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Abstract 

Tree height is an important determinant of tropical forest structure, biomass and diversity. 

Maximum tree height globally and in the tropics is linked to water availability. Different 

ecophysiological mechanisms behind this link have been hypothesised and explored, though 

with little focus on tropical forest trees. This thesis aims to contribute to understanding how 

tree height might be limited in tropical forests. We first study (Chapter 3) patterns of tropical 

forest height at the community and taxon level across neotropical forests. We found that 

neotropical forests and families are similarly limited by mean annual precipitation (MAP). 

Tree height increases until a peak at ~2400-2700mm MAP, above ~3000mm tree height 

decreases. We next study (Chapter 4) the patterns of basal xylem vessel widening with tree 

height the tropical tree genus Cedrela across a range of water availability. The widening of 

basal vessels is similar regardless of water availability, therefore in trees of a given height 

vessel diameter is similar within the study species across its range. This has implications for 

how trees cope with hydraulically stressful conditions and may suggest mechanisms behind 

declines in maximum tree height with water availability.  We finally study (Chapter 5) the 

changes in a suite of ecophysiological properties and functional traits with tree height in three 

species along the shade-tolerance spectrum. We show that with height leaves become 

smaller and thicker, and the theoretical maximum stomatal conductance per leaf area and 

intrinsic water use efficiency increase. Additionally, xylem vessels taper at the rate consistent 

with tapering theory.  We show that traits covary for these species with differences in shade-

tolerance according to expectations from the literature. Specifically, the slow growing shade-

tolerant species has narrower xylem, higher LMA and a relatively isohydric leaf water 

potential regulation relative to the fast-growing shade-intolerant species. Overall, this thesis 
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shows how neotropical trees are limited in their height attainment and explores what 

ecophysiological mechanisms may underpin this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

           Contents 

 

Acknowledgements ................................................................................................................... iv 

Abstract ...................................................................................................................................... v 

Contents ................................................................................................................................... vii 

List of Tables ............................................................................................................................. xi 

List of Figures ........................................................................................................................... xii 

Abbreviations .......................................................................................................................... xiv 

1 Chapter 1    Introduction .................................................................................................... 1 

 Background .................................................................................................................. 1 

 Climate change in neotropics, drought, current trends in biomass change and 

mortality. ................................................................................................................................ 1 

1.2.1 The climate of the neotropics and forest biomes ............................................... 1 

1.2.2 Future climate ...................................................................................................... 4 

1.2.3 Expected trends in biomass and mortality with climatic change ........................ 4 

1.2.4 Height patterns of neotropical forests ................................................................ 5 

 Hydraulic theory of water movement and physiological consequences for tree 

height 7 

1.3.1 Moving water vertically ....................................................................................... 7 

1.3.2 The role of stomatal regulation for water flow ................................................. 16 

1.3.3 Embolism avoidance .......................................................................................... 17 

1.3.4 Water use efficiency and carbon balance.......................................................... 20 

1.3.5 The consequences of height for tall trees ......................................................... 21 

 Limitation of tree height hypotheses ........................................................................ 22 

1.4.1 Hydraulic limitation of tree height..................................................................... 23 

1.4.2 Evidence for the hydraulic limitation of tree height ......................................... 24 

1.4.3 Nutrient limitation of maximum tree height ..................................................... 26 

1.4.4 Metabolic allometry limits to tree height .......................................................... 27 

1.4.5 Other limiting factors ......................................................................................... 28 

1.4.6 Co-limitation among limiting factors ................................................................. 30 



viii 
 

1.4.7 The study of tree height limitation in the tropics .............................................. 30 

 Thesis aims  and objectives ....................................................................................... 31 

1.5.1 Describe the role of water availability in determining the height of neotropical 

forest trees and differences at the taxon specific and community scale ........................ 32 

1.5.2 Examine the impact of climate on the xylem vessel tapering within a tropical 

tree species ....................................................................................................................... 33 

1.5.3 Investigate how functional traits and ecophysiological properties vary with 

height through the canopy and match the life-history strategies of three tropical tree 

species 33 

1.5.4 Research questions ............................................................................................ 34 

2 Chapter 2    Overview of Methods ................................................................................... 35 

 Introduction............................................................................................................... 35 

 Species and site selection ......................................................................................... 36 

 Environmental data for our sites .............................................................................. 37 

 Height measurement ................................................................................................ 39 

 Wood samples and xylem vessel anatomy measurement........................................ 39 

 Functional traits and ecophysiological properties .................................................... 41 

 Determining relationships with height ..................................................................... 43 

3 Chapter 3    Environmental and taxonomic variation in maximum tree height across the 

neotropics ................................................................................................................................ 45 

 Introduction............................................................................................................... 46 

3.1.1 Hypotheses ........................................................................................................ 51 

 Methods .................................................................................................................... 52 

3.2.1 Sites and plot data ............................................................................................. 52 

3.2.2 Calculating Maximum height ............................................................................. 53 

3.2.3 Analysis .............................................................................................................. 54 

 Results ....................................................................................................................... 56 

3.3.1 Environmental predictors of maximum tree height .......................................... 56 

3.3.2 Taxa .................................................................................................................... 59 

 Discussion .................................................................................................................. 63 

3.4.1 Explaining variation in forest height .................................................................. 63 

3.4.2 Taxon specific maximum height relationships .................................................. 67 

3.4.3 Conclusions ........................................................................................................ 72 

4 Chapter 4    Vessel tapering conserved along a precipitation gradient in tropical trees of 

the genus Cedrela .................................................................................................................... 74 



ix 
 

 Introduction............................................................................................................... 75 

4.1.1 Hypotheses ........................................................................................................ 81 

 Methods .................................................................................................................... 81 

4.2.1 Species ............................................................................................................... 81 

4.2.2 Sites and Sampling procedure ........................................................................... 82 

4.2.3 Analysis .............................................................................................................. 89 

 Results ....................................................................................................................... 90 

4.3.1 Effects of climate on basal xylem vessel diameter and density ........................ 90 

 Discussion .................................................................................................................. 94 

4.4.1 The universal scaling of vessel diameter ........................................................... 98 

4.4.2 Conclusions ...................................................................................................... 101 

5 Chapter 5    Effects of tree height on ecophysiological traits for three neotropical tree 

species differing in life-history strategy ................................................................................. 102 

 Introduction............................................................................................................. 103 

5.1.1 Hydraulic strategies of tropical trees ............................................................... 103 

5.1.2 Height and hydraulic stress .............................................................................. 104 

5.1.3 Tree trait and functional changes transitioning from below to above canopy 

life stage 105 

5.1.4 Aims and objectives ......................................................................................... 107 

5.1.5 Expectations of ecophysiological properties and functional trait variation with 

changing height and position relative to the canopy ..................................................... 108 

5.1.6 Hypotheses ...................................................................................................... 109 

 Methods .................................................................................................................. 110 

5.2.1 Study sites ........................................................................................................ 110 

5.2.2 Study species .................................................................................................... 110 

5.2.3 Sample strategy ............................................................................................... 111 

5.2.4 Measurements and sampling techniques ........................................................ 113 

5.2.5 Analysis ............................................................................................................ 121 

 Results ..................................................................................................................... 123 

5.3.1 Leaf traits ......................................................................................................... 123 

5.3.2 Xylem vessel anatomy ..................................................................................... 125 

5.3.3 Leaf water potential ......................................................................................... 126 

5.3.4 Vulnerability curves ......................................................................................... 129 

5.3.5 Between-trait relationships ............................................................................. 133 



x 
 

 Discussion ................................................................................................................ 134 

5.4.1 Changes in functional traits with tree height .................................................. 135 

5.4.2 Leaf water potential and embolism vulnerability ............................................ 141 

5.4.3 Alignment of traits with life-history strategy .................................................. 144 

5.4.4 A trade-off between safety and productivity? ................................................ 149 

5.4.5 Conclusions ...................................................................................................... 150 

6 Chapter 6    Conclusions and synthesis .......................................................................... 151 

 Research conclusions .............................................................................................. 151 

6.1.1 Chapter 3 Mean annual precipitation consistently predicts neotropical 

maximum tree height, both at the community and individual taxa level ...................... 152 

6.1.2 Chapter 4 A large water availability gradient does not affect the xylem vessel 

tapering of Cedrela odorata. .......................................................................................... 153 

6.1.3 Chapter 5 ecophysiological and functional traits change with tree height, and 

differences between species likely reflect life-history strategy. .................................... 154 

 Synthesis and research implications ....................................................................... 155 

6.2.1 Evidence for the hydraulic limitation of maximum tree height in neotropical 

trees. 155 

6.2.2 Drivers and mechanisms of observed tree height- precipitation relationships.

 157 

6.2.3 The role of trait and biological diversity in determining maximum height 

attainment ...................................................................................................................... 160 

 Future research ....................................................................................................... 162 

References ............................................................................................................................. 165 

Appendix for Chapter 3 .......................................................................................................... 190 

Appendix for Chapter 4 .......................................................................................................... 208 

Appendix for Chapter 5 .......................................................................................................... 214 

 

 

 

 

 

 

 

 



xi 
 

 

              List of Tables 

Table 3.1 Generalised additive model results for individual independent variables .............. 59 

Table 4.1 Site information ....................................................................................................... 83 

Table 4.2 Results of linear mixed effects models .................................................................... 92 

Table 5.1 List of measurements and their ecophysiological significance. ............................. 107 

Table 5.2 Results of the vulnerability curve analysis for the three species........................... 130 

Table 5.3 Linear relationships between sample height and different ecophysiological and 

functional traits ...................................................................................................................... 132 

Table 5.4 20 species traits from this study  and based on the literature (lower rows)......... 148 

SI Table 3.1. Species mean maximum height with position of mean maximum height along a 

mean annual precipitation (MAP) gradient. .......................................................................... 190 

SI Table 3.2. List of explanatory variables used to relate to maximum height ..................... 191 

SI Table 3.3. Multivariate GAM results .................................................................................. 193 

SI Table 3.4 Table of GAM results  per taxon ......................................................................... 194 

SI Table 3.5. Plot properties for plots used in analyses ......................................................... 198 

SI Table 4.1 Linear mixed effects model results for the relationship between tree height and 

vessel density ......................................................................................................................... 211 

SI Table 4.2. Intercept comparisons between sites ............................................................... 212 

SI Table 4.3. The mean height for the 2.5-7.5m tree height bin ........................................... 213 

SI Table 5.4 Species specific relationship fit values between traits ...................................... 216 

SI Table 5.5 Coefficient values for between traits relationships ........................................... 217 

 

 

 

 

 

file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402699
file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402699
file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402700


xii 
 

 

  List of Figures 

Figure 1.1 Climate of the neotropics ......................................................................................... 3 

Figure 1.2 Map of LiDAR derived forest canopy height across tropical South America ............ 6 

Figure 1.3 Diagram of leaf mesophyll and air space .................................................................. 9 

Figure 1.4 An example of the effects of vessel tapering on path length resistance ............... 13 

Figure 1.5 Representation of a tree and the movement of water .......................................... 15 

Figure 3.1 Conceptual diagram of hypothetical individual taxon relationships between tree 

height and water availability ................................................................................................... 50 

Figure 3.2 Distribution of forest plots included in this study .................................................. 53 

Figure 3.3 Relationships between maximum height and environmental variables. ............... 58 

Figure 3.4 Relationship between mean annual precipitation and maximum tree height ...... 61 

Figure 3.5 The maximum height of each species..................................................................... 62 

Figure 3.6 Relationship between the location in mean annual precipitation (MAP) of 

maximum height per species ................................................................................................... 63 

Figure 4.1.  Conceptual illustration of three possible hydraulic strategies of trees in response 

to water availability ................................................................................................................. 79 

Figure 4.2 Location of sampling sites, diameter-height allometries at the sampling sites, and 

site climate ............................................................................................................................... 85 

Figure 4.3 Schematic of two sampling approaches to assess the effect of tree height on 

vessel anatomy. ....................................................................................................................... 88 

Figure 4.4 Relationships between mean basal vessel diameter and basal vessel density, and 

tree height ................................................................................................................................ 91 

Figure 4.5 Mean vessel diameter and vessel density for 5m tall trees and the 5 tallest trees 

per site ..................................................................................................................................... 94 

Figure 5.1 Scheme of sampling within a tree ........................................................................ 113 

Figure 5.2 Scheme of pneumatic apparatus for measuring gas discharge ............................ 115 

Figure 5.3 Images of different sampling and measuring techniques .................................... 120 

Figure 5.4 Relationships between sample height and leaf traits .......................................... 124 

file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402745
file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402747
file:///C:/Users/chamb_000/Desktop/THESIS/compiled/compiled%20thesis%202c.docx%23_Toc65402748


xiii 
 

Figure 5.5 Relationships between distance to apex of mean vessel diameter and vessel 

density .................................................................................................................................... 125 

Figure 5.6 Species specific apical mean xylem vessel area – sample height relationships ... 126 

Figure 5.7  Daily curves of leaf water potential ..................................................................... 128 

Figure 5.8 Linear relationships between sample height and leaf water potential................ 129 

Figure 5.9 Vulnerability curves measured for A. ruizii, P. laevis, and C. microchaete ........... 131 

Figure 5.10 Relationships between traits for three species .................................................. 134 

Figure 5.11 Scheme of two constant tapering strategies describing the effects of increasing 

apical vessel width with path length ..................................................................................... 141 

Figure 6.1 Predictions of changes in the maximum height of the forest community with 

changes in mean annual precipitation................................................................................... 153 

Figure 6.2 Plots demonstrating how to test ecophysiological traits and properties for their 

role in maximum height limitation ........................................................................................ 164 

SI Figure 4.1. Comparison of two sampling methods ............................................................ 208 

SI Figure 4.2. Histograms of the number of vessels measured in each sample .................... 210 

SI Figure 5.1 Trees sampled per species per height class ...................................................... 214 

SI Figure 5.2  Relationship between height and light index  ................................................. 215 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

 

   Abbreviations 

 

a - Cross sectional area 
A - Rate of assimilation of CO2 in photosynthesis 
ā - Tapering coefficient  
AD - Air discharge 
AIC - Akaike information criterion 

AL - Leaf area 
Ca - CO2 concentration in air 
Ci - CO2 concentration in the leaf 
d - Diameter 

D - Vapour pressure deficit 
DBH - Diameter at breast height 
DNI - Direct normal irradiance 

dpi - Dots per inch 

dw  - Diffusivity of water vapour  
E - Transpiration rate 
G - Acceleration due to gravity 
g - Conductance 

GAM - Generalised additive model 
GCV - Minimised generalised cross-validation 

gmax - Theoretical maximum stomatal conductance 
gs - Stomatal conductance 
H - Height  
HSM - Hydraulic safety margin 
iWUE - Intrinsic water use efficiency 
l - Vessel length 
L - Path Length 
LMM - Linear mixed effects model 
M - Whole tree biomass 
MAP - Mean annual precipitation 

n - Branching ratio between levels 
P - Pressure 

P50 - 
Water potential that gives a loss of conductance equal to 
50% of maximum conductance 

pamax - Maximum stomatal pore area 
pd - Pore depth 
PLC - Percentage loss of conductance 
P-PET - Precipitation minus potential evapotranspiration 
Q - Sap flow 
R - Resistance to water flow 



xv 
 

r - Radius 
Rgc - Universal gas constant 
RH  - Relative humidity 
rpore - Radius of mesophyll pores 

Rstandard - ratio of 13C relative to 12C in cellulose in a standard  
Rsample - ratio of 13C relative to 12C in cellulose in a sample  
SD - Stomatal density  
SST - Sea surface temperature 
T - Temperature  
v - Molar volume of air  
VD - Vessel density 
vliquid - Molar volume of the water 

Y - Metabolic rate of respiration  
γ - Surface tension 
ΔP - Pressure gradient  
η - Viscosity of water 
θ - Angle of concavity 
ρ - Density of water 
Ψ - Water potential 

 



1 
 

 

1 Chapter 1    Introduction 

 Background 

The Amazon forest is the largest continuous tropical forest, ~23 times the area of the UK. The 

neotropics hold 37% of global plant diversity (Antonelli and Sanmartin 2011), and 108PgC in 

above ground biomass of live trees which is 26% of total terrestrial biomass (Feldpausch et al. 

2012; Spawn et al. 2020). The need for trees to pump water from soil to canopy where it is 

lost to the atmosphere influences the climate of South America recycling 35% of water via 

evapotranspiration (Eltahir and Bras 1994; Trenberth 1999), and cooling surface 

temperatures (Baker and Spracklen 2019; Winckler et al. 2019). Rising temperatures and 

changes to precipitation regimes associated with climate change and deforestation across the 

neotropics are likely to affect tree growth and mortality (Brienen et al. 2015; McDowell et al. 

2018). Consequently, the biodiversity, biomass and climate modulation they currently 

provide are in jeopardy.  

 Climate change in neotropics, drought, current trends in biomass change and 

mortality. 

1.2.1 The climate of the neotropics and forest biomes 

The neotropics are largely warm and wet, lacking large deserts. The majority of the lowland 

area experiences >1500mm per year of precipitation (Figure 1.1A). In lowland regions 

temperatures are higher and precipitation is less seasonal toward the equator (Figure 1.1). 

The climate of the neotropics supports a variety of forest types, from wet montane forests of 

the Andes, to lowland terra firme forest of the Amazon basin, to seasonal dry forest at the 
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Amazon-savanna transition zone and semi-arid and scrub forest of the Chaco and Caatinga 

biomes (Dexter et al. 2018; Killeen et al. 2006). The last glacial maximum was drier than today 

for much of the Amazon basin (Haggi et al. 2017). As the climate has warmed and become 

wetter tropical rainforest dominates in tropical South America, largely in the Amazon basin. 

The majority of the Amazon basin has a mean annual precipitation of between 1800 – 

3000mm, and is generally warm as the majority of the basin is at low elevation (Figure 1.1). 

Lowland forests tend to be wetter closer to the Andes and forests tend to be drier and more 

seasonal further from the equator. Forests close to the equator tend to be aseasonal with 

consistent rainfall throughout the year, whilst forests close to the edge of the Amazon 

rainforest have several months long dry seasons. Further into dry forest and semi-arid regions 

the dry season is longer than the wet season (Villar et al. 2009).  

Rainfall across the north and east of the Amazon basin is driven by input from the tropical 

north Atlantic Ocean (Gloor et al. 2015; Gloor et al. 2013). The Amazon basin retains much of 

its water through evapotranspiration and subsequent convective rainfall. This accounts for 

~35% of total precipitation across the Amazon basin (Eltahir and Bras 1994; Trenberth 1999). 

Evapotranspiration also contributes to the rainfall of nearby regions of South America, e.g. 

the Rio de la Plata basin.  

Extremes of precipitation occur across the Amazon basin periodically. Notable recent 

droughts include 2005 and 2010, recent flooding events include 2009 and 2014 (Marengo and 

Espinoza 2016). Extreme events are often associated with sea surface temperature (SST) 

anomalies in the tropical north Atlantic, where warmer SST has been associated with both 

drought and flood events (Marengo and Espinoza 2016). Additionally, drought years may also 

be associated with El Nino conditions, and flood years may be associated with La Nina.     
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Figure 1.1 Climate of the neotropics. A) mean annual precipitation (mm), B) annual mean temperature 
(oC), C) number of months with less than 100mm of precipitation indicating dry season length. Climate 
data from Worldclim (Fick and Hijmans 2017). 
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1.2.2 Future climate 

The future climate for the Amazon region is uncertain (Marengo et al. 2018; Satyamurty et al. 

2010). However trends in historical precipitation show that northern Amazonia is generally 

becoming wetter while there is evidence that southern Amazonia is becoming drier  (Espinoza 

et al. 2019; Gloor et al. 2013; Shiogama et al. 2011). Additionally, there is an expectation that 

severe events such as sporadic droughts and heavy rainfall will increase in frequency, in part 

due to increasing ENSO event frequency due to warming sea surface temperatures in the 

equatorial Pacific ocean and atmospheric teleconnection to the Amazon basin (Fasullo et al. 

2018; Yeh et al. 2018).  

In addition to global climate change, Amazonian forests are likely to suffer from local 

microclimate changes as a result of deforestation. Since interception of rainfall and 

subsequent evapotranspiration by trees recycles much of the water of the region, it is likely 

that as forest continues to be converted to pasture, increased runoff to rivers will reduce 

further water recycling (D'Almeida et al. 2007; Moore et al. 2007). Furthermore, temperature 

has increased by 0.6-0.7oC over the last 40 years, and will continue to increase as a result of 

rising CO2 concentrations in the atmosphere, up to 4-6oC by 2100 under a high emission 

scenario, increasing the vapour pressure deficit acting on tree’s leaves (Marengo et al. 2018). 

These predicted changes in climate are anticipated to have a large impact on the forests of 

the neotropics (Alvarez-Davila et al. 2017; Brienen et al. 2015; Esquivel-Muelbert et al. 2019; 

Fajardo et al. 2019; McDowell et al. 2018; Vilanova et al. 2018; Yang et al. 2018a).  

1.2.3 Expected trends in biomass and mortality with climatic change 

Over past decades Amazonian forests have absorbed around 0.38 Pg of Carbon every year, 

however this capacity of the Amazon to fix carbon is decreasing (Brienen et al. 2015). This is 
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because of increasing mortality and reduction in the increase of growth rates of trees. There 

are several possible drivers behind this trend; one is the increasing climatic variability, such 

as pronounced droughts, which leads to higher mortality of trees and reduces growth rates 

in the drier regions of the Amazon. Another is CO2 fertilisation leading to increasing growth 

rates and consequent declines in tree longevity (Brienen et al. 2020; Bugmann and Bigler 

2011). Furthermore, increasing temperatures are likely to increase the respiration demand of 

trees as well as possibly inhibiting photosynthesis at very high temperatures (Gloor et al. 

2018; Lloyd and Farquhar 2008; Sullivan et al. 2020). Mortality is a strong driver of biomass 

change across the Amazon and understanding the mechanisms behind tree mortality is thus 

of great importance to determine the future of tropical forests in a changing climate (Allen et 

al. 2010; McDowell et al. 2018).  

1.2.4 Height patterns of neotropical forests 

In the lowland tropics where forests are continuous several climatic and edaphic factors affect 

forest height, but satellite observations from LiDAR data show that the primary climatic 

variable associated with changes in forest height is water availability (Klein et al. 2015; Tao et 

al. 2016). The tallest tropical forests are those in the wet tropics, in particular in south east 

Asia grow the tallest tropical trees, where trees with 100.8m height have been found (Shenkin 

et al. 2019). In South America the tallest tropical trees are found in the Guyana shield region 

(Feldpausch et al. 2012; Sawada et al. 2015; Simard et al. 2011). This has been exemplified by 

the recent discovery of an 88.5m tall tree in the Amapá region of Brazil (Gorgens et al. 2019). 

Whilst particularly short-statured forests are found where soils have a high percentage of 

sand, where nutrient concentrations are low and do not retain water well (Adeney et al. 

2016). Most of the Amazon region’s forest ends abruptly to form savanna, however the forest 
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at the southern edge of the Amazonian forest biome transitions continuously to semi-

deciduous forest (1500-1300mm yr-1), deciduous forest (1300-1000mm yr-1) and then semi-

arid scrub (<1000mm yr-1) where forest height is relatively low (specifically southern Bolivia 

Figure 1.2) (Seiler et al. 2014). The variability in forest height across the Amazon is not well 

understood. However, global evidence including from South America suggests that forest 

height is at least partially water limited except in the very wet equatorial regions (Gorgens et 

al. 2020; Klein et al. 2015; Ryan and Yoder 1997; Tao et al. 2016).   

 

 

Figure 1.2 Map of LiDAR derived forest canopy height across tropical South America. Canopy 
height is provided at 1km resolution (Simard et al. 2011).   
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 Hydraulic theory of water movement and physiological consequences for tree 

height 

1.3.1 Moving water vertically  

Plants require light for energy and growth, so for these static organisms competition between 

individuals for light drove them to grow tall (Falster and Westoby 2003; Kenrick and Crane 

1997). Plants like all living things require water to live. When plants were short statured water 

was easy to transport to above ground tissues through capillary action alone, provided the 

environment was sufficiently moist, however, upon growing tall  the problem of pulling water 

against gravity arose (Pittermann 2010). This need to grow tall and transport water vertically 

beyond the capacity of capillary action led to the evolution of the first vascular plants by 430 

million years ago, and the first forests with tree like forms by 385 million years ago  (Gerrienne 

et al. 2011; Meyer-Berthaud et al. 1999; Stein et al. 2007). The difficulty in pulling water over 

distances over 1m is that capillary action in typically sized xylem will not overcome the 

gravitational pull. Instead, plants use a pressure differential between water within the plant 

and water in the atmosphere, where water in the atmosphere is typically at a much lower 

pressure (Lautrup 2005; Lautrup 2011; Lee et al. 2017; Shi et al. 2020; Stroock et al. 2014; 

Venturas et al. 2017). The cohesion-tension theory of water transport is the best accepted 

model describing how water movement from roots to canopy is driven by evaporation at the 

leaf mesophyll cells generating a pressure differential for water to flow up (Figure 1.3) 

(Angeles et al. 2004; Dixon and Joly 1895). The cohesion part of the theory states that water 

molecules are linked by intermolecular forces and so water can form a continuous column. 

The tension is generated as water evaporates into leaf air spaces via the network of small 

pores (of radius rpore, nm) of the leaf mesophyll. The surface tension, γ (N m-1), at the point of 
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evaporation between cells causes the formation of a concave meniscus. This generates 

negative pressure on the water below the meniscus Pleaf (Pa), where a greater angle of 

concavity, θ, or smaller radius of pores exerts greater pressure (Levitt 1956). The effective 

pressure acting upon the liquid below the meniscus also depends on the humidity of the leaf 

space into which the water from the pores of the mesophyll evaporates (Lautrup 2011): 

   

𝑃𝑙𝑒𝑎𝑓 =  −𝑙𝑛 (
𝑃𝑣𝑎𝑝𝑜𝑢𝑟

𝑃𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
) = − 

2𝛾 𝑣𝑙𝑖𝑞𝑢𝑖𝑑 𝑐𝑜𝑠𝜃

𝑟𝑝𝑜𝑟𝑒𝑅𝑔𝑐𝑇
 1.1 

 

where T is temperature (oC), Rgc is the universal gas constant (m3 Pa K-1 mol-1) and vliquid is the 

molar volume of the water in the meniscus (Pa s). Equation 1.1 shows that at high humidity, 

i.e. Pvapour/Psaturation approaching 1, pressures acting on the water below the meniscus are low 

(Figure 1.3A) (Lautrup 2011; Venturas et al. 2017). At lower humidity and higher temperature, 

the rate of evaporation increases and the concavity of the meniscus consequently increases, 

thus contributing to increase the tension on the water column (Figure 1.3B). If the vapour 

pressure is much greater than the surface tension the water level retreats, and the tissues of 

the plant dehydrate and die (Figure 1.3C). Reducing rpore enables the water column to better 

withstand low humidity as a greater angle of concavity can be maintained (Figure 1.3D-

E).Note that Pleaf must be more negative than that of the equivalent root-soil interface in order 

for water to travel up the plant. So, negative pressure (i.e. a stress) at the air-water interface 

in the leaf pulls cohesive columns of water molecules up the xylem from root to leaf (Shi et 

al. 2020).  
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Figure 1.3 Diagram of leaf mesophyll and air space demonstrating the action of water evaporating 
from a liquid state to a vapour. Less humid air produces greater evaporation, leading to greater 
pressure difference between the water vapour and the water at saturation, in turn generating greater 
negative pressure in the liquid water. Water evaporates generating a concave meniscus (A-B) until the 
negative pressure is greater than the energy of the surface tension of the water at which point the 
leaf dehydrates (C).  D-F show a similar process as A-B, but in F the surface tension is not broken by 
the evaporative demand at low humidity because of narrower pores between mesophyll cells, thus 
preventing dehydration of the leaf. Note that specific sites of evaporation and mechanisms of water 
movement within the leaf are not well known (Sack and Holbrook 2006) but the mechanism shown 
here can be artificially recreated to drive evaporation powered water pumps (Lee et al. 2017) and is 
broadly accepted (Stroock et al. 2014).  

The rate of water flow from root to leaf is defined in part by the difference in water potential 

along a gradient between lower and upper parts of the plant. Water potential is measured in 

units of energy which can be converted to pressure units. Pure water has a water potential of 

0MPa at 25oC and atmospheric pressure.  

Water potential is directly related to water flow using the Ohm’s law analogue for water 

movement, where Q is water flux (m3 s-1), ΔP is the pressure gradient between two points 

(MPa), and R is the resistance to water flow along that gradient (MPa s m-3) (Gardner 1965): 
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                                                                             𝑄 =
𝛥𝑃

𝑅
     1.2      

 

So, the more negative the water potential at the apex of the tree relative to the water 

potential at the base the faster water flows. The water potential of a tissue can be defined by 

the sum of its component potentials (Ψt). These are substrate potential (Ψs), gravitational 

potential (Ψg), frictional potential (Ψf), osmotic potential (Ψo) and pressure potential (Ψp). 

Those that most affect a plants water status are the osmotic, gravitational and pressure 

potentials (Wallace et al. 1983).  

                                                       Ψt = Ψs + Ψg + Ψf + Ψo + Ψp        1.3                                                             

     

For the considerations of this study only negative water potentials are expected due to the 

direction of flow to the highly negative atmosphere (air humidity at 20oC <10%= -300MPa, 

50% = -93.5MPa, 90% =  - 14.2MPa, 100% = 0MPa, see inset graph of Figure 1.5). The water 

potential of the xylem is generally greater than -10MPa, and therefore under most air 

humidity water can be moved within a plant by the negative pressure of the atmosphere 

(Choat et al. 2012).    

Equation 1.2 permits a basic understanding of flow through a pipe, to which the plant flow 

path up the water conducting xylem tissue is fundamentally analogous. The importance of 

gravitational potential is not implicitly included in the measurement of water potential and 

thus must be included in the equation, where the pressure differential between the root and 

leaf is given by Ψr - Ψl, and ρGH gives, respectively, the water density (g m-3), acceleration due 

to gravity (m s-2) and height of the tissue (m) in question (Woodruff et al. 2004). 
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                                                                       Q =
Ψr−Ψl− ρGH

R
       1.4      

                                                           

So, at fixed ρ and G we can see that attempting to pull water higher reduces flow rates for 

fixed resistance of the flow path. This gravitational component of water potential acts on 

leaves whether the xylem is open to the atmosphere or not.  

The xylem vessel network of angiosperms is equivalent to a network of vertically 

interconnected and branching pipes, as per Figure 1.5 (Shinozaki et al. 1964; Tyree and Ewers 

1991). The resistance, R, of an individual section of xylem vessel, k, is defined by the length, l 

(m) and cross sectional xylem lumen radius, r (m), considering a constant viscosity of sap 

within the plant’s xylem tissue, η (Pa s). 

  Rk = (8ηlk)/(π𝑟k
4) 1.5 

 

          

This equation shows that resistance increases with the length of the conduit but decreases in 

wider conduits (Tyree and Ewers 1991). This is because a greater volume of water is not in 

contact with the frictional forces associated with the wall of the xylem vessel, and since area 

increases greatly for a given increase in diameter small changes in xylem conduit diameter 

yield large decreases in resistance (Jeje and Zimmermann 1979).  

Should xylem vessel diameter remain the same up a plant, then the resistance should increase 

linearly with the length of the stem, and therefore flow rates would decrease without 

adjusting the water potential gradient. Plants have therefore evolved tapering of xylem 

vessels from the apex of the plant to the base which permits resistance to increase more 
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slowly with increasing tree height or path length, where increasing xylem vessel lumen area 

from apex to base reduces the additive effects of path length, as per Figure 1.4 and Figure 1.5 

(Ewers and Zimmermann 1984; West et al. 1999). 

The equation below shows how total resistance of a vertical system of interconnected xylem 

vessels that branch repeatedly from the base of the plant to the tip of the plant can be 

maintained despite increases in path length (West et al. 1999). This simple model of xylem 

structure assumes a similar branch rate (n) along the flow path and also similar vessel length 

(l) along the flow path with a total length L. The model includes N-1 bifurcation levels. If the 

vessels are numbered from the base upwards and resistances (R1, ... RN) then the total flow 

path resistance (Rtot) is 

                                            Rtot = ∑ Rk =N
k=0  [1 −

[(n
−

1
3−1)L/l](1−6ā) 

1−n
(

1
3

−2ā)
 ] RN            1.6    

                                     

Total resistance is calculated as the sum of resistance Rk of conduits of each level k from the 

smallest vessel at the apex (level N) to the base where vessels are widest (level k=0). The rate 

of change in vessel diameter along the flow path is described by ā, known as the tapering 

coefficient (West et al. 1999). This value defines how large vessels become at each 

subsequent level. The tapering coefficient (ā) is calculated as the ratio of vessel radii at 

subsequent levels (rk+1/rk) divided by the rate of branching between subsequent levels 

(nk+1/nk) (see Figure 1.5 for a representation of vessel tapering).  

ā = −
(log(rk+1/rk)/log(nk+1/nk))

2
 1.7    
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This shows that a greater branch rate for a given change in vessel diameter increases 

resistance, because there are more smaller vessels leading to a greater surface area to 

provide resistance.  

 

 

Different values of ā give different values of total resistance with path length. A ā with a value 

higher than 0.2 indicates that path length after a certain point ceases to contribute to path 

length resistance. For values much greater than 0.2 there is diminishing benefit in resistance 

reduction (Figure 1.4). Bifurcating vessels (nk+1/nk=2) would need to increase in diameter by 

a factor of 1.6 between subsequent vessel sections in order to achieve ā = 0.2 (Anfodillo et al. 

2006; West et al. 1999). 

Figure 1.4 An example of the effects of vessel tapering on path length resistance. In this 
example different tapering coefficients are applied to equation 1.6, where the tapering 
coefficient was calculated using equation 1.7, in which branch rate, n, was kept constant 
across the different individuals represented here by colours. 



14 
 

 So, at high enough rates of tapering the additive effects of path length resistance can be 

almost completely compensated for. However, it is important to note that these resistance 

values ignore other vessel anatomical characteristics that play an important role, such as the 

end wall and inter-vessel pits that increase the surface in contact with water molecules and 

thus increase resistance to water flow (Lancashire and Ennos 2002; Lazzarin et al. 2016a; 

Medeiros et al. 2019). These anatomical features may also become less resistive as trees grow 

taller in order to provide similar effects to vessel diameter tapering (Lazzarin et al. 2016a).  
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1.3.2 The role of stomatal regulation for water flow 

We have described how trees can pull water vertically and need to have a pressure gradient 

and specific xylem structure to do so. By increasing the pressure gradient and decreasing the 

resistance along the flow path the rate of water flow can be maximised. Xylem structure 

cannot change in the short term. Within a growing season or even across many years the 

xylem vessels are fixed. Climatic conditions and evaporative demand however do change 

within days therefore modulation of sap flow depends upon changing the pressure gradient 

by closing the air spaces within leaves (Hogg and Hurdle 1997). This thereby controls the rate 

of evaporation (i.e. water loss) from the leaf and therefore the pressure gradient between 

root and leaf.  

Under steady state sap flow conditions, transpiration at an area of leaf, EL (m3 s-1), and leaf 

area specific sap flow, QL , are equal due to conservation of mass of water. Transpiration can 

be calculated as the conductance of water for an area of leaf (gL, m3 s-1 m-2), multiplied by the 

total leaf area (AL, μmol m-2 s-1) (Martinez-Vilalta et al. 2014). This is increased by the tendency 

of water to evaporate to the atmosphere at increased rate at higher temperature and lower 

humidity (see inset graph of Figure 1.5) i.e. higher vapour pressure deficit (D, kPa): 

           QL = EL = gLALD        1.8 

 

From this we can see how altering the conductance of the leaf by closing the stomata can 

control water loss.  

Stomata close in response to abscisic acid signalling and directly via low water potential in the 

leaf (Brodribb and McAdam 2013; Kang et al. 2010). Stomatal responses vary from isohydric 

where stomata maintain the water potential of the leaf at a similar level in response to water 
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stress, and anisohydric where plants permit water potential to fall (Brodribb and McAdam 

2013; Klein 2014). So stomatal control of water potential in-turn controls water flow (Yi et al. 

2017). This alleviates one of the main negative consequences of the cohesion tension 

mechanism of water transport; the maintenance of water at negative pressure which puts 

water in a metastable state in which gas bubbles are more likely to form (Hacke and Sauter 

1995; Sperry and Tyree 1988; Tyree and Sperry 1989a).  

1.3.3 Embolism avoidance 

The origin of gas bubbles within xylem vessels is not certain, but evidence shows two origins 

for gas bubbles within xylem conduits:  

• negative xylem pressures to draw air in to the xylem from outside the xylem, known 

as air-seeding, e.g. via cracks to the atmosphere (Choat et al. 2016; Choat et al. 2015; 

Ponomarenko et al. 2014). 

• for water to spontaneously evaporate, or dissolved air to come out of solution, under 

negative pressure (Duan et al. 2012; Ponomarenko et al. 2014; Schenk et al. 2016).  

Whatever the origin of the gas within xylem tissue, negative pressures appear to encourage 

the spread of these gas bubbles to neighbouring vessels (Choat et al. 2016).  

Narrow vessels have been shown to prevent embolism formation and spread (Levionnois et 

al. 2021; Lobo et al. 2018; Olson et al. 2018; Prendin et al. 2018; Scoffoni et al. 2017; Sperry 

et al. 2006). This may be linked directly to smaller vessels directly resisting embolism spread, 

or indirectly because of a smaller area of inter-vessel  connections in smaller vessels known 

as inter-vessel pits (Christman et al. 2009; Hacke et al. 2006; Wheeler et al. 2005). Inter-vessel  

pits are thought to limit bubble spread between individual conduits (Kaack et al. 2019), and 
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may enable water to circumvent blockages (see Figure 1.5 for an example of lateral flow via 

inter-vessel  pits) (Taneda and Tateno 2007). Although in many angiosperms that grow in xeric 

habitats, xylem vessels tend to be isolated from one-another, presumably to prevent lateral 

spread of embolism across vessels (Brodersen et al. 2013; Schenk et al. 2008). Small pores 

lead to high surface tension through which gas bubbles cannot pass, but as water pressure 

becomes more negative the force of surface tension,  γ, may be overcome and the bubble 

spread (Domec 2011). The smaller the pore the more negative the pressure difference, P, that 

can be sustained between connected vessels. So, the maximum pore radius, r, that can hold 

gas bubbles for a given pressure can be calculated: 

r = −
2γ

P
      1.9 

 

The relationship between conductance loss due to embolism and water potential decrease 

under drying conditions is called a vulnerability curve. It is typically sigmoidal in shape and 

often is fitted to the following equation (Pammenter & Willigen 1998): 

                                                           PLC =
100

1+exp(a(Ψ−b))
                           1.10 

 

 

The greater the percentage loss of conductance (PLC) for a given water potential the less 

tolerant is a tree to dry conditions. Plant vulnerabilities to embolism are typically described 

by the water potential that gives a loss of conductance equal to 50% of maximum 

conductance, b, known as the P50 value. 
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These values must be placed in their ecophysiological context in order to give a meaningful 

view of the impacts that low water potentials will likely have on plant health. This can be done 

for example by calculating the hydraulic safety margin (HSM): 

HSM = Ψmin − ΨP50 1.11   

 

                                                             

The HSM is an ecologically interesting value since it compares the minimum water potential 

experienced at a site with the innate likelihood of a damaging level of embolism, the water 

potential that causes 50% loss of conductance (Delzon and Cochard 2014). The difference 

between the two values shows how close a tree is at a particular site to experience dangerous 

embolism. A global analysis by Choat et al. (2012) suggests that plants maintain minimum 

water potentials close to their P50 value regardless of biome type (<1MPa).  

