the optimum, RLSa did so first.

Proof. Lemma 54 proves the claim for a cutoff time of κ = 3.225n. For cutoff times larger
than 3.225n, it is possible for the algorithms that lag behind to catch up after time 3.225n.
To this end, we define the distance between two algorithms RLSa and RLSb (with a < b)
as Da,b

t := st,b− st,a, where st,a and st,b refer to the respective distances to the optimum at
time t. Initially, by Lemma 54, we have Da,b

t = Ω(n) for all considered algorithm pairs.
We will apply the negative drift theorem for self-loops (Theorem 24, page 69) to show that
with overwhelming probability Da,b

t does not drop to 0 until RLSa has found an optimum
(st,a < a).

Consider the situation where Da,b
t has decreased to a value of at most n1/4. We then argue

that
E[Da,b

t+1−Da,b
t | 0≤ Da,b

t ≤ n1/4,st,a ≥ a,st,b] = Ω(∆a(st,a)).

5.3 On the Configuration of RLSk for ONEMAX* 119

For RLS1 and RLS3 the above expectation is at least (using Lemma 51 and st,1 ≤ 0.13n)

∆1(st,1)−∆3(st,3)≥
st,1

n
−

3(st,1 +n1/4)2

n2

=
st,1

n

(
1−

3st,1

n
−o(1)

)
≥

st,1

n
(1−3 ·0.13−o(1)) = Ω(∆1(st,1)).

For RLS3 and RLS5 the above expectation is at least (using Lemma 51 and st,3 ≤ 0.13n)

∆3(st,3)−∆5(st,5)≥
3st,3(st,3−1)

n(n−1)
−

10(st,3 +n1/4)3

n3

=
3st,3(st,3−1)

n(n−1)
−

3s2
t,3

n2

(
10st,3

3n
+o(1)

)
= Ω(∆3(st,3)).

The statement also follows for even b as ∆b(s)< ∆b+1(s).
We also have ∆k(s)/k≤ Pr(st+1,k < st,k)≤ ∆k(s) for all k,s. The above calculations have

further established ∆b(st,b) = O(∆a(st,a)). Hence Pr(Da,b
t+1 ̸= Da,b

t) = Θ(∆a(st,a)).
This implies that the first condition of the negative drift theorem with self-loops is satisfied

with respect to Da,b
t and the interval [0,n1/4]. The second condition is trivial as the jump

length is bounded by b = O(1). Applying said theorem yields that the probability of RLSb

catching up to RLSa before RLSa finds an optimum in 2Ω(n1/4) generations is e−Ω(n1/4). By
Markov’s inequality, the probability that RLSa has not found an optimum within this time is
Θ(n logn) ·2−Ω(n1/4) = e−Ω(n1/4). Summing up all failure probabilities proves the claim.

Lemma 57 implies that with overwhelming probability RLS1 has a smaller optimisation
time than any rival configuration and RLS3 has a smaller optimisation time than RLS4 and
RLS5. We prove this in the following corollary.

Corollary 58. The following statements hold when optimising ONEMAX*:

• RLS3 has a smaller optimisation time than RLS4 and RLS5, with overwhelming
probability.

• RLS1 has a smaller optimisation time than RLSk with k ∈ {2,3,4,5}, with overwhelm-
ing probability.

Proof. We prove the claim for RLS3 in a comparison against RLS5. The same technique can
be used to prove the result for RLS3 vs. RLS4, RLS1 vs. RLS2, and RLS1 vs. RLS3. The
remaining claims for RLS1 hold by transitivity.

120 On the Configuration of the Neighbourhood Size of Randomised Local Search

By Lemma 57, for cutoff times κ ≥ 3.225n, RLS3 beats RLS5 in a comparison in
ParamRLS-F w. o. p. Recall that, in ParamRLS-F, RLSa beats RLSb in a comparison if and
only if: (1) RLSa has a higher fitness than RLSb at the cutoff time; or (2) both configurations
have the same fitness at the cutoff time, but RLSa reached this fitness first.

Let τ3 and τ5 be the expected optimisation times of RLS3 and RLS5, respectively,
and let τ = max{τ3,τ5}. Then, by Markov’s inequality, both algorithms have reached an
optimum within en ·τ iterations, w. o. p. We can therefore apply Lemma 57 since κ ≥ 3.225n.
Lemma 57 states that, if both configurations have reached an optimum (and therefore the
same fitness) w. o. p., then RLS3 did so first, w. o. p. Hence, in a run with κ = en · τ , RLS3

takes less time than RLS5 to reach an optimum, w. o. p. Taking a union bound over all
exponentially small failure probabilities proves the claim.

Proving the claim for a run with κ = en ·τ implies the claim for runs with any other κ .

From Lemma 57 it follows that with overwhelming probability configurations with
smaller odd values of k will beat their opponents in a ParamRLS-F comparison with cutoff
time κ ≥ 3.225n. We now use the techniques introduced in its proof to extend the analysis to
ParamRLS-F comparisons with cutoff times κ ≥ 0.02n. The following lemma proves that,
for ParamRLS-F using cutoff times in this range, the parameter landscape is not unimodal
(unlike when configuring RIDGE*) but there is nevertheless an underlying gradient towards
the F-optimal configuration.

Lemma 59. For ParamRLS-F for the configuration of RLSk for ONEMAX*, with cutoff
time κ ≥ 0.02n, the parameter landscape has the structure given in Table 5.1.

Proof. We use a similar approach to that used in the proof of Lemma 54. We again use
periods of length n/200 to determine the cutoff times at which the fitness of the individuals in
different configurations of RLSk are distinct by a linear amount. In addition to the quantities

5.3 On the Configuration of RLSk for ONEMAX* 121

Region Cutoff Time Ordering of Configurations
A κ ∈ [0.020n,0.375n] RLS5 > RLS4 > RLS3 > RLS1 > RLS2

κ ∈ (0.375n,0.495n) RLS5 > {RLS3, RLS4} > RLS1 > RLS2
B κ ∈ [0.495n,0.590n] RLS5 > RLS3 > RLS4 > RLS1 > RLS2

κ ∈ (0.590n,0.645n) RLS5 > RLS3 > {RLS1, RLS4} > RLS2
C κ ∈ [0.645n,0.720n] RLS5 > RLS3 > RLS1 > RLS4 > RLS2

κ ∈ (0.720n,0.975n) {RLS1, RLS3, RLS5} > RLS4 > RLS2
D κ ∈ [0.975n,1.760n] RLS1 > RLS3 > RLS5 > RLS4 > RLS2

κ ∈ (1.760n,2.130n) RLS1 > RLS3 > RLS5 > {RLS2, RLS4}
E κ ∈ [2.130n,2.535n] RLS1 > RLS3 > RLS5 > RLS2 > RLS4

κ ∈ (2.535n,3.225n) RLS1 > RLS3 > {RLS2, RLS5} > RLS4
F κ ≥ 3.225n RLS1 > RLS3 > RLS2 > RLS5 > RLS4

Table 5.1 Ordering of configurations for all cutoff times κ ≥ 0.02n. “RLSa > RLSb” indicates
that RLSa has a higher fitness than RLSb at the cutoff time w. o. p. and “{RLSa, RLSb}”
indicates that we cannot draw any conclusions about which configuration will have the higher
fitness at this cutoff time. The region names correspond to Figure 5.1.

defined in the proof of Lemma 54, we similarly define

ℓi,1 =ℓi−1,1−
ℓi−1,1

200
+o(n),

ℓi,2 ≥ ℓi−1,2−
2ℓ2

i−1,2

200n
−o(n),

ui,2 ≤ ui−1,2−
2ℓ2

i,2

200n
+o(n),

ℓi,4 ≥ ℓi−1,4−
8ℓ3

i−1,4

200n2 −o(n),

ui,4 ≤ ui−1,4−
8ℓ3

i,4

200n2 −o(n),

ui,5 ≤ ui−1,5−
10ℓ3

i,5

200n2 −o(n).

We derive that the coefficients of their Θ(n) terms are cℓ,i,1 = cℓ,i−1,1− cℓ,i−1,1/200,
cℓ,i,2 = cℓ,i−1,2−2c2

ℓ,i−1,2/200, cu,i,2 = cu,i−1,2−2c2
ℓ,i,2/200, cℓ,i,4 = cℓ,i−1,4−8c3

ℓ,i−1,4/200,
cu,i,4 = cu,i−1,4−8c3

ℓ,i,4/200, cu,i,5 = cu,i−1,5−10c3
ℓ,i,5/200.

Iterating these recurrences in the same way as in the proof of Lemma 54, we observe that,
for the named ranges of cutoff times in Table 5.1, the configurations are ordered in the stated
way (we illustrate these intervals in Figure 5.1 on page 117). Consider, for instance, the
range of cutoff times κ ∈ [0.975n,1.760n] (we only prove the claim for this range of cutoff
times: the claim for other ranges of cutoff times names in Table 5.1 can be proved in the

122 On the Configuration of the Neighbourhood Size of Randomised Local Search

same way). We prove that RLS1 > RLS3 > RLS5 > RLS4 > RLS2 for all cutoff times in this
range (where “RLSa > RLSb” indicates that RLSa has a higher fitness than RLSb w. o. p.) by
recalling that by definition (Lemma 53) the interval [ℓi−1,k,ui,k] w. o. p. contains the distance
to the optimum of the individual in RLSk throughout period i and observing that, for all
periods i with 195≤ i≤ 352 we have cℓ,i−1,1 < cu,i,1 < cℓ,i−1,3 < cu,i,3 < cℓ,i−1,5 < cu,i,5 <

cℓ,i−1,4 < cu,i,4 < cℓ,i−1,2 < cu,i,2.
For cutoff times κ ≥ 3.225n, the result follows from Lemma 57. For the unnamed ranges

in Table 5.1 it is the case that the distance intervals for almost all configurations are non-
overlapping, but they are overlapping for the sets of configurations for which no ordering is
stated.

5.3.2 Optimisation-Time Requires Superlinear Cutoff Times

According to Corollary 37, any configurator that uses the Optimisation-Time performance
metric is blind for any cutoff time that is at most (n lnn)/2 when configuring RLSk for
ONEMAX*. For larger cutoff times we now prove that ParamRLS-T and ParamILS are able
to identify the O-optimal neighbourhood size (i.e. k = 1) for RLSk for ONEMAX*. To do so,
we first prove that RLS1 has reached the optimum of ONEMAX* within n1+ε iterations, for
any positive constant ε , with overwhelming probability.

Lemma 60. For every initial search point, RLS1 reaches the optimum of ONEMAX* within
n1+ε iterations, for any positive constant ε , with probability at least 1−nexp(−nε).

Proof. A sufficient condition for RLS1 having found the optimum is that every bit has been
mutated at least once. The probability that a fixed bit i is not mutated in n1+ε steps is
(1−1/n)n1+ε ≤ exp(−nε). By the union bound, the probability that there is a bit that has not
been mutated in n1+ε steps is at most n · exp(−nε).

We now use this result to show that ParamRLS-T is able to configure RLSk for ONEMAX*
given sufficiently large cutoff times.

Theorem 61. Consider ParamRLS-T for the configuration of RLSk for ONEMAX* with
φ = 5. Assume that it uses cutoff time κ ≥ n1+ε for any positive constant ε , a single run per
configuration evaluation (i.e. r = 1), and that it uses local search operator ±{1,2}. Then the
expected number of comparisons T before ParamRLS-T sets the active parameter to k = 1
for the first time is at most 32+2−Ω(nε) (for some constant ε > 0). After nε ′ comparisons,
for some constant ε ′ > 0, ParamRLS-T returns the parameter value k = 1 with overwhelming
probability.

5.3 On the Configuration of RLSk for ONEMAX* 123

Proof. By Corollary 58, RLS1 has a lower optimisation time than RLSk, with k ∈ {2,3,4,5},
w. o. p., and RLS3 has a lower optimisation time than RLS4 and RLS5, w. o. p.

Lemma 60 implies that RLS1 reaches the optimum within n1+ε iterations, with over-
whelming probability. At any point, the active parameter can reach k = 1 within two
comparisons: in the worst case it is at k = 5 and can move to k = 3, which happens with
probability at least 1/8−2−Ω(nε) (the probability is larger than this lower bound if the cutoff
time is large enough to allow RLS3 to reach the optimum) and then to move to k = 1, which
happens with probability 1/4−2−Ω(nε). The probability that in two consecutive comparisons
the active parameter reaches k = 1 is hence 1/32−2−Ω(nε). Therefore the active parameter
is set to k = 1 within 32+2−Ω(nε) comparisons, in expectation.

By Markov’s inequality we have that the probability that the active parameter has not
been set to k = 1 after 64 comparisons is at most 1/2+2−Ω(nε). Hence the probability that
it has not been set to k = 1 after 64nε ′ comparisons is at most 2−Ω(nε ′), for some positive
constant ε ′. Combining this with the fact that, in a single run, by Lemma 57, RLS1 beats
both RLS2 and RLS3 with overwhelming probability, a union bound over the polynomially
many comparisons proves the claim.

Similar arguments allow us to prove a similar result for ParamILS.

Theorem 62. Consider ParamILS for the configuration of RLSk for ONEMAX*, with k ∈
{1, . . . ,5}, using the Optimisation-Time performance metric, cutoff time κ ≥ n1+ε for any
positive constant ε , and arbitrary values for s,R, and prestart. Then after R+4 comparisons,
the configuration k = 1 is returned by ParamILS with overwhelming probability.

Proof. As shown in the proof of Theorem 61, if κ ≥ n1+ε then, with overwhelming probabil-
ity, RLS1 reaches the optimum of ONEMAX* before any other RLSk with 2≤ k ≤ 5. Then
the result follows from the general upper bound in Corollary 39.

5.3.3 ParamRLS-F Identifies the Optimal Neighbourhood Size with
Arbitrary Cutoff Times

In Section 5.3.2, we proved that any configurator that uses the Optimisation-Time perfor-
mance metric requires superlinear cutoff times to configure RLSk for ONEMAX*. In this
section we will show that, for cutoff times that are at least linear, ParamRLS-F is able to
identify the neighbourhood size that achieves the highest solution quality within the given
time budget (i.e. the F-optimal configuration) and for large enough (but still linear) cutoff
times it is able to return the O-optimal configuration. In particular, for cutoff times satis-
fying 0.02n≤ κ ≤ 0.72n ParamRLS-F identifies that the F-optimal neighbourhood size is

124 On the Configuration of the Neighbourhood Size of Randomised Local Search

k = 5, whilst cutoff times of κ ≥ 0.975n suffice for it to return the O-optimal and F-optimal
configuration k = 1.

We first derive an upper bound on the expected number of comparisons before the tuner
first sets the active parameter to k = 1 for cutoff times κ ≥ 3.225n. We also derive the number
of comparisons that are sufficient for it to return k = 1 with overwhelming probability.

Theorem 63. Consider ParamRLS-F for the configuration of RLSk for ONEMAX* with
φ = 5. Assume that it uses cutoff time κ ≥ 0.975n, a single run per configuration evaluation
(i.e. r = 1), and that it uses the local search operator ±{1,2}. Then the expected number of
comparisons T before ParamRLS-F sets the active parameter to k = 1 for the first time is
at most 16+2−Ω(nε) (for some constant ε > 0). After nε ′ comparisons, for some constant
ε ′ > 0, ParamRLS-F returns the parameter value k = 1 with overwhelming probability.

Proof. By Lemma 59, for all cutoff times κ ≥ 0.975n, no configuration is more than two
configurations away from one that with overwhelming probability will beat it in a Param-
RLS-F comparison. This implies that the ±{1,2} operator is sufficient to escape the local
optima caused by even values of k for some ranges of cutoff times.

In the gaps between the named ranges of cutoff times given in Table 5.1, exactly one
pair of distance intervals is overlapping (i.e. where the outcome of a comparison between
them is ambiguous), meaning that the number of comparisons required to locate k = 1 will
be no larger than that required before or after the region with the overlap. For all cutoff
times κ ≥ 0.975n, the interval corresponding to RLS1 is non-overlapping with all others and
is smaller than that corresponding to all other considered configurations (i.e. RLS1 has a
higher fitness than by a distance of Ω(n), w. o. p.). Since for each ambiguity-free ordering
of configurations given in the table the ±{1,2} operator is sufficient to reach RLS1, we can
conclude that it is also sufficient at all points during the gap.

Since the±{1,2} operator is sufficient to reach RLS1 for all cutoff times κ ≥ 0.975n, the
claims follow using the same arguments as in the proof of Theorem 61. The bounds derived
here are half as large as the values derived in that proof since, in this case, the configuration
closer to the optimum wins a comparison w. o. p., whereas in the proof of Theorem 61 it is
assumed that this only occurs with probability at least 1/2−2−Ω(nε).

We now prove that, for cutoff times 0.02n≤ κ ≤ 0.72n, ParamRLS-F returns the config-
uration k = 5, which is F-optimal.

Theorem 64. Consider ParamRLS-F for the configuration of RLSk for ONEMAX* with
φ = 5. Assume that ParamRLS-F uses cutoff time 0.02n ≤ κ ≤ 0.72n, a single run per
configuration evaluation (i.e. r = 1), and that it uses the local search operator ±{1,2}. Then

5.3 On the Configuration of RLSk for ONEMAX* 125

the expected number of comparisons T before ParamRLS-F sets the active parameter to k = 5
for the first time is at most 16+2−Ω(nε). After nε comparisons, for some constant ε > 0, the
tuner returns the parameter k = 5 with overwhelming probability.

Proof. As in the proof of Theorem 63, we observe that for 0.02n≤ κ ≤ 0.72n no configura-
tion is more than two away from one that, with overwhelming probability, will beat it in a
ParamRLS-F comparison. This implies that, for all cutoff times in these ranges, the ±{1,2}
operator is again sufficient to reach the F-optimal parameter value of k = 5.

In the gaps between the named ranges of cutoff times given in Table 5.1 it is again the
case that exactly one pair of distance intervals is overlapping. However, for all cutoff times
satisfying 0.02n≤ κ ≤ 0.72n the interval corresponding to RLS5 is non-overlapping with all
others and is smaller than that corresponding to all other considered configurations (i.e. RLS5

has a higher fitness than all other considered configurations by a distance of Ω(n)). Since
in each named range of cutoff times given in Table 5.1 the ±{1,2} operator is sufficient to
reach k = 5, we can conclude that it is also sufficient at all points during the gap.

The bounds on the number of comparisons required by the configurator to set the active
parameter to k = 5 for the first time therefore hold by the same reasoning as in the proof of
Theorem 63.

We conclude this section by pointing out that the above analyses reveal that for all cutoff
times κ ≥ 0.02n either RLS1 or RLS5 (or both) identify higher fitness values than RLS3 with
overwhelming probability (RLS2 and RLS4 are similarly outperformed, but this is expected).
This can be observed in Figure 5.1 for almost all linear cutoff times κ ≥ 0.02n. However,
there is one region of ambiguity (for cutoff times κ ∈ [0.72n,0.975n]) in which the fitness
interval for RLS3 is not distinct from those corresponding to RLS1 and RLS5. We resolve
this ambiguity using a period length of n/2000 (instead of n/200 as otherwise used in this
section), and observe that the fitness interval for RLS3 becomes distinct for all cutoff times
in this range (see Figure 5.2). Therefore, for all cutoff times κ ≥ 0.02n, either k = 1 or k = 5
is F-optimal, but never k = 3.

