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Abstract

Deep latent variable models is a class of models that parameterise components of probabilistic

latent variable models with neural networks. This class of models can capture useful high-

level representations of information from the input data, and has been widely applied to many

domains (e.g., images, speech, and texts), with tasks ranging from image synthesis to dialogue

response generation.

For instance, implicit linguistic cues such as topic information are helpful for various

text modelling tasks, e.g., language modelling, dialogue response generation. Being able to

accurately recognising dialogue acts plays a key role to help generate relevant and meaningful

responses for dialogue systems. However, existing deep learning models mostly focus on

modelling the interactions between utterances during a conversation (i.e., contextual informa-

tion), where important implicit linguistic cues (e.g., topic information of the utterances) for

recognising dialogue acts have not been considered. This motivates our first model, which

is a dual-attention hierarchical recurrent neural network model for dialogue act classifica-

tion. Compared to other works which focus on modelling contextual information, our model

considers, for the first time, both topic information and dialogue act using a dual-attention

hierarchical deep learning framework. Experimental results show that our model achieves a

better or comparable performance than other baselines.

When applying deep latent variable models in the text domain, one can generate diverse

texts via randomly sampling latent codes from the trained latent space. However, several

noticeable issues of deep latent variable models in the text domain remained unsolved, where

one of such issues is KL loss vanishing and has serious effects on the quality of generated
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texts. To tackle this challenge, we propose a simple and robust Variational Autoencoder (VAE)

model to alleviate the KL loss vanishing issue. Specifically, a timestep-wise KL regularisation

is proposed and imposed into the encoder of VAE at each timestep. This method does not

require careful engineering the objective function of VAE or constructing a more complicated

model architecture, as existing models do. In addition, our approach can be easily applied to

any types of RNN-based VAEs. Our model is evaluated in the language modelling task and

successfully alleviates the KL loss vanishing issue. Our model has also been tested on the

dialogue response generation task, which not only avoids the KL loss vanishing issue, but

also generates relevant, diverse and contentful responses.

Finally, we investigate the low-density latent regions (holes) of VAE in the text domain, a

phenomenon which exists in the trained latent space of VAE and leads to low-quality outputs

when latent variables are sampled from those areas. In order to provide an in-depth analysis

of the holes issue, a novel and efficient tree-based decoder-centric algorithm for the low-

density latent regions identification is developed. We further explore how the holes impact the

performance of generated texts of VAE models. For instance, we analyse whether the holes

are really vacant, which captures no useful information and how the holes are distributed in

the latent space.
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Chapter 1

Introduction

The research of modelling natural language from human beings has a long and rich history.

One popular class of approaches to capture features from the natural language is generative

models, especially the deep latent variable models, which models texts under the probabilistic

framework with prior knowledge (Kingma and Welling, 2014; Rezende et al., 2014; Bowman

et al., 2016). With the help of deep neural networks, Variational Autoencoder (VAE), a deep

latent variable model, has recently achieved impressive success in several domains. For

instance, VAE has been utilised to generate high-quality human faces or daily scenes in the

computer vision domain (Huang et al., 2018; Vahdat and Kautz, 2020), to generate music

using latent variables (Roberts et al., 2018), and to generate diverse dialogue responses to

reduce the pressure of manual customer service in the dialogue systems (Fang et al., 2019; Li

et al., 2020a).

1.1 Variational Autoencoder

Due to that Variational Autoencoder (VAE) is centric to this thesis, I will first give a brief

discussion of VAEs. Basically, VAE is a generative model that is designed to generate data

via a latent variable z. As depicted in Figure 1.1, the input texts x are fed into the encoder

(encoder is a typical recurrent neural network for texts) at first. Then the hidden representation

1
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Encoder Decoder𝒙 𝒙′

𝝁

𝝈

𝒛

Input Reconstructed
Output

Sampled
latent variable

Mean

Standard
deviation

𝒙 ≈ 𝒙′

Figure 1.1: The framework of variational autoencoder (VAE).

of the input x is encoded using a linear layer as the mean µ and standard deviation vectors σ,

respectively. A latent variable z is sampled from the latent space based on the µ and σ, and

finally z is fed into the decoder (decoder has the same structure as the encoder) to reconstruct

output x′.

In general, the objective function of VAE consists of two terms: the first term is the

expected reconstruction error indicating how well the model can reconstruct data given a

latent variable; the second term is the KL-divergence of the approximate posterior from prior,

i.e., a regularisation pushing the learned posterior to be as close to the prior as possible.

With the help of explicit KL regularisation, the latent space of VAE can be well organised

to avoid overfitting and can be easily manipulated to generate outputs. In recent years, VAE

has gained much attention and it has been applied to several practical areas. For the dialogue

response generation task, there are several relevant works (Zhao et al., 2017, 2018), where

the dialogue act is utilised and captured by VAE to help dialogue response generation. In

addition, pre-trained VAE language models based on the BERT and GPT-2 are also utilised in

this task (Li et al., 2020a). VAE has been tested in different domains, e.g., finance, politics,

work, health, etc. Given the previous context utterances from both speakers, the model can

generate contextual and diverse responses. In the language modelling task, the latent variable

of well-trained VAE can be smoothly manipulated in the latent space to generate diverse

texts (Fang et al., 2019; Li et al., 2020a).
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(a) (b)

Figure 1.2: The normal handwriting digits in the MNIST (a) and generated
handwriting digits from latent holes (b).

Although VAEs have been successfully applied in different domains, there still exist

several key issues which have not been solved or explored yet, especially in the text domain,

i.e., the KL loss vanishing (a.k.a. posterior collapse) (Bowman et al., 2016) and low-density

latent regions (a.k.a. holes) (Xu et al., 2020). VAE (Kingma and Welling, 2014; Rezende

et al., 2014), a typical encoder-decoder framework, was proposed and applied in the image

domain at first. When the VAE is utilised in the text domain, the KL loss vanishing issue

occurred (Bowman et al., 2016). Once the issue happens during text generation, the latent

variable is ignored by the decoder and the VAE will be downgraded into a simple language

model without the help of the latent variable. Consequently, the quality of the generated texts

is seriously affected. For instance, generated texts are general and boring (e.g., I don’t know)

or the meaning of them makes no sense (e.g., the bridge is an old man).

As for the low-density latent regions, this issue has mainly been studied in the image

domain (Davidson et al., 2018; Falorsi et al., 2018; Kalatzis et al., 2020). When the VAE

is used to encode non-trivial high-dimensional data manifold into a low-dimensional latent

manifold (i.e., latent space), there exists manifold mismatch (Davidson et al., 2018; Falorsi

et al., 2018), which leads to low-density regions (a.k.a. latent holes) in the learned latent

space. If the latent variable is sampled from those areas in the latent space for image synthesis,

the generated outputs will be out of the control of the model and hence have low quality.
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For example, Figure 1.2 shows that generated digits from latent holes in the MNIST dataset

are difficult to recognise compared to normal handwriting digits in that dataset (Davidson

et al., 2018). In the text domain, this situation is more severe because the text is discrete and

generated texts based on the latent holes is likely to be unreadable (Xu et al., 2020), e.g., text

is syntactically incorrect and semantically uninterpretable.

In addition, recognising DA labels is important for many natural language processing

tasks. For instance, in dialogue systems, knowing the DA label of an utterance supports

its interpretation as well as the generation of an appropriate response (Zhao et al., 2017,

2018). Moreover, VAE is commonly used in dialogue systems since its latent variable can

capture high-level linguistic features, such as topics or dialogue acts (Zhao et al., 2018).

Accurately recognising dialogue acts will help to regularise the latent space of VAE and

cluster encoded utterances with similar dialogue act labels (Zhao et al., 2017). However,

current works only focus on modelling contextual information in the conversation, with

important linguistic cues such as topic information of the utterances ignored. The rationale

behind is that the types of DA associated with a conversation is likely to be influenced by

the topic of the conversation (Searle, 1969; Wallace et al., 2013), where DA captures the

social act (e.g., promising) and topics describe the subject matter (Wallace et al., 2013). For

instance, conversations relating to topics about customer service might be more frequently

associated with DAs of type Wh-question (e.g., Why my mobile is not working?) and

a complaining statement (Bhuiyan et al., 2018). However, such a reasonable source of

information, surprisingly, has not been explored in the deep learning or deep latent variable

models for DA classification. We assume that modelling the topics of utterances as additional

contextual information may effectively support DA classification.

This thesis will investigate how to effectively incorporate topical information to improve

dialogue act classification, how to avoid the KL loss vanishing issue in the text domain, and

explore how the latent holes of VAE affect text generation for the first time.
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1.2 Research Challenges

Based on the discussions above, I have identified the following research challenges.

The first research challenge is related to dialogue act (DA) classification, a key task for dia-

logue systems. Being able to accurately recognising dialogue acts in the conversation is very

important as dialogue acts can represent the implicit intention of speakers (Litman and Allen,

1987; Raux et al., 2005) and can help dialogue system generate more relevant and meaningful

responses (Zhao et al., 2017). Existing works mainly focus on developing various neural

networks to recognise DA by modelling contextual information of utterances. For example,

hierarchical CNN (Kalchbrenner and Blunsom, 2013), a deeper-layer LSTM (Khanpour et al.,

2016), and hierarchical bidirectional LSTM (Liu et al., 2017; Kumar et al., 2018) have been

utilised to encode contextual history in the conversation, where each utterance is encoded as

a hidden vector by the models and then all utterance-level hidden vectors are sequentially

modelled as a conversation-level hidden vector to classify dialogue acts. Different attention

mechanisms have been applied to focus on key words or utterances in the conversation (Kumar

et al., 2018; Chen et al., 2018; Raheja and Tetreault, 2019). However, all aforementioned

works ignore important linguistic cues in the conversation, such as the topic for the utterance

and conversation. Topics are key linguist features for dialogue conversations and they have

a close relationship with the types of DA (Searle, 1969; Wallace et al., 2013). Furthermore,

the multi-task training strategy has not been explored in the DA classification. The shared

encoder within the multi-task learning mode can reduce the risk of overfitting and improve

the performance of a single task by training an auxiliary task (Ruder, 2017). In summary,

our first research challenge (RC1) is: How can we effectively incorporate and model topical

information of utterances for improving DA classification?

Our second research challenge is grounded on the KL loss vanishing issue when applying

VAEs in the text domain. Different strategies have been proposed to address this issue, such

as annealing the KL term in the VAE loss function (Bowman et al., 2016; Sønderby et al.,

2016; Fu et al., 2019), replacing the recurrent decoder with convolutional neural networks

(CNNs) (Yang et al., 2017; Semeniuta et al., 2017), using a sophisticated prior distribution
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such as the von Mises-Fisher (vMF) distribution (Xu and Durrett, 2018); and adding mu-

tual information into the VAE objectives (Phuong et al., 2018). While the aforementioned

strategies have shown effectiveness in tackling the posterior collapse issue to some extent, they

either require careful engineering between the reconstruction loss and the KL loss (Bowman

et al., 2016; Sønderby et al., 2016; Fu et al., 2019), or designing more sophisticated model

structures (Yang et al., 2017; Semeniuta et al., 2017; Xu and Durrett, 2018; Phuong et al.,

2018). Therefore, our second research challenge (RC2) is: How can we effectively alleviate

the KL loss vanishing issue of VAEs by developing a generic solution without needing to

design more sophisticated model architectures or carefully balancing the trade-off between

the reconstruction loss and the KL divergence?

The last research challenge is related to the investigations of the low-density regions (a.k.a.

latent holes) of the latent space of VAEs. There are only a few prior works that study this

problem and they mainly focus on the domain of computer vision. For instance, Davidson

et al. (2018) introduced the von Mises-Fisher (vMF) distribution to replace the standard

Gaussian distribution and conducted experiments on MNIST dataset; Kalatzis et al. (2020)

assumed a Riemannian structure over the latent space by adopting the Riemannian Brownian

motion prior. There is only one work, to our best knowledge, that explores the latent holes

issue in the text domain. Xu et al. (2020) examined the obstacles that prevent sequence VAEs

from performing well in unsupervised controllable text generation, and empirically discovered

that manipulating the latent codes for semantic variations in text often leads to latent codes

reside in some latent holes. As a result, the decoding network fails to properly decode or

generalise when the sampled latent codes land in those low-density latent regions. However,

existing works only focus on the low-density latent regions issue on the encoder network

and they merely investigate the existence of latent holes on the decoder network without

giving in-depth analysis of the issue, such as how the latent holes affect VAE’s text generation

performance; whether the holes are really vacant or not; how the holes are distributed in the

latent space, etc. Therefore, our last research challenge (RC3) is: How can we effectively

detect latent holes from the latent space of VAEs and systematically analyse the properties of

the holes detected?
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1.3 Research Objectives

In this thesis, I will tackle the three aforementioned challenges by achieving the following

research objectives:

1. RO1: To propose a deep learning framework for DA classification, which can extract

and incorporate important linguistic information (i.e., topics of the dialogue utterances)

for improving DA classification performance. This objective tackles challenge RC1.

2. RO2: To develop a simple and genetic VAE model to alleviate the posterior collapse

issue in the language modelling and dialogue response generation tasks. This objective

tackles challenge RC2.

3. RO3: To develop algorithms for effectively detecting latent holes from the latent space

of VAEs and systematically analyse the properties of the holes detected. This objective

tackles challenge RC3.

1.4 Thesis Contributions

The thesis makes three main contributions to meet the three research objectives above:

1. Objective RO1 is achieved by developing a dual-attention hierarchical recurrent neural

network with a CRF, which respects the natural hierarchical structure of a conversation,

and is able to incorporate rich context information for DA classification, achieving better

or comparable performance to the state-of-the-art. To our knowledge, leveraging topic

information of utterances under the multi-task learning mode has not previously been

explored in existing deep learning models for DA classification. In addition, we further

develop a simple topic labelling mechanism, showing that using the automatically

acquired topic information for utterances can effectively improve DA classification.

2. Objective RO2 is achieved by proposing a simple and robust method, which can

effectively alleviate the posterior collapse issue of VAE via timestep-wise regularisation.
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Our approach is generic which can be applied to any RNN-based VAE model. In

addition, our approach outperforms the state-of-art on language modelling and yields

better or comparable performance on dialogue response generation.

3. Objective RO3 is achieved by proposing a novel tree-based decoder-centric (TDC)

algorithm for latent hole identification, with a focus on the text domain. In contrast

to existing works which are encoder-centric, our approach is centric to the decoder

network, as a decoder has a direct impact on model’s performance, e.g., for text

generation. Our TDC algorithm is also highly efficient for latent hole searching when

compared to existing approaches, owing to the dimension reduction and Breadth-First

Search strategies. Another important technical contribution we have made is that we

theoretically unify the two prior indicators for latent hole identification.

1.5 Publications

Chapter 3 is based on the published work:

• Li R., Lin C., Collinson M., Li X. and Chen G. A Dual-Attention Hierarchical Re-

current Neural Network for Dialogue Act Classification, The SIGNLL Conference on

Computational Natural Language Learning (CoNLL), Hong Kong, China, 2019.

Chapter 4 is based on the published works:

• Li R., Li X., Chen G. and Lin C. Improving Variational Autoencoder for Text Modelling

with Timestep-Wise Regularisation, The 28th International Conference on Computa-

tional Linguistics (COLING), Online, 2020.

• Li R., Li X., Lin C, Collinson M. and Mao R. A Stable Variational Autoencoder for

Text Modelling, The 12th International Conference on Natural Language Generation

(INLG), Tokyo, 2019.

Chapter 5 is based on the work:

• Li R.*, Peng X.*, Lin C. and Liu B. Understanding Latent Discontinuity of VAEs for

Text Generation, Tenth International Conference on Learning Representations (ICLR),
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2022, Online, under review.

Other publications:

• Zeng C., Chen G., Lin C., Li R. and Chen Z. Affective Decoding for Empathetic Re-

sponse Generation, The 14th International Conference on Natural Language Generation

(INLG), Aberdeen, UK, 2021.

• Li R.*, Peng X.*, Lin C., Rong W. and Chen Z. On the low-density latent regions of

VAE-based language models, NeurIPS 2020 Workshop on Pre-registration in Machine

Learning, PMLR 148:343-357, 2021.

• Li X., Chen G., Lin C. and Li R. DGST: a Dual-Generator Network for Text Style

Transfer, Conference on Empirical Methods in Natural Language Processing (EMNLP),

Online, 2020.

• Li X., Lin C., Li R., Wang C. and Guerin F. Latent Space Factorisation and Manipula-

tion via Matrix Subspace Projection, The 37th International Conference on Machine

Learning (ICML), Vienna, 2020.

• Mao R., Chen G., Li R. and Lin C. ABDN at SemEval-2018 Task 10: Recognising

Discriminative Attributes using Context Embeddings and WordNet. The International

Workshop on Semantic Evaluation at the 16th Annual Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics (NAACL), New Orleans,

2018.

1.6 Thesis Overview

The remaining thesis is organised as follows:

1. Chapter 2 introduces the basic knowledge of neural network and variational autoen-

coder (VAE) for the whole thesis, and the notation will also be provided. In addition,

the related work of dialogue act classification, KL loss vanishing and the low-density

regions detection will be summarised.

2. Chapter 3 focuses on tackling RO1 by developing a hierarchical model combining
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the topical information into dialogue act classification. The methodologies, empirical

evaluations and analyses are introduced in detail.

3. Chapter 4 focuses on solving RO2 by proposing a timestep-wise KL regularisation

VAE for language modelling and dialogue response generation tasks. The methodolo-

gies, empirical evaluations and analyses are provided in detail.

4. Chapter 5 focuses on dealing with RO3 by proposing a novel tree-based decoder-

centric algorithm for the latent hole identification. The theoretical and empirical

evaluations are provided in the text domain.

5. Chapter 6 summarises the highlights main contributions of this thesis. The future work

is also discussed.



Chapter 2

Related Work

2.1 Preliminary

In this section, we will give the notation used across the whole thesis first. Then the basic

knowledge of neural networks and variational autoencoder will be explained to help the

understanding of the thesis.

2.1.1 Notation

This section will contain the most common notation used in this thesis and other additional

notations will be introduced in each chapter.

Example Explanation
x, y, z The lowercase italic letter denotes a scalar random variable.
x,y, z The lowercase bold letter denotes a vector random variable.

X,Y,Z The uppercase bold letter denotes a matrix random variable.
L The calligraphic letter L denotes the objective function.
RN A N-dimensional real space.
xi The i-th element of vector x.

Xi,j The i, j-th element of matrix X.

11
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Example Explanation
fθ(.), f(.; θ) The functions with the explicit parameters θ (unless clear

based on the context).
p(.), q(.) Probability density functions (PDFs) or probability

distributions are denoted by the lower-case letters p(.) and
q(.), where q(.) is commonly denoted as variational
distributions. We use the same notation for probability mass
functions (PMFs) of discrete random variables. The same
letter will be used for marginals, joint distributions, and
conditionals of the same probabilistic model.

N (.;µ,Σ) A multivariate normal (or Gaussian) distribution with a vector
of means µ and a covariance matrix Σ .

