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Abstract 

As the earth transitions to a low carbon sustainable future, the diversity of 

biomass fuels must be expanded to accommodate the growing energy demands. This 

can have advantages such as encouraging the use of waste feedstocks to capitalise on 

economic gains as well as disadvantages such as the associated environmental and 

operational problems from biomass high in inorganics and minerals. Globally the 

heating sector is the largest sector of the energy industry accounting for 50% of energy 

consumption [IRENA, 2018]. Of this 14% comes from traditional biomass used in 

heating stoves. This an area of increasing interest since these systems are having a 

detrimental effect to air quality from high emissions of NOx, SO2, unburnt 

hydrocarbons and particulate matter.  

 In this thesis the aim was to understand the relationship between the fuel 

properties and emissions from combustion on a domestic stove. This included 

analysing the impacts of pre-treatment on the performance and emissions.  Traditional 

wood fuels, willow and spruce logs, were used as benchmarks and compared to their 

torrefied counterparts. The results showed that torrefied fuels increased the emissions 

of CO2 (spruce 65-90 and willow 67 to 78 kg GJ-1) but reduced the emissions of CH4 

(spruce 0.37 to 0.18 and willow 0.18 to 0.04 kg GJ-1).  Reductions in NOx from 

torrefied fuels was the result of a shift in N partitioning and retaining more fuel-N in 

the char which was released as N2 from reducing conditions during char burnout. 

Similarly, sulphur retention in the ash increased because of the increased Ca/S ratio of 

torrefied fuels, thereby reducing SO2 emissions. Particulate matter emissions were also 

reduced from using torrefied fuels. The torrefaction process reduced the emissions of 

soot forming volatiles such as eugenol and vanillin which can contribute to soot 

formation by both the hydrogen abstraction carbon addition and cyclopentadiene 

methods.  

 Waste spent coffee grounds, bracken and agricultural residues were analysed 

in comparison to wood logs and briquettes as potential novel fuels for the domestic 

market. The very fine particle size and high calorific value (21.1 MJ kg-1) of the spent 

coffee resulted in high flue gas temperatures (peak temperature 600C). However, the 

high fuel-N content (1.84 wt.% db) resulted in excessive emissions of NOx (190 g GJ-

1) which was more analogous with coal and peat than biomass.  Bracken is currently a 
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large management problem globally as it is so dominant and fast growing, the most 

used management technique involves harvesting and burning it in large open fires. 

Commercial bracken briquettes when combusted were difficult to ignite because of 

the density of the briquettes (1250 kg m-3). These were broken down into four evenly 

sized segments and it was apparent the size, shape and density of the briquettes was 

preventing efficient combustion (mass conversion increased by 20%). By reducing the 

size of the briquettes, and increasing the surface area to volume ratio, the emissions of 

CO decreased from 180 to 140 g kg-1 of fuel and the total organic carbon emissions 

from 1.3 to 0.8 g kg-1 of fuel. The SO2 (1.7 g kg-1) and HCl (0.6 g kg-1) emissions from 

bracken briquettes were much higher than compared to barley straw (0.8 and 0.3 g kg-

1), wheat straw (0.5 and 0.2 g kg-1), miscanthus (0.8 and 0.3 g kg-1) and wood 

briquettes (0.3 and 0.06 g kg-1). This was because of the high S (0.2 wt.% db) and Cl 

(0.14 wt.% db) contents of the fuel.    

Because of the strong correlation between the fuel mineral contents and the 

emissions, SRC willow grown on contaminated land was pre-treated by washing to 

investigate the removal efficiency of problematic species and the impacts on the 

emissions.  The ash content of the pre-treated willow reduced by 27%; this was lower 

than seen in previous work, however the method used was more applicable to industry 

methods of pre-treatment.  High removal efficiencies of Pb (69%), S (55%) and Cu 

(47.5%) were observed and this came from a combination of solid mineral removal 

from soil and bark as well as some leaching. When combusted the washed willow had 

reduced emissions of CO (5.2 reduced to 2.45 kg GJ-1), THC (0.22 reduced to 0.125 

kg GJ-1) and PM (0.12 reduced to 0.063 kg GJ-1). However even though the fuel-N 

content decreased, the NOx emissions were 25% higher for the washed willow, this 

was mostly likely due to the reduced Na content which has been shown to catalyse 

NOx reduction reactions during char combustion.  

The overall outcome of this thesis is a stronger understanding of the chemical 

and physical properties of fuels that influence the emissions from combustion on stove 

systems. Several useful correlations have been identified between the composition 

analysis and the emissions data that include the majority of fuels used in this thesis.  

These correlations are useful in identifying the suitability of novel fuels and also in 

identifying the advantages of pre-treatment for industry and the potential expansion of 

their fuel inventories. 
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Chapter 1. Introduction  

 Humans need energy to survive, this includes activities such as heating, 

cooking, processing and transportation. However, obtaining and using energy comes 

at the expense of the environment. Historic irresponsible industrial activities including 

the energy sector have caused irreversible damage to the planet. International efforts 

are focused on changing the fuels used, improving the efficiency of current 

technologies, the implementation of new technologies and abatement technology. 

Renewables are a key part of this strategy.    

 

1.1 Energy, The Environment and Renewables 

1.1.1 Overview of Global Energy Usage  

Energy demand increased by 0.9% in 2019 according to the IEA Global Energy 

Review [2020]. The BP Statistical Review from 2019 [2020] measured a slightly 

higher level of primary fuel consumption at 1.3%. One of the main reasons global 

energy demand is increasing is because of population growth however based on Fig. 

1.1 from Karpov [2019] average person energy consumption is also increasing; this is 

largely an effect of economic development in non-OECD countries. In Fig. 1.1 

sections I and II define to s-shaped trends when global energy consumption 

accelerated for a period and then returned to its standard rate of increase.  

Figure 1.1: Average global energy consumption per person [Karpov, 2019]  

 

 Global energy consumption is not a comprehensive assessment of the energy 

sector. Table 1.1 uses data from the BP Statistical Review from 2018 [2019] and shows 
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the global divide of primary energy consumption. From Table 1.1 it is clear that the 

Asia Pacific region is the largest consumer, consuming more than North America and 

Europe combined which are the second and third biggest consumers respectively. This 

region includes China and India which are rapidly growing economies.  

Table 1.1: Primary fuel consumption from 2010 to 2018 [BP, 2019] 
 

Primary Energy Consumption (Mtoe) Growth Since 2008 (%) 
 

2010 2012 2014 2016 2018 2012 2014 2016 2018 

Global 12099.9 12575.5 12939.8 13228.6 13864.9 3.9 6.9 9.3 14.6 

North 

America 

2709.8 2657.4 2758.9 2737.2 2832 -1.9 1.8 1.0 4.5 

South & 

Central 

America 

627.1 670.9 692.9 691.1 702 7.0 10.5 10.2 11.9 

Europe 2124.6 2072.3 1978.3 2027.5 2050.7 -2.5 -6.9 -4.6 -3.5 

CIS 843.2 886.7 880.3 881.5 930.5 5.2 4.4 4.5 10.4 

Middle 

East 

709.8 767.3 817.2 864.9 902.3 8.1 15.1 21.9 27.1 

Africa 383.8 399.2 422.6 439.4 461.5 4.0 10.1 14.5 20.2 

Asia 

Pacific 

4701.5 5121.6 5389.6 5587 5985.8 8.9 14.6 18.8 27.3 

      

 Europe is the only region in Table 1.1 that has reduced primary fuel 

consumption since 2008 and maintained primary fuel consumption below 2010 levels. 

As previously mentioned, energy consumption is mainly increasing in developing 

regions which are The Middle East and Africa, and in particular Asia Pacific where 

fuel consumption increased by nearly 10% between 2016 and 2018. 

Unfortunately, current fuel usage is still dominated by fossil fuels as shown in 

Fig. 1.2, created using data from the BP statistical review from 2018 [2019]. It is 

apparent that Europe and South America have started to shift primary energy 

consumption to net carbon-zero sources (this includes nuclear, wind, solar, hydro, tidal 

and biomass). In Europe this has mainly been achieved through policy which has been 

linked to large-scale power generation however, this has also been aided by advances 

in localised systems such as combined heat and power (CHP) and energy from waste. 

In South America, advances in bioethanol production and hydro power have driven 

changes.  

A large challenge in estimating values of energy demand and consumption is 

that a large part of the world still relies on systems such as cookstoves and localised 

heating and power generation. These are often powered by wood, local biomass, faeces 
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and waste which are not included in most outlook reviews but can have a large impact 

on the environment. 

Figure 1.2: Percentage comparison of fossil versus carbon zero fuel consumption 

in different global regions. [BP, 2019] 

   

1.1.2 Environmental Concerns 

 Environmental concerns can be related directly to emissions from conversion 

processes and from the activities in obtaining fuels. Climate change and environmental 

concerns are currently key topics of global politics, these include: 

1.1.2.1 Global Warming 

 Global warming continues to challenge society as changes from the damage 

caused are becoming more apparent, such as extreme record high temperatures and 

rising sea levels. A special report by the International Panel on Climate Change (IPCC) 

[Matthews, 2018] states that the average global temperature has increased by 1.5C 

since pre-industrial levels. This is being caused by greenhouse gases which are at their 

highest levels for 800,000 years [Nunez, 2019].     

 Greenhouse gases trap radiation from the sun in the atmosphere by absorbing 

infrared radiation energy and readmitting it back into the atmosphere. Various 

greenhouse gases have different potentials to cause the greenhouse effect, this is based 

on both their ability to absorb radiation and their lifetime in the atmosphere. These 

two parameters are described by the Global Warming Potential (GWP), this is 

quantitative assessment of the impact of a gaseous specie on the atmosphere within a 
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100-year time period compared to that of CO2, for this reason CO2 is given a reference 

level of 1. Table 1.2 compares some of the most common greenhouse gases and their 

GWP factors from the 2007 IPCC report on the Physical Science of Climate Change 

[Solomon et al., 2007]. Within this report a special focus on the impact variability with 

time was discussed which resulted in a GWP 20-year horizon factor being determined. 

GWP is a useful assessment since it helps to evaluate the global trajectory on climate 

change, for example NF3 is emitted from the production of semiconductors for the 

electronics industry, these semiconductors are used to manufacture photovoltaic (PV) 

cells, this is an important consideration when choosing to increase solar energy 

generation [Arnold et al., 2013].   

Table 1.2: Global warming potential of various greenhouse gases [Solomon et al., 

2007] 

Greenhouse Gas Chemical 

Formula 

Global Warming Potential Atmospheric 

Lifetime (Years) GWP- 100-year 

horizon 

GWP- 20-year 

horizon 

Carbon Dioxide CO2 1 1 100 

Methane CH4 25 56 12 

Nitrous Oxide N2O 298 280 114 

Ozone O3 1000 65 <1 

Chlorofluorocarbon-

12 (CFC-12) 

CCl2F2 10,900 11,000 100 

Nitrogen Trifluoride NF3 17,200 12,300 740 

 

1.1.2.2 Atmospheric Pollution 

 Atmospheric pollution and the greenhouse effect are often confused. 

Greenhouse gases are gases capable of causing global warming, described in the 

preceding section. Air pollution refers to the emission of any pollutant (gas, liquid or 

solid) that can cause damage to the ecosystem or human health. A greenhouse gas can 

also be a pollutant.  

An article from the New South Wales Government Office for Environmental 

Health [2013] identifies the most common air pollutants to be: particulate matter 10-

2.5 (PM), ground-level ozone, nitrogen dioxide, carbon monoxide and sulphur 

dioxide. The U.S centre for Disease Control and Prevention (CDC) [2019] expands 

this to include lead (Pb) and the UK Department for Food, Environment and Rural 

Affairs (DEFRA) [No date] also includes PM1, volatile organic compounds (VOCs), 
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Toxic Organic Micro-Pollutants (TOMPS), Benzene, 1,3-Butadiene and selective 

heavy metals (Ar, Cd, Hg and Zn). This shows how variable the international 

interpretation and importance of air pollutants currently is. Table 1.3 describes more 

comprehensively some of the common air pollutants.    

 

Table 1.3: Internationally recognised air pollutants of greatest concern 

Pollutant Chemical 

Symbol 

Description Source 

Carbon 

Monoxide 

CO A colourless and odourless gas that 

can displace oxygen in blood and 

bind to haemoglobin. [a] [b] 

Incomplete combustion 

including in vehicle engines, 

power stations and household 

stoves. [a] [b] 

Sulphur 

Dioxide 

SO2 SO2 causes acid rain when it 

solubilises in the atmosphere, this 

process causes haze and reduces the 

air visibility. It also increases 

breathing difficulty when in high 

concentrations. [a] [c]  

Coal combustion and combustion 

of fuels high in sulphur. [a] [c] 

Oxides of 

Nitrogen 

NOx Highly reactive nitrogen species 

which react in the atmosphere to 

form a variety of compounds 

including non-nitrogen containing 

species such as ozone. NOx 

contributes to acid rain and haze. 

Additionally, NOx causes 

nitrification of coastal waters and 

land which creates nutrient 

pollution. NOx can aggravate the 

respiratory system. [a] [c] 

Combustion of most fuels 

including in power stations, 

internal combustion engines 

(ICE's), and domestic 

applications. [a] [c] 

Particulate 

Matter 

n/a This is a general term used for solid 

particles and liquid droplets 

suspended in the air which can vary 

in size but the most concerning 

sizes range from 1-10m. Some 

particles are emitted direct from 

source these are usually called dust 

particles. PM from the energy 

sector is usually called soot when it 

is high in carbonaceous species and 

forms PM by a series of complex 

reactions and sublimation and 

condensation of various inorganic 

species. PM can have a global 

warming effect as well as reducing 

visibility. The greatest concern is 

the respiration of these species at 

PM1 size as these can penetrate 

deep into lung tissue and cause long 

term health effects including 

cancer. [a] [c] 

PM can be directly from 

industrial activity. This includes 

dust particles from processing of 

materials and minerals and civil 

activities such as installing 

insulation in buildings and laying 

tarmac for roads. PM from 

combustion can be formed from 

any fuel in any conversion 

technology. Soot is primarily 

formed from diffusion flames 

and incomplete combustion. 

ICE's form very small PM from 

incomplete combustion and rapid 

cooling in exhaust gases. [a] [c] 
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Table 1.3 Cont.: Internationally recognised air pollutants of greatest concern 

Pollutant Chemical 

Symbol 

Description Source 

Ozone O3 Ozone in the upper atmosphere is 

critical to protecting the planet 

from intense radiation from the 

sun. However, ground-level 

ozone can cause lung irritation, 

airway inflammation and reduce 

lung function. [a]  

Ground-level ozone is formed 

from the reaction of NOx and 

volatile organic compounds 

(VOC's). Sunlight and heat are 

required for the reaction so 

ozone levels are higher on hot 

sunny days. [a] 

VOC n/a These are gaseous organic 

compounds that have a high 

vapour pressure and low 

solubility. They include industrial 

solvents such as trichloroethylene, 

and chlorinates from water 

treatment like chloroform. Health 

effects are variable and include 

short-term and long-term effects. 

Lower concentrations lead to 

nausea, irritation, dizziness and 

breathing difficulties. Higher 

concentrations can lead to more 

devastating damage such as 

damage to the central nervous 

system, kidney and liver toxicity 

and cancer. [d] [e] 

VOCs are formed from 

anthropogenic processes and 

are used in many commercial 

products such paints, inks, 

cleaning products, adhesives 

and building materials. 

Combustion of fuels produce 

VOCs from incomplete 

combustion in fuel-rich 

processes. [d] [e]  

Benzene C6H6 Benzene is similar to VOCs 

however exists primarily in the 

vapour phase. It is commonly 

used in many commercial 

products such as glues, dyes and 

detergents. Benzene is a 

carcinogen and can reduce red 

blood cell production and the 

effectiveness of the immune 

system. Benzene can react to form 

photochemical smog which can 

then be deposited in water bodies 

and soil through rain or snow. [f] [g] 

Benzene is used in many 

products for cleaning and 

treatment purposes. It is a 

highly manufactured 

chemical, one of the top 20 in 

the U.S, and its release mainly 

comes from industrial 

processes such as burning of 

coal and oil (less from gas). 

Vehicle ICE's cause 

approximately 20% of 

benzene emissions and 

tobacco smoke is the most 

common source of indoor 

benzene. [f] [g] 

Polycyclic 

Aromatic 

Hydrocarbons 

(PAHs) 

n/a PAHs contain at least two 

aromatics rings and are formed at 

high temperatures. Low molecular 

weight PAHs are usually present 

as vapour, as they increase in size 

and molecular weight they form 

more as solid particles. Their 

degree of carcinogenicity is 

variable however they are all 

described as toxic to human 

health. [h] [i] 

PAHs are only formed from 

combustion and pyrolysis 

processes. This is mainly from 

transport emissions in outdoor 

air and mainly from solid fuel 

combustion in indoor air. 

Cooking on a fuel-fired stove 

can cause elevated 

concentrations of PAHs. [h] [i] 
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Table 1.3 Cont.: Internationally recognised air pollutants of greatest concern 

Pollutant Chemical 

Symbol 

Description Source 

Toxic 

Organic 

Micro 

Pollutants 

(TOMPS) 

n/a TOMPS is a group of species that cause 

devastating health effects including cancer, 

reduced immunity, central nervous disorders, 

child development and pregnancy problems. 

At very high concentrations death is a 

possible outcome from inhalation. The group 

includes PAHs, polychlorinated biphenyls 

(PCB's) and dioxins. [j] 

All TOMPS in the 

atmosphere are from 

combustion of fuels 

including gas, oil, 

coal and biomass. [j] 

Lead Pb Heavy metals in the atmosphere at low 

concentrations can be deposited into soil and 

water bodies. Their volatility is variable 

which means they can be released and 

deposited readily. Bioaccumulation in the 

ecosystem is of great concern since it can 

occur quickly. Heavy metals can cause a 

range of health problems including kidney 

and bone damage, cancer, neurobehavioral 

disorders and increased blood pressure. [k]  

Heavy metals in the 

atmosphere can be 

present as vapour or 

solid particles. Their 

emission is from their 

presence in fuels 

which are combusted. 
[k]   

Zinc Zn 

Mercury Hg 

Cadmium Cd 

Chromium Cr 

Arsenic Ar 

Table references: [a] United States Environment Protection Agency [2019], [b] Townsend and 

Maynard [2002], [c] WHO [2005], [d] Government of Canada [2019], [e] HealthLink British 

Colombia [2018], [f] Agency for Toxic Substances and Diseases Registry [2007], [g] Duarte-Davidson 

et al. [2001], [h] Lee [2010], [i] Choi et al. [2010], [j] Envirotrain [2018], and [k] WHO [2007]. 

 

1.1.2.3 Monitoring and Control of Air Pollution  

Most air pollutants from Table 1.3 are of concern when they are in high 

concentrations, therefore localised monitoring is required to control the impact they 

have. Emissions are measured over a time period or online (real time) both of which 

are variable depending on the time of day and the activities taking place. For example, 

during the morning and evening rush hour travel when people commute to and from 

work emissions are higher. Therefore, it is important that both the average emission 

levels and the time period of peak emissions are monitored.  

In the UK, National Air Quality Standards (NAQS) are used to monitor and 

control air pollution. The United States and China are the largest energy consumers, 

this is largely due to industry and population requirements. In order to monitor and 

control their air quality they have their own set of air quality measures and objectives- 

U.S National Ambient Air Quality Standards (NAAQS) and China’s Ambient Air 

Quality Standards. The Chinese standard is used to describe the quality of air by using 
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categories, i.e., the air quality in a class 1 area is better than a class 2. Table 1.4 

compares the UK Air Quality Objectives, NAAQS (US), China’s Ambient Air Quality 

Standards and the Air Quality Guidelines from the World Health Organisation 

(WHO).   

In Table 1.4 the major air pollutants are listed. Additional pollutants have been 

added into national objective criteria such as ammonia, mercury, benzene, polycyclic 

aromatic hydrocarbons (PAHs) and dust however these are not ubiquitous and are 

usually only specified in relation to certain industrial activities.   

Table 1.4: Comparison of air quality control targets in ambient air from the UK 

[DEFRA, 2007], US [EPA, 2016], China [Li et al., 2018] and the World Health 

Organisation (WHO) [2005].  

Pollutant 

UK U.S. 
China 

WHO 
Class 1 Class 2 

Time 

Period Limit 
Time 

Period 
Limit 

Time 

Period 
Limit Limit Limit 

Time 

Period 

CO    

(μg.m-3) 
10 8 hours 10.35 8 hours 4 4 Daily 

n/a 

Pb  0.25 Annual 0.15 
Quarterly 

Average 
n/a 

NO2 30 Annual 99.64 Annual 40 40 Annual 40 Annual 

PM10 40 Annual 150 24 hours 40 70 Annual 
50 24 hours  

20 Annual 

PM2.5 25 Annual 35 24 hours 
n/a 

25 24 hours  

10 Annual 

O3 100 8 hours 137 8 hours 100 8 hours  

SO2 350 1 hour 196.5 1 hour 20 60 Annual 20 24 hours  

 

 Table 1.4 demonstrates the variability in the international standards. China has 

the strictest standard in relation to CO from initial observation however the averaging 

time period is three times longer than for the UK and U.S, this would therefore include 

night time emissions which are low because of reduced activity. Nitrogen dioxide 

emissions are the only monitored emissions where all the standards use the same 

averaging time period. The UK has the lowest target and recently introduced emission 

control zones in major cities to reduce these emissions further [CCC, 2019]. The target 

emission level is below the WHO target which is based on the long-term impact of 

emissions to human health, China has used this level as their own guideline as well. 

The U.S level is over two times the WHO limit and over three times the UK limit. 

Limits on emissions of PM10 and PM2.5 are all significantly above the recommended 

limits by the WHO, it is important to recognise that the WHO limits were designed 
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based upon statistics collected in 2005, this is concerning when more current targets 

still have yet to coincide with limits that were devised over a decade ago.  

Figure 1.3: Annual trends in emissions in the UK of certain air pollutants from 

1970-2018 [DEFRA, 2020] 

  

Figure 1.4: Annual trends in emissions in the UK from 2008-2018 [DEFRA, 2020] 

 

As air pollution has developed as a political subject, the more rigorous and 

comprehensive recording and monitoring has become. Fig. 1.3 is from DEFRA [2020] 

and demonstrates the relative reduction in emissions. With the exception of ammonia, 

the emissions of all the pollutants have decreased to levels below 40% of the nominal 
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1970 levels. The main factor has been the reduced use of coal in power generation, the 

increased use of abatement technology across the energy use sector (transport and 

power generation) and the increase in renewables [CCC, 2019]. More recently, since 

the 2007 limits were introduced, emissions have plateaued, with the exceptions on 

NOx and SO2, Fig. 1.4. NOx and SO2 have continued to decrease again from the 

reduced use of coal but also by targeting technology and legislation changes. In 

particular, in the transport sector by the aforementioned emission zones and the 

addition of NOx reduction technology on diesel cars [CCC, 2019]. Ammonia 

emissions in the UK are mostly related to the farming and agricultural sector [DEFRA, 

2020].   

1.1.3 The Renewables Sector   

 Renewable energy is a key part of the immediate strategy to reduce pollution 

levels and prevent further climate temperature rises. This is particularly challenging 

since it is expected that global energy consumption will increase by 56% by 2040 

based on 2010 levels [EIA, 2013]. The World Energy Outlook (WEO) report from the 

IEA [2020] shows that the immediate capacity in the renewables sector is much greater 

than in any other sector and estimates that this capacity will increase with time for 

solar and wind, Fig. 1.5.  

Figure 1.5: Primary energy capacity by energy source for current and projected 

global energy consumption [IEA, 2020] 

 

Fig. 1.6 from the EIA shows the projected global energy demand by fuel and 

scenario [2020]. Based on stated policies and the delayed recovery scenario (based on 

changes from the Covid-19 pandemic) the global trend suggests that there will be an 
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increase in the use of oil, gas, nuclear and renewables. In the ideological scenarios, 

sustainable development scenario and net-zero emissions case, a significant decrease 

in oil and a small decrease in gas will be required to achieve environmental targets.   

 

Figure 1.6: Projected change in global primary energy demand to 2030 based on 

2019 for four key scenarios. Stated policies scenario (SPS), delayed recovery 

scenario (DRS), sustainable development scenario (SDS) and net-zero emissions 

by 2050 [EIA, 2020] 

 

Figure 1.7: Division of global energy sources for heating and cooling end-use 

[IRENA, 2018] 
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According to a report for the International Renewable Energy Agency 

(IRENA) [2018] in order to analyse the role of renewables in the future, four sectors 

should be considered individually, these are: Heating and Cooling, Transport, Power 

Generation and System Integration. Heating is the largest end-use energy sector 

accounting for 50% of energy consumption, the majority of which is supplied by fossil 

fuels (70% in 2015) [IRENA, 2018]. The main renewable source in this sector is 

from traditional biomass as shown in Fig. 1.7 from the IRENA 2018 Report [2018], 

this is from the combustion of wood logs in domestic appliances.  

 Modern bioenergy is a rapidly growing sector which includes injections of 

biomethane and biohydrogen into natural gas systems, solid fuel boilers, co-generation 

and district heating schemes. Although, the contribution of renewables in this sector 

is relatively low, this number is highly variable across the earth, for example in Sub-

Sahara Africa 70-90% of primary energy supply (mainly heating and cooking) comes 

from biomass [Eleri and Eleri, 2009] and in South-East Asia approximately 45 million 

people are still dependent on traditional biomass for primary energy [IEA, 2019].       

Figure 1.8: Breakdown of the global transport sector in 2015 [Staffell et al., 2019] 

 

The transport sector is the second largest energy consumer accounting for 25% 

of global consumption [EIA, 2015], 96% of which comes from petroleum products 

[IRENA, 2018]. The outlook of renewable energy in this sector is facing many 

challenges, mainly the implementation of an infrastructure which can support the use 

of biofuels. Instead, many countries are choosing to focus on electric vehicles, with 
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the potential addition of hydrogen vehicles in the future [Staffell et al., 2019]. Fig. 1.8 

shows the breakdown of the transport sector in 2015, the inner circles show the mode 

and function of transportation respectively whilst the outer circle shows the individual 

transport methods [Staffell et al., 2019]. As can be seen in Fig. 1.8 personal daily 

transportation methods are the greatest consumers. Bioethanol has made some small 

changes to transport fuels by blending with petrol (gasoline). Across Europe 5% is 

blended and in Brazil all gasoline has a 27% blend of bioethanol [Mączyńska et al., 

2019]. In the UK a new 10% blend will reduce CO2 emissions by 790,000 tonnes from 

the transport sector [Department of Transport, 2021].  Other progress has been in the 

Heavy Goods Vehicles (HGV) market by using straight used cooking oil or converting 

the oil to biodiesel [Li et al., 2014]. 

Figure 1.9: Breakdown of global electricity generation by fuel source [Ren21, 

2019] 

 

 Consumption in the power generation sector is highly variable. Globally it 

represents about 20% of consumption however in more developed countries this 

increases [IRENA, 2018]. Renewable energy has made consistent and substantial 

progress within this sector and in 2018 made-up 26.6% of global electricity generation 

[Ren21, 2019]. Hydropower has the largest share of this sector (15.8%) followed by 

wind (5.5%), solar (2.4%), biomass (2.2%) and geothermal (0.4%), as shown in Fig. 

1.9 [Centre for Climate and Energy Solutions (C2ES), No Date] [Ren21, 2019]. 

Consistent growth from hydropower is from the setup of small hydropower units. 

Lower capital costs and environmental impact has increased favourability of such 

units over large dams. New technology is driving the increase in wind and solar usage, 

in the case of the latter it is the fastest growing industry within the electricity 

generation sector. Geothermal projects remain small and sparse, the focus is more on 

using geothermal to supply heat. Biomass is being used to make large increases in 
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renewable electricity generation, in the UK an increase in 30% capacity and 11% 

generation in 2018 was achieved through conversion of coal power stations to 

biomass, a relatively low capital investment [Ren21, 2018]. Other large increases in 

generation were seen in South Korea (50%), Thailand (39%) and China (14%) [Ren21, 

2019].    

 The final sector is system integration which overarches the power generation 

sector. Without sufficient flexibility in the power generation sector renewable 

technology is not feasible [IEA, 2020]. The rain doesn’t always fall, the wind doesn’t 

always blow and the sun isn’t always out, although there is huge capacity in all three 

of these areas, they are all inconsistent forms of power generation and do not have the 

versatility of providing an increased demand or reducing when demand is low. This is 

termed Variable Renewable Energy (VRE) and it has to be combined with System 

Integration of Renewables (SIR) to maintain grid electricity supply [IEA, 2020]. SIR 

strategies are becoming more important as the VRE share increases. Additionally, as 

the heat, transport and power generation sectors merge, electric vehicles and CHP, this 

will also increase the need for effective SIR strategies [IRENA, 2018] [IEA, 2020]. In 

certain countries where renewables already operate a large share of the market SIR is 

the main focus to improve energy demands. An example of this is in Norway where 

water storage capacity is used to control electricity demand, this is a particularly low-

cost strategy being deployed effectively [Norwegian Ministry of Petroleum and 

Energy, 2019]. 

  Geothermal and nuclear both have the advantage of being independent of 

weather and time of day, however they are not versatile enough to be used when there 

are surges in electricity demand. Biomass however offers the versatility and robustness 

to be fired according to demand. Additionally, biomass is the only source which can 

be used directly as a fuel to supply energy in all of the sectors. Therefore, biomass is 

an instrumental part of the future energy strategy.  

1.1.4 The Role of Renewables in the UK Energy Sector 

 In the UK ambitious targets to have a net-zero economy by 2050 has driven 

significant changes in the energy landscape. Of these changes, the greatest impact has 

been in the power generation sector, between June 2013-2016 emissions from 

electricity generation have fallen by 46% [Staffell, 2017]. This has been from the 
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displacement of coal with gas and a dramatic increase in the uptake of solar, wind and 

biomass which contributes up to 45% of energy demand [Staffell, 2017]. This 

replacement of coal has mainly been driven by policy from the UK government which 

has limited the use of coal with all permits ending in 2024 [BEIS, 2020]. Additionally, 

the introduction of Renewable Obligation Certificates (ROCs) in 2002 has steadily 

encouraged the increased use of renewable sources of power generation, this is done 

by claiming ROCs which can be sold at premium. Investment in energy from waste 

(EfW), hydrogen and continued investment in offshore wind power in the North Sea 

aims to continue this progress [BEIS, 2020].  

   Additionally, recent announcements from the UK government to convert all 

petrol supplies to an E10 blend by September 2021 are driving change in the 

transportation sector. This is targeted at reducing transport CO2 emissions by 750 000 

tonnes per year [Department for Transport, 2021]. This has been accompanied by a 

£15 million investment to replace aviation fuel with fuel manufactured from 

household waste [Department for Transport, 2021].  

 The space heating sector, which accounts for 37% of the UK energy sector, 

has had less success at converting to renewables [Energy Catapult, 2020]. The UK is 

the second highest user of natural gas for heating systems in Europe [BEIS, 2018]. 

Recent trial projects injecting hydrogen into the natural gas network are underway but 

this is still in the development phase [ITM Power, 2020]. Alternative options include 

small-scale heating systems (localised pellet boilers and CHP systems) or domestic 

stoves. Renewable Heat Incentives (RHIs), introduced in 2014, has encouraged the 

decarbonisation of space heating by paying system operators a quarterly payment for 

every kWh of renewable heat produced [BEIS, 2020]. However, this system has 

received a lot of criticism in Northern Ireland as the scheme was not properly regulated 

resulting in the price per kWh exceeding the cost of the fuel and thus people were 

profiting from heating their homes at the cost of the tax payer [BBC, 2019]. The use 

of traditional biomass on domestic stoves is an attractive prospect of replacing fossil-

derived CO2 emissions with renewable emissions however, as current data shows this 

action of decarbonising heat is causing devasting effects on air quality. 38% of 

particulate matter below 2.5m (PM2.5) comes from combustion on household stoves 

(closed systems) and open fires [Mitchell et al., 2019]. In December 2020 a UK court 

ruled that the cause of death from a young asthma sufferer was from breaches of PM 
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ambient air quality limits [Noor, 2020]. Use of such systems tends to be driven by 

aesthetic and financial reasons and to tackle the irresponsible use of such systems the 

UK government has banned the use of coal and wet fuels on such systems [DEFRA, 

2020]. Alternative fuels such as agricultural and food processing wastes are of 

increasing interest because of the more favourable circular economy of these products, 

however more data and information are required to understand the emissions from 

these fuels [DEFRA, 2020]. This information is critical in the development of a 

strategy for the future of these systems which resolves the tension between 

decarbonising heat and preventing a decline in ambient air quality. 

1.2 Biomass  

1.2.1 What is Biomass? 

 According to the Oxford English Dictionary the natural definition of biomass 

is the volume or weight of organisms in a given area. In terms of energy, it is defined 

as organic matter used as a fuel. Although this definition does not explicitly say that it 

is renewable, it implies that the organic matter comes from a living source which is 

dependent on sunlight and not from organic matter buried in the earth’s crust.  

 Biomass is a term that covers a variety of living organisms. It can be broken 

down into categories which often vary but are usually woods, herbaceous and 

agricultural biomass, aquatic biomass, fruit bearing biomass, animal residue and waste 

[British Standards Institute, 2014] [U.S. Department of Energy, no date]. This is 

discussed more in section 2.1. Waste is a more complex area because of the variability 

of material sources. Sectors such as industrial wood waste from lumber mills is a 

consistent material so can be considered as biomass, often included as wood, however 

household waste (municipal solid waste) is a mix of biogenic and fossil material [IEA, 

2003]. Therefore, is usually only determined as biomass if more than 50% of its 

content is from a biogenic source [IEA, 2003]. Food processing wastes are an 

attractive source of biomass because of their increasing availability, superior 

economic aspects (circular economy) and lower carbon investment from cultivation, 

treatment and transportation. Conservation biomass generated from land management 

to improve the local ecosystems is a current area of interest and is often burned in open 

fires outdoors. Utilising this biomass as fuel in local heating systems would harness 
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both the energy content and control emissions with improved conversion techniques 

or pre-treatment.    

1.2.2 The Structure of Biomass 

 The biological composition of biomass is made up a series of polymers in 

various forms including cellulose, hemicellulose, lignin, starch, triglycerides and fatty 

acids. The former three make up the majority of the structure and are termed 

lignocellulose, Fig. 1.10 [Hasanov, Raud and Kikas, 2020]. When the structure in Fig. 

1.10 is broken down the components can be used to make chemicals or converted to 

energy by completely breaking down the polymer chains. Although there is some 

variation between species the typical content is 40% cellulose, 25% hemicellulose, 15-

25% lignin and up to 10% other elements [Brandt-Talbot et al., 2017].  

 

Figure 1.10: Structure of lignocellulosic biomass [Hasanov, Raud and Kikas, 

2020]. Labels S, H and G are primary lignin monomers described in Fig. 1.11.  

 

Cellulose is an insoluble polysaccharide formed from the monomer D-glucose. 

D-glucose monomers are bonded together by glycosidic bonds to form repeating units 

consisting of two monomers called cellobiose [Bai, Yang and Ho, 2019]. Long chains 
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of repeating units are called glucans, each glucan can consist of 10,000 glucose 

monomers. Hydrogen bonds form inter- and intramolecularly as shown in Fig. 1.10. 

The crosslinking of parallel polymer chains is by intermolecular hydrogen bonds and 

Van der Waals forces forms microfibrils [Bai, Yang and Ho, 2019]. The packing 

density of microfibrils can result in the structure being crystalline (tight) or amorphous 

(loose) [Gudka et al., 2008]. 

 Hemicellulose is a heteropolymer made up of small linear and branched 

polymer chains (up to 500 units), monosaccharides, these include hexoses (D-

galactose, D-glucose and D-mannose), pentoses (D-arabinoses and D-xyloses), deoxy-

hexoses (galactose) and related sugar acids [Hasanov, Raud and Kikas, 2020]. 

Hemicellulose polymers are soluble in dilute alkali [Gregory and Bolwell, 1999]. The 

variety of hemicelluloses vary between biomasses, for example hardwood is mainly 

composed of xylans, whilst softwood is composed more of mannose and galactose 

[Asif, 2009]. Hemicellulose is an amorphous structure which can be classified as either 

water-soluble low hydration polysaccharides or hydrocolloids [Brunner, 2014]. The 

former stabilises the cell wall by hydrogen bonds with cellulose and covalent bonds 

with lignin and acts as a glue between the polymers. Hydrocolloids act as storage 

pockets for energy and water [Brunner, 2014].   

Figure 1.11: Main lignin constituents: (A) monolignols and (B) monomers. 

Arrows indicate more reactive sites and dashed lines less reactive sites [Hasano, 

Raud and Kikas, 2020] 
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Lignin is an aromatic polymer, phenylpropane, comprising of monomers 

coniferyl alcohol, sinapyl alcohol and coumaryl alcohol [Vanholme et al., 2010]. It is 

key to plants as it gives the plant strength, structure to the vascular system in xylem 

and prevents degradation from enzymic activity [Yoo et al., 2017]. The degree of 

polymerisation is unknown because lignin is heterogeneous and doesn’t have a defined 

primary structure. It contains many cross-linkages from functional groups such as 

aliphatic hydroxyl, phenolic hydroxyl and methoxy groups [Chio et al., 2019]. The 

make-up of lignin in hardwood (mostly synapyl alcohol units) differs from softwood 

(mostly coniferyl alcohol units) [Li, Carlon and Lacis, 2014]. Fig. 1.11 shows the 

monolignols and their monomers which contribute to lignin structures [Hasanov, Raud 

and Kikas, 2020].    

 As well as the organic components (C, H and O) N is a key nutrient in biomass. 

Uptake, assimilation, storage and transportation of N is critical to biomass growth and 

development and is therefore often applied as a fertiliser. Accumulation of N in trees 

has been shown to be dependent on the biosynthesis of glutamine and is associated 

with the formation of vascular systems in stems and roots and chloroplasts in leaves. 

Other inorganics (S and Cl) and ash components (K, P, Na, Ca, Mg, Al, Mn and Si) 

are also taken up by biomass some of which are key to plant metabolism and growth 

or can be detrimental in large quantities, this is discussed more in section 2.2.3.  

During conversion degradation of the biomass structure results in the reaction 

of various components and in some cases their undesirable emission. The 

concentration of various species, the conversion method and parameters influence 

their release, this is discussed more in relation to combustion in section 2.3. Pre-

treatment of biomass can prevent the release the of these species by removing them or 

binding them into the char/ash matrix, section 1.3.1 and 2.4.  

1.2.3 Why Use Biomass? 

 As discussed in section 1.1.3, biomass is fundamental to the future of energy 

sustainability because it is the only renewable energy source that can consistently 

provide energy and be used when surplus energy is required. However, there are other 

factors that support the use of biomass.   

 The main advantage of using biomass is that it is considered to be carbon 

neutral. The carbon emitted through combustion, which forms CO2, is taken in during 
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photosynthesis and returned to the plant structure. This cycle results in no net carbon 

being emitted to the atmosphere preventing global warming effects. Carbon emissions 

from the processing and transportation of biomass can have a heavy influence on the 

neutrality of this process and have to be considered through LCA to determine if a 

feedstock is net-carbon neutral (carbon emitted through the lifecycle of the feedstock 

is less than or equal to the carbon drawn in through its growth). In addition, sulphur 

emissions are usually lower for biomass compared to coal which reduces problems 

with acid rain and photochemical smog. The Industrial Emissions Directive has 

recently reduced the emissions limit to 150 mg Nm-3 for NOx which is unattainable 

with the use of coal but possible with low-N biomass [Birley et al., 2019].  

 Another advantage is that biomass can be sustainable, it can be regrown, as 

long as strict harvesting practices are implemented to prevent land-use change and 

ecosystem damage. This is extremely important as the concept of sustainability 

includes both energy and material factors. In terms of energy, although feedstock 

resources can vary, biomass grows fast which can overcome these issues. 

Additionally, agricultural waste and biogenic municipal waste can reduce the need for 

landfill which is more harmful to the environment. In terms of materials biomass has 

some advantages compared to other renewables; for example, expensive extraction of 

rare minerals which are required to manufacture solar cells, fuel cells, and batteries 

are in low supply and can cause more environmental damage through mining 

[Vandepaer et al., 2019].  

Traditional systems designed for use with coal, oil and gas can be converted 

with lower capital investments to be run on biomass or biofuels. Examples of this 

include conversion of coal power station boilers to use biomass, combustion of oil, 

biofuel or biogas in ICE’s for transport or power generation [Caposciutti et al., 2020] 

and injecting biogas into existing turbine systems [Moliere, 2005].  

Globally traditional use of biomass for cooking and heating is still a necessity 

for many, especially in developing countries. Although current schemes are trying to 

promote the use of LPG and modern biomass systems, cost and technical problems are 

preventing effective implementation and instead many communities are reverting back 

to the use of traditional biomass [Núñez et al., 2020]. Even in the more developed 
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world, biomass is still being used as an essential means to heat spaces in more rural 

communities that cannot access nationalised gas and electricity networks. 

Biomass can also be used advantageously to remediate contaminated land and 

irrigate process effluents which would otherwise contaminate water sources. This is 

done through the process of phytoextraction (also called phytoremediation) [Pulford 

and Watson, 2003]. This can prevent the need for mechanical land aeration or soil 

replacement techniques that would require significant energy input [Pulford and 

Watson, 2003].  

The sustainability of biomass is a current important question and is typically 

assessed using life cycle analysis (LCA). Kadiyala, Kommalapati and Huque [2016] 

showed that GHG emissions per unit of energy over the lifetime of a fuel including 

cultivation, harvesting, transportation, the formation of pellets and then conversion to 

form energy was lowest for industrial residues such as sawdust pellets 45.93 gCO2e 

kWh-1. Compared to dedicated energy crops, 208.41 gCO2e kWh-1, this is a 75% 

saving in GHG emissions [Kadiyala, Kommalapati and Huque, 2016]. Conservation 

biomass is also an area of interest however there is insufficient data on practices and 

emissions to assess these in comparison to other traditional fuels.  

Residues and wastes are a particular area of interest because they will often be 

either incinerated in open fires for disposal or sent to controlled incineration/land fill. 

In both cases the uncontrolled formation of GHG is an important consideration in the 

carbon balance and harnessing the energy from these materials. A LCA from cradle-

to-gate study by Pfadt-Trilling, Volk and Fortier [2021] on an EfW facility diverting 

material from land fill showed that on electricity generation only the GHG emissions 

were 775 gCO2e kWh-1, this is significantly higher than industrial residues or energy 

crops discussed earlier. However, when the GHG savings are included from diverting 

from landfill the net GHG emissions were calculated at 84.5 gCO2e kWh-1 and this 

could be reduced further, 63 gCO2e kWh-1, when ferrous metals were separated out 

for recycling [Pfadt-Trilling, Volk and Fortier, 2021]. This only assesses the GHG 

emissions but additional environmental gains include preventing contamination of 

land and water systems from landfill leachate and long-term ecosystem damage from 

mechanical activities. These fuel sources do have their problems as well- these are 

discussed in section 1.4.  
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1.3 Biomass Conversion Processes   

 There are many different process options to convert biomass to energy. 

Primary stages of processing convert the raw biomass to a more useable fuel by 

improving the chemical and physical properties. Following this the fuel is converted 

by thermochemical processes to release biogas, bio-oil and heat. Thermal pre-

treatment processes are also thermochemical processes but in the context of this work, 

pre-treatment refers to the production of a solid combustible fuel product instead of 

production of a gas or liquid.   

1.3.1 Pre-Treatment  

1.3.1.1 Drying  

 After biomass is harvested, it is very high in moisture, this can range from 15% 

in cereal straws to 90% in algae. Moisture is problematic since it gives the biomass 

more elastic mechanical properties and can cause self-heating during storage or in 

milling processes. It is also less efficient and profitable to move biomass that is high 

in moisture and also cause poor combustion efficiency and ignition [Price-Allison et 

al., 2019]. Therefore, the biomass goes through various drying processes depending 

on its end product. Ambient drying will reduce the moisture down to an equilibrium 

with its local environment however this takes long residence times and will still require 

further drying. 

   The most common process is to use a conveyor drying system where hot air 

is drafted in either a co-current, cross-current or counter-current direction to the 

biomass being carried on the conveyor. This system uses forced convention to remove 

moisture which is a faster and more thermodynamically efficient process. Because of 

the shorter residence time in the drying zone, this process is only suitable to biomass 

with a high surface area to volume such as wood chips, brash, straws, processing 

residue (sawdust, olive cake and rice husks), grasses and shrubs.   

 For larger fuel products such as wood logs, where the surface area to volume 

is much lower, continuous process systems are not suitable. Drying of these products 

requires long residence times to allow heat, air and moisture to transfer and diffuse 

through the body of the wood log. Wood logs for use in residential and local solid fuel 

appliances are described as either fresh-cut, seasoned or kiln dried, the name is given 

based on the treatment of the wood. According to Price-Allison et al. [2019], fresh-cut 
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logs have a moisture content of more than 40 wt.%, seasoned (dried in ambient 

conditions) between 25-35% and kiln dried <20% (dried at above 60C).    

Very wet biomass (>45 wt.%) is usually not dried because of the high energy 

requirements/costs (approximately £100000 per year to dry biomass from 60 wt.% to 

24 wt.%) [Han, Choi and Kim, 2020] and instead used in thermal hydrolysis processes 

to produce biogas (biomethane or biohydrogen) and hydrochar. Hydrochar is 

discussed in more detail in section 1.3.1.3. 

1.3.1.2 Densification and Size Reduction 

 Densification increases the bulk density and thus improves the energy content, 

the transportation efficiency and the storage/handling capacity. There are three main 

mechanisms for densifying biomass: extruding, pelleting and briquetting. In each case 

the biomass is first reduced in size by shredding, chopping and/or milling. Extrusion 

uses a screw mechanism to compress the biomass particles together. Pelleting pushes 

biomass material through open ended die holes and briquetting uses either a hydraulic 

press or rollers to compact the material into briquette moulds or dies.  

