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Abstract

The inerter is a two-terminal device that generates a resisting force proportional to the

relative acceleration between its two terminals. To date, three main types of inerters

have been introduced in the literature based on inertial mass (inertance) generation

mechanisms: fluid inerters, rack-and-pinion inerters, and ball-screw inerters. In such

mechanisms, significant levels of inertance can be generated while keeping the actual

mass to a minimum.

This feature of inerters has attracted many researchers in the earthquake engineer-

ing community to explore their use for protecting building structures against earth-

quakes. For this purpose, inerters are often combined with a stiffness and a damping ele-

ment in various configurations to form so-called tuned-inerter-based-dampers (TIBDs).

There are three TIBDs mostly found in the literature: (1) tuned-viscous-mass-damper

(TVMD); (2) tuned-inerter-damper (TID); (3) tuned-mass-damper-inerter (TMDI).

One common layout of the three TIBDs is they have at least two elements connected

in parallel. In the TVMD, the two elements are viscous damper and inerter, while in

the TID and TMDI, the two elements are spring and viscous damper. For the first

time, the possibilities for the devices to exhibit hysteresis through the two elements

in parallel are explored in this thesis. In particular, two linear hysteretic damping

concepts are discussed: (1) complex damping; and (2) complex stiffness.

Furthermore, novel concepts of passive tuned inerter dampers with linear hysteretic

damping, namely the tuned inerter hysteretic damper (TIhD) and the tuned mass

hysteretic damper inerter (TMhDI) are introduced. Both concepts were developed

based on the well established TID concept whereby the parallel connected viscous

damping and spring elements are replaced by a complex stiffness model. The idea is to

design a more realistic tuned inerter damper that captures the hysteretic behavior of

the dampers. The aim is to develop a modified method to solve the equation of motion

of structures with complex stiffness in the time domain.

Finally, a shake table experiment was performed for a three-storey structure equipped

with a TMhDI device on its base storey, subjected to both harmonic and earthquake

base inputs. The TMhDI uses gel dampers as its hysteretic damping element. The

inerter element was realised by a flywheel inerter which was designed by using a fric-

tionless linear guide mechanism. For comparison, a shake table experiment was also

performed for the same three-structure equipped with a TMDI device on its base

storey level. The viscous damping element was realised using eddy current dampers.

It is shown that the analytical model of both TMhDI and TMDI are in good agreement

with the experimental results. Furthermore, these experiments also confirm the dis-

tinction between both devices, particularly in the structure’s second and third modes

of vibrations, where the structure equipped with the TMhDI has a larger response.
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Chapter 1

Introduction

1.1 Background

Earthquakes have long been major problems for people living in the seismic prone

areas. During the twentieth century, more than 1,200 destructive earthquakes occured

and caused extensive damage worth more than $1 trillion worldwide [1]. Moreover,

with regard to loss of life on average 10,000 people died each year between 1900 and

1999 due to earthquakes [2].

In Indonesia, the 2004 earthquake with a magnitude of 9.0 on the Richter scale

followed by a tsunami caused 283,000 deaths in addition to damage costing $13.5

billion [3] and in 2005 an earthquake with a magnitude of 8.7 caused 1,520 deaths. In

Indonesia between 2000 and 2006, there were five earthquakes with magnitudes higher

than 7.0 which caused billions of dollars’ worth of structural damage [3]. More recently,

in December 2016 an earthquake with a magnitude of 6.5 on the Richter scale occured

in Aceh, Indonesia, and killed nearly 100 people [4].

Worldwide, devastating earthquakes have caused extensive damage and killed many

thousands of people. For example the Northridge earthquake (1994) in US caused

damage $30 billion and killed 60 people, the Alaska earthquake (1964) in US caused

damage $311 million and killed 115 people, the earthquake in Hyogo-ken Nanbu, Japan

(1995) caused damage $150 billion and killed 6000 people [5].

Several reports have concluded that 75% of earthquake fatalities were caused by

building collapse during the last century [5]. For example, 73% of deaths during the

1995 Kobe earthquake were caused by collapsed houses [5]. On the other hand, 63%

of deaths during the 1989 Loma Prieta earthquake were caused by bridge failures [5].

This implies that protecting structures from severe damage during earthquakes is key

to reducing the loss of life. Thus, in the earthquake engineering community, there is

an earthquake-resistant design philosophy for structures that has since been accepted

worldwide: the structures should resist (1) minor earthquakes without damage; (2)

moderate earthquakes with minor structural damage; and (3) major earthquakes with-
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out collapse.

In this regard, various types of seismic protection strategies have been proposed in

the literature. The three most common are: (1) making the structure stiffer by adding

bracings; (2) isolating the superstructure from its foundation; and (3) using vibration

suppression devices. The first approach aims to increase the stiffness and the natural

frequency of the structure such that the predominant frequency of the earthquakes is

far below the fundamental frequency of the structure. On the other hand, the second

approach reduces the natural frequency of the structure due to the lateral flexibility

of the isolators. Lastly, the third approach reduces the structural response around

resonance by using energy dissipation devices.

One of the most widely-used base isolators is rubber bearing. These consist of

rubber and steel layers. The rubber contributes to the horizontal flexibility while the

steel plates provide vertical load carrying capacity of the device [6]. The isolators are

usually installed between the foundations and the superstructures of buildings, while for

bridges they are usually between the piers and the deck. So far, the application of base

isolators has been limited to particular facilities such as hospitals, power stations, and

other critical buildings because of the high-cost of manufacture and installation [7, 8].

There are three types of vibration suppression system in building structures; active,

semi-active, and passive control devices. Passive control devices are preferred and are

the most widely used nowadays due to their simplicity in maintenance. Unlike passive

devices, active devices require energy input, and it is quite challenging to ensure that

they remain functional during earthquakes. However, they have the advantage of wider

range of operation. Semi-active devices on the other hand, combine the principles of

active and passive devices. Their parameters can be adjusted to fit the different types

of earthquakes and require less power than that of active devices. Moreover, semi-

active devices can also be designed to include a passive fail-safety. In this thesis, only

passive control type of devices are considered, both active and semi-active devices are

beyond the scope.

Numerous examples exist of buildings where passive vibration control devices are

implemented. Taipei 101 is one of the most famous. It employs a Tuned Vibration Ab-

sorber (TVA) consisting of cable-suspended mass and viscous dampers which are tuned

to a particular frequency [9]. The TVA is attached to the top of the building to limit

its sway due to unwanted vibrations imposed by dynamic loads such as earthquakes

and wind. TVAs were, however, shown to only be effective when their host structures

are vibrating within a specific frequency range [10]. Their performance is also affected

by the characteristics of the ground motion. Villaverde and Koyoama [10] found that

the TVAs perform better when the ground motion has narrow band frequency and

long duration. They also require a huge amount of mass to be added to the primary

structure which affects the design of the structural members.

In the late 1990’s, Okumura Atsushi [11] patented a concept of gyro-mass, consisting
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of a spring in parallel with flywheels and a geared rod. The force generated by the

device is proportional to the relative acceleration between its two nodes. With the

concept of inertial force, this device can produce inertance several times larger than

its actual mass. This important feature has attracted researchers, particularly in the

earthquake engineering community.

The term “inerter” was coined by Smith in the early 2000s [12]. Since then, various

works on the development of the inerter have been conducted. Three main types

of inerters have been introduced in the literature, namely fluid inerters [13], rack-

and-pinion inerters [12], and ball-screw inerters [14, 15]. Wider applications of the

inerters were also explored, such as for civil [16–23], mechanical [24–27], and aerospace

engineering [28–34].

The feasibility of inerters for use as earthquake protection devices in building struc-

tures has been widely investigated. For this purpose, inerters must be combined with

other mechanical elements: springs and dampers. The inerter-spring-damper configu-

rations are also known as tuned-inerter-based-dampers (TIBDs).

One of the earliest TIBDs described in the literature is the Tuned Viscous Mass

Damper (TVMD) consisting of a parallel inerter-damper connected in series to an

inerter. The device was firstly introduced in 2008 by Saito et al. [35]. The first

application of the TVMD in a real structure was in a 14-storey office building in

Tohoku, Japan [36] and to this date, the TVMD is the only variant of TIBDs that has

been applied in a real structure.

One of the TIBD variants that has received considerable attention in the literature

recently is the Tuned Inerter Damper (TID) proposed by Lazar et al. [37]. The TID is

an inerter-based system consisting of a parallel-connected viscous damper and spring

connected in series with an inerter. The layout of the TID is similar to the Tuned

Mass Damper (TMD), a well-established tuned vibration absorber (TVA) device. The

tuning of the TID is also adopted from the TMD proposed by Den Hartog in the

1940s [38]. Lazar et al. [37] pointed out that the TID is an excellent alternative of

the TMD. For the same mass ratio (or inertance-to-mass ratio in case of TID), similar

performance can be achieved to that of TMD because the inerter element of the TID

can generate larger inertance with a smaller mass. Another benefit of the TID is that

the optimum performance of the structures can be achieved by placing the TID at

the base of the structure. It also works based on relative motion and is sufficient to

reduce the response amplitude at the resonant frequencies of at all modes, not just the

targeted one as in the case of the TMD.

In 2014 Marian and Giaralis [39] introduced a variant of the TIBD known as the

Tuned Mass Damper Inerter (TMDI). The layout is similar to that of the TID with an

additional secondary mass md element between the inerter and parallel spring-damper.

This md can represent the physical mass of the inerter device when it is too significant

to be neglected. Some examples of TMDI application for building structures can found
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in [40, 41].

In recent years, research on TIBDs has mostly focused on three things: the be-

haviour of TIBD with various possible inerter-spring-damper configurations [42, 43];

the effect of nonlinearity on each element of the TIBD [44–47]; and the application

of the TIBD [26, 37, 48–50]. However, only a few have made successful experimental

verification [51–53]. The only TIBDs that have been successfully installed in a real

structure are the Tuned Viscous Mass Damper (TVMD) [36] with a ball-screw mecha-

nism to generate inertance. However, despite the other two variants of the TIBD (TID

and TMDI) which have received considerable attention in the literature, neither has

been implemented in any real structure.

This research will focus on bringing the concept of the three TIBDs (TID, TMDI

and TVMD) into practical implementation through simulations and experiments. In

particular, the devices will be developed for use as earthquake protection of building

structures.

The concept of using linear hysteretic damping is motivated by the fact that, in

practice, most damping in materials exhibit hysteresis rather than viscous behaviour,

meaning the energy dissipated per cycle is independent of the excitation frequency [54].

The results from the helical fluid inerter experiments by Smith and Wagg [55] also show

that the device exhibits hysteresis in its force-velocity relationship.

Considering the inerter-spring-damper configuration in the TID, TMDI and TVMD

(shown in the following chapter in Figure 2.6), the hysteresis may occur in at least two

ways: (1) for TID and TMDI, the parallel spring-damper may exhibit hysteresis in

the force-displacement relationship; and (2) for TVMD, the parallel inerter-damper

may exhibit hysteresis in the force-velocity relationship. Although these hysteretic

behaviours may also exhibit nonlinearity, such as in the rubber bearing and metallic

materials, this is all are beyond the scope of this thesis.

1.2 Research Objectives

This research focuses on the novel concept of the TIBDs with linear hysteretic damping.

The research Objectives can be divided into three main parts:

[O1] To propose novel analytical models for TIBDs with linear hysteretic damping.

[O2] To propose a new design concept for the realisation of the TIBDs with linear

hysteretic damping for application as an earthquake protection device in building

structures.

[O3] To verify results from O1 and O2 by performing shake table experiments of a

multi-storey structure equipped with a TIBD with linear hysteretic damping.
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1.3 Thesis Outline

Following this introductory chapter, Chapter 2 presents a literature review, looking

at several well-established passive control strategies. The scope of the discussion falls

into six sections: (1) base isolation; (2) dampers; (3) tuned vibration absorber; (4)

combined isolation and TVA; (5) inerters; and (6) combined isolation and TIBDs.

In Chapter 3, two linear models of hysteretic damping are presented: complex

damping and complex stiffness. The two models assume a parallel-connected inerter-

damper and parallel-connected stiffness-damper, respectively. Firstly, a helical fluid

inerter is studied. The experimental results from the literature have shown that the

helical fluid inerter has both inerter and damping parameters in parallel. Further

investigation shows that its force versus velocity relationship exhibits hysteresis. A

complex damping model is proposed to capture this hysteretic behaviour. Secondly,

a complex stiffness model which is a spring and damper in parallel is discussed. The

discussion includes a novel computational time-domain method implemented in Matlab.

In Chapter 4, an new design approach is proposed for the helical fluid inerter. The

main objective of this chapter is to design the helical fluid inerter for use as a TIBD.

The helical fluid inerter is connected in series to a spring to form a TVMD-like device.

However, here both inertance and damping are coupled.

In Chapter 5, two novel concepts – the TIhD and the TMhDI – are proposed

based on the concepts of the TID and the TMDI. The difference is that they use a

complex stiffness model to capture the behaviour of the coupled spring-damper. The

optimum design and placement of these two devices are discussed in detail, including

time-domain analysis.

In Chapter 6, a new design of the TMhDI device is proposed. The hysteretic

damping of the TMhDI is given by a gel damper, while the inertance is given by a

flywheel inerter. The characterisation tests of both devices are presented in detail. For

comparison, a new design of TMDI is also proposed. The viscous damping properties

of the TMDI is realised by using Eddy Current Dampers (ECDs) which consist of

permanent magnets. Both TMhDI and TMDI proposed in this Chapter will be used

for shake table experiments presented in Chapter 7.

In Chapter 7, the results from the shake table experiments are presented. A three-

storey structure equipped with a TMhDI device was subjected to both harmonic

sinewave and seismic excitations. The comparison between the proposed analytical

model and the results from the experiment is also discussed. For comparison, the

structure is also tested when equipped with a TMDI proposed in Chapter 6.

Finally, Chapter 8 gives the overall conclusion of the thesis and future work.
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Chapter 2

Literature Review

2.1 Introduction

The idea of reducing structural response to prevent severe damage during earthquakes

has attracted researchers for many years, especially from those countries where earth-

quake hazards are important in the structural design processes such as Japan, Taiwan,

the USA, and Indonesia. The structural response is important because it is directly

correlated to the severity of damage in the structural and non-structural elements of

the structures.

Numerous methodologies have been proposed. Mainly there are two methods of

preventing damage in structures. Firstly, by strengthening the structural elements, es-

pecially the beam-column connections. Often non-structural elements such as walls are

also important to be strengthened [56]. Secondly, by providing additional control de-

vices on the structures such as energy dissipation, mass mechanism, and base isolation

devices.

There are three types of control devices: passive; semi-active; and active. Combin-

ing two out of the three is known as a hybrid control system, each with advantages

and disadvantages [57,58]. This research focuses on inerters as passive control systems

in building structures. The passive control system is preferred due to its simplicity

of design and maintenance, meaning no power input or design of control system is

required. It also provides a fail-safe in the case that power is lost in an earthquake.

In this Chapter 2, a review of several control devices/systems is given. The scope of

the review falls into six sections: (1) Base Isolation; (2) Dampers; (3) Tuned Vibration

Absorber; (4) Combined Isolation and Tuned Vibration Absorber; (5) Inerters; and (6)

Combined Isolation and Tuned Inerter Based Dampers.

6



Chapter 2. Literature Review

2.2 Base Isolation

There has been significant progress in seismic protection strategies for civil structures to

modify the dynamic interaction between the structure and the ground motions and to

control the structural response. There are three categories of response control systems:

base isolation (BI), energy dissipation unit and the mass effect mechanism such as

a TVA. The main difference between base isolation and the other control devices is

that the superstructure is isolated from the foundations to limit the seismic energy

transferred to the superstructure.

The development of modern seismic base isolation systems started in 1870 when

Jules Touaillon was issued a US patent for the first seismic base isolation device for

buildings [59]. As shown in Figure 2.1, the device consisted of an array of double

concave surfaces with spherical balls in-between. The modern application of seismic

isolation began in the late 1960s with the development of modern materials such as

rubber. The first application of rubber bearing seismic isolation was in 1969 on a three-

storey concrete structure [60]. Since this first application, the development of seismic

base isolation systems has grown rapidly and their application has spread worldwide.

Figure 2.1: Jules Touaillon’s 1870 seismic isolated structure [61]

Based on the mechanism, base isolation can be grouped into three categories: slid-

ing bearings, friction bearings and rolling bearings. One of the variants of the sliding

bearing is elastomeric bearings which is the most widely used base isolation [62]. Pre-

viously, there were two types of elastomeric bearings, high damping rubber bearings
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and low damping rubber bearings, made up of a rubber material and thin steel plates.

The rubber is needed to provide horizontal flexibility and the steel plates act as re-

inforcements to resist the vertical load from the buildings. In 1982, the elastomeric

bearing was modified by adding a lead core to form a device called lead rubber bear-

ings (LRB) [63]. For analysis, the elastomeric bearings are either modelled as a linear

spring and damper in parallel or as a nonlinear model, for example see [64, 65]. The

non-linearities of the isolation system can also be simplified as a linear model [66].

Friction bearings reduce the ground-to-superstructure transmissibility using a fric-

tion mechanism. One of the most famous examples of this type of isolator is the friction

pendulum system (FPS) [67–69] consisting of a spherical sliding surface and a pendu-

lum. The sliding surface is polished with chrome providing friction when it is in contact

with the pendulum during earthquakes. The sliding surface is usually designed as con-

cave with a curvature allowing the device to have restoring force which is proportional

to the displacement and the gravitational loads from the superstructure carried by the

pendulum. Further discussion on the friction isolators can be found in [70–77].

Rolling type isolators limit the seismic energy transmitted to the superstructures

using a rolling mechanism. One of its variants is rocker bearing isolators which have

been used in many old traditional buildings in Indonesia [56]. The concept is based on

the rotational motion of the bearing placed on the foundations. This rotational motion

protects the superstructure from undergoing large deformation imposed by the ground

shaking. This concept has been extensively discussed in [78] as to how the rocker

bearing can effectively reduce the transmitted forces into the structure and reduce the

damage. Further discussion on other types of roller isolator can be found in [79–87].

Ideally, the superstructure remains unaffected by a seismic event if no seismic en-

ergy is transmitted from the ground. The isolators must be capable of undergoing the

movement imposed by the earthquakes without losing their gravitational load carrying

capacity, but the isolators may experience excessive displacement [88]. During long

duration and long-period earthquakes, the superstructure also tends to have large dis-

placement due to resonance. Therefore, often the use of isolators is combined with

other control devices such as dampers and TVAs.

2.3 Dampers

Dampers dissipate energy via several mechanisms. In general, there are four types of

damper used in civil engineering structures: (1) metallic dampers; (2) friction dampers;

(3) viscoelastic dampers; and (4) viscous dampers. Metallic and friction dampers dissi-

pate energy through the relative displacement between their two ends or terminals. The

energy dissipated per cycle by this type of damper is usually frequency-independent.

On the other hand, viscous dampers dissipate energy through the relative velocities be-

tween their two terminals. Unlike the metallic and friction dampers, viscous dampers
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are frequency-dependent devices, meaning the energy dissipated per cycle depends on

the frequency of the motion. Viscoelastic dampers however, dissipate energy through

both relative displacements and relative velocity between their two ends.

The concept of using dampers for seismic protection was firstly introduced in the

late 1960s in Japan [89] and later in New Zealand [90, 91]. Early studies introduced

the concepts of using separate elements to enhance damping in a structure. These

studies have led to the development of metallic dampers in which energy is dissipated

by hysteretic yielding of materials. One of the first applications of metallic dampers

was in the railroad bridge in the South Rangitikei viaduct in New Zealand in 1981 [92].

Similarly, the concept of using friction dampers as a seismic protection device was

introduced in the early seventies [93]. In buildings, the first application of friction

dampers was in the early 1980s at the Library of Concordia, University of Montreal [94].

Unlike both metallic and friction dampers that dissipate energy through relative dis-

placements between their two ends, the fluid viscous dampers dissipate energy through

the relative velocities between their two terminals. In 1995, fluid viscous dampers were

used for the first time in a building in California [95]. Since then, the use of this type

of damper has been rapidly increased because of their ability to significantly reduce

storey response displacements, accelerations and shears in buildings [96].

Modelling damping in a structural system is important. Figure 2.2 shows a single

degree of freedom structure with three different damping models that are commonly

used in vibration analysis. The first model in Figure 2.2(a) represents a pure linear

viscous damping, such as is typically assumed for a fluid damper. The damping force

is given by Fvd = cdẋ(t), where ẋ(t) is the velocity of the mass m, and cd is the viscous

damping coefficient. The equation of motion is therefore

mẍ(t) + cẋ(t) + kx(t) = 0 (2.1)

Figure 2.2(b) represents an SDOF structure equipped with a friction damper with

friction force Ffd. This force always opposes the motion, hence the equation of motion

becomes

mẍ(t) + kx(t) + Ffd(t) = 0 (2.2)

Figure 2.2(c) represents an SDOF structure equipped with a material damping.

The force generated by the parallel elements k − sh is given by Fhys = k(1 + jη)x(t).

This k(1 + jη) is also known as the complex stiffness model which is able to capture

the frequency-independency of most material dampers, see [97, 98]. The equation of

motion is therefore

mẍ(t) + k(1 + jη)x(t) = 0 (2.3)
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Figure 2.2: Schematic diagram of an SDOF structure with (a) viscous damper, and

(b) friciton damper, (c) material damper

where η represents the loss factor of materials. Table 2.1 gives the loss factor values of

some common materials. Further details of complex stiffness are discussed in Chapter

3.3.

Table 2.1: Loss factor of some materials [97]

Materials Loss factor

Aluminium-pure 0.00002-0.002

Aluminium alloy-dural 0.0004-0.001

Steel 0.001-0.008

Lead 0.008-0.014

Cast iron 0.003-0.03

Manganese copper alloy 0.05-0.1

Rubber-natural 0.1-0.3

Rubber-hard 1

Glass 0.0006-0.002

Concrete 0.01-0.06
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2.4 Tuned Vibration Absorbers (TVAs)

TVAs dissipate energy through an auxillary mass mechanism. They consist of mass,

spring and dashpot. The devices are tuned to be in resonance with a targeted mode

of the host structure on which they are installed. Two types of TVA will be briefly

discussed in this section, namely the Tuned Mass Damper (TMD) and Tuned Liquid

Damper (TLD).

2.4.1 Tuned Mass Damper

The Tuned Mass Damper (TMD) consists of a mass md attached to a spring kd and

viscous damper cd in parallel. This is later called the traditional TMD to distinguish

it from the non-traditional TMD whose three elements are in series [99]. The TMD is

attached to a structure and tuned to a particular frequency such that the motion of the

structure is out of phase with the TMD’s resonance during vibrations. The building’s

oscillation is reduced due to the force of the TMD being transmitted to the structure

in opposition to the structural motion.

The concept of the TMD was first introduced by Frahm [100]. The concept was

to link a spring-mass system to a primary structure to suppress its oscillations due

to harmonic excitation. This early concept was developed by Ormondroyd and Den

Hartog (1928) by adding a viscous damper in parallel to the linear spring [101]. The

optimum tuning of this system was first derived by Den Hartog in [38] and is known

as ‘fixed-points theory’. He discovered that the frequency response curves of an SDOF

structure with attached TMD for various damping cd pass through two fixed points at

the lower frequency zone. The optimum tuning is then based on the iteration of the

TMD stiffness kd in such a way as these two fixed points have the same amplitude.

Finally, the frequency response curve whose gradient is zero to the fixed points is

selected as the optimum TMD damping cd. The formulations of the optimum frequency

and damping ratio are then given by [38]:

fopt =
1

1 + µ
and ζopt =

√
3µ

8(1 + µ)
(2.4)

where µ is the ratio between the TMD and the main mass, which is md/m.

The ideas and concepts of the TMD have attracted many researchers who are later

proposing several formulations for optimum frequency and damping ratio of the TMD:

Warburton [102]

fopt =

√
1− (µ/2)

1 + µ
and ζopt =

√
µ(1− µ/4)

4(1 + µ)(1− µ/2)
(2.5)
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Nicola et al. [103]

fopt =
1

1 + µ

√
1− µ

2
and ζopt =

√
3µ

8(1 + µ)(1− µ/2)
(2.6)

Sadek et al. [104]

fopt =
1

1 + µ

[
1− ζ

√
µ

1 + µ

]
and ζopt =

ζ

1 + µ
+

√
µ

1 + µ
(2.7)

Most of the optimisation of the TMD parameters is accomplished through either

conventional mathematical methods or numerical techniques, for example see [99]. The

fixed-points theory cannot give a global optimum solution of the TMD, because the

main structural damping is neglected. Leung and Zhang [105] formulated an optimum

solution for the parameters of the TMD using a novel technique called “particle swarm

optimisation (PSO)”. It offers an optimum solution for the TMD when attached to a

viscously damped SDOF system, which is given by:

fopt =

√
1− (µ/2)

1 + µ
+ (−4.9453 + 20.2319

√
µ)
√
µζ + (−4.8287 + 25

√
µ)
√
µζ2 (2.8)

ζopt =

√
µ(1− µ/4)

4(1 + µ)(1− µ/2)
− 5.3024ζ2µ (2.9)

The most famous example of TMD applications in buildings is the one attached to

the Taipei 101. It has a huge mass of 726 tonnes hanging on the top of the structure [9].

Taipei 101, at 508m tall, is one of among the tallest buildings in the world equipped

with TMD (complete list available in [106]).

2.4.1.1 Hysteretic TMD

Hysteretic TMD (HTMD) was firstly introduced by Nicola et al. [103]. Instead of

having spring and viscous damper in parallel, the proposed TMD is designed with

hysteretic damping realised by wire rope attached to the TMD mass. Basically, an

equivalent viscous damping method can be used to convert the hysteretic damping

of the TMD into a viscous damping. However, Wong [107] showed that using this

approach will not give the same result for its frequency response function after the

optimisation process. Therefore, he proposed a new optimum tuning formula for the

damping ratio of the hysteretic TMD as follows:

ηopt =

√
3µ

2
+

µ2

2(2 + µ)
(2.10)

where ηopt is the optimum loss factor of a hysteretic damping of the HTMD. Figure

2.3(a) and 2.3(b) illustrate the layout of the structure with TMD and HTMD, respec-

tively.
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Figure 2.3: Schematic diagram of an SDOF structure with (a) traditional TMD, and

(b) hysteretic TMD

2.4.1.2 Non-traditional TMD

Non-traditional TMD is considered to be a more efficient form of a TMD. It has been

extensively discussed by Xiang and Nishitani in [99]. The device consists of three

elements as in the case of traditional TMD: mass md, viscous damper cd, and spring

kd. However, instead of a parallel connection between the spring and damper elements,

the non-traditional TMD has the three elements in series: spring-mass-damper or

damper-mass-spring.

Xiang and Nishitami [99] give examples of non-traditional TMD application in

base-isolated (BI) structures. As is well known, resonance is the biggest challenge for

base-isolated structures when subjected to long-period and long-duration earthquake

ground motions. A combined strategy of TMD-BI has been proven to be effective

in solving this problem. Examples of this strategy can be found in [108] and [109].

However, due to the large stroke of the TMD, much space is required. The non-

traditional TMD was proposed in [99] to overcome this problem. They have proven

that the non-traditional TMD could be a better solution.

To sum up, the application of TMDs for minimisation of the structural response

has been well established for many years. However, there are two downsides associated

with them: (i) a large stroke that requires space, and (ii) large masses are required to

provide a larger mass ratio. For tall buildings, the TMD’s mass required might be very

large. Despite the promising performance of the non-traditional TMD, the issues with

the mass and stroke are still challenging.
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2.4.2 Tuned Liquid Damper

Unlike the TMDs, the mass element of a Tuned Liquid Damper (TLD) is liquid. One

example of TLD is the Tuned Liquid Column Damper (TLCD) consisting of a U-

shaped tube filled with liquid with an orifice at the middle of the horizontal portion.

The TLCD was firstly introduced by Sakai et al. in 1989 [110]. Similar to the TMD,

the motion of the fluid mass is tuned to the targeted frequency as such that the motion

of the fluid inside the columns is in opposition to the direction of the main mass of

the structure. One example of experimental analysis of the TLD to reduce vibration

of structures imposed by earthquakes can be found in [111].

In 2011, Saif et al. [112] developed a new type of TLD, the Tuned Liquid Ball

Damper (TLBD). The TLBD simply is a TLCD with the presence of a rolling steel

ball to replace the fixed orifice in the TLCD. The TLBD was shown to be capable

of providing more reduction on the response of the main structure under earthquake

excitations [113].

In practice, the realisation of this type of TVA is difficult because not every structure

has a place on the top to put the TLD, especially when the required size of the TLD

is tremendous. As in the case of the TMD, the required fluid mass to control the

vibrations is often extremely high. As a result, the design of structural members (e.g.

columns, beams, foundations) will be significantly affected.

2.5 Combined Base Isolation and Tuned Vibration

Absorber

Base isolated structures often experience large displacements at the base due to res-

onance. The maximum lateral forces that can be resisted are also limited because of

its low lateral stiffness. These issues have attracted many researchers to propose new

control strategies. One of the proposed methods is the combined base isolation and

tuned mass damper.

Among the first to study the combined control strategy of BI-TMD were Palazzo

et.al in [108] and [114]. Experimental works to verify this concept were published

in [109]. Combined BI-TMD strategies have an advantage in long-period earthquakes.

However, the TMD could experience a large stroke that requires some considerable

space. To overcome this problem, the non-traditional TMD [99] is employed. Figure

2.4 illustrates some of the combined control strategies found in the literature. In

particular, the combined BI-TID (Figure2.4(e)) will be discussed next in Chapter 2.7.
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Figure 2.4: Base-isolated structure with (a) Damper (b) TMD [108, 114] (c) Non-

traditional TMD [99] (d) TVMD [115] (e) TID [41] (f) TMDI [116]. Here m and k are

the mass and stiffness of the primary structure, kb and cb are the stiffness and damping

of the BI system, mb is the mass of the storey attached to BI system, and r is the

ground motion.
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In civil structure applications, especially for high-rise buildings, the mass element

of the TMD is often very large - that of Taipei 101 is 726 tonnes [9]. This could

result in an inefficient design for the whole building and lead to large reaction forces

acting on the foundations. As a result, additional reinforcements for the foundations

are required.

2.6 Inerters

In 1997, Okumura Atsushi [11] patented a device so-called gyro-mass in parallel con-

nection with a spring and a damper. This gyro-mass consisting of two disks acting as

inertia elements, rotating on a geared rod in such a way that the force generated by

the gyro-mass F is equivalent to the relative acceleration between its two nodes. This

relation can be expressed as:

F = ms(ẍa − ẍb) (2.11)

where:

ms = J/r2
s (2.12)

Here, J is the moment inertia of the disks, and rs is the distance from the centre

of the disks to the point where the rod is attached. The term ms is later also called

inertance bd which can be achieved by several mechanisms, such as fluid flow [55] and

rotational motion of a flywheel [14]. Several types of gyro-mass devices have since been

proposed. Smith [12] proposed a device called the inerter, consisting of a flywheel, rack,

pinions, and gears. The force generated by the inerter can be expressed as:

F = bd(ẍa − ẍb) (2.13)

for a suitable constant of inertance bd which is measured in kg. ẍa and ẍb stand for the

acceleration at the terminals a and b respectively.

The inerter completes the force-current analogy between mechanical and electrical

networks which was firstly introduced by Firestone [117]. In this analogy, equivalence

between mechanical and electrical networks is made based on the three main elements

in the vibration control systems: mass, spring and damper; spring and damper are

equivalent to the inductor and resistor. However, capacitor and mass element equiv-

alency in this analogy was not complete because the mass element must always be

connected to the ground. The inerter was defined to fill this gap. With this new el-

ement, any type of electrical circuit can now be translated into the mechanical one.

The force-current analogy between mechanical-electrical networks is given in Table 2.2,

where v is velocity, Li is inductance, Ri is resistance, and Ci is capacitance.

The inerter application was at first limited to mechanical devices, such as vehicles

and trains. Nowadays, research in this area has wider objectives and the inerter systems

are specifically studied for earthquake response reductions of civil structures.
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Table 2.2: Force-current (F − ii) analogy between mechanical-electrical networks

Mechanical networks Electrical Networks

Spring Inductor
dF
dt

= k(v2 − v1) dii
dt

= 1
Li

(v2 − v1)

Damper Resistor

F = c(v2 − v1) ii = 1
Ri

(v2 − v1)

Inerter Capacitor

F = bd
d(v2−v1)

dt
ii = Ci

(v2−v1)
dt

Numerous works on the application of the inerters in buildings have been published.

Wang et al. [118] investigated the performance of buildings employing inerters under

two external excitations, earthquakes and traffic. In comparison with the TMD, a

well established TVA in civil engineering application, the inerter has been shown by

[37] to be able to replace the mass element of the TMD to form a new device called

Tuned Inerter Damper (TID). Other papers that studied the performance of building

employing inerters are [36,116,119–121].

2.6.1 Type of Inerters

Three main types of inerters have been proposed and discussed in the literature based

on their mechanism of generating inertance: fluid inerters [13], rack-and-pinion inerters

[12], and ball-screw inerters [14,15]. Figure 2.5 illustrates schematics of these inerters.

The rack-and-pinion inerters were the first introduced and patented type of inerter.

This was by Okumura Atsushi [11], who introduced a device called gyro-mass, consist-

ing of geared rack and pinion and a rod in parallel with a spring. This concept was

later developed by Smith [12] who introduced the term “inerter”.

The inertance of a mechanical geared inerter (rack-and-pinion inerters and ball-

screw inerter) is achieved through the linear motion between its two terminals which

is converted to rotational motion of its flywheel via gearing. One type of ball-screw

inerter, the tuned viscous mass damper (TVMD), has been implemented in a real

building in Japan [36]. Detail discussion of the TVMD will be presented in the next

section.

The second type of inerter is the fluid inerter. The concept is based on the fluid

motion inside the device moving the flywheel to generate inertial forces. Glover et

al. [122] hold the first patent of fluid-type inerter which is called hydraulic inerter in

2009. Another realisation of fluid inerter was proposed by Wang [13] in 2011. In 2013,

Swift et al. [123] introduced a new type of fluid inerter called the helical inerter, whose

inertance is generated by the mass of the fluid itself moving inside the helical channel.
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Smith and Wagg [55] conducted a set of experimental works on the helical inerter and

studied the influence of helical pipe diameter to the inertance being generated. The

optimisation of the helical inerter is studied by Shen et al. [124] where they studied the

nonlinearities of the device compromising the friction and the viscosity of the fluid.

Terminal 2

Terminal 1

Helical tube Piston Cylinder

Terminal 2 Gear Flywheel Terminal 1

Rack Pinions
(a)

(b)

Terminal 2 Terminal 1Flywheel ScrewNut

(c)

Figure 2.5: Schematics of three of types of the inerter (a) fluid inerter (b) rack and

pinion inerter (c) ball-screw inerter.