2.1.2 Neural Network

In this section, we briefly introduce the neural network used throughout this thesis. A neural

networks is a parameterised nonlinear network, which consists of multiple layers of nonlinear

transformation functions f l(.) to map input data x into the hidden vectors h:

h = fL(fL−1(f l(x))), l = 1, ..., L− 2 , (2.1)

where f is a parameterised affine linear transformation function followed with a nonlinear

function, such as ReLU, sigmoid or tanh functions:

f(x|θ) = Wx + b , (2.2)

Here θ denotes all parameters of the neural networks including W and b. In text domain,

input text data x will be encoded as corresponding embedding vectors:

et = E(xt), xt ∈ x , (2.3)
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Where E is a word embedding matrix with the size of |V | × d, and |V | is the vocabulary

size and d is the number of word embedding dimensions.

2.1.3 Variational Autoencoder

A variational autoencoder is a generative model, which is designed to generate data via a

latent variable z. For a dataset X = {xi}Ni=1 with N i.i.d. data, there are two steps in the

data generation process: (1) a latent variable z is sampled from a prior distribution Pθ(z); (2)

a data xi is generated from the conditional distribution Pθ(xi|z). We need to optimise the

marginal likelihood using VAE:

Pθ(xi) =

∫
Pθ(z)Pθ(xi|z)dz , (2.4)

However, both of the marginal likelihood Pθ(xi) and the true posterior distribution

Pθ(z|xi) are intractable, where

Pθ(z|xi) =
Pθ(xi|z)Pθ(z)

Pθ(xi)
, (2.5)

In order to train VAE, an encoder Qφ(z|xi) is used to approximate the true posterior

Pθ(z|xi). In this way, a data xi is encoded as a distribution of z via the encoder Qφ(z|xi) and

the latent code z is fed into the decoder Pθ(xi|z) to decode a distribution over some values of

xi.

In general, the VAE is trained to maximise the marginal log likelihood for the whole

training dataset:

logPθ (x1, . . . ,xN) =
N∑
i=1

logPθ (xi) , (2.6)
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This is essentially equivalent to maximising the following evidence lower bound (ELBO),

which consists of two terms (Kingma and Welling, 2014):

L(θ,φ; xi) = EQφ(z|xi)[logPθ(xi|z)]−DKL (Qφ(z|xi)‖P (z)) , (2.7)

The first term is the expected reconstruction error indicating how well the model can

reconstruct data given a latent variable. The second term is the KL-divergence of the approx-

imate posterior from prior, i.e., a regularisation pushing the learned posterior to be as close to

the prior as possible.

2.2 Dialogue Act Classification

Dialogue act classification is a task which focuses on predicting the correct DA label associated

with the corresponding utterance in the conversation. Broadly speaking, methods for DA

classification can be divided into two categories: traditional machine learning (e.g., support

vector machine (SVM), hidden Markov model (HMM), dynamic Bayesian network (DBN),

etc) and neural networks (e.g., recurrent neural networks (RNNs), convolutional neural

networks (CNN), etc). In this section, we will introduce the related work from these directions.

2.2.1 Traditional Machine Learning Methods

Stolcke et al. (2000) was the first work to model DA using a statistical approach and also

created a large human-annotated Switchboard dataset from the human-to-human telephone

conversation. They utilised the 1st-order HMM to model the dialogue conversation, where

the HMM states denote DAs, observations represent utterances, transition probabilities and

observation probabilities are respectively calculated by the n-gram discourse model and

the posterior likelihood of the DA. With the trigram discourse model and the HMM, their

model achieved 71% DA classification accuracy in the Switchboard corpus. In contrast

with Stolcke et al. (2000) which recognised DA classification as a structured prediction task,
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Liu (2006) regarded this task as a multiclass work by breaking the direct multiclass task

into multiple binary classification sub-tasks using SVMs and error correcting output codes

(ECOC), and then combining their results together. Their experiment empirically showed

that the combination of multiple binary SVM and the ECOC improve the DA classification

accuracy compared with the direct multiclass task using SVM. Kim et al. (2010) investigated

the effectiveness of various features for the DA classification, e.g., bag of words (BoW), the

location of an utterance, author information, the dependency of different utterances, etc. The

finding is that the structural information (i.e., the position of each utterance and the author

information) and inter-utterance dependency help to improve the DA accuracy associated

with CRF and 2-grams/3-grams works well with SVM.

In contrast with discriminative models only used in the aforementioned works, there is

another research direction combining the discriminative model and the generative model to

classify DA labels. Dielmann and Renals (2008) proposed a joint generative model for the

DA segmentation and classification. In detail, various lexical and prosodic features including

timing, intonation and energy are encoded using a Gaussian mixture model (GMM), a factored

language model (FLM) and an interpolated FLM are used to model the dependency between

DA labels and the corresponding utterances and a trigram language model is applied to model

the probability of predicting a sequence of DA labels. Finally, a switching dynamic Bayesian

network (DBN) integrates all components together and a CRF is built upon this architecture

to classify DA labels. Wallace et al. (2013) utilised a generative joint sequential model to

classify both DA and topics of patient-doctor conversations. Their model is similar to the

factorial LDA model (Paul and Dredze, 2012), which generalises LDA to assign each token

a K-dimensional vector of latent variables. Each utterance is generated conditioned on the

previous and current topic/DA pairs in their model.

2.2.2 Deep Learning Neural Networks

In recent years, deep learning neural networks have been commonly applied in several NLP

tasks, including DA classification. Kalchbrenner and Blunsom (2013) utilised CNN and RNN
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to model the sentence and discourse information, respectively. A hierarchical convolutional

neural network (HCNN) is used to encode each input sentence in the conversation, and

then an RNN takes the current sentence vector from the HCNN and previously predicted

DA label as input to predict the current DA label, which models the interactions between

different utterances during the conversation. Khanpour et al. (2016) empirically confirmed

that pre-trained word embedding, different dropout regularisation probabilities, fine-tuned

decay rate and the number of LSTM layers have a significant effect on the DA classification

accuracy. Different to the aforementioned works, Ji et al. (2016) developed a latent variable

recurrent neural network for jointly modelling sequences of words and discourse relations

between adjacent sentences. In their work, the shallow discourse structure is represented as a

latent variable and the contextual information from preceding utterances are modelled with

an RNN.

However, the above works only regard the conversation as a flat structure and other

information has been not encoded yet, e.g., character information, the history utterance in the

conversation, etc. Liu et al. (2017) proposed a hierarchical model for DA labels, where a CNN

encoded the input utterances and then the previous predicted DA labels or the probability

distributions are concatenated with the current CNN sentence vector for the current DA label

prediction using an LSTM. Kumar et al. (2018) further proposed a hierarchical bidirectional

LSTM with the CRF as the top layer to recognise DA labels. Compared to Liu et al. (2017),

Kumar et al. (2018) encoded the entire history utterance and the corresponding DA labels

using the CRF, which models the deeper dependency among utterances and DA labels in

the conversation. Chen et al. (2018) proposed a CRF-Attentive Structured Network for DA

classification. A memory mechanism is employed to jointly encode the current sentence

vector and context information, and the CRF is improved by the internal structured attention

network to consider the contextual information including nearing utterances and DA labels.

In contrast with aforesaid works, Li et al. (2019c) proposed a multitask learning setting to

parallel classify the DA label and topic label of each utterance. Specifically, the character-

level, word-level, utterance-level and conversation-level information are jointly captured for

DA classification. In addition, a dual attention mechanism was utilised to share the DA and
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topic information for each task and a CRF layer was also added into the top layer to further

model the dependency between utterances and DA labels in the conversation. Raheja and

Tetreault (2019) instead utilised the context-aware self-attention to capture the dependency

among different utterances, and they also used multiple word embeddings (e.g., pre-trained

ELMO word embedding) to enhance the performance of their model.

2.3 KL Loss Vanishing

Variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) is a

generative model which is commonly applied in image generation (Huang et al., 2018), text

classification (Xu et al., 2017), text generation (Bowman et al., 2016; Yang et al., 2017;

Li et al., 2020b), etc. However, an issue occurs called KL loss vanishing (or posterior

collapse) when the VAE is used in the text generation. The latent variable will be ignored

and the VAE is downgraded into a simple language model without the help of the latent

variable. Consequently, the quality of the generated texts is seriously affected. Several

works proposed methodologies for this issue from different views, e.g., changing the training

strategy, weakening the decoder, replacing the Gaussian prior with other distributions, etc. A

detailed literature review will be introduced from the aforementioned directions.

Bowman et al. (2016) was the first work to apply the VAE into the text generation task.

When the VAE is utilised as a language model, a small reconstruction loss and a non-zero KL

divergence represent that the latent variable z captures some useful information. However,

they found that the posterior distribution Qφ(z|x) is equal to the prior distribution P (z) (i.e.,

the KL divergence is zero) during training, which leads to the KL loss vanishing (or posterior

collapse). This issue further downgrades the VAE into a simpler language model and causes

bad-quality text generation. Bowman et al. (2016) argued that the sensitivity of the LSTM

decoder to the subtle variation in its hidden vectors is a major cause of the KL loss vanishing,

which optimises the model in an easier way by ignoring the latent variable z. A KL cost

annealing is thus proposed to tackle this issue, where an increasing weight is added to the KL

divergence from 0 to 1 in order to prevent the VAE from ignoring z. At first, the weight is set
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as zero (i.e., the KL term disappears) and the information from the input x can be encoded

into z as much as possible. Then the weight is gradually increased to 1 and the model is forced

to smooth out the latent variable z in the latent space. Finally, the region of the trained z is

allocated a high probability by the Gaussian prior distributions. The experiment empirically

proves that the KL loss vanishing issue can be alleviated and this trick is commonly used in

various work later. In addition, as a powerful decoder is another reason leading to the posterior

collapse, a method to weaken the decoder is developed by randomly replacing the ground-truth

words encoded in the decoder with the UNK token. Yang et al. (2017) instead proposed a

dilated CNN to replace the powerful LSTM decoder by restricting the contextual capacity

of the decoder. The contextual width of the dilated can be controlled based on the dilation

size and filter size. Their experiment confirms that the VAE with a dilated CNN decoder can

generate better sentences compared with the vanilla RNN-based VAE with lower NLL loss

and perplexity. They further explored that there exists a trade-off between the contextual

capacity of the decoder and how to effectively use the encoding information. Their model

also achieved great performance for the semi-supervised text classification and unsupervised

clustering of the text categorisation and sentiment analysis. However, the CNN decoder

introduced by (Yang et al., 2017) needs a careful selection to achieve the best contextual

capacity, Semeniuta et al. (2017) developed a hybrid convolutional and deconvolutional

VAE combined with RNN for the text generation. The encoder in their model consists of a

feed-forward network with a one-dimensional convolutional layer and the decoder includes a

one-dimensional deconvolutional layer plus an RNN layer. This entire architecture not only

converges the model faster but also captures longer dependencies in the text sequences. They

further added an auxiliary regularisation loss by calculating the intermediate reconstruction

loss with the hidden vectors from the deconvolutional layer. Compared to the aforementioned

work weakening the decoder with different methods, Dieng et al. (2019) instead proposed a

skip connection in the decoder side to enforce the connection between the latent variable z

and different layers in the decoder, which avoids the ignorance of z. They empirically and

theoretically show that the skip connections increase the mutual information between the

input x and the inferred z, and the model outperforms several baselines in image synthesis
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and text generation tasks.

Another direction to alleviate the KL loss vanishing is changing the training strategy. Kim

et al. (2018) introduced a hybrid training approach to alleviate the posterior collapse issue,

i.e., utilising amortized variational inference (AVI) to quickly initialise the whole variational

parameters first and then applying stochastic variational inference (SVI) to optimise each

data point. Specifically, AVI is used to update the variational parameters, where the encoder

(i.e., inference network) along with the decoder (i.e., generative network) is optimised across

the whole data using AVI and then SVI is employed to iteratively refine each data point

with several numbers of steps. Their experiments show that their semi-amortized variational

autoencoder outperforms the autoregressive/VAE/SVI baselines in texts and image generation

tasks. Although the hybrid training improves the performance of the VAE, the effectiveness

of their model is still limited (generally requiring more than 10x time to finish convergence).

Fu et al. (2019) instead proposed a cyclical annealing schedule to repeatedly increase the

weight β of the KL term from 0 to 1, which avoids the unwell-trained latent variables at

the beginning of optimisation. This annealing schedule can be regarded as a cyclical warm

restart, which gradually helps the latent variable z to encode the information of the input z. In

contrast with Fu et al. (2019) which cyclically anneals the weight β, He et al. (2019) found

that the training for the inference network initially cannot approach the true posterior of the

model, and subsequently conducted an aggressive optimisation for the inference network

before updating the whole model. The mutual information between the latent variable z

and the input x under the posterior distribution Qφ(z|x) to control the stopping criterion of

the aggressive optimisation. Li et al. (2019a) recently proposed two simple approaches to

improve the VAE in text modelling: (1) they pretrained the inference network first based

on the autoencoder objective function to deviate the model from the local optimal where

posterior collapse happens, and (2) the KL term is replaced with the free bits (FB) (Kingma

et al., 2016) using a hinge loss to threshold the loss as a constant. The combination of them

achieves superior performance in the language modelling task under the perplexity metric.

Apart from the aforementioned directions, there are also different attempts for the pos-

terior collapse. Xu and Durrett (2018) replaced the Gaussian prior distribution with the
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von Mises-Fisher (vMF) distribution. Specifically, the KL term only depends on the fixed

concentration parameter κ in the unit hypersphere placed by the vMF distribution, and the

KL term is constant and the posterior collapse can be avoided. Different from fixing the KL

term by changing different prior distributions, Fang et al. (2019) introduced sample-based

representations of input data and the aggregated posterior samples are matched to the prior

distribution. Then the latent variable z is guided to encode more diverse and useful inform-

ation of each input data. Although most works focus on weakening the decoder in VAE, a

few works tried to improve the encoder instead. Li et al. (2019b) proposed an HR-VAE to

impose a holistic KL regularisation into each concatenation of the hidden and cell states of

the LSTM, which improves the encoding capacity of the encoder and avoids the posterior

collapse. Li et al. (2020b) further proposed two variants of the HR-VAE by sampling z at each

timestep and feeding the mean or sum of all z to the decoder. In addition, the dimension of z

in the variants are much smaller than the one in HR-VAE, and the training speed is six-time

faster than the HR-VAE. Instead of imposing the KL divergence into each timestep in the

encoder, Zhu et al. (2020) forced the KL divergence to follow a distribution across the entire

dataset and applied a fixed batch normalisation to the expectation of the KL distribution. In

this way, a positive expectation of the KL distribution is confirmed and the posterior collapse

consequently is alleviated.

2.4 Latent Hole Detection

VAE has shown its powerful capacity to unsupervisedly generate outputs by mapping the

non-trivial high-dimensional data manifold to the learned low-dimensional manifold (i.e., the

latent space). There are several successful applications of the VAE in a number of downstream

tasks, e.g., image synthesis (Huang et al., 2018), language modelling (Bowman et al., 2016;

Fang et al., 2019), dialogue generation (Zhao et al., 2017), music composition (Roberts et al.,

2018), etc. However, when the high-dimensional non-trivial data manifold is mapped to the

low-dimensional manifold using VAE, the low-dimensional manifold does have low-density

regions (aka. latent holes), from which the generated outputs have low quality (Falorsi et al.,
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2018; Xu et al., 2020). This section summarises relevant works which identified those areas

and tried to alleviate the latent holes.

When a non-trivial high-dimensional data manifold is mapped to a low-dimensional

manifold, the two manifolds are not homeomorphic1 and there exists an irreversible mapping

between these manifolds. Especially for VAE, the data manifold is mapped to the approximate

posterior distribution in the latent space following the Gaussian prior distribution. Since the

basic structure between the data manifold and the approximate posterior distribution in the

latent space is different, the embedding of the data manifold is smoothly mapped to the latent

space at the expense of leaving several low-density latent regions, which leads the bad-quality

outputs. Davidson et al. (2018) proposed to use a von Mises-Fisher (vMF) distribution to

replace the Gaussian prior for the VAE. The advantage of vMF is that a uniform distribution

prior will be placed on the latent space and this prior would not force different clusters of the

mapped data manifold to the origin and does not add extra directional bias into the distribution

of the mapped distribution. Their model was applied to several tasks, e.g., semi-supervised

classification on MNIST, link prediction on graphs, etc, which shows that the latent space

using vMF learns a better latent representation than Gaussian distribution. Falorsi et al.

(2018) instead investigated this issue in Lie groups and proposed to construct a VAE with the

latent variables lying in the Lie groups with the help of reparameterised trick on the group

of 3D rotation SO(3). They also developed an evaluation metric to measure the continuity

of the latent representations sampled from the latent space based on the Lipschitz continuity

assumption. In contrast with vMF used by (Davidson et al., 2018), Kalatzis et al. (2020) also

argued that the Euclidean space is the heart of the failure for the low-density latent regions, but

they employed Riemannian Brownian motion prior to replace the Gaussian prior. Especially,

the identifiability issue was solved using the Riemannian Brownian motion prior and this prior

also constrains the samples only from the mapped data manifold in the latent space, which

effectively alleviates discontinuity in the latent space. However, the aforementioned works

mainly focus on the image field, the discrete text space has rarely been explored yet. Xu et al.

(2020) were the first work to explore the low-density latent regions in the text domain. They

1the topological structure should be preserved mapped from one space to another one.
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proposed to learn a probability simplex to constrain the posterior mean in it and only sampled

and manipulated latent representations in the simplex. In addition, the manipulated latent

representations are evaluated using the NLL loss under the aggregated posterior distributions

to distinguish which latent vector is a hole or not.



Chapter 3

A Dual-Attention Hierarchical Model for

Dialogue Act Recognition

3.1 Introduction

Dialogue Acts (DA) are semantic labels of utterances, which are crucial to understanding

communication: much of a speaker’s intent is expressed, explicitly or implicitly, via social

actions (e.g., questions or requests) associated with utterances (Searle, 1969). Recognising

DA labels is important for many natural language processing tasks. For instance, in dialogue

systems, knowing the DA label of an utterance supports its interpretation as well as the

generation of an appropriate response (Searle, 1969; Chen et al., 2018). In the security

domain, being able to detect intention in conversational texts can effectively support the

recognition of sensitive information exchanged in emails or other communication channels,

which is critical to timely security intervention (Verma et al., 2012).

A wide range of techniques have been investigated for DA classification. Early works

on DA classification are mostly based on general machine learning techniques, framing

the problem either as multi-class classification (e.g., using SVMs (Liu, 2006) and dynamic

Bayesian networks (Dielmann and Renals, 2008)) or a structured prediction task (e.g., using

Conditional Random Fields (Kim et al., 2010; Chen et al., 2018; Raheja and Tetreault, 2019,

23
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CRF)). Recent studies to the problem of DA classification have seen an increasing uptake

of deep learning techniques, where promising results have been obtained. Deep learning

approaches typically model the dependency between adjacent utterances (Ji et al., 2016; Lee

and Dernoncourt, 2016). Some researchers further account for dependencies among both

consecutive utterances and consecutive DAs, i.e., both are considered factors that influence

natural dialogue (Kumar et al., 2018; Chen et al., 2018). There is also work exploring different

deep learning architectures (e.g., hierarchical CNN or RNN/LSTM) for incorporating context

information for DA classification (Liu et al., 2017).