 For a briquette or pellet to hold its’ shape it requires the use of a binder. The 

binder can be a chemical that is added which helps the densified biomass to set such 

as phenolic resin, or it can be from natural mechanisms within the biomass. Lignin is 

a natural binder in biomass that when mildly heated (100-200C) softens to bind the 

biomass together by interlocking particles. Moisture is also a binder by increasing 

chemical bonding between particles through hydrogen bonds and van der Waals forces 

[Kaliyan and Morey, 2009].  Depending on how durable the pellets/briquettes need to 

be, remembering that sometimes they have to be broken apart again after transporting, 

will dictate how they are bound together.   

 The particle size also influences the mechanical strength and durability of the 

pellets/briquettes. Small and flat particles reduce the number and size of space voids 

that can form during densification [Kaliyan and Morey, 2009]. Typically, biomass is 

broken down to particles less than 5mm in dimension before being pelleted or 

briquetted. This can be done using cutting mills (shredders) or ball mills, the latter of 

which forms smaller particles.  
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1.3.1.3 Thermal Pre-Treatment  

 Thermal pre-treatment goes beyond drying and the removal of excess moisture 

to cause irreversible chemical and physical changes. As mentioned before these are 

described in relation to the formation of solid fuel products. A Van Krevelen diagram 

shown in Fig. 1.12 describes the process of coalification, the natural process of coal 

production by pressure and heat in the earth’s crust, where fuels become more carbon 

rich through dehydration and decarboxylation [Guo et al., 2017]. Depending on the 

severity of thermal pre-treatment conditions, raw biomass can be transformed to 

perform more like coal.  

 Torrefaction is a mild pyrolysis process. Temperatures between 200-300C in 

either reducing (more common) or oxidising environments are used to dehydrate and 

thermally decompose all the hemicellulose and approximately 70% of the cellulose. 

This process releases low calorific value volatiles as either tars or vapours but 

concentrates the carbon and energy content of the biomass producing a dark solid 

residue. The severity of torrefaction is controlled by the peak temperature and 

residence time [Bridgeman et al., 2008]. The benefits of torrefaction are increased 

energy density and thermal stability. Torrefied fuels are hydrophobic so are easier to 

store and less at risk of self-heating, as well as having improved mechanical properties, 

more plastic and brittle, for milling and size reduction [Akinrinola, 2014].  

 Biochar production is a similar process to torrefaction but uses increased 

temperatures (300-650C) and longer residence times to remove all the volatiles. It 

must be performed in an inert environment. This increases the carbon content and 

aromaticity of the fuel, and also improves the grindability, porosity and energy content 

[Wang et al., 2019]. Biochar can be fired into combustion systems but is also regularly 

used as soil conditioners for carbon sequestration. The ash concentration is 

significantly increased in biochar and can lead to high emissions of particulate matter 

in combustion systems [Wang et al., 2019].  

Hydrothermal Carbonisation (HTC) submerges biomass into water which is 

pressurised (2-6 MPa) and heated (180-280C) for 5-240 minutes [Arellano et al., 

2016]. The process can produce oils by liquefaction and the process waters can be 

used in anaerobic digestion to produce biomethane or biohydrogen. The hydrochar 

produced has an increased energy content and has a decreased content of alkali and 
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alkaline earth metals (AAEMs) [Kambo and Dutta, 2015]. The main issue is that HTC 

has to happen in a closed system because of the pressure effects when trying to load 

fresh material into the reactor [Abelha et al., 2019]. Additionally, the hydrochar 

produced in HTC is removed as a slurry which requires dewatering and then thermal 

drying. In the most severe conditions, high temperature and pressure and long 

residence times, a solid product similar to bituminous coal is formed.  

Figure 1.12: Van Krevelen from Ronsse, Nachenius and Prins [2015] modified to 

show position of torrefied fuels, biochar and hydrochar 

 

Fig. 1.12, which is modified from Ronsse, Nachenius and Prins [2015], shows 

where the three types of thermally treated fuels fit on a Van Krevelen diagram 

compared to coal. Biochar is resemblant of coal (in terms of composition), hydrochar 

is most like lignite and bituminous coal under extreme conditions whilst torrefied fuel 

is similar to peat and lignite (severe torrefaction).   

1.3.1.4 Washing  

 Biomass washing is focused on removing ash by surface washing and leaching. 

Alkali and alkaline earth metals, Cl, S and N levels are reduced using water or an alkali 

or acid medium [Carillo, Staggenborg and Pineda, 2014]. Removal efficiencies can be 

improved by using, acids and hot water [Carillo, Staggenborg and Pineda, 2014]. 

Washing has been used on agricultural biomass such as straws and grasses but more 

recently fast-growing woods such as short rotation coppice willow [Yu et al., 2014]. 

Biomass grown on contaminated land and waste woods from industry, which are 

higher in heavy metals, have also benefitted from washing making them more useable 
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[Abelha et al., 2019]. Emissions from washed biomass can be improved by removal 

of Cl, S and K which are key to fly ash formation, this reduces PM emissions and can 

reduce the slagging and fouling effects [Gudka et al., 2016].    

1.3.2 Thermochemical Conversion 

1.3.2.1 Combustion  

 Combustion is the reaction of carbon and hydrogen in fuel with oxygen to 

release energy. Combustion can be done with solid fuels, oils or gases, the former is 

the focus of this work. Co-firing of fuels is common in power generation but less so 

in smaller systems such as pellet boilers and stoves. The main products of combustion 

are CO2, H2O, CO and smaller amounts of CH4, NOx, SO2, unburnt hydrocarbons and 

particulate matter [Williams et al., 2012]. The concentrations of these emissions are 

dependent on the combustion system and the fuel.  

 Large scale systems in power stations such as fluidised beds, fixed beds, 

moving grates and pulverised fuel boilers fire the fuel into the combustion zone where 

it rapidly heats up and reacts [Williams et al., 2012]. The hot flue gases heat water in 

a heat exchanger known as a super heater which produces steam to turn the turbine by 

thermal expansion. The flue gases are emitted to the atmosphere after a series of gas 

cleaning stages such as catalytic reduction, electrostatic precipitation and 

desulphurisation [Ndiema, Mpendaoe and Williams, 1998]. Bottom ash is removed 

from the furnace and used as a material in the construction industry or sent to land fill. 

The main obstacle in large scale systems is to increase the rate of heat transfer and 

mixing to increase the efficiency of combustion whilst a continuous feed of fuel is 

being added [Mason, 2016].  

 Smaller localised systems which are designed to supply heat and power to 

communities in areas without access to national utilities also use steam generators and 

boilers. However, the system is much smaller and there are no mills which can reduce 

the fuel particle size, so pellets, chips and coarse fuel particles are directly loaded into 

the boiler by a conveyor system [Nosek et al., 2020]. The boilers are fixed bed systems 

to increase the residence time and improve the conversion efficiency [Limousy et al., 

2013]. Bottom ash often has to be manually removed from the boiler. Because of the 

size restrictions, flue gas abatement technology is usually reduced to a single 

electrostatic precipitator for PM and fly ash, in a few systems flue gas recirculation is 
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used to reduce NOx emissions [Limousy et al., 2013]. Pre-treated fuels are particularly 

useful in these systems to prevent large emissions of NOx and SO2 [Nosek et al., 2020].  

 The smallest combustion systems are domestic stoves. These are used in 

households more commonly for heating but in the developing world they are important 

for cooking [Ozgen et al., 2014]. This includes open fire systems where fuel is placed 

on a slab and combusted with no barrier between the user and the flame. In Europe 

there are over 70 million solid fuel appliances most of which are outdated [Clean Heat, 

2016]. Batches of fuel are loaded into a combustion zone and left to combust until the 

temperature drops when more fuel is added or left until combustion ends. Because the 

system combusts in cycles with a hot flaming phase followed by a smouldering phase 

when the stove cools, emissions do not stabilise and instead peak at different stages 

depending on the radiative forces, temperatures, particle sizes (surface area to volume 

and porosity) and stoichiometry [Roy and Corscadden, 2012]. Commonly, these 

systems have no abatement technology and all combustion is through diffusion which 

means there is more incomplete combustion and emissions can be more varied. Fuel 

composition is critical in such systems to reduce emissions and improve combustion 

performance [Roy and Corscadden, 2012].       

1.3.2.2 Pyrolysis  

 During pyrolysis, fuel is heated in an inert environment (absence of oxygen) 

to produce a mix of char, oil or gas, the relative amounts depending on the temperature, 

heating rate or residence times [Mohan, Pittman Jr. and Steele, 2006]. Table 1.5 

summarises the different operation methods to produce the various products. The oil 

can be used in reciprocating generator engines or converted to produce biofuel such 

as biodiesel, bioethanol or aliphatic fuel oil. The gas produced contains CH4, CO, H2, 

H2O and CO2, there is also a lot of tar and more complex hydrocarbons produced 

which, based on recent research, can be cracked and reformed using plasmas to 

upgrade the syngas [Blanquet, Nahil and Williams, 2019].  
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Table 1.5: Products of various pyrolysis processes [Mohan, Pittman Jr. and 

Steele, 2006]  

Pyrolysis 

Technology 

Residence 

Time 

Heating 

Rate 

Temperature 

(°C) 

Products 

Carbonisation days Very 

Low 

400 Charcoal 

Conventional 5-30 mins Low 600 Oil, Gas, Char 

Fast 0.5-5s Very 

High 

650 Bio-Oil 

Flash-Liquid <1s High <650 Bio-Oil 

Flash-Gas <1s High <650 Chemicals, 

Gas 

Ultra <0.5s Very 

High 

1000 Chemicals, 

Gas 

Vacuum 2-30s Medium 400 Bio-Oil 

Hydro-

Pyrolysis 

<10s High <500 Bio-Oil 

Methano-

Pyrolysis 

<10s High >700 Chemicals 

 

1.4 The Problems with Biomass 

 Biomass is an important part of the transition from fossil fuels to renewables. 

It is widely accepted that biomass will play a vital role in this transition which includes 

using biomass for heat, transport fuels and in power generation. However, there are 

some problems and obstacles with the use of biomass. From a social point of view 

land use change is a great concern. In OECD countries this is changing land use from 

food production to growing energy crops whilst in South-East Asia and South America 

the land use change is from rainforest to energy crop farms [Matthews and Tan, 2009]. 

Legislation in Europe has been introduced to try and prevent the use of energy crops 

grown unsustainably or with a net negative environmental impact, which has increased 

the use of waste and residues [Matthews and Tan, 2009]. Additionally, the felling of 

trees and preventing carbon sequestration in soils is also reducing the sustainability 

credentials of biomass [Spracklen and Righelato, 2016]. Therefore, the 

implementation of biomass requires the use of fuels with better sustainability 

prospects to prevent land use change and minimise the use of trees which act as large 

carbon sinks.   

 As discussed in section 1.2.3, residues and wastes offer an alternative with a 

better sustainability outlook which will help decarbonise the energy sector. However, 

the high variability of biomass is creating air quality concerns particularly from their 

combustion in small scale biomass systems and closed and open stoves. Biomass, 
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compared to coal, has a higher concentration of moisture and volatile matter which 

increases the amount of incomplete combustion and the formation of particulate matter 

[Mitchell et al., 2016] [Price-Allison et al., 2019]. The ash content is also highly 

variable and can often contain high concentrations of volatile metals and inorganics 

such as K, Cl, S, Na and Zn which can increase particulate matter formation [Williams 

et al., 2012]. The use of residues and wastes exacerbate this issue as they can often be 

contaminated with volatile heavy metals such has Cd, Cr, Hg, Pb and Cu. These metals 

are a major health concern risk especially in domestic heating systems where users are 

positioned close to the stove [Valvanidis, Fiotakis and Vlachogianni, 2008].  

 The Department for Environment, Food and Rural Affairs have identified that 

coal and wet wood are responsible the high concentrations of PM2.5 in urban areas 

(more than industrial combustion and transport combined) and have targeted this 

reduction by banning the use coal and all wood must have a moisture content below 

20 wt.% [Mitchell et al., 2019]. In addition to these laws, DEFRA have created an 

approved fuels list which must be adhered to in smoke control zones. There are many 

fuels on the UK market that are not approved on the list including agricultural, 

industrial and food processing residues and conservation biomass because more 

research is required to understand their combustion performance and emissions in 

stove systems. With more research any concerns with the use of these fuels could 

potentially be addressed with either pre-treatment or changes in the physical properties 

of fuels. This will increase the inventory of approved fuels and introduce more 

sustainable fuel sources.   

Pre-treatment of biomass is an area of research with increasing interest. 

Moisture and ash in biomass are undesirable since it reduces the efficiency of 

operations such as transportation and can make storage, handling and combustion 

more difficult. These issues often mean in LCA large amounts of energy are used in 

the preparation (in particular milling) and transportation of biomass [Pfadt-Trilling, 

Volk and Fortier, 2021]. Targeted pre-treatment could resolve these issues improving 

the sustainability credentials and emissions from combustion. Pre-treatment could also 

increase the inventory of fuels available by allowing the use of fuels grown on 

contaminated land (land unsuitable for growing food and in need of remediation).  
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It is clear from current policies and research that there are large holes in the 

effective implementation of biomass in particular in the space heating sector. Whilst 

the UK is a nation that predominantly uses natural gas, there are greater concerns to 

the environment and human health from combustion of solid fuels [BEIS, 2018] 

[Mitchell et al., 2019]. In order to address some of these gaps it is important to assess 

the use of fuels that prevent land use change and deforestation. Additionally, by 

combining the energy sector and other industrial sectors creating biogenic waste, new 

practices and infrastructures can be made to reduce waste and improve the carbon-

balance across the energy and industrial sectors. This also includes biogenic material 

created from conservation and agricultural practices. However, all of this is dependent 

on understanding the performance and emissions of these materials in their end-use 

system, and without this information all of these potential new routes to decarbonising 

the economy are redundant. 
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1.5 Thesis Aims and Objectives 

 As energy consumption transitions to renewable fuels, the use of biomass will 

increase. The only way to fulfil this demand is by using a variety of biomass including 

the use of agricultural and commercial wastes. Biomass for supplementary heat has 

seen a resurgence in the UK in recent years with drivers including decarbonisation, 

economics and aesthetics. However, much of the biomass use has been in open fires 

or poorly controlled, simple stoves, which areVassi impacting air quality particularly 

in urban areas. This has prompted the emergence of novel fuels into the market 

alongside traditional logs and charcoal. This thesis seeks to understand how cleaner 

fuels might be developed particularly from novel sources including food processing 

residues and wastes. Therefore, the aims are:  

1. To study the emissions from combustion of various biomass on a domestic 

stove.   

2. To investigate the impacts of pre-treatment, by torrefaction and washing, on 

the fuel quality. 

3. To assess the suitability of unconventional novel biomass for combustion 

applications. 

4. To evaluate the impact of chemical composition on the emissions and 

performance of various biomass combusted on a domestic stove. 

 

To achieve these aims, the objectives are: 

• To measure the chemical composition of common biomass fuels (willow wood 

logs, short rotation coppice willow, spruce and olive stone), torrefied biomass 

(torrefied willow, torrefied spruce and torrefied olive), washed biomass 

(washed SRC willow) and biomass wastes (spent coffee grounds and bracken) 

by using proximate, ultimate (CHNS) and metal analysis (ICP and IC). 

• To classify the biomass being investigated by comparing to existing data and 

data in standards. 

• To measure the combustion properties (kinetics, burning rate, time length of 

combustion phases and heat release) using thermogravimetric, single particle 

combustion and stove combustion experiments. 
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• To investigate the gaseous and particulate emissions from combustion of all 

the fuels on a domestic stove and to produce a table of emission factors that 

will compare them to current standards. 

• To summarise the fuel properties, chemical and physical, which have the 

greatest influence on the emissions.  

1.6 Thesis Outline 

Chapter 1- This chapter gives an overview of the energy sector and how biomass fits 

into our energy futures. It introduces current problems such as global warming and air 

pollution, what biomass is, why it is important and some of the associated problems 

and current technologies. This demonstrates why the research in this thesis is 

important and relevant to the successful use of bioenergy.    

Chapter 2- Contains a literature review of fuel properties, characterisation, pre-

treatment, combustion on domestic stoves and emissions.   

Chapter 3- Outlines the biomass materials studied and experimental techniques used 

in both fuel preparation and analysis.  

Chapter 4- Compares the composition and combustion of untreated spruce, willow 

and olive residue and their torrefied counterparts. Differences in the chemical and 

physical properties are used to explain the differences in emissions.  

Chapter 5- Presents data from an investigation into the use of spent coffee grounds in 

domestic combustion applications. Composition and emissions from stove combustion 

are used to identify if spent coffee grounds are suitable for domestic use. 

Chapter 6- Examines the agronomy of bracken collected over an annual cycle and 

how it compares to other agricultural residues and traditional biomass.  Their potential 

for use in various combustion systems has been analysed.  

Chapter 7- Analyses the changes in composition from pre-treating SRC willow grown 

on contaminated land by washing and torrefaction and their application in domestic 

systems. 

Chapter 8- Concludes the overall finding and discusses their relation to current policy. 

Future work suggestions are recommended.
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Chapter 2. Literature Review  

  In this thesis the composition and combustion properties of traditional, waste 

(spent coffee grounds and bracken) and pre-treated (torrefied and washed) biomass are 

investigated. The chemical composition of biomass is highly variable and dependent 

on a number of factors including harvesting period, growing conditions, the part of the 

plant and plant genetics. Combustion of biomass is seen as a carbon-neutral 

replacement for coal; however, biomass has a higher moisture content and lower 

calorific value meaning to achieve the same energy production more biomass has to 

be used [Darvell et al., 2010]. Additionally, biomass is often high in alkali metals 

meaning its tendency to form metal aerosols is high. This chapter summarises the 

characteristics of biomass and their combustion properties. Later in this chapter, there 

is an overview of pre-treatment technology and discussion on some of the current work 

on combustion of pre-treated fuels.  

2.1 Characterisation of Biomass 

 To effectively use biomass, characterisation is instrumental. This is a complex 

subject because biomass is so variable, therefore it is constantly under review and an 

area of research interest. Biomass is most commonly defined by its feedstock. The 

International Organisation for Standardisation (ISO) defines five categories in ISO 

17225-1 [2014], which are woody biomass, herbaceous biomass, fruit biomass (fruit 

bearing), aquatic biomass and blends and mixtures. Within the former three categories, 

sub-categories based on whether the biomass is sourced directly from the harvest, a 

by-product, or is a blended product are used to distinguish between biomass of the 

same type but of different qualities. Similarly, Vassilev et al. [2010] collated data from 

many sources for various biomass and instead came to the conclusion that there were 

six categories of biomass which included woody biomass, herbaceous and agricultural 

biomass, aquatic biomass, animal and human biomass wastes (faeces), contaminated 

biomass, and industrial wastes and biomass mixtures. The two key differences 

between the categories defined by the ISO standards and those described by Vassilev 

et al. [2010] are that fruit biomass is included in the herbaceous category and the 

inclusion of biomass derived from industrial wastes such as chipboard, municipal solid 

waste and paper-pulp. The inclusion of wastes that can be used to make solid recovered 
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fuel (SRF) has its own standard, BS EN 15359:2011, which includes a very strict set 

of specifications, classifications and rules for use of such materials.  

 The classification of biomass is of greatest importance when trading solid 

biomass fuels, ISO standards 17225 parts 2-7 [2014]. Low grade fuels with high 

moisture, ash, nitrogen, chlorine and sulphur contents have greater potential for 

emissions of NOx, SO2, HCl and PM as well as a greater tendency of slagging, fouling 

and corrosion, and hence retail at lower prices. Within the solid biofuel trading 

standards, physical properties are also specified. The form in which the biomass is 

supplied is a primary defining feature e.g., briquettes, pellets, chips or logs. Secondary 

to the supplied form, the dimensions, density, particle size, mass of fine material and 

mechanical durability are considered. These features are not only for woody biomass 

but apply to all five categories described earlier. Concentrations of heavy metals (As, 

Cd, Cr, Cu, Pb, Hg, Ni and Zn) are also specified. These are both guides for the quality 

of the biomass as well as regulating limits. These limits are particularly important for 

determining if a biomass is contaminated. 

 Thermally treated biomass, such as torrefied fuels and charcoal, have a 

separate specification [BE EN ISO 17225-8, 2016] which recognises the increased 

energy and ash content. Within this standard, there are two tables which relate to 

woody biomass and the herbaceous, fruit and aquatic respectively. The physical 

properties are not considered within this standard.   

 

2.2 Composition of Biomass 

 The chemical composition is fundamental to understanding and predicting the 

performance of solid biofuels. The chemical composition of biomass is highly variable 

since it is a function of both natural (authigenic and detrital) and anthropogenic (man-

made) processes. Biomass composition is ‘commonly’ defined by three analyses: 

proximate, ultimate and mineral analysis discussed in the following sections. 

2.2.1 Proximate Analysis 

 Proximate analysis measures the moisture, volatile matter and ash contents of 

biomass, the fixed carbon is calculated by the difference, Eq. 2.1, see section 4.3.1 for 

more details. The moisture content of biomass is an important factor as it reduces the 
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energy content and prevents efficient handling, transportation and combustion. 

Moisture can be measured on an as received, air-dried or oven-dried basis, air-dried 

being the most common, and is typically in the range of 3-63 wt.% depending on the 

type of biomass. In some exceptional cases of fresh cut biomass, the moisture content 

can be as high as 80 wt.%. The moisture in plants comes from the living cells and is 

important for the transportation of minerals and glucose [Vassilev et al., 2010].  

𝐹𝐶 (%) = 100 − 𝑉𝑀 (%) − 𝐴𝑠ℎ (%) − 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%)  (2.1) 

 Volatile matter is typically 2.7 times higher in biomass than in coal, ranging 

from 48-86 wt.% db [Vassilev et al., 2010]. Volatiles are the gases and vapours 

released during thermal decomposition, termed devolatilisation or pyrolysis 

depending on the environment. These include carbonaceous species such as CO, CH4, 

unburnt hydrocarbons, PAHs and soot as well as inorganic aerosols and pollutants 

(NOx, SO2 and HCl) [Williams et al., 2012]. Volatiles react in the gas phase through 

homogeneous reactions with oxygen, these reactions occur very quickly and are 

responsible for between 40-70% of the energy released [Williams et al., 2012]. 

Combustion of volatiles produces a luminous flame; the colour of this flame depends 

on the mixing and oxygen availability. Premixing the fuel with pure oxygen produces 

a blue flame (more complete combustion) whereas post-mixing with air produces a 

yellow diffusion flame. Because the reaction in the gas phase is so rapid, the process 

is dependent on the rate at which volatiles diffuse from the biomass and the subsequent 

convection to the combustion zone above the fuel particle surface [Jenkins et al., 

1998]. This is dependent on many factors including the fuel particle size, moisture 

content, residence time, heating rate and temperature [Douglas Smoot and Baxter, 

2003].  

 The ash content in biomass varies between 0.1-46 wt.% db, however it is 

typically below 20 wt.% db for herbaceous biomass and agricultural residue, and 

below 10 wt.% for woody biomass. Contaminated biomass by the definition of 

Vassilev et al. [2010], which includes demolition wood, industrial sludge and furniture 

waste, is much higher in ash because of paints, resins and treatment processes which 

use minerals to enhance the mechanical properties and production processes. Ash is a 

generic term used to describe the remaining mass after a fuel is combusted and is often 

confused with the inorganic matter. Although the ash content is a useful tool for 



36 

 

measuring and predicting the inorganic and mineral content in biomass it is subjective 

to the combustion process. For example, ash yield produced at above 1000C is 

between 20-70% lower than that produced in biomass ash tests at 550C (based on the 

British Standard) [Vassilev et al., 2010]. This is because of the increased phase 

transformations and volatilisation of inorganic species that do not occur at lower 

temperatures. Therefore, it is important to analyse the composition of the ash as well 

as the quantity [Vassilev et al., 2010].    

 Fixed Carbon (FC) is the carbon that forms char after devolatilisation. This 

carbon reacts heterogeneously with air during the char combustion (smouldering) 

stage and makes the char glow due to its exothermicity. There is between 1-38 wt.% 

db of FC in biomass which is a narrower range than compared with coals (between 

20-72 wt.%) [Vassilev et al., 2010]. Because char combustion is a slower process, 

often in smaller combustion systems residual FC is left in the ash, because of reduced 

conversion efficiency.  

2.2.2 Ultimate Analysis 

 Ultimate analysis measures the concentration of five key elements: carbon (C), 

hydrogen (H), nitrogen (N), sulphur (S) and oxygen (O), O is calculated by difference, 

Eq. 2.2. The variation in moisture and ash content has a heavy influence on the 

composition of the five elements, therefore comparisons are usually made on a dry 

ash-free basis (daf). Chlorine (Cl) can be included in elemental analysis; however it is 

measured by a different method and can often be in very low concentrations.  

% 𝑂 =  100 − %𝐶 − %𝐻 − %𝑁 − %𝑆 − %𝑎𝑠ℎ − %𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒  (𝐸𝑞. 2.2) 

 A high C content fuel also has a high energy content, a 1 wt.% increase in the 

carbon content can increase the calorific value by approximately 0.39 MJ kg-1 [Jenkins 

et al., 1998]. The carbon content in biomass (40-60 wt.% daf) is usually lower than in 

coal (60-80 wt.% daf) [Vassilev et al., 2010], however carbon densification can be 

achieved through various pyrolysis processes, discussed in more detail in section 2.4. 

 The concentration of O is the second most abundant in biomass (30-50 wt.% 

daf) but is in lower concentrations in faecal biomass from animals (20-30 wt.% daf) 

and coal (10-30 wt.% daf); in bituminous coals it is below 10 wt.% daf. The O content 

is higher in living biomass because of photosynthesis, O in glucose is used in the 
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make-up of functional groups of cellulose, hemicellulose and lignin [Jenkins et al., 

1998].    

 The H content increases the energy content of a fuel but is present in much 

lower concentrations in both biomass (6-8 wt.% daf) and coal (3-6 wt.% daf) [Vassilev 

et al., [2010]. Similar to O, H is used from glucose to form structural and non-structural 

cellulose, hemicellulose and smaller carbohydrate chains, it is for this reason that there 

is usually a direct correlation between the carbon and hydrogen contents [Jenkins et 

al., 1998].  

 The concentration of N, S and Cl are all typically below 1 wt.% daf in biomass 

but can be higher in certain types of biomass, for example in pepper plants the N 

content is above 3 wt.% and in straws the Cl content is between 0.5-1 wt.% daf 

[Vassilev et al., 2010]. Fuels high in these elements emit NOx, SO2 and HCl. S and Cl 

can be critical in the formation of PM and in slagging and fouling, discussed in 

sections 2.3.2.6 and 2.3.3 respectively. All of these elements are key macronutrients 

in plants, they are critical in the formation of chlorophyll, enzymes, proteins and 

vitamins which regulate a plants system such as the uptake of water, expulsion of 

oxygen and protecting against disease [Jenkins et al., 1998] [Williams et al., 2012] 

[Chen et al., 2010].  

 Fig. 2.1 is a ternary diagram from Vassilev et al. [2010] and demonstrates how 

coals and different biomass elemental compositions vary. As mentioned earlier 

biomass is typically higher in H and O but lower in C, this reduces the aromaticity of 

the fuel and consequently it decomposes more at lower temperatures during 

devolatilisation. As the atomic ratio of H:C and O:C increases, as shown in Van 

Krevelen diagrams for coalification, Fig. 2.2 [Baxter, 1993], the energy content 

decreases. This is why biomass is positioned in the upper right corner of the diagram. 

However, through pre-treatment biomass can move across the diagram towards the 

bottom left corner, this is discussed more in section 2.4.  
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Figure 2.1: Ternary diagram demonstrating the normalised wt.% compositions 

of various biomass and coals from Vassilev et al. [2010] 

 

 

Figure 2.2: Van Krevelen diagram showing the coalification process of biomass 

to coal from Baxter [1993] 
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2.2.3 Inorganics 

 Extensive ongoing research into biomass ash has identified multiple 

technological and environmental problems during utilisation as well as some 

advantages. The main complexity is in its composition which is highly variable and 

dependent on many factors including the genetics and age of the plant, the localised 

growing conditions, extraneous material from harvesting and processing and changes 

during storage and pre-treatment (e.g. leaching) [Vassilev et al., 2017]. The main 

components of biomass are C, O and H, the remaining mass is made of inorganic 

constituents. Species N, S and Cl have already been discussed in the preceding section 

however they commonly constitute the next most common elements and the major 

inorganic elements. Other inorganic elements that are present in biomass include Si, 

Ca, Mg, K, P, Na, Al, Fe, Mn, Ti, Cu, Zn, Co, Mo, As, Ni, Cr, Pb, Cd, V and Hg 

[Boström et al., 2012].  

 Before discussing these individual elements and their role, it is important to 

first review what forms inorganic elements can be present as. Within biomass there is 

a heterogeneous mixture of solid structures (crystalline, non-crystalline and 

amorphous) and fluid (moisture and gases/liquids involved in mineral transportation 

and biochemical reactions) [Bradl, 2005] [Boström et al., 2012]. Based on this 

knowledge, Doshi et al. [2009] defined the speciation of inorganics in biomass into 

three groups: (i) salts that are ionically bound (ii) inorganics that are organically bound 

to carbonaceous material (iii) minerals that occur naturally and extraneous minerals 

such as clays and soils usually associated with harvesting. Some inorganic elements 

such as Ca and P can be present as all three where as others such as Al are only found 

as one species. The form in which an inorganic element is present as well as its 

concentration can be used to predict its transformation during combustion, section 

2.3.3.  

 Chemical Fractionation (CF) is an established method for determining the 

presence of inorganic elements. CF uses a sequential series of leaching experiments to 

determine the solubility of elements in solvents of increasing strength. The main 

advantage of CF is that it can effectively distinguish between elements that are highly 

volatile versus those that remain stable [Baxter et al., 1996]. The main problem with 

CF is that typically only three leaching solutions are used, which can often become 

acidified from organic acids within the biomass, meaning that analysis is broad and 
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lacks the sensitivity for effective composition and bonding determination. 

Additionally, equilibrium effects are often not considered which can have a large 

influence on the result. Doshi et al. [2009] recommends the CEN method for waste 

leaching behaviour as this uses multiple leaching experiments in the fixed pH range 

between 2-12. This provides enough range to ensure maximum leaching of the main 

inorganic elements. Although this method is effective at determining the nature of 

inorganics within biomass, for the analysis in this work in low temperature combustion 

systems, determination and quantification of inorganics from biomass and biomass 

ash is sufficient. 

  The composition of inorganics in biomass is different to in biomass ash. When 

a fuel combusts, the inorganic elements undergo transformations based on their 

volatility, reactivity, structural presence and quantity- these ash transformations are 

discussed more in section 2.3.3 [Boström et al., 2012]. Therefore, it is difficult to 

universally define whether an element is a major or minor inorganic specie, as is the 

case in literature [Vassilev et al., 2017] [Boström et al., 2012]. In this work a flexible 

approach was used, defining each element based on its relative concentration to the 

total inorganic composition. It is important to note that inorganic elements in biomass 

ash are present mostly as oxides as well as small amounts of carbonates, sulphates, 

silicates and phosphates [Williams et al., 2012]. Table 2.1 lists some of the common 

inorganic elements and describes some of the features.  

In addition to the elements in Table 2.1, various trace metals are also present 

in plants, these include Cu, Zn, Co, Mo, As, Ni, Cr, Pb, Cd, V and Hg. Some of these 

elements (Cu, Zn, Co, Mo, Ni and V) are micronutrients and are important in enzyme 

activity, however too much of these elements normally indicates contamination and 

can be toxic. The other elements are more toxic elements which in small 

concentrations reduce the plants growth [Bradl, 2005].    
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Table 2.1: Inorganic elements in biomass 

Element Description  

Si • Both organic and inorganic associations. [a] [b] 

• Take up as silicic acid and precipitates in mostly amorphous 

forms. [c]  

• Some crystalline structures form especially if Al is present to 

co-precipitate. [a]  

• It boosts a plants immunity to fungal pathogens and insects. [d]   

• More enriched in herbaceous biomass. [a] 

Ca • Both organic (e.g. carbohydrates, functional groups of 

carboxylic acids and oxalates) and inorganic (e.g. carbonates, 

silicates and hydroxides) associations. [a] [e] 

• Concentrated in bark and foliage as it co-precipitates with Mn 

to form oxalates. [d] [e] 

• An essential plant nutrient, present as Ca2+ ions to give cell 

walls and membranes structure. [d]  

• Higher concentrations in woody biomass. [a] 

K • Both organic and inorganic associations (similar to Ca). [b] [e] 

• Present as free K+ ions to form ionic salts such as KCl and 

KNO3. 
[a] 

  

• Essential in plant regulation systems e.g. transportation of 

nutrients and water, and control of the stomata for intake of 

CO2 during photosynthesis. [d] [f]  

• Commonly applied as fertilisers. [c] 

P • Present as both organic (e.g. phytates and nucleic acid) and 

inorganic (phosphates, phosphoric acid and water solutions) 

associations. [a] [e]
   

• Free P ions are essential in the production of ATP which 

provides energy to cells. [d]
    

• Commonly applied as a fertiliser. [c] 

• As with Ca, species of P can be as ionic salts, organically bound 

inorganics and in authigenic minerals. [e]
     

Mg • Both organic (e.g. chlorophyll, carbohydrates and phytates) 

and inorganic (e.g. crystalline structures as silicates and 

oxyhydroxides and water soluble ions) associations. [a]  

• Mg is the central atom of chlorophyll molecules and vital for 

plant survival (organically bound). [d] 

• Ionic salts include nitrates, phosphates and chlorides. [a]  

Na • Na concentration is very variable in biomass and is heavily 

influenced by localised conditions. [a] [f] 

• Na occurs in biomass in the same associations as K, however 

these can occur from detrital origin as well as authigenic. [a] [g]  

• Na is not essential in plants but can help metabolise 

chlorophyll. [d] 

• Too much Na is toxic to plants. [d]  

• Typically, only occurs as ionic salts. [e] 
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Al • Most Al measured in biomass comes from extraneous sources, 

mainly soils and clays as aluminosilicates (kaolinite). [a] 

• In acidic soil, moisture in soil causes hydrolysis of stable Al 

ligand complexes to form the Al3+ ion which dominates. [h]   

• This is taken in by the plant through the roots and can form 

organic (organic acids and lipids) and inorganic (phosphates, 

sulphates and fluorides) associations. [b] 

• Al is toxic to plants at low concentrations; however, it is rare 

that free ions dissociate from the stable structures present in the 

soil. [h] 

S • Both organic and inorganic associations. [a]  

• Inorganic S is mainly present as sulphates. [c] 

• It is mainly taken up through the roots as sulphates (this can 

occur naturally but also from the addition of fertilisers). Small 

amounts can be obtained from assimilation of SO2 in the air. [c] 

• It is essential in chlorophyll, proteins, enzymes and vitamins. 
[d]    

Fe • Organic (e.g. organo-metallic complexes, phytoferritin and 

chelates) and inorganic associations (crystalline silicates and 

oxyhydroxides) associations. The latter mostly come from 

detrital origin. [a] [e]  

• It is an essential micronutrient in the structure of all living 

organism’s DNA, as well as chelates which transport nutrients 

and is fundamental in the structure and function of chloroplasts. 
[d]  

Cl • Cl is a highly mobile element used as a charge balance 

compensator and regulates osmotic pressure. It is taken up by 

the roots as Cl-. [a] [i] 

• A lot of chlorine is taken up by plants from anthropogenic 

activities. An example of this is Cl from de-icer salts which run 

off roads and tarmacked areas into agricultural land. [i]   

• Cl is mainly present as Cl- ions in plants. [i]  

Mn • The concentration of Mn can be highly variable depending on 

the plant species. Plants which go through an annual cycle with 

a senescence phase can change colour going a dark 

orange/brown colour from high concentrations of Mn. [j]   

• It can be in both organic and inorganic associations. [a] 

• Mn is an essential micronutrient in plant cell metabolism in 

various cells. It is very important in oxygen-evolving 

complexes in photosynthesis cells. [j]  

Table references: [a] Vassilev et al, [ 2017], [b] Boström et al, [2012], [c] Williams et al. [2012], [d] 

Marschener [1995] [e] Doshi et al. [2009], [f] Jenkins et al. [1998], [g] Bryers [1996], [h] Baxter et 

al. [1996], [i] Chen et al. [2010], and [j] Bradl [2005].  
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2.3 Combustion 

 Since this thesis is focused on utilising fuels in domestic stoves and small 

biomass systems and the associated emissions, this section reviews the properties 

which are generic to combustion but discusses them in relation to such systems.  

2.3.1 Stages of Combustion 

 Defining the stages (phases) of combustion is a challenging task because there 

is no definitive point when combustion moves from one stage to the next. Even on a 

particle level in very fast heating rates one side of a particle could still be drying whilst 

another part has started to release volatiles or turned to char [Trubetskaya et al., 2017] 

[Mason, 2016]. It is universally accepted that there are four stages of particle 

combustion: drying/heating up, devolatilisation (pyrolysis), flaming combustion and 

char burnout. There has been some debate over the presence of more phases, in some 

cases up to seven, however most of these additional stages are often sub-stages of the 

four mentioned previously [Mitchell et al., 2016] [Ozgen et al., 2014]. Fig. 2.3 is a 

very descriptive schematic from Brown [2003] and Jones et al. [2007] based on the 

combustion of small particles in fast heating rate environments.  

Figure 2.3: Stages of combustion for biomass particles between 0.05-4mm in fast 

heating rate environments [Brown, 2003] [Jones et al., 2007] 

 

In stove systems, because the particle sizes are usually much bigger, the 

heating rate is much slower and there is less turbulence, these time periods are much 

longer. Therefore, when low CV value and high moisture content fuel is combusted in 
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such systems, sometimes all four stages can occur at the same time. It is for this reason, 

the stages of combustion are commonly reduced to three principal stages in stoves, 

ignition, flaming and smouldering, based on the macroscale observation [Ozgen et al., 

2014] [Orasche et al., 2012]. This is helpful in the analysis of the conversion, heat 

release and emissions.   

2.3.1.1 Drying and Heating Up 

As discussed earlier, the moisture content of biomass is substantially higher 

than in coal, this can increase the ignition delay time and reduce the thermal output. 

The high porosity of biomass allows for moisture to be released from biomass particles 

within seconds in high heating rate environments. Whilst the particle is drying, energy 

is consumed by the vaporisation of water, this prevents the particle from heating up 

until it is sufficiently dry [Riaza et al., 2017]. This process occurs between 100-200⁰C, 

however from literature on the storage properties of biomass it is accepted that excess 

moisture will start to be removed at lower temperatures [Jirjis, 1995]. 

The moisture in briquettes can be assumed to be uniform as it is a function of 

the individual particles within the volume of the briquette. Some work has suggested 

that moisture within the centre of a briquette is higher because of temperature and 

pressure gradients during briquetting, however these differences are so small, <1%, 

they can be considered negligible [Tanger et al., 2013] [Singh, 2004]. This means that 

the main factors affecting the drying and heating up stage of combustion for briquettes 

are the porosity and density of the briquette. 

Wood logs usually have a large moisture gradient, driest at the outer surface, 

this can be reduced by seasoning and kiln drying before use. The moisture gradient 

can prevent smooth ignition since the temperature is inconsistent across the log. It also 

creates at overlap between the drying and devolatilisation stages, reducing the 

combustion efficiency and increasing the formation of more problematic pollutants 

[Tanger et al., 2013] [Price-Allison et al., 2019]. Smaller logs to increase the surface 

area to volume is the most effective method to improve the rate of drying and decrease 

the ignition delay time. 

 



45 

 

2.3.1.2 Devolatilisation 

 As a biomass fuel thermally decomposes a mixture of volatile organic (CO, 

CH4, CO2, and longer chain and aromatic hydrocarbons) and inorganic compounds (K, 

P, N, S and Cl) elude from the solid particle, this process is called devolatilisation. 

The temperature, particle size, heating rate, moisture and ash content all influence the 

rate of devolatilisation. The flow of gases and vapours from the particle surface creates 

a pressure gradient preventing oxygen and air from reaching the particle surface so 

oxidation reactions do not occur close to the particle during devolatilisation. Pyrolysis 

is the same process but in completely inert environments [Lu et al., 2008].   

 As discussed in section 1.2.2, biomass is made up of cellulose, hemicellulose 

and lignin. The former two are bonded by C-O bonds whilst lignin has lots of linkages 

with O functional groups and C in the aromatic rings. During devolatilisation, many 

of these bonds and linkages break and rearrange forming carbon rich gas molecules 

which escape through pores or by a build-up of partial pressure and forcing their way 

out (more common in coal). At the same time more stable fragments rearrange to form 

new stronger interactions with neighbouring structures, these stronger interactions 

build up to form char particles. Hence, there is competition between solid 

decomposition and char forming reactions which are dependent on the activation 

energy and reaction kinetics of all the competing processes. For biomass the majority 

of the particle mass is lost during devolatilisation [Glassman, Yetter and Glumac, 

2015].   

2.3.1.3 Flaming Combustion 

 Flaming combustion is the rapid oxidation of volatile species after they have 

been released from the fuel particle. Its name comes from the luminous flame that is 

produced from the energy released during the reactions. There is a significant amount 

of overlap between devolatilisation and flaming combustion, mainly because of how 

fast the volatiles oxidise after release. Therefore, it is often easier to use the 

identification of a flame as the start of devolatilisation (ignition) in experimental 

methodology [Riaza et al., 2017].   

 During flaming combustion, the conversion of carbonaceous species is mostly 

by complete combustion, since the temperature, turbulence and thermodynamics 

favour this reaction mechanism. Thus, the main products of flaming combustion are 
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CO2 and H2O. However, there is some incomplete combustion resulting in emissions 

of CO, CH4, unburnt hydrocarbons, PAHs and PM. Emissions of NO, SO2 and HCl 

are also at their greatest during flaming combustion because of their volatility when 

bound to organic structures or present as salts, see Table 2.1 [Mitchell et al., 2016] 

[Williams et al., 2012]. 

 In stove systems, because the system is closed and the fuel bed is fixed, as is 

the case with particle burning experiments, flaming combustion peaks (and burning 

rate) after ignition and then transitions to more char combustion as time progresses. 

This is also accompanied by a change in the emissions, a decrease in CO2 but an 

increase in CO. The main factors which can influence this process are the moisture 

content, the volatile content, the fuel geometry, the physical properties of the fuel and 

the composition of the ash [Ozgen et al., 2014] [Ndiema, Mpendazoe and Williams, 

1998].   

2.3.1.4 Smouldering Combustion (Char Burnout) 

 Char combustion is the slowest of the combustion stages because it is a 

heterogeneous reaction on the char particle surface. This requires oxidising gases to 

pass through the particle boundary layer, adsorb onto the particle surface, react, desorb 

from the particle and diffuse into the bulk gas phase. The main products of char 

combustion are CO2 and CO, Eq. 2.3. On a particle level, if the particle is thermally 

thin, char combustion is mostly a discrete phase but can have a small overlap with 

flaming combustion. Particles with a larger diameter, and a greater distance from the 

particle surface to the core, undergo flaming and char combustion simultaneously. 

This is because heat has to transfer from the outer surface to the centre which results 

in the outer surface turning to char whilst the centre devolatilises. This is an important 

phenomenon since it can influence the emissions [Williams et al., 2012].  

 As mentioned previously biomass particles are naturally more porous, this 

means the oxidising gases can flow through the char structure. Therefore, if the char 

on the surface reacts first then the particle starts to shrink, conversely if reactions 

happen at the centre first the particle becomes more porous and depending on the 

partial pressure of the combustion gases can either look the same size or swell slightly 

[Mason, 2016] [Riaza et al., 2017].  
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 During char combustion multiple inorganic ash transformations occur such as 

vaporisation (K, Na and P), surface migration, coalescence and metal incorporation 

into silicate (glass) structures. Many of these transformations rely on the temperature 

as they require phase transformations [Wornat et al., 1995]. The main factors which 

influence char combustion are the char structure, surface area, particle size, pore 

structure, composition of the ash and the active site concentration [Dooley, 2017]. 

𝐶ℎ𝑎𝑟 +  
1

𝜑
𝑂2 → (2 −

2

𝜑
) 𝐶𝑂 + (

2

𝜑
− 1) 𝐶𝑂2      (2.3) 

 

2.3.2 Pollutants 

 There are multiple pollutants formed during biomass combustion. They all 

originate from the fuel however combustion temperatures, moisture, stoichiometry 

and other elements or compounds can influence the formation mechanisms.  

2.3.2.1 Carbon Monoxide 

 Carbon Monoxide (CO) is a highly toxic gas with a large global warming 

impact. It is mainly formed from incomplete combustion of volatile species after 

devolatilisation and from heterogeneous char combustion reactions, Eq. 2.3. During 

devolatilisation volatile products are released because of the depolymerisation of 

cellulose (300-400C), hemicellulose (250-350C) and lignin (200-600C) [Srifa et 

al., 2019]. The pyrolytic products are a mixture of gaseous volatiles and tars. 

Depending on the factors mentioned earlier in this section, these products can undergo 

cracking, gasification and oxidation reactions forming a variety of gaseous organic 

products, CO is one of the major products of these reactions [Khasraw et al., 2021]. 

 In char combustion, CO is primarily formed by the oxidation of carbon as 

shown in Eq. 2.4. The CO produced can then be converted to CO2 by secondary 

oxidation, Eq. 2.5. This latter reaction is much slower and requires longer residence 

times and higher temperatures. CO can be produced from CO2 by the Boudouard 

reaction, Eq.2.6, this is a redox reaction caused by low O2 concentrations within the 

fuel bed [Dell’Antonia et al., 2012].  
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𝐶 +
1

2
𝑂2 → 𝐶𝑂    (2.4) 

𝐶𝑂 +
1

2
𝑂2 → 𝐶𝑂2    (2.5) 

𝐶𝑂2 + 𝐶 → 2𝐶𝑂    (2.6) 

 In stove systems CO emissions are highest during smouldering combustion. 

Often, they are used to identify the transition from flaming to smouldering combustion 

[Mitchell et al., 2016]. During smouldering combustion low temperatures, poor 

mixing and short residence times prevent secondary reactions, such as the oxidation 

of CO to CO2. High moisture fuels prevent these secondary reactions because of the 

lower temperatures from vaporised water as well as fuel-rich combustion from poor 

air-flow [Roy and Corscadden, 2012].  