In 2014, Nakamura et al. [51] introduced an electromagnetic inerter whose concept

is based on a combined electromagnetic damper and inertial mass damper (IMD) to

form a new device called electromagnetic inertial mass damper (EIMD). The IMD is a
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damper using a ball screw mechanism to generate inertial forces [125,126]. The EIMD

consists of a ball screw mechanism, a flywheel, a gear and an electric generator. The

ball screw mechanism converts the axial motion of its rod into rotational motion of

the internal flywheel which also turns the generator. The inertial and electromagnetic

damping force are produced by the flywheel and generator which also amplify the actual

mass of the flywheel. The concept of electromagnetic inerter is also given in [127].

2.6.2 Tuned-Inerter-Based-Dampers (TIBDs)

The use of TMDs for seismic protection devices in building structures is often unrealistic

because a huge amount of supplemental mass is required [36]. Employing inerters is

one of the solutions. The use of inerters for vibration control devices requires other

mechanical elements - spring and dampers.

Saito et al. [35] introduced the first variant of the TIBDs composed of arranging

an inerter and viscous damping elements in parallel-connection to a spring element

in series as depicted in Figure 2.6(c). This system is called a Tuned Viscous Mass

Damper (TVMD). In this device, the mass amplification effect was achived by ball-

screw mechanism converting the translational motion imposed by the structure into

the rotational motion of a flywheel.
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Figure 2.6: TIBDs layout variants: (a) TID (b) TMDI (c) TVMD

Ikago et al. [14] proposed the realisation of the TVMD by adding a flywheel to a

rotational viscous damper (Figure 2.7(a)). A ball-screw mechanism was designed to

convert the translational motion from the building structures to the rotational motion

of the flywheel. In practice, a large inertance can be generated. This device is called a

viscous mass damper (VMD) as depicted in Figure 2.7(b). This VMD is connected to

the structure via a bracing system to form a TVMD 2.8. The first three applications

of the TVMD in buildings are in Sendai Aoba-dori Building (Nippon Telegraph and
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Telephone East Corporation), Akasaka Inter-city AIR, and Headquarter Building of

Hulic Co., Ltd. Other studies on the TVMD can be found in [14,125,128–130].

(a)

(b)

Figure 2.7: (a) Rotational viscous damper [14](b) Viscous mass damper (VMD) [14].

Images reproduced with permission of the rights holder, John Wiley & Sons.

Lazar et al. [37] introduced the Tuned Inerter Damper (TID) consisting of a parallel

spring-viscous damper system connected in series to an inerter as illustrated in Figure

2.6(a). The optimum tuning of the device in SDOF structures follows the tuning

rules of the TMD by Den Hartog [38] with the mass md replaced by an inerter bd.

Unlike the TMD, the TID achieves its best performance when placed at the base of the

structure [37]. This is another important feature of the TID compared to the TMD.

Furthermore, the application of the TID in MDOF structures shows that the TID is not

only capable of reducing the structural response around the targeted resonant mode,

but also around all other resonant modes [37].

In 2015, Brzeski et al. [131] introduced the concept of TMD with an inerter and

experimentally tested it in [52]. The device is called the Tuned Mass Damper Inerter

(TMDI) which is basically a TID with an additional mass md as shown in Figure

2.6(b). The idea of the TMDI is to enhance the TMD performance by adding an

inerter connecting the mass md to the ground or to the structural storey mass. As a

result, a large mass ratio can be easily achieved without significantly increasing the

physical mass of the system. Studies on the optimal design of the TMDI are also

discussed in [40] and [39].
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Along similar lines, Hu et al. [42] studied several inerter-spring-damper configura-

tions for passive vibration control systems and compared their optimum performance

when employed on an SDOF structure. The optimum tuning of the devices adopted

the fixed-point theory by Den Hartog [38] via algebraic solutions.

(a)

(b)

Figure 2.8: (a) TVMD bracing in Akasaka Inter-city AIR building, Tokyo, Japan (b)

TVMD in a telecomunication building, Japan. Images reproduced with permission of

the rights holder, Professor Kohju Ikago.

More recently, Pan et al. [132] studied a Parallel Viscous Inerter Damper (PVID)

based on demand-based design. The PVID layout is the same as that of TVMD. They

found that the fixed-points theory cannot be used to achieve a global optimal solution

as it neglects the damping of the primary structure. The optimum solution for the
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PVID in a damped SDOF structure is therefore determined by a numerical optimisa-

tion technique, using allowable parametric bounds [132]. They also showed that the

response of structures under dynamic excitations, including seismic excitations, can be

minimised by the PVID.

Several studies have been conducted to compare the performance of various config-

urations of the inerter-spring-damper systems [116, 121]. Most inerter applications in

buildings are still in the conceptual stages. Except for the TVMD, none of the inerter

concepts has been used in a real structure. This has been a challenge and motivation

throughout these research activities to fill the gaps between the conceptual study and

practical implementation.

2.7 Combined Base Isolation and TIBDs

This section presents preliminary results of this thesis which has also been published

in [133]. As one of the first paper to investigate the effect of TID in BI structure, this

study is important to be included in this literature review to show other benefit of

inerters to solve problems associated with BI structure.

Using rubber bearings to isolate structures from their foundations has been an

established method to protect the structures against unwanted vibrations including

earthquakes. Typically, rubber bearings are placed underneath the structure’s columns

to isolate the upper structure from ground vibrations. In this study, a scenario where

a TID is also installed in combination with the rubber bearings is investigated. The

objective of this combined system is to give significantly improved isolation of the upper

structure.

Seismically isolated structures using rubber bearings have been found to have lim-

itations in some cases. For example, it has been shown that under certain conditions,

rubber bearings can cause large displacements at the base of the structure. Hence,

a large clearance space is required to provide enough room for the rubber bearing

to deform. Additionally, it was also found that large displacements at the top of the

structure can occur during a long period and long duration earthquake excitations [88].

This can occur when the location of the structure is far from the epicentre.

In this section, a TID is proposed specifically to overcome these problems. It is

important to be included in this literature review to show the effectiveness of inerters

for minimizing problems associated with BI structures. For this purpose, the TID is

tuned to effectively work when the structure is subjected to long-period ground motion.

The layout of the combined BI-TID system is based on the fact that, unlike a tuned-

mass-damper, the TID has been shown to work most effectively when it is installed

in the base of the structure [37]. This makes it an obvious choice for being used in

combination with rubber bearings, which are also installed at the base of the structure.

Several combined control strategies employing dampers and base isolation devices
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have also been studied. Tsai [134] studied the effect of a TMD on the response of a five-

storey BI building. In this study, the TMD was installed on the base floor. The same

model was also studied by [108] which looked at the influence of TMD location on a BI

structure [114]. The TMD performance was assessed by varying its location between

top and base floors. An experimental study of the effectiveness of the TMD in BI

structures was carried out in [109]. Xiang and Nishitani [99] studied a non-traditional

TMD in combination with a BI system. Most recently, [135] studied the performance

of the TMD in BI structure by considering the nonlinearities of the isolation system.
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Figure 2.9: (a) Fixed-base structure (b) BI without TID (c) BI with a TID

Employing an inerter-based device on a BI structure was firstly discussed in [115].

Several layouts were studied in combination with rubber bearings modelled as linear

spring-dashpot elements. The inertance is achieved by a rack-and-pinion type of inerter

which is also called a gyro-mass damper. One of the models has the inerter element in

parallel with a linear spring and in series with a linear viscous damping element. This
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configuration of the TID layout was also studied in [37] and [42]. The application of

inerter-based devices in multi-storey BI structures was studied in [116]. The authors

considered the use of tuned-mass-damper-inerter (TMDI) to mitigate the response of

multi-storey BI structures. Most recently, a combined TMDI and BI have also been

studied in [41].
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Figure 2.10: (a) Transmissibility (b) Time history response to Mexico City 1985 ground

motion. Due to the low frequency content of the earthquake, the fixed-base structure

performs better than both BI and BI with TID.
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In this work, the performance of a TID on a multi-storey BI structure was inves-

tigated. For simulation, the Mexico City earthquake of 1985 was used, which was a

long-period earthquake with pre-dominant frequency around 0.33-0.58Hz. One struc-

tural system adopted from [134] was used in this analysis. The structure is a five-storey

base-isolated building as shown in Figure 2.9(b). The properties of mass, stiffness, and

damping for each floor of the superstructure are assumed to be the same, mi= 3500 kg,

ki= 35000 kN/m, and ci= 35 kNs/m, where i={2,3,4,5,6}. The mass mb and stiffness

kb of the base isolation system are given as 3500 kg and 210 kN/m. These values are

zero for the case of a fixed-base structure as shown in Figure 2.9(a).

Figure 2.10(a) shows the transmissibility response of the considered structure. With

base isolation, the first natural frequency of the structure is shifting to the left-hand

side and now the response is dominated by this first natural frequency only. As a

result, the response at high frequencies is very low. However, if the frequency of the

base excitation is low and close to the first natural frequency of the structure, the

response could be very high. The TID in this case was designed to solve this issue.

The response of the considered structure subject to a long period Mexico City

earthquake is presented in Figure 2.10(b). Due to the low frequency content of the

earthquake, the response of the fixed-base structure is the best among all. In this case,

using the base isolation makes it worse. The TID is used to reduce the response of the

BI structure. As can be seen in this figure, the structural response with the TID is

significantly reduced.

2.8 Summary

An inerter is capable of generating inertance several times higher than its physical

mass. This important feature has attracted researchers in many areas of study in-

cluding mechanical, aerospace and civil engineering. In the earthquake engineering

community, inerters are often combined with the other two mechanical elements –

spring and damper – to form a TIBD to be used as a seismic protection device in civil

structures such as buildings and bridges. There are several possible configurations and

the three best established are the TVMD; TID; and TMDI.

To date, TVMD is the only one that has been used in a real civil structure. Many

studies have been published presenting the use of TID and TMDI for mitigating struc-

tures from earthquakes. A published article from this thesis discussing the effectiveness

of TID for protecting BI structures from long-period earthquake ground motions has

also been discussed in this chapter. However, research on both TID and TMDI are still

in a conceptual stage. Therefore, this thesis aims to propose novel and more realistic

analytical models for both TID and TMDI and to provide experimental data as proof

of concept via shake table experiments.

One thing in common between the three TIBDs is that each has two elements in
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parallel. The three TIBDs assume that their three elements can be varied indepen-

dently of one another. Hence, each can be individually optimised. However, some

experimental results have shown that the two elements in parallel are coupled and may

exhibit hysteresis, for examples, see [54, 55].

In this thesis, for the first time, the possibilities of the TIBDs exhibiting hystere-

sis through the two elements in parallel and their effect on the TIBDs performance

are explored in detail. In particular, two linear hysteretic damping concepts are dis-

cussed: (1) complex damping; and (2) complex stiffness (see Chapter 3). Based on the

complex stiffness model, two novel inerter-based-dampers are introduced in Chapter

5, namely the tuned-inerter-hysteretic-damper (TIhD) and the tuned-mass-hysteretic-

damper-inerter (TMhDI).
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Chapter 3

Linear Hysteretic Damping Models

3.1 Introduction

The objective of this chapter is to develop two linear hysteretic damping models for

inerter and damper in parallel and for spring and damper in parallel. The first model

has been motivated by the recent experimental results from [136] showing that the he-

lical fluid inerter has hysteresis in its force-velocity relationship. As has been discussed

in [137], the helical fluid inerter has two parameters in parallel, inertance and damp-

ing. A complex damping model is proposed in this chapter to capture the hysteretic

behaviour of the fluid inerter. Later in Chapter 4, the fluid inerter will be proposed

for use as a TVMD by connecting the device with a spring element in series.

The second model representing both stiffness and damping in parallel has been well

known as a complex stiffness model, given by k(1 + iη), usually used to model the

frequency independence of a material. Here k is the stiffness of the spring, i =
√
−1

and η is the loss factor of the material. This model will be used later in Chapter 5 to

model a material damping which is connected in series with an inerter device. This

system will be representing the TID with linear hysteretic damping, or TIhD. If the

mass of the inerter is included, it becomes TMDI with linear hysteretic damping, or

TMhDI.

3.2 Complex Damping: Linear Hysteretic Damp-

ing Model For Inertance and Damping in Par-

allel

3.2.1 Analytical Model

This section seeks to develop a hysteretic model for a device having an inertance and a

damping in parallel. This model can be developed by assuming that the device force,
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F , is approximated by

F = bẍ+ cẋ (3.1)

where x is the relative displacement of the inerter, an overdot represents differentiation

with respect to time, b is the inertance (in kg) and c is the viscous damping (in kg/s).

Note that both x and F are function of time. Now assume a harmonic solution for

Equation 3.1 of the form

x = X̄ sin(ωt+ φ), so ẋ = ωX̄ cos(ωt+ φ), and ẍ = −ω2X̄ sin(ωt+ φ), (3.2)

where ω is the circular frequency and φ is the phase shift. This leads to

F = −bω2X̄ sin(ωt+ φ) + cωX̄ cos(ωt+ φ)

= cẋ± bω
√
ω2X̄2 − ẋ2

(3.3)

where X̄2 = X̄2 sin2(ωt+ φ) + X̄2 cos2(ωt+ φ) has been used.

Eq. 3.3 is now in terms of F and ẋ only, and so can be plotted as a hysteresis loop

in the force vs velocity plane as shown in Figure 3.1. The model forms an ellipse in

Figure 3.1: Schematic diagram showing the idealised linear hysteresis model for iner-

tance and damping in parallel.

the F vs ẋ plane. The orientation of the ellipse is governed by c.

The area inside the loop is given by

∆P =

∫ 2π
ω

0

Fdẋ =

∫ 2π
ω

0

(cX̄ω cos(ωt+ φ)− bω2X̄ sin(ωt+ φ))(−ω2X̄ sin(ωt+ φ))dt

= πω3bX̄2.

(3.4)

Eq. 3.4 demonstrates that the area inside the hysteretic loop (∆P ) is strongly affected

by the frequency ω and amplitude X̄ of the excitation. The area inside the loop has the

units of power and is related to the rate at which energy is transferred between kinetic

and potential forms. However the precise physical significance of this measurement is

unclear and could be the focus of future research.
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Finally, the model can be generalised using an assumed exponential solution to Eq.

3.1. So if x = X̄ei(ωt+φ) is assumed, then substituting into Equation 3.1 gives

F = (icω − bω2)X̄ei(ωt+φ)  F = c(1 + iω
b

c
)iωX̄ei(ωt+φ) (3.5)

where the relationship between force and velocity is now called “complex damping” of

c(1+iω b
c
). This is analogous to the well-known concept of complex stiffness k(1+ iω c

k
).

In the complex stiffness concept, ωc
k

is defined as equivalent to (for one specific

frequency of interest) a loss factor η which is a constant value. This equivalence is

known as equivalent viscous damping; for example, see [138]. From Equation 3.5, a

hypothesis rises that there is a constant term τ which can be defined as equivalent to
ωb
c

. To prove this, some experimental results on helical fluid inerters are discussed in

the next section.

3.2.2 Helical Fluid Inerter

The complex damping model proposed in Equation 3.5 aims to capture the hysteretic

behaviour of a device having an inertance and damping in parallel. Particularly in this

section, the helical fluid inerter is discussed. A schematic diagram of the fluid inerter

system considered in this section is shown in Figure 3.2. The first experimental work

on the helical fluid inerter was conducted by Swift et al. [123] in 2013, then in 2016

by Smith and Wagg [136]. The inerter system was designed with a central fluid-filled

cylinder, radius r2, which is attached to a helical coil on the outside of the cylinder.

The helical coil has an internal radius of r3, and the helix radius is r4. The fluid is

driven through the cylinder using a plunger of radius r1. This mechanism generates

inertance proportional to the helix radius. This will be further discussed in detail in

the next chapter Section 4.1. Particularly, the influence of the helical fluid inerter

dimensions to the generated inertance is given by Equation 4.2.

(a) (b)

Figure 3.2: Schematic diagram of the helical fluid inerter showing the (a) longitudinal

cross section, and (b) the top view of the system [55]

The helical fluid inerter has been experimentally tested by Smith and Wagg [136].

The data of the experimental results were obtained from [139]. Examples of the exper-

imentally obtained hysteresis loops are shown in Figure 3.3 and 3.4, for two different

values of the helix radius r4, defined as Tests 2 and 3 in [139].
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(a)

(b)

(c)

Figure 3.3: Hysteretic loops generated from experimental Test 2 [139], for (a) ampli-

tude 10mm; frequency 3Hz (b) amplitude 15mm; frequency 3Hz (c) amplitude 10mm;

frequency 2Hz
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(a)

(b)

(c)

Figure 3.4: Hysteretic loops generated from experimental Test 3 [139], for (a) ampli-

tude 5mm; frequency 3Hz (b) amplitude 10mm; frequency 3Hz (c) amplitude 10mm;

frequency 2Hz
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The complex damping model given in Equation 3.5 is proposed in this section to

capture the hysteretic behaviour of the helical fluid inerter. Some comparisons between

the model and the experiment are shown in Figure 3.3 and 3.4. It can be seen from these

Figures that the proposed model cannot accurately capture the hysteretic behaviour

of the device. It is because the devices clearly show nonlinearity due to friction, while

the elliptical hysteresis model represents a limited approximation, because it does not

include any nonlinear effects. This has also been reported in [49] that strong friction

has affected the result as shown in Figure 3.5. The centre of the loops also tend to get

smaller which cannot be captured by the model.

Figure 3.5: Analytical vs experimental force of the helical fluid inerter [49].

However, the approximation by the models in Figure 3.3 gives the same inertance

and viscous damping constant value for all cases. Compared to Figure 3.3(a), either

when the amplitude of excitation is increased (Figure 3.3(b) or when the frequency is

decreased (Figure 3.3(c)), the b and c values do not change. This fact supports the

hypothesis of the term τ which is a constant and is equivalent to ωb
c

. However, unlike

Figure 3.3, the b and c values given by the models in Figure 3.4 are different for each

case which does not support this hypothesis.

Overall, it can be concluded that the helical fluid inerter tested in [136] shows

a strong nonlinearity that comes from friction which is not included in the complex

damping model. Although the model has failed to capture the data from the exper-

iment, the model can be used as a linear approximation to the real behaviour. The

helical fluid inerter can be used to form a PVID (another name for the TVMD) by

connecting the device with a spring element in series. The design of the helical fluid

inerter for the PVID is discussed next in Chapter 4.
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3.3 Complex Stiffness: Linear Hysteretic Damping

Model for Stiffness and Damping In Parallel

Complex stiffness is discussed in this section as an analytical model for a material

damper having a coupled stiffness and damping. The concept of complex stiffness was

motivated by the fact that the energy loss per cycle in most materials is independent of

excitation frequency and proportional to amplitude squared. As previously mentioned,

the concept of complex stiffness has been widely used in the literature. Although it is

a noncausal model, it has been proven to be accurate if used appropriately [97,98].

In the literature, the analysis of complex stiffness is often carried out only in the

frequency domain. In the time domain analysis, an equivalent viscous damping ap-

proach [138] is often used. This is because using a standard numerical integration

method for the complex stiffness model in the time domain leads to unstable results

due to the unstable poles [98]. However, using the equivalent viscous damping ap-

proach will only be accurate for one specific frequency of interest which is usually the

natural frequency of the system. Therefore, the complex stiffness term must be treated

as its original form and as a result, a new time-domain method is required.

The aims of this section are: (1) to investigate the differences between the complex

stiffness model and the equivalent viscous damping model in the frequency domain; and

(2) to propose a new-time domain method for the complex stiffness model. The method

is based on that proposed by Inaudy and Makris [98]. Instead of using a zero-order

hold method as in [98], the current method uses a standard numerical integration ode45

based on the Runge-Kutta method which is available in MATLAB. Next the use of the

proposed method will be also demonstrated for both SDOF and MDOF structures.

3.3.1 Frequency-domain Analysis

Consider a mass m supported by a material damper subjected to a base excitation r(t)

as shown in Figure 3.6. The equation of motion of the system can be written as

m
x

r =x0

k

sh
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Figure 3.6: SDOF structure with a complex stiffness
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mẍ(t) = k(1 + jη)(r(t)− x(t)) (3.6)

here the complex stiffness k(1 + jη) represents the material damper, k and η denote

the stiffness and the loss factor respectively, and j =
√
−1. sh is a parameter with a

unit of stiffness, such that η = sh/k.

In the Laplace domain, the Equation 3.6 can be written as

(ms2)X = k(1 + jη)(R−X) (3.7)

where X represents the Laplace transform of the storey displacement and R represents

the Laplace transform of the base displacement. Initial conditions are assumed to be

zero.

The transfer function X/R can be written in the frequency domain as

X

R
=

k(1 + jη)

ms2 + k(1 + jη)
(3.8)

where s represents the Laplace transform variable.

A common approach in the literature for dealing with the complex stiffness is to

use a equivalent viscous damping, given by ζeq = η
2

or ceq = kη
ωn

, where ζeq and ceq

are the equivalent viscous damping ratio and the equivalent viscous damping coeffi-

cient, respectively. This approach assumes that the energy loss per cycle given by the

complex stiffness is equivalent to that of viscous damping at a frequency of interest,

which is usually the natural frequency ωn. As a result, it is expected that using this

approach will lead to some discrepancy in the frequency domain response especially in

the frequencies away from resonance. To show this effect, first the transfer function

X/R can be written in the frequency domain in the case of using the equivalent viscous

damping approach, such that

X

R
=

ceqs+ k

ms2 + ceqs+ k
(3.9)

The comparison between the Equation 3.8 and 3.9 is plotted in Figure 3.7 consider-

ing the SDOF structure given in Figure 3.6. The mass m and stiffness k were assumed

to be 0.6kg and 23.6871N/m respectively, such that its natural frequency is 1Hz. Note

that the equivalent viscous damping ζeq = η
2

is used to plot Figure 3.7(b). As can be

seen in these Figure 3.7(a) and 3.7(b) that the response around resonance is very simi-

lar between the complex stiffness and the equivalent viscous damping. However, at the

higher frequencies, the equivalent viscous damping shows a higher response than the

complex stiffness. It is even more obvious if the damping ratio is increased as shown in

Figure 3.7(b), which shows, that the structural response using the equivalent viscous

damping in the higher frequencies is amplified by the increase of the damping ratio.

On the other hand, less amplification is shown in case of complex stiffness, as can be

seen in Figure 3.7(a). Therefore it can be concluded that using the equivalent viscous
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damping approach to model the material damper in an SDOF system could lead to

overestimation of the response at higher frequencies of excitation.
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Figure 3.7: X/R of SDOF structure (a) complex stiffness (b) equivalent viscous damp-

ing
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3.3.2 Time-domain Analysis

From the cases of SDOF and MDOF structures given above, it is obvious that using

the equivalent viscous damping approach to simplify the complex stiffness model could

only be accurate around the frequency of interest. Therefore, it is suggested that the

complex stiffness term must be treated in its original form when conducting a frequency

response analysis. This should not be any problem because the complex stiffness term

can be easily included in the analytical formulation of the frequency response analysis.

However, treating the complex stiffness in its original form in a standard numerical

integration method for the time domain analysis could lead to unstable responses [98].

To solve this problem, a new time-domain method is proposed based on that proposed

by Inaudi and Makris [98] involving analytic signals and the Hilbert transform.

3.3.2.1 Analytic Signals

Inaudi and Makris [98] were the first to introduce a time-domain method for a system

with complex stiffness involving a time-reversal technique and Hilbert transform. The

force of the complex stiffness model can be written as a sum of the force of the spring

and the hysteretic damper

fhys(t) = kx(t) + shH[x(t)] (3.10)

where sh is a constant with a unit of stiffness such that η = sh
k

and H[ ] denotes the

Hilbert transform.

The complex stiffness generates complex-parameter mechanical networks in the time

domain and therefore, the input excitation in the time-domain needs to be complex-

valued (analytic signal) since the imaginary part of the excitation when it operates

on the imaginary part of the constitutive model contributes to the real part of the

response. Here an analytic signal ya(t) is defined as ya(t) = y(t) + jH[y(t)].

Applying the Hilbert transform to Equation 3.10, we obtain

H[fhys(t)] = kH[x(t)]− shx(t) (3.11)

where H[H[x(t)]] = −x(t) has been used. Multiplying Equation 3.11 with −j and

summing the result to Equation 3.10, we obtain

fhysa(t) = k(1 + jη)xa(t) (3.12)

Equation 3.12 represents the force generated by the complex stiffness. This will be

used further in the time domain analysis.

The current time-domain method also adopted the time-reversal technique from

Inaudi and Makris [98] that will be further discussed next.

36



Chapter 3. Linear Hysteretic Damping Models

3.3.2.2 Time reversal technique

In general, the dynamic equation of motion for a multi DOFs system with complex

stiffness can be expressed in matrix form as

Mẍ + K(1 + jG)x = F (3.13)

where G is the matrix of damping coefficients which represent the loss factor of each

element of the system.

The sizes of the matrices in Equation 3.13 are defined by the number of DOFs, n.

The first and second derivatives with respect to the time are denoted by dot, ˙[ ], and

double dots, ¨[ ]. Here, x (n× 1) and F (n× 1), respectively, are the displacement and

force vectors. Whereas M (n × n) and K (n × n) represent the mass, and stiffness

matrices.

Inaudi & Makris [98] suggested that the displacements and the forces can be eval-

uated in analytic forms, i.e., complex signals constructed by real and imaginary com-

ponents. Hence,

xa(t) = x(t) + j H[x(t)] (3.14)

and

Fa(t) = F(t) + j H[F(t)] (3.15)

These analytic signals satisfy the boundary conditions of xa(−∞) = xa(∞) = 0 and

Fa(−∞) = Fa(∞) = 0. Therefore, in a state-space form, Equation 3.13 can be

rewritten as

˙̄xa(t) = A x̄a(t) + B ra(t) (3.16)

where

x̄a(t) =

[
xa(t)

ẋa(t)

]
, A =

[
0 I

−M−1 K(1 + jG) 0

]
, B =

[
0

M−1LF

]
(3.17)

and

Fa(t) = LF ra(t) (3.18)

It is important to note that the vectors and matrices denoted by x̄a (2n×1), xa (n×1),

A (2n× 2n), B (2n× 1) and LF (n× 1) are all in complex form. The force vector in

analytic form, Fa, is defined as the product of the complex time function, ra, with a

coefficient vector of elements’ load factor, LF. Whereas 0 (n× 1) and I (n× 1) are the

zeros and identity vectors, respectively.

Despite it seeming that Equation 3.16 can be solved directly involving a standard

integration procedure, i.e., convolution integral, the eigenvalues of A are pairs of stable
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and unstable roots [98]. Therefore, a special treatment is required to obtain the stable

solutions of Equation 3.16. Inaudi & Makris [98] introduced a backward integration

technique that reverses the independent variable (time) in the modal coordinate of the

unstable parts. The analytic vector xa can be rewritten by defining analytic modal

coordinates, qka and qla , for the stable and unstable parts, respectively.

xa(t) = Φ

[
qka(t)

qla(t)

]
(3.19)

where qka = qk + j H[qk] and qla = ql + j H[ql]. While Φ (2n×2n) is the eigenvector

matrix of A.

By introducing a reversed time, z = −t, and a function q̃l(z) = ql(t); hence,

q̇l(t) = −q̃′l(z) (3.20)

where [ ′ ] defines the derivative in the reversed time. Therefore, Equation 3.16 can be

rewritten as [
q̇ka(t)

−q̃′la(z)

]
= A∗

[
qka(t)

q̃la(z)

]
+ B∗

[
ra(t)

r̃a(z)

]
(3.21)

where A∗ = Φ−1AΦ and B∗ = Φ−1B. To be noted here, A∗ is a diagonal matrix; thus,

Equation 3.21 becomes uncoupled. Hence, components of qka and qla can be evaluated

separately using forward time integration and backward time integration, respectively.

Inaudi & Makris [98] numerically solved both an SDOF and a 2-DOF problem by

applying discrete-time sampling to the analytical integral solutions of Equation 3.21.

However, this approach may be difficult to implement in a more complex and higher

DOFs system as it requires the analytical integral solution for each different system.

Therefore, in the present work, a more robust computational approach is proposed.

Herein, a variable separation procedure is applied to separate the real and imaginary

components in Equation 3.21; hence,
q̇k(t)

H[q̇k(t)]

−q̃′la(z)

−H[q̃′la(z)]

 =

[
A∗∗ 0

0 Ã∗∗

]
qka(t)

H[qka(t)]

q̃la(z)

H[q̃la(z)]

+

[
B∗∗

B̃∗∗

][
ra(t)

r̃a(z)

]
(3.22)

which can be evaluated separately for forward integration[
q̇k(t)

H[q̇k(t)]

]
= A∗∗

[
qka(t)

H[qka(t)]

]
+ B∗∗ra(t) (3.23)
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and backward integration[
−q̃′la(z)

−H[q̃′la(z)]

]
= Ã∗∗

[
q̃la(z)

H[q̃la(z)]

]
+ B̃∗∗r̃a(z) (3.24)

In Equations 3.23 and 3.24, the matrices A∗∗ (2n×2n), Ã∗∗ (2n×2n), B∗∗ (2n×1),

and B̃∗∗ (2n× 1) consisted of components that provide coupling between the real and

imaginary parts of each modal coordinate.

The key aspect in the present work is that Equations 3.23 and 3.24 are sets of

ordinary differential equations (ODEs); thus, they can be straightforwardly solved via

a standard numerical procedure, i.e., by using the Runge-Kutta method. Therefore,

it provides a more robust approach to evaluate any structural system as long as the

mass, stiffness, damping matrices and the force vector are known.

3.3.2.3 Validation

The proposed method in this section is validated with the zero-order hold method by

Inaudi and Makris [98]. First, a simple SDOF structure is assumed with a mass of

0.6kg is supported by a material damper having stiffness and loss factor of 23.69N/m

and 0.1 respectively. The transmissibility of the mass is plotted in Figure 3.7(a). The

MATLAB code for this example can be found in Appendix A.

Attention is given at the frequency of resonance, ω = ωn, and away from resonance

(ω = 10ωn and ω = 30ωn). The plots of the responses are given in Figure 3.8 which

shows that the results from the current method are very close to those of the zero-order

hold method. The benefit of the current method is as mentioned above, that it can

be straightforwardly solved via a standard numerical procedure, i.e., using the built-in

ode45 in MATLAB which is based on the Runge-Kutta method. Therefore, it provides

a more robust approach to evaluate any structure system as long as the mass, stiffness,

damping matrices and the force vector are known. It is also means that it can be used

for even a more complex structure such as an MDOF structure subject to random and

nonstationary base excitation.

It can also be seen from Figure 3.8 that treating the complex stiffness as its original

form in the time domain gives a close result to the one given by the equivalent viscous

damping approach at ω = ωn as shown in Figure 3.8(a). However, when the frequency

of the excitation is increased, for examples when ω = 10ωn in Figure 3.8(b) and ω =

30ωn in Figure 3.8(c), the response of the complex stiffness becomes much lower than

that of equivalent viscous damping. The difference will become more obvious if the

damping ratio is increased.
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Figure 3.8: Time history responses of SDOF structure (a) ω=ωn (b) ω=10ωn (c)

ω=30ωn subjected to sine-wave ground displacement with amplitude R=1 unit length.
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3.3.2.4 Example 1: MDOF structure

A generalised n-DOF structure subjected to base excitation r(t) is given in Figure 3.9.

The structure is separated into three parts: bottom storey, i = 1 ; middle storeys, ith,

where i ∈ [2 : n− 1]; and top storey, i = n.

Figure 3.9: n-DOF structure with hysteretic damping

The equation of motion of the above structure can be written using analytic func-

tions, given that xia(t) = xi(t) + jH[xi(t)], the equations can be written as follows:



m1ẍ1a(t) + k0,1(1 + jη0,1)(x1a(t)− ra(t))− k1,2(1 + jη1,2)(x2a(t)− x1a(t)) = 0

...

miẍia(t) + ki−1,i(1 + jηi−1,i)(xia(t)− x(i−1)a
(t))− ki,i+1(1 + jηi,i+1)(x(i+1)a

(t)− xia(t)) = 0

...

mnẍna(t) + kn−1,n(1 + jηn−1,n)(xna(t)− x(n−1)a
(t)) = 0

(3.25)

where mi and xi(t) represent the mass concentrated on the ith storey and its displace-

ment response; H[xi(t)] is the Hilbert transform of xi(t); ki−1,i and shi−1,i
, i ∈ [1 : n]

41



Chapter 3. Linear Hysteretic Damping Models

represent the stiffness and a parameter with a unit of stiffness characterising the damp-

ing between storeys i− 1 and i; ηi−1,i is the loss factor of the linear hysteretic damping

between storey i − 1 and i, given by ηi−1,i =
shi−1,i

ki−1,i
; r(t) represents ground displace-

ment input signal; subscript a denotes an analytic signal; and j =
√
−1. In state-space

formulation, Equation 3.25 can be expressed as:

ẋa(t) = Axa(t) + Bra(t) (3.26)

where

xa(t) =


x1a(t)

ẋ1a(t)
...

xna(t)

ẋna(t)

 ; A =


a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 . . . a2,n−1 a2,n

...
...

...
...

...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

an,1 an,2 . . . an,n−1 an,n

 ; B =


B1

B2

...

Bn−1

Bn


(3.27)

The eigenvalues of A are given by sz, where z = 1, 2, ..., n− 1, n. Note also that

sz = szre + szimj (3.28)

Here, im stands for “imaginary” and re for “real”. Defining the analytic modal coor-

dinates qza(t)

ẋa(t) = Φ


q1a(t)

q2a(t)
...

q(n−1)a
(t)

qna(t)

 ; Φ =


φ1,1 φ1,2 . . . φ1,n−1 φ1,n

φ2,1 φ2,2 . . . φ2,n−1 φ2,n

...
...

...
...

...

φn−1,1 φn−1,2 . . . φn−1,n−1 φn−1,n

φn,1 φn,2 . . . φn,n−1 φn,n

 (3.29)

where Φ is the modal matrix, and φl,z = φl,zre +φl,zimj, where l = 1, 2, ..., n−1, n. Now

we have

Φ


q̇1a(t)

q̇2a(t)
...

q̇(n−1)a
(t)

q̇na(t)

 = AΦ


q1a(t)

q2a(t)
...

q(n−1)a
(t)

qna(t)

+ Bra(t) (3.30)

Using

Φ−1AΦ =



s1 . . . . . . . . . 0
... s2

...
...

. . .
...

... sn−1
...

0 . . . . . . . . . sn


; Φ−1B =


B1

B2

...