Propensity for vessels to embolise at a given water potential is strongly associated with xylem 

vessel diameter, where wider vessels lose conductance more rapidly under drought stress 

(Hacke et al. 2006; Holtta et al. 2011). Tropical trees, via selection and evolution, must select 

how to grow and survive, either by reducing vessel size and/or maintaining larger HSMs, but 

simultaneously reducing gas exchange with the atmosphere and thus productivity, or have 

wide vessels and/or permit low water potentials, improving  productivity at the risk of 

embolism formation (Hacke et al. 2006; Markesteijn et al. 2011; van der Sande et al. 2019).  
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1.3.4 Water use efficiency and carbon balance 

Intrinsic water use efficiency (iWUE, μmol m-3) is a measure of how much photosynthesis (A) 

is done per amount of water that evaporates from the leaf via the stomata in exchange for 

CO2 (Farquhar et al. 1989).  

 

iWUE = A/gs 1.12 

 

      

Photosynthesis depends upon the stomatal conductance and tendency for CO2 to move from 

the air (Ca ,μmol mol-1) to the evaporation site in the leaf (Ci , μmol mol-1) where water and 

CO2 are exchanged (gs is the stomatal conductance for CO2) (Farquhar et al. 1989; Kusumi et 

al. 2012; Wong et al. 1979).  

           A = gs (Ca − Ci)  1.13 

     

Isotope fractionation is used to assess iWUE in plants as 12C is preferentially used in 

photosynthesis, therefore under stomatal closure when 12C diminishes in air within the leaf a 

higher proportion of 13C is used during photosynthesis (Farquhar et al. 1989). Because CO2 

concentrations in the atmosphere are increasing the iWUE of trees should also increase, 

potentially making them less vulnerable to drought events (Guerrieri et al. 2019; Swann et al. 

2016). Stomatal closure may play a key role in the hydraulic strategies of trees, in particular 

the trade-off between carbon starvation during drought or hydraulic failure (Chen et al. 

2019b; McDowell et al. 2008; Mencuccini et al. 2015).  
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 As trees grow larger their respiration increases. In small trees this increase is relatively 

isometric as there is little tissue that is not metabolically active (Mori et al. 2010). In large 

trees the proportion of non-metabolically active tissue increases, thus the relationship 

between whole plant respiration and plant size may be expressed as a power law (Mori et al. 

2010; Savage et al. 2008): 

 Y = FMf 1.14 

 

Here Y is the metabolic rate of respiration (μmol s-1), F is a constant (μmol s−1 kg-f), M is the 

whole tree biomass (kg) and f is the exponent which dictates the shape of the relationship, 

which for herbaceous plants is close to 1, and in large woody plants is much less than 1 (Mori 

et al. 2010; Savage et al. 2008; West et al. 1997). However, Mori et al. (2010) show that f 

changes as tree size increases and thus a mixed-power function can be used to capture the 

transition from small tree power law to large, due to the differences in relative respiration 

per body mass.   So, with each increment in growth of larger trees the relative cost increase 

in terms of respiration decreases.  

1.3.5 The consequences of height for tall trees 

As explained above Ψl declines with gravity at a rate of -0.1MPa for every 10m (Woodruff et 

al. 2004) and the resistance of the xylem, although may be maintained due to xylem tapering, 

likely makes xylem more vulnerable to embolism formation with increasing tree height (Olson 

et al. 2018). If resistance were not completely compensated by tapering , for example due to 

an increased number of inter-vessel pit connections (Kaack et al. 2019), then leaves would 

require even more negative water potentials to pull water to greater heights at a similar rate 
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of flow as per the original hydraulic limitation hypothesis that did not account for complete 

mitigation of resistance with height caused by vessel tapering (Ryan and Yoder 1997). As the 

HSM would become smaller, this would further increase embolism likelihood.  

Taller trees are therefore at greater hydraulic risk due to lower water potentials and larger 

vessels (Prendin et al. 2018). As trees grow taller they may opt to reduce hydraulic risk e.g. by 

increasing stomatal control of water potential (Ambrose et al. 2010) or limiting the increase 

in vessel size, and thus embolism vulnerability for a given water potential with tree height, 

though this appears not to occur, and rather the opposite, apical vessels increase with tree 

height in order maintain constant hydraulic resistance with increasing path length (Echeverria 

et al. 2019; Olson et al. 2014).  In particular CO2 concentration within the leaf declines upon 

stomatal closure, and therefore photosynthesis rates and productivity decline. This problem 

may be exacerbated by the higher respiration costs of larger trees (Mori et al. 2010).  

As trees grow taller they have broadly two options: to maintain productivity or hydraulic 

function. Either option has costs and may explain; why tree height is limited across 

precipitation gradients (Klein et al. 2015; Tao et al. 2016), tree mortality and growth during 

droughts (Bennett et al. 2015), and how trees and forests are likely to experience future 

changes in water availability associated with a changing climate (Fajardo et al. 2019).  

 Limitation of tree height hypotheses 

What limits the height that trees can attain is not certain. Trees can grow very tall (Gorgens 

et al. 2019; Shenkin et al. 2019; Tng et al. 2012), but rarely do (Gorgens et al. 2020; Tao et al. 

2016). Whatever causes limitation must be mediated by height growth rates (trees grow less 

in height as they get taller) and/or mortality rate (trees die before they can grow taller). There 
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are many complex processes that may affect the height growth and mortality of trees, but at 

the broad scale several hypotheses are more likely. Known ecophysiological disadvantages of 

pulling water to great height suggest water limitation of tree height attainment (Ryan and 

Yoder 1997). Nutrient limitation of plant growth is a well-established concept in plant biology 

and too may affect how tall trees may grow since larger bodies require more nutrients over 

their life and thereby deplete surrounding soil, necessitating greater fine root investment 

(Gower et al. 1996). Larger bodies also require more energy from photosynthesis, so unless 

photosynthetic capacity also increases height may be limited by respiration demand relative 

to photosynthesis (Gower et al. 1996; Koch et al. 2004). Additionally, being tall puts trees 

under greater mechanical strain and at risk of breaking or falling in strong winds (Niklas 2007). 

Thus, several mechanisms may influence tree height limits. 

1.4.1 Hydraulic limitation of tree height 

The hydraulic limitation hypothesis states that as trees grow taller their ability to pull water  

to great height diminishes (Ryan and Yoder 1997). Part of the reasoning behind this is the 

work (energy) needed to move water against gravity and increasing resistance of the xylem 

network increases with tree height. The tapering of xylem conduits represents a way to 

negate resistance increases with increasing tree height, while the effects of gravity are 

unavoidable. So taller trees have wider basal vessels to overcome resistance increases and 

have more negative water potentials due to the gravitational component of water potential 

at the apex of the tree. This makes them more vulnerable to embolism, and therefore more 

at risk of dehydration related mortality during droughts (Levionnois et al. ; Liu et al. 2019; Liu 

et al. 2018; Prendin et al. 2018).  Trees may adapt to this increase in risk by changing their 

hydraulic behaviour. For example, trees that are isohydric are likely to maintain their leaf 
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water potential at a less negative value in order to reduce embolism risk (Martin-StPaul et al. 

2017). The consequences of this however are that photosynthesis rates are reduced under 

stomatal closure (Flexas and Medrano 2002). Alternatively taller trees may shed leaves in 

order to maintain moderate water potentials within the xylem and avoid dehydration and 

death either as a process or due to death from dehydration of leaves with smaller hydraulic 

safety margins (Liu et al. 2015; Wolfe 2017).   

Thus, we might expect tall trees to experience more hydraulic stress under a given water 

availability than shorter trees. So, when a drought occurs tall trees might be expected to be 

highly impacted relative to shorter trees, either by reduced growth rates, partial crown 

mortality or whole tree mortality.  

1.4.2 Evidence for the hydraulic limitation of tree height 

Early studies demonstrated the hydraulic limitation of tree height by showing vertical trends 

in physiological properties with tree height. A seminal study in giant 112m Sequoia 

sempervirens showed reduced water potential with increased tree height in addition to 

increased leaf mass per area (LMA), decreasing maximum photosynthesis rate and increased 

water use efficiency. Based on these observations the authors estimated a hydraulic limit to 

tree height of 123-130m based on (Koch et al. 2004). Negative water potentials in the stem 

have been shown to reduce shoot expansion in very tall conifers resulting in leaf structural 

modification such as increased LMA (Ambrose et al. 2016; Chin and Sillett 2016; Chin and 

Sillett 2017; Koch et al. 2004; Mullin et al. 2009; Nonami and Boyer 1990; Woodruff et al. 

2004). This may explain a maximum theoretical limit to trees height under ideal conditions 

(Burgess and Dawson 2007).  
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Tree height distribution along water availability gradients provides evidence for the HLH. 

Across the Amazon trees grow taller in regions with high water availability, namely high clay 

percentage soils, high number of cloudy days indicating low seasonality and moderate to high 

precipitation between 1500 and 2500 mm per year (Gorgens et al. 2020). Other remote 

sensing based studies have shown a strong relationship between forest height and water 

availability, using potential evapotranspiration and precipitation minus evapotranspiration 

that estimate the amount of water available to the plant (Klein et al. 2015; Tao et al. 2016).  

These studies show that below a certain value of water availability forest height increases 

linearly with water availability, as expected under the HLH. Above this value of water 

availability forest height ceases to increase, likely as other factors limit height attainment.  

The drought responses of tall trees may reflect limitation of tree height, namely whether trees 

stop growing due to hydraulic stress reducing photosynthesis or die from either hydraulic 

failure due to embolism formation, or Carbon starvation (McDowell et al. 2008). Droughts 

provide a way to test whether tall trees are suffering from more hydraulic stress relative to 

short trees as any negative change in environmental water availability should induce greater 

physiological stress in tall trees. A global metanalysis of the studies analysing tree responses 

to drought showed both that large diameter trees experience lower growth rates and higher 

mortality rates during drought relative to smaller diameter trees (Bennett et al. 2015). A 

recent study of an 8 year drought event in California showed that taller trees were more likely 

to die (Stovall et al. 2019).  Evidence from long term drought experiments in the Amazon show 

that after only 60% of rainfall was permitted to reach the soil tall trees die at a much higher 

rate than medium and short trees (Nepstad et al. 2007). A similar Amazonian throughfall 

study showed rapid death and lack of decline in growth rates of tall trees to indicate hydraulic 

failure as the mechanism behind drought mortality of tall trees (Rowland et al. 2015). Satellite 
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derived forest height measurements taken before and after the 2005 Amazonian drought 

showed forest height decreased by ~1m in the worst drought affected regions within 2 years, 

likely due to defoliation and mortality associated with hydraulic stress (Yang et al. 2018b). 

1.4.3 Nutrient limitation of maximum tree height 

As trees grow taller they use the nutrients which they need to acquire in the soil in their 

immediate vicinity. The nutrients that are being locked within a large living tree are not 

available, so the soil around the tree is likely to be depleted in soil nutrients and limits further 

growth (Gower et al. 1996). This point of limiting low nutrient availability should occur at 

lower height in soils that have an initial low soil nutrient concentration.  

Many studies show some degree of nutrient limitation of the growth of tropical trees, typically 

by showing changes in growth rate upon nutrient addition relative to controls, as well as along 

naturally occurring gradients, but few show limitation of the maximum height attainable by 

trees and none in the tropics (Turner et al. 2018; Wright 2019).  Some of the few studies that 

examines the effects of nutrient addition in relation to tree size finds no impact of nutrient 

addition to tree diameter growth in the largest examined size classes of tropical and 

subtropical trees (Fisher et al. 2013; Li et al. 2018). A recent study located in lowland Guiana 

shield forest, which produce some of the tallest neotropical trees, showed that nutrient 

availability did not impact forest biomass (Soong et al. 2020a). Evidence also suggests the 

largest trees continue to increase in biomass, i.e. increasing diameter (Stephenson et al. 

2014), suggesting nutrient availability may not directly set limits to tree stature.  



27 
 

1.4.4 Metabolic allometry limits to tree height 

Taller trees have larger bodies. The height-diameter allometries of most trees show that trunk 

diameter increases at a greater rate relative to height as trees grow taller (Feldpausch et al. 

2012). These larger bodies use more energy in order to respire (Mori et al. 2010; West et al. 

1997). Allocation of resources to other non-photosynthesising organs also increases with tree 

size, e.g. reproduction often starts in tall mature trees (Wright et al. 2005). Allocation to root 

biomass relative to shoot biomass (implying a measure of productivity) however decreases 

with tree height across biomes (Qi et al. 2019). Total leaf area tends to increase more slowly 

with body size in larger trees, and photosynthetic capacity per leaf mass tends to decrease 

with tree size, suggesting limits to photosynthetic productivity (Koch et al. 2004; Tu 2019; Xu 

et al. 2014). The leaf area relative to conducting wood also decreases with tree height, 

suggesting further reductions in productivity relative to respiration with increasing body size 

(McDowell et al. 2002). So, trees with limited photosynthetic capacity use a larger percentage 

of the maximum photosynthate. At some point the tree will either stop growing or starve. 

Trees in drier conditions tend to have larger trunk diameter and increased allocation of 

biomass to the roots for a given height and thus may explain partly why trees in drier regions 

should be shorter (Banin et al. 2012; Feldpausch et al. 2012; Givnish et al. 2014). However, if 

trees follow the power law of metabolic demand and body size (equation 1.14), and 

metabolically active sapwood relative to inactive heartwood decreases with tree size 

(Lehnebach et al. 2017), the increasingly small incremental increase in energy demand with 

increasing tree size may not limit height.  

Considering that as trees grow taller leaf size tends to decrease, and leaf mass per area 

increases, it might be expected that productivity should decrease with body size, regardless 
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of increased metabolic demand of the woody portion of the tree. However, some studies have 

shown photosynthetic capacity of tropical trees increases with tree height (Kenzo et al. 2006; 

Rijkers et al. 2000). In line with this several studies including very large tree sizes show that 

growth rates increase with tree size (Sillett et al. 2010; Stephenson et al. 2014), though there 

is a paucity of evidence of this type showing changes in growth within individual trees (Sheil 

et al. 2017), and several studies demonstrate slowing of diameter growth with tree size 

(Lehnebach et al. 2017; Mencuccini et al. 2005). This might suggest that this mode of height 

limitation does not occur widely (Banin et al. 2014). Unfortunately, total respiration is difficult 

to measure in large trees in nature, so understanding the contribution of size related changes 

to tree Carbon budgets and thus height limitation are unclear, and though theoretically 

possible are inconsistently supported by evidence (Ryan et al. 2006; West 2020).  

1.4.5 Other limiting factors 

Being tall is associated with other risks that might limit achievable height. For example, tall 

trees experience higher wind stress (Mayer 1987). Therefore regions with high wind speeds, 

such as Caribbean islands and Australian rainforest that are exposed to hurricanes and 

cyclones have lower maximum tree height compared to nearby tropical forests outside of the 

path of such storms (Ibanez et al. 2019). A study of remotely sensed forest height showed 

that across the Brazilian Amazon tall trees are strongly associated with regions with low wind 

speed (Gorgens et al. 2020). Also, anecdotally the tallest tropical tree found in Borneo was 

located on the sheltered side of a ridge. Trees on the exposed side of the ridge were ~30m 

shorter (Shenkin et al. 2019). Lightning strike is an additional source of mortality that affects 

taller trees in lowland tropical forests more than shorter trees (Yanoviak et al. 2020). Since 

storm intensity may increase with climate warming tropical forest maximum height may be 
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negatively affected (Pinto and Ieee 2013; Walsh et al. 2019). The frequency and intensity of 

other disturbance events that increase mortality rates such as floods, fire may also play a role 

in limiting forest height (Balch et al. 2015; Resende et al. 2020).  

Tree height may be limited due to lack of need to grow taller. For example, understory 

rainforest tree species do not grow tall, they maintain their height below the canopy in less 

productive but hydraulically safe conditions with few competitors (Guo et al. 2017; Nepstad 

et al. 2007). Canopy level trees tend to grow to a similar height in the canopy, with 

outstanding emergent trees being rare, likely due to a balance between the losses of 

productivity in shade and the hydraulic stress and carbon costs for growing tall (Kuppers et 

al. 1996; Niklas 2007; Olson et al. 2018; Rijkers et al. 2000; Rodriguez-Calcerrada et al. 2019). 

Canopy trees have been shown to reduce their height growth increment upon reaching the 

age at which flowering occurs and likely represents a decrease in resource allocation to height 

growth due to increasing demand of reproduction (Suzuki et al. 2019). Competition for light 

should drive most canopy trees in a forest to their maximum productive height however 

(Schuster et al. 2008).  Once trees reach a canopy and wind action increases they contact 

other trees, and experience wind strain, this causes mechanical stress thus inhibiting growth 

in branches and induces diameter growth in the mechanically stressed portion of the bole to 

increase strength (Anten et al. 2009; Coutand and Moulia 2000; Jaouen et al. 2010; Putz et al. 

1984). This process of growth responses to mechanical stress is known as 

thigmomorphogensis may therefore limit the ability of trees to grow further once they have 

reached the crown as they must invest more in reaction to mechanical stress.  
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1.4.6 Co-limitation among limiting factors 

Limitation in a complex natural environment is often not caused by single factors but by a 

complex of factors. For example, low nutrient availability may limit a tree's ability to construct 

root systems and  invest in hydraulically safe xylem networks or osmotic adjustment of water 

potential (Santiago 2015). Across a range of water availability Eucalyptus spp. tree height was 

found to be constrained by both water availability and the carbon resources required to 

produce new growth (Givnish et al. 2014). Another example of a complex of height limiting 

factors has been shown by the preference for some insect species to attack larger more 

hydraulically stressed trees during drought (Stephenson et al. 2019). Height limitation has 

also been shown to be caused by a trade-off between hydraulic limitation and nutrient 

limitation independently and when both hydraulic and nutrient resources are high the tallest 

trees are produced (Cramer 2012). Amazonian examples of complex factors affecting tree 

height limitation can be shown by white-sand ecosystems, where disturbance, water 

availability, nutrient poor soils, fire and waterlogging likely impact forest stature in localised 

pockets with highly sandy soils (Adeney et al. 2016). Modelled forest height that included a 

number of predictor variables found that multiple limiting factors enabled better predictions 

of maximum tree height, including allometric limitation, hydraulic limitation and radiation 

(Kempes et al. 2011).  

1.4.7 The study of tree height limitation in the tropics  

Tropical trees may differ from trees at higher latitudes in the mechanisms of height limitation. 

This is most obviously true when examining the limitation of height along the arctic tree line 

(Mao et al. 2019). Tropical forests do not freeze, excluding one of the main problems for trees 

growing in regions where tree sap freezes, namely freezing induced embolism formation 
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(Lemoine et al. 1999). Such differences may well confer differences in the limitations to the 

heights tropical trees may attain. 

However, a high proportion of studies assessing the limitation of maximum tree height focus 

on temperate regions, specifically, those trees that attain particularly great heights e.g. 

Sequoia spp. and Eucalyptus spp. (Ryan et al. 2006). So, there is a lack of studies of tropical 

trees which can also reach great heights. Many of the previous studies assessing how 

hydraulics may limit tree height do so at single sites. Multi-site studies are particularly 

interesting in order to investigate the limits that trees can attain as these more clearly show 

limitation (Givnish et al. 2014).  Current tropical studies of height limitation are restricted to 

remotely sensed data (Gorgens et al. 2020; Klein et al. 2015; Tao et al. 2016). Whilst extremely 

useful, this type of data is limited by relatively low resolution at large scale and lack of 

individual tree information such as taxon and many ecophysiological properties and 

functional traits. 

The ecotonal regions of forest biomes are perhaps most interesting as these are most likely 

to experience dramatic shifts in tree communities. Such ecotones are where the limitation of 

tree height is expected to be most strongly experienced at the community level, as per the 

shape of the relationship between remotely sensed tropical forest height and water 

availability (Klein et al. 2015; Tao et al. 2016). Studies should focus on these regions in 

particular in order to assess how vulnerable tall trees are to changes in water availability.  

 Thesis aims  and objectives 

The overall aims of this thesis are to examine how tree height might be limited in tropical 

forests. Tree height is an important determinant of forest biomass and thus is important to 
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understand future impacts of climate change. Despite the importance of tropical forests 

relatively few studies focus on these highly biodiverse regions. Relatively recent discoveries 

of giant trees in tropical forests perhaps highlights the need to better understand height limit 

before tall trees are eliminated from these threatened regions (Gorgens et al. 2019; Shenkin 

et al. 2019).  

1.5.1 Describe the role of water availability in determining the height of neotropical forest 

trees and differences at the taxon specific and community scale 

Previous work has shown that tropical forest height is strongly determined by water 

availability (Gorgens et al. 2020; Klein et al. 2015; Tao et al. 2016). This matches the 

expectation that tree height is limited in many tropical forest communities by increased stress 

due to the need to pull water to greater heights (Ryan and Yoder 1997). Thus, in drier regions 

it becomes more difficult for trees to pull water to a certain height relative to wet regions. 

These studies have broadly been at the forest community level, either due to the broad scale 

nature of the data, such as LiDAR (Gorgens et al. 2020; Klein et al. 2015; Tao et al. 2016), or 

was not the aim of the study to delve beyond the level of the community (Feldpausch et al. 

2012). What these broader studies do not show are taxonomic scale relationships between 

water availability and tree height attainment and how might the overall community canopy 

maximum height be composed of families, genera, and species. The first aim of this thesis 

which concerns tree height in neotropical forests specifically is to establish whether, using a 

large number of forest plot height data, neotropical forests are indeed limited by water 

availability and what metric of water availability best describes this. Then, are changes in the 

community maximum height reflected in changes in maximum height of individual taxa. 
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1.5.2 Examine the impact of climate on the xylem vessel tapering within a tropical tree 

species 

Trees are likely to be able to avoid one of the main negative consequences of growing tall, 

namely frictional resistance to water flow up the tree, by increasing vessel diameter in vessels 

basal to the apex as height increases, thus each additional vessel added contributes 

increasingly little to overall resistance, provided that the increase in vessel diameter is high 

enough in relation to height increases (Anfodillo et al. 2006; Olson et al. 2014; West et al. 

1999). This increase in basal vessel diameter with height is known as tapering. There are 

however negative consequences with having large diameter vessels, particularly in relation 

to embolism resistance, where numerous studies have shown larger vessels to increase the 

likelihood of embolism formation (which block water flow) at a given water potential 

(Levionnois et al. 2021; Lobo et al. 2018; Olson et al. 2018; Prendin et al. 2018; Scoffoni et al. 

2017; Sperry et al. 2006). In drier regions water potentials tend to be more negative, thus a 

tree of a given height in a dry and wet habitat might be expected to differ in vessel diameter 

in order for the drier site tree to compensate for the increased embolism risk. We ask 

whether, in a broadly distributed tropical forest tree species, vessel diameter does indeed 

decrease for trees of a given height in dry relative to wet sites. 

1.5.3 Investigate how functional traits and ecophysiological properties vary with height 

through the canopy and match the life-history strategies of three tropical tree species 

Considering that different tropical forest species have different growth strategies, it has been 

shown that their ecophysiological properties in relation to growth and survival match, i.e. 

hydraulic properties and functional traits associated with high growth rate align with fast 

growing trees and properties associated with hydraulic caution align with slower growth 
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(Markesteijn et al. 2011; Poorter et al. 2010). Most studies in this regard in tropical forests 

focus on seedlings and ignore the potential impacts of height to adult stature and changing 

conditions through the canopy. We ask whether ecophysiological properties and functional 

traits change with height and whether clear differences between species are apparent and 

whether these align with their life-history strategies.  

1.5.4 Research questions 

In relation to the aims of this thesis we ask the following research questions: 

• Using a large dataset of ground measured tree height across the neotropics, which 

environmental variables limit maximum forest height across the neotropics? 

• Do individual neotropical taxa follow the same relationship as the overall forest tree 

height relationship? 

• What degree is forest maximum tree height reduced due to shifts in composition or 

due to decrease in tree stature of the same taxa with water availability? 

• Do tropical Cedrela odorata trees maintain a xylem network that minimises resistance 

according to the predicted scaling law? 

• Do tropical Cedrela odorata trees favour hydraulic efficiency or safety when growing 

in dry versus wet conditions? 

• How do ecophysiological properties and traits change up a height gradient in three 

neotropical species differing in life-history strategy? 

• Do these different species’ physiological properties and traits represent different life-

history strategies? 
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2 Chapter 2    Overview of Methods 

 Introduction  

We investigate a range of scales to assess the question what determines height in neotropical 

trees. From within tree measurements at a single site, across-sites measurements of 

individual trees and across the whole neotropical forest community. Such an approach 

requires a variety of research techniques and data acquisition methods. Integrating data from 

different scales on tree height attainment and ecophysiological relationships with height will 

help to capture some of the complexity of the height limitation of tropical trees that may be 

less well appreciated by looking at a single scale.  

Specifically, our approach asks how water availability limits the maximum sizes of trees at the 

community and taxon level. This is answered using plot data, small inventoried areas of forest 

that have the trees identified to species level within them and measured their height. 

Previous studies in the tropics have used remote-sensing data to determine the relationships 

of forest maximum height with water availability, which though very useful lack the detail 

that in-situ data can bring (Gorgens et al. 2020; Klein et al. 2015; Tao et al. 2016). We also ask 

how across sites differing in water availability tree xylem vessel anatomy differs. We answer 

this question using a small number of sites covering the range of water availabilities of a single 

species and one congeneric species. Very little work has investigated how xylem vessels taper 

with height in the tropical trees. The only existing similar study has looked at this question for 

low statured temperate trees (Fajardo et al. 2020). We then ask how tree height determines 

a suite of functional traits and ecophysiological properties within and across individual trees 

at a single site, and across species differing in life-history strategy. To answer this, we select 
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three species on a spectrum of shade-tolerance at a single site that experiences a pronounced 

dry season and attempt to determine the hydraulic stress trees at different height experience 

as well as other functional trait changes as trees grow taller. Previous studies in these same 

species focused only in juvenile trees (Markesteijn and Poorter 2009; Poorter and Bongers 

2006), we however use a range of tree sizes from juvenile to the maximum heights available 

at the site. 

 Species and site selection 

Our research focuses on neotropical forests, a region that contains the highest angiosperm 

plant diversity (Antonelli and Sanmartin 2011; Antonelli et al. 2015). We do not use any 

montane forest sites, as altitude related temperature and atmospheric pressure (CO2 partial 

pressure )  may complicate interpretation of results (Körner  1998; Malizia et al. 2020; Wittich 

et al. 2012). We also do not use any sites that have trees but are not forest, e.g. savanna, nor 

sites that are frequently inundated, e.g. mangrove or swamp forest. This avoids a number of 

complicating factors, e.g. large-scale fire disturbance (dry forest sites we investigate do burn, 

but evidently not severely enough to reduce forest cover) (Gould et al. 2002), and a presumed 

relative independence from climate induced water availability due to high water tables (Sousa 

et al. 2020).  

This research concerns only arborescent species, in the lowland neotropics this is almost 

entirely angiosperm species (Ghazoul and Sheil 2010b). The neotropical angiosperm tree 

species we study can be divided between palms (Arecaceae, monocots) and non-palms 

(eudicots, the majority of neotropical tree species, and magnoliids, most within Lauraceae) 

(Byng et al. 2016). 



37 
 

We study the tropical forest community as a whole in Chapter 3, utilising the majority of tree 

species, genera and families that fit the abundance criteria we lay out in that chapter. We 

study some selected species more closely in Chapters 4 and 5. Chapter 4 attempts to show 

how xylem vessel anatomy changes over large gradients of water availability within a species. 

There are few tropical species that range from very low water availability (for a tropical forest) 

to very high water availability (Esquivel-Muelbert et al. 2017a). We selected a species that 

occurs from seasonally dry forest to aseasonal wet tropical forest, Cedrela odorata (L. 

Meliaceae), and a congeneric, C. salvadorensis (Standl.). For Chapter 5 we focus on three 

tropical tree species, Ampelocera ruizii, Pseudolmedia laevis, and Centrolobium microchaete 

which co-occur in a semi-evergreen forest at the ecotone between wet Amazonian type forest 

and seasonally-dry Chiquitano forest. These species have been shown in juvenile trees to be 

classified along a gradient of shade-tolerance and with different functional traits (Markesteijn 

and Poorter 2009; Poorter and Bongers 2006).  P. laevis is a slower growing shade-tolerant 

tree, C. microchaete being a faster growing shade-intolerant species, and A. ruizii being an 

intermediate with fast growth and shade-tolerance traits. 

 Environmental data for our sites 

Data characterising the environment of the study sites used in the research Chapters in this 

thesis were collected from different sources. The environmental data of Chapter 3, soil 

texture, insolation, and climate were taken from global datasets in order to cover the wide 

range of forest locations in this study across tropical South America. Precipitation and 

temperature variables were downloaded from Worldclim at 2.5 minute spatial resolution 

(Fick and Hijmans 2017). Direct normal irradiation (kWh m-2), the radiation that arrives 

perpendicular to any unit area of the earth’s surface, was obtained from Global Solar Atlas 
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2.0 (Solargis). We also used global maps of soil texture characteristics (bulk density kg m-3, 

clay %, sand % and silt % at 15cm) which were downloaded from SoilGrids at 1km resolution 

(Hengl et al. 2014). See SI Table 3.2 for full details.  

In Chapter 4 four sites were used to compare the xylem anatomy of trees across a water 

availability gradient. Using the Global Historical Climatology Network-Monthly (GHCN-M) 

dataset (Peterson and Vose 1997) we collected weather station data from the two nearest 

weather stations for most sites, but for one site there was only one weather station near to 

the study site (Selva Negra, Bolivia). These weather stations had data covering different time-

periods and differed in completeness (i.e. years and months with missing data). We averaged 

the monthly mean temperature and precipitation across the available years for each site to 

estimate monthly precipitation and temperature, and annual precipitation total. See Table 

4.1 for full details.  

For Chapter 5 we focus research at a single site. Here we directly measure the environmental 

conditions of the site at the time of measurement to assess the progress of the dry season 

using a Hobo climate sensor (UX120 series, Onset Computer Corporation, Bourne, USA). 

Whilst the background monthly climate data and soil characteristics of the site were 

previously measured using a temporary weather station (Araujo-Murakami et al. 2014). 

Specifically, the site has a MAP of 1352mm year-1
, with a 6-month dry season with less than 

100mm month-1. It has sandy loam type soil (76% sand, 16% clay) and relatively high 

phosphorous concentration.   
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 Height measurement 

The methods of height measurement differed amongst the three research Chapters. Chapter 

3 uses tree height measured over many plots by different teams. The different methods 

include estimation by eye, clinometer where the angle to the top of the canopy and the 

distance to the base of the tree are manually measured to calculate tree height, with laser 

range finder, where the angle and distance are automatically measured and height calculated, 

as well as direct measurement (e.g. climbing or using a tower).  Chapter 4 uses only the 

estimated height of trees. Teams who collected the height data calibrated their estimates of 

height with some trees of known height that were felled. Chapter 5 used only laser range 

finder measurements to determine the height of trees and sample points, except in the case 

of very small trees where a tape measure was more practical.  

 Wood samples and xylem vessel anatomy measurement  

We use wood samples to measure the xylem vessel width and density (number of vessels 

within an area) in Chapter 4 and 5. In Chapter 4 wood samples were collected only from the 

bases of trees at a measured trunk diameter and height above ground. Wood samples were 

usually collected using an increment borer of either 5mm or 10mm increment borers where 

wood cores were withdrawn (generally to the centre of the tree). Wood cores were then fixed 

to wood panels using glue. In the cases of very small trees the entire base of the tree was 

available to use as the wood sample. Wood cores were stored for several years after the 

sample collection from the field before being used for this thesis.  

The wood samples of Chapter 5 were collected in a similar manner to Chapter 4. Wood 

samples were collected form the trunk of the sampled trees, however not only at the tree 
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base. We also collected one sample at the point of the lowest branch of the crown and one 

sample between that point and the base. Due to difficulty in extracting cores using an 

increment borer whilst suspended on a rope to collect the upper two trunk samples it was 

often only possible to collect shallow cores of several centimetres depth. Branch wood 

samples were also collected, which consisted of 4 disks sawed off of a large cut branch. One 

disk was cut at the apex (5cm below tip), one at the base of the branch and two equidistant 

in the middle between the apex and base of the branch (see the methods section of Chapter 

5 for diagram of wood sampling strategy).  

Photographs were taken of the exposed wood surface of the wood cores for Chapter 4, 

different from the methods typical used for wood anatomy studies, which generally use thin 

sections cut using a microtome and placed in glass slides for visualisation. We proceeded in 

this way in Chapter 4 because we had fixed the wood cores with glue to a wooded frame and 

because some wood cores had been damaged by wood worm and fungus at the wood surface. 

Early attempts to liberate cores from their wood frames resulted in disastrous breakage of 

the wood cores. Photographs consisted of two sample types (see methods section of Chapter 

4 for specific details). Type 1 (inter-tree): outer sapwood photographs of many individual 

trees (with the height of the tree known). Type 2 (intra-tree): photographs taken along the 

whole length of a wood core from outermost sapwood to the inner core at the centre of the 

tree. The centre was determined by the concentric nature of rings and often a central pith 

and height of any sample point estimated by site-specific diameter height allometry. Wood 

photographs covered areas of 2cm in the outer wood but the measured area became smaller 

in the very central wood where vessels were very densely packed and growth rings much 

thinner. For Chapter 5 thin sections were taken of the wood samples using a microtome, 

typically cut to 20μm thickness depending upon the structural qualities of the wood of each 
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species and position of the sample (branch sections were cut using a saw first if too large to 

fit within the microtome) (Gartner and Nievergelt 2010). Thin sections were then placed 

within slides for photography under a microscope.  

Images were taken at different magnification depending upon the size of the vessels within 

the sample i.e. higher magnification at the apex and in small trees (see Chapter specific 

methods). Vessels within the images of the wood surface and thin sections were measured 

manually using image-J (Fiji, version 1.52p). The area of wood in which vessel area was 

measured was used to calculate the density of vessels per wood surface area. Generally, ~100 

vessels were measured per sample (Scholz et al. 2013). When vessels were very densely 

packed (e.g. in small trees or at the apex of a branch) the measured area was reduced to 

reduce the workload.  

 Functional traits and ecophysiological properties 

In Chapter 5 we present and analyse a number of ecophysiological properties and functional 

traits in addition to xylem vessel anatomy (as outlined in the previous section) that reflect 

hydraulic safety and productivity. Specifically, we measure the leaf area and leaf mass to 

obtain the mean and maximum leaf area and leaf mass per area (LMA) of each sample. 

We also measure the length and density of stomata guard cells in a subsection of the same 

leaves used for leaf area and LMA. We impressed dental putty onto the underside of the 

leaves to generate a negative of a small area of the underside of a leaf. This putty was then 

painted with nail varnish which once dried produces a copy of the stomatal anatomy of the 

underside of the leaf. The transparent nail varnish was then transferred to a glass slide and 

photographed using a GXCAM microscope mounted digital camera (GXCAM-U3PRO-6.3, GT 
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Vision Ltd.) with a 6.3 megapixel lens mounted to an Olympus CX43 microscope at 40X 

magnification. ImageJ was then used to measure stomatal length using the software’s 

measuring tools and count the number of stomata in area of 0.33mm2 to determine the 

density. 

Additionally, we use the same leaves for the extraction of α-cellulose following the protocol 

of Wieloch et al. (2011) in order to measure the proportion of 13C to 12C. In this process leaves 

were cut into small pieces and placed in 5% NaOH solution twice for two hours. Samples were 

washed with boiling water to remove remaining NaOH solution. Samples were then placed in 

7.5% NaClO2 solution for 8 hours. Samples were again washed with boiling water to remove 

remaining NaClO2 solution. After this samples were freeze dried overnight and kept dry in 

airtight centrifuge tubes. 0.3mg of each cellulose sample were transferred to tin capsules for 

mass spectrometry analysis. The mass spectrometry analysis was performed at the University 

of Leicester using an isotope ratio mass spectrometer (20-20 continuous flow isotope ratio 

mass spectrometer, Sercon ltd.). The Carbon isotope ratio of the samples was compared to 

the isotope ratio of an α-cellulose standard. 

We measured the leaf water potential of leaves collected in the field using a pressure 

chamber (PMS 1505D, USA) which uses nitrogen gas to generate pressure within a chamber. 

Leaves were cut from a tree and immediately placed in a plastic bag made humid by blowing 

into them. This maintains the hydraulic status of the leaf as little water will evaporate from 

the leaf. Within ~15 minutes of being cut leaves were then placed within the pressure 

chamber with a freshly cut petiole exposed to the atmosphere where it can be easily viewed. 

As nitrogen enters the chamber it increases the pressure. As the positive pressure within the 

chamber cancels the negative pressure within the leaf, water is squeezed out of the petiole. 
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The pressure within the chamber at the point that water first appears out of the petiole is the 

leaf water potential. This was measured at several points throughout the day, at two points 

as the dry season progressed. Drier conditions lead to more negative leaf water potential. The 

water potential of the leaf gives a snapshot of the plants water status at the time of 

measurement.  

We also measured vulnerability curves for the assessment of embolism risk for a given water 

potential. The method used in Chapter 5 is the pneumatic method, which measures the 

volume of gas expelled during drying. This measures embolism indirectly since the air 

discharged represents the embolism present within the branch (Pereira et al. 2016). This 

method produces similar results to the hydraulic method of producing the vulnerability curve 

which measures the change in conductance to water flow of xylem vessels (Pereira et al. 

2016).  

 Determining relationships with height 

For Chapter 3 we determined the relationships between environment and tree height across 

a large area and at different scales from community to species. We did not assume any 

functional form of these relationships a priori. We used generalised additive models to 

constrain these functional relationships. These models were limited to predict smooth 

relationships in tree height per unit change in any environmental variable. This avoids 

overfitting and we did not expect large erratic changes in tree height for small changes in any 

environmental variable (Zuur et al. 2009). We used the R2 value, and AIC (Akaike information 

criterion) and GCV (minimised generalised cross-validation) scores to compare between 

models to find which environmental variables best predicted maximum tree height, and both 
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the R2 and the effective degrees of freedom (a measure of underfitting) in order to determine 

if any relationship was present at the taxon level.  

Relationships between wood xylem vessel diameter and density and height we observed non-

linear relationships, as expected, therefore to linearise and to compare with the literature we 

log-transformed our dependant variables (height and xylem vessel diameter and density). All 

traits and physiological properties in Chapters 4 and 5 were related to height by linear 

regression analysis. All analyses were made using R version 3.5.1 (R Core Team 2018).  
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3 Chapter 3    Environmental and 

taxonomic variation in maximum tree 

height across the neotropics 

 

Abstract 

Tree height is an important determinant of tropical forest structure, biomass and diversity. 