It has been observed that conversational utterances are normally associated with both a DA

and a topic, where the former captures the social act (e.g., promising) and the latter describes

the subject matter (Wallace et al., 2013). It is also recognised that the types of DA associated

with a conversation are likely to be influenced by the topic of the conversation (Searle, 1969;

Wallace et al., 2013). For instance, conversations relating to topics about customer service

might be more frequently associated with DAs of type Wh-question (e.g., Why my mobile

is not working?) and a complaining statement (Bhuiyan et al., 2018); whereas meetings

covering administrative topics about resource allocation are likely to exhibit significantly

more defending statements and floor grabbers (e.g., Well I mean - is the handheld really any

better?) (Wrede and Shriberg, 2003). However, such a reasonable source of information,

surprisingly, has not been explored in the deep learning literature for DA classification. We

assume that modelling the topics of utterances as additional contextual information may

effectively support DA classification.

We propose a dual-attention hierarchical recurrent neural network with a CRF (DAH-CRF)

for DA classification. Our model is able to account for rich context information with the

developed dual-attention mechanism, which, in addition to accounting for the dependencies

between utterances, can further capture, for utterances, information about both topics and

DAs. Topic is a useful source of context information which has not previously been explored

in existing deep learning models for DA classification. Second, compared to the flat structure

employed by existing models (Khanpour et al., 2016; Ji et al., 2016), our hierarchical recurrent

neural network can represent the input at the character, word, utterance, and conversation
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levels, preserving the natural hierarchical structure of a conversation. To capture the topic

information of conversations, we propose a simple automatic utterance-level topic labelling

mechanism based on LDA (Blei et al., 2003), which avoids expensive human annotation and

improves the generalisability of our model.

We evaluate our model against several strong baselines (Wallace et al., 2013; Ji et al.,

2016; Kumar et al., 2018; Chen et al., 2018; Raheja and Tetreault, 2019) on the task of DA

classification. Extensive experiments conducted on three public datasets (i.e., Switchboard

(SWDA), DailyDialog (DyDA), and the Meeting Recorder Dialogue Act corpus (MRDA))

show that by modelling the topic information of utterances as an auxiliary task, our model

can significantly improve DA classification for all datasets compared to a base model without

modelling topic information. Our model also yields better or comparable performance to

state-of-the-art deep learning method (Raheja and Tetreault, 2019) in classification accuracy.

To summarise, the contributions of this work are three-fold:

1. we propose to leverage topic information of utterances, a useful source of contextual

information which has not previously been explored in existing deep learning models

for DA classification;

2. we propose a dual-attention hierarchical recurrent neural network with a CRF which re-

spects the natural hierarchical structure of a conversation, and is able to incorporate rich

context information for DA classification, achieving better or comparable performance

to the state-of-the-art;

3. we develop a simple topic labelling mechanism, showing that using the automatically

acquired topic information for utterances can effectively improve DA classification.

3.2 Methodology

Given a training corpus D = 〈(Cn, Yn, Zn)〉Nn=1, where Cn = 〈unt 〉Tt=1 is a conversation

containing a sequence of T utterances, Yn = 〈ynt 〉Tt=1 and Zn = 〈znt 〉Tt=1 are the corresponding
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Figure 3.1: Overview of the dual-attention hierarchical recurrent neural network
with a CRF.

labels of DA and topics for Cn, respectively. Each utterance ut = 〈wit〉Ki=1 of Cn is a sequence

of K words. Our goal is to learn a model from D, such that, given an unseen conversation Cu,

the model can predict the DA labels of the utterances of Cu.

Figure 3.1 gives an overview of the proposed Dual-Attention Hierarchical recurrent neural

network with a CRF (DAH-CRF). A shared utterance encoder encodes each word wit of

an utterance ut into a vector hit. The DA attention and topic attention mechanisms capture

DA and topic information as well as the interactions between them. The outputs of the

dual-attention are then encoded in the conversation-level sequence taggers (i.e., gt and st),

based on the corresponding utterance representations (i.e., lt and vt). Finally, the target labels

(i.e., yt and zt) are predicted in the CRF layer.

3.2.1 Shared Utterance Encoder

In our model, we adopt a shared utterance encoder to encode the input utterances. Such a

design is based on the rationale that the shared encoder can transfer parameters between

two tasks and reduce the risk of overfitting (Ruder, 2017). Specifically, the shared utterance
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encoder is implemented using the bidirectional gated recurrent unit (Cho et al., 2014, BiGRU),

which encodes each utterance ut = 〈wit〉Ki=1 of a conversation Cn as a series of hidden states

〈hit〉Ki=1. Here, i indicates the timestamp of a sequence, and we define hit as follows

hit =
−→
h i
t ⊕
←−
h i
t (3.1)

where ⊕ is an operation for concatenating two vectors, and
−→
h i
t and

←−
h i
t are the i-th hidden

state of the forward gated recurrent unit (Cho et al., 2014, GRU) and backward GRU for wit,

respectively. Formally, the forward GRU
−→
h i
t is computed as follows

−→
h i
t = GRU(

−→
h i−1
t , eit) (3.2)

where eit is the concatenation of the word embedding and the character embedding of

word wit. Finally, the backward GRU encodes ut from the reverse direction (i.e. wKt → w1
t )

and generates 〈
←−
hit〉Ki=1 following the same formulation as the forward GRU.

3.2.2 Task-specific Attention

Recall that one of the key challenges of our model is to capture for each utterance, information

about both DAs and topics, as well as information about the interactions between them. We

address this challenge by incorporating into our model a novel task-specific dual-attention

mechanism, which accounts for both DA and topic information extracted from utterances. In

addition, DAs and topics are semantically relevant to different words in an utterance. With the

proposed attention mechanism, our model can also assign different weights to the words of an

utterance by learning the degree of importance of the words to the DA or topic labelling task,

i.e., promoting the words which are important to the task and reducing the noise introduced

by less important words.

For each utterance ut, the DA attention calculates a weight vector 〈αit〉Ki=1 for 〈hit〉Ki=1, the
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hidden states of ut. ut can then be represented as an attention vector lt computed as follows

lt =
K∑
i=1

αith
i
t (3.3)

In contrast to the traditional attention mechanism (Bahdanau et al., 2015), which only

depends on one set of hidden vectors from the Seq2Seq decoder, the DA attention of our

model relies on two sets of hidden vectors, i.e., gt−1 of the conversation-level DA tagger and

st−1 of the conversation-level topic tagger, where dual attention mechanism can capture, for

utterances, information about both DAs and topics as well as the interaction between them.

Specifically, the weights 〈αit〉Ki=1 for the DA attention are calculated as follows:

αit = softmax(oit) (3.4)

Where the hidden vector oit is calculated using a linear neural network:

oit = w>a tanh
(
W(act)(st−1 ⊕ gt−1 ⊕ hit) + b(act)

)
(3.5)

The topic attention layer has a similar architecture to the DA attention layer, which takes

as input both st−1 and gt−1. The weight vector 〈βit〉Ki=1 for the topic attention output vt can

be calculated similar to Eq. 3.3 and Eq. 3.4. Note that w>a , W(act), and b(act) are vectors of

parameters that need to be learned during training.

3.2.3 Conversational Sequence Tagger

3.2.3.1 CRF Sequence Tagger for DA

The conversational CRF sequence tagger for DA predicts the next DA yt conditioned on the

conversational hidden state gt and adjacent DAs (c.f. Figure 3.1). Formally, this conditional
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probability of the whole conversation can be formulated as

p (y1:T |C; θ) =

∏T
t=1 Ψ (yt−1, yt,gt; θ)∑

Y

∏T
t=1 Ψ (yt−1, yt,gt; θ)

(3.6)

Ψ (yt−1, yt,gt; θ) = Ψemi (yt,gt) Ψtran (yt−1, yt) (3.7)

= gt [yt] Pyt,yt−1

Here the feature function Ψ(·) includes two score potentials: emission and transition.

The emission potential Ψemi regards utterance representation gt as the unary feature. The

transition potential Ψtran is a pairwise feature constructed from a T ×T state transition matrix

P, where T is the number of DA classes, and Pyt,yt−1 is the probability of transiting from

state yt−1 to yt. C = 〈ut〉Tt=1 is the sequence of all utterances seen so far, θ is the parameters

of the CRF layer. gt is calculated in a BiGRU similar to Eq. 3.1 and Eq. 3.2:

gt = −→g t ⊕←−g t (3.8)

−→g t = GRU(−→g t−1, lt) (3.9)

3.2.3.2 CRF Sequence Tagger for Topic

The conversational CRF sequence tagger for topic is designed to predict topic zt conditioned

on vt and adjacent topics, which can be calculated similar to the formulation of the CRF

tagger for DA.
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3.2.3.3 Training the Model

Let Θ be all the model parameters that need to be estimated for DAH-CRF. Θ then is estimated

based on D = 〈(Cn, Yn, Zn)〉Nn=1 (i.e., a corpus with N conversations) by maximising the

following objective function

L =
N∑
n=1

[log (p (yn1:T |Cn; Θ)) + α log (p (zn1:T |Cn; Θ))] (3.10)

The hyper-parameter α controls the contribution of the conversational topic tagger towards

the objective function. In our experiments, α = 0.5 is determined using the validation

datasets. During the test, the optimal DA or topic sequence is calculated using the Viterbi

algorithm (Viterbi, 1967).

Y ′ = arg max
y1:T∈Y

p(y1:T |C,Θ) (3.11)

3.2.4 Automatically Acquiring Topic Labels

To avoid expensive human annotation and to improve the generalisability of our model, we

propose to label the topic of each utterance of the datasets using LDA (Blei et al., 2003). While

perplexity has been widely used for model selection for LDA, we employ a topic coherence

measure proposed by (Röder et al., 2015) to determine the optimal topic number for each

dataset, which combines the indirect cosine measure with the normalised pointwise mutual

information (Bouma, 2009, NPMI) and the Boolean sliding window. Empirically, we found

the latter yields much better topic clusters than perplexity for supporting DA classification.

We treat each conversation as a document and train topic models using Gensim with topic

number settings ranging from 10 to 100 (using an increment step of 10). Gibbs sampling

is used to estimate the model posterior and for each model we run 1,000 iterations. For

each trained model, we calculate the averaged coherence score of the extracted topics using
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Figure 3.2: Coherence score of LDA on three datasets.

Gensim1, an implementation following (Röder et al., 2015). Figure 3.2 shows the topic

coherence score for each topic number setting for all datasets, from which we determine

that the optimal topic number setting for SWDA, DyDA, and MRDA are 60, 30, and 30,

respectively.

Based on the optimal models (i.e., a trained LDA model using the optimal topic number

setting), we assign topic labels to the datasets with two different strategies, i.e., conversation-

level labelling (conv) and utterance-level labelling (utt). For conversation-level labelling,

we assign the topic label with the highest marginal probability to the conversation based

on the corresponding per-document topic proportion estimated by LDA. Every utterance

of the conversation then shares the same topic label of the conversation. Topic shift is

common within the written and dialogue conversations when a current topic finishes and a

new one starts (Qian and Jaeger, 2011; Xu and Reitter, 2016). Utterance-level topic labels are

essential to track the status of the topic shift. Manually labelling utterance-level topics is time-

consuming and a lack of generalisability for different tasks. Therefore, the utterance-level

labelling using LDA to assign topic labels for each utterance in the datasets is a crucial step to

alleviate the issue of manual topic labels. For utterance-level labelling, there is an additional

step to perform inference on every utterance based on the corresponding optimal model (e.g.,

for every utterance of SWDA, we do inference using the LDA trained on SWDA with 60

1https://radimrehurek.com/gensim/models/coherencemodel.html

https://radimrehurek.com/gensim/models/coherencemodel.html
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Dataset |C| |T | |V | Training Validation Testing
SWDA 42 66 20K 1003/193K 112/23K 19/5K
DyDA 4 10 22K 11K/92.7K 1K/8.5K 1K/8.2K
MRDA 5 - 15K 51/77.9K 11/15.8K 11/15.5K

Table 3.1: |C| is the number of DA classes, |T | is the number of manually labelled
conversation-level topic classes, |V | is the vocabulary size. Training, Validation
and Testing indicate the number of conversations/utterances in the respective splits.

topics), and assign the topic label with the highest marginal probability to the utterance.

Therefore, the topic labels of the utterances of the same conversation could be different for

utterance-level labelling.

3.3 Experimental Settings

3.3.1 Datasets

We evaluate the performance of our model on three public DA datasets with different charac-

teristics, namely, Switchboard (Jurafsky, 1997, SWDA), Dailydialog (Li et al., 2017b, DyDA),

and the Meeting Recorder Dialogue Act corpus (Shriberg et al., 2004, MRDA).

3.3.1.1 Switchboard Dataset

SWDA2 consists of 1,155 two-sided telephone conversations manually labelled with 66

conversation-level topics (e.g., taxes, music, etc.) and 42 utterance-level DAs (e.g., statement-

opinion, statement-non-opinion, wh-question). The average speaker turns per conversation,

tokens per conversation, and tokens per utterance are 195.2, 1,237.8, and 7.0, respectively.

This dataset is highly imbalanced in terms of DAs: the DA labels statement-non-opinion,

acknowledge (backchannel) and statement-opinion account for over 65% of the whole.
2http://compprag.christopherpotts.net/swda.html

http://compprag.christopherpotts.net/swda.html
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3.3.1.2 Dailydialog Dataset

DyDA3 contains 13,118 human-written daily conversations, manually labelled with 10

conversation-level topics (e.g., tourism, politics, finance) as well as four utterance-level

DA classes, i.e., inform, question, directive and commissive. The former two classes are

information transfer acts, while the latter two are action discussion acts. The dataset is also

labelled with seven emotion labels and four dialogue act classes in the utterance level, such

as inform, question, directive and commissive. The average speaker turns per conversation,

tokens per conversation, and tokens per utterance are 7.9, 114.7, and 14.6, respectively. The

definition of the four mutually-exclusive categories of DAs is as follows Li et al. (2017b).

3.3.1.3 Meeting Recorder Dialogue Act Dataset

MRDA4 contains 75 meeting conversations annotated with 5 DAs, i.e., Statement (S), Ques-

tion (Q), Floorgrabber (F), Backchannel (B), and Disruption (D). The average number of

utterances per conversation is 1,496. There are no manually annotated topic labels available

for this dataset. There are 11 general tags and 39 specific tags in the original MRDA tagset,

but the most common usage is to group 11 general tags into 5 DAs, i.e., Statements (S),

Questions (Q), Floorgrabber (F), Backchannel (B), and Disruption (D).

3.3.2 Implementation Details

For all experimental datasets, the top 85% highest frequency words were indexed. For SWDA

and MRDA, we split training/validation/testing datasets following (Stolcke et al., 2000; Lee

and Dernoncourt, 2016). For DyDA, we used the standard split from the original dataset (Li

et al., 2017b). The statistics of the experimental datasets are summarised in Table 3.1. We

represented input data with 300-dimensional Glove word embeddings (Pennington et al.,

2014) and 50-dimensional character embeddings (Ma and Hovy, 2016). We set the dimension

of the hidden layers (i.e., hit, gt and st) to 256 and applied a dropout layer to both the shared

3http://yanran.li/dailydialog
4http://www1.icsi.berkeley.edu/~ees/dadb/

http://yanran.li/dailydialog
http://www1.icsi.berkeley.edu/~ees/dadb/
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encoder and the sequence tagger at a rate of 0.2. The Adam optimiser (Kingma and Ba, 2015)

was used for training with an initial learning rate of 0.001 and a weight decay of 0.0001. Each

utterance in a mini-batch was padded to the maximum length for that batch, and the maximum

batch-size allowed was 50.

3.3.3 Baselines

We compare the proposed DAH-CRF model incorporating utterance-level topic labels extrac-

ted by LDA (denoted as DAH-CRF+LDAutt) against five strong baselines and two variants of

our own models:

JAS5: A generative joint, additive, sequential model of topics and speech acts in patient-doctor

communication (Wallace et al., 2013);

DRLM-Cond6: A latent variable recurrent neural network for DA classification (Ji et al.,

2016);

Bi-LSTM-CRF7: A hierarchical Bi-LSTM with a CRF to classify DAs (Kumar et al., 2018);

CRF-ASN: An attentive structured network with a CRF for DA classification (Chen et al.,

2018);

SelfAtt-CRF: A hierarchical Bi-GRU with self-attention and CRF (Raheja and Tetreault,

2019);

DAH-CRF+MANUALconv: Use the manually annotated conversation-level topic labels (i.e.,

each utterance of the conversation shares the same topic) for DAH-CRF model training rather

than the topic labels automatically acquired from LDA;

DAH-CRF+LDAconv: Use conversation-level topic labels automatically acquired from LDA

for DAH-CRF model training.

Note that only JAS (a non-deep-learning model) has attempted to model both DAs and

topics, whereas all the deep learning baselines do not model topic information as a source of

context for DA classification. All the baselines mentioned above use the same test dataset as
5https://github.com/bwallace/JAS
6https://github.com/jiyfeng/drlm
7https://github.com/YanWenqiang/HBLSTM-CRF

https://github.com/bwallace/JAS
https://github.com/jiyfeng/drlm
https://github.com/YanWenqiang/HBLSTM-CRF
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Model SWDA MRDA DyDA

Baselines

JAS 71.2 81.3 75.9
DRLM-Cond 77.0† 88.4 81.1
Bi-LSTM-CRF 79.2† 90.9† 83.6
CRF-ASN 80.8† 91.4† -
SelfAtt-CRF 82.9† 91.1† -

Ours

DAH-CRF + MANUALconv 80.9 - 86.5
DAH-CRF + LDAconv 80.7 91.2 86.4
DAH-CRF + LDAutt 82.3 92.2 88.1
Human Agreement 84.0 - -

Table 3.2: DA classification accuracy. † indicates the results which are reported
from the prior publications.

our models for all experimental datasets.

3.4 Experimental Results

3.4.1 Dialogue Acts Classification

Table 3.2 shows the DA classification accuracy of our models and the baselines on three

experimental datasets. We fine-tuned the model parameters for JAS, DRLM-Cond and Bi-

LSTM-CRF in order to make the comparison as fair as possible. The implementation of

CRF-ASN and SelfAtt-CRF are not available so we can only report their results for SWDA

and MRDA based on the original papers (Chen et al., 2018; Raheja and Tetreault, 2019).

It can be observed that by jointly modelling DA and topics, DAH-CRF+LDAutt outper-

forms the two best baseline models SelfAtt-CRF and CRF-ASN around 1% on the MRDA

dataset. Our model also gives similar performance to SelfAtt-CRF, the baseline which

achieved the state-of-the-art performance on the SWDA dataset (i.e., 82.3% vs. 82.9%). While

both manually annotated and automatically acquired topic labels are effective, we see that

DAH-CRF+LDAutt outperforms both DAH-CRF+MANUALconv and DAH-CRF+LDAconv,

i.e., with over 1.6% gain on DyDA and over 1.4% on SWDA (significant; paired t-test p < .01).