2.3.2.2 Methane 

 The origin of Methane (CH4) emissions is a disputed subject. After the 

volatiles are released from biomass, the lighter hydrocarbons (both gases and tars) are 

unstable and further decomposition (decarboxylation of acids and aldehydes) or 

gasification (hydrogenation of CO) can result in the production of methane [Ranzi et 

al., 2008] [Ndiema, Mpendazoe and Williams, 1997]. Therefore, it is difficult to 

determine if CH4 is produced directly from devolatilisation of lignocellulose or if it is 

the product of secondary reactions. In stove systems methane emissions can peak 

because of fuel-rich combustion (fuel overloading) or low reaction temperatures 

[Ranzi et al., 2008] [Ozgen and Caserini, 2018].  

2.3.2.3 Unburnt Hydrocarbons  

 Unburnt hydrocarbons are simply the products of devolatilisation that escape 

by fuel-rich, moist or low temperature pockets in the combustion zone. In stove 

systems high amounts of smouldering combustion and low mixing results in higher 

concentrations of these species being emitted to the environment. Some of these 

unburnt hydrocarbons react in hotter zones to form soot through chemical and physical 

reactions (condensation and coalescence) [Williams et al., 2012] [Ranzi et al., 2008]. 

These combined with inorganic fly ash and char fragments make up particulate matter 

discussed latter in section 2.3.2.6.  
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2.3.2.4 NOx 

 Oxides of nitrogen (NOx) primarily consists of nitric oxide (NO) and nitrogen 

dioxide (NO2). They are formed by three mechanisms:  

• Prompt NOx- N2 in the air reacts with hydrocarbon radicals to form NCN at 

high temperatures (>1300C) and a fuel-rich environment. NCN is then 

oxidised to form NO [Williams et al., 2012].  

• Thermal NOx- Produced at above 1500C, usually in the flame, from the 

reaction of oxygen radicals with molecular nitrogen in the air. The extended 

Zeldovich mechanism, Eq. 2.7-2.9, explains the mechanism for the formation 

of thermal NOx, the main reaction route is dependent on the temperature and 

percentage of excess air.  

𝑂 + 𝑁2 ↔ 𝑁 + 𝑁𝑂    (2.7) 

𝑁 + 𝑂2 ↔ 𝑁𝑂 + 𝑂    (2.8) 

𝑁 + 𝑂𝐻 ↔ 𝑁𝑂 + 𝐻    (2.9) 

• Fuel NOx- This is the oxidation of N bound in the fuel.  

During combustion the majority of emissions are from fuel NOx with a variable 

contribution of thermal NOx depending on the combustion system [Riaza et al., 2019]. 

The contribution from prompt NOx is unclear since previous results in literature are 

inconsistent, however the general conclusion is that the contribution is small 

[Houshfar et al., 2012]. In stove systems NOx emissions are entirely from fuel NOx 

because of the low combustion temperatures and short residence times. Additionally, 

the majority of emissions are in the form of NO (rather than NO2) because of the high 

amount of excess air [Dell’Antonia et al., 2012]. 

Formation of fuel NOx has been extensively described by Williams et al. [2012], 

Fig. 2.4. N in biomass is present in many forms, mostly as proteins as a mixture of 

linear and aromatic molecules. During combustion nitrogen is partitioned between 

volatile products (as NH3 and HCN), tars and char, this is dependent on the 

environment, temperature and heating rate. For biomass, most of the nitrogen is 

released as volatiles [Riaza et al., 2019].  
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Figure 2.4: Mechanisms for NOx formation from fuel N [Williams et al., 2012] 

 

During devolatilisation, decomposition of linear molecules tends to form NH3 and 

HNCO whilst aromatic molecules decompose to HCN [Ren et al., 2011]. However, 

this is also dependent on the temperature, particle size and presence of minerals 

(especially K). These precursors react through multiple mechanisms to form NOx 

species depending on the stoichiometry [Williams et al., 2012]. 

Char N in biomass is more complex and less understood, however it is believed to 

be similar to char N in coal. Although some research has suggested that HCN 

precursors are formed during char combustion, direct oxidation of N at active sites to 

NO is the more widely accepted mechanism for biomass [Molina et al., 2009] 

[Backreedy et al., 2003]. NO formed in the pores of the char can be reduced to N2 by 

carbon atoms because of the long residence time to diffuse from the char structure 

[Wang et al., 2016]. This process is suspected to be catalysed by the presence of 

minerals (mainly Na) [Wang et al., 2016].  

2.3.2.5 Sulphur Dioxide 

 Sulphur Dioxide (SO2) is formed from the oxidation of S. S is present in 

biomass in both organic, such as cysteine and methionine, and inorganic forms 

[Knudsen et al., 2004]. Fig. 2.5 from Johansen et al. [2011] shows the mechanisms for 

organic and inorganic S release from biomass. During devolatilisation, high 

temperatures increase the S released because of the reduced mass of char produced. 

Inorganic elements Ca and K have a high affinity for S at low temperatures (<800C) 

and efficiently form metal sulphates which retain the S in the ash. If the Si 

concentration is high, as the temperature increases (>800C), Ca and K have a higher 

affinity to form silicates which results in the S being released from the ash. Char 

destruction can also cause S to be released however this S has not reacted to form 

metal sulphates [Johansen et al., 2011] [Han, Gao and Qui, 2019]. Some of the SO2 
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can react with KCl in slags formed in superheater systems creating a highly corrosive 

eutectic which releases Cl2 (g) or HCl (g) [Van Lith et al., 2009]. In stove systems, 

low temperatures and inconsistent combustion across the fuel bed means that only a 

small percentage of the S in the fuel is converted [Roy and Corscadden, 2012]. 

Figure 2.5: Formation routes for SO2 in biomass combustion [Johansen et al., 

2011] 

 

2.3.2.6 Particulate Matter 

 Particulate Matter (PM) is the solid matter that is entrained in the flue gas. It 

can consist of soot, tar, char fragments, fly ash and condensed volatile heavy metals. 

Soot is formed by a series of complex reactions from unburnt hydrocarbons starting 

in the flame. The species and nature of soot formed is dependent on the flight path 

from the combustion zone to being emitted into the environment and its continued 

path in the atmosphere. The two most common soot forming mechanisms are the 

HACA (hydrogen abstraction, C2H2 addition) and CPD (cyclopentadiene) routes 

[Fitzpatrick et al., 2008]. In the former, light hydrocarbons from the pyrolysis of 

cellulose are not combusted and through pyrosynthesis reactions form acetylene 

(C2H2) molecules, these molecules form benzene which grows by successive additions 

of C2H2 into polycyclic aromatic hydrocarbons (PAHs). The CPD route originates 

from the pyrolysis of lignin which produces larger aromatic molecules from lignin 

monomers, in particular phenols. These lignin monomers undergo cracking and 

decomposition reactions to form cyclopentadiene (CPD) and CO [Fitzpatrick et al., 

2008]. CPD is highly reactive, much more so than its parent phenol, so it quickly reacts 
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to form one ring or two ring compounds such as benzene, toluene, indene or 

naphthalene. These species then can grow by either the HACA method or addition of 

other hydrocarbon radicals [Fitzpatrick et al., 2008]. In biomass combustion because 

the oxygen content of the fuel is so much higher, oxygenated PAHs can also form 

[Fitzpatrick et al., 2007] [Williams et al., 2012]. Confined PAH growth results in 

condensation and agglomeration of fine spherical carbon-rich particles- i.e. soot (black 

carbon). 

 The soot species formed from the combustion zone can have adsorbed VOCs 

forming hydrophilic surfaces which are very effective sites for condensation of 

organic compounds such as tars. As the tar condenses onto the particle surface it can 

either coalesce and form an even sticky coating around the particle surface or 

agglomerate where it sticks to a point on the soot particle. These processes depend on 

the viscosity of the condensing tar which is a function of the temperature when it 

condenses and the length/interactions making up the tar [Lea-Langton et al., 2015] 

[Jones et al., 2018]. This carbonaceous PM from stove combustion consists of both 

black and organic carbon.   

 The biochar produced after devolatilisation of biomass has a very porous 

structure. Char is very brittle and with the porous nature of biochar it can fracture 

easily. These fragments can be entrained into the flue gas and if the path is through 

fuel-rich pockets in the combustion system they can avoid being combusted and 

instead emitted as char fragments. Depending on the temperature and flight path these 

fragments can agglomerate with sticky tar and condensed inorganic surfaces 

increasing the particle size [Fine, Cass and Simoneit, 2002] [Freeman and Cattell, 

1990] [Fitzpatrick et al., 2008] [Williams et al., 2012].  

 Inorganic contributions to particulate matter are highly variable depending on 

the combustion system. Inorganic elements (particularly K, S, Cl, Si, Na, Al, Ca and 

P) can nucleate new particles or aid in the growth of existing particles. Heavy metals 

species such as Zn, that are volatile, can also be significant contributors to PM. These 

routes are discussed in more detail in section 2.3.3 [Sippula et al., 2009]. 

 Particulate matter from stove combustion is an important area of research since 

small combustion devices are less likely to have abatement technology and the 

majority of PM is sub-micron size. Poor mixing and lack of control (heating rate, air 
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flow and temperature) in stoves means that PM emissions are much higher than in 

larger systems. Additionally, fuel properties such as moisture, mineral content, particle 

size and the composition of volatile products can increase the PM emissions [Williams 

et al., 2012] [Mitchell et al., 2016].   

2.3.3 Entrained Metal Aerosol Emissions 

 Metals in the ash of biomass can be entrained into the flue gas by vaporisation 

and condensation or through convective turbulence of particles in the ash. The former 

is the more prominent method for aerosol formation where volatile species are 

vaporised during flaming combustion and carried out by the hot flue gas [Williams et 

al., 2012]. As the flue gas cools it becomes supersaturated and, depending on the 

volatility of the species, aerosols form from homogeneous nucleation and 

heterogeneous condensation [Doshi et al., 2009]. These processes form very fine 

particles which can grow from surface reactions, agglomeration and coagulation 

[Sippula et al., 2009].  

 Coarser inorganic particles can form from reactions in the bottom ash. Species 

in the bottom ash are present in varying amounts and as various complexes depending 

on the composition in the original biomass and what has been removed in the early 

stages of combustion. The mixture of these compounds forms a unique structure where 

the phase transformation point is at a lower temperature than any of the phase 

transition points of the individual compounds. This means stable elements, such as 

silicon and calcium, can be vaporised at lower temperatures [Boström et al., 2012] 

[Roberts et al., 2019] [Doshi et al., 2019].    

 Although fly ash is typically used to described large ash particles which are 

entrained into the flue gases, more common in large scale utilities, in this work the 

term is used to described inorganic particulates.  

 The volatility of inorganic elements is one of the most important factors in 

determining ash transformation reactions. At low temperatures K, Cl, S, Na and P all 

vaporise, they also constitute a large proportion of the inorganic composition of 

biomass and thus the fly ash. Finney et al. [2018] reported that K aerosols were on 

average 6.5 times higher from biomass combustion than coal. Mason [2016] 

combusted single particles of biomass and coal and monitored the potassium release 

throughout, the results showed that the higher volatile content of biomass caused a 
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spike in the K released during devolatilisation. A smaller peak is observed during char 

combustion but the intensity is much lower.  

 The Cl in biomass is very soluble and entirely removed in water leaching, this 

means it is very mobile. Cl and K are particularly reactive and are usually the most 

dominant alkali species in the PM formed during stove combustion because of the 

lower combustion temperatures [Boman et al., 2004] [Jöller, Brunner and 

Obernberger, 2005]. Cl also reacts with more stable metals reducing the temperature 

at which they condense such as Cr, Mn, Ni, Cu, Pb and Zn [Zając, Szyszlak-

Bargłowicz and Szczepanik, 2019]. During combustion organically bound S reacts to 

form SO2 at low temperatures, this SO2 plays an important role thermodynamically in 

the mobility of metal species. Jiménez, Pérez and Ballester [2008] show that as the 

SO2 concentration increases, Mn and Fe are fixed more into the bottom ash however 

later work by Zając, Szyszlak-Bargłowicz and Szczepanik [2019] show that this 

correlation only applies to Fe.  

Figure 2.6: Gas phase equilibrium of the most common fly ash forming species 

[Jöller, Brunner and Oberberger, 2005].  

 

Temperature has been shown to have the greatest influence on the formation 

of alkali salts during combustion. Fig. 2.6 from Jöller, Brunner and Obernberger 

[2005] shows the equilibrium gas phase specie formation of the most common 

inorganic aerosols. Between 750-900C chlorides are sulphated and condense; this 
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means fly ash is dominated by K2SO4. At lower temperatures chlorides are largely 

present (KCl and NaCl) however depending on the oxygen content the formation of 

carbonates and oxides are also prevalent.   

Figure 2.7: Relative volatility of heavy metals [Gudka et al., 2016] 

 

Trace elements such as heavy metals are a current area of high interest since 

they can be very volatile and, without removal technology, their emission is a serious 

threat to public health. Fig. 2.7 from Gudka et al. [2016] shows the relative volatility 

of heavy metals. Zn is a prominent heavy metal in most biomass in much higher 

concentrations than other heavy metals. There is a lot of literature on the role of Zn in 

PM formation as it is a fairly mobile species. Torvela et al. [2014] used Transmittance 

Electron Microscopy (TEM) imaging coupled with Energy Dispersive X-ray analysis 

(EDX) to determine the size and composition of ultrafine PM collected from a 40kW 

boiler burning wood chips from different types of combustion (efficient, intermediate 

and smouldering). The conclusion from this analysis was that ZnO condensed first 

from the gas phase to form a nucleus that other inorganic species could condense onto. 

Earlier work from Boman et al. [2004] also concluded that Zn played a major role in 

the formation of fly ash in PM by analysing (SEM-EDX) PM collected on filters using 

gravimetric impactors from a 3kW boiler fired with various biomass pellets. Wiinikka, 

Grönberg and Boman [2013] also came to the same conclusion from sampled PM in 
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wood stoves. In more recent work there has been some contention over the nature of 

Zn in biomass and whether it is all in a mobile state based on its comparison with coal. 

Finney et al. [2018] using online measurements (ICP-OES) at a pilot scale pulverised 

fuel combustion plant analysed heavy metals produced from firing coal and biomass. 

Although the concentration of Zn in the biomass was considerably higher the 

emissions were the same. However, it is accepted that increases in temperature 

increase the vaporisation of Zn which could explain the measured differences [Zając, 

Szyszlak-Bargłowicz and Szczepanik, 2019] [Jiménez, Pérez and Ballester, 2008].   

2.3.3.1 Slagging and Fouling 

 In large utility systems slagging and fouling from ash transformation reactions 

is a major problem as it reduces power station efficiency and in extreme cases can 

cause shutdown. To investigate the potential of a fuel to cause slagging and fouling 

there are various methods including ash fusion tests (AFT), slagging and fouling 

indices and sinter strength tests. The AFT is the British Standard method (BS EN ISO 

21404:2020) which determines four characteristic temperatures, these are discussed 

more in section 3.4.6, of a cylindrical test piece made from ash which is heated at a 

constant rate. AFT are important because they determine the temperatures at which 

ash deposits transform into slags and therefore the suitability of fuels to various 

applications. The main disadvantage with AFT is that analysis of the results lacks 

accuracy and reproducibility because it is determined by the human eye. 

Advancements have been made to try and improve the reproducibility by using 

computational software models to monitor changes [Tambe et al., 2018]. However, 

there are still issues with these methods especially when applied to biomass because 

of swelling effects.   

 Slagging and fouling indices use chemical composition data to determine a 

numerical value which describes the probability of slagging occurring. Various 

models have been proposed including the base to acid ratio (Rb/a), the alkali index (AI) 

and the slagging viscosity index (SVI), Eq. 2.10-2.12. Slagging and fouling indices 

are useful as they can be tailored to assess certain parameters of the slagging and 

fouling process. Their disadvantage is they are often an oversimplification and don’t 

consider the impacts of temperature, heating rate or other inorganic constituents which 

may also influence the formation of slags [Roberts et al., 2019]. 
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𝑅𝑏 𝑎⁄ =
(𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 + 𝐾2𝑂 + 𝑁𝑎2𝑂)

(𝑆𝑖𝑂2 + 𝑇𝑖𝑂2 + 𝐴𝑙2𝑂3 + 𝑃2𝑂5)
   (2.10) 

𝐴𝐼 =
𝑥𝑓

𝑎(𝑥𝑎
𝐾2𝑂

+ 𝑥𝑎
𝑁𝑎2𝑂

)

𝐻𝐻𝑉
  (2.11) 

𝑆𝑉𝐼 = 100 × [
𝑆𝑖𝑂2

𝑆𝑖𝑂2 + 𝐹𝑒2𝑂3 + 𝐶𝑎𝑂 + 𝑀𝑔𝑂
]   (2.12) 

For the base to acid ratio, Eq. 2.10, a value of <0.5 means the fuel has a low 

slagging probability, >1.0 means a high slagging probability and between the two there 

is a moderate probability. The Rb/a is a simple model which considers the interactions 

of acidic and basic compounds. This model is based on the principle that alkali species 

are more volatile and therefore their increased concentration will increase the slagging 

propensity unless there are acidic species to react with which increases the temperature 

at which these species melt.  

In Eq. 2.11, x is the mass fraction, a is ash and f is fuel. The AI represents the 

quantity of alkali oxide per unit energy of fuel (kg alkali GJ-1). The upper threshold is 

0.34 kg alkali GJ-1 (high probability of slagging) and the lower threshold is 0.17 kg 

alkali GJ-1 (low probabilty of slagging). 

The slag viscosity index (Eq. 2.12) represents the percentage silica in the sum 

of the basic components in the ash excluding the alkali species. Although this is not 

directly a measurement of the viscosity of a slag, past work has shown that eutectic 

compounds low in silica form very hard ceramic slags- this is because the flow 

properties of low silica compounds are more isotropic [Garcia-Maraver, 2017] [Park 

and Min, 2016] [Pronobis, 2005]. The resultant number of the slag viscosity index is 

an indication of the difficulty to remove these compounds. Values greater than 72 have 

a low slagging propensity whilst values less than 65 have a high slagging propensity.  

 More recently the focus has shifted to not only understand the propensity of 

slagging and fouling but also to try and understand the physical properties of the slags 

formed. This is useful to power stations as it allows them to plan maintenance and also 

understand how effective some of their technology solutions are at removing slags 

such as soot blowers. For these reasons sinter strength tests are increasing in 

popularity. These tests form cylindrical pellets of ash which are gradually heated to 
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simulate the formation of a slag deposit. To determine the sinter strength, the pellets 

are compressed at a gradually increasing pressure. The point at which they fracture 

determines the strength of the slags formed [Roberts et al., 2019].    

2.4 Stove Combustion 

 Current literature on stove combustion is sparse and further research is needed 

to understand how such systems operate and the relation between operation and 

emissions. This includes analysis of various fuels on such devices and the influence 

of fuel properties, both chemical and physical, on emissions. This section explores the 

current literature on this subject.  

2.4.1 Stove Combustion Tests 

 Stove combustion tests are difficult to perform. This is mainly because of the 

large number of variables that have to be controlled in order to produce a reproducible 

result. For the results to be valid methods have to use various measurement techniques 

and measure multiple parameters including burning rate, temperature, flue gas flow 

rate and visual assessments of the combustion phase.  

There is no uniform method for performing combustion tests and there is a 

large disparity between international standard tests and tests performed in research. 

The British Standard (BS EN 13240/PD 6434) sets the stove up within a trihedron 

from which the flue gas is sent up a stack and emissions can be measured by sampling 

directly through a suction pyrometer probe. The method uses a single batch of fuel 

that is loaded into the stove, ignited and then left until the fuel burns out, during this 

time the stove door is not opened and the fuel bed is left untouched. Emissions are 

measured over the time period when the stove is at its nominal thermal output. Repeat 

experiments are used to show the reproducibility of the results. The main advantage 

of this method is all the variables are controlled except for the fuel and the type of 

stove which means results can be reliably compared and are easier to reproduce. 

However, this assessment of stove performance and emissions is unrealistic, the main 

issue being it doesn’t account for the potential operational differences or the transient 

periods such as heating up or char burnout, assessment is at a steady state.  

  An alternative method is the European-German Standard (DIN EN 13240), 

which uses the same experiment set-up however multiple fuel batches (at stove 

nominal heat output) can be used in the assessment of thermal performance and 



59 

 

emissions. This is defined by the running time which must exceed a certain length of 

time for the test to be valid. However, by again only considering the emissions at the 

nominal thermal output, the method still does not account for the transient phases.  

 Most commonly in current research hybrid methods are used. Ozgen et al. 

[2014] developed one of the first methods where a ‘real-life’ combustion cycle is 

defined. This method using a start-up batch of kindling which after 20 minutes is 

loaded with a nominal fuel load. After an hour a second batch is added and a third 

batch is loaded after another subsequent hour. The analysis is conducted over 45 

minutes after the stove has stabilised in temperature from each fuel load. This method 

assesses more of the combustion time period and does consider more of the transient 

phases however it fails to assess the periods of low turbulence and non-homogeneous 

temperature variations when reloading.  

 Li et al. [2020] used a variation of this method by continually monitoring 

emissions for a 24-hour period. This included any reloading periods and accounts for 

all the transient effects. This method similar to the method by Ozgen et al. [2014] 

dilutes the flue gas sample before analysis. Klauser et al. [2018] demonstrated that the 

method of analysis can have a big influence on the results and therefore compared to 

the methods described in standards it is very difficult to compare emission factors from 

different experiments and from different researchers. It is therefore imperative that a 

method is developed around the objectives of the experiment.     

2.4.2 Emissions from Stove Combustion 

 Although there has been some discussion related to this area in section 2.3.2, 

this section develops the areas of research interest and the conclusions that have been 

developed.  

  Assessment of the variables which influence emissions is a growing area of 

interest. Roy and Corscadden [2012] showed that thermal efficiency increased when 

using briquettes and this resulted in lower amounts of incomplete combustion. 

Peterson et al. [2011] also observed the same result when comparing pellets and logs. 

The main reason for the improved combustion performance for briquettes and logs is 

the increased surface area to volume ratio. However, this effect, particularly for the 

briquette and log comparison, is dependent on the rate at which the briquette 

disintegrates. This is an area that has not been addressed in current literature.  
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 Following this point the rate at which a briquette disintegrates is influenced by 

the use of binders which can also influence the emissions. This was a result tested by 

Potip and Wongwuttanasatian [2018] for a crude glycerol binder and showed that the 

increased addition of the binder increased the rate of combustion and the temperature. 

A review by Olujbade, Ojo and Mohammed [2019] also states that the majority of 

binders increase the combustion rate and thus has an impact on emissions by 

increasing the amount of complete combustion. However, this review does suggest 

that the selection of binder has to be carefully considered as minerals in the binder can 

negatively influence the particulate emissions by increasing the volatility of metals. 

  Although other physical factors have a strong influence on the combustion 

performance such as air flow, fuel chemical factors are an area of high interest. 

Mitchell et al. [2016] demonstrated that most of the emissions are related to chemical 

fuel properties. These correlations include fuel-N to NOx, S to SO2, volatiles, K and 

C/O to PM [Roy and Corscadden, 2012] [Orasche et al., 2012] [Ozgen and Caserini, 

2014]. Previous work has demonstrated certain aspects of these correlations however 

a total assessment and comparison of these correlations has not been explored. 

Additionally, research into other correlations such as those related to CH4, metals and 

soot are still sparse [Atiku et al., 2017] [Finney et al., 2018].  

2.5 Pre-Treatment 

 Historically pre-treatment of biomass was focused on optimisation of chemical 

and physical properties and energy density to enhance the performance and improve 

the feasibility of using biofuels over fossil alternatives. However, because of more 

stringent regulations and pressing concerns over the state of the environment, pre-

treatment has evolved to focus on producing the cleanest fuels, in terms of emissions, 

and increasing the diversity of fuels available.  

2.5.1 Torrefaction 

 When a fuel is torrefied the mass loss from removal of moisture and low CV 

hydrocarbons, from decomposition of hemicellulose and cellulose, is greater than the 

energy lost from these species. Dhaundiyal et al. [2021] estimates the mass loss is 

approximately 30% and the energy loss is 10%, however, in reality, these losses are a 

function of the torrefaction process, the severity of torrefaction, the type of biomass 

and the ash composition, in particular K [Chen et al., 2021]. 
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During torrefaction, depending on the severity, volatile products from low 

temperature pyrolysis are released, this reduces the reactivity of torrefied fuels. During 

combustion this shortens the devolatilisation period and increases the mass of char 

produced. The char produced is enriched in C but depleted in O, additionally it is less 

porous and has a reduced surface area [Li et al., 2015] [Lu et al., 2008] [Chen et al., 

2017]. The conversion time for char combustion is dependent on the mass of char 

however the reactivity of char produced is disputed. Lu et al. [2017] observed no effect 

from torrefaction on the reactivity of wood char particles however, Chen et al. [2017] 

saw a reduction in the reactivity during gasification of straw char. Reduced reactivity 

may be observed because of reduced porosity or carbonisation both of which reduce 

the reaction surface area and thus the rate of external heat and mass transfer [Lu et al., 

2016]. 

 The impact of torrefaction on the formation of soot and PM is an area of high 

interest. Torrefaction can impact on the formation of soot by changing the volatile 

species released during devolatilisation and changing the partitioning of key ash 

species. Results from Akinrinola [2014] and Atiku et al. [2016] demonstrated that 

torrefaction lowers the amounts of key soot forming species during devolatilisation, 

such as eugenol and vanillin (which increase soot formation as they can form soot by 

both the HACA and CPD mechanisms) [Fitzpatrick et al., 2008]. Additionally, at 

lower temperatures, when combustion is less efficient, torrefied fuels produce less 

naphthalene and anthracene which are soot precursors [Atiku et al., 2016] [Fitzpatrick 

et al., 2008]. This was observed in stove combustion studies by Mitchell et al. [2016] 

where the PM emissions during flaming combustion were substantially lower for 

torrefied briquettes.  

 Inorganic elements discussed in section 2.3.3 are very influential on the 

formation of fly ash which is present in PM. During torrefaction the ash content is 

concentrated [Akinrinola, 2014] however the constituent ash species can vary 

depending on the peak temperature. At low temperature pyrolysis Cl and S can be 

vaporised [Williams et al., 2012] [Johansen et al., 2011] and K can be bound into 

carbon structures [Mason, 2014] [Lu et al., 2016]. This reduces the release of volatile 

inorganic species and increases the partition of some species into the char and ash 

[Atiku et al., 2016].  
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Nitrogen partitioning is also a consideration in torrefied fuels. Akinrinola 

[2014] found that N is lost monatomically with C, however the overall effect is that N 

is concentrated in torrefied biomass. Trubetskaya et al. [2019] found that the increased 

N content in torrefied olive partitioned more into the char during combustion and was 

released forming N2 instead of NO. Conversely Meng et al. [2020] saw the opposite 

effect when combusting raw and torrefied distillery grains and rice husks, emissions 

of NO increased. Further work is needed to understand these partitioning properties 

and the impacts torrefaction can have.    

2.5.2 Washing  

 Biomass rich in carbon but low in moisture and ash is desirable in combustion, 

however there is not a surplus in availability of high-quality biomass and social 

limitations prevent the overuse of agricultural land to grow energy crops [Harvey and 

Pilgrim, 2011]. Therefore, a more diverse source of biomass that is high in alkali 

metals, S and heavy metals must be considered to transition away from fossil fuels. 

Washing is one of two methods, hydrothermal processing being the other, that can 

reduce the ash content, removing undesirable inorganic species, and improve the 

conversion of biomass.   

 Inorganic species in biomass vary in mobility/solubility, as discussed in 

sections 2.2.3 and 2.3.3. Chemical fractionation experiments, section 2.2.3, have 

shown that water washing will only remove certain elements if they are present in 

forms that will leach into water. Carillo, Staggenborg and Pineda [2014] showed that 

50-90% of alkali metals in biomass are in a water-soluble form. Runge, Wipperfurth 

and Zhang [2013] observed similar removal efficiencies (60-75%) but also a 25% 

increase in the energy density when using hot water washing of poplar wood, corn 

stover, switchgrass and miscanthus. Deng, Zhang and Che [2013] measured a removal 

efficiency of over 80% for K, S and Cl when water washing rice straw, wheat straw 

and cotton stalk agricultural residues which was consistent with results using the same 

method and fuels as Jenkins, Bakker and Wei [1996]. Therefore, there is good 

consistency in previous research that water washing can remove the most problematic 

inorganic species.  

 More recent work has focused on the factors that influence the removal 

efficiency and rate of removal [Abelha et al., 2019] [Schmidt et al., 2020] [Bandara, 
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Gamage and Gunarathne, 2020]. It was concluded that particle size has the greatest 

influence on the removal efficiency whilst the water temperature improves the water 

capacity. Abelha et al. [2020] combined washing and torrefaction, based on a 

comparison with hydrothermal carbonisation, to both reduce the ash but also to energy 

densify the fuel and mitigate any organic losses. The combination of the two 

techniques reduced PM emissions by more than 50% for straw, miscanthus and road-

side grass combusted in a drop tube furnace. Wang et al. [2020] observed a similar 

trend for PM1 emissions for rice straw, by hot water washing followed by torrefaction, 

because of the removal of K, Cl, S and Si during combustion in a high temperature 

drop tube furnace. However, if too much Si was removed emissions of PM1-10 started 

to increase from char fragmentation.  

 Some careful consideration must also be taken as to the organic losses since 

these can have the negative effective of reducing the energy content. Long, Deng and 

Che [2020] measured the organic content of the water leachate from washing various 

agricultural residues at increasing temperatures (30/60/90C). The results show that at 

the hotter temperatures more aromatics and alkenes were present in the leachate which 

could influence the volatile yields in the early stages of combustion however the 

energy content was relatively unaffected.     

 Gudka et al. [2016] currently is the only review of existing literature on 

washing pre-treatment processes. Interestingly in waste wood pre-treatment high 

removal efficiencies of heavy metals species such as Cd, Cr, Pb and Zn were observed. 

In waste wood these elements are in high concentrations because of adhesives, 

additives, paints and resins used in their preparation. Some leaching of these elements 

was observed however intriguingly it was believed that the majority was removed as 

solid residue such as flakes of paint. Currently little research has investigated filtering 

off these solid fines and analysing them, the application of which could determine the 

feasibility of water pre-treatment processes because of the reduced environmental 

risks from disposing of the leachate.   

 Water pre-treatment of biomass is an important, current area of research and 

has shown large improvements in PM emissions from reduced concentrations of 

inorganic species. Further work is required to assess the removal efficiencies of heavy 

metals and to also analyse how this will impact their fate in combustion applications. 
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2.6 Conclusions  

 It is clear from previous research that more experiments are required to 

understand the performance and emissions from stove combustion.  However, the 

approach needs to be targeted at specific objectives. In the case of this work the 

objective is focused on fuels and how fuel properties effect emissions.  Currently most 

research has explored the use of wood fuels in stoves and compared them to traditional 

fuels such as coal and charcoal. However, there is little work on alternative fuels such 

as agricultural residues and biogenic wastes. Exploring these alternatives fuels is one 

of the objectives of this thesis.  

As discussed in section 2.4.2, previous research as made correlations between 

certain fuel chemical properties and the emissions from combustion. Further testing 

of these correlations is important in order to effectively investigate the suitability of 

alternative fuels and to also aid the development of future fuels. Using other 

combustion and composition analytical methods the understanding of these 

correlations’ can be developed further.  

These objectives can also address some specific research gaps. Currently there 

is no study directly comparing the performance of raw and torrefied fuels on a 

domestic stove.  This is a very sought-after study because it could address some of the 

air quality problems with stove systems by utilising existing technology.  Furthermore, 

technologies such as washing which historically was used as a method to prevent acid 

rain could provide answers to the development of premium fuels which would help 

decarbonise heat and prevent air quality problems.  

Finally, it should be noted based on section 2.4.1 that the definition of a 

combustion cycle has varied between research and standards. This is particularly 

challenging when trying to compare results and define appropriate fuels for fuel 

inventories. In this work it was important to consider the whole fuel cycle including 

the whole time period around reloading. This is so all the transient periods common 

in real life stove combustion are accounted for. 
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Chapter 3. Materials, Experimental Methods and 

Equipment  

 

3.1 Introduction 

 This chapter summarises the fuels studied and the experimental methods used 

in the analysis. The following sections are split to discuss the fuels investigated 

(section 3.2), the sample preparation (section 3.3), characterisation analysis (section 

3.4), combustion experiments (section 3.5) and pre-treatment methods (section 3.6), 

in that order. The fuels investigated are discussed based on the chapter in which they 

are studied. Although this thesis is focused on the application of these fuels in stove 

systems, additional combustion experiments are used to further define the attributes 

of the novel and pre-treated fuels. Only two forms of pre-treatment were studied, 

torrefaction and washing. These methods are discussed for the experimental work that 

was conducted at the University of Leeds. There is some discussion on errors 

throughout the following sections.  

 

3.2 Fuel Samples and Descriptions   

In this study various fuels have been sourced to compare their properties and 

suitability for combustion with a focus on their application in domestic stoves. The 

fuels used can be sourced in reasonable quantities in Europe. The fuels used in each 

chapter are explained in more detail in the following sections.  

3.2.1 Fuels used in Chapter 4  

 The fuels in this chapter were selected based on a single criterion, their 

commercial availability to be combusted on domestic stoves. Spruce and willow are 

common woods used for logs on stoves and in biomass boilers. This is largely because 

of their fast growth and their potential to supply the increasing demand. Briquetted 

fuel is a rapidly growing market, most commonly this is briquetted sawdust and 

industry processing residues, however food and agricultural briquetted residues are 

taking an increasing market share. In 2017-18 there was 2,186,000 tonnes of olive oil 

manufactured in the E.U. [European Commission, 2019]. Solid waste products can 

make up 30% of the process output by volume [Fernández-Bolaños, 2006]. The high 
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production of olive waste presents an opportunity for economic gain by converting the 

waste to a product. Spruce, willow and olive stone, and their torrefied counterparts 

were sourced for comparative analysis, Fig. 3.1a-f. For the spruce and willow the 

torrefied form was sourced from a different supplier to the original wood, this is 

because of the few suppliers who can provide untreated and torrefied fuels. For the 

olive stone, the same source of olive stone was used to make the torrefied form. Details 

of all six fuels are listed in Table 3.1. The torrefaction processes for the torrefied fuels 

are: (a) torrefied spruce, heated up to 260C for 30-40 minutes, (b) torrefied willow, 

heated up to 250-260C for 90 minutes, (c) torrefied olive, heated up to 280C for 100 

minutes. 

Figure 3.1: Fuels used in Chapter 4, (a) Aberdeenshire spruce wood (b) torrefied 

spruce wood (briq.) (c) white willow (d) torrefied willow (briq.) (e) olive stone 

briquettes (briq.) (f) torrefied olive stone briquettes (briq.) 

 

a) b) 

c) d) 

e) f) 
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Table 3.1: Description of fuels used in chapter 4. 

Fuel Form Dimensions 

(mm) 

Forming 

Process 

Description Density 

(kg m-3) 

Source Provided to Leeds 

by 

Spruce ½ split logs 

w. bark 

140x80x50 n/a • Uniform shape and size 

• Not susceptible to splintering 

550 Aberdeenshire, Scotland D. Spracklen 

(University of 

Leeds) 

Torrefied 

Spruce 

Cylindrical 

briquettes 

70x60(d) High 

Pressure 

Extrusion 

• Uniform 

• Vary hard, requires a lot of force 

to break a briquette 

• Smooth outer surface 

1000 Andritz AG, Austria Supergen 

Bioenergy Hub 

Willow ½ split logs 

w. bark 

130x90x50 n/a • Uniform 

• Moderately susceptible to 

splintering 

500 RSPB Idle Valley, 

Nottinghamshire 

Supergen 

Bioenergy Hub 

Torrefied 

Willow 

Cylindrical 

briquettes 

20x50(d) High 

Pressure 

Extrusion 

• Some irregularity to shape and 

size 

• Briquettes crumble and break 

easily 

450 Rothamsted Research, 

produced by ECN and 

C.F Nielsen, Denmark 

I. Shield 

(Rothamsted 

Research) 

Olive Stone shaped 

briquettes 

50x35x25 Thermal 

Moulding 
• Very uniform in shape and size 

• Briquettes are hard and durable 

• Highly porous structure 

700 Arigna Fuels, Northern 

Ireland 

R. Johnson 

(Arigna Fuels) 

Torrefied 

Olive  

Stone shaped 

briquettes 

50x35x25 Thermal 

Moulding 
• Very uniform in shape and size 

• Briquettes are hard and durable 

• Highly porous structure 

• Formed from 50% torrefied olive 

stone and 50% raw olive stone 

700 Arigna Fuels, Northern 

Ireland 

R. Johnson 

(Arigna Fuels) 
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3.2.2 Fuels used in Chapter 5     

 In this chapter the aim was to analyse the suitability of briquetted spent coffee 

in domestic stoves. Commercial briquetted spent coffee, termed coffee logs, is made 

from spent coffee grounds collected from various coffee shops across the UK, Fig. 

3.2. The intention is to take the high mass yields after the coffee has been brewed and 

to use it in energy applications, this improves the circular economy. Along with the 

briquetted coffee, a small sample of spent ground coffee was also supplied for 

composition analysis.    

Figure 3.2: Coffee Logs. 

 

 In order to assess the variability of coffee waste and to determine if the coffee 

logs were representative of ground coffee waste a control sample was used in the 

composition analysis. The control sample was from a Mexican Robusta Bean (MRB) 

which was grown on the west coast of Mexico in the mountain town of San Sebastian 

del Oeste at the La Quínta coffee farm. The coffee cherries were harvested and 

deshelled by hand. They were then torrefied at 220C in air using a Solocafé small 

LPG coffee toaster. The coffee was ground at the farm and exported to the U.K. In the 

U.K the coffee was brewed to make single shot espresso coffee in a Fracino 2 group 

semi-automatic machine, water pressure 3 bar and temperature 80C. The spent coffee 

was collected and dried before analysis, Fig. 3.3.  

 In order to compare the emissions produced from combustion of the coffee 

logs to those from a wood fuel, willow wood logs were also analysed (both 

composition and combustion). The willow wood logs were supplied from the same 
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supplier as the coffee logs as seasoned ½ split logs with the bark. Several of the logs 

were used cut and milled to create a sample for composition analysis, Fig. 3.4.    

 

Figure 3.3a-c: Control sample of Mexican Robusta Beans (a) Torrefaction 

Equipment (b) Torrefied Coffee Beans (c) Torrefied Ground Coffee. 

 

Figure 3.4: Seasoned willow wood logs. 

 

(a) (b) 

(c) 
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3.2.3 Fuels used in Chapter 6 

 The objective of this study was to assess if bracken could be used as an energy 

crop in solid combustion applications. This required a comparison between bracken 

and other fuels; the other fuels were selected based on criteria that they are either a 

residue or have similar physical or growing properties to bracken. Eventually this led 

to the selection of an agricultural residue (straw), an energy crop (miscanthus) and an 

industrial residue (wood briquettes). Some composition comparisons were made with 

fuels in Chapter 4.   

3.2.3.1 Bracken 

 Bracken (Pteridium aquilinium) is the UK’s most common fern and grows 

globally except for in extreme climates. Fig. 3.5 is a schematic of a single bracken 

fern. The rhizome is what makes bracken so robust and dominant over an area of land. 

The rhizome is a central network from which the roots and fronds develop. This 

enables water, nutrients and energy to be stored and transported throughout the plant 

lifetime. The rhizome is usually close to the soil surface within a meter to 0.5m, 

however in well-draining, high sand concentration soils the rhizome can often be 

deeper than a meter. Fronds will emerge from the rhizome in early spring and will 

continue growing through spring, summer and to mid-autumn. A frond can range in 

size but they are typically larger than a meter up to 2.5m. The frond is split into two 

main sections: the stipe and the blade. The stipe is structural and when green has some 

small photosynthetic capabilities. The blade has three parts: the axis (Rachis), the 

leaflet (Pinna) and the leaf (Pinnule). The blade is responsible for both the production 

of energy and spores (reproduction). Common to most ferns, the spores will fall before 

fertilisation which is different to most plants which are fertilised first, this typically 

happens over the latter summer period.  

Bracken has a C4 photosynthetic perennial growth cycle, the growth cycle is 

described in Fig. 3.6. In spring and summer, the frond is green (chlorophyll), elastic 

and flexible. After the spores have dropped, into autumn, the frond turns yellow and 

then brown, the leaves wilt and some will drop from the leaflet. The frond becomes 

brittle and sharp. During this period minerals move from the frond into the rhizome, 

this causes some elements to become concentrated in the frond. As this mineral shift 

takes place, the lack of energy production causes the frond to collapse and lay down. 

With time this can form a mulch but the very slow decaying process often takes years 
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to break down a frond. This prevents an effective ecosystem forming and many 

animals from being able to nest and hibernate over the winter months. 

Figure 3.5: Single bracken fern [Bowe, no date] 

 

Working in collaboration with the RSPB at Budby Moor lowland heath site in 

Sherwood Forest, Nottinghamshire, bracken was harvested between July - October 

2018, Fig. 3.7. Discussions with the site managers meant that if the bracken was to be 

harvested as an energy crop, the machinery used would only harvest the frond from 

the bottom of the stipe, therefore only the frond was sampled. To analyse the changes 

over the growth cycle, four sampling points were set over the time period. Over August 

and the start of September the spores develop and drop, some past research has shown 

that the spores can be carcinogenic so harvesting of the bracken would not be feasible 

during this period from a health and safety point of view [Potter and Baird, 2000]. It 

was also important to assess the variation in the bracken composition across the site, 

so five sampling sites were selected and markers were used to ensure samples were 

consistently collected from the same sample area.   
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Figure 3.6: Annual growth cycle of bracken 

 

3.2.3.2 Commercial Bracken Briquettes ‘Brackettes’   

 Commercially manufactured briquettes (termed brackettes) made from 

bracken growing on land in the south-west of England was used in the stove 

combustion experiments. This was because of the lack of ability to briquette the 

harvested bracken at the University of Leeds. Although the brackettes were made from 

bracken from a different source, the bracken was harvested at the same time period in 

the growth cycle, late October. The briquettes were made without a binder using a 

high-pressure extrusion process, this resulted in circular dense briquettes (1250 kg m-

3) 150mm in length with a diameter of 70mm and smooth surface, Fig. 3.8. Analysis 

of these briquettes showed that the composition was within 5% on all measured 

variables (proximate, ultimate and metals) of the harvested bracken at site 2 harvest 4. 

It was therefore possible to assume that the performance of the brackettes on the stove 

would be representative of the harvested bracken. This is discussed more in Chapter 

6. 

Bracken Harvests 
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Figure 3.7: Change in bracken from a) late spring to b) late autumn 

 

  

Figure 3.8: Bracken burn briquettes ‘Brackettes’ 

 

a) 

b) 
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3.2.3.3 Barley and Wheat Straw 

 Farming of cereal crops is a large industry in the UK; 2.7 million hectares was 

harvested in 2019, this accounts for 55% of all ‘croppable’ land area available 

[DEFRA, 2019]. Farming of wheat and barley produces a significant quantity of straw 

residue. Using the harvest index, a benchmark of 51% grain per crop harvest is 

targeted meaning on average 49% of a crop is residue (this includes the stem, leaves 

and chaf) [DEFRA, 2019]. Current farming practices use 50% of this residue as soil 

conditioner, and a proportion of the remaining percentage is often burnt in open fires 

[Glithero, Wilson and Ramsden, 2013]. Straw and bracken have many physical 

similarities in the latter stages of the year (colour, shape, size and texture) and are 

categorised as an agricultural residue.      

 The barley (BS 423) and wheat straw (WS 093) in this study came from 

Rothamsted Research, supplied by I. Shield and C. Whittaker, as part of an agronomy 

study. Both of the straws arrived at the University of Leeds milled and then were sent 

to be briquetted by an external company. Briquetting is discussed more in section 3.3, 

but it must be noted that straw has low amounts of natural binder (lignin) so a 10% 

solid pre-gelled wheat starch binder was used to briquette the straw at high pressure. 

This briquetting was not conducted at the University of Leeds but through an external 

service by Mr. R. Taylor. The briquettes were circular with a hole drilled through the 

centre (dimensions 60mm in length 75mm in diameter), Fig. 3.9. Even with the binder 

the briquettes were fragile and crumbly and would break easily, more binder could be 

added to improve the durability, however this would have distorted the stove 

combustion test results.  

Figure 3.9: Straw briquette 
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3.2.3.4 Miscanthus  

 Miscanthus is a well-established energy crop in the UK. Approximately 40 

thousand oven dried tonnes of miscanthus were used in 2018 [DEFRA, 2019]. 

Miscanthus has a C4 photosynthetic perennial growth cycle and has a rhizome, the 

same as bracken. Therefore, comparative analysis between the two biomasses would 

be insightful. The miscanthus was supplied in briquetted form from Rothamsted 

Research as blocks of 60x40x40mm. The briquettes, Fig. 3.10, were more durable than 

the straw briquettes however they were still fragile and a small amount of force would 

cause them to break.  

 

Figure 3.10: Miscanthus briquette 

 

3.2.3.5 Wood Briquettes 

 Briquetting of sawdust and residual wood shavings from the timber industry is 

a growing market. This prevents the accumulation of waste and improves the 

economics of timber manufacturing. Sawdust briquettes are commonly sold in DIY 

stores in the UK. Sawdust is considered an industrial residue which once briquetted 

can significantly improve the specific density (loose density is approximately 250 kg 

m-3, when briquetted 1200 kg m-3) [Sánchez, 2014]. The wood briquettes used in this 

work were Eco-brightTM wood briquettes which were formed using high pressure and 

mild heating (dimension 200x50x50mm with a central square hole 10x10mm through 

the length). The mild heating softens the lignin in the wood which acts as a natural 

binder. The briquettes were durable but with a rough surface. Rough surfaces have 

better heat transfer properties as there is an increased surface area.  
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3.2.4 Fuels used in Chapter 7  

SRC willow is a fast-growing energy crop which is typically planted in dense 

mixed varieties of species all native to the UK. Energy plantations are usually 

harvested every 2-4 years with a lifetime of up to 30 years. The willow was supplied 

by Rothamsted Research who had been conducting experiments using SRC willow to 

remediate contaminated land. Use of biomass grown on contaminated land is limited 

by European and British Regulations which specify limits on concentrations of certain 

species (BS EN ISO 17225-1:2014) [British Standards, 2014]. Located in Derbyshire 

the land had been contaminated from historical coal mining activity, Renishaw 

colliery. The supplied SRC willow was after a three-year cycle of growth. The willow 

was chipped at source and consisted of only the wood, no leaves, with a particle size 

range from 3–45 mm, Fig. 3.11. This willow was pre-treated (washing and 

torrefaction), analysed, briquetted and combusted at the University of Leeds, details 

of this process are given in sections 3.3.5 (stove combustion) and 3.6 (pre-treatment).  