Canopy height is known to decrease with water availability, but it is poorly known to which 

degree this variation in tree height is the result of changes in species composition, or rather 

due to universal within-species changes in height with water availability. Few studies have 

investigated how maximum tree height varies and its climatic controls across taxa since 

remote sensing data do not permit analysis at the taxonomic level. We address the question 

whether forest height changes with environmental variables are the result of changes in taxa 

across environmental gradients, or due to height-environmental relationships within taxa. 

Answering this question contributes to predicting how tropical forest height, and thus 

biomass, may shift in response to changing precipitation and temperature under climate 

change. We investigate this question here for the neo-tropics, using data from 202 plots, 

including height data from 45,000 trees and 2500 species. We find that maximum forest 

height of all forest plot data is strongly positively related to mean annual precipitation (MAP) 

up to ~2700mm, with a decline in maximum height at higher MAP. Across families a 

remarkably similar relationship to the overall forest dataset is found, with maximum height 

attainment peaking on average at 2450mm MAP, though reaching different maximum 



46 
 

heights. Similar results are found for those genera with sufficient data. Species with small 

ranges or abundances tend to attain maximum height closer to the maximum height of the 

community rather than their own centre of abundance, implying within-species changes in 

maximum height with MAP. Similar responses of families to MAP in terms of maximum height 

attainment suggest that under climate shifts trees of these families will behave similarly to 

the overall forest community, so composition of forest upper canopies at specific locations at 

the family level may be similar regardless of changes in water availability.  

 Introduction  

Tropical forests hold 62% of global forest biomass (Chen et al. 2019a). Neotropical forests 

have particularly high biomass density, 1.7 times greater than temperate forests and 3.3 times 

greater than boreal forests (Chen et al. 2019a). However, Amazonia is gradually losing its 

capacity to act as a carbon sink due to increasing tree mortality and stagnating growth rates 

(Brienen et al. 2015). The height that trees attain is a major determinant of forest biomass 

(Feldpausch et al. 2012). The largest trees in Amazonian forests are responsible for a 

disproportionately large fraction of overall Amazonian biomass  (Fauset et al. 2015). 

Understanding what limits how tall Amazonian trees grow, and therefore their capacity to 

store carbon, is important for predicting forest responses to climate change.  

Current distributions of neotropical forest heights as determined by remote sensing show a 

strong positive relationship with water availability (Klein et al. 2015). This relationship with 

water availability breaks down at high water availabilities, as forest height ceases to increase, 

or even decreases with further increases in water availability (Gorgens et al. 2020; Tao et al. 

2016). The positive change in forest height with water availability is likely due to the hydraulic 

limitation of forest height at lower water availability (Koch et al. 2004; Ryan and Yoder 1997). 
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Whilst the negative change in forest height with water availability at very high water 

availability may be due to stressful soil saturation causing anoxic conditions that may inhibit 

root growth and thus make trees vulnerable to windfall (Aubry-Kientz et al. 2015; Ferry et al. 

2010; Herault and Piponiot 2018). Cloud cover inhibiting photosynthesis may also play a role 

(Graham et al. 2003; Guan et al. 2015). At locations with very high precipitation nutrient 

limitation may become increasingly limiting, possibly enhanced by high precipitation leaching 

soil nutrients (Cramer 2012; Fisher et al. 2013; Fujii et al. 2018; Givnish et al. 2014; Posada 

and Schuur 2011). Thus, water availability is likely one of the main factors determining why 

tropical forests grow to the heights they currently achieve.  

Climate change is likely to increase the frequency of droughts, such as during ENSO events 

(Jimenez et al. 2018; Jimenez-Munoz et al. 2016), and, as a consequences of deforestation on 

the hydrological cycle, precipitation for parts of the Amazon will be reduced (D'Almeida et al. 

2007). These changes in water availability are likely to disproportionately affect tall trees, as 

shown by drought experiments in the Amazon (da Costa et al. 2010; Nepstad et al. 2007; 

Rowland et al. 2015), leading to reductions in forest height and loss of carbon (Yang et al. 

2018b). Tall trees are likely to be most at risk since they must conduct water to great heights, 

requiring larger vessels to overcome hydraulic resistance (Olson et al. 2014; Olson et al. 2018; 

Savage et al. 2010; West et al. 1999). Larger vessels incur dangerous embolism more readily 

(Adams et al. 2017; Brodribb and Cochard 2009; Hammond et al. 2019; Olson et al. 2018; 

Scoffoni et al. 2017; Sperry et al. 2006). Trees must also pull water against gravity and this 

effect increases with tree height (Koch et al. 2004; Ryan and Yoder 1997), requiring greater 

tension upon the water column for taller trees (Sperry 1986; Sperry and Love 2015; Sperry 

and Tyree 1988). Dry soil makes it harder to pull water to the leaves, incurring even greater 

stress (Vilagrosa 2012). Thus, tall trees are likely to experience greater hydraulic stress under 
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drought conditions (da Costa et al. 2010; Nepstad et al. 2007; Rowland et al. 2015). Further, 

increasing vapour pressure deficit from increasing temperature would also likely induce lower 

leaf water potentials, and thereby hydraulic stress (McDowell and Allen 2015). It may 

therefore be expected that forests under increased hydraulic stress will decrease in height 

(Anderegg et al. 2019; Fajardo et al. 2019; Shenkin et al. 2018; Stovall et al. 2019). On the 

other hand, as atmospheric CO2 increases in conjunction with climate change, increasing 

water use efficiency could mitigate some of the hydraulic stress associated with increasing 

temperature and reduced water availability by permitting more isohydric behaviour (Yi et al. 

2019). However, evidence suggests increasing WUE from CO2 fertilisation does not induce 

higher growth rates in trees (Ahlstrom et al. 2017; Penuelas et al. 2011; van der Sleen et al. 

2015).   

Tropical tree species may grow large by using different strategies: rapid growth but high 

mortality, or slow growth and low mortality (Ruger et al. 2020). Tree species that have high 

reproductive rates tend to be shorter, prioritising fecundity over stature (Kohyama et al. 2003; 

Ruger et al. 2020). Likely as an effect of life-history strategy, different species respond 

differently to hydraulic stress and are adapted to particular growing conditions (Barros et al. 

2019; Choat et al. 2012). Aleixo et al. (2019) showed, based on data from long term 

monitoring of forest mortality, that certain functional groups are more likely to die during 

drought in the Amazon, namely pioneers with high growth rates and low wood density. This 

may be because of a strategy of high growth conferring low hydraulic safety, resulting in 

greater risk of death from embolism during periods of low soil moisture (Rowland et al. 2015). 

Because of the different abilities of species to cope with hydraulic stress, change in species 

composition is expected as forests become drier (Esquivel-Muelbert et al. 2019). Predicting 

any future changes requires descriptions of the current distributions of tree height across a 
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large water availability gradient, including how taxa may contribute to changes in forest 

height with climate change.  

Thus, we ask here first which environmental variables limit forest height across the 

neotropics? We then ask, for individual taxa, how does maximum tree height change over 

environmental gradients and how does this make up the forest community at large? 

Different scenarios can be envisaged of taxon specific responses of maximum tree height 

attained along a gradient of water availability relative to that of the overall forest maximum 

height (Figure 3.1, stippled line shape with a decrease in maximum tree height at high water 

availability as per Tao et al. (2016) and Gorgens et al. (2020)): 

1) No change in tree height within taxa and thus increasing tree height due to shift 

in species composition leading to increases in maximum forest height. Species 

differ in their drought tolerance and hydraulic strategies (Bittencourt et al. 2020), 

and are differently distributed along gradients of water availability (Engelbrecht et 

al. 2007; Esquivel-Muelbert et al. 2017b), but height does not change across the 

water availability gradient, thus individual taxa are not limited in height by water 

availability. This is represented in Figure 3.1A. 

2) Change in tree height within individual taxa leads to change in forest maximum 

height. Relationships may be similar to that of the overall forest (but offset in the 

value of maximum height attained). Specifically, most studies show water 

availability to be linearly related to maximum tree height at lower water 

availability, thus it is conceivable that individual taxa may increase in maximum 

height linearly with water availability (Figure 3.1A B). Alternatively, taxa may 
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follow the maximum height of the community more closely, i.e. increasing linearly 

at lower water availability and decreasing at high water availability (Figure 3.1A C). 

 

 

 

 

 

 

Figure 3.1 Conceptual diagram of hypothetical individual taxon relationships between tree height and 
water availability(solid red lines) with reference to the overall forest community relationship (stippled 
line). Different scenarios are posed that are possible based on the literature. Individual taxa show no 
relationship with tree height (A), taxa increase in height with water availability independent of the 
overall forest relationship (B), taxa show similar relationships to the overall forest relationship and 
thereby compose the overall forest relationship (C). A-B show how species may compose the overall 
forest relationship via turnover in taxa, i.e. taxa represent community maximum height for short 
distances in water availability, whilst in C taxon specific relationships are similar to that of the overall 
community maximum height and thus compose the community maximum height.  

The first scenario of maximum tree height per taxon being similar across gradients of 

precipitation would require taxa to be below their maximum stress along most of the range, 

or adaptability within the taxon to be able to cope with changing environmental conditions, 

e.g. greater hydraulic stress in drier sites. Scenario A also is likely where taxa have short 



51 
 

ranges, so that tall taxa only compose the maximum forest height at narrow environmental 

windows (Esquivel-Muelbert et al. 2017a). In either way the increasing tree height with 

increasing water availability of the forest may be due to shifts in taxa. Alternatively, we show 

scenarios where forest maximum height is composed of taxa which also change in maximum 

tree height. In scenario B tree taxa change in their maximum height along a gradient of water 

availability dissimilarly to the forest community, whilst in C the taxa change in a similar 

manner. There is little evidence for any scenario in the literature as this topic has been little 

studied at the taxonomic level. A study by Givnish et al. (2014) of southern Australian 

Eucalyptus showed a similar change in the maximum height of the genus with water 

availability to scenario B in Figure 3.1. Considering the forests there are dominated by 

Eucalyptus it is likely that the within taxon relationship also represented the forest 

community. 

3.1.1 Hypotheses 

In this chapter we test which of a suite of environmental variables predict neotropical forest 

maximum height, specifically whether maximum height of trees in this novel dataset is limited 

by water availability in a similar way to previously reported (Klein, Randin and Korner 2015, 

Tao et al. 2016, Gorgens et al. 2020). Additionally, we will assess whether individual taxon 

maximum height shows a similar response as the overall forest community maximum height. 

This then enables the further questioning of whether changes in the maximum forest height 

of the neotropics is driven by shifts in taxonomic composition or changes in stature within 

taxa. This has not been previously reported and has interesting implications for tropical forest 

responses to climate change. 
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 Methods 

3.2.1 Sites and plot data 

In order to describe the relationships between forest height and water availability across taxa 

this study uses tree height and diameter at breast height (DBH) data from 202 permanent 

monitoring plots (Figure 3.2) accessed from ForestPlots.net (see SI Table 3.5 for plot 

information) (Lopez-Gonzalez et al. 2011; Lopez-Gonzalez et al. 2009). Data from these plots 

includes 45,804 individual trees with height measurement, 2500 species, 585 genera and 111 

families, encompassing trees from three clades: magnoliids (e.g. Lauraceae), monocots (only 

Arecaceae) and the eudicots (most trees in this study). Tree height across these plots was 

measured by independent research teams and using different methodologies, specifically 

laser range finder (46%), by-eye estimated height (7%), clinometers (21%) and directly (9%), 

whilst 15% had mixed methods.  

Mean annual precipitation (MAP), and other precipitation and temperature variables were 

downloaded from Worldclim (Fick and Hijmans 2017) at 2.5 minute spatial resolution. Direct 

normal irradiance (DNI kWh m-2), the amount of solar radiation arriving perpendicular to a 

given area of the earth’s surface, was obtained from Global Solar Atlas 2.0 (Solargis). Soil maps 

of texture (bulk density kg m-3, clay %, sand % and silt % at 15cm) were downloaded from 

SoilGrids at 1km resolution (Hengl et al. 2014).  
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Figure 3.2 Distribution of forest plots included in this study that have height data available, plots 
including non-forest, flooded forest and high-altitude forest have been excluded. The mean of the 
100th, 99th , 98th , 97th ,96th ,95th percentiles of tree height per plot are shown as point colour. See SI 
Table 3.5 for plot information. 

3.2.2 Calculating Maximum height  

In early data exploration of this large dataset it became clear through data inspection (i.e. 

site-specific histograms of tree height, diameter-height allometry (Feldpausch et al. 2012)) 

that the absolute maximum height was highly susceptible to measurement error and results 

were highly influenced by single data points. We excluded trees that lay far from the expected 

diameter-height allometry (Feldpausch et al. 2012), assuming the height measurements to be 

erroneous. Thus, we decided to calculate a maximum height that integrated several of the 

tallest trees per taxon/plot/climate bin (see below for elaboration). 



54 
 

We assess the relationships between maximum tree height and MAP at different taxonomic 

levels. For family, genus relationships we filtered those taxa to include those that occurred in 

ranges over 1000mm in MAP, and that had >20 individuals per 200mm climate bin (filtered 

to 30 families, 28 genera). Because of a lack of species that fit the criteria for family and genus 

level (10 species), species were filtered to those that occurred over 800mm ranges in MAP, 

and that had >10 individuals per 200mm climate bin. This increases the number of species for 

analysis (26 species) but reduces the robustness as the minimum number of trees to calculate 

maximum height was 10 individuals per MAP bin. In order to calculate the maximum height 

we averaged the 6 tallest percentile heights (100th, 99th, 98th, 97th, 96th, 95th) per 200mm MAP 

bin per family, genus and species. These percentiles are hereon referred to as 'maximum 

height'. 

Due to the lack of species with high range and abundance we additionally filter species to 

those with >50 individuals across 800mm of MAP. We then examine at which point the 

maximum height (calculated as the mean of the top 6 percentiles across the MAP range) 

occurs along the MAP range of each species relative to their average occurrence within the 

dataset in order to show a relation to the community maximum height. Each taxon has a 

maximum height (mean of the percentiles) in meters and a MAP at which this maximum 

height occurs in millimetres (mean of occurrence in MAP range).  

3.2.3 Analysis 

We estimated parameters of individual generalised additive models (GAMs) for each 

environmental variable to assess which variable best captures water availability limitation of 

tree height. Individual variable GAMs relate the maximum height per 1/20th environmental 

variable bin with the binned environmental variable. This binning method shows the 
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maximum height trees are able to grow to under a specific environmental condition. Model 

suitability was assessed by the R2, estimated degrees of freedom relative to the degrees of 

freedom (measure of model underfit), and the p-value of the smooth term (Zuur et al. 2009).  

We fitted multivariate GAMs selecting models based upon R2, and AIC (Akaike information 

criterion) and GCV (minimised generalised cross-validation) scores. Initial variable selection 

was based on the single predictor variable model results where the best fitting of two similar 

variables which were highly correlated was selected, e.g. mean temperature of the wettest 

quarter and mean temperature of the wettest month. The highly correlated nature of most 

climate variables strongly limited the possible combinations of variables. Maximum height 

calculated per bin could not be used since bins are climate variable specific, and thus we 

calculated maximum height per plot as the 6 highest percentiles of tree height per plot. 

We also used GAMs in order to assess relationships between maximum height and MAP for 

the whole dataset segregated by family, genus and species taxonomic levels. Relationships 

are only plotted where the R2 >0.1 and the effective degrees of freedom is lower than the 

degrees of freedom (a measure of underfitting).  

The single predictor GAMs that predict maximum tree height, maxH, from a particular 

environmental variable, x, use a penalised cubic polynomial regression spline that produces 

smooth curves, for the smoothing function, f, for the number of knots, i, which are evenly 

spaced across the range of the predictor variable  

 

maxHi = f(xi) + ϵi 
3.1 
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Between each knot a penalisation function reduces the effect of the smoothing function that 

interpolates subsequent knots (xi, xi+1) , which may be reduced to a linear relationship across 

all knots if the relationship between the environmental variable and maximum tree height is 

linear. 

For multiple environmental predictor variables (x1,x2…) the GAMs follow the same logic but 

adding several predictor variables.  

 

maxHi = f1(x1i) + f2(x2i) … + ϵi 

 

3.2 

The number of knots was limited to 4 in order to avoid over fitting. We assumed similar 

degrees of smoothness as previous studies have found (Klein et al. 2015; Perperoglou et al. 

2019; Tao et al. 2016). 

 Results 

3.3.1 Environmental predictors of maximum tree height 

We assess which of a suite of climate and soil variables are best predictors of maximum 

height. Avoidance of collinearity reduced the model to only three variables, MAP, maximum 

temperature of warmest month and % sand. MAP alone explains as much variation in tree 

height as the model that also included T and % sand (see SI Table 3.3 for multiple variable 

GAM results). 
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In the models using only one predictor variable the best individual climatic predictor was MAP 

(R2 = 0.41), whilst % sand explains a similar proportion of the variation in maximum height 

than MAP (R2 = 0.43) (Table 3.1). Combined explanatory variable of MAP/log % sand (R2 = 0.42) 

does not greatly improve the model relative to MAP alone, and does not improve relative to 

sand % alone. The best individual explanatory variables relate strongly to water availability 

and show similar patterns of increasing maximum tree height from low water availability, e.g. 

high sand %, low MAP or low P-PET until a certain point, after which maximum height 

decreases at very high water availability across these variables (Figure 3.3, Table 3.1). We 

select here MAP as the variable to test taxon specific relationships with maximum tree height 

because MAP explains similar amounts of variation in maximum tree height as % sand and is 

a measure of water availability that enables predictions of the effects of changes in climate 

on forest stature. 
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Figure 3.3 Relationships between maximum height and environmental variables. Maximum height is 
calculated per y axis bin (1/20 range of environmental variable), each point is a percentile of the height 
of trees in each bin (95th, 96th, 97th, 98th, 99th 100th percentiles). The blue line represents the GAM fit 
for each relationship and the R2 is shown inset into each panel, as in Table 3.1. MAP = mean annual 
precipitation, P-PET = precipitation minus potential evapotranspiration.  
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Table 3.1 Generalised additive model results for individual independent variables relationships with 
maximum tree heightcalculated as the top 6 percentiles per independent variable bin (bin width = 
1/20  maximum independent variable range). The 12 independent variables with highest R2 are shown 
here. 

Independent 

variable 
R2 dev.expl edf Ref.df F p.value 

Sand% 0.43 0.46 2.80 3.31 17.99 <0.0001 

MAP/ log Sand% 0.42 0.45 2.86 3.36 17.38 <0.0001 

MAP 0.41 0.43 2.99 3.43 15.42 <0.0001 

P-PET 0.18 0.21 3.64 3.91 5.52 0.0005 

Irradiance 0.28 0.30 2.36 2.86 10.83 <0.0001 

Precipitation of 

Wettest Quarter 
0.26 0.28 2.32 2.76 10.38 <0.0001 

Mean Diurnal T 

Range 
0.24 0.26 2.34 2.83 7.52 0.0005 

Precipitation of 

Coldest Quarter 
0.23 0.27 3.87 3.99 8.41 <0.0001 

potential 

evapotranspiration 
0.21 0.23 2.64 3.15 8.84 <0.0001 

Silt% 0.21 0.23 3.35 3.77 7.50 <0.0001 

Temperature 

Annual Range 
0.20 0.23 2.84 3.35 5.92 0.0007 

Precipitation of 

Wettest Month 
0.20 0.22 2.26 2.72 8.00 0.0001 

 

3.3.2 Taxa 

Different families and genera follow relationships with MAP that are similar to the overall 

forest maximum height-precipitation relationship (Figure 3.4A, SI Table 3.4). Most of the 

families shown have a maximum height at a similar point to that of the overall forest with all 
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families combined (mean among families of 2450mm). At family level certain families are 

found to grow tall across the precipitation gradient, such as Fabaceae (maximum height = 

47.9m), Lauraceae (peak height = 47.8m), Lecythidaceae (maximum height = 45.7m) and 

Apoynaceae (maximum height = 42.9m). Others, such as Arecaceae (maximum height = 

28.1m) and Nyctaginaceae (maximum height = 26.1m), are found to have low maximum 

height relative to the canopy throughout their range. For these two families there is a linear 

relationship between maximum tree height and MAP, whilst for other low maximum height 

families such as Violaceae (maximum height = 26.5m) we find instead a curved relationship 

with precipitation similar to the overall forest. Relatively few genera show a strong 

relationship with MAP (Figure 3.4B, SI Table 3.4). However certain genera exhibit a similar 

relationship with precipitation as the forest in general, growing tall across the gradient, 

notably Aspidosperma (maximum height = 47.6m) and Brosimum (maximum height = 40.3m). 

Other genera, such as Neea (maximum height = 25.5m) and the palm Oenocarpus (maximum 

height = 24.9m) remain small throughout their range.  

There are very few species with sufficiently high abundance across a large MAP gradient to 

produce statistically robust relationships (Figure 3.4B, SI Table 3.4). For species that are 

abundant across a large gradient we show some species to be tall across their range, such as 

Apuleia leiocarpa (maximum height = 42.7m), thus making up the overall forest maximum 

height across a range of precipitation levels, whilst others such as Protium heptaphyllum 

(maximum height = 23.8m) and particularly palms tend to be short across their range. Figure 

3.5 shows the maximum heights achieved for species that do not form relationships with 

MAP.  The species shown tend to achieve their maximum height close to the overall forest 

peak. However, is this simply because these species occur at this peak? The relationship 

between the mean occurrence of a species along the MAP gradient and MAP at maximum 
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height shows that maximum height tends not to occur at the mean of the occurrence, but 

rather the maximum height occurs closer to the community maximum height (Figure 3.6). 

 

Figure 3.4 Relationships between mean annual precipitation (MAP) and maximum tree height at 
different taxonomic levels. A-C show the relationships for individual families, genera and species 
respectfully. The individual taxa shown in A and B are those with ranges over 1000mm, with greater 
than 20 individuals per MAP bin, at species level individual taxa shown are those with ranges over 
800mm with greater than 10 individuals per MAP bin. Maximum height is calculated as the top 6 
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percentiles in tree height per 200mm MAP bin. Coloured points represent these 6 percentiles per bin 
per taxon. Palm taxa are denoted by coloured stippled lines. The community maximum height 
relationship with MAP (Figure 3.3) is shown as the black stippled line.

 

Figure 3.5 The maximum height of each species(47 see SI Table 3.1) with >50 individuals across 800mm 
of MAP and at what value of MAP this maximum occurs. The maximum height is calculated as the 
mean of top 5 percentiles of height. Error bars around points show the standard error of MAP and 
maximum height for each species mean of the top 5 percentiles in height. The community maximum 
height relationship with MAP (Figure 3.3) is shown as the black stippled line. Colours represent 
different species.  
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Figure 3.6 Relationship between the location in mean annual precipitation (MAP) of maximum height 
per species(as per Figure 3.5) and the mean of occurrences of each species in MAP, taking the 
abundance of the species at each MAP bin into account. The 1:1 black dashed line shows the expected 
distribution of points if the point of maximum height were associated exactly with the mean of the 
occurrence of the species. The red line shows the peak of the relationship between maximum tree 
height and MAP for the whole forest (2750mm).  

 Discussion 

3.4.1 Explaining variation in forest height 

We aimed to test which environmental variables best predict maximum tree height across 

neotropical forests. We found sand% to be the best environmental predictor variable for 

maximum tree height at the forest community level. Soil sandiness is likely to be an important 

variable for determining forest height due to a combination of effects upon tree growth and 

mortality in addition to effects stemming from water availability (Adeney et al. 2016; Hodnett 

and Tomasella 2002; Soong et al. 2020b). One of the main effects of high soil sandiness on 

tree growth and mortality are lower water availability due to large particle size which reduces 

the ability to retain water. Jimenez et al. (2020) found that during drought periods in the north 

western Amazon forests growing on sandy soils experienced higher mortality whereas forests 
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growing on more clay based soils did not experience any increase in mortality during the 

droughts. Highly sandy soils have also been shown to reduce nutrient cycling, thereby limiting 

the growth of trees (Soong et al. 2020; Vitousek and Sanford 1986). 

Despite a theoretically likely combined effect of both rainfall and soil sandiness, e.g. low 

nutrient availability and exacerbation of water stress, the integration of sand% and MAP did 

not improve the model relative to sand% alone as we expected based on results of Quesada 

et al. (2012). They showed that the interaction of soil physical properties and climate 

predicted forest biomass variations across the Amazon basin, partly due to the correlation 

between particle size and Phosphorous content (Quesada et al. 2010).  Why we find no 

improvement in explaining forest maximum height using both sand% and MAP is not certain. 

The two variables are not correlated with each other (data not shown), but each individually 

explains a high proportion of variability in the maximum height of tropical forest trees. We 

expected high sand% to exacerbate low MAP (less water available in the soil) and low sand 

(high clay) to exacerbate high MAP (more easily waterlogged soil). This suggests that these 

variables to not act together to affect forest height. Future research could further investigate 

the role of soil conditions, specifically using plot level soil texture, and nutrient information 

rather than relatively coarse soil maps that we use here.  

The overall forest relationships using ground data here are very similar to those relationships 

reported between space-born LiDAR derived maximum forest-water availability relationships 

(Klein et al. 2015; Tao et al. 2016). In particular this present study corroborates findings of 

previous studies based on LiDAR data of a strong increase in tree height with water availability 

followed by a plateaux or slight decrease in forest height at high water availabilities. Our 

results show a peak in maximum height using P-PET  as the dependant variable occurring at 
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~3500mm whilst previous global studies using the same dependant variable show the 

maximum height peak to occur at 467mm (Klein et al. 2015) to 680mm (Tao et al. 2016). This 

is likely because different regions show similar shaped relationships but shifted along the P-

PET gradient, for example Tao et al. (2016) showed the maximum height of Chinese forests to 

peak at ~0mm P-PET, whilst the maximum height of forests in the United States peaked at 

~1500mm, and for South America at ~750-1000mm. However, these authors did not attempt 

to explain these differences. Klein et al. (2015) suggest that differences in peaks of maximum 

forest height with P-PET amongst regions may occur due to either groundwater or runoff fed 

forests, so that water availability from direct precipitation contributes relatively little to local 

hydraulic conditions. A recent study by Gorgens et al. (2020) using airborne LiDAR data 

showed that MAP strongly predicted maximum forest height in the Brazilian Amazon, with an 

increase in maximum height until 2300mm, at values higher than this maximum forest height 

declines. We find a peak in maximum height along a MAP gradient to be at a higher value of 

2700mm. Why this should be is not certain, however we use a dataset including other regions 

of the neotropics, not only the Brazilian Amazon. 

We find the best climate variable to explain forest maximum height across tropical South 

America is MAP, whereas other studies found stronger relationships with P-PET. Combining 

precipitation and evapotranspiration may better predict water availability since it 

incorporates water gained through precipitation relative to water lost through evaporation. 

Why for our dataset MAP predicts maximum tree height better than other variables that take 

temperature, vapour pressure, or seasonality into account is not certain. We expected that 

models for maximum height with variables that integrate temperature and precipitation 

would increase the fit to the data.  
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The shape of the relationship between forest maximum height and MAP, as well as other 

variables conveying water availability, show that as water availability increases from a low 

value, maximum tree height increases strongly. However, this increase reduces toward a peak 

in maximum height and even reverses, so that high water availability appears to negatively 

affect height attainment. This has been shown by Tao et al. (2016) using space-borne LiDAR 

data and corroborated by inventory data across the USA, and tropical to temperate China. 

Our present study shows this relationship for the first time for neotropical forests. The reason 

for this result is likely a combination of factors, such as reduced light availability and thus 

reduced photosynthetic rates of plants due to cloud cover (Graham et al. 2003; Guan et al. 

2015; Wagner et al. 2016; Wagner et al. 2017), and possibly also due to leaves that become 

covered in water and cannot exchange gasses with the atmosphere at an effective rate 

(Aparecido et al. 2016). 

Additionally, plants can become water stressed and become more vulnerable to windfall due 

to less well developed roots when soils become saturated (and anoxic) if they don’t have 

specific adaptations to waterlogged soil (Aubry-Kientz et al. 2015; Herault and Piponiot 2018; 

Pires et al. 2018). An example of how forests may be limited by waterlogging of soil can be 

seen by a recent study of forests with water tables close to the surface soil that experienced 

a major reduction in rainfall due to El Nino (Sousa et al. 2020). They found that rather than 

the drought causing mortality or inhibiting growth, biomass growth increased markedly, 

suggesting a release from a previous limitation, likely due to reduced anoxic conditions of the 

soil. Furthermore, a study by Ferry et al. (2010) found in an Amazonian forest that trees 

growing in valleys with waterlogged soils suffered from higher windfall rates than trees 

growing on well drained ridges, suggesting shallower and less well developed root systems in 

the waterlogged soils.  
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If forest productivity is indeed limited by excess soil water above 3000mm in MAP then some 

forests may possibly actually profit from increasingly dry or drought stressed climate (Duffy 

et al. 2015; Joetzjer et al. 2013; Marengo and Espinoza 2016; Marengo et al. 2018). Though 

some wetter regions of the western and northern Amazon may experience an increase in 

rainfall in contrast to the drier eastern and southern Amazon which are likely to experience 

reduced rainfall (Duffy et al. 2015; Espinoza et al. 2019; Gloor et al. 2013; Shiogama et al. 

2011), and thus the majority of forests in the Amazon are expected to move towards climates 

that are limiting height attainment.   

3.4.2 Taxon specific maximum height relationships 

One of the aims of this study is to show how tree height is limited for individual taxa. As far 

as the authors are aware no study has examined taxon-specific tree height relationships for 

tropical regions across broad environmental gradients. We show that at the family level, tree 

height is limited in a very similar way to that of the overall forest: individual families tend to 

increase in maximum tree height until ~2500mm after which maximum tree height decreases 

(Figure 3.4A). Between families this relationship appears remarkably conserved, with family 

specific relationships which occupy the same relative position in the forest along the MAP 

gradient but at different heights. Thus, different families have different peak heights. This is 

similar to the hypothesised scenario C of Figure 3.1. This finding is significant due to 

implications for the impact of shifts in climate on forest composition and structure. These 

relationships suggest that for a given shift in MAP below 2700mm the forest community will 

experience a decrease in maximum tree height, but at the family level the community 

representing the tallest trees will likely be preserved. 
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 This is also true to an extent at the genus level, but less so at the species level where we can 

draw few conclusions from species specific relationships between maximum height and MAP. 

This is because few species have wide enough ranges (along the MAP gradient) with sufficient 

data points within the database of tree height we use in this study. However, some species 

show similar patterns as the forest community level e.g. Jacaranda copaia (Figure 3.4C). We 

also show that for species with broad ranges (>800mm MAP in the dataset we use) species 

maximum height tends to occur toward the community maximum height rather than the 

centre of species occurrence (Figure 3.5, Figure 3.6), this is suggestive of scenario C of Figure 

3.1. What we can conclude is that the observed changes in neotropical forest maximum 

height along a MAP gradient can be explained to a very large degree by changes in max height 

within families. 

There are very few other studies assessing within taxon tree maximum height relationships 

with water availability, especially for the tropics. Givnish et al. (2014) showed in the highly 

diverse genus Eucalyptus in southern Australia, that maximum tree height increases with 

precipitation/pan evaporation in a similar non-linear way as this study, but do not show a 

decrease in maximum height at very high water availability. Another study of several 

temperate tree species in France found only linear relationships between precipitation and 

tree height (Fortin et al. 2018). 

Forest canopy trees tend to grow toward a common height (Nagashima and Hikosaka 2011). 

Growing taller for no increase in light availability is generally not advantageous due to the 

mechanical (Niklas 2007), construction and respiration (Rodriguez-Calcerrada et al. 2019), 

and hydraulic costs of being tall (Olson et al. 2018; Scoffoni et al. 2017; Sperry et al. 2006). 

While low tree heights (relative to the canopy level) reduces light availability and potential 
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productivity in a competitive forest environment (Kuppers et al. 1996; Rijkers et al. 2000). 

Trees can grow large either by growing slowly but living a long time or by growing fast and 

living less long (de Souza et al. 2016; Ruger et al. 2020). This can be exemplified using the 

height data from this study: Cedrelinga cateniformis is a fast growing (DBH growth of 0.72 cm 

yr-1) low wood density (0.50g cm-3) species that attains heights >55m in the Amazon, whilst 

Chlorocardium rodiei is a similarly large statured tree with a growth rate one quarter of 

Cedrelinga cateniformis (0.18 cm yr-1) and has a high wood density (0.85g cm-3) (growth rate 

and wood density information from de Souza et al. (2016)). The question arises whether trees 

are able to utilise both fast growth and high mortality and slow growth and low mortality 

strategies to grow tall similarly at all points along the MAP gradient? In particular; can trees 

in dry regions use a fast growth strategy to grow tall when hydraulic stress forces seasonality 

in growth and higher mortality from droughts? And likewise, can trees in wet regions use a 

slow growing strategy when competition is likely to be more intense (Alvarez-Davila et al. 

2017)? It has been shown that species with traits of slow growth and low mortality survive 

periodic droughts better, whilst in wet years species with fast growth and higher mortality 

outcompete the slower growers (Powell et al. 2018). Future research could pair similar height 

data as in this study with a suite of functional, ecophysiological, and life-history traits. 

The tallest families in this present study are the Lecythidaceae, Lauraceae and Fabaceae 

(Figure 3.4, SI Table 3.1). These families have maximum heights >45m and are tall across the 

full MAP gradient. Lecythidaceae includes genera dominated by large, emergent trees, such 

as Bertholetia, Cariniana, and one of the most widespread Amazonian tree genera 

Eschweilera (Esquivel-Muelbert et al. 2017a). The Lauraceae family within the Magnoliid clade 

contains some of the tallest trees found this study, including Chlorocardium and Licaria trees 
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which reached heights  > 60 m tall in Guyana. Tall genera in the Fabaceae family, include 

Dicymbe and Dicorynia in Guyana, and Cedrelinga and Apuleia elsewhere.  

The ability of particular families to grow tall across a wide range of MAP, for example within 

the Lecythidaceae, may be due to plasticity of drought stress tolerance. A recent study 

showed that plasticity within families and genera permits growth across habitats of different 

water stress. For example, within the genus Licania, one species grows in dry habitats and is 

drought tolerant, whilst a different species grows in wet habitat and is not drought tolerant. 

Additionally a generalist species found in both dry and wet habitats has intermediate drought 

tolerance (Oliveira et al. 2019). Despite specific examples there is currently little information 

regarding the hydraulic properties of Amazonian trees to generalise about the hydraulic traits 

of higher order taxa. Despite potential plasticity in hydraulic stress tolerance over water 

availability gradients within higher order taxa and to a lesser extent at species level (Anderegg 

2015), individual trees don’t show plasticity in their drought stress tolerance under 

experimentally induced long-term water availability reductions (Bittencourt et al. 2020). Thus, 

under climate change individual trees close to their maximum height are likely to suffer 

mortality should conditions exceed their hydraulic stress tolerance. Previous studies have 

shown that the tallest trees are most at risk under drought and forests are likely to reduce 

maximum height under reductions in water availability (Anderegg et al. 2019; Fajardo et al. 

2019; Shenkin et al. 2018; Stovall et al. 2019), we corroborate this with the relationships at 

the forest and higher taxon levels.  

Our results furthermore show that some families composed of understory species also follow 

the overall forest relationship. It was hypothesised that understory trees may be able to grow 

tall independently of water availability (Scenario A of Figure 3.1) since they occupy a less 
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hydraulically stressful microclimate beneath the forest canopy that buffer against dry 

conditions (Nepstad et al. 2007), and because of reduced competition in the understory that 

typically drives trees to grow tall (Guo et al. 2017). For example, understory trees do not tend 

to lose leaves during the dry season unlike canopy trees. Rather they increase leaf area in 

response to the loss of canopy tree leaves and subsequent increase in light availability (Tang 

and Dubayah 2017). Why some tropical forest understory taxa may increase maximum height 

with MAP is uncertain, and as far as the authors are aware is unreported elsewhere. Perhaps 

understory trees increase in height with MAP to access a particular canopy layer and satisfy 

minimum light requirements. Above this minimum high irradiance may cause photoinhibition 

(Lovelock et al. 1994), higher vapour pressure deficit associated hydraulic stress 

(Christoffersen et al. 2016), and increased wind speed which causes mechanical stress further 

inhibiting height growth (Anten et al. 2009). In drier forests the height of this critical wind 

level may be closer to the ground due to relatively open canopies, whilst in wet forests a 

similar light and wind level is relatively high above ground due to a denser canopy and more 

complex forest structure (Brenes-Arguedas et al. 2011; Moon et al. 2019). Some understory 

families, like Melastomataceae, show the expected flat maximum tree height distribution (as 

in Figure 3.4A), growing similarly tall across the range of MAP. Why then do some understory 

taxa not grow taller? Tropical rainforest understory species tend to have deep and wide 

crowns, large diameter trunks for a given tree height relative to canopy tree species, as well 

as high reproductive rates (Iida et al. 2014; Kohyama et al. 2003; Poorter et al. 2006). This 

likely enables understory trees to survive under low light conditions but provides a 

disadvantage when competing for light with species that have characteristics that promote 

vertical growth and productivity and faster growth in high light, namely canopy species, thus 

depressing their maximum height whilst maximising survival and reproduction (Iida et al. 
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2014; Kohyama et al. 2003). This permits the coexistence of different taxa occupying different 

layers of the forest canopy that we show in the concentric maximum height relationships of 

Figure 3.4A, thereby adding to the biodiversity of tropical forests (Kohyama 1993).   

Distinct among the tree taxa presented here are palms, being monocotyledonous plants. They 

tend to occupy the forest mid-story and lower canopy in lowland neotropical forests, though 

Ceroxylon palms can grow to 60m tall in montane neotropical forests (Bernal et al. 2018; Kahn 

et al. 1988). We show here that the palm family Arecaceae has a relatively short maximum 

height (28.1m) with a relatively weak linear increase in height from 17.5m to 28.1m along the 

MAP gradient (Figure 3.4A). Taller palm taxa like including Iriatea deltoidea and Socratea 

exorrhiza make up the taller palms at different points along the MAP gradient.  Socratea 

exorrhiza is taller in drier forests whilst Iriatea deltoidea is taller in wetter forests (Figure 

3.4C). Socratea exorrhiza has a dry affiliated distribution relative to Iriatea deltoidea (Esquivel-

Muelbert et al. 2017a). There is some evidence that Socratea palms are somewhat drought 

tolerant (Esquivel-Muelbert et al. 2017b). These relatively dissimilar relationships to the 

overall forest relationship suggest that with climate change the palm communities that make 

up the forest canopy are likely to shift in composition.    

3.4.3 Conclusions 

We used forest inventory data with taxonomic information from different forest ecosystems 

across tropical South America to assess the relationships between water availability and 

maximum tree height. We find a relationship between maximum forest in height and MAP. 