It is also observed that DAH-CRF+MANUALconv and DAH-CRF+LDAconv perform very

similar to each other.
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Model SWDA MRDA DyDA
SAH 76.2 88.5 82.5
SAH-CRF 78.4 89.6 84.1
DAH + LDAutt 79.5 91.1 86.0
DAH-CRF + LDAutt (without Dual-Att) 81.0 91.3 86.3
DAH-CRF + LDAutt 82.3 92.2 88.1

Table 3.3: Ablation studies of DA classification.

3.4.2 Ablation Study Results

We conducted ablation studies (see Table 3.3) in order to evaluate the contribution of the

components of our DAH-CRF+LDAutt model, and more importantly, the effectiveness of

leveraging topic information for supporting DA classification.

DAH-CRF+LDAutt (without Dual-Att) removes the dual-attention component from DAH-

CRF+LDAutt, and DAH+LDAutt removes the CRF from DAH-CRF+LDAutt but retaining

the dual-attention component. SAH is a Single-Attention Hierarchical RNN model without a

CRF, i.e., a simplified version of DAH+LDAutt that only models DAs with topical information

omitted. As can be seen in Table 3.3, DAH+LDAutt achieves over 3% averaged gain on

all datasets when compared to SAH, which clearly shows that leveraging topic information

can effectively support DA classification. It is also observed that both the dual-attention

mechanism and the CRF component are beneficial, but are more effective on the SWDA and

DyDA datasets than MRDA.

In summary, while all the analysed model components are beneficial, the biggest gain is

obtained by jointly modelling DAs and topics.

3.4.3 Analysing the Effectiveness of Joint Modelling Dialogue Act and

Topic

In this section, we provide detailed analysis on why DAH-CRF+LDAutt can yield better

performance than SAH-CRF by jointly modelling DAs and topics.

Figure 3.3 shows the normalized confusion matrix derived from 10 DA classes of



3.4. EXPERIMENTAL RESULTS 37

Normalised Confusion Matrix

Figure 3.3: The normalized confusion matrix of DAs using SAH-CRF (left) and
DAH-CRF+LDAutt (right) on SWDA dataset.

SWDA for both SAH-CRF and DAH-CRF+LDAutt models. It can be observed that DAH-

CRF+LDAutt yields improvement on recall for many DA classes compared to SAH-CRF, e.g.,

23.8% improvement on bk and 11.7% on sv. For bk (Response Acknowledge) which

has the highest improvement level, we see that the improvement largely comes from the reduc-

tion of misclassifing bk to b (Acknowledge Backchannel). The key difference between

bk and b is that an utterance labelled with bk has to be produced within a question-answer

context, whereas b is a “continuer” simply representing a response to the speaker (Jurafsky,

1997). It is not surprising that SAH-CRF makes poor prediction on the utterances of these two

DAs: they share many syntactic cues, e.g., indicator words such ‘okay’, ‘oh’, and ‘uh-huh’,

which can easily confuse the model. When comparing the topic distribution of the utterances

under the bk and b categories (cf. Figure 3.5), we found topics relating to personal leisure

(e.g., buying cars, music, and exercise) are much more prominent in bk than b. By leveraging

the topic information, DAH-CRF+LDAutt can better handle the confusion cases and hence

improve the prediction for bk significantly.

There are also cases where DAH-CRF+LDAutt performs worse than SAH-CRF. Take the
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Normalised Confusion Matrix

Predicted label Predicted label

Figure 3.4: The normalized confusion matrix of DAs using SAH-CRF (left) and
DAH-CRF+LDAutt (right) on DyDA dataset.

DA pair of qo (Open Question) and qw (wh-questions) as an example. qo refers to

questions like ‘How about you?’ and its variations (e.g., ‘What do you think?’), whereas qw

represents wh-questions which are much more specific in general (e.g. ‘What other long range

goals do you have?’). SAH-CRF gives quite decent performance in distinguishing qw and qo

classes. This is somewhat reasonable, as linguistically the utterances of these two classes are

quite different, i.e., the qw utterance expresses very specific question and is relatively lengthy,

whereas qo utterances tends to be very brief. We see that DAH-CRF+LDAutt performs worse

than SAH-CRF: a greater number of qw utterances are misclassified by DAH-CRF+LDAutt

as qo. This might be attributed to the fact that topic distributions of qw and qo are similar

to each other (see Figure 3.5), i.e., incorporating the topic information into DAH-CRF may

cause these two DAs to be less distinguishable for the model.

We also conducted a similar analysis on the DyDA dataset. As can be seen from the confu-

sion matrices shown in Figure 3.4, DAH-CRF+LDAutt gives improvement over SAH-CRF for

all the four DA classes of DyDA. In particular, Directives and Commissive achieve

higher improvement margin compared to the other two classes, where the improvement

are largely attributed to less number of instances of the Directives and Commissive
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Figure 3.5: We highlight the prominent topics for some example DAs. The topic
distribution of a topic k under a DA label d is calculated by averaging the marginal
probability of topic k for all utterances with the DA label d.

classes being mis-classified into Inform and Questions. Examining the topic distribu-

tions in Figure 3.5 reveals that Directives and Commissive classes are more relevant

to the topics such as food, shopping, and credit card. In contrast, the topics of Inform and

Questions classes are more about business, and weather.

Finally, Figure 3.6 shows the DA attention visualisation examples of SAH-CRF and

DAH-CRF+LDAutt for an utterance from SWDA and DyDA. For SWDA, it can be seen that
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Figure 3.6: DA Attention visualisation using SAH-CRF and DAH-CRF+LDAutt
on (a) SWDA and (b) DyDA datasets. The true labels of the utterances above are
sd (statement-non-opinion) and Directive, respectively. SAH-CRF misclassified
the DA as sv (statement-opinion) and Inform whereas DAH-CRF+LDAutt gives
correct prediction for both cases.

SAH-CRF gives very high weight to the word “because” and de-emphasizes other words.

However, DAH-CRF+LDAutt can capture more important words (e.g., “if”, “reasonable”,

etc.) and correctly predicts the DA label as sd. For DyDA, SAH-CRF only focuses on “me”

and “your”, but DAH-CRF+LDAutt captures more words relevant to Directive, such as

“please”, “tell”, etc. To summarise, DAH-CRF+LDAutt can capture more significant words

related to the corresponding DA, by modelling both DAs and topic information with the

dual-attention mechanism.

3.5 Conclusion

In this chapter, we developed a dual-attention hierarchical recurrent neural network with a

CRF for DA classification. With the proposed task-specific dual-attention mechanism, our

model is able to capture information about both DAs and topics, as well as information

about the interactions between them. Moreover, our model is generalised by leveraging an

unsupervised model to automatically acquire topic labels. Experimental results based on

three public datasets show that modelling utterance-level topic information as an auxiliary

task can effectively improve DA classification, and that our model is able to achieve better or

comparable performance to the state-of-the-art deep learning methods for DA classification.
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We envisage that our idea of modelling topic information for improving DA classification

can be adapted to other DNN models, e.g., to encode topic labels into word embeddings and

then concatenate with the utterance-level or conversation-level hidden vectors of our baselines,

e.g. SelfAtt-CRF. It will also be interesting to explicitly take into account speaker’s role in

the future.



Chapter 4

Improving Variational Autoencoder for

Text Modelling with Timestep-Wise

Regularisation

4.1 Introduction

Variational Autoencoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014), together

with other deep generative models, including Generative Adversarial Networks (Goodfellow

et al., 2014) and autoregressive models (Oord et al., 2018), have attracted a mass of attention

in the research community as they have shown their ability to learn compact representations

from complex, high-dimensional unlabelled data. VAEs have been widely used in many

NLP tasks, such as text modelling (Bowman et al., 2016; Yang et al., 2017; Xu and Durrett,

2018; Fang et al., 2019; Li et al., 2019b), style transfer (Fang et al., 2019), and response

generation (Zhao et al., 2017; Fang et al., 2019). In addition, VAEs are also useful to several

downstream tasks, e.g., classification (Xu et al., 2017; Zhao et al., 2017; Li et al., 2019c;

Gururangan et al., 2019), transfer learning (Higgins et al., 2017b), etc.

However, there is a challenging optimisation issue of VAEs known as posterior collapse

(a.k.a. KL loss vanishing), where the variational posterior collapses to the prior and the

42
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latent variable is ignored by the model during generation (Bowman et al., 2016). This is

particularly prevalent when employing VAE-RNN architectures for text modelling. When

posterior collapse happens, the decoder will be downgraded to a simpler language model and

the VAE cannot learn good latent representations of data (Sønderby et al., 2016; Yang et al.,

2017). Different strategies have been proposed to address this issue, such as annealing the

KL term in the VAE loss function (Bowman et al., 2016; Sønderby et al., 2016; Fu et al.,

2019), replacing the recurrent decoder with convolutional neural networks (CNNs) (Yang

et al., 2017; Semeniuta et al., 2017), using a sophisticated prior distribution such as the von

Mises-Fisher (vMF) distribution (Xu and Durrett, 2018); and adding mutual information into

the VAE objectives (Phuong et al., 2018). While the aforementioned strategies have shown

effectiveness in tackling the posterior collapse issue to some extent, they either require careful

engineering between the reconstruction loss and the KL loss (Bowman et al., 2016; Sønderby

et al., 2016; Fu et al., 2019), or designing more sophisticated model structures (Yang et al.,

2017; Semeniuta et al., 2017; Xu and Durrett, 2018; Phuong et al., 2018).

We propose a simple and robust architecture called Timestep-Wise Regularisation VAE

(TWR-VAE), which can effectively alleviate the VAE posterior collapse issue in text modelling.

Existing VAE-RNN models for text modelling only impose KL regularisation on the latent

variable of the RNN encoder at the final timestep, forcing the latent variable to be close

to a Gaussian prior. In contrast, our TWR-VAE imposes KL regularisation on the latent

variables of every timestep of the RNN encoder, which we dub timestep-wise regularisation.

We hypothesise that timestep-wise regularisation is crucial to avoid posterior collapse and

to learn good representations of data, and allows a more robust model learning process. In

addition, the proposed timestep-wise regularisation strategy is generic and in theory can be

applied to any existing VAE-RNN models, e.g., vanilla RNN and GRU-based VAE models.

TWR-VAE shares some similarity with existing VAE-RNN models, where the input to the

decoder is the latent variable sample from the variational posterior at the final timestep of

the encoder. While this is a reasonable design choice, we also explore two model variants

of TWR-VAE, namely, TWR-VAEmean and TWR-VAEsum. At each time step, both model

variants sample a latent variable from the timestep dependent variational posterior of the
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encoder. TWR-VAEmean averages the sampled latent variables which is then used as input to

the decoder, whereas TWR-VAEsum performs vector addition on the sampled latent variables

instead.

To demonstrate the effectiveness of our method, we select a number of strong baseline

models and conduct comprehensive evaluations in two benchmark tasks involving five public

datasets. For the language modelling task, experimental results show that our TWR-VAE

model can effectively alleviate the posterior collapse issue and consistently give better pre-

dictive performance than all the baselines as evidenced by both quantitative (e.g., negative log

likelihood and perplexity) and qualitative evaluation. For the dialogue response generation

task, our model yields better or comparable performance to the state-of-the-art baselines

based on three evaluation metrics (i.e. BLEU (Zhao et al., 2017), BOW embedding (Liu et al.,

2016) and Dist (Liu et al., 2016)). Manual examination also shows that the dialogue responses

generated by our model are more diverse and contentful than the baselines, as well as being

simpler in model design. Our two model variants also show comparable performance to the

best baseline, although not as strong as TWR-VAE.

In summary, the contribution of this work are three-fold:

1. we propose a simple and robust method, which can effectively alleviate the posterior

collapse issue of VAE via timestep-wise regularisation;

2. our approach is generic which can be applied to any RNN-based VAE models;

3. our approach outperforms the state-of-art on language modelling and yields better or

comparable performance on dialogue response generation.

4.2 Methodology

In this section, we introduce the proposed Timestep-Wise Regularisation VAE (TWR-VAE)

model as well as its two model variants. We briefly introduce the background of VAE before

describing the technical details of the proposed models.
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Figure 4.1: Architectures of the proposed TWR-VAE models and the basic VAE-
RNN model.

4.2.1 Background of VAE

As introduced in § 2.1.3, VAE is trained to maximise the ELBO, which consists of two

terms (Kingma and Welling, 2014):

logPθ(xi) =EQφ(z|xi) [logPθ(xi)]

=EQφ(z|xi)

[
log

[
Pθ(xi, z)

Pθ(z|xi)

]]
=EQφ(z|xi)

[
log

[
Pθ(xi, z)

Qφ(z|xi)
Qφ(z|xi)
Pθ(z|xi)

]]
=EQφ(z|xi)

[
log

[
Pθ(xi, z)

Qφ(z|xi)

]
︸ ︷︷ ︸

=L(θ,φ;xi)
(ELBO)

+EQφ(z|xi)

[
log

[
Qφ(z|xi)
Pθ(z|xi)

]]
︸ ︷︷ ︸

=DKL(Qφ(z|xi)‖Pθ(z|xi))

, (4.1)
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L(θ,φ; xi) = logPθ(xi)− EQφ(z|xi)

[
log

[
Qφ(z|xi)
Pθ(z|xi)

]]
=
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Qφ(z|xi) logPθ(xi)dz−

∫
Qφ(z|xi) log

Qφ(z|xi)
Pθ(z|xi)

dz
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∫
Qφ(z|xi) log

Pθ(xi)Pθ(z|xi)
Qφ(z|xi)

dz

=

∫
Qφ(z|xi) log

Pθ(z)Pθ(xi|z)

Qφ(z|xi)
dz

=

∫
Qφ(z|xi) logPθ(xi|z)dz +

∫
Qφ(z|xi) log

Pθ(z)

Qφ(z|xi)
dz

=EQφ(z|xi)[logPθ(xi|z)]−DKL (Qφ(z|xi)‖P (z)) , (4.2)

The first term is the expected reconstruction error indicating how well the model can

reconstruct data given a latent variable. The the second term is the KL-divergence of the

approximate posterior from prior, i.e., a regularisation pushing the learned posterior to be

as close to the prior as possible. The basic VAE-RNN model (Figure 4.1(a)) follows the

aforementioned ELBO (i.e. Eq. 4.2). As the architecture of the encoder is a RNN, a latent

variable (denoted as zT ) is sampled from the variational posterior at the final timestep T , and

then zT is used as the input to the decoder. Therefore, the ELBO of a basic VAE-RNN model

becomes:

L(θ,φ; xi)basic = EQφ(zT |xi)[logPθ(xi|zT )]−DKL (Qφ(zT |xi)‖P (zT )) , (4.3)

Note that the total number of timestep T is also the length of the input sentence. As

discussed, optimising ELBO (in Eq. 4.3) is prone to posterior collapsing to the prior (Bowman

et al., 2016). This phenomenon happens when the second term of Eq. 4.3 would approach to its

global minimum when Qφ(zT |xi) = P (zT ), which results that x and zT are two independent

variables. As a result, the decoder (i.e., the reconstruction term) no longer depends on zT and

it fits the training data as a plain language model.
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4.2.2 Variational Autoendoder with Timestep-Wise Regularisation (TWR-

VAE)

In this section, we introduce the proposed Timestep-Wise Regularisation (TWR-VAE) model,

a general architecture which can effectively mitigate the posterior collapse issue frequently

observed in the VAE models with RNN-based backbone.

Our model design is motivated by one noticeable defect shared by the VAE-RNN based

models in previous works (Bowman et al., 2016; Yang et al., 2017; Xu and Durrett, 2018;

Dieng et al., 2019). That is, the general architecture of all these models, as shown in

Figure 4.1(a), only impose a standard normal distribution prior on the last hidden state of

the RNN encoder, which potentially leads to learning a suboptimal representation of the

latent variable. In addition, to avoid posterior collapsing, it is important to learn good latent

representations of data at the early stage of decoder training, so that the decoder can easily

adopt them to generate controllable observations (Fu et al., 2019). Our hypothesis is that

to learn a good representation of data, it is crucial to impose the standard normal prior

on the hidden states of all timesteps of the RNN-based encoder, which will allow a better

regularisation of the model learning process especially during the early stages.

The architecture of the proposed TWR-VAE model is shown in Figure 4.1(b), which is

implemented using a one-layer LSTM for both the encoder and decoder. For each timestep t,

we feed the hidden state ht into two linear transformation layers for estimating µt and Σt,

which are parameters of the variational posterior, i.e., a normal distribution corresponding to

the ht. We then impose KL regularisation on all timestep-wise variational posteriors rather

than posterior of the last timestep. Formally, given input X = {xi}Ni=1, the ELBO of our

model for each data pint xi is defined as:

L(θ,φ; xi)TWR = EQφ(zT |xi)[logPθ(xi|zT )]− 1

T

T∑
t=1

DKL(Qφ(zt|x1:t
i )‖P (zt)) , (4.4)

where T is the length of the input sentence, θ and φ are the parameters for the decoder and
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the encoder, respectively. Note that TWR-VAE is similar to existing VAE-RNN models (Xu

and Durrett, 2018; Fu et al., 2019; He et al., 2019), which passes a single zT at the final

timestep to the decoder. However, there is a crucial difference that while existing models

only impose KL regularisation on the last timestep, TWR-VAE imposes timestep-Wise KL

regularisation and average the KL loss over all timesteps, i.e., the second term of Eq. 4.4.

Such a strategy allows more robust model learning and can effectively mitigate posterior

collapse (see §4.3 Experiment for detailed discussion). Compared to the HR-VAE of Li et al.

(2019b), our model does not concatenate the cell state of the encoder at each timestep and the

dimension of the latent variable of TWR-VAE is only 32, whereas for HR-VAE the dimension

is 512 which is much larger. This enables the proposed TWR-VAE model to have fewer

parameters than the HR-VAE. In addition, the training speed of the TWR-VAE is six times

faster than the HR-VAE by paralleling the timestep-wise KL regularisation.

If TWR-VAE directly samples zt from the Qφ(zt|x1:t
i ), this sampling behaviour is undif-

ferentiable. A reparameterisation trick was proposed by (Kingma and Welling, 2014) to solve

this issue. Nevertheless, our TWR-VAE samples multiple zt at different timesteps, and we

modify the form of each Qφ(zt|x1:t
i ), where the mean and covariance do not directly depend

on zt−1. After using the reparameterisation trick with εt ∼ N (0, I), zt can be sampled as:

zt =Qφ(zt|x1:t
i )

=gφ(ht, εt|x1:t
i )

=Σφ(ht|x1:t
i )1/2εt + µφ(ht|x1:t

i ) , (4.5)

where εt ∼ N (0, I), and ht is the hidden state of the LSTM at t timestep. The mean and

covariance are calculated via two linear transformation layers with the ht.