Bn−1

Bn

 (3.31)
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where

Bz = Bzre +Bzimj (3.32)

we obtain 

q̇1a(t) = s1q1a(t) +B1ra(t)

q̇2a(t) = s2q2a(t) +B2ra(t)

...

q̇(n−1)a
(t) = sn−1q(n−1)a

(t) +Bn−1ra(t)

q̇na(t) = snqna(t) +Bnra(t)

(3.33)

Separating Equation (3.33) into real and imaginary parts, one can obtain

q̇1(t) = s1req1(t)− s1imH[q1(t)] +B1rer(t)− s1imH[r(t)]

H[q̇1(t)] = s1reH[q1(t)] + s1imq1(t) +B1imr(t) +B1reH[r(t)]

q̇2(t) = s2req2(t)− s2imH[q2(t)] +B2rer(t)− s2imH[r(t)]

H[q̇2(t)] = s2reH[q2(t)] + s2imq2(t) +B2imr(t) +B2reH[r(t)]

...

q̇n−1(t) = s(n−1)re
qn−1(t)− s(n−1)im

H[qn−1(t)] +B(n−1)re
r(t)− s(n−1)imH[r(t)]

H[q̇n−1(t)] = s(n−1)re
H[qn−1(t)] + s(n−1)im

qn−1(t) +B(n−1)im
r(t) +B(n−1)reH[r(t)]

q̇n(t) = snreqn(t)− snimH[qn(t)] +Bnrer(t)− snimH[r(t)]

H[q̇n(t)] = snreH[qn(t)] + snimqn(t) +Bnimr(t) +BnreH[r(t)]

(3.34)

The MATLAB code for solving equation 3.34 can be found in Appendix B. From

Equation (3.29), ẋa(t) can be written as:

ẋa(t) =


φ1,1 φ1,2 . . . φ1,n−1 φ1,n

φ2,1 φ2,2 . . . φ2,n−1 φ2,n

...
...

...
...

...

φn−1,1φn−1,2. . .φn−1,n−1φn−1,n

φn,1 φn,2 . . . φn,n−1 φn,n




q1a(t)

q2a(t)
...

q(n−1)a
(t)

qna(t)

 (3.35)

Separating the real and imaginary parts, this equation now can be solved using:
x1(t)
ẋ1(t)

...
xn(t)
ẋn(t)

 =


φ(1,1)re

φ(1,2)re
. . . φ(1,n−1)re

φ(1,n)re
φ(2,1)re

φ(2,2)re
. . . φ(2,n−1)re

φ(2,n)re
...

...
...

...
...

φ(n−1,1)re
φ(n−1,2)re

. . .φ(n−1,n−1)re
φ(n−1,n)re

φ(n,1)re
φ(n,2)re

. . . φ(n,n−1)re
φ(n,n)re



q1(t)
q2(t)

...
qn−1(t)
qn(t)

+


φ(1,1)im

φ(1,2)im
. . . φ(1,n−1)im

φ(1,n)im
φ(2,1)im

φ(2,2)im
. . . φ(2,n−1)im

φ(2,n)im
...

...
...

...
...

φ(n−1,1)im
φ(n−1,2)im

. . .φ(n−1,n−1)im
φ(n−1,n)im

φ(n,1)im
φ(n,2)im

. . . φ(n,n−1)im
φ(n,n)im



H[q1(t)]
H[q2(t)]

...
H[qn−1(t)]
H[qn(t)]


(3.36)

where qz(t) and H[qz(t)] were obtained from Equation (3.34).

Figure 3.10 (a) shows an example of a 2-storey structure with linear hysteretic

damping on each storey. The accuracy of the proposed time-domain method can be
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seen in Figure 3.10 (b). Here the response of the structure in the time domain at

steady-state is plotted in the same plot with the analytical frequency domain. It is

obvious that the proposed numerical time-domain method is in good agreement with

the analytical frequency response.
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Figure 3.10: (a) 2-storey structure with hysteretic damping, m1 = 2tonne, m2 =

1tonne, k1 = 6kN/m, k1 = 3kN/m, η = 0.1. and (b) its top storey transmissibility

when the structure is subjected to base displacement r(t)

3.3.2.5 Example 2: Hysteretic TMD (HTMD)

Many strategies have been introduced for protecting structures from unwanted vibra-

tions. Using the tuned-mass-damper (TMD) is one of the established strategies that

has been used in many structures. Wong [107] has investigated the TMD with hys-
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teretic damping and shown how the tuning procedure based on fixed-point theory in

the frequency domain can be used. However, an equivalent time-domain analysis had

not yet been presented.

Figure 3.11: 3-storey structure with a HTMD at the top storey

This gap in knowledge is now addressed. A 3-storey undamped structure is equipped

with a HTMD at the top storey subjected to base displacement as shown in Figure

3.11, and is then investigated in the time-domain. The optimum parameters of the

HTMD are found to be md = 0.102kNs2/m, kd = 27.6kN/m and η = sh/kd = 0.2336.

md and kd represent the mass and stiffness of the HTMD, and η is the loss factor of

the linear hysteretic damping of the HTMD. The equation of motions of the system

can be written as:

ẍ1a(t) =
−(k0,1 + k1,2)x1a(t) + k1,2x2a(t) + k0,1ra(t)

m1

ẍ2a =
−(k1,2 + k2,3)x2a(t) + k2,3x3a(t) + k1,2x1a(t)

m2

ẍ3a =
−(k2,3 + kd(1 + jη)x3a(t)) + k2,3x2a(t) + kd(1 + jη)ya(t)

m3

ÿa(t) =
−kd(1 + jη)(ya(t)− x3a(t))

md

(3.37)

Figure 3.12 shows the performance of the structure with a HTMD on the top storey

in the frequency domain by assuming the base displacement input is harmonic. The
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performance of the HTMD is compared with the TMD with viscous damping obtained

via an equivalent viscous damping, where ceq = kdη
ωn1

. It is obvious that the response

of the HTMD is different from the TMD, particularly around the second and third

resonances. This implies that modelling the HTMD by using an equivalent viscous

damping would lead to an underestimation of the level of damping around the higher

resonances.

The accuracy of the proposed time-domain method can also be seen in Figure 3.12.

The steady-state responses from the time domain response across frequencies are in a

good agreement with the frequency domain response of the HTMD.
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Figure 3.12: 3-storey structure with a HTMD at the top storey, m1 = m2 = m3 =

1tonne, k0,1 = k1,2 = k2,3 = 1500kN/m, kd = 27.6kN/m,cd = 0.38kNs/m,md =

0.102tonne and η = 0.2336.

3.4 Summary

In this chapter, two linear hysteretic models were presented: complex damping and

complex stiffness. The first is motivated by the helical fluid inerter that has been

shown in the literature to have inertance and viscous damping in parallel, see [55].
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The second is a well-known concept to represent a material damper. The complex

damping model is analogous to the complex stiffness model. In the complex stiffness,

the term ωc
k

is defined as equivalent to a constant loss factor, η. Likewise, in the concept

of complex damping introduced in this chapter, further experiments are still needed in

order to investigate the term ωb
c

, whether it is constant or not.

Complex stiffness is a well-known model to represent a material damper. although

this is a noncausal model, it has been proven to be accurate [98] and widely used in

practice [97]. However, the analysis of complex stiffness is often carried out only in

the frequency domain. In the time domain analysis, an equivalent viscous damping

approach is often used. This is because using a standard numerical integration method

for the complex stiffness model in the time domain leads to unstable results due to the

unstable poles [98]. However, from the cases of SDOF and MDOF structures given

in this chapter, it is obvious that using the equivalent viscous damping approach to

simplify the complex stiffness model could only be accurate around the frequency of

interest. Therefore, it is suggested that the complex stiffness term must be treated in its

original form when conducting a time domain analysis. Therefore, a new time-domain

method is proposed in this chapter based on that proposed by Inaudi and Makris [98]

involving analytic signals and the Hilbert transform. This proposed method has been

validated and shown to be accurate. However, it should be noted that the method

is only valid for linear models. Also, the initial conditions of both input and output

signals must be zero when the time is both minus and plus infinity. An article from this

chapter specifically discussing about this time domain method has also been published

in [140,141].

The concept of complex damping is a simple linear model assuming both inertance

and viscous damping are in parallel as given in Equation 3.1. This model can capture

some of the most important aspects of real hysteresis, but nonlinear effects such as

friction are excluded from the scope of the thesis, and so would need to be a future

development of the modelling approach. It was decided that this will remain as an

open discussion for the future work, hence the helical fluid inerter will not be used for

any experiment later in this study, especially for the shake table experiment.

The design of the helical fluid inerter is interesting. In the literature, as mentioned

above, the helical fluid inerter has been shown to have both inertance and damping

in parallel. This is interesting because it can be used to build a TVMD. In another

study, see [132], a similar layout of the TVMD is also called as a parallel-viscous-

inerter-damper (PVID). The helical fluid inerter can be used to build a PVID just by

connecting the device with a spring element in series. However, because both inertance

and damping parameters are coupled, it is difficult to know how best to design the

device to achieve the targeted parameters from the TVMD/PVID optimum design,

something that is addressed in the next chapter. In particular, an new design method

will be proposed for the helical fluid inerter design.
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Chapter 4

Tuned-Inerter-Based-Dampers with

Helical Fluid Inerters

4.1 Introduction

Helical fluid inerter has been shown in the previous chapter to have both inertance

and damping in parallel. These damping and inertance parameters are produced by

the viscosity of the fluid inside the chamber and the acceleration of the fluid inside a

helical pipe coiled around the outside of the chamber.

Theoretically, this device can be easily used to form a PVID by adding one spring

element in series. However, it is a particular challenge to tune both inertance and

damping parameters to fit with optimised values resulting from a design analysis be-

cause both parameters are coupled to each other. This chapter presents a new analysis

that demonstrates how a helical fluid inerter can be designed to achieve the targeted

PVID optimum parameters.

Most literature recently focusses on the application of both mechanical geared in-

erters and ball screw inerters for realization of TIBD concepts. Examples of this can

be found in [135] and [14]. This is due to simplicity of the design processes when using

such an inerter.

Fluid inerters on the other hand, require a complicated design processes involving

the consideration of many parameters of the device. The derived formula for calculating

damping and inertance of the device is given by [123]:

Fdamper = 0.03426
2ρlA1√
DhRh

(
A1

A2

)2

ẋ2 + 17.54
2µ̄lA1

D2
h

(
A1

A2

)
ẋ (4.1)

and by [55]:

b =
mhel

1 +

(
h

2πr4

)2

(
A1

A2

)2

(4.2)
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where µ̄ and ρ are the viscosity and density of the fluid, in this study these are assumed

to be 1× 106 kPa s and 1000 kg/m3. l is the length of the channel, Dh and Rh are the

channel hydraulic diameter and its bend radius. mhel is the mass of the fluid inside

the helical channel. A1 and A2 are the area of the piston and the channel, given by

A1 = 2π(r2 − r1)2 and A2 = 2πr2
3.

As can be seen in Equations 4.1 and 4.2, that both damping and inertance pa-

rameters are functions of many other parameters. Therefore, a new design approach

is proposed in this chapter to practically design the dimensions of the helical fluid

inerter such that both targeted damping and inertance parameters can be achieved.

This proposed design approach relies on the fact that both damping and inertance

are insensitive to changes in some parameters. Consequently, these parameters can

be chosen based upon practical design considerations, so that the number of unknown

parameters in Equations 4.1 and 4.2 can be reduced.

Three examples of different scenarios are presented to show the effectiveness of the

proposed method. The first example is for a simple SDOF structure. Here the mass

of the structure is connected to a helical fluid inerter via a bracing. One end of the

helical fluid inerter is connected to the bracing and its other end is grounded. The

layout of this system is similar to that of TVMD or PVID. Therefore, a fixed-point

theory approach can be used to obtain the targeted optimised damping and inertance

parameters.

The second example is for an MDOF structure. A 10-storey structure is considered

where the helical fluid inerter is installed on each of the storey via bracings. The

targeted optimised damping and inertance of the helical fluid inerters are obtained

based on the fixed-point theory approach.

The third example is for an MDOF structure equipped with a helical fluid inerter

on its base. In this example, the helical fluid inerter is assumed to be nonlinear. The

discussion focuses on how practically the helical fluid inerter dimensions can be de-

signed. While the targeted optimum parameters of damping and inertance parameters

of the device have been extensively discussed in [49].

4.2 Design of The Helical Fluid Inerter For Use As

A PVID

4.2.1 Example 1: SDOF structure

The displacement transmissibility of an SDOF structure with a PVID subjected to

base excitations as shown in Figure 4.1, can be expressed as∣∣∣∣(XR
)2∣∣∣∣ =

[1− µq2(λ+ 1)]2 + [2ζ(λ+ 1)q]2

[1− q2(λµ+ 1 + µ) + λµq4]2 + [2ζ(1− λq2 + λ)q]2
(4.3)
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where X and R are the Laplace transform of the main mass displacement and the base

displacement, µ = b
m

, is the inertance-to-mass ratio, q = ω
ωn

, is the frequency ratio,

ωn =
√

k
m

, is the natural frequency of the system λ = k
kd

, is the stiffness ratio, and

ζ = cd
2mωn

, is the damping ratio of the device. In this example the damping of the

structure is selected as 2%, which is relatively small and has therefore been neglected

in the frequency domain analysis.

m1

k0,1
kd

bd

yFd

x

r =x0

Figure 4.1: SDOF structure with a PVID

Table 4.1: Optimum parameters of the PVID

Inertance, b (kg) Stiffness, kd (kN/m) Damping, cd (kNs/m)

500 17.79 0.83

1000 38.82 2.48

1500 64.21 4.86

2000 95.71 8.05

2500 136.23 12.23

3000 191.13 17.78

The structural mass and stiffness are 104kg and 328.89kN/m, respectively. It should

be noted that Fd is originally nonlinear as shown in Equation 4.1, and the damping

parameter of the PVID, cd, is the linearisation of Fd. Here, the PVID, was optimised

using the analysis presented in [42]. The optimisation aims to minimise the response

ampliude x around the resonance frequency. The optimum parameters were computed

for a range of inertance values and are presented in Table 4.1. The transmissibility of

the structure with optimised PVID parameters obtained by this method for a selection

of inertance-to-mass ratio is shown in Figure 4.2(a). As would be expected, increasing

the inertance-to-mass ratio will decrease the amplitude of response of the SDOF system

and increase the width of the peaks. As a result, the cut-off frequency moves to the
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right for larger inertance-to-mass ratios.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

Uncontrolled

=0.05

=0.1

=0.15

=0.2

=0.25

=0.3

(a)

0 10 20 30 40 50

-3

-2

-1

0

1

2

3

4

(b)

Figure 4.2: (a) Optimized PVID with various mass-ratios for an SDOF structure (b)

El Centro ground motion.
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Figure 4.3: (a) Response of an SDOF structure equipped with a PVID (b) Fourier

Transform of the earthquake input and the structural time history response.

To evaluate the performance of the structure subjected to non-sinusoidal signals,
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an El Centro ground motion shown in Figure 4.2(b), was used.

As expected, using µ = 0.05, the response of the structure is significantly reduced,

as shown in Figure 4.3(a). Furthermore, a frequency response analysis, shown in Figure

4.3(b), also demonstrates that the PVID gives a significant reduction of the response

of the SDOF mass close to the natural frequency at f = 0.91Hz.

Next a parametric study was performed to determine the physical parameters of the

fluid inerter that gives inertance b and damping cd close enough to the required optimal

values when using µ = 0.05 as shown in the 4.1. The spring element is provided by a

bracing system which can be easily adjusted. However, the design of the fluid inerter

is quite challenging due to the inertance and the damping parameters being coupled

to each other.

In the design process, the helical channel is assumed to cover all the surface of

the tube, with no space in between (h = 2r3). Hence, the total length of the channel

is calculated using l = 2nπr4, where n is the number of turns in the helix, given by

n = Lt/2r3, where Lt is the length of the tube, and r3 is the radius of the helix. The

distance between the outer surface of the tube and the outer surface of the helical

channel,rd, is given by rd = r4 − (r3 + r2), where r2 is the distance from the center to

the outer surface of the tube.
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Figure 4.4: The influence of changing (a) r3 (radius of the helix) and (b) rd (distance

between the outer surface of the tube and the outer surface of the helical channel) on

damping and inertance values
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Figure 4.5: (a) The influence of changing Lt to damping and inertance values, and (b)

Force versus velocity of the damper when r3 = 0.02m, rd = 0.06m, and Lt = 0.6m.

Asterisk markers are the Fdamper given by Equation 4.1

Note that in Equations 4.1 and 4.2 both inertance and damping are strongly influ-

enced by the area of the helical channel A1 and the channel length l. Thus, determine

55



Chapter 4. Tuned-Inerter-Based-Dampers with Helical Fluid Inerters

Table 4.2: Fixed parameters

Property Value Units

Helix pitch, h 0.04 m

r1 0.014 m

r2 0.05 m

r4 0.13 m

Oil density 802 kg/m3

the design requirements, three parameters were studied: r3, rd, and Lt. The other

parameters were fixed as given in Table 4.2.

Figure 4.4(a) show that, when both rd and Lt are fixed to 0.06m and 0.6m, both

inertance and damping parameters of the fluid inerter decrease as the helix radius

increases. It should be noted that the damping force is nonlinear as is given in Equation

4.1, however for simplification, it was considered as linear as presented in Figure 4.5(b).

It was found that when the radius of the helix is 0.02m, both inertance and damping

were close enough to the required values, which are 500kg and 0.83kNs/m given in

Table 4.1.

Figures 4.4(b) and 4.5(a) show the influence of changing the rd when r3 and Lt

are fixed to 0.02m and 0.6m, and the influence of changing the Lt when r3 and rd are

fixed to 0.02m and 0.06m. It can be seen that both rd and Lt are less sensitive to

the changing of inertance and damping compared to r3, as also can be seen in Figure

4.4(a).

It is finally found that parameters obtained in order to achieve the targeted param-

eters of b and cd are : r3 = 0.02m, rd = 0.06m, and Lt = 0.6m. The final plot of force

versus velocity relationship of the fluid inerter using the optimised parameters is given

in Figure 4.5(b). It can be seen although the actual device is nonlinear, the linear

approximation by the model is acceptable for a velocity range of maximum 0.4m/s.

4.2.2 Example 2: MDOF structure

As with the previous example, the helical fluid inerter here is designed and placed

on each of the storeys of the MDOF structure via bracing. This concept is adopted

from [14] for the design of tuned viscous mass damper (TVMD). Similarly, this concept

also has been used for the design of a gyromass-viscous damper-brace (GVB) in [135].

The benefit of this concept is that the optimum stiffness of the system can be easily

achieved through the design of the bracing system. The installation of the fluid inerter

via bracing forms an analytical layout consisting of an inertance and a damping in

parallel-connected to a spring in series. This layout is also called a parallel viscous

inerter damper (PVID) [132].
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Due to the similarity of the layout between TVMD and the PVID, the optimum

parameters of the fluid inerter can be obtained by adopting the proposed simple design

procedure given in [142] summarised as follows:

• choose the mass ratio, µ = Bb/M , where M is the generalised modal mass for the

undamped primary structure, and Bb is the effective modal mass of the inertance

as described in [142]. In this study, the mass ratio of 0.1 was chosen.

• calculate the eigenvector φp of the characteristic equation of the primary structure

(damping matrix is neglected)

• calculate the natural frequency of the first mode of the primary structure ωp1

• calculate the inertance of the damper system at each storey by assuming that it

is proportional to the stiffness of the primary structure at each storey,

bi = αki (4.4)

α is the constant ratio, given by

α =
µ.1φ

T
p Mp1φp

1φTp Kp1φp
(4.5)

• calculate the optimum natural frequency of the PVID system, given by

ωoptd =
1−
√

1− 4µ

2µ
.1ωp (4.6)

• calculate the optimum stiffness of the damper system

kd,i = (ωoptd )2.bi (4.7)

• calculate the optimum damping value of the damper system

cd,i = 2ζoptd ωoptd bi (4.8)

where ζoptd is the optimum damping ratio of the damper, given by [35]

ζoptd =

√
3(1−

√
1− 4µ)

4
(4.9)

In this example, a helical fluid inerter was designed for a 10-storey building studied

in [142]. Here, the optimum design parameters of the TVMDs were obtained by fol-

lowing the steps above are used for the PVIDs with the fluid inerter, as given in Table

4.3.

Similar to the previous example, four parameters were varied in order to achieve the

target damper characteristics on each storey. The varied parameters were the radius
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Table 4.3: Optimum parameters of the PVID for 10-story building [142]

story bi [ton] kd,i [kN/m] cd [kNs/m]

1 2147 74709 5207

2 2087 72643 5063

3 2002 69684 4857

4 1891 65809 4586

5 1752 60986 4250

6 1585 55171 3845

7 1388 48299 3366

8 1157 40254 2805

9 885 30814 2148

10 558 19407 1353

of the helix (r3), space between the outer surface of the tube and the outer surface of

the helical channel (rd), which is rd = r4 − (r3 + r2), and the length and radius of the

tube (Lt and r2).

In general, the design process is described as follows:

• Approximate the initial length of the tube. The helical channel is designed to

turn around and along the length of the tube with helix pitch h = 2r3 (no space

in between the coils).

• Iterate r3 and r2. Both parameters have a significant effect on the inertance and

damping as given in Equation 4.1 and 4.2.

• Increase rd to reduce the required r3 and r2 from the previous step.

• The total length of the helical channel l is given by 2nπr4. n is number of turns

in the helix, which is n = Lt/2r3.

Based on the design process above, the helical fluid inerter dimensions were designed

with the design inertance and damping parameters are close to the targeted optimized

PVIDs parameters for each storey as shown in Figures 4.6(a) and 4.6(b).

The dimensions of the fluid inerters obtained from the design process are given in

Table 4.4. It is obvious that the size of the fluid inerters is feasible for the considered

structure. The size of the device is 1.5m length and 0.7-0.8m height for the first 8

storeys, and the length is reduced to 1.1 m for the top two. These sizes give the

inertance and damping close to the targeted parameters as presented in Figure 4.6.

It should be noted that in the design process, the damping constant cd is obtained

based on linear regression of the nonlinear quadratic damping force resulting from

Equation 4.1. As a result, the design is strongly influenced by the velocity range of the
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Table 4.4: Design of the fluid inerter for 10-storey building

storey r2[m] r3[m] rd[m] r4[m] Lt[m] Dh[m] b[ton] cd[kNs/m]

1 0.615 0.0930 0.10 0.8080 1.5 0.186 2121.10 5214

2 0.606 0.0920 0.10 0.7980 1.5 0.184 2039.92 5033

3 0.601 0.0915 0.10 0.7925 1.5 0.183 1992.08 4918

4 0.580 0.0890 0.10 0.7690 1.5 0.178 1821.81 4557

5 0.568 0.0875 0.10 0.7555 1.5 0.175 1732.27 4374

6 0.551 0.0863 0.10 0.7373 1.5 0.172 1560.22 3885

7 0.530 0.0846 0.10 0.7146 1.5 0.169 1373.92 3379

8 0.500 0.0820 0.10 0.6820 1.5 0.164 1140.34 2726

9 0.524 0.0855 0.07 0.6795 1.1 0.171 886.61 2129

10 0.443 0.0760 0.07 0.5890 1.1 0.152 558.62 1382

damper. However, despite of this limitation, it is obvious that the fluid inerter can be

designed to fit the targeted parameters obtained from the optimisation processes.
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Figure 4.6: Optimized parameters versus design parameters (a) inertance (b) damping
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4.2.3 Example 3: Nonlinear helical fluid inerter

In this example, the damping force of the helical fluid inerter was considered as non-

linear as given in [49]. The schematic figure is given in Figure 4.7. The inerter was op-

timised for use in a multi-storey structure. The targeted optimised inertance and non-

linear damping coefficient parameters were obtained from [49], which are b = 452380kg

and cp
NL = 7377601.75Ns/m. The proposed design approach was implemented here

to achieve the helical fluid inerter dimensions such that both inertance and damping

parameters were as close as possible to the targeted values. Two parameters were se-

lected as free variables: r2 and r3 as they were found to be the most sensitive to the

changing of b and cp
NL values. The other parameters were fixed to reasonable values

given in Table 4.5.

Figure 4.7: Simplified model of nonlinear helical fluid inerter

Table 4.5: Fixed parameters of the helical fluid inerter

Property Value Units

r1 0.1 m

rd 0.06 m

L 1.0 m

Oil density 1000 kg/m3

µf 0.001 Pa s

Figures 4.8(a) and 4.8(b) show how both r2 and r3 parameters can significantly

affect the system performance. These two parameters are directly related to the di-

mensions of the fluid inerter device –inner radius of the cylinder and inner radius of

the helical channel. It can be seen that r2 = 0.357 intersects at line r3 = 0.05 for the

given optimum band cp
NL values in both graphs. The actual b and cp

NL values given

from the actual dimensions of the fluid inerter are 457, 689kg and 730, 2341.75 Ns/m.

Figure 4.9 compares the force-vs-velocity relationship between the design and actual

values of the fluid inerter. Both total force (Ftotal) and damping force (Fd−helix) from

the actual fluid inerter are very close to the design specifications with the percentage

of errors around 1%.
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Figure 4.8: Design parameters identification via parametric approach: (a) nonlinear

damping coefficient vs r2 for a family of r3 curves; (b) inertance vs r2 for a family of

r3 curves. b and r3 are in kg and m, respectively.
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Figure 4.9: Force vs velocity curve for the fluid inerter with the design parameters

compared to the optimal (target) parameters.

4.3 Summary

In this chapter, the feasibility of the fluid inerter to build a PVID was discussed. The

fluid inerter has both inertance and damping in parallel. For this reason, it can be

used to build a PVID by adding one spring in series.

One of the challanges of the helical fluid inerter design is that its damping and

inerter parameters are coupled. Therefore, it is difficult to design both inertance and

damping separately. In this chapter, a new design approach is proposed to simplify

the design of a helical fluid inerter for use as a PVID. The design approach relies on

the fact that the damping and inertance are insensitive to changes in some parameters.

Consequently, these parameters can be chosen based on practical design considerations,

so that the number of unknown parameters can be reduced.

Three examples have been presented, for both SDOF and MDOF building struc-

tures, and also in a nonlinear helical fluid inerter. The results show that the the helical

fluid inerter can be accurately and practically designed to achieve the targeted inerter

and damping parameters for all the three examples of different cases. An article from

this thesis has also been published based on these results, see [143] and [49].

Despite of the successful implementation of the design method, the nonlinear effects

such as friction and fluid compressibility, see [49], are beyond the scope of this thesis.

Therefore, they are not chosen for the next stages of this thesis because they might
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be difficult to use to achieve the objectives set in Chapter 1, especially for shake table

experiments. It is decided that this will remain as an open discussion for the future

work.
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Chapter 5

Tuned-Inerter-Based-Dampers with

Complex Stiffness

5.1 Introduction

In this chapter, a novel concept of using linear hysteretic damping represented by a com-

plex stiffness in passive tuned-inerter-devices is proposed. Specifically, two devices are

introduced namely the tuned-inerter-hysteretic-damper (TIhD) and the tuned-mass-

hysteretic-damper-inerter (TMhDI). These two devices were designed based on the well

established existing concepts of tuned-inerter-damper (TID) and tuned-mass-damper-

inerter (TMDI).

In this study, the parallel connected stiffness and viscous damping element in the

inerter dampers are replaced by a linear hysteretic damping element which has coupled

stiffness and loss factor. The rationale is that, as discussed in detail in Section 3.3, the

realisation technique based on this form of damping model is considered to be more

realistic. It has been reported to accurately capture the real physical behaviour of a

range of damper elements [144] and has been widely used in practice [97].

It is well known that viscous damping can be directly related to the loss factor of

an equivalent hysteretic damping element using the well established analysis based on

equivalent viscous damping, see Section 3.3 . However, it is shown analytically that

this process underestimates the response amplitudes at the higher modes of vibration

of multi-degree-of-freedom structures due to the frequency-dependency associated with

the viscous damping element. This has also been addressed and discussed in Section

3.3 for the case of HTMD.

Furthermore, results showing the optimum performance comparison of the devices

in suppressing an n-degree-of-freedom structure highlight the differences in performance

that would be expected compared to a viscous damping model. Specifically the regions

of the frequency domain where significant differences are obtained between the two

damping models for harmonic and selected earthquake inputs. In addition, the non-
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causality associated with the hysteretic damping is solved in the time domain by using

the method discussed in Section 3.3 involving the time reversal technique and the

Hilbert transform that is now extended to work with multi-degree-of-freedom systems.

5.2 Analytical Modelling

In order to assess the tuned-inerter-damper devices and their effect on the structural

performance, a generalised model of a n-DOF lumped mass system is used as a bench-

mark system as shown in Figure 5.1(a). The structure is separated into three parts:

bottom storey, i = 1 ; middle storeys, ith, where i ∈ [2 : n − 1]; and top storey,

i = n. The structural performance was examined and compared for each of the inertial

damper systems in Figure 5.1(b)-(e) when placed at the bottom story level.

The TID is one of the first established concepts of inerter dampers and therefore it

is used here as a benchmark. The TID is considered to be an idealized concept where

a pure inerter is attached to a parallel-connected spring-damper system in series. If a

mass element is present between the inerter and the spring-damper system, then it is

called a TMDI. It is considered to be more realistic than the TID because the physical

mass of the inerter element can be included to represent the mass of the device itself

although in most cases this is very small compared to the inertance. Two inerter-

damper systems are introduced in this chapter, namely the TIhD and TMhDI. Each

of them is studied to gain insight into the effect of hysteretic damping.

The equations of motion of the n-DOF structure as shown in Figure 5.1 in absolute

coordinates can be written as

(m1s
2 + k0,1 + k1,2)X1 = k1,2X2 + k0,1R + F1,0

...

(mis
2 + ki−1,i + ki,i+1)Xi = ki−1,iXi−1 + ki,i+1Xi+1

...

(mns
2 + kn−1,n)Xn = kn−1,nXn−1

(5.1)

where mi and ki−1,i, i ∈ [1 : n] represent the mass and stiffness between storeys i−1 and

i; Xi represents the Laplace transform of the ith storey displacement, when i = 0, then

X0 = R which represents the Laplace transform of the base displacement; s represents

the Laplace transform variable and F1,0 represents the force transferred to the structure

by the inerter damper systems in the Laplace domain.

The next two sections will discuss both the TIhD and TMhDI separately in detail.

In particular, the discussion will specifically assess the effect of the linear hysteretic

damping in the inerter-damper systems.
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Figure 5.1: (a) n-DOF structure (b) TID (c) TMDI (d) TIhD (e) TMhDI

5.3 TIhD (Tuned-Inerter-hysteretic-Damper)

As previously mentioned, the TID is one of the first established concepts of inerter-

damper systems. It consists of an inerter in series connection with a parallel-connected

spring-damper system. In this section, the linear hysteretic damping represented by a

complex stiffness is proposed to replace the parallel-connected spring-damper system.

The device with this layout now is called the TIhD. This concept is motivated by the

fact that often material dampers are employed in civil engineering applications. The

energy dissipated per cycle by material dampers can be assumed frequency independent

[54] if viscoelasticity is insignificant. For this reason, the parallel-connected spring-

viscous damping model cannot accurately predict the real behaviour of the dampers

due to the frequency depedency of the viscous damping element. Therefore, a complex

stiffness is proposed here to represent the material damper.

In this section the TIhD is studied and compared to the TID. Here it is assumed

that the mass of the inerter device is neglected.
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5.3.1 Force Transferred To The Host Structure

The equation of motion of the TIhD as shown in Figure 5.1(d) can be written in the

Laplace domain as

bds
2(R− Y ) = kd(1 + jη)(Y −X1) (5.2)

where bd, kd and η are the device inertance, stiffness and hysteretic damping loss factor

respectively and j =
√
−1. Hence

Y =
bds

2R + kd(1 + jη)X1

bds2 + kd(1 + jη)
(5.3)

The force transferred to the structure by the TIhD is

F1,0 = kd(1 + jη)(Y −X1) (5.4)

Substituting Equation 5.3 into Equation 5.4 leads to

F1,0 =
bds

2(kd(1 + jη))

bds2 + kd(1 + jη)
(R−X1) (5.5)

To illustrate the Equation 5.5, a 3-DOF structure adopted from [145] is assessed

when equipped with a TIhD. Figure 5.3.1 shows the comparison between the force

transferred by the TID and by the TIhD. Here, the parameters of the TID are: bd=21kg;

kd=22kN/m; and cd=356.87Ns/m, and the parameters of the TIhD are: bd=21kg;

kd=22kN/m; and η=0.53. As can be seen in this Figure, the force transferred to the

structure by the TIhD is larger than that of TID in the second and the third modes.

This is due to the fact that the energy dissipated by the linear hysteretic damper is

frequency indepedent.
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Figure 5.2: Force transferred to the structure by the TID and the TIhD
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5.3.2 Optimum Tuning Procedure

The optimum tuning procedure derived in this section is based on the fixed-point-

theory by Den Hartog [38] proposed for a TMD. This theory says that for an un-

damped structure, regardless of the choice of TMD stiffness and damping parameters,

all displacement response curves in the frequency response diagram pass through two

fixed points, P and Q. These two points are then made equal by selecting an optimum

stiffness value of the TMD. For a TID applied to a SDOF structure, Hu et al [146]

proposed an algebraic solution to analytically determine the frequencies where these

two equal-in-amplitude points occur. For the TIhD, this algebraic solution is adapted

in this section by simply replacing the viscous damping ratio with a loss factor of the

linear hysteretic damping.

Considering a TIhD from Figure 5.1(d) is attached to a 1-DOF structure as shown

in Figure 5.1(a) for n = 1. The transfer function X/R can be derived analytically and

written in the frequency domain as∣∣∣∣(XR
)∣∣∣∣ =

√
[(1− µq2)− λµq2]2 + [η(1− µq2)]2

[(1− (1 + µ)q2)− µλq2(1− q2)]2 + [η(1− (1 + µ)q2)]2
(5.6)

where η is the loss factor of the hysteretic damping, µ = bd/m1 is the inertance-to-mass

ratio, q = ω/ωn is the frequency ratio, λ = k0,1/kd is the stiffness ratio, ω is the forcing

frequency (assuming a sine wave input) and ωn =
√
k0,1/m1.