 

Figure 3.11: Chipped SRC willow 

   

3.3 Sample Preparation 

 For analysis samples need to be prepared by specific methods. Poor sampling 

and sample preparation can result in distorted results. Sampling and preparation 

followed standards where specified. More details on these methods are discussed in 

the following sections. 



77 

 

3.3.1 Drying and Sampling 

For raw samples (wood chips, ground coffee and bracken) either collected 

directly after being harvested or samples that had been washed the biomass has to be 

dried first. To keep this initial drying process the same between samples a routine 

drying step was used. Samples were placed into an APEX 430 drying oven for 72 

hours at 40C. Every 24 hours the samples were mixed to ensure the whole sample 

dries and prevents moisture accumulating in the centre of the biomass pile. This 

process was repeated for the entire supply of biomass. This process reduces the 

biomass moisture content to less than 10 wt.%.  

In order to ensure the samples used in characterisation and combustion analysis 

are representative of the bulk sample and not systematically bias, the coning and 

quartering method was used. This involved first passing the whole sample through the 

cutting mill to reduce the particle size to less than 4mm. This is not an accurate method 

of ensuring the particle size is consistently below 4mm therefore it was sieved further 

and particles above the size limit were separated out. The heap of separated particles 

is then flattened and split into four quarters. A small sample (20g) is taken from each 

quarter, mixed and used for proximate analysis, single particle combustion and for 

ashing to be used in metals analysis. The remaining particles in the heap are combined, 

flattened and quartered, a smaller sample (5g) is taken from each quarter and mixed; 

this sample is combined and cryomilled to a particle size of less than 100m. This 

sample was coned and quartered again to select a sample to be used in ultimate 

analysis, py-GC-MS and TGA. Any remaining particles that have not been cryomilled 

are combined with the bulk sample to be used for briquetting. The cryomilled sample 

not used in analysis was kept separate for any additional analysis required.   

3.3.2 Size Reduction/ Milling 

 For all analytical methods particle size is a key factor in ensuring sample 

presents as a homogeneous solid. To reduce the particle size to ≤4mm a Retsch SM300 

cutting mill was used, Fig. 3.12. Biomass is fed by gravity from the top entry point to 

the cutting area. A central cutting rotor, at 1200 rpm, with three carbon steel blades 

shreds the biomass using centrifugal force, this is aided by three more blades (cutting 

bars) which are fixed to the walls of the milling chamber. The biomass falls to the 

bottom of the milling chamber where there is a mesh sieve with 4mm square holes. 
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Using a vacuum, the biomass is drawn through the sieve and into the sample collection 

pot.  

 

Figure 3.12: Labelled diagram of cutting mill (showing internal mechanism) 

 

For some analysis smaller particle sizes of less than 1mm are required. This 

can be done using a cryomill. Although the ball mill has the advantage of being able 

to mill more sample in a single run, for the work in this thesis it was more important 

that the particle size distribution was in a narrow size range, this is to ensure the quality 

of the results. Therefore, only the cryomill, Fig. 3.13, was used to prepare smaller 

particle sizes.  

Figure 3.13: Retsch cryogenic mill  

 

The cryomill was a Retsch cryogenic mill and reduces the particle size to 

between 10-80μm. Approximately 3g of sample is loaded into a 100ml nitrile lined 

Feed 

Cutting 

Zone 

Collection 

Jar 

Cryojar Balancing Jar 

Control Panel 
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grinding jar, a nitrile coated grinding ball is placed in with the sample. The jar is 

screwed into the cooling jacket and when the program is started liquid nitrogen flows 

from the dewar into the cooling jacket whilst the sample gently vibrates, 1Hz s-1. This 

process first cools the sample to a set point before the vibration intensity increases. It 

is important that the sample is continuously moving to prevent moisture agglomeration 

of the sample or warm pressure zones forming within the grinding jar. Once the sample 

has pre-cooled the grinding frequency is increased to 5 Hz s-1 for 3 minutes. After 

which the sample is removed from the grinding jar in powder form.  

3.3.3 Briquetting  

 For stove combustion tests the milled samples had to be briquetted using an 

MTI hydraulic press and a heating jacket, Fig. 3.14. When briquetting samples for 

stove combustion tests it is important not to use any binder if possible, this is because 

the binder will introduce different organic and inorganic compounds into the fuel mix 

which could influence the measurements. Briquetting biomass is mainly dependent on 

the quantity of lignin and moisture in the biomass. Lignin, when mildly heated (100-

300C), will soften and acts as a natural binder. Moisture similarly softens the biomass 

particles and improves intraparticle interactions which improves the durability of the 

briquettes.  

Figure 3.14: Hydraulic Press 

 Using a stainless-steel die with a diameter of 60mm, sample was loaded into 

the central column. The column was filled to half of its volume, 30g of sample. A 

piston press is loaded on top and placed into the hydraulic press. The heating jacket 
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was placed around the die and set to 130C. Using 25 MPa the sample was pressed for 

30 seconds, during this time the pressure would fall because of the elasticity and 

porosity of the sample in the die, therefore the pressure was raised and then pressed 

for 2 minutes. This produced uniformly shaped briquettes.  

3.3.4 Acid Digestion for Metals Analysis 

 As discussed in section 3.4.5, in order to analyse the metals in the solid sample, 

it must be digested into a liquid. Some digestions were carried out at the University of 

Leeds whilst others were sent for external analysis. The details of the digestion 

processes are explained in the sections below.  

3.3.4.1 University of Leeds 

Depending on the element of interest the sample may need to be ashed first, 

see section 3.4.1.5. The combustion temperature and heating rate can have varying 

impacts on the composition of the ash leading to residual unburnt carbon or loss of the 

more volatile metals (K) [Xing et al., 2016]. The fuels were ashed at 550C for 3 hours, 

this reduces the C content to below 5 wt.%, and then during the digestion process HCl 

acid is added to remove any residual carbon. This method was chosen because it 

minimises any losses in volatile metals and is the same as the British Standard (BS EN 

ISO 18122:2015), see section 3.4.1.3.  

0.4g of the ash was weighed into a polypropylene beaker and 10ml of 

hydrofluoric acid was added. This was left to reduce to dryness over a steam bath. 

Hydrofluoric acid is very good at breaking down silicate glass structures which are 

very common in biomass and organic matter. Once dry, 10ml of concentrated 

hydrochloric acid was added and the beaker was returned to the steam bath for 10 

minutes. The HCl removes any carbonates released from silica structures and helps to 

dissolve some metal structures. After 10 minutes, 30ml of distilled water was added 

and the sample was left to cool.  

After the sample had cooled, the contents of the beaker were transferred to a 

400ml Pyrex beaker and placed on a hot plate at 80% heating capacity to completely 

dry. The dry sample is left to cool after which, 5ml of concentrated nitric acid and 3ml 

of 1:1 sulphuric acid is added, this is heated on the hot plate until white sulphuric 

flumes persist for at least 5 minutes- the sample must not be allowed to go dry. The 

mixture of HNO3 and H2SO4 makes a strong oxidising agent meaning any remaining 
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inorganic elements should be solubilised. The sample was then removed from the heat 

and allowed to cool. The final step was to add 200ml of distilled water to the beaker 

and placed on the hot plate for 30 minutes, this is to ensure any elements which may 

have crystallised or precipitated can be dissolved into the solution. The solution was 

removed from the heat, transferred, and made up to 250ml in a volumetric flask. 

Dilution was always conducted to produce estimate concentrations in the parts per 

billion (ppb) range. For some of the samples in the final step only 50ml of distilled 

water was added and heated, and then when diluted only made up to 100ml. This was 

because the focus was on trace metal elements and over diluting the sample can mean 

a loss of sensitivity in the analytical instrument. This method was selected because 

biomass can often have high concentrations of silica. The combination of the acids 

used is very effective at extracting components from the glass structures and producing 

a high-quality solution for ICP analysis [Geana et al., 2011].  

3.3.4.2 SOCOTEC Analysis 

 Some samples were sent to SOCOTEC UK Ltd (Bretby Business Park, Ashby 

Road, Burton upon Trent, DE15 0YZ) for analysis. This analysis was done by first 

ashing the sample according to the British Standard described in section 3.4.5. Then 

0.25g of sample was dissolved in concentrated nitric acid for two hours using a whirl 

mixer. The solution was then placed in a heating block and incubator and left 

overnight. The following day 5ml of 25% HCl was added to the sample and heated to 

80C before transferring to a volumetric flask ready for analysis.  

 

3.4 Experimental Methods for Characterisation of Fuels and Ash 

 This section focuses on the experimental methods used to determine chemical 

and physical properties of biomass. Samples were tested in duplicate or triplicate and 

the average of the results was used. The standard deviation was calculated to 

demonstrate the variability (error) across the sample.  

3.4.1 Proximate Analysis  

 Proximate analysis is the characterisation of four fuel properties: moisture, 

volatile matter, ash content and fixed carbon. These are discussed in more detail in the 

following sections.  
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3.4.1.1 Moisture  

 Moisture analysis is to determine the as received (ar) moisture that can be 

removed from a fuel by oven drying, British Standard BS EN ISO 18134-3:2015. 

Using a milled sample with particle size of 1mm or less, 1g of sample is weighed 

into a dish and dried in a Carbolite MFS oven at 105C for a prolonged period of time, 

3 hours. The sample is weighed after and the difference in mass is the loss of 

moisture, this is determined by Eq. 3.1.  

𝑀 =  
𝑚𝑏

𝑚𝑎
× 100   ( 3.1) 

Where:  

M- Moisture content  

mb- Difference in mass of sample before and after drying 

ma- Mass of sample before drying 

3.4.1.2 Volatile Matter 

 Analysis of the volatile matter content is by British Standard BS EN ISO 

18123:2015. Using 1g of sub-1mm particle sized sample, the sample is weighed into 

a crucible and placed in a Carbolite OAF 101 furnace at 900C (±10C) for 7 minutes. 

The difference in mass before and after is due to the loss of volatiles from 

devolatilisation and moisture. The remaining sample is a combination of carbon-rich 

char and ash. The volatile content is determined by Eq. 3.2 on a dry basis (db).  

𝑉𝑀𝑑𝑏 =
100 × 𝑚𝑏

𝑚𝑎
− 𝑀 × (

100

100 − 𝑀
)   (3.2) 

Where:  

VMdb- Volatile matter content on a dry basis 

mb- Difference in mass of sample before and after devolatilisation 

ma- Mass of sample before devolatilisation 

M- Moisture content  

 Volatile matter refers to the release of light hydrocarbons and tars into the 

gaseous phase from the thermal decomposition of a fuel. The release of volatile gases 

is termed devolatilisation.  
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3.4.1.3 Ash  

 The ash content is determined by British Standard BS EN ISO 18122:2015. 

Sample with a particle size of less than 1mm is weighed (1g) into a crucible. The 

sample is placed into a Carbolite OAF 101 oven at room temperature. It is then heated 

to 250C at a consistent heating rate over 30 to 50 minutes. When the oven reaches 

250C the sample is left to dwell for 60 minutes, this will remove moisture and 

volatiles. The temperature is then raised to 550C (±10C) at an even heating rate over 

a 30-minute period, the sample is left at this temperature for a minimum of 2 hours. 

The mass of sample remaining is the ash content calculated by Eq. 3.3 on a dry basis 

(db).  

𝐴𝑑𝑏 =
𝑚𝑐

𝑚𝑎
× 100 × (

100

100 − 𝑀
)   (3.3) 

Where:  

Adb- Ash content on a dry basis  

mc- Mass of sample remaining after ashing  

ma- Mass of sample before ashing  

M- Moisture content  

3.4.1.4 Fixed Carbon 

 The fixed carbon content, FCdb, is calculated by difference, Eq. 3.4.  

𝐹𝐶𝑑𝑏 = 100 − 𝑉𝑀𝑑𝑏 − 𝐴𝑑𝑏   (3.4) 

 The fixed carbon refers to any material that is left after drying and 

devolatilisation but excluding the ash.  

3.4.1.5 Analysis by Thermogravimetric Analysis (TGA) 

 For samples where there is only a small amount available or the particle size 

is very small (below 100μm), proximate analysis by TGA is a more suitable method. 

The greater sensitivity and online mass measurement will mean that the results will be 

more precise and identification of the end of each phase is more easily observed. Using 

a Mettler TGA/DSC 3+, Fig. 3.15, sample is weighed out into a crucible. The mass of 

sample is variable however it should not fill any more than 2/3rds of the crucible 

volume. The TGA is automated so will load the crucible onto the balance and into the 

furnace at room temperature. In nitrogen the temperature is raised to 105C at 
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10C/min and then held for 15 minutes. Still in nitrogen the temperature is raised to 

600C at a rate of 15C/min and held for 30 minutes. The environment is then switched 

to air and heated to 610C at 5C/min and held for 30 minutes. Fig. 3.16 shows a 

typical plot from a TGA proximate experiment. Some methods will continuously heat 

the sample up to 900C and hold the temperature for prolonged periods, however that 

is not necessary in the analysis of biomass since there is no observable change in mass 

above 600C. Using the raw data from the TGA the amount of noise can be used to 

determine the error by standard deviation in the obtained values.  

Figure 3.15: Mettler TGA instrument 

 

Figure 3.16: Typical TGA plot from proximate analysis  

 

Micro Balance Auto Sampler 

Control Furnace 
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3.4.2 Ultimate Analysis  

 Ultimate analysis is used to determine the carbon, hydrogen, nitrogen, sulphur 

and oxygen concentrations of a biomass. The British Standard, BS EN ISO 

16948:2015, only relates to the determination of carbon, hydrogen and nitrogen, this 

is because these are considered to be the most important input parameters when 

calculating parameters related to the combustion of solid biomass fuels. Using a 

Thermo CE Instruments CHNS Flash Elemental Analyser 1112 series the elemental 

contents of a sample are determined with oxygen being calculated by difference, Eq. 

2.2. All the samples were run in duplicate or triplicate and the average and standard 

deviation (error) was calculated (errors are given within the results in the following 

Chapters). Since all the samples used were solid, tin capsules were used throughout, 

2.5mg of sample was weighed into each crucible and sealed. The sample has to be 

cryomilled (particle size of less than 100μm) to ensure the complete combustion of the 

sample. The sample is loaded into a carousel along with a series of standards. The 

selection of standards is key to the reliability of the results. In this work the standards 

used were atropine, vanadium pentoxide, BBOT (C26H26N2O2S), oatmeal, methionine, 

sulphanilamide and cystine. 

 The CHNS works by injecting a sample into a combustion column at 900C. 

The combustion column is filled with dry high purity oxygen- this is important to 

prevent the presence of undesired nitrogen and water which could impact on the result. 

As the sample combusts the carbon converts to carbon dioxide, the hydrogen to water, 

nitrogen to nitrogen gas or oxides of nitrogen and sulphur to sulphur dioxide. Chlorine 

in the fuel often reacts to produce hydrogen chloride but this is filtered out by 

absorbents. The ash in the sample falls to the bottom of the column.  

 The gases are then removed from the combustion chamber and carried by a 

flow of helium and passed over a high purity copper catalyst at 600C. This removes 

any excess oxygen and reduces any nitrogen oxides to nitrogen gas. Combining this 

with the absorbent traps the remaining gas should be composed of carbon dioxide, 

water, nitrogen and sulphur dioxide. These gases are then separated by gas 

chromatography (GC) and quantified by thermal conductivity detectors. 

Quantification is only possible if the correct standards are used and the standards are 

of a high purity.  
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3.4.2.1 EC/OC Analysis 

 EC/OC analysis was conducted at Sunset Labs. This was done using the 

NIOSH 5040 method. This thermally desorbs the PM from the filter paper and this is 

carried by helium gas to an FID where it is analysed using a thermal optical technique 

to determine the representative quantities of EC and OC.  

3.4.3 Chlorine Analysis 

 Chlorine analysis is more complicated since chlorine can be in both organic 

and inorganic forms. Cl can be determined by chemical fractionation using water, 

discussed in section 2.2.3, however this will only detect the water-soluble fraction. 

The British Standard method, BS EN 16994 [2016], uses a bomb calorimeter which 

dissolves the released gaseous Cl from combustion into deionised water by a gas 

washing bottle. The vessel and the ash are all rinsed out with deionised water which 

is combined with the water used to dissolve the gaseous Cl. The sample is analysed 

by ion chromatography (Dionex DX 100 Ion Chromatograph and LC20 

Chromatography enclosure) with anion detection to determine the quantity of Cl in the 

sample.  

 Cl analysis was also conducted by SOCOTEC for some fuels. In this case the 

fuel was digested using hydrogen peroxide (H2O2) and made up to volume by 

deionised water. The sample was analysed by ICP-MS to determine the Cl contents.   

3.4.4 Calculation of Calorific Value  

 Determining the calorific value used the wt.% C, H and N values on a db 

determined from methods in section 3.4.2. Friedl et al. [2005] presents two methods 

for calculating the higher heating value (HHV) of biomass based on the results of 122 

different biomass samples. The two methods are based on developing a mathematical 

model which minimises the error between the predicted and measured HHV on a linear 

regression plot against the concentration of C, H and N. To perform this analysis, 

Friedl et al. [2005] uses an ordinary least square (OLS), Eq. 3.5, and partial least 

squares (PLS) method of analysis, Eq. 3.6. 

 

𝐻𝐻𝑉 (𝑂𝐿𝑆 𝑀𝑜𝑑𝑒𝑙) = 1.87𝐶2 − 144𝐶 − 2820𝐻 + 63.8𝐶𝐻 + 129𝑁 + 20147   (3.5) 

𝐻𝐻𝑉 (𝑃𝐿𝑆 𝑀𝑜𝑑𝑒𝑙) = 5.22𝐶2 − 319𝐶 − 1647𝐻 + 38.6𝐶𝐻 + 133𝑁 + 21028   (3.6) 
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The reason Friedl et al. [2005] uses two methods of analysis is to resolve 

problems of collinearity in multi-variable analysis. However, the results from both 

Eq.’s produce a similar result, therefore an average of two models is proposed, Eq. 

3.7. Eq. 3.7 is used throughout this work and the HHV is on a dry basis in kJ kg-1.  

𝐻𝐻𝑉 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑) = 3.55𝐶2 − 232𝐶 − 2230𝐻 + 51.2𝐶𝐻 + 131𝑁 + 20600   (3.7) 

3.4.5 Metals Analysis  

 Metals analysis of solid samples, trace, minor and major metals (metals in ash), 

was determined by acid digestion of the samples, see section 3.3.4, and analysis by 

Inductively Coupled Plasma spectrometry (ICP). This included two types of ICP:  

1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)- the sample is first 

atomised and dissociated into singularly charged individual ions within a 

plasma. The ions are passed through a quadrupole mass analyser where they 

are separated based on their mass to charge ratio. Quantification is by detectors 

which are calibrated against standards of known concentrations. The 

instrument used was a Thermo Scientific iCAPQc ICP-MS.  

2. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)- the 

sample is aspirated and atomised and dissociated in a flame to produce atoms 

in an excited state then elements are determined by the energy released 

(emission of light) in electron deexcitation. The wavelength of light is 

characteristic of the element. Quantification is by detectors calibrated against 

standards of known concentrations. Instrument is a Thermo Scientific 

iCAP7400 Radical ICP-OES. 

Both methods can analyse a large number of elements in a single run. However, 

ICP-MS detection is more sensitive, parts per trillion (ppt), where as in ICP-OES 

detection is only parts per billion (ppb). Conversely, the total dissolved solids (TDS) 

in ICP-OES can be up to 30% conc. Where as in ICP-MS this can only be up to 2%. 

These are two key factors when deciding the analysis method. During ICP analysis as 

well as the instrument calibration a small amount of each sample   was separated and 

used to determine the precision of analysis. This was done by doping the sample with 

a known quantity of element being analysed.   
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3.4.6 Ash Fusion Tests 

  Ash fusion tests are used to determine the ash melting behaviour of samples 

by uniformly heating them from 500-1500C and capturing a black and white image 

every 1C increment. The images are then analysed by the analyst to determine 4 key 

characteristic temperatures at which deformation occurs. These key temperatures are 

termed: softening temperature (ST), initial deformation temperature (IDT), 

hemisphere temperature (HT) and flow temperature (FT). This is the method from 

British Standard BS EN ISO 21404:2020, Fig. 3.17.  

 Samples must first be ashed, method is in section 3.4.1.3, and enough ash must 

be collected to make a test piece. The ash was cryomilled to get a homogeneous 

particle size as variability in particle size can have a large impact on the results. The 

test pieces are made in duplicate using a stainless-steel mould. Moulds are cylindrical 

in shape with equal height and diameter (3mm). The mould is coated in a thin layer 

of petroleum jelly to prevent the test pieces from sticking. In a beaker ash is blended 

with 2 or 3 drops of dextrin solution to form a thick paste. The mould is then filled 

entirely with the sample- any holes or unsmooth edges will make determination of the 

phases more difficult for the analyst. The sample is left to dry for 10 minutes, dry 

enough for it to be stable out of the mould. Once the sample is removed from the 

mould it is left to dry for at least 24 hours. The test piece should be a uniform cylinder 

with a flat top and defined sides.  

 

Figure 3.17: Ash melting behaviour determined in AFT 1) Initial test piece shape 

2) Softening 3) Initial deformation 4) Hemisphere 5) Flow [British Standards, 

2020] 
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Samples are loaded into the oven, a Carbolite digital ash fusion furnace, slowly 

to prevent thermal shock. The samples are heated at 10C min-1 in air (oxidising 

environment) with a flow rate of 50 ml min-1. The furnace is fitted with a camera and 

analysis of the samples is done by measuring the changes in height and aspects of the 

deformity of the test pieces. Fig. 3.17 shows the definitions of each characteristic 

temperature and how the temperature is determined [British Standards, 2020].  

 

3.5 Experimental Methods for Combustion Analysis  

3.5.1 Thermogravimetric Analysis (TGA) for Combustion and 

Pyrolysis Properties 

 Combustion and pyrolysis properties of fuels were analysed using a Shimadzu 

TGA-50. Up to 5mg of cryomilled sample was loaded into a crucible, no more than 

2/3 of the crucible volume, and placed onto the microbalance. The microbalance 

positioned the crucible inside the furnace. The temperature was raised from room 

temperature to 900C with a heating rate of 10C min-1. The mass of the sample is 

recorded throughout from which mass loss curves and derivative thermogravimetric 

(DTG) plots were obtained. For combustion analysis the furnace is filled with air at a 

flow rate of 50 ml min-1. For pyrolysis the furnace is filled with nitrogen instead of air 

at the same flow rate. The heating rate, sample mass and flow rate were chosen to 

ensure a sequential process so that diffusion and heat transfer limitations have minimal 

influence on the results, this is particularly important when using the data to calculate 

kinetic parameters. The instrumentation is shown in Fig. 3.18. This type of TGA 

analysis is considered slow heating rate analysis. This is useful for defining individual 

stages of pyrolysis/combustion and analysing how a fuel will react within a 

temperature region.  
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Figure 3.18: TGA used in combustion and pyrolysis analysis 

 

3.5.2 Kinetics of Combustion and Pyrolysis  

 Analysis of the mass loss profiles can be used to determine kinetic parameters 

of the fuels. Assuming that the first order single step reaction model applies, the 

Arrhenius equation, Eq. 3.8, can be used to estimate the pre-exponential factor, A, for 

measured reaction rate constants, k, at different temperatures and the activation 

energy, Ea.  

𝑘 = 𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
)   (3.8) 

 In Eq. 3.8 R is the ideal gas constant and T is the temperature in K. The weight 

loss with time is assumed to be from one first-order reaction described by Eq. 3.9.  

𝑘𝑡 = −
1

(𝑚 − 𝑚∞)

𝑑𝑚

𝑑𝑡
  (3.9) 

 Where dm/dt is the tangent to the mass loss curve at time, t, m is the mass at 

time, t, and m  is the terminal mass, selection of a terminal mass is highly influential 

on the value of k and the overall accuracy of the model. Ea and A can be evaluated 

graphically using Eq. 3.10.  

ln 𝑘 = ln 𝐴 − 
𝐸𝑎

𝑅

1

𝑇
   (3.10) 

 When using the constant reaction rate method, a boundary condition must be 

applied in both combustion and pyrolysis cases. The boundary condition means that 

the values of the kinetic parameters calculated are only applicable to the reaction rate 

constants within the temperature range. Calculation of the kinetic parameters uses a 

Microbalance 

Furnace 

Pan 
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linear regression method of analysis. Linear regression models calculate the best fit of 

the data to a line, this is usually evaluated by using the kinetic parameters calculated 

within the boundary to predict a reaction rate constant which is compared to the actual 

reaction rate constant. The difference between the two values is an observable level of 

error.  

 Minimising this error has been extensively researched with alternative 

methods proposed which estimate improved reaction kinetics. This includes proposed 

non-linear regression models which have improved accuracy and being non-linear can 

be applied to a greater range of data. Saddawi, Jones and Williams [2010] have 

compared results of the constant reaction rate method with bespoke methods proposed 

by other authors. The results showed that the apparent first order reaction rate constant 

method gives outstanding accuracy to predictions of kinetic parameters. Therefore 

because of its more simplistic method the constant reaction rate method is used 

throughout this work.  

3.5.3 Pyrolysis- Gas Chromatography- Mass Spectrometry (Py-GC-

MS) 

 Analysis of organic samples using GC-MS is highly efficient, accurate and 

sensitive. Pyrolysis of the sample, before being injected into the GC, breaks the 

biochemical components in biomass down into smaller fragments and volatilises them 

along with lipids already present in the biomass. These volatile components are 

separated based on their retention time within the GC column and are then identified 

using their mass to charge ratio (m/z) in the mass spectrometer. The whole technique 

allows the identification of a wide range of organic molecular components of biomass 

this is done by comparing peaks to the NIST database and literature. The 

decomposition source of resolved peaks (carbohydrate, lignin or fats) is determined 

by the time at which they are detected, earlier peaks are associated with carbohydrate 

sources, and their relative abundance is calculated by integrating the peak area. This 

is a semi-quantitative method and values are used comparatively- not as an absolute.   

 The pyrolysis of the fuels was performed in a CDS Pyroprobe Model 5000 at 

a rapid heating rate of 20C ms-1 to a temperature of 600C with a hold time of 60s. 

The sample was weighed (2-3mg) into a 20mm silica glass tube between two plugs 

a quartz wool. It is important that the tube is cleaned sufficiently to remove any 



92 

 

residual ash and heat treated to remove any fats, grease or oils that can reside on the 

tube surface from handling and storage.  

 Once pyrolyzed the sample is fed into the GC column, Shimadzu GC-MS 

Model QP2010E, and mixed with a high purity helium carrier gas. The column was 

an RTX-1701 fused silica column, 60m in length with a 0.32mm internal diameter and 

0.25μm film thickness. The volumetric flow rate in the column was 1.34mL min-1. 

This type of column is a mid-polarity column which is typically used for separation of 

hydrocarbons, oxygenated, chlorinated, nitroaromatic and polychlorobiphenyls 

(PCBs). The GC oven started at 40C for 2 minutes and then heated at 10C min-1 to 

180C for a hold time of 2 minutes. The oven was then ramped again at 8C min-1 to 

280C and held for 10 minutes.   

The use of Py-GC-MS was to compare fingerprints and relative quantities of 

organics species from raw and pre-treated forms of biomass, pre-treatment was by 

torrefaction. Torrefaction is discussed in more detail in section 3.6.1, and is mostly 

concerned with removal of low volatile organics below 300C. The column and oven 

temperatures/ heating rates used were to obtain the right sensitivity of separation for 

low-medium weight volatile compounds. The broader the analysis the less sensitivity 

of the separation and precision in identification. Therefore, careful consideration must 

be taken to selecting these conditions. 

3.5.4 Single Particle Burning   

 Analysis of the combustion of biomass at higher heating rates can be 

performed using single particle combustion, this method is based on the one developed 

in Mason et al. [2016], Fig. 3.19a [Mason, 2016]. This is done by using a high-speed 

camera (Fujifilm Finepix HS10 digital camera) with a frame speed of 120 fps to 

capture the combustion profile. Using the images generated, demarcation of ignition, 

devolatilisation, char burnout and ash cooking is established, Figs. 3.19b-d.  

Before combustion individual particles are sized and weighed, the typical size 

is approximately 2x1x5mm. The particle is suspended on a needle 25mm above a 

Mekér burner. The particle is then covered by a water-cooled sleeve which slides along 

two bearings and this is retracted and exposed to the flame at the start of each test. 
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This allows instantaneous exposure of the particle to the flame (<0.1s). The point at 

which the particle is exposed to the flame is t=0s. 

Figure 3.19: Single particle burning experiments (a) equipment setup [Mason, 

2016] (b) particle heating up (c) flaming combustion (d) char combustion  

   

 The Mekér burner provides a methane-air mixed flame. The size of the Mekér 

burner (diameter of the base of the flame, 40mm) and the consistency of the 

environmental conditions surrounding the flame means that the flame can be assumed 

to be in a steady state. This includes the concentration of oxygen (21%), the 

temperature (1600K) and flow properties (3 ms-1) in the combustion zone where the 

particle was suspended [Mason, 2016]. The camera was positioned 200mm from the 

particle in the same line of sight. The position of the camera and particle remained 

consistent between runs.  
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 Identification of the combustion events was by the analyst using the video 

frame images collected. The events can be identified by the following criteria:  

• Ignition- This is the point when the particle has dried and devolatilisation 

starts. Devolatilisation elutes a gas mixture which combusts above the particle 

surface which is recognised by a luminous flame. The time at which this flame 

appears is defined as the start of ignition/devolatilisation. The time between 

the first exposure of the particle to the flame and when the particle ignites is 

termed ‘ignition delay’.  

• End of volatile combustion/start of char burnout- For simplification in analysis 

it is assumed that char burnout starts at the point when volatile release ends, 

this is defined by when the luminous flame disappears. In reality this is not the 

case since the bottom surface of the particle is exposed directly to the flame 

which results in this surface heating at a faster rate. Therefore, when volatiles 

are being released from the top of the particle the bottom of the particle has 

turned to char and begins combusting.  

• End of char combustion- This is the most difficult point to define. As char 

combustion proceeds the particle glows from the emission of CO and CO2 from 

the particle surface. The intensity and brightness of the glow increases as char 

burnout progress until the particle begins to shrink. Whilst the particle shrinks 

the final carbon in the char combusts leaving residual ash. For this work the 

char combustion phase ends when the particle stops glowing. This covers the 

majority of the char combustion phase however by using an estimated 5% error 

margin should account for the missing time period.  

 The camera was run in conjunction with potassium release detection. 

Assuming that the flame temperature is stable for the duration of the observation, the 

intensity of spectral emission is directly proportional to the release of specific 

elements. Using a monochromator (Edmund Optics Techspec® band-pass interference 

filter) an emission wavelength of 766nm (bandwidth frequency of 5.11THz) is filtered 

out. This is focused onto a photodiode (Vishay BPW34) producing a current which is 

converted to a 0-5 volts output signal. The output signal is recorded and determines 

the relative intensity from potassium release. A second photo-detector system is set-

up in parallel to the potassium measuring photo-detector but at a lower optical centre 

wavelength of 750nm (bandwidth frequency of 5.33THz). The second photo-detector 
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is used as a means to measure and correct for any background black-body radiation 

from soot particles and the flame. Further information is described in Mason [2016].  

 The photo-detector device has a high level of precision, estimated to be <1%. 

Volatilisation of potassium produces KCl and KOH both of which are volatile in the 

estimated flame temperature, however it is not possible to distinguish between the two. 

The photodiode is designed to have a linear response to photo-intensity and thus the 

concentration of potassium in the volatile phase. Gaydon and Wolfhard [1970] 

discussed the effects of self-absorption phenomena (absorption of the light emission 

from a potassium particle by another potassium particle) however as discussed by 

Mason [2016] this phenomenon can be assumed insignificant because of the low 

potassium concentration found in the biomass analysed.  

3.5.5 Stove Combustion  

 Stove combustion tests were used to compare the emissions from various fuels 

in a real-life simulation. The stove used was a Waterford Stanley Oisin multifuel stove 

rated at 5.7kW and 79% thermal efficiency. This is a mid-range stove that is suitable 

for burning both coal and biomass. The stove was not changed throughout the 

experiments. The stove has internal dimensions of 250x270x190mm (hxlxd) and a 

single primary air supply point at the front on the stove door, as shown in Fig. 3.21. 

The air flow was controlled by keeping the orifice at a fixed opening, this was set to 

supply 150% excess air to the stove as recommended by the manufacturer for biomass 

fuels. The stove dimensions, fixtures and parameters were kept identical throughout. 

The whole stove assembly sits on a KERN balance for measuring the burning rates of 

each batch of fuel.  

 Operating conditions were chosen to simulate a real-life scenario. The method 

used was kept as consistent as possible throughout because small variations can have 

a significant impact on the performance and associated emissions. Ignition can be 

especially problematic with certain types of biomasses and therefore the procedure for 

lighting the stove varied. For this reason through all this work, combustion of the first 

batch of fuel was annulled and left out from the determination of average burning rates 

and emission factors. From the second batch onwards, all data was included until 

combustion was determined to have ended. Each batch of fuel that was loaded into the 

stove was kept consistent by weight (1-1.5kg). Once the fuel was loaded the stove 
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door was closed until the majority of the mass of that batch had been consumed- this 

varied between fuels because of the energy required for the fuel to combust and the 

rate at which the fuel degrades. Multiple reloads were performed from 1 to 4 batches, 

this was to evaluate if the emissions were a reproducible result and to calculate average 

emission factors across the whole combustion run.   

Using the extraction system of the lab, an extraction draught was used to draw 

the flue gas up through the stack and into the dilution tunnel. The draught was kept 

continuously at a static pressure of 12 Pa which is a flow rate of approximately 1.2 m3 

h-1. The flue gas was mixed with room temperature air in the lab at the entrance to the 

dilution tunnel. Analytical equipment sampled from both the flue stack and the 

dilution tunnel; these can be seen Fig. 3.22.  

 Developing a method for stove combustion tests is a complex subject, as 

discussed in section 2.4. For the work in this thesis a hybrid method has been 

developed based on the objectives in section 1.5. As mentioned in section 2.4 by using 

a hybrid method it is important to ensure the results are reproducible. Therefore, the 

method is first tested by conducting the experiment with uniform wood briquettes, this 

is repeated three times. The results are shown in Figs 3.20a-c, all the results are within 

a 10% experimental margin of error which is acceptable.   
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Figure 3.20: Test for reproducibility (a) Mass (b) O2 Concentration (c) 
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Figure 3.21: Schematic of stove combustion lab setup  
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Figure 3.22: Stove combustion lab setup

Testo Gas Analyser 

5.7 kW Waterford Stanley 

Oisin multi-fuel stove 

Balance 

Thermocouples in and above 

bed 

GASMET FTIR exhaust 

gas analyser 

Dilution Tunnel 

Gas sampling points 

Smoke Metre 

Dekati impactors 

Pitot tube flow metering 



100 

 

3.5.5.1 Gaseous Emissions 

 Measurements of gaseous emissions was by two instruments. The majority of 

emissions measurements was by a GASMET DX4000 Fourier Transform Infrared 

(FTIR) Analyser which sampled directly from the flue stack 1430mm above the stove, 

Fig. 3.23. A sampling unit draws the flue gas through a heated probe at 180C which 

contained a 0.1μm sintered steel filter and then through a Teflon coated heated line 

(180C) and a glass fibre filter. Within the sampling unit the oxygen concentration is 

measured by a Zirconia sensor (for calibration purposes) and then determination of the 

gaseous, and vapour- phases was analysed in the FTIR.    

 FTIR analyses the flue gas by exposing it to infrared radiation at various 

wavelengths and measuring the energy absorbed. The energy is absorbed by the 

chemical bonds within molecules. The interferometer produces an optical signal 

containing all the infrared frequencies and the energy absorbed in detected. The signal 

is read and decoded using Fourier transformations which produces a spectrum that is 

compared to a database library giving the identity and concentration of individual 

species.  

The main advantage of analysing the flue gas using this technique is that it is 

an online measurement that can determine the identity and quantity of multiple 

gaseous species. Quantification can be in the ppb to 99.9 vol% range for some species, 

but the ppm level is more usual. This can be done with minimal sample and at short 

intervals. Additionally, the precision, accuracy and reproducibility of FTIR is 

exceptional, this is mainly because the interferometer uses a reference laser beam 

which is highly tuned to optimise performance. There are some limitations of FTIR 

the main concerns being that interference and overlap of signals can mean detection 

of certain species is less sensitive or lost (e.g. NO2 and certain hydrocarbons) and the 

calibration of the instrument is essential to the results. Associated errors for 12 gaseous 

species are shown in Table 3.2.  
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Figure 3.23: Schematic of FTIR set-up 

 

Table 3.2: Uncertainty in measurements for FTIR DX 4000 [MCERTS, 2016]  

Gaseous 

Species 

Error (%) Gaseous 

Species 

Error (%) 

O2* 2.4 HCl 11.3 

CO 6.5 NH3 9.3 

NO 5.6 CO2 5.0 

NO2 6.7 H2O 6.0 

SO2 9.2 HF 19.4 

CH3OH 4.0 CH4 6.1 
*Zirconia sensor 

The other method of gas analysis was with a Testo 340 Analyser which 

samples from the dilution tunnel. The Testo can only analyse concentrations of O2, 

CO, CO2, NO, NO2 and NOx. It measures concentrations of these species using 

electrochemical sensors which use oxidation and reduction reactions to generate a 

current proportional to the concentration. It is an online measurement technique which 

offers great sensitivity and accuracy, however the sensors can become overloaded 

easily if the concentration (usually CO2) and temperature of the sample is too high, for 
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this reason it must be placed in the dilution tunnel. Operational measurement errors 

are shown in Table 3.3. The dilution factor can be calculated by the ratio of 

[COFTIR]/[COTesto], this is important for calculating the emissions of particulates.   

Table 3.3: Uncertainty in measurements for Testo 340 Analyser [Testo, no date] 

Gaseous Species Error (%) 

O2 0.2 

CO2 0.2 

CO 10 

NO 5.0 

NO2 5.0 

NOx 5.0 

 

3.5.5.2 Particulate Measurements  

 Particulate sampling and measurement techniques used filter papers and foils 

to collect PM. Then by measuring the difference in mass over the sampled volume of 

flue gas the emissions can be calculated (gravimetric analysis). This is a discrete 

method that cannot be used to give real-time analysis. Isokinetic sampling parameters 

are important for reproducibility of the results however this is less concerning in stove 

combustion because the majority of PM is sub-micron and the sampling probes are 

located in positions where steady state flow is established. Alternative methods such 

as light scattering and differential mobility spectrometry offer greater sensitivity for 

smaller particle sizes and online measurements. However, the use of gravimetric 

analysis means that samples can be chemically tested for EC/OC, and also used in 

inorganic digestions and scanning electron microscopy (SEM).  

 Impactors were used for the majority of PM emission measurements which 

conforms to BS EN ISO 23210:2009. This method is used for low concentration 

measurements of PM10-2.5 from stationary source emissions. Dekati 3-stage 

impactors were used which samples from the dilution tunnel, see Fig. 3.20 or 3.21, at 

a rate of 10 L min-1 (±10%). The sample is drawn through a nozzle and using 

momentum inertia separates particles into 4 size bandwidths: 10μm, 10-2.5μm, 2.5-

1.0μm and <1.0μm. The separation mechanism is shown in Fig. 3.24. Using the 

dilution factor described in section 3.5.5.1 an emission factor can be calculated.  

 The other method used was to sample directly from the flue stack using an 

Oliver and Richards exhaust smoke metre. The smoke metre is more flexible in 
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operation because filter papers can be changed rapidly so it is not overloaded. This 

means emission factors for specific periods of combustion can be determined (e.g. 

flaming and smouldering). The filter papers and foils can be changed in the impactors 

but this requires a greater workload and is more time consuming.  

 Samples were drawn through a 4mm nozzle from the centre of the flue stack. 

The gas was transferred along a Teflon coated heated line (120C) into the smoke 

metre unit. Using glass fibre or micro-quartz filters in duplicate (two filters back-to-

back) the flue gas flows through the paper and particles are filtered out. The filter is 

housed in a heated block at 70C throughout the duration of sampling, this prevents 

low volatile tar and hydrocarbons from condensing. The volume of flue gas that flows 

through the filter papers is measured with a separate gas meter.  

 

Figure 3.24: Separation mechanism of the Dekati 3-stgae impactors [Dekati, 

2017] 

 

3.5.5.3 Emission Concentrations 

 The units for the measurements are usually shown in ppm or Vol%. 

International standards require that the emission concentration is shown on a dry basis, 

at 13% O2 concentration and at normal room temperature and pressure as shown by 

Eq. 3.11.  
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𝐶𝑖 (𝑝𝑝𝑚 𝑜𝑟 𝑉𝑜𝑙%) = 𝐶𝑖 ×
273 + 𝑇𝑓

273 + 𝑇𝑃
×

𝑃

1013
×

21 − 𝑂2,𝑆

21 − 𝑂2,𝑖
×

100

100 − 𝑀𝑐
   (3.11) 

Where Ci is the concentration of species i, Tf is the temperature of the flue gas, 

TP is the standard temperature of air (0C), P is the absolute flue gas pressure, O2,S is 

the industry standard oxygen concentration (13%), O2,i is the measured oxygen 

concentration and Mc is the moisture content. This concentration is then converted to 

mg of emission per m3 of flue gas using Eq. 3.12.  

𝐶𝑖 (𝑚𝑔 𝑚−3) =  𝐶𝑖 (𝑝𝑝𝑚) ×
𝑀𝑚𝑜𝑙

𝑉𝑚,𝑆
    (3.12) 

 Where Mmol is the molecular mass of the species (i.e. for CO2 it is 44.01 g mol-

1) and Vm,S is the molar volume at standard/normal room temperature and pressure 

(22.4 l). 

3.5.5.4 Emission Factors 

Calculation of emissions factors (g kg-1 or g GJ-1) is a complex subject and is 

the main reason for large variations in reported data from literature. EFs on a mass-

basis are per kg of dry fuel and on an energy-basis is per GJ of fuel based on the HHV. 

Within this work two methods of calculation were used:  

1. The Specific Dry Flue Gas Volume (SDFGV) method- this method was 

developed by the AEA for conversion of industrial biomass boiler emission 

concentrations [AEA, 2012]. This method was used to calculate the emission 

factors for the gaseous products. Eq. 3.13. 

 

𝐸𝐹𝑖 =
𝐶𝑖 × 𝑆𝐷𝐹𝐺𝑉

1000
   (3.13) 

 The SDFGV must be defined at standard temperature and pressure, and 

corrected for the oxygen concentration.  

 

2. The Total Flow method- this is a scientific method developed to consider the 

physical combustion properties. This method was used to calculate the emission 

factors for the particulates. Eq. 3.14. 

    



105 

 

𝐸𝐹𝑖 = ∫
𝐶𝑖 × 𝑄

�̇�
 𝑑𝑡   (3.14)

𝑡

𝑡0

 

 Where Q is the volumetric flue gas flow rate and �̇� is the mass of fuel burnt 

between t and t0. 

 The SDFGV method uses the proximate and ultimate analysis of the fuel to 

determine the stoichiometry of combustion, volume of flue gas produced from a 

kilogram or gigajoule of fuel. Whereas the total flow method is an integration of the 

conversion of fuel to flue gas.  

 The main advantage of the SDFGV method is that it is relatively simple and 

effective when comparing between different fuel types. Throughout this work the 

focus was on the impacts of chemical composition on the emissions produced and to 

reduce influence of physical properties, therefore the SDFGV method was very useful 

in analysis. However, the SDFGV is limited by the lack of consideration to the actual 

combustion process, this is particularly evident when analysing PM emissions. For 

this reason, the total flow method is used in the analysis of PM.  

3.5.5.5 Balance (Burning Rate) 

 The stove is positioned on a KERN DE 300K5DL balance in the centre of the 

trihedron. The mass of the stove is recorded online at 1-minute intervals and the 

change in mass over time is the burning rate.  

3.5.5.6 Temperature  

 Temperature measurements were made using K-type thermocouples 

positioned at multiple points around the stove. The measurements were made every 

second by an automated system using a PicoLog bank and software. Positioning of the 

thermocouples around the stove are shown in Fig. 3.25.  

 

Figure 3.25: Positioning of the thermocouples around the stove test facility 
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3.5.5.7 Flow Measurements  

 The dynamic pressure in the flue stack was measured using a S-type Wöhler 

DC 100 Pressure computer. Initially these measurements were taken every minute 

manually (Chapters 4 and 5) however in the latter work this was automated (Chapters 

6 and 7). The dynamic pressure is then converted to a velocity by Eq. 3.15 at the 

position of the pitot tube in the flue stack.  

𝑣 = 23.96 × √
∆𝑃

1.4
×

𝑇

𝑃𝑎𝑏𝑠
×

1

𝜌𝑤𝑒𝑡 𝑓𝑙𝑢𝑒 𝑔𝑎𝑠
   (3.15) 

  Where ΔP is the dynamic pressure, Pabs is the absolute pressure, T is the flue 

gas temperature and ρwet flue gas is the density of the wet flue gas (assumed to be 1).  

3.5.5.8 Assessment of Stove Performance 

 In order to assess how complete combustion is termed the Modified 

Combustion Efficiency (MCE) and how much fuel is burnt, the extent of combustion, 

Eqs. 3.16 and 3.17 are used.  