Whilst, for a range of fitness values, RLS3 has a higher drift than both of these configu-
rations, it is too far behind RLS5 when entering this region of the search space (failing to
overtake it before leaving the region) and not far enough ahead of RLS1 when leaving this
region (being overtaken before taking advantage of its momentarily higher drift) to become
the F-optimal configuration at any point. It is unlikely that using k = 3 is F-optimal for
smaller cutoff times, however we do not prove such a result.

126 On the Configuration of the Neighbourhood Size of Randomised Local Search

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.75 0.8 0.85 0.9 0.95

RLS1
RLS3
RLS5

(Cutoff Time) / n

(H
a
m

m
in

g
 D

is
ta

n
ce

 t
o
 O

p
ti

m
a
l
B

it
 S

tr
in

g
)

/
n

Fig. 5.2 Intervals that w. o. p. contain the distance to the optimum of the individual in RLSk
(k ∈ {1,3,5}) for cutoff times 0.72nκ ≤ 0.975n, calculated using periods of length n/2000.

5.4 Conclusions

In this chapter, we have highlighted the superiority of the Best-Fitness performance metric
over Optimisation-Time for simple configuration scenarios. In particular, we have presented
an analysis of the impact of the cutoff time on the ability of algorithm configurators to
configure the neighbourhood size of randomised local search for the RIDGE* and ONEMAX*
problem classes. When using the Optimisation-Time performance metric, a quadratic cutoff
time is required to configure RLSk for the RIDGE* problem class and for the ONEMAX*
problem class a cutoff time of Ω(n lnn) is required.

Matters are considerably different if the Best-Fitness performance metric is used instead.
In that case, the cutoff time only slightly impacts the performance of ParamRLS. When
configuring RLSk for RIDGE* using any cutoff time, a quadratic number of comparisons
suffice in expectation for ParamRLS-F to return k = 1, provided that sufficiently many runs
per evaluation are used. For cutoff times of κ = ω(n), a single run per evaluation suffices,
whilst in the extreme case of κ = 1, n3/2 runs suffice. Note that n3/2 runs, each lasting a single
iteration, is still considerably less time than the quadratic time required in expectation for
any configuration to identify the optimum of RIDGE*. These results imply that ParamRLS-F
is able to return the O-optimal configuration using any cutoff time, rather than requiring a
quadratic one, as is the case for any Optimisation-Time-based configurator. Since k = 1 is
F-optimal for any cutoff time, ParamRLS-F also successfully configures RLSk for RIDGE*
with respect to the Best-Fitness performance metric using any cutoff time.

5.4 Conclusions 127

For ONEMAX* (with k taking values in {1,2,3,4,5}), ParamRLS-F returns the F-optimal
configuration k = 5 for cutoff times satisfying 0.02n ≤ κ ≤ 0.72n, whilst for cutoff times
κ ≥ 0.975n, it returns the F-optimal parameter value k = 1. In both cases, 17 comparisons
suffice, in expectation, for it to do so. Since k = 1 is the O-optimal parameter value,
ParamRLS-F is able to configure RLSk with respect to the Optimisation-Time performance
metric using cutoff times that are by a logarithmic factor smaller than those required by any
configurator that actually uses this metric.

Chapter 6

On the Configuration of the Mutation
Rate of a Simple Evolutionary Algorithm

6.1 Introduction

In this chapter, we focus on a more complex algorithm configuration scenario than the one
analysed in Chapter 5. In particular, we consider the problem of tuning the mutation rate χ

of a simple evolutionary algorithm called the (1+1)χ EA that uses a global mutation operator
(Section 2.2, Algorithm 15). This configuration scenario is considerably more complex
than the configuration of the neighbourhood size of RLSk analysed in the previous chapter
since χ may take any real value whereas the neighbourhood size of RLSk is discrete. In each
mutation, any number of bits may be flipped by the operator. Small differences in the value
of χ (e. g. χ = 1 vs. χ = 1.1) are hardly visible as in most mutations the number of flipped
bits is identical. In stark contrast, RLSk behaves very differently when always flipping, say,
one bit compared to always flipping two bits. Hence tuning the mutation rate is much more
challenging than configuring the neighbourhood size of RLSk.

We analyse the configuration of the (1+1)χ EA for the RIDGE and LEADINGONES

benchmark problem classes. As in Chapter 5, we want to characterise the impact of the cutoff
time on the ability of algorithm configurators to identify the optimal parameter value of the
(1+1)χ EA (with respect to the performance metric) for the considered problem classes, in
addition to the time required to do so.

Our aim is to show that also in this more sophisticated algorithm configuration scenario
the impact of the cutoff time is highly dependent on the choice of performance metric. In
particular, we will show that the insights from the analysis of Chapter 5 also apply here: for
large ranges of cutoff times, the Best-Fitness performance metric allows the configurator

130 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

to return a configuration that is F-optimal and, for cutoff times that are smaller than the
time required by any configuration to reach the optimum, to return a configuration that
is O-optimal. Again, for cutoff times smaller than the expected optimisation time of the
O-optimal configuration, all configurators using the Optimisation-Time performance metric
are blind.

We prove that, when configuring the (1+1)χ EA for RIDGE, any configurator using
the Optimisation-Time performance metric is blind when using a cutoff time of κ ≤ (1−
ε)en2. Matters change considerably for algorithm configurators that use the Best-Fitness
performance metric. ParamRLS-F efficiently returns the F-optimal (and O-optimal) parameter
value of χ = 1 for the (1+1)χ EA optimising RIDGE for any cutoff time that is at least linear
in the problem size. This implies that ParamRLS-F can return the O-optimal configuration
for cutoff times that are a linear factor smaller than the expected optimisation time of the
(1+1)χ EA with the O-optimal χ = 1 mutation rate.

When configuring the (1+1)χ EA for LEADINGONES, we prove that any configurator
that uses the Optimisation-Time performance metric is blind for all κ ≤ 0.772075n2. On the
other hand, ParamRLS-F is able to return the O-optimal parameter value χ = 1.6 (where χ

is allowed to take values from the set {0.1,0.2, . . . ,2.9,3.0}) with overwhelming probability
using any cutoff time κ ≥ 0.721118n2. Note that this is ≈ 0.05n2 smaller than the expected
optimisation time of the (1+1)χ EA for LEADINGONES using any configuration (including
χ = 1.6). Furthermore, for over 99% of cutoff times between 0.000001n2 and 0.720843n2,
we prove that ParamRLS-F returns the F-optimal parameter value within 61 configuration
comparisons, in expectation. Thus ParamRLS-F is capable of identifying that the smaller the
cutoff time the higher the F-optimal mutation rate.

We point out that, for both RIDGE and LEADINGONES, our analyses show that for the
considered ranges of cutoff times the parameter landscape seen by ParamRLS-F is unimodal.
This implies that all algorithm configurators capable of hillclimbing can efficiently tune the
mutation rate of the (1+1)χ EA for the same cutoff time values if they use the Best-Fitness
performance metric.

6.2 On the Configuration of the (1+1)χ EA for RIDGE

In this section, we consider the impact of the cutoff time required by algorithm configura-
tors to identify the optimal mutation rate (with respect to the performance metric) for the
(1+1)χ EA optimising RIDGE. We show in Section 6.2.2 that any algorithm configurator
that uses Optimisation-Time as the performance metric is blind for sub-quadratic cutoff
times. On the other hand, we show in Section 6.2.3 that cutoff times that are a linear factor

6.2 On the Configuration of the (1+1)χ EA for RIDGE 131

smaller than the expected optimisation time of any configuration are sufficient for algorithm
configurators that use the Best-Fitness performance metric to identify that χ = 1 achieves the
highest solution quality for any time budget. To demonstrate this point, we will prove that
linear cutoff times suffice for ParamRLS-F to return χ = 1, and that the expected number
of comparisons before the active parameter is set to this configuration for the first time is at
most linear in the size of the parameter space. Since χ = 1 is also O-optimal, this proves that
ParamRLS-F is able to return the O-optimal parameter value using cutoff times that are a
linear factor smaller than those required by Optimisation-Time-based configurators.

To prove these results, we must first analyse the behaviour of the (1+1)χ EA for the
optimisation of RIDGE for all permitted parameter values. We do so in Section 6.2.1.

6.2.1 Analysis of the (1+1)χ EA for RIDGE

In this section, we analyse the effect of the mutation rate χ on the performance of the
(1+1)χ EA for the optimisation of RIDGE. We first derive bounds on the drift and the
expected optimisation time. The bounds on the drift are tight up to an additive term of
O(1/n2) and show that it is independent of the current fitness of the individual. The drift
is maximised for χ = 1, and hence this configuration minimises the expected optimisation
time.

Lemma 65. For the (1+1)χ EA optimising RIDGE, initialised at 0n:

(i) The drift, ∆χ(xt) := RIDGE(xt+1)−RIDGE(xt), is bounded as follows:

χ

n

(
1− χ

n

)n−1
≤ E[∆χ(xt) | xt ,xt ̸= 1n]

E[∆χ(xt) | xt]≤
χ

n

(
1− χ

n

)n−1
+O

(
1
n2

)
.

(ii) Setting χ = 1 yields the smallest expected optimisation time for any constant χ , which
is at most en2, assuming n is large enough.

Proof. We split this proof into a section for either claim of the lemma.
Proof of Lemma 65(i).

By definition,

E[∆χ(xt) | xt ,RIDGE(xt) = j < n] =
n− j

∑
i=1

(i ·Pr(RIDGE(xt+1)−RIDGE(xt) = i)).

132 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Due to the nature of RIDGE, we know that the current best-found individual will be in the
form 1 j0n− j. This means that, in order to improve by exactly i in a single iteration, we
must flip exactly the first i leading zeroes in the bit string. The probability of doing this is
(χ/n)i(1−χ/n)n−i. This implies that

E[∆χ(xt) | xt ,RIDGE(xt) = j < n] =
n− j

∑
i=1

(
i ·
(

χ

n

)i(
1− χ

n

)n−i
)
.

We can trivially bound this sum from below by considering only the first term (as all terms
are non-negative):

E[∆χ(xt) | xt ,RIDGE(xt) = j < n]≥ χ

n

(
1− χ

n

)n−1
.

We bound E[∆χ(xt) | xt ,RIDGE(xt) = j < n] from above by observing that

n− j

∑
i=1

(
i ·
(

χ

n

)i(
1− χ

n

)n−i
)
=
(

1− χ

n

)n n− j

∑
i=1

(
i ·
(

χ

n−χ

)i
)

≤
(

1− χ

n

)n ∞

∑
i=1

(
i ·
(

χ

n−χ

)i
)

=
(

1− χ

n

)n
· χ(n−χ)

(n−2χ)2

and then observing that(
1− χ

n

)n
· χ(n−χ)

(n−2χ)2 =
χ

n

(
1− χ

n

)n−1
·
(

n(n−χ)

(n−2χ)2

(
1− χ

n

))
=

χ

n

(
1− χ

n

)n−1
· (n−χ)2

(n−2χ)2 =
χ

n

(
1− χ

n

)n−1
+O

(
1
n2

)
.

Proof of Lemma 65(ii).
By Lemma 65(i), the drift of the (1+1)1 EA optimising RIDGE, for every xt ̸= 1n, is

E[∆1(xt) | xt ,xt ̸= 1n]≥ 1
n

(
1− 1

n

)n−1

.

By the same lemma we have that

E[∆χ(xt) | xt]≤
χ

n

(
1− χ

n

)n−1
+Θ

(
1
n2

)
.

Since the expression χ

n

(
1− χ

n

)n−1 is maximised for χ = 1 and is Θ(1/n) for all positive
constants χ , we have that, for sufficiently large n, the lower bound on the drift of the

6.2 On the Configuration of the (1+1)χ EA for RIDGE 133

(1+1)1 EA is larger than the upper bound on the drift of the (1+1)χ EA with χ ̸= 1. As these
expressions for the drift do not depend on the fitness of the individual, we can determine
the expected optimisation time of the (1+1)χ EA on RIDGE using additive drift analysis.
Since all algorithms are initialised at 0n, a distance of n has to be bridged. Theorem 23
(Section 3.2.6, page 68) states that the expected optimisation time is at most n divided by a
lower bound on the drift, and it is at least n divided by an upper bound on the drift. Along
with the first statement of this lemma, this implies that the expected optimisation time is at
most en2 for χ = 1 and at least eχ/χ ·n2−O(n), which is larger than en2 for all χ ̸= 1 if n
is large enough. Hence, for large enough n, the expected optimisation time for the (1+1)1 EA
is smaller than the expected optimisation time for all other configurations with constant
χ ̸= 1.

The following lemma bounds the probability that one configuration attains a higher fitness
than another within the cutoff time or states that one of the configurations has reached the
optimum within this time. For κ = Ω(n1+ε), for a positive constant ε , this claim holds with
overwhelming probability.

Lemma 66. Assume that the (1+1)a EA and the (1+1)b EA, with a and b two distinct non-
negative constants such that ae−a > be−b, are both initialised at 0n. Then with probability at
least

1−3exp(−Ω(κ/n))

the (1+1)a EA has a higher fitness on RIDGE than the (1+1)b EA after κ iterations or one of
the considered algorithms has found a global optimum within the first κ−1 iterations.

Proof. Define At and Bt to be the fitness values of the (1+1)a EA and the (1+1)b EA,
respectively, after t iterations on RIDGE. Note that the probability of an improvement for the
(1+1)a EA is Pr(At+1 ≥ At +1 | At < n) ≥ a/n · (1−a/n)n−1. We may drop the condition
At < n as if it is violated then an optimum has been found within the first t steps. This means
we assume that the number of improvements is not bounded. The fitness Aκ is obviously at
least as large as the number of improvements in the first κ generations. Applying Chernoff
bounds to the latter, for every constant 0 < ε < 1, we get

Pr
(

Aκ ≤ (1− ε)κ · a
n

(
1− a

n

)n−1
)
≤ exp(−Ω(κ/n)).

134 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Using
(
1− a

n

)n−1
=
(
1− a

n

)n−a (1− a
n

)a−1 ≥ e−a (1− a
n

)a−1 ≥ e−a (1−O
(1

n

))
where the

last step is trivial for a≤ 1 and for a > 1 follows from Bernoulli’s inequality, we obtain

Aκ ≥ (1− ε)κ · ae−a

n

(
1−O

(
1
n

))
(6.1)

with probability 1− exp(−Ω(κ/n)).
We bound Bκ from above in a similar fashion. However, we need to take into account the

possibility of jumps that increase the fitness by more than 1. Note that, for all i ∈ N,

Pr(Bt+1 = Bt + i | Bt)≤
(

b
n

)i(
1− b

n

)n−i

=

(
b

n−b

)i(
1− b

n

)n

=

(
b

n−b

)i−1(
1− b

n−b

)
·
(

1− b
n

)n

· b
n−2b

.

Hence (Bt+1−Bt | Bt) has the same distribution as the convolution Xt+1Yt+1 where Xt+1 is
a Bernoulli random variable with parameter pX :=

(
1− b

n

)n · b
n−2b and Yt+1 is a geometric

random variable with parameter 1− b
n−b ; in other words, Pr(Yt+1 = i) =

(b
n−b

)i−1 (
1− b

n−b

)
.

Intuitively, the X-variables can be seen as indicator variables signalling whether an im-
provement happens and the Y -variables correspond to the jump length in an improving
generation.

Applying Chernoff bounds to the variables X1, . . . ,Xκ , for every constant 0 < ε < 1,

Pr

(
κ

∑
t=1

Xt ≥ (1+ ε)κ pX

)
≤ exp(−Ω(κ/n)).

Assuming ∑
κ
t=1 Xt ≤ nX := (1+ ε)κ pX , we bound the contribution of up to this number

of Y -variables with a corresponding X-variable with value 1 using Chernoff bounds for
geometric random variables. For ease of notation, we rename these variables Y1, . . . ,YnX .
This yields

Pr

(
nX

∑
t=1

Yt ≥ (1+ ε)nX ·
n−b

n−2b

)
≤ exp(−Ω(nX)) = exp(−Ω(κ/n)).

6.2 On the Configuration of the (1+1)χ EA for RIDGE 135

Together, with probability at least 1−2exp(−Ω(κ/n)),

Bκ ≤
κ

∑
t=1

XtYt ≤ (1+ ε)nX ·
n−b

n−2b
= (1+ ε)2

κ

(
1− b

n

)n

· b
n−2b

· n−b
n−2b

≤ (1+ ε)2
κ

be−b

n−2b
· n−b

n−2b
≤ (1+ ε)2

κ
be−b

n
·
(

1+O
(

1
n

))
. (6.2)

Since ae−a > be−b we can choose ε small enough such that (1− ε)ae−a(1−O(1/n)) >
(1+ ε)2be−b(1+O(1/n)), for large enough n. Then the lower bound for Aκ from (6.1)
and the lower bound for Bκ from (6.2) imply that Aκ > Bκ with probability at least 1−
3exp(−Ω(κ/n)).

6.2.2 Optimisation-Time Requires at Least Quadratic Cutoff Times

In this section, we show that all algorithm configurators that use the Optimisation-Time
performance metric are blind if the cutoff time is at most κ ≤ (1− ε)en2. We first show that
for this cutoff time no configuration has reached the optimum of RIDGE with overwhelming
probability.

Lemma 67. For all constants χ,ε > 0, the (1+1)χ EA requires more than (1−ε)en2 iterations
to reach the optimum of RIDGE, with probability 1− exp(−Ω(n)).

Proof. By the progress bounds established in the proof of Lemma 66, the fitness of the
individual in the (1+1)χ EA after κ := (1− ε ′)en2 iterations on RIDGE is at most

(1+ ε
′′)2(1− ε)n ·

(
1+O

(
1
n

))
≤ (1+ ε

′′)3(1− ε)n≤ (1− ε
′)n,

with probability at least 1−2exp(−Ω(n)), for suitably chosen positive constants ε ′ and ε ′′

and large enough n. Hence, for cutoff times of κ ≤ (1−ε)n2, the (1+1)χ EA has not reached
the optimum of RIDGE, with probability at least 1−2exp(−Ω(n)) = 1− exp(−Ω(n)).

This implies that all configurators that use the Optimisation-Time performance metric
are blind if the cutoff time is at most κ ≤ (1− ε)en2.

Theorem 68. Consider any configurator using the Optimisation-Time performance metric for
the configuration of the (1+1)χ EA for RIDGE for any positive constant φ and discretisation
factor d. For cutoff times κ ≤ (1− ε)en2, for some constant ε > 0, the configurator remains
blind for any polynomial number of comparisons and runs per evaluation.

136 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Proof. By Lemma 67, for cutoff times κ ≤ (1− ε)en2 and for every constant choice of χ ,
all configurations of the (1+1)χ EA fail to reach the optimum of RIDGE, with overwhelming
probability. The result therefore follows from Theorem 36.