The approximate optimum parameters of the TIhD can be analytically obtained

based on fixed-point theory via an algebraic solution. This technique has been derived

by Hu et al. [42] for the TID optimisation. Following the same procedure, and by

replacing the viscous damping ratio ζ with the loss factor η, one obtains the η optimum

for the TIhD as

ηopt =

√
η2
P + η2

Q

2
(5.7)

ηP and ηQ are given by

η2
P.Q =

A−BCD
E

(5.8)

where

A = (2µ(1− (1 + µ)q2
P.Q)2(µq2

P.Q(λopt + 1)− 1)(λopt + 1))

B = (2(1− µq2
P.Q)2

C = ((1− (1 + µ)q2
P.Q − λoptµq2

P.Q(1− q2
P.Q))

D = (λoptµq
2
P.Q − λoptµ(1− q2

P.Q)− µ− 1)

E = (2µ(1− (1 + µ)q2
P.Q)2(1− µq2

P.Q))− (2(1− µq2
P.Q)2(1 + µ)(1− (1 + µ)q2

P.Q))

The frequency ratio at the first two fixed-points P and Q are the solution of the
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following equation

q4 −
(

2

λoptµ
(1 + λopt + µ+ λoptµ)− q2

R

)
q2 +

2

µ2λoptq2
R

= 0. (5.9)

The optimum stiffness ratio (λopt) can be obtained by using either

λopt =
2(1 + µq4

R(1 + µ)− q2
R(1 + 2µ))

µq4
R(µq4

R − 2q2
R(1 + µ) + 2)

(5.10)

or

λopt =
2(q2

R(3µ+ 2µ2 + 1)− 2(1 + µ))

q2
R(µq2

R(1 + 2µ)− 2(1 + 2µ+ 2µ2))
(5.11)

where qR is the frequency ratio at the third fixed-point R given by

q2
R =

3

2
+

1

µ
+

√(
3

2
+

1

µ

)2

− 2

µ
. (5.12)

This fixed-point R was firstly identified by Lazar et.al. [37] for the TID. The fixed-

point R is the third fixed-points in addition to the fixed-point P and Q located away

from the resonance frequency as shown in Figure 5.3. It should be noted that in Figure

5.3(a), the ζP , ζQ and ζopt lines are plotted using ζP , ζQ and ζopt values obtained from

the optimisation process based on Hu et al. [42]. While for ηP , ηQ and ηopt lines in

Figure 5.3(b) are plotted using ηP , ηQ and ηopt values obtained from Equation 5.8 and

5.7, respectively.

Figure 5.3(a) and 5.3(b) show the difference between the optimised TID and TIhD

using fixed-point theory. It can be seen that for viscous damping, Figure 5.3(a), the

underlying peaks of ζP and ζQ are quite low in amplitude and therefore the peaks of

the combined optimal curve are very close to the fixed points P and Q. However, in

the hysteretic damping case, Figure 5.3(b), the underlying peaks of ηP and ηQ are now

quite high in amplitude and therefore the peaks of the combined optimal curve are

much further away from the fixed points P and Q. It is therefore suggested that the

optimised TIhD will require a further fine tuning process to make both peaks closer to

equal amplitude.

In this example, µ is increased from 0.3 to 0.9 to obviously see the effect of the

mass ratio as shown in Figure 5.4. When µ is increased, a potential benefit in the

high frequency region can be seen from the TIhD compared to the TID although the

level of response amplitude around resonance is quite similar. The TID shows a higher

amplification due to the increase of µ, while on the other hand the TIhD shows very

small amplification. This is in line with what has been discussed in Chapter 3.3 where

a structure with complex stiffness has a lower amplification of response in the high

frequency region. This is interesting to note, because this is the reason why a complex

damping should be treated as its original form both in the frequency and time domain

analyses. Although an equivalent viscous damping [138] is often used, but it fails
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to accurately predict the real behaviour of a linear hysteretic damping in the high

frequency region, particularly when the mass ratio is large.

Table 5.1 is presented to summarise the optimum ζ and η of both devices obtained

via the process above. As previously mentioned, equivalent viscous damping is often

used to obtain an approximation for the response of a hysteretically damped system.

However this kind of approximation will not persist after the optimisation process. In

this case, the equivalent viscous damping relationship η = 2ζ given in [138] cannot be

used for the TIhD. The approximate relationship can instead be expressed as η = 2λζ.

It should be noted that this expression does not give the exact optimum solution —

a point that was also noted by Wong [107] for the HDVA system. Therefore it is

important to derive the optimum η of the TIhD separately from the derivation of ζ of

the TID.
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Figure 5.3: Optimisation process for 1-DOF structure equipped with (a) TID (b) TIhD.

Here µ = 0.3.
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Figure 5.4: Transmissibility of a 1-DOF structure equipped with (a) TID (b) TIhD for

various µ.

The optimum tuning procedure derived for a TIhD in this Section, which is based on

the fixed-point theory via algebraic solution proposed in [42], shows that the optimum

tuning procedure for a TID can be used to approximate the optimum parameters of the
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Table 5.1: Optimum damping ratio and loss factor of the inerter dampers

µ ζopt of the TID ηopt of the TIhD

0.3 0.0713 0.71

0.5 0.1264 0.92

0.9 0.2221 1.26

TIhD in SDOF structures. It is simply just replacing the viscous damping ratio of the

TID with a loss factor of the TIhD. Another approach based on the fixed-point theory

for the TID is derived by Lazar et al. [37] where they show how the TID optimum

tuning can be approximated by the TMD tuning procedure by Den Hartog [38]. The

optimum tuning of the TIhD for MDOF system can also be approximated by the TID

optimum tuning proposed in [37]. As in the case of SDOF structure discussed in this

section, a fine tuning is also required to make the two peaks equal in the frequency

response amplitude.

5.3.3 Time domain analysis

Here in this section, the performance of a structure with a TIhD is analyzed in the

time domain. Due to the presence of linear hysteretic damping, a standard numerical

integration method cannot be used to solve the structure in this domain. Therefore,

the newly developed method discussed in the Section 3.3.2 is adopted.

Considering a three storey structure with a TIhD in the ground floor as shown

in Figure 5.1(a) where n = 3, m1 = m2 = m3 = 1 tonne and k0,1 = k1,2 = k2,3 =

1500kN/m, the governing equation of motion of the considered strucure in the absolute

coordinate can be written using analytic functions as follows:

m1ẍ1a(t) + k0,1(x1a(t)− ra(t)) + kd(1 + jη)(ya(t)− ra(t))− k1,2(x2a(t)− x1a(t)) = 0

m2ẍ2a(t) + k1,2(x2a(t)− x1a(t))− k2,3(x3a(t)− x2a(t)) = 0

m3ẍ3a(t) + k2,3(x3a(t)− x2a(t)) = 0

ÿa(t) = ẍ1a(t)−
kd
bd

(ya(t)− ra(t))
(5.13)

where mi and xi(t) represent the mass concentrated on the ith storey and its displace-

ment response. Subscription a denotes an analytic signal which is a pair of real and

imaginary components. The imaginary component of the analytic signal xia(t) is given

by the Hilbert transform of the real signal xi(t), such that xia(t) = xi(t) + jH[xi(t)],

where H[xi(t)] is the Hilbert transform of xi(t). ki−1,i and shi−1,i
, i ∈ [1 : n] repre-

sent the stiffness and a parameter with unit of stiffness characterising the damping

between storeys i − 1 and i; ηi−1,i is the loss factor of the linear hysteretic damping

between storey i − 1 and i, given by ηi−1,i =
shi−1,i

ki−1,i
; r(t) represents ground displace-

ment input signal; subscript a denotes an analytic signal; and j =
√
−1. In state-space
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formulation, Equation 5.13 can be expressed as:

ẋa(t) = Axa(t) + Bra(t) (5.14)

where

xa(t) =



x1a(t)

ẋ1a(t)

x2a(t)

ẋ2a(t)

x3a(t)

ẋ3a(t)

ya(t)

ẏa(t)


; A =



0 1 0 0 0 0 0 0
−k0,1−k1,2

m1
0 k1,2

m1
0 0 0 −kd

m1
(1 + jη) 0

0 0 0 1 0 0 0 0
k1,2
m2

0 −k1,2−k2,3
m2

0 k2,3
m2

0 0 0

0 0 0 0 0 1 0 0

0 0 k2,3
m3

0 −k2,3
m3

0 0 0

0 0 0 0 0 0 0 1
−k0,1−k1,2

m1
0 k1,2

m1
0 0 0 kd(m1−bd)

m1bd
(1 + jη) 0


(5.15)

and

B =



0
k0,1
m1

+ kd
m1

(1 + jη)

0

0

0

0

0
k0,1
m1

+ kd(m1−bd)
m1bd

(1 + jη)


The next steps follow the Equations 3.18 to 3.24 in Chapter 3.3.2. The MATLAB

code for this example can be found in Appendix D. Some plots obtained by using this

method will be presented in Chapter 5.5.

5.4 TMhDI (Tuned-Mass-hysteretic-Damper-Inerter)

As previously mentioned, the TMDI is considered to be a more realistic model for the

TID. The same logic also applies for the TMhDI as a realistic model of the TIhD. Since

the TMhDI has a mass element between the hysteretic damper and the inerter. The

layout of the TMhDI is very similar to that of TMDI with the viscous damping element

replaced by a loss factor of a linear hysteretic damping as shown in Figure 5.1(e).

5.4.1 Force Transferred To The Host Structure

The equation of motion of the TMhDI as shown in Figure 5.1(e) can be written in the

Laplace domain as

mds
2Y + bds

2(Y −X1) = kd(1 + jη)(R− Y ) (5.16)
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where md is the mass element of the TMhDI. Hence

Y =
bds

2X1 + kd(1 + jη)R

(md + bd)s2 + kd(1 + jη)
(5.17)

The force transferred to the structure by the TMhDI is

F1,0 = bds
2(Y −X1) (5.18)

Substituting Equation 5.17 into Equation 5.18 leads to

F1,0 =
bds

2kd(1 + jη)(R−X1)− bds2mds
2X1

(md + bd)s2 + kd(1 + jη)
(5.19)

It can be seen from Equation 5.19 that when md = 0 the Equation 5.19 becomes the

same as Equation 5.5 since the layout of the TMhDI becomes the same as the layout

of the TIhD.
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Figure 5.5: Force transferred to the structure by the TMDI and the TMhDI

To illustrate Equation 5.19, a 3-DOF structure adopted from [145] is assessed when

equipped with a TMhDI. Figure 5.5 shows the comparison between the force transferred

by the TMDI and by the TMhDI. Similar to the previous case between the TID and

the TIhD, as can be seen in Figure 5.5 the force transferred to the structure by the

TMhDI is larger than that of TMDI in the second and the third modes due to the

frequency indepedency of the linear hysteretic damping. Here the TMDI and TMhDi

parameters are the same with the TID and the TIhD parameters discussed earlier in

Section 5.3 with an auxiliary mass md=10kg.
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5.4.2 Optimum Placement

It is well known that the optimal location for a TMD is at the top of a MDOF structure,

and that the TID is optimum at the base of the structure [37]. Here the optimum

location for the TMDI is derived assuming the secondary mass md is small, which is

in this case 5% of the inertance bd. Later, the same logic is applied to the optimum

location of the TMhDI. The passive control forces in the Laplace domain can be written

as follows when a TMDI is mounted at the ith storey level of the considered structure

in Figure 5.1(a).

Fi,i+1 = bds
2(Xi+1 − Y ) (5.20a)

Fi+1,i = (cds+ kd)(Y −Xi) (5.20b)

where Xi represents the Laplace transform of the displacement of mass mi, and bd is

the inertance. The equation of motion for the y-DOF TMDI system can be written as

Y =
bds

2Xi+1 + (cds+ kd)Xi

(md + bd)s2 + cds+ kd
(5.21)

Substituting Equation 5.21 into Equation 5.20a gives

Fi,i+1 =
(bds

2mds
2)Xi+1 + bds

2(cds+ kd)(Xi+1 −Xi)

(md + bd)s2 + cds+ kd
(5.22a)

Fi+1,i = Fi,i+1 = TmXi+1 + Td(Xi+1 −Xi) (5.22b)

where

Td =
bds

2(cds+ kd)

(md + bd)s2 + cds+ kd
and (5.23a)

Tm =
bds

2mds
2

(md + bd)s2 + cds+ kd
. (5.23b)

Now the optimum placement of the TMDI in a n-DOF structure (as shown in Figure

5.1) is discussed. In matrix form, the equation of motion of the system can be written

as

Ms2 + KZ = −M


1

1
...

1

1

 s
2R +


F1,0 − F1,2

F2,1 − F2,3

...

Fn−1,n−2 − Fn−1,n

Fn,n−1

 (5.24)

where M and K are the mass and stiffness matrices, Z = Xi−R represents the vector

of relative storey displacement. The above equation can also be written in form of
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modal matrices

Ms2 +KZ = −ΦTM


1

1
...

1

1

 s
2R + ΦT


F1,0 − F1,2

F2,1 − F2,3

...

Fn−1,n−2 − Fn−1,n

Fn,n−1

 (5.25)

where Φ is the eigenvector matrix, M = ΦTMΦ and K = ΦTKΦ are the modal mass

and stiffness matrices, respectively.

Now, consider the cases where the TMDI is mounted at either the bottom or top

storey level. Assuming that only the first vibration mode is significant, the following

transfer functions can be obtained

TMDI at bottom storey level

Q1

R
=
−
∑n

i=1(m1Φi,1)s2 + Φ1,1Tm
mm1s

2 + km1 + TdΦ2
1,1

(5.26)

TMDI at top storey level

Q1

R
=

−
∑n

i=1(m1Φi,1)s2 + (Φn,1 − Φn−1,1)Tm
mm1s

2 + km1 + Td(Φn−1,1 − Φn,1)2 − TmΦn−1,1(Φn,1 − Φn−1,1)
(5.27)

It is obvious that when the mass element of the TMDI is small or close to zero, the

above equations will be identical to the TID transfer functions given in Lazar et al. [37].
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Figure 5.6: (a) The effect of increasing md to the TMDI optimum location (b) Fre-

quency response function (1st mode) when md = 5%bd, µ = 0.62.

Figure 5.6(a) shows how the optimum location of the TMDI changes between top

and bottom story level by increasing md and decreasing bd at the same time using

Equation 5.26 and 5.27. It can be seen that increasing md will make the TMDI at the
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bottom story less effective. Conversely, decreasing md makes its performance better

when placed on the bottom story. This aligns with the assumption of making the md

only 5% of the device inertance, to represent the mass of the inerter device.

Furthermore, Figures 5.3(a), 5.3(b) have already demonstrated that the tuning

procedure of the TID can be used for estimating the optimum parameters of the TIhD.

Therefore, it is also applied to the TMDI and TMhDI assuming the md is only 5% of

the inertance, as can be seen in Figure 5.6. However, as previously noted additional

fine tuning is required to get the actual optimum values for these three systems, and

this is also the case for MDOF systems.

5.4.3 Optimum Tuning Procedure

TMhDI is basically a TIhD with a small secondary mass element md between the

inerter bd and the complex-stiffness element as illustrated in Figure 5.1(d). The TMhDI

model can potentially be used to represent an even more realistic device than the TIhD

device. This is because it has both secondary mass element md and loss factor η of

material damping. In this analysis the inertance is designed to be dominant, where md

is assumed to be just 5% of the inertance to represent the mass of the inertial device.

Therefore, the tuning of the TMhDI follows the TIhD tuning rule based on fixed point

analysis presented in the previous subsection.

Figure 5.7 shows the performance comparison in the frequency domain between the

four considered inertial damper systems in an SDOF structure subjected to harmonic

base displacement. Although the response at low frequencies are close for all four

devices, it is clear from Figure 5.7(a) that the devices with hysteretic damping give

significantly lower amplitude responses at higher frequencies. In this higher frequency

range, the hysteretic damping also changes the phase angle as can be seen in Figure

5.7(b).
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Figure 5.7: (a) Frequency response of a 1-DOF structure with optimised inertial damper

systems (b) Phase angle , µ = 0.9 and md = 5%bd. High µ was chosen to clearly see the

difference between the structural response with hysteretic and viscous damping above

the resonance frequency.
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5.4.4 The effect of the grounded inerter

In this section, the effect of grounded and non-grounded inerter within the TMhDI

is explored. As previously mentioned, the TMDI is considered to be a more realistic

model for the TID. The same logic also applies for the TMhDI as a realistic model of

the TIhD. In the case of TIhD, the force transferred to the primary structure when the

inerter is attached to the primary mass of the structure can be expressed by

ftTIhD = bd(ÿ − ẍ1) (5.28)

The Equation 5.29 below is also valid when the inerter is attached to the ground

(grounded),

ftTIhD = kd(1 + jη)(r − y) (5.29)

where

bd(ÿ − ẍ1) = kd(1 + jη)(r − y) (5.30)

Here r is the ground displacement, y and x1 are the displacement of the TIhD and the

structural mass, respectively.

Unlike the TIhD, the force transferred by the TMhDI to the primary structure is

different when the inerter is grounded and when it is not, since the TMhDI has a mass

element between the hysteretic damper and the inerter. The difference between both

cases are depicted in Figure 5.8.
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Figure 5.8: SDOF structure equipped with a TMhDI with (a) grounded inerter, and

(b) nongrounded inerter

In the case where the inerter is attached to the primary structure, the force is

expressed by

ftTMhDI
= bd(ÿ − ẍ1) (5.31)
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However, this Equation 5.32 is not valid when the inerter is attached to the ground

(grounded), which is expressed by

ftTMhDI
= kd(1 + jη)(r − y) (5.32)

where

bd(ÿ − ẍ1) 6= kd(1 + jη)(r − y) (5.33)

In the case of nongrounded inerter, the force transferred by the TMhDI to the

structure is given by Equation 5.19. For comparison, in the case of grounded inerter,

the equation of motion of the TMhDI system is given by

bd(ÿ − ẍ1) = mdÿ + kd(1 + jη)(r − y) (5.34)

in the Laplace domain, this Equation can be written as

((md + bd)s
2 + kd(1 + jη))Y = bds

2R + kd(1 + jη)X1 (5.35)

hence we obtain

Y =
bds

2R + kd(1 + jη)X1

(md + bd)s2 + kd(1 + jη)
(5.36)

The force transferred by the TMhDI to the structure in the Laplace domain can be

written as

F1,0 = kd(1 + jη)(Y −X1) (5.37)

Substituting Equation 5.36 into Equation 5.37 we obtain

F1,0 =
kd(1 + jη)bds

2R− (md + bd)s
2(kd(1 + jη))X1

(md + bd)s2 + kd(1 + jη)
(5.38)
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Figure 5.9: 3-DOF structure with TMhDI in case of inerter is grounded and non-

grounded (a) uniform structure (b) non-uniform structure

As can be seen from Equation 5.19 and 5.38 the force transferred by the TMhDI

system to the structure is different when the inerter is grounded and non-grounded.

Figure 5.9 shows how the grounded inerter affected performance of two different
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structures. Here two 3-storey structures from [37] and [145] are used for examples.

The parameters of the first structure are: m1 = m2 = m3 = 1 tonne, and k0,1 = k1,2 =

k2,3 = 1500kN/m, and for the second structure are: m1 = 33.15kg, m2 = m3 = 24.15kg,

and k0,1 = 140.48kN/m, k1,2 = 168.58kg, k2,3 = 207.92kN/m.

Figure 5.9(a) is the case for the first 3-storey structure from [37] with uniformaly

distributed mass and stiffness on each floor (mass and stiffness for each floor are all the

same). In another case, Figure 5.9(b) shows the effect of the grounded inerter on the

second structure which is a non-uniform structure (mass and stiffness for each floor are

different) taken from [145]. From these figures, it can be concluded that there is almost

no difference between grounded and nongrounded inerter if the mass and stiffness of

the host structure is uniformaly distributed on each floor. However, the grounded

inerter shows a slightly better performance when the structural mass and stiffness

parameters are not uniform, particularly around the first and second resonances. This

is very important to note because commonly in the structural analysis, the structure

is assumed to be a lumped mass system, meaning the structural mass and stiffness

parameters are assumed to be uniformaly distributed on each floor. However, in the

reality, this is not the case.

Based on these results, it is suggested that when a TMhDI is employed, the inerter

element must always be directly connected to the ground. However, it is important

to note that this conclusion is only based on these two specific considered structures.

Future study is required in order to make a more general and universal conclusion.

5.4.5 Time domain analysis

In this section, the performance of structure with a TMhDI is analyzed in the time

domain. Similar to the TIhD, due to the presence of linear hysteretic damping, a

standard numerical integration method cannot be used to solve the structure in the

time domain. Therefore, the newly developed method discussed in the Chapter 3.3.2

is adopted.

Considering a three storey structure as shown in Figure 5.1(a) with a TMhDI in

the ground floor where n = 3, m1 = m2 = m3 = 1 tonne and k0,1 = k1,2 = k2,3 =

1500kN/m, the govering equation of motion of the considered strucure in the absolute

coordinate system can be written using analytic functions as follows:
m1ẍ1a(t) + bd(ẍ1a(t)− ÿa(t)) + k0,1(x1a(t)− ra(t))− k1,2(x2a(t)− x1a(t)) = 0

m2ẍ2a(t) + k1,2(x2a(t)− x1a(t))− k2,3(x3a(t)− x2a(t)) = 0

m3ẍ3a(t) + k2,3(x3a(t)− x2a(t)) = 0

mdÿa(t) + kd(1 + jη)− bd(ẍ1a(t)− ÿa(t)) = 0

(5.39)
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In state-space formulation, Equation 5.39 can be expressed as:

ẋa(t) = Axa(t) + Bra(t) (5.40)

where

xa(t) =



x1a(t)

ẋ1a(t)

x2a(t)

ẋ2a(t)

x3a(t)

ẋ3a(t)

ya(t)

ẏa(t)


; A =



0 1 0 0 0 0 0 0
(k0,1+k1,2)(md+bd)

Γ
0 −k1,2(md+bd)

Γ
0 0 0 (bdkd)+(jbdsh)

Γ
0

0 0 0 1 0 0 0 0
k1,2
m2

0 −k1,2−k2,3
m2

0 k2,3
m2

0 0 0

0 0 0 0 0 1 0 0

0 0 k2,3
m3

0 −k2,3
m3

0 0 0

0 0 0 0 0 0 0 1
−k1,2bd−k0,1bd

Υ
0 k1,2bd

Υ
0 0 0 −kd(m1+bd)−jsh(m1+bd)

Υ
0


(5.41)

and

B =



0
−k0,1(md+bd)−bdkd−jshbd

Γ

0

0

0

0

0
k0,1bd+kd(m1+bd)+jsh(m1+bd)

Υ


where Γ = b2

d − (m1 + bd)(md + bd) and Υ = −Γ = (m− 1 + bd)(md + bd)− b2
d.

Next steps follow the Equations 3.18 to 3.24 in Section 3.3.2. The MATLAB code

for this example can be found in Appendix E. Some plots obtained by using this method

will be presented in Section 5.5.

5.5 Example: Performance Comparison

5.5.1 Harmonic Excitations

An undamped SDOF structure as shown in Figure 5.1 (a) for n = 1, mass m and stiff-

ness k0,1 set to 1 tonne and 0.0987kN/m respectively was used in this example. Figure

5.10(a) shows the performance comparison between the four inerter-based damper sys-

tems applied to an SDOF structure. Their optimised parameters are given in Table

5.2. It can be seen from this figure that the performance of the TID and the TMDI

is similar. This can be understood because the effect of md which is only 5% of the

inertance is small across the frequencies. However, the TMDI has slightly higher re-

sponse around the resonant frequency after the optimisation. Its time domain response
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is given in Figure 5.11(a) and 5.11(b) obtained by using the method presented in the

previous Section. A similar result also can be seen for the TIhD compared to the

TMhDI which indicates that the effect of md is very small.

Although the response amplitude around the resonant frequency is slightly higher

with the hysteretic damping, it has a potential benefit in the higher frequency re-

gion as previously discussed. The attenuation difference between TID/TMDI and TI-

hD/TMhDI in the high frequency region is 20dB/dec respectively. In civil engineering

applications, especially for low frequency structures such as base-isolated structures,

this is a valuable benefit because the response around the resonance frequency needs

to be reduced to deal with long-period earthquakes, while at the same time also main-

taining lower response at the higher frequency region.
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Figure 5.10: Transmissibility of (a) SDOF structure, µ = 0.1 (b) 3-DOF structure,

µ = 0.18
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Figure 5.11: Time history responses at steady state of SDOF structure, µ = 0.1,

ω=0.05Hz (a) and ω=30ωn (b) subjected to sine wave ground displacement with am-

plitude R=1 cm
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Figure 5.12: Time history responses at steady state of a 3-DOF structure, µ = 0.18,

ω=7.8Hz (a) and ω=11.1Hz (b) subjected to sine wave ground displacement with am-

plitude R=1 cm

To explore MDOF structures, a 3-DOF structure as shown in Figure 3.9(a) for

n = 3 was selected for a case study. The parameters of the structure were designed

to be the same as the 3-DOF structure presented in Lazar et al. [37], where m1 =

m2 = m3 = 1kNs2/m and k0,1 = k1,2 = k2,3 = 1500kN/m. All of the inerter-damper

devices shown in Figure 3.9 (b) – (d) were located at the bottom storey as this is their

optimum location.

Figure 5.10(b) shows the transfer function X3/R of a 3-DOF structure in the fre-

quency domain. Its time domain response is given in Figure 5.12(a) and 5.12(b). The

optimised parameters of the inerter-damper devices are given in Table 5.3. These were
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Table 5.2: Optimum parameters of the inertial damper systems for SDOF structure

SDOF structure, µ = 0.1

Parameters TID TMDI TIhD TMhDI

Inertance, bd(kNs2/m) 0.1 0.1 0.1 0.1

Stiffness, kd(kN/m) 0.0085 0.0091 0.0085 0.0091

Viscous damping, cd(kNs/m) 0.0107 0.0107 − −
Loss factor, η − − 0.3848 0.3848

Secondary mass, md(kNs2/m) − 0.005 − 0.005

Table 5.3: Optimum parameters of the inertial damper systems for MDOF structure

3-DOF structure, µ = 0.18

Parameters TID TMDI TIhD TMhDI

Inertance, bd(kNs2/m) 0.48 0.48 0.48 0.48

Stiffness, kd(kN/m) 138.6 146 138.6 146

Viscous damping, cd(kNs/m) 2.5 2.5 − −
Loss factor, η − − 0.3060 0.2905

Secondary mass, md(kNs2/m) − 0.024 − 0.024

derived based on a fixed value of µ = 0.18. The structural response amplitude around

the first resonance frequency are similar for all cases. As mentioned previously for

SDOF structures, the hysteretic damping gives a slightly higher response after the op-

timisation. However, around the 2nd and 3rd resonance frequencies, the response of the

structure with TIhD and TMhDI is significantly higher when compared to the TID

and TMDI with no hysteretic damping. This is because the force transferred to the

structure by the TIhD and the TMhDI is larger than that of TID and TMDI. This also

indicates that modelling a system that has hysteretic damping with a viscous damp-

ing model may significantly overestimate the level of damping that can be achieved in

higher modes of vibration. As a result using the model proposed in this study may

have considerable benefits for modelling physical systems of this type.

5.5.2 Seismic Excitations

A further benefit of the proposed time domain method for linear hysteretic damping

presented in Chapter 3.3 is its ability to be used for non-sinusoidal and non-periodic

forcing functions such as earthquakes. In this section, the time domain response com-

parison is presented among the four inerter-based-damper devices shown in Figure

5.1(b)-(e) when installed in the ground floor of a 3-DOF structure.

Two optimum tuning approaches are used to obtain the optimum parameter of the

four devices. The first approach is based on the fixed-point theory (FPT) approach

discussed in the previous section assuming a harmonic input signal, which is not directly
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applicable to seismic applications where the excitations are not harmonic in nature.

The second approach is a numerical optimisation approach using the Self-Adaptive

Differential Evolution algorithm (SADE) [147]. For this second approach, MATLAB

is employed to apply the algorithm. The SADE algorithm is an improved Differential

Evolution (DE) algorithm [148] that is capable of adaptively choosing the learning

strategy to obtain a global optimum solution of the defined objective function. In this

algorithm, a parameter candidate pool is generated for each generation. The number

of generations was defined based on at which the result was converged. The detailed

procedure of the SADE algorithm can be found in [147].

The four tuned-inerter devices were optimised for a SDOF structure as shown in

Figure 3.9 (a) for n = 1. Mass m and stiffness k0,1 were assumed to be 1kNs2/m and

1kN/m respectively. The objective chosen was to find the optimum values of bd, kd

and cd or η that gives minimum average root-mean-square (RMS) value of the top

displacement response for all considered earthquakes. This condition can be expressed

as

min

∣∣∣∣∣
∑Ne

`=1 RMS(x`(t))

Ne

∣∣∣∣∣ (5.42)

where Ne is the number of earthquake input signals considered. Note that the upper

and lower limits of the parameter values for inertance, stiffness, and damping must be

set to realistic values. In this study the limits are selected to be 0.1 ≤ bd ≤ 0.9; 0.1 ≤
kd ≤ 1; 0.1 ≤ η ≤ 2; and 0.1 ≤ cd ≤ 3.

Three design response spectra were selected: (1) Arrete 2010-2011, representing

high-frequency earthquakes; (2) NTC2004 - a, representing low-frequency earthquakes;

and (3) NTC2004 - b, representing mid-frequency earthquakes. The following assump-

tions were made: (1) for Arrete 2010-2011: seismic zone 1; ground type A; and building

class 3, (2) for NTC2004 - a : ground type IIIc, for (3) NTC2004 - b: ground type II.

Ten artificial earthquakes were generated using the SeismoArtif software for each of the

corresponding design spectra as shown in Figure 5.13. Earthquakes 1-10 correspond

to Arrete 2010-2011, Earthquakes 11-20 correspond to NTC2004 - a, and Earthquakes

21-30 correspond to NTC2004 - b. This enabled the effect of the hysteretic damping

and the small mass element md which was assumed to be 5% of the inertance bd to

be observed. In order to try and make meaningful comparisons, the results are pre-

sented in terms of normalised RMS of the seismic displacement response histories of

the structural system.

The optimum parameters obtained for the devices using the SADE algorithm and

FPT are given in Table 5.4. As can be seen from this Table, there is no obvious

correlation between the optimum η of the TIhD and TMhDI with the optimum cd of

the TID and TMDI. This implies that equivalent viscous damping cannot be used,

because each of the devices needs to be individually optimised.

Figure 5.14 shows the performance comparison between the SADE and FPT opti-

92



Chapter 5. Tuned-Inerter-Based-Dampers with Complex Stiffness

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Arrete 2010-2011

NTC2004 - a

NTC2004 - b

Figure 5.13: Design response spectrums and 30 generated artificial earthquakes

misations. Each bar in the figure represents the difference between FPT and SADE

for each device for that specific earthquake with FPT taken as 0% for the sake of

comparison. If no bar is shown, then there is a negligible difference between FPT and

SADE. As would be expected, almost all of the bars for SADE are below the FPT line.

The average is -3.64% for case (1) Arrete 2010-2011 (high-frequency) earthquakes 1-10,

-44.38% for case (2) NTC2004 - a (low-frequency) earthquakes 11-20, and -10.42% for

case (3) NTC2004 - b (mid-frequency) earthquakes 21-30. It should be noted that the

natural frequency of the considered SDOF structure is 0.16Hz, which is in this case in

the range of the low-frequency earthquakes.

From Figure 5.14 it can be observed that overall the optimisation by SADE algo-

rithm works better than the FPT, particularly for low-frequency earthquakes (earth-

quakes 11-20). For earthquakes 9, 29 and 30, the FPT is actually better than SADE.

It is not clear what the reason for this is, but one possible explanation is that the

objective function given in Equation 5.42 is designed to seek for the minimum overall

average, not the minimum for each of the earthquakes. Overall, the average is -24.66%

for the bars below FPT and 5.18% for the bars above the FPT. This means that the

optimisation using the SADE algorithm gives a much better response compared to

the FPT across all 30 earthquake cases. In terms of applications, computations of

this type can be used during the design stage, in order to give estimates of the level

of displacement responses in a structure where the damping in the inerter device is

hysteretic.
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Table 5.4: Optimum parameters of the inertial damper systems for an SDOF structure.

The optimum parameters obtained by the SADE algorithm for each of the device in

the table are based on the objective function given in Equation 5.42.

Fixed-Point Theory SADE algorithm

Parameters TID TMDI TIhD TMhDI TID TMDI TIhD TMhDI

bd(kNs2/m) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

kd(kN/m) 0.38 0.43 0.35 0.36 0.85 0.88 0.91 0.89

cd(kNs/m) 0.44 0.44 − − 1.64 1.74 − −
η − − 1.26 1.26 − − 1.73 1.83

md(kNs2/m) − 0.045 − 0.045 − 0.045 − 0.045

Figure 5.15 shows a comparison of the performance of the four devices for each

earthquake, for the three different cases considered. Each of the devices was optimised

by using the SADE algorithm. The comparison was made relative to the TID perfor-

mance, which was the best overall. So in this figure, each bar represents the difference

between each device and TID (which is taken as 0%) for each earthquake.

An example of the time domain response is given in Figure 5.16 for both SADE

and FPT optimisations. The trends observed in both Figures 5.14 & 5.15 can also be

observed in these time domain plots. Specifically, the overall amplitudes in Figure 5.16

(b) for SADE are significantly less that the amplitudes in Figure 5.16 (a) for FPT.

It is also possible to see that the hysteretic damping devices have higher amplitude

responses than the TID or TMDI in both plots.

From Figures 5.15 it can be inferred that the effect of the secondary mass md is

small due to the fact that the TMDI performance is only up to 6% different to the TID

performance. The effect of the hysteretic damping was much larger, because the TIhD

and TMhDI were up to 33% different to the TID results. This implies that when the

physical damping behaviour in an inerter-based device is hysteretic, then the viscous

damping approximation could lead to results that over-estimate the effectiveness of the

device.

5.6 Summary

In this chapter, two novel inerter-based dampers are discussed in detail, namely the

TIhD and the TMhDI. The layout of the TIhD is similar to that of TID with the

viscous damping element replaced by a linear hysteretic damping represented by a

complex stiffness. Similarly, the layout of the TMhDI is also similar to that of TMDI

with the presence of linear hysteretic damping.

Both the TID and TMDI have been well established in the literature and have

been shown to be effective in protecting structures against earthquakes, for example
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Figure 5.14: Performance comparison between the SADE and FPT optimisations. Any

bars that are very close to the FPT values are not shown, and can be assumed to be

approximately the same as the FPT value. Earthquakes 1 to 10 correspond to Case

(1): Arrete 2010-2011, earthquakes 11 to 20 correspond to Case (2): NTC2004 - a, and

earthquakes 21 to 30 correspond to Case (3) NTC2004 - b.

see [37, 41, 49]. The TID is considered to be an idealised model which is very difficult

to realise due to the parasitic mass of the inerter device. The TMDI appears to be

pratically more realistic due to the presence of the secondary mass element md.

In this chapter, both TIhD and TMhDI are considered to be a more realistic models

of the TID and TMDI respectively, when a material damping is used. It is common

in practice to convert the hysteretic damping to viscous damping via an equivalent

viscous damping, for example see [97, 138]. It has been demonstrated in this chapter

how this practice cannot be used for the TIhD and TMhDI analyses because it leads

to inaccurate response at higher frequencies of excitation for SDOF structure, and for

MDOF structure it leads to over-estimation of damping level around the higher modes

of vibration. Therefore, the complex damping must be treated in its original form.