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝐶𝑂2

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝐶𝑂2 + 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝐶𝑂
 (3.16) 

 

𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝑢𝑒𝑙 𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑓 − 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝑢𝑒𝑙 𝑎𝑡 𝑡ℎ𝑒 𝐸𝑛𝑑𝑑𝑎𝑓 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝑢𝑒𝑙 𝐼𝑛𝑝𝑢𝑡𝑑𝑎𝑓
 (3.17) 

 

3.6 Experimental Methods for Pre-treatment 

3.6.1 Torrefaction 

 All torrefaction work was undertaken to produce a torrefied solid sample; no 

analysis of the gaseous or tar products was undertaken. Torrefaction was performed in 

a bench top EliteTMH12/75/750 tube furnace. The tube furnace is divided into 3 zones 

controlled by 3 Eurotherm controllers. A thermocouple monitors the temperature in 

each zone. A borosilicate glass tube filled with 200g (±30g) of biomass was loaded 

into the electric furnace per experiment. The sample is positioned in the centre of the 

tube between two plugs of glass fibre wool, Fig. 3.26. Nitrogen flows at 1.2 L min-1 
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through the tube throughout the torrefaction process, the flow is controlled by a static 

flow meter, this is to ensure an inert environment in the tube. The biomass was heated 

to 150°C at a ramp of 10°C min-1 and held for 60 minutes, this was to remove moisture. 

The temperature was then raised to 270°C at the same heating rate and held for 30 

minutes. The sample was removed from the furnace immediately at the end of the 

process and remained in a nitrogen atmosphere, this was important to prevent any 

further reactions. The cooling process still takes a significant amount of time to reach 

a temperature where reactions stop, this is approximately 15 minutes but is dependent 

on the biomass type. Additionally, the temperatures recorded by the thermocouples 

shows that the centre of the furnace is up to 20C hotter than the programme 

temperature, this is due to exothermic reactions and thermal insulation in the furnace.   

Figure 3.26: Schematic of torrefaction furnace 

 

 The conversion of biomass in torrefaction is described predominately by two 

terms, the mass yield and the energy yield, these are described by Eq. 3.18 and 3.19.  

𝑀𝑎𝑠𝑠 𝑌𝑖𝑒𝑙𝑑, 𝜂𝑚 = (
𝑚𝑐ℎ𝑎𝑟

𝑚𝑓𝑒𝑒𝑑
)

𝑑𝑎𝑓

× 100    (3.18) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑌𝑖𝑒𝑙𝑑, 𝜂𝐸 = (
𝐻𝐻𝑉𝑐ℎ𝑎𝑟

𝐻𝐻𝑉𝑓𝑒𝑒𝑑
)

𝑑𝑎𝑓

× 𝜂𝑚    (3.19)
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Where mchar is the mass of torrefied product out, mfeed is the mass of material input, 

HHVchar is the energy content of torrefied product and HHVfeed is the energy content 

of the material input. 

3.6.2 Washing  

 Washing pre-treatment was based on previous work by Gudka et al. [2016]. 

Washing methods are designed to remove fine material and leach inorganic elements 

using distilled water. A rotating drum mechanism was used in a Xtreme Tumblers 

Rebel 17 Rock tumbler, Fig. 3.27, this instrument is typically used in the polishing of 

gems and stones for jewellery. The drum is made from powder coated steel with a 

rubber lining. It is suspended on a pair of parallel rollers held in place by two rubber 

coated hardened PVC stops. The drum has a rotation speed of 40 RPM.    

Figure 3.27: Rebel 17 Rock tumbler 

 

Biomass was loaded into the rock tumbler drum at a ratio of 1:2 to distilled 

water by volume (approximately 400g (±15g) willow chip to 800g (±10g) of water) 

and rotated for 20 minutes. After being rotated the biomass and leachate mixture was 

separated while wet using a series of clarification stages as shown in Fig. 3.28. This 

separated the washed biomass, fine sediment material and the aqueous phase. This 

washing procedure was repeated eight times, and all the bulk and fines fractions were 
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combined. The three products were analysed using a series of methods, Table 3.4, to 

determine the composition. 

Figure 3.28: Clarification process to distinguish three products from washing  

 

Table 3.4: Analytical methods for each product 

 

After washing the bulk and fines, samples were left to dry in a fume cupboard 

at room temperature for 24 hours, this brought the moisture content down to less than 

20 wt.%. The material was then placed in the drying ovens as specified in section 

3.3.1. The leachate was immediately bottled and stored in the fridge until analysis, the 

pH of the leachate was recorded every 24 hours to monitor the condition of the sample. 

Analysis was within 72 hours of generating the sample.  

3.6.2.1 Bulk Biomass Sample  

 As mentioned in Table 3.6, the collated bulk sample was analysed at the 

University of Leeds for proximate and ultimate composition as specified in sections 

Bulk Fines Leachate 

Proximate Proximate IC 

Ultimate Ultimate ICP-MS 

Metals-SOCOTEC Metals- University of Leeds TOC 

pH 
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3.4.1 and 3.4.2 respectively. The metals analysis was conducted at SOCOTEC labs as 

specified in sections 3.3.4.2 and 3.4.5.  

3.6.2.2 Fines Sample 

 Proximate and ultimate analyses were conducted as specified in sections 3.4.1 

and 3.4.2. The metals were analysed at the University of Leeds using the acid digestion 

method as specified in section 3.3.4.1 and then using ICP-MS for its increased 

sensitivity as specified in section 3.4.5.  

3.6.2.3 Leachate Sample 

 The leachate was kept separate from each run. This was so the reproducibility 

of the washing processes could be assessed. For leachate samples, Ion 

Chromatography (IC), see section 3.4.3 for IC make and model, was used for 

identification of some metals and inorganics. IC works by separating (Cat- or An-) 

ions using a resin (stationary phase) and an eluent (mobile phase), see Table 3.5 for 

details. The resin contains the opposite charge to the ions being measured, an ion 

exchange reaction takes place between ions in the sample and ions on the resin. Next 

the eluent is passed through the column and releases the sample ions which are bonded 

to the resin. Depending on the time it takes for the ions to pass through the column to 

the conductivity detector, the species can be determined and the quantity using 

standards. Important factors which limit the validity of the results include the pH of 

the solution, the selection of the eluent and the purity of the solution (fine material can 

block the column). IC has a detection limit in the ppb range; however, solutions 

usually have to be diluted to protect the column. Whenever the sample is diluted a 

repeat at a different dilution concentration should be used to ensure samples are within 

the detection limit and provide enough sensitivity for more precise analysis. Overall 

IC has a distinct advantage over ICP methods because it is highly selective, has a high 

separation efficiency and can tolerate different sample matrices. 

Table 3.5: Details of IC instrument 

 Anions Cations 

Column Ion Pac AS14A (4 x 250mm) Dionex IonPac CS12A (250 x 4mm) column 

Eluent Na2CO3/NaHCO3 (8mMol/1mMol) methyl sulphonic acid solution (1.0nN) 

 

The samples run through both instruments were diluted by 1-part sample to 20 

parts deionised water. This was because of the high potassium, calcium, acetate, 
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phosphate and nitrate concentrations. The IC columns have an optimal range which 

varies based on the instrument and the sample. If the separation column becomes 

saturated, then the sample is not sufficiently separated and the results will skew.  

For the TOC measurements, samples were diluted 1-part sample to 4 parts 

deionised water. This was for the same reasons as with the IC, discussed in the 

previous paragraph. Samples are loaded into an automated sampler, which injects a 

small amount of sample into a flame. The combustion characteristics and volume of 

sample injected gives the measurements for the organic and total carbon with the 

remainder being inorganic carbon (e.g. carbonates). The TOC model is a Hach Lange 

IL550 TOC/TIC. 

For ICP-MS, see section 3.4.5 for details on the analytical method, the samples 

were loaded into the instrument as collected, no dilution so that elements present in 

low concentrations could be determined. ICP-MS ionises the sample and then feeds 

this into the mass spectrometer. This is a fast and accurate technique that can measure 

multiple metals and non-metals with a small sample and low concentrations. The issue 

with ICP-MS is small changes in some factors can cause large inaccuracies in the 

results, these include air contaminating the carrier gas, carbon loading onto the ICP 

and argon used in the ionisation process inflicting background interference on the 

detectors. However, for the analysis of leachate it is very robust and accurate. 

The analysis for pH was necessary to determine the factors which could be 

influencing leaching. It is well documented in literature that acidity aids the leaching 

of elements such as Zn, Na, Ca and K [Deng, Zhang and Che, 2013] [Carillo, 

Staggenborg and Pineda, 2014] [Yu et al., 2014]. The Apera pH meter is often used in 

river water sampling. It uses three standard solutions to first calibrate before taking a 

measurement. The instrument is specially designed to cope with the influence of solid 

material and lack of water clarity. Colorimetry techniques are typically used in British 

standards for water pH measurements however these techniques are not applicable in 

these experiments because of leachate colour as shown in Fig. 3.26.  

3.7 Conclusions 

 In order to summarise, Table 3.6 shows the fuels that have been analysed and 

the analytical methods that have been used. All of the methods have been discussed in 

more detail throughout this chapter.  
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Table 3.6: Matrix of experiments  

  Chapter 4 

Experiment Spruce Torrefied Spruce Willow Torrefied Willow Olive Torrefied Olive 

Fuel Supplied as 

Logs ✓ 
 

✓    

Briquettes  
✓ 

 
✓ ✓ ✓ 

Loose       

Chipped       

Size Reduction 
Cutting Mill (<4mm) ✓ ✓ ✓ ✓ ✓ ✓ 

Cryomill (<100m) ✓ ✓ ✓ ✓ ✓ ✓ 

Proximate 
British Standard ✓ ✓ ✓ ✓ ✓ ✓ 

TGA       

Ultimate ✓ ✓ ✓ ✓ ✓ ✓ 

Chlorine 
IC       

External Analysis (SOCOTEC) ✓ ✓ ✓ ✓ ✓ ✓ 

Minor Metals 
ICP-MS       

External Analysis (SOCOTEC) ✓ ✓ ✓ ✓ ✓ ✓ 

Trace Metals 
ICP-MS       

External Analysis (SOCOTEC)       

Stove Combustion 

FTIR Gas Analysis ✓ ✓ ✓ ✓ ✓ ✓ 

Particulates (Smoke Metre) ✓ ✓ ✓ ✓ ✓ ✓ 

Particulates (Impactors)       

Bottom Ash Metals Analysis       

Py-GC-MS ✓ ✓ ✓ ✓ ✓ ✓ 
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  Chapter 5 

Experiment Coffee Logs 
Mexican Robusta 

Beans 

Brewed Mexican 

Robusta Beans 
Willow Wood Logs 

Fuel Supplied as 

Logs    ✓ 

Briquettes ✓    

Loose ✓ ✓ ✓  

Chipped     

Size Reduction 
Cutting Mill (<4mm) ✓ ✓ ✓ ✓ 

Cryomill (<100mm) ✓ ✓ ✓ ✓ 

Proximate 
British Standard ✓ ✓ ✓ ✓ 

TGA     

Ultimate ✓ ✓ ✓ ✓ 

Chlorine 

IC ✓ ✓ ✓ ✓ 

External Analysis 

(SOCOTEC) 
    

Minor Metals 

ICP-MS ✓ ✓ ✓ ✓ 

External Analysis 

(SOCOTEC) 
    

Trace Metals 

ICP-MS     

External Analysis 

(SOCOTEC) 
    

Stove Combustion 

FTIR Gas Analysis ✓ ✓ ✓ ✓ 

Particulates (Smoke 

Metre) 
    

Particulates (Impactors) ✓ ✓ ✓ ✓ 

Bottom Ash Metals 

Analysis 
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  Chapter 6 Chapter 7 

Experiment Bracken Brackettes 
Wheat 

Straw 

Barley 

Straw 
Miscanthus 

Wood 

Briquettes 
SRC Willow 

Fuel Supplied 

as 

Logs        

Briquettes  
✓ ✓ ✓ ✓ ✓ 

 

Loose ✓ 
      

Chipped   
✓ ✓ ✓ 

 
✓ 

Size 

Reduction 

Cutting Mill (<4mm) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Cryomill (<100mm) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Proximate 
British Standard ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

TGA       
✓ 

Ultimate ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Chlorine 
IC   

✓ 
    

External Analysis (SOCOTEC) ✓ ✓ 
    

✓ 

Minor Metals 
ICP-MS   

✓ ✓ ✓ ✓ ✓ 

External Analysis (SOCOTEC) ✓ ✓ 
    

✓ 

Trace Metals 
ICP-MS   

✓ ✓ ✓ ✓ ✓ 

External Analysis (SOCOTEC) ✓ ✓ 
    

✓ 

Stove 

Combustion 

FTIR Gas Analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Particulates (Smoke Metre)        

Particulates (Impactors) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Bottom Ash Metals Analysis       
✓ 

TGA 
Combustion ✓ 

      

Pyrolysis ✓ 
      

Single Particle Combustion ✓ 
      

Pre-Treatment 
Washing       

✓ 

Torrefaction       
✓ 
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Chapter 4. Comparison of the Combustion Emissions and 

Performance from Various Biomass and their Torrefied 

Counterparts in a Domestic Stove 

 

4.1 Introduction 

 Replacement of coal combustion has been an objective since the 1980’s 

because of acid rain and smog related issues. In 2019 global coal energy generation 

fell by 3%, the highest on record [Myllyvirta, Jones and Buckley, 2019].  This was 

because of large decreases in coal usage in Europe and the US whilst big coal users 

China and India kept usage stable and even a small reduction in the latter [Myllyvirta, 

Jones and Buckley, 2019].  

 The replacement of coal by biomass continues to be an area of high research 

activity. Within this research torrefaction is an area of priority. The objective of 

torrefaction is to homogenise the fuel composition, reduce the moisture, increase the 

energy density and produce a fuel with physical properties similar to coal so existing 

technology can be used. This is particularly important for grinding and milling where 

the more elastic properties of biomass require significantly more energy for size 

reduction.  

 Replacement of large-scale coal power generation has been largely by gas, 

solar and wind, this is mainly because of the high costs associated with abatement 

technology, maintenance and fuel preparation for solid fuel combustion [Thomas, 

Hook and Tighe, 2019] [Breeze, 2014]. However, domestic usage of solid fuels is 

increasing. In the UK, domestic stove appliances have been on the rise since 2005 

because of their appealing aesthetic appearance and direct heating incentives 

[DEFRA, 2018].  

 Domestic stove combustion has since been found to be a major contributor to 

increased particulate matter (PM) concentrations. A report by Font and Fuller [2017] 

for DEFRA found that wood burning on open fires and stoves was responsible for 31% 

of PM2.5 in urban areas of London and 38% of PM emissions across the UK. Health 

conditions related to increased PM concentrations in immediate and local air quality 

studies has shown concerning correlations with increased risks of cancer, irreversible 
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lung conditions and neurological damage [Valvanidis, Fiotakis and Vlachogianni, 

2008] [Bølling et al., 2009] [Orasche et al., 2013] [Mukhopadhyay et al., 2012].  

Past research has shown that torrefaction can reduce PM emissions by 

removing soot forming components [Mitchell et al., 2016] [Trubetskaya et al., 2019]. 

Formation of soot particles is a complex process and many routes exist based on 

various combustion parameters and fuel chemical composition [Torvela et al., 2014] 

[Lamberg et al., 2013]. Different organic products from biomass pyrolysis have 

different influences on certain soot formation routes [Atiku et al., 2016]. Using the 

fingerprint method, comparisons between raw and torrefied fuels has shown that 

torrefaction can completely remove or substantially reduce the concentrations of some 

of the known soot forming compounds [Atiku et al., 2017] [Akinrinola, 2014] [Ramos-

Carmonal et al., 2017]. 

The aim of this chapter is to demonstrate the direct improvements from 

torrefaction by combusting a biomass fuel and its torrefied counterpart on a domestic 

stove. Within literature many comparisons have been made. However, this work 

furthers that by comparing resultant emission profiles between the original and 

torrefied forms. Some fingerprint characterisation analysis (Py-GC-MS) was also used 

to help understand and interpret the measured emissions.   

 

4.2 Materials and Experimental Methods  

4.2.1 Sample Preparation 

 The sample fuels studied were detailed in Chapter 3, section 3.2.1. All fuels 

were supplied from external sources and were in briquetted and log form when 

received. For proximate analysis, ultimate analysis and Py-GC-MS, samples were 

milled according to methods described in 3.3.2. Because of the form in which the fuels 

were supplied, a small amount of each sample had to be milled in the Jaw Crusher 

(briquetted fuels) or sawn (logs) before being milled. For Ultimate analysis and Py-

GC-MS, the sample had to be cryomilled as well before analysis. For stove combustion 

tests the samples were tested as supplied as would be the case in a real domestic 

situation.   
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4.2.2 Experimental Methods 

 Proximate analysis, ultimate analysis and Py-GC-MS were conducted as stated 

in sections 3.4.1, 3.4.2 and 3.5.3 respectively. Stove combustion studies were 

conducted in accordance with 3.5.5 with a few specific details:  

• Each batch consisted of 0.7-0.9 kg of fuel. This was subject to higher levels of 

variation with the log fuels compared to the briquetted fuels because of the 

limits on their size and shape.  

• Each combustion run was ignited using 50g of Zip High Performance 

kerosene-soaked firelighters with a single batch of fuel from room 

temperature.  

• The data from the ignition batch was excluded because of the influence of the 

firelighters.  

• Gaseous emissions were analysed from measurements by the FTIR with the 

exception of NOx which was by the Testo because of the interference around 

the NOx detection signal in the FTIR. 

• Gas emissions data was analysed using the SDFGV method because this 

considers compositional properties of the fuel over operation parameters.  

• PM emission factor analysis was solely by the use of the smoke metre and 

direct sampling from the flue using Munkter 50mm micro-quartz filters. 

Particle size analysis was by the Dekati Impactors sampling 4500mm from the 

top of the stove in the dilution tunnel- Fig. 3.18.  

• Only when the batch mass was below 30% of the original mass was a new 

batch loaded. 

 

4.3 Results and Discussion 

4.3.1 Proximate and Ultimate Analysis  

 Results for the proximate and ultimate analysis as well as some inorganic 

analysis (Cl, K and Ca) and the higher heating values (HHV) are shown in Table 4.1. 

The effects of torrefaction are evident, Table 4.1, on the composition when comparing 

the torrefied fuel and the untreated fuel. Past research has shown that torrefaction 

decreases the moisture and volatile matter but concentrates the ash and fixed carbon 

[Akinrinola, 2014]. Moisture is removed during two phases of torrefaction, the 
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majority is removed during drying at around 100C, the rest is removed as the material 

dehydrates and volatiles are emitted from the particle. The resulting amount of 

moisture is not dependent on the peak torrefaction temperature because moisture is 

reabsorbed once the samples are removed from the heat in equilibrium with localised 

vapour pressure [Bridgeman et al., 2010]. Torrefied fuels are hydrophobic because of 

the decomposition of OH functional groups which can bond with water hence they 

have much lower moisture contents than the untreated fuels.    

 The trend for the volatile concentration is W+OST.WT.ST.O this is the 

exact inverse of the fixed carbon trend where T.O>T.S>T.W>S>W+O. The degree of 

torrefaction (extent of) can be defined using the work of Li et al. [2013] by the % loss 

in volatile matter from the parent wood. In this work the degree of torrefaction is 

highest for the torrefied olive (20.7%), followed by the torrefied willow (11.0%), and 

the lowest is the torrefied spruce (7.8%). This trend was anticipated because the 

torrefaction conditions were most severe for the torrefied olive with the hottest peak 

temperature and longest residence time (280C, 100 minutes)- see Table 3.1.  

Table 4.1: Proximate and ultimate analysis of the fuels studied  

Sample Spruce 

(S) 

Torrefied 

Spruce 

(T.S) 

Willow 

(W) 

Torrefied 

Willow 

(T.W) 

Olive 

(O) 

Torrefied 

Olive 

(T.O) 

Moisture 

(wt.%)ar 

18 4.6 10 7.6 14.8 6.4 

Volatiles 

(wt.%)db 

77 71 82 73 82 65 

Ash 

(wt.%)db 

0.4 1.0 1.0 2.8 1.2 4.9 

Fixed Carbona 

(wt.%)db 

22.6 28 17 24 17 30 

C (wt.%)daf 51 58 49 56 56 70 

H (wt.%)daf 6.1 6.1 6.3 5.2 5.2 3.7 

N (wt.%)daf 0.27 0.49 0.56 0.64 0.50 0.56 

S (wt.%)daf 0.04 0.04 0.04 0.06 0.13 0.16 

Oa (wt.%)daf 42 35 44 38 38 27 

Clb (wt.%)db 0.04 0.01 0.06 <0.01 0.17 0.04 

Kb (ppm)db 840 1280 3295 3650 1600 1900 

Cab (ppm)db 980 8770 3050 6020 1000 4800 

HHVc 

(MJ kg-1)db 

19.70 23.03 18.98 21.25 21.51 25.34 

*ar- as received basis, db- dry basis, daf- dry ash free basis a- calculated by difference, b- measurement was 

by an external accredited laboratory, c- calculated using equation in section 3.4.4 from [Friedl et al, 

2005]  
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Because of the nature of the fuels and the method of sampling the degree of 

variability and error is higher than those specified in the standard analytical method 

(±0.2%). This is especially significant for the volatile matter and carbon measurements 

of the torrefied olive fuel because it is blended with the non-torrefied form and 

speculate that the degree of torrefaction was non-uniform. The measured errors (±1 

standard deviation) are shown in Table 4.2.  

Table 4.2: Error measurements calculated by ±1 standard deviation 

Sample Spruce Torrefied 

Spruce 

Willow Torrefied 

Willow 

Olive  Torrefied 

Olive 

Moisture 

(wt.%)ar 
±0.8 ±0.5 ±0.7 ±0.2 ±0.4 ±0.7 

Volatiles 

(wt.%)db 
±8 ±5 ±7 ±3 ±14 ±22 

Ash 

(wt.%)db 
±0.2 ±0.4 ±0.5 ±0.7 ±1.2 ±0.4 

C (wt.%)daf ±3 ±2 ±1 ±1 ±3 ±8  
H (wt.%)daf ±0.1 ±0.2 ±0.5 ±0.6 ±1.2 ±0.1 

N (wt.%)daf ±0.10 ±0.12 ±0.21 ±0.14 ±0.24 ±0.4 

S (wt.%)daf ±0.03 ±0.03 ±0.03 n/a ±0.10 ±0.11 

 

Comparing the volatile matter, fixed carbon and elemental carbon contents for 

the fuels in this work with data from the Phyllis2 database and previous work, the 

numbers are similar, Fig. 4.1. For the spruce fuel used in this study the volatile matter 

in both the raw and the torrefied was lower than the average from the Phyllis2 

database; torrefaction conditions were the same, however the difference between the 

raw and torrefied is comparable (volatile matter 7 wt.% daf, fixed carbon 7 wt.% 

daf and carbon 6 wt.% daf). The average for the willow from this work and the 

Phyllis2 database is within 1 wt.% daf. For the torrefied willow the torrefaction 

temperature was higher in the Phyllis2 database (300-308C) compared to the fuel 

used in this work (250-260C); the increased degree of torrefaction, explains the 

difference seen in Fig. 4.1 when comparing the two fuels.  

For the olive stone, the volatile matter content and fixed carbon is between the 

value from Sánchez and Miguel [2016] and Volpe et al. [2016], but is closer in value 

to the latter. The latter is not just olive stone but a blend of olive stone, branches and 

leaves which are the common solid residue products in the farming of olives. For the 

torrefied olive, the comparative analysis between this work, Sánchez and Miguel 
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[2016] and Volpe et al. [2016] is more significant, since the untreated fuel was used 

to produce the torrefied products at the same peak torrefaction temperature. The degree 

of torrefaction is greatest in Sánchez and Miguel [2016] (31.4%), torrefaction at 300C 

for 15 minutes, then this work (20.7%) and the lowest is from Volpe et al. [2016] 

(16.6%), torrefaction at 300C for 30 minutes. However, the torrefied olive stone 

analysed in this work was a blend with the raw material meaning a pure torrefied 

product would have a higher degree of torrefaction. Additionally, the residence time 

and mixing can have an influence on the final product [Akinrinola, 2014].  

Elemental chemical composition changes due to torrefaction are shown in the 

Van Krevelen diagrams in Figs. 4.2 and 4.3. The trend is that as the process severity 

is increased the points shift towards the bottom left-hand corner; this process is termed 

coalification. In Fig 4.2, data from Bridgeman et al. [2008] and Jones et al. [2012] for 

willow, and Sánchez and Miguel [2016] for olive, are shown for varying torrefaction 

conditions. The data points from this work for the spruce, torrefied spruce, willow and 

torrefied willow show strong similarities with those from the other work. The olive 

and torrefied olive show a similar trend in the direction the points move across the 

graph however, they are at much lower ratios; they are more enriched in carbon.  

Fig. 4.3 from Granados et al. [2017] analyses the composition of a 2-staged 

torrefaction at various temperatures for poplar wood. The olive and torrefied olive, 

when plotted on Fig. 4.3, are more analogous with the trend from Granados et al. 

[2017]. Fig. 4.3 still suggests that the raw olive material has been subjected to some 

thermal pre-treatment which has resulted in the carbon being concentrated. On Fig. 

4.3 biochar produced in Jones et al. [2012] at 1000C in a helium environment is 

plotted along with charcoal studied in Mitchell et al. [2019]. Based on these additional 

points it is evident that the torrefied olive has started to form char and is on a trajectory 

to form either biochar or charcoal.  
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Figure 4.1: (a) Volatile matter, (b) fixed carbon and (c) carbon concentrations on 

a daf basis for the fuels studied compared to other measured values. Values for 

the Phyllis2 database are averages. 

(a) 

(b) 

(c) 
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Figure 4.2: Van Krevelen of fuels studied in this work compared to willow in 

Bridgeman et al. [2008], willow in Jones et al. [2012] and olive stone in Sánchez 

and Miguel [2016] 

Figure 4.3: Van Krevelen from Granados et al. [2017] ◼ Olive [This Work] ◼ 

Torrefied Olive [This Work]  Willow Char 10mm particle size [Jones et al., 2012] 

 Willow Char 20mm particle size [Jones et al., 2012] ⚫ Charcoal [Mitchell et al., 

2019] 
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 Comparing the torrefied forms to the raw fuels, the nitrogen content is higher 

in all of the thermally treated fuels, Table 4.3. This is the same conclusion as 

Akinrinola [2014] for torrefaction of different native Nigerian biomass torrefied at 

temperatures between 260-300C for 15-60 minutes. When analysing the N to C ratio 

there is no discernible trend besides in the work of Bridgeman et al. [2008]. The final 

column of Table 4.3 shows the N content on an energy basis. Based on the fuels in this 

work and the results from Bridgeman et al. [2008] once the torrefaction temperature 

exceeds 250C the increase in energy content is greater than the nitrogen content. This 

means on an energy basis the nitrogen content of the torrefied olive is lower than in 

the raw olive material.    

Table 4.3: Comparison of nitrogen content between untreated and torrefied fuels 

from this work, Bridgeman et al. [2008] and Sánchez and Miguel [2016] 
   

N 

 (Wt. %)daf 

Atomic 

N/C 

HHV  

(MJ kg-1)db 

N  

(kg GJ-1)db 

This Work Spruce 0.27 0.0053 19.70 0.14 

Torrefied Spruce 0.49 0.0072 23.03 0.21 

Willow 0.56 0.0098 18.98 0.30 

Torrefied Willow 0.64 0.0098 21.25 0.30 

Olive 0.5 0.0077 21.51 0.23 

Torrefied Olive 0.56 0.0069 25.34 0.22 

Bridgeman 

et al. 

[2008] 

Willow Raw 0.2 0.0034 20.00 0.10 

230°C 0.2 0.0034 20.20 0.10 

250°C 0.2 0.0033 20.60 0.10 

270°C 0.2 0.0032 21.40 0.09 

290°C 0.1 0.0016 21.90 0.05 

Sánchez 

and 

Miguel 

[2016] 

Olive 

Stone 

Raw 0.4 0.0069 21.05 0.19 

200°C 0.3 0.0051 20.99 0.14 

250°C 0.2 0.0032 21.99 0.09 

275°C 0.4 0.0059 24.64 0.16 

300°C 0.3 0.0041 25.79 0.12 

 

 Compositional changes in the C, H and N concentration will impact on the 

HHV calculated using Eq. 3.7 from Friedl et al. [2005], Table 4.1. The HHV rank in 

the order of T.O>T.S>O>T.W>S>W (25.34, 23.03, 21.51, 21.25, 19.70, 18.98 MJ kg-

1 db respectively).The difference between the untreated and torrefied forms are 3.33, 

2.27 and 3.83 MJ kg-1 db for the spruce, willow and olive respectively. The difference 

in the C contents between the raw and torrefied forms suggests that the difference in 

the HHV of the olive fuels should be much larger than the spruce or willow (difference 
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in C content of 14 wt.% daf compared 7 wt.% daf). This is explained by the loss of H 

which is significantly lower in the torrefied olive. Past work [Bridgeman et al. 2008] 

[Sánchez and Miguel, 2016] [Jones et al., 2012] [Akinrinola, 2014] has not seen such 

significant compositional differences upon torrefaction. This is analogous with the 

conclusions from the Van Krevelen diagrams, Figs. 4.2-3, that suggest the torrefied 

olive has started to form char.    

4.3.2 Stove Combustion  

 The results for the stove combustion experiments are discussed in this section. 

The results are split into sections based upon their objective measurement parameters.  

4.3.2.1 Burning Rate and Temperature  

 Combustion of solid fuels is split into three key phases: ignition, flaming and 

smouldering. As previously mentioned, this work is not concerned with ignition 

because of the influence of firelighters on starting the combustion runs. Defining when 

these phases occur is complex and previous work by Faschinger et al. [2017] has 

shown that multiple phases can exist and there is a significant amount of overlap 

between phases. These phases are also subjective to operator influence. Therefore, in 

order to minimise these factors and keep an ordered comparison between the fuels, 

flaming combustion is defined as when the burning rate is ≥0.85 kg h-1, smouldering 

is a burning rate of <0.85 kg h-1 but ≥0.3 kg h-1, and combustion has ended when a 

mass of 200g of fuel remains (of the order of 25% of the initial dry mass of each batch).  

  Figs. 4.4a-c show the burning rate profiles for the spruce, willow and olive 

pairings respectively. Even though in Figs. 4.4a-c it appears that more fuel has been 

burnt in some experiments, all experiments burnt 4 batches of fuel (1 ignition and 3 

reloads). Not all the batches are shown in Figs. 4.4a-c however a similar amount of 

fuel (within ±10%) has been burnt for all the experiments. With the exception of the 

willow comparison, the torrefied form has a longer burning time per batch than the 

untreated form. The willow comparison differs because the torrefied willow are small 

briquettes and they disintegrate rapidly when exposed to the flame (larger surface area 

and greater porosity). The average batch burning time is ranked in the order of T.S 

(55 mins) >S+T.O (38 mins) >O+W (32 mins) >T.W (18 mins). 
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Figure 4.4: Variation of burning rate with time (a) spruce and torrefied spruce 

(b) willow and torrefied willow (c) olive and torrefied olive. Arrows indicate 

reloading points- this is consistent throughout this thesis. Not all fuel batches are 

shown for all the fuels.  

(a) 

(b) 

(c) 
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For the spruce and olive comparisons, the raw profiles show a sharp peak 

which has a greater magnitude than the torrefied fuel after the reload. The torrefied 

fuel peaks are not as high in magnitude and are much broader. This is particularly 

noticeable for the olive (average peak height 2.75 kg h-1 and peak width 8 ± 3 mins) 

compared to the torrefied olive (average peak height 2.08 kg h-1 and peak width 17 ± 

4 mins). For the willow the trend is reversed for the peak height, T.W (4.2 kg h-1)  

W (2.1 kg h-1), however for the peak width the two fuels are very similar (13 mins), 

this result is unexpected because the volatile matter content is over 10 wt.% db lower 

for the torrefied fuel. This result occurs because of the overlap in combustion phases 

in the torrefied willow described by Faschinger et al. [2017].   

The broader and lower peak burning rates just after the fuel is loaded for the 

torrefied fuels is particularly noticeable in Fig. 4.4c for the torrefied olive. This could 

be from two factors: The first could be the rate of devolatilisation is lower in the 

torrefied fuels, this is because the fuel has already been partially devolatilised in the 

torrefaction process [Saddawi et al., 2011], or it could be because of the nature of the 

volatiles released, this is explored more in section 4.3.3 on Py-GC-MS.  

It should be noted that binders and briquette density (or porosity) can have a 

large impact on the burning rate and in some cases can outweigh the fuel effects. No 

binders were used in preparation of the fuels in this study however the density did 

vary. Although this is discussed in more detail, related to emissions in section 4.3.2.2, 

it is evident from Figs. 4.4a-c and Table 3.1 that the more dense and harder briquettes 

have longer burning times and lower burning rates.  

Table 4.4: Average burning rates for each fuel, average temperature in each 

combustion phase and the % of the initial batch mass when the combustion phase 

changes 

 
Average burning rate, kg h-1, flue gas temperature in parenthesis 

 
Flaming Smouldering Average per 

load Fuel Average % of initial mass Average % of initial mass 

Spruce 1.55 (225oC) 38 (±5) 0.67 (175oC) 15 (±3) 1.27 

T. Spruce 1.19 (240oC) 35 (±3) 0.65 (180oC) 12 (±2) 0.94 

Willow 1.86 (320oC) 27 (±3) 0.72 (255oC) 14 (±2) 1.41 

T. Willow 2.85 (395oC) 21 (±3) 0.73 (325oC) 12 (±2) 2.30 

Olive 1.41 (370oC) 40 (±6) 0.51 (300oC) 16 (±2) 1.24 

T Olive 1.21(380oC) 43 (±2) 0.62 (300oC) 20 (±4) 1.02 
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Table 4.4 shows the average flaming and smouldering burning rate and the 

average flue gas temperature (measured 1.43m above the combustion zone) for each 

fuel (excluding ignition). Past work [Faschinger et al., 2017] [Mitchell et al., 2016] 

has shown that the volatile matter content is directly proportional to the burning rate 

during flaming combustion, this is because of homogeneous reactions in the gaseous 

phase above the fuel surface from devolatilisation. This trend is not clearly seen in this 

work as shown in Fig. 4.5. Comparing the torrefied spruce and torrefied willow, these 

are both briquetted wood fuels with low moisture contents (minimal influence) [Price-

Allison et al., 2019] (4.6 and 7.6 respectively) and similar volatile contents (71 and 73 

wt.% db respectively), however their average flaming burning rates are 1.66 kg h-1 

different. This difference is from the physical structure of the fuels (Table 3.1) mainly 

the durability and the ease of disintegration as the fuel is heated and converted. The 

torrefied spruce held its structure throughout the entire batch until fresh fuel was 

loaded on top of it when it would break under the new fuel’s weight. Whilst the 

briquette held its shape this reduced the surface area for combustion and lowered the 

surface area to volume ratio. This is the opposite to the torrefied willow mentioned 

previously which disintegrated on heating, increasing the surface area. It also explains 

why the torrefied willow has the hottest flaming combustion flue gas temperature 

(395C).   

Figure 4.5: Plot of fuel volatile content and average flaming burning rate  

 

Increases in fixed carbon can result in an increase in the smouldering 

combustion burning rate [Mitchell et al., 2016] which is observed in this work for the 
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willow, torrefied willow, olive and torrefied olive pairings, Fig. 4.6. For the spruce 

and torrefied spruce, the smouldering rates are similar, this can be attributed again to 

the physical structure of the torrefied spruce described earlier. The untreated willow 

and olive fuels have the same fixed carbon contents (17 wt.% db) but have a large 

difference in the smouldering combustion rate (0.72 and 0.51 kg h-1 respectively). 

Reasons for this are not clear especially considering the olive disintegrated faster and 

smouldered at a hotter temperature than the willow, but are most likely due to 

overlapping of combustion phases, reaction surface inhibitors/catalysts (ash) and 

inefficient air mixing in the combustion zone [Ozgen et al., 2014]. It should also be 

added that as discussed in section 3.5.5 there is a 10% margin of error, when applied 

to Fig. 4.6 (error bars) the changes seen are within the experimental error.  

Figure 4.6: Plot of fuel fixed carbon content and average smouldering burning 

rate. Error bars are for a 10% experimental error.  

 

4.3.2.2 Carbon Emissions 

 The majority of carbon-based emissions are as carbon dioxide (CO2), carbon 

monoxide (CO) and methane (CH4). Figs. 4.7a-f show the emission profiles for CO2 

and CO on a dry basis at 13% oxygen concentration (industry standard) and normal 

room temperature (20C) and pressure. In all of the profiles t=0 is when the fire 

lighters were started and the stove door was closed, this first ignition batch differs 

because of the influence of kerosene combustion in the firelighters. The ignition batch 

is used to heat up the stove and create a hot fuel bed to reload new batches of fuel onto. 

Reload batches are indicated by arrows on the profiles.  



129 

 

   

 

0

5000

10000

15000

20000

25000

30000

35000

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160

E
m

is
si

o
n
 o

f 
C

O
 (

p
p
m

)

E
m

is
si

o
n

 o
f 

C
O

2
(p

p
m

)

Time (min)

0

2000

4000

6000

8000

10000

12000

14000

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160
E

m
is

si
o
n
 o

f 
C

O
 (

p
p
m

)

E
m

is
si

o
n
 o

f 
C

O
2

(p
p
m

)

Time (min)

0

5000

10000

15000

20000

25000

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120

E
m

is
si

o
n
 o

f 
C

O
 (

p
p
m

)

E
m

is
si

o
n
 o

f 
C

O
2

(p
p
m

)

Time (min)

(a) 

(b) 

(c) 



130 

 

Figure 4.7: Evolution of CO2 (solid black line) and CO (dashed grey line) over 

combustion cycles, arrows indicate batch reloads, (a) Spruce (b) T. Spruce (c) 

Willow (d) T. Willow (e) Olive (f) T. Olive  
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When the fuel is reloaded, the stove door is opened in order to manually place 

the fresh batch of fuel into the stove, during this process a sudden large influx of air 

causes the CO emissions to spike. This peak is from the rapid oxidation of volatiles 

emitted from devolatilisation of the fuel, however slow mixing and lack of energy 

from heat or radiation sources prevents conversion to CO2.  

The reaction from CO to CO2 is a much slower process than the initial 

oxidation step, and is the rate determining step in the reaction mechanism to CO2 

formation. Once the bed is flaming the CO concentration rapidly declines and the CO2 

concentration increases, the stove conditions are now more favourable for complete 

combustion (hotter temperatures). The CO gradually increases as the flaming phase 

progresses and more char combustion occurs (smouldering phase). The CO 

concentration peaks again during smouldering combustion because of the 

heterogeneous reaction of oxygen with the char surface, at this point the stove 

temperature has dropped (Table 4.4). The trend of higher CO2 emissions during 

flaming combustion and then decreasing during smouldering combustion and the 

associated increase of CO emissions is also seen in profiles of work by Bertrand et al. 

[2017], Win and Persson [2014], Mitchell et al. [2016] and Ali Mami et al. [2020].  

Table 4.5: Average emission factors over the whole combustion cycle for the fuels 

studied, margin of error is shown in the parenthesis for a 95% confidence interval 
 

kg GJ-1 g m-3 at 13% O2 

Fuel CO2 CO CH4 CO2 CO CH4 

Spruce 65 (±20) 5.8 (±0.44) 0.37 115 (±32) 9.1 (±1.2) 0.56 

T. Spruce 90 (±5.2) 3.2 (±0.1) 0.18 145 (±10) 6.0 (±0.32) 0.47 

Willow 67 (±16) 4.2 (±0.24) 0.18 110 (±33) 7.0 (±0.69) 0.34 

T. Willow 78 (±16) 4.2 (±0.53) 0.04 120 (±32) 6.9 (±1.4) 0.10 

Olive 73 (±10) 4.0 (±0.25) 0.05 110 (±28) 6.6 (±0.71) 0.18 

T. Olive 74 (±5) 4.2 (±0.44) 0.05 98 (±17) 6.0 (±1.2) 0.13 

 

Table 4.5 shows the average emission factors over a whole combustion cycle 

for the reload batches of each fuel. The most notable observation is that the emission 

factors for CO2 from the torrefied fuels are higher than the untreated fuels, this is 

because of the higher fixed carbon/carbon contents in the torrefied fuels. The CO 

emissions are similar for all the fuels with the exception of the untreated spruce fuel, 

which is 1.6 kg GJ-1 higher than the torrefied spruce, this is because of the higher 
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moisture content of the spruce (18 wt.% ar.) which cools down the fuel bed and 

combustion zone temperature because of the energy consumed drying the fuel and 

removing the excess moisture.  

Methane (CH4) emissions for the spruce, willow and olive pairings are shown 

in Figs. 4.8a-c respectively. The emissions from the wood logs (spruce and willow) 

and the torrefied spruce are significantly higher than the smaller briquetted fuels 

(torrefied willow, olive and torrefied olive). This suggests that there is some influence 

of the physical properties on these emissions, fuels that don’t disintegrate readily result 

in higher CH4 emissions, however this result could also be from the fuel composition 

discussed later. Emissions of CH4 are typically from fuel rich combustion, more 

common with dense briquettes, without the ability to react further to CO or CO2 

[Ndiema, Mpendazoe and Williams, 1997]. The profiles in Figs. 4.8a-c are analogous 

with this conclusion: the CH4 emissions either peak towards the end of the combustion 

cycle when there is still unreacted fuel because the fuel hadn’t disintegrated and the 

temperatures were too low to support further reaction mechanisms (temperature 

profiles in Appendix A, Fig. A.1-3), or the peak occurs just after reloading when the 

burning rate spikes, the fuel is rapidly devolatilising but the temperature is still too 

low, the residence time is too short or the air-to-fuel ratio isn’t favourable for further 

reaction.  

Methane is produced from the decomposition and gasification of volatile 

species as shown in the reaction mechanisms in Eq. 4.1-4.3 [Ndiema, Mpendazoe and 

Williams, 1997]. There is a partial equilibrium between the emissions of CO and CH4. 

The ratio of atomic C/H largely dictates these reactions and using Fig. 4.9 there is a 

moderate power order trend (x-2.43) between the C/H ratio and the CH4 emission 

factors. In the spruce and willow pairings, torrefaction improves the C/H ratio and 

there is a substantial effect on the CH4 emission factors (Fig. 4.9). In the case of the 

olive and torrefied olive there is a large increase in the atomic C/H ratio however there 

is minimal change in the emissions of CH4. It should be noted that all the fuels in Fig. 

4.9 have a similar moisture content, as this would also greatly influence the result 

[Price-Allison et al. [2019].  
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Figure 4.8: Methane emissions over combustion cycles (a) Spruce and T. Spruce 

(b) Willow and T. Willow (c) Olive and T. Olive 
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𝐵𝑖𝑜𝑚𝑎𝑠𝑠 +  𝑂2 → 𝐶𝑂 + 𝐶/ 𝐻/𝑂  𝑆𝑝𝑒𝑐𝑖𝑒𝑠     (4.1) 

𝐶𝑂 +  𝐻2𝑂 = 𝐶𝑂2 +  𝐻2     (4.2) 

𝐶𝑂 + 2𝐻2  = 𝐶𝐻4 + 0.5𝑂2   (4.3) 

 

Figure 4.9: Methane emission factors plotted against the C/H ratio from the fuel 

analysis.  

 

4.3.2.3 Nitrogen Emissions (NOx) 

 NOx emissions in stove combustion systems are primarily from fuel-N 

sources, this is because the temperature at which thermal NOx forms (1500C) is much 

higher than the average temperature in the stove, this is also a conclusion seen in past 

research [Mitchell et al., 2016] [Atiku et al., 2017]. Even in research of much larger 

fixed bed systems temperature profiles show that the fuel bed temperature rarely 

exceeds 1000C [Rokni et al., 2017] [Ali Mami et al., 2020].  

NOx profiles over the combustion cycle are shown in Figs. 4.10a-c for the 

spruce, willow and olive pairings respectively. In all of the untreated fuel cases the 

magnitude of the NOx peak is greater than the torrefied fuel, there is also more of a 

delay between the batch reload point and the peak occurrence for the untreated fuel. 

This suggests that the nitrogen release in the untreated biomass occurs very rapidly, 

the rate of devolatilisation is higher, which is analogous with earlier discussions 

relating to the burning rate. The larger time lag between reload and peak emissions is 

because of the higher moisture content in the untreated fuel, this was also observed by 
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Rokni et al. [2017] for a comparison of untreated and torrefied corn straw.  The NOx 

peaks in the torrefied fuel cases are much broader, which when comparing to Figs. 

4.4a-c shows that nitrogen release persists into char combustion (smouldering phase). 

This was a conclusion also seen in Mitchell et al. [2016] where NOx emissions 

continued into the smouldering phase and stabilised to a consistent emission rate.  

 

Figure 4.10: NOx emissions profiles (a) Spruce and Torrefied Spruce (b) Willow 

and Torrefied Willow (c) Olive and Torrefied Olive 
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Table 4.6 shows the emissions factors for NOx on both a g kg-1 and a g GJ-1 

basis as well as the fuel-N content. On a mass basis (g kg-1) the results show that 

emissions of NOx are highly variable and there is no definitive correlation between 

the fuel nitrogen content and the emission factor. Converting this to an energy basis, 

Fig. 4.11, an improvement in emissions is achieved through torrefaction. Fig. 4.11 

includes data from other work [Mitchell et al., 2016] and the values from the untreated 

fuels (spruce, willow and olive stone) all fit this previous data trend. Arrows indicate 

the reduction of the NOx emissions by the torrefied fuels. A part of this reduction is 

from the increase in energy, compensating for the increase in the fuel-N concentration. 

However, past work [Trubetskaya et al., 2019] has shown in the case of torrefied olive, 

the torrefied fuel contains char-like particles in which the fuel-N is more tightly 

bonded in the char matrix. Combustion of char particles encourages a reducing 

environment and therefore more fuel-N will be released as N2 instead of NO [Williams 

et al., 2012]. Analysis of the bottom ash/char mix, Table 4.6, (material remaining after 

80% mass burnout) shows that similar amounts of nitrogen remain, this supports the 

speculation that more nitrogen in torrefied fuels is being evolved as N2 which is the 

same conclusion shared by Trubetskaya et al. [2019].  