6.2.3 Linear Cutoff Times Suffice for Best-Fitness

In this section, we prove that for any discretisation factor d (Section 3.3.1), ParamRLS-F
is able to identify the F-optimal and O-optimal configuration of (1+1)χ EA for RIDGE (i.e.
χ = 1) using linear cutoff times. In particular, we show that for any cutoff time κ ≥ εn
and a sufficiently large constant ε > 0, the expected number of comparisons required by
ParamRLS-F before the active parameter is set to χ = 1 is at most 6dφ (i.e. the expected
configuration time is linear in the number of parameter values). Moreover, after dnε compar-
isons with cutoff time κ ≥ n1+ε , for any positive constant ε , ParamRLS-F returns χ = 1 with
overwhelming probability. Note that this implies that ParamRLS-F is able to identify the
O-optimal configuration using cutoff times that are a linear factor smaller than those required
by any configurator using the Optimisation-Time performance metric.

We prove the above claims by bounding the probability that one configuration has a
higher fitness than another after κ iterations. The following lemma shows that, for large
enough cutoff times, in a comparison between two configurations where either both have
χ ≤ 1 or both have χ ≥ 1, the configuration with χ closer to 1 wins the comparison with
overwhelming probability. This implies that the parameter landscape seen by ParamRLS-F is
unimodal.

Lemma 69. Assume that the (1+1)a EA and the (1+1)b EA, with a and b two positive
constants such that ae−a > be−b, are both initialised at 0n. Then with probability at least

1−3exp(−Ω(κ/n))−κ exp(−Ω(n))

the (1+1)a EA wins in a comparison in ParamRLS-F against the (1+1)b EA on RIDGE with
cutoff time κ . Note that if a and b satisfy either 0 < b < a ≤ 1 or 1 ≤ a < b ≤ φ then the
condition ae−a > be−b is implied.

Proof. We can show that the probability that either algorithm reaches the optimum within
the first n2 iterations is exp(−Ω(n)) by setting ε = 1−1/e≈ 0.632 in Lemma 67. If κ ≤ n2

then the statement follows from Lemma 66 and a union bound over the failure probabilities
from Lemma 66 and the aforementioned term of exp(−Ω(n)).

If κ > n2 we argue that the (1+1)b EA only wins the comparison if either it finds the
optimum before the (1+1)a EA or if it is ahead of the (1+1)a EA after κ iterations. A

6.2 On the Configuration of the (1+1)χ EA for RIDGE 137

necessary condition for this union of events is that the (1+1)b EA is ahead of the (1+1)a EA
during some point in time t with n2 ≤ t ≤ κ . Applying Lemma 66 for all such values of t
and taking a union bound, the probability that this happens is at most

κ

∑
t=n2

3exp(−Ω(t/n))≤ (κ−1)3exp(−Ω(n)).

The claim follows as the sum of all failure probabilities is at most (κ−1)3exp(−Ω(n))+
exp(−Ω(n))≤ κ exp(−Ω(n)).

For the remark at the end of the lemma, note that the expression χe−χ is maximised for
χ = 1 and decreases monotonically on either side of this point. The claim therefore holds
since a is closer to 1 than b by assumption.

We now use the unimodality of the parameter landscape derived in Lemma 69 to prove
that ParamRLS-F can efficiently identify that χ = 1 achieves the highest solution quality for
any polynomial cutoff time.

Theorem 70. Consider ParamRLS-F for the configuration of the (1+1)χ EA for RIDGE with
discretisation constant d and φ = Θ(1). Assume that it uses κ ≥ εn for a sufficiently large
constant ε > 0, a single run per configuration evaluation (i.e. r = 1), and the local search
operator ±{1}. Then:

• Using a cutoff time κ ≥ εn for a sufficiently large constant ε > 0, the expected number
of comparisons T before ParamRLS-F sets the active parameter to χ = 1 for the first
time is at most 6dφ .

• Using a cutoff time κ ≥ n1+ε for some constant ε > 0, after dnε ′ for some constant
ε ′ > 0, ParamRLS-F returns χ = 1 with overwhelming probability.

Proof. Given a pair of configurations, let us call the configuration with a value of χ closer to
1 the ‘better’ configuration and the other configuration the ‘worse’ configuration.

By Lemma 69, using κ ≥ εn, the probability that the better configuration wins a compar-
ison with cutoff time κ is at least 1− exp(−Ω(κ/n))−κ exp(−Ω(n))≥ 2/3, the inequality
holding since we can choose the constant ε > 0 appropriately and κ ∈ poly(n).

The current configuration is compared against a better one with probability at least 1/2
and it is compared against a worse one with probability at most 1/2. Hence the distance to the
optimal parameter value decreases in expectation by at least (1/d) · (1/2 ·2/3−1/2 ·1/3) =
1/(6d). The initial distance is at most φ . By additive drift arguments (Theorem 23), the
expected time to reach the optimal parameter value for the first time is at most 6dφ .

138 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

For the second statement, we use that, if κ ≥ n1+ε , then the probability of accepting the
worse configuration is exponentially small. Hence, w. o. p. within any polynomial number of
comparisons we never experience the event that the worse configuration wins a comparison.
This implies that max{1,φ − 1}(d + 1) steps decreasing the distance towards the optimal
parameter value are sufficient. By Chernoff bounds, the probability of not seeing this many
steps in dnε iterations is exponentially small. Finally, once the optimal parameter value is
reached, it is never left w. o. p. Thus, after dnε iterations, the optimal parameter value is
returned with overwhelming probability.

6.3 On the Configuration of the (1+1)χ EA for LEADING-
ONES

We now turn our attention to the configuration of the mutation rate of the (1+1)χ EA for
the LEADINGONES problem class. The analysis is considerably more complicated than for
RIDGE since the progress depends (mildly, but not insignificantly) on the current fitness
value. For a search point with m leading ones, the probability of improving the fitness is
exactly χ/n · (1− χ/n)m as it is necessary and sufficient to flip the first 0-bit while not
flipping the m leading ones. This probability decreases over the course of a run, from
χ/n · (1− χ/n)0 = χ/n for m = 0 to χ/n · (1− χ/n)n−1 ≈ χ/(en) for m = n− 1. The
mutation rate that maximises the expected progress decreases as the distance to the optimum
decreases, similarly to how the neighbourhood size of RLSk that maximises the expected
progress decreases as the distance to the optimum of ONEMAX* decreases, as observed in
Chapter 5.

Due to the increased complexity of the analysis, we focus on one specific discretisation
factor d and choice of φ as a proof of concept. We choose a discretisation factor of d = 10
and φ = 3, which implies that χ may take values from the set {0.1,0.2, . . . ,2.9,3.0}. We are
confident that our method generalises to any constant discretisation factor by increasing the
precision of our analytical results in relation to the granularity of the parameter space (given
by d) and we provide a tool to do so19.

It is easily verified that for the chosen granularity the parameter value with the smallest
expected optimisation time is χ = 1.6, which is closest to the mutation rate with the smallest
expected optimisation time for any real value of χ (χ ≈ 1.59). We therefore expect the tuner

19This tool (available at https://github.com/george-hall-sheff/leading_ones_recurrences_
tool) applies our proof technique for any parameter space with constant φ and d and any period length.
Therefore the user can repeatedly decrease the period length until this tool is able to prove the desired results
for their chosen parameter space.

https://github.com/george-hall-sheff/leading_ones_recurrences_tool
https://github.com/george-hall-sheff/leading_ones_recurrences_tool

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 139

to return χ = 1.6 when the cutoff time is large enough, since it is O-optimal. For smaller
cutoff times, larger values of χ are F-optimal.

We prove that all configurators that use the Optimisation-Time performance metric are
blind for cutoff times κ ≤ 0.772n2. We then prove that ParamRLS-F is once again able
to identify the F-optimal configuration for arbitrary cutoff times. For almost all quadratic
cutoff times κ ≤ 0.720843n2, we prove that ParamRLS-F can determine which configuration
maximises the solution quality for that time budget with overwhelming probability, and
returns the F-optimal configuration within 65 comparisons, in expectation. Furthermore,
for cutoff times κ ≥ 0.721118n2 (i.e. approximately 0.05n smaller than the required cutoff
time for all Optimisation-Time-based configurators), it returns the O-optimal configuration
χ = 1.6, again within 65 comparisons in expectation.

In order to prove the above claims it is necessary to conduct a precise fixed-budget
analysis of the (1+1)χ EA for LEADINGONES. We do so in Section 6.3.1, and prove along
the way that the parameter landscape seen by ParamRLS-F is unimodal.

6.3.1 The Parameter Landscape of the (1+1)χ EA for LEADINGONES

is Unimodal Under Best-Fitness

Due to the complexity of the configuration scenario we follow the approach we used when
analysing the configuration of RLSk for ONEMAX* in Section 5.3 and establish intervals
that bound the fitness at various stages of a run. This allows us to locate the final fitness
after κ iterations with the desired precision and with overwhelming probability. For almost
all cutoff times, our fitness intervals reveal that the configuration closer to the F-optimal
one leads to a higher solution quality with overwhelming probability. This implies that the
parameter landscape seen by ParamRLS-F is unimodal.

We prove this claim first for over 99% of cutoff times satisfying 0.000001n2 ≤ κ ≤
0.720843n2 and then for all cutoff times κ ≥ 0.721118n2, with the mutation rate χ = 1.6
being returned for this second range of cutoff times, as expected.

We first derive bounds on the progress made by the (1+1)χ EA in a period of n2/ψ

iterations (for a positive constant ψ) that hold with overwhelming probability. We define
progress as the difference between the fitness distance to the optimum at the beginning of the
period and at the end of the period. This allows us to sum the progress made in a constant
number of periods to create intervals that with overwhelming probability contain the fitness of
the (1+1)χ EA after a specified quadratic number of iterations. Given two configurations, we
can then calculate for which cutoff times the intervals corresponding to these configurations

140 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

do not overlap. This tells us which configuration will win a comparison under the Best-Fitness
performance metric with that cutoff time with overwhelming probability.

Lemma 71. Consider the (1+1)χ EA for LEADINGONES and an optimisation period of n2/ψ

iterations, for some positive constant ψ , that starts with a fitness of j. Let Z be the amount of
progress made by the algorithm over the period. Then, with overwhelming probability:

(i) Z ≤ 2χn

ψ·exp
(

χ j
n

) +o(n)

(ii) For every i with j ≤ i < n, Z ≥ 2χn

ψ·exp
(

χi
n

) −o(n), or the algorithm exceeds fitness i at

the end of the period.

The intuition behind these bounds is that the probability of improving the fitness of a
search point with m leading ones is χ/n · (1− χ/n)m, which is at least χ/n · (1− χ/n)i ≈
χ/n ·exp(−χi/n) and at most χ/n · (1−χ/n) j ≈ χ/n ·exp(−χ j/n) if j≤m≤ i. The factor
of 2 stems from the fact that when the first 0-bit is flipped the fitness increases by 2 in
expectation as the following bits may be set to 1 with probability 0.5.

We use several helper lemmas to prove Lemma 71. We begin by deriving an upper bound
on the number of iterations in which the (1+1)χ EA increases the fitness of the individual
(iterations that we call improvements) in a period of n2/ψ iterations, for some positive
constant ψ .

Lemma 72. With overwhelming probability the (1+1)χ EA optimising LEADINGONES

starting at a fitness of i makes at most

(1+n−1/4)
χn

ψ · exp
(

χi
n

)
improvements in a period of length n2/ψ .

Proof. The probability of the (1+1)χ EA making an improvement is equal to the probability
that it flips the first leading zero and does not flip any of the leading ones. Let us assume that
the current fitness of the individual is j. Then the probability of making an improvement is
therefore

Pr(LO(xt+1)> LO(xt) | LO(xt) = j) =
χ

n

(
1− χ

n

) j
.

Since j ≥ i by assumption, we have

Pr(LO(xt+1)> LO(xt) | LO(xt) = j)≤ χ

n

(
1− χ

n

)i
.

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 141

Using Theorem 15 (Section 3.2.3, page 62), the quantity (1− (χ/n))i can be bounded from
above by exp(−χi/n). Hence

Pr(LO(xt+1)> LO(xt) | LO(xt) = j)≤ χ

n
exp
(
−χi

n

)
.

We now use a Chernoff bound to obtain a bound on the number of improvements made in
a single period of length n2/ψ , for some positive constant ψ . Let the random variable Xk

equal 1 if and only if an improvement occurs in iteration k. Otherwise let it equal 0. Now
define the random variable Y ψ := ∑

(n2/ψ)−1
k=0 Xk that counts the number of improvements that

occur in a period of length n2/ψ . Since Xk is an indicator variable we have that

E[Y ψ]≤ χn

ψ exp
(

χi
n

) .
Let us now optimistically assume that E[Y ψ] is equal to this upper bound. Then by a standard
Chernoff bound we derive that

Pr

Y ψ ≥ (1+n−1/4)
χn

ψ exp
(

χi
n

)
≤ exp

− n−1/2χn

3ψ exp
(

χi
n

)

≤ exp

(
−n−1/2χn

3ψeχ

)
= exp(−Ω(n1/2)).

We now derive a corresponding lower bound on the number of improvements in a period
of the same length.

Lemma 73. Assume that the (1+1)χ EA optimising LEADINGONES currently has a fitness
of j. Fix a value of i≤ n and consider a period of length n2/ψ (for any positive constant ψ).
Then with overwhelming probability the (1+1)χ EA makes at least

(1−n−1/4)
χn

ψ · exp
(

χi
n−χ

)
improvements during the period, or the (1+1)χ EA exceeds a fitness of i.

Proof. Assuming that the current fitness of the individual is j, the probability of making an
improvement is

Pr(LO(xt+1)> LO(xt) | LO(xt) = j) =
χ

n

(
1− χ

n

) j
.

142 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Since j ≤ i by assumption, we have

Pr(LO(xt+1)> LO(xt) | LO(xt) = j)≥ χ

n

(
1− χ

n

)i
.

Using Theorem 15, the quantity (1− (χ/n))i can be bounded from below by exp(−χi/(n−
χ)). This implies that

Pr(LO(xt+1)> LO(xt) | LO(xt)≤ i)≥ χ

n
exp
(
− χi

n−χ

)
.

We now use a Chernoff bound to derive a lower bound on the number of improvements made
in a single period of length n2/ψ , for some positive constant ψ . Let the indicator random
variable Xk attain value 1 with probability χ

n exp
(
− χi

n−χ

)
. We now define the random variable

Y ψ := ∑
(n2/ψ)−1
k=0 Xk, which is stochastically dominated by the number of improvements that

occur in a period of length n2/ψ , unless a fitness larger than i is reached. Note that the event
of exceeding fitness i is included in the event for which we aim to derive a lower bound on
the probability. Since Xk is an indicator variable we have that

E[Y ψ]≥ χn

ψ · exp
(

χi
n−χ

) .
By a standard Chernoff bound we derive that

Pr

Y ψ ≤ (1−n−1/4)
χn

ψ · exp
(

χi
n−χ

)
≤ exp

− n−1/2χn

2ψ · exp
(

χi
n−χ

)
= exp(−Ω(n1/2)).

Associated with each improvement are a number of free riders. These are the consecutive
1-bits immediately following the former leading 0 which has just been flipped. Therefore
the total fitness gained in each improvement is one more than the number of associated free
riders. We first derive an upper bound on the number of free riders encountered during a
period of length n2/ψ .

Lemma 74. Consider ℓ improving steps of the (1+1)χ EA optimising LEADINGONES. Then
with probability 1− exp(−Ω(ℓ1/2)) it gains at most (1+ ℓ−1/4)ℓ in fitness from free riders
in total.

Proof. For this proof, we assume that the algorithm is operating on an infinite bit string. This
is a valid assumption since we are deriving an upper bound on the number of free riders

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 143

that occur during the optimisation process and the number that occurs in reality is strictly
smaller than the number that is possible on an infinite bit string. It is well known that the
distribution of the ones and zeroes following the leading zero is uniformly at random, since
this section of the bit string has no effect on the fitness of the individual (see Lemma 1
in [85] for a formal proof). This fact and our infinite bit string assumption allow us to use a
geometric random variable Xk with parameter 1/2 to count the number of free riders in the
k-th improvement. We define X ℓ := ∑

ℓ
k=1 Xk as the total number of free riders encountered

over the ℓ improvements. Using a Chernoff bound for sums of geometric random variables
(Theorem 21(i), page 64) we have that

Pr(X ℓ ≥ (1+ ℓ−1/4) · ℓ)≤ exp

(
− ℓ−1/2(ℓ−1)

2(1+ ℓ−1/4)

)
= exp(−Ω(ℓ1/2)).

We now derive a corresponding lower bound on the number of free riders encountered
during a period of the same length. The lemma below proves that with overwhelming
probability the (1+1)χ EA gains at least (1− ℓ−1/4)ℓ in fitness from free riders, assuming
there are ℓ improvements in a period, or the (1+1)χ EA reaches the optimum during the
period.

Lemma 75. Consider a period with ℓ improving steps of the (1+1)χ EA optimising LEADING-
ONES. Then, with overwhelming probability, the (1+1)χ EA gains at least (1− ℓ−1/4)ℓ in
fitness from free riders in total during this period, or the (1+1)χ EA reaches the optimum
during the period.

Proof. We define the random variables Xk and X ℓ as in the proof of Lemma 74. We may
assume in the following that the free riders are effectively drawn from an infinite bit string.
This assumption is only false when the optimum is reached and this event is contained in the
event for which we aim to derive a lower bound on the probability.

By Theorem 21(ii) we have that

Pr(X ℓ ≤ (1− ℓ−1/4) · ℓ)≤ exp

(
− ℓ−1/2ℓ

2−4ℓ−1/4/3

)
= exp(−Ω(ℓ1/2)).

Combining Lemmas 72 and 74 allows us to derive an upper bound on the total progress
made by the algorithm in a period of length n2/ψ which holds with overwhelming probability.
This allows us to prove Lemma 71.

Proof of Lemma 71. We split this proof into a section for each claim of the lemma.

144 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Proof of Lemma 71(i):
Note that the progress of the algorithm stops abruptly if the global optimum is reached. Hence
we assume pessimistically that progress is not bounded. By Lemma 72, w. o. p. the algorithm
makes at most ℓ := (1+ n−1/4) χn

ψ·exp
(

χ j
n

) improvements. By Lemma 74, the number of

free riders is at most (1+ℓ−1/4)ℓ with probability 1−exp(−Ω(ℓ1/2)) = 1−exp(−Ω(n1/2)).
Together, the fitness increases by at most

(2+ ℓ−1/4)ℓ=
2χn

ψ · exp
(

χ j
n

) +o(n),

w. o. p., as claimed.
Proof of Lemma 71(ii):

By Lemma 73, with overwhelming probability, the algorithm makes at least ℓ := (1−
n−1/4) χn

ψ·exp
(

χi
n−χ

) improvements within a period of length n2/ψ or exceeds some fitness i

as defined in the statement of this theorem. If the algorithm exceeds fitness i at the end
of the period then we are done since this event is contained in the event for which we aim
to derive a lower bound on the probability. Assuming at least ℓ improvements are made,
by Lemma 75 the total gain through free riders is at least (1− ℓ−1/4)ℓ with probability
1− exp(−Ω(ℓ1/2)) = 1− exp(−Ω(n1/2)). Hence, w. o. p. the (1+1)χ EA makes at least

(2− ℓ−1/4)ℓ=
2χn

ψ · exp
(

χi
n−χ

) −o(n)

progress in total during the period, or the (1+1)χ EA exceeds a fitness of i at the end of the
period. Finally, we argue that the term n−χ in the exp-term can be replaced by n since

exp
(

χi
n−χ

)
= exp

(
χi
n
· n

n−χ

)
= exp

(
χi
n
+

χ2i
n(n−χ)

)
= exp

(
χi
n

)
· exp

(
χ2i

n(n−χ)

)
≤ exp

(
χi
n

)
· exp

(
χ2

n−χ

)
≤ exp

(
χi
n

)
· 1

1− χ2

n−χ

,

where in the last step we used ex ≤ 1
1−x for x < 1. Together,

2χn

ψ · exp
(

χi
n−χ

) −o(n)≥ 2χn

ψ · exp
(

χi
n

) (1− χ2

n−χ

)
−o(n) =

2χn

ψ · exp
(

χi
n

) −O(1)−o(n),

and the O(1) term is absorbed in the o(n) term.