A time domain method as discussed in Section 3.3.2 is adopted here to analyze both

TIhD and TMhDI in the time domain.

It has been shown in this chapter that the response of structure with TIhD is

different compared to the structure with TID, especially in the high frequency region

in the frequency domain. For SDOF structures, the TIhD gives a lower amplification of

response in the high frequency excitations when the mass ratio is increased. Moreover,

for MDOF structures, the TIhD gives a higher response around the higher resonant

modes. This is because the force transferred by the TIhD to the structure is higher

than that by TID. Similar conclusion is also reached for the TMhDI in comparison

with the TMDI.
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Figure 5.15: Performance comparison between the four devices. Any bars that are very

close to the TID values are not shown, and can be assumed to be approximately the

same as the TID value. Earthquakes 1 to 10 correspond to Case (1): Arrete 2010-2011,

earthquakes 11 to 20 correspond to Case (2): NTC2004 - a, and earthquakes 21 to 30

correspond to Case (3) NTC2004 - b.

The newly developed time domain method in Section 3.3.2 has enabled the anal-

ysis of both TIhD and TMhDI in the time domain for both harmonic and random

excitations such as earthquakes. This time domain method has also enabled the nu-

merical optimisation for both TIhD and TMhDI for seismic base excitations. This

numerical optimisation is based on the SADE algorithm with an objective function of

minimisation of the structural response RMS in the time domain. The results showed

that the numerical optimisation gives a better structural performance compared to the

fixed-point approach.

With reference to Section 1.2, this chapter has demonstrated new design concepts

for TIBDs with linear hystereitc damping (Objective 2) based upon idealised lumped

parameter models, namely the TIhD and TMhDI. These design concepts have also been

published in [149]. Meanwhile, in Chapter 4 it was argued that helical fluid devices

could not easilty designed according to the hysteretic lumped parameter concepts.

Consequently, the following chapters will investigate an alternative practical design of

TIBD that can provide hysteretic damping. Therefore, a TMhDI is considered to be a

feasible option. However, first the TMhDI needs to be effectively designed. The next

chapter will discuss a novel concept of design for the realisation of the TMhDI. This

concept is aiming to effectively realise an TMhDI concept with minimum friction in the

inerter device. A material damping made of gel is employed to represent the complex

stiffness model.
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Figure 5.16: Time history responses of the structure subjected to Earthquake 15 base

motion optimised by (a) FPT (b) SADE
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Chapter 6

Novel Concept of Designs For The

Realisation of A Tuned Inerter

Based Damper System

6.1 Introduction

In the previous chapter, the concept of using linear hysteretic damping for tuned-

inerter-based-damper system has been discussed in detail. In particular the TIhD and

TMhDI were studied in both frequency and time domain.

This chapter proposes a new concept of designs for the TMhDI and the TMDI to

be used for shake table experiments next in Chapter 7. In particular, this chapter

discusses the realisation of linear hysteretic damping, inertance, stiffness, and viscous

damping of both systems.

The linear hysteretic damping of the TMhDI was realised by gel dampers having a

coupled stiffness and damping parameter. The inertance parameter was realised by a

flywheel inerter. For the TMDI system, the viscous damping and stiffness parameters

were realised by Eddy Current Dampers (ECDs) and several leaf springs made of steel

profile.

Each components of both TMhDI and TMDI proposed in this chapter were tuned

to the targeted optimised parameters for use in the base storey of a 3-storey steel

structure. The detailed information about this structure is presented in chapter 7.

6.2 Gel Damper

6.2.1 Design of the Gel Damper

In order to realise the linear hysteretic damping, the silicone gel (Magic Power Gel,

from Raytech) was used as shown in Figure 6.1. This gel is normally used as an
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insulating gel in electrical equipment and is made by reacting two liquids - the blue

and white. The design of this gel damper is based on the mechanical properties given

in [150]. The shear modulus of the gel is given by

G =
E

2(1 + v)
(6.1)

where E is the Young’s modulus and v is the Poisson’s ratio.

In this design, G was assumed to be 0.33E estimated from Equation 6.1. The

mixing ratio of white and blue components of the gel used in this experiment was

1:1.058 to achieved the targeted values of loss factor and stiffness of 0.7 and 14N/mm.

These targeted values were based on the optimised parameters of the TMhDI for used

in the shake table experiment of 3-storey fixed-based structure which will be discussed

next in Chapter 7.

(a) (b)

Figure 6.1: (a) white liquid (b) blue liquid

The mixing process was very simple, first 510ml of the white liquid was poured

into the measurement jug followed by 540ml of the blue liquid as shown in Figure 6.1.

The mixing process created some bubbles inside the gel. To remove these bubbles, a

degassing chamber was used. The process of removing the bubbles is given in Figure

6.2. The clean gel was then poured into the aluminium mould as can be seen in Figure

6.3.

The gel was made in two layers. The dimension of each was 150 mm x 150 mm

which was estimated by using

A =
kh

2G
(6.2)

where h is the thickness of each of the gel layer which was designed as 30mm. The two

layers were separated by an aluminium plate of 150 mm x 190 mm with 5mm thickness.
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(a) (b)

Figure 6.2: (a) Removing bubles (b) Clean gel

(a) (b)

Figure 6.3: (a) Empty mould (b) Mould with the gel inside
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The gel that had been poured into the mould was then left at room temperature for

48 hours to ensure it had perfectly formed. Two identical gel dampers were made and

each was then tested in the Damping Lab, University of Sheffield using a servohydraulic

test machine (Figure 6.4) to obtain the loss factor and stiffness of the gel damper. Fifty

cyclic displacement sinusoidal tests were performed for each gel damper specimen.

6.2.2 Experiment and Results

The complete results of the experiments are given in Figure 6.5 for gel damper 1 and

6.6 for gel damper 2. The area inside the hysteresis loops as given in Table 6.1 and

6.2 were obtained by using MATLAB. The analytical estimation of the area inside the

loop is given by

∆W = πηkX2 (6.3)

where η is the loss factor, k is the stiffness, and X is the amplitude of oscillation.

Firstly, the stiffness k of each hysteresis loop was obtained by measuring the slope

of the loop. Then the loss factor η for each hysteresis loop is obtained by

η =
∆W

πkavgX2
(6.4)

where kavg is the average of the stiffness of all hysteresis loops.

Finally, resulting loss factor and stiffness were 0.53 and 11N/mm which are the

average of all hysteresis loops. These values are slightly below the designed values

which could be due to the inaccurate estimation of the shear modulus of the gel.

Table 6.1: Area inside the hysteresis loops of gel damper 1

Amplitude (mm) Frequency (Hz)

3 4 5.6 7 8

Area (Nmm)

2 79.98 89.34 97.28 102.06 105.98

3 172.91 192.68 211.99 228.95 231.28

4 301.49 331.61 373.58 398.31 399.46

5 464.62 515.32 581.06 606.78 609.09

6 666.13 744 833.54 853.2 852.77

7 907.87 1012.4 1110.6 1133.3 1124.3

8 1184.4 1311.8 1420.3 1432.8 1418.2

9 1489.1 1644.1 1759.4 1767.9 1732.7

10 1817.8 1993.3 2142.4 2123.9 2066.8

12 2526.6 2772.5 2944.3 2803.2 2342.6
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Table 6.2: Area inside the hysteresis loops of gel damper 2

Amplitude (mm) Frequency (Hz)

3 4 5.6 7 8

Area (Nmm)

2 77.91 88.42 95.55 101.52 104.21

3 170.62 192.34 212.73 227.34 231.53

4 301.1 339.57 375.62 399.65 407.55

5 470.65 526.32 588.88 617.64 625.11

6 679.94 752.28 840.33 873.64 868.9

7 923.74 1022.4 1127.90 1160.40 1152.50

8 1192.1 1331.90 1462.40 1471.90 1460.10

9 1531.3.1 1676.50 1877.40 1824.90 2004.00

10 1864.7 2043.10 2296.90 2190.20 2463.30

12 2587.9 2881.60 3220.10 3413.00 3496.40

Figure 6.4: Servohydraulic test machine machine used for the cyclic displacement si-

nusoidal tests of the gel dampers
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Hystereses loops of the gel damper 1

103



Chapter 6. Novel Concept of Designs For The Realisation of The TMhDI and TMDI

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Hystereses loops of the gel damper 2
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The results indicate that the energy dissipated per cycle by the gel damper was

slightly changed by increasing of the excitation frequency, as can be seen in Table

6.1 for gel damper 1 and in Table 6.2 for gel damper 2. Theoretically the energy

dissipated by the linear hysteretic damping is independent of the excitation frequency.

The changing of the dissipated energy per cycle could be because of the changing of the

stiffness as can be seen in Figure 6.5 and 6.6. Despite this discrepancy, the area inside

the loop does change proportionally to the ratio of the square of excitation amplitude

(X2/X1)2 approximately. This is theoretically correct because the energy dissipated

by the linear hysteretic damping is only dependent on the excitation amplitude given

by Equation 6.3.

(a) (b)

Figure 6.7: (a) Model of viscous damping and stiffness in parallel, F = cẋ+ kx, where

c = 0.1657Ns/mm and k = 11N/mm (b) Experiment.

Compared to the viscous damping model, the area inside the loops observed in

Figure 6.5 and 6.6 only increases slightly. For example, Figure 6.7 shows the comparison

between hysteretic loops by the model of viscous damping and stiffness in parallel and

the experiment, for amplitude of 4mm. As can be seen in this figure, the area inside

the loops shown by the model significantly increase with the increasing of frequency.

While for the experiment, the area of the loops is only increasing slightly. This implies

that the model is frequency dependent which is not suitable for the gel damper model.

Therefore, the complex stiffness model is more suitable because it can represent the

frequency indepedency of the damper.
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6.3 Eddy Current Damper

6.3.1 Design of The Eddy Current Damper

To realise a TMDI system, a pure viscous damper is needed. For this purpose, an eddy

current damper is proposed. The damper made of some permanent magnets as shown

in Figure 6.8. The damping forces are generated by the relative motion between the

permanent magnets and the aluminium sliding plates. To provide a sufficient amount

of damping, 39 Neodymium Halbach Array Magnets 10 x 10 x 10mm were used for

each of the dampers.
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Figure 6.8: Design drawing of the Eddy Current Damper (a) 3D view (b) 2D view with

dimensions (unit in mm)
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6.3.2 Experiment and Results

This experiment aimed to characterise the properties of the damper. For this purpose,

the damper was installed on a servohydraulic test machine as shown in Figure 6.9.

The damper was fixed on a stiff frame connected to a force transducer. The sliding

plate was attached to the actuator where the harmonic input signals were applied. A

frictionless plastic sliding system as shown in Figure 6.10(a) was designed to ensure the

sliding plate does not rotate. The damping forces are generated based on the relative

motion between the permanent magnets and the aluminium sliding plate with 2mm

thickness as shown in Figure 6.10(b).

Figure 6.9: Experimental set up on a servohydraulic test machine

(a) (b)

Figure 6.10: (a) Frictionless plastic sliding system (b) Damper gaps
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To characterise the damper, 50 harmonic sinewave input signals were applied via

the actuator. Each signal was applied for a 100 seconds. The frequencies used were

3Hz, 4Hz, 5.6Hz, 7Hz and 8Hz with 10 amplitudes for each frequency.

(a) (b)

Figure 6.11: Hysteretic loops of the ECD for amplitude of oscillation: (a) 8mm (b)

10mm.

Fifty hysteresis loops were plotted to obtain the viscous damping coefficient of the

damper. Some examples of these hysteretic loops are given in Figure 6.11(a) for an

amplitude of 8mm and Figure 6.11(b) for an amplitude of 10mm.

As can be seen from Figure 6.11, the area inside the hysteresis loops of the ECD

is highly dependent on the frequency and amplitude of the oscillation. It is unlike

the gel damper which is almost frequency-independent. Another important finding is

that the ECD damper has a pure linear viscous damping with no stiffness involved.

It is unlike the gel damper having coupled stiffness-damping properties. The noise

abserved in these tests are probably caused by the friction between the siding plate

and the magnets.

The area inside the loops represents the energy dissipated by the damper per cycle.

The area was calculated by using MATLAB The viscous damping coefficient for each

loop was calculated based on Equation 6.5.

∆W = πcdωX
2 (6.5)

where cd is the viscous damping coefficient of the damper, ω is the frequency of the

harmonic input signal, and X is the amplitude of oscillation.

Taking the average value of the viscous damping coefficient of the 50 hysteretic

loops, it was found that the viscous damping coefficient of the ECD was 0.024Ns/mm.

Based on this result, 12 ECDs are required to achieve the equivalent damping of the

two gel dampers. However, due to the limited stock of magnets, only 4 ECD were used

in the shake table experiment presented in Chapter 7.
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Figure 6.12 shows the comparison between the hysteresis loops given by the viscous

damping model and the experiment for various frequency for amplitude of 10mm. As

can be seen in this figure, the model can accurately predict the real behaviour of the

damper.

(a) (b)

Figure 6.12: Hysteresis loops for excitation amplitude 10mm (a) Model of viscous

damping, F = cẋ, where c = 0.025Ns/mm (b) Experiment.

6.4 Flywheel Inerter

6.4.1 Design of the Flywheel Inerter

The concept of inerter has been converted to a real device via several mechanisms. In

this study a new design of the inerter is proposed based on the concept of the flywheel

inerter studied by John and Wagg [151] as shown in Figure 6.13, which stated that

the force generated by the flywheel inerter is proportional to the inertia and angular

acceleration of the flywheel given by

F =
Iθ̈

la
(6.6)

where I is the inertia of the flywheel, θ is the angle of rotation of the flywheel, la is

the distance between the two terminals of the inerter, and the overdot denotes the

differentiation with respect to time, t.
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Figure 6.13: Flywheel inerter in an SDOF structure [151]. Image reproduced with

permission of the rights holder, Elsevier.
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Figure 6.14: Flywheel inerter considered in this thesis

Figure 6.14 is the schematic configuration of a flywheel inerter mounted on a single-

degree-of-freedom (SDOF) structure subjected to ground displacement, r. Here one

terminal of the inerter is connected to the ground and another terminal is connected

to the mass, m. Given that the force generated by the inerter is F = bd(r̈ − ẍ), Hence

the inertance bd can be expressed as

bd =
Iθ̈

la(r̈ − ẍ)
(6.7)

with I = 1
2
mdr

2
d, where rd is the radius of the flywheel and md is the mass of the
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flywheel. Equation 6.7 can be further simplified for the case of a small angle of rotation,

θ < 10.4° as follows [151]

bd =
mdr

2
d

2la
2 (6.8)

The key part of the flywheel inerter design is that it must be a mechanism to

convert the translational motion of the two terminals into rotational motion of the

flywheel to generate inertance. The design of the flywheel inerter in [151] used a living

hinge mechanism for this purpose. The living hinge must be flexible enough for the

flywheel to rotate. The use of this type of living hinge design is challenging for a larger

scale devices due to the large rotation of the flywheel inerter.

In this study, a combined linear bearing and slider were used as can be seen in

Figure 6.15. This mechanism allow some rotation at the joint between the inerter and

the damper and at the same time also allows this joint to have translation motion.

Figure 6.15: Flywheel inerter

6.4.2 Experiment and Results

The pivoted flywheel inerter was tested in the Jonas Lab at the University of Sheffield.

The test objective was to find the inertance of the flywheel. The setup of the experiment

is shown in Figure 6.16. The centre of the flywheel was acting as an inerter terminal

and was fixed during the experiment. The other terminal of the inerter was connected

to a shaker.
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The shaker generated forces to activate the inerter. The force needed to produce a

rotational motion of the flywheel with angle θ is given by Equation 6.7, where ẍ, in this

case, is zero and ÿ is the acceleration at terminal 2 which is the point where the shaker

was attached, measured by the accelerometer. θ̈ is the angular acceleration given by

tan(θ̈) =
ÿ − ẍ
la

(6.9)

From the Equation 6.7, the inertance of the flywheel is influenced by the distance

between its two terminals, la. The inertance generated is inversely proportional to la.

In this design, la can be adjusted by changing the flywheel support position which is

also acting as terminal 1 of the inerter, to tune the inertance to the targeted value.

In Figure 6.16, the shaker applies several sinusoidal forces F (t) with different fre-

quencies to the flywheel measured by the force transducer. The second terminal of the

flywheel will oscillate with an acceleration of ÿ measured by the accelerometer. The

linear guide mechanism has made it possible for the second terminal of the flywheel

inerter to oscillate. Finally, the actual inertance of the inerter was obtained by using

the averaged values of bd from each frequency of input signals, given by

bd =
mm∑
n=1

F (t)n
ÿn

(6.10)

where mm is number of test frequency.

The results from the experiment were compared with the predicted inertance value

given by Equation 6.8. Figure 6.17 shows the comparison between the predicted and

the obtained inertance from experiment accross frequency tested for various la. Figure

6.18 shows the plot of bd against la. The predicted results were obtained by Equation

6.8 and the experimental results were obtained by Equation 6.10. Overall the prediction

and experiment are in a reasonably good agreement, particularly when la is large. Some

discrepancies can be seen when la is small. This is logical, because θ becomes large

when la is small, hence the small-angle assumption relating to Equation 6.8 is no longer

satisfied. It is also obvious from this figure that the inerter is capable of generating

inertance of up to 25kg for the range of values tested. It should be noted that the

actual mass of the flywheel was only 9kg which means that the inerter can generate

inertance of up to almost 3 times its actual mass.

112



Chapter 6. Novel Concept of Designs For The Realisation of The TMhDI and TMDI

Flywheel
inerter

Shaker

Linear guide

Fixed base

Fixed connection
to the centre of the

flywheel

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Figure 6.16: Flywheel inerter experimental set-up
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Figure 6.17: Inertance accross frequency tested for various la
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Figure 6.18: bd versus la. The predicted values are obtained from Equation 6.8 and the

experiment values are obtained from Equation 6.10 based on the experimental results.

6.5 Series Connected Dampers and Flywheel In-

erter

A series connected inerter-damper is the key to realise both TMhDI and TMDI. Figure

6.19 shows the mechanism of the flywheel inerter when connected to a parallel spring-

damper. The first terminal of the inerter was fixed to the stiff frame which was fixed

on the shake table. The second terminal of the inerter was connected to a parallel

spring-damper through an aluminium bar. For the TMhDI, this bar is connected to

two gel dampers, and for the TMDI this bar is connected to a parallel-connected ECDs

and flexible plates. Each systems will be discussed in detail below.
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Figure 6.19: Mechanism of the Inerter in both TMhDI and TMDI

6.5.1 Realisation of the TMhDI

The TMhDI is one of the tuned-inerter-based-damper variants consisting of one inerter,

one mass, and one linear hysteretic damper (coupled spring-damper) connected in

series. It is basically a tuned-mass-damper-inerter (TMDI) with the parallel spring-

dashpot replaced by a complex stiffness as discussed in Chapter 5.

In this study, the TMhDI was realised by using a flywheel inerter and gel dampers

connected in series as can be seen in Figure 6.20. The first terminal of the flywheel

inerter is its support connected to the ground (shake table). The other terminal of the

inerter is connected to the gel dampers on both the right and left sides of the structure.

The actual mass of the flywheel itself is acting as the TMhDI mass md. The inertance

of the flywheel inerter is bd, and the gel dampers are represented by a complex stiffness

kd(1 + ηj).

The flywheel inerter and gel dampers were designed for use as a vibration sup-

pression device of a 3-storey scaled structure in the Laboratory for Verification and

Validation (LVV), the University of Sheffield. The structure with the TMhDI was then

experimentally tested on a shake table. The detailed shake table experiments will be

further discussed in detail in Chapter 7.
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Figure 6.20: TMhDI

(a) (b)

Figure 6.21: Flywheel inerter connection detail (a) flywheel support (b) supported

frame

The flywheel inerter was supported at its centre via a joint as can be seen in Figure

6.21(a). This joint was designed to allow the flywheel to be moved up and down. This

mechanism makes it possible for the inertance to be adjusted by changing the distance

between its two terminals before the experiment started. The flywheel support was

fixed on a frame which was fixed on the shake table as shown in Figure 6.21(b).
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The second terminal of the flywheel inerter was connected to the gel dampers on

both sides via a beam as can be seen in Figure 6.5.1. The beam was fixed to the middle

plates between the two gel layers. To prevent any rotation, each of the middle plates

was supported by a linear bearing as shown in Figure 6.22.

Figure 6.22: (a) Roller bearing on the gel damper

6.5.2 Realisation of the TMDI

The TMDI was realised by connecting the grounded flywheel inerter in series to a

parallel spring-damper system as can be seen in Figure 6.23(a). The first terminal of

the flywheel inerter, which is the central support of the flywheel was grounded through

the stiff frame. The second terminal of the flywheel inerter was connected to both ECDs

and flexible steel paltes via a rigid beam which is connected to two sliding plates. The

translational motion of this rigid beam is the same as that of the two aluminium sliding

plates because they were rigidly connected. The detailed parts of this system are shown

in Figure 6.23(b).

Four ECDs were used to provide a sufficient damping to the structural system. The

ECDs were activated by the translational motions of the two aluminium sliding plates

which were connected to the four flexible steel plates which are the realisation of the

TMDI stiffness kd. The detail of the connection between the flexible plates and the

ECDs is shown in Figure 6.24.
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(b)

Figure 6.23: (a) Realisation of the TMDI (b) TMDI detailed parts
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(a) (b)

Figure 6.24: (a) Flexible steel plates (b) ECDs

6.6 Summary

This chapter discusses a novel design of an inerter and the realisation of both TMhDI

and TMDI. The linear hysteretic damping of the TMhDI is realised by the gel dampers,

while for the TMDI, the viscous damping is realised by the ECDs.

A flywheel inerter was selected due to its simplicity and ease of manufacture. Al-

though the design of this inerter is relatively simple, it allows the inertance to be tuned

to a targeted value. This is made possible by changing the flywheel support position

which is also acting as the first terminal of the inerter. The change of the support po-

sition will change the distance between the two terminals la giving a significant effect

on the inertance value. Another important part of the proposed design of the flywheel

inerter is the linear guide mechanism which allows a smooth conversion from the lateral

motion of the rigid beam on the second terminal of the inerter to a rotational motion

of the flywheel which will generate inertance.

The experimental results of the flywheel inerter show that the inertance generated

by the inerter is in a good agreement with the prediction as can be seen in Figure 6.18.

However, there were discrepancies for some small values of la, between the prediction

and the experiment. This is because small la increases the angle of rotation θ of the

flywheel. In effect, the predicted inertance values given by Equation 6.8 are no longer

satisfied.
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To realise the hysteretic damping properties of the TMhDI, two identical gel dampers

were employed. The gel materials are made from silicone gel (Magic Power Gel, from

Raytech). The gel dampers were manufactured to obtain the targeted values of loss

factor η and stiffness kd. They were tested using the servohydraulic test machine

with sinusoidal displacement input signals. The obtained hysteretic loops were used to

identify the loss factor and stiffness properties of the gel dampers.

For the realisation of the TMDI, some ECDs were employed to represent the viscous

damping properties of the TMDI cd. Unlike the gel dampers, ECDs exhibit pure linear

viscous damping. Therefore, an additional stiffness element is required for the reali-

sation of kd. These dampers have been proven to have a pure linear viscous damping

based on the results from a set of experiments using the servohydraulic test machine.

The damper system consists of several magnetic dampers. The damping forces were

generated by relative velocity between the two aluminium plates and the permanent

magnets. From the obtained hysteretic loops, the viscous damping coefficient of the

damper was obtained.

This chapter presents a new insight into the realisation of the inertance, damping

and stiffness properties of both TMhDI and TMDI, which are simple and tuneable.

Next in Chapter 7, a number of shake table experiments will be carried out. The

structural performance comparison of a three storey structure subjected to ground

displacements will be analysed when equipped with the TMDI and TMhDI.
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Shake Table Experiment

7.1 Introduction

This chapter discusses the shake-table experiments of a three-storey structure per-

formed in the Laboratory For Verification and Validation (LVV), The University of

Sheffield. The experiments were conducted on a fixed-base structure. The base of

the structure was fixed on the table, hence the ground or soil condition was assumed

to be solid rock. Therefore the base acceleration from the shake-table was directly

transferred into the structure.

There are two parts of the experiments: (1) 3-storey structure equipped with a

TMhDI, (2) 3-storey equipped with a TMDI. The purpose of these experiments is to

investigate the effect of applying TMhDI and TMDI on the structural performance

of a multi-storey structure. Firstly, the experiments were conducted with sinewave as

the base acceleration input with frequency ranging from 3-26Hz. Secondly, earthquake

ground accelerations were used as the base acceleration input.

7.2 Experimental Rig

A 3-storey structure was installed on a Multi-Axis Shaker Table (MAST) System in

a chamber as shown in Figure 7.1. The shake table dimension is 3.2m × 2.2m with a

useful frequency range of 5-70Hz. The MAST is connected to a system consisting of a

300 tonne concrete block and springs. This system has natural frequency around 0.8-

1.4Hz. Therefore, for safety reason no test below 2Hz is allowed. In this experiment,

the minimum testing frequency was 3Hz.
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Figure 7.1: Experimental test setup

The structure is 900mm x 900mm in plan with a uniform inter-storey height of

780mm. The weight of each floor is 24.15kg. The cross section of the steel column is

80mm x 10mm that make it flexible in x-axis (direction from left hand side to right hand

side of the chamber) and stiff in y-axis (direction from outside to inside). Therefore,

the structure behave like a 2D structure. The ground floor of the structure is bolted on

the shake table. Based on the specification of the structure, the inter-storey stiffness

can be calculated as 1.35× 105kN/mm in x direction.

The horizontal vibration response of the structure at each storey was measured

using uniaxial accelerometers. The accelerometer type is PCB Piezotronics: 353B18

with a sensitivity around 10mV/g. The horizontal vibration of the ground floor was also

measured using a tri-axial accelerometer (only the horizontal axials are recorded). The

accelerometer type is PCB Piezotronics: 356B21 with a sensitivity around 10mV/g.

All accelerometer channels were sampled at 980Hz. For harmonic ground motion,

the RMS of the signal was calculated at an update rate of 1Hz and this was used to

calculate the peak acceleration and displacement at each location on the shear building.

At each frequency step, the building was left to settle for a period of time. This was

manually determined by monitoring the stability of the RMS value. Measurements were

taken when the RMS had visually stabilised. Measurements were manually recorded

at the ground level (MAST triaxial sensor), first storey level, second storey level and

third storey level. At each frequency point, raw acceleration time domain data was

captured for a period of 10 seconds.

The inerter-based-damper system was placed between the table and the first storey.
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The experiments were performed in x-axis only. To analyse the effectiveness of the

TMhDI and TMDI on reducing the vibration induced by the harmonic ground motion,

a base-to-top-storey transmissibility X3/R was plotted for both uncontrolled structure

(a structure without TMDI or TMhDI) and the structure equipped with TMDI or

TMhDI. For each frequency, the steady-state response at the top storey and the shake

table were measured. For earthquake ground motions, the comparison are presented

for top storey response of the two structural systems.

7.3 Experiment 1: 3-storey structure equipped with

a TMhDI

As discussed in Chapter 6, the realisation of the TMhDI consists of two gel dampers

connected in series to a grounded flywheel inerter as shown in Figure 6.20. This TMhDI

is installed between the table and the first storey of the 3-storey structure as shown in

Figure 7.2(b). The lumped-mass model of the structure with the TMhDI is presented

in Figure 7.2(a). It should be noted that the structural damping is neglected in the

model. The equations of motion of the structure in absolute coordinates can be written

as 
(m1s

2 + k0,1 + k1,2)X1 = k1,2X2 + k0,1R + F1,0

(mis
2 + ki−1,i + ki,i+1)Xi = ki−1,iXi−1 + ki,i+1Xi+1

(m3s
2 + k2,3)X3 = k2,3X2

(7.1)

where mi and ki−1,i, i ∈ [1 : 3] represent the mass and stiffness between storeys i−1 and

i; Xi represents the Laplace transform of the ith storey displacement, when i = 0, then

X0 = R which represents the Laplace transform of the base displacement; s represents

the Laplace transform variable and F1,0 represents the force transferred to the structure

by the TMhDI in the Laplace domain, which is given by Equation 5.19.

Next detailed discussions are presented for the experiments which consists of two

parts: (1) harmonic ground motion; (2) earthquake ground motion.
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Figure 7.2: System layout: (a) lumped-mass model (b) 3-storey structure with TMhDI

7.3.1 Harmonic ground motion

The first part of the experiment was harmonic base accelerations. In this case, the

structure was subjected to sine wave base acceleration. The frequency range of the

sine wave acceleration input was 3-26Hz. This was based on the frequency of all the

three resonant modes of the structure.

This first part of the experiments consisted of three cases as shown in Figure 7.3:

(1) Uncontrolled structure (2) with Gel dampers only, and (3) with TMhDI. The first

case is when the structure has no external damping device. The connection between

the gel dampers and the flywheel inerter on the beam was removed. In the second case,

the beam was fixed to the table while its connection to the flywheel was removed. In

this case the vibration energy will be dissipated directly by the gel dampers. Finally

in the third case the TMhDI was in place.
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Figure 7.3: Lumped-mass model of the three cases: (a) uncontrolled (b) with gel

dampers only (c) with TMhDI

The purpose of the uncontrolled structure experiment is to verify the stiffness and
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mass properties of the structure. The storey mass of the structure was weighted directly

before the experiment. The mass m1,m2 and m3 are 33.15kg, 24.15kg and 24.15kg

respectively. The storey stiffness of each of the storeys is estimated by

k = 12
EI

l3
(7.2)

where E is the Young’s modulus of the column, I is the inertia of the column,

and l is the effective length of the column. From this experiment, the stiffness of each

of the storey was found to be k1 = 1.4048 × 105N/m, k2 = 1.6858 × 105N/m, and

k3 = 2.0792× 105 N/m.

As can be seen in Figure 7.4(a), the experiment and the analytical model are in a

good agreeement. Therefore, the mass and stiffness properties of the structures can be

used for optimisation of the TMhDI. Moreover, this figure also show that the natural

damping of the structure is considerably low, so it can be excluded from the lumped

mass model.

The second case was the 3-storey structure equipped with the gel dampers, without

inerter. This experiment was performed to verify the loss factor and stiffness properties

of the gel dampers obtained from the experiment discussed in Chapter 6. The result

is presented in Figure 7.4(b). In this figure, two analytical models are proposed: (1)

Hysteretic damping model; (2) Viscous damping model. In the first model, the gel

dampers are represented by a complex stiffness kd(1 + jη), where the stiffness kd and

loss factor η properties of the gel dampers are obtained from Chapter 6. The second

model assumes that the gel dampers have viscous damping and stiffness in parallel. In

this case, the viscous damping property is obtained via an equivalent viscous damping

method ceq = ηkd
ωn1

.

Figure 7.4(b) clearly shows that the results from the experiment are very close

to the hysteretic damping model. This suggests that the complex stiffness is a good

representation of the gel dampers compared to the parallel viscous damping and stiff-

ness. It also suggests that converting the hysteretic damping to viscous damping via

an equivalent viscous damping method cannot be very accurate. Obvious differences

can be observed around the second and third resonances. Around these resonances,

the response with viscous damping model is far lower than both the hysteretic damp-

ing model and experiment. This result also supports the discussion in Chapter 5 that

a hysteretic damping must be treated as its original form (complex stiffness) when

performing both frequency and time-domain analyses.

The third case experiment was a 3-storey structure equipped with a TMhDI. As

can be seen in Figure 7.2(b), the TMhDI was placed between the table and the first

storey of the structure. The first terminal of the flywheel inerter was fixed to the stiff

frame which was fixed to the table. The second terminal of the inerter is connected

to the gel dampers which were mounted on the first storey of the structure. This way,

the translational motion of the first storey induced by the shake table is converted to
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a rotational motion of the flywheel to generate inertance. The analytical model of the

TMhDI is depicted in Figure 7.2(a). The gel dampers are represented by the parallel

kd and sh. bd is the inertance of the flywheel, and md is the mass of the flywheel.

Normally inertance is much larger than the physical mass of the inerter itself, hence

md can be neglected. However in this case, md is too significant to be ignored.
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Figure 7.4: (a) The 3-storey structure’s top storey transmissibility: uncontrolled struc-

ture, analytical vs experiment (b) The 3-structure’s top storey transmissibility when

equipped with hysteretic damping (green line) and with viscous damping (blue dash

line) vs experiment with gel dampers only, without inerter
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Figure 7.5: The 3-storey structure’s top storey transmissibility (a) Experiment vs

TMhDI model (b) Experiment vs all four analytical models (TID, TIhD, TMDI,

TMhDI)
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Table 7.1 presents the parameters of the uncontrolled 3-storey structure in Figure

7.4(a) and Table 7.2 presents the parameters of the models in Figure 7.4 and 7.5.

Table 7.1: Parameters of the 3-storey uncontrolled structue

Parameters Storey 1 Storey 3 Storey 3

Mass, (kg) 33.15 24.15 24.15

Stiffness, (kN/m) 140.48 168.58 207.92

Table 7.2: Parameters of the TIBD systems

Parameters TID TMDI TIhD TMhDI

Inertance, bd(Ns2/m) 18 18 18 18

Stiffness, kd(N/m) 21000 21000 21000 21000

Viscous damping, cd(Ns/m) 340.65 340.65 − −
Loss factor, η − − 0.53 0.53

Secondary mass, md(Ns2/m) − 16 − 16

The results of this experiment is presented in Figure 7.5(a) and 7.5(b). In Figure

7.5(a) the analytical model of the TMhDI is compared with the experiment. The result

shows a good agreement between the model and the experiment. Figure 7.5(b) shows

comparison between experiment and some analytical models of inerter-based-dampers:

TID, TIhD, TMDI, and TMhDI. It is obvious from the first resonance that both the

TIhD and TID are not in a good agreement with the experiment. This suggests that

the mass of the flywheel md cannot be neglected in the model. The TMDI model

shows a much lower response around the second and third resonances compared to the

experiment. This suggets that the hysteretic damping model of the gel dampers must

be treated in its original form and cannot be converted to a viscous damping.

From the above discussion, it is clear that the TMhDI model proposed in this chap-

ter is accurate enough to capture the real behaviour of the structural system equipped

with TMhDI device. Furthermore, the effectiveness of the TMhDI can be observed

by comparing the structural response between the three cases: (1) Uncontrolled; (2)

3-storey structure equipped with gel dampers; (3) 3-storey structure equipped with

a TMhDI. Comparing all the performance of the structure for all these three cases

makes it obvious that the structural performance gets better with the gel dampers and

is best with the TMhDI as can be seen in Figure 7.6(a). This is also shown in the time

domain in Figure 7.6(b), it is obvious that with TMhDI, the structure achieves its best

performance among all the scenarios considered.
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Figure 7.6: Experimental results (a) Transmissibility (b) Time domain response at first

resonance, f=5.50Hz
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7.3.2 Earthquake ground motion

The second part of the experiment is the earthquake ground motion. Nine selected

earthquake ground motions were applied as the ground motion input. The earthquake

ground motions data were taken from http://strongmotioncenter.org/.