Maximum forest height increases with MAP until ~2700mm, after which it declines. This is 

similar to LiDAR derived data presented in previous studies. We also show for the first-time 

relationships for individual taxa at different taxonomic levels. At the family level the 
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relationships are remarkably similar. We suggest mechanisms for the increase and 

subsequent decrease in maximum height of the forest community and individual taxa with 

increasing MAP. These results suggest a similar response among neotropical tree families of 

maximum height to changes in MAP associated with climate change and deforestation, and 

therefore a maintenance of the community of trees that grow tallest at the family level. At 

lower taxonomic levels we can be less certain. But as the maximum height of species tends to 

occur toward the peak of the community maximum height (along a MAP gradient) rather than 

the mean of occurrence of each species, it suggest species may also be similarly affected as 

higher order taxa.  
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4 Chapter 4    Vessel tapering 

conserved along a precipitation 

gradient in tropical trees of the genus 

Cedrela 

Abstract 

Maximum tree height in the tropics decreases strongly with decreasing precipitation. It is 

unclear to what degree these changes in tree height result from changes in hydraulic 

architecture with decreasing water availability. The change in diameter of conducting vessels 

with tree height from base to tip are important determinants of hydraulic conductivity and 

safety. Previous research has shown that vessel diameter scales with tree height at a similar 

rate across biomes and taxa. However, knowledge of how the relationship between vessel 

diameter and tree height varies across precipitation gradients within one species is 

incomplete, especially for the tropics. Here we report for the first time, how vessel density 

and diameter, measured at the tree base, differ across four sites varying in precipitation (1014 

to 2585 mm year-1) for two tropical tree species of the genus Cedrela. We find that maximum 

tree height decreases with precipitation across sites from 42m to 13m. Despite the strong 

differences between sites in maximum tree height and water availability, the rate at which 

basal vessel diameter scales with tree height (i.e., tapering) is remarkably conserved and 

similar to published results based on multispecies analyses. Thus, basal vessel diameter is 

nearly constant for a given height, but maximum basal vessel size is two times smaller at the 

drier site (with the shortest trees) compared to the wettest site (with the tallest trees). One 
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possible explanation for these results is that maximum height of Cedrela trees is limited by 

constraints on maximum basal vessel diameter that can be sustained given increasing 

embolism risk with increasing dryness. While it remains unclear if this mechanism indeed is 

the ultimate control on maximum tree height, our results show no hydraulic adaptation across 

this wetness gradient and reveal a clear relationship between maximum tree height and 

maximum basal vessel size.  

 Introduction 

Trees need light and thus strive to reach the canopy to optimise light capture in forests. At 

the same time, trees need to keep their leaves well-watered, and need to transport water to 

the canopy. This process requires work against gravity and friction. It has therefore been 

hypothesised that tree height might be limited by frictional losses and gravity (Ryan and Yoder 

1997). Evidence for this hypothesis comes in part from patterns of increasing maximum tree 

height with water availability, suggesting a strong role for water availability in the limitation 

of maximum height (Tao et al. 2016).   

Water flow from the roots to the treetop is driven by pull (negative pressure) from the leaf 

exerted on the water column. The xylem water transport network can be considered as a 

series of interconnected tubes that branch from the base of the tree trunk to provide water 

to the leaves (Tyree and Ewers 1991). One of the main impediments to water flow is the 

resistance, R, which decreases with the fourth power of the vessel diameter, according to 

Hagen-Poiseuille's law, i.e.,  

 



76 
 

𝐑 =
𝟖𝛈𝐋

𝐝𝟒
 4.1 

 

According to this equation, the increase in resistance with greater path length, L (i.e. increase 

in tree height), for a fluid with viscosity η can be counteracted by increasing vessel diameter, 

d. Thus, a strategy for trees to reduce the frictional constraint on tree height is to steadily 

widen vessel diameter from the top of the tree towards its base. To permit constant volume 

flow and supply a branching canopy, vessels will have to divide accordingly from base to tip. 

Based on these principles it has been shown that total frictional resistance can be regulated 

to be independent of path length through coordinated changes in vessel division and vessel 

diameter with tree height (Savage et al. 2010; West et al. 1999). This rate of narrowing and 

dividing of xylem vessels from tree base to apex, is also known as tapering.   

Water under the highly negative pressures in the xylem is in a metastable state that makes 

spontaneous cavitation and heterogenous air bubble nucleation possible (Knipfer et al. 2015; 

Tyree and Sperry 1989b). More negative water potentials are associated with greater risk of 

gas bubble formation and spread (Sperry 1986; Sperry and Love 2015; Sperry and Tyree 1988; 

Tyree and Sperry 1989b). If these air bubbles, known as embolisms, become large enough 

they may reduce or block water flow to the leaves, or even result in a complete loss of 

conductivity, culminating in dehydration and death (Adams et al. 2017; Brodribb and Cochard 

2009; Hammond et al. 2019). This is likely to be the major mechanism of tree death during 

droughts (Adams et al. 2017), since lower soil water potential requires more negative 

pressures to induce water flow (Vilagrosa 2012). Taller trees that make wider vessels to 

counterbalance resistance are likely to be more vulnerable to embolism (Olson et al. 2018; 

Scoffoni et al. 2017; Sperry et al. 2006), and trees thus face a trade-off between producing 
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wider vessels to increase conductance and greater vulnerability to embolism (Levionnois et 

al. 2021; Lobo et al. 2018; Olson et al. 2018; Scoffoni et al. 2017; Sperry et al. 2006). 

Observations suggest that tall trees indeed suffer higher mortality during droughts (Bennett 

et al. 2015; Johnson et al. 2018b; Stovall et al. 2019), possibly due to greater occurrences of 

embolism. As a result of climate change associated droughts forest height may thus decrease 

in the future (Anderegg et al. 2019; Fajardo et al. 2019; Shenkin et al. 2018; Stovall et al. 2019). 

Tapering is well documented in trees, with evidence that trees tend to optimize water 

conductance by offsetting of frictional losses through vessel widening (Anfodillo et al. 2006; 

Olson et al. 2014; Petit et al. 2010). Building on the work of West et al. (1999), Enquist (2002; 

2003) suggested that biomechanical constraints and the need to reduce path flow resistance 

should lead to universal tapering, or in other words, the rate of vessel diameter decrease per 

unit height increase from the tree base to apex should be the same across trees and taxa. 

Hydraulic optimality models predict that xylem vessel diameter, d, tapers up trees with 

distance, L ,from the apex following a power law d=Lā  with scaling exponent ā=0.2  (i.e. a 

relationship between logd and logL with slope 0.2) (Anfodillo et al. 2006; Enquist 2003; Savage 

et al. 2010; West et al. 1999). Vessel widening at a rate lower than the scaling exponent of 0.2 

results in large hydraulic resistance increases with path length, while tapering above this 

optimal value results in relatively small gains in resistance reduction, with larger risks to 

embolism and reduced mechanical strength due to larger basal vessel diameters 

(Christensen-Dalsgaard et al. 2007; Fan et al. 2017; Savage et al. 2010). Multi-taxa studies 

show that a fundamental, universal scaling relationship exists between vessel diameter and 

tree height across ecosystems and climates (Olson et al. 2014). This suggests that this trait is 

fixed or invariant with respect to climate, but few studies have investigated how vessel 

diameter changes with tree height within species and across large water availability gradients. 
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It is still largely unknown to what degree the relationship between vessel diameter and tree 

height is an evolutionary adaptation, and whether this relationship is conserved within a 

species growing under very different water availabilities. This has implications for how trees 

cope with changes in water availability and hydraulic stress associated with climate change, 

namely the abilities of trees to grow taller and the effects of tree height on mortality risks 

(Anderegg et al. 2012; Rosell et al. 2017). To our knowledge, this study provides the first 

assessment within one widespread tropical tree species how trees adjust hydraulic 

architecture in response to variation in water availability. We conceptualise three strategies 

(A – C below and Figure 4.1) as to how trees may adjust xylem diameter across differences in 

water availability: 

A)  Equal tapering across sites, but different basal vessel size for a given tree height. 

For a given tree height, trees at drier sites have vessels that are less conductive 

compared to those at wetter sites. Smaller basal vessels at the drier sites result in 

reduction in embolisms risk for trees, thus securing consistent water supply to the 

canopy, but lowering maximum flow rates. 

B) Equal taper rate and basal vessel size for a given tree height irrespective of water 

availability. Hydraulic architecture remains largely unchanged across sites, and for a 

given height embolism risk and hydraulic efficiency are thus the same. As a result, trees 

growing at drier sites will experience greater hydraulic stress and embolism risk when 

compared to trees of the same height at wetter sites.  

C) Reduced taper rate to reduce basal vessel size. For a given tree height, trees at drier 

sites have identical apical vessel diameter, but smaller basal vessels and thus reduced 

embolism risk but higher resistance and thus lower conductivity. 
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Figure 4.1.  Conceptual illustration of three possible hydraulic strategies of trees in response to water 
availability. Upper panels show the expected log-log relationships between vessel diameter and tree 
height at wet (blue) and dry (red) sites. Lower panels show a schematic diagram of the vessel tapering 
along the tree stem and hypothetical difference in basal and apical vessel diameters between dry and 
wet sites.  See main text for description of the two strategies. This present study analyses the 
relationship between basal vessel diameter and tree height. The log-log relationships in the upper 
panel between vessel diameter and distance from apex can represent similarly the basal vessel 
diameter, measured here, and the change in vessel diameters vertically from tip to base, not directly 
measured here (Fajardo et al. 2020; Olson et al. 2014).  
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The first strategy, equal tapering across sites but different basal vessel size for a given tree 

height, has previously been suggested as a mechanism of trees to cope with increasingly 

hydraulically stressful growing conditions (Enquist 2002; Rosell et al. 2017). As competition 

for light decreases, trees could prioritize traits designed to deal with water stress (i.e., make 

narrower and safer vessels) above traits that allow faster growth (i.e., wider vessels with 

greater hydraulic conductivity) (Brenes-Arguedas et al. 2011; Markesteijn et al. 2011). 

Evidence for this strategy has been observed in the widespread Australian genus Eucalyptus, 

where species growing in drier environments tend to have reduced basal vessel diameter for 

a given tree height relative to congeneric species in wetter sites, likely driven by genetic 

variation between species (Pfautsch et al. 2016). Support for the second strategy, equal taper 

rate and vessel size (B), comes from recent studies assessing the role of climate on vessel 

anatomy within species. These show that tapering amongst wet and dry sites is similar and 

that for a given height average vessel diameter is the same (Fajardo et al. 2020; Garcia-

Cervigon et al. 2018; Lechthaler et al. 2019; Pfautsch et al. 2016; Warwick et al. 2017). One 

recent study has provided evidence for both scenarios A and B in two species across a 

precipitation gradient in temperate southern Chile, dependent upon species (Garcia-Cervigon 

et al. 2018). Strategy C requires different members of the same species to have different 

vessel scaling with tree height. To our knowledge there is little evidence for differing tapering 

rate across climates, either within or between species. Similar vessel scaling with tree height 

appears to be a universal property of trees (Olson et al. 2014), however it is a possibility that 

certain species may deviate from the general rule.  

For the first time we test which strategy is in use for two congeneric species in the tropical 

genus of Cedrela along a water availability gradient across four sites. Vessel anatomy-tree 

height relationships across broad climate gradients within taxa should provide insights to 
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what degree trees can adapt vessel anatomy to different growing conditions, and could help 

explaining variation in maximum tree heights along gradients of water availability (Fajardo et 

al. 2019; Moles et al. 2009; Rosell et al. 2017; Scheffer et al. 2018; Tao et al. 2016).  

4.1.1 Hypotheses 

The hypotheses being tested in this chapter are that, for Cedrela trees, basal xylem vessels 

increase in diameter and decrease in density with tree height at the predicted rate from the 

literature (West, Brown and Enquist 1999, Olson et al. 2014, Savage et al. 2010). Additionally, 

we test whether the rate of change of basal vessel diameter and density with tree height is 

similar across sites differing in water availability, and whether the basal vessel diameter and 

basal vessel density of trees of a given height are similar across sites differing in water 

availability. There have been very few studies showing how, within a taxon, xylem vessels 

taper with tree height across sites, and none for the tropics. This information may have 

interesting implications for the ability of trees to cope with drought across strong gradients 

in water availability and imply how tropical trees may cope with changing precipitation 

regimes.   

 

 Methods 

4.2.1 Species  

Cedrela is a widespread neotropical tree genus in the Meliaceae family. In this study two 

species have been sampled: C. odorata (L.), found throughout the neotropics, and C. 

salvadorensis (Standl.), restricted to Central America. C. odorata grows predominantly on well 

drained soils at altitudes below 1300m (Cintron 1990). Genetic studies of the biogeography 
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of Cedrela have suggested that C. odorata may be polyphyletic, with a distinction between 

Central American C. odorata and South American C. odorata populations (Finch et al. 2019; 

Muellner et al. 2009; Muellner et al. 2010). Cedrela trees are deciduous regardless of water 

availability and restrict growth to the wetter portion of the year, thus producing rings which 

are semi-ring porous (Baker et al. 2017). C. odorata is a fast growing species  (Brienen et al. 

2010; Worbes 1999) with a relatively low wood density (0.32-0.35 gcm-3) which grows across 

a very broad precipitation range from aseasonal wet tropical forest to highly seasonal dry 

forest (Baker et al. 2017; Gutierrez-Vazquez et al. 2012). It is able to attain heights of over 

40m, and grows rapidly, increasing in height by more than 1m per year in a wet tropical 

climate (Lamb 1968), but responds to low water availability by reducing radial growth 

(Worbes 1999). C. odorata is shallow rooted under most conditions and strongly relies on 

water from the upper 30cm of soil (Cintron 1990; Schwendenmann et al. 2015). 

4.2.2 Sites and Sampling procedure 

Cedrela trees were sampled at four sites (Figure 4.2A), Oaxaca (Mexico), Yucatan (Mexico), 

Selva Negra (Bolivia), and Yasuni (Ecuador). These sites span a broad precipitation gradient 

ranging from 1014 to 2585mm year-1, and dry season lengths vary from 8 to 0 months with 

less than 100mm precipitation (Figure 4.2 C-F). Precipitation data are from the two (one for 

Selva Negra) weather stations closest to each site (Peterson and Vose 1997):  for Oaxaca the 

stations are Santiago Chivela (16.7N, 95E) and Ixtepec (16.6N, 95.1E), for Yucatan Xcupil 

(19.7N, -89.9E) and  Champoton (19.4N, -90.7E), for Selva Negra, an unnamed station (9.72N, 

66.5E), and for Yasuni, Tiputini (-0.8N, -75.4E) and Nuevo Rocafuerte (-0.92N, -75.4E). Sites 

differ in soil type with well drained karstic soils at the two driest sites (Table 4.1) and clay-

based soils at the wetter two sites. Forest at the two driest sites in Mexico can be classified 
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as seasonally dry forest (Perez-Garcia et al. 2010; White and Hood 2004), with trees growing 

in Oaxaca having the lowest water availability among all four sites. While mean annual 

precipitation is relatively similar to Yucatan, the trees grow on steep karstic slopes, 

precipitation is concentrated over fewer months (Figure 4.2) and occurs in few high intensity 

events associated with hurricane activity (Brienen et al. 2013). This results in a xerophytic, 

low stature vegetation (Perez-Garcia et al. 2010). At Yucatan, Selva Negra and Yasuni the 

species sampled is C. odorata, whilst at Oaxaca it is Cedrela salvadorensis.  

 

 

Table 4.1 Site information including number of samples per sample type (intra-tree and inter-tree as 
per Figure 4.3) and total number of samples, and mean annual precipitation (MAP). Soil type per site 
was derived from the literature, the available soil information for the Yucatan site only mentioned 
that it was highly Karstic (Brienen et al. 2010; Corona-Nunez et al. 2018; Valencia et al. 2004). 
Maximum longevity data at Yasuni could not be measured due to hollow trunks, but was estimated 
(Yasuni from Unpublished data, R. Brienen; Oaxaca from Unpublished data, P. Groenendijk; Yucatan 
and Selva Negra from Brienen et al. 2010) 

site 

 

latitude 

(N) 

longitude 

(E) 

intra-

tree 

samples 

inter-

tree 

samples 

total 

samples 
MAP 

max 

height 

(min 

Height)  

max 

DBH 

max 

longevity 
soil forest type species 

Yasuni 
 

-0.679 -76.394 29 22 51 2585 42.5 (3.5) 128 est. >250 
Clay 

Ultisols 

Tropical 

evergreen 
C. odorata 

Selva 

Negra 

 

-10.161 -66.340 23 19 42 1846 35 (0.3) 66 308 

Clay 

Xanthic 

Ferrosols 

Tropical semi-

evergreen 
C. odorata 

Yucatan  19.086 -90.007 19 18 37 1150 22 (2.5) 67 141 Karstic Tropical dry C. odorata 

Oaxaca 
 

16.666 -95.001 20 15 35 1014 13 (3.4) 58 117 
Karstic 

Regosol 
Tropical dry 

C. 

salvadorensis 
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For each site we measured tree diameter and estimated tree height by eye. To decrease 

estimate errors, these height estimates were always based on two independent estimates 

from experienced forest scientists. Note that the measurement error is likely larger for tall 

trees (~5m) than for short trees (~1m). The maximum tree height decreased from 42.5m in 

Yasuni, the wettest site, to 13 m at the driest site in Oaxaca (Table 4.1). Forests at all four sites 

are relatively undisturbed. To our knowledge, sites in northern Bolivia and Yucatan have 

experienced some low intensity, selective logging focussed on high-value species (e.g., 

mahogany), while at the other two sites low intensity logging for local use cannot be excluded. 

At all sites, old and tall trees were still present and were included in this study.  
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Figure 4.2 Location of sampling sites (A), diameter-height allometries at the sampling sites (B), and 
site monthly precipitation (C-F) with mean annual precipitation in red text (mm) and mean monthly 
temperature as the red line (oC). Climate data was taken from an average of the two closest climate 
recording stations to each site, except for Selva Negra, which had only one close climate recording 
station (Peterson and Vose 1997). 

 

In order to measure how xylem vessel diameter and density varies across sites and with tree 

height we used tree cores taken from the base of trees in vivo, or stem discs taken from the 

bases of felled trees, and from small saplings (Brienen et al. 2010). We used a 5.15mm borer 

at the Oaxaca site and 10 mm increment borers at the wetter three sites. At each site, trees 

covering the full range of heights were sampled (see Table 4.1). Samples were generally taken 
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close to breast height (1.3 m). From here on ‘tree height’ refers to the height of the tree minus 

the height above ground at which the sample was taken.  

For estimating how basal vessel diameter and density changes with tree height we adopted 

two approaches (see Figure 4.3). In the first method, the inter-tree sampling approach, we 

measured vessel diameter and density only in the outer wood at the base of different trees 

of known heights. In the second, the intra-tree approach, we sampled 2cm long radial 

increments at least 2cm apart from each other along a radius of a stem cross section (disk) or 

core. The number of samples analysed for each core or disc depended upon tree diameter: 

trees with large diameters were sampled at less regular distance with spacing of up to 8cm 

between sampled radial sections compared to smaller trees. This is justified as DBH-height 

allometry is not linear and large trees change less in tree height compared to smaller trees 

for a given diameter change (see DBH-height allometry plot in Figure 4.3). For these samples 

from the intra-tree approach the corresponding tree height for each sampling point was 

estimated using the site-specific diameter at breast height (DBH)-tree height allometry 

(Figure 4.3 shows how DBH allometry gives estimated height for a radial position). This intra-

tree approach assumes that vessel diameter for a given height does not vary over time due 

to, for example, climate change or increases in CO2. Fajardo et al. (2020) show that scaling 

relationships are similar across individuals and within individuals. We tested whether vessel 

diameter measurements differ between the intra-tree and inter-tree methods and found that 

they do not differ (see SI Figure 4.1). Therefore, for our main analysis we merged the two 

datasets. Sample sizes for both methods are shown in Table 4.1. 

Wood cores were glued on wooden frames and either sanded or cut with a microtome blade 

to aid vessel visualisation. Photographs were taken of each wood section under a microscope 
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using a Canon EOS1100D camera with 2x magnification power lens using a Leica S6E 

microscope at 2x magnification power (4x for small trees). The digital images used for analysis 

had resolutions of 72 dpi, equivalent to 1.17 µm per pixel at 2x magnification. A stage 

micrometer was included in the images to provide a length scale. Photographs were analysed 

using ImageJ (Fiji, version 1.52p), and xylem vessels were identified manually. Vessel number 

per image varied, however in most cases over 100 vessels per image were measured (see SI 

Figure 4.2). A minimum of 50 vessels was recommended for sufficient statistical power 

considering vessel diameter variability in ring-porous species (Scholz et al. 2013). 

For each wood section, the mean vessel area and number of vessels per unit area (vessel 

density) was later calculated using the total measured area of the image (the measured area 

was smaller where vessels were small and tightly packed, i.e. small trees). Vessel diameter 

was calculated from vessel area assuming vessels were circular, which was largely the case.  
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Figure 4.3 Schematic of two sampling approaches to assess the effect of tree height on vessel 
anatomy. In the inter-tree approach, we measured vessel diameter and density only in the outer wood 
at the base of different trees of known heights (hatched boxes). In the intra-tree approach, we 
sampled sections along the stem cross section at the base of trees at increasing distances from the 
tree pith within individual trees (open boxes). This results in within-tree ontogenetic patterns of 
changes in vessel anatomy with height, where we derived height at various sections using site specific 
allometric relationships between tree diameter and height (see Figure 4.2B, allometry for all sites). 
Left hand photographs show the surface of Cedrela tree cores that were used for image analysis, the 
scale bar is 1mm. 
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4.2.3 Analysis 

In agreement with existing studies we find that the relationships between the dependent 

variables, vessel diameter d and density VD, with the independent variable, tree height H, 

follow a power law  𝑑 ∝ 𝐻𝛼 . α is the power law exponent and is equal to the slope of the 

relationships between log d, log VD and log H, respectively. To examine further how the basal 

vessel diameter and density tree height relationships depend on site we used linear mixed 

effects models (LMMs) of the form 

log (𝐷)~𝛽0 + 𝛽1 log (𝐻) + 𝛽2 𝑠𝑖𝑡𝑒 + 𝛽3 (𝑠𝑖𝑡𝑒 ∗ log(𝐻)) + μ0i  + εi 4.2 

 

Here μ0i is the random intercept for each individual tree i and εi is the residual error for each 

individual tree. We incorporated a random intercept for individual trees since 74 individual 

trees were sampled more than once (i.e., along the stem disc or tree core, intra-tree 

approach, see Figure 4.3). Inclusion of these random intercepts improved the model fit 

according to AIC values, while inclusion of random slopes (for each tree) did not improve the 

fit. Note that slopes were similar between both sampling approaches, inter and intra-tree 

sampling (SI Figure 4.1), thus justifying the joint analysis of the two datasets in one statistical 

model. We log-transformed vessel diameter and vessel density to satisfy the assumption of 

linearity, as well as to permit comparison with other studies (Olson et al. 2014). We used the 

lme4 R package to produce the LMMs (Bates et al. 2015). Pseudo R2 values were estimated 

for LMMs to assess the variance explained by the model, with and without the random effects 

as per (Nakagawa and Schielzeth 2013) using the MuMIn R package (Barton 2019). If the 

interaction effect of site with height is non-significant then slopes between sites can be 

considered similar. Bonferroni corrected t-tests were then carried out to determine if the 
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intercepts differed between sites, using the R package emmeans (Lenth 2018). All linear 

models were assessed for homogeneity of slopes using the anova R function, normality of the 

residuals (Shapiro-Wilk from the R package rstatix (Kassambara 2019) and Q-Q plots) and 

homogeneity of variance (Bartlett test from the R package stats (R Core Team 2018)).  

 

We also compared sites for the magnitude difference between sites in vessel diameter and 

vessel density for the 5 tallest trees per site to examine the effect of being tall on basal vessel 

diameter and density between sites. In addition, we performed the same analysis on trees 

that are 2.5-7.5m tall (mean height per site was between 3.14m and 5.43m) to further assess 

the differences between sites with regards to vessel diameter and density for a given height 

(for mean height and standard deviation see SI Table 4.3). Non-parametric tests (Kruskal-

Wallis, and Wilcoxon signed rank tests) were used since these subsets of the data were not 

normally distributed. P-values were adjusted for multiple comparisons using Bonferroni 

correction. All analyses were performed in R studio using R version 3.5.1 (R Core Team 2018).  

 Results 

4.3.1 Effects of climate on basal xylem vessel diameter and density 

Mean basal vessel diameter increased with tree height at similar rates at the different sites 

(0.393 to 0.474 log mm per log m), with non-significant interaction terms in the LMM (Figure 

4.4 A and B, Table 4.2). The model explained a high proportion of the variance in vessel 

diameter across samples. The pseudo R2 values suggest that fixed effects alone accounted for 

86% of total variation whilst including random effects accounted for 95%. Across sites mean 

basal vessel diameter was similar for a given height between most site pairs as shown by non-
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significantly different intercepts (Table 4.2). However, we found a significant (p=0.006) 

difference in the intercept between Selva Negra and Yucatan, with basal vessels in Yucatan 

being 1.763 times larger than those in Selva Negra (Table 4.2). Despite this difference, there 

was no evidence that trees in drier sites have consistently larger or smaller vessels for a given 

height than trees in wet sites.  

 

Figure 4.4 Relationships between mean basal vessel diameter (A,B) and basal vessel density, and tree 
height (C,D). A and C show log transformed data with linear regression lines for each site (for 
coefficients and comparisons of intercepts see Table 4.2). B and D show non-transformed data, with 
regression equations of the form resulting in y=const*xα taken from the logged linear relationship 
coefficients of A and C.   
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Table 4.2 Results of linear mixed effects models predicting log mean vessel diameter and log vessel 
density from log tree height (leftmost column). Site is included as an interacting fixed effects factor 
with tree height representing the homogeneity of slopes between sites (n.s. = p>0.05, ** = p<0.001, 
*** = p<0.0001). Intercept and slope of the site-specific models are shown with upper and lower 
confidence intervals (CIs). Intercept and slope comparisons between sites for the linear mixed effects 
model for vessel diameter and vessel density are shown (multiple comparisons corrected t-tests), 
significant differences are represented by different letters after the site-specific intercepts and slopes 
(small letters for slopes, and capitals to intercepts). For vessel density, Oaxaca was excluded from 
intercept comparisons since the slope differed significantly from the other three sites (for further 
details of site slope and intercept comparisons see SI Table 4.2 and SI Table 4.3). 

Independent variable and effects Site Terms  (CIs) df 

Basal vessel diameter  
~  

Yasuni slope 0.406 (0.359 : 0.453)a 121.3 

  intercept -3.090 (-3.221 : -2.959)AB 109.2 

Height (F= 882.102***) 
+ 

Selva Negra slope 0.474 (0.417 :  0.53)a 104.9 

  intercept -3.237 (-3.364  :  -3.11)A 106.8 

Site (F= 6.393***) 
+ 

Yucatan slope 0.393 (0.343 :  0.443)a 153.5 

  intercept -2.864 (-2.981  :  -2.746)B 124.1 

 
Site : Height (F= 1.845n.s.) 

Oaxaca slope 0.448 (0.372 :  0.523) a 144.7 

  intercept -3.108 (-3.239  :  -2.975)AB 150.2 

Basal vessel density 
~  

Yasuni slope -0.533 (-0.608 :  -0.457) a 106.1 

  intercept 2.471 (2.264 ; 2.678) A 99.6 

Height (F= 748.897***) 
+ 

Selva Negra slope -0.642 (-0.73 ; -0.552) a 98.1 

  intercept 2.656 (2.454  : 2.858) A 113.5 

Site (F= 6.036**) 
+ 

Yucatan slope -0.551 (-0.636 :  -0.466) a 145.2 

  intercept 2.579 (2.389 :  2.769) A 119.7 

Site : Height (F= 7.863***) Oaxaca slope -0.876 (-1.00 : -0.75) b 136.7 

  intercept 3.068 (2.846 : 3.29)  145.5 
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Basal vessel density decreased with tree height at a different rate for the different sites (Table 

4.2). For trees at the driest site, Oaxaca, vessel density declined more rapidly with tree height 

(-0.876 log mm per log m) compared to the other three sites (-0.53 to -0.64 log mm per m) 

(Figure 4.4C and D, Table 4.2). The wetter three sites, all with C. odorata, share similar declines 

in vessel density with height (Table 4.2) and have similar intercepts with no indication for drier 

sites to have lower or higher vessel density (Table 4.2). The LMM accounted for a high 

proportion of the variance in vessel density across samples, the fixed effects alone accounted 

for 84% of total variation whilst including random effects accounted for 91%. 

Basal vessel diameter of the tallest trees in each site increased with site wetness, nearly 

doubling between Oaxaca and Yasuni (Figure 4.5B).  However, basal vessel density of the 

tallest trees was lower in wet sites relative to drier sites (P<0.05) (Figure 4.5A). 

 



94 
 

 

Figure 4.5 Mean vessel diameter (A,C) and vessel density (B,D) for 5m tall trees (A,B) and the 5 tallest 
trees per site (C,D). Points represent the mean vessel diameter per sample in A and C. Differences 
between sites is shown in the plots using a Kruskal-Wallis test, as is significance of pairwise 
comparisons using Wilcoxon rank sum tests. Adjusted p-values are shown; NS=1, ns>0.05, *<0.05, 
**<0.005. 

 

 Discussion 

A basic and to our knowledge not yet widely examined question is how, within one tropical 

tree species, tree hydraulic architecture varies across a strong water availability gradient. 

Examination of these relationships may shed further light on controls of maximum tree height 

and longevity, as well as the ability of trees to adapt their hydraulic architecture. Focus on 

variations for a single species reduces the number of unknowns which are inherent in multi-
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species synthesis studies. Here we assessed how tree hydraulic architecture varies across a 

water availability gradient within the widespread and important tropical genus Cedrela. 

We find that maximum observed tree height (from 13 m to 42.5 m) and longevity (117 to 308 

years, Unpublished data, R. Brienen; Unpublished data, P. Groenendijk;  Brienen et al. 2010) 

increase strongly with water availability across our sites, which is in line with other studies in 

the tropics (for effects on tree height see Klein et al. (2015); Tao et al. (2016); Gorgens et al. 

2020, and for tree longevity, see Locosselli et al. (2020)). For Cedrela, amongst the three 

possible proposed scenarios of stem hydraulic property variation across climates outlined in 

Figure 4.1, we find that strategy B is realised. Thus, for this species there is no adaptation of 

examined hydraulic properties in response to water availability or climate, and basal vessel 

size for a given tree height is the same across sites irrespective of water availability as is the 

taper rate. Interestingly a very recently published study examining temperate-climate trees 

found similar results (Fajardo et al. 2020).  

Our results raise interesting questions about causal relationships. The large difference in 

longevity means that environmentally caused mortality risk is much higher at drier sites which 

suggests that a drought stress-related mortality mechanism could be the reason. Such a 

mechanism is indeed plausible given the climate-independent nature of the hydraulic 

properties we examined. Given the self-similar nature of hydraulic properties, hydraulic 

efficiency (conductivity) will tend to be maintained with increasing height (Anfodillo et al. 

2006; Gleason et al. 2012; Jacobsen et al. 2018; Lazzarin et al. 2016b; Losso et al. 2018; Olson 

et al. 2014; Petit et al. 2010; Prendin et al. 2018; Savage et al. 2010; Sperry et al. 2006; West 

et al. 1999), but hydraulic failure risk via embolism may increase as vessel diameter increases 

(Levionnois et al. 2021; Lobo et al. 2018; Olson et al. 2018; Prendin et al. 2018; Scoffoni et al. 
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2017; Sperry et al. 2006). However, there is debate regarding the extent to which vessel 

diameter affects embolism vulnerability (Gleason et al. 2016; Liu et al. 2020). Our finding of 

invariance of the basal vessel size-tree height relation across a water availability gradient is 

consistent with the general finding across a wide range of tree species and tree sizes that 

there is a strong correlation between basal vessel size and tree height (Olson et al. 2014). 

Furthermore, measurements of embolism risk of planted saplings with height up to 4 m for 

three species by the same authors reveal a strong decrease of the water potential at 50% 

stem conductivity loss with tree height (Olson et al. 2014). This latter finding is consistent with 

the interpretation of our results, that basal vessel diameter depends on tree height but not 

climate, and thus that increased mortality risk at drier sites is probably related to tree 

hydraulics. This interpretation is also consistent with the results of a study by Shenkin et al. 

(2018) who investigated the effect of the 2004/5 El Nino drought event on tree mortality in 

natural forests in Bolivia. These authors found strongest increases of mortality risk with 

increasing drought stress in tall trees and attribute the result to tree hydraulics. Increased risk 

of tall trees under drought stress has also been found in global meta-analyses (Bennett et al. 

2015; Johnson et al. 2018b), and a long-term Amazon drought experiment (Rowland et al. 

2015). 

What these studies cannot discern, however, is to what extent increased mortality is indeed 

related to embolism risk in the stem or rather the roots, or yet to different drought related 

deleterious effects (Brodribb and Cochard 2009; Brunner et al. 2015; McDowell et al. 2008). 

We can of course also not rule out hydraulic adaptations that may offset the decreases in 

water availability across sites and mitigate drought stress. For example, trees may vary their 

inter-vessel pit architecture which has been shown to vary across species (Lens et al. 2016), 

and could result in decreases in embolism risk (Medeiros et al. 2019; Pittermann et al. 2010). 
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In addition, trees may increase investment in root tissue and rooting depth (Brum et al. 2019; 

Dawson and Pate 1996), or trees may reduce the effect of hydraulic stress through strict 

control of stomatal conductance (isohydry) (Jones 1998; Tardieu and Simonneau 1998), or by 

shedding leaves to avoid excessive water loss (Manzoni et al. 2015; Vico et al. 2017). Cedrela 

trees are indeed likely to be at least to some extent isohydric given their relatively large 

vessels and high water potential at which 50% loss of conductance occurs (>-1 MPa stem P50) 

(Hoeber et al. 2014; Villagra et al. 2013a; Villagra et al. 2013b). Cedrela is also a deciduous 

tree species, thereby limiting exposure to dangerously low water potentials during the dry 

season. Nonetheless, trees at the drier site are likely to experience greater hydraulic stress 

more frequently than trees of equivalent height at the wet site, due to lower wet season 

rainfall levels (see Figure 4.2 and Table 4.2), the steep slopes at which trees were growing, 

and fast draining karstic soils leading to very low soil water potentials.  

We also show that for Cedrela trees vessel density decreases as vessel diameter increases 

with tree height. This is expected from tapering theory as vessels divide and become smaller, 

so wood increases in vessel density (Savage et al. 2010; West et al. 1999). Vessel density 

increases may be able to offset losses in conductance due to decreases in vessel diameter, 

thus providing a potential strategy to avoid embolism risk, whilst maintaining high 

conductance (Echeverria et al. 2019). Therefore, we may have expected that trees in drier 

sites would have higher vessel density and smaller vessels. This does not appear to be the 

case in Cedrela across the broad climate gradient covered in this study. C. salvadorensis trees 

from Oaxaca decrease in vessel density at a higher rate than the wetter three sites. This may, 

however, be due to inter-species variation, rather than any climatic influence on vessel 

density per se.  
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4.4.1 The universal scaling of vessel diameter  

Using global multispecies data, Olson et al. (2014) found a slope of the relationship between 

log basal vessel diameter and log tree height of 0.46 (95% confidence interval of 0.41–0.51), 

compared with 0.39 to 0.47 we found here (Table 4.2). Thus, the taper rate of Cedrela trees 

is similar, but slightly lower relative to the global data. The slopes of the relationship between 

log basal vessel density and log tree height found here (-0.53 to -0.88) are largely within the 

range of those found in that same study, i.e., a slope of -0.73 (95% confidence interval of 0.86-

0.61) (Table 4.2). Because of the global nature of their study they suggested that regardless 

of growing conditions trees should achieve similar rates of increase in vessel diameter with 

tree height. This present study and the recent study of Fajardo et al. (2020) show this also to 

be the case within species across a gradient of very different water availabilities. Together, 

these results suggest that the underlying mechanism behind the process of vessel production 

at different heights is likely highly conserved in evolution. 

How trees should increase basal vessel diameter with height at such a fixed rate is unclear. 

Several possible mechanisms have been presented to explain constant scaling of vessel 

diameter with height (Fajardo et al. 2020).  One hypothesis discussed by Fajardo et al. (2020) 

and proposed by Woodruff and Meinzer (2011) is that vessel diameter is controlled by the 

turgor pressure at the site and time of the formation of the vessel. The turgor pressure is in-

turn controlled by height, with the xylem water potential being more negative at greater 

heights, which also likely limits embolism risk further down the tree where vessels are wider. 

Our and Fajardo et al.'s (2020) data show that basal vessel diameters for trees of a given 

height are similar across climates while different xylem pressures are likely to differ given 
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difference in soil water availability. It is therefore unlikely that this could explain constant 

scaling of vessel diameter with tree height.   

Instead the observed increase of vessel size towards the base may be the result of a hormonal 

control. Anfodillo et al. (2012) found that xylem conduit width increase with distance from 

apex in a conifer is caused by longer cell expansion, which was hypothesised to result from a 

gradient from apex to base of the growth hormone Auxin. In support of this Hacke et al. (2017) 

find that variation in vessel diameter for a given height is likely mediated by endogenous, 

hormonal stimulation of cell growth, and Johnson et al. (2018a) found that treatment of 

Populus trees with an Auxin transport inhibitor caused the formation of comparably narrower 

diameter and shorter vessels. However, Auxin transport is also affected by drought (Korver et 

al. 2018), which would lead to differences  in tapering across a climate gradient, and is thus 

not consistent with our results.   

While the ultimate mechanistic process behind tapering remains unresolved is it likely that 

the universal scaling of vessel diameter with tree height is the result of natural selection due 

to a cost-benefit trade-off between small vessels with low flow rates for a given body size 

impeding photosynthesis and thus productivity, and large vessels that have innate 

vulnerability to embolism (Knipfer et al. 2015; Olson et al. 2018; Scoffoni et al. 2017; Sperry 

et al. 2006) and may reduce mechanical strength (Christensen-Dalsgaard et al. 2007; Fan et 

al. 2017).  

The rate of vessel tapering is highly conserved across taxa, but vessel diameter for a given 

height varies between related species (Lechthaler et al. 2019; Lens et al. 2004; Pfautsch et al. 

2016). Plasticity in the diameter of vessels has been demonstrated in the short term in 

response to climate, similar to the effect of drought on tree ring width (Zweifel et al. 2006). 
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Using tree-ring data in two tropical species, Locosselli et al. (2013) showed that vessel area is 

positively correlated with precipitation and negatively with temperature. Similar results were 

also obtained by using tree-ring chronologies of Tectona grandis (Pumijumnong and Park 

1999).  

Thus, it is conceivable that trees can alter their rate of tapering via endogenous stimulation 

in the short term, but the costs of doing so over long periods of time outweigh the benefits. 

Regardless of potential short term plasticity not assessed here, this study and previous studies 

show that the diameter and density of vessels for a given height appear highly conserved 

within species (Fajardo et al. 2020; Lechthaler et al. 2019; Pfautsch et al. 2016; Warwick et al. 