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 145

We apply the progress bounds from Lemma 71 to derive bounds on the fitness of the
(1+1)χ EA after an arbitrary number of periods that hold with overwhelming probability.

Lemma 76. Consider the (1+1)χ EA optimising LEADINGONES. Let a run of length αn2

be split into αψ periods of length n2/ψ (for positive constants α and ψ). Define ℓχ,0 := 0
and uχ,0 :=

√
n. Then for i≤ α there exist uχ,i+1 and ℓχ,i+1 with

uχ,i+1 = uχ,i +
2χn

ψ exp
(

χuχ,i
n

) +o(n)

ℓχ,i+1 = ℓχ,i +
2χn

ψ exp
(

χuχ,i+1
n

) −o(n)

such that, with overwhelming probability, the following holds. At the end of period i, for
0≤ i≤ α , the current fitness is in the interval [ℓχ,i,uχ,i] or an optimum has been found, and
throughout period i the fitness is in [ℓχ,i−1,uχ,i] or an optimum has been found.

Proof. We prove the statement by induction. If an optimum has been reached at the end
of period i then there is nothing to prove. We may therefore assume that ℓχ,i < n. With
overwhelming probability, the initial fitness will be in [ℓχ,0,uχ,0] := [0,

√
n], since the fitness

of the initial search point is at most
√

n with probability 1−2−
√

n.
By Lemma 71(i) we have that if the individual begins with a fitness of uχ,i then, with

overwhelming probability, after a period of n2/ψ iterations it has a fitness of at most

uχ,i+1 := uχ,i +
2χn

ψ exp
(

χuχ,i
n

) +o(n).

Note that the upper bound uχ,i+1 still holds (trivially) if uχ,i+1 ≥ n.
We now apply Lemma 71(ii) to show that the fitness of the individual at the end of

period i+ 1 is at least ℓχ,i+1 given that its fitness at the end of period i is at least ℓχ,i. By
Lemma 71(ii), with overwhelming probability the fitness of the individual in the (1+1)χ EA
is at least

ℓχ,i+1 := ℓχ,i +
2χn

ψ · exp
(

χuχ,i+1
n

) −o(n)

or it exceeds uχ,i+1. Since we do not exceed fitness uχ,i+1 with overwhelming probability
(and we certainly do not exceed it if uχ,i+1 ≥ n), we have that the fitness is at least ℓχ,i+1,
w. o. p.

Since at the beginning of period i+1 the individual has a fitness in the interval [ℓχ,i,uχ,i]

and at the end of the period it has a fitness in the interval [ℓχ,i+1,uχ,i+1], and since both ℓχ, j

146 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

and uχ, j are monotonically increasing for all j we can conclude that, w. o. p., the fitness of
the individual remains in the interval [ℓχ,i,uχ,i+1] throughout the period. Taking a union
bound over all failure probabilities concludes the proof of both claims.

Since we do not have a closed form for the intervals derived in Lemma 76, we follow the
approach used in Section 5.3 and iterate them computationally in order to derive bounds on
the fitness after a given constant number of iterations. We observe that in expectation the
(1+1)χ EA makes a linear amount of progress during a period that consists of a quadratic
number of iterations. This fact implies that we can verify whether one configuration is ahead
of another by computing the leading constant of the Θ(n) term in the fitness bounds from
Lemma 76 and checking whether the intervals are overlapping. If they are not overlapping,
then one configuration is ahead of another by a linear amount, with overwhelming probability.
If n is large enough, then the o(n) terms from Lemma 76 can be ignored as the fitness
is determined exclusively by the coefficients of the linear terms. We extract the relevant
coefficients from the fitness bounds in the following lemma.

Lemma 77. Let cℓ,χ,i and cu,χ,i denote the leading constants in the definition of ℓχ,i and uχ,i

from Lemma 76, respectively (i. e., ℓχ,i = cℓ,χ,i ·n−o(n) and uχ,i = cu,χ,i ·n+o(n)). Then
cu,χ,i+1 and cℓ,χ,i+1 can be expressed using the recurrences cℓ,χ,0 = cu,χ,0 = 0,

cu,χ,i+1 = cu,χ,i +
2χ

ψ exp
(
χ · cu,χ,i

)
cℓ,χ,i+1 = cℓ,χ,i +

2χ

ψ exp
(
χ · cu,χ,i+1

) .
Proof. The statement about cℓ,χ,0 and cu,χ,0 is obvious as ℓχ,0 = 0 and uχ,0 =

√
n.

By definition, uχ,i+1 can be written as

cu,χ,i ·n+
2χn

ψ exp
(

χ·(cu,χ,i·n+o(n))
n

) +o(n)≤ cu,χ,i ·n+
2χn

ψ exp
(
χ · cu,χ,i

) +o(n)

and the leading constant is

cu,χ,i+1 := cu,χ,i +
2χ

ψ exp
(
χ · cu,χ,i

) .

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 147

By definition, ℓχ,i+1 can be written as

cℓ,χ,i ·n+
2χn

ψ exp
(

χ(uχ,i+1+o(n))
n

) −o(n) = cℓ,χ,i ·n+
2χn

ψ exp
(
χ · cu,χ,i+1 +o(1)

) −o(n).

This is at least
cℓ,χ,i ·n+

2χn
ψ exp

(
χ · cu,χ,i+1

) −o(n)

since e−o(1) ≥ 1−o(1) by Theorem 13(i). The leading constant is thus

cℓ,χ,i+1 := cℓ,χ,i +
2χ

ψ exp
(
χ · cu,χ,i+1

) .
We can now prove that the parameter landscape seen by ParamRLS-F is unimodal. We

do so first for the cutoff times given in Table 6.1 with κ ≤ 0.772075n2.

Optimal χ lower bound on κ upper bound on κ

3.0 0.000030n2 0.225138n2

2.9 0.225628n2 0.241246n2

2.8 0.241720n2 0.259143n2

2.7 0.259600n2 0.279105n2

2.6 0.279545n2 0.301461n2

2.5 0.301885n2 0.326611n2

2.4 0.327018n2 0.355040n2

2.3 0.355431n2 0.387346n2

2.2 0.387720n2 0.424266n2

2.1 0.424623n2 0.466723n2

2.0 0.467064n2 0.515884n2

1.9 0.516208n2 0.573238n2

1.8 0.573546n2 0.640714n2

1.7 0.641006n2 0.720843n2

1.6 0.721118n2 ∞

Table 6.1 Ranges of cutoff times κ for which, for ParamRLS-F configuring the (1+1)χ EA
for LEADINGONES, the parameter is unimodal with the optimum at χ .

Lemma 78. Consider ParamRLS-F for the configuration of the (1+1)χ EA for LEADING-
ONES with φ = 3 and discretisation constant d = 10. For the ranges of κ given in Table 6.1,
with κ ≤ 0.772075n2 and for large enough n, the parameter landscape is unimodal with the
stated optimum.

148 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

Proof. In order to derive bounds on the fitness of the individual in the (1+1)χ EA after αn2

iterations, we simply iterate the recurrences given by Lemma 77 ψ ·α times. We do so for
all cutoff times in the set {0.000001n2,0.000002n2, . . . ,0.772074n2,0.772075n2}, setting
ψ = 106. For all configurations and cutoff times that we consider here, the upper bound
on the leading constant of the fitness is strictly less than 1. Then Lemma 77 implies that,
w. o. p., no configuration reaches the optimum within any of these cutoff times, and hence
we can ignore the case in Lemma 76 that the optimum is reached by the end of a period and
simply assume that the fitness is contained in the interval given by the lemma. By Lemma 77,
the fitness of the individual in the (1+1)χ EA is in the range [cℓ,χ,in−o(n),cu,χ,i+1n+o(n)]
w. o. p. Hence, for two parameter values a,b, if the interval [cℓ,a,i,cu,a,i+1] is non-overlapping
with the interval [cℓ,b,i,cu,b,i+1] and cℓ,a,i > cu,b,i+1 then we can conclude that, for all times
t satisfying τi ≤ t ≤ τi+1, where τ j is the number of iterations corresponding to the end of
period j, the (1+1)a EA is ahead of the (1+1)b EA with overwhelming probability.

We conducted the above verification for all pairs of neighbouring configurations (i.e. for
all configurations between which it is possible to transition in a single mutation using the
±{1} local search operator) for all cutoff times up to 0.772075n2. We discovered that each
value of χ that is at least 1.6 is F-optimal for some range of quadratic cutoff times (bounds on
which are given in Table 6.1), and also that for these ranges of cutoff times, for ParamRLS-F,
the parameter landscape is unimodal.

Having proved that the parameter landscape seen by ParamRLS-F is unimodal for the
cutoff times given in Table 6.1 with κ ≤ 0.772075n2, we now turn our attention to cutoff
times κ ≥ 0.772075n2. The following lemma proves that the parameter landscape seen by
ParamRLS-F is also unimodal for this range of cutoff times.

Lemma 79. Consider ParamRLS-F for the configuration of the (1+1)χ EA for LEADING-
ONES with φ = 3 and discretisation constant d = 10. For κ ≥ 0.772075n2 and for large
enough n, the parameter landscape is unimodal with the optimum at χ = 1.6.

Before proving this result, we derive a helper lemma. Given two configurations and the
distance between them, the lemma provides a sufficient condition for the configuration that
is closer to the optimum to reach the optimum before the other one covers the initial distance
between them with overwhelming probability.

Lemma 80. Let the fitness of the individuals in the (1+1)a EA and the (1+1)b EA optimising
LEADINGONES be contained in the intervals [cℓ,a,i ·n−o(n),cu,a,i ·n+o(n)] and [cℓ,b,i ·n−
o(n),cu,b,i ·n+o(n)], respectively. Assume that cℓ,a,i > cu,b,i (that is, at the end of period i

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 149

the (1+1)a EA is ahead of the (1+1)b EA by some linear distance). If(
2b

(cℓ,a,i−cu,b,i)·exp(bcℓ,b,i)
+ ε

)
(

2a
(1−cℓ,a,i)·exp(a)

) ≤ 1,

for some positive constant ε , then the (1+1)a EA reaches the optimum before the (1+1)b EA
has covered the initial distance between the two algorithms, with overwhelming probability.

Proof. We know by Lemma 71(ii) that, with overwhelming probability, for any i greater than
the current fitness, the (1+1)χ EA makes progress of at least

2χn

ψ · exp
(

χi
n−χ

) −o(n)

in a period of length n2/ψ or exceeds a fitness of i at the end of the period. We know by
Lemma 71(i) that, with overwhelming probability, the (1+1)χ EA makes progress of at most

2χn

ψ · exp
(

χ j
n

) +o(n)

in a period of length n2/ψ , given that it begins the period at fitness j.
By setting i in Lemma 71(ii) to n−1 we derive that with overwhelming probability the

(1+1)a EA either makes progress of at least

2an

ψ · exp
(

a(n−1)
n−a

) −o(n)≥ 2an
ψ · exp(a)

−o(n)

in a period of length n2/ψ (where the inequality holds due to Theorem 13(i)) or exceeds a
fitness of n−1 at the end of the period (i.e. reaches the optimum). The quantity n− (cℓ,a,i ·
n−o(n)) is an upper bound on the distance to the optimum of the (1+1)a EA and therefore if
the algorithm makes more progress than this then it has reached the optimum. We have that

2an
ψ · exp(a)

−o(n)≥ n− (cℓ,a,i ·n−o(n)) ⇐⇒ 2a
ψ · exp(a)

≥ 1− cℓ,a,i +o(1)

⇐⇒ ψ ≤ 2a
(1− cℓ,a,i +o(1)) · exp(a)

,

150 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

for which a sufficient condition is

ψ ≤ 2a
(1− cℓ,a,i) · exp(a)

.

Recalling that the length of a period is n2/ψ , we derive that, when beginning at a fitness of
at least cℓ,a,i ·n−o(n), the (1+1)a EA reaches the optimum w. o. p. for all periods of length
at least

n2(
2a

(1−cℓ,a,i)·exp(a)

) . (6.3)

We now derive a lower bound on the time required for the (1+1)b EA to make progress
of at least the initial distance between the (1+1)a EA and itself. Since by assumption the
fitness of the (1+1)a EA is at least cℓ,a,i · n− o(n) and the fitness of the (1+1)b EA is at
most cu,b,i ·n+o(n) we have a lower bound on this distance of (cℓ,a,i− cu,b,i) ·n−o(n). By
Lemma 76 we have that w. o. p. the (1+1)b EA makes progress of at most

2bn

ψ · exp
(

b(cℓ,b,i·n−o(n))
n

) +o(n)≤ 2bn
ψ · exp

(
bcℓ,b,i

) +o(n)

in a period of length n2/ψ , where the inequality holds due to Theorem 13(ii). Therefore the
(1+1)b EA does not cover the initial distance between the two algorithms if

2bn
ψ · exp

(
bcℓ,b,i

) +o(n)≤ (cℓ,a,i− cu,b,i) ·n−o(n)

⇐⇒ ψ ≥ 2b
(cℓ,a,i− cu,b,i) · exp

(
bcℓ,b,i

) +o(1),

for which a sufficient condition is

ψ ≥ 2b
(cℓ,a,i− cu,b,i) · exp

(
bcℓ,b,i

) + ε

for some positive constant ε . Recalling that the length of the period is n2/ψ , we see that,
with overwhelming probability, the (1+1)b EA requires at least

n2(
2b

(cℓ,a,i−cu,b,i)·exp(bcℓ,b,i)
+ ε

) (6.4)

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 151

iterations before the probability that it has covered the initial distance between the two algo-
rithms is not overwhelmingly small. Combining the bounds on ψ in Equations (6.3) and (6.4)
we conclude that the (1+1)a EA reaches the optimum of LEADINGONES before the (1+1)b EA
catches up if

n2(
2b

(cℓ,a,i−cu,b,i)·exp(bcℓ,b,i)
+ ε

) ≥ n2(
2a

(1−cℓ,a,i)·exp(a)

)
which holds if and only if (

2b
(cℓ,a,i−cu,b,i)·exp(bcℓ,b,i)

+ ε

)
(

2a
(1−cℓ,a,i)·exp(a)

) ≤ 1.

We can now prove Lemma 79.

Proof of Lemma 79. Consider a comparison between two configurations, χ = a and χ = b,
with either 0.1≤ b < a≤ 1.6 or 1.6≤ a < b≤ 3.0. By Lemma 78, the (1+1)a EA is ahead
of the (1+1)b EA at time 0.772075n2, w. o. p. In this proof, we first show that, from time
0.772075n2 until some time ta, the (1+1)a EA remains ahead of the (1+1)b EA w. o. p. We
then prove that, for cutoff times larger than ta, the (1+1)a EA will find the optimum before
the (1+1)b EA reaches where the (1+1)a EA began the period, with overwhelming probability.
These two cases together imply the claim for all cutoff times κ ≥ 0.772075n2.

We first verify that the (1+1)a EA is ahead of the (1+1)b EA at all times between
0.772075n2 and some time ta. By Lemma 77, from the end of period i to the end of period
i+1, the leading constant of the fitness of the individual in the (1+1)χ EA is in the range
[cℓ,χ,i,cu,χ,i+1] with overwhelming probability, where cℓ,χ,i and cu,χ,i+1 are as defined in
Lemma 77. Hence if (for ψ = 106) we verify for all periods i satisfying 772076 ≤ i ≤
ψ · ta that the intervals [cℓ,a,i,cu,a,i+1] and [cℓ,b,i,cu,b,i+1] are non-overlapping then we can
conclude that, w. o. p., the (1+1)a EA is ahead of the (1+1)b EA for all times t satisfying
0.772075n2 ≤ t ≤ ta. For each b, the time ta is chosen to be the end of the final period
for which cu,b,i < 1. For these values of ta, we verified that the above intervals are non-
overlapping and hence that the (1+1)a EA is ahead of each worse configuration for all time t
satisfying 0.772075n2 ≤ t ≤ ta.

If a≤ 1.6 and for all times t satisfying 0.772075n2 ≤ t ≤ ta the condition in Lemma 80
holds for all b < a then we can conclude that, with overwhelming probability, the (1+1)a EA
reaches the optimum before any (1+1)b EA catches it. Therefore the claim holds for any
cutoff time κ ≥ ta. Similarly, if a≥ 1.6 and the condition in Lemma 80 holds for all b > a

152 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

then we can conclude that w. o. p. the (1+1)a EA reaches the optimum before any (1+1)b EA
catches it. Therefore again the claim holds for any cutoff time κ ≥ ta.

We can therefore prove the claim by verifying that, for all a≤ 1.6 and b < a the inequality
in Lemma 80 holds, and also for all a≥ 1.6 and b > a the same inequality is true. We do so
for the specific configuration scenario given by this theorem by iterating over all cases where
we require this inequality to hold and verifying that it does so in each case. We used a value
of ε = 10−11. Table B.1 (Appendix B, page 194) contains the values of the quantity from
Lemma 80, scaled up by a factor of 100,000 for readability, for all required comparisons
for values of χ ≤ 1.6. It is easily verified that all values are much smaller than 100,000, as
required. This proves our claim.

6.3.2 Any Configurator Using the Optimisation-Time Performance Met-
ric is Blind for κ ≤ 0.772075n2

In this section, we prove that with overwhelming probability any configurator that uses
the Optimisation-Time performance metric is blind when configuring the (1+1)χ EA for
LEADINGONES if the cutoff time is smaller than κ = 0.772075n2.

Lemma 81. For all configurations χ ∈ {0.1,0.2, . . . ,2.9,3.0}, the (1+1)χ EA does not
reach the optimum of LEADINGONES within 0.772075n2 iterations, with overwhelming
probability.

Proof. After 772,075 periods of length n2/106 (that is, with ψ = 106) we observe that the
value cu,χ,i (defined as in Lemma 77) for all χ ∈ {0.1,0.2, . . . ,2.9,3.0} is less than 1. This
implies that, with overwhelming probability, after 0.772075n2 iterations, no configuration
has found the optimum of LEADINGONES.

Using Lemma 81, we are now able to prove that all configurators that use the Optimisation-
Time performance metric are blind for any cutoff time κ ≤ 0.772075n2.

Theorem 82. Consider any configurator using the Optimisation-Time performance metric
for the configuration of the (1+1)χ EA for LEADINGONES with χ ∈ {0.1,0.2, . . . ,2.9,3.0}
(i.e. d = 10,φ = 3). If the cutoff time for each run is never allowed to exceed 0.772075n2

then, after any polynomial number of comparisons and runs per evaluation, the configurator
remains blind.

Proof. Since by Lemma 81 we know that, with overwhelming probability, no configuration
finds the optimum of LEADINGONES within 0.772075n2 iterations, the result follows by
Theorem 36.