Table 4.6: Average NOx emissions over the whole combustion cycle to 80% 

burnout, margin of error at a 95% confidence interval are shown in the 

parenthesis, fuel nitrogen and standard deviation from Tables 4.1 and 4.2 are 

included 

Fuel 

NOx Emission Factors Fuel-N content 
Residual 

Char-N 

g kg-1 g GJ-1 wt.% daf % 

Spruce 1.07 65 (±12) 0.27±0.10 18 

T. Spruce 1.04 45 (±5.1) 0.49±0.12 17 

Willow 2.56 135 (±8.5) 0.56±0.21 7 

T. Willow 1.91 90 (±20) 0.64±0.14 8 

Olive 1.61 75(±24) 0.50±0.26 10 

T. Olive 1.52 60 (±17) 0.56±0.04 10 
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Figure 4.11: NOx emission factors on an energy basis plotted against the fuel-N 

content, includes data from Mitchell et al. [2016]. It should be noted that changes 

are within the experimental error (10%).  

 

To explore this further, chars were prepared from each fuel using TGA 

(nitrogen environment at a heating rate of 20C min-1 to 850C and held for 60 

minutes) and these chars were used to calculate the nitrogen partitioning by elemental 

analysis and mass balance, Table 4.7. In all of the cases, over 70% of the nitrogen is 

released in the volatile phase. There is a significant increase in the retention of fuel-N 

in the char matrix for the torrefied fuels. Previous work has shown that shorter 

residence times and lower torrefaction temperatures create more nitrogen enriched 

chars whereas hotter temperatures result in nitrogen being released faster than the 

volatiles are released [Glarborg, Jensen and Johnsson, 2003] [Werther et al., 2000]. 

The torrefied spruce had the mildest torrefaction conditions and also has the greatest 

retention of nitrogen in the char (26%). The olive stone had the most severe 

torrefaction conditions and retained 21% of the nitrogen in the char, this suggests the 

trend in this work is analogous with Glarborg, Jensen and Johnsson [2003] and 

Werther et al. [2000]. However, the willow only retained 14% which breaks the trend. 

Riaza et al. [2019] reported increased retention of nitrogen in char for olive waste 

material compared to wood which is consistent with the results seen in this work. 

Using the results from Tables 4.6 and 4.7, it can be concluded that torrefied fuels will 
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retain more nitrogen in the char matrix and have lower NOx emissions and, and so 

nitrogen emissions from biomass must occur more as N2.  

Table 4.7: Nitrogen partitioning in fuels studied 

Fuel Fuel-N 

Content       

(wt.% daf) 

Char-N 

Content         

(wt.% daf) 

Char Yield  

(%) 

Fuel-N in 

Volatiles 

(%) 

Fuel-N in 

Char (%) 

Spruce 0.27 (±0.10) 0.31 (±0.11) 17.5 80 20 

Torrefied Spruce 0.49 (±0.12) 0.37 (±0.06) 31.9 74 26 

Willow 0.56 (±0.21) 0.27 (±0.08) 13.2 94 6 

Torrefied Willow 0.64 (±0.14) 0.32 (±0.04) 28.4 86 14 

Olive 0.50 (±0.26) 0.29 (±0.07) 15.2 91 9 

Torrefied Olive 0.56 (±0.04) 0.33 (±0.11) 36.2 79 21 

 

4.3.2.4 SO2 Emissions 

  Emissions of SO2 are complex because they are not only dependent on the 

amount of S in the fuel but also the form in which the S is present and also the nature 

of minerals/salts. SO2 emissions for the torrefied fuels are significantly lower than the 

emissions from the untreated fuels, Table 4.8. Calcium (Ca) in fuels has been 

thoroughly researched and shown to greatly reduce the emissions of SO2. Niu, Han 

and Lu [2010] showed that using a Ca/S atomic ratio of between 1 and 2 can have 

significant benefits at temperatures of 1000-1200K in fixed bed fluidised combustion 

of coal. This temperature region is higher than observed in domestic stoves and is most 

likely encouraging the release of inorganic sulphur from char destruction and 

decomposition of stable calcium salts (CaS, CaSO4) [Williams et al., 2012] [Yan et 

al., 2015]. However, Zhang et al. [2020] has shown that in the Ca/S mass ratio range 

of 1-3 in the temperature region of 200-400C the percentage of S released is 

significantly reduced for combustion of high-sulphur containing oil sludge. For the 

data in this work, the Ca/S mass ratio range is much greater, with the torrefied spruce 

having the highest mass ratio (22) and the untreated olive having the lowest (0.8). 

All of the torrefied forms have improved Ca/S mass ratios and the emission factors are 

lower, Fig. 4.12. The relationship between Ca/S and SO2 emission factors gives a 

power trend (x-0.297). The trend shows that over a Ca/S range of 0.5-2.5 the 

improvement in emissions is substantial and more significant than improvement made 

above this ratio. This result was also observed by Zhang et al. [2020]. However, the 

more interesting result is the comparison between the Ca/S ratio and the % of S emitted 

as SO2, Fig. 4.13.  
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Table 4.8: Emission factors of SO2 for the fuels study  

Fuel S  

(wt.% daf) 

Ca  

(ppm db) 

SO2 Emission 

(g kg-1) 

Spruce (S) 0.04 980 0.36 

Torrefied Spruce (T.S) 0.04 8770 0.32 

Willow (W) 0.04 3050 0.39 

Torrefied Willow (T.W) 0.06 6020 0.36 

Olive (O) 0.13 1000 0.95 

Torrefied Olive (T.O) 0.16 4800 0.58 

 

Fig 4.13 shows that the spruce and willow fuels emit a much larger proportion 

of their S contents (45 and 48% respectively) compared to the olive fuel (36.5%) even 

though the S contents of the olive is 4 times greater. This could be to do with the nature 

of the fuels, high amounts of sulphur in the bark of woods are burnt in early 

combustion stages as they are exposed [Phillips et al., 2016]. Alternatively, it could be 

that the S within the woods is present more as organic S which decomposes at lower 

temperatures [Knudsen et al., 2004]. The % S emitted from the spruce is much lower 

than reported in previous work by Van Lith et al. [2008] at a similar temperature range, 

this is most likely due to the nature of combustion in the stove and the fuel being as a 

log instead of a powder. 

Figure 4.12: SO2 emission factors as a function of Ca/S ratio 
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Figure 4.13: Percentage of sulphur emitted from the fuel as SO2 as a function of 

Ca/S ratio 

 

4.3.2.5 Particulate Matter (PM) Emissions  

 PM emissions pose many threats to both the environment and human health. 

Mechanisms for particulate (soot) formation are complex and have been extensively 

researched to be a function of many variables- see section 2.3.2.6. Table 4.9 shows the 

emission factors for the fuels studied; the submicron percentage of sampled PM is also 

shown.  

 Sampling and determination of PM emission factors is a difficult process and 

is made more complex by the nature of stove combustion. The majority of PM 

emissions are during flaming combustion [Mitchell et al., 2016] [Atiku et al., 2016], 

however as discussed earlier in section 4.3.2.1, definition of the different combustion 

phases is not simple and analysing the start and end points has some subjectivity. 

Additional differences between smouldering and flaming combustion, mainly 

combustion temperature and radiative energy, also makes sampling PM difficult, and 

in the case of this work the change in the way fuels burn once they are torrefied means 

that there is no one model fits all approach. The final consideration is the stove 

operator impacts which can in most cases be the most influential factor [Pettersson et 

al., 2011], placing the fuel in too late can cause a pre-flaming smoulder which can be 

described as the release of volatiles into a cold combustion zone, this can cause large 
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amounts of PM to form and this continues until the gaseous mixture reaches a point 

where it can self-combust. Measurement reliability has been tactically reduced by 

using the same operator and sticking to key procedure points, such as reloading the 

fuel when 25% of the initial batch mass remains. Using Table 4.9, comparing the 

results from the smoke metre and the Dekati impactors (sampling from the dilution 

tunnel), the numbers are within 15% of each other for each fuel and the trend is 

consistent: torrefied fuels produce less PM than untreated fuels. The estimated 

experimental error within this data set is ±20% to account for small perturbations 

between experimental runs, which cannot be prevented, such as fuel movement within 

the stove. 

Table 4.9: PM emission factors, C/H ratio and Percentage of emission as sub-

micron particles 

Fuel VM  

(wt.% db) 

Atomic 

C/H 

EF, PMt (g kg-1) PM1 (%) 

Smoke 

Metre 

Impactors 

Spruce 77 0.70 4.2 3.9 97.6 

T. Spruce 71 0.79 2.2 1.9 98.6 

Willow 82 0.65 6.4 6.1 96.5 

T. Willow 73 0.90 4.9 4.4 96.6 

Olive 82 0.90 6.7 5.8 99.0 

T. Olive  65 1.58 4.6 4.2 98.3 

 

 The results show that torrefaction reduces PMt (total particulate matter) 

emissions from combustion in a domestic stove. This is because of the reduced VM 

content of the torrefied fuels. Mitchell et al. [2016] shows that there is a trend between 

the reduction in volatile matter and the PMt emission factor which was also seen for 

the data in this work, Fig. 4.15. This is closely linked to the aforementioned increases 

in aromaticity and removal of low CV volatile compounds. Additionally, from Fig. 

4.14 the values for the torrefied spruce and the torrefied briquettes (which are spruce) 

are very similar to each other.  
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 Some research has also shown that PM emissions are increased by torrefaction 

[Khalil et al., 2013] [Shao et al., 2013]. This is mainly because of the concentration of 

K and S in the torrefied form, resulting in K2SO4 being released into the gas phase. 

There are key reasons this is not observed during combustion of torrefied fuels in a 

domestic stove: (1) reduced Cl content from torrefaction results in reduced formation 

of KCl; (2) increased S is accompanied by a large increase in Ca, which as discussed 

in section 4.3.2.4, reacts with S and prevents emission to the gaseous phase; (3) the 

stove combustion temperature is too low for significant evaporation or sublimation of 

K and the majority is retained in the char [Li et al., 2019] [Johansen et al., 2011].  

Figure 4.14: Correlation between PMt and volatile matter, data from Mitchell et 

al. [2016] included 
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4.3.3 Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-

MS) 

 Py-GC-MS was used to investigate and compare the organic species released 

during volatile release. Figs. 4.15-4.17 show the chromatograms for the fuel pairings; 

spruce, willow and olive respectively. Using the NIST database and previous work 

[Simoneit, 2002] [Nowakowski and Jones, 2008] [Fahmi et al., 2007] peaks were 

identified that were common in both the untreated and torrefied forms. Initial 

observation of the chromatograms, in the spruce and olive cases, shows there is a 

visible reduction in the magnitude of the main peaks; upon torrefaction this is not 

observed in the case of the willow. In the case of the untreated olive, late eluding fatty 

acids create multiple peaks in the latter time period. These peaks are unresolved and 

not included. It should also be noted that because of the very high heating rate and the 

inert nature of the carrier gas secondary reactions do not occur.  

 The selected GC column and operating conditions are optimal for detection of 

compounds from lignin sources. Based on the area of the identified peak components, 

lignin products make up 50-60% of the peak area. Volatile components have been 

well-researched and shown to be closely linked to soot formation routes [Atiku et al., 

2017]. The two most notable are the HACA (hydrogen abstraction, carbon addition) 

method and the CPD (cyclopentadiene), these are both described in more detail in 

Chapter 2. Table 4.10 describes identified components and defines these into 

categories based on their source, carbohydrates, lignin or fatty acids.  

 Figs. 4.18-4.20 compare the percentage of identified components from 

carbohydrate, lignin and propylphenol sources. Looking at Fig. 4.18, volatilisation of 

carbohydrate sources increases in the torrefied woods compared to the untreated. This 

is an unexpected result since during torrefaction almost all of the hemicellulose is 

degraded and up to 75% of the cellulose (dependent on severity of torrefaction), these 

are both the main carbohydrate sources [Li et al., 2015] [Saddawi et al., 2012] 

[Ndiema, Mpendazoe and Williams, 2012]. Further analysis of the individual 

carbohydrate components from Table 4.10 show that the key component responsible 

for the increase is levoglucosan (supplementary data Fig. B.4). Levoglucosan is a key 

tracer compound used in detection of biomass burning in atmospheric chemistry and 

is the subject of much research. It is formed from the pyrolysis of starch and cellulose 

and is often difficult to detect in gases directly from a stove because of the hotter 
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temperatures. No levoglucosan is detected in either of the untreated wood samples 

however up to 11% peak area is detected in the torrefied samples. Previous work 

[Hosoya, Kawamoto and Saka, 2009] [Meng et al., 2012] [Boateng and Mullen, 2012] 

have shown that thermally treated biomass can result in the increased production of 

anhydrous sugars. This is because of the increase of cellulose-lignin interaction as 

opposed to hemicellulose-cellulose interactions. In the case of the olive there is a 

substantial decrease in the products from carbohydrate sources, this result is from the 

reduction of detected levoglucosan. This is in contrary to the previous work mentioned 

above however is most likely because of the extreme severity of the torrefaction 

conditions for this fuel which has been extensively described throughout this chapter.     

 Torrefaction increases the proportion of lignin that makes up a biomass 

[Horvat et al., 2016]. This combined with the reduced moisture inherently encourages 

a small increase in production of tar as shown in Fig. 4.19. Looking at individual 

species this increase is mainly from increases in phenols especially methoxy-phenol, 

methyl-phenol and cresol (Fig. A.4), the latter more than doubles in all three cases. 

Propylphenols (eugenol, methoxyeugenol and homovanillyl alcohol, Fig. A.4) are of 

the most interest as these compounds have an increased ability to form soot since they 

can be used in both the HACA and CPD mechanisms. Looking at Fig. 4.20 the 

reduction in the eluting of these compounds is significant, in the case of the torrefied 

olive they are almost completely eliminated. The propylphenols make up 

approximately a quarter of the lignin volatile products in the untreated fuels (22, 27 

and 25% for spruce, willow and olive respectively) which is a substantial difference 

to the torrefied forms which make up 9, 13 and 2% (T.S, T.W and T.O respectively). 

Combining this information with the reduction in cellulose-derived volatile 

components [Berrueco et al., 2014] goes someway to explaining the reduction in PMt 

discussed in the previous section (4.3.2.5).     
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Figure 4.15: Py-GC-MS Chromatograms of (a) Spruce (b) Torrefied Spruce. 

Peak identification (most likely): 1. Guaiacol 2. Cresol 3. Methoxyacetophenones 

4. Methoxypropenyl phenols 5. Eugenol 6. Acetovanillone 7. Homovanillic acid 

or Levoglucosan 8. Squalene. Peaks up to peak no.1 (not including) are from 

cellulose sources, from peak no.1 up to no.8 are from Lignin, the remaining are 

from extractives.  

(a) 

(b) 
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Figure 4.16: Py-GC-MS Chromatograms of (a) Willow (b) Torrefied Willow. 

Peak identification (most likely): 1. Guaiacol 2. Cresol 3. Methoxyacetophenones 

4. Dimethoxyphenols 5. Eugenol 6. Dimethoxyacetophenones 7. 

Propenyldimethoxyphenols 8. Squalene. Peaks up to peak no.1 (not including) 

are from cellulose sources, from peak no.1 up to no.8 are from Lignin, the 

remaining are from extractives. 

 

(a) 

(b) 
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Figure 4.17: Py-GC-MS Chromatograms of (a) Olive (b) Torrefied Olive. Peak 

identification (most likely): 1. Guaiacol 2. Cresol 3. Methoxyacetophenones 4. 

Dimethoxyphenols/Syringol 5. Eugenol 6. Dimethoxyacetophenones 7a. 

Propenyldimethoxyphenols (7) 7b. Levoglucosan 8. Squalene. Peaks up to peak 

no.1 (not including) are from cellulose sources, from peak no.1 up to no.8 are 

from Lignin, the remaining are from extractives. 

 

(a) 

(b) 
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Table 4.10: Classification of identifiable components into carbohydrate sources, 

lignin source and extractives 

 

Source Type Evolved compound Boiling Point 

Carbohydrates 

Acids 

Ketones 

Sugars 

2-Propenoic acid 

110-390°C 

Acetic acid 

Cyclohexanone 

2-hydroxy-3-methyl-2-cyclopenten-1-one 

3-ethyl-2-hydroxy-2-cyclopenten-1-one 

2,5-dimethylfuran 

2(5H)-furanone 

Levoglucosan 

Lignin 

Toluene 

Phenols 

Methoxybenzenes 

Toluene 

110-260°C 

Phenol 

2-methoxyphenol 

2-methylphenol 

2-methoxy-4-methylphenol (Creosol) 

2,6-dimethylphenol 

4-hydroxy-3-methylacetophenone 

2,6 dimethoxyphenol (Syringol) 

Eugenol 

1,2,4-trimethoxybenzene 

160-320°C 

Vanillin 

1,2,3-trimethoxy-5-methylbenzene 

Acetoguaiacon 

3,5-dimethoxyacetophenone 

Homovanillylalcohol 

2,6-dimethoxy-4(2-propenyl)-phenol 

4-hydroxy-3,5-dimethoxybenzaldehyde 

Oils 
Fatty Acids 

Fats 

Hexadecanoic acid methyl ester 

270-420°C n-hexadecanoic acid 

Squalene 
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Figure 4.18: Comparison of decomposition products from carbohydrate sources 

for biomass studied 

 

Figure 4.19: Comparison of decomposition products from lignin sources for 

biomass studied  
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Figure 4.20: Comparison of propylphenol decomposition products for fuels 

studied 

 

4.4 Conclusions 

 In this work, two wood fuels (spruce and willow) and a food-processing waste 

(olive stone) were compared to their torrefied counterparts. In the case of the woods, 

the untreated and torrefied form came from a different source, however for the waste 

the torrefied form was from the same source and a blend of 1:1 untreated and torrefied.  

 Initial composition analysis showed that the torrefied fuels were higher in fixed 

carbon, carbon, nitrogen, ash, potassium and calcium, but lower in moisture, volatiles, 

oxygen and chlorine. These trends are common and have been seen in a lot of previous 

research including that of Mitchell et al. [2016] and Trubetskaya et al. [2019]. The 

torrefied olive fuel had the highest carbon content (70 wt.% daf.) and lowest 

concentration of volatiles (65 wt.% db.), when comparing these to the other fuels and 

fuels from other work it is evident that the torrefied olive has been ‘over torrefied’ and 

resembles more of a biochar then a torrefied fuel. This also resulted in large amounts 

of variation in the analysis (carbon ±8%, volatiles ±22%).  

 Combustion of the fuels on a domestic stove was used to compare combustion 

performance (burning rate and flue gas temperature) and emissions. The torrefied fuels 

burnt slower than the untreated fuels, this is because of the lower volatile content. In 

the case of the torrefied spruce the burning rate was considerably lower (0.94 kg h-1) 
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and this was a result of the dense briquetting which prevented effective break down of 

the fuel, reduced air flow and heat transfer through the fuel bed. The torrefied willow 

on the other hand exhibited the opposite results, the burning rate was the highest (2.30 

kg h-1) and this also resulted in the hottest average flue gas temperatures (flaming 

395C and smouldering 325C). The torrefied willow briquettes were very loosely 

bound and disintegrated rapidly.  

 For all of the torrefied fuels the emission of CO2 was larger than in the 

untreated fuel. The hotter combustion temperatures measured in the torrefied fuels 

increases the rate of oxidation of CO to form CO2. The CO emission factors are similar 

for the untreated and torrefied fuels except in the case of the spruce (untreated 5.8 kg 

GJ-1 torrefied 3.2 kg GJ-1). The emission factor for the spruce is the highest and can 

be attributed to the higher moisture content, 18 wt. %, the highest of all the fuels used. 

Methane emissions result from the thermal decomposition and gasification of volatiles 

and tars released during devolatilisation (pyrolysis) of the fuel. Emission factors of 

CH4 have a power law trend (x-3.863) with the C/H ratio of the fuel. In the spruce and 

willow cases the increase in C/H ratio reduces the CH4 emission factor, however 

because of the reduced sensitivity when the C/H ratio exceeds 10 the trend is less 

visible for the olive comparison.  

 Emissions of NOx continues to be of increasing importance because of the 

health and environmental impacts from these compounds. The majority of NOx 

emissions is in the form of NO, this is common to domestic stoves because of the 

reduced combustion temperatures and residence times. This also means the NOx can 

be assumed to be only from fuel-N sources and the trend from Fig. 4.11 is linear 

between the two parameters. Even though the nitrogen content increases when a fuel 

is torrefied, this is offset by the energy increase. Additionally, torrefaction results in 

more strongly bonded fuel-N within the fuel matrix. This nitrogen enrichment into the 

char is increased by milder torrefaction conditions but is also dependent on the fuel 

type. During combustion of the char, there is more of a reducing environment which 

converts the fuel-N into N2 instead of HCN/NO. 

 Understanding emissions of sulphur are difficult since they are not only 

dependent on the amount of S in the fuel but also the nature of the sulphur. The mass 

ratio of Ca/S compared with the emission factors of SO2 has a power relation (x-0.297). 



152 

 

The mass ratio is highest in the torrefied spruce (22) and lowest in the olive (0.8), these 

are also the lowest (0.32 g kg-1) and highest (0.95 g kg-1) emission factors of SO2.  

 Particulate matter emissions are lower for the torrefied fuels. There are a few 

reasons for this. Initial observation shows that the reduced volatile content of the 

torrefied fuels reduces the emission factors, previous work has shown that moisture is 

also responsible for this reduction however this was to a lesser extent in this work. 

During torrefaction almost complete decomposition of hemicellulose and the majority 

of cellulose limits soot formation by either the HACA or CPD routes. Torrefied fuels 

also have reduced propylphenol emissions (measured in the Py-GC-MS analysis), amd 

these volatile components contribute to soot formation by both the HACA and CPD 

routes. A combination of these factors can be attributed to the reduction seen by the 

torrefied fuels.  

 Based on the data in this work, the overall performance of torrefied fuels is 

superior to that of the untreated counterparts. Emissions from torrefied fuels are higher 

in CO2 but lower in CH4, NOx, SO2 and PMt. Because of the higher price at which 

domestic fuels are purchased at; the effort should be being made to pretreat these fuels 

by torrefaction. Future work should explore the effects of torrefaction on HCl 

emissions in stoves and also the optimisation of torrefaction to produce the best 

performing fuel.  
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Chapter 5. Combustion of Waste Coffee Grounds in a 

Domestic Stove 

 

5.1 Introduction 

  Combustion of waste including energy from waste (EfW), is a growing field 

of interest both from a research and industry point of view. Drivers for the increased 

use of waste for power and heat generation include efficient resource use, zero waste 

to landfill and net carbon zero emissions. Looking at Fig. 5.1 from a report for the UK 

government [Tolvik Consulting, 2019], the number of EfW facilities continues to 

grow and this is increasing the throughput of waste. In 2018 this was up by 5.6% to 

11.5 Mt of waste processed [Tolvik Consulting, 2019]. The biggest challenges for 

using waste in combustion facilities is the lack of homogeneity. Even compared to 

biomass, which has a greater variability than coal, waste can often be very low in 

calorific value because of non-combustible components being fired into the 

combustion vessel. Removal of some waste constituents, such as metals, ceramics and 

composites are difficult because they are often blended or pose separation problems.  

Figure 5.1: Number of EfW facilities in the UK [Tolvik Consulting, 2019].  

 

 Waste coffee grounds can be considered a unique type of fuel. This is because 

they are both a waste and a pretreated biomass (torrefied). Estimation from a UK 

company suggests that around half a million tonnes of coffee waste is produced 

annually in the UK [The British Coffee Association, 2019]. A report from the 
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International Coffee Organization (ICO) predicts that coffee markets in Europe and 

North America will increase by 1 and 2.5% respectively [2018]. Use of coffee grounds 

as a food product and then the waste as an energy source provides a solution to the 

fuel vs food debate, improves the prospects of a bio-economy and increases revenue 

in poorer countries.  

 The potential to use waste coffee grounds is an ongoing subject of research. 

Because the supply is too inconsistent, use in large scale power generation is a less 

favourable option unless in energy from waste plants. Biodiesel production from waste 

coffee grounds is an area of increasing interest however low free fatty acid content 

means that the yield of biodiesel is relatively low (10.8% on a g of biodiesel/ g of 

waste coffee grounds) this process also requires the use of a high purity NaOH catalyst 

reducing the financial feasibility of the process [Kim and Yeom, 2020].  

Production of bio-oil through pyrolysis is also an area of interest. In the work 

of Ktori, Kamaterou and Zabaniotou [2018] pyrolysis at 540C manufactured a yield 

of 36 wt.% of bio-oil, 9 wt.% gaseous products (wet gas) and 29 wt.% biochar, these 

were seen to be the optimal conditions for bio-oil yield. Other processes such as 

fermentation for bioethanol production and extractive processes for bio-oil are also 

ongoing subjects of research interest. However direct combustion is still of interest 

because of the more favourable energy yields to alternative processes.  

 In this study commercial coffee briquettes have been studied for their 

composition and combustion properties in a domestic stove. Analysis of the 

combustion performance (burning rate and temperature) and the emissions have been 

compared to standard kiln dried willow logs. Some additional analysis has been used 

to further understand the combustion and emission properties.   

 

5.2 Materials and Experimental Methods  

5.2.1 Sample Preparation 

  Samples were prepared according to the methods described in Chapter 3. The 

commercial coffee briquettes were supplied in their briquetted form along with a small 

amount of non-briquetted loose ground spent coffee. Willow logs were supplied with 

bark in ½ split logs. The willow logs had to be cut and milled for elemental analysis. 
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The Mexican Robusta Beans (MRB) were ground using a conventional coffee grinder 

and the samples were then milled appropriately for analysis. For the Brewed Mexican 

Robusta Beans (BMRB) the ground coffee was used to make solely double shot 

espressos and the waste grounds were collected dried and then milled accordingly.  

5.2.2 Experimental Methods 

 Elemental analysis was carried out as described in Chapter 3- proximate and 

ultimate analysis. Metals analysis was conducted by SOCOTEC using the method 

described in section 3.3.4.2. For the ground coffee material, a particle size distribution 

analysis was performed by manually sieving the material through a series of discrete 

sized sieves (>1mm, 750-1000m, 500-750m, 250-500m and <250m). Using the 

mass collected the percentage particle size was calculated.  

 Combustion analysis was conducted on the domestic stove using the method 

specified in section 3.5.5. Some alterations to the method were made and these were: 

• Three batches of fuel were combusted, one ignition batch and two reload 

batches. The ignition batch data is displayed but was not used in the calculation 

of emission factors.  

• Each batch of fuel was approximately 1.5kg in mass (±100g). This was more 

repeatable with the briquettes compared to the logs since they are a regular size 

and shape.  

• The ignition batch was started using 110g of firelighters (±5g). The effect of 

these on the bottom ash analysis was assumed negligible since it contributed 

less than 1% to the overall mass of ash after the complete experiment.  

• Each run was continued until 0.3kg of batch mass remaining. At this point all 

the flames had been extinguished, the fuel was no longer glowing and the 

burning rate was consistently zero.  

• The ash was collected and sent to SOCOTEC for composition analysis.  

• Particulate measurements were conducted using only the Dekati Impactors, 

emission factors were calculated using this data and the filter papers were sent 

to Sunset Labs for EC/OC analysis.  
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5.3 Results and Discussion 

5.3.1 Proximate and Ultimate Analysis  

  The proximate analysis (moisture, volatile matter, ash and fixed carbon) for 

the coffee grounds, willow logs, MRB and BMRB are shown in Table 5.1. Additional 

data from Kang et al. [2017] and Soysa et al. [2015] are also shown in Table 5.1 for 

comparison.   

Table 5.1: Proximate analysis of fuels studied and fuels from Kang et al. [2017] 

and Soyosa et al. [2015] 
 

Fuel Moisture 

(wt.%)ar 

Volatiles 

(wt.%)db 

Fixed Carbona 

(wt.%)db 

Ash 

(wt.%)db 

This Work Commercial Coffee Logs 7.5 79 17.9 3.01 

Willow Wood Logs 5.0 82 16.3 1.68 

Mexican Robusta Beans (MRB) 2.3 78 16.7 5.32 

Brewed Mexican Robusta 

Beans (BMRB) 

9.7 78 17.6 3.99 

Kang et al. 

[2017] 

Wood Pellet 7.4 81 18.6 0.59 

Coffee Bean (before brewing) 2.1 78 17.6 3.96 

Dried Spent Coffee Ground 11.7 79 18.4 2.33 

Soysa et al. 

[2015] 

Douglas Fir 3.7 81 17.2 2.08 

Spent Coffee Ground (two 

staged drying) 

0.9 79 16.2 4.84 

aCalculated by difference 

 

The results from this work show good consistency with the results from Kang 

et al. [2017] and Soysa et al. [2015]. The main difference is between the moisture 

content. The main reason for this is the various methods used for drying; in this work 

the fuels were dried in an oven at 40C, in Kang et al. [2017] the fuels were dried in 

direct sunlight and air, and in Soysa et al. [2015] a two-staged drying process was used 

at 105C and then 80C. Additionally when the coffee is ground, the particle size is 

much smaller than the size generated in the cutting mill, discussed in more detail in 

section 5.3.3. The ground coffee is a coarse powder, this means it has a relatively high 

specific surface area and has a fairly porous structure which can absorb and retain 

more moisture.  

The ash content shows a significant degree of variability between the fuels. 

Coffee beans are formed from a mild torrefaction process of coffee cherries, their 

identity is therefore complex as they are neither an herbaceous or fruit biomass, but a 
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mixture of both. Vassilev et al. [2010] showed that herbaceous biomass can have a 

mean ash content of between 4.8-8.6 wt.% db compared to 3.5 wt.% db for common 

woods. This explains the observed lower ash content for the Douglas fir, willow and 

wood pellets. The highest ash content was measured in the MRB, 5.32 wt.% db, most 

likely because during torrefaction the ash material is concentrated. The ash content is 

then reduced when the coffee is brewed as seen for the BMRB, 3.99 wt.% db. This is 

a decrease of 1.32 wt.%, a slightly smaller decrease than seen in Kang et al. [2017] of 

1.63 wt.% between the original and brewed ground coffee. Brewing washes the ground 

coffee which leaches inorganic elements [Wang et al., 2016].  

There is a small difference in the volatile matter between the fuels. Typically, 

the volatile matter is much lower for torrefied fuels, however the torrefaction process 

for producing coffee is often at much lower temperatures (between 200-250C) than 

used in conventional biomass torrefaction for energy purposes. The volatile matter is 

highest in the wood logs, although there is only 1 wt.% db between the wood fuels. 

Based on the results collectively from Table 5.1 the spent coffee and the raw coffee 

have nearly identical VM and FC contents.        

The ultimate and chlorine analysis is shown in Table 5.2. From Table 5.2 it is 

clear that the coffee prior to brewing, MRB, has the highest HHV (22.29 MJ kg-1) and 

this is because of the high concentrations of carbon and hydrogen (57.0 wt.% daf and 

7.4 wt.% daf respectively). There is a result of torrefaction [Akinrinola, 2014] 

[Trubetskaya et al., 2019]. The coffee bean fuel from Kang et al. [2017] has the second 

highest carbon content (55.0 wt.% daf) however the HHV is equal to the spent coffee 

bean fuel from the same reference (21.97 MJ kg-1). During the brewing process carbon 

is extracted in the form of light oils. This result was observed for the MRB and the 

BMRB and for the spent and unused coffee in Kang et al. [2017]. The carbon content 

for the spent coffee from this work, Kang et al. [2017] and Soysa et al. [2015] are 

within 1 wt.% daf, showing a significant level of consistency and homogeneity 

between spent coffee collected from different sources. All of the coffee-based fuels 

have a significantly higher HHV. Between the lowest HHV for a coffee-based fuel, 

spent coffee grounds from Soysa et al. [2015], and the highest HHV for a wood-based 

fuel, wood pellets from Kang et al. [2017], this is a difference of 1.57 MJ kg-1 (20.92 

and 19.35 MJ kg-1 respectively). The carbon and hydrogen content of the wood-based 

fuels are substantially lower than the coffee fuels which explains the lower HHV.  
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The nitrogen content of the coffee-based fuels (1.48-2.40 wt.% daf) is 

considerably higher than the wood fuels. The N content of wood is typically low 

including when using barked wood, average of 0.4 wt.% daf [Vassilev et al., 2010]. 

This is significantly lower than in herbaceous biomass, 1.2 wt.% daf [Vassilev et al., 

2010]. The N content reduces by approximately 0.2 wt.% daf when brewed in both 

this work (MRB and BMRB) and the work of Kang et al. [2017]. In the work of Abelha 

et al. [2019] and Carillo, Staggenborg and Pineda [2014] there are some fuels 

(miscanthus, road side grass and sorghum) which decrease slightly in N content when 

torrefied and washed. This reduction must be from the leaching of soluble N 

compounds such as ammonium salts and amines [Quilin, Lujia and Guangqun, 2017] 

[Yu et al., 2014].  

The sulphur content for all the fuels is below 0.06 wt.% daf except for the MRB 

which is significantly higher at 0.22 wt.% daf. Vassilev et al. [2010] reported that 

coffee husks (a shell that coats the bean) to have a sulphur content of 0.35 wt.% daf, 

which suggests coffee plants are naturally high in S. However, the BMRB has a 

substantially lower S content (0.06 wt.% daf) meaning that the brewing process can 

remove up to 70% of the S content. A similar result was observed in Yu et al. [2014] 

for Jose wheat grass, which went from 0.23 wt.% db to 0.06 wt.% db using deionised 

water at room temperature with agitation. A similar process by Deng et al. [2013] of 

using deionised water at room temperature but using a water bath to agitate the 

leaching process resulted in similar S reductions for wheat straw, rice straw, corn stalk, 

cotton stalk and rice hulls. A study by Sun, Salisbury and Tomkinson [2003] explains 

that S will leach into a solution as both inorganic anions or organic compounds 

depending on its natural presence within a biomass. However, limits on S removal can 

be dependent on competition with other organic compounds usually because of 

temperature influences [Sun, Salisbury and Tomkinson, 2003]. 

Leaching of chlorine has been extensively researched by various washing 

techniques [Knudsen, Jensen and Dam-Johansen, 2004] [Jenkins, Bakker and Wei, 

2003] [Björkman and Strömberg, 1997]. Water washing is highly effective at 

removing chlorine from biomass because it is usually present as a free anion or loosely 

bonded at ion exchange sites [Marschner, 2012] [Knudsen, Jensen and Dam-Johansen, 

2004]. Similar to S the Cl content for the MRB, 0.21 wt.% db, is reduced after brewing, 

BMRB, 0.03 wt.% db, by 85%. It is expected that there would be competition between 
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the sulphur anion, SO4
2-, and the monovalent chloride ion, Cl-. Usually. this 

competition is generated by ion saturation of water bodies [Jenkins et al., 1996] 

however because the brewing process in commercial coffee machines simulates a 

continuous flow process more than a batch process this would prevent saturation and 

thus aid removal of both ions.    

Table 5.2: Ultimate and chlorine analysis of fuels studied  
 

Fuel Carbon 

(wt.%)daf 

Hydrogen 

(wt.%)daf 

Nitrogen 

(wt.%)daf 

Sulphur 

(wt.%)daf 

Oxygena 

(wt.%)daf 

Chlorineb 

(wt.%)daf 

HHVc       

(MJ 

kg-1)db 

This 

Work 

Commercial 

Coffee Logs 

53.0 7.1 1.89 0.03 37.9 0.04 21.1 

Willow Wood 

Logs 

49.0 6.8 0.54 0.00 43.8 n/d 19.28 

Mexican 

Robusta 

Bean (MRB) 

57.0 7.4 1.86 0.22 33.7 0.21 22.29 

Brewed 

Mexican 

Robusta 

Bean 

(BMRB) 

54.0 7.4 1.66 0.06 36.5 0.03 21.51 

Kang 

et al. 

[2017] 

Wood Pellet 49.0 6.4 0.42 0.01 44.5 n/a 19.35 

Coffee Bean                        

(before 

brewing) 

55.0 7.2 1.69 0.06 35.6 n/a 21.97 

Dried Spent 

Coffee 

Ground 

54.0 7.4 1.48 0.05 36.8 n/a 21.97 

Soysa 

et al. 

[2015] 

Douglas Fir 49.0 6.1 0.00 0.00 44.8 n/a 19.04 

Spent Coffee 

Ground              

(two staged 

drying) 

54.0 7.1 2.40 0.00 36.8 n/a 20.92 

aCalculated by difference, bdetermined by SOCOTEC external analysis, ccalculated using Eq.3.7 by 

Friedl et al. [2005] 

 

5.3.2 Metals Analysis 

 Analysis of the metals in the ash are shown in Table. 5.3 for the fuels studied 

and some other domestic stove fuels.  

As mentioned in the previous section understanding the nature of coffee as a 

fuel is difficult. Using Table 5.3, the SiO2 concentration is ranked in the order 

miscanthus> coal> mixed waste paper> sawdust> BMRB> commercial coffee logs> 

MRB> willow wood logs> salix. Straws and coal are often high in SiO2 this comes 

from natural processes during growth or formation. The mixed waste paper and 

sawdust are high in SiO2 from anthropogenic sources during manufacturing. The 
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BMRB and commercial coffee logs are higher in SiO2 then the MRB, this is because 

Si is in more stable structures that do not leach in water. Wood is notoriously low in 

SiO2, the difference between the salix and the willow logs is most likely the amount 

of bark as bark is often lower in SiO2 compared to the actual wood [Vassilev et al., 

2010]. 

Table 5.3: Metals in ash analysis of the fuels in this work and comparison with 

other fuels for domestic stoves, all values are in wt.% 

Reference Fuel SiO2 Fe2O3 CaO MgO Na2O K2O 

This Work 

Commercial Coffee 

Logs 
20.12 6.11 30.31 1.62 0.22 23.26 

Willow Wood Logs 9.25 1.25 39.65 5.06 1.35 22.11 

Mexican Robusta 

Bean (MRB) 
16.51 4.51 26.76 1.54 0.97 32.21 

Brewed Mexican 

Robusta Bean 

(BMRB) 

22.31 6.56 32.51 1.46 0.19 20.81 

[Zevenhoven-

Onderwater et al., 

2000] 

Salix 6.1 0.74 46.09 4.03 1.61 23.4 

[Wigley et al., 2007] 
Miscanthus 56.42 0.94 10.77 3.01 0.47 19.75 

Sawdust 26.17 1.82 44.11 5.34 2.48 10.83 

[Vassilev and 

Vassileva, 2007] 
Coal 54.06 6.58 6.57 1.83 0.82 1.6 

[Miles et al., 1995] Mixed Waste Paper 28.62 0.82 7.63 2.4 0.54 0.16 

 

 The concentrations of Fe2O3 are in the decreasing order of coal> BMRB> 

commercial coffee logs> MRB> sawdust> willow wood logs> miscanthus> mixed 

waste paper> salix. The Fe2O3 measured in ash has low mobility and is usually found 

in high concentrations in contaminated biomass and agricultural residues [Vassilev et 

al., 2010]. Based on Table 5.3 the highest containing Fe2O3 biomass have been 

torrefied. Torrefaction causes ash to become concentrated [Akinrinola, 2014]. The 

brewing process also concentrates the Fe2O3 based on the results from Table 5.3, 

between the MRB and the BMRB the Fe2O3 concentration increases by 2.05 wt.%, 

this is 45% increase after brewing.  

 The MgO concentration is ranked in the order sawdust> willow wood logs> 

salix> miscanthus> mixed waste paper> coal> commercial coffee logs> MRB> 

BMRB. According to Vassilev et al. [2010] there is a moderately strong positive 

correlation between the MgO concentration and the CaO concentration. The CaO 
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concentration ranks in the order salix> sawdust> willow wood logs> BMRB> 

commercial coffee logs> MRB> miscanthus> mixed waste paper> coal. The two 

trends are similar with the exception of the coffee derived fuels. In both Abelha et al. 

[2019] and Yu et al. [2014] during torrefaction and washing the concentration of CaO 

increases. In the latter leaching alone increases the concentration on average by 19% 

for a mixture of straws and woods. In this work the increase on brewing is 21%. 

Therefore, the exception in the correlation between MgO and CaO could be from pre-

treatment.  

 The Na2O concentrations are in decreasing order of sawdust> salix> willow 

wood logs> MRB> coal> mixed waste paper> miscanthus> commercial coffee logs> 

BMRB. The solubility of Na ions in water is very high and therefore it is anticipated 

any mobile Na will be readily removed during the brewing process. Yu et al. [2014] 

noted that the concentration of Na2O is reduced for most of the fuels studied (grasses 

and woods). There is one exception to this in Yu et al. [2014] which is switchgrass 

where the Na2O increases after the washing process. This is most likely due to the 

presence of Na in insoluble structures for example within silica. However, for the 

MRB and BMRB in Table 5.3 it can be assumed that the Na is present as soluble Na, 

since the concentration decreases by 0.78 wt.% after brewing.  

 The K2O ranks in the order of MRB> salix> commercial coffee logs> willow 

wood logs> BMRB> miscanthus> sawdust> coal> mixed waste paper. Based on the 

data in Table 5.3, 40% of the K2O is removed between the MRB and the BMRB. Yu 

et al. [2014] observed that 75% of the K2O is removed when wheat and rice straw is 

washed, this was lower than seen in the work of Deng, Zhang and Che [2013] for the 

same fuels (78% and 84% respectively). However, both are substantially higher than 

measured for the brewing process in this work. Before brewing the K2O content is 

high and is comparable to herbaceous and agricultural residues such as hazelnut shells 

(30.40 wt.%) and walnut shells (33.03 wt.%). After the coffee has been brewed the 

reduction is substantial, and the fuel is now comparable to the wood fuels (in terms of 

K2O content in the ash).    

5.3.3 Particle Size Distribution 

 Particle size distribution has been shown to have significant impacts on the 

combustion performance in various boilers and stoves [Russo et al., 2014] [Caposciutti 
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et al., 2020] [Kang et al., 2017]. Fig. 5.2 shows the particle size distribution for the 

commercial coffee logs and BMRB from this work and compared to the results of 

Kang et al. [2017] for the spent coffee grounds.   

 

Figure 5.2: Particle size distribution of used ground coffee from commercial 

coffee logs, BMRB and Kang et al. [2017]. A standard error of 5% applies to the 

measurements in this work to account for lost mass.  

 

 From Fig 5.2 it is clear that the majority of spent coffee grounds have a particle 

size in the region of 500-250μm. Additionally, over 90% of particles in the BMRB 

and in the work of Kang et al. [2017] are below 500m, for the commercial coffee 

logs this percentage is smaller (72.4%) but still represents the majority of particles in 

the briquettes. For the commercial coffee logs the distribution is much more evenly 

spread creating a much smaller skew towards the smaller particles. Reasons for this 

are not definitive however are most likely the result of collecting from multiple 

sources, each coffee machine user can decide how coarse they want the coffee ground. 

Other reasons could include differences in beans and agglomeration from moisture, 

temperature and pressure.  

5.3.4 Stove Combustion  

5.3.4.1 Stove Performance 

 Stove performance focuses on three key measurements: burning rate, 

conversion efficiency and temperature. Fig. 5.3 shows the burning rate over the whole 

combustion period, arrows indicate when new batches of fuel (1.5kg) were placed in 
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the stove. From Fig 5.3a for the coffee logs, the plot shows an initial peak (in the black 

box) after reload followed by the main broader peak which continues to the end of 

combustion. The initial peak is caused by the rapid combustion of the thin carbon rich 

wax coating which encases each briquette. Once this coating is combusted the 

briquette loses all its integral shape causing it to form a bed of soft powdered fuel. 

This bed then begins flaming very rapidly hence the burning profile restores its shape 

very quickly.  

Figure 5.3: Burning rate profiles for (a) Commercial coffee logs (b) Willow wood 

logs. Arrows indicate fuel reloading points.  

 

 Profiles for both commercial coffee logs and the willow wood logs have a 

regular shape. This means that the fuel is loaded, it begins to flame, flaming progresses 

to a peak burning rate and maintains for a period, after which the burning rate steadily 

declines as the fuel progresses through char combustion and until combustion ends. 

The main differences (besides the aforementioned initial peak from the coating) are in 

(a) 

(b) 



164 

 

the magnitude and width of the peaks. For the coffee logs the peak is sharper and 

narrower for the flaming period, and then during the smouldering phase the profile is 

more gradual in its decline. This is especially important since the characteristic time 

for each batch of fuel is nearly identical.  

 Table 5.4 shows the average burning rates for flaming and smouldering 

combustion, the peak and average temperatures during each phase and the percentage 

conversion of each batch of fuel. The average burning rate for the coffee logs in both 

flaming and smouldering combustion is higher than the willow wood logs which 

results in an overall greater conversion of the fuel. The average and peak temperatures 

for the both combustion phases are higher for the coffee logs which is expected since 

the calorific value is greater (21.1 and 19.8 MJ kg-1).  

Past work has shown that the flaming burning rate is related to the volatile 

matter content [Faschinger et al., 2017] [Mitchell et al., 2016]. However, when 

referring back to Table 5.1 the volatile matter for the willow wood logs (81 wt.% daf) 

is higher than the commercial coffee logs (76 wt.% daf). Caposciutti et al. [2020] 

demonstrated that smaller particles during combustion can ignite much faster due to a 

high surface area to volume ratio. This is relevant to the fuels studied in this work, the 

coffee logs are made from 72.4% sub-500μm particles. The willow wood logs combust 

as a complete unit with a much lower surface area to volume ratio. Therefore, the 

particle size is the main influencing factor increasing the burning rate and the extent 

of combustion, Eq. 3.17.  

Table 5.4: Average burning rates, average temperatures and peak temperatures 

for each batch and combustion phase, and the overall percentage batch 

conversion efficiency 
 

Fuel Commercial Coffee 

Logs 

Willow Wood Logs 

 
Batch 1 2 1 2 

Flaming 

Combustion 

Burning rate (kg h-1) 3.15 3.26 3.05 2.91 

Average Temperature (oC) 510 530 435 410 

Peak Temperature (oC) 590 600 470 480 

Smouldering 

Combustion 

Burning rate (kg h-1) 2.58 2.33 1.75 1.68 

Average Temperature (oC) 410 390 310 300 

Peak Temperature (oC) 435 420 375 355 

(%) Extent of Combustion 86 89 84 82 
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5.3.4.2 Carbon Emissions 

 Carbon emissions specifically refers to CO2, CO and CH4 emissions in this 

section. Fig. 5.4 shows the CO2 and CO emission profiles for the coffee logs and 

willow logs. Comparing the two profiles, the willow wood follows a profile typical of 

wood stove combustion where by the CO2 emissions increase after the new batch of 

fuel has been loaded, this increases to a peak and a plateau which declines as the fuel 

bed transfers from flaming to smouldering combustion. As the phase transition occurs 

the CO emissions increase to a peak and then decrease indicating combustion is 

ending. This transition is common in domestic stoves because it reflects the changing 

stoichiometry (lower mixing), temperature (decreasing) and reaction phase 

(homogeneous gas phase reactions to heterogeneous char combustion).  