2017), thus suggesting that many tree species cannot support long-term changes in vessel 

diameter and density for a given height due to the embolism, mechanical or carbon-balance 

costs of doing so. But, over evolutionary time, other adjustments in tree physiology that offset 

these costs may enable differences in vessel diameter for a given height across related taxa 

higher than species (Lechthaler et al. 2019; Lens et al. 2004; Pfautsch et al. 2016). 

The invariant nature of basal vessel widening in relation to rainfall, has consequences for the 

ability of trees to adapt to future changes in rainfall in the tropics. Our results indicate that 

water availability puts a limit on maximum basal vessel size, which in turn seems to play a role 

in controlling maximum tree height, as well as tree longevity. Thus, rather than adjusting their 

principal hydraulic architecture tropical trees growing in areas with decreasing rainfall are 

likely to see a reduction in their longevity and overall change towards shorter maximum tree 

height, consistent with observations of decreases in tree height (Gorgens et al. 2020; Klein et 

al. 2015; Tao et al. 2016) and tree longevity (Locosselli et al. 2020) with increasing dryness in 

the tropics.   
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4.4.2 Conclusions  

We show that maximum tree height of Cedrela increases almost threefold between dry and 

wet sites.  Furthermore, we find that vessel diameter and density are remarkably similar at a 

given height across sites, and thus the rate at which basal vessel diameter scales with tree 

height (i.e. tapering) is remarkably conserved. Thus, variability in mean basal vessel diameter 

is likely not used to mediate hydraulic stress across sites in Cedrela in trees of a given height. 

At their maximum height, trees at the wettest site have almost two times larger basal vessels 

compared to trees at the driest site. These results suggest that maximum tree height is at 

least to some extent constrained by a fixed species-specific underlying hydraulic architecture 

and may indicate greater hydraulic vulnerability of similar sized trees at the drier sites. This 

could provide a mechanism for explaining decreases in tree height and longevity with 

decreasing water availability as generally observed in the tropics.  
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5 Chapter 5    Effects of tree height 

on ecophysiological traits for three 

neotropical tree species differing in 

life-history strategy  

Abstract  

Trees experience strong changes in light environment and water transport path length when 

growing through a tropical forest canopy. This will result in variation in leaf ecophysiological 

functioning and leaf and xylem morphology with tree height including changes in stomatal 

regulation of water potentials and change in leaf size and mass and intrinsic water use 

efficiency. The linkage between these aspects has not been studied in detail for tropical trees. 

Determining how hydraulic function changes as trees grow taller may help to reveal possible 

mechanisms enabling different tropical tree species to utilise different life-history strategies 

to grow and survive. This research aims to better understand the complexity of tropical forest 

species' eco-physiological adaptations to changes in tree height and light availability. We 

study three species varying along the growth and shade-tolerance spectrum from a fast-

growing, shade-intolerant species, Centrolobium microchaete, to intermediate Ampelocera 

ruizii, and shade-tolerant species, Pseudolmedia laevis. We find that leaf mass per area (LMA) 

and intrinsic water use efficiency (derived from δ13C) increases with tree height, while 

maximum leaf area decreases. Vessel tapering is relatively similar between the species and at 

the apex we do not find any relationship with tree height in vessel size or density. Temporal 

variation in leaf water potential shows greater hydraulic stress in the dry season compared to 
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end of the wet season, although for P. laevis leaf water potentials are maintained at relatively 

constant, high values (>-1MPa) throughout. Variation in leaf water potential with tree height 

shows greater hydraulic stress for taller trees in the dry season in A. ruizii only, for P. laevis 

leaf water potentials are maintained at relatively constant, high values (>-1MPa) regardless 

of tree height.  Differences between species in ecophysiological properties align with life-

history strategy. For example, we find that faster-growing, shade-intolerant C. microchaete 

has lower LMA, lower leaf water potentials, and larger vessel diameters compared to the 

slower-growing, shade-tolerant P. laevis. These differences agree with previous studies on 

functional traits of seedlings and saplings of these species.  

 Introduction 

5.1.1 Hydraulic strategies of tropical trees 

The trade-off between hydraulic safety and efficiency traits suggests that different strategies 

of growth and survival are possible for a given water availability, and this is confirmed by the 

observed diversity of hydraulic strategies in tropical forests (Anderegg et al. 2018; van der 

Sande et al. 2019). The life-history strategy used by a tree species is likely to be reflected in 

hydraulic strategy.  Namely a strategy of long life and slow growth likely favours hydraulic 

safety to survive multiple droughts over the life of the tree, whereas short lived and fast 

growing species likely favour greater hydraulic efficiency to outcompete other trees in the 

race to the canopy at the expense of safety causing greater vulnerability to droughts (Aleixo 

et al. 2019; Markesteijn et al. 2011; Poorter et al. 2010).    

Hydraulic efficiency and productivity are influenced by different anatomical and 

ecophysiological properties. Within the wood, increased xylem vessel diameter reduces 

resistance to water flow from root to leaf and thus increases the water flow rate up the xylem 
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for a given water potential gradient, thereby enhancing gas exchange and photosynthetic  

capacity (Fichot et al. 2009; Holtta and Nikinmaa 2013). Conversely smaller vessels tend to be 

less vulnerable to embolism at a given water potential, as indicated by a more negative P50 

value, the water potential at which 50% of xylem conductance is lost (Knipfer et al. 2015; 

Olson et al. 2018; Scoffoni et al. 2017; Sperry et al. 2006; Wheeler et al. 2005).  

A greater difference between apical and soil water potential increases vertical water flow 

(Brum et al. 2018; O'Brien et al. 2004), which is regulated over short timescales by stomatal 

conductance (Fisher et al. 2006; Huzulak and Matejka 1982; Myers et al. 1987). Higher 

productivity is associated with more negative water potential at which stomata close, greater 

stomatal area per leaf, and larger leaf area with a greater proportion of photosynthesising 

tissue per leaf area (Bertolino et al. 2019; Coble and Cavaleri 2017; Niinemets 1999; Wright 

et al. 2004). Having higher stomatal conductance for a given water potential however exposes 

the tree to lower water potentials and thus increased risk of embolism by being closer to the 

P50 value, also known as the hydraulic safety margin (Choat et al. 2012; Meinzer et al. 2009; 

Mencuccini 2003). Thus, we expect a trade-off between productivity and safety based on 

these functional traits and ecophysiological properties. Species with different strategies of 

growth and longevity should represent this trade-off in their measured functional traits which 

we measure across trees of different height from sapling size to tallest adults, whereas 

previous tropical studies often utilise juvenile trees (Markesteijn and Poorter 2009; Poorter 

and Bongers 2006).   

5.1.2 Height and hydraulic stress 

Growing tall can generate hydraulic stress, requiring trees to pull water further against gravity 

and possibly against increasing resistance (Koch et al. 2004; Niklas 2007; Ryan and Yoder 
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1997). Because of this, taller trees require more negative pressures to be generated at the 

tree apex in order to maintain a similar water flow to a given area of leaf relative to that of a 

shorter tree, as per the hydraulic analogue of Ohm’s law (Ryan and Yoder 1997). However, 

trees avoid resistance increases with increasing height by increasing xylem vessel diameter, 

as shown in Chapter 4  (Anfodillo et al. 2006; Olson et al. 2014; Savage et al. 2010; West et al. 

1999). This however may subject trees to increased vulnerability to embolism as wider xylem 

vessels more readily form gas bubbles that may expand and block water flow throughout the 

xylem network (Knipfer et al. 2015; Olson et al. 2018; Scoffoni et al. 2017; Sperry et al. 2006; 

Wheeler et al. 2005). Thus, as trees grow taller the gradient of water potential must increase 

or path length resistance must be maintained by xylem anatomical adjustment, or else flow 

rates will reduce and so will productivity. Fundamentally, drought and tree height produce 

similar effects on the hydraulic functioning of trees, and decreasing water availability with 

climate change is likely to negatively affect forest height as taller trees become hydraulically 

stressed beyond physiological limits (Anderegg et al. 2019; Fajardo et al. 2019; Shenkin et al. 

2018; Stovall et al. 2019).  

5.1.3 Tree trait and functional changes transitioning from below to above canopy life stage  

Trees experience increasing hydraulic stress with increasing height, and when growing in a 

tropical forest environment, growing tall means growing across a strong environmental 

gradient, from a dark and humid environment close to the forest floor to a sunny and dry 

environment in or above the canopy (Tymen et al. 2017). Trees higher in a canopy also 

experience greater evaporative demand which, if unregulated by stomatal control, reduces 

the water potential at the leaf level and in turn in the water column. These vertical changes 

are expected to require adjustment to hydraulic anatomy and physiological properties in 
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order to maximise productivity (Coble and Cavaleri 2017; Poorter 2009; Rijkers et al. 2000). 

Studies show that as trees grow taller leaves become smaller and thicker, i.e. a higher leaf 

mass per area (LMA) and smaller maximum leaf area (Cavaleri et al. 2010). Different studies 

have shown that the hydrostatic gradient with height affects the ability of leaves to expand 

and thus their area decreases and thickness increases (Koch et al. 2004; Oldham et al. 2010). 

A tighter packing of photosynthetic tissue in smaller leaves with a thicker palisade mesophyll 

enables leaves to maximise light absorption in a high light environment (Coble and Cavaleri 

2017). A higher LMA may also result from a reduced proportion of leaf air space, the gaps 

between mesophyll cells into which water evaporates from the xylem and CO2 from the 

atmosphere travels to photosynthesising cells, reducing water loss  (Flexas et al. 2008; Hanba 

et al. 1999; Oldham et al. 2010). Thus, as tropical forest trees grow through the canopy, both 

changes in light and height may require leaves with a higher proportion of dry mass per leaf 

area (Cavaleri et al. 2010).  

Leaves also control hydraulic status and photosynthesis rates by modulating stomatal 

conductance to control leaf level gas exchange (Brodribb and McAdam 2013; Klein 2014; 

Lawlor and Cornic 2002). The anatomy of stomata is important for determining gas exchange, 

since smaller stomata (at a given density) exchange less water for CO2 with the atmosphere, 

and are more able to respond to changing conditions (Lawson and Blatt 2014). The stomatal 

control of gas exchange affects the intrinsic water use efficiency (iWUE), the amount of 

carbon assimilation per unit of water lost. As trees grow taller their iWUE is known to increase 

due to a combination of greater light intensity increasing assimilation rates, and lower water 

potential at greater evaporative demand inducing stomatal closure and thus reducing 

stomatal conductance (McDowell et al. 2011; Woodruff et al. 2009). Thus, we expect trade-

offs as trees grow taller through a canopy gradient between traits that enable the 
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maximisation of light utilisation in photosynthesis and enduring an increasingly hydraulically 

stressful environment.  

5.1.4 Aims and objectives 

This study will investigate how hydraulic and ecophysiological traits change with tree height 

for three species with different life-history strategies. Traits include xylem vessel architecture 

and embolism vulnerability, stomatal anatomy, leaf size and mass, as well as carbon isotope 

ratios that indicate iWUE. We also measure leaf water potential and its response to 

environment. We chose three species with different life-history strategies; Pseudolmedia 

laevis (Ruiz & Pav., Moraceae), Centrolobium microchaete (Mart. Fabaceae) and Ampelocera 

ruizii (Klotzsch, Ulmaceae). P. laevis is a slow growing shade-tolerant evergreen species, C. 

microchaete is a fast-growing light-demanding deciduous pioneer species, and A. ruizii is an 

evergreen shade-tolerant tree with a high growth rate (Markesteijn and Poorter 2009).  

Specifically, we measure several leaf properties; LMA, maximum leaf size and mean leaf size, 

stomatal size, density and theoretical maximum conductance, as well as leaf δ13C. We also 

measure wood traits, namely xylem vessel width and density at the apex of branches and 

incrementally down the tree to the base of the tree. Additionally, in order to assess hydraulic 

safety, we measure leaf water potential at several points in the day and assess the embolism 

resistance of branches (the water potential that induces 50% air discharge, which is 

equivalent to 50% loss of conductance). See Table 5.1 for list of measurements and the 

significance of each measurement for tree ecophysiology.  

Table 5.1 List of measurements made in this study and their ecophysiological significance.  

Measured trait/property Ecological significance 

Leaf mass per area (LMA) Change in photosynthesising organ 
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5.1.5 Expectations of ecophysiological properties and functional trait variation with 

changing height and position relative to the canopy 

We expected leaves to become smaller and thicker (reduced maximum leaf area and 

increased LMA) in response to changing hydraulic and light conditions at greater height 

(Cavaleri et al. 2010; Kenzo et al. 2006), and for theoretical maximum stomatal conductance 

to increase (Van Wittenberghe et al. 2012) and δ13C to increase with height (McDowell et al. 

2011). We also expected xylem vessel diameter to scale with distance to the apex at a 

predictable rate (slope of 0.2, log-log scale) (Anfodillo et al. 2006; Olson et al. 2014). With 

increasing height up through the canopy we expected leaf water potential to decline during 

pre-dawn by at least -0.01MPa m-1 due to gravity alone (Kenzo et al. 2006; Scholander et al. 

1965), and during the day to decline with height by some greater value because of increasing 

evaporative demand through the canopy and increased need to exchange water for CO2 with 

increasing light availability through the canopy (Kenzo et al. 2006). We also expected terminal 

twig xylem vessels to increase in diameter with height as suggested by previous studies (Olson 

et al. 2014), which in turn would suggest embolism vulnerability (P50 value) should increase 

with height (Olson et al. 2018). 

Maximum leaf area Change in photosynthesising organ 

Stomatal pore length Change in potential stomatal conductance 

Stomatal pore density Change in potential stomatal conductance 

δ13C Change in intrinsic water use efficiency (A/gs) 

Xylem vessel diameter Conductance to water 

Xylem vessel density Conductance to water 

Daily profile of leaf water potential Regulation of water potential and thus control of hydraulic stress 

Hydraulic vulnerability curve Impact of water potential on hydraulic function 
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Regarding differences between species we expect that the faster growing species will have 

lower LMA, higher maximum theoretical stomatal conductance, and wider and less densely 

packed xylem vessels in order to increase hydraulic conductance and photosynthesis rates 

relative to the slower growing species (Markesteijn et al. 2011; Poorter and Bongers 2006). 

We also expected differences between species in the leaf water potential changes throughout 

the day with greater declines in leaf water potential during the day for faster growing species 

due to maintenance of high stomatal conductance to sustain high rates of photosynthesis 

throughout the day (Poorter and Bongers 2006).  Furthermore, we expected faster growing 

species to have greater xylem vessel diameter and higher P50 values, since these properties 

enable greater hydraulic conductance, and permit greater photosynthesis rates (Poorter et 

al. 2010).  

5.1.6 Hypotheses 

The hypotheses being tested in this chapter are that ecophysiological and anatomical traits 

and properties change with height in reflection of increasing hydraulic stress and light 

availability. There are some specific a priori expectations for several of the properties 

measured in this chapter as discussed above, e.g. water potential declining with height at a 

rate of 0.01MPa m-1 due to gravity, and xylem vessel diameter tapering at the rate predicted 

in the literature (West, Brown and Enquist 1999, Olson et al. 2014, Savage et al. 2010). We 

also test whether different species respond to increasing height differently based upon the 

study species’ respective life-history strategies. This is novel since very little research has been 

conducted to understand how ecophysiological properties change with height in tropical 

trees. This has implications for how trees cope with increasing hydraulic stress associated with 

a changing climate. 
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 Methods 

5.2.1 Study sites 

The study site, Hacienda Kenia, in Santa Cruz Department, Bolivia (16.0158°S, 62.7301°W) is 

located at the transition between wet Amazonian forest and dry Chiquitano forest (Araujo-

Murakami et al. 2014). Amazonian forests tend to be taller (our observations), and have a 

higher proportion of evergreen species relative to Chiquitano forests (Araujo-Murakami et al. 

2014). Typical Amazonian and Chiquitano species co-occur at this site, where the prevalence 

of species of each forest type depend upon edaphic conditions. At the study site Chiquitano 

species are prevalent on shallow soils (<1m) whilst Amazonian species are prevalent on 

deeper soils (>2m) (Araujo-Murakami et al. 2014). This study measured trees only in the tall 

Amazonian type forest. The climate of the study site is seasonal with a pronounced dry season 

of 6 months with less than 100mm rain month-1, and an annual precipitation of 1352mm year-

1. The site is occasionally affected by fire (Araujo-Murakami et al. 2014). 

5.2.2 Study species 

We study three canopy tree species, Ampelocera ruizii, Pseudolmedia laevis, and 

Centrolobium microchaete. These species occupy distinct ranges in water availability that 

overlap at this study site due to its location at the ecotone between wet Amazonian and dry 

Chiquitano forest types (Esquivel-Muelbert et al. 2017a; GBIF 2019a; GBIF 2019b; GBIF 

2019c). A. ruizii is distributed from Amazonian to Chiquitano dry forest ecosystems, P. laevis 

occurs only in Amazonian wet forests, and C. microchaete in Bolivia occurs largely in the 

Chiquitano dry forests. A. ruizii is classed as an evergreen, shade-tolerant with mid-high wood 

density of 0.55-0.648 g cm-3 (de Souza et al. 2016; Markesteijn et al. 2011). P. laevis is an 
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evergreen shade-tolerant species  that grows slowly with mid-high wood density (de Souza et 

al. 2016; Rozendaal et al. 2010). C. microchaete is a fast-growing semi-deciduous shade-

intolerant pioneer (Markesteijn et al. 2011). C. microchaete has compound leaves and all 

measurements were made using single leaflets unless otherwise stated.  

5.2.3 Sample strategy  

Samples of branches were collected from the crowns of trees which were accessed by rope 

in the case of tall trees or using telescopic cutters to cut branches of smaller trees. The sample 

strategy was to measure traits and collect samples from a range of heights for each species. 

An initial assessment of tree heights in the area of the study site was performed using a Nikon 

Forestry Pro laser range finder (Nikon Vision, Tokyo, Japan) from which three height classes 

were derived, namely, tall (>18m), medium (10-18m) and short statured trees (<10m) (see SI 

Figure 5.1). In each height class we sampled three individual trees. For the medium and tall 

height classes one upper crown branch and the lowest branch of the crown were sampled. 

This meant that we collected two branches per tree so we had to only climb one tree for two 

sample points. We sampled only one branch at the top of the crown from the smallest height 

class as the top and bottom of the crown were close together. Each point was also assessed 

using the 5 point Dawkins light index with subdivision of class 2 and 3, giving 8 total classes, 

which correspond well with openness to sky (Clark and Clark 1992; Keeling and Phillips 2007). 

Here, 1= very little direct light from any direction, 2= some light, only lateral direction, 3= high 

intensity lateral light only, 4= less than 50% of crown experiencing overhead direct light, 5= 

over 50% of crown experiencing overhead direct light, 6= over 90% of the crown receiving 

overhead direct light, 7= full direct light in all directions, please note that the lowest crown 

illumination class was not included because no sampled branches experienced no direct 
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lateral or overhead light, so in practice only 7 classes were used. Height and light indices were 

highly positively correlated for the three species (R2 of 0.64, 0.70 and 0.32 for A. ruizii, P. 

laevis, and C. microchaete respectively (SI Figure 5.2)). 

Leaf water potentials were measured before dawn, as an estimate of  the water potential at 

equilibrium with soil water potential (Fisher et al. 2006). Samples were then collected at 

midday (12:00 – 13:30) and when possible during the late afternoon (15:30 – 17:00). For A. 

ruizii and P. laevis samples were collected during two distinct periods, one at the end of the 

wet season in June when heavy rainfall was recorded for several days at the beginning of the 

period, and another at the peak of the dry season when conditions were warmer with no rain 

in July. Climate was measured using a Hobo climate sensor (UX120 series, Onset Computer 

Corporation, Bourne, USA). Mean daily temperature was 19.3oC during the wet period and 

increased to 23.2oC in the dry period (separated by a 14 day period), mean daily relative 

humidity was similar between wet and dry periods, 80.4 and 81.6 respectively.  

To analyse wood anatomy, we collected wood samples vertically up the trunk of each tree 

using an increment borer (either 5 or 10mm diameter cores depending upon wood hardness), 

and from the branch by cutting sections with a saw. The trunk of the tree was typically 

sampled in three places, one at the base of the tree, one at the point below crown insertion, 

and one in between (Figure 5.1).  
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Figure 5.1 Scheme of sampling within a tree. Wood samples were taken vertically along the trunk and 
along cut branches from the upper crown and lower crown. The typically large upper and lower 
branches were also used for leaf sampling and for vulnerability curve measurements. In the case of 
small trees only one branch was cut and typically only basal cores were collected from the trunk. 

 

5.2.4 Measurements and sampling techniques 

We measured a suite of functional traits and ecophysiological properties which cover 

different aspects of hydraulic safety and productivity (Table 5.1). Leaf water potential was 

measured using a pressure chamber (PMS 1505D, USA). Mature and undamaged leaves were 

collected at different times of day by cutting small branches with telescopic pruners.  

Immediately after cutting and after falling to the ground small subsections of branches were 

placed into sealable plastic bags which had been humidified beforehand by breathing into 

them. These small branch subsections were kept in the dark until they could be measured. 

The maximum time between being cut from the tree and the leaf water potential 

measurement was 15 minutes. Leaves were then cut from the small branches with a 

razorblade at the petiole and measured for leaf water potential. Leaf water potential was 
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determined as the pressure at the instance when water first appears at the petiole cut. Note 

that for C. microchaete it was difficult to discern between a mucous like liquid produced by 

the leaf and water. The only way to distinguish between water and a mucous-like liquid under 

increasing pressure was via the difference of the viscosity of the liquids, recognizable by the 

way the liquid bubbled out of the leaf petiole (see example in Figure 5.3). Additionally, P. 

laevis when cut at the petiole produced a thick mucous that obscured observation of water 

production under pressure (see example in Figure 5.3). This was solved by frequently wiping 

the cut petiole surface with tissue.  

Vulnerability curves were measured following the pneumatic method and protocol of Pereira 

et al. (2016). Large branches (generally ~ 2m) were cut before dawn and sealed in thick black 

plastic bags and kept under shade to keep cool until the first measurements could be taken. 

Smaller, ~30cm long, undamaged branches were cut from the main branch and was attached 

to the vacuum apparatus and exposed to the vacuum to measure air discharge for 150 

seconds. After this, 2 leaves were measured for leaf water potential as above and an average 

taken. Where leaves were cut from the branch PVA glue was used to seal the wound. Branches 

were dried and similarly measured at frequent intervals in a series until air discharge 

plateaued whilst simultaneously leaf water potential declined. The time interval between 

measurements was determined by the weather. Branches dehydrated more quickly when the 

weather was warmer and less humid, and therefore more frequent measurements were 

required to sample many water potentials and air discharge values. Between branch 

dehydration and air discharge measurement, branches were placed in dark plastic bags to 

equilibrate the water potentials between the stem and the leaf so that measuring the water 

potential of the leaf will also give the water potential of the branch. For details of the 

apparatus and usage see Figure 5.2. Pereira et al. (2016) found the P50 value using this 



115 
 

pneumatic method to be similar to the P50 found when directly measuring hydraulic 

conductance to express conductance lost due to embolism.  

 

Figure 5.2 Scheme of pneumatic apparatus for measuring gas discharge from a desiccating branch as 
a proxy for loss of conductance.  A vacuum is generated with the 50cl syringe and stored in a 2l Buchner 
flask vacuum reservoir. As the branch dries air within the branch that blocks water flow is drawn out 
and reduces the vacuum in the reservoir and surrounding tubes. This is recorded using a voltmeter 
attached to a vacuum sensor (Omega Engineering, USA, model PX141-015V5V). The three-way 
stopcocks (EW-30600-04, Cole Parmer, USA) labelled A, B enable control of exposure of the branch to 
vacuum or atmospheric pressures. In the present position all elements of the apparatus are under 
equal pressure. Closing stopcock B to the atmosphere (branch not yet attached and stored in a dark 
humid bag until used) enables the syringe to draw air out of the system, measuring the vacuum using 
the vacuum meter attached to the voltmeter sensitive to 0.001 volts, or ~0.07kPa and maintaining a 
vacuum of 4.2 to 4.3 volts or ~32 kPa. Once the vacuum is achieved, the branch was exposed to the 
vacuum for 2.5 minutes with stopcock B between the syringe and the rest of the pneumatic apparatus 
closed. All components of the pneumatic apparatus are linked by rigid tubing (EW-30600-62, Cole 
Parmer, USA) and with screw connectors for airtight connection between sections of tubing and 
apparatus. This retained the volume of the system which is important for standardising measurements 
between sampling points in the drying series and producing stable vacuum measurements that did 
not vary due to, for example, vibrations in the workbench. The connection between branch and 
apparatus was made using parafilm and elastic tubing, further secured using adjustable hose clips to 
reduce any air gaps between bark and elastic tubing. 
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Leaves were taken from the larger branches cut for vulnerability curve analysis. Ten mature 

and largely in-tact leaves, with sizes ranging from largest to smallest, were selected for 

measuring leaf mass and leaf area. In the case of C. microchaete which has compound leaves 

10 leaflets were used (sampling from 10 separate compound leaves and using only the middle 

leaflets). Leaves were stored in humid bags until used for measurements of leaf fresh mass 

and area. They were then weighed and scanned in the field. Then they were dried in an oven 

for a minimum of 5 days. Once dry leaves were then re-weighed. Dry leaves were retained for 

measuring stomatal traits. Leaf area was measured for each individual leaf using the images 

of scanned fresh leaves using ImageJ (Fiji, version 1.52p). For each leaf the dry mass of the 

leaf was divided by the fresh leaf area to produce leaf mass per area (LMA). The area of the 

largest leaf was used to estimate maximum leaf area for that height level and species. 

For stomatal length and density, dry leaves were impressed with silicone based impression 

putty (President Light Body, Alstätten, Switzerland) to obtain a negative of a limited area of 

the underside of a leaf. The putty copy was then painted with nail varnish to obtain a positive 

and transparent copy of the leaf underside area. Once dried the varnish layer was peeled from 

the putty copy and was placed on a microscope slide. A GXCAM microscope mounted digital 

camera (GXCAM-U3PRO-6.3, GT Vision Ltd.) with a 6.3 megapixel lens mounted to an 

Olympus CX43 microscope at 40X magnification was used to photograph the stomata on the 

abaxial surface of the leaves. ImageJ was then used to measure stomatal length using the 

software’s measuring tools and count the number of stomata in area of 0.33mm2 to 

determine the density. This was performed for three leaves per branch sampled. 

We calculated the theoretical maximum stomatal conductance to water per leaf area (gmax 

mol m-2 s-1) following McElwain et al. (2016) 



117 
 

𝑔𝑚𝑎𝑥 =
(

𝑑𝑤
𝑣 ) . 𝑆𝐷 . 𝑝𝑎𝑚𝑎𝑥

𝑝𝑑 + (
𝜋
2) √ (

𝑝𝑎𝑚𝑎𝑥

𝜋 )

 

 

5.1 

 

where dw is the diffusivity of water vapour (0.0000249 m2 s-1 at 25oC) and v is the molar 

volume of air (0.0224 m3 mol-1). SD is stomatal density (stomata m-2), pamax is the maximum 

stomatal pore area calculated from the long axis measurement only. The area was calculated 

as an ellipse with a width half the length. The stomatal pore depth, pd, was assumed to be 

the same as width (m) (Franks and Beerling 2009a; Franks and Beerling 2009b; McElwain et 

al. 2016). 

The same dry leaves that were measured for LMA (leaf mass per area) were also used to 

measure the carbon isotope ratio, δ13C. The mixing ratio of 12C is much higher than 13C in the 

atmosphere. The ratio of 12C to 13C is higher still in plant cellulose since fractionation 

processes select against 13C in the diffusion of CO2 within the leaf and during the carboxylation 

during carbon fixation by the enzyme RuBisCO (McNevin et al. 2007; Oleary 1988). The 

intrinsic water use efficiency of a plant (carbon assimilation rate/stomatal conductance) can 

be assessed by measuring the ratio of 13C relative to 12C in cellulose in a sample (Rsample) 

relative to a standard (Rstandard) with a known carbon isotope ratio (δ13C ‰) (Farquhar et al. 

1989; Farquhar et al. 1982) 
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𝛿13𝐶 =  (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) 1000 5.2 

 

The intrinsic water use efficiency increases as the carbon assimilation rate increases relative 

to stomatal conductance or decreases as stomatal conductance increases relative to carbon 

assimilation rate. The δ13C value increases (becomes less negative) with a greater proportion 

of 13C relative to 12C in air within the leaf, which happens when the concentration of CO2 

within the leaf declines relative to the atmosphere. We measure the δ13C in 3 to 5 leaves per 

branch which were pooled to yield enough cellulose material for the analysis without 

destroying whole leaves (target weight 0.3mg cellulose). Cellulose was then extracted 

following Wieloch et al. (2011). δ13C in cellulose was measured at the Leicester Environmental 

Stable Isotope Laboratory.  

Wood samples were collected using 5 or 10mm increment borers at 3 positions from the stem 

base to the point of crown insertion, and at 4 positions in upper and lower crown branches 

using a saw or clippers (Figure 5.1). Although 10mm diameter wood cores were preferable 

(more sample material and more robust wood cores) the 5mm borers were used in denser 

wood, e.g. A. ruizii, whilst 10mm borers were used in less dense wood, e.g. C. microchaete. 

Wood samples were kept dry and were generally free from mould. Wood samples were cut 

using a microtome to 15-30um thickness depending upon the ease of cutting. The thin 

sections were placed on slides and photographed using a GXCAM microscope mounted digital 

camera (GXCAM-U3PRO-6.3, GT Vision Ltd.) with a 6.3 megapixel lens mounted to an 

Olympus CX43 microscope at 10X magnification for small vessels at the branch apex and in 
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small trees, and at 4X magnification for large vessels in the trunk of large trees. Images were 

then measured for vessel size and density using ImageJ (Fiji, version 1.52p). 
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Figure 5.3 Images of different sampling and measuring techniques for each of three species. The first 
row shows leaf water potential measurement, where A. ruizii produces only sap, P. laevis produces 
latex in addition to sap, and C. microchaete produces mucus in addition to sap. The second row shows 
stomatal impression from leaves of each species, where the scale bar shows 0.1mm. The third row 
shows leaf area with the ruler in cm increments for scale. The fourth row shows xylem anatomy in a 
twig 5cm below the apex with a scale bar 0.5mm long. These xylem photos show that the conductive 
wood containing xylem vessels (white circles) grew around a large diameter pith (removed in the 
process of producing the microtomed thin sections) in the twig. Thus xylem wood tissue occupied a 
only a narrow ring, hence the roughly semi-circular shape of the wood sections.  
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5.2.5 Analysis 

To investigate the effects of sample height on different physiological and anatomical traits 

linear regressions of the form y = a + bx were used, where y is the dependent variable (plant 

trait), x is the independent variable (sample specific height), and a and b are the intercept and 

slope respectively. Light availability classes were treated as continuous increments since the 

crown exposure index used in this study correlates well with measured proportions of 

openness to sky (Keeling and Phillips 2007). We show in SI Figure 5.2 that light index correlates 

well with height, as expected, and thus we cannot distinguish between the effects of height 

versus light availability. This is different for C. microchaete, where some small trees were 

growing across a range of light environments, including high light. Relationships between 

traits were also assessed using linear regressions. All linear models were assessed for 

homogeneity of slopes using the anova R function, normality of the residuals (Shapiro-Wilk 

from the R package rstatix (Kassambara 2019) and Q-Q plots) and homogeneity of variance 

(Bartlett test from the R package stats (R Core Team 2018)).  

We compare mean trait values between species in order to assess possible alignment with 

life-history strategy. Between species comparisons of the mean value of the measured traits 

and physiological properties were made by Tukey’s multiple comparisons test. We also 

compare the slopes of the relationships between tree height and each measured trait using 

the R package emmeans (Lenth 2018). 

P50 curves were created by non-linear regression using the method of Pereira et al. (Pereira 

et al. 2016). Percentage air discharge (PAD) was calculated as the percentage of measured air 
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discharge AD (cm3) relative to the difference between maximum and minimum measured air 

discharge, ADmax and ADmin respectively:  

 

𝑃𝐴𝐷(%) = 100 ∙
𝐴𝐷 − 𝐴𝐷𝑚𝑖𝑛

𝐴𝐷𝑚𝑎𝑥 − 𝐴𝐷𝑚𝑖𝑛
 5.3 

 

The model describing the relationship between PAD and leaf water potential ψ during the 

drying series (described above) was of the form 

𝑃𝐴𝐷(%) =
100

1 + exp ((
𝑎

25
) ∗ (𝜓 − 𝑏))

 

 

5.4 

where a is the slope of the curve at point of 50% air discharge and b is the leaf water potential 

at which 50% air discharge is achieved. This model is the same as used in previous studies 

exemplifying the use of the pneumatic method to estimate a plants vulnerability to embolism 

(Pereira et al. 2016). 1000 starting values were generated to fit the model using the nls 

function (R Core Team 2018), retaining all models that fit according to the relative offset 

convergence criteria that the nls function uses to compare the imprecision of the parameter 

estimates and the residual sum of squares.  All analyses were performed in R studio using R 

version 3.5.1 (R Core Team 2018). 
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 Results 

5.3.1 Leaf traits 

Leaf mass per area (LMA) increases with tree height across species (Figure 5.4A). The slope of 

this increase is similar among species (Table 5.3). A. ruizii and P. laevis have similar mean LMA 

but the LMA of P. laevis is ~50% higher than the LMA of C. microchaete. Maximum leaf area, 

i.e. the area of the largest leaf, decreases with sample height similarly across the three species 

(Figure 5.4B). The mean maximum leaf area of P. laevis is nearly double that of A. ruizii and 

more than double that of C. microchaete (Table 5.3). 

There is no evidence for stomatal size or density to change with sample height for A. ruizii nor 

P. laevis, though for C. microchaete stomatal density increases with sample height (Figure 5.4 

C and D, Table 5.3). P. laevis and C. microchaete have similar mean guard cell length and 

density while A. ruizii has higher mean guard cell length and lower stomatal density. For both 

A. ruizii and C. microchaete theoretical maximum stomatal conductance per leaf area 

increases with height (Figure 5.4E, Table 5.3). P. laevis has the highest mean theoretical 

maximum stomatal conductance, 30% higher than C. microchaete and nearly 100% higher 

than that of A. ruizii.  

The value of δ13C increases with height across the three species. The rate of increase in δ13C 

of C. microchaete with sample height compared to the other two species is significantly higher 

(Figure 5.4F, Table 5.3). 
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Figure 5.4 Relationships between sample height and leaf traits for the three species, Ampelocera ruizii 
(red), Pseudolmedia laevis (blue), and Centrolobium microchaete (green). Mean leaf mass per area 
(LMA) is shown in A, maximum leaf area in B, mean guard cell length in C, stomatal density in D, the 
theoretical maximum stomatal conductance (gmax) in E, and the δ13C (‰) in F. Significant linear 
relationships are represented by a solid line with shading representing the confidence interval. See 
Table 5.3 for model details and comparisons between species.  
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5.3.2 Xylem vessel anatomy 

The relationships between vessel size and density, and the distance to the tree apex within 

trees followed the expected patterns according to tapering theory (see Chapters 1 and 4 for 

more detail). We find similar increasing vessel diameter toward the bases of trees, and 

increasing vessel density toward the apex of the trees between species (Figure 5.5). The 

slopes of the log-transformed relationships between height and vessel diameter (with log 

transformed units) were 0.22 (s.e. 0.02), 0.24 (s.e. 0.016), 0.17 (s.e. 0.022), for A. ruizii, P. 

laevis and C. microchaete respectively (Table 5.3). C. microchaete has significantly larger mean 

vessel diameter relative to A. ruizii and P. laevis (Table 5.3). 

 

Figure 5.5 Relationships between distance to apex of mean vessel diameter and vessel density for 
three species, Ampelocera ruizii (red), Pseudolmedia laevis (blue), and Centrolobium microchaete 
(green). All axes are presented on a log scale. Significant linear relationships are represented by a solid 
line with shading representing the confidence interval. See Table 5.3 for model details and 
comparisons between species.  

 

Vessel size and density is relatively constant at the apex regardless of the height of the branch 

sample ( 
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Figure 5.6). We only found a significant relationship between vessel density and sample height 

in C. microchaete ( 

Figure 5.6 F). The mean apical vessel area and density was similar in A. ruizii and P. laevis, but 

vessels were significantly larger (~300% relative to A. ruizii and P. laevis) and packed less 

densely in C. microchaete (~50% relative to P. laevis).  

 

 

Figure 5.6 Species specific apical mean xylem vessel area – sample height relationships (A-C), and 
xylem vessel density – sample hight relationships (D-F). Colours red, blue and green respectively 
represent Ampelocera ruizii, Pseudolmedia laevis, Centrolobium microchaete.  Significant linear 
relationships are represented by a solid line with shading representing the confidence interval.   
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5.3.3 Leaf water potential  

During a day leaf water potential decreases from pre-dawn to midday, after which it increases 

again (Figure 5.7). A. ruizii shows greater differences between pre-dawn and midday leaf 

water potential than P. laevis 2.38MPa (+-0.34), and C. microchaete 0.7MPa (+- 0.17) 

respectively during the dry period). Furthermore, for A. ruizii during the dry period the pre-

dawn leaf water potential is more negative compared to the wet period by 0.53MPa, and at 

midday by 0.43MPa (Table 5.3). In P. laevis there are only small changes between wet and dry 

periods during pre-dawn (0.07MPa), but midday leaf water potentials decrease between wet 

and dry periods from 0.31MPa (+-0.08) to 0.64MPa (+-0.08) respectively (Table 5.3). C. 

microchaete shows the largest mean difference between pre-dawn and midday leaf water 

potential 2.66 MPa (+-0.33). 

There are few apparent relationships between leaf water potential and sample height, either 

between pre-dawn leaf water potential and height or midday leaf water potential and height 

either in the wet period or the dry period (Figure 5.8). Pre-dawn leaf water potential increases 

with height for C. microchaete (0.029MPa m-1).  Leaf water potential decreases with height 

only for A. ruizii during midday in the dry period (0.046 MPa m-1 Figure 5.8F), whilst pre-dawn 

leaf water potential does not change, thus resulting in an increase in the difference between 

pre-dawn and the minimum leaf water potential during the dry period (Figure 5.8F). Between 

species both pre-dawn and midday leaf water potential values are more negative for C. 

microchaete and A. ruizii relative to P. laevis during both wet and dry periods (~200-300% 

more negative, Table 5.3). 
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Figure 5.7  Daily curves of leaf water potential (ᴪl) for Ampelocera ruizii (A,B) and Pseudolmedia laevis 
(C,D), Centrolobium microchaete (E). Measurements of ᴪl were taken during two distinct periods, one 
wet (B,D) and one dry (A,C). C. microchaete was only measured once, early in the dry period.  
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Figure 5.8 Linear relationships between sample height and leaf water potential for three species, 
Ampelocera ruizii (red), Pseudolmedia laevis (blue), and Centrolobium microchaete (green). Shown 
here are the leaf water potential measured before dawn (A,C), at midday (B,D), and the difference 
between the pre-dawn leaf water potential and the minimum leaf water potential (E,F). Each point 
represents the mean of 2-5 leaf water potential measurements. Measurements were taken during a 
wet period (A,B) and dry period (C,D). Significant linear relationships are represented by a solid line 
with shading representing the confidence interval. See Table 5.3 for the results of the linear 
relationships and differences between species mean values.  