6.3 On the Configuration of the (1+1)χ EA for LEADINGONES 153

6.3.3 Best-Fitness Identifies the Optimal Mutation Rate Independent
of the Cutoff Time

Lemma 78 proves that the parameter landscape seen by ParamRLS-F is unimodal for the
ranges of cutoff times given in Table 6.1 (page 147). Similarly, Lemma 79 proves that, for
ParamRLS-F, for all cutoff times κ ≥ 0.772075n2 the parameter landscape is unimodal with
the optimum at χ = 1.6.

We now use these facts to prove that ParamRLS-F is able to identify the F-optimal
mutation rate for almost all quadratic cutoff times (and all cutoff times that are larger than
quadratic). Furthermore, for all cutoff times of at least 0.721118n2 it returns the O-optimal
mutation rate (i.e. χ = 1.6).

Theorem 83. Consider ParamRLS-F for the configuration of the (1+1)χ EA for LEADING-
ONES with χ ∈ {0.1,0.2, . . . ,2.9,3.0} (i.e. d = 10,φ = 3) using the local search operator
±{1}. For all cutoff times in one of the ranges listed in Table 6.1 it holds that, for any
positive constant ε and for large enough n:

(i) The expected number of comparisons T before ParamRLS-F sets the active pa-
rameter to the F-optimal value (given in Table 6.1) for the first time is at most
2dφ + exp(−Ω(nε)) = 60+ exp(−Ω(nε)).

(ii) After a number of comparisons that is both polynomial and at least nε , ParamRLS-F
returns the F-optimal parameter value with overwhelming probability.

Proof. We proceed in the same manner as in the proof of Theorem 70. We pessimistically
assume that the active parameter value is initialised as far away from the F-optimal parameter
value as possible. The initial distance is clearly bounded by dφ .

Given a comparison between two configurations that are both on the same side of
the F-optimal configuration, let us call the configuration with a value of χ closer to the
optimum the ‘better’ configuration, and the other configuration the ‘worse’ configuration.
By Lemma 78 or 79 (depending on the cutoff time), in a comparison between any pair of
configurations that are both on the same side of the optimum, the better configuration wins
w. o. p. Let us assume that the better configuration always beats the worse configuration.
Since when using the local search operator ±{1} the tuner will mutate the active parameter
to one closer to the optimum with probability 1/2, the tuner takes a step towards the optimum
with probability 1/2. With the remaining probability, the active parameter will remain the
same. The expected time to move closer to the optimum is thus 2. Since the tuner needs to
take at most dφ steps towards the F-optimal configuration, this implies that E[T]≤ 2dφ . In
the overwhelmingly unlikely event that the worse configuration wins a comparison then we

154 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm

restart the argument. Therefore, E[T]≤ 2dφ + exp(−Ω(nε)) for some positive constant ε

from the definition of overwhelming probabilities.
Using a Chernoff bound to count the number of times that the tuner takes a step towards

the F-optimal configuration proves that, with overwhelming probability, nε comparisons,
for any positive constant ε , suffice for ParamRLS-F to set the active parameter value to the
optimum. By the union bound, the value of the active parameter remains at the optimum
w. o. p. once it has been found, since there are polynomially many comparisons. This implies
that, w. o. p., the tuner returns the F-optimal configuration for the cutoff time if run for at
least this many comparisons.

6.4 Conclusions

In Chapter 5, we showed that, when configuring the neighbourhood size of randomised
local search for two benchmark functions, using the Best-Fitness performance metric allows
a configurator to identify the O-optimal parameter value with considerably smaller cutoff
times (i.e. more efficiently) than the Optimisation-Time performance metric designed for
this purpose. The analysis presented in this chapter reveals that this insight is also true
for the more complex task of tuning the continuously-valued standard bit mutation global
mutation operator. In particular, we proved that, when configuring the (1+1)χ EA for RIDGE,
any configurator using the Optimisation-Time performance metric is blind for cutoff times
of at most (1− ε)en2 for any constant ε > 0, and when configuring the (1+1)χ EA for
LEADINGONES, any configurator using the Optimisation-Time performance metric is blind
for cutoff times of at most 0.772075n2.

On the other hand, ParamRLS-F identifies the F-optimal and O-optimal mutation rate
χ = 1 for the (1+1)χ EA optimising RIDGE using only linear cutoff times. When configuring
for LEADINGONES, ParamRLS-F identifies the F-optimal mutation rate for over 99% of
quadratic cutoff times of at most 0.772075n2. For all cutoff times greater than this, Param-
RLS-F returns the F-optimal and O-optimal parameter value χ = 1.6, whilst any configurator
using Optimisation-Time requires a cutoff time of at least 0.772075n2. In each case, Param-
RLS-F identifies the desired mutation rate efficiently: in expectation a linear number of
comparisons are sufficient to do so.

The efficiency of ParamRLS-F is due to the fact that, for both problem classes, the
parameter landscape induced by the Best-Fitness performance metric is unimodal. This
allows gradient-following algorithm configurators to efficiently identify optimal mutation
rates for both problem classes, as we have proven using ParamRLS-F.

Chapter 7

Faster Algorithm Configuration by
Exploiting Parameter Space Unimodality

7.1 Introduction

In this chapter, we build upon the insights gained from the previous chapters regarding the
performance of ParamRLS and ParamILS in simple algorithm configuration scenarios and
propose a new mutation operator to achieve faster algorithm configuration.

In Chapters 5 and 6, we proved that ParamRLS and ParamILS can identify the optimal pa-
rameter values for RLSk and the (1+1)χ EA in expected linear (or in the worst case quadratic)
time in the size of the parameter space. An insight gained from these analyses is that, for the
considered configuration scenarios, the parameter landscape seen by ParamRLS-F is of the
simplest kind: either unimodal (i.e. RIDGE and LEADINGONES) or nearly unimodal (i.e. it
is rugged but with an underlying gradient towards the optimum, as seen when configuring
RLSk for ONEMAX). We begin this chapter by complementing these upper bounds with
linear lower bounds on the expected runtimes of ParamRLS and ParamILS for any algorithm
configuration scenario.

Recent experimental work by Pushak and Hoos suggests that also in practice, when
configuring sophisticated algorithms for the optimisation of NP-Hard problems, the pa-
rameter landscape is more benign than one might expect (i.e. they are largely unimodal or
approximately so) [104].

The search operators used by ParamRLS and ParamILS fail to exploit unimodal or
approximately unimodal characteristics of parameter landscapes since they either perform
only small perturbations (the ±{1, . . . ,m} operator used by ParamRLS) or are unable to
efficiently fine-tune configurations by searching locally near good candidates (the random-

156 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

step mutation operator employed by ParamILS). In both cases, this leads to a linear number of
configuration comparisons being required in expectation to identify the optimal configuration,
even when the parameter landscape is favourable (i.e. unimodal or approximately unimodal).

We propose the usage of a “harmonic” mutation operator that is provably considerably
faster for (approximately) unimodal parameter landscapes than the ±{1, . . . ,m} and random-
step operators employed by ParamRLS and ParamILS, respectively, when configuring target
algorithms with a single parameter. In particular, for ParamRLS using the harmonic operator
for the configuration of a single-parameter algorithm with φ permitted parameter values, we
prove an expected runtime of O(log2

φ) if the parameter landscape is approximately unimodal,
compared to the linear expected runtime required by the standard mutation operators of
ParamRLS and ParamILS for any configuration scenario.

The harmonic mutation operator enables much faster configuration when the parameter
landscape is unimodal. This speed-up is achieved at the expense of being slower in worst-case
scenarios (e.g. deceptive landscapes where the gradient leads away from the optimum), which
the empirical analyses of Pushak and Hoos suggest to be unlikely in practice.

We proceed by quantifying the worst-case slow-down to be paid in exchange for the
speed-up when the parameter landscape is (approximately) unimodal and prove that the
harmonic operator is at most a logarithmic factor slower than the standard mutation operators
in the worst case. We conclude the chapter with an experimental analysis that validates
the theoretical insights for more sophisticated algorithm configuration scenarios where two
parameters have to be tuned for the NP-Hard MAX-SAT problem.

7.2 The Harmonic Mutation Operator

We investigate the improvement in performance that can be gained by using a mutation
operator that samples a step size according to the harmonic distribution, and which has
previously been shown to have good performance when optimising unimodal functions [31,
34]. We apply it for the first time to the task of algorithm configuration. This operator allows
small perturbations with sufficiently high probability to fine-tune good parameter values
efficiently whilst, at the same time, allowing larger mutations that can help follow the general
gradient from a macro perspective, e.g. by tunnelling through local optima. It is an example
of the recent trend towards fast mutation operators that aim to balance the proportion of small
and large mutations in evolutionary computation, where operators differ in the choice of the
probability distribution from which the size of the mutation is drawn [26, 27, 28, 40]. In
particular, this search operator can easily be incorporated into any “perturbative” algorithm

7.2 The Harmonic Mutation Operator 157

configurator that maintains a set of best-found configurations and mutates them in search for
better ones, as in ParamRLS and ParamILS.

The harmonic-step mutation operator analysed in this chapter selects a parameter uni-
formly at random and samples a step size δ according to the harmonic distribution that
dictates by how much it may perturb the value of the chosen parameter. The probability
of selecting a step size δ is 1/(δ ·Hφ−1), where Hm is the m-th harmonic number (i.e.
Hm = ∑

m
k=1

1
k) and φ is the number of permitted values of the parameter. It returns the

best parameter value at distance20 ±δ . Formally, assuming that the value of the selected
parameter θ has index x in the ordered set of possible values of θ , the harmonic-step search
operator returns the best configuration among those where the index of the value of θ is
in the set {x−δ ,x,x+δ}. It executes a good amount of exploration and can deal robustly
with non-unimodal functions. We call the variant of ParamRLS that uses the harmonic-step
operator ParamHS and give its pseudocode in Algorithm 16.

Algorithm 16: ParamHS (A,Θ,Π,κ,r)
Input : target algorithm (A), parameter space (Θ), training instances (Π), cutoff time

(κ), number of runs per evaluation (r).
1 θ ←initial configuration chosen uniformly at random
2 while termination condition not satisfied do
3 θi←parameter chosen u.a.r.
4 φ ←number of values of θi
5 x← index of value of θi in θ

// Choose step size δ :
6 δ ← 1
7 rand← chosen uniformly at random from range [0,1]
8 while ∑

δ
j=1 1/(j ·Hφ−1)≤ rand do

9 δ ← δ +1

10 θ dec← θ with value for θi with index x−δ

11 θ inc← θ with value for θi with index x+δ

12 θ ′← better(A,θ dec,θ inc,Π,κ,r)
13 θ ← better(A,θ ,θ ′,Π,κ,r)

14 return θ

This operator is inspired by one designed to perform fast greedy random walks in one-
dimensional domains [31] and was shown to perform better than the ±{1} operator (i.e. as
used in ParamRLS with m = 1) and the random local search (as used in ParamILS) operators
for optimising the multi-valued ONEMAX problem [34].

20Throughout this chapter, we define the distance of two parameter values as the absolute difference between
the indices of the two values in the ordered set of the possible values of this parameter.

158 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

For simplicity, in both the theoretical and experimental analyses in this chapter we
optimistically assume that all mutation operators can only generate valid parameter values.

7.3 General Lower Bounds for Default Mutation Opera-
tors

To set a baseline for the performance gains obtained by using the harmonic-step operator,
we first show general lower bounds on the expected configuration time of a wide class
of algorithm configurators, including ParamRLS and ParamILS. Our results apply to all
configurators either using a mutation operator that changes one parameter by a small amount,
such as the ±{1, . . . ,m} operator with constant m, or an operator that chooses a value
uniformly at random (with or without replacement), as is done in the random-step operator
in ParamILS. We use a general framework to show that the poor performance of the default
mutation operators is not limited to particular configurators, and to identify which algorithm
design aspects are the cause of this poor performance.

We first show that mutation operators that only change one parameter by a small amount
lead to expected times to identify the optimal configuration that are at least linear in the
number of parameter values (i.e. the sum of all ranges of parameter values).

Theorem 84. Consider an algorithm configurator C for the configuration of a target algo-
rithm with D parameters with ranges φ1, . . . ,φD ≥ 2 such that there is a unique optimal
configuration, θ ∗. Let M = ∑

D
i=1 φi. Assume that in each mutation C only changes a single

parameter, doing so by at most a constant absolute value (e.g. ParamRLS with local search
operator ±{1, . . . ,m} for constant m). Then the expected number of comparisons T before C
sets the active parameter to θ ∗ for the first time is Ω(M).

Proof. Consider the L1 distance of the current configuration x= (x1, . . . ,xD) from the optimal
one opt = (opt1, . . . ,optD): ∑

D
i=1 |xi− opti|. For every parameter i, the expected distance

between the uniform random initial configuration and opti is minimised if opti is at the
centre of the parameter range. Then, for odd φ , there are two configurations at distances
1,2, . . . ,(φi−1)/2 from opti, each being chosen with probability 1/φi. The expected distance
is thus at least 1/φi ·∑(φi−1)/2

j=1 2 j = (φi−1)(φi +1)/(4φi) = (φi−1/φi)/4≥ φi/8. For even
φi, the expectation is at least φi/4. By linearity of expectation, the expected initial distance is
at least ∑

D
i=1 φi/8≥M/8. Every mutation can only decrease the distance by O(1), hence the

expected time is bounded by (M/8)/O(1) = Ω(M).

The same lower bound also applies if the mutation operator chooses a value uniformly at
random (with or without replacement), as is done in ParamILS.

7.3 General Lower Bounds for Default Mutation Operators 159

Theorem 85. Consider an algorithm configurator C for the configuration of a target algo-
rithm with D parameters with ranges φ1, . . . ,φD ≥ 2 such that there is a unique optimal
configuration, θ ∗. Let M = ∑

D
i=1 φi. Assume that in each mutation C only changes a single

parameter and does so by choosing a new value uniformly at random (possibly excluding
values previously evaluated). Then the expected number of comparisons T before C sets the
active parameter to θ ∗ for the first time is Ω(M).

Proof. Let Ti be the number of times that parameter i is mutated (including the initial step)
before it attains its value in the optimal configuration. After j−1 steps in which parameter i
is mutated, at most j parameter values have been evaluated (including the initial value).
The best case is that C always excludes previous values, which corresponds to a complete
enumeration of the φi possible values in a random order. Since every step of this enumeration
has a probability of 1/φi of finding the optimal value, the expected time spent on parameter i
is E[Ti] ≥ ∑

φi
j=0 j/φi = (φi +1)/2. The total expected time is at least ∑

D
i=1 E[Ti]−D+1 as

the initial step contributes to all Ti and each following step only contributes to one value Ti.
Noting ∑

D
i=1 E[Ti]−D+1≥ ∑

D
i=1 φi/2−D/2+1≥M/4 (as φi ≥ 2) proves the claim.

ParamILS is not covered directly by Theorem 85 as it uses random sampling during the
initialisation that affects all parameters. However, it is straightforward to show that the same
lower bound also applies to ParamILS.

Theorem 86. Consider ParamILS for the configuration of a target algorithm with D param-
eters with ranges φ1, . . . ,φD ≥ 2 such that there is a unique optimal configuration, θ ∗. Let
M = ∑

D
i=1 φi. Then the expected number of comparisons T before ParamILS sets the active

parameter to θ ∗ for the first time is Ω(M).

Proof. Recall that ParamILS first evaluates R random configurations. If R ≥ M/2 then
the probability of finding the optimum during the first M/2 random samples is at most
M/2 ·∏D

i=1 1/φi ≤ 1/2 since M = ∑
D
i=1 φi ≤ ∏

D
i=1 φi. Hence the expected time is at least

1/2 ·M/2 = M/4. If R < M/2, then with probability at least 0.5 ParamILS does not find
the optimum during the R random steps and starts the IterativeFirstImprovement procedure
with a configuration θ0. This procedure scans the neighbourhood of θ0, which contains all
configurations that differ in one parameter. The number of such configurations is ∑

D
i=1(φi−

1) = M−D. If the global optimum is not among these, then it is not found in these M−D
steps. Otherwise, the neighbourhood is scanned in a random order and the expected number
of steps is (M−D+1)/2 as in the proof of Theorem 85. In both cases, the expected time is
at least (M−D)/4≥M/8 (as M ≥ 2D).

160 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

7.4 Performance of the Harmonic Mutation Operator

In the setting of Theorem 84, mutation lacks the ability to explore the parameter space
quickly, whilst in the setting of Theorems 85 and 86 it lacks the ability to search locally. The
harmonic search operator is designed to be able to do both: it uses larger steps to explore the
search space, but smaller steps are made with a higher probability, enabling the search to
exploit gradients in the parameter landscape. We now prove that this is the case.

For simplicity, in this section we only consider the configuration of target algorithms
with a single parameter, which is assumed to have φ permitted values (thus the bounds from
Theorems 84–86 simplify to Ω(φ)). However, we have no reason to believe that the harmonic
operator would not improve performance in settings with multiple parameters in the same
way. We show that ParamHS is robust in the sense that it performs well on all parameter
landscapes (with only a small overhead in the worst case, compared to the lower bounds
from Theorem 84–86), and it performs extremely well on functions that are unimodal or have
an underlying gradient that is close to being unimodal.

To capture the existence of underlying gradients and functions that are unimodal to some
degree, we introduce a notion of approximate unimodality.

Definition 11. A function f on {1, . . . ,m} is (α,β)-approximately unimodal for parameters
α ≥ 1 and 1≤ β ≤ m if for all positions x with distance β ≤ i≤ m from the optimum and
all positions y with distance j > αi to the optimum we have f (x)< f (y).

In terms of algorithm configuration, this implies that only configurations with a distance
to the optimal one that is by a factor of α larger than that of the current configuration can be
better. To account for landscapes that do not show a clear gradient close to the optimum, this
property need only hold within states with a distance to the optimum of at least β . We give
an example of a (2,5)-approximately unimodal function in Figure 7.1.

Note that a (1,1)-approximately unimodal function is unimodal in the traditional sense
and a (1,β)-approximately unimodal function is unimodal within the states {β , . . . ,m}. Also
note that all functions are (1,m)-approximately unimodal.

The following performance guarantees for ParamHS show that it is efficient on functions
that are close to being unimodal and even in the worst case it is only slower than the default
operators used by ParamRLS and ParamILS by a logarithmic amount in expectation.

Theorem 87. Consider ParamHS for the configuration of a target algorithm with a single
parameter with φ values and a unique globally optimal configuration θ ∗. If the parameter
landscape is (α,β)-approximately unimodal then the expected number of comparisons T

7.4 Performance of the Harmonic Mutation Operator 161{{ worseworse

Fig. 7.1 A (2,5)-approximately unimodal function. The point marked by a black circle, for
instance, has distance δ ≥ 5 from the optimum, and thus all points with a distance from the
optimum of at least 2δ correspond to worse (i.e. larger) function values than it.

before the active parameter is set to θ ∗ for the first time is at most

2αHφ−1 log(φ)+2αβHφ−1 = O(α log2(φ)+αβ logφ).

Proof. Let f (i) describe the performance of the configuration with the i-th largest parameter
value. Then the function f is (α,β)-approximately unimodal and we are interested in the
time required to locate its minimum.