Compared to the burning rate profiles in Fig. 5.3, the concentration profiles in 

Fig. 5.4 are not as consistent. When fresh fuel is loaded into the stove the heat within 

the stove initiates decomposition of the fuel, the high amount of carbon from the new 

batch of fuel accelerates the burning rate. The relationship between the burning rate 

and emissions is not consistent. During the combustion of the coffee logs and the wood 

logs even though the burning rate profiles are uniform the CO2/CO profiles suggest 

that oxidation reactions were being restricted, this could be from multiple factors such 

as air flow, turbulence, stoichiometry or residence time. This explains the disparity 

between the two parameters.     

Comparatively the coffee logs show a different scenario. The emissions of CO2 

and CO directly correlate to the burning rate in Fig. 5.3 for the willow, however there 

is no correlation for the coffee logs. Instead in the coffee log profiles there are random 

sharp spikes. This is more noticeable in the first reload batch compared to the second. 

The profile for the coffee logs is more characteristic of a pellet boiler as seen in Sippula 

et al. [2017]. The particle size is believed to be the main parameter influencing this 

result. Once the coffee log disintegrates into a powder the transfer of heat and mass is 

more consistent across the fuel bed because of the high surface area to volume ratio. 

The spikes seen on the CO2 profiles are being driven by localised rapid volatile release 

at specific moments.  
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Figure 5.4: Emission profiles for CO2 and CO for (a) Commercial coffee logs (b) 

Willow wood logs. Arrows indicate fuel reloading points. 

 

The results also show that the small particle size of the coffee logs maintains a 

longer time period of flaming combustion and the change from flaming to smouldering 

is more rapid. This is the opposite to the willow logs where the logs retain their shape 

throughout combustion until fragmentation in the very latter stages of char combustion 

causing the fuel to disintegrate. Hence char combustion for the outer layers of the log 

is progressing whilst devolatilisation of inner areas of the log have just started, heat 

and mass transfer are determining the rate of combustion.      

 

 

(a) 

(b) 
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Table 5.5: Average emission factors for a batch of fuel (1.5 kg) for CO2, CO and 

CH4 on a mg Nm-3 and kg GJ-1 basis 

Fuel Average Emission Factors (13% O2, STP) MCE Residual 

Carbon in the 

Bottom Ash             

(%) 

mg Nm-3 kg GJ dry fuel-1 

CO2 CO CH4 CO2 CO CH4 

Commercial Coffee Logs 160000 7300 400 100 5 0.26 95.6 7.5 

Willow Wood Logs 115000 4600 300 75 3 0.16 96.2 18.8 

 

Table 5.5 shows the average emissions of CO2, CO and CH4 for a batch (1.5 

kg) of fuel. The emissions for the coffee logs are substantially higher than the willow 

wood logs on both a mass and energy basis. However, when analysing the emissions 

using the modified combustion efficiency (MCE) equation, Eq. 5.1, the ratio of 

complete to incomplete combustion, the two fuels are very similar, both have high 

efficiency. Additionally, as seen in Table 5.4 because the willow wood logs burn in a 

sequential method from the outside to the inside, this reduced the percentage of the 

batch mass that was reacted, between 2-7% less than the coffee logs. In Table 5.5 the 

residual reactive carbon in the bottom ash of the wood logs is higher, this means that 

the extent of reaction (conversion efficiency) is significantly higher for the coffee logs 

(>10%).    

 

Figure 5.5: Methane, CH4, emission factors plotted against the C/H ratio from 

the fuel analysis. Points from Chapter 4 are included.  
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As mentioned in Chapter 4 using Eq. 4.1-4.3, the CH4 emissions are from the 

decomposition and gasification of volatiles. A correlation between the C/H ratio and 

the CH4 emissions was evident from Fig 4.9. Fig. 5.5 shows the same data from 

Chapter 4 as well as the two fuels from this work. As can be seen in Fig. 5.5 a similar 

trend line (x-2.355) with a good R2 value (0.7204) is plotted; the value is still 

substantially short of being a definitive correlation. However, this does still present a 

reasonable argument for the correlation between the CH4 emissions and the C/H ratio 

for fuels with a similar moisture content (<15 wt.%).  

5.3.4.3 Nitrogen Emissions  

 Table 5.6 shows the average NOx emissions, NOx emission factor and the 

residual N measured in the bottom ash, as well as a comparison to data collected by 

Nosek et al. [2020] and Limousy et al. [2013]. As can be seen from Table 5.6 the 

coffee logs emit much higher concentrations of NOx compared to the willow wood 

logs combusted on the same system. This result was expected since the N content was 

higher in the coffee logs. As can be seen in Table 5.6, the N partition for the wood 

logs is more in the ash compared to the coffee logs.  

Table 5.6: NOx emissions, emission factor, and residual N in the bottom ash. 

Additional data from Nosek et al. [2020] and Limousy et al. [2013] are shown. 

Ref. Fuel 
Fuel-N 

(wt. % db) 

NOx Emissions 
Residual N in 

bottom ash 

(%) mg m-3 g GJ-1 

This 

Work 

Commercial 

Coffee Logs 
1.84 300 190 6 

Willow Wood 

Logs 
0.53 140 80 14 

Nosek et 

al. [2020] 

Spent Coffee 

Grounds 

(SCG) 

2.03 120 

n/a 

SCG/Sawdust- 

50/50 blend 
8.6 190 

Limousy 

et al. 

[2013] 

Spent Coffee 

Grounds 

(SCG) 

2.91 206 

Pine <0.1 45 

50/50 blend- 

Pine/SCG 
n/a 201 
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 Compared to Nosek et al. [2020] and Limousy et al. [2013] the emissions for 

the spent coffee in this work are much higher when the fuel-N content is much lower. 

In both Nosek et al. [2020] and Limousy et al. [2013] the fuels were combusted in 

pellet boilers where emissions are measured during a steady-state combustion process 

(fresh fuel is continuously loaded). Additionally, air staging is common in such 

combustion systems which is used as a NOx reduction technique and has been shown 

to reduce NOx emissions by up to 50% [Li et al., 2017] [Wang et al., 2018] [Wang et 

al., 2020]. However, there is a big difference in the results from the two references, 

Nosek et al. [2020] explains that the spent coffee grounds result is low because of 

incomplete combustion, fuel rich combustion conditions.  

Figure 5.6: Emissions of NOx on an energy basis compared to the fuel-N content 

 

As seen in Fig. 4.11, there is a linear correlation between the fuel-N content and 

the NOx emissions on an energy basis. Using the original points from Mitchell et al. 

[2016], Fig. 5.6 shows the data for the coffee logs and the willow wood logs on this 

trend. The two fuels are consistent with the fuels studied by Mitchell et al. [2016] 

however the magnitude is lower than expected based on the trendline. For the willow 

wood logs this most likely reduced combustion efficiency (i.e some fuel-N is retained 

in the ash). For the coffee logs, Fig. 5.6 suggests that torrefaction of the fuel causes 

the NOx emissions to be lower than predicted. The same result as seen in Chapter 4 

and by Trubetskaya et al. [2019] for torrefied olive residue, where torrefaction binds 
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N tighter to C in the fuel matrix which delays its release during char combustion and 

promotes the NO reduction reaction with C to N2.    

5.3.4.4 Particulate Emissions and EC/OC Analysis 

 The PMt emission factor is shown in Table 5.7 as well as results from the 

EC/OC analysis- EC is the same as black carbon (BC). The coffee logs PMt emission 

factor is substantially higher than for the wood logs. Based on the work of Roy and 

Corscadden [2012] it could be said that this is because of the higher C/O ratio of the 

coffee logs however more data would be need to make establish this trend as it is not 

analogous with the data trend by Roy and Corscadden [2012], Fig. B.2.  

Table 5.7: Total PM (PMt) emission factors and EC/OC/ash emissions. Values 

are an average of two filters.   

Fuel 

PMt Emission 

Factor                   

(mg MJ-1) 

Average Composition (wt. %) 
% K 

releaseda EC OC Ash 

Coffee Logs 338 34.9 32.8 32.3 27.15 

Willow Wood Logs 204 24.2 36.6 39.2 32.19 

aCalculated from ash analysis of the bottom ash 

 

Looking at Fig. 5.7 which are photos taken of the filter papers/foils from the 

impactors immediately after combustion, there is an apparent difference in the 

collected samples. The PM collected for the coffee logs has a more powder-like 

appearance and hence has scattered irregularly across the collection surfaces. For the 

wood logs there are much clearer scatter patterns and the PM looks to have partially 

coalesced so is less powder-like. Similar observations were observed in Wiinikka and 

Gerbart [2004] and suggest that the main constituent in the collected samples for the 

coffee logs is soot (EC). This is confirmed by the analysis of the filter papers 

(collecting sub-micron PM), which show a greater proportion of EC compared to the 

wood smoke which has a greater proportion of OC (organic carbon and tars). 

Additionally, assuming that any material collect that is not carbonaceous is ash 

material, as defined by Sippula et al. [2009] and Schmidl et al. [2011], the proportion 

of fly ash in the PM is significantly higher for the wood logs.  

The PM constituent make-up (EC, OC and Ash) for the willow wood logs in 

this work is comparable to the results of Atiku et al. [2016] (EC 30-50%, OC 20-



171 

 

40% and ash 40%) for softwood fuels. The only difference is in the EC value for 

willow which could be from better stoichiometry during combustion or the reduced 

conversion efficiency. When comparing the coffee logs and the wood logs the ratio of 

OC/EC (0.93 and 1.51 respectively) shows that the PM from coffee logs is more 

similar to that from coal than biomass, although the nature of the OC will differ. The 

NOx emissions from coffee logs were also similar to levels seen in coal combustion.   

 

 

Figure 5.7: Impactor foils and filters for a) commercial coffee logs b) willow wood 

logs 

 

The most intriguing observation is the lower PM ash content for the coffee logs 

compared to the wood logs when the initial fuel analysis shows that the ash and K 

content is greater. A similar result was observed for rice straw pre-treatment 

(torrefaction followed by washing) and combustion by Wang et al. [2020]. Chemical 

analysis of the PM1 for the pre-treated rice straw was lower in K even though the fuel 

content was higher [Wang et al., 2020]. During combustion at temperatures between 

600-1000C K salts form as chlorides and sulphates; however, Si and Ca can prevent 

the formation of these salts by retaining K or S in the char or ash matrix. Both Si and 

Ca are not readily leached from biomass because of their structural stability and often 

require acids or harsher chemicals to remove them. As can be seen in Table. 5.3, the 

SiO2 content of the coffee logs is significantly higher than the wood logs and from 

Table 5.7, by analysing the chemical composition of the bottom ash, 5% more K was 

released from combustion of the wood logs than the coffee logs. This could explain 

the increased ash content of the PM from the wood logs.     

(a) 

(b) 
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5.4 Conclusions 

 In this work, analysis of the suitability of waste coffee grounds for domestic 

combustion applications was assessed in comparison to other more conventional fuels. 

Proximate, ultimate and metals analysis was used to compare the composition of the 

spent coffee grounds to willow wood logs. Additionally, analysis of the coffee grounds 

before and after brewing were analysed to assess the impacts of the brewing process 

and to establish the variability of spent coffee grounds. Combustion of the commercial 

coffee logs was investigated on a domestic stove and compared to the willow wood 

logs. Comparison was based on combustion performance (burning rate and 

temperature) and emissions (CO2, CO, CH4, NOx and PM).  

 Volatile content in the spent coffee grounds (78-79 wt.% db) was lower than 

the conventional wood fuels (>80 wt.% db) this is common with thermally treated 

fuels, as was the higher ash content which had a large degree of variability (3.01-5.32 

wt.% db) and was substantially higher than the wood logs analysed in this work (1.68 

wt.% db). After the coffee had been brewed the ash content was significantly reduced, 

1.33 wt.%.  

 The carbon content in the ultimate analysis was approximately 5 wt.% (db) 

higher in the spent coffee ground. The coffee grounds were very high in nitrogen, 

values were greater than 1.66 wt.% (db) and were more comparable to coal than 

biomass. The overall differences in the composition from proximate and ultimate 

analysis resulted in the calculated HHV of the coffee being approximately 2 MJ kg-1 

(db) higher than the wood-based fuels.  

 Metals analysis was focused on major inorganic species. The SiO2 content of 

the coffee increased after being brewed (20.12-22.31 wt.% compared to 16.51 wt.%) 

and was analogous with other industrial residues such sawdust (26.17 wt.%) [Wigley 

et al., 1995] and mixed waste paper (28.62 wt.%) [Miles et al., 1995]. The CaO content 

was substantially lower in the spent coffee (30.31-32.51 wt.%) compared to the wood 

fuels, wood logs (39.65 wt.%) and salix (46.09 wt.%) [Zevenhoven-Onderwater et al., 

2000]. The most significant change after the coffee had been brewed was in the Na2O 

and K2O content, 0.78 wt.% and 11.6 wt.% was removed respectively.  

The overall conversion during combustion of spent coffee grounds in the form 

of commercial coffee logs was much greater than the wood logs. This was mainly 



173 

 

attributed to the smaller particle size and the ease and speed at which the coffee logs 

disintegrated when in the stove. After the coffee logs had disintegrated the surface area 

to volume ratio was substantially higher. This also resulted in much sharper peaks on 

the burning rate profile (Fig. 5.3) which were greater in magnitude than the wood logs 

(4 kg h-1 compared to 3.5 kg h-1) 

The carbon-based emission factors (CO2, CO, and CH4) were greater for the 

coffee logs than those measured for the wood logs. Interestingly the MCE for the two 

fuels were almost identical (95.6 to 96.2%). There was more C in ash for the wood 

logs, which corresponds to the aforementioned lower conversion of the wood logs 

compared to the coffee logs. The C/H ratio correlation to the CH4 emission factor in 

this chapter was in agreement with the data from Chapter 4 and Mitchel et al. [2016].  

The NOx emissions from the coffee logs were more comparable to coal 

[Mitchell et al., 2016] than conventional biomass. This was anticipated since the fuel-

N content was also similar to coal. There was a greater amount of residual N in the 

ash from the wood logs.  

Analysis of the PM1 collected indicated that the PM from the coffee logs was 

greater in EC and lower in OC and ash (assumed based on residual mass) compared 

to the PM1 from the willow logs. This was intriguing since the coffee was higher in 

ash species. Based on the work of Wang et al. [2020] the higher Si content of the 

coffee logs reduced the release of K by retaining it in the bottom ash, this was 

confirmed by analysing the K in the bottom ash.   
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Chapter 6. Characterisation of Bracken for Combustion 

Applications 

 

6.1 Introduction 

In the UK current electricity generation is rapidly moving from the use of coal 

to alternative fuels. Although part of this is being replaced by oil and natural gas; wind, 

solar, nuclear, biomass and wastes are also being used. Biomass is particularly 

advantageous as it can easily be retrofitted to existing coal fired power stations and 

localised heat and energy systems without large capital investment or new plant 

commission.  

In the first quarter of 2019, bioenergy and waste accounted for 11% of the 

UK’s total energy production [BEIS National Statistics, 2019]. This will continue to 

grow as the UK moves towards no waste to landfill and stricter limitations on the uses 

of fossil derived fuels. Within the biomass sector natural agricultural wastes are a 

growing area for research and investment. A survey in 2003 by the Chartered 

Institution for Waste Management (CIWM) [2003] showed that 90% of agricultural 

holdings burned agricultural waste, with 83% admitting to burning on open fires. This 

presents many opportunities for the management of waste to be utilised as fuels for 

power generation or in space heating systems.  

Bracken (Pteridium aquilinum) is considered an agricultural waste which is 

commonly burned in open fires. It is found annually on farmland, lowland heath, 

moorland, grassland, woodland, coastal areas, in towns and cities. It is the UK’s most 

common fern and is described as opportunistic, pernicious and invasive [EUR (1985) 

10013 EN, final]. Globally bracken grows in every continent except Antarctica. 

Across Northern Europe, North America and New Zealand problems persist with the 

growth of bracken and its damage to the ecosystem [Callaghan, Scott and Whittaker, 

1981]. There is more detail on the growth, structure and problems with bracken in 

section 3.2.3.  

Current management options are limited because of the ban on the herbicide 

asulox by the European Union in 2012 and the price of straw being cheaper; meaning 

the market for animal bedding is no longer profitable [Lyme Disease Action, 2011]. It 
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is clear that should an alternative use for bracken be available it would prevent land 

management agencies from open burning [Donnelly, Robertson and Robinson, 2002]. 

There is roughly ¼ of a million hectares of open land harvestable bracken available in 

the UK. There is little recent literature on the considerations of bracken as an energy 

crop, therefore it is important to analyse its potential use as a fuel from both an energy 

and environmental point of view in order to modernise current practices. This chapter 

aims to characterise the properties of bracken and compare them with currently used 

energy crops and biomass described in section 3.2.3. 

 

6.2 Materials and Experimental Methods  

6.2.1 Sample Harvesting 

Samples were obtained from Budby Moor in Sherwood Forest, 

Nottinghamshire at four different time points between July- October 2018, Table 6.1. 

Five sampling sites were chosen based on their similarity in growing conditions- 

sunlight exposure, proximity to woodland area and potential for water logging. The 

site locations along with the GPS codes are shown in Fig. 6.1. Only the fronds were 

sampled, this was decided as it represented a realistic management technique for future 

harvesting.  

6.2.2 Sample Preparation 

The samples studied and details of machinery used in sample preparation are 

detailed in Chapter 3. All the samples were dried in air for 96 hours at 40C before 

being milled to a size of less than 4mm. A small amount of sample was cryomilled to 

a size range of 10-100µm for use in ultimate analysis, metals analysis, and TGA. For 

ash fusion tests and metal analysis some sample was ashed before being milled, the 

ashing procedure used was the same as used in the British Standard Test for the 

determination of ash in solid biofuels; BS EN ISO 21404:2020, this method is outlined 

in section 3.4.6.  

6.2.3 Experimental Methods  

 The details of all the experiments conducted in this chapter can be found in 

Chapter 3.  
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Table 6.1: Sampling times and weather conditions  

Sampling 

period 

Temp. 

High 

(°C) 

Temp. 

Low 

(°C) 

Historical 

Temp. 

High (°C) 

Historical 

Temp. 

Low (°C) 

20-day prior 

total rainfall 

(mm) 

1- 5th July 29 12 19 12 2 

2- 30th July 26 14 20 13 19 

3- 26th 

September 

23 11 16 9 52 

4- 24th October 15 10 12 6 32 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1: Sample sites in Budby Moor, Sherwood Forest and GPS co-ordinates, 

Map from RSPB (2018)  

 

6.3 Results and Discussion 

6.3.1 Proximate and Ultimate Analysis 

Results from the proximate analysis are shown in Table 6.2, this includes 

miscanthus, two straws, willow logs and torrefied willow (willow and torrefied willow 

data is extracted from Chapter 4). When the bracken is harvested, its moisture content 

is very high (ar), >50 wt.%, therefore it was dried as detailed in section 6.2.2 and this 

reduced the moisture to less than 10 wt.% ad. The main reason for drying the bracken 

was to prevent the biological degradation of the samples. The moisture is always 

Site 1- 2SK620688 

Site 2-2SK619690 

Site 3- 3SK618689 

Site 4- 4SK612689 

Site 5- 5SK602690 
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higher in the first harvest than the final harvest, this is because of senescence in the 

latter part of the growth cycle.  

The volatile content is higher during the earlier harvests. However, the overall 

change over the sampling time period was very small; at every site this change was 

less than 2 wt.% db. The volatile content of the bracken is lower than that of other 

frequently used UK energy plant species. Pakeman, Marrs and Jacob [1994] identify 

that bracken has a C4 photosynthetic pathway and a perennial growth cycle. This is 

the same as miscanthus; however, there is a significant difference in the volatile matter 

content, 15 wt.% db.   

Table 6.2: Proximate analysis of fuels studied 

Sample Site Sample 

Period 

Moisture 

(wt.%)ar 

Moisture 

(wt.%)od 

Volatiles 

(wt.%)db 

Fixed Carbon 
a (wt.%)db 

Ash 

(wt.%)db 

Bracken 1 1 69.7 8.1 72.0 19.9 8.1 

2 71.1 7.3 71.8 20.9 7.3 

3 62.5 6.8 71.0 22.2 6.8 

4 50.1 5.7 72.0 22.4 5.6 

2 1 68.4 6.4 69.7 23.9 6.4 

2 73.5 6.0 70.4 23.6 6.0 

3 63.5 5.9 70.1 24.1 5.8 

4 51.1 5.1 68.1 26.8 5.1 

3 1 71.2 8.7 67.3 24.0 8.7 

2 72.3 8.5 68.6 22.9 8.5 

3 64.2 8.4 67.8 23.8 8.4 

4 53.1 7.3 67.5 25.3 7.2 

4 1 67.8 8.7 67.3 24.0 8.7 

2 68.9 8.5 67.9 23.6 8.5 

3 61.2 8.3 67.7 24.0 8.3 

4 52.1 7.9 66.4 25.7 7.9 

5 1 72.1 8.7 70.1 21.4 8.5 

2 69.8 8.3 70.7 21.1 8.2 

3 63.4 7.8 70.8 21.4 7.8 

4 51.7 5.9 68.9 25.2 5.9 

‘Brackettes’ 5.1 n/a 68.7 26.7 4.9 

Miscanthus 9.1 n/a 87.0 8.4 4.6 

Barley Straw (423) 7.4 n/a 75.1 19.0 5.9 

Wheat Straw (093) 5.8 n/a 79.6 16.2 4.2 

Willow 10 n/a 82.0 17.0 1.0 

Torrefied Willow 7.6 n/a 73.0 24.2 2.8 

*ar- as received, od- oven dried, db- dry basis, a- calculated by difference. Sample period is the time of year 

at which the sample was harvested.   

 

The fixed carbon content for the bracken is significantly higher at the last 

harvest than during any other time period; Site 5 showed an increase of 3.8 wt.% db 
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between harvests 3 and 4. The FC is also considerably higher in the bracken in 

comparison to the other energy crops with the exception of the torrefied willow 

briquettes. The torrefied willow briquettes have a FC content of 24.2 wt.% db 

compared to 22.4, 26.8, 25.3, 25.7 and 25.2 wt.% db for the final harvest at sites 1-5 

respectively. The miscanthus, 8.4 wt.% db, and bracken site 2 harvest 4, 26.8 wt.% 

db, have the lowest and highest FC contents respectively.  

The ash content shows a significant degree of variability over the bracken sites 

and harvesting. The highest and lowest contents being 8.7 wt.% db and 5.1 wt.% db, 

sites 3 and 2 respectively. The change in ash content over the sampling time period is 

also variable between sites. Sites 1 and 5 experience a large change of ≥2.5 wt.% db, 

this represents a change of over 30% in the ash content at both sites. Whilst, the 

smallest change is at site 4, 0.8 wt.% db, which is a change of 9% in the ash content. 

The ash content in the bracken is typically higher than the other energy plants. Of the 

other fuels the willow has the lowest ash content, 1.0 wt.% db, and the barley straw 

has the highest, 5.9 wt.%. The final harvests of sites 1, 2 and 5, have an ash content 

which is comparable to the barley straw, 5.6, 5.1 and 5.9 wt. % db respectively.        

 Results from the CHNS analysis are shown in Table 6.3. The carbon content 

of the bracken increases as time progresses by about 2 wt.% db. Compared to the other 

energy species the bracken has a similar carbon content with the exception of the 

torrefied willow; this is expected since torrefaction is used to energy densify a fuel. 

Using Eq. 3.7 by Friedl et al. [2005] in section 3.4.4, the HHV can be calculated based 

on the elemental composition. In most of the bracken samples the increases in carbon 

content result in an increase in the HHV. There are a few exceptions to this, for 

example bracken sites 2 and 3 sample period 3 where the decreases in hydrogen 

content compensate for the increase in carbon content resulting in the HHV being 

lower than expected. The HHV of the bracken is greatest after the fourth harvest for 

all the sites, this is also when the largest increase in carbon content occurs. The average 

HHV over the growth cycle of the bracken is lower than most of the alternative energy 

species with the exception of the willow, 18.98 MJ kg-1 db. The fourth harvest HHV 

for the bracken sites 1-5, 19.03, 19.40, 19.79,19.69 and 19.55 MJ kg-1 db respectively, 

are comparable to the barley and wheat straws, 19.75 and 19.71 MJ kg-1 db 

respectively.  
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 The hydrogen content of the bracken peaks at the third sampling period, this 

then drops by approximately 1 wt.% db. All the sites have a significant change in 

hydrogen between sampling periods 3 and 4, >12% of the relative total. The highest 

bracken hydrogen content is site 2 harvest 3, 6.0 wt.% db, which is similar to the 

willow, 6.2 wt.% db. The average hydrogen content over the growth cycle is between 

4.6-4.7 wt.% db which is lower than the other energy pants.  

Table 6.3: Ultimate analysis, CHNSO, of fuels studied 

Sample Site Sample 

Period 

C 

(wt.%)db 

Oa 

(wt.%)db 

H 

(wt.%)db 

N 

(wt.%)db 

S 

(wt.%)db 

Cl 

(wt.%)db 

HHVb 

(MJ kg-1)db 

Bracken 1 1 45.7 39.8 4.3 1.86 0.26 0.28 18.42 

2 47.1 39.1 4.5 1.56 0.29 0.26 18.77 

3 46.5 38.9 5.6 1.92 0.25 0.29 18.52 

4 48.2 39.8 4.8 1.38 0.20 0.18 19.03 

2 1 47.8 38.8 4.7 1.97 0.29 0.22 18.88 

2 47.6 39.3 5.0 1.87 0.27 0.26 18.62 

3 48.1 38.1 6.0 1.75 0.15 0.25 18.79 

4 49.6 39.6 4.6 1.09 0.15 0.17 19.40 

3 1 46.6 38.1 4.7 1.99 0.05 0.33 19.27 

2 47.0 38.2 4.3 1.80 0.14 0.34 19.28 

3 46.9 38.3 5.3 1.03 0.03 0.43 19.16 

4 48.9 38.2 4.7 0.92 0.12 0.10 19.79 

4 1 46.5 38.0 4.7 1.99 0.15 0.36 19.27 

2 47.1 37.6 4.7 2.01 0.16 0.42 19.33 

3 46.8 37.9 5.4 1.60 0.10 0.44 19.28 

4 48.2 38.3 4.6 1.02 0.09 0.32 19.69 

5 1 46.7 37.9 4.8 1.85 0.19 0.21 19.17 

2 46.4 38.2 5.2 1.73 0.28 0.19 19.00 

3 47.7 37.3 5.4 1.69 0.18 0.18 19.35 

4 49.4 39.0 4.7 0.98 0.16 0.10 19.55 

‘Brackettes’ 49.5 39.7 4.4 1.11 0.20 0.14 19.41 

Miscanthus 47.3 41.5 5.7 0.80 0.10 0.25 20.02 

Barley Straw (423) 48.7 39.3 5.1 0.90 0.10 0.11 19.75 

Wheat Straw (093) 50.3 39.4 5.5 0.50 0.06 0.03 19.71 

Willow 48.5 43.6 6.2 0.55 0.04 n/d 18.98 

Torrefied Willow 54.4 36.9 5.1 0.62 0.06 n/d 21.25 

* db- dry basis, a- calculated by difference, b-calculated using Eq. 3.7 from (friedl et al, 2005), n/d- outside 

the detection limits of the instrument. Sample period is the time of year at which the sample was 

harvested.    

 

Fuel nitrogen content is a significant parameter when considering a fuel for 

combustion, especially in domestic applications; previous research has shown direct 

correlations between fuel N and NOx emissions [Mitchell et al., 2016]. The bracken 

N content is highly variable; the highest and lowest values being 2.01 and 0.92 wt.% 

db. In the case of site 3 the N content is half of the initial content by the fourth harvest, 
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1.99 to 0.92 wt.% db. At every site the nitrogen content is substantially lower at the 

fourth sampling period compared to the other sampling periods. The N content of the 

alternative energy species, are lower than the bracken however the barley straw and 

miscanthus are not too dissimilar, 0.9 and 0.8 wt.% db respectively.  

   The sulphur content is also highly variable. The S content peaks during the 

early sampling periods and is at its lowest by the fourth harvest, in some cases this is 

outside the detection limit of the elemental analyser. With the exception of site 1, the 

S content by the fourth harvest is comparable to the alternative energy species and is 

lower than the miscanthus and barley straw, both 0.1 wt.% db.  

 Chlorine content reduces in the bracken between the third and fourth sampling 

period for every site and ranges from 0.10 to 0.44 wt.% db over the growth cycle. No 

Cl was detected in the willow and torrefied willow samples, past research has shown 

that this is common in willow [Vassilev et al., 2017]. The bracken on the fourth harvest 

at sites 3 and 5 was 0.1 wt.% db, and they have a Cl content that is similar to the barley 

straw, 0.11 wt.% db. It is also significantly lower than the miscanthus, 0.25 wt.% db. 

Site 4 has the highest chlorine content at the fourth sampling period, 0.32 wt.% db; 

this site produced bracken which was higher in Cl at all the sampling periods.   

6.3.2 Metals Analysis  

Results for the trace metals from ICP-MS of the bracken are shown in Table 

6.4 as well as the typical contents for miscanthus, barley straw and reed canary grass 

from the British ISO standard 17225-1:2014 (E) [2014]. The British standard does 

include typical variations for each of the fuels aforementioned; however, for the 

purposes of comparison in this work only those variations that are significant have 

been mentioned in the text.  

Looking at the results for the barium concentration, the data is very scattered. 

The general trend across all the sites is that the barium concentration increases with 

time. The lowest concentration is site 3 sample period 1, 14.7 mg kg-1 db, and the 

highest is site 4 sampling period 4, 45.5 mg kg-1 db. The original source of this barium 

is unknown, past work concludes it is a result of soil particles in the fuel [Vassilev et 

al., 2017].   

 The contents of both chromium (Cr) and lead (Pb) species in the bracken 

change insignificantly and there are no observable trends over the sampling periods. 
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Cr contents varies between 0.8 to 1.4 mg kg-1 db and the Pb concentration between 0.7 

and 1.9 mg kg-1 db; the Pb concentration is usually higher at the fourth harvest. 

Comparing to the typical values for miscanthus and barley straw, the Cr content is 

comparable to the miscanthus, 1 mg kg-1 db, but considerably lower than the barley 

straw, 10 mg kg-1 db. British ISO standard 17225-7:2014 (E) [2014] specifies the 

concentration of Cr and Pb must not exceed 50 and 10 mg kg-1 db respectively for 

herbaceous, fruit bearing, aquatic or blended biomass without additives. The highest 

concentrations of Cr, 1.4 mg kg-1 db, and Pb, 1.9 mg kg-1 db, for the bracken do not 

exceed these limits. 

Table 6.4: Trace metal analysis results for the fuels studied 

Sample Site Sample 

Period 

Ba Cr Cu Pb Sr Mn Ni Zn 

mg kg-1 db 

Bracken 1 1 14.8 0.9 7.8 0.8 5.1 311.7 2.5 30.8 

2 15.1 1.2 6.5 1.0 6.7 389.5 1.9 32.5 

3 16.2 1.0 5.3 0.9 8.9 568.9 1.5 36.4 

4 17.5 1.0 4.0 1.1 8.8 601.2 1.3 36.9 

2 1 15.3 1.0 8.9 1.0 4.7 281.9 2.4 29.5 

2 20.2 1.4 6.2 1.3 6.9 321.6 2.1 34.6 

3 22.5 0.9 5.1 1.2 10.1 480.9 1.8 38.5 

4 26.9 0.9 3.7 1.0 10.4 545.8 1.4 39.1 

3 1 14.7 0.9 6.1 1.4 4.1 286.6 2.5 29.4 

2 17.6 2.0 5.1 0.6 6.2 485.9 2.2 36.4 

3 26.9 1.2 3.9 1.8 9.4 606.2 2.0 43.1 

4 23.9 1.0 2.8 1.9 8.4 530.7 1.5 32.9 

4 1 18.6 0.8 9.0 0.8 4.2 265.5 2.4 31.3 

2 27.8 1.0 8.3 0.5 5.8 363.9 1.6 28.2 

3 39.1 1.3 4.6 1.1 9.4 647.3 1.4 39.7 

4 45.5 1.3 3.4 1.1 10.6 697.2 1.2 39.4 

5 1 19.5 0.9 8.8 0.7 4.5 276.8 2.6 30.6 

2 18.6 1.1 7.1 1.2 7.8 342.9 2.3 32.1 

3 22.1 1.2 5.6 0.8 8.2 589.4 1.8 34.5 

4 24.7 1.0 3.4 1.1 7.9 566.2 1.5 38.7 

‘Brackettes’ 26.3 0.9 4.1 1.1 10.2 510.3 1.4 38.6 

ISO Standard 

17225-

1:2014(E) 

Miscanthus n/a 1.0 2.0 2.0 n/a 20 2.0 10 

Barley Straw n/a 10 2.0 0.5 n/a 40 1.0 10 

Reed Canary 

Grass 

n/a n/a n/a 1 n/a 160 n/a n/a 

 *Relative error for the bracken values is ±7%, calculated from standard deviation of measured values. 

Sample period is the time of year at which the sample was harvested.   
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  Past research shows that uptake of copper (Cu) by plant species is highly 

dependent on the plant species, the presence of inorganics in soil and the moisture of 

the soil [Chigbo, Batty and Bartlett, 2012]. The Cu content of the bracken decreases 

as the annual cycle progresses. The highest concentration is measured at site 4 

sampling period 1, 9.0 mg kg-1 db. The limit specified in ISO 17225-7:2014 (E) [2014] 

is 20 mg kg-1 db. Compared to the miscanthus and barley straw, both 2.0 mg kg-1 db, 

the average concentration for the bracken in the fourth sampling period is 50% higher, 

3.5 mg kg-1 db. The concentration range for barley straw, from ISO 17225-1:2014 (E) 

[2014], is between 1 to 10 mg kg-1 db which is much broader than for the bracken over 

the growth cycle, 3.4-9.0 mg kg-1 db.             

 The strontium (Sr) in the bracken increases as time progresses; the highest 

measured concentration is 10.6 mg kg-1 db at site 4 sampling period 4. Sr is not 

typically considered very important in fuel analysis because of its low concentration 

in most biomass. Although there is very little research on the impacts of Sr in fuels 

during combustion, it is reported that strontium has similar chemical properties to 

calcium, both are alkaline metals. According to Sullivan and Glassman [1971] during 

combustion strontium and calcium in the vapour phase have very similar 

homogeneous characteristics. Therefore, if there were significant quantities detected 

further discussion of Sr would be appropriate in relation to slagging and fouling 

characteristics. This is not the case for the bracken sampled in this work.  

 Manganese (Mn) is an area of interest for bracken because the measured 

concentration is greater than typically found in most biomass. As the bracken cycle 

progresses the Mn concentration increases, this is from 280 mg kg-1 db to 580 mg kg-

1 db. Comparing this to the other fuels in Table 6.4 the Mn concentration is 

substantially higher in bracken, reed canary grass being the next highest at 160 mg kg-

1 db with a reported variation of up to 200 mg kg-1 db. In ISO 17225-1:2014 (E) [2014] 

the only other comparable biomass is grass hay which has a typical concentration of 

1000 mg kg-1 db but can have a concentration of between 200 to 2600 mg kg-1 db. Mn 

can be considered a heavy metal specie in geochemical research [Kuramshina et al., 

2014] and an important ash forming element, it is moderately mobile and has a strong 

and important association with Ca and Mg [Vassilev et al., 2017].  
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 Both nickel (Ni) and zinc (Zn) have concentration limits, these are 10 and 100 

mg kg-1 db respectively [ISO 17225-7-2014 (E), 2014]. As can be seen in Table 6.4, 

the highest concentrations are 2.6 (Ni) and 43.1 (Zn) mg kg-1 db, both are substantially 

below the limit. The general trend for Ni is that its concentration deceases by about 

1.0 mg kg-1 db as the cycle progresses. For the Zn it generally increases however it is 

highly variable depending on the site. The Ni concentration of the bracken is 

comparable to both the miscanthus and barley whereas the Zn concentration is higher. 

The variation reported in ISO 17225-1:2014 (E) [2014] for Zn in miscanthus ranges 

from 3 to 30 mg kg-1 db and the barley straw from 3 to 60 mg kg-1 db. The variation 

on the bracken is much narrower, 13.6 wt.% db, than the other two alternative fuels.  

6.3.3 Ash Composition, Slagging and Fouling Indices 

One of the main concerns with solid fuel combustion is ash slagging and 

fouling. It is important when considering novel fuels in combustion systems that the 

risks of slagging and fouling are understood to prevent operational and technical 

problems. The fuel ash composition is shown in Table 6.5. The ash composition of 

each fuel in Table 6.5 does not add up to 100%, this is because it is an estimate of the 

ash composition where all the species are assumed to be oxides, these make up the 

majority of the ash. Carbonates, hydrogen carbonates and sulphates will also be part 

of the composition. 

Typically, biomass has higher concentrations of certain ash species as they are 

crucial nutrients and have specific critical biological functions in the plant. Some of 

these elements are vaporised and then condensed in low temperature areas in boilers 

and combustion systems. The ternary diagram in Fig. 6.2 from Boström et al. [2012] 

shows the interaction of K2O(+Na2O)-CaO(+MgO)-SiO2; adding the fuels from this 

work to the diagram, the bracken at the fourth harvest is predicted to have the highest 

slag formation temperature- above the 1200C isotherm line from Morey et al. [1930]. 

The order of slagging temperature based on Fig. 6.2 goes bracken harvest 4 >bracken 

harvest 3 >bracken harvest 2 >miscanthus >wheat straw >bracken harvest 1 >barley 

straw. Over the annual cycle, the slagging temperature increases from about 1000C 

to above 1200C. Comparing to the fuels used by Boström et al. [2012] the bracken 

performs similar to conifer stumps which are considered to be a woody biomass, the 

bracken has a significantly higher slagging propensity than the stem and bulk woods.  
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Table 6.5: Ash Composition of Fuels Studied (wt. %) 

 

 

 

 

 

 

 

 

 

 

 

 

*Relative error for bracken measurements is ±10%. Sample period is the time of year at which the sample was harvested. Sample period is the time of year at which 

the sample was harvested.      

Sample Site Sample 

Period 
SiO2 Al2O3 Fe2O3 TiO2 CaO MgO Na2O K2O Mn3O4 P2O5 SO3 

Bracken  1  1 17.9 0.1 0.1 <0.1 5.1 0.7 0.7 37.5 0.7 6.8 5.7 

2 22.7 0.2 0.2 <0.1 7.1 0.9 1.5 31.1 1.1 5.7 5.8 

3 27.1 0.2 0.3 <0.1 9.3 1.1 2.4 24.0 1.4 3.1 5.9 

4 40.1 0.3 0.3 <0.1 13.9 0.7 2.8 15.3 2.3 2.4 5.7 

2  1 17.8 0.1 0.1 <0.1 5.0 0.9 0.6 37.8 0.7 7.4 6.1 

2 23.1 0.2 0.2 <0.1 7.8 1.1 1.9 30.9 1.1 5.9 6.0 

3 26.5 0.2 0.3 <0.1 8.9 0.8 2.7 24.1 1.6 3.4 5.9 

4 42.4 0.3 0.3 <0.1 14.2 0.8 2.7 14.8 2.3 2.5 6.0 

3  1 18.0 0.1 0.2 <0.1 4.9 0.4 0.1 38.9 0.7 6.6 5.8 

2 23.5 0.2 0.2 <0.1 6.7 0.4 0.5 29.9 1.1 5.4 6.1 

3 25.5 0.2 0.2 <0.1 6.9 0.4 0.6 24.3 1.3 2.8 6.3 

4 47.1 0.3 0.3 <0.1 12.6 0.7 0.8 14.1 2.3 2.6 6.2 

4  1 17.7 0.1 0.1 <0.1 5.4 1.2 0.8 38.8 0.7 7.8 5.8 

2 20.8 0.2 0.2 <0.1 9.3 1.7 1.7 32.4 1.2 6.2 5.5 

3 27.2 0.3 0.3 <0.1 12.4 0.8 3.1 23.3 1.7 4.1 5.7 

4 38.0 0.3 0.2 <0.1 16.6 1.4 3.3 15.9 2.3 2.0 4.7 

5  1 17.9 0.1 0.1 <0.1 5.3 0.8 0.7 38.4 0.7 7.7 5.5 

2 21.9 0.2 0.1 <0.1 8.2 1.4 1.5 31.5 1.2 6.1 5.6 

3 26.9 0.3 0.2 <0.1 10.8 1.1 2.9 23.8 1.7 3.8 5.8 

4 44.5 0.3 0.2 <0.1 15.0 1.3 3.0 14.3 2.3 2.2 5.5 

‘Brackettes’ 40.8 0.2 0.3 <0.1 13.8 0.9 3.0 15.2 2.0 2.5 6.0 

Miscanthus 33.2 0.3 0.3 0.1 13.4 2.0 0.5 29.1 0.1 3.0 3.8 

Barley Straw (423) 62.8 0.2 0.3 0.1 9.6 1.7 0.6 11.1 0.1 1.5 2.1 

Wheat Straw (093) 55.8 0.3 0.2 0.1 11.5 1.5 0.2 13.9 0.1 2.1 1.3 
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Figure 6.2: The K2O(+Na2O)-CaO(+MgO)-SiO2 system; • Bracken Harvest 1* ◼ 

Bracken Harvest 2* Bracken Harvest 3* Bracken Harvest 4* Miscanthus 

Barley straw Wheat Straw. *values are averages over all sites. Figure taken from 

[Boström et al., 2012] 

 

Fig. 6.3 is from Wang et al. [2017] and shows a different interaction series 

which considers the mobility of inorganics in the structures of biomass; these can be 

categorised into 3 groups:  

• Highly mobility- K2O, P2O5, SO3, and Cl2O 

• Moderately mobility- CaO, and MgO 

• Low mobility- SiO2, Al2O3, Fe2O3, Na2O, and TiO2 

Vassilev et al. [2017] discusses the problems with classification of Na in this system. 

Traditionally Na was classified as a low mobility element because it typically forms 

silicates however in some biomass species which are more salt tolerating Na is present 

more as chlorides and sulphates- highly mobile species. Bracken does not typically 

grow well in coastal and wet areas and therefore it is reasonable to assume that Na will 

exist more as silicates and use of the traditional interactions is appropriate. 

Additionally, Mn3O4 has limited interactions with other ash elements so can be 

excluded for the interactions above [Boström et al., 2012].  

 Fig. 6.3 shows that all the bracken samples are in the high deposition risk areas, 

S and K types. As the bracken goes through the annual cycle it moves from a K type 

to an S type, this is an increase in the acidity of the biomass meaning there will be 
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more issues of corrosion. This trend moves towards the straw results from Wang et al. 

[2017]. The barley and wheat straws from this study are in the same region as the 

results from Wang et al. [2017] meaning the results from this work show reliable 

consistency.  

Figure 6.3: The K2O(+Na2O)-CaO(+MgO)-SiO2 system; • Bracken Harvest 1* ◼ 

Bracken Harvest 2* Bracken Harvest 3* Bracken Harvest 4* Miscanthus 

Barley straw Wheat Straw. *values are averages over all sites. Figure taken from 

[Wang et al., 2017] 

 

Table 6.6 is a series of slagging and fouling parameters used by academics and 

industry to estimate the slagging propensity of a fuel. These indices are described in 

section 2.3.3.1. The base to acid ratio (𝑅𝑏 𝑎⁄ ), alkali index (AI) and slagging viscosity 

index are calculated by Eqs. 2.10-2.12 respectively. For the Rb/a, as the bracken goes 

through the annual cycle the probability of slagging goes from high to moderate. The 

fourth sampling period for the bracken has an Rb/a of between 0.70 and 0.89 which is 

approximately double the number for the straw fuels but is considerably lower than 

the miscanthus fuels.  

All of the fuels in this study except for the wheat straw have a high probability 

of slagging based on the AI. The final sampling of the bracken is between 0.41 and 

0.69 which is approximately a reduction of 1 kg alkali GJ-1 from the first sampling 

period to the last.   
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Table 6.6: Calculated slagging and fouling indices  

Sample Site Sample 

Period 

Base to Acid 

Ratio (Inc. P2O5)a 

Base 

Percentage 

(%) 

Alkali Index    

(kg alkali GJ-1)b 

Slagging 

Viscosity 

Indexc 

Bracken 1 1 1.75 43.4 1.51 75.2 

2 1.40 39.9 1.14 73.5 

3 1.18 36.0 0.87 71.7 

4 0.75 32.3 0.48 72.9 

2 1 1.72 43.5 1.17 74.8 

2 1.40 40.8 0.95 71.7 

3 1.20 36.0 0.75 72.6 

4 0.71 32.0 0.41 73.5 

3 1 1.79 44.1 1.58 76.6 

2 1.28 37.3 1.21 76.3 

3 1.12 32.0 0.98 77.3 

4 0.56 27.8 0.49 77.6 

4 1 1.76 45.1 1.61 72.5 

2 1.60 43.6 1.35 66.0 

3 1.24 39.1 1.02 66.8 

4 0.89 36.0 0.69 69.6 

5 1 1.73 44.5 1.56 74.3 

2 1.46 41.3 1.28 69.3 

3 1.22 37.7 0.97 69.0 

4 0.70 32.9 0.47 72.5 

Miscanthus 1.19 43.3 0.68 67.9 

Barley Straw  0.33 21.6 0.35 84.4 

Wheat Straw  0.44 25.8 0.30 80.9 

*a- calculated by equation 2.10, b- calculated by equation 2.11, c - calculated by equation 2.12. Sample 

period is the time of year at which the sample was harvested. Sample period is the time of year at which 

the sample was harvested.    

For the slagging viscosity index, the bracken results show a more complex 

trend compared to the other indices but generally the bracken from harvests one and 

four are above 72 so have a low slagging propensity whilst harvests two and three 

show moderate slagging tendencies. None of the fuels studied show a high slagging 

propensity. The straws show superior slagging properties which is in agreement with 

the other calculated indices.  