 

5.3.4 Vulnerability curves 

P50 values were inferred from the vulnerability curves, measured as the water potential at 

which 50% of maximum air discharge occurs. For A. ruizii and P. laevis this is between -4.4 to 

-5.3MPa, and -2.3 to -4.5MPa respectively (Figure 5.9 A-C, and D-F respectively, Table 5.2). 
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This means that hydraulic conductance declines to half of maximum at these water potentials. 

For C. microchaete vulnerability curves had standard errors ~50% of the slope at the P50 value 

of the vulnerability curve, and as such are less statistically robust compared to the curves 

determined for the other two species  (Figure 5.9 G-I, Table 5.2). According to these data 

there are no changes of the P50 value with increasing tree height for A. ruizii and C. 

microchaete, i.e. they are independent of height. For P. laevis there is a trend for higher P50 

value with sample height. 

Table 5.2 Results of the vulnerability curve analysis for the three species, Ampelocera ruizii, 
Pseudolmedia laevis, and Centrolobium microchaete at 3 height classes. See Figure 5.9 for the 
vulnerability curves used to calculate the P50 value. In brackets are the standard errors of the slope 
(%  MPa-1) and P50 (MPa) values, the water potential that induces 50% air discharge.  

 height class 
slopes (s.e.) <10m 10-18m  >18m 

A. ruizii 12.32  ( 2.6 ) 23.51  ( 4.58 ) 31.31  ( 7.49 ) 
P. laevis 11.69  ( 2.3 ) 19.56  ( 4.67 ) 35.9  ( 12.56 ) 
C. microchaete 64.18  ( 32.92 ) 20.68  ( 8.83 ) 11.13  ( 4.82 ) 
P50 (s.e.) 

   

A. ruizii -5.07  ( 0.41 ) -4.43  ( 0.19 ) -5.31  ( 0.21 ) 
P. laevis -4.49  ( 0.5 ) -2.73  ( 0.34 ) -2.26  ( 0.29 ) 
C. microchaete -4.61  ( 0.19 ) -4.75  ( 0.43 ) -5.47  ( 1.06 ) 
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Figure 5.9 Vulnerability curves measured for A. ruizii (A-C), P. laevis (D-F), C. microchaete. The data 
here are collations of samples from different height classes: <10m (A,D,G), 10m - 18m (B,E,H), >18m 
(C,F,I). The red points and hatched line indicate the water potential that induces 50% of maximum air 
discharge from the branch, the blue points indicate the water potential that induces 88% of maximum 
air discharge from the branch. For a table of slope and P50 values with standard error see Table 5.2. 
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Table 5.3 Linear relationships between sample height and different ecophysiological and functional traits. The mean value of each trait is presented (with 95% confidence interval) and significant differences (as tested by t-tests) 

between species in the mean value are represented by different lower-case letters. The R2 represents the fit of the linear relationships and the level of significance of the linear relationship is represented by: NS = p>0.1, ns = 

>0.05, * = p<0.05, ** = p<0.001, *** = p<0.0001. The slope of the linear relationship is given with the confidence interval, comparison between slopes as assessed by t-tests and significant differences are represented by different 
upper-case letters. For the relationship between sample height and log vessel diameter and log vessel density the units presented are log transformed. For all other variables the units are as per their associated linear regression 
plots. Please note C. microchaete does not have wet period values for water potential measurements and are thus left blank. 

 Ampelocera ruizii Pseudolmedia laevis Centrolobium microchaete 

trait mean trait value effect of height (CI); R2 mean trait value effect of height (CI); R2 mean trait value effect of height (CI); R2 

LMA 102.67 (+- 7.19 )  ab 1.64 (+- 0.56) ; 0.73 *** A 119.53 (+- 13.89 )   b 3.014 (+- 1.09 ) ; 0.64 *** A 82.11 (+- 11.15 )  a 2.88 (+- 1.37) ; 0.58 ** A 

Max. leaf area 4159.26 (+- 723.46 )  a -101.23 (+- 91.88 ) ; 0.27 * A 7270.74 (+- 1262.81 )   b -200.41 (+- 133.96) ; 0.34 * A 3392.17 (+- 694.06 )  a -116.95 (+- 113.61 ) ; 0.25 ns 

mean leaf area 2388.98 (+- 389.7 )  a -39.26 (+- 53.76 ) ; 0.14 NS 4000.89 (+- 919.63 )   b -113.58 (+- 107.21) ; 0.21 * 2374.81 (+- 524.14 )  a -82.37 (+- 87.6 ) ; 0.21 ns 

stomal length 0.0218 (+- 0.0007 )   b 0.000081(+- 0.0001 ) ; 0.17 NS 0.016 (+- 0.0005 )  a 0.00003 (+- 0.000067 ) ; 0.05 NS 0.0171 (+- 0.0006 )  a -0.00008 (+- 0.0001 ) ; 0.16 NS 

stomatal density 439.07 (+- 28.86 )  a 2.3 (+- 4.1 ) ; 0.09 NS 1127.51 (+- 110.1 )    c 7.014 (+- 15.45 ) ; 0.06 NS 828.18  (+- 101.76)   b 20.57  (+- 15.42 ) ; 0.35 * 

Max. theoretical 
stomatal 

conductance 

12.24 (+- 0.7 )  a 0.11 (+- 0.082 ) ; 0.37 * A 23.37 (+- 1.75 )    c 0.2 (+- 0.23) ; 0.19 ns 17.94 (+- 1.64 )   b 0.36 (+- 0.24 ) ; 0.42 * A 

δ13C -27.3 (+- 0.54 )    c 0.12 (+- 0.043 ) ; 0.71 *** A -28.89 (+- 0.59 )   b 0.1 (+- 0.06 ) ; 0.42 * A -30.33 (+- 1.1 )  a 0.3 (+- 0.13 ) ; 0.64 *** B 

log mean vessel 
diameter 

-3.95 (+- 0.19 )  a 0.22 (+- 0.039 ) ; 0.83 *** A -3.86 (+- 0.22 )  ab 0.24 (+- 0.045 ) ; 0.82 *** A -3.53 (+- 0.16 )   b 0.17 (+- 0.033 ) ; 0.83 *** A 

log vessel 
density 

4.03 (+- 0.3 )  a -0.27 (+- 0.1 ) ; 0.53 *** A 4 (+- 0.42 )  a -0.42 (+- 0.11 ) ; 0.69 *** A 3.67 (+- 0.26 )  a -0.24 (+- 0.081) ; 0.63 *** A 

apex vessel area 0.00036 (+- 0.000068 )  a -0.0000078 (+- 0.0000074 ) ; 0.39 ns 
0.00041 (+- 0.000064 )  

a 
0.0000035 (+- 0.0000084 ) ; 0.09 NS 0.0012 (+- 0.00026 )   b -0.000027 (+- 0.000051 ) ; 0.12 NS 

apex vessel 
density 

103.97 (+- 34.68 )  ab 0.21 (+- 4.8) ; 0.0011 NS 130.83 (+- 34.46 )   b -1.12 (+- 4.68 ) ; 0.0316 NS 68.76 (+- 21.66 )  a 4.74 (+- 3.12 ) ; 0.5353 * 

pre-dawn ᴪl wet 0.16 (+- 0.06 )  a -0.0052 (+- 0.0088 ) ; 0.1 NS 0.11 (+- 0.05 )  a -0.0023 (+- 0.0071 ) ; 0.03 NS - - 

midday ᴪl wet 1.7 (+- 0.35 )   b 0.044 (+- 0.047) ; 0.21 ns 0.31 (+- 0.08 )  a 0.0062 (+- 0.012 ) ; 0.08 NS - - 

pre-dawn ᴪl dry 0.69 (+- 0.22 )   b 0.012 (+- 0.032 ) ; 0.04 NS 0.18 (+- 0.03 )  a -0.00079 (+- 0.0049 ) ; 0.01 NS 0.49 (+- 0.16 )   b -0.029 (+- 0.025 ) ; 0.3 * 

midday ᴪl dry 2.13 (+- 0.27 )   b 0.046 (+- 0.031) ; 0.4 * 0.64 (+- 0.08 )  a 0.0044 (+- 0.011 ) ; 0.05 NS 2.34 (+- 0.5 )   b -0.038 (+- 0.092 ) ; 0.05 NS 

Δᴪl wet 2.16 (+- 0.43 )   b 0.051 (+- 0.058 ) ; 0.19 NS 0.49 (+- 0.22 )  a 0.026 (+- 0.029) ; 0.19 NS - - 

Δᴪl dry 2.38 (+- 0.34 )   b 0.049 (+- 0.043 ) ; 0.29 * 0.7 (+- 0.17 )  a -0.018 (+- 0.022) ; 0.16 NS 2.66 (+- 0.33 )   b -0.036 (+- 0.058 ) ; 0.11 NS 
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5.3.5 Between-trait relationships 

We find that some ecophysiological traits are strongly related to one another. Vessel diameter 

and vessel density, and stomatal length and stomatal density are both negatively related to 

one another (Figure 5.10 A,B). Note that the relationship between stomatal length and 

density for A. ruizii is only moderately significant (R2=0.24, p=0.067). We also show that δ13C 

is positively related to LMA across the three species (Figure 5.10 C). Maximum theoretical 

conductance per leaf area is positively related to LMA, but only for the species A. ruizii and C. 

microchaete, and though non-significant for P. laevis the same positive trend appears (Figure 

5.10 D). There is also a positive relationship between maximum theoretical conductance per 

leaf area and δ13C for P. laevis and C. microchaete, but not for A. ruizii, though the trend is 

also positive (Figure 5.10 E).  For tables of relationship fits and coefficient values see  SI Table 

5.4 and SI Table 5.5 respectively.  
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Figure 5.10 Relationships between traits for three species, Ampelocera ruizii (red), Pseudolmedia 
laevis (blue), and Centrolobium microchaete (green).  A) Relationship between mean vessel diameter 
and density for vessels sampled along the entire range of sample heights, B) relationship between 
mean guard cell length and stomatal density per sample. C) relationship between δ13C and mean leaf 
mass per area (LMA) per sample. D) relationship between mean LMA and the theoretical maximum 
stomatal conductance. E) relationship between δ13C and theoretical maximum stomatal conductance. 
For tables of relationship fits and coefficient values see SI Table 5.4, SI Table 5.5.  

 Discussion  

We investigated how different functional traits and ecophysiological properties of three 

species differing in life-history strategy vary with height in an ecotonal forest in Bolivia. We 
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found strong differences between species that likely relate to their life-history strategies as 

well as some striking relationships between functional traits and tree height, perhaps 

indicating trade-offs between productivity and hydraulic safety. We discuss these results in 

the context of the literature on tropical forest ecophysiology.  

5.4.1 Changes in functional traits with tree height  

We measured different functional traits and ecophysiological properties at different levels 

within a forest canopy, from the dark understory, to the canopy where trees experience full 

sun. In this study light availability and sample height are strongly linked (SI Figure 5.2), and 

thus any changes in the values of the different traits we measure may be linked to changes in 

height, i.e. resistance to water flow with path length, mechanical stress and gravitational 

effects on water potential (Ryan and Yoder 1997), as well the effects of light, temperature 

and humidity through the canopy (Ghazoul and Sheil 2010a).  

5.4.1.1 Leaf traits 

We find that with increasing tree height leaves become smaller and have a higher leaf mass 

per area (Figure 5.4). We also find that these trends are similar for the three species studied, 

though with differing mean values of LMA (Figure 5.4, Table 5.3). This is a well observed 

pattern in various tropical species (Cavaleri et al. 2010; Kafuti et al. 2020; Kenzo et al. 2006; 

Rijkers et al. 2000). It has been suggested to be due to a combination of hydraulic changes as 

well as light availability. The effects of light intensity have been shown under experimental 

conditions in saplings by Coste et al.  (2010), who found that under experimental light 

conditions, higher light availability induced higher LMA, associated with increased leaf 

thickness. LMA may increase due to increasing light availability since in higher light a thicker 

palisade mesophyll, the tissue in which most photosynthesis occurs, and which holds more 
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nitrogen per leaf area, thus enabling higher photosynthesis per area (Coble and Cavaleri 2017; 

Coste et al. 2010; Niinemets 1999; Niinemets 2007; Niklas 1999; Poorter et al. 2019; Poorter 

et al. 2009). Leaves higher in the canopy may be subjected to more wind stress (Baldocchi et 

al. 2002) and require more structural carbohydrates to cope with mechanical wind stress and 

avoid breaking (He et al. 2019). Furthermore leaves higher in the canopy may be subject to 

wilting under low water potential (Scoffoni et al. 2014), as well as requiring increased 

hydraulic efficiency to cope with greater path length as tree grow taller so leaf vein thickness 

may increase to accommodate broader diameter vessels with height as suggested by Rosell 

et al. (2017) and shown in increasing leaf vein diameter with tree height by Coble and Cavaleri 

(2017). However, as we do not find any change in apical (branch) vessel size with height 

(Figure 5.6), we do not necessarily expect leaf vessel size to change with an increase in tree 

height.  

Leaves higher in a canopy experience increased vapour pressure deficit and temperature 

which causes stress that may favour smaller surface area leaves which have been shown to 

be more effective for leaf cooling (England and Attiwill 2006; Sastry et al. 2018). Smaller leaves 

may also result directly from reduced turgor pressure due to lower water potentials in the 

crown, limiting cell expansion (Koch et al. 2004; Woodruff and Meinzer 2011). We show a 

strong decrease in the maximum leaf area of each species and increase in LMA with height 

but we show only a decline in leaf water potential with height in A. ruizii (Figure 5.8). It is 

therefore not likely that leaf size decreases and LMA increases are due to decreased cell 

expansion because of lower water potentials with height for P. laevis or C. microchaete which 

maintain similar water potentials with height (Figure 5.8). Therefore, universal LMA increases 

with height are likely a response to optimise photosynthetic capacity under increased light 

availability, as a response to more negative leaf water potentials (in A. ruizii), whilst aiding 
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control of leaf temperature and withstanding increased mechanical stress (Aranda et al. 2007; 

Baird et al. 2017).  

For C. microchaete there is an increase in stomatal density with height, but not stomatal 

length (Figure 5.4 C, D). The theoretical maximum possible conductance is highest in leaves 

with smaller stomata because they may be packed at higher density (Bertolino et al. 2019; 

Henry et al. 2019). In C. microchaete we do find a strong increase in theoretical maximum 

stomatal conductance with height, likely driven by the increase in stomatal density (Figure 

5.4D, E). This may be because it is a fast-growing pioneer that might be expected to maximise 

conductance for CO2 as it has greater access to light (Poorter and Bongers 2006). The two 

other species, A. ruizii and P. laevis, showed no significant changes in guard cell length or 

density with tree height. Despite this A. ruizii shows a small (relative to C. microchaete) 

increase in theoretical maximum stomatal conductance, perhaps driven by a non-statistically 

significant increase in stomatal length but maintaining stomatal density. For P. laevis there is 

no change in any stomatal properties with tree height, therefore as leaves decrease in size 

with height, leaf specific conductance may decrease, whereas the other two species may be 

able to better maintain leaf specific conductance.  

 P. laevis has smaller stomata which probably permits greater control of water loss and thus 

leaf water potential (as shown in Figure 5.7 and Figure 5.8), which may be a mechanism for 

this species to avoid embolism (Drake et al. 2013). Such a potentially greater dynamic control 

of stomatal conductance may explain a lack of change in maximum theoretical stomatal 

conductance with height (Figure 5.4).  

In contrast, the other two species appear to mitigate potential loss of leaf conductance (and 

thereby productivity) as leaves become smaller with height by increasing the leaf area specific 



138 
 

conductance, possibly risking hydraulic failure as greater conductance permits water 

potentials to decline as shown in Figure 5.7 and Figure 5.8 (Chen et al. 2019b; McDowell et 

al. 2008; Mencuccini et al. 2015). This trade-off is more apparent in C. microchaete as the 

theoretical maximum conductance on an area specific basis increases more rapidly with 

height than A. ruizii. Thus, the three species show distinct strategies with regard to stomatal 

properties changes with tree height, likely conferring trade-offs between productivity and 

hydraulic safety (Bartlett et al. 2016; Henry et al. 2019).  

We find a strong increase in δ13C with height across the three species (Figure 5.4F). Similar 

results have been found across biomes including tropical forests (Brienen et al. 2017; 

McDowell et al. 2011). As trees grow in height through a forest canopy their assimilation rate 

increases due to increased light intensity (Rijkers et al. 2000), as well as their stomatal 

conductance in order to improve gas exchange rates (Figure 5.4E) (Roberts et al. 1990). The 

increase in δ13C of trees with height indicates that leaf internal CO2 concentration decreases, 

and suggests that assimilation rates increase at a greater rate, relative to stomatal 

conductance (Aranda et al. 2007). Lower internal concentrations of CO2 can be due to 

increasing light (resulting in increased assimilation of carbon) or decreasing conductance of 

the stomata to CO2. P. laevis appears to tightly control stomatal conductance with height 

(Figure 5.8). In contrast, for both C. microchaete and A. ruizii maximum theoretical 

conductance increases with height, and for A. ruizii leaf water potential declines with height 

(Figure 5.8D). This suggests that these species maintain high stomatal conductance which 

should increase the internal concentration of CO2. If this is the case any increase in δ13C is 

likely due more to increasing assimilation rate with height and less to any decrease in stomatal 

conductance with height, relative to P. laevis (McDowell et al. 2011; Woodruff et al. 2009). 

For C. microchaete δ13C increases more rapidly with height compared to the other two 
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species. This might suggest that at low heights leaves are less photosynthetically limited by 

stomatal conductance (i.e. for a given assimilation rate leaves have high stomatal 

conductance), but that as they grow taller they are increasingly limited (internal CO2 

concentration decreases more rapidly than the other two species). This would make sense 

considering that C. microchaete, as a pioneer species, needs to grow very fast whilst young in 

order to make use of short-lived canopy gaps. 

5.4.1.2 Vessel characteristics 

Vessel diameter increases with distance to the apex whilst vessel density decreases (Figure 

5.5). We showed that the slopes of the vertical profile of vessel diameter were between 0.17 

and 0.24 (log mm log m-1), similar to the predicted minimum value of 0.2 required to 

overcome path length resistance increases with increasing path length as suggested in the 

literature (Anfodillo et al. 2006; Enquist 2003; Olson et al. 2014; Savage et al. 2010; West et 

al. 1999). A value much greater than 0.2 has been suggested to convey little benefit to the 

minimisation of hydraulic resistance whilst exacerbating problems such as embolism 

vulnerability and mechanical instability as vessel diameters increase (Christensen-Dalsgaard 

et al. 2007; Fan et al. 2017; Savage et al. 2010).   

Between species the rate of increase in vessel diameter and decrease in vessel density is 

similar. C. microchaete has larger vessels for a given distance to the apex than P. laevis and A. 

ruizii which have a similar vessel sizes at a given distance to the apex. The greater vessel size 

of C. microchaete likely allows more efficient water conductivity required to sustain the 

greater rates of productivity of this species which, as a shade-intolerant pioneer species, are 

required to better utilise the brief canopy gaps (Hietz et al. 2017; Poorter et al. 2010). The 

other two species, A. ruizii and P. laevis are shade-tolerant species (Markesteijn and Poorter 

2009) and seem to prioritise greater hydraulic safety to survive long periods in the understory 
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(Kupers et al. 2019), assuming narrower vessels convey greater hydraulic safety (Levionnois 

et al. 2021; Lobo et al. 2018; Olson et al. 2018; Prendin et al. 2018; Scoffoni et al. 2017; Sperry 

et al. 2006).  

Previous studies that focus on the relationship between vessel diameter and tree height have 

often assumed a fixed apical vessel diameter regardless of tree height (Savage et al. 2010; 

West et al. 1999), although there is little evidence as far as the authors are aware to suggest 

this. Other studies have provided evidence that, for xylem vessels in near terminal twigs, 

vessel diameter increases with tree height, presumably to increase water conductance per 

leaf area in higher leaves (Echeverria et al. 2019; Olson et al. 2014). These findings are 

inconsistent with the assumption of fixed apical vessel diameter, if the terminal vessel is 

assumed to occur in the twig (and not in the leaf). We show that there is no apparent effect 

of sample height on the apical vessel diameter ( 

Figure 5.6). Thus our findings are consistent with the assumption made by West et al. (1999) 

and others (Savage et al. 2010), who suggest that the diameters of apical vessels are similar 

regardless of the path length below the apex. This therefore means that the resistance of the 

flow path cannot be exactly maintained along the flow path, but each meter in height adds a 

small amount of resistance as vessels increase in diameter (for an example of the effects of 

apical vessel widening see Figure 5.11).   
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Figure 5.11 Scheme of two constant tapering strategies describing the effects of increasing apical 
vessel width with path length (different from the constant apical diameter assumption of Chapter 1 
Figure 1.4). The left panel shows how, with constant apical diameter and constant taper rate (the ratio 
between levels, here 0.5 for simplicity), total resistance Rtot increases with path length (shown as the 
number of sections which have constant length). The right panel shows how (using the same taper 
rate as the left-hand panel) by increasing the width of the apical vessel the total resistance can be 
reduced. Previous studies have found that with increasing tree height the apical twig vessels increase 
in diameter (Echeverria et al. 2019; Olson et al. 2014), suggesting the variable apical diameter 
scenario, whilst in this study we find the constant apical diameter scenario (Figure 5.6), corroborating 
the assumptions of the West, Brown, Enquist model assumptions (West et al. 1999). Please note that 
the case above is not intended to be realistic, rather an exaggerated example using simple values of 
how vessel architecture may be modified to incur no resistance increases with path length. Calculation 
of the resistance R (MPa s m-3) of any single vessel k was done using the Poiseuille formula shown inset 
in the figure, where η is the viscosity of water at 20oC (MPa s), l (m) is the length of the vessel and r is 
the radius (m). The sum of resistances in series from apex N to base gives the total resistance (Rtot). 
The West, Brown, Enquist model, and later related models of vessel tapering assume common apical 
vessel diameters with path length (Savage et al. 2010; West et al. 1999), whilst other studies have 
found the apical vessels to increase in diameter with path length (Olson et al. 2014; Olson et al. 2018). 
Although not indicated here the nature of volume preservation suggests that apical vessel number 
should decrease with increasing height inversely proportionally to diameter increases (Echeverria et 
al. 2019).  

5.4.2 Leaf water potential and embolism vulnerability 

The leaf water potentials of the three species show clear daily patterns as expected based on 

existing studies. Water potentials decrease during the day from pre-dawn when the plant 
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tissues and soil are in equilibrium, to midday when the tree experiences higher evaporative 

demand (Figure 5.7). In the afternoon the water potential raises again indicative of stomatal 

closure (Fisher et al. 2006; Huzulak and Matejka 1982; Myers et al. 1987). Based on the leaf 

water potential daily patterns and differences between wet and dry periods we can 

characterise the three species along the isohydry-anisohydry spectrum, a description of to 

what degree plants regulate their water potentials. Isohydric plants tend to maintain a similar 

minimum water potential regardless of water stress. Anisohydric plants permit water 

potentials to drop with water stress (Tardieu and Simonneau 1998). P. laevis appears to be 

relatively isohydric compared with A. ruizii and C. microchaete which are both relatively 

anisohydric. This suggests that, as expected, the fast-growing shade-intolerant species (C. 

microchaete) experiences lower water potentials and thus higher embolism risks in order to 

maintain water flow and productivity. Also, as it is deciduous it must make the most of the 

period in which it can photosynthesise. In contrast the slow growing shade-tolerant P. laevis 

shows a high degree of isohydry suggesting a need to maintain hydraulic safety at the cost of 

productivity (Eller et al. 2018; Markesteijn et al. 2011). 

We expected to find relationships between leaf water potential and height through the 

canopy since up both height and light gradients the leaf water potential should decrease 

(Kenzo et al. 2006; Scholander et al. 1965). However we found only some evidence that leaf 

water potential decreases at increasing height for A. ruizii (Figure 5.8). The lack of decrease 

in leaf water potential for P. laevis is consistent with its isohydric character but for the 

relatively anisohydric species of C. microchaete we would expect leaf water potential to 

decrease with height. Measurement error due to latex production in P. laevis and mucus 

production in C. microchaete may have led to a lack of discernible relationships between 

height and leaf water potential (see upper panels in Figure 5.3). We noted that leaves were 
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often wet, caused by condensation in the morning, so it may have been possible for leaves to 

hydrate via the leaf cuticle thus contributing to reduced effect of height (Eller et al. 2013). We 

show that for C. microchaete the pre-dawn leaf water potential increased with height, 

contrary to expectations (Figure 5.8). This may be due to taller trees being able to recharge 

water better than short trees, for example due to deeper roots or better fog interception 

(Christina et al. 2011; Dawson and Goldsmith 2018). This may also explain why small tree leaf 

water potentials are similar to tall trees in this species, if taller trees are able to access water 

deeper in the soil relative to short trees (Stahl et al. 2013).  

We find that the P50 values for the two higher height classes of P. laevis were high relative to 

A. ruizii. This may explain the differences in isohydry between the two species. This is because 

the P50 value of A. ruizii is -4.4 to -5.3MPa and maintains a minimum leaf water potential of 

no less than -3MPa, whilst the P50 values for P. laevis were -2.3 to -4.5MPa and it maintained 

a minimum leaf water potential higher than -1MPa. These differences between minimum 

water potential and P50, known as the hydraulic safety margin (HSM), are not as narrow as 

might be expected based on a global study by Choat et al.  (2012) in which 70% of the species 

reported maintain a HSM <1MPa (Choat et al. 2012). It should be noted that our dry season 

leaf water potential results may be less negative than the normal minimum leaf water 

potential due to later than normal heavy rains (the wet period we measure in is normally the 

month with the least precipitation (Araujo-Murakami et al. 2014)). We also show that the 

slope of the vulnerability curve at the point of 50% air discharge tends to be lower in smaller 

trees for A. ruizii and P. laevis, indicating that reductions in water potential induce less 

embolism relative to taller trees (Figure 5.9, Table 5.2). We do not find any relationship 

between sample height and P50 for A. ruizii or C. microchaete, but also there is no general 

trend (Figure 5.9, Table 5.2). However, since leaf water potential decreases markedly with 
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height for A. ruizii the HSM likely decreases with height, i.e. embolism blockage of xylem 

vessels becomes more likely with height. In P. laevis we find no change in leaf water potential 

with height but instead do find that P50 increases with tree height, thus indicating in this 

species too there is a reduction in the HSM with height (though this is not statistically robust 

due to a paucity of data with 1 vulnerability curve per height class). We expected to find 

evidence that P50 values should be higher (more vulnerable to embolism) with sample height. 

This is because previous studies report that wider vessels are inherently more vulnerable to 

embolism, and that apical vessels increase in diameter with tree height (Echeverria et al. 

2019; Knipfer et al. 2015; Olson et al. 2014; Olson et al. 2018; Scoffoni et al. 2017; Sperry et 

al. 2006; Wheeler et al. 2005). However, as we show that apical vessels do not increase in 

width with sample height (Figure 5.6), the expectation of increasing P50 values with height 

no longer holds. Thus, based on similar xylem diameter at the apex with height, we would 

expect no change in the embolism vulnerability with height.   

5.4.3 Alignment of traits with life-history strategy 

We measured a series of ecophysiological properties and functional traits for three tropical 

forest species. Previous studies have measured similar properties in young trees for these 

three species in a nearby forest (Table 5.4) and classified these species on the shade-tolerance 

spectrum (Markesteijn and Poorter 2009; Markesteijn et al. 2011; Poorter 2008; Poorter and 

Bongers 2006). Specifically Markesteijn and Poorter  (2009) describe the biomass growth 

rates of seedling growing in full sun for the three species we study and the crown exposures 

of juvenile trees in nature to reflect their shade-tolerance. They found biomass growth in 

seedlings and the crown exposures of juveniles in nature was highly correlated. The traits they 

measure show how P. laevis and C. microchaete consistently differ and thus align with their 
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classification at either end of the slower growing shade-tolerant to fast growing shade-

intolerant axis of life-history strategies. Markesteijn and Poorter  (2009) show that A. ruizii 

however shares high seedling growth and shade-tolerance and thus shares different 

functional traits with both C. microchaete and  

P. laevis.  

C. microchaete was classed as a fast growing pioneer, with young trees primarily found to be 

growing in high light environments, whilst A. ruizii and P. laevis were classified as shade-

tolerant, surviving at lower light levels (Markesteijn and Poorter 2009). Greater shade-

tolerance in tropical forest trees is often associated with a more conservative, slower growth 

strategy, whilst less shade-tolerant, light demanding species need to grow quickly to 

maximally exploit brief temporary increases in light levels due to canopy gaps (Blundell and 

Peart 2001; Brienen et al. 2010; Hunter et al. 2015). The need for high growth rates in light 

demanding species suggests that any trade-off between productivity and hydraulic safety will 

select in favour of traits resulting in increases in maximum growth capacity (de Souza et al. 

2016; Fan et al. 2017; Huc et al. 1994; Markesteijn et al. 2011; Poorter et al. 2010; Sterck et 

al. 2011; Wright et al. 2010).  

We show for the suite of functional traits and ecophysiological properties included in this 

study that C. microchaete tends to have traits associated with high growth. At the leaf level 

low LMA provides a greater area for light interception per unit carbon investment in leaf 

structure whilst having relatively high maximum theoretical conductance per leaf area for 

high gas exchange rates. Lower δ13C values indicate greater stomatal conductance relative to 

carbon assimilation and thus may have relatively high productivity if stomatal conductance is 

high (Figure 5.4). This is suggested by C. microchaete being shown to have relatively high 
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stomatal conductance, high assimilation rate and high nitrogen per leaf mass as per Table 5.4. 

We also show that stomatal conductance is likely to be high since it permits its leaf water 

potential to become low throughout the day (Figure 5.7). Further, we show C. microchaete 

has wider xylem vessels that should provide greater conductivity (Figure 5.5), and thus gas 

exchange if water flow is not limited by stomatal closure. C. microchaete also shows lower 

construction costs of wood (low wood density) and leaf structures (high SLA/ low LMA and 

low leaf longevity as per Table 5.4 and associated references). This likely permits the fast 

growth of C. microchaete to exploit canopy gaps (Table 5.4).  

Almost all traits in Table 5.4 of P. laevis indicate this species has an opposite strategy to C. 

microchaete, and is a slow growing, shade-tolerant tree. This is evident from its high LMA, 

narrow vessels, high midday water potentials, high wood density and leaf longevity, low 

stomatal conductance and nitrogen per mass and carbon assimilation rate (Table 5.4). Slow 

growth implies a longer period of time over which many potentially dangerous events may 

occur, e.g. droughts, and windstorms. Thus, when growing slowly, greater survival is needed 

to reach a reproductive stage, typically once trees reach the canopy (Ouedraogo et al. 2018; 

Wright et al. 2005). Thus, we expect traits associated with mechanical and hydraulic safety, 

namely; higher wood density with smaller xylem vessels, high leaf mass per area and 

maintenance of high leaf water potentials and relatively large hydraulic safety margins. 

However these traits confer lower productivity as they trade-off with traits associated with 

photosynthesis, and higher growth or maintenance costs for example smaller vessels conduct 

less water and thus limit gas exchange, whilst being associated greater wood density requires 

more carbon resources to grow (Houter and Pons 2012; Martinez-Cabrera et al. 2011; Reich 

et al. 1997; Wright et al. 2004).  A. ruizii meanwhile has many traits intermediate between C. 

microchaete and P. laevis. This suggests a relatively intermediate strategy of growth and 
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achieving the canopy is employed with this species. Such a diversity in functional traits likely 

permit high species diversity within tropical forests (Bu et al. 2014; Marks and Lechowicz 

2006). Such functional diversity may help buffer tropical forests against global climate change 

(Anderegg 2015). 
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Table 5.4 20 species traits from this study (upper rows) and based on the literature (lower rows). The lower traits are derived 

from measurements of seedling traits. Abbreviations: LMA = leaf mass per area, P50 = the water potential at which 50% of 

xylem conductance is lost, wd = wood density, SLA – specific leaf area (1/LMA), Narea = leaf Nitrogen content per leaf area, 

Nmass = leaf nitrogen content per leaf mass, Aarea = CO2 assimilation rate per leaf area, Rarea = respiration rate per leaf area, gs 

= stomatal conductance, WUEi = intrinsic water use efficiency.   

  LMA 
max. leaf 
area 

stomatal 
length 

stomatal 
density gmax δ13C  

xylem 
vessel 
area 

xylem 
vessel 
density 

midday 
water 
potential P50 

A. ruizii mid mid high low low high low mid low low 
P. laevis high high low high high high low high  high high 
C. microchaete low low low high mid low high low low - 

source 
present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

present 
study 

  wd 
leaf 
longevity SLA Narea Nmass Aarea Rarea gs WUEi growth rate 

A. ruizii high mid mid high mid mid mid mid high high 
P. laevis mid high low low low low low low low low 

C. microchaete low low high mid high high high high mid high 

source 

Poorter 

2008 
 

Poorter 
and 
Bongers 
2006 

Poorter 
and 
Bongers 
2006 

Poorter 
and 
Bongers 
2006 

Poorter 
and 
Bongers 
2006 

Poorter 
and 
Bongers 
2006 

Poorter 
and 
Bongers 
2006 

(Poorter 
and 
Bongers 
2006) 

Poorter 
and 
Bongers 
2006 

Markesteijn 
and 
Poorter 
2009 
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5.4.4 A trade-off between safety and productivity? 

Growing tall pushes trees from a hydraulically safe but unproductive environment under the 

canopy, where light is limited, to an environment with high light availability and high 

productivity. However evaporative demands higher up in the canopy increase due to higher 

temperature and lower humidity which increases potential risks of hydraulic and thermal 

stress (McDowell and Allen 2015; Tymen et al. 2017). There was an expectation that trade-

offs between productivity and hydraulic safety likely drive different strategies enabling 

different species to grow tall (Markesteijn et al. 2011; Sterck and Schieving 2011).  

We show several common adaptations with height amongst the three species we assessed in 

this study. Particularly at the leaf level we show that LMA increases, and maximum leaf size 

decreases with height through the canopy. This may be a consequence of decreasing water 

potentials with height (as we show for A. ruizii) or could be an adaptation to maximise 

photosynthesis rates per leaf area, whilst providing better thermal and wind stress tolerance. 

We also show that theoretical maximum stomatal conductance on a leaf area basis increases 

with height. This suggests that as trees grow taller and as light availability increases, leaves 

become smaller but are likely able to maintain productivity. This is because mesophyll tissue 

likely becomes denser with chlorophyll as LMA increases (Coble and Cavaleri 2017), and the 

per area gas exchange capacity increases due to increasing concentration of stomata. This is 

further suggested by the strong positive relationship between LMA and maximum theoretical 

stomatal conductance in two of the species (Figure 5.10). 

This increased per leaf area productivity with height may however put these species at more 

risk of embolism formation in the more hydraulically stressful conditions of the upper canopy. 

Our data suggest that in at least two of the species (A. ruizii and P. laevis) the HSM decreases 
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with height (Table 5.2, Figure 5.8), thus exposing the taller trees to increasing embolism risk, 

though the minimum water potentials we measured suggested they were well within 

tolerance limits. So, we do not provide strong evidence of any trade-offs between hydraulic 

safety and productivity.  

However, we find that hydraulic behaviour and the variation in ecophysiological traits align 

with the life-history strategies of the three species we study, i.e. a fast growth strategy 

associated with high productivity in C. microchaete relative to a slow growth strategy 

associated with hydraulically safe functional traits in P. laevis, whilst A. ruizii shares aspects 

of both P. laevis and C. microchaete. We also show differences between species across the 

height gradient (differences in mean trait values). This suggests alignment of traits and life-

history strategy throughout ontogeny, not only in the juvenile phase, as studied previously 

(Markesteijn and Poorter 2009; Poorter and Bongers 2006). 

5.4.5 Conclusions  

We show clear trends in species functional traits with height through the canopy at the leaf 

level as they become smaller and more compact with greater theoretical stomatal 

conductance per leaf area. Changes in height and light increase the intrinsic water use 

efficiency of the tree as they grow taller, whilst xylem vessels taper to mitigate resistance 

increases with greater path length. We expected strong decreases in leaf water potential with 

tree height but found this only for one species. We show different growth and hydraulic 

strategies amongst species, with shade-tolerant, slow-growing P. laevis showing greater 

hydraulic safety, whilst the fast-growing C. microchaete shows greater vertical changes in 

intrinsic water use efficiency and lower leaf water potentials. This suggests that fast-slow 

growth strategy trade-offs are aligned with the hydraulic trade-offs. 
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6 Chapter 6    Conclusions and 

synthesis 

 Research conclusions 

This thesis focused on the ecology of tree height in neotropical forests. Broadly this thesis 

aimed to better understand how neotropical forest height is limited at the level of taxon 

and to describe some of the ecophysiological aspects and implications of growing tall. 

Climate models predict rising temperatures and changes in water availability in 

neotropical forests. A better understanding of variation in tree height over large scales 

and ecophysiological responses of trees to tree height together should enable prediction 

of future changes to forest height, and thus to a large extent biomass.   

The first two research Chapters of this thesis focus on the roles of water availability and 

wood anatomy in controlling maximum tree height. The results of this research add 

weight to previous research findings, showing that trees are limited in height by water 

availability and that possible mechanisms underpinning this (within species at least) lie in 

simple, predictable but functionally very important relationships between tree height and 

the organisation of xylem anatomy. We further show in Chapter 5, how tree height and 

canopy position affect a wider variety of ecophysiological properties and functional traits 

in the context of trees growing through the tropical forest canopy.  

In this section I will detail the main findings of each chapter. I will then discuss how they 

contribute to a better understanding of controls of tree height in neotropical forests and 

how future research may further improve our understanding of this topic.  
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6.1.1 Chapter 3 Mean annual precipitation consistently predicts neotropical maximum tree 

height, both at the community and individual taxa level 

In Chapter 3 we show the relationship between water availability and maximum tree height 

for forest communities across the neotropics. We show that maximum height decreases with 

decrease in water availability indicators, e.g. mean annual precipitation (MAP), sand%, and 

precipitation minus potential evapotranspiration (P-PET), show strong decreases in parallel 

with maximum height at the whole community level.  Maximum tree height for the whole 

community peaks at 2750mm of MAP. Additionally, maximum height decreases at higher 

water availability. We find that maximum tree height at the family level exhibits similar 

relationships with water availability to that observed for forest community, with peaks at 

~2500mm of MAP. Thus, changes in maximum height of the forest community with water 

availability appears to be driven by within-family changes in maximum height. A few tall 

families appear to drive this, whilst families with shorter maximum height that likely make up 

the rest of the forest canopy shift maximum height with MAP in a similar way. So, at least at 

the family level there appears not to be a strong change in community maximum height 

composition, with changes in precipitation driving changes in maximum tree height. Rather a 

continuation of families which make up the tallest trees along a large precipitation gradient. 