Due to the limitation of the shake table equipment, the lowest allowable frequency

of the input signal is 3Hz. Therefore the earthquake ground motion data was scaled so

that the minimum frequency content of the earthquakes was 3Hz and the predominant

frequency of the earthquakes was around 5Hz, which is close the first resonance fre-

quency of the structure. The scaled earthquake ground motion data and their Fourier

Transforms are given in Figure 7.7 and 7.8 respectively.
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Figure 7.7: Acceleration data of the considered earthquakes. Before scaling (—), after

scaling (—)
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Figure 7.8: Fourier Spectrum of the considered earthquakes ground motion. Before

scaling (—), after scaling (—)

To assess the effectiveness of the TMhDI, the top storey response of the structure

wes obtained for each earthquake. The response comparison between the uncontrolled

structure and the structure equipped with the TMhDI for all earthquakes is presented

in Figure 7.9. For all cases, it is obvious that the TMhDI was capable of effectively

reducing the response of the structure.
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Figure 7.9: Top storey response of the 3-storey structure to all considered earthquakes

ground motion

7.4 Experiment 2: 3-storey structure equipped with

a TMDI

The second type of damper discussed in this thesis is the ECD made from a series of

magnets and aluminium plates as discussed in detail in Chapter 6. These ECDs are

the realisation of the viscous damping. To form a TMDI, these ECDs were connected

in parallel to four flexible steel plates. A flywheel inerter was then connected in series

to this parallel spring-dampers.

The lumped-mass model and photograph of the 3-storey structure equipped with

a TMDI can be seen in Figure 7.10(a) and (b), respectively. It should be noted that

the structural damping is neglected in the model. The equations of motion of the

structure in absolute coordinates are given in Equation 7.1. The force transferred to

the structure by the TMDI F1,0 can be expressed similar to that in Equation 5.19 of

the TMhDI with the complex stiffness is replaced by viscous damping and stiffness in

parallel. Hence, the Equation becomes

F1,0 =
bds

2(cds+ kd)(R−X1)− bds2mds
2X1

(md + bd)s2 + (cds+ kd)
(7.3)

Next, detailed discussions are presented for the experiments which again consisted
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of two parts: (1) harmonic ground motion; (2) Earthquake ground motion.
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Figure 7.10: System layout: (a) lumped-mass model (b) 3-storey structure with TMDI

7.4.1 Harmonic ground motion

As shown in Figure 7.10(b), the installation of the TMDI adds some extra mass on the

first storey of the structure. Therefore, this experiment is important to verify the mass

and stiffness of each storey of the structure.

Similar to previous Section 7.3.1, this first part of the experiments consisted of

three cases as shown in Figure 7.11: (1) Uncontrolled structure (2) with ECDs only,

and (3) with TMDI. The first case was uncontrolled structure without any dampers.

This experiment is necessary in order to verify the mass and stiffness parameters of the

structure. In this experiment, the TMDI system was also mounted on the structure.

However, the second terminal of the flywheel inerter is disconnected to the steel bar.

Therefore, non of the dampers and inerter were mobilised.
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Figure 7.11: Lumped-mass model of the three cases: (a) uncontrolled (b) with ECDs

only (c) with TMDI

The result of this uncontrolled structure experiment is presented in Figure 7.12(a).
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As can be seen in this figure that the experiment and the analytical model are in

good agreeement. Therefore, the mass and stiffness properties of the structures can be

used for optimisation of the TMDI. Similar to the previous structure with the TMhDI

system, it can be concluded from this figure that the damping of the structure is

negligible.

The second case was the 3-storey structure equipped with the ECDs, without in-

erter. This experiment was performed to verify the viscous damping and stiffness

properties of the ECDs obtained from the experiment discussed in Chapter 6. The re-

sult is presented in Figure 7.12(b). In this figure, two analytical models are proposed:

(1) Hysteretic damping model; (2) Viscous damping model. In the first model, the

ECDs are represented by a complex stiffness kd(1 + jη), where the loss factor η is ob-

tained from an equivalent viscous damping. kd is the stiffness of the four flexible plates

connected in parallel to the ECDs. The second model assumes that the gel dampers

have viscous damping and stiffness in parallel. The stiffness kd and viscous damping

cd are obtained from Chapter 6.

Figure 7.12(b) clearly shows that the results from the experiment are very close to

the viscous damping model. This suggests that viscous damping is a good representa-

tion of the ECDs. Obvious differences can be observed around the second and third

resonances. Around these resonances, the response with hysteretic damping model is

far higher than the viscous damping model and the experiment.

The third case was a 3-storey structure equipped with a TMDI. As can be seen

in Figure 7.10(b), the TMDI was placed between the table and the first storey of the

structure. The first terminal of the flywheel inerter was fixed to the stiff frame which

was fixed to the table. The second terminal of the inerter is connected to the stiff

bar which was connected to four flexible steel plates. These plates were connected

in parallel to two sliding plates of the ECDs. The analytical model of the TMDI is

depicted in Figure 7.10(a). The ECDs damping is represented by cd. bd is the inertance

of the flywheel, and md is the mass of the flywheel.
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Figure 7.12: (a) The 3-storey structure’s top storey transmissibility: uncontrolled struc-

ture, analytical vs experiment (b) The 3-storey structure’s top storey transmissibility

when equipped with hysteretic damping (green line) and with viscous damping (blue

dash line) vs experiment with ECD only, without inerter
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Figure 7.13: The 3-storey structure’s top storey transmissibility (a) Experiment vs

TMDI model (b) Experiment vs all four analytical models (TID, TIhD, TMDI, TMhDI)

Table 7.3 presents the parameters of the uncontrolled 3-storey structure in Figure
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7.12(a) and Table 7.4 presents the parameters of the models in Figure 7.12 and 7.13.

Table 7.3: Parameters of the 3-storey uncontrolled structue

Parameters Storey 1 Storey 3 Storey 3

Mass, (kg) 42.15 24.15 24.15

Stiffness, (kN/m) 140.48 168.58 207.92

Table 7.4: Parameters of the TIBD systems

Parameters TID TMDI TIhD TMhDI

Inertance, bd(Ns2/m) 15 15 15 15

Stiffness, kd(N/m) 29700 29700 29700 29700

Viscous damping, cd(Ns/m) 109 109 − −
Loss factor, η − − 0.12 0.12

Secondary mass, md(Ns2/m) − 16 − 16

The results of this experiment are presented in Figure 7.13(a) and 7.13(b). In Figure

7.13(a) the analytical model of the TMDI is compared with the experiment. The result

shows a good agreement between the model and the experiment. Figure 7.5(b) shows

comparison between experiment and some analytical models of inerter-based-dampers:

TID, TIhD, TMDI, and TMhDI. It is obvious from the first resonance that both the

TIhD and TID are not in a good agreement with the experiment. It suggests that

the mass of the flywheel md cannot be neglected in the model. The TMhDI model

shows a much larger response around the second and third resonances compared to the

experiment. It suggets that the ECDs behave as linear viscous rather than hysteretic,

and therefore the TMDI model is a good representation of the device.

From the above discussion, it is clear that the proposed model in this chapter is

accurate enough to capture the real behaviour of the structural system. Furthermore,

the effectiveness of the TMDI can be observed by comparing the structural response

between the three cases: (1) Uncontrolled; (2) 3-storey structure equipped with ECDs;

and (3) 3-storey structure equipped with a TMDI. Comparing all the performance of

the structure for all these three cases makes it obvious that the structural performance

gets better with the ECDs and best with the TMDI as can be seen in Figure 7.14(a).

Shown in Figure 7.14(b) is the structural response at the first resonance in the time

domain. It is obvious that with TMDI the structure achieves its best performance

among all the scenarios considered.
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Figure 7.14: Experimental results (a) Transmissibility (b) Time domain response at

f=5.40Hz
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7.4.2 Earthquake ground motion

In this experiment, eight selected ground motions were selected as the base acceleration

input: El Centro, Imperial Valley, Kern, Kobe, Landers, L’aquila, Loma Prieta, and

Northridge. The acceleration data and their Fourier Transforms are given in Figure

7.7 and 7.8 respectively.

Figure 7.15 shows the top storey response of the 3-storey structure with and without

TMDI. It clearly shows improvement on the structural response when the structure was

equipped with the TMDI.

Figure 7.15: Top storey response of the 3-storey structure to all considered earthquakes

ground motion

7.5 Experimental Errors

The experiments discussed in Section 7.3 and 7.4 have been successfully performed and

the results have been shown to be in good agreement with the models. However, there

are some possible source of errors that might occur during the experiments.

It should be noted that in the experimental results, discrepancies may occur around

the third resonance because at high frequency the structural response is very low. It

was observed from the experiments that the flywheel inerter was barely mobilised.

Increasing the amplitude of input base acceleration might help, but it could damage

the structure, and for this reason such tests where not carried out.

142



Chapter 7. Shake Table Experiment

Another possible error is that, at high frequency of excitation, the gel dampers may

exhibit nonlinearity which cannot be captured by the models. As discussed in Chapter 6

that the stiffness of the gel damper increases with the increasing of frequency. Similarly,

the ECD may also exhibit nonlinearity due to friction between the sliding plate and

the magnets.

7.6 Summary

This chapter presents a set of shake table experiments of a 3-storey structure. The

first part of the experiments employed a TMhDI device consisting of two identical gel

dampers and a flywheel inerter installed between the table and the first storey of the

structure. The second part of the experiments employed TMDI device consisting of 4

ECDs in parallel with 4 flexible steel plates and in series with a flywheel inerter.

Four analytical models are proposed to be compared with the experimental results:

TID, TIhD, TMDI, and TMhDI. The difference between these models has been ex-

tensively discussed in Chapter 5 and in [149], one of the published works from this

Thesis.

The experiment with gel dampers and flywheel inerter shows that the proposed

TMhDI model can accurately predict the real behaviour of the structural system. It

suggests that the proposed complex stiffness model is a good representation of the

damping and stiffness properties of the gel dampers.

The experiment with parallel-connected ECDs and flexible steel plates and flywheel

inerter in series shows that the proposed TMDI model is in a good agreement with the

experimental results. It also suggests that the damping properties of the ECDs can be

accurately modelled by a linear viscous damping model.

Overall, the results from the shake table experiments presented in this chapter

support the arguments and discussion presented in Chapter 5: (1) when dampers

exhibit linear hysteresis, it must be treated as its original form, complex stiffness for

analysis in both frequency and time-domain. (2) In MDOF structure, the structural

response with TMDI compared to TMhDI is significantly different, particularly around

the second and the third mode of vibrations. Therefore, the damping properties of both

devices must be treated as its original form as the equivalent viscous damping method

cannot be any accurate.
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Conclusions and Future Work

8.1 Key Summary of the Thesis

There has been a growing amount of research on inerters since the late nineties, ex-

ploring their potential use for various applications in mechanical, aerospace and civil

engineering.

The use of inerters for protecting building structures against earthquakes has been

the main focus of this thesis. Inerters are often combined with spring and damping

elements to achieve an absorber-like effect, namely inerter-based dampers. The state

of the art of the inerter applications for vibration suppression has led to three most

commonly discussed inerter based dampers: TID, TMDI and TVMD.

8.1.1 TIBhD new models

Using linear hysteretic damping for both TID and TMDI is more practical since most

damping in civil engineering applications is material damping using rubber and metal.

Recent experimental results on a helical fluid inerter [55] demonstrated that the de-

vice has hysteresis in its force-velocity relationship. Based on these facts, the linear

hysteretic damping in this thesis is defined as two models: (1) complex damping, lin-

ear hysteretic in its force-velocity; and (2) complex stiffness, linear hysteretic in its

force-displacement.

In Chapter 3, the two linear hysteretic damping models were discussed. Firstly,

a complex damping model represented by a parallel-connected inerter-damper was

proposed. The model was compared to the helical fluid inerter experimental results.

However, it was shown that the helical fluid inerter has strong nonlinearity as a result

of friction which is not in the scope of this thesis. Therefore, the discussion on this

model was left for future work.

Despite this phenomenon, the helical fluid inerter was also explored in the design

perspective due to the coupled damping and inertance parameters. Both damping

and inertance formulas have many coupled unknown parameters and so in Chapter
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4, a new method was proposed to design the dimensions of the device such that both

targeted damping and inertance can be achieved. The results show that the helical fluid

inerter can be effectively designed to fit the targeted damping and inertance parameters

obtained from the optimisation process. This design method relied on the fact that

both inertance and damping parameters are insensitive to changes in some parameters.

In effect, these parameters can be chosen based on practical design considerations and

the number of unknown parameters reduced. To demonstrate the effectiveness of this

approach, three design examples were presented for SDOF, MDOF and a nonlinear

fluid inerter. For all these examples, the method was successfully used to design the

helical fluid inerter with the targeted inertance and damping parameters.

The second model of the linear hysteretic damping is complex stiffness represented

by k(1+jη). This model was proposed to represent material dampers most-used in civil

engineering applications. Unlike viscous dampers, material dampers are frequency-

independent, meaning the energy dissipated per cycle is independent of frequency.

Therefore, the complex stiffness is a more accurate model to represent the damping

of material dampers. The complex stiffness model has also been reported [144] to be

practically very accurate to design structures with a class of nonlinear dampers. Despite

its non-causality, it is widely used in practice [97]. The problem with time-domain

analysis due to the unstable poles was solved in Chapter 3 based on extending the

time-reversal technique first proposed by Inaudi and Makris [98]. The newly developed

time-domain method in this chapter has enabled the use of commercial software such

as MATLAB to compute the structural response in the time domain, for example using

ode45 which is based on the Runge-Kutta method. Moreover, the proposed method has

also proven to be compatible with nonstationary random signals such as earthquakes.

The concept of complex stiffness models leads to two novel TIBhDs variants, namely

the TIhD and the TMhDI as discussed in detail in Chapter 5. Inspired by the layout

of the TID and the TMDI, both TIhD and TMhDI use complex stiffness to replace

parallel stiffness-viscous damping. Compared to the TID and TMDI, both TIhD and

TMhDI have a lower response at the high frequency excitations. In MDOF structures,

the TIhD and TMhDI show less reduction on the higher mode of vibrations. This

indicates that the level of damping at higher modes is less than that shown by the

TID and TMDI. From a practical perspective, the TMhDI is considered to be the most

realistic. This is because it has mass md representing the mass of the inerter and its

connections to the dampers.

8.1.2 TIBhD realisation

For the first time, the TMhDI concept has been realised by using a material damper

made of gel connected in series to a flywheel inerter. The gel dampers consist of gel

layers and a steel plate in the middle which is connected to a flywheel via a rigid

145



Chapter 8. Conclusion

beam. The flywheel is equipped with a linear bearing and linear slider mechanism that

converts the transitional motion of the building to the rotational motion of the flywheel.

The flywheel is grounded via a rigid frame. The flywheel support connects the centre

of the flywheel to the rigid frame. This support can be used to adjust the position of

the flywheel relative to the ground. Consequently, the terminal distance also changed.

Via this mechanism, the inertance of the flywheel can be easily adjusted. This novel

design of TIBhD for the realisation of the TMhDI is one of the key contributions of

this thesis.

For a meaningful comparison, a TMDI was also built and experimentally tested.

The TMDI consists of an eddy current damper in parallel with flexible plates providing

stiffness. These two elements were connected in series to a grounded flywheel inerter.

Both the damping and stiffness of this system are adjustable. The damping can be

adjusted by adding or taking away the dampers or by changing the distance between the

sliding plate and the damper fork. The stiffness element can be adjusted by changing

the length of the flexible plates.

8.1.3 TIBhD shake table experiment

Chapter 7 presents the first-ever large-scale shake table experiment of tuned inerter-

based dampers. In the first part, a device consisting of gel dampers and a flywheel

inerter was proposed as a realisation of the TMhDI concept. In the second, the TMDI

was built using the eddy current damper and a flywheel inerter. These devices were

installed in the base of the structure, connecting the first storey and the ground.

The results from both experiments show good agreement with the analytical results

and show that the structural response reduction around the untargeted modes (second

and third modes) is less when the structure is equipped with the TMhDI than with the

TMDI. These findings support the theory proposed in Chapter 5 that when a damper

exhibits linear hysteretic rather than viscous damping, the equivalent viscous damping

approach leads to inaccurate results. For this reason, linear hysteretic damping must be

treated as its original form when performing both frequency and time-domain analysis.

8.2 Key Contributions of the Thesis

The key contributions of the thesis are as follows:

• The helical fluid inerter has been shown to have both inertance and damping in

parallel. This is interesting because it can be used to build a TVMD or PVID

by connecting the device with a spring element in series. However, because both

inertance and damping parameters are coupled, it is difficult to know how best

to design the device to achieve the targeted parameters from the TVMD/PVID

optimum design. Therefore, a new design approach is proposed to simplify the
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design of a helical fluid inerter for use as a PVID. The design approach relies

on the fact that the damping and inertance are insensitive to changes in some

parameters. Consequently, these parameters can be chosen based on practical

design considerations, so that the number of unknown parameters can be reduced.

• Two novel inerter-based damper models are proposed in this thesis, namely the

TIhD and the TMhDI, which represent both TID and TMDI when their damping

exhibits linear hysteresis rather than viscous damping. When the damping of the

TID or the TMDI exhibits hysteresis, the equivalent viscous damping approach

is often used for simplification which, for the systems considered here, will lead to

inaccurate results, particularly for the structural response around the untargeted

modes. This was also shown when the damping device was made of gel. There-

fore, the TIhD and TMhDI models were proposed as more realistic for both TID

and TMDI when their damping is linear hysteretic.

• A challenge associated with the TIhD and the TMhDI time-domain analysis is

addressed in this thesis. The complex stiffness in both TIhD and TMhDI is a

noncausal model. In effect, using the traditional numerical integration method to

solve a system with a complex stiffness leads to an unstable response. Therefore,

a new formulation for the time-domain analysis of complex stiffness model is

proposed which can solve the equation of motions of a system with complex

stiffness in the time domain by using standard MATLAB ODE solvers based on

the Runge-Kutta method.

• A novel design of TMhDI is presented in this thesis. The TMhDI was realised by

connecting two gel dampers in series with a grounded flywheel inerter. The gel

dampers represent the complex stiffness which is a coupled stiffness-damping. A

set of characterisation tests was performed using a servohydraulic test machine

to characterise the damping properties of the gel dampers. The results showed

that the dampers exhibit linear hysteresis rather than viscous damping because

the energy dissipated per cycle by the dampers is frequency-independent. The

flywheel inerter was designed by using a linear guide mechanism to reduce friction

and equipped with a base which can be used to change the centre of the flywheel

position relative to the point where the gel dampers were connected so the dis-

tance between the two inerter terminals can be adjusted to change its inertance

parameter.

• For the first time, a large scale shake table experiment was performed on a struc-

ture equipped with a TMhDI. A 2.3m three-storey structure was built on a 3.2

x 2.2m shake table. A set of ground motions were used as the base inputs. The

structural response was measured by using accelerometers on each storey. The

TMhDI was installed between the first storey and the table. The results show
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good agreement between the analytical model and the experiment. In the sec-

ond part of the experiment, the TMhDI was replaced with a TMDI consisting

of an eddy current damper and a flywheel inerter. This second experiment was

performed to give a new insight into the experimental data to distinguish be-

tween the TMhDI and the TMDI. As predicted by the analytical model, the

TMDI showed less response around the untargeted modes. This suggests that

the TMhDI cannot be simply converted to the TMDI via an equivalent viscous

damping approach but must be treated as its original form with complex stiff-

ness. The time-domain method proposed in this thesis is important in accurately

solving such systems in the time domain representation.

8.3 Future Work

8.3.1 Tuned-Inerter-Based-Dampers

• The scope of this thesis has been limited to the linear system only. For future

work, it will be important to include the nonlinear behaviour of both the struc-

tural and damper parameters as both exhibit nonlinearity due to factors such as

friction, backlash and fluid flow. Including the nonlinearity in the models might

be required for a more accurate result.

• The helical fluid inerter discussed in Chapter 3 shows an interesting phenomenon,

especially on the force versus velocity graphs. The area inside the loop is in unit

of power. However, it is still not clear what does it physically mean. Future

study is required to learn more about this phenomenon.

• The use of gel in this thesis was found to achieve the targeted loss factor param-

eter of the TMhDI. However, for other structural systems or real-size building

structures, the gel damper might not be suitable due to the required size. Inves-

tigation could be carried out to determine how these phenomena scale up to real

buildings and structures.

• Finite Element Modelling (FEM) could be useful for modelling the inerter-based

dampers. The FE model of the TIBD or TIBhD could simplify the analysis and

increase accuracy. Via the FEM, a structure can be modelled with the TIBDs

or TIBhDs attached. This would reduce the simplification required (e.g. lumped

mass simplification) that may lead to inaccurate results.

8.3.2 Earthquake Protection Devices

• As discussed in Chapter 3, the nonlinear effects such as friction can be observed

from the helical fluid inerter experimental results. Since this is beyond the scope
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of this thesis, it was decided that this will remain as an open discussion for future

work. The proposed method presented in Chapter 4 is accurate enough to design

the dimensions of helical fluid inerters with the given optimised parameters. For

future work, it would be interesting to develop both a helical fluid inerter device

and the complex damping model so that the model can capture the nonlinear

effects within the device.

• Larger scale shake table experiments might be useful for proof of the TIBD

concept. The shake table experiments presented in this thesis are by far is the

largest performed on a structure equipped with a TIBDs except for the TVMD.

For future work, not only should larger-scale experiments be considered, but the

6 axists of the ground motions for a more realistic investigation. A new design

and modelling of the TIBDs that works in all the 6-axists of the ground motions

should also be considered.

• To date, only the TVMD that has been used in real buildings which are all

located in Japan. This thesis provides a new insights into realistic TID and

TMDI models when their damping exhibits hysteretic rather than viscous via

the TIhD and TMhDI models. As a recommendation for the future works, these

models should be considered for real application in buildings.

149



References

[1] A. Coburn and R. Spence, Earthquake Protection, 2nd edition. John Wiley and

Sons, Ltd, Chichester, 2002. 1

[2] B. A. Bolt, Earthquakes, 4th edition. W.H. Freeman and Company, New York,

1999. 1

[3] V. Gioncu and F. Mazzolani, Ductility of seismic-resistant steel structures. CRC

Press, 2003. 1

[4] “2020 [online] available at: https://www.bbc.co.uk/news/world-asia-38232611

[accessed 12 september 2020],” 1

[5] A. S. Elnashai and L. D. Sarno, Fundamentals of Earthquake Engineering From

Source to Fragility, 2nd edition. John Wiley and Sons, Ltd, Chichester, 2015. 1

[6] P. Pan, D. Zamfirescu, M. Nakashima, N. Nakayasu, and H. Kashiwa, “Base-

isolation design practice in japan: introduction to the post-kobe approach,”

Journal of Earthquake Engineering, vol. 9, no. 01, pp. 147–171, 2005. 2

[7] M. Cutfield, K. Ryan, and Q. Ma, “A case study cost-benefit analysis on the use

of base isolation in a low-rise office building,” 2014. 2

[8] A. Calabrese, M. Spizzuoco, G. Serino, G. Della Corte, and G. Maddaloni, “Shak-

ing table investigation of a novel, low-cost, base isolation technology using recy-

cled rubber,” Structural Control and Health Monitoring, vol. 22, no. 1, pp. 107–

122, 2015. 2

[9] D. Poon, S.-s. Shieh, L. Joseph, and C. Chang, “Structural design of taipei 101,

the world’s tallest building,” in Proceedings of the CTBUH 2004 Seoul Confer-

ence, Seoul, Korea, pp. 271–278, 2004. 2, 12, 16

[10] R. Villaverde and L. A. Koyama, “Damped resonant appendages to increase

inherent damping in buildings,” Earthquake engineering & structural dynamics,

vol. 22, no. 6, pp. 491–507, 1993. 2

[11] Okumura A, Japan Patent Koukai, H09-177875, 11 July 1997. 2, 16, 17

150



Chapter 8. Conclusion

[12] M. C. Smith, “Synthesis of mechanical networks: The inerter,” IEEE Transac-

tions on Automatic Control, vol. 47, no. 10, pp. 1648–1662, 2002. 3, 16, 17

[13] F.-C. Wang, M.-F. Hong, and T.-C. Lin, “Designing and testing a hydraulic

inerter,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal

of Mechanical Engineering Science, vol. 225, no. 1, pp. 66–72, 2011. 3, 17

[14] K. Ikago, K. Saito, and N. Inoue, “Seismic control of single-degree-of-freedom

structure using tuned viscous mass damper,” Earthquake Engineering & Struc-

tural Dynamics, vol. 41, no. 3, pp. 453–474, 2012. 3, 16, 17, 19, 20, 48, 56

[15] Smith MC. 2001. Force-controlling mechanical device. US Patent 7,316,303. 3,

17

[16] W. Shen, A. Niyitangamahoro, Z. Feng, and H. Zhu, “Tuned inerter dampers for

civil structures subjected to earthquake ground motions: optimum design and

seismic performance,” Engineering Structures, vol. 198, p. 109470, 2019. 3

[17] S. Nakaminami, H. Kida, K. Ikago, and N. Inoue, “Dynamic testing of a full-scale

hydraulic inerter-damper for the seismic protection of civil structures,” in 7th

International Conference on Advances in Experimental Structural Engineering,

AESE 2017, pp. 41–54, EUCENTRE, 2017. 3

[18] A. Giaralis and F. Petrini, “Wind-induced vibration mitigation in tall build-

ings using the tuned mass-damper-inerter,” Journal of Structural Engineering,

vol. 143, no. 9, p. 04017127, 2017. 3

[19] R. Zhang, Z. Zhao, and K. Dai, “Seismic response mitigation of a wind tur-

bine tower using a tuned parallel inerter mass system,” Engineering Structures,

vol. 180, pp. 29–39, 2019. 3

[20] Y. Wen, Z. Chen, and X. Hua, “Design and evaluation of tuned inerter-based

dampers for the seismic control of mdof structures,” Journal of Structural Engi-

neering, vol. 143, no. 4, p. 04016207, 2017. 3

[21] Z. Zhao, R. Zhang, Y. Jiang, and C. Pan, “Seismic response mitigation of struc-

tures with a friction pendulum inerter system,” Engineering Structures, vol. 193,

pp. 110–120, 2019. 3

[22] D. De Domenico, G. Ricciardi, and R. Zhang, “Optimal design and seismic per-

formance of tuned fluid inerter applied to structures with friction pendulum iso-

lators,” Soil Dynamics and Earthquake Engineering, vol. 132, p. 106099, 2020.

3

151



Chapter 8. Conclusion

[23] L. Marian and A. Giaralis, “Optimal design of inerter devices combined with

tmds for vibration control of buildings exposed to stochastic seismic excita-

tion,” in Safety, Reliability, Risk and Life-Cycle Performance of Structures and

Infrastructures-Proceedings of the 11th International Conference on Structural

Safety and Reliability, ICOSSAR 2013, pp. 1025–1032, CRC Press, 2013. 3

[24] F.-C. Wang, C.-H. Lee, and R.-Q. Zheng, “Benefits of the inerter in vibration

suppression of a milling machine,” Journal of the Franklin Institute, vol. 356,

no. 14, pp. 7689–7703, 2019. 3

[25] A. Ogawa and K. Adachi, “Theoretical studies of function of planetary gear

inerter on torsional vibration system of rotating machine train,” Transactions of

Society of Automotive Engineers of Japan, vol. 48, no. 5, 2017. 3

[26] F.-C. Wang, M.-K. Liao, B.-H. Liao, W.-J. Su, and H.-A. Chan, “The perfor-

mance improvements of train suspension systems with mechanical networks em-

ploying inerters,” Vehicle System Dynamics, vol. 47, no. 7, pp. 805–830, 2009. 3,

4

[27] F.-C. Wang and W.-J. Su, “Impact of inerter nonlinearities on vehicle suspension

control,” Vehicle System Dynamics, vol. 46, no. 7, pp. 575–595, 2008. 3

[28] Y. Li, J. Z. Jiang, and S. Neild, “Inerter-based configurations for main-landing-

gear shimmy suppression,” Journal of Aircraft, vol. 54, no. 2, pp. 684–693, 2017.

3

[29] X. Dong, Y. Liu, and M. Z. Chen, “Application of inerter to aircraft landing gear

suspension,” in 2015 34th Chinese Control Conference (CCC), pp. 2066–2071,

IEEE, 2015. 3

[30] Y. Li, J. Z. Jiang, P. Sartor, S. A. Neild, and H. Wang, “Including inerters

in aircraft landing gear shock strut to improve the touch-down performance,”

Procedia engineering, vol. 199, pp. 1689–1694, 2017. 3

[31] Y. Li, C. Howcroft, S. A. Neild, and J. Z. Jiang, “Using continuation analysis to

identify shimmy-suppression devices for an aircraft main landing gear,” Journal

of Sound and Vibration, vol. 408, pp. 234–251, 2017. 3

[32] Y. Li, J. Z. Jiang, S. A. Neild, and H. Wang, “Optimal inerter-based shock–

strut configurations for landing-gear touchdown performance,” journal of aircraft,

vol. 54, no. 5, pp. 1901–1909, 2017. 3

[33] M. T. Fox, J. M. Roach, and E. A. Howell, “Translational inerter assembly and

method for damping movement of a flight control surface,” Dec. 4 2018. US

Patent 10,145,434. 3

152



Chapter 8. Conclusion

[34] Y. Zhang, N. Hu, Z. Cheng, L. Zhang, and H. Chen, “Dynamic modeling of the

aircraft landing gear based on isd mechanism,” in 2018 Prognostics and System

Health Management Conference (PHM-Chongqing), pp. 344–349, IEEE, 2018. 3

[35] K. Saito, Y. Sugimura, S. Nakaminami, H. Kida, and N. Inoue, “Vibration tests

of 1-story response control system using inertial mass and optimized soft spring

and viscous element,” Journal of Structural Engineering, vol. 54, pp. 623–634,

2008. 3, 19, 57

[36] Y. Sugimura, W. Goto, H. Tanizawa, K. Saito, and T. Nimomiya, “Response

control effect of steel building structure using tuned viscous mass damper,” in

Proceedings of the 15th World Conference on Earthquake Engineering, 2012. 3,

4, 17, 19

[37] I. Lazar, S. Neild, and D. Wagg, “Using an inerter-based device for structural

vibration suppression,” Earthquake Engineering & Structural Dynamics, vol. 43,

no. 8, pp. 1129–1147, 2014. 3, 4, 17, 20, 22, 24, 70, 74, 77, 78, 85, 90, 95

[38] J. P. Den Hartog, Mechanical vibrations. Courier Corporation, 1985. 3, 11, 20,

21, 69, 74

[39] L. Marian and A. Giaralis, “Optimal design of a novel tuned mass-damper–inerter

(tmdi) passive vibration control configuration for stochastically support-excited

structural systems,” Probabilistic Engineering Mechanics, vol. 38, pp. 156–164,

2014. 3, 20

[40] D. Pietrosanti, M. De Angelis, and M. Basili, “Optimal design and performance

evaluation of systems with tuned mass damper inerter (tmdi),” Earthquake En-

gineering & Structural Dynamics, vol. 46, no. 8, pp. 1367–1388, 2017. 4, 20

[41] D. De Domenico and G. Ricciardi, “An enhanced base isolation system equipped

with optimal tuned mass damper inerter (tmdi),” Earthquake Engineering &

Structural Dynamics, vol. 47, no. 5, pp. 1169–1192, 2018. 4, 15, 24, 95

[42] Y. Hu, M. Z. Chen, Z. Shu, and L. Huang, “Analysis and optimisation for inerter-

based isolators via fixed-point theory and algebraic solution,” Journal of Sound

and Vibration, vol. 346, pp. 17–36, 2015. 4, 21, 24, 50, 69, 70, 73

[43] S. Y. Zhang, J. Z. Jiang, and S. Neild, “Optimal configurations for a linear

vibration suppression device in a multi-storey building,” Structural Control and

Health Monitoring, vol. 24, no. 3, p. e1887, 2017. 4

[44] A. Gonzalez-Buelga, I. F. Lazar, J. Z. Jiang, S. A. Neild, and D. J. Inman, “As-

sessing the effect of nonlinearities on the performance of a tuned inerter damper,”

Structural Control and Health Monitoring, 2016. 4

153



Chapter 8. Conclusion

[45] X. Sun, L. Chen, S. Wang, X. Zhang, and X. Yang, “Performance investigation

of vehicle suspension system with nonlinear ball-screw inerter,” International

journal of automotive technology, vol. 17, no. 3, pp. 399–408, 2016. 4

[46] Y. Shen, L. Chen, Y. Liu, and X. Zhang, “Modeling and optimization of vehicle

suspension employing a nonlinear fluid inerter,” Shock and Vibration, vol. 2016,

2016. 4

[47] F. de Haro Moraes, M. Silveira, and P. J. P. Gonçalves, “On the dynamics of
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Appendix A: MATLAB code for

time domain analysis of a SDOF

structure with complex stiffness

%

% Analytic function integration INAUDI & MAKRIS 1996, but using ode45

%

close all

clear all

clc

%% Declare parameters and variables

eta = 0.1; % loss factor

m = 0.6; % mass in kg

k = 23.6871; % stiffness in N/m

wn = sqrt(k/m);

fn = wn/(2*pi);

c=k*eta/wn;

%% calculation

A=[0 1;

-wnˆ2*(1+eta*i) 0];

B=[0;wnˆ2*(1+eta*i)]; % base excitation

% Eigenvectors

[V,D] = eig(A);

%phi=V;

phi=[V(1,1)/V(1,1) V(1,2)/V(1,2);

V(2,1)/V(1,1) V(2,2)/V(1,2)];

% tetaˆ-1*A*teta

Q=inv(phi)*A*phi;

% tetaˆ-1*B

b=inv(phi)*B;

% eigenvalues
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s1=-Q(1,1);

s2=-Q(2,2);

%% Declare vectors to hold time series results

TT=50; % total time in seconds

del=0.01; % time interval and time vector

A0=1; % amplitude of input signal

f=fn;

w=2*pi*f; % frequency of input signal in rad/s

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

dot rt=w*A0*cos(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta*wn*tm).*sin(w*tm);

% assumed force from t0 to -infinity

Ppi=A0*exp(-eta*wn*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];

temp = [fliplr(Pmi) wr Ppi];

temp1 = [fliplr(Pmi) dot rt Ppi];

wt=hilbert(temp);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

wa r=fliplr(wa);