When optimising the θ and the φ, we use Monte Carlo method (Metropolis and Ulam,

1949) in order to construct a Monte Carlo estimator, which can obtain unbiased gradients of θ

and φ:
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∇θL(θ,φ; xi)

= ∇θ

(
EQφ(zT |xi) [logPθ(xi|zT )]− 1

T

T∑
t=1

DKL
(
Qφ(zt|x1:t

i )‖P (zt)
))

(4.6)

= ∇θ

(
EQφ(zT |xi)

[
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

])
(4.7)

= EQφ(zT |xi)

[
∇θ

(
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

)]
(4.8)

' 1

M

M∑
m=1

∇θ

(
logPθ(xi|zTm)− 1

T

T∑
t=1

log
Qφ(ztm|x1:t

i )

P (ztm)

)
where zTm ∼ Qφ(zT |xi)

(4.9)

=
1

M

M∑
m=1

∇θ (logPθ(xi|zTm)) where zTm ∼ Qφ(zT |xi) , (4.10)

which is an unbiased Monte Carlo gradient estimator to approximate the expectation

(Eq. 4.6), and M indicates the total number of times that we randomly sample zTm from the

Qφ(zTm|x1:t
i ) for approximation.

When applying the similar method to obtain the unbiased gradients of φ, there is an

obstacle to finishing the gradients:

∇φL(θ,φ; xi) = ∇φ

(
EQφ(zT |xi)

[
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

])
(4.11)

6= EQφ(zT |xi)

[
∇φ

(
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

)]
, (4.12)

However, we can tackle this issue by using the reparameterisation trick proposed by (Kingma

and Welling, 2014). Normally, we choose a differentiable and invertible function gφ(z, ε)

with the random variable ε to replace Qφ(z|xi), namely z = gφ(x, ε), where ε ∼ P (ε) (see

Eq. 4.5). We choose N (0, I) as P (ε) and we can use the Monte Carlo estimator approximate
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Eq. 4.11:

∇φ

(
EQφ(zT |xi)

[
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

])

= ∇φ

(
EP (ε)

[
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

])
(4.13)

= EP (ε)

[
∇φ

(
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

)]
(4.14)

' 1

M

M∑
m=1

∇φ

(
logPθ(xi|zTm)− 1

T

T∑
t=1

log
Qφ(ztm|x1:t

i )

P (ztm)

)
(4.15)

=
1

M

M∑
m=1

∇φ

(
− 1

T

T∑
t=1

log
Qφ(ztm|x1:t

i )

P (ztm)

)
where ztm = gtφ

(
εm,x

1:t
i

)
and εm ∼ N (0, I) (4.16)

Overall, the gradients of θ and φ of the ELBO can be re-formed as:

∇θ,φL(θ,φ; xi)

= ∇θ,φ

(
EP (ε)

[
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

])
(4.17)

= EP (ε)

[
∇θ,φ

(
logPθ(xi|zT )− 1

T

T∑
t=1

log
Qφ(zt|x1:t

i )

P (zt)

)]
(4.18)

' 1

M
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∇θ,φ
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logPθ(xi|zTm)− 1

T

T∑
t=1

log
Qφ(ztm|x1:t

i )

P (ztm)

)
where ztm = gtφ

(
εm,x

1:t
i

)
and εm ∼ N (0, I) , (4.19)
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∇θ,φL(θ,φ; xi)TWR '
1

M

M∑
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∇θ,φ

(
logPθ(xi|zTm)− 1

T

T∑
t=1

log
Qφ(ztm|x1:t

i )

P (ztm)

)
where ztm = Qφ(ztm|x1:t

i ) , (4.20)

Here M indicates the total number of times that we randomly sample ztm (m ∈ [1 : M ])

from the Qφ(ztm|x1:t
i ) for approximation.

4.2.3 TWR-VAEmean and TWR-VAEsum

In TWR-VAE, the input to the decoder is the latent variable sample from the variational

posterior at the final timestep of the encoder. While this is a reasonable design choice, we

also explore two model variants of TWR-VAE, namely, TWR-VAEmean and TWR-VAEsum

(see Figure 4.1(c)). At each time step, both model variants sample a latent variable from the

timestep dependent variational posterior of the encoder.

For TWR-VAEmean, the timestep-wise latent variables {zt}Tt=1 are sampled first and then

they are averaged before feeding to the decoder. This leads to a different reconstruction loss

of TWR-VAEmean compared to TWR-VAE (Eq. 4.4):

E[logPθ(xi|
1

T

T∑
t=1

zt)] where zt ∼ Qφ(zt|x1:t
i ) (4.21)

For TWR-VAEsum, it performs vector addition on the sampled latent variables {zt}Tt=1

instead and the corresponding reconstruction loss is:

E[logPθ(xi|
T∑
t=1

zt)] where zt ∼ Qφ(zt|x1:t
i ) (4.22)

For both TWR-VAEmean and TWR-VAEsum, their KL loss term is the same as TWR-VAE,
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Dataset Train Dev. Test Vocab.
PTB 42,068 3,370 3,761 9.95K
Yelp15 100,000 10,000 10,000 19.76K
Yahoo 100,000 10,000 10,000 19.73K
SW 2,316 60 62 20K
DD 11,118 1,000 1,000 22K

Table 4.1: The statistics of the PTB, Yelp 2015, Yahoo, SW and DD datasets.

Model
PTB Yelp15 Yahoo

NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL
VAE-LSTM 101.2 101.4 0.0 0.0 357.9 40.6 0.0 0.0 328.6 61.2 0.0 0.0
SA-VAE 101.0 100.7 0.8 1.3 355.9 39.7 2.8 1.7 327.2 60.2 2.7 5.2
Cyc-VAE 102.8 109.0 1.3 1.4 359.5 41.3 1.0 2.0 330.6 65.3 2.0 2.1
Lag-VAE 100.9 99.8 0.8 0.9 355.9 39.7 2.4 3.8 326.7 59.8 2.9 5.7
BN-VAE (0.7) 100.2 96.9 5.5 7.2 355.9 39.7 7.4 9.1 327.4 60.2 7.4 8.8
TWR-VAEsum 96.7 63.2 3.7 5.9 378.3 47.4 3.8 3.9 345.6 71.1 3.7 3.8
TWR-VAEmean 95.6 60.4 3.9 4.9 361.7 40.0 3.9 3.5 324.8 55.0 4.1 4.8
TWR-VAE 86.6 40.9 4.1 5.0 344.3 33.5 4.1 3.1 317.3 50.2 4.1 3.3

Table 4.2: Language modelling results of all baselines and our models on the PTB,
Yelp15 and Yahoo test datasets. The results of all baselines are reported based
on (Li et al., 2019a; Zhu et al., 2020). ↓ denotes lower the better and ↑ higher the
better.

i.e., − 1
T

∑T
t=1DKL(Qφ(zt|x1:t

i )‖P (zt)).

4.3 Experiment

4.3.1 Language Modelling

We evaluate our TWR-VAE model on three public benchmark datasets, namely, Penn Treebank

(PTB) (Marcus and Marcinkiewicz, 1993), Yelp15 (Yang et al., 2017), and Yahoo (Zhang

et al., 2015), which have been widely used in previous work for text modelling (Bowman

et al., 2016; Kim et al., 2018; Fu et al., 2019; He et al., 2019; Zhu et al., 2020). The statistics

of the datasets are summarised in Table 4.1. We represent input data with 512-dimensional

word2vec embeddings (Mikolov et al., 2013) and set the dimension of the hidden layers of
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both one-layer encoder and decoder to 256. The dimension of the latent variable is 32. There

is no gradient clipped during training. The Adam optimiser (Kingma and Ba, 2015) is used

for training with an initial learning rate of 1e-4 and a weight decay of 1e-5. Each sentence in

a mini-batch is padded to the maximum length for that batch, and the maximum batch-size

allowed is 64.

We compare our TWR-VAE model with five strong baselines:

VAE-LSTM1: A VAE with LSTM and with KL annealing for tackling the posterior collapse

issue (Bowman et al., 2016);

SA-VAE2: A VAE using stochastic variational inference to refine the variational parameters

initialised by Amortized variational inference (Kim et al., 2018);

Cyclical VAE3: A VAE employing cyclical annealing to alleviate the posterior collapse

issue (Fu et al., 2019);

Lagging VAE4: A VAE updating the encoder more times than updating the decoder (He et al.,

2019);

BN-VAE5: A VAE utilising Batch Normalisation for the KL distribution (Zhu et al., 2020).

We report the performance on four metrics: negative log likelihood (NLL), perplexity

(PPL), KL-divergence which measures the distance between two probability distributions, and

the mutual information of the input x and the latent variable z, which measures how much in-

formation of x is obtained by z. Following Dieng et al. (2019) and He et al. (2019), the mutual

information is formulated as I(x, z) = Ex[DKL (Qφ(zT |x)‖P (zT ))]−DKL(Qφ(zT )‖P (zT )),

where Qφ(zT ) is an aggregated posterior and DKL(Qφ(zT )‖P (zT )) is the KL divergence

between the aggregated posterior and the prior estimated by Monte Carlo estimators:

1https://github.com/timbmg/Sentence-VAE
2https://github.com/harvardnlp/sa-vae
3https://github.com/haofuml/cyclical_annealing
4https://github.com/jxhe/vae-lagging-encoder
5https://github.com/valdersoul/bn-vae

https://github.com/timbmg/Sentence-VAE
https://github.com/harvardnlp/sa-vae
https://github.com/haofuml/cyclical_annealing
https://github.com/jxhe/vae-lagging-encoder
https://github.com/valdersoul/bn-vae
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Model
Yelp15 Yahoo

NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL
Basic-VAERNN 399.2 58.7 0.0 0.0 363.9 89.1 0.0 0.1
TWR-VAERNN 395.4 56.4 3.9 0.5 363.0 88.2 4.1 0.6
Basic-VAEGRU 389.6 53.2 0.6 0.6 355.0 79.9 2.3 2.6
TWR-VAEGRU 360.9 39.7 4.2 3.3 336.9 63.9 4.2 3.7
TWR-VAELSTM-last25 360.4 39.5 4.1 8.3 338.2 64.9 4.2 8.4
TWR-VAELSTM-last50 356.2 37.9 4.1 5.1 331.7 59.9 4.2 5.3
TWR-VAELSTM-last75 352.6 36.5 4.1 3.7 321.0 52.5 4.1 4.1
TWR-VAE 344.3 33.5 4.1 3.1 317.3 50.2 4.1 3.3

Table 4.3: Ablation study results of all variants of our model on the Yelp15 and
Yahoo test datasets.

Ex[DKL (Qφ(zT |x)‖P (zT ))] (4.23)

= Ex[EQφ(zT |x)[logQφ(zT |x)]]− Ex[EQφ(zT |x)[logP (zT )]] (4.24)

= −H(Qφ(zT |x))− EQφ(zT )[logP (zT )] (4.25)

= −H(Qφ(zT |x)) +H(Qφ(zT ))−H(Qφ(zT ))− EQφ(zT )[logP (zT )] (4.26)

= I(x, zT ) + EQφ(zT )[logQφ(zT )]− EQφ(zT )[logP (zT )] (4.27)

= I(x, zT ) +DKL(Qφ(zT )‖P (zT )) , (4.28)

Therefore:

I(x, zT ) = Ex[DKL (Qφ(zT |x)‖P (zT ))]−DKL(Qφ(zT )‖P (zT )) , (4.29)

4.3.1.1 Results

As depicted in Table 4.2, our TWR-VAE outperforms all baselines on all datasets. Compared

to the strongest baseline BN-VAE, our model reduces NLL by 11.8 and PPL by 24.1 on

average across three datasets, showing superior performance in reconstructing input sentences.
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Yelp15
Input 1 this is the worst restaurant experience i ’ve ever had ! not only is this place super

slow in service but the food was not fresh !
Input 2 i went to this place last month with my best friend and the food was good i love

the coffee designs and the service was friendly .

BN-VAE

α = 0 this place the worst restaurant i i have ever had . i only was the restaurant a
overpriced , the , the food is not good and i

α = 0.2 this place joke ! the food was ok the was horrible . i ask for drink and came back
to me . i will go back .

α = 0.4 this place joke ! the food was good horrible . i ask for a drink and check on me . i
ask for a drink and check on me .

α = 0.6 i was try this place. disappointed . the food was not good it was just ok . the
service was good the food was not price .

α = 0.8 i went lunch and the chicken and waffles . the food was good the service was
horrible . i will go back .

α = 1 i went here this place for night and my family friend and i food was great . had the
atmosphere and and the service was great . i

TWR-VAE

α = 0 this is the worst restaurant i ’ve ever been ! service only was we restaurant was
slow service but the food was not fresh !

α = 0.2 i love this place the food was very slow ! service is always slow and the food is not
a good value so this was not my first choice .

α = 0.4 i have never been in this restaurant before the food was just ok and the service is
very slow ! i will not continue to go back to this place .

α = 0.6 i have been here a few times now and the food was good ! ! ! the food is good and
i would recommend to and return

α = 0.8 i went here this past weekend to see how good the food was and my husband had
the same thing i would recommend for the price .

α = 1 i went to this place for night and my family friend and the food was good and
would the service and the service was friendly .

Table 4.4: An example of interpolating the latent representation of two input
sentences using BN-VAE and TWR-VAE in Yelp15 testset.

As shown in Table 4.2, the two variants of TWR-VAE also yields better performance to the

baselines. For instance, TWR-VAEmean outperforms all baselines on PTB and Yahoo datasets

and yield comparable results to BN-VAE on Yelp. This shows the effectiveness of our strategy

of regularising timestep-wise variational posteriors.

4.3.1.2 Model Generalisability and Ablation Studies

We also evaluate the model’s generalisability by looking at how well our timestep-wise

regularisor works in different RNN architectures. To this end, we tested Basic-VAERNN and
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Yahoo
Input 1 wher can i find a poem called “ in flight ” ? it has something to do with death

dunno
Input 2 where can i find dinosaur books for my 3 yr old son ? just check with your local

library .

BN-VAE

α = 0 can can i find a list about “ _UNK the ” ? i is to to do with the . .
α = 0.2 can tell me what is the name of the song on the _UNK and the _UNK ? i think it is

a _UNK song .
α = 0.4 where can i find a list of all the _UNK in the world ? i need to find a list of the

_UNK and _UNK of the _UNK .
α = 0.6 where can i find a list of all the _UNK in the world ? i need to find a list of the

_UNK and _UNK of the _UNK .
α = 0.8 where can i find a list of all the _UNK in the world ? i need to find a list of the

_UNK and _UNK of the _UNK .
α = 1 where can i find a _UNK ? free son year old son ? i go out the local library . they

TWR-VAE

α = 0 where can i find a pic in “ in touch attendant ? it has been to do with someone and
what

α = 0.2 in my opinion what can be done ? it ’s a poem for me on myspace .com and some
people have no clue

α = 0.4 where can i find an old testament to find out how old it was ? i ’m looking at a
photograph of albert einstein .

α = 0.6 where can i find an old book for someone who has an old son ? i need to know
how to do it ! !

α = 0.8 where can i find info on my research for an anatomy book ? try these links to your
local newspaper . good luck

α = 1 where can i find info for my son year old son ? try be out your local library . good

Table 4.5: The example of interpolating the latent representation of two input
sentences using BN-VAE and TWR-VAE in Yahoo test dataset.

Basic-VAEGRU (i.e., vanilla RNN and GRU model with KL annealing ), as well as TWR-

VAERNN and TWR-VAEGRU (vanilla RNN and GRU with the timestep-wise regularisor).

Experimental results in Table 4.3 show that our TWR models outperform the corresponding

basic models on all evaluation metrics, regardless the encoder architecture. This shows the

generalisability of our proposed architecture.

In addition, to understand how the proportion of timesteps that are imposed with KL

regularisation impacts the performance of our model, we run a battery of experiments with

varying proportion settings. Concretely, we impose KL regularisation on the last 25%, 50%,

and 75% timesteps of the encoder of TWR-VAE, respectively. (NB: the KL regularisation

is imposed on the final timestep for all model variants). The results in Table 4.3 show that

TWR-VAELSTM-last25 has the lowest performance on NLL and PPL and the performance goes
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Metrics
Switchboard Dailydialog

SeqGAN CVAE WAE iVAE TWR-
VAE

SeqGAN CVAE WAE iVAE TWR-
VAE

BLEU-R↑ 0.282 0.295 0.394 0.427 0.395 0.270 0.265 0.341 0.355 0.407
BLEU-P↑ 0.282 0.258 0.254 0.254 0.258 0.270 0.222 0.278 0.239 0.281
BLEU-F1↑ 0.282 0.275 0.309 0.319 0.312 0.270 0.242 0.306 0.285 0.333
BOW-A↑ 0.817 0.836 0.897 0.930 0.921 0.918 0.923 0.948 0.951 0.952
BOW-E↑ 0.515 0.572 0.627 0.670 0.654 0.495 0.543 0.578 0.609 0.603
BOW-G↑ 0.748 0.846 0.887 0.900 0.900 0.774 0.811 0.846 0.872 0.865
Intra-dist1↑ 0.705 0.803 0.713 0.828 0.860 0.747 0.938 0.830 0.897 0.921
Intra-dist2↑ 0.521 0.415 0.651 0.692 0.849 0.806 0.973 0.940 0.975 0.990
Inter-dist1↑ 0.070 0.112 0.245 0.391 0.470 0.075 0.177 0.327 0.501 0.497
Inter-dist2↑ 0.052 0.102 0.413 0.668 0.766 0.081 0.222 0.583 0.868 0.817

Table 4.6: Dialogue response generation results of baselines and our model on
SW and DD datasets.

up along with higher proportion of timesteps being imposed with KL regularisation. In

addition, when comparing these three model variants with the baseline VAE-LSTM (which

only imposes the KL regularisation on the final timestep), our models can effectively mitigate

posterior collapse. This observation embodies that imposing the KL regularisation on earlier

timesteps is an effective strategy for mitigating posterior collapse. Moreover, the more

timesteps we impose the KL regularisation on, the better performance the model can yield (in

terms of NLL and PPL).

4.3.1.3 Latent Representation Interpolation

We perform latent representation interpolation to assess how well the latent space (z) can be

learned by TWR-VAE comparing to the strongest baseline BN-VAE. Given a pair of sentences

x1 and x2, we sample their latent codes zT1 and zT2 from the encoder, and interpolate them with

zTα = zT1 · (1− α) + zT2 · α. Table 4.4 shows an example outputs by varying mixture weight

α. It can be observed that our model learns representations which are more smooth than

BN-VAE, where the sentences generated based on continuous samples from the latent code

space preserve more consistent topical information in the neighbourhood of the path. There

are less _UNK tokens occurring in generated sentences of our model, which implies that the

quality of representations learned in our model is better than ones in BN-VAE. In addition
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Figure 4.2: The average ROUGE-1, ROUGE-2 and ROUGE-L F1 scores between
two input references and 11 interpolations of each group using BN-VAE and
TWR-VAE on Yelp15 test dataset.

to qualitative evaluation, we also evaluate the outputs quantitatively with ROUGE (Lin,

2004), which compares the generated sentences against the human references. Concretely,

for each sentence pair, we compute the ROUGE-1, ROUGE-2 and ROUGE-L F1 scores

between two input sentences (i.e., references) and each interpolation sentence. The averaged

ROUGE scores over all sentence pairs in the test set versus different α settings are sketched in

Figure 4.2. It can observed that as the mixture weight α increases, the ROUGE values of our

model smoothly decrease w.r.t. the first reference and increase for the second one, showing

a smooth transition of sentence interpolation. One can also note that our model has higher

ROUGE scores than BN-VAE at α = 0 for reference one and at α = 1 for reference two,

showing that our model is able to better learning latent representations and reconstructing the

input sentences.