This research has strong implications for forest biomass and diversity, should precipitation 

patterns shift, either wetter or drier, with climate change. Specifically, we show possible 

changes in the maximum height for shifts in MAP (Figure 6.1). If MAP decreases by 500mm 

the maximum height of the community at 2500mm currently decreases from 41m to 39m. A 

decrease in MAP from 2000mm to 1500mm results in a decrease in the maximum height of 

the forest community by 5m, and decreasing MAP by another 500mm decreases maximum 
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height by an additional 10m. At high MAP increasing MAP by 500mm from 3000mm reduces 

maximum height by 4m. Thus we can say that forests below ~2000mm of MAP will likely 

reduce in height if MAP decreases, and forests above ~3000mm will decrease in height if MAP 

increases.  

 

Figure 6.1 Predictions of changes in the maximum height of the forest community studied in Chapter 
3 (the stippled line) with changes in mean annual precipitation (MAP). This shows the possible effects 
of changes in precipitation regimes using 500mm MAP increments. Changes are shown from the peak 
of the curve (both increasing MAP, light blue to dark blue, and decreasing MAP, blue to red), changes 
in maximum height are presented in the plot. Please note the 500mm MAP increments are not 
expected values of change based on any climate models, but rather an exaggerated example.  

 

6.1.2 Chapter 4 A large water availability gradient does not affect the xylem vessel tapering 

of Cedrela odorata.  

We find that the xylem network of Cedrela odorata and Cedrela salvadorensis that we study 

show clear alignment with tapering theory. Basal vessel diameter increases at the rate 

required to minimise resistance increases with path length as trees grow taller. We show 
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strong similarities in the vessel tapering of Cedrela odorata trees throughout a strong gradient 

in water availability. This suggests a lack of plasticity in this trait. Specifically, for a given height 

the vessel diameter at the base of the tree is fixed, regardless of the water availability. 

However, we show that as maximum height decreases with decreasing water availability then 

trees at drier sites have smaller vessels relative to trees at wetter sites at their respective 

maximum heights. Narrower vessels are thought to convey embolism resistance and may 

partly explain why trees only grow to shorter heights in drier conditions. 

6.1.3 Chapter 5 ecophysiological and functional traits change with tree height, and 

differences between species likely reflect life-history strategy.  

We investigated how a suite of functional traits and ecophysiological properties changes with 

tree height and canopy position (i.e. light) in a neotropical forest. We show strong changes in 

certain traits with height in highly similar manner for all three species. Specifically, we find 

increases in LMA and δ13C (indicative of intrinsic water use efficiency) with increases in tree 

height and decreases in maximum leaf area. We furthermore find that vessels taper with tree 

height in all three species at the expected tapering rate. Other traits did not change with 

height or changed in a dissimilar manner between species. Previous studies have shown that 

apical vessels increase in diameter with tree height, however we did not find this, suggesting 

assumptions made by the West, Brown, Enquist model (West et al. 1999) of similar vessel 

diameter at the apex of the tree regardless of tree height apply for these species. We also 

show a lack of expected change in water potential with height, with only one clear instance 

of decreasing water potential with height. We suggest mechanisms such as condensation and 

absorption of water from leaf surfaces, and deep roots accessing wetter layers of the soil may 

explain the lack of distinct decreases in leaf water potential that we strongly expected based 

on the literature. Using this suite of traits and dynamic variables we show that traits covary 
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for these species with given differences in shade-tolerance  according to expectations from 

the literature (Markesteijn and Poorter 2009; Poorter and Bongers 2006). Specifically, shade-

intolerance implies low LMA, wide vessels and negative water potential. Whereas shade-

tolerance suggests a more hydraulically safe (higher water potential and narrower vessels) 

but slower growth strategy (higher wood density and higher LMA). We also note a species 

with an intermediate suite of characteristics likely implying a continuum of strategies that 

tropical forest trees can adopt in order to reach the canopy and thus may help to explain the 

diversity of tropical forest canopy trees.  

 Synthesis and research implications 

6.2.1 Evidence for the hydraulic limitation of maximum tree height in neotropical trees.  

The main aims of the research chapters of this thesis were to evaluate how neotropical 

maximum tree height is limited (expecting a strong role for water availability) and describe 

anatomical and ecophysiological variability with tree height and discuss how these may 

influence maximum height attainment in the neotropics. The concept for this approach was 

based upon the hypothesis of hydraulic limitation of tree height (Ryan and Yoder 1997). This 

hypothesis requires that as trees grow taller the experience greater hydraulic stress, which 

has been demonstrated previously in several notably tall temperate species (Ambrose et al. 

2016, Mullin et al. 2009, Chin and Sillett 2016, Nonami and Boyer 1990, Chin and Sillett 2017, 

Koch et al. 2004, Woodruff, Bond and Meinzer 2004). Despite this many mechanisms are 

available to trees to avoid the problems of height described by Ryan and Yoder (1997). 

Specifically, hydraulic resistance increases with path length are reduced by increasing vessel 

width with tree height as is well known and demonstrated here (chapter 4, 5). Furthermore, 

trees have developed many mechanisms to avoid low water potentials and thus embolism 
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risk, as we explain for the deciduous Cedrela odorata in chapter 4 and the highly isohydric 

Pseudolmedia laevis in chapter 5. Regardless of avoidance mechanisms, there is likely a trade-

off between avoidance of hydraulic failure and maintenance of productivity as we 

demonstrate and discuss in chapter 5. Thus, we can expect the hydraulic limitation of tree 

height to occur both directly, and indirectly via trade-offs, but likely not in the same form as 

the original hydraulic limitation hypotheses posed (Ryan, Phillips and Bond 2006). 

We show in Chapter 3 a novel method to examine neotropical forest maximum height and its 

controls and limitation. This is novel firstly because we use a large dataset of in-situ measured 

tree height data, whereas previous studies have focused on remote sensing based height 

measurements to reveal large-scale patterns (Klein, Randin and Korner 2015, Tao et al. 2016, 

Gorgens et al. 2020). This research is also novel because we focus on the analysis of individual 

taxon relationships, as no previous studies, as far as the authors are aware, have shown how 

maximum height changes with precipitation in individual tropical forest taxa. We expected to 

find similar relationships between water availability and forest maximum height as previous 

studies had found at the forest community level (Klein et al. 2015, Tao et al. 2016, Gorgens et 

al. 2020). Some previous studies have shown similar results for individual taxa in less 

biodiverse temperate and boreal ecosystems and at relatively small scale (Mao et al. 2019, 

Givnish et al. 2014). In these regions different factors influence tree growth, e.g. the influence 

of freezing temperatures which tend not be limiting in the tropics (Mao et al. 2019, Loehle 

1998, Shi, Korner and Hoch 2008). We show that higher order taxon (family) level tree height-

MAP relationships are highly similar to those observed at the forest community level, showing 

a strong increase in maximum tree height with precipitation up to a peak maximum tree 

height for precipitation levels of ~2500mm per year. Above this peak we also observe a 

decline in maximum tree height with increasing MAP. This result is similar to those presented 
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by previous studies, analysing both tropical forests and other biomes (Klein et al. 2015, Tao 

et al. 2016, Gorgens et al. 2020). Additionally, we observed a relatively consistent decline in 

maximum forest community height and taxon specific height at very wet locations (above 

~2700mm). This observation of a consistent decline in forest height at very wet locations has 

been seldom observed (Tao et al. 2016, Gorgens et al. 2020) and less often considered when 

attempting to understand potential drivers of forest biomass change, specifically related to 

the limitation of tree height at lower water availabilities (Feldpausch et al. 2012, Feldpausch 

et al. 2011). Our results suggest that, as is well understood, drier climates negatively affect 

forest stature and biomass in lowland tropical forests, but so can a forest that will get wetter. 

This information likely represents evidence of the effects of the hydraulic limitation of 

maximum tree height at the drier end of the range, both of the forest community and 

individual taxa. Leading hypotheses of future climate change across the Amazon basin suggest 

wetter regions will get wetter whilst drier regions will get drier (Gloor et al. 2013, Espinoza et 

al. 2019, Shiogama et al. 2011). If this is the case, then it is possible that both drier and wetter 

regions of the Amazon basin are facing a more fraught future than perhaps previously 

expected (see Figure 6.1). The mechanisms behind the relationships between maximum tree 

height and precipitation we show for the neotropical forest community and specific taxa in 

chapter 3, and for the genus Cedrela in chapter 4 are not well understood, and it is possible a 

variety of mechanisms cause these relationships. 

6.2.2 Drivers and mechanisms of observed tree height- precipitation relationships.  

The apparent increased risk of drought associated mortality of larger trees in the literature 

may suggest a mortality based mechanism for the patterns of tree height that we show in 

chapters 3 and 4 here, i.e. declining maximum height at lower MAP (Bennett et al. 2015, 
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McDowell and Allen 2015, McDowell et al. 2018, Rowland et al. 2015). The physiological 

drivers behind these patterns however are not well understood, though hydraulic failure via 

embolism formation has been suggested as a possible mechanism in drought mortality in 

Amazonian trees (McDowell et al. 2018, Rowland et al. 2015). 

For the first time we show that xylem anatomy, specifically how basal xylem vessels widen 

with tree height, is consistent within a single tropical tree species across a broad water 

availability gradient. If vessels are the same size within trees of a species of a given height, 

regardless of the climate (Fajardo et al. 2020), it means basal vessel width can be inferred by 

measuring any tree’s height alone, once a species specific vessel diameter height relationship 

has been estimated. Considering this and the strong relationship between MAP and maximum 

tree height that we show across neotropical families in chapter 3, we can suggest the 

consistency of xylem vessel scaling as a possible medium for the mechanism of height 

limitation across water availability gradients. Namely that the mechanism of height limitation, 

either mortality of larger trees or growth reduction at greater height, may be mediated by 

the relation between height and xylem anatomy (McDowell and Allen 2015). This may occur 

because the width of xylem vessels is important for a number of tree characteristics and life-

history traits (Scoffoni et al. 2017, Olson et al. 2018, Sperry, Hacke and Pittermann 2006, 

Knipfer et al. 2015, Wheeler et al. 2005, Poorter et al. 2010), as we highlight in Chapter 5, 

where the largest vessels are found in the shade-intolerant pioneer species with other fast 

growth traits, relative to the narrower vessels of the slower growing and more shade-tolerant 

tree species we studied. It is likely that wider xylem vessels are associated with higher 

mortality (Olson et al. 2018), possibly driving trade-offs between fast growth versus slow 

growth life-history strategies of tropical trees (Aleixo et al. 2019, Esquivel-Muelbert et al. 

2020), specifically via embolism resistance (McDowell and Allen 2015, Fajardo, McIntire and 
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Olson 2019, Poorter et al. 2010).  This is because large vessels that enable faster growth tend 

to be more susceptible to embolism formation at a given water potential (Scoffoni et al. 2017, 

Olson et al. 2018, Sperry et al. 2006, Knipfer et al. 2015, Wheeler et al. 2005). Our research in 

chapter 4 shows that within a species, trees of the same height growing at a dry site relative 

to a wet site might be expected to experience higher embolism rates due to lower water 

potentials and similar xylem vessel width (and thus embolism resistance). A similar result was 

also found in temperate species by Fajardo et al. (2020), and similar conclusions drawn. 

Here it is important to note we were not able to test the association between vessel diameter 

and embolism resistance (i.e. p50) in chapters 4 or 5, nor other sub-lumen properties that 

may be more functionally linked to embolism resistance, e.g. inter-vessel pits. Whilst in the 

literature there is building evidence of xylem lumen diameter having a relationship with 

embolism formation and/or spread (Levionnois et al. 2021, Lobo et al. 2018, Olson et al. 2018, 

Prendin et al. 2018, Scoffoni et al. 2017, Sperry et al. 2006), this is still controversial (Gleason 

et al. 2016, Liu et al. 2020). Furthermore, the high diversity of tropical tree species means 

there is a relatively high degree of uncertainty regarding the assumed universality of tapering 

of xylem vessel diameter and even more uncertainty regarding associations of wider vessels 

with lower embolism resistance of larger vessels. This is especially true since the literature is 

based largely on studies conducted on a very limited pool of temperate species. This is 

demonstrated where we report a similar apical vessel diameter with tree height for three 

little studied tropical species in chapter 5, contrary to the universal tapering of apical vessel 

diameter proposed by Olson et al. (2014).  

Regardless of uncertainty it is likely that there exists some link between xylem vessel width 

and embolism risk, and that vessels do taper to a degree similar to that predicted by West et 
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al. (1999). Thus, the maximum height of trees at dry sites relative to wet sites may be reduced 

due to mortality caused by embolism, or the consequences of avoiding low water potentials 

(e.g. reduced productivity via deciduousness as we discuss in chapter 4). This poses a possible 

mechanism for the relationships between maximum height and precipitation observed in 

chapter 3 and chapter 4, and to some extent this may help to explain the overall relationship 

between forest community maximum height and precipitation observed in chapter 3 and in 

the literature (Klein et al. 2015, Tao et al. 2016, Gorgens et al. 2020).  

6.2.3 The role of trait and biological diversity in determining maximum height attainment 

Our research in Chapter 5 reveals how, for little studied tropical trees, different species using 

different life-history strategies change in their anatomical and ecophysiological properties as 

they grow taller. We show some similar relationships between functional traits and tree 

height among these highly unrelated species. This may in-part explain why the relationships 

of taxa across gradients of MAP are highly consistent between higher order taxa, as we show 

in Chapter 3. Specifically, assuming tree height affects ecophysiological traits that are 

important to the limitation of height of unrelated species in a similar way at a single site (e.g. 

LMA, leaf water potential, and intrinsic water use efficiency) then we might expect the ability 

of unrelated trees to grow tall to be similarly affected at different points along water 

availability gradients.  

Recent research shows that divergent taxa convergently evolve toward similar 

ecophysiological traits depending upon the water availability in which they are growing, and 

conversely species within a taxon diverge in their ecophysiological traits when growing in 

highly different water availability environments (Fontes et al. 2020). This suggests that at a 

particular point along a water availability gradient unrelated species will attempt to solve the 
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problem of height similarly, and that within a higher order taxon species are specifically 

adapted to that environment which may imply lower maximum height (Fajardo et al. 2019). 

Furthermore, evidence shows that particular traits affect the responses of Amazonian trees 

to precipitation extremes, i.e. trees with better drought tolerance traits and slower growth 

tend to survive drought better, whilst faster growing trees with less drought tolerance grow 

better and have faster growth in wet years (Barros et al. 2019, Powell et al. 2018, Aleixo et al. 

2019, Esquivel-Muelbert et al. 2020). This suggests that, in drier regions, slower growth and 

drought tolerance are likely solutions to growing tall. Therefore, what might be expected is 

that both within and between higher order taxa is a turnover in traits. Considering that life-

history and ecophysiological traits strongly reflect distributions along the water availability 

gradient of the Amazon (Esquivel-Muelbert et al. 2017, Oliveira et al. 2019), and species tend 

to be non-plastic in their hydraulic and drought tolerance traits (Bittencourt et al. 2020), we 

may expect a turnover in species along a gradient to be driven by such traits, which are in 

turn reflected in the height attained by the trees as we show in chapter 4 for xylem anatomy 

specifically.  

This idea however is relatively speculative and there is little evidence to suggest any specific 

mechanism for the similarity of relationships between maximum tree height and MAP of 

higher order taxa. It could be further hypothesised that based on our research in chapter 5 

and previous studies, that a wide variety of strategies may underly the maximum height 

relationships we show in chapter 3, both within and between taxa at any given point. This 

may be especially true for transitional areas and regions with less constant climate, such as 

extremes of high and low precipitation (Powell et al. 2018, Poorter et al. 2010). This may also 

promote species diversity since individual species tend to show little plasticity in drought 

tolerance traits (Bittencourt et al. 2020). 
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 Future research 

The decrease in forest maximum height at high water availability has been little discussed in 

the literature, but more recently has been shown by airborne and spaceborne LiDAR 

measurements (Gorgens et al. 2020; Tao et al. 2016). It is uncertain as to why such a decrease 

should exist. We discussed possible explanations, but specific research into the mechanisms 

behind this trend would be useful to be able to predict future forest responses to increasing 

water availability. This would require more tree height data in very wet lowland tropical forest 

including taxon specific height data paired with long-term measurements of ecophysiological 

properties pertaining to productivity and photosynthesis to investigate possible light 

limitation of tree growth (Guan et al. 2015). Remote sensing studies using fluorescence 

measurements can help to study a possible light limitation on growth, as shown in a very 

recent study, by showing increased photosynthetic activity in drier conditions (Green et al. 

2020). However, in-situ measurements at a large geographic scale (similar to the extent of 

Chapter 3) that pair species specific properties including sap flow measurements and CO2 

assimilation and climate variability should help to understand how forest growth, stature and 

ultimately biomass is limited in very wet tropical forests.   

Furthermore, we suggest more in-situ height data with taxon specific information would 

greatly benefit this study and strengthen the statistical rigour of our findings and could enable 

application of this same research to different tropical forests globally. Such research might 

enable better understanding of the differences between continents. At present tropical tree 

height data from very dry forest to very wet forest was not available from Asia, nor from Africa 

for our current study (Chapter 3). Considering that the tropical forests of Southeast Asia are 
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generally much wetter and taller than those of the neotropics (Shenkin et al. 2019) we could 

suggest that the relationships between MAP and maximum tree height  observed there might 

differ and provide insights into the mechanism by which water availability limits maximum 

tree height.  

We show that relationships between maximum tree height and water availability are similar 

across taxa to that of the forest community, however this can be further investigated. Recent, 

as yet unpublished, work has been undertaken to characterise the hydraulic properties of 

neotropical trees. This together with large scale databases should enable grouping of forest 

species into functional groups that may better indicate future changes to forest stature and 

diversity, e.g. transitioning from wet forest functional types to dry forest functional types as 

forest become drier (Esquivel-Muelbert et al. 2019). Long term monitoring of the 

ecophysiological properties of the tallest trees across a range of water availabilities might 

better enable us to understand the mode of height limitation with water availability, e.g. by 

continuous, long term ecophysiological property measurements such as sap-flow sensors, 

and stem psychrometers, as well as regular monitoring of other properties. This could capture 

tree responses to natural events at a broader scale than can be captured at experimental sites 

(da Costa et al. 2010).  

We show for a single tropical species that vessel diameter scaling with tree height doesn’t 

change with water availability across a large gradient. This may be an important component 

to explaining why trees cannot grow tall in dry locations. Considering the rate of basal vessel 

diameter increase is similar to that of the study in Olson et al. (2014), we expect that the 

vessels in the apex similarly increase at the rate in that same study (lower than basal vessel 

diameter increases with tree height). However, to confirm this would require additional 



164 
 

evidence from the apex of trees across the same sites. Similar research could also be done on 

other tropical species with ranges that span across large water availability gradients (Esquivel-

Muelbert et al. 2017a). This research should also study other xylem anatomy properties, 

including pit structure, as it is thought to be a main control of embolism resistance of xylem 

vessels (Medeiros et al. 2019; Pittermann et al. 2010). This future research could be paired 

with a suite of other measurements as we made in Chapter 5, and specifically test more 

rigorously in diverse species the relationships between embolism vulnerability and xylem 

vessel diameter. This could test the mechanism of height limitation across water availability 

gradients. Specifically, it must be demonstrated that a particular trait or ecophysiological 

property changes with height (in a direction that indicates greater hydraulic stress). Then it 

must be demonstrated that the trait in question is similar at the maximum height across a 

gradient of water availability, thus it is likely to be important for the limitation of height 

(Figure 6.2).  

 

Figure 6.2 Plots demonstrating how to test ecophysiological traits and properties for their role in 
maximum height limitation, following the study of Givnish et al. (2014). The first plot demonstrates 
that there is a limitation of tree height across a water availability gradient, i.e. maximum tree height 
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increases from dry to wet sites. The second plot shows for a trait (in this example minimum leaf water 
potential) that for a trait to be limiting to height it must become more stressful with tree height (in 
this example becomes more negative), and should approach a common value at the maximum height 
of each site across the water availability gradient (grey stippled line). In this example it is possible to 
envisage that leaf water potential decreases with tree height, and that at a certain level of stress trees 
begin to either stop growing (e.g. due to increased stomatal closure at a certain limit), or begin to die 
(e.g. due to increased embolism blockage of xylem). Thus, the height of trees across the gradient may 
be demonstrated to be limited by this trait. 
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Appendix for Chapter 3 

 

 

 

 

SI Table 3.1. Species mean maximum height with position of mean maximum height along a mean 
annual precipitation (MAP) gradient. 

 

Species mean MAP st.err MAP 

mean top 
percentile 
height 

st.err top 
percentile 
height 

Aparisthmium cordatum 2042.4 213.0641 17.3 1.565248 

Apuleia leiocarpa 2280.8 345.2538 49.015 3.392229 

Aspidosperma excelsum 2381.8 249.4939 54.366 3.809171 

Astrocaryum gynacanthum 1953.4 186.7734 9.48 3.519517 

Brosimum guianense 2136.4 618.0132 33.3846 3.171268 

Brosimum lactescens 2109.4 405.791 44.696 3.242385 

Brosimum rubescens 2586.2 269.716 36.504 4.970139 

Brosimum utile 2473.8 486.174 41.28 8.769433 

Bursera simaruba 1151.6 264.4301 21.6 2.073644 
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Celtis schippii 1867 316.1218 33.6882 5.001669 

Cheiloclinium cognatum 1732.4 380.9755 20.9876 4.848111 

Eschweilera coriacea 2548.8 533.7834 42.313 3.487258 

Euterpe precatoria 1853.8 527.5028 31.9932 5.198267 

Guarea kunthiana 1781 1026.252 31.6058 3.609912 

Helicostylis tomentosa 1479 0 28.8952 0.550711 

Hura crepitans 2053.4 535.4977 36 1.414214 

Hymenaea courbaril 2227.4 265.6027 44.2 3.156739 

Inga alba 2764.4 462.1026 37.71992 9.074628 

Inga marginata 1654.4 392.2063 25.1694 1.380243 

Iriartea deltoidea 2785.4 192.543 35.5138 6.279488 

Iryanthera juruensis 2065.4 366.8158 32.39099 3.538401 

Jacaranda copaia 2811.4 396.2837 40.04 1.942421 

Leonia glycycarpa 2319.2 241.2099 38.0382 10.97603 

Licania heteromorpha 2403 425.1335 37.6522 6.125737 

Metrodorea flavida 1635.2 405.078 23.2722 2.827534 

Micropholis guyanensis 2619 164.6147 31.772 2.472745 

Micropholis venulosa 2606.2 727.0431 29.456 7.46637 

Minquartia guianensis 2637.6 602.4349 38.732 6.9331 

Oenocarpus bataua 2807.2 12.96919 28.7258 0.570051 

Otoba parvifolia 2690.6 292.4838 37.8642 1.73256 

Pourouma guianensis 2230.2 640.3801 31.7588 8.784563 

Pourouma minor 2211.8 286.7903 45.3448 6.095347 

Pouteria caimito 2535.4 211.1215 28.514 3.764064 

Pouteria guianensis 2553.2 198.5628 33.5968 6.66354 

Protium heptaphyllum 1919.8 26.29068 29.4 3.277194 

Pseudolmedia laevigata 2122.6 698.6171 34.9262 1.649187 

Pseudolmedia laevis 1958 397.1014 41.8604 3.230105 

Pseudolmedia macrophylla 1957.2 396.0034 33.564 8.192593 

Simarouba amara 2261.8 375.6231 45.5676 3.095537 

Sloanea eichleri 2268.6 772.121 26.88688 2.149146 

Socratea exorrhiza 1712.4 167.0832 34.0168 3.109568 

Spondias mombin 2341.6 302.7636 37.44404 1.769137 

Tapirira guianensis 2666 296.1782 37.494 2.490147 

Tetragastris altissima 1950.2 386.6163 37.3166 6.053829 

Virola calophylla 1861.6 427.0115 26.8844 1.928553 

Virola pavonis 2651.8 721.3458 30.128 1.477048 

Virola sebifera 2304.8 622.2401 32.8204 5.745418 

 

 

 

SI Table 3.2. List of explanatory variables used to relate to maximum height, showing full name of 
each variable, unit and source. 
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Variable 

code 

Variable 

name 
unit source 

ai_eto 

potential 

evapotranspi

ration 

mm day-1 

Trabucco, A., and Zomer, R.J. 2018. Global Aridity Index and Potential 

Evapo-Transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information 

(CGIAR-CSI). Published online, available from the CGIAR-CSI GeoPortal at 

https://cgiarcsi.community 

bio1 
Annual Mean 

Temperature 
°C * 10 

Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio2 

Mean 

Diurnal 

Range (Mean 

of monthly 

(max temp - 

min temp)) 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio3 

Isothermality 

(BIO2/BIO7) (

×100) 
 

Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio4 

Temperature 

Seasonality 

(standard 

deviation ×

100) 

 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio5 

Max 

Temperature 

of Warmest 

Month 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio6 

Min 

Temperature 

of Coldest 

Month 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio7 

Temperature 

Annual 

Range (BIO5-

BIO6) 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio8 

Mean 

Temperature 

of Wettest 

Quarter 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio9 

Mean 

Temperature 

of Driest 

Quarter 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio10 

Mean 

Temperature 

of Warmest 

Quarter 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio11 

Mean 

Temperature 

of Coldest 

Quarter 

°C * 10 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio12 
Annual 

Precipitation 
mm 

Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio13 

Precipitation 

of Wettest 

Month 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio14 

Precipitation 

of Driest 

Month 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio15 Precipitation 

Seasonality 
 

Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
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(Coefficient 

of Variation) 

bio16 

Precipitation 

of Wettest 

Quarter 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio17 

Precipitation 

of Driest 

Quarter 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio18 

Precipitation 

of Warmest 

Quarter 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bio19 

Precipitation 

of Coldest 

Quarter 

mm 
Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land 

areas. International Journal of Climatology 37 (12): 4302-4315.  

bulk_densit

y 
bulk density cg/cm3 https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=0  

Clay% 
percentage 

of clay 
% https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1  

Sand% 
percentage 

of sand 
% https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=2  

Silt% 
percentage 

of silt 
% https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=3  

CWD 
Climatic 

water deficit 
mm yr-1 

Chave et al. (2014) Improved allometric models to estimate the above-ground biomass of tropical trees, 

Global Change Biology, 20 (10), 3177-3190 

DIR 

mean annual 

direct 

normal 

irradiation 

(DNI) 1999-

2018 

kWh/m2, https://globalsolaratlas.info/map?c=11.609193,8.4375,3  

dry_season

_length 

dry season 

length 

months 

<100mm 
CRU-TS 4.03 (Harris et al., 2014) downscaled with WorldClim 2.1 (Fick and Hijmans, 2017). 

 

 

 

 

 

 

 

SI Table 3.3. Multivariate GAM results relating environmental variables to the maximum height (mean 
of upper 6 percentiles) per forest plot. Two climate variables and one soil variable were selected. The 
GAM was produced using penalised cubic regression splines on the three independent variables, 
where the number of knots was restricted to 4. Variables were selected based upon explanatory 
power of the model and independence from one another. 

R2 
deviance 

explained 
n edf Ref.df F p-value climvar 

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1
https://globalsolaratlas.info/map?c=11.609193,8.4375,3
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0.352189 0.375146 104 1.011958 3 2.68476 0.001751 

max temp 

of 

warmest 

month 

   2.188202 3 14.04211 3.05E-09 MAP 

   0.45 3 0.310654 0.131117 % sand 

 

 

 

 

 

 

 

 

 

 

SI Table 3.4 Table of GAM results  per taxon (left columns), presented are the adjusted R squared 
for each taxon, the significance of the smooth term of the models, and the estimated degrees of 
freedom, k=5 for all taxa. The right hand columns show the maximum height per 200mm MAP bin 
(mean of the tallest 5 percentiles per 200mm MAP bin with standard error)  per taxon and at what 
value of MAP these occur, with standard error of the mean of these occurrences in MAP. 

taxon R2 edf df p-value 
MAP at 
max H 
(s.e.) 

max H 
(s.e.) 

Anacardiaceae 0.55 2.06 3.06 0.009 
2520 

(460.4) 
36.8 
(1.8) 

Annonaceae 0.41 2.03 3.03 0.028 
2640 

(477.5) 
37.2 
(4.4) 

Apocynaceae 0.57 2.48 3.48 0.01 
2480 

(414.7) 
42.9 
(3.8) 

Arecaceae 0.39 1.38 2.38 0.028 
2600 

(632.5) 
28.1 
(1.3) 

Bignoniaceae 0.61 1.97 2.97 0.002 
2640 

(477.5) 
40.7 
(3.2) 
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Burseraceae 0.47 2.26 3.26 0.017 
2840 

(638.7) 
30.9 
(1.2) 

Chrysobalanaceae 0.59 2.43 3.43 0.01 
2760 

(517.7) 
36.6 
(2.4) 

Elaeocarpaceae 0.28 2.05 3.05 0.11 
2280 

(672.3) 
31.7 
(6.7) 

Euphorbiaceae 0.59 2.2 3.2 0.002 
2400 

(547.7) 
40.4 
(1.7) 

Fabaceae 0.65 2.19 3.19 0 
2520 

(481.7) 
47.9 
(5.3) 

Lauraceae 0.54 2.67 3.67 0.015 
2520 

(481.7) 
47.8 
(8.3) 

Lecythidaceae 0.17 1.79 2.79 0.192 
2240 

(622.9) 
45.7 
(9.8) 

Malvaceae 0.7 2.17 3.17 0 
2680 

(414.7) 
41 (5.7) 

Melastomataceae 0.12 1.72 2.72 0.309 
2120 

(460.4) 
27.2 
(5.2) 

Meliaceae 0.45 2.26 3.26 0.021 
2080 

(807.5) 
37.1 
(3.3) 

Moraceae 0.73 2.36 3.36 0 
2600 

(447.2) 
40.7 
(2.9) 

Myristicaceae 0.28 1.86 2.86 0.101 
2480 

(540.4) 
37.9 
(1.3) 

Nyctaginaceae 0.51 1.04 2.04 0.006 
2480 

(414.7) 
26.1 
(2.4) 

Rubiaceae 0.4 2.63 3.63 0.058 
2600 

(316.2) 
33.8 
(5.9) 

Salicaceae 0.12 1.67 2.67 0.291 
1960 

(517.7) 
31.2 

(10.5) 

Sapindaceae 0.22 2.65 3.65 0.219 
2080 

(672.3) 
34.9 
(7.8) 

Sapotaceae 0.25 1.5 2.5 0.071 
2760 

(638.7) 
40.9 
(8.1) 

Urticaceae 0.28 1.7 2.7 0.079 
2320 

(540.4) 
38.2 
(3.2) 

Violaceae 0.54 2.4 3.4 0.03 
2280 

(481.7) 
26.5 (4) 

Aspidosperma 0.66 2.45 3.45 0.004 
2480 

(414.7) 
47.6 
(4.7) 

Brosimum 0.64 2.38 3.38 0.003 
2600 

(447.2) 
40.3 
(5.6) 

Euterpe 0.37 2.73 3.73 0.184 
2000 

(583.1) 
26.2 
(3.4) 
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Guarea 0.41 2.77 3.77 0.055 
2280 

(843.8) 
34.5 
(1.9) 

Inga 0.45 1.37 2.37 0.011 
2640 

(477.5) 
38.6 
(6.5) 

Jacaranda 0.63 2.01 3.01 0.004 
2640 

(477.5) 
38.4 
(2.6) 

Licania 0.4 2.15 3.15 0.076 
2400 

(447.2) 
33.4 
(4.2) 

Neea 0.35 0.9 1.9 0.025 
2440 

(477.5) 
25.5 
(3.8) 

Ocotea 0.47 2.69 3.69 0.042 
2480 

(460.4) 
39.5 (5) 

Oenocarpus 0.61 2.01 3.01 0.048 
2320 

(609.9) 
24.9 
(2.5) 

Protium 0.48 1.41 2.41 0.005 
2920 

(593.3) 
29.5 
(2.8) 

Sloanea 0.29 1.96 2.96 0.12 
2280 

(672.3) 
31.7 
(6.7) 

Socratea 0.22 0.74 1.74 0.115 
2000 

(583.1) 
28.1 
(4.3) 

Tachigali 0.19 1.47 2.47 0.151 
2240 

(517.7) 
38.5 (5) 

Virola 0.17 1.73 2.73 0.191 
2280 

(609.9) 
34.8 
(2.3) 

Apuleia leiocarpa 0.93 2.85 3.85 0.034 
1840 

(384.7) 
42.7 
(6.9) 

Brosimum guianense 0.5 2.75 3.75 0.14 
2000 

(583.1) 
30.3 
(5.1) 

Brosimum rubescens 0.74 1.42 2.42 0.033 
2320 

(460.4) 
32.8 
(6.6) 

Euterpe precatoria 0.26 1.79 2.79 0.262 
2000 

(583.1) 
26.4 
(3.5) 

Inga alba 0.15 0.63 1.63 0.147 
2640 

(841.4) 
33 (11.1) 

Iriartea deltoidea 0.66 1.97 2.97 0.102 
2800 

(316.2) 
29.6 (3) 

Jacaranda copaia 0.39 1.72 2.72 0.055 
2640 

(477.5) 
38.4 
(2.6) 
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Licania heteromorpha 0.1 0.41 1.41 0.246 
2400 

(447.2) 
34.1 
(5.5) 

Metrodorea flavida 0.97 2.81 3.81 0.576 
1900 

(416.3) 
20 (2.7) 

Oenocarpus bataua 0.36 1.65 2.65 0.257 
2480 

(540.4) 
25.2 
(2.4) 

Protium heptaphyllum 0.18 1.67 2.67 0.329 
2040 

(517.7) 
23.8 
(6.1) 

Socratea exorrhiza 0.26 0.76 1.76 0.096 
2000 

(583.1) 
28.4 
(4.7) 

Tapirira guianensis 0.61 1.22 2.22 0.003 
2440 

(622.9) 
34.7 
(3.8) 
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 SI Table 3.5. Plot properties for plots used in analyses, mean annual temperature and mean annual precipitation are from WorldClim, all other 
information is from forestplots.net. Please note to keep the table concise we only state the first PI if multiple PIs were listed on a single plot (a 
full list of data collectors is present at the front of this thesis). Height measurement method is shown, 1= estimated by eye, 2= manually by 
trigonometry (clinometer), 3= manually by trigonometry (clinometer) carefully trained, 4= laser or ultrasonic distance to tree, electronic tilt 
sensor for angle, 5= laser hypsometer from directly below crown, “last return” filter function,6= directly (e.g. climbing, cutting, adjacent tower). 
Some plots were without height measurement method flags and thus are blank. 