%% Initial conditions for the modal displacements

qin1=0.0;

qin2=0.0;
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%% ODE45 integration

wf=flip(wa);

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1,Q1] = ode45(@(t,y)myode(t,y,s1,s2,b,wa,ttt),tspan,y0);

qvals1 = interp1(T1,Q1,ttt,'spline');

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2,Q2] = ode45(@(t,y)myode2(t,y,s1,s2,b,wf,ttt),tspan,y0);

Qrev2 = interp1(T2,Q2,ttt,'spline');

qvals2 = flip(Qrev2);

x = phi*[(qvals1(:,1)+(1i*qvals1(:,2)))';

(qvals2(:,1)+(1i*qvals2(:,2)))'];

%% Zero-Hold Order

%%% Initial and end conditions

qk=zeros(1,(3*n)-2);

ql=zeros(1,(3*n)-2);

qk(:,1)=0;

ql(:,(3*n)-2)=0;

%%% Numerical solutions

for j = 2:((3*n)-3)

qk(1,j)=qk(1,j-1)*exp(s1*ht)

+ ((exp(s1*ht))-1)*(b(1)/s1)*(wa(j-1));

ql(1,j)=ql(1,j-1)*exp(-s2*ht)

+ ((exp(-s2*ht))-1)*(b(2)/s2)*(wa r((j-1)));

end

qrevl=fliplr(ql);

x anly = phi*[(qk); (qrevl)];

%% Equivalent viscous damping

t = ttt;

tdat = t;

y0 = [0;0];

tspan=[t(1):ht:t(end)];

[T,X] = ode45(@(t,y)Ceq fun(t,y,c,k,m,tdat,temp1,temp),tspan,y0);

XCeq=X(:,1);

figure(12)
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plot(T,XCeq,'-.b','Linewidth',1.5)

hold on

plot(tt,real(x anly(1,n:(2*n)-1)),'--k','Linewidth',1.5)

hold on

plot(tt,real(x(1,n:(2*n)-1)),'-r','Linewidth',1.5)

grid on

i=legend({'equivalent viscous damping','zero order hold','current method'},
'Orientation','horizontal');

j=xlabel(['time (s)']);

ij=ylabel(['Displacement, $x(t)$']);

set(i,'Interpreter','Latex','FontSize',9);

set(j,'Interpreter','Latex','FontSize',17);

set(ij,'Interpreter','Latex','FontSize',17);

% yticks([-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16]);

axis([0 50 -16 16]); % for f=fn

%axis([0 50 -0.08 0.06]); % for f=30fn

x01=10;

y01=10;

width=420;

height=220;

set(gcf,'position',[x01,y01,width,height]);

abc=real(x anly(1,n:(2*n)-1));

def=real(x(1,n:(2*n)-1));

ghi=XCeq;

axes('position',[0.585 0.25 0.3 0.2]);

box on

index= 0<tt & tt<50;

index1= 0<T & T<50;

plot(T(index1),ghi(index1),'-.b','Linewidth',1.5)

hold on

plot(tt(index),abc(index),'--k','Linewidth',1.5)

hold on

plot(tt(index),def(index),'-r','Linewidth',1.5)

grid on

axis([23.9 24.1 9.5 10.5]); % for f=fn

%% Functions

function ydot = myode(t,y,s1,s2,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s1)*y(1)-imag(s1)*y(2)+real(b(1))*war-imag(b(1))*wai;
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ydot(2)=real(s1)*y(2)+imag(s1)*y(1)+real(b(1))*wai+imag(b(1))*war;

end

function ydot = myode2(t,y,s1,s2,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s2)*y(1)+imag(s2)*y(2)-real(b(2))*war+imag(b(2))*wai;

ydot(2)=-real(s2)*y(2)-imag(s2)*y(1)-real(b(2))*wai-imag(b(2))*war;

end

function ydot vector = Ceq fun(t,y,c,k,m,tdat,temp1,temp)

temp1 = interp1(tdat,temp1,t);

temp = interp1(tdat,temp,t);

ydot vector=zeros(2,1);

ydot vector(1) = y(2);

ydot vector(2) = (-c/m)*y(2)-(k/m)*y(1)+(c/m)*temp1-(k/m)*temp;

% book 4 page 114

end
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time domain analysis of a MDOF

structure with complex stiffness

clear all

close all

clc

% Book 4 page 142-143

%% Parameters

% main structure parameters

m1=2;

m2=1;

k1=6;

k2=3;

eta=0.1;

eta1=eta;

eta2=eta;

% natural frequencies in rad/s

wn1=1.22;

wn2=2.4;

%% calculation

A=[0 1 0 0;

(-k1/m1)*(1+eta1*i)-(k2/m1)*(1+eta2*i) 0 (k2/m1)*(1+eta2*i) 0;

0 0 0 1;

(k2/m2)*(1+eta2*i) 0 -(k2/m2)*(1+eta2*i) 0 ];

B=[0;(k1/m1)*(1+eta1*i);0;0]; % base excitation (acceleration)

%B=[0;1/m1;0;1/m2]; % force on mass

% eigenvectors

[V,D] = eig(A);
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% phi=V;

phi=[V(1,1)/V(3,1) V(1,2)/V(3,2) V(1,3)/V(3,3) V(1,4)/V(3,4);

V(2,1)/V(3,1) V(2,2)/V(3,2) V(2,3)/V(3,3) V(2,4)/V(3,4);

V(3,1)/V(3,1) V(3,2)/V(3,2) V(3,3)/V(3,3) V(3,4)/V(3,4);

V(4,1)/V(3,1) V(4,2)/V(3,2) V(4,3)/V(3,3) V(4,4)/V(3,4)];

% tetaˆ-1*A*teta

Q=inv(phi)*A*phi;

% tetaˆ-1*B

b=inv(phi)*B;

% eigenvalues

s1=Q(1,1);

s2=Q(2,2);

s3=Q(3,3); % = -s1

s4=Q(4,4); % = -s2

%% Declare vectors to hold time series results

TT=500; % total time in seconds

del=0.1; % time interval and time vector

A0=1; % amplitude of input signal

w=2.4; % frequency of input signal in rad/s

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta*wn1*tm).*sin(w*tm);

% assumed force from t0 to -infinity

Ppi=A0*exp(-eta*wn1*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];
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temp = [fliplr(Pmi) wr Ppi];

wt=hilbert(temp);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

% figure(1)

% plot([ttt],[temp])

%% ODE45 integration

wf=flip(wa);

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1,Q1] = ode45(@(t,y)myode(t,y,s1,b,wf,ttt),tspan,y0);

Qrev1 = interp1(T1,Q1,ttt,'spline');

qvals1 = flip(Qrev1);

figure(2)

plot(ttt,qvals1(:,1))

figure(3)

plot(ttt,qvals1(:,2))

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2,Q2] = ode45(@(t,y)myode2(t,y,s2,b,wf,ttt),tspan,y0);

Qrev2 = interp1(T2,Q2,ttt,'spline');

qvals2 = flip(Qrev2);

figure(4)

plot(ttt,qvals2(:,1))

figure(5)

plot(ttt,qvals2(:,2))

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3,Q3] = ode45(@(t,y)myode3(t,y,s3,b,wa,ttt),tspan,y0);

qvals3 = interp1(T3,Q3,ttt,'spline');

figure(6)

plot(ttt,qvals3(:,1))

figure(7)

plot(ttt,qvals3(:,2))

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4,Q4] = ode45(@(t,y)myode4(t,y,s4,b,wa,ttt),tspan,y0);

qvals4 = interp1(T4,Q4,ttt,'spline');

figure(8)
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plot(ttt,qvals4(:,1))

figure(9)

plot(ttt,qvals4(:,2))

x = phi*[(qvals1(:,1)+(1i*qvals1(:,2)))';

(qvals2(:,1)+(1i*qvals2(:,2)))';

(qvals3(:,1)+(1i*qvals3(:,2)))';

(qvals4(:,1)+(1i*qvals4(:,2)))'];

figure(10)

plot(tt,real(x(3,n:(2*n)-1)))

title('x(t)')

%saveas(gcf,'MDOF x(t) w8.fig')

%% Functions

function ydot = myode(t,y,s1,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s1)*y(1)+imag(s1)*y(2)-real(b(1))*war+imag(b(1))*wai;

ydot(2)=-real(s1)*y(2)-imag(s1)*y(1)-real(b(1))*wai-imag(b(1))*war;

end

function ydot = myode2(t,y,s2,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s2)*y(1)+imag(s2)*y(2)-real(b(2))*war+imag(b(2))*wai;

ydot(2)=-real(s2)*y(2)-imag(s2)*y(1)-real(b(2))*wai-imag(b(2))*war;

end

function ydot = myode3(t,y,s3,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s3)*y(1)-imag(s3)*y(2)+real(b(3))*war-imag(b(3))*wai;

ydot(2)=real(s3)*y(2)+imag(s3)*y(1)+real(b(3))*wai+imag(b(3))*war;

end

function ydot = myode4(t,y,s4,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s4)*y(1)-imag(s4)*y(2)+real(b(4))*war-imag(b(4))*wai;

ydot(2)=real(s4)*y(2)+imag(s4)*y(1)+real(b(4))*wai+imag(b(4))*war;

end
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time domain analysis of a SDOF

structure equipped with TIhD and

TMhDI

clear all

close all

clc

%% Parameters

% Structural mass

m=1;

% Properties of rubber bearing/hysteretic damper

wn=2*pi*0.05; % 0.05 is the first natural frequency (fn) in Hz unit

fn=wn/(2*pi); % Hz

k=wnˆ2*m;

% w=0:0.01:70;

% f=w/(2*pi);

%% Properties of the TID

% bd TID=0.9;

% mu TID=bd TID/m;

% kd TID=0.035;

% zeta=sqrt(3*mu TID/(8*(1+mu TID)));

% cd TID=2*zeta*sqrt(kd TID/bd TID)*bd TID;

b TID=0.1;

mu TID=b TID/m;

La TID=11.5474;

zeta TID=0.0171;

kd TID=k/La TID;

cd TID=zeta TID*2*m*sqrt(k/m);
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%% Properties of the TMDI

b TMDI=b TID;

mu TMDI=b TMDI/m;

La TMDI=10.9;

kd TMDI=k/La TMDI;

cd TMDI=cd TID;

%% Properties of the TIhD

% b TIhD=bd TID;

% kd TIhD=0.0325;

% eta TIhD=cd TID*wn/kd TID;

% sh TIhD=eta TIhD*kd TIhD;

b TIhD=b TID;

La TIhD=11.5474;

kd TIhD=k/La TIhD;

eta TIhD=0.3848;

sh TIhD=eta TIhD*kd TIhD;

%% Properties of the TMhDI

b TMhDI=b TID;

La TMhDI=10.9;

kd TMhDI=k/La TMhDI;

eta TMhDI=eta TIhD;

sh TMhDI=eta TMhDI*kd TMhDI;

%% TMDI and TMhDI parameters

md=0.05*b TID;

%% calculation for TIhD (book 6 page 70)

A TIhD=[0 1 0 0;

(-k/m) 0 (-kd TIhD/m)*(1+i*eta TIhD) 0;

0 0 0 1;

(-k/m) 0 ((-kd TIhD/m)*(1+i*eta TIhD)

-(kd TIhD/b TIhD)*(1+i*eta TIhD)) 0 ];

B TIhD=[0;(k+kd TIhD*(1+i*eta TIhD))/m;

0;((k+kd TIhD*(1+i*eta TIhD))/m)

+((kd TIhD*(1+i*eta TIhD))/b TIhD)];

% base excitation (acceleration)

% eigenvectors

[V,D] = eig(A TIhD);

%phi=V;

phi=[V(1,1)/V(1,1) V(1,2)/V(1,2) V(1,3)/V(1,3) V(1,4)/V(1,4);

V(2,1)/V(1,1) V(2,2)/V(1,2) V(2,3)/V(1,3) V(2,4)/V(1,4);

V(3,1)/V(1,1) V(3,2)/V(1,2) V(3,3)/V(1,3) V(3,4)/V(1,4);

V(4,1)/V(1,1) V(4,2)/V(1,2) V(4,3)/V(1,3) V(4,4)/V(1,4)];
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% tetaˆ-1*A*teta

Q=inv(phi)*A TIhD*phi;

% tetaˆ-1*B

b=inv(phi)*B TIhD;

% eigenvalues

s1=Q(1,1);

s2=Q(2,2);

s3=Q(3,3); % = -s1

s4=Q(4,4); % = -s2

%% calculation (book 5 page 52) for TMhDI

A TMhDI=[0 1 0 0;

(k*(md+b TMhDI)/((b TMhDIˆ2)-(m+b TMhDI)*(md+b TMhDI))) 0

((b TMhDI*kd TMhDI)+(i*sh TMhDI*b TMhDI))/((b TMhDIˆ2)

-(m+b TMhDI)*(md+b TMhDI)) 0;

0 0 0 1;

(-(k*b TMhDI))/((m+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2) 0

(-kd TMhDI*(m+b TMhDI)

-(i*sh TMhDI*(m+b TMhDI)))/((m+b TMhDI)*(md+b TMhDI)

-b TMhDIˆ2) 0 ];

B TMhDI=[0;((-k*(md+b TMhDI))-(b TMhDI*kd TMhDI)

-(i*sh TMhDI*b TMhDI))/((b TMhDIˆ2)-(m+b TMhDI)*(md+b TMhDI));

0;(k*b TMhDI+kd TMhDI*(m+b TMhDI)

+i*sh TMhDI*(m+b TMhDI))/((m+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2)];

% base excitation (acceleration)

% eigenvectors

[V TMhDI,D TMhDI] = eig(A TMhDI);

phi TMhDI=[V TMhDI(1,1)/V TMhDI(1,1) V TMhDI(1,2)/V TMhDI(1,2)

V TMhDI(1,3)/V TMhDI(1,3) V TMhDI(1,4)/V TMhDI(1,4);

V TMhDI(2,1)/V TMhDI(1,1) V TMhDI(2,2)/V TMhDI(1,2)

V TMhDI(2,3)/V TMhDI(1,3) V TMhDI(2,4)/V TMhDI(1,4);

V TMhDI(3,1)/V TMhDI(1,1) V TMhDI(3,2)/V TMhDI(1,2)

V TMhDI(3,3)/V TMhDI(1,3) V TMhDI(3,4)/V TMhDI(1,4);

V TMhDI(4,1)/V TMhDI(1,1) V TMhDI(4,2)/V TMhDI(1,2)

V TMhDI(4,3)/V TMhDI(1,3) V TMhDI(4,4)/V TMhDI(1,4)];

% tetaˆ-1*A*teta

Q md=inv(phi TMhDI)*A TMhDI*phi TMhDI;

% tetaˆ-1*B

b md=inv(phi TMhDI)*B TMhDI;

% eigenvalues

s1 md=Q md(1,1);

s2 md=Q md(2,2);

s3 md=Q md(3,3);

s4 md=Q md(4,4);
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%% Declare vectors to hold time series results

TT=500; % total time in seconds

del=0.01; % time interval and time vector

A0=1; % amplitude of input signal

f=0.05; % frequency of input signal in Hz

w=2*pi*f; % frequency of input signal in rad/s

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

rt=A0*sin(w*tt);

dot rt=w*A0*cos(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta TIhD*wn*tm).*sin(w*tm);

% assumed force from t0 to -infinity

Ppi=A0*exp(-eta TIhD*wn*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];

temp = [fliplr(Pmi) wr Ppi];

temp1 = [fliplr(Pmi) dot rt Ppi];

wt=hilbert(temp);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

% figure(1)

% plot([ttt],[temp])

%% ODE45 integration TIhD

wf=flip(wa);
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% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1,Q1] = ode45(@(t,y)myode(t,y,s1,b,wf,ttt),tspan,y0);

Qrev1 = interp1(T1,Q1,ttt,'spline');

qvals1 = flip(Qrev1);

figure(2)

plot(ttt,qvals1(:,1))

figure(3)

plot(ttt,qvals1(:,2))

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2,Q2] = ode45(@(t,y)myode2(t,y,s2,b,wf,ttt),tspan,y0);

Qrev2 = interp1(T2,Q2,ttt,'spline');

qvals2 = flip(Qrev2);

figure(4)

plot(ttt,qvals2(:,1))

figure(5)

plot(ttt,qvals2(:,2))

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3,Q3] = ode45(@(t,y)myode3(t,y,s3,b,wa,ttt),tspan,y0);

qvals3 = interp1(T3,Q3,ttt,'spline');

figure(6)

plot(ttt,qvals3(:,1))

figure(7)

plot(ttt,qvals3(:,2))

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4,Q4] = ode45(@(t,y)myode4(t,y,s4,b,wa,ttt),tspan,y0);

qvals4 = interp1(T4,Q4,ttt,'spline');

figure(8)

plot(ttt,qvals4(:,1))

figure(9)

plot(ttt,qvals4(:,2))

x = phi*[(qvals1(:,1)+(1i*qvals1(:,2)))';

(qvals2(:,1)+(1i*qvals2(:,2)))';

(qvals3(:,1)+(1i*qvals3(:,2)))';

(qvals4(:,1)+(1i*qvals4(:,2)))'];
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%% ODE45 integration TMhDI

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1 md,Q1 md] = ode45(@(t,y)myode md(t,y,s1 md,b md,wf,ttt),tspan,y0);

Qrev1 md = interp1(T1 md,Q1 md,ttt,'spline');

qvals1 md = flip(Qrev1 md);

% ode45 integration backwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2 md,Q2 md] = ode45(@(t,y)myode2 md(t,y,s2 md,b md,wf,ttt),tspan,y0);

Qrev2 md = interp1(T2 md,Q2 md,ttt,'spline');

qvals2 md = flip(Qrev2 md);

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3 md,Q3 md] = ode45(@(t,y)myode3 md(t,y,s3 md,b md,wa,ttt),tspan,y0);

qvals3 md = interp1(T3 md,Q3 md,ttt,'spline');

% ode45 integration forwards

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4 md,Q4 md] = ode45(@(t,y)myode4 md(t,y,s4 md,b md,wa,ttt),tspan,y0);

qvals4 md = interp1(T4 md,Q4 md,ttt,'spline');

x md = phi TMhDI*[(qvals1 md(:,1)+(1i*qvals1 md(:,2)))';

(qvals2 md(:,1)+(1i*qvals2 md(:,2)))';

(qvals3 md(:,1)+(1i*qvals3 md(:,2)))';

(qvals4 md(:,1)+(1i*qvals4 md(:,2)))'];

figure (10)

plot(tt,real(x(1,n:(2*n)-1)),':r','Linewidth',1.5)

hold on

plot(ttt,real(x md(1,:)),'b','Linewidth',1.5)

%% TID

t = ttt;

tdat = t;

y0 = [0;0;0;0];

tspan =[t(1):ht:t(end)];

[TR,ZR] = ode45(@(t,y)New fun SDOF Ceq(t,y,wn,kd TID,cd TID,

m,b TID,tdat,temp,temp1),tspan,y0);

%% TMDI

y0 = [0;0;0;0];

tspan =[t(1):ht:t(end)];
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[TR md,ZR md] = ode45(@(t,y)New fun SDOF Ceq md(t,y,kd TMDI,cd TMDI,

m,k,md,b TMDI,tdat,temp,temp1),tspan,y0);

%% plot

figure(11)

plot(t,ZR(:,1),'--k','Linewidth',1.5)

hold on

plot(ttt,real(x(1,:)),':r','Linewidth',1.5)

hold on

plot(t,ZR md(:,1),'g','Linewidth',1.5)

hold on

plot(ttt,real(x md(1,:)),'b','Linewidth',1.5)

grid on

% yticks([-2e-3 -1e-3 0 1e-3 2e-3])

% axis([240 300 -2e-3 2e-3]);

yticks([-5 -4 -3 -2 -1 0 1 2 3 4 5])

axis([0 300 -5 5]);

i=legend('TID','TIhD','TMDI','TMhDI');

j=xlabel('time (s)');

ij=ylabel('displacement, X (cm)');

set(i,'Interpreter','Latex','FontSize',13);

set(j,'Interpreter','Latex','FontSize',17);

set(ij,'Interpreter','Latex','FontSize',17);

x01=10;

y01=10;

width=420;

height=220;

set(gcf,'position',[x01,y01,width,height]);

abc=ZR(:,1);

def=ZR md(:,1);

ghi=real(x(1,:));

jkl=real(x md(1,:));

axes('position',[0.585 0.25 0.3 0.2]);

box on

index= 200<TR & TR<300;

plot(TR(index),abc(index),'--k','Linewidth',1.5)

hold on

plot(TR(index),ghi(index),':r','Linewidth',1.5)

hold on

plot(TR(index),def(index),'g','Linewidth',1.5)

hold on

plot(TR(index),jkl(index),'b','Linewidth',1.5)

grid on

axis([227 231 3.8 4.2]);
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%saveas(gcf,'SDOF HIDs 005Hz','epsc');

%saveas(gcf,'SDOF HIDs 30wn','epsc');

%% Functions

%% TIhD

function ydot = myode(t,y,s1,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s1)*y(1)+imag(s1)*y(2)-real(b(1))*war+imag(b(1))*wai;

ydot(2)=-real(s1)*y(2)-imag(s1)*y(1)-real(b(1))*wai-imag(b(1))*war;

end

function ydot = myode2(t,y,s2,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s2)*y(1)+imag(s2)*y(2)-real(b(2))*war+imag(b(2))*wai;

ydot(2)=-real(s2)*y(2)-imag(s2)*y(1)-real(b(2))*wai-imag(b(2))*war;

end

function ydot = myode3(t,y,s3,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s3)*y(1)-imag(s3)*y(2)+real(b(3))*war-imag(b(3))*wai;

ydot(2)=real(s3)*y(2)+imag(s3)*y(1)+real(b(3))*wai+imag(b(3))*war;

end

function ydot = myode4(t,y,s4,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s4)*y(1)-imag(s4)*y(2)+real(b(4))*war-imag(b(4))*wai;

ydot(2)=real(s4)*y(2)+imag(s4)*y(1)+real(b(4))*wai+imag(b(4))*war;

end

%% TMhDI

function ydot = myode md(t,y,s1 md,b md,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s1 md)*y(1)+imag(s1 md)*y(2)

-real(b md(1))*war+imag(b md(1))*wai;

ydot(2)=-real(s1 md)*y(2)-imag(s1 md)*y(1)

-real(b md(1))*wai-imag(b md(1))*war;

end
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function ydot = myode2 md(t,y,s2 md,b md,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s2 md)*y(1)+imag(s2 md)*y(2)

-real(b md(2))*war+imag(b md(2))*wai;

ydot(2)=-real(s2 md)*y(2)-imag(s2 md)*y(1)

-real(b md(2))*wai-imag(b md(2))*war;

end

function ydot = myode3 md(t,y,s3 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s3 md)*y(1)-imag(s3 md)*y(2)

+real(b md(3))*war-imag(b md(3))*wai;

ydot(2)=real(s3 md)*y(2)+imag(s3 md)*y(1)

+real(b md(3))*wai+imag(b md(3))*war;

end

function ydot = myode4 md(t,y,s4 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s4 md)*y(1)-imag(s4 md)*y(2)

+real(b md(4))*war-imag(b md(4))*wai;

ydot(2)=real(s4 md)*y(2)+imag(s4 md)*y(1)

+real(b md(4))*wai+imag(b md(4))*war;

end

%% TID

function ydot = New fun SDOF Ceq(t,y,wn,kd TID,cd TID,

m,b TID,tdat,temp,temp1)

temp = interp1(tdat,temp,t);

temp1 = interp1(tdat,temp1,t);

ydot = zeros(4,1);

ydot(1)=y(2);

ydot(2)=-(wn)ˆ2*(y(1)-temp)-(kd TID/m)*(y(3)-temp)-(cd TID/m)*(y(4)-temp1);

ydot(3)=y(4);

ydot(4)=-(wn)ˆ2*(y(1)-temp)-(kd TID/m)*(y(3)-temp)-(cd TID/m)*(y(4)-temp1)-

(kd TID/b TID)*(y(3)-temp)-(cd TID/b TID)*(y(4)-temp1);

end

%% TMDI
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function ydot = New fun SDOF Ceq md(t,y,kd TMDI,cd TMDI,

m,k,md,b TMDI,tdat,temp,temp1)

temp = interp1(tdat,temp,t);

temp1 = interp1(tdat,temp1,t);

ydot = zeros(4,1);

% for base excitation (book 5 page 36)

ydot(1)=y(2); %dot x(t)

ydot(2)=((b TMDI*cd TMDI*(y(4)-temp1))+(b TMDI*kd TMDI*(y(3)-temp))+

(k*(md+b TMDI)*(y(1)-temp)))/(b TMDIˆ2-(m+b TMDI)*(md+b TMDI));

%ddot x(t)

ydot(3)=y(4); %dot d(t)

ydot(4)=(-(cd TMDI*(m+b TMDI)*(y(4)-temp1))-(kd TMDI*(m+b TMDI)*(y(3)

-temp))-(k*b TMDI*(y(1)-temp)))/((md+b TMDI)*(m+b TMDI)-b TMDIˆ2);

%ddot d(t)

end
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time domain analysis of a MDOF

structure equipped with TIhD and

TMhDI

clear all

close all

clc

%% Parameters

% Main structure parameters

m1=1; m2=1; m3=1; % ton = kNsˆ2/m

k1=1500; k2=1500; k3=1500; % kN/m

fn1=2.7; %Hz

wn1rad=2*pi*fn1; %rad/s

fn2=7.8; %Hz

fn3=11.1; %Hz

%% Properties of the TID

b TID=0.48;

cd TID=2.5;

kd TID=138.6;

%% Properties of the TIhD

b TIhD=b TID;

kd TIhD=138.6; % cd in kNs/m

kh=kd TIhD;

eta TIhD=cd TID*(2*pi*fn1)/kd TIhD;

sh TIhD=eta TIhD*kh;

%% calculation TIhD (book 4 page 154)

A= [0 1 0 0 0 0 0 0;

(-k1-k2/m1) 0 (k2/m1) 0 0 0 -kd TIhD/m1-(i*sh TIhD/m1) 0;

0 0 0 1 0 0 0 0;
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(k2/m2) 0 -k2/m2-k3/m2 0 k3/m2 0 0 0;

0 0 0 0 0 1 0 0;

0 0 k3/m3 0 -k3/m3 0 0 0;

0 0 0 0 0 0 0 1;

-k1/m1-k2/m1 0 k2/m1 0 0 0 (-kd TIhD/m1-(i*sh TIhD/m1)

-kd TIhD/b TIhD-(i*sh TIhD/b TIhD)) 0];

B=[0;k1/m1+kd TIhD/m1+(i*sh TIhD/m1);

0;0;0;0;0;

(k1/m1+kd TIhD/m1+(i*sh TIhD/m1)+kd TIhD/b TIhD+(i*sh TIhD/b TIhD))];

% base excitation (acceleration)

% eigenvectors

[V,D] = eig(A);

%phi=V;

phi=[V(1,1)/V(5,1) V(1,2)/V(5,2) V(1,3)/V(5,3) V(1,4)/V(5,4)

V(1,5)/V(5,5) V(1,6)/V(5,6) V(1,7)/V(5,7) V(1,8)/V(5,8);

V(2,1)/V(5,1) V(2,2)/V(5,2) V(2,3)/V(5,3) V(2,4)/V(5,4)

V(2,5)/V(5,5) V(2,6)/V(5,6) V(2,7)/V(5,7) V(2,8)/V(5,8);

V(3,1)/V(5,1) V(3,2)/V(5,2) V(3,3)/V(5,3) V(3,4)/V(5,4)

V(3,5)/V(5,5) V(3,6)/V(5,6) V(3,7)/V(5,7) V(3,8)/V(5,8);

V(4,1)/V(5,1) V(4,2)/V(5,2) V(4,3)/V(5,3) V(4,4)/V(5,4)

V(4,5)/V(5,5) V(4,6)/V(5,6) V(4,7)/V(5,7) V(4,8)/V(5,8);

V(5,1)/V(5,1) V(5,2)/V(5,2) V(5,3)/V(5,3) V(5,4)/V(5,4)

V(5,5)/V(5,5) V(5,6)/V(5,6) V(5,7)/V(5,7) V(5,8)/V(5,8);

V(6,1)/V(5,1) V(6,2)/V(5,2) V(6,3)/V(5,3) V(6,4)/V(5,4)

V(6,5)/V(5,5) V(6,6)/V(5,6) V(6,7)/V(5,7) V(6,8)/V(5,8);

V(7,1)/V(5,1) V(7,2)/V(5,2) V(7,3)/V(5,3) V(7,4)/V(5,4)

V(7,5)/V(5,5) V(7,6)/V(5,6) V(7,7)/V(5,7) V(7,8)/V(5,8);

V(8,1)/V(5,1) V(8,2)/V(5,2) V(8,3)/V(5,3) V(8,4)/V(5,4)

V(8,5)/V(5,5) V(8,6)/V(5,6) V(8,7)/V(5,7) V(8,8)/V(5,8)];

% tetaˆ-1*A*teta

Q=inv(phi)*A*phi;

% tetaˆ-1*B

b=inv(phi)*B;

% eigenvalues

s1=Q(1,1);

s2=Q(2,2); % =-s1

s3=Q(3,3);

s4=Q(4,4); % =-s3

s5=Q(5,5);

s6=Q(6,6);

s7=Q(7,7); % =-s5

s8=Q(8,8); % =-s6

%% Declare vectors to hold time series results
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TT=20; % total time in seconds

del=0.001; % time interval and time vector

A0=1; % amplitude of input signal

f=fn2;

w=2*pi*f; % frequency of input signal in rad/s

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

dot rt=w*A0*cos(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta TIhD*wn1rad*tm).*sin(w*tm);

% assumed force from t0 to -infinity

Ppi=A0*exp(-eta TIhD*wn1rad*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];

temp = [fliplr(Pmi) wr Ppi];

temp1 = [fliplr(Pmi) dot rt Ppi];

wt=hilbert(temp);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

% figure(1)

% plot([ttt],[temp])

%% ODE45 integration TIhD

wf=flip(wa);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];
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[T1,Q1] = ode45(@(t,y)myode1(t,y,s1,b,wf,ttt),tspan,y0);

Qrev1 = interp1(T1,Q1,ttt,'spline');

qvals1 = flip(Qrev1);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2,Q2] = ode45(@(t,y)myode2(t,y,s2,b,wa,ttt),tspan,y0);

qvals2 = interp1(T2,Q2,ttt,'spline');

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3,Q3] = ode45(@(t,y)myode3(t,y,s3,b,wf,ttt),tspan,y0);

Qrev3 = interp1(T3,Q3,ttt,'spline');

qvals3 = flip(Qrev3);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4,Q4] = ode45(@(t,y)myode4(t,y,s4,b,wa,ttt),tspan,y0);

qvals4 = interp1(T4,Q4,ttt,'spline');

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T5,Q5] = ode45(@(t,y)myode5(t,y,s5,b,wf,ttt),tspan,y0);

Qrev5 = interp1(T5,Q5,ttt,'spline');

qvals5 = flip(Qrev5);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T6,Q6] = ode45(@(t,y)myode6(t,y,s6,b,wf,ttt),tspan,y0);

Qrev6 = interp1(T6,Q6,ttt,'spline');

qvals6 = flip(Qrev6);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T7,Q7] = ode45(@(t,y)myode7(t,y,s7,b,wa,ttt),tspan,y0);

qvals7 = interp1(T7,Q7,ttt,'spline');

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T8,Q8] = ode45(@(t,y)myode8(t,y,s8,b,wa,ttt),tspan,y0);

qvals8 = interp1(T8,Q8,ttt,'spline');
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x = phi*[(qvals1(:,1)+(1i*qvals1(:,2)))';

(qvals2(:,1)+(1i*qvals2(:,2)))';

(qvals3(:,1)+(1i*qvals3(:,2)))';

(qvals4(:,1)+(1i*qvals4(:,2)))';

(qvals5(:,1)+(1i*qvals5(:,2)))';

(qvals6(:,1)+(1i*qvals6(:,2)))';

(qvals7(:,1)+(1i*qvals7(:,2)))';

(qvals8(:,1)+(1i*qvals8(:,2)))'];

%% ode45 TID

t = ttt;

tdat = t;

y0 = [0;0;0;0;0;0;0;0];

tspan =[t(1):ht:t(end)];

[TR,ZR] = ode45(@(t,y)New fun MDOF Ceq(t,y,m1,m2,m3,k1,k2,k3,

kd TID,cd TID,b TID,tdat,temp,temp1),tspan,y0);

%% plot

figure(18)

plot(ttt,real(x(5,:)),'-r','Linewidth',1.5)

hold on

plot(t,ZR(:,5),'-.b','Linewidth',1.5)

grid on

i=legend({'current method','equivalent viscous damping'},
'Orientation','horizontal');

j=xlabel(['time (s)']);

ij=ylabel(['Top displacement, $x(t)$']);

set(i,'Interpreter','Latex','FontSize',9);

set(j,'Interpreter','Latex','FontSize',17);

set(ij,'Interpreter','Latex','FontSize',17);

%axis([0 20 -10 10]); % for f=fn1

axis([0 20 -30 30]); % for f=fn2

x01=10;

y01=10;

width=420;

height=220;

set(gcf,'position',[x01,y01,width,height]);

abc=real(x(5,:));

def=ZR(:,5);

axes('position',[0.585 0.25 0.3 0.2]);

box on

index= 0<ttt & ttt<20;
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index1= 0<t & t<20;

plot(ttt(index),abc(index),'-r','Linewidth',1.5)

hold on

plot(ttt(index),def(index),'-.b','Linewidth',1.5)

grid on

%axis([7.54 7.63 6.0 7.2]); % for f=fn1

axis([16.85 17.2 -30 30]); % for f=fn2

saveas(gcf,'MDOF TIDvsTIhD fn2','epsc');