4.3.2 Dialogue Response Generation

In addition to language modelling, we further evaluate how well our proposed architecture

could help alleviating the problem of “generic response” in Dialogue Systems (Huang et al.,

2020; Wang et al., 2020). Dialogue systems that are built upon the sequence-to-sequence
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Figure 4.3: The average ROUGE-1, ROUGE-2 and ROUGE-L F1 scores between
two input references and 11 interpolations of each group using BN-VAE and
TWR-VAE on Yahoo test dataset.

(seq2seq) model were found tend to generate generic and dull responses, such as “I don’t know”

or “thank you” (Li et al., 2016). One effective solution is using a more flexible intermediate

representation between the encoder and the decoder of a seq2seq model with the help of a

VAE, which models dialogue as a one-to-many problem and, therefore, can generate less

generic responses. Such VAE-based dialogue response generators, similar to (Shen et al.,

2018), also face the problem of posterior collapse. Zhao et al. (2017) first addressed this

issue by proposing the conditional VAE (CVAE) model which utilises KL annealing and

Bag-of-Word loss. To test TWR-VAE on the dialogue response generation task, we extend

TWR-VAE following the architecture of CVAE.

We represent each dialogue conversation as a combination of the dialogue context c

(context window size J), the response utterance x (the J + 1th utterance), and a latent

representation z which encodes the information of the context and captures a latent distribution

of valid responses. The dialogue response generation can then be defined as Pθ(x|c) =∫
Pθ(x|z, c)Pθ(z|c)dz. Here, a vatiational posterior Qφ(z|x, c) is used to approximate the

true prior Pθ(z|c). The ELBO of TWR-VAE can then be written as:
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L(θ,φ; xi)TWR = EQφ(zJ |xi,c)[logPθ(xi|zJ , c)]− 1

J

J∑
j=1

DKL(Qφ(zj|xi, c)‖Pθ(zj|c)) .

(4.30)

Example 1: Topic: Care for
the elderly Context: to have
the responsibility of putting
someone in a nursing home
whose mind was not good and
could not tell you if they were
being < unk > or something
it just would all be so
different Target: uh - huh

iVAE
1. yeah uh - huh
2. yeah and then go back up and go back and
forth and go back again
3. right oh that makes
4. she’s not
TWR-VAE
1. uh - huh
2. i see yeah and they have to go back to work
and it’s really sad
3. oh gosh they don’t have to worry about
4. hm how do you feel

Example 2: Topic:
Relationship Context: what
happened , john ? Target:
nothing .

iVAE
1. oh , i am .
2. what can we do for you ?
3. oh what’s wrong ? i didn’t know anyone .
4. i have to get my phone .
TWR-VAE
1. i can’t sleep well .
2. working overtime . i have been working on
the weekend for a long time . i was terrified of
getting a lot of headaches and i had a terrible
hangover .
3. oh , i am sorry . i had a terrible pain in the
morning . i was so nervous . i couldn ’ t find a
chance to memorize the class . i was hoping to
see you
4. well , i am not sure of it .

Table 4.7: Four sample responses generated by iVAE and our model on SW (top)
and DD (bottom) datasets, given context as input. Corresponding topic and target
response (gold standard) are also listed. The generated utterances are different
possible responses from two models. We only show the last utterance of the dialogue
context here and the actual context window is 10.
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4.3.2.1 Setup

We conducted experiment based on two popular benchmark datasets, namely, Switchboard

(SW) (Godfrey and Holliman, 1997) and Dailydialog (DD) (Li et al., 2017b). For dataset

statistics, please refer to Table 4.1. Our model follows the implementation details of the

CVAE (Zhao et al., 2017). The size of word embedding is 200 and it is initialised from a

pre-trained Glove embedding on Twitter (Pennington et al., 2014). The utterance encoder

is a one-layer bidirectional GRU with 300 hidden size, and both of the context encoder and

the decoder use a one-layer GRU with 300 hidden size. The recognition network is 1-layer

feed-forward network and prior network is 2-layer feed-forward network plus a tanh non-

linearity for Gaussian prior sampling. The dimension of the latent variable is 200. The context

window size J is 10. The initial weights for recognition and prior networks are sampled from

a uniform distribution [-0.02, 0.02]. The vocabulary size is 10,000 and all out-of-vocabulary

words are defined as “< unk >" token. A greedy decoding mode is used to sample dialogue

responses in order to ensure that the randomness comes from the latent variables. The entire

model is trained using Adam optimiser with an initial learning rate of 1e-4 and a weight decay

of 1e-5. Gradient clipping is not used.

Apart from comparing TWR-VAE to CVAE and iVAE, we further report the results of two

other competitive models for dialogue response generation6, i.e., SeqGAN (Li et al., 2017a)

and a conditional Wasserstein autoencoder called WAE (Gu et al., 2019). Following prior

works (Gu et al., 2019; Fang et al., 2019), we report performance on three evaluation metrics

including:

1. BLEU scores proposed by Zhao et al. (2017), which evaluates how many n-grams

multiple generated responses match the references. Zhao et al. (2017) defined BLUE

precision (BLEU-P) and recall (BLEU-R) as the average and maximum BLUE score,

respectively, and define BLEU-F as combination of BLEU-P and BLEU-R. n < 4 is

used in our evaluation;
6SeqGAN:https://github.com/jiweil/Neural-Dialogue-Generation; CVAE:https://github.com/snakeztc/

NeuralDialog-CVAE; WAE:https://github.com/guxd/DialogWAE; iVAE:https://github.com/fangleai/
Implicit-LVM

https://github.com/jiweil/Neural-Dialogue-Generation
https://github.com/snakeztc/NeuralDialog-CVAE
https://github.com/snakeztc/NeuralDialog-CVAE
https://github.com/guxd/DialogWAE
https://github.com/fangleai/Implicit-LVM
https://github.com/fangleai/Implicit-LVM
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2. BOW embedding (Liu et al., 2016), a cosine similarity of bag-of-words embeddings

between the generated response and the reference. Three different variants of BOW

embedding were tested:

(a) Greedy: the average cosine similarities between word embeddings of the two

utterances which are greedily matched (Rus and Lintean, 2012);

(b) Average: the cosine similarity between the averaged word embeddings in the two

utterances (Mitchell and Lapata, 2008);

(c) Extreme: the cosine similarity between the largest extreme values in the word

embeddings of the two utterances (Pennington et al., 2014);

3. Dist (Gu et al., 2019), which measures the diversity of the generated dialogue responses

by calculating the ratio of unique n-grams (n=1,2) over all n-grams in the generated

dialogue responses. Two types of dist (intra-dist and inter-dist) were tested, which

are calculated within a single sampled response and between different responses,

respectively. For each context in the testset, we generate 10 responses with each model

and calculate aforementioned metrics averaged over all responses.

4.3.2.2 Experiment Results

As shown in Table 4.6, our model yields a stable improvement over most evaluation metrics

compared to baselines. Specially, there is a significant improvement on Dist for SW and the

BLEU for DD, respectively, indicating that our model can generate relevant, contentful and

diverse dialogue responses. There are some metrics where our model does not outperform

the state-of-art baselines, but the difference is small. We also show in Table 4.7 two example

responses generated by TWR-VAE and the best baseline iVAE. In the first example, our model

can generate more topical relevant responses compared to the responses by iVAE, which

implies that the latent variable of TWR-VAE can capture a hidden topic information in the

dialogue conversation. In the second example, the generated responses of TWR-VAE are

more diverse and contentful than the baseline, and the content of those responses can also
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provide more topics and facilitate the continuation of the conversation.

4.4 Conclusion

In this chapter, in order to solve posterior collapse issue of VAE in text modelling, we propose

a simple and generic model called Timestep-Wise Regularisation VAE, which imposes the

KL regularisation on the latent variables of every timestep of the encoder. Empirical results

in language modelling show that our model can give better performance than all baselines

while avoiding posterior collapse. Ablation studies show that the timestep-wise regularisation

can be easily applied into different RNN-based VAE models and improve their performance.

In addition, we evaluate the timestep-wise regularisation in dialogue response generation

task, and the results suggest that our model yields better or comparable performance to the

state-of-the-art and can generate relevant, contentful and diverse responses.



Chapter 5

Understanding Latent Discontinuity of

VAEs for Text Generation

5.1 Introduction

Variational Auto-Encoders (VAEs) are powerful unsupervised models for learning low-

dimensional manifolds (aka. a latent space) from non-trivial high-dimensional data man-

ifolds (Kingma and Welling, 2014; Rezende et al., 2014). They have found successes in

a number of downstream tasks across different application domains such as text classifica-

tion (Xu et al., 2017), transfer learning (Higgins et al., 2017b), image synthesis (Huang et al.,

2018; Razavi et al., 2019), language generation (Bowman et al., 2016; He et al., 2019), and

music composition (Roberts et al., 2018).

Various effort has been made to improve the capacity of VAEs, where the majority of the

extensions are focused on increasing the flexibility of the prior and approximating posterior.

For instance, Davidson et al. (2018) introduced the von Mises-Fisher (vMF) distribution

to replace the standard Gaussian distribution; Kalatzis et al. (2020) assumed a Riemannian

structure over the latent space by adopting the Riemannian Brownian motion prior. A small

number of recent studies attempted to investigate the problem more fundamentally, and

revealed that there exist discontinuous regions (we refer them as “latent holes” following past

64
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literature) in the latent space of VAEs, which have a detrimental effect on model capacity.

Falorsi et al. (2018) approached the problem from a theoretical perspective of manifold

mismatch and showed that this undesirable phenomenon is due to the latent space’s topological

incapability of accurately capturing the properties of a dataset. Xu et al. (2020) examined

the obstacles that prevent sequence VAEs from performing well in unsupervised controllable

text generation, and empirically discovered that manipulating the latent variables for semantic

variations in text often leads to latent variables to reside in some latent holes. As a result, the

decoding network fails to properly decode or generalise when the sampled latent variables

land in those low-density latent regions.

Although the works on investigating latent holes are still relatively sparse, they have

opened up new opportunities for improving VAE models, where one can design mechanisms

directly engineered for mitigating the hole issue. However, it should be noted that existing

works (Falorsi et al., 2018; Xu et al., 2020) exclusively focus on the encoder network when

investigating holes in the latent space, and they merely explored its existence without providing

further in-depth analysis of the phenomenon. It has also been revealed that the hole issue is

more severe on text compared to the image domain, due to the discreteness of text data (Xu

et al., 2020).

We tackle the aforementioned issues by proposing a novel tree-based decoder-centric

(TDC) algorithm for latent hole identification, with a focus on the text domain. In contrast

to existing works which are encoder-centric, our approach is centric to the decoder network,

as a decoder has a direct impact to model’s performance, e.g., for text generation. Our

TDC algorithm is also highly efficient for latent hole searching when compared to existing

approaches, owing to the dimension reduction and Breadth-First Search strategies. Another

important technical contribution we have made is that we theoretically unify the two prior

indicators for latent hole identification, and evidence that the one of Falorsi et al. (2018) is

more accurate, which forms the basis of our algorithm detailed in § 5.3.

In terms of analysing the latent hole phenomenon, we provide, for the first time, an

in-depth empirical analysis which examines three important aspects: (i) how the holes impact

VAE models’ performance on text generation; (ii) whether the holes are really vacant, i.e., no



5.2. PRELIMINARIES 66

useful information is captured by the holes; and (iii) how the holes are distributed in the latent

space. To validate our theory and to demonstrate the generalisability of our proposed TDC

algorithm, we pre-train five strong and representative VAE models for producing sentences,

including the state-of-the-art model. Comprehensive experiments on the language generation

task involving four large-scale public datasets show that the performance of text generation is

strongly correlated with the density of latent holes; that from the perspective of the decoder,

the Latent Vacancy Hypothesis proposed by Xu et al. (2020) does not hold empirically; and

that holes are ubiquitous and densely distributed in the latent space.

5.2 Preliminaries

5.2.1 Existing Latent Hole Indicators

To our knowledge, there are only two prior works which directly determine whether a latent

region is continuous or not. One work formalises latent holes based on the relative distance

of pairwise points taken from the latent space and the sample space (Falorsi et al., 2018).

Concretely speaking, given a pair of vectors zi and zi+1 which are closely located on a latent

path, and their corresponding samples x′i and x′i+1 in the sample space, a latent hole indicator

is computed as

ILipschitz(i) := Dsample(x
′
i,x
′
i+1)/Dlatent(zi, zi+1), (5.1)

where Dsample and Dlatent respectively denote the metrics measuring the sample and latent

spaces (Note: Dlatent can be represented as any distance metric, such as Euclidean distance

metric, Riemannian distance metric and so on). Falorsi et al. (2018) focused on the image

domain and utilised Euclidean distance for both spaces. Based on the concept of Lipschitz

continuity, Falorsi et al. (2018) then proposed to measure the continuity of a latent region as

follows: under the premise that zi+1 does not land on a hole, zi is recognised as belonging to

a hole if the corresponding ILipschitz(i) is a large outlier1.

1Unless otherwise stated, outliers are detected by comparing the subject data point with a fixed bound,
which is pre-determined based on a percentile of all data points.
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Another line of work (Xu et al., 2020) signals latent holes based on the so-called ag-

gregated posterior, with a focus on sequence VAEs for language modelling. This approach

interpolates a series of vectors on a latent path at a small interval, and then scores the i-th

latent vector zi as

IAggregation(i) :=
M∑
t=1

NLL(zi,Z
(t))/M, (5.2)

where Z(t) is the sample of the posterior distribution of the t-th out of the total M training

samples, e.g., when studying holes on the encoder side, this distribution can be computed

using qφ(z|x) in Eq. (2.7) (Xu et al., 2020). Z(t) serves as the reference when calculating

the Negative Log-Likelihood (NLL). After all the interpolated vectors on the latent path are

traversed, similar to the first method, vectors with large outlier indicators (IAggregation) are

identified as in latent holes.

When comparing these two indicators, one can see that they actually stem from different

intuitions. For ILipschitz, there is an underlying assumption that a mapping between the sample

and latent spaces should have good stability in terms of relative distance change in order to

guarantee good continuity in the latent space. In contrast, IAggregation is based on the belief that

small perturbations on the non-hole regions should not lead to large offsets on the absolute

dissimilarity between posterior samples Z(·) and the sample zi, and hence the calculation is

performed only in the latent space and only around one single latent position. While seemly

different, we show that (in § 5.3.2) both indicators actually have tight underlying connections

and can be unified in a shared mathematical framework. Moreover, the first indicator (ILipschitz)

is proofed to be more comprehensive than the second (IAggregation) and thus can reduce false

negatives when identifying holes in the latent space. This forms the basis of our algorithm

in § 5.3, which is the first attempt to identify a VAE decoder’s latent holes for language

generation.
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5.3 Methodology

In this section, we describe our tree-based decoder-centric (TDC) algorithm for latent hole

identification, which consists of three main components. We first introduce our heuristic-based

Breadth-First Search (BFS) algorithm for highly efficient latent space searching (§ 5.3.1).

We then theoretically proof, for the first time, that two existing holes indicators can be

unified under the same framework and that ILipschitz is a more accurate choice for identifying

latent holes (§ 5.3.2). Finally, we extend ILipschitz to the text domain by incorporating the

Wasserstein distance for the sample space (§ 5.3.3).

5.3.1 Tree-based Decoder-Centric Latent Hole Identification

As discussed earlier, existing works for investigating latent holes of VAEs all exclusively

focus on the encoder network (Falorsi et al., 2018; Xu et al., 2020), and they cannot be trivially

applied to the decoders (which play ultimately important roles on generation tasks) due to

metric incompatibility, especially for VAEs in the text domain (see detailed discussion in

§ 5.3.3). Another drawback of existing indicators is that they have very limited efficiency.

Theoretically, their time complexity for traversing a d-dimensional latent space with I inter-

polations per path is O(Id) at the optimal efficiency, which is computationally prohibitive as

typically d and I are larger than 30 and 50 for VAEs in practice. Each path is parallel with

one axis of the traversed latent space2. Empirically, we observe that even finding a handful

of latent holes has been shown to be difficult for existing methods (Falorsi et al., 2018; Xu

et al., 2020). Therefore, we tackle both challenges by proposing a highly efficient algorithm

for decoder-centric latent hole identification. The pipeline of our TDC algorithm is described

in Algorithm 1 and we give a detailed discussion as follows. For the visualisation of TDC’s

working process in practice, please see Figure. 5.1.

2For example, we traverse a 3-dimensional latent space with 4 interpolations per path. There will be 43 = 64
points to traverse because each point will be passed by 3 paths. The whole space will be equally divided into 64
cubes.
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Figure 5.1: A cubic fence C in the latent space of Vanilla-VAE trained on the Wiki
dataset, with dr set at 3 to facilitate visualisation (cf. § 5.4). C, whose 12 edges
are illustrated by dashed lines, surrounds the dimensionally reduced expectation of
three encoded training samples. Traversed paths are illustrated by the solid lines
within the cube.

5.3.1.1 Dimensionality Reduction

One problem for the current indicators is their limited searching capacity (as evidenced by

their time complexity O(Id)) over the target space. Concretely speaking, both indicators rely

on signalling latent holes through 1-dimensional traversal, but a latent space normally has

dozens of dimensions to guarantee modelling capacity. To alleviate this issue, after feeding

all training samples in X to the forward pass of a trained VAE and storing the encoded latent

variables in Z (Step 2), we perform dimension reduction using Principal Component Analysis

(PCA) (Jolliffe, 1986) and conduct a search in the resulting dr-dimensional space instead of

the original d-dimensinoal space (Step 5). We further save the mathematical expectation and

standard deviation of the latent variables in Vtrain (Step 3) and Dtrain (Step 4), respectively.
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Algorithm 1 TDC for latent hole identification
Input: Trained VAE model w/ a d-dimensional latent space; original training set X; reduced

dimension dr; the desired number of detected vectors in latent holes Nhole

Output: Zhole

1: Z← ∅;V′train ← ∅;D′train ← ∅
2: ∀x ∈ X, Z← Z ∪ {z} // z is the encoded x
3: ∀z ∈ Z, Vtrain ← Vtrain ∪ {E(z)} // E(·) yields the expectation
4: ∀z ∈ Z, Dtrain ← Dtrain ∪ {σ(z)} // σ(·) yields the standard deviation
5: Z′ ← PCA(Z) // Dimension reduced from d to dr
6: C ← a randomly-picked closed cube which contains dr vectors of Z′, w/ edges parallel to dr

dimensions
7: Zhole ← ∅; Z′hub ← ∅; Π← ∅
8: while |Zhole| ≤ Nhole do
9: if Z′hub == ∅ then

10: Z′hub ← {a random point in C} // Restart BFS
11: end if
12: Π← unvisited line segments: passing through vectors in Z′hub

∧
parallel to one of the dr

dimensions
∧

w/ endpoints on C // Depth increases by 1
13: Z′hub ← ∅
14: for each path (cf. § 5.2.1) in Π do
15: Sample z′i on path at an interval of 0.01 ∗min(Dtrain)
16: ∀i, zi ← INVERSE_PCA(z′i)
17: ∀i, decode zi to compute I(i) w/ Vtrain and Dtrain // Based on Eq. (5.1) in § 5.2.1
18: if I(i) is an outlier then
19: Zhole ← Zhole ∪ {zi}; Z′hub ← Z′hub ∪ {z′i}
20: end if
21: end for
22: end while

In addition, instead of traversing unconstrained paths like past studies, we only visit latent

vectors through paths parallel to the dr dimensions (see Step 12 and the next paragraph). Such

a setup is based on the intuition that these top principal components contain more information

about the latent space, and thus they are more likely to be useful when capturing latent holes.