Let dt denote the current distance to the optimum and note that d0 ≤ φ . Let d∗t denote
the smallest distance to the optimum seen so far, that is, d∗t = mint ′≤t dt ′ . Note that d∗t is
non-increasing over time. Since ParamHS does not accept any worsenings, f (dt)≤ f (d∗t).

If d∗t ≥ β , then by the approximate unimodality assumption, for all j > αd∗t , f (j) >
f (d∗t)≥ f (dt) (i.e. all points at distance larger than αd∗t have a worse fitness than the current
position and will never be visited).

Now assume that d∗t ≥ 2β . We estimate the expected time to reach a position with
distance at most ⌊d∗t /2⌋ to the optimum. This includes all points that have distance i to
the global optimum, for 0 ≤ i ≤ ⌊d∗t /2⌋, and distance dt − i to the current position. The
probability of jumping to one of these positions is at least

⌊d∗t /2⌋

∑
i=0

1
2(dt− i)Hφ−1

≥
⌊d∗t /2⌋

∑
i=0

1
2dtHφ−1

≥ d∗t
4dtHφ−1

≥ d∗t
4αd∗t Hφ−1

=
1

4αHφ−1
,

where the factor of 1/2 accounts for the possibility of jumping further away from the optimum.
Hence, the expected half time for d∗t is at most 4αHφ−1 and the expected time to reach
d∗t < 2β is at most 4αHφ−1 logφ .

162 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

Once d∗t < 2β , the probability of jumping directly to the optimum is at least 1
2dtHφ−1

≥
1

2αd∗t Hφ−1
≥ 1

4αβHφ−1
and the expected time to reach the optimum is at most 4αβHφ−1.

Adding the above two times and using the well-known fact that Hφ−1 = O(logφ) yields the
claim.

Corollary 88. In the setting of Theorem 87,

(a) for every unimodal parameter landscape, this bound is O(log2
φ).

(b) for every parameter landscape, this bound is O(φ logφ).

Hence ParamHS is far more efficient than the Ω(φ) lower bound on the expected time
required by tuners using the standard mutation operators (Theorems 84–86) on approximately
unimodal parameter landscapes and it is guaranteed never to be slower than the default
operators by more than a small logφ factor.

We now prove that, if the parameter landscape is (α,β)-approximately unimodal, then
ParamHS identifies the optimal parameter value within

⌈
24α ln2

φ
⌉
+
⌈
12αβ ln2

φ
⌉

compar-
isons, with high probability.

Lemma 89. Consider ParamHS for the configuration of an algorithm with a single parameter
having φ values and a unique globally optimal configuration θ ∗. If the parameter landscape
is (α,β)-approximately unimodal, then after⌈

24α ln2
φ
⌉
+
⌈
12αβ ln2

φ
⌉

comparisons, ParamHS returns θ ∗ with probability at least 1−2/φ .

Proof. Let d∗t be the smallest distance to the optimum seen so far. Assume initially that
d∗t ≥ 2β , and let Xt := d∗t −2β . We will first bound T1 := inf{t ≥ 0 | Xt = 0}, the time taken
for d∗t to drop below 2β . As in the proof of Theorem 87, the drift of Xt is

E[Xt−Xt+1 | Xt ≥ 0] = E[d∗t −d∗t+1 | d∗t ≥ 2β]≥ d∗t
2
·Pr(d∗t −d∗t+1 ≥ d∗t /2 | d∗t ≥ 2β)

=
d∗t

8αHφ−1
.

By the tail bound for multiplicative drift given by Theorem 25 (Section 3.2.6, page 69),
we derive that

Pr
(
T1 >

⌈
(8αHφ−1) · (r+ ln X0)

⌉)
= Pr

(
T1 >

⌈
r+ ln(X0/1)
1/(8αHφ−1)

⌉)
≤ e−r.

7.5 Experimental Analysis 163

Letting r := lnφ we obtain Pr
(
T1 >

⌈
(8αHφ−1) · (lnφ + lnφ)

⌉)
≤ 1/φ , as X0≤ φ . Since

Hφ−1 < 1.5lnφ , we derive that Pr
(
T1 >

⌈
24α ln2

φ
⌉)
≤ 1/φ .

We follow a similar approach to derive a bound on the time taken to reach the optimum
when d∗t < 2β . We denote this time T2 := inf{t ≥ 0 | d∗t = 0,d∗0 < 2β}. Since, again by the
proof of Theorem 87, the drift of d∗t in this region can be bounded as

E[d∗t −d∗t+1 | d∗t < 2β]≥ d∗t ·Pr(d∗t −d∗t+1 = d∗t | d∗t < 2β) =
d∗t

4αβHφ−1
,

we can again apply Theorem 25. Thus

Pr
(
T2 >

⌈
(4αβHφ−1) · (r+ ln d∗T1

)
⌉)

= Pr
(

T2 >

⌈
r+ ln(d∗T1

/1)
1/(4αβHφ−1)

⌉)
≤ e−r.

Letting r := lnφ and observing that d∗T1
≤ φ and Hφ−1 < 1.5lnφ , we obtain

Pr
(
T2 >

⌈
12αβ ln2

φ
⌉)
≤ 1

φ
.

Therefore, by the union bound, the total number of comparisons sufficient for ParamHS
to first set the active parameter to θ ∗, for any (α,β)-approximately unimodal parameter
landscape, is at most

⌈
24α ln2

φ
⌉
+
⌈
12αβ ln2

φ
⌉
,

with probability at least 1−2/φ . Since θ ∗ is a unique global optimum, it will beat any
other configuration in a comparison with probability 1, and thus will be returned by ParamHS
once it has been sampled for the first time.

7.5 Experimental Analysis

In the previous section we proved that, for parameter landscapes that are unimodal or
approximately unimodal, it is beneficial to use the harmonic-step operator instead of the
default operators used in ParamRLS and ParamILS. In this section, we verify experimentally
that this operator yields performance improvements in practice on parameter landscapes that
either have or appear to have these characteristics. We investigate the impact of replacing
the default search operators in ParamRLS and ParamILS with the harmonic-step operator on
the time required to identify the optimal configuration (or in one case a set of near-optimal

164 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

configurations) in different configuration scenarios. We also investigate the performance of
ParamRLS using the random-step operator both with and without replacement.

We analysed the number of configuration comparisons required for each configurator to
identify the optimal neighbourhood size k for RLSk optimising ONEMAX (as analysed in
Chapter 5) and the optimal mutation rate χ for the (1+1)χ EA optimising RIDGE and the
(1+1)χ EA optimising LEADINGONES (as analysed in Chapter 6). Finally, we tuned two
parameters of the SAT solver SAPS (Section 3.4.3) for the MAX-SAT problem class. Due
to the size of the parameter space in this final configuration scenario, we analysed the time
taken to identify one of the five best-performing configurations found during an exhaustive
search of the parameter space.

In the first two configuration scenarios, the parameter landscape induced by Best-Fitness
for the given cutoff time is unimodal (see Sections 6.2 and 6.3 for theoretical proofs and
Figures 7.2a and 7.2b on page 168 for empirical verification). In such landscapes we expect
the harmonic-step operator to perform well. In the third scenario, the parameter landscape
induced by Best-Fitness for the given cutoff time is not unimodal (k = 2c+1 outperforms
k = 2c: see Section 5.3 for theoretical proof and Figure 7.2c on page 168 for empirical
verification), but it is (2,1)-approximately unimodal (i.e. all parameter values k outperform
all parameter values k′ > 2k [36]). In the fourth scenario, the parameter landscape induced
by Best-Fitness for the given cutoff time is more complex since two parameters have to be
configured. However, it appears to be approximately unimodal (Figure 7.2d on page 168).

7.5.1 Experimental Setup

We varied the size of the parameter space to investigate its impact on the performance of
the different mutation operators (i.e. ±{1, . . . ,m}, random-step operator with and without
replacement, and harmonic-step). In all configuration scenarios, we measured the number of
configuration comparisons before the O-optimal configuration (or, when configuring SAPS, a
member of a set of near-F-optimal configurations) is first sampled. We used the Best-Fitness
performance metric since it allows smaller cutoff times to be used to identify the O-optimal
configuration than if we had used Optimisation-Time, reducing the overall time required for
the experiments. Furthermore, for the cutoff times used, Best-Fitness induces a unimodal
parameter landscape, whilst Optimisation-Time would have failed to do so. This further
reduces the time required for the experiments. For the experiment involving SAPS, using
Best-Fitness also meant that we did not require additional experiments to determine the time
required to reach a target fitness value. Note that, in the other three experiments, we set
the cutoff time large enough that the F-optimal configuration is the same as the O-optimal
configuration.

7.5 Experimental Analysis 165

For each parameter space size, the experiment for single-parameter target algorithms was
repeated 200 times and the mean number of configuration comparisons was recorded. For
the MAX-SAT scenario, the experiment was repeated 500 times for each parameter space
size to account for the increased complexity of the configuration scenario.

The cutoff time κ was varied with the problem class. All configurators were initialised
uniformly at random. For ParamILS, we used the BasicILS variant (see Section 2.8.1) and
set R = 0 (i.e. we did not use repeated random initialisation) as preliminary experiments
indicated that doing so was harmful for the configuration scenarios considered here.

In order to simplify the implementation, when configuring an algorithm with multiple
parameters we modified ParamILS to select a parameter to perturb uniformly at random, as
is done with the ±{1, . . . ,m} operator, instead of selecting a new configuration uniformly at
random from all that differ in a single parameter, as in its default behaviour. This increases
the probability that ParamILS perturbs parameters with few values relative to others. In our
experiments, this modification only affects the behaviour of ParamILS when configuring
SAPS as this is the only target algorithm with multiple parameters.

Setup for Benchmark functions When configuring for RIDGE, LEADINGONES and ONE-
MAX, we used n = 50 and 1500 runs per configuration comparison (i.e. r = 1500). When
configuring the mutation rate of the (1+1)χ EA For RIDGE, we used a quadratic cutoff time
of κ = n2 = 2500, which our theoretical analyses indicate is more than sufficient for the iden-
tification of the O-optimal parameter value using Best-Fitness (Theorem 70, Section 6.2.3).
The value of m in the ±{1, . . . ,m} operator was set to m = 1. The first parameter space that
we considered was χ ∈ {0.5,1.0, . . . ,4.5,5.0}, where χ/n is the mutation rate and χ = 1 is
optimal for RIDGE (see Chapter 6). We increased the size of the parameter space by adding
the next five largest parameter values (each increasing by 0.5) until the parameter space
{0.5, . . . ,25.0} was reached. Following Chapter 6, the (1+1) EA for RIDGE was initialised
at the start of the ridge (i.e. at 0n).

When configuring the mutation rate of the (1+1)χ EA for LEADINGONES, we initialised
the individual uniformly at random and used m = 1 and a quadratic cutoff time of κ = n2 =

2500, which our theoretical analyses indicate is more than sufficient for the identification
of the O-optimal parameter value using Best-Fitness (Theorem 83, Section 6.3.3). The
size of the parameter space was increased in the same way as in the RIDGE experiments,
and the initial parameter space was χ ∈ {0.6,1.1, . . . ,4.6,5.1} as the optimal value for χ is
approximately 1.6 [18]. The final parameter space was {0.6, . . . ,25.1}

When configuring the neighbourhood size of RLSk for ONEMAX, we initialised the
individual uniformly at random and used a linear cutoff time of κ = 4n = 200, which our

166 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

theoretical analyses indicate is more than sufficient for the identification of the O-optimal
parameter value using Best-Fitness (Theorem 63, Section 5.3.3, indicates that any cutoff
time of κ ≥ 0.975n would suffice). The initial parameter space was {1,2, . . . ,9,10}, where
k = 1 is the optimal parameter (see Chapter 5), and the next five largest integers were added
until {1,2, . . . ,49,50} was reached. Since this parameter landscape is only approximately
unimodal, we used m = 2 (as recommended in Chapter 5).

Setup for SAPS and MAX-SAT We considered tuning two parameters of SAPS – α

and ρ – for ten instances21 of the SAT instance set circuit-fuzz (available in AClib [66]).
Due to the complexity of the MAX-SAT problem class, it was no longer obvious which
configurations should be considered optimal. Therefore we conducted an exhaustive search
of the parameter space to identify which configurations perform best (within the time budget).
We did so by running the validation procedure in ParamILS for each configuration with
α ∈ {16

15 ,
17
15 , . . . ,

44
15 ,

45
15} and ρ ∈ {0, 1

15 , . . . ,
14
15 ,1}. Each configuration was evaluated 2000

times on each of the ten considered circuit-fuzz problem instances. In each evaluation,
the cutoff time was 10,000 iterations and the quality of a configuration was taken to be
the number of satisfied clauses. We selected the five configurations that identify the best
solutions within the time budget to be the target and analysed the time taken by a configurator
to identify any one of these configurations.

Since it was not feasible to compute the quality of a configuration each time it was
evaluated in a tuner, we instead took the average fitness values generated during the initial
evaluation of the parameter landscape (i.e. when determining the set of optimal configura-
tions) to be the fitness of each configuration. As these runs were repeated many times, we
believe that they provide an accurate approximation of the fitness values of the configurations.
It is likely that the results presented in this section would also hold if we determined the
fitness of a configuration each time we evaluate it.

In this experiment, we set the range of values of ρ to {0, 1
15 , . . . ,

14
15 ,1} and the value of

the two other parameters of SAPS as Psmooth = 0.05 and wp = 0.01 (their default values).
We then increased the size of the set of possible values of α . The initial set of values for α

was {16
15 ,

17
15 ,

18
15}, which contains the values of α in all five configurations with the best

performance. We then generated larger parameter spaces by adding a new value to the set of
values for α until the set {16

15 , . . . ,
45
15} was reached.

For this scenario, we do not include results for the performance of ParamRLS using the
random-step search operator without replacement since this combination appeared to often
get stuck at local optima and thus fail to identify any near-optimal configurations.

21Problem instances number 78, 535, 581, 582, 6593, 6965, 8669, 9659, 16905, 16079.

7.5 Experimental Analysis 167

7.5.2 Results

The results from configuring the algorithms for the three benchmark functions are shown
in Figures 7.3a, 7.3b, and 7.3c. Solid lines correspond to variants of ParamRLS using
different search operators and dotted lines correspond to variants of ParamILS. Green
lines correspond to configurators using the random-step operator (without replacement),
black lines to configurators using the random-step operator (with replacement), blue lines
to configurators using the ±{1, . . . ,m} operator, and red lines to configurators using the
harmonic-step operator.

In each configuration scenario, and for both configurators, the harmonic-step operator
located the optimal configuration faster than both the±{1, . . . ,m} and random-step operators.
For both configurators, the polylogarithmic growth of the time taken by the harmonic-step
operator to locate the optimal configuration can be seen, compared to the linear growth of the
time taken by the ±{1, . . . ,m} and random-step search operators. The difference between
the performance of the operators is more pronounced when there is a plateau of neighbouring
configurations all exhibiting the same performance (as is the case for RIDGE). We also
verified that these improvements in performance also occur if few runs per evaluation are
used, but we do not include these results.

Similar performance improvements from using the harmonic-step operator can be seen in
the results for configuring SAPS for MAX-SAT. Figure 7.3d shows that the harmonic-step
operator locates a near-optimal configuration faster than the others.

In Figure 7.3, crosses indicate where the difference between the performance of the
harmonic-step operator and the other operators is statistically significant at a significance
level of 0.95 (according to a two-tailed Mann-Whitney U test [94]). Their position reflects
the effect size of this comparison, calculated in terms of Cliff’s delta [23]. An effect size of 0
would signify that there is no difference between the two outcomes and effect sizes closer
to 1 indicate a greater benefit to using the harmonic operator over the alternative (negative
effect sizes would indicate that using the harmonic operator was detrimental, but this never
occurred to an extent that was statistically significant). Orange crosses show the effect size
of the difference between ParamILS using harmonic-step and using random-step (without
replacement). The effect sizes of the differences between ParamHS and ParamRLS using
±{1, . . . ,m}, random-step (without replacement) and random-step (with replacement) are
shown by blue, green, and black crosses, respectively. In each configuration scenario, for
larger parameter space sizes almost all comparisons with all other operators were statistically
significant.

168 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

0 5 10 15 20 25
−80

−70

−60

−50

χ

fit
ne

ss

(a) (1+1)χ EA and RIDGE, κ = 2500

0 5 10 15 20 25

−40

−20

χ

fit
ne

ss

(b) (1+1)χ EA and LEADINGONES, κ = 2500

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

k

fit
ne

ss

(c) RLSk and ONEMAX, κ = 200

1 1.21.41.6
1.8 2 2.22.42.6

2.8 3

0
0.2

0.4
0.6

0.8
1

20
40
60
80

100
120
140
160
180

20
40
60
80
100
120
140
160
180

fi
tn
e
ss

rho

alpha

(d) SAPS and MAX-SAT, κ = 10000

Fig. 7.2 (a),(b),(c): Mean fitness of the individual in the algorithms with n = 50, averaged
over 10,000 runs for each parameter value, multiplied by −1 to obtain a minimisation
problem (as is conventional in algorithm configuration). Error bars show the range of the
median 95% of fitness values. The dotted line indicates the optimal configuration for each
scenario. (d): The parameter landscape for SAPS in terms of α and ρ computed for a set of
ten SAT instances from the circuit-fuzz dataset. In all figures, lower values are better.

7.6 Conclusions 169

10 15 20 25 30 35 40 45 50

101

102 effectsize

number of configurations

co
nfi

gu
ra

tio
n

co
m

pa
ri

so
ns

−1

−0.5

0

0.5

1

(a) Configuring the (1+1)χ EA for RIDGE with κ = 2500 and r = 1500.

10 15 20 25 30 35 40 45 50

101

101.5

effectsize

number of configurations

co
nfi

gu
ra

tio
n

co
m

pa
ri

so
ns

−1

−0.5

0

0.5

1

(b) Configuring the (1+1)χ EA for LEADINGONES with κ = 2500 and r = 1500.

Configurator variants:
ParamRLS variants ParamILS variants

Search operator used:
random-step (without replacement) ±{1, . . . ,m}

random-step (with replacement) harmonic-step
Effect size indicators:

ParamHS vs. random-step ParamRLS (without replacement)
ParamHS vs. ±{1, . . . ,m} ParamRLS

ParamHS vs. random-step ParamRLS (with replacement)
harmonic ParamILS vs. default ParamILS

Fig. 7.3 Mean number of configuration comparisons before sampling an optimal configura-
tion.

170 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality

10 15 20 25 30 35 40 45 50

101

101.5

effectsize

number of configurations

co
nfi

gu
ra

tio
n

co
m

pa
ri

so
ns

−1

−0.5

0

0.5

1

(c) Configuring RLSk for ONEMAX with κ = 200 and r = 1500.

50 100 150 200 250 300 350 400 450

101

101.5

effectsize

number of configurations

co
nfi

gu
ra

tio
n

co
m

pa
ri

so
ns

−1

−0.5

0

0.5

1

(d) Configuring the α and ρ parameters of SAPS for the circuit-fuzz MAX-SAT instance set, using
cached evaluations with κ = 10,000 and r = 20,000.