 

Plot 
Code 

Country 
Biogeographical 

Region Name 
Latitu

de 
Longit

ude 
Altitu

de 

Forest 
Moist

ure 

Forest 
Edaphic 

Type 
Forest Status 

Projec
ted 

Planar 
Area 

Mean 
Annual 

Tempera
ture (oC) 

Mean 
Annual 

Precipita
tion 

(mm) 

Height 
measureme
nt method Number of 

Height 
Measured 

Trees 

Plot PI 

YAN-
02 

PERU Western Amazon -3.43 -72.84 109 Moist Terra 
Firma 

Old-growth 1 26.3 2786 3 61 Timothy Baker 

YAN-
01 

PERU Western Amazon -3.43 -72.84 132 Moist Terra 
Firma 

Old-growth 1 26.3 2786 3 103 Timothy Baker 

VCR-
02 

BRAZIL Southern Amazon -
14.83 

-52.17 297 Moist Terra 
Firma 

Old-growth 1.2 25.1 1506 4 1296 Ben Hur 
Marimon Junior 

VCR-
01 

BRAZIL Southern Amazon -
14.83 

-52.16 303 Moist Terra 
Firma 

Old-growth 0.64 25.3 1506 4 538 Ben Hur 
Marimon Junior 

VAV-
01 

BRAZIL Eastern Amazon -1.18 -46.68 61 Moist Terra 
Firma 

Old-growth 0.25 26.1 2323  279 Jos Barlow 

TUC-
01 

BOLIVIA Southern Amazon -
18.52 

-60.81 310 Dry Terra 
Firma 

Old-growth 1 24.6 815 4 123 Ted Feldpausch 

TPT-
01 

PERU Western Amazon -6.74 -76.3 472 Dry Terra 
Firma 

Old-growth 0.5 25.4 1273  25 Jose Luis Marcelo 
Peña 

TAN-
04 

BRAZIL Southern Amazon -
12.92 

-52.37 389 Moist Terra 
Firma 

Old-growth 1 25.2 1666 4 553 Ben Hur 
Marimon Junior 

TAN-
03 

BRAZIL Southern Amazon -
12.83 

-52.35 356 Moist Terra 
Firma 

Old-growth 1 25.3 1705 4 669 Ben Hur 
Marimon Junior 

TAN-
02 

BRAZIL Southern Amazon -
13.08 

-52.38 382 Moist Terra 
Firma 

Old-growth 1 25.1 1622 4 570 Ben Hur 
Marimon Junior 

TAM-
09 

PERU Western Amazon -
12.83 

-69.28 199 Moist Terra 
Firma 

Old-growth 1 25.4 2391 3 51 Timothy Baker 
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TAM-
08 

PERU Western Amazon -
12.83 

-69.27 220 Moist Terra 
Firma 

Old-growth 1 25.4 2391 3 88 Timothy Baker 

TAM-
07 

PERU Western Amazon -
12.83 

-69.26 225 Moist Terra 
Firma 

Old-growth 1 25.4 2391 3 233 Timothy Baker 

TAM-
05 

PERU Western Amazon -
12.83 

-69.27 220 Moist Terra 
Firma 

Old-growth 1 25.4 2391 3 220 Timothy Baker 

TAM-
04 

PERU Western Amazon -
12.84 

-69.28 210 Moist Terra 
Firma 

Old-growth 0.42 25.3 2523 3 116 Timothy Baker 

TAM-
02 

PERU Western Amazon -
12.83 

-69.29 210 Moist Terra 
Firma 

Old-growth 1 25.4 2391 3 361 Timothy Baker 

TAM-
01 

PERU Western Amazon -
12.84 

-69.29 205 Moist Terra 
Firma 

Old-growth 1 25.3 2523 3 101 Timothy Baker 

SUC-
05 

PERU Western Amazon -3.26 -72.89 118 Moist Terra 
Firma 

Old-growth 1 26.3 2813 3 63 Timothy Baker 

SUC-
04 

PERU Western Amazon -3.25 -72.89 107 Moist Terra 
Firma 

Old-growth 1 26.3 2813 3 56 Timothy Baker 

SUC-
02 

PERU Western Amazon -3.25 -72.9 98 Moist Terra 
Firma 

Old-growth 1 26.3 2813 3 75 Timothy Baker 

SUC-
01 

PERU Western Amazon -3.25 -72.91 107 Moist Terra 
Firma 

Old-growth 1 26.3 2813 3 85 Timothy Baker 

SSA-
01 

COLOMBIA Northern South 
America 

8.39 -77.13 139 Wet Terra 
Firma 

Old-growth 0.6 25.7 2165  210 Luisa Fernanda 
Duque 

SMT-
02 

BRAZIL Southern Amazon -
12.82 

-51.77 332 Dry Terra 
Firma 

Old-growth 1 25.9 1613 4 461 Ben Hur 
Marimon Junior 

SIP-
01 

BRAZIL Southern Amazon -
11.41 

-55.32 385 Moist Terra 
Firma 

Old-growth 1 25 1871 5 580 Ben Hur 
Marimon Junior 

SCT-
06 

BOLIVIA Western Amazon -
17.09 

-64.77 248 Moist Terra 
Firma 

Old-growth 1 25.1 3084 4 37 Roel Brienen 

SCT-
01 

BOLIVIA Western Amazon -
17.09 

-64.77 248 Moist Terra 
Firma 

Old-growth 1 25.1 3084 4 37 Roel Brienen 

SCR-
05 

VENEZUELA Central Amazon 1.93 -67.04 105 Moist Terra 
Firma 

Old-growth 1 26.2 3436 6 27 Timothy Baker 

SCR-
04 

VENEZUELA Central Amazon 1.93 -67.04 105 Moist White 
sand 

Old-growth 1 26.2 3436 6 22 Oliver Phillips 

SAT-
01 

BRAZIL Southern Amazon -9.84 -50.46 243 Moist Terra 
Firma 

Mixed: Old-growth 
and Burned 

1 26.9 1840 4 550 Ben Hur 
Marimon Junior 

SAA-
02 

BRAZIL Southern Amazon -9.64 -50.45 207 Moist Terra 
Firma 

Old-growth 1 26.6 1765 4 593 Ben Hur 
Marimon Junior 

SAA-
01 

BRAZIL Southern Amazon -9.79 -50.43 177 Moist Terra 
Firma 

Old-growth 1 26.8 1809 4 532 Ben Hur 
Marimon Junior 

RST-
01 

BRAZIL Western Amazon -9.04 -72.27 279 Moist Terra 
Firma 

Old-growth 1 25.6 1803 6 17 Timothy Baker 

RIO-
02 

VENEZUELA Eastern Amazon 8.11 -61.69 318 Moist Terra 
Firma 

Old-growth 0.25 25.4 1307 1 11 Julio Serrano 

RIO-
01 

VENEZUELA Guyana 8.11 -61.69 312 Moist Terra 
Firma 

Old-growth 0.25 25.4 1307 1 11 Julio Serrano 
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RFH-
01 

BRAZIL Western Amazon -9.75 -67.67 176 Moist Terra 
Firma 

Old-growth 1 25.8 1952 2 38 Oliver Phillips 

RET-
09 

BOLIVIA Southern Amazon -
10.97 

-65.72 160 Moist Terra 
Firma 

Old-growth 1 26.5 1668 4 330 Rene Boot 

RET-
08 

BOLIVIA Southern Amazon -
10.97 

-65.72 160 Moist Terra 
Firma 

Old-growth 1 26.5 1668 4 329 Rene Boot 

RET-
06 

BOLIVIA Southern Amazon -
10.97 

-65.72 160 Moist Terra 
Firma 

Old-growth 1 26.5 1668 4 345 Rene Boot 

RET-
05 

BOLIVIA Southern Amazon -
10.97 

-65.72 160 Moist Terra 
Firma 

Old-growth 1 26.5 1668 4 360 Rene Boot 

RCS-
06 

PERU Western Amazon -9.62 -74.93 267 Moist Terra 
Firma 

Old-growth 1 26 1900 3 56 Luis Valenzuela 
Gamarra 

RCS-
05 

PERU Western Amazon -9.62 -74.93 251 Moist Terra 
Firma 

Old-growth 1 26 1900 3 50 Luis Valenzuela 
Gamarra 

RBU-
01 

BRAZIL Atlantic Forest -
22.43 

-42.02 60 Moist Terra 
Firma 

Old-growth 0.2 22.4 1182  425 Fabrício Alvim 
Carvalho 

PUC-
01 

GUYANA NULL 6.21 -59.72 371 Moist Terra 
Firma 

Old-growth 1 25.9 2335 4 6 552 Michelle 
Kalamandeen 

PTN-
01 

COLOMBIA Northern South 
America 

6.12 -74.67 230 Moist Terra 
Firma 

Old-growth 1 26.3 2437 1 521 Wilmar Lopez 
Oviedo 

PRA-
01 

COLOMBIA Northern South 
America 

8.57 -77.3 193 Wet Terra 
Firma 

Old-growth 0.36 26 2119  159 Luisa Fernanda 
Duque 

POR-
02 

BRAZIL Western Amazon -10.8 -68.77 268 Moist Terra 
Firma 

Old-growth 1 25.2 1720 6 86 Timothy Baker 

POR-
01 

BRAZIL Western Amazon -
10.82 

-68.77 268 Moist Terra 
Firma 

Old-growth 1 25.2 1720 6 108 Timothy Baker 

POQ-
02 

PERU Western Amazon -12.9 -71.37 525 Wet Terra 
Firma 

Old-growth 1 23.7 3011 1 630 Isau 
Huamantupa-
Chuquimaco 

PNY-
07 

PERU Western Amazon -
10.35 

-75.26 414 Wet Terra 
Firma 

Old-growth 1 21.7 2343 3 40 Abel 
Monteagudo 

PNY-
06 

PERU Western Amazon -
10.36 

-75.25 462 Wet Terra 
Firma 

Old-growth 1 21.7 2343 3 41 Abel 
Monteagudo 

PNY-
05 

PERU Western Amazon -
10.35 

-75.25 448 Wet Terra 
Firma 

Old-growth 1.002 21.7 2343 3 39 Abel 
Monteagudo 

PNY-
04 

PERU Western Amazon -
10.34 

-75.25 414 Moist Terra 
Firma 

Old-growth 1 21.7 2343 3 41 Abel 
Monteagudo 

PND-
02 

BOLIVIA NULL -
11.27 

-67.36 208 Moist Terra 
Firma 

Old-growth 1 26 1731 1 511 William Milliken 

PIB-
12 

GUYANA Guyana 5.03 -58.6 94 Moist Terra 
Firma 

Old-growth 1 26.3 2712 5 403 Roel Brienen 

PIB-
06 

GUYANA Guyana 5.01 -58.62 81 Moist Terra 
Firma 

Old-growth 1 26.3 2712 5 594 Roel Brienen 

PIB-
05 

GUYANA Guyana 5.02 -58.62 93 Moist Terra 
Firma 

Old-growth 1 26.3 2712 5 479 Roel Brienen 
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PAK-
01 

PERU Western Amazon -
11.94 

-71.28 345 Moist Terra 
Firma 

Old-growth 1 25 2554 3 59 Timothy Baker 

OTT-
03 

BOLIVIA Southern Amazon -
16.42 

-61.19 451 Dry Terra 
Firma 

Mixed: Old-growth 
and Burned 

1 23.2 1141 4 76 Ted Feldpausch 

OTT-
01 

BOLIVIA Southern Amazon -
16.39 

-61.21 442 Dry Terra 
Firma 

Old-growth 1 23.2 1141 4 130 Ted Feldpausch 

NXV-
09 

BRAZIL Southern Amazon -
14.69 

-52.35 324 Dry Terra 
Firma 

Old-growth 0.5 24.7 1530 4 1928 Ben Hur 
Marimon Junior 

NXV-
07 

BRAZIL Southern Amazon -
14.72 

-52.36 322 Moist Terra 
Firma 

Old-growth 0.47 24.7 1530 4 413 Ben Hur 
Marimon Junior 

NXV-
06 

BRAZIL Southern Amazon -
14.72 

-52.36 346 Moist Terra 
Firma 

Old-growth 0.47 24.7 1530 4 491 Ben Hur 
Marimon Junior 

NOU-
08 

FRENCH 
GUIANA 

Guyana 4.08 -52.68 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 5 Jerôme Chave 

NOU-
07 

FRENCH 
GUIANA 

Guyana 4.08 -52.68 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 5 Jerôme Chave 

NOU-
06 

FRENCH 
GUIANA 

Guyana 4.09 -52.68 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 5 Jerôme Chave 

NOU-
05 

FRENCH 
GUIANA 

Guyana 4.09 -52.68 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 4 Jerôme Chave 

NOU-
03 

FRENCH 
GUIANA 

Guyana 4.09 -52.68 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 7 Jerôme Chave 

NOU-
01 

FRENCH 
GUIANA 

Guyana 4.09 -52.67 110 Moist Terra 
Firma 

Old-growth 1 25.2 3280 5 5 Jerôme Chave 

MTH-
01 

BRAZIL Western Amazon -8.88 -72.79 246 Moist Terra 
Firma 

Old-growth 1 25.8 1655 5 18 Oliver Phillips 

MTG-
08 

BOLIVIA Southern Amazon -
19.27 

-63.85 1090 Dry Terra 
Firma 

Old-growth 0.25 21.8 1044 1 4 9 Jeanneth 
Villalobos Cayo 

MTG-
07 

BOLIVIA Southern Amazon -
19.27 

-63.84 1109 Dry Terra 
Firma 

Old-growth 0.25 21.8 1044 1 4 10 Jeanneth 
Villalobos Cayo 

MTG-
06 

BOLIVIA Southern Amazon -
19.27 

-63.84 1119 Dry Terra 
Firma 

Old-growth 0.25 21.8 1044 1 4 9 Jeanneth 
Villalobos Cayo 

MTG-
05 

BOLIVIA Southern Amazon -
19.27 

-63.84 1126 Dry Terra 
Firma 

Old-growth 0.25 21.8 1044 1 4 10 Jeanneth 
Villalobos Cayo 

MNU-
06 

PERU Western Amazon -
11.89 

-71.4 345 Moist Rarely 
flooded 

Old-growth 2.25 25.1 2477 3 5  62 Timothy Baker 

MNU-
04 

PERU Western Amazon -11.9 -71.4 358 Moist Terra 
Firma 

Old-growth 2 25.1 2477 3 5  61 Timothy Baker 

MNU-
03 

PERU Western Amazon -11.9 -71.4 312 Moist Terra 
Firma 

Old-growth 2 25.1 2477 3 5  56 Timothy Baker 

MNU-
01 

PERU Western Amazon -
11.89 

-71.41 312 Moist Rarely 
flooded 

Old-growth 2.25 25.1 2477 3 5  60 Timothy Baker 

MIN-
01 

BRAZIL Western Amazon -8.57 -72.9 226 Moist Terra 
Firma 

Old-growth 1 25.7 1861 5 41 Oliver Phillips 

MHC-
02 

GUYANA Guyana 5.31 -58.98 132 Moist Terra 
Firma 

Old-growth 1 26.5 2859  413 Michelle 
Kalamandeen 
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MHC-
01 

GUYANA Guyana 5.32 -59.14 325 Moist Terra 
Firma 

Old-growth 1 26 3021  704 Michelle 
Kalamandeen 

LOR-
02 

COLOMBIA Western Amazon -3.06 -69.99 93 Moist Terra 
Firma 

Old-growth 0.52 25.7 2790 6 6 Sandra Patiño 

LOR-
01 

COLOMBIA Western Amazon -3.06 -69.99 94 Moist Terra 
Firma 

Old-growth 1 25.7 2790 6 8 Sandra Patiño 

LFB-
02 

BOLIVIA Southern Amazon -
14.58 

-60.83 227 Moist Terra 
Firma 

Old-growth 1 22.5 1479 1 2 344 Alejandro Araujo 
Murakami 

LFB-
01 

BOLIVIA Southern Amazon -
14.58 

-60.83 245 Moist Terra 
Firma 

Old-growth 1 22.5 1479 1 2 349 Alejandro Araujo 
Murakami 

LAS-
01 

PERU Western Amazon -
12.55 

-70.11 280 Moist Terra 
Firma 

Old-growth 2 24.9 3253 2 80 Oliver Phillips 

KAL-
01 

COLOMBIA Northern South 
America 

11.24 -74.14 206 Dry Terra 
Firma 

Old-growth 1 25.6 1507 1 5 305 Luisa Fernanda 
Duque 

JFR-
09 

BRAZIL Southern Amazon -
10.47 

-58.51 242 Moist Terra 
Firma 

Old-growth 0.975 24.8 1891  77 Ted Feldpausch 

JFR-
08 

BRAZIL Southern Amazon -
10.47 

-58.5 248 Moist Terra 
Firma 

Old-growth 1 24.9 1939  110 Ted Feldpausch 

JFR-
07 

BRAZIL Southern Amazon -
10.48 

-58.5 240 Moist Terra 
Firma 

Old-growth 1.025 24.9 1939  96 Ted Feldpausch 

JFR-
06 

BRAZIL Southern Amazon -
10.47 

-58.49 249 Moist Terra 
Firma 

Old-growth 1 24.9 1939  94 Ted Feldpausch 

JFR-
05 

BRAZIL Southern Amazon -
10.48 

-58.48 278 Moist Terra 
Firma 

Old-growth 1 24.9 1939  122 Ted Feldpausch 

JFR-
04 

BRAZIL Southern Amazon -
10.48 

-58.48 277 Moist Terra 
Firma 

Old-growth 1 24.9 1939  126 Ted Feldpausch 

JFR-
03 

BRAZIL Southern Amazon -
10.48 

-58.52 245 Moist Terra 
Firma 

Old-growth 1.025 24.8 1891  67 Ted Feldpausch 

JFR-
02 

BRAZIL Southern Amazon -
10.55 

-58.49 262 Moist Terra 
Firma 

Old-growth 0.525 24.8 1867  42 Ted Feldpausch 

JFR-
01 

BRAZIL Southern Amazon -
10.48 

-58.47 273 Moist Terra 
Firma 

Old-growth 0.93 24.9 1939  67 Ted Feldpausch 

JEN-
13 

PERU Western Amazon -4.92 -73.54 145 Moist Rarely 
flooded 

Old-growth 1 26.8 2642 3 34 Timothy Baker 

JEN-
12 

PERU Western Amazon -4.9 -73.63 122 Moist White 
sand 

Old-growth 1 26.8 2642 3 141 Timothy Baker 

JEN-
11 

PERU Western Amazon -4.88 -73.63 151 Moist Terra 
Firma 

Old-growth 1 26.8 2642 3 122 Timothy Baker 

JBS-
01 

BOLIVIA NULL -
17.78 

-63.06 440 Dry Terra 
Firma 

Old-growth 1 24.3 1110 1 2 428 Alejandro Araujo 
Murakami 

JBP-
04 

COLOMBIA El Choco 6.27 -77.38 54 Wet Terra 
Firma 

Old-growth 0.96 25.5 5296  71 Luisa Fernanda 
Duque 

JBP-
01 

COLOMBIA El Choco 6.26 -77.38 100 Wet Terra 
Firma 

Mixed: Old-growth 
and Logged 

6 25.5 5296  537 Luisa Fernanda 
Duque 

JBI-01 BRAZIL Eastern Amazon -5.78 -48.92 167 Moist Terra 
Firma 

Old-growth 0.25 26.5 1817  238 Jos Barlow 
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JAS-
04 

ECUADOR Western Amazon -1.07 -77.61 430 Moist Terra 
Firma 

Old-growth 1 23.8 3645 3 6 15 Timothy Baker 

JAS-
03 

ECUADOR Western Amazon -1.08 -77.61 384 Moist Terra 
Firma 

Old-growth 1 23.8 3645 3 6  55 Timothy Baker 

JAS-
02 

ECUADOR Western Amazon -1.07 -77.62 452 Moist Terra 
Firma 

Old-growth 1 23.8 3645 3 6 52 Timothy Baker 

IWO-
12 

GUYANA Guyana 4.73 -58.72 61 Moist Terra 
Firma 

Old-growth 1 26.7 2405 5 418 Roel Brienen 

IWO-
03 

GUYANA Guyana 4.53 -58.78 100 Moist Terra 
Firma 

Old-growth 1 26.8 2248 5 561 Roel Brienen 

IPM-
99 

BRAZIL Central Amazon -5.94 -62.52 70 Moist Terra 
Firma 

Old-growth 1 26.3 2542 4 89 Flávia  Costa 

IPM-
98 

BRAZIL Central Amazon -5.95 -62.51 69 Moist Terra 
Firma 

Old-growth 1 26.3 2542 4 133 Flávia  Costa 

IPM-
88 

BRAZIL Central Amazon -5.64 -62.18 70 Moist Terra 
Firma 

Old-growth 1 26.4 2574 4 109 Flávia  Costa 

IPM-
87 

BRAZIL Central Amazon -5.63 -62.19 65 Moist Terra 
Firma 

Old-growth 1 26.4 2574 4 65 Flávia  Costa 

IPM-
86 

BRAZIL Central Amazon -5.63 -62.19 69 Moist Terra 
Firma 

Old-growth 1 26.4 2574 4 107 Flávia  Costa 

IPM-
80 

BRAZIL Central Amazon -5.25 -61.96 63 Moist Terra 
Firma 

Old-growth 1 26.5 2589 4 94 Flávia  Costa 

IPM-
79 

BRAZIL Central Amazon -5.25 -61.96 62 Moist Terra 
Firma 

Old-growth 1 26.5 2589 4 92 Flávia  Costa 

IPM-
64 

BRAZIL Central Amazon -5 -61.54 59 Moist Terra 
Firma 

Old-growth 1 26.5 2615 4 81 Flávia  Costa 

IPM-
63 

BRAZIL Central Amazon -5 -61.55 58 Moist Terra 
Firma 

Old-growth 1 26.5 2615 4 61 Fernanda Coelho 

IPM-
62 

BRAZIL Central Amazon -4.99 -61.56 57 Moist Terra 
Firma 

Old-growth 1 26.6 2617 4 110 Fernanda Coelho 

IPM-
55 

BRAZIL Central Amazon -4.6 -61.26 51 Moist Terra 
Firma 

Old-growth 1 26.7 2591 4 144 Fernanda Coelho 

IPM-
46 

BRAZIL Central Amazon -4.4 -60.92 46 Moist Terra 
Firma 

Old-growth 1 26.9 2410 4 114 Flávia  Costa 

IPM-
43 

BRAZIL Central Amazon -4.38 -60.94 48 Moist Terra 
Firma 

Old-growth 1 26.9 2410 4 96 Flávia  Costa 

IPM-
42 

BRAZIL Central Amazon -4.38 -60.95 45 Moist Terra 
Firma 

Old-growth 1 26.9 2410 4 57 Flávia  Costa 

IPM-
40 

BRAZIL Central Amazon -4.15 -60.73 30 Moist Terra 
Firma 

Old-growth 1 27 2256 4 90 Flávia  Costa 

IPM-
39 

BRAZIL Central Amazon -4.14 -60.73 40 Moist Terra 
Firma 

Old-growth 1 27 2256 4 62 Flávia  Costa 

IPM-
37 

BRAZIL Central Amazon -4.16 -60.72 37 Moist Terra 
Firma 

Old-growth 1 27 2256 4 105 Flávia  Costa 

IPM-
28 

BRAZIL Central Amazon -3.67 -60.3 44 Moist Terra 
Firma 

Old-growth 1 27.2 2158 4 134 Fernanda Coelho 
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IPM-
27 

BRAZIL Central Amazon -4.99 -61.56 50 Moist Terra 
Firma 

Old-growth 1 26.6 2617 4 109 Flávia  Costa 

IPM-
26 

BRAZIL Central Amazon -4.98 -61.57 61 Moist Terra 
Firma 

Old-growth 1 26.6 2617 4 128 Fernanda Coelho 

IPM-
25 

BRAZIL Central Amazon -3.67 -60.31 44 Moist Terra 
Firma 

Old-growth 1 27.2 2158 4 42 Flávia  Costa 

IPM-
22 

BRAZIL Central Amazon -3.68 -60.32 44 Moist Terra 
Firma 

Old-growth 1 27.2 2158 4 132 Fernanda Coelho 

IPM-
20 

BRAZIL Central Amazon -3.69 -60.33 50 Moist Terra 
Firma 

Old-growth 1 27.2 2158 4 134 Fernanda Coelho 

IMA-
02 

VENEZUELA Guyana 7.45 -61.17 190 Moist Terra 
Firma 

Old-growth 1 26.1 1447  20 Gerardo A. 
Aymard C. 

IMA-
01 

VENEZUELA Guyana 7.44 -61.17 190 Moist Terra 
Firma 

Old-growth 1 26.1 1447  20 Gerardo A. 
Aymard C. 

HCC-
24 

BOLIVIA Southern Amazon -
14.57 

-60.75 735 Moist Terra 
Firma 

Old-growth 1 22.5 1479 1 2  374 Alejandro Araujo 
Murakami 

HCC-
22 

BOLIVIA Southern Amazon -
14.53 

-60.73 747 Moist Terra 
Firma 

Old-growth 1 22.5 1479 1 2  401 Alejandro Araujo 
Murakami 

HCC-
21 

BOLIVIA Southern Amazon -
14.53 

-60.74 729 Moist Terra 
Firma 

Old-growth 1 22.5 1479 1 2  510 Alejandro Araujo 
Murakami 

GEN-
03 

PERU Western Amazon -11.1 -75.34 900 Dry Terra 
Firma 

Old-growth 0.6 18.3 1438  319 Carlos Reynel 
Rodriguez 

GDA-
01 

BRAZIL Eastern Amazon -5.63 -49.13 123 Moist Terra 
Firma 

Old-growth 0.25 26.7 1901  249 Jos Barlow 

GAU-
07 

BRAZIL Southern Amazon -13.1 -53.35 357 Moist Terra 
Firma 

Old-growth 1 24.7 1807  556 Ben Hur 
Marimon Junior 

GAU-
06 

BRAZIL Southern Amazon -
13.31 

-53.41 390 Moist Terra 
Firma 

Old-growth 1 24.5 1754 4 483 Edmar Almeida 
de Oliveira 

GAU-
04 

BRAZIL Southern Amazon -13.1 -53.35 390 Moist Terra 
Firma 

Old-growth 1 24.7 1807 4 412 Edmar Almeida 
de Oliveira 

GAU-
02 

BRAZIL Southern Amazon -
13.43 

-53.31 440 Moist Terra 
Firma 

Old-growth 1 24.2 1698  549 Ben Hur 
Marimon Junior 

FRP-
01 

BRAZIL Southern Amazon -
11.48 

-51.52 258 Moist Terra 
Firma 

Old-growth 1 26.9 1636  567 Ben Hur 
Marimon Junior 

FRE-
01 

BRAZIL Eastern Amazon -1.53 -46.63 50 Moist Terra 
Firma 

Old-growth 0.25 26.3 2217  316 Jos Barlow 

FMH-
03 

GUYANA Guyana 5.18 -58.7 115 Moist White 
sand 

Old-growth 1 26.4 2822 5 610 Roel Brienen 

FMH-
02 

GUYANA Guyana 5.17 -58.69 122 Moist Terra 
Firma 

Old-growth 1 26.4 2822 5 356 Roel Brienen 

FMH-
01 

GUYANA Guyana 5.17 -58.69 98 Moist Terra 
Firma 

Old-growth 1 26.4 2822 5 415 Roel Brienen 

FLO-
02 

BRAZIL Southern Amazon -
12.75 

-51.88 366 Moist Terra 
Firma 

Old-growth 1 25.6 1627 4 589 Ben Hur 
Marimon Junior 

FLO-
01 

BRAZIL Southern Amazon -
12.81 

-51.85 377 Moist Terra 
Firma 

Old-growth 1 25.6 1627 4 607 Ben Hur 
Marimon Junior 
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FEC-
01 

BRAZIL Western Amazon -
10.07 

-67.62 204 Moist Terra 
Firma 

Old-growth 1 26 1915 2 34 Oliver Phillips 

ELD-
04 

VENEZUELA Guyana 6.09 -61.35 366 Moist Terra 
Firma 

Old-growth 0.25 25.4 2522 6 10 Julio Serrano 

ELD-
03 

VENEZUELA Guyana 6.09 -61.4 404 Moist Terra 
Firma 

Old-growth 0.25 25.4 2522 6 12 Julio Serrano 

ELD-
02 

VENEZUELA Guyana 6.11 -61.41 244 Moist Terra 
Firma 

Old-growth 0.25 25.4 2522 6 5 Jean-Pierre 
Veillon 

ELD-
01 

VENEZUELA Guyana 6.11 -61.41 220 Moist Terra 
Firma 

Old-growth 0.25 25.4 2522 6 10 Jean-Pierre 
Veillon 

ECE-
01 

COLOMBIA Northern South 
America 

10.68 -75.27 50 Dry Terra 
Firma 

Old-growth 1 27.7 962 1 440 Luisa Fernanda 
Duque 

EBB-
09 

BOLIVIA Western Amazon -
14.73 

-66.32 220 Moist Terra 
Firma 

Old-growth 1 25.2 1828  562 Rachel Graham 

EBB-
05 

BOLIVIA Western Amazon -
14.76 

-66.34 210 Moist Terra 
Firma 

Old-growth 1 25.2 1800  461 Rachel Graham 

DOI-
02 

BRAZIL Western Amazon -
10.55 

-68.31 203 Moist Terra 
Firma 

Old-growth 1 26 1902 2 76 Timothy Baker 

DOI-
01 

BRAZIL Western Amazon -
10.57 

-68.32 203 Moist Terra 
Firma 

Old-growth 1 26 1902 2 97 Timothy Baker 

DNA-
01 

BRAZIL Eastern Amazon -5.66 -49.17 141 Moist Terra 
Firma 

Old-growth 0.26 26.7 1962  215 Jos Barlow 

CVP-
01 

BRAZIL Atlantic Forest -
21.41 

-41.08 30 Dry Terra 
Firma 

Old-growth 0.2 23.1 992 1 386 Karla  Pedra de 
Abreu 

CRP-
02 

BOLIVIA Southern Amazon -
14.54 

-61.5 350 Dry Terra 
Firma 

Old-growth 1 24.1 1383 1 2 418 Alejandro Araujo 
Murakami 

CNA-
64 

BRAZIL Western Amazon -8.12 -63.45 77 Moist Terra 
Firma 

Old-growth 0.998 26.2 2198  425 Ricardo Andrade 

CNA-
41 

BRAZIL Western Amazon -8.1 -63.48 83 Moist Terra 
Firma 

Old-growth 0.977 26.2 2198  459 Ricardo Andrade 

CNA-
34 

BRAZIL Western Amazon -8.09 -63.45 72 Moist Terra 
Firma 

Old-growth 0.967 26.2 2198  451 Ricardo Andrade 

CNA-
22 

BRAZIL Western Amazon -8.08 -63.47 87 Moist Terra 
Firma 

Old-growth 0.9989 26.2 2198  549 Ricardo Andrade 

CLA-
04 

VENEZUELA Northern South 
America 

10.01 -65.32 283 Dry Terra 
Firma 

Old-growth 0.252 26.7 620 1 7 Julio Serrano 

CAX-
02 

BRAZIL Eastern Amazon -1.74 -51.46 15 Moist Terra 
Firma 

Old-growth 1 26.8 2206 6 17 Samuel Almeida 

CAX-
01 

BRAZIL Eastern Amazon -1.74 -51.46 15 Moist Terra 
Firma 

Old-growth 1 26.8 2206 6 20 Samuel Almeida 

CAU-
03 

COLOMBIA Northern South 
America 

8.65 -77.35 30 Dry Terra 
Firma 

Old-growth 0.24 25.1 2048  170 Luisa Fernanda 
Duque 

CAU-
01 

COLOMBIA Northern South 
America 

8.63 -77.37 181 Wet Terra 
Firma 

Old-growth 0.36 25.1 2048  184 Luisa Fernanda 
Duque 

CAJ-
03 

BRAZIL Eastern Amazon -6.07 -50.25 670 Moist Terra 
Firma 

Old-growth 0.25 23.9 1904  210 Jos Barlow 
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CAJ-
02 

BRAZIL Eastern Amazon -6.04 -50.09 694 Moist Terra 
Firma 

Old-growth 0.25 24.7 1876  210 Jos Barlow 

CAJ-
01 

BRAZIL Eastern Amazon -6.07 -50.03 650 Moist Terra 
Firma 

Old-growth 0.25 24.7 1876  186 Jos Barlow 

BOG-
02 

ECUADOR Western Amazon -0.7 -76.47 284 Moist Terra 
Firma 

Old-growth 1 25 3133 4 6 31 Timothy Baker 

BOG-
01 

ECUADOR Western Amazon -0.7 -76.48 257 Moist Terra 
Firma 

Old-growth 1 25 3133 3 6 63 Timothy Baker 

BNT-
04 

BRAZIL Central Amazon -2.63 -60.15 73 Moist Terra 
Firma 

Old-growth 1 27 2244 3 45 Niro Higuchi 

BES-
01 

COLOMBIA Northern South 
America 

10.53 -73.29 550 Dry Terra 
Firma 

Old-growth 0.8 25.4 1365 1 324 Luisa Fernanda 
Duque 

BAR-
01 

PERU Western Amazon -11.9 -71.42 345 Moist Terra 
Firma 

Old-growth 1 25.1 2477 3 142 Timothy Baker 

BAC-
06 

VENEZUELA Northern South 
America 

7.47 -71.02 140 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 4 Emilio Vilanova 
Torre 

BAC-
05 

VENEZUELA Northern South 
America 

7.47 -71.02 142 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 3 Emilio Vilanova 
Torre 

BAC-
04 

VENEZUELA Northern South 
America 

7.46 -71.01 138 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 4 Emilio Vilanova 
Torre 

BAC-
03 

VENEZUELA Northern South 
America 

7.46 -71.01 144 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 5 Emilio Vilanova 
Torre 

BAC-
02 

VENEZUELA Northern South 
America 

7.46 -71.01 143 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 7 Emilio Vilanova 
Torre 

BAC-
01 

VENEZUELA Northern South 
America 

7.46 -71.01 141 Moist Terra 
Firma 

Old-growth 0.25 26.7 1832 5 1 Emilio Vilanova 
Torre 

AMA-
03 

COLOMBIA El Choco 5.61 -77.49 71 Wet Terra 
Firma 

Old-growth 4 25.4 6126  1918 Luisa Fernanda 
Duque 

AMA-
02 

COLOMBIA El Choco 5.58 -77.5 65 Wet Terra 
Firma 

Old-growth 1 25.4 6126 1 463 Luisa Fernanda 
Duque 

ALP-
50 

PERU Western Amazon -3.95 -73.41 145 Moist White 
sand 

Old-growth 1 26.4 2784 3 59 Timothy Baker 

ALP-
40 

PERU Western Amazon -3.94 -73.44 146 Moist White 
sand 

Old-growth 1 26.4 2784 3 77 Timothy Baker 

ALP-
30 

PERU Western Amazon -3.95 -73.43 130 Moist White 
sand 

Old-growth 1 26.4 2784 3 6 100 Timothy Baker 

ALP-
20 

PERU Western Amazon -3.96 -73.43 114 Moist Terra 
Firma 

Old-growth 0.1 26.4 2784  286 Oliver Phillips 

ALP-
19 

PERU Western Amazon -3.96 -73.44 114 Moist Terra 
Firma 

Old-growth 0.1 26.4 2784  331 Oliver Phillips 

ALP-
18 

PERU Western Amazon -3.95 -73.43 130 Moist White 
sand 

Old-growth 0.1 26.4 2784  328 Oliver Phillips 

ALP-
17 

PERU Western Amazon -3.94 -73.43 114 Moist Terra 
Firma 

Old-growth 0.1 26.4 2784  306 Oliver Phillips 

ALP-
16 

PERU Western Amazon -3.94 -73.42 125 Moist Terra 
Firma 

Old-growth 0.1 26.4 2784  281 Oliver Phillips 
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ALP-
02 

PERU Western Amazon -3.95 -73.44 125 Moist Terra 
Firma 

Old-growth 1 26.4 2784 3 6 136 Timothy Baker 

ALP-
01 

PERU Western Amazon -3.95 -73.43 114 Moist Brown 
sand 

Old-growth 1 26.4 2784 3 136 Timothy Baker 

ALM-
01 

PERU Western Amazon -11.8 -71.47 400 Moist Terra 
Firma 

Old-growth 2 25 2395 3 5 61 Timothy Baker 

ALF-
02 

BRAZIL Southern Amazon -9.58 -55.92 277 Moist Terra 
Firma 

Old-growth 1 25.4 2356 4 567 Edmar Almeida 
de Oliveira 

ALF-
01 

BRAZIL Southern Amazon -9.6 -55.94 269 Moist Terra 
Firma 

Old-growth 1 25.4 2356 4 533 Edmar Almeida 
de Oliveira 

ALE-
01 

BRAZIL Eastern Amazon -1.14 -46.73 35 Moist Terra 
Firma 

Old-growth 0.25 26.1 2354 1 266 Jos Barlow 

AGP-
02 

COLOMBIA Western Amazon -3.72 -70.3 120 Moist Terra 
Firma 

Old-growth 1 25.8 2795 6 18 Adriana Prieto 

AGP-
01 

COLOMBIA Western Amazon -3.72 -70.31 120 Moist Terra 
Firma 

Old-growth 1 25.8 2795 6 17 Adriana Prieto 
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Appendix for Chapter 4 

 

SI Figure 4.1. Comparison of two sampling methods, not including very small trees that are largely intra-tree data type. Both data types have similar slopes 
given by the LMM interaction term between sample type and height being non-significant (Sum Sq= 0.007, F=0.19 ,p=0.66). intercepts do not differ 
significantly as tested by Tukey multiple comparisons test (difference = 0.0338  mm, s.e. = 0.104, df = 137, t = 0.324, p=0.745). Note, the residuals of the intra-
tree data is slightly non-normal as tested using a Shapiro-Wilk Normality Test (p=0.0199). 
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SI Figure 4.2. Histograms of the number of vessels (x-axis) measured in each sample (y axis values are 
the number of samples with x number of vessels) per site. 
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SI Table 4.1 Linear mixed effects model results for the relationship between tree height and vessel 
density. This model excluded Oaxaca, indicating that without Oaxaca the wetter three sites have 
similar slopes. 

model var ~ site * height df Sum Sq F p-value 

log mean vessel density v log 

tree height 

height 
31.

746 
1 625.704 0 

site 
0.1

29 
2 1.272 0.285 

site:height 
0.2

29 
2 2.253 0.111 
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SI Table 4.2. Intercept comparisons between sites for the linear mixed effects model for vessel 
diameter and vessel density, presented as the ratio between sites in the value of the back-transformed 
value of intercept. For vessel density Oaxaca was excluded since the slope differed significantly from 
the other three sites. 

 

model site contrast ratio SE df t.ratio p.value 

log mean basal vessel 

diameter v log tree 

height 

Oaxaca/Yucatan 0.687 0.129 148 -1.992 0.196 

Oaxaca/Selva Negra 1.212 0.236 139.2 0.988 0.757 

Oaxaca/Yasuni 0.889 0.172 138.6 -0.608 0.929 

Yucatan/Selva Negra 1.763 0.299 122.2 3.347 0.006 

Yucatan/Yasuni 1.293 0.211 131.4 1.575 0.397 

Selva Negra/Yasuni 

 

0.733 0.127 110.2 -1.788 0.285 

log mean basal vessel 

density v log tree 

height 

Yucatan/Selva Negra 0.745 0.204 121.9 -1.074 0.706 

Yucatan/Yasuni 1.164 0.309 121.7 0.573 0.94 

Selva Negra/Yasuni 

 

1.563 0.43 105.7 1.623 0.37 
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SI Table 4.3. The mean height (and 
standard deviation) for the 2.5-7.5m tree 
height bin is used for Figure 4.5 in text. 

Site 2.5-7.5m 

Yasuni 3.14 (0.46) 

Oaxaca 5.43 (1.48) 

Selva 

Negra 

4.60 (1.65) 

Yucatan 4.96 (2.07) 
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Appendix for Chapter 5 

 

 

 

 

SI Figure 5.1 Trees sampled per species per height class showing the height of trees per species. Three 
individual trees were sampled per height class per species.  
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SI Figure 5.2  Relationship between height and light index representing canopy openness. Species are 
ar = Ampelocera ruizii, cm= Centrolobium microchaete, pl=Pseudolmedia laevis. 
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SI Table 5.4 Species specific relationship fit values between functional traits, as per Figure 5.10. 

relationship 
specie

s 
R2 n res. se F p-value 

log vessel density v log mean vessel 
diamter 

ar 
0.6
6 

2
4 

0.465
3 

46.34 
<0.000

1 

cm 
0.8
4 

2
2 

0.264
1 

116.0
1 

<0.000
1 

pl 
0.8
2 

2
4 

0.467
8 

111.9
8 

<0.000
1 

mean guard cell length v stomatal density 

ar 
0.2
4 

1
3 

0.001
3 

4 0.0668 

cm 
0.8
3 

1
3 

0.000
5 

64.42 
<0.000

1 

pl 
0.6
1 

1
5 

0.000
6 

23.13 
<0.000

1 

δ13C v LMA 

ar 
0.6
4 

1
3 

0.661
5 

23.24 
<0.000

1 

cm 
0.8
3 

1
3 

0.925
7 

64.39 0 

pl 
0.5
9 

1
7 

0.866
4 

24.66 
<0.000

1 

LMA v gmax 

ar 
0.4
8 

1
3 

1.034
2 

12.01 0.0042 

cm 
0.6
5 

1
3 

1.986
4 

24.3 
<0.000

1 

pl 
0.1
5 

1
5 

3.296
4 

2.69 0.1217 
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SI Table 5.5 Coefficient values for between traits relationships per species , as per Figure 5.10. 

relationship species term estimate 
standard 
error t-value p-value 

log vessel 
density v log 
mean vessel 

diamter 

ar 
 
intercept -0.92237 0.73 -1.26 0.2206 

ar slope -1.254011 0.18 -6.81 <0.0001 

cm 
 
intercept -1.646955 0.50 -3.31 0.0032 

cm slope -1.508865 0.14 -10.77 <0.0001 

pl 
 
intercept -2.745642 0.64 -4.27 <0.0001 

pl slope -1.747185 0.17 -10.58 <0.0001 

mean guard 
cell length v 

stomatal 
density 

ar 
 
intercept 0.027243 0.003 9.94 <0.0001 

ar slope -0.000012 0.000006 -2 0.0668 

cm 
 
intercept 0.021461 0.00056 38.62 <0.0001 

cm slope -0.000005 0.000001 -8.03 <0.0001 

pl 
 
intercept 0.020403 0.00085 23.98 <0.0001 

pl slope -0.000004 0.000001 -4.81 <0.0001 

δ13C v LMA 

ar 
 
intercept -33.459617 1.29 -25.96 <0.0001 

ar slope 
59992.4948

6 12444.05 4.82 <0.0001 

cm 
 
intercept -37.729104 0.95 -39.62 <0.0001 

cm slope 
90067.0148

9 11224.33 8.02 <0.0001 

pl 
 
intercept -32.817446 0.81 -40.29 <0.0001 

pl slope 
32816.9811

9 6609.04 4.97 <0.0001 

LMA v gmax 

ar 
 
intercept 5.313703 2.02 2.64 0.5499 

ar slope 
67416.8368

3 19455.23 3.47 0.0042 

cm 
 
intercept 8.188685 2.04 4.01 0.4353 

cm slope 
118739.735

9 24085.47 4.93 <0.0001 

pl 
 
intercept 18.023034 3.40 5.3 0.4111 

pl slope 
44106.4730

5 26886.23 1.64 0.1217 
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