5.3.1.2 Initialising Infrastructures for Search

To further boost efficiency, we propose to conduct a search on a tree-based structure within

a pre-established cubic fence. To be more concrete, at Step 6 we first locate a cube C

which surrounds dr encoded training samples from Z′ (i.e., Z after dimension reduction).
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These dr posterior vectors serve as references when analysing the distribution of latent holes3

(cf. § 5.4.2). We restrict the edges of the dr-dimensional C to be parallel to the dr latent

dimensions and treat C as the range of our search. Next, we regard each sampled latent vector

after dimension reduction z′i as a node, and in order to expand the search regions rapidly, we

need to visit these nodes following a BFS-based procedure (Skiena, 2008). Therefore, our

algorithm maintains a set Z′hub to keep track of all untraversed hub nodes, where the root

(aka. the first hub node) is randomly initialised in C (Step 10). For each hub node, we define

dr orthogonal paths, each of which is a line segment that passes through the hub node and is

parallel to one dimension. At Step 12, we log paths having not been previously processed in

a set Π (see the next paragraph for more detail).

5.3.1.3 Identifying Latent Holes

Following the principle of BFS, the TDC algorithm processes all nodes at the same depth

(i.e., all nodes on the paths in Π) before moving to the next depth. On each path, following

Falorsi et al. (2018) and Xu et al. (2020), at Step 15 we sequentially sample a series of z′i.

To ensure the sampling is fine-grained, we set the interpolation interval at the 0.01 times

minimum standard deviation of all elements in Dtrain (see Step 4). After that, we utilise the

inverse transformation of PCA4 to reconstruct z′i to the original d-dimensional latent space

at Step 16 and generate output samples through the decoder at Step 17. One core question

raised is how to choose the indicator I between the two existing ones which seem quite

distinct (cf. § 5.2.1). We eventually select the scheme of Falorsi et al. (2018) (i.e., ILipschitz

in Eq. (5.1)) and further adopt the Wassertein distance as the metric for the sample space.

Detailed justifications are provided in § 5.3.2 and § 5.3.3, respectively. After all paths in

Π are investigated, our algorithm pushes the tree search to its next depth by reloading the

emptied Z′hub with newly identified latent variables in the holes (Step 19). The motivation

for treating them as new hub nodes comes from our observation that holes tend to gather as

3We select dr as the number of contained z′ ∈ Z′, aiming to avoid cherry-picking and deredundancy
hyper-parameters.

4https://tinyurl.com/inverse-pca

https://tinyurl.com/inverse-pca
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Figure 5.2: ILipschitz of traversed vectors on one latent path of Vanilla-VAE
trained on the Yahoo dataset.

clusters. Figure. 5.2 exhibits one observation where multiple outlier ILipschitz are identified

after visiting just 100 latent vectors on a path. Such example confirms the motivation of the

TDC algorithm, i.e., latent holes often gather in small regions and the principal components

tend to pass through them. In case that no hub node is added, which suggests the end of

current BFS, TDC will bootstrap another tree by randomly picking a new root. The algorithm

halts when more than Nhole holes are identified.

In practice, we find that our tree-search strategy with dimension reduction not only boosts

the efficiency from an algorithmic perspective, but is also highly parallelisable by nature5 and

thus can duce computational time. In theory, the time complexity of TDC can be reduced to

O(Ir
dr), where dr can be as small as 3 (cf. § 5.4) and Ir is typically less than 2, thanks to the

parallelism of our algorithm. In experiments, when the device is equipped with a Nvidia GTX

Titan-X GPU and a Intel i9-9900K CPU, in most cases TDC (with dr at 8) can return more
5Our implementation parallelises the processing of different paths at the same BFS depth and different z′ on

the same path.
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than 200 holes in less than 5 minutes, whereas the methods of Falorsi et al. (2018) and Xu

et al. (2020) often need at least 30 minutes to find a hole in the same setup as our TDC.

5.3.2 Picking Indicator for TDC

Obviously, the indicator used by TDC (Step 17 in Algorithm 1) plays a crucial role as it

directly affects the effectiveness of identifying latent holes. By analysing the two existing

indicators in § 5.2.1, we demonstrate that (1) although developed under different intuitions,

they can actually be unified within a common framework; (2) although both indicators have

been tested successfully in validating the presence of latent holes, the indicator of Falorsi et al.

(2018) (ILipschitz) is more accurate as it has better completeness and is thus more suitable to

our algorithm. To begin with, we prove the following lemma:

Lemma 1. NLL(x, P ), the NLL of a data point x under a multivariate normal distribution

with independent dimensions P = N (µ,KP ) (with µ as the mean and KP as the covariance

matrix) can be numerically equal to a distance measure DNLL as

DNLL(x, µ) =
1

2
DG(x, µ) + δ(KP ), (5.3)

where DG is the so-called Generalized Squared Interpoint Distance (Gnanadesikan and

Kettenring, 1972) and δ(·) is a single value function.

Remark 1. DG is the squared value of the Mahalanobis distance (Mahalanobis, 1936) and

measures dissimilarity between two random vectors of the same distribution.

Proof. The probability density of P at observation x can be computed as Prince (2012)

exp

(
−1

2
(x− µ)ᵀK−1

P (x− µ)

)
/
(

(2π)
d
2 |KP |

1
2

)
. (5.4)

Therefore, the NLL of x under P becomes
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NLL(x, P ) =
1

2

[
(x− µ)ᵀK−1

P (x− µ) + log(|KP |) + log(2π)d
]
. (5.5)

Additionally, by defining function δ(·) as

δ(·) :=
1

2
[log(| · |) + log(2π)d] , (5.6)

we can see that

NLL(x, P ) =
1

2

[
(x− µ)ᵀK−1

P (x− µ)
]

+ δ(KP ). (5.7)

As DG between x and µ is written as

DG(x, µ) = (x− µ)ᵀK−1
P (x− µ), (5.8)

By substituting Eq. (5.8) into Eq. (5.7) we have

NLL(x, P ) =
1

2
DG(x, µ) + δ(KP ) = DNLL(x, µ). (5.9)

Based on this lemma, we find Eq. (5.2) is numerically equivalent to directly calculating

DNLL(zi, µ
(t)), yielding
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IAggregation(i) =
M∑
t=1

[
1

2
DG(zi, µ

(t)) + δ(KZ(t))

]
/M, (5.10)

where µ(t) and KZ(t) are the mean and covariance matrix of posterior Z(t), respectively.

Note that as Z(t) is deterministic, δ(KZ(t)) settles as a constant term. By specifying Dsample as

DNLL, w.l.o.g., we theoretically prove that if a latent position is signalled to be discontinuous

by the indicator of Xu et al. (2020), it will be identified using that of Falorsi et al. (2018).

Proof. For a latent position zi, if it is classified as continuous with a continuous neighbour

zi+1 (i.e., based on ILipschitz(i+ 1) and the outlier criterion as discussed in § 5.2.1), we know

that the indicator ILipschitz(i + 1) is not a large outlier and thus is bounded (considering the

original formalisation of Lipschitz continuity).

As mentioned, we implement Dspace in Eq. (5.1) with DNLL in the proofed lemma, yielding

DNLL(x′i,x
′
i+1)/Dlatent(zi, zi+1) < λLipschitz, (5.11)

where λLipschitz is a pre-defined threshold (e.g., Falorsi et al. (2018) set λ = 10). Note that

Dlatent(zi, zi+1) is now a constant term because the positions of zi and zi+1 are determinate.

Similarly, as its neighbour zi+1 is continuous as given, we have IAggregation(i+ 1) is bounded

and thus there exists a threshold λAggregation, such that

IAggregation(i+ 1) =
M∑
t=1

[
1

2
DG(zi+1, µ

(t)) + δ(KZ(t))

]
/M

=
M∑
t=1

DNLL(zi+1, µ
(t))/M (5.12)

<λAggregation − λLipschitz Dlatent(zi, zi+1) < λAggregation.

where there must exist a larger upper bound (i.e., the threshold λAggregation) and a smaller
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one (i.e., λAggregation−λLipschitz Dlatent(zi, zi+1)). Note that both of λLipschitz and Dlatent(zi, zi+1)

are constant terms mentioned above.

By definition, the Triangle Inequality always holds for established metrics such as DG.

Therefore, taking zi+1 as an anchor point we can show that

Eq. (5.10) ≤
M∑
t=1

[
1

2

(
DG(zi, zi+1) + DG(zi+1, µ

(t))
)

+ δ(KZ(t))

]
/M

<
M∑
t=1

DNLL(zi+1, µ
(t))/M +

M∑
t=1

DNLL(zi, zi+1)/M. (5.13)

Further incorporating Eq. (5.13) with Eq. (5.11) and Eq. (5.12) finally yields

IAggregation(i) < λAggregation − λLipschitz Dlatent(zi, zi+1) +
M∑
t=1

λLipschitz Dlatent(zi, zi+1)/M

= λAggregation − λLipschitz Dlatent(zi, zi+1) + λLipschitz Dlatent(zi, zi+1)

= λAggregation, (5.14)

which suggests a fixed upper bound for IAggregation(i). Therefore, vi is continuous under

the criterion of Xu et al. (2020). This demonstrates that ∀ latent positions, if they are not

identified as in holes under the criterion of Xu et al. (2020), they will not be identified as in

holes under the criterion of Falorsi et al. (2018).

Apart from theoretical proof, empirically we also observe cases showing ILipschitz has

better completeness than IAggregation. As illustrated by Figure. 5.3, z4 is in a discontinuous

latent region as its corresponding x′4 greatly departs from the samples of other latent vectors

on the same path. However, when x′4 and {x′1, x′2, x′3, x′5} are roughly symmetric to the

posteriors (∼ normal distributions with same standard deviation) of M = 4 test samples,

IAggregation(4) is not a large outlier and the hole may thus be ignored. However, this hole can

be identified using the other indicator as ILipschitz(4) makes a large outlier in this scenario. To
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Figure 5.3: A toy example where z4 is in a latent hole but may be falsely ignored
by IAggregation.

conclude, ILipschitz should be adopted to reduce the false-negative rate of TDC.

5.3.3 Picking Sample Space Metric

We find that it is impossible to directly apply the indicator of Falorsi et al. (2018) (ILipschitz)

for VAEs for NLP tasks: the Euclidean distance is used as Dsample in the original study which

is on vision VAEs, but it cannot be used to measure the distance between sentences6. One

straightforward solution is to directly follow Xu et al. (2020) who select NLL, a long-standing

and popular metric in past VAE studies on NLP tasks (Bowman et al., 2016; Fu et al., 2019;

Zhu et al., 2020). However, it does not make a valid metric for the decoder of VAEs for

language generation. To be more concrete, while on the encoder side NLL can be calculated

as qφ(z|x) in Eq. (4.3) (Xu et al., 2020) and is thus normal and thus has a metric-based

numerical equivalent DNLL (cf. the proofed lemma in § 5.2.1), on the decoder side the

posterior distribution of a output sentence is generally computed by a logsoftmax layer in

practice and is thus no longer normal. Instead, coupling the logsoftmax layer with NLL

yields cross-entropy7 as

6In principle, by simply adopting metrics such as Euclidean distance, TDC can also be applied on VAEs for
image generation. We will explore this direction in the future.

7https://tinyurl.com/CE-LSM-NLL

https://tinyurl.com/CE-LSM-NLL
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H(P,Q) := H(P ) + DKL(P ||Q), (5.15)

where P andQ are two probability distributions and H(P ) is the entropy of P . It is obvious

that H(P,Q) does not qualify as a statistical metric, because it does not satisfy symmetry nor

Triangle Inequality. A workaround which adopts the symmetric cross entropy (Wang et al.,

2019) and replaces KL-divergence with the positive squared root of its smoothed version,

JS-divergence, can somehow alleviate the issues (Osán et al., 2018). Nonetheless, the resulting

formula may dramatically lose its measurement capacity when there is no overlap between P

and Q (Lin, 1991) (which is common when testing a VAE for language generation) and is

thus unsuitable neither.

Finally, we refer to the Wasserstein distance of finite first moment as our final candidate,

which is defined as

DW1(νP , νQ) := inf
Γ∈P(P∼νP ,Q∼νQ)

E(P,Q)∼Γ||P,Q||1, (5.16)

where P(P ∼ νP , Q ∼ νQ) is a set of all joint distributions of (P,Q) with marginals νP

and νQ, respectively. DW1 has been adopted in a large body of recent VAE studies, such as

Chewi et al. (2021); Tolstikhin et al. (2018); Wu et al. (2019). Moreover, to further enhance

efficiency, following Patrini et al. (2020), we select the lightspeed Sinkhorn algorithm (Cuturi,

2013) to compute DW1.

5.4 Empirical Studies

In this section, we describe our experiment for validating the effectiveness of the proposed

TDC algorithm for latent hole identification. We first describe our setup, followed by three

empirical studies investigating the impact of latent holes on text generation, the vacancy of
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Description Training Validation
Yelp15 Restaurant reviews 100K 10K
Yahoo Web Q&A on daily knowledge 100K 10K
SNLI Constructed based on a real-world

image captioning dataset
100K 10K

Wiki Wikipedia articles 1.13M 141K

Table 5.1: Corpora descriptions and statistics.

holes, and how the holes are distributed.

5.4.1 Experimental Setup

5.4.1.1 Models

To demonstrate the generalisability of our proposed TDC algorithm, we pretrain five strong

and representative VAE models for language generation, including the state-of-the-art iVAEMI

model:

Vanilla-VAE (Bowman et al., 2016), which uses LSTM and KL annealing for mitigating the

posterior collapse issue;

β-VAE (Higgins et al., 2017a), which utilises an adjustable β to balance the reconstruction

loss and the KL term;

Cyc-VAE (Fu et al., 2019), which employs cyclical annealing for the KL term;

iVAEMI (Fang et al., 2019), which replaces the Gaussian-based posteriors with the sample-

based distributions;

BN-VAE (Zhu et al., 2020), which leverages the batch normalisation for the variational

posterior’s parameters.

5.4.1.2 Datasets

We consider four large-scale datasets, three of which have been commonly used in previous

studies for testing VAEs on the language generation task: Yelp15 (Yang et al., 2017), Ya-

hoo (Zhang et al., 2015; Yang et al., 2017), and a downsampled version of SNLI (Bowman
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et al., 2015; Li et al., 2019a). We additionally constructed a dataset (called Wiki) by down-

loading the latest English Wikipedia articles8 and then randomly sampling 1% sentences from

the whole set. The size of Wiki is 10 times larger than other datasets and it contains more

training samples which can cover more areas of the latent space during training VAEs. The

statistics of four datasets are shown in Table 5.1. For Yahoo, Yelp15 and SNLI, their training

and validation sets are all 100K and 10K, respectively. For Wiki, the training and validation

sets are 1.13M and 141K, respectively.

5.4.1.3 Hyper-parameter Settings

We adopt the official code of each tested models and apply the same pretraining hyper-

parameters to all models. To be concrete, the encoders and decoders of all models are

constructed using one-layer LSTM with 1024 hidden units and 512D word embeddings.

The dimension of the latent space is 32. KL annealing (Bowman et al., 2016) is applied to

all models, and the scalar weight of the KL term linearly increases from 0 to 1 during the

first 10 epochs. Dropout layers with a probability 0.5 are installed on the encoder’s both

input-to-hidden and hidden-to-output layers. All baselines are trained with Adam optimiser

with an initial learning rate of 8e-4. Parameters of all models are initialised using a uniform

distribution U(−0.01, 0.01) except for word embeddings with U(−0.1, 0.1). The gradients

are clipped at 5.0. During training, we set patience at 5 epochs, and adopt early stopping

based on Perplexity (PPL) with standard validation splits. For β-VAE and BN-VAE, the

corresponding β and γ are set at 0.4 and 0.7, respectively.

5.4.1.4 Configurations of the TDC Algorithm

As discussed earlier, the dimensions of the original latent space d is 32. When performing

dimension reduction, we experiment with dr = {3, 4, 8} for all setups. Empirically, we

observe that results for different dr setting show very similar trends. We report the results

based on dr = 8 in the main body and provide the results for other settings in Appendices A.1,

8https://tinyurl.com/LatestWiki

https://tinyurl.com/LatestWiki
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A.3, and A.4. When computing our hole indicator (Eq. (5.1)), we follow Falorsi et al. (2018)

and adopt the Euclidean distance for Dlatent (NB: for sample space (Dsample) we adopt the

Wasserstein distance as discussed in § 5.3.3). Following Hoaglin et al. (1986), at Step 18 of

TDC we adopt the popular Inter-Quartile Range measure that defines large outliers as data

points falling above Q3 + 1.5 · (Q3−Q1), where Q1 and Q3 respectively denote the lower

and upper quartile. In all runs, we set Nhole = 200, i.e., the program halts when more than

200 holes are identified and we store the first 200 holes in Zhole for evaluation. For stochastic

analysis, we run TDC 50 times for each setup, yielding 50× 200 = 10K latent holes per setup.

Recalling that there are 5 models and 4 datasets, we totally have 20 setups.

5.4.2 Results and Analysis

5.4.2.1 Impact of Latent Holes on Text Generation

In this experiment, we investigate how latent holes impact VAE models’ performance on text

generation. To our knowledge, this is the first such study as prior works (Falorsi et al., 2018;

Xu et al., 2020) merely explored the existence of holes and their schemes are incapable to

discover a sufficient amount of holes for quantitative analysis due to algorithm inefficiency

(cf. § 5.3).

Our analysis is established on the correlation between models’ performance on text

generation and the density of latent holes. As discussed in § 5.4.1, we identify 10K holes for

each setup using our TDC algorithm, based on which 10K sentences were decoded. We then

calculate the average PPL of those 10K sentences using a pre-trained GPT model (Radford

et al., 2018) following the practice of Dathathri et al. (2019)9. As for the density estimation of

latent holes, we utilise the average number of paths traversed before the number of identified

holes reaches the algorithm halting threshold Nhole = 200. Intuitively, the fewer paths visited,

the denser the holes are distributed, and vice versa.

Figure. 5.4 shows the average PPL versus the number of paths traversed (when reaching

200 identified holes) for each setup. It can be observed that there is a strong negative

9https://git.io/HF-gpt

https://git.io/HF-gpt
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Wiki :  rs = 1.0, rp = 0.99

SNLI :  rs = 0.7, rp = 0.72

Yelp15 :  rs = 1.0, rp = 0.93

Yahoo :  rs = 0.9, rp = 0.77

Vanilla-VAE
Cyc-VAE

-VAE
BN-VAE
iVAEMI

Figure 5.4: Average PPL and the number of paths traversed until more than Nhole

holes are identified. Correlation coefficients rs and rp are marked corpus-wise.

correlation between the average PPL (lower the better) and the number of visited paths, where

the corpus-wise Spearman’s correlation coefficient rs is consistently below or equal to -0.70.