Configurator variants:
ParamRLS variants ParamILS variants

Search operator used:
random-step (without replacement) ±{1, . . . ,m}

random-step (with replacement) harmonic-step
Effect size indicators:

ParamHS vs. random-step ParamRLS (without replacement)
ParamHS vs. ±{1, . . . ,m} ParamRLS

ParamHS vs. random-step ParamRLS (with replacement)
harmonic ParamILS vs. default ParamILS

Fig. 7.3 Mean number of configuration comparisons before sampling an optimal configuration
(or a near-optimal configuration in the case of tuning SAPS).

7.6 Conclusions 171

7.6 Conclusions

In this chapter, we demonstrated that ParamRLS and ParamILS benefit if their default
mutation operators are replaced with one that uses a harmonic distribution to exploit unimodal
parameter landscapes. We proved considerable asymptotic speed-ups for unimodal and
approximately unimodal parameter landscapes, whilst in the worst case (e.g. for deceptive
parameter landscapes) the proposed modification will only slow down the configurator by
at most logarithmic factor. We verified experimentally that this speed-up occurs in practice
for benchmark parameter landscapes that are known to be unimodal and approximately
unimodal, as well as for tuning a MAX-SAT solver for a well-studied benchmark set.

In parallel independent work, Pushak and Hoos developed a configurator called Golden
Parameter Search (GPS) that is also designed to exploit gradients in the parameter land-
scape [105]. It uses golden section search [76], a method that is optimal for finding the
minimum of a unimodal function in the worst-case [103]. They show experimentally that
GPS outperforms irace, SMAC, and GGA for tuning travelling salesperson problem, SAT,
and mixed integer programming solvers. However, GPS assumes that the parameter land-
scape is unimodal, and therefore, unlike our method, may fail if the parameter landscape
violates this assumption too strongly.

Part III

Conclusions

Chapter 8

Conclusions and Outlook

8.1 Summary of Work

In this thesis, we have created a framework that lays the foundations of the rigorous runtime
analysis of algorithm configurators. We have used it to analyse the impact of the settings of an
algorithm configurator (namely the cutoff time and performance metric) on its ability to tune
algorithms and the time taken to do so. Such analyses provide statements regarding how long
a configurator must be run to identify good parameter values and the quality of the parameter
values that it is expected to return. Furthermore, they allow for a deeper understanding
of which components of a configurator are beneficial and which are detrimental. We then
used these theoretical insights to a design mutation operator with better performance for
configuration scenarios with approximately unimodal gradients towards optimal parameter
values.

We began by analysing the impact of the cutoff time in the general case, proving a
lower bound on the cutoff time necessary for any configurator that uses the Fixed-Target
performance metric. We proved that if the cutoff time is too small to allow any configuration
to reach the target solution quality then the configurator is “blind” (i.e. returns a random
configuration). This implies that one must be careful when choosing the cutoff time when
using this performance metric since the negative impact of choosing too small a cutoff time is
drastic. This reliance on an appropriate choice of cutoff time implies that significant problem-
specific knowledge is required, namely the time required to reach the target solution qualities
(at least for the best configuration in the neighbourhood of the incumbent). Furthermore,
if the Optimisation-Time performance metric is employed then only training instances for
which optimal values are known can be used. By definition, this is not possible when
configuring algorithms in cases where information about the problem at hand is not available.
Such so-called black-box settings are common use cases of algorithm configuration, i.e. the

176 Conclusions and Outlook

configuration of general-purpose algorithms for real-world scenarios. We then proved that,
when configuring unary unbiased algorithms with a training set where each instance contains
at most exp(

√
n/ log2 n) optima (where n is the largest instance size), a cutoff time of at least

(n lnn)/2 is necessary, otherwise any Optimisation-Time-based configurator will be blind.
We subsequently showed that, when using the Fixed-Target performance metric in a setting
where the optimal configuration has a smaller runtime than every other configuration with
overwhelming probability, a cutoff time large enough to allow this configuration to reach the
target solution quality for every problem instance with overwhelming probability is sufficient
for it to be returned by the configurator. However, if the target solution quality is chosen as
the optimum, then this cutoff time is also sufficient for Best-Fitness-based configurators to
return the same configuration.

In Chapter 5, we considered the configuration of the neighbourhood size of randomised
local search (RLSk) for two benchmark problem classes, RIDGE and ONEMAX. We proved
that for any cutoff time ParamRLS using the Best-Fitness performance metric is able to
identify that k = 1 achieves the highest solution quality within the time budget if sufficiently
many runs are used in each configuration evaluation. A single run is sufficient if the
cutoff time is Ω(n1+ε), for constant ε > 0. Any configurator using the Optimisation-Time
performance metric is blind if the cutoff time is at most (1− ε)n2. This implies that not only
is ParamRLS-F able to identify the optimal configuration with respect to the Best-Fitness
performance metric for all cutoff times, but that it is also able to do so with respect to
the Optimisation-Time metric for ranges of cutoff times for which all configurators using
Optimisation-Time are blind.

The situation is more complex when configuring for ONEMAX, since different neighbour-
hood sizes maximise the expected progress depending on the distance to the optimum. As is
often the case with randomised search heuristics, it is optimal to decrease the neighbourhood
size as the optimum is approached. When the set of permitted values for k is {1,2,3,4,5},
we showed that, for a cutoff time κ satisfying 0.02n≤ κ ≤ 0.72n, ParamRLS-F is able to
identify that k = 5 is F-optimal, whilst for cutoff times satisfying κ ≥ 0.975n it is able to
identify that k = 1 is F-optimal. As already shown, configurators using the Optimisation-Time
performance metric, on the other hand, are blind for cutoff times of (n lnn)/2. Thus, Param-
RLS-F is again able to identify the configuration that is optimal under the Optimisation-Time
performance metric (i.e. k = 1) for cutoff times that are a logarithmic factor smaller than
those required by configurators using that performance metric.

In order to investigate whether our findings presented in Chapter 5 also apply to more
complex configuration scenarios, in Chapter 6 we analysed the configuration of the mutation
rate χ of the (1+1) EA, which uses the continuously-valued standard bit mutation operator.

8.1 Summary of Work 177

For RIDGE, the optimal mutation rate for the (1+1) EA is always χ = 1, independent of
the cutoff time and performance metric, since this value maximises expected progress. We
proved that ParamRLS-F is able to identify that this mutation rate achieves the highest solution
quality for any cutoff time κ ≥ εn, for constant ε > 0. On the other hand, configurators using
the Optimisation-Time performance metric are blind for cutoff times κ ≤ (1− ε)en2, for
constant 0 < ε < 1, and hence ParamRLS-F can identify the configuration that is optimal
under the Optimisation-Time metric in cutoff times that are by a linear factor smaller than
those required by configurators using Optimisation-Time itself.

As with ONEMAX, for LEADINGONES the optimal amount by which to perturb a solution
(in order to maximise expected progress) decreases as the optimum is approached. We proved
that ParamRLS-F is once again able to identify the F-optimal mutation rate. In order to prove
this result, it was again necessary to consider a specific instantiation of the parameter space.
We considered the parameter space {0.1,0.2, . . . ,2.9,3.0}, for which the parameter value
that minimises the expected optimisation time is χ = 1.6 [18]. For almost all quadratic (and
all super-quadratic) cutoff times, we proved that the parameter landscape induced by the
Best-Fitness performance metric is unimodal. This implies that ParamRLS-F can simply
follow the gradient towards the optimal parameter value for that cutoff time. We then proved
that any configurator using the Optimisation-Time performance metric is blind for any cutoff
time κ ≤ 0.772n2, whilst ParamRLS-F successfully identifies the optimal configuration under
this performance metric using cutoff times that are smaller by ≈ 0.05n2.

Our analyses revealed that, for each of the four configuration scenarios considered
in this work, the parameter landscape seen by ParamRLS-F is approximately unimodal.
This is the first time that such a result has been rigorously proven, although previous
experimental work has suggested this to be the case, even for some complex configuration
scenarios such as configuring SAT, TSP, and MIP solvers [104] as well as particle swarm
algorithms for 20 standard benchmark problems [55]. In Chapter 7, we investigated the
performance improvements that can be gained from our theoretical insights by designing
mutation operators that provably allow configurators to perform well on such landscapes.
We proved that the default mutation operators of ParamRLS (i.e. using small step sizes and
hence being slow to exploit gradients, whilst also being liable to get stuck in local optima)
and ParamILS (i.e. using random step sizes and therefore being unable to exploit the gradient
of parameter landscapes) both require a linear expected number of evaluations. We then
proved that the configurators using our proposed harmonic mutation operator identify the
optimal configuration of any single-parameter algorithm in polylogarithmic expected time if
the parameter landscape is approximately unimodal. Moreover, if the landscape is unimodal
then the expected configuration time is reduced to logarithmic. We also proved that in the

178 Conclusions and Outlook

worst case ParamHS is slower than ParamRLS and ParamILS by only a logarithmic factor in
expectation. We verified these speed-ups experimentally, showing that, in the configuration
scenarios considered in earlier chapters, both ParamRLS and ParamILS modified to use this
new operator identify the optimal configuration faster than their default versions. Furthermore,
we also observed these performance improvements when configuring a SAT solver with more
than one parameter.

8.2 Future Work

In this thesis, we have laid the foundations for the rigorous runtime analysis of algorithm
configurators and we have derived the first results in this direction. However, there remain
many open questions that will give further insights into the effects of design choices of
algorithm configurators on their ability to identify good parameter configurations and the
time required to do so. In this section, we identify potential directions of future research.

1. Analysis of state-of-the-art configurators. We have provided bounds on the runtimes
of ParamRLS and ParamILS for a range of configuration scenarios. Our work should
be built upon to derive similar statements regarding state-of-the-art configurators such
as SMAC and irace. Whilst such configurators are more challenging to analyse, given
the numerous successful applications reported it is crucial to derive a theoretical under-
standing of their performance for an informed development of even better performing
algorithm configurators.

2. Analysis of more complex configuration scenarios. The problem classes considered
in this thesis are standard benchmark functions used in the analysis of randomised
search heuristics. Our work should be extended to the analysis of classical problems
from combinatorial optimisation for which configurators are often used in practice.
For instance, SAT is probably the most commonly considered problem in experimental
algorithm configuration research. The target algorithms that we have considered all
have only a single parameter, whereas in practice it is common to tune algorithms
with many parameters. It would be of great impact to derive rigorous statements
regarding the structure of the parameter landscapes in these more complex scenarios.
In particular, configuration scenarios that require the more sophisticated features of
state-of-the-art configurators should be identified in order to justify their need and use.
However, conducting the necessary fixed-budget analyses to enable the analysis of
more complex configuration scenarios is highly non-trivial, as even for the relatively

8.2 Future Work 179

simple benchmark problem classes analysed in this work the required fixed-budget
analysis was surprisingly challenging.

3. Identify configuration scenarios where the Best-Fitness performance metric is harmful.
In this thesis, we have frequently shown that the Best-Fitness performance metric
can identify the same parameter values as Optimisation-Time whilst using smaller
cutoff times and that it is not adversely affected by using cutoff times that are too
small. However, it is likely that it is not always the case that it is beneficial to use
Best-Fitness instead of Fixed-Target. An interesting line of future work would be to
identify scenarios where this is the case.

4. Modify other configurators to exploit unimodal parameter landscapes. We have shown
the benefits that can be gained by modifying ParamRLS and ParamILS to use a search
operator tailored to perform well on unimodal fitness landscapes. A natural direction
of future work is therefore to identify whether other configurators, such as irace and
SMAC, would also benefit from being tailored to perform well on such landscapes.

References

[1] Belarmino Adenso-Díaz and Manuel Laguna. Fine-tuning of algorithms using frac-
tional experimental designs and local search. Operations research, 54(1):99–114,
2006.

[2] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic
algorithm for the automatic configuration of algorithms. In International Conference
on Principles and Practice of Constraint Programming (CP ’09), pages 142–157.
Springer, 2009.

[3] Denis Antipov and Benjamin Doerr. A tight runtime analysis for the (µ +λ) EA.
Algorithmica, 2020.

[4] Charles Audet and John E. Dennis, Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on optimization, 17(1):188–217, 2006.

[5] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics:
Foundations and Recent Developments. World Scientific, 2011.

[6] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Black-box complexity
of parallel search with distributed populations. In Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII (FOGA ’15), pages 3–15.
ACM, 2015.

[7] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement strategies
for the F-Race algorithm: Sampling design and iterative refinement. In International
workshop on hybrid metaheuristics, pages 108–122. Springer, 2007.

[8] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm,
and Ellen Vitercik. How much data is sufficient to learn high-performing algorithms?
generalization guarantees for data-driven algorithm design. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC ’21), pages
919–932, 2021.

[9] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Refined bounds for
algorithm configuration: The knife-edge of dual class approximability. In International
Conference on Machine Learning (ICML ’20), pages 580–590. PMLR, 2020.

[10] Thomas Bartz-Beielstein, Christian W. G. Lasarczyk, and Mike Preuß. Sequential
parameter optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation (CEC ’05), volume 1, pages 773–780. IEEE, 2005.

182 References

[11] Thomas Bartz-Beielstein, Christian W. G. Lasarczyk, and Mike Preuß. The sequen-
tial parameter optimization toolbox. In Experimental Methods for the Analysis of
Optimization Algorithms, pages 337–362. Springer, 2010.

[12] Thomas Bartz-Beielstein, Martin Zaefferer, and Frederik Rehbach. In a nutshell – the
sequential parameter optimization toolbox, 2021.

[13] Mauro Birattari. On the estimation of the expected performance of a metaheuristic on
a class of instances. Technical report, 2004.

[14] Mauro Birattari. Tuning metaheuristics: a machine learning perspective. Springer,
2009.

[15] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing
algorithm for configuring metaheuristics. In Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’02), pages 11–18. Morgan
Kaufmann Publishers Inc., 2002.

[16] Jakob Bossek, Pascal Kerschke, and Heike Trautmann. A multi-objective perspective
on performance assessment and automated selection of single-objective optimization
algorithms. Applied Soft Computing, 88:105901, 2020.

[17] Jakob Bossek and Dirk Sudholt. Time complexity analysis of RLS and (1+1) EA for
the edge coloring problem. In Proceedings of the 15th ACM/SIGEVO Conference on
Foundations of Genetic Algorithms (FOGA ’19), pages 102–115, 2019.

[18] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive
mutation rates for the LeadingOnes problem. pages 1–10. Springer Berlin Heidelberg,
2010.

[19] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art.
Journal of the Operational Research Society, 64(12):1695–1724, 2013.

[20] Nathan Buskulic and Carola Doerr. Maximizing drift is not optimal for solving
OneMax. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (GECCO ’19), pages 425–426, 2019.

[21] Leslie Pérez Cáceres, Manuel López-Ibáñez, Holger Hoos, and Thomas Stützle. An
experimental study of adaptive capping in irace. In International Conference on
Learning and Intelligent Optimization, pages 235–250. Springer, 2017.

[22] Laura Calvet, Angel A. Juan, Carles Serrat, and Jana Ries. A statistical learning based
approach for parameter fine-tuning of metaheuristics. SORT-Statistics and Operations
Research Transactions, pages 201–224, 2016.

[23] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological bulletin, 114(3):494, 1993.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT press, 2009.

References 183

[25] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Level-
based analysis of genetic algorithms and other search processes. IEEE Transactions
on Evolutionary Computation, 22(5):707–719, 2017.

[26] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Fast artificial immune systems.
In Parallel Problem Solving from Nature (PPSN ’18), pages 67–78, 2018.

[27] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Artificial immune systems can
find arbitrarily good approximations for the NP-hard number partitioning problem.
Artificial Intelligence, 247:180–196, 2019.

[28] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. When hypermutations and ageing
enable artificial immune systems to outperform evolutionary algorithms. Theoretical
Computer Science, 832:166–185, 2020.

[29] Karel Crombecq, Eric Laermans, and Tom Dhaene. Efficient space-filling and non-
collapsing sequential design strategies for simulation-based modeling. European
Journal of Operational Research, 214(3):683–696, 2011.

[30] Kenneth A. de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, 1975.

[31] Martin Dietzfelbinger, Jonathan E. Rowe, Ingo Wegener, and Philipp Woelfel. Preci-
sion, local search and unimodal functions. Algorithmica, 59(3):301–322, 2011.

[32] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization
heuristics. In Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary
Computation: Recent Developments in Discrete Optimization, pages 1–87. Springer
International Publishing, 2020.

[33] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The right mutation strength for
multi-valued decision variables. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016 (GECCO ’16), pages 1115–1122. ACM, 2016.

[34] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation
strengths for multi-valued decision variables. Algorithmica, 80:1732–1768, 2018.

[35] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise
black-box analysis. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (GECCO ’16), pages 1123–1130. ACM, 2016.

[36] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise
black-box analysis. Theoretical Computer Science, 801:1–34, 2020.

[37] Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis. Algorithmica,
65(1):224–250, 2013.

[38] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges. A method to
derive fixed budget results from expected optimisation times. In Proceedings of the
15th annual conference on Genetic and evolutionary computation, pages 1581–1588.
ACM, 2013.

184 References

[39] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis.
Algorithmica, 64(4):673–697, 2012.

[40] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic
algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’17), pages 777–784. ACM, 2017.

[41] Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization. Springer Nature, 2019.

[42] Stefan Droste, Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener. A new frame-
work for the valuation of algorithms for black-box optimization. In Proceedings of the
Seventh Workshop on Foundations of Genetic Algorithms (FOGA ’02), pages 253–270.
Morgan Kaufmann Publishers Inc., 2002.

[43] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):51–81, 2002.

[44] Katharina Eggensperger, Marius Lindauer, Holger H. Hoos, Frank Hutter, and Kevin
Leyton-Brown. Efficient benchmarking of algorithm configurators via model-based
surrogates. Machine Learning, 107(1):15–41, 2018.

[45] Ágoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–
141, 1999.

[46] Ágoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
Springer, 2015.

[47] William Feller. An introduction to probability theory and its applications: volume I.
John Wiley & Sons New York, 1968.

[48] Ronald A. Fisher. The Design of Experiments. Oliver and Boyd, 1935.

[49] John J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16(1):122–128, 1986.

[50] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied probability, 14(3):502–525, 1982.

[51] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. On the impact of the cutoff time
on the performance of algorithm configurators. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’19), pages 907–915. ACM, 2019.

[52] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. Analysis of the performance
of algorithm configurators for search heuristics with global mutation operators. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’20),
pages 823–831. ACM, 2020.

[53] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. Fast perturbative algorithm
configurators. In Proceedings of the International Conference on Parallel Problem
Solving from Nature (PPSN ’20), pages 19–32. Springer, 2020.

References 185

[54] Nikolaus Hansen. The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation, pages 75–102. Springer, 2006.

[55] Kyle R. Harrison, Beatrice M. Ombuki-Berman, and Andries P. Engelbrecht. The
parameter configuration landscape: A case study on particle swarm optimization. In
2019 IEEE Congress on Evolutionary Computation (CEC ’19), pages 808–814. IEEE,
2019.

[56] Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence, 127(1):57–85, 2001.

[57] Jun He and Xin Yao. A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[58] Jorge Pérez Heredia. Modelling evolutionary algorithms with stochastic differential
equations. Evolutionary computation, (26.4):1–30.

[59] Holger H. Hoos. Automated algorithm configuration and parameter tuning. In
Autonomous search, pages 37–71. Springer, 2011.