%% Functions TIhD

function ydot = myode1(t,y,s1,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s1)*y(1)+imag(s1)*y(2)-real(b(1))*war+imag(b(1))*wai;

ydot(2)=-real(s1)*y(2)-imag(s1)*y(1)-real(b(1))*wai-imag(b(1))*war;

end

function ydot = myode2(t,y,s2,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s2)*y(1)-imag(s2)*y(2)+real(b(2))*war-imag(b(2))*wai;

ydot(2)=real(s2)*y(2)+imag(s2)*y(1)+real(b(2))*wai+imag(b(2))*war;

end

function ydot = myode3(t,y,s3,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s3)*y(1)+imag(s3)*y(2)-real(b(3))*war+imag(b(3))*wai;

ydot(2)=-real(s3)*y(2)-imag(s3)*y(1)-real(b(3))*wai-imag(b(3))*war;

end

function ydot = myode4(t,y,s4,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s4)*y(1)-imag(s4)*y(2)+real(b(4))*war-imag(b(4))*wai;

ydot(2)=real(s4)*y(2)+imag(s4)*y(1)+real(b(4))*wai+imag(b(4))*war;

end

function ydot = myode5(t,y,s5,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);
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ydot = zeros(2,1);

ydot(1)=-real(s5)*y(1)+imag(s5)*y(2)-real(b(5))*war+imag(b(5))*wai;

ydot(2)=-real(s5)*y(2)-imag(s5)*y(1)-real(b(5))*wai-imag(b(5))*war;

end

function ydot = myode6(t,y,s6,b,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s6)*y(1)+imag(s6)*y(2)-real(b(6))*war+imag(b(6))*wai;

ydot(2)=-real(s6)*y(2)-imag(s6)*y(1)-real(b(6))*wai-imag(b(6))*war;

end

function ydot = myode7(t,y,s7,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s7)*y(1)-imag(s7)*y(2)+real(b(7))*war-imag(b(7))*wai;

ydot(2)=real(s7)*y(2)+imag(s7)*y(1)+real(b(7))*wai+imag(b(7))*war;

end

function ydot = myode8(t,y,s8,b,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s8)*y(1)-imag(s8)*y(2)+real(b(8))*war-imag(b(8))*wai;

ydot(2)=real(s8)*y(2)+imag(s8)*y(1)+real(b(8))*wai+imag(b(8))*war;

end

%% function TID

function ydot = New fun MDOF Ceq(t,y,m1,m2,m3,k1,k2,k3,kd TID,

cd TID,b TID,tdat,temp,temp1)

temp = interp1(tdat,temp,t);

temp1 = interp1(tdat,temp1,t);

ydot = zeros(8,1);

% for base excitation (book 4 page 156)

ydot(1)=y(2);

ydot(2)=(-k1/m1)*(y(1)-temp)-(kd TID/m1)*(y(7)-temp)

-(cd TID/m1)*(y(8)-temp1)+(k2/m1)*(y(3)-y(1));

ydot(3)=y(4);

ydot(4)=(-k2/m2)*(y(3)-y(1))+(k3/m2)*(y(5)-y(3));

ydot(5)=y(6);

ydot(6)=(-k3/m3)*(y(5)-y(3));

ydot(7)=y(8);

ydot(8)=(-k1/m1)*(y(1)-temp)-(kd TID/m1)*(y(7)-temp)

-(cd TID/m1)*(y(8)-temp1)+(k2/m1)*(y(3)-y(1))
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-(kd TID/b TID)*(y(7)-temp)-(cd TID/b TID)*(y(8)-temp1);

end
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Appendix E: MATLAB code for

time domain analysis of a MDOF

structure equipped with a TMhDI

with a grounded inerter

clear all

close all

clc

%% Parameters

b=0.08; % width of columns (m)

h=0.01; % thickness of columns (m)

l=0.78; % storey height (m)

bolts and plates=12.4; %kg

storey=21.05; %kg

column=11.55; %kg

% Structural properties

m1=storey+(bolts and plates/4)+9; % 7kg is the mass of the two gel dampers

m2=storey+(bolts and plates/4);

m3=storey+(bolts and plates/4);

E=200e9;

I=4*(1/12)*(b)*(h)ˆ3; %

k1=12.5*(E*I/lˆ3);

k2=15*(E*I/lˆ3);

k3=18.5*(E*I/lˆ3);

%% Properties of TMhDI

md=1+9;

b TMhDI=16;

kh TMhDI=29000;

eta TMhDI=0.35;

sh TMhDI=eta TMhDI*kh TMhDI;
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wn1=5.5261;%35%2*pi*5.5261; % first natural freq in rad/s

w input=30; % % frequency of input signal in rad/s

%% calculation TMhDI - nongrounded (book 5 page 52)

% A TMhDI= [0 1 0 0 0 0 0 0;

% ((k1+k2)*(md+b TMhDI)/((b TMhDIˆ2)-(m1+b TMhDI)*(md+b TMhDI))) 0

% (-k2*(md+b TMhDI)/((b TMhDIˆ2)-(m1+b TMhDI)*(md+b TMhDI)))

% 0 0 0 ((b TMhDI*kh TMhDI)+(i*sh TMhDI*b TMhDI))/((b TMhDIˆ2)

% -(m1+b TMhDI)*(md+b TMhDI)) 0;

% 0 0 0 1 0 0 0 0;

% (k2/m2) 0 -k2/m2-k3/m2 0 k3/m2 0 0 0;

% 0 0 0 0 0 1 0 0;

% 0 0 k3/m3 0 -k3/m3 0 0 0;

% 0 0 0 0 0 0 0 1;

% ((-k2*b TMhDI)-(k1*b TMhDI))/((m1+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2) 0

% k2*b TMhDI/((m1+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2)

% 0 0 0 (-kh TMhDI*(m1+b TMhDI)

% -(i*sh TMhDI*(m1+b TMhDI)))/((m1+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2) 0];

%

% B TMhDI=[0;((-k1*(md+b TMhDI))-(b TMhDI*kh TMhDI)

% -(i*sh TMhDI*b TMhDI))/((b TMhDIˆ2)-(m1+b TMhDI)*(md+b TMhDI));

% 0;0;0;0;0;

% (k1*b TMhDI+kh TMhDI*(m1+b TMhDI)

% +i*sh TMhDI*(m1+b TMhDI))/((m1+b TMhDI)*(md+b TMhDI)-b TMhDIˆ2)];

% base excitation (acceleration)

% %% calculation TMhDI - grounded (book 6 page 154)

A TMhDI= [0 1 0 0 0 0 0 0;

((-k1-k2-kh TMhDI-(i*sh TMhDI))/m1) 0 (k2/m1)

0 0 0 (kh TMhDI+(i*sh TMhDI))/m1 0;

0 0 0 1 0 0 0 0;

(k2/m2) 0 (-k2-k3)/m2 0 k3/m2 0 0 0;

0 0 0 0 0 1 0 0;

0 0 k3/m3 0 -k3/m3 0 0 0;

0 0 0 0 0 0 0 1;

(kh TMhDI+(i*sh TMhDI))/(md+b TMhDI)

0 0 0 0 0 (-kh TMhDI-(i*sh TMhDI))/(md+b TMhDI) 0];

B TMhDI=[0;(k1/m1);0;0;0;0;0;0]; % base excitation (displacement)

C TMhDI=[0;0;0;0;0;0;0;(b TMhDI/(md+b TMhDI))];

% base excitation (acceleration)

%%

% eigenvectors

[V TMhDI,D TMhDI] = eig(A TMhDI);

%phi=V;
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phi TMhDI=[V TMhDI(1,1)/V TMhDI(5,1) V TMhDI(1,2)/V TMhDI(5,2)

V TMhDI(1,3)/V TMhDI(5,3) V TMhDI(1,4)/V TMhDI(5,4)

V TMhDI(1,5)/V TMhDI(5,5) V TMhDI(1,6)/V TMhDI(5,6)

V TMhDI(1,7)/V TMhDI(5,7) V TMhDI(1,8)/V TMhDI(5,8);

V TMhDI(2,1)/V TMhDI(5,1) V TMhDI(2,2)/V TMhDI(5,2)

V TMhDI(2,3)/V TMhDI(5,3) V TMhDI(2,4)/V TMhDI(5,4)

V TMhDI(2,5)/V TMhDI(5,5) V TMhDI(2,6)/V TMhDI(5,6)

V TMhDI(2,7)/V TMhDI(5,7) V TMhDI(2,8)/V TMhDI(5,8);

V TMhDI(3,1)/V TMhDI(5,1) V TMhDI(3,2)/V TMhDI(5,2)

V TMhDI(3,3)/V TMhDI(5,3) V TMhDI(3,4)/V TMhDI(5,4)

V TMhDI(3,5)/V TMhDI(5,5) V TMhDI(3,6)/V TMhDI(5,6)

V TMhDI(3,7)/V TMhDI(5,7) V TMhDI(3,8)/V TMhDI(5,8);

V TMhDI(4,1)/V TMhDI(5,1) V TMhDI(4,2)/V TMhDI(5,2)

V TMhDI(4,3)/V TMhDI(5,3) V TMhDI(4,4)/V TMhDI(5,4)

V TMhDI(4,5)/V TMhDI(5,5) V TMhDI(4,6)/V TMhDI(5,6)

V TMhDI(4,7)/V TMhDI(5,7) V TMhDI(4,8)/V TMhDI(5,8);

V TMhDI(5,1)/V TMhDI(5,1) V TMhDI(5,2)/V TMhDI(5,2)

V TMhDI(5,3)/V TMhDI(5,3) V TMhDI(5,4)/V TMhDI(5,4)

V TMhDI(5,5)/V TMhDI(5,5) V TMhDI(5,6)/V TMhDI(5,6)

V TMhDI(5,7)/V TMhDI(5,7) V TMhDI(5,8)/V TMhDI(5,8);

V TMhDI(6,1)/V TMhDI(5,1) V TMhDI(6,2)/V TMhDI(5,2)

V TMhDI(6,3)/V TMhDI(5,3) V TMhDI(6,4)/V TMhDI(5,4)

V TMhDI(6,5)/V TMhDI(5,5) V TMhDI(6,6)/V TMhDI(5,6)

V TMhDI(6,7)/V TMhDI(5,7) V TMhDI(6,8)/V TMhDI(5,8);

V TMhDI(7,1)/V TMhDI(5,1) V TMhDI(7,2)/V TMhDI(5,2)

V TMhDI(7,3)/V TMhDI(5,3) V TMhDI(7,4)/V TMhDI(5,4)

V TMhDI(7,5)/V TMhDI(5,5) V TMhDI(7,6)/V TMhDI(5,6)

V TMhDI(7,7)/V TMhDI(5,7) V TMhDI(7,8)/V TMhDI(5,8);

V TMhDI(8,1)/V TMhDI(5,1) V TMhDI(8,2)/V TMhDI(5,2)

V TMhDI(8,3)/V TMhDI(5,3) V TMhDI(8,4)/V TMhDI(5,4)

V TMhDI(8,5)/V TMhDI(5,5) V TMhDI(8,6)/V TMhDI(5,6)

V TMhDI(8,7)/V TMhDI(5,7) V TMhDI(8,8)/V TMhDI(5,8)];

% tetaˆ-1*A*teta

Q md=inv(phi TMhDI)*A TMhDI*phi TMhDI;

% tetaˆ-1*B

b md=inv(phi TMhDI)*B TMhDI;

c md=inv(phi TMhDI)*C TMhDI;

% eigenvalues

s1 md=Q md(1,1);

s2 md=Q md(2,2); % =-s1

s3 md=Q md(3,3);

s4 md=Q md(4,4); % =-s3

s5 md=Q md(5,5);

s6 md=Q md(6,6);

s7 md=Q md(7,7); % =-s5

s8 md=Q md(8,8); % =-s6
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%% Declare vectors to hold time series results

TT=30; % total time in seconds

del=0.001; % time interval and time vector

w=w input; % frequency of input signal in rad/s

A0=1; % amplitude of input signal

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

wr ddot=(w inputˆ2)*A0*-sin(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta TMhDI*wn1*tm).*sin(w*tm);

% assumed force from t0 to -infinity

Ppi=A0*exp(-eta TMhDI*wn1*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

Pmi ddot=-A0*exp(eta TMhDI*wn1*tm).*-wˆ2.*sin(w*tm);

% assumed force from t0 to -infinity

Ppi ddot=A0*exp(-eta TMhDI*wn1*(tp-tendn)).*-wˆ2.*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];

temp = [fliplr(Pmi) wr Ppi];

temp1= [fliplr(Pmi ddot) wr ddot Ppi ddot];

wt=hilbert(temp);

wt ddot=hilbert(temp1);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

wa ddot=wt ddot;

figure(1)

plot([ttt],[imag(wa ddot)],'b')
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hold on

plot([ttt],[real(wa ddot)],'r')

%% ODE45 integration TMhDI

wf=flip(wa);

wf ddot=flip(wa ddot);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1 md,Q1 md] = ode45(@(t,y)myode1 md(t,y,s1 md,b md,

c md,wf,wf ddot,ttt),tspan,y0);

Qrev1 md = interp1(T1 md,Q1 md,ttt,'spline');

qvals1 md = flip(Qrev1 md);

figure(2)

plot(ttt,qvals1 md(:,1))

figure(3)

plot(ttt,qvals1 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2 md,Q2 md] = ode45(@(t,y)myode2 md(t,y,s2 md,b md,

c md,wa,wa ddot,ttt),tspan,y0);

qvals2 md = interp1(T2 md,Q2 md,ttt,'spline');

figure(4)

plot(ttt,qvals2 md(:,1))

figure(5)

plot(ttt,qvals2 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3 md,Q3 md] = ode45(@(t,y)myode3 md(t,y,s3 md,b md,

c md,wf,wf ddot,ttt),tspan,y0);

Qrev3 md = interp1(T3 md,Q3 md,ttt,'spline');

qvals3 md = flip(Qrev3 md);

figure(6)

plot(ttt,qvals3 md(:,1))

figure(7)

plot(ttt,qvals3 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4 md,Q4 md] = ode45(@(t,y)myode4 md(t,y,s4 md,b md,

c md,wa,wa ddot,ttt),tspan,y0);

qvals4 md = interp1(T4 md,Q4 md,ttt,'spline');

figure(8)
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plot(ttt,qvals4 md(:,1))

figure(9)

plot(ttt,qvals4 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T5 md,Q5 md] = ode45(@(t,y)myode5 md(t,y,s5 md,b md,

c md,wf,wf ddot,ttt),tspan,y0);

Qrev5 md = interp1(T5 md,Q5 md,ttt,'spline');

qvals5 md = flip(Qrev5 md);

figure(10)

plot(ttt,qvals5 md(:,1))

figure(11)

plot(ttt,qvals5 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T6 md,Q6 md] = ode45(@(t,y)myode6 md(t,y,s6 md,b md,

c md,wf,wf ddot,ttt),tspan,y0);

Qrev6 md = interp1(T6 md,Q6 md,ttt,'spline');

qvals6 md = flip(Qrev6 md);

figure(12)

plot(ttt,qvals6 md(:,1))

figure(13)

plot(ttt,qvals6 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T7 md,Q7 md] = ode45(@(t,y)myode7 md(t,y,s7 md,b md,

c md,wa,wa ddot,ttt),tspan,y0);

qvals7 md = interp1(T7 md,Q7 md,ttt,'spline');

figure(14)

plot(ttt,qvals7 md(:,1))

figure(15)

plot(ttt,qvals7 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T8 md,Q8 md] = ode45(@(t,y)myode8 md(t,y,s8 md,b md,

c md,wa,wa ddot,ttt),tspan,y0);

qvals8 md = interp1(T8 md,Q8 md,ttt,'spline');

figure(16)

plot(ttt,qvals8 md(:,1))

figure(17)
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plot(ttt,qvals8 md(:,2))

x md = phi TMhDI*[(qvals1 md(:,1)+(1i*qvals1 md(:,2)))';

(qvals2 md(:,1)+(1i*qvals2 md(:,2)))';

(qvals3 md(:,1)+(1i*qvals3 md(:,2)))';

(qvals4 md(:,1)+(1i*qvals4 md(:,2)))';

(qvals5 md(:,1)+(1i*qvals5 md(:,2)))';

(qvals6 md(:,1)+(1i*qvals6 md(:,2)))';

(qvals7 md(:,1)+(1i*qvals7 md(:,2)))';

(qvals8 md(:,1)+(1i*qvals8 md(:,2)))'];

%% plot

figure(18)

plot(ttt,real(x md(5,:)),'b','Linewidth',1.5)

grid on

i=legend('TMhDI');

j=xlabel('time (s)');

ij=ylabel('displacement, $X 3$ (cm)');

set(i,'Interpreter','Latex','FontSize',13);

set(j,'Interpreter','Latex','FontSize',17);

set(ij,'Interpreter','Latex','FontSize',17);

x01=10;

y01=10;

width=420;

height=220;

set(gcf,'position',[x01,y01,width,height]);

%% Functions TMhDI

function ydot = myode1 md(t,y,s1 md,b md,c md,wf,wf ddot,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

war ddot = interp1(ttt,real(wf ddot),t);

wai ddot = interp1(ttt,imag(wf ddot),t);

ydot = zeros(2,1);

ydot(1)=-real(s1 md)*y(1)+imag(s1 md)*y(2)-real(b md(1))*war

+imag(b md(1))*wai-real(c md(1))*war ddot+imag(c md(1))*wai ddot;

ydot(2)=-real(s1 md)*y(2)-imag(s1 md)*y(1)

-real(b md(1))*wai-imag(b md(1))*war

-real(c md(1))*wai ddot-imag(c md(1))*war ddot;

end

function ydot = myode2 md(t,y,s2 md,b md,c md,wa,wa ddot,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);
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war ddot = interp1(ttt,real(wa ddot),t);

wai ddot = interp1(ttt,imag(wa ddot),t);

ydot = zeros(2,1);

ydot(1)=real(s2 md)*y(1)-imag(s2 md)*y(2)+real(b md(2))*war

-imag(b md(2))*wai+real(c md(2))*war ddot-imag(c md(2))*wai ddot;

ydot(2)=real(s2 md)*y(2)+imag(s2 md)*y(1)

+real(b md(2))*wai+imag(b md(2))*war

+real(c md(2))*wai ddot+imag(c md(2))*war ddot;

end

function ydot = myode3 md(t,y,s3 md,b md,c md,wf,wf ddot,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

war ddot = interp1(ttt,real(wf ddot),t);

wai ddot = interp1(ttt,imag(wf ddot),t);

ydot = zeros(2,1);

ydot(1)=-real(s3 md)*y(1)+imag(s3 md)*y(2)-real(b md(3))*war

+imag(b md(3))*wai-real(c md(3))*war ddot+imag(c md(3))*wai ddot;

ydot(2)=-real(s3 md)*y(2)-imag(s3 md)*y(1)

-real(b md(3))*wai-imag(b md(3))*war

-real(c md(3))*wai ddot-imag(c md(3))*war ddot;

end

function ydot = myode4 md(t,y,s4 md,b md,c md,wa,wa ddot,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

war ddot = interp1(ttt,real(wa ddot),t);

wai ddot = interp1(ttt,imag(wa ddot),t);

ydot = zeros(2,1);

ydot(1)=real(s4 md)*y(1)-imag(s4 md)*y(2)+real(b md(4))*war

-imag(b md(4))*wai+real(c md(4))*war ddot-imag(c md(4))*wai ddot;

ydot(2)=real(s4 md)*y(2)+imag(s4 md)*y(1)

+real(b md(4))*wai+imag(b md(4))*war

+real(c md(4))*wai ddot+imag(c md(4))*war ddot;

end

function ydot = myode5 md(t,y,s5 md,b md,c md,wf,wf ddot,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

war ddot = interp1(ttt,real(wf ddot),t);

wai ddot = interp1(ttt,imag(wf ddot),t);

ydot = zeros(2,1);

ydot(1)=-real(s5 md)*y(1)+imag(s5 md)*y(2)-real(b md(5))*war

+imag(b md(5))*wai-real(c md(5))*war ddot+imag(c md(5))*wai ddot;

ydot(2)=-real(s5 md)*y(2)-imag(s5 md)*y(1)

-real(b md(5))*wai-imag(b md(5))*war

-real(c md(5))*wai ddot-imag(c md(5))*war ddot;

end
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function ydot = myode6 md(t,y,s6 md,b md,c md,wf,wf ddot,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

war ddot = interp1(ttt,real(wf ddot),t);

wai ddot = interp1(ttt,imag(wf ddot),t);

ydot = zeros(2,1);

ydot(1)=-real(s6 md)*y(1)+imag(s6 md)*y(2)-real(b md(6))*war

+imag(b md(6))*wai-real(c md(6))*war ddot+imag(c md(6))*wai ddot;

ydot(2)=-real(s6 md)*y(2)-imag(s6 md)*y(1)

-real(b md(6))*wai-imag(b md(6))*war

-real(c md(6))*wai ddot-imag(c md(6))*war ddot;

end

function ydot = myode7 md(t,y,s7 md,b md,c md,wa,wa ddot,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

war ddot = interp1(ttt,real(wa ddot),t);

wai ddot = interp1(ttt,imag(wa ddot),t);

ydot = zeros(2,1);

ydot(1)=real(s7 md)*y(1)-imag(s7 md)*y(2)+real(b md(7))*war

-imag(b md(7))*wai+real(c md(7))*war ddot-imag(c md(7))*wai ddot;

ydot(2)=real(s7 md)*y(2)+imag(s7 md)*y(1)

+real(b md(7))*wai+imag(b md(7))*war

+real(c md(7))*wai ddot+imag(c md(7))*war ddot;

end

function ydot = myode8 md(t,y,s8 md,b md,c md,wa,wa ddot,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

war ddot = interp1(ttt,real(wa ddot),t);

wai ddot = interp1(ttt,imag(wa ddot),t);

ydot = zeros(2,1);

ydot(1)=real(s8 md)*y(1)-imag(s8 md)*y(2)+real(b md(8))*war

-imag(b md(8))*wai+real(c md(8))*war ddot-imag(c md(8))*wai ddot;

ydot(2)=real(s8 md)*y(2)+imag(s8 md)*y(1)

+real(b md(8))*wai+imag(b md(8))*war

+real(c md(8))*wai ddot+imag(c md(8))*war ddot;

end
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Appendix F: MATLAB code for

time domain analysis of a MDOF

structure equipped with a TVIhD

clear all

close all

clc

%% Host structure parameters

b=0.08; % width of columns (m)

h=0.01; % thickness of columns (m)

l=0.78; % storey height (m)

bolts and plates=12.4; %kg

storey=21.05; %kg

column=11.55; %kg

% Structural properties

m1=storey+(bolts and plates/4)+9; % 9kg is the mass of the two gel dampers

m2=storey+(bolts and plates/4);

m3=storey+(bolts and plates/4);

E=200e9;

I=4*(1/12)*(b)*(h)ˆ3; %

k1=12.5*(E*I/lˆ3);

k2=15*(E*I/lˆ3);

k3=18.5*(E*I/lˆ3);

%% Properties of IVED

bd=33.6000;

cd=353.4755;

kd=35200;

eta=0.5300;

sh=eta*kd;

wn1=5.5261;

w input=152.82; % % frequency of input signal in rad/s
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%% calculation IVED - grounded (book 7 page 11)

A IVED= [0 1 0 0 0 0 0 0;

(-k1-k2)/m1 0 (k2/m1) 0 0 0 (-kd/m1)*(1+i*eta) 0;

0 0 0 1 0 0 0 0;

(k2/m2) 0 (-k2-k3)/m2 0 k3/m2 0 0 0;

0 0 0 0 0 1 0 0;

0 0 k3/m3 0 -k3/m3 0 0 0;

0 0 0 0 0 0 0 1;

(-k1-k2)/m1 (cd/bd) (k2/m1) 0 0 0 (((-kd/m1)*(1+i*eta))

-((kd/bd)*(1+i*eta))) -cd/bd];

B IVED=[0;(k1/m1)+((kd/m1)*(1+i*eta));0;0;0;0;0;

(k1/m1)+(((kd/m1)+(kd/bd))*(1+i*eta))];

% base excitation (displacement)

%%

% eigenvectors

[V IVED,D IVED] = eig(A IVED);

%phi=V;

phi IVED=[V IVED(1,1)/V IVED(5,1) V IVED(1,2)/V IVED(5,2)

V IVED(1,3)/V IVED(5,3) V IVED(1,4)/V IVED(5,4)

V IVED(1,5)/V IVED(5,5) V IVED(1,6)/V IVED(5,6)

V IVED(1,7)/V IVED(5,7) V IVED(1,8)/V IVED(5,8);

V IVED(2,1)/V IVED(5,1) V IVED(2,2)/V IVED(5,2)

V IVED(2,3)/V IVED(5,3) V IVED(2,4)/V IVED(5,4)

V IVED(2,5)/V IVED(5,5) V IVED(2,6)/V IVED(5,6)

V IVED(2,7)/V IVED(5,7) V IVED(2,8)/V IVED(5,8);

V IVED(3,1)/V IVED(5,1) V IVED(3,2)/V IVED(5,2)

V IVED(3,3)/V IVED(5,3) V IVED(3,4)/V IVED(5,4)

V IVED(3,5)/V IVED(5,5) V IVED(3,6)/V IVED(5,6)

V IVED(3,7)/V IVED(5,7) V IVED(3,8)/V IVED(5,8);

V IVED(4,1)/V IVED(5,1) V IVED(4,2)/V IVED(5,2)

V IVED(4,3)/V IVED(5,3) V IVED(4,4)/V IVED(5,4)

V IVED(4,5)/V IVED(5,5) V IVED(4,6)/V IVED(5,6)

V IVED(4,7)/V IVED(5,7) V IVED(4,8)/V IVED(5,8);

V IVED(5,1)/V IVED(5,1) V IVED(5,2)/V IVED(5,2)

V IVED(5,3)/V IVED(5,3) V IVED(5,4)/V IVED(5,4)

V IVED(5,5)/V IVED(5,5) V IVED(5,6)/V IVED(5,6)

V IVED(5,7)/V IVED(5,7) V IVED(5,8)/V IVED(5,8);

V IVED(6,1)/V IVED(5,1) V IVED(6,2)/V IVED(5,2)

V IVED(6,3)/V IVED(5,3) V IVED(6,4)/V IVED(5,4)

V IVED(6,5)/V IVED(5,5) V IVED(6,6)/V IVED(5,6)

V IVED(6,7)/V IVED(5,7) V IVED(6,8)/V IVED(5,8);

V IVED(7,1)/V IVED(5,1) V IVED(7,2)/V IVED(5,2)

V IVED(7,3)/V IVED(5,3) V IVED(7,4)/V IVED(5,4)

V IVED(7,5)/V IVED(5,5) V IVED(7,6)/V IVED(5,6)
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V IVED(7,7)/V IVED(5,7) V IVED(7,8)/V IVED(5,8);

V IVED(8,1)/V IVED(5,1) V IVED(8,2)/V IVED(5,2)

V IVED(8,3)/V IVED(5,3) V IVED(8,4)/V IVED(5,4)

V IVED(8,5)/V IVED(5,5) V IVED(8,6)/V IVED(5,6)

V IVED(8,7)/V IVED(5,7) V IVED(8,8)/V IVED(5,8)];

% tetaˆ-1*A*teta

Q md=inv(phi IVED)*A IVED*phi IVED;

% tetaˆ-1*B

b md=inv(phi IVED)*B IVED;

% eigenvalues

s1 md=Q md(1,1);

s2 md=Q md(2,2); % =-s1

s3 md=Q md(3,3);

s4 md=Q md(4,4); % =-s3

s5 md=Q md(5,5);

s6 md=Q md(6,6);

s7 md=Q md(7,7); % =-s5

s8 md=Q md(8,8); % =-s6

%% Declare vectors to hold time series results

TT=30; % total time in seconds

del=0.0001; % time interval and time vector

w=w input; % frequency of input signal in rad/s

A0=1; % amplitude of input signal

freq = w/(2*pi);

T = 1/freq;

cycle = ceil(TT/T); % round-up number of cycle

tendn = cycle*T; % round-up end time

dt = ceil(T/del);

ht = T/dt;

tt = 0:ht:tendn;

n = numel(tt);

wr=A0*sin(w*tt);

%% construct the hilbert function with zero padding at start and finish

% length=2048;

tm = -ht:-ht:-tendn;

tp = tendn+ht:ht:(2*tendn);

ttt = [fliplr(tm) tt tp];

Pmi=-A0*exp(eta*wn1*tm).*sin(w*tm);

% assumed force from t0 to -infinity
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Ppi=A0*exp(-eta*wn1*(tp-tendn)).*sin(w*(tp-tendn));

% assumed force from tend to +infinity

% pp=zeros(1,length);

% temp=[pp wr pp];

temp = [fliplr(Pmi) wr Ppi];

wt=hilbert(temp);

% now define the analytic forcing function

wa=wt; % wt(length+1:length+npts+1);

%% ODE45 integration IVED

wf=flip(wa);

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T1 md,Q1 md] = ode45(@(t,y)myode1 md(t,y,s1 md,b md,wa,ttt),tspan,y0);

qvals1 md = interp1(T1 md,Q1 md,ttt,'spline');

figure(2)

plot(ttt,qvals1 md(:,1))

figure(3)

plot(ttt,qvals1 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T2 md,Q2 md] = ode45(@(t,y)myode2 md(t,y,s2 md,b md,wf,ttt),tspan,y0);

Qrev2 md = interp1(T2 md,Q2 md,ttt,'spline');

qvals2 md = flip(Qrev2 md);

figure(4)

plot(ttt,qvals2 md(:,1))

figure(5)

plot(ttt,qvals2 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T3 md,Q3 md] = ode45(@(t,y)myode3 md(t,y,s3 md,b md,wa,ttt),tspan,y0);

qvals3 md = interp1(T3 md,Q3 md,ttt,'spline');

figure(6)

plot(ttt,qvals3 md(:,1))

figure(7)

plot(ttt,qvals3 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T4 md,Q4 md] = ode45(@(t,y)myode4 md(t,y,s4 md,b md,wf,ttt),tspan,y0);

Qrev4 md = interp1(T4 md,Q4 md,ttt,'spline');
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qvals4 md = flip(Qrev4 md);

figure(8)

plot(ttt,qvals4 md(:,1))

figure(9)

plot(ttt,qvals4 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T5 md,Q5 md] = ode45(@(t,y)myode5 md(t,y,s5 md,b md,wa,ttt),tspan,y0);

qvals5 md = interp1(T5 md,Q5 md,ttt,'spline');

figure(10)

plot(ttt,qvals5 md(:,1))

figure(11)

plot(ttt,qvals5 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T6 md,Q6 md] = ode45(@(t,y)myode6 md(t,y,s6 md,b md,wa,ttt),tspan,y0);

qvals6 md = interp1(T6 md,Q6 md,ttt,'spline');

figure(12)

plot(ttt,qvals6 md(:,1))

figure(13)

plot(ttt,qvals6 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T7 md,Q7 md] = ode45(@(t,y)myode7 md(t,y,s7 md,b md,wf,ttt),tspan,y0);

Qrev7 md = interp1(T7 md,Q7 md,ttt,'spline');

qvals7 md = flip(Qrev7 md);

figure(14)

plot(ttt,qvals7 md(:,1))

figure(15)

plot(ttt,qvals7 md(:,2))

% ode45 integration

y0 = [0;0];

tspan=[-tendn 2*tendn];

[T8 md,Q8 md] = ode45(@(t,y)myode8 md(t,y,s8 md,b md,wa,ttt),tspan,y0);

qvals8 md = interp1(T8 md,Q8 md,ttt,'spline');

figure(16)

plot(ttt,qvals8 md(:,1))

figure(17)

plot(ttt,qvals8 md(:,2))

x md = phi IVED*[(qvals1 md(:,1)+(1i*qvals1 md(:,2)))';
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(qvals2 md(:,1)+(1i*qvals2 md(:,2)))';

(qvals3 md(:,1)+(1i*qvals3 md(:,2)))';

(qvals4 md(:,1)+(1i*qvals4 md(:,2)))';

(qvals5 md(:,1)+(1i*qvals5 md(:,2)))';

(qvals6 md(:,1)+(1i*qvals6 md(:,2)))';

(qvals7 md(:,1)+(1i*qvals7 md(:,2)))';

(qvals8 md(:,1)+(1i*qvals8 md(:,2)))'];

%% plot

figure(18)

plot(ttt,real(x md(5,:)),'b','Linewidth',1.5)

grid on

i=legend('IVED');

j=xlabel('time (s)');

ij=ylabel('displacement, $X 3$ (cm)');

set(i,'Interpreter','Latex','FontSize',13);

set(j,'Interpreter','Latex','FontSize',17);

set(ij,'Interpreter','Latex','FontSize',17);

x01=10;

y01=10;

width=420;

height=220;

set(gcf,'position',[x01,y01,width,height]);

%savefig('w30 2.fig')

%% Functions TMhDI

function ydot = myode1 md(t,y,s1 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s1 md)*y(1)-imag(s1 md)*y(2)

+real(b md(1))*war-imag(b md(1))*wai;

ydot(2)=real(s1 md)*y(2)+imag(s1 md)*y(1)

+real(b md(1))*wai+imag(b md(1))*war;

end

function ydot = myode2 md(t,y,s2 md,b md,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s2 md)*y(1)+imag(s2 md)*y(2)

-real(b md(2))*war+imag(b md(2))*wai;

ydot(2)=-real(s2 md)*y(2)-imag(s2 md)*y(1)

-real(b md(2))*wai-imag(b md(2))*war;
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end

function ydot = myode3 md(t,y,s3 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s3 md)*y(1)-imag(s3 md)*y(2)

+real(b md(3))*war-imag(b md(3))*wai;

ydot(2)=real(s3 md)*y(2)+imag(s3 md)*y(1)

+real(b md(3))*wai+imag(b md(3))*war;

end

function ydot = myode4 md(t,y,s4 md,b md,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s4 md)*y(1)+imag(s4 md)*y(2)

-real(b md(4))*war+imag(b md(4))*wai;

ydot(2)=-real(s4 md)*y(2)-imag(s4 md)*y(1)

-real(b md(4))*wai-imag(b md(4))*war;

end

function ydot = myode5 md(t,y,s5 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s5 md)*y(1)-imag(s5 md)*y(2)

+real(b md(5))*war-imag(b md(5))*wai;

ydot(2)=real(s5 md)*y(2)+imag(s5 md)*y(1)

+real(b md(5))*wai+imag(b md(5))*war;

end

function ydot = myode6 md(t,y,s6 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s6 md)*y(1)-imag(s6 md)*y(2)

+real(b md(6))*war-imag(b md(6))*wai;

ydot(2)=real(s6 md)*y(2)+imag(s6 md)*y(1)

+real(b md(6))*wai+imag(b md(6))*war;

end

function ydot = myode7 md(t,y,s7 md,b md,wf,ttt)

war = interp1(ttt,real(wf),t);

wai = interp1(ttt,imag(wf),t);

ydot = zeros(2,1);

ydot(1)=-real(s7 md)*y(1)+imag(s7 md)*y(2)

-real(b md(7))*war+imag(b md(7))*wai;
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ydot(2)=-real(s7 md)*y(2)-imag(s7 md)*y(1)

-real(b md(7))*wai-imag(b md(7))*war;

end

function ydot = myode8 md(t,y,s8 md,b md,wa,ttt)

war = interp1(ttt,real(wa),t);

wai = interp1(ttt,imag(wa),t);

ydot = zeros(2,1);

ydot(1)=real(s8 md)*y(1)-imag(s8 md)*y(2)

+real(b md(8))*war-imag(b md(8))*wai;

ydot(2)=real(s8 md)*y(2)+imag(s8 md)*y(1)

+real(b md(8))*wai+imag(b md(8))*war;

end
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