It can also be observed that the Person’s correlation coefficient rp is below -0.72 for all

datasets, showing a certain degree of linearity for the correlation. In summary, the above

observations verify the intuition that denser latent hole distribution leads to higher average

PPL, and hence worse performance of VAEs for text generation.

As shown in Table. 5.2, for all cubes with different dimension in all datasets, iVAEMI

needs to search much more paths and depths than other models to reach the halt condition,

and it performs best. On the contrary, the overall worst-performing model, Vanilla-VAE,

covers the fewest paths and depths. In addition, when dr increases, we find that the quantity

of traversed path gradually increases but the quantity of reached depths decreases, indicating
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Model
Yelp15 Yahoo SNLI Wiki

path depth path depth path depth path depth
VAE 109.4 3.1 113.7 3.4 99.8 4.2 99.5 2.8
Cyc-VAE 119.3 3.7 116.1 3.5 92.0 3.7 121.4 3.4
β-VAE 138.4 5.0 144.9 8.9 99.7 3.1 129.4 4.8
BN-VAE 142.2 5.6 145.4 6.6 133.2 6.5 141.8 5.8
iVAEMI 149.7 7.4 148.0 11.4 139.1 14.7 148.2 6.4

Table 5.2: Average quantities of traversed paths and reached depths in each C of
8D until 200 latent holes are identified.

that the distribution of holes is denser in a lower-dimensional cube. By comparing results

across different datasets, the distribution of holes is denser in Wiki dataset for VAEs, which

agrees with our finding in Figure. 5.4 (see similar results in Appendix A.1).

Corpus-wise, we notice that models trained on the Wiki dataset, i.e., our largest training

dataset, do not seem to yield improvement for hole reduction when comparing to the much

smaller datasets such as Yelp15. Furthermore, sentences decoded by models trained on Wiki

have lower quality than those decoded by the corresponding models trained on Yelp15 and

Yahoo. One plausible explanation is that the complexity (e.g., topic coverage) of datasets plays

a more important role than the corpus size when training VAEs for language generation. For

instance, while SNLI contains the same number of sentences as Yelp15 and Yahoo, models

trained on SNLI are substantially inferior to the models trained on the other two datasets

in terms of average PPL. Manually examining the datasets reveals that the topics covered

topics in Yelp and Yahoo datasets are less diverse than that of SNLI and Wiki, e.g., SNLI was

constructed based on Flickr30k (Young et al., 2014), which includes captions for real-world

images across a wide range of categories.

5.4.2.2 Probing the Vacancy of Latent Holes

The previous experiment empirically shows that latent holes indeed have a detrimental effect

on VAEs’s generation performance. A recent study (Xu et al., 2020) proposed the so-called

Latent Vacancy Hypothesis, assuming holes are vacant with no meaningful information

encoded. This motivates us to further probe the vacancy of latent holes. Specifically, we
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Vanilla-
VAE

Cyc-VAE β-VAE BN-VAE iVAEMI

Yelp15
H 0.428 0.376 0.362 0.348 0.298
N 0.386† 0.339 † 0.356 0.303† 0.294
R 18.241‡ 18.293‡ 18.349‡ 18.234‡ 18.211‡

Yahoo
H 0.872 0.741 0.756 0.561 0.541
N 0.831† 0.704† 0.710† 0.527† 0.519†

R 18.736‡ 18.576‡ 19.027‡ 20.343‡ 18.556‡

SNLI
H 1.569 1.255 1.133 0.995 0.975
N 1.529† 1.129† 1.068† 0.947† 0.911†

R 41.247‡ 41.026‡ 40.781‡ 40.774‡ 40.692‡

Wiki
H 2.443 1.856 1.640 1.095 1.090
N 2.357† 1.721† 1.587† 1.041† 1.039†

R 5.377‡ 5.354‡ 5.338‡ 5.347‡ 5.320‡

Table 5.3: Average PPL (divided by 1K) of sentences decoded via vectors of HOLE

(H), NORM (N) , and RAND (R) in all setups. † indicates the PPL of a model via N
significantly lower than via H (with p < .05); ‡ indicates the the PPL of a model
via R significantly larger than via H (with p < .005).

conduct analysis by comparing the sentences decoded by latent vectors from an untrained

decoder and by the hole vectors from a VAE decoder trained following the setup in § 5.4.1.

For completeness, we also show the sentence decoded by normal (not in a hole) vectors from

a trained VAE. We detailed these three different types of vectors below:

• Hole vectors (HOLE), those being investigated in our previous experiments.

• Normal vectors (NORM), sampled from the continuous regions near a hole, i.e., zi+1

is a normal vector if zi is identified to be in a hole in ILipschitz.

• Vectors from the latent space of an untrained VAE (RAND). For controlled analysis,

we randomly initialised a VAE model and pick latent vectors whose coordinates are

the same as those of HOLE vectors. As this VAE is untrained, its latent vectors should

carry zero information by nature.

We compute the PPL of the sentences generated by the vectors of each of the above

categories. As expected, results in Table. 5.3 show that the sentences decoded via HOLE

vectors are significantly inferior to those via NORM vectors in almost all setups tested (two-

tailed t-test with Bonferroni correction (Dror et al., 2018); p < .05). It can also be observed
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Vanilla-VAE × SNLI
HOLE the bridge was an old gentleman .
NORM a married couple is resting .
RAND waling speedo ever vehicle birdhouse supports tahoe vacant com-

mute
HOLE a crowd smiles at people .
NORM an old man plays with his dogs .
RAND inspect rioting shivering entrance back-to-back seeker wheeling
iVAEMI × Yahoo
HOLE it ’s _UNK to do it or you just put home sick in the a back .
NORM i ’m thinking of buying the _UNK on the internet from

pennsylvania .
RAND drin ;-lrb- parker vastly san ripped fountain tais compared gratuit
HOLE this is not a place of all or more specifically my life .
NORM is that what you want to do when your _UNK exceeds ?
RAND rr selves t-mobile sad nondescript up-sell dominos concern newly

Table 5.4: Examples of sentences decoded via vectors of HOLE, NORM, and
RAND from SNLI and Yahoo datasets.

that sentences decoded via HOLE vectors are a lot better than the random output generated via

the RAND vectors (p < .005). This observation suggests that the Latent Vacancy Hypothesis

proposed by Xu et al. (2020) does not hold empirically, i.e., the regions containing HOLE

vectors are not vacant, which do capture some information from the training corpus.

Finally, we qualitatively analyse some sentence examples generated by different types of

vectors, as shown in Table 5.4 and Table 5.5. First, we observe that although topologically

adjacent in the latent space, HOLE and NORM vectors are decoded into completely irrelevant

sentences semantically, indicating that holes, due to severely harming the smoothness of

latent continuity, do have a detrimental effect on model’s generation quality. Second, it can

be observed that the output sentences generated via RAND vectors are neither syntactically

correct, nor making any sense semantically. In contrast, although sentences decoded via

HOLE vectors tend to have problematic word matching and contain content which is against

common sense, at least they still follow basic grammars in most cases, which once again

verifies that HOLE vectors some useful information. Based on this finding, one implication of

the future work is to introduce a novel regularisation term in the objective function and utilise
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BN-VAE × Yelp15
HOLE it free vip and ate well some of the sushi options around to _UNK you

in the guest !! there ’s more wine that an awesome hot chocolate cake
then fair grade .

NORM so i tend to get some good red salsa when i go to the restaurant . i always
get the turkey wings , cornbread , risotto . the fries are very good as well
!

RAND told 18th maintenance crappy awsome devoured confit mosh sorely
expiration cinnamon compassion refused abroad perfectly cant hokkaido

HOLE $ the dude working back was great . if your perfectly _UNK then try it
there . a safe bet ” with light fluffy slices and some new soul .

NORM if you ’re a regular , this is really a good place to go with your family .
its vegetarian dishes , no more like shredded beef . what do you want :
there is a lot of onions on the side , but the noodles are a bit

RAND excelent styrofoam thighs extra scots roadside poof cart massaman
meters miracles boneless cannon oxymoron spoiled maui retain 12.50
dating

β-VAE × Wiki
HOLE from the _UNK that ’s considered religious adventures were evolutionary

lived of definition .
NORM the first section of the “ _UNK ” , in the late 14th century , relief efforts

were accomplished .
RAND eviction abbe cultural biannual highfield aqua 27.7 ieyasu slowed

gretchen fb raping charadriiformesfamily cleaner municipal
HOLE fully investing by means in kyiv and enough budget genetic compliance

egypt .
NORM that they had a girl to set up the system , it seems to be “ _UNK ” .
RAND £3 albrecht rendell dubstep elland sinhalese pediments namely anxieties

amrita nootka worked brownish tatars luxury analogues europe/africa

Table 5.5: Examples of sentences decoded via vectors of HOLE, NORM, and
RAND from Yelp15 and Wiki datasets.

the detected latent holes to regularise the latent space. In addition, TDC is a plugin for other

existing VAE models. During training, TDC can be regarded as a data augmentation approach

to treat the detected latent holes as negative samples under contrastive learning framework.
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Figure 5.5: Distribution of quantity of identified holes per latent path for models
trained on the Wiki dataset when dr = 8. Results for other datasets are in
Appendix A.4.

5.4.2.3 The Distribution of Latent Holes

Finally, we explore how the latent holes are distributed in the latent space. While a prior

study (de Haan and Falorsi, 2018) proposed a theoretical hypothesis that latent holes should

be densely distributed, it has never been investigated empirically.

We visualise one run of TDC in Figure. 5.1. As described in § 5.3.1, C is the minimum

cube which can surround the 3 encoded training samples on a local latent region and thus

spans quite narrowly (with a side length being around 0.1, while the width of the latent space

is more than 5). However, even in this small search space, TDC still successfully halted and

identified more than 200 (defined by Nhole, cf. § 5.3.1) latent holes, showing that the distance

between these holes is tiny and their distribution is very dense. Moreover, all these latent

holes are detected by traversing only 85 paths, meaning that more than 2 latent holes exist on

each path, on average. Similar finding can be obtained in Figure. 5.5 (we further investigate

the fine-grained quantity distribution of identified holes per latent path in Appendix A.4).
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Figure 5.6: The entire latent space of Vanilla-VAE trained on the Wiki dataset
(please see Appendix A.2 for other setups). In total 50 runs of TDC are inde-
pendently performed, each of which yields a cubic search space C like the one
visualised in Figure. 5.1.

Similar finding can be obtained in Figure. 5.6 that holes look ubiquitous in the entire latent

space. In addition, once again we can see that in the 50 explored regions (the spaces which

have been surrounded by C of each run of TDC), the identified latent holes are very close to

each other and even form clusters.

5.5 Conclusion

In this chapter, we provide a comprehensive study on the discontinuities (aka. holes) in the

latent space of VAEs, a phenomenon which has been shown to have a detrimental effect on

model capacity. In contrast to existing works which exclusively focus on the encoder network

and which merely explored the existence of holes, we propose a highly efficient tree-based

decoder-centric (TDC) algorithm for latent hole identification. Comprehensive experiments

on the language generation task show that the performance of text generation is strongly
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correlated with the density of latent holes, that from the perspective of the decoder, the Latent

Vacancy Hypothesis proposed by Xu et al. (2020) does not hold empirically; and that holes

are ubiquitous and densely distributed in the latent space.



Chapter 6

Conclusions and Future Work

This thesis proposes various novel methods to tackle the dialogue act classification, the KL

loss vanishing issue and the low-density latent region problem. This chapter will summarise

the key contributions of each chapter and present possible directions of the future work.

6.1 Overview of Thesis

Chapter 3 proposes a dual-attention hierarchical recurrent neural network for dialogue act

classification. Our model makes use of topic information in the dialogue conversation and

utilises the multi-task learning strategy to combine dialogue act classification and topic

information together. In addition, an automatic topic labelling scheme is introduced to avoid

the time-consuming manual topic labelling. Our model is evaluated over three popular

dialogue conversation datasets and compared with several strong baselines. Experimental

results show that our model is able to yield better or comparable performance than baselines.

In addition, there are two limitations of this work. At first, topic labels used in this model are

only treated as discrete tokens, which has difficulties in capture topical semantic similarity in

the corresponding label space. The topical word embedding might be a better choice. Second,

although the classification accuracy of the dialogue act is improved under the multi-task

learning mode, the classification accuracy on the topic side is not as high as the dialogue act

90
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side.

Chapter 4 introduces a simple and robust VAE model, which imposes the KL regularisation

into each timestep in the recurrent neural network encoder. Moreover, our method is generic

and can be applied into any RNN-based VAE models in the text generation domain. By

comparing with different strong VAE baselines in the language modelling task, our model

can alleviate the KL loss vanishing well and generate high-quality sentences. In the dialogue

response generation task, our model achieves better or comparable performance and can

generate relevant, contentful and diverse responses. One limitation of this work is that the

training convergence of the TWR-VAE is slow, especially in large-scale datasets. One possible

reason might be that the timestep-wise KL regularisation always imposes small gradient values

during optimisation, which further slows the training convergence down.

Chapter 5 provides a comprehensive research on the low-density latent region of the

VAE in the text domain for the first time. We propose a highly efficient tree-based decoder

algorithm to identify latent holes. In addition, comprehensive experiments show that the latent

holes are densely distributed in the latent space and the latent hole is not really vacant. One

limitation of this work is that we only tested our hypothesis and conducted the latent hole

detection experiments in the Euclidean space. However, the latent space might be distorted via

the mapping from non-trivial high-dimensional data manifolds to the learned low-dimensional

latent space. Therefore, different space might need to be tested, e.g., Riemannian latent space.

6.2 Future Work

The current research work might be extended via many directions introduced below.

6.2.1 Topic Embeddings and Speaker’s Information

As for the dialogue act classification work, our current model directly uses the topic labels

for each conversation as a true labels for classification. However, there are several methods

to impose the topic information into the model, such as encoding the topic labels as topic
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embeddings and imposing them at character, word and utterance levels. In addition, the

speaker’s information is helpful for the dialogue act classification, because the implicit

intention in each utterance varies based on different speaker’s role. Apart from recognising

dialogue acts, DA can help dialogue response generation as well, and combining DA and

VAE for generation task is a meaningful direction.

6.2.2 Abstract Meaning Representation with Dialogue Acts

Abstract Meaning Representation (AMR) (Banarescu et al., 2013) is a type of sentence

semantics representation which focuses on the main concepts (e.g., phone) and semantic

relations (e.g., ARG0) and removes irrelevant syntactic information using a rooted directed

acyclic graph. In addition, dialogue act, a representation of the speaker intent, has a strong

connection with the main concepts and semantic relations in dialogue conversations. For

example, a request for information (e.g., How much is this phone?) expresses distinct meaning

compared to a request for action (e.g., Could you please hand this phone to me?). Constructing

an AMR with dialogue act labels using graph neural network is a worthy direction to explore.

6.2.3 Pre-trained VAE Language Models

Recently, transformer-based pre-trained language models have shown its powerful perform-

ance in several downstream tasks, e.g., text classification, dialogue response generation,

text summarisation, etc. However, variational pre-trained language models have not been

well investigated yet. With the help of the transformer pretrained in large scale corpus, the

latent space in the variational transformer can be organised better than RNN-based VAE, and

different applications of the variational transformer is worth investigating.

6.2.4 The Impact of Latent Holes in Different Downstream Tasks

After investigating that latent holes are densely distributed in the latent space and they are not

really vacant, an interesting direction is how the latent holes affect different NLP downstream
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tasks, e.g., text summarisation, dialogue response generation, etc. In addition, a novel

VAE model which avoids creating latent holes in the latent space is worth considering after

identifying where the latent holes are.

6.2.5 Contrastive Learning using Detected Latent Holes

With the help of our highly efficient latent hole detection algorithm TDC, we find that the

latent holes are actually not vacant, although there exist word matching and anti-common

sense issues in the decoded sentences via the latent holes. However, one possible future work

based on this finding is that we can treat these latent holes as negative samples and train a

VAE model under the contrastive learning framework.
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Appendix A

Identified Holes in Different Dimensions

A.1 Paths Traversed and Depths Reached till TDC Halts

Table A.1: Average quantities of traversed paths and reached depths in each C of
4D until 200 latent holes are identified.

Model
Yelp15 Yahoo SNLI Wiki

path depth path depth path depth path depth
VAE 101.0 4.7 102.9 5.2 99.6 11.2 95.3 3.7
Cyc-VAE 112.5 8.5 113.8 5.4 90.7 10.5 119.3 6.4
β-VAE 128.3 13.5 135.5 16.6 89.6 4.8 127.3 7.4
BN-VAE 135.4 19.2 136.1 19.9 121.1 8.9 139.4 9.9
iVAEMI 142.1 22.7 140.8 21.1 132.5 13.5 140.4 15.8

Table A.2: Average quantities of traversed paths and reached depths in each C of
3D until 200 latent holes are identified.

Model
Yelp15 Yahoo SNLI Wiki

path depth path depth path depth path depth
VAE 99.9 8.0 99.3 7.3 99.7 38.6 85.5 4.9
Cyc-VAE 110.0 9.3 106.0 11.3 88.3 14.4 118.7 11.9
β-VAE 120.8 14.9 133.4 13.7 88.2 9.4 125.0 13.5
BN-VAE 132.4 15.8 134.6 14.6 120.5 10.5 131.5 14.3
iVAEMI 141.9 16.4 137.0 15.0 131.4 17.7 134.2 16.4

As shown in Tabs. A.1, and A.2, the similar trend can be found as the Tab. 5.2 in § 5.4.2.
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A.2 Latent Space Visualisation

Figure A.1: Visualisation of the latent space of Cyc-VAE (trained on the Yelp15
dataset).

Figure A.2: Visualisation of the latent space of β-VAE (trained on the Yahoo
dataset).
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Figure A.3: Visualisation of the latent space of BN-VAE (trained on the SNLI
dataset).

Figure A.4: Visualisation of the latent space of iVAEMI (trained on the Wiki
dataset).
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Figure A.1, A.2, A.3 and A.4 show that holes are ubiquitously distributed in the entire

latent space for different baselines.

A.3 Impact of Latent Holes When dr ∈ {3, 4}
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Figure A.5: Average PPL and the number of paths traverseduntil TDC halts for
all setups (dr = 3).

Figure A.5 and A.6 show the similar trend as Figure 5.4 in § 5.4.2.
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Figure A.6: Average PPL and the number of paths traverseduntil TDC halts for
all setups (dr = 4).
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A.4 Quantity Distribution of Identified Holes
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Figure A.7: Quantity distribution of identified holes per discontinuous latent path
for models trained on the Wiki dataset when dr = 3.
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Figure A.8: Quantity distribution of identified holes per discontinuous latent path
for models trained on the Wiki dataset when dr = 4.
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Figure A.9: Quantity distribution of identified holes per discontinuous latent path
for models trained on the Yelp15 dataset when dr = 8.
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Figure A.10: Quantity distribution of identified holes per discontinuous latent
path for models trained on the Yahoo dataset when dr = 8.
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Figure A.11: Quantity distribution of identified holes per discontinuous latent
path for models trained on the SNLI dataset when dr = 8.
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