[60] Holger H. Hoos and Thomas Stützle. Stochastic local search: Foundations and
applications. Elsevier, 2004.

[61] Changwu Huang, Yuanxiang Li, and Xin Yao. A survey of automatic parameter
tuning methods for metaheuristics. IEEE Transactions on Evolutionary Computation,
24(2):201–216, 2020.

[62] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. ParamILS: an automatic algo-
rithm configuration framework. Journal of Artificial Intelligence Research, 36(1):267–
306, 2009.

[63] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. Technical report, 2010. Technical
Report TR-2010-10, University of British Columbia Computer Science.

[64] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International Conference on
Learning and Intelligent Optimization (LION ’11), pages 507–523. Springer, 2011.

[65] Frank Hutter, Marius Lindauer, Adrian Balint, Sam Bayless, Holger H. Hoos, and
Kevin Leyton-Brown. The configurable sat solver challenge (CSSC). Artificial
Intelligence, 243:1–25, 2017.

[66] Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Marius Lindauer, Holger H. Hoos,
Kevin Leyton-Brown, and Thomas Stützle. AClib: A benchmark library for algorithm
configuration. In International Conference on Learning and Intelligent Optimization,
pages 36–40. Springer, 2014.

[67] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic
smoothing: Efficient dynamic local search for SAT. In International Conference on
Principles and Practice of Constraint Programming, pages 233–248. Springer, 2002.

186 References

[68] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and
hyperparameter optimization. In Artificial Intelligence and Statistics, pages 240–248,
2016.

[69] Thomas Jansen. Analyzing evolutionary algorithms: The computer science perspective.
Springer Science & Business Media, 2013.

[70] Thomas Jansen. Analysing stochastic search heuristics operating on a fixed budget. In
Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, pages 249–270. Springer International
Publishing, 2020.

[71] Thomas Jansen and Ingo Wegener. A comparison of simulated annealing with a
simple evolutionary algorithm on pseudo-boolean functions of unitation. Theoretical
Computer Science, 386(1-2):73–93, 2007.

[72] Thomas Jansen and Christine Zarges. Fixed budget computations: A different perspec-
tive on run time analysis. In Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation, pages 1325–1332. ACM, 2012.

[73] Thomas Jansen and Christine Zarges. Performance analysis of randomised search
heuristics operating with a fixed budget. Theoretical Computer Science, 545:39–58,
2014.

[74] Daniel Johannsen. Random Combinatorial Structures and Randomized Search Heuris-
tics. PhD thesis, 2010.

[75] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187, 2014.

[76] Jack Kiefer. Sequential minimax search for a maximum. Proceedings of the American
mathematical society, 4(3):502–506, 1953.

[77] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[78] Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. Efficiency through pro-
crastination: Approximately optimal algorithm configuration with runtime guarantees.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI ’17), pages 2023–2031. AAAI Press, 2017.

[79] Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon Graham. Procras-
tinating with confidence: Near-optimal, anytime, adaptive algorithm configuration. In
Advances in Neural Information Processing Systems (NeurIPS ’19), pages 8881–8891,
2019.

[80] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility. Addison-Wesley Professional, 2015.

[81] Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory, 47(5):1902–1914, 2001.

References 187

[82] Timo Kötzing and Carsten Witt. Improved fixed-budget results via drift analysis. In
Proceedings of the International Conference on Parallel Problem Solving from Nature
(PPSN ’20), pages 648–660. Springer International Publishing, 2020.

[83] Pedro Larrañaga and Jose A. Lozano. Estimation of distribution algorithms: A new
tool for evolutionary computation. Springer, 2001.

[84] Per Kristian Lehre and Dirk Sudholt. Parallel black-box complexity with tail bounds.
IEEE Transactions on Evolutionary Computation, 2019.

[85] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algo-
rithmica, 64(4):623–642, 2012.

[86] Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank Neumann, editors,
Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pages 89–131. Springer International Publishing, 2020.

[87] Johannes Lengler and Nicholas Spooner. Fixed budget performance of the (1+1) EA
on linear functions. In Proceedings of the 2015 ACM Conference on Foundations of
Genetic Algorithms XIII (FOGA ’15), pages 52–61. ACM, 2015.

[88] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[89] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. How the dura-
tion of the learning period affects the performance of random gradient selection
hyper-heuristics. In Proceeding of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, pages 2376–2383. AAAI Press, 2020.

[90] Shengcai Liu, Ke Tang, Yunwei Lei, and Xin Yao. On performance estimation
in automatic algorithm configuration. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, pages 2384–2391. AAAI Press, 2020.

[91] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

[92] Manuel López-Ibáñez and Thomas Stützle. Automatically improving the anytime
behaviour of optimisation algorithms. European Journal of Operational Research,
235(3):569–582, 2014.

[93] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated local search. In
Handbook of Metaheuristics, pages 320–353. Springer, 2003.

[94] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[95] Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating model selection
search for classification and function approximation. In Advances in Neural Informa-
tion Processing Systems 6 (NIPS ’93), pages 59–66. Morgan Kaufmann Publishers
Inc., 1993.

188 References

[96] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bernstein
stopping. In Proceedings of the 25th International Conference on Machine learning
(ICML ’08), pages 672–679, 2008.

[97] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Opti-
mization: Algorithms and Their Computational Complexity. Springer, 2010.

[98] Pietro S. Oliveto, Jun He, and Xin Yao. Time complexity of evolutionary algorithms for
combinatorial optimization: A decade of results. International Journal of Automation
and Computing, 4(3):281–293, 2007.

[99] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds
in evolutionary computation. Algorithmica, 59(3):369–386, 2011.

[100] Pietro S. Oliveto and Carsten Witt. Erratum: Simplified drift analysis for proving
lower bounds in evolutionary computation. arXiv preprint arXiv:1211.7184, 2012.

[101] David Pollard. Convergence of Stochastic Processes. Springer, 1984.

[102] Michael J. D. Powell. The BOBYQA algorithm for bound constrained optimization
without derivatives. Technical Report DAMTP2009/NA06, University of Cambridge,
2009.

[103] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2nd Ed.): The Art of Scientific Computing. Cambridge
University Press, 1992.

[104] Yasha Pushak and Holger H. Hoos. Algorithm configuration landscapes: - more
benign than expected? In Proceedings of the International Conference on Parallel
Problem Solving from Nature (PPSN ’18), pages 271–283. Springer, 2018.

[105] Yasha Pushak and Holger H. Hoos. Golden parameter search: exploiting structure
to quickly configure parameters in parallel. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (GECCO ’20), pages 245–253, 2020.

[106] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population size in
the (1,λ) evolutionary algorithm. Theoretical Computer Science, 545:20–38, 2014.

[107] Ranjit K. Roy. A primer on the Taguchi method. Society of Manufacturing Engineers,
2010.

[108] Christian Scheideler. Probabilistic Methods for Coordination Problems. HNI-
Verlagsschriftenreihe 78, University of Paderborn, 2000. Habilitation Thesis.

[109] Selmar K. Smit and Ágoston E. Eiben. Comparing parameter tuning methods for
evolutionary algorithms. In 2009 IEEE Congress on Evolutionary Computation
(CEC ’09), pages 399–406. IEEE, 2009.

[110] Selmar K. Smit and Ágoston E. Eiben. Beating the ‘world champion’evolutionary
algorithm via REVAC tuning. In IEEE Congress on Evolutionary Computation (CEC

’10), pages 1–8. IEEE, 2010.

References 189

[111] Thomas Stützle and Manuel López-Ibáñez. Automated Design of Metaheuristic
Algorithms, pages 541–579. Springer International Publishing, 2019.

[112] Ryoji Tanabe. Analyzing adaptive parameter landscapes in parameter adaptation
methods for differential evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’20), page 645–653. Association for Computing
Machinery, 2020.

[113] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013.

[114] Ingo Wegener. Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. In Evolutionary optimization, pages 349–369. Springer, 2003.

[115] Gellért Weisz, András György, and Csaba Szepesvári. LeapsAndBounds: A method
for approximately optimal algorithm configuration. In Proceedings of the 35th Inter-
national Conference on Machine Learning (ICML ’18), pages 5254–5262. PMLR,
2018.

[116] Gellért Weisz, András György, and Csaba Szepesvári. CapsAndRuns: An improved
method for approximately optimal algorithm configuration. In Proceedings of the
36th International Conference on Machine Learning (ICML ’19), pages 6707–6715.
PMLR, 2019.

[117] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability & Computing, 22(2):294–318, 2013.

[118] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[119] Zhi Yuan, Marco A. Montes De Oca, Mauro Birattari, and Thomas Stützle. Continuous
optimization algorithms for tuning real and integer parameters of swarm intelligence
algorithms. Swarm Intelligence, 6(1):49–75, 2012.

[120] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a compara-
tive case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

Appendices

193

Appendix A: Learning Theory Tools

The results in Section 2.9.1 employ tools commonly used in learning theory to quantify
the complexity of a class of functions. For completeness, we define these in this section.
We define three complexity measures, pseudo-dimension [101], VC-dimension [113], and
empirical Rademacher complexity [81].

We first define pseudo-dimension, following [8]. However, before doing so it is first
necessary to define the notion of shattering.

Definition 12 (Shattering). Let H ⊆ [0,H]Y be a set of functions mapping an abstract
domain Y to an interval [0,H]. Let S = {y1, . . . ,ym} be a subset of Y and let z1, . . . ,zm ∈ R
be a set of targets. We say that z1, . . . ,zm witness the shattering of S byH if for all subsets
T ⊆ S , there exists some function h ∈H such that for all elements yi ∈ T , h(yi)≤ zi and for
all xi ̸∈ T , h(yi)> zi.

Definition 13 (Pseudo-dimension). LetH⊆ [0,H]Y be a set of functions mapping an abstract
domain Y to an interval [0,H]. Let S⊆ Y be a largest set that can be shattered byH. Then
the pseudo-dimension ofH is Pdim(H) = |S|.

We now define the VC-dimension of a class of functions, following [113].

Definition 14 (VC-dimension). Let A ≤ F(z,α) ≤ B,α ∈ Λ, be a set of real functions
bounded by constants A and B (where A can be −∞ and B can be ∞). Then, for α ∈ Λ and
β ∈ (A,B), VC-dimension of F(z,α) is the maximum number of vectors shattered by

I(z,α,β) =

0 if F(z,α)< β

1 if F(z,α)≥ β .

Finally, we define empirical Rademacher complexity. Intuitively, this is a measure of
the extent to which functions in the class are correlated with a set of random noise vectors.
An empirical Rademacher complexity of 0 indicates that a function class is of the lowest
possible complexity, whereas a value of 1/2 indicates that the class has the highest possible
complexity. We follow the definition of empirical Rademacher complexity given in [9].

Definition 15 (Empirical Rademacher Complexity). The empirical Rademacher complexity
of a function class F = { fr | r ∈R} given a set S = {x1, . . . ,xN} ⊆ X is

RS(F) =
1
N

E
σ∼1,−1N

[
sup
{r∈R}

N

∑
i=1

σi fr(xi)

]
,

where each σi equals −1 or 1 with equal probability.

194

Appendix B: Inequality Values Used in Proof of Lemma 79

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.2 0.0 – – – – – – – – – – – – – –
0.3 0.0 0.2 – – – – – – – – – – – – –
0.4 0.0 0.1 0.4 – – – – – – – – – – – –
0.5 0.0 0.1 0.2 0.4 – – – – – – – – – – –
0.6 0.0 0.1 0.2 0.3 0.8 – – – – – – – – – –
0.7 0.0 0.1 0.1 0.3 0.5 1.1 – – – – – – – – –
0.8 0.0 0.1 0.2 0.3 0.5 0.9 2.2 – – – – – – – –
0.9 0.0 0.1 0.2 0.3 0.4 0.7 1.2 2.9 – – – – – – –
1.0 0.1 0.1 0.2 0.3 0.5 0.8 1.3 2.2 5.2 – – – – – –
1.1 0.1 0.1 0.2 0.3 0.5 0.8 1.1 1.8 3.1 7.3 – – – – –
1.2 0.1 0.2 0.3 0.4 0.6 0.9 1.3 2.0 3.1 5.5 12.9 – – – –
1.3 0.1 0.1 0.3 0.4 0.6 0.8 1.2 1.7 2.6 4.1 7.3 17.5 – – –
1.4 0.1 0.2 0.3 0.4 0.7 0.9 1.3 1.8 2.7 4.0 6.5 12.0 30.1 – –
1.5 0.1 0.2 0.4 0.6 0.9 1.3 1.8 2.5 3.6 5.3 8.3 14.0 27.8 78.0 –
1.6 0.1 0.3 0.4 0.7 1.0 1.4 2.0 2.7 3.9 5.7 8.8 14.5 27.4 65.9 294.9

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
1.6 245.3 67.0 31.3 18.3 12.1 8.7 6.6 5.2 4.2 3.5 2.9 2.5 2.2 1.9
1.7 – 95.3 37.1 20.5 13.2 9.3 7.0 5.5 4.4 3.6 3.1 2.6 2.3 2.0
1.8 – – 69.8 29.9 17.6 11.8 8.6 6.6 5.3 4.3 3.6 3.1 2.7 2.4
1.9 – – – 52.0 23.3 14.2 9.8 7.3 5.7 4.6 3.8 3.2 2.8 2.4
2.0 – – – – 46.6 21.4 13.3 9.3 7.0 5.6 4.5 3.8 3.2 2.8
2.1 – – – – – 49.0 22.9 14.4 10.2 7.8 6.2 5.1 4.3 3.7
2.2 – – – – – – 43.4 20.5 13.0 9.3 7.2 5.7 4.7 4.0
2.3 – – – – – – – 42.8 20.4 13.0 9.4 7.2 5.8 4.8
2.4 – – – – – – – – 42.2 20.3 13.0 9.4 7.3 5.9
2.5 – – – – – – – – – 42.6 20.5 13.3 9.6 7.5
2.6 – – – – – – – – – – 44.8 21.7 14.1 10.3
2.7 – – – – – – – – – – – 43.6 21.2 13.8
2.8 – – – – – – – – – – – – 45.9 22.4
2.9 – – – – – – – – – – – – – 46.0

Table B.1 The number in row a column b is 100,000 times the value of the quantity given in
Lemma 80 (to one decimal place) for the (1+1)a EA ahead of the (1+1)b EA by some linear
distance. Hence if it is no greater than 100,000 then, w. o. p., the (1+1)a EA remains ahead of
the (1+1)b EA. The values have been displayed in this way to give an idea of their relative
size, since all values are so small this relationship was otherwise lost when reducing the size
of the table. It is easily verified that all values are several orders of magnitude smaller than
we require.

	Table of contents
	Nomenclature
	I Introduction and Background
	1 Introduction
	1.1 Overview and Motivation
	1.2 Structure of this Thesis
	1.3 Contributions of this Thesis
	1.4 Underlying Publications

	2 Algorithm Configuration
	2.1 Introduction
	2.2 Randomised Search Heuristics
	2.2.1 Types of Parameters

	2.3 The Algorithm Configuration Problem
	2.4 Algorithm Configurators
	2.5 Algorithm Configuration Evaluation
	2.5.1 Performance Metrics
	2.5.2 Cutoff Time

	2.6 Configuration Evaluation Methodologies
	2.6.1 Static Runs
	2.6.2 Dynamic Runs
	2.6.3 Surrogate Models (No Runs)

	2.7 Configuration Generation Methodologies
	2.7.1 One-shot methods
	2.7.2 Black-box methods
	2.7.3 Experimental design
	2.7.4 Surrogate model-based techniques

	2.8 Detailed Algorithm Configurator Descriptions
	2.8.1 ParamILS
	2.8.2 Iterated F-Race and irace
	2.8.3 SMAC
	2.8.4 Structured Procrastination
	2.8.5 Other Non-Incumbent-Driven Configurators

	2.9 Theory of Algorithm Configuration
	2.9.1 Generalisation Analysis
	2.9.2 Convergence Analysis
	2.9.3 Worst-Case Performance Analysis

	2.10 Conclusions

	3 Mathematical Tools, Configurators, Target Algorithms, Problems Classes
	3.1 Introduction
	3.2 Mathematical Tools
	3.2.1 Runtime Analysis
	3.2.2 Probability Theory
	3.2.3 Useful Inequalities
	3.2.4 Tail Inequalities
	3.2.5 Random Walks and Gambler's Ruin
	3.2.6 Drift Analysis
	3.2.7 Black-Box Complexity
	3.2.8 Fixed-Budget Analysis

	3.3 A Simple Algorithm Configurator: ParamRLS
	3.3.1 The {1,…,m} Local Search Operator
	3.3.2 Evaluation of Configurations

	3.4 Target Algorithms
	3.4.1 Randomised Local Search
	3.4.2 The (1+1) EA
	3.4.3 Scaling and Probabilistic Smoothing (SAPS)

	3.5 Target Problem Classes
	3.5.1 Ridge
	3.5.2 OneMax
	3.5.3 LeadingOnes

	3.6 Conclusions

	II Analysis of Algorithm Configurators
	4 Fixed-Target Performance Metric Requires Appropriate Cutoff Times
	4.1 Introduction
	4.2 A Lower Bound on the Necessary Cutoff Time
	4.3 An Upper Bound on the Sufficient Cutoff Time
	4.4 Conclusions

	5 On the Configuration of the Neighbourhood Size of Randomised Local Search
	5.1 Introduction
	5.2 On the Configuration of RLSk for Ridge*
	5.2.1 The Optimisation Time of RLSk for Ridge* is Tightly Concentrated
	5.2.2 Configurators Using the Optimisation-Time Performance Metric Require Quadratic Cutoff Times
	5.2.3 ParamRLS-F can Identify the Optimal Neighbourhood Size Using Arbitrary Cutoff Times

	5.3 On the Configuration of RLSk for OneMax*
	5.3.1 Fixed-Budget Analysis of RLSk and OneMax*
	5.3.2 Optimisation-Time Requires Superlinear Cutoff Times
	5.3.3 ParamRLS-F Identifies the Optimal Neighbourhood Size with Arbitrary Cutoff Times

	5.4 Conclusions

	6 On the Configuration of the Mutation Rate of a Simple Evolutionary Algorithm
	6.1 Introduction
	6.2 On the Configuration of the for Ridge
	6.2.1 Analysis of the for Ridge
	6.2.2 Optimisation-Time Requires at Least Quadratic Cutoff Times
	6.2.3 Linear Cutoff Times Suffice for Best-Fitness

	6.3 On the Configuration of the for LeadingOnes
	6.3.1 The Parameter Landscape of the for LeadingOnes is Unimodal Under Best-Fitness
	6.3.2 Any Configurator Using the Optimisation-Time Performance Metric is Blind for 0.772075n2
	6.3.3 Best-Fitness Identifies the Optimal Mutation Rate Independent of the Cutoff Time

	6.4 Conclusions

	7 Faster Algorithm Configuration by Exploiting Parameter Space Unimodality
	7.1 Introduction
	7.2 The Harmonic Mutation Operator
	7.3 General Lower Bounds for Default Mutation Operators
	7.4 Performance of the Harmonic Mutation Operator
	7.5 Experimental Analysis
	7.5.1 Experimental Setup
	7.5.2 Results

	7.6 Conclusions

	III Conclusions
	8 Conclusions and Outlook
	8.1 Summary of Work
	8.2 Future Work

	References
	Appendices