6.3.4 Ash Fusion Tests 

Ash fusion tests (AFT) were carried out under oxidising conditions as 

described in Chapter 3.4.6. The results for the bracken from sites 3 and 4 only are 

shown in Table 6.7; these results are averages from the two test pieces. Selection of 

sites 3 and 4 was based on the previous results from section 6.4; site 3 showed the best 

anti-slagging properties whilst site 4 showed some of the worst anti-slagging 

properties.  

 



188 

 

Table 6.7: Ash fusion test characteristic temperatures 

Sample Site Sample 

Period 

ST (°C) IDT (°C) HT (°C) FT (°C) 

Bracken 3 1 960 1000 1010 1030 

2 910 930 980 1020 

3 930 950 1000 1010 

4 1000 1030 1160 1180 

4 1 960 980 1020 1030 

2 910 920 980 1020 

3 920 950 1010 1030 

4 1010 1040 1160 1180 

Miscanthusa 800 900 1010 1100 

Barley Strawb (423) 970 1010 1200 1250 

Wheat Strawc (093) 950 980 1095 1140 

*a- values from Pang et al. [2013], b- values from Wang et al. [2012], c- values from Akinrinola [2014]. 

Sample period is the time of year at which the sample was harvested. Sample period is the time of year 

at which the sample was harvested.     

Results of AFT are subjective to the analyst looking at the images, meaning 

there is an inherent error in the reading of the temperature at which the characteristic 

change occurs. The errors for the ST, IDT, HT and FT, are between 0-15C, 0-13C, 

0-10C and 0-10C respectively. The contrast of the images makes it difficult to 

identify the first stage of ash melting, hence the largest error is for this measurement. 

Compared to the results from Akinrinola [2014] these errors are much smaller; this 

could be due to a number of reasons but it is most likely from differences in the method 

of analysis and confidence interval.  

 Looking at Table 6.7 the characteristic temperatures are highest for the fourth 

bracken harvest. Softening and initial deformation happen at above 910C for the 

bracken meaning the ash is very stable up to this temperature. The four characteristic 

temperatures occur over a relatively small temperature range, approximately 180C. 

As the harvest time period progresses the stability of the test piece between the initial 

deformation and hemisphere increases. The test piece retains its stability to the 

hemisphere temperature and about 20C later collapses; although this is not a sudden 

collapse as described by Gudka [2012] it is also not as gradual as described by Baxter 

et al. [2012]. 

Past work has shown that the process of ash melting can be variable, some 

biomass types experience shrinkage and swelling at different temperatures [Roberts et 

al., 2019]. This can have significant impacts on the results and is inherent to different 

fuel properties. Fig. 6.4 shows the test pieces at the characteristic ash melting 
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temperatures for the bracken samples. The bracken does not experience any swelling 

and follows a uniform process of ash fusion until it reaches its flow temperature.  

 

 

Figure 6.4: Ash melting characteristic temperatures. *The first number is the sampling 

site and the second number is the sample period.   
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Bryers [1996] plotted the hemisphere temperature against the base percentage 

for a number of lignites and biomass. The plot produces a parabolic curve with a 

minimum between 35 and 55 wt.% basic oxides. Using the base percentage from Table 

6.6 and the hemisphere temperatures from Table 6.7 the bracken fuels are plotted onto 

the figure from Bryers [1996] in Fig. 6.5. Relative to the fuels studied by Bryers [1996] 

the bracken has a similar correlation, however the results from Bryers [1996] were 

from AFT conducted in reducing environments, this typically means that the 

temperatures are lower (about 100C) than in an oxidising environment. Therefore, as 

with any fuel used, careful monitoring and considerations as to technology 

applications would be required to prevent slagging and fouling.  

 

Figure 6.5: Hemisphere temperatures and base percentage values for bracken at 

different sampling periods, figure from Bryers [1996].  bracken site 3 harvest 

3, ◼ bracken site 3 harvest 4,  bracken site 4 harvest 3, • bracken site 4 harvest 

4. 
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6.3.5 Pyrolysis and Combustion Studies 

6.3.5.1 Thermogravimetric Analysis (TGA) and Differential Gravimetric Analysis 

(DTG) 

 TGA and DTG analysis was carried out according to the method in section 

3.5.1 in order to analyse the combustion and pyrolysis kinetics. All the raw samples 

(cryomilled) were heated to 900C at 10C min-1 in air and nitrogen for combustion 

and pyrolysis respectively. Samples from different harvest time periods were 

compared, all the samples studied came from site 4. It should be noted that the error 

in TGA analysis is within 2% as determined by Phillips [2018].    

Analysis involved identification of the peak temperatures and mass loss rates 

from the mass loss profiles in Figs. 6.6-6.10. For combustion of biomass fuels, it is 

evident from past research that two peaks form for the two key stages, devolatilisation 

and char combustion [Jones et al, 2015]. This is different to coal combustion, which 

only has a single overlapping peak, because of the higher VM content and reactivity 

of biomass. The initial mass loss temperature (TIM), the temperature at which 

maximum mass loss occurs during devolatilisation (Tv), the rate of mass loss at this 

temperature (dm/dtv), the temperature at which maximum mass loss occurs during char 

combustion (Tc), the mass loss rate at this temperature (dm/dtc) and the burnout 

temperature (TB) are listed in Table 6.8.  The TIM and TB are measured when the mass 

loss equals 0.016 wt.% s-1 at the start and end of the combustion runs, this is excluding 

any drying periods. For pyrolysis (Figs. 6.9 and 6.10) there is a single peak which is 

for devolatilisation; therefore, the temperature and mass loss parameters above still 

apply except for the absence of Tc, dm/dtc and TB.  

The initial mass loss on the TGA curves is due to moisture, Figs. 6.6 and 6.7. 

This occurs at the same temperature for all the fuels. All the moisture is removed 

before the sample reaches 120C.  

For the combustion profiles there are two main peaks, the first represents 

devolatilisation and the second is for char combustion. Looking at the combustion 

profiles from Table 6.8 and Figs. 6.6, 6.7 and 6.8; the devolatilisation peak, Tv, 

increases as the bracken is harvested later (occurs at 20C hotter for the fourth harvest 

compared to the other harvests). Additionally, from Fig. 6.7 harvests 1 and 2 have a 

flat pre-tail before the main peak. This was also evident in the pyrolysis analyses. This 
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phase was also seen in Miranda et al. [2008] for olive pits, pulp and residue cake and 

is concluded to be from the evolution of light volatiles such as oils and resins. 

The TIM also increases as the bracken is harvested later meaning the reactivity 

is decreasing. There is an increase of 50C between the first harvesting period to the 

last. Dooley [2017] says volatile content is the main factor affecting the reactivity of 

the fuel, however as discussed in section 6.3.1 and Table 6.2 the change in volatile 

content is within 2 wt.% db. Decreases in K content can also reduce the reactivity of 

a fuel since it slows the catalysed rate of thermal decomposition of lignocellulose. 

From Table 6.5 it is clear that the K content decreases as the bracken growth cycle 

progresses. Therefore, this is most likely causing the decreases in reactivity. This 

change in K content is also relevant to differences in the pyrolysis analyses discussed 

later in this section.  

For the char combustion phase, the second peak, both Tc and dm/dtc increase 

as the bracken is harvested later. Comparing to the pyrolysis analyses the fourth 

bracken harvest has the lowest rate of mass loss during devolatilisation but the highest 

mass loss rate during char combustion. This is because more char is produced for the 

fourth harvest based on the fixed carbon content, Table 6.2. This is also coherent with 

the ultimate analysis of C, Table 6.3. The C changes are small; however past research 

has shown that in TGA applications char yield is strongly influenced by the pseudo-

components of biomass (cellulose, hemicellulose and lignin) as well as the K 

concentration. Small changes in the carbon content can actually be the result of large 

changes at a cell level and yield significantly different amounts of char [Skreiberg et 

al., 2011].  

The burnout temperature, TB, is more interesting as there is no discernible 

trend. The third harvest of bracken has the lowest burnout temperature (464C) 

followed by harvest 2 (482 C), harvest 1 (500 C) and harvest 4 (508 C). This is 

linked to the differences in the shapes of the char combustion mass loss profiles. From 

Fig. 6.7 harvest periods 1 and 2 have two peaks. One peak occurs between 350-440C 

and the other between 450-510C. This same result was seen by Darvell et al. [2010] 

for shea and olive residue and Akinrinola [2014] for wheat straw (which as seen in 

earlier sections shows similar properties to bracken) and is caused by the combustion 

of two different char matrices. In the case of the early bracken harvests this is most 
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likely from the differences in the stipe (soft fleshy material) and the pinna/leaflet (thin 

brittle material), both of which make up roughly 50% by volume of the harvested 

material. Additionally, from Fig. 6.8 bracken from harvest 4 has a shoulder on the 

main char combustion peak at approximately 480-490C; a small peak also occurs at 

a similar temperature in the pyrolysis profile in Fig. 6.10; these two peaks are expected 

to be from the decomposition of CaCO3 [Skreiberg et al. 2011]. As seen in Table 6.5 

the Ca in the fuel increases the later the bracken is harvested.  

The rate of peak volatile release, dm/dtv, is lowest for the fourth harvest in 

combustion and pyrolysis. This is most likely due to changes in the mineral 

concentrations, especially K. High Cl, and low Si and Al facilitates release of KCl and 

KOH to the vapour phase in devolatilisation [Clery et al., 2018]. As the bracken cycle 

progresses the K and Cl decreases and the Si increases so the volatile release rate slows 

and more K is retained in the ash. This K is also known to promote more char 

formation reactions [Nowakowski and Jones, 2008]. PM emissions are also dependent 

on KCl and KOH and this is discussed later in Section 6.3.5.5.  

Table 6.8: Characteristic temperatures (C) and mass loss rates (wt.% s-1) 

measured in TGA combustion and pyrolysis of bracken at different sampling 

time periods from site 4 

 

 

 

 

 

 

 

 

 

 

Method Parameter 
Harvest Time Period 

1 2 3 4 
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TIM 207 207 242 257 

Tv 308 310 313 332 

dm/dtv 0.117 0.128 0.134 0.106 

Tc 408 411 413 432 

dm/dtc 0.049 0.051 0.064 0.069 

TB 500 482 464 508 

P
y

ro
ly

si
s TIM 237 222 255 263 

Tv 335 337 343 338 

dm/dtv 0.0967 0.0929 0.0861 0.0738 
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Figure 6.6: Plot of mass loss with temperature from combustion-TGA analyses 

of bracken from harvests 1-4 

 

Figure 6.7: Plot of the time derivative mass loss (DTG) with temperature from 

combustion-TGA analyses of bracken from harvests 1 and 2 
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Figure 6.8: Plot of the time derivative mass loss (DTG) with temperature from 

combustion-TGA analyses of bracken from harvests 3 and 4 

 

 

Figure 6.9: Plot of mass loss with temperature from pyrolysis-TGA analyses of 

bracken from harvests 1-4 
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Figure 6.10: Plot of the time derivative mass loss (DTG) with temperature from 

pyrolysis-TGA analyses of bracken from harvests 1-4 

 

For the pyrolysis analyses, the temperature of peak mass loss, Tv, are within 

8C. This was also seen by Dooley [2017] for different white wood pellets and was 

most likely from the similarities in fuel-O content which aided surface reactions. The 

maximum mass loss rate, dm/dtv, did decrease significantly as the bracken was 

harvested later mostly likely associated with changes in the mineral content- this was 

discussed in the preceding paragraph.  

Compared to other fuels in work by Dooley [2017] and Akinrinola [2014] as 
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hemicellulose decomposition whilst the main peak is cellulose decomposition [Darvell 

et al., 2010]. 

6.3.5.2 Apparent First Order Kinetics  

 The kinetic parameters were calculated using the data from the mass loss 

curves for pyrolysis. This is only an estimate and requires two key assumptions:  

1. Any combustion and decomposition are assumed to take place in a single step, 

this is considered to be a first order Arrhenius reaction described by Eq. 6.1. 

[Kastanaki and Vamvuka, 2006] 

2.  Reactivity is a function of conversion; conversion is measured by mass loss 

so any mass loss is considered to be conversion.  

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇    (6.1) 

In order for kinetic evaluation to be valid, a temperature boundary must be 

used; this is because in non-isothermal analysis decomposition of different pseudo-

components happen at variable rates. Therefore, a boundary is used to obtain kinetic 

parameters which reflect analogous conversion mechanisms [Fisher et al., 2002] 

[Saddawi, Jones and Williams, 2010] [Gudka et al., 2010]. Assessment of the 

compatibility of these conversion methods is done by R2 statistical analysis, Table 6.9, 

of linear plots shown in Figs. 6.11 and 6.12.  

Table 6.9: Key kinetic parameters for devolatilisation/ pyrolysis of bracken from 

TGA analysis using the first order constant reaction rate method  

Pyrolysis Kinetic Analysis 

Harvest 1 2 3 4 

Temperature 

Range               

(oC) 
145-170 200-225 205-270 200-275 

Ln A 3.13 3.57 5.57 8.31 

Ea                   

(kJ mol-1) 
44.99 47.34 58.41 71.93 

R2 0.93 0.938 0.994 0.996 

 

 The pre-exponential factors (A) and the activation energy (Ea) are shown in 

Table 6.9- these are only applicable to the temperature range stated. The Ea is highest 

for the fourth harvest (71.93 kJ mol-1) followed by harvest three (58.41 kJ mol-1), two 

(47.34 kJ mol-1) and one (44.99 kJ mol-1). This ranking is analogous with the 
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observations from the DTG combustion profiles, Figs. 6.7 and 6.8, in that the reactivity 

decreases as the bracken is harvested latter. However, this is not analogous with the 

Tv for pyrolysis, Fig. 6.10. This is most likely because the Tv for all the harvests are 

within 2.5%, which is just outside the 2% margin of error determined by Phillips 

[2018] for repeat TGA analyses on the same fuel.  

As discussed in Section 6.3.5.1, the bracken harvested earlier contained low 

CV oils and resins which were evaporated at low temperatures. Therefore, it is more 

challenging to determine the temperature range at which only hemicellulose 

decomposition is assumed to be occurring because these phases overlap. This means 

that only a small temperature range is used for the determination of the pyrolysis 

kinetics for harvests one and two.     

Fig. 6.13 shows the pyrolysis reaction rate at 300C plotted against the K 

content; which produces a strong positive linear correlation (R2=0.934). Compared to 

Saddawi, Jones and Williams [2010] for pyrolysis of raw willow chip, demineralised 

willow chip and K-impregnated willow chip, the reaction rate is slower. From the 

trendline in this work, when the K content is 0 the reaction rate at 300C would be 

0.0006s-1. This is similar to the measured value for willow, 0.00043 s-1, by Saddawi, 

Jones and Williams [2010]. 

Based on the trend in Fig. 6.13, the reactivity of the bracken is directly 

dependent on the time of harvest (K content). Saddawi, Jones and Williams [2010] 

also observed this relationship at low K concentrations however it deviated from 

linearity as the K content increased. During the linear phase the K is both catalysing 

the degradation as well as being evolved from the fuel. When the trend deviates the 

fuel is saturated and some of the K is no longer being released from the fuel during 

devolatilisation. This also means the efficacy of this K as a catalyst is lower. Although 

more data would be required to confirm this, the data from this work does suggest that 

the bracken deviates from linearity when the K content exceeds 2.2 wt.% (harvests 

one and two). This is a similar observation to the composition and slagging and fouling 

analyses in that the differences between harvests one and two are minimal.  

If bracken was used in combustion systems typically fired with woody 

biomass, the TGA data shows the feed in rate would have to be altered because of the 

differences in reactivity. The lower reactivity of bracken means the volatile gases 
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would be released from the fuel at a slower rate and thus would need a longer residence 

time to achieve the same burnout rates. This is an important consideration as it will 

require additional control measures to ensure the same energy requirements are 

fulfilled.  

Figure 6.11: Pyrolysis kinetics for harvests 1 and 2. The solid lines are the actual 

experimental values and the dashed line is the linear best fit.   

Figure 6.12: Pyrolysis kinetics for harvests 3 and 4. The solid lines are the actual 

experimental values and the dashed line is the linear best fit.   
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Figure 6.13: Reaction rate constants calculated at 300oC vs K content in the fuel, 

comparison with the work of Saddawi, Jones and Williams [2010]. The solid grey 

line is experimental data.  

6.3.5.3 Single Particle Combustion- Video data     

Figure 6.14: Ignition delay versus dry particle mass. Particles are between 2-4mm in 

size.   

 

Single particle combustion experiments were conducted as stated in section 
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Only bracken samples from site 4 at the first and fourth harvests were used as these 

were considered to have the largest differences in properties. Using a high-speed 

camera (standard error of ±0.008 due to the frame speed) four key points are identified: 

ignition, volatile release, char burnout and ash cooking. The times at which these occur 

is variable depending on the type of fuel, the chemical composition and dimensions of 

the particle. Moisture can have the most significant impact on the results particularly 

on the ignition delay because of the drying process slowing the volatile release and 

creating an unstable flame. For this reason, the fuels were oven dried to less than 10% 

moisture content.  

The first characteristic to identify from the video frames is the ignition delay 

time, this is characterised by the time lag between the first exposure of the particle to 

the flame and the development of a luminous flame above the particle surface. When 

the particle starts flaming this is ignition. The plot of the ignition delay time against 

the dry particle mass is shown in Fig. 6.14. The spread of the data in Fig. 6.14 is caused 

by the variation in the particle geometry, density and moisture content. The bracken 

samples have a unique make-up, common with ferns, in that some particles were more 

straw like and others more grass like- this made it difficult to establish a common 

repeatable particle. However, it is clear from Fig. 6.14 that the bracken harvested 

earlier has a much shorter ignition delay time (between 0.02-0.06s) compared to the 

fourth harvest (0.08s). It is clear that the reactivity is decreasing as the bracken is 

harvested later, this is in agreement with the results from Table 6.8 for combustion. 

This is most likely to be from oils and resins present in harvest 1 that evolve at lower 

temperatures and aid ignition. However, other factors such as the biochemical 

composition and thermal conductivity can also influence the result. 

Identification of volatile release and char combustion from the video frames is 

measured by monitoring the flame above the particle and when the particle starts to 

glow. During devolatilisation volatile organic compounds are released, these are 

combusted above the fuel particle in homogeneous gaseous phase reactions which 

produces a luminous flame. After the release of these gases a change in the pressure 

gradient allows oxygen to reach the fuel particle surface and diffuse through the char 

matrix meaning heterogeneous combustion can take place which results in the particle 

heating up and glowing. It is assumed that when char burnout begins volatile release 

has stopped- they are absolute individual stages. However, in reality this isn’t the case 
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and there is an overlap. In these experiments, because the Meker burner is below the 

particle, char combustion will start at the bottom of the particle whilst volatiles are 

still being release from the top of the particle.  

Figure 6.15: Volatile release time versus dry particle mass. Particles are between 2-

4mm in size. 

 

Figure 6.16: Char burnout time versus dry particle mass. Particles are between 2-4mm 

in size.   
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Figs. 6.15 and 6.16 show the time taken for volatile release and char 

combustion against the dry particle mass respectively. Surprisingly in Fig. 6.15 the 

time taken for volatile release is similar between the two bracken harvests. This was 

unexpected since the K content, discussed more in the next section, and reactivity 

discussed in the preceding sections (6.3.5.1 and 6.3.5.2) was much higher for the first 

harvest. The volatile release phase occurs very quickly and it is therefore difficult to 

judge the point at which the change in combustion phase occurs. A small difference in 

the value read such as 0.3s can in fact have a 10% deviation in the result for the 

devolatilisation measurements. This is most likely the reason for not seeing a 

difference in the time taken for volatile release of the two harvests.  

The time taken for char combustion (Fig. 6.16) is longer for the fourth harvest than 

the first. There are 5 key contributing factors to the char burning rate: (i) the mass of 

char after devolatilisation (ii) chemical factors which influence the porosity of the 

resultant char after devolatilisation (iii) the presence of catalytic metals and metals 

which could form structures to retain elements within the ash (iv) the chemical reaction 

rate of the char and (v) the diffusion rate through the char matrix.  Based on Table 6.2 

there is a small increase in the char produced because of the slight increase in FC 

content (3 wt.%) of the fourth harvest.  Additionally, from Table 6.5 the Si content 

increases by more than 20 wt.% which retains K in the char/ash matrix. A combination 

of these two factors is causing the increase in char burnout time. 

6.3.5.4 Single Particle Combustion- Potassium Release Detection 

Photodiodes are used to monitor potassium release (the times measured by the 

change in spectral intensity) and can be used as a comparison with the times measured 

from the video frames [Mason, 2016]. Figs. 6.17 and 6.18 show the potassium release 

profile over the combustion time of the particle for particles from harvest 1 and 4 

respectively. Comparing Figs. 6.17 and 6.18, harvest 1 and 4 respectively, it is clear 

that the ignition delay for the particles from the fourth harvest is much greater, this is 

because there is a gap between t=0 and the first peak. However, it was not possible 

from Figs. 6.17 and 6.18 to distinguish between K evolving during volatile release and 

K evolving during char combustion. Additionally, in Fig. 6.17 the first harvest bracken 

was so high K the signal became saturated. This is common when analysing fuels high 

in K [Mason et al., 2016].  
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Figure 6.17: Plot of potassium release profiles for bracken from the first harvest 

 

Figure 6.18: Plot of potassium release profiles for bracken from the fourth 

harvest 

 

Fig. 6.19 compares the average potassium release rates from the first and fourth 

harvests for particles identical in mass and size. The area under the profile represents 

the amount of K released which was larger for the first harvest particle, this is coherent 

with K measurements in Table 6.5. The most interesting comparison is between the 

shapes of the profiles. For the first harvest particle, the ignition delay time is very short 
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and is followed by a sharp peak which then regresses parabolically (x-2). 

Comparatively, the fourth harvest particle peaks and then regresses linearly. This was 

a result also observed by Mason [2016] and suggests that K is being retained in the 

char/ash matrix. Based on the metal analysis from Table 6.5, this will be because of 

the high concentration of Si which prevents K release in the earlier stages of 

combustion. 

Figs. 6.20 and 6.21 show the average K release rate and a single standard 

deviation from the profiles of 12 particles from the first and fourth harvests 

respectively. The results from the fourth harvest show a lower degree of variability 

over the whole particle combustion period. Although this is a very limited analysis, 

because of the sample number, the standard deviation for the composition analysis 

(Appendix C) also showed greater variation in bracken from the first harvest. 

Homogeneity within a fuel is a key property for creating stable flames within power 

station applications. 

  

Figure 6.19: Comparison of the average potassium release profiles from the first 

and fourth harvests  
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Figure 6.20: Average potassium release profile with standard deviation from 

twelve harvest 1 particle combustion runs 

Figure 6.21: Average potassium release profile with standard deviation from 

twelve harvest 4 particle combustion runs 
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6.3.5.5 Stove Combustion  

Bracken briquettes were combusted in the domestic stove and compared to 

miscanthus, barley straw, wheat straw and commercially made ‘heatlogsTM’ (wood 

briquettes). The bracken briquettes composition was within 3% of the bracken from 

site 2 harvest 4 in Tables 6.2-6.5. Therefore, even though the bracken briquettes are 

from a different source they are representative of the bracken harvested from Budby 

Moor. Information on the briquettes and their forming can be found in section 3.2.3. 

There was no binder used in the production of the brackettes. During the combustion 

runs it was observed that the bracken briquettes were too dense, preventing efficient 

combustion of the fuel. Therefore, after the first two batches, smaller briquettes were 

loaded into the stove made by splitting the larger briquettes into four, the same mass 

of fuel was loaded in each batch (±5%). 

Figure 6.22: Emission profile for whole combustion run for CO2 and CO. Arrows 

indicate fuel reloading. The profile up to the second arrow is for whole bracken 

briquettes and the after is for broken bracken briquettes.  

 

Fig. 6.22 shows the emissions of CO2 and CO over the whole combustion 

experiment, black arrows indicate reload points. Typical combustion runs show peaks 

in emissions of CO2 during flaming combustion and peaks in CO during smouldering 

combustion [Mitchell et al., 2016] [Atiku et al., 2016] [Johansson et al., 2004]. For the 

smaller briquette batches this is evident in Fig. 6.22 however for the larger briquettes 
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the relative emissions of CO are much greater and are sustained for longer time 

periods. This is because of the aforementioned dense briquetting which reduces the 

porosity and prevents the fuel from decomposing, thus decreasing the surface area to 

volume ratio. The ability of air and heat to transfer through the briquettes is much 

lower in the larger briquettes, this results in a greater proportion of smouldering 

combustion and a reduction in the efficiency of both the modified combustion 

efficiency (MCE) expressed by Eq. 3.16 and the extent of combustion, Eq. 3.17, in 

Table 6.10. Additionally, lower temperatures, shorter gaseous residence times and fuel 

rich combustion also contribute to higher emissions of CO [Tissari et al., 2009] 

[Gonzalez et al, 2004] [Kristensen and Kristensen, 2004], these are discussed more 

later in this section.  

The average emissions (g Nm-3) and the average emission factor on an energy 

basis (kg GJ-1) are shown in Table 6.10. The reduction in CO emissions is 26.4% from 

splitting the briquettes and this increases the fuel consumption by over 20%. The 

average emission factors for CH4 are also shown in Table 6.10. Emissions of CH4 are 

the result of pyrolysis during fuel-rich stoichiometry and they are dependent on many 

factors including stove design, air-to-fuel ratio and temperature. The emissions of CH4 

are 18.7% higher for the smaller briquettes, this is because there is an increase in the 

devolatilisation rate, based on the higher average burning rate. This produces a more 

fuel-rich gas and so CH4 is able to exit the combustion zone without being reacted 

[Ndiema, Mpendazoe and Williams, 1997].  

Table 6.10: Organic emission factors and combustion efficiency measurements 

Batch 

g Nm-3 kg GJ-1 

MCE 

Extent of 

Combustion 

(%) 

Average 

Burning 

Rate 

(kg h-1) 
CO2 CO CH4 CO2 CO CH4 

1 70 13 0.51 40 7 0.32 0.86 60 0.74 

2 70 15 0.53 40 9 0.34 0.85 65 0.76 

3 110 10 0.63 70 5 0.40 0.91 81 1.21 

4 120 11 0.60 70 6 0.38 0.89 87 1.34 

 

 Other key emissions from combustion systems include total organic carbon 

(TOC), NOx, SO2 and HCl as shown in Table 6.11. TOC includes organic species such 

as formaldehyde, furan, propane, hexane, acetylene, ethane, ethylene, ethanol and 

benzene. All of these compounds are volatile and condensable and they contribute to 
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the formation of soot. Concentrations of TOC are greater from domestic stoves 

because they operate at temperatures below 700C. As mentioned previously the larger 

bracken briquettes had lower average combustion temperatures and reduced 

turbulence which prevented the efficient conversion of TOC [Williams et al., 2012] 

[Fitzpatrick et al., 2008]. By breaking down the larger briquettes this increases the 

proportion of flaming combustion and increases the average temperature and 

turbulence resulting in a 25% reduction of TOC emissions.  

Comparing the emissions of the bracken briquettes to the alternative fuels there 

are some similarities in results. The CO emissions for the wood briquettes are the 

lowest and over 10% lower than the other fuels. These briquettes were very high in 

volatiles (90.1 wt.% db) with a moderate burning rate (1.6 kg h-1). Therefore, the 

release of volatiles persisted for a greater proportion of the batch burning time and 

hence flaming combustion dominated reducing the amount of smouldering 

combustion. The emissions of CO and TOC for the barley straw, like the large bracken 

briquettes, are high. These fuels are characteristically the opposite of the wood 

briquettes with lower VM contents, 68.1 (bracken) and 75.1 (BS 423) wt.% db, and 

slower burning rates, 0.74 (bracken) and 1.4 (BS 423) kg h-1. Therefore, a stable 

flaming phase was only achieved for a short time period, which was inconsistent 

between fuel batches. 

Table 6.11 Emissions factors for fuels studied on the domestic stove 

 g kg-1 

Fuel CO TOC NOx SO2 HCl 

Bracken Large Briquettes 180 1.3 2.5 1.6 0.50 

Bracken Small Briquettes 140 0.8 4.0 1.7 0.60 

Miscanthus 160 0.6 1.8 0.8 0.30 

Barley Straw (423) 180 1.3 3.6 0.8 0.30 

Wheat Straw (093) 140 1.1 2.0 0.5 0.20 

Wood Briquettes 120 0.7 1.4 0.3 0.06 
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Figure 6.23: Emissions of NOx against fuel nitrogen content, data from chapter 

4 and Mitchell et al. [2016] included  

 

It is well established in past research that NOx emissions in domestic stoves 

from solid fuels are dependent on the fuel nitrogen content. Fig. 6.23 shows the 

emission factors for the fuels in this study as well as the fuels from Chapter 4 and the 

fuels from Mitchell et al. [2016]. It is visible that there is a correlation between the 

emissions of NOx and the fuel nitrogen content. All these studies were conducted on 

the same stove which mitigates any differences in operation or physical combustion 

conditions. The emission factor for the small briquettes is greater than the large 

briquettes. There was a lower burnout for whole briquettes, thus more N was retained 

in the char, this nitrogen was released from the increased burnout of the broken 

briquettes. This is an inherent flaw of using the specific dry flue gas volume (SDFGV) 

method where by characteristics of the combustion are assumed consistent and only 

fuel composition varies.  
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Sulphur dioxide, SO2, emissions can also be dependent on the quantity of 

sulphur in the fuel. However, in biomass the relationship is more complex because of 

the nature in which the sulphur is bound within the fuel. Stove combustion of biomass 

results in higher emissions of SO2 during devolatilisation. This is from the thermal 

decomposition of organically bound sulphur in amino acids and other compounds for 

protein synthesis [Han et al., 2019]. Past work by Johansen et al. [2011] shows that 

thermal decomposition of organically bound sulphur can happen at temperatures as 

low as 200oC (based on decomposition experiments of cysteine). Figs. 6.24a-f show 

the emission and temperature measurements over a single batch of fuel. Using Figs. 

6.24a-f the results from this work show that the emissions of SO2 peak when the 

temperature in the stove peaks (temperature reading is the temperature of the flue gas) 

for all the fuels. The temperature peak is from flaming combustion and therefore all 

SO2 emissions during that peak are the result of decomposition of organically bound 

sulphur.  

Inorganically bound sulphur such as in K2SO4 found in xylem and phloem of 

biomass can also be released in biomass combustion but usually these salts are 

decomposed in char burnout stages at high temperatures (900C). Presence of high 

amounts of silicates and chlorine can reduce the temperature at which potassium-

sulphur salts decompose because of the high affinity of K to Si and Cl. Some of this 

SO2 (g) can be retained in the ash matrix by calcium interactions [van Lith et al., 2009] 

[Johansen et al., 2011]. Looking at Fig. 6.24f for the wood briquettes a second peak 

occurs when the temperature is decreasing, this peak is during char burnout which 

suggests there is release of either SO2 from the ash matrix or from the destruction of 

K2SO4 [Knudsen et al., 2004]. A second peak is also visible on Fig. 6.24a for the large 

bracken briquettes, this is another peak during flaming combustion as the breakup of 

the fuel is more random compared to the other fuels, this is another characteristic of 

the dense briquettes.  
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Figure 6.24a-f: Emissions of SO2 and flue gas temperature for a single batch of 

fuel combustion (a) bracken large briquettes (b) bracken small briquettes (c) 

miscanthus (d) barley straw (e) wheat straw (f) wood briquettes 

 

To assess further the relative partitioning of sulphur release, Table 6.12 uses a 

mass balance of the emissions and CHNS analysis of the bottom ash from the stove to 

establish what percentage of the sulphur in the fuel is released. The results show that 

the emission factors for the bracken briquettes is significantly higher, because of the 

higher fuel sulphur content, however the emissions are only 40% of the sulphur in the 

fuel. This is also the case for the miscanthus, barley straw and wheat straw where by 

only approximately 40% of the sulphur in the fuel is emitted. The wood briquettes 

release 75.1% of the fuel sulphur content and this will be because of the hotter 
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combustion temperatures, greater relative time in flaming combustion and the release 

of sulphur during char combustion (not seen in the other fuels). Using the work of 

Johansen et al. [2011] it can be assumed that there is a greater proportion of organically 

bound sulphur in the wood briquettes compared to the other fuels. 

Table 6.12: Sulphur partitioning in combustion of fuels.  

 

The calculated S content in the bottom ash from a mass balance of the 

combustion process is within 10% of the measured reading from the CHNS, with the 

exception of the wood briquettes, which suggests good reliability in the emissions 

data. The results from the CHNS are expected to show a degree of difference to the 

calculated values since the calculated value is based on an average emission factor. 

Because the fuel was lighted using fire lighters, and in the cases of the straws a small 

starting batch of coal was used, the measurement from the CHNS could introduce 

errors. However, it is reasonable to assume the results are representative in all cases 

since the majority of the ash is from the fuels being investigated because by mass the 

fuel contributes over 85% of the ash to the stove.  

 PM emissions can be dependent on many variables and defining the origin of 

soot particles is difficult. More detail on the factors affecting the formation and 

composition of PM, are discussed in section 2.3. In Table 6.13 the total PM (PMt) 

emission factor is compared for the fuels studied. It must be noted that the bracken 

measurements were made using the Dekati impactors in the dilution tunnel whilst the 

other fuels were measured by the smoke metre from the flue stack. Typically, hotter 

combustion temperatures result in more complete combustion and reduced PM 

emissions. However, comparing the two types of bracken briquettes the PMt emission 

factor for the large briquettes (lower combustion temperature) is lower than the smaller 

 SO2 EF 

(g kg-1) 

S in Fuel 

(kg/ kg of 

fuel) 

%S 

emitted 

%S in Ash 

(Calculation) 

%S in 

Ash 

(CHNS) 

%Difference 

Bracken Large 

Briquettes 
1.6 0.002 40.0 60.0 63.5 5.9 

Bracken Small 

Briquettes 
1.7 0.002 42.5 57.5 61.2 6.1 

Miscanthus 0.8 0.001 40.0 60.0 66.5 9.8 

Barley Straw 0.8 0.001 40.0 60.0 64.1 6.5 

Wheat Straw 0.5 0.0006 41.7 58.3 55.1 5.5 

Wood 

Briquettes 
0.3 0.0002 75.1 24.9 28.6 12.8 
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briquettes. This is because of the greater proportion of smouldering by the large 

briquettes compared to the smaller briquettes, the majority of PMt is released during 

flaming combustion [Price-Allison et al., 2019]. PMt emission factors in Table 6.13 

are calculated using the total flow method which accounts for the fuel burnt and the 

time for combustion which annuls the problems discussed earlier with the SDFGV 

method for the reduced amount of fuel burnt per batch by the large briquettes.  

Table 6.13: PMt for all the fuels studied  

 PMt EF        

(g/kg) 

Volatile 

Content 

(wt.% db) 

C/O 
K content 

(wt.% db) 

Bracken Large Briquettes 3.5 68.1 1.25 0.8 

Bracken Small Briquettes 3.9 68.1 1.25 0.8 

Miscanthus 2.7 87 1.14 2.0 

Barley Straw 5.0 75.1 1.24 1.7 

Wheat Straw 6.4 79.6 1.28 1.5 

Wood Briquettes 3.0 90.1 1.16 0.2 

 

Work by Mitchell et al. [2016] and Roy and Corscadden [2012] show 

relationships between PMt and volatile matter, C/O fuel mass ratio and K fuel content, 

Figs. 6.25-27 show these relationships respectively. Using Fig. 6.25 the relationship 

between volatile matter content and PMt relates to the proportion of flaming 

combustion which has already been discussed as having a significant impact on the 

results. Mitchell et al. [2016] established some discrete categories of biomass 

represented by three trendlines on Fig. 6.25. These categories discretise coals, 

agricultural residues/decomposing organic matter and biomass fuels. In the case of the 

bracken the results sit between the agricultural residue and biomass trends.  

 The bracken briquettes correlate to the C/O mass ratio trend better as seen in 

Fig. 6.26. Intriguingly the two trends from this work and the work of Roy and 

Corscadden [2012] individually show strong correlations (defined from the R2 values 

of the trendlines) but more so they both intercept the x-axis at the same point. From 

these trends it can be concluded, assuming there is no deviation from linearity, that 

fuels with a C/O mass ratio of less than 1 would result in zero PMt emissions (i.e highly 

oxygenated fuels). The difference in the gradients of the trendlines will be due to the 

differences in the stoves, method of particulate collection or experimental method 

differences.    
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 Fig. 6.27 shows the impact of fuel potassium content on the PMt emissions. 

Higher concentrations of fuel potassium will result in faster pyrolysis and increase the 

formation of fly ash, discussed earlier in sections 6.3.5.2-6.3.5.4. Only fuels from this 

work are plotted and the miscanthus was excluded because the correlation was much 

stronger after excluding that single point. The trend is the higher potassium content in 

agricultural residues the higher the PMt emission factor. It cannot be determined if this 

comes from increased soot or fly ash formation.  

 

Figure 6.25: PMt emission factor versus volatile matter, including data from 

Mitchell et al. [2016] 
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Figure 6.26: PMt emissions as a function of C/O ratio in the fuel, including data 

from Roy and Corscadden [2012] 

 

Figure 6.27: PMt emissions with fuel potassium content  
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6.4 Conclusions 

 In this work bracken harvested at different time periods was compared to other 

agricultural residues and currently-used combustion fuels. Proximate analysis of the 

bracken showed that as the annual cycle progressed the fixed carbon content increased 

significantly, more than 4% increase. This also resulted in the bracken fuel having a 

fixed carbon content which was much greater than the other traditional fuels. The 

variability between the sampling time periods (harvests) showed that the increase in 

fixed carbon was compensated for by decreases in the volatile content and the ash 

content. The ash content of the bracken was greater than compared to traditional 

woody fuels.  

Ultimate analysis showed agreement with the proximate results since the C 

content of the fuel was also significantly higher at the latest harvest. Both the S and 

Cl decreased slightly but were still relatively high in concentration compared to the 

woods, residues, straws and grasses. The only major observation for the trace metals 

analysis was the drastic increase in the Mn content of the bracken as the annual cycle 

progressed. None of the other trace metals showed any discernible results. The minor 

metals analysed from the ash created an interesting trend, the K2O concentration in the 

ash decreased particularly between the last two harvest whilst the SiO2 and CaO both 

increased. These changes resulted in both the calculated and measured slagging and 

fouling propensities being lowest in the final harvest. The softening and initial 

deformation occurred above 900C but all the key stages of ash fusion occurred within 

180C for all the harvests.  

 Combustion studies used the devolatilisation and char combustion profiles 

from the bracken samples to compare the reactivities. The bracken harvested earliest 

was the most reactive. Using the video footage from the single particle combustion the 

decreased reactivity of the final harvest bracken was evident by the increase in the 

ignition delay time which doubled in most cases from particles of the same mass. This 

was thought to be from the presence of oils and resins which evolve at low 

temperatures and aid ignition in the early harvests. Comparing results from the 

potassium release detection and the video footage it was not possible to identify the 

stages of volatile release and char burnout in the potassium release profiles. This was 

because the potassium release rate was too high to identify between the two stages. 
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However, it was possible to conclude from the video footage by crudely assuming 

there was a single point when combustion switches from volatile to char combustion. 

The results from the high heating rate experiments and the low heating rate 

experiments drew the same conclusions.  

 Stove combustion studies showed that there is a significant impact of the fuel 

physical properties on the emissions. Large bracken briquettes burned poorly and 

emitted higher amounts of CO and TOC because of reduced temperatures and gaseous 

mixing. NOx emissions fitted the trend with fuel nitrogen content previously explored 

earlier in this work and by Mitchell et al. [2016]. However, flaws in the SDFGV 

method results in the NOx data being slightly skewed by not accounting for the mass 

of fuel combusted. SO2 emissions in the cases of the bracken, miscanthus, wheat straw 

and barley straw only represented 40% of the S within the fuel. Increased SO2 

emissions were the result of increased fuel-S content and all SO2 emissions were from 

the thermal decomposition of organically bound S during devolatilisation. Previous 

work has examined many correlations between different fuel properties and the 

emissions of total PM (PMt). The results from the bracken were inconclusive when 

correlated against the volatile matter content suggesting that the bracken could be 

classified neither as a woody biomass or an agricultural residue. A better correlation 

was found with the fuel C/O content ratio. This produced a linear relationship whereby 

above a C/O ratio of 1 soot formation will occur. Finally, the relationship between the 

soot formation and potassium content, based on the bracken, barley straw, wheat straw 

and wood briquettes, was linear with an R2 of 0.7388. Thereby suggesting increased 

fuel-K content will result in higher PMt emissions, however it is not possible to 

determine if this impact increases the formation of soot or fly ash.  



219 

 

Chapter 7. Washing and Torrefaction of SRC Willow grown 

on Contaminated Land for Combustion Applications 

 

7.1 Introduction 

 As fossil fuel resources reduce, and renewables increase, energy security 

becomes more of a concern. Global efforts to ensure society’s needs requires use of 

alternative fuels. Biomass is one of the key alternative fuels available. Solid biomass 

has the advantage of being easily implemented into the existing technology currently 

used for coal. Power stations can now co-fire coal with biomass or with higher capital 

investment and time convert to sole biomass usage.  

Ash related problems are ubiquitous to solid fuels. Slagging and fouling 

historically have been the largest contributors to power station shutdown [Skrifvars et 

al., 1999]. In addition, ash causes particulate emissions which are of current concern 

because of the damage they cause to human health [Dilger et al., 2016].  

In nature, biomass type and composition vary considerably since biomass 

properties are subject to its surrounding environment. Energy crop growth is forming 

a larger part of national economies, however more recent projects have focused on the 

importance of preserving agricultural land for food production [Harvey and Pilgrim, 

2011]. This has created a conundrum within society of land for food or energy.  

A solution to this problem is to grow energy crops on contaminated land 

unsuitable for food production. Under BS EN ISO 17225-4:2020 crops grown in 

contaminated conditions [British Standards, 2020] must undergo further testing to 

analyse whether they are acceptable for use as solid fuels. If they fall outside the limits 

expressed in the British standards shown in Table 7.1, then they cannot be used in 

conventional systems and are deemed as waste.  

 Phytoremediation is a key part of the strategy to reduce metal pollution. Metals 

and metalloids quickly bioaccumulate in soils and water body’s which cannot be 

effectively removed using anthropogenic techniques. Vamerali, Bandiera and Mosca 

[2010] collated data which showed that certain plant species, which can be defined as 

hyperaccumulators (i.e Brassica juncea L., and Helianthus annus L.), can remove over 

1000 mg of Zn and Pb, over 500 mg of Cu and 200 mg As per kg-1 of harvested crop. 
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Experiments involving fast growing crops such as miscanthus and salix (willow) have 

also shown promising phytoextraction properties [Barbosa et al., 2015] 

[Korzeniowska and Stanislawska-Glubiak, 2019]. Utilisation of these crops would 

enhance both the reconditioning of the soil and the economic feasibility of the process.  

The impacts of washing and torrefaction to upgrade biomass grown in 

contaminated conditions is less extensively studied. Using these pre-treatment 

methods this Chapter analyses the impacts they have on biomass focusing on the 

removal of metals and other inorganics. This concludes by using mass balances to 

demonstrate how ash elements are removed through pre-treatment and also their fate 

during combustion.  

Table 7.1: Limits for SRC willow that is suspected to be grown on contaminated 

land, also applicable to any contaminated chipped fuel [British Standards. 2020].  

Property Limit Units 

Nitrogen, N (ISO 16948) N1.0 ≤ 1,0 w-% dry 

Sulphur, S (ISO 16994) S0.1 ≤ 0,1 w-% dry 

Chlorine, Cl (ISO 16994) Cl0.05 ≤ 0,05 w-% dry 

Arsenic, As (ISO 16968) ≤ 1 mg/kg dry 

Cadmium, Cd (ISO 16968) ≤ 2,0 mg/kg dry 

Chromium, Cr (ISO 16968) ≤ 10 mg/kg dry 

Copper, Cu (ISO 16968) ≤ 10 mg/kg dry 

Lead, Pb (ISO 16968) ≤ 10 mg/kg dry 

Mercury, Hg (ISO 16968) ≤ 0,1 mg/kg dry 

Nickel, Ni (ISO 16968) ≤ 10 mg/kg dry 

Zinc, Zn (ISO 16968) ≤ 100 mg/kg dry 
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Figure 7.1: Work flow diagram 



222 

 

7.2 Materials and Experimental Methods  

7.2.1 Sample Preparation 

 Samples were prepared according to methods specified in Chapter 3.  

7.2.2 Experimental Methods 

  The overall experiment design is shown in Fig. 7.1. Initially the willow chip 

supplied from Rothamsted was dried in a drying oven as specified in section 3.3.1. A 

kilogram of sample was sent to SOCOTEC (S) for metals and inorganic analysis. 

Proximate and ultimate analysis was done in accordance with British Standards at the 

University of Leeds (UoL).  

A fraction of the willow chip was washed according to the process in section 

3.6.2. Once washed, the product was split into three sections the washed willow chip, 

the leachate and the fine materials. The washing process was repeated eight times and 

the washed willow chip and fines from all of the batches was combined. The leachate 

refers to the liquid phase after separation. The fines are the small solid particles which 

can be removed through simple filtration. An example of each of these factions can be 

seen in Fig. 3.26.  

Some of the bulk washed willow (1.2kg) was torrefied under the same 

conditions as the raw torrefied material, details are in section 3.6.1. This was so that a 

comparison of the impacts of washing on pyrolysis could be deduced and assess the 

product quality of washed and torrefied fuel. Composition analysis was investigated 

as shown in Table 3.6. 

 Combustion analysis was conducted for briquettes on the domestic stove using 

the method specified in section 3.5.5. Some alterations to the method were made and 

these were: 

• Three batches of fuel were combusted, one ignition batch and two reload 

batches. The ignition batch data is displayed but was not used in the calculation 

of emission factors.  

• Each batch of fuel was approximately 0.9kg in mass (±40g). Since only 

briquettes were used with no binder the reproducibility and reliability of the 

results improved.  
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• The ignition batch was started using a butane torch. This prevented minimal 

contamination of the bottom ash.  

• Each run was continued until 0.2kg of batch mass remained. At this point all 

the flames had been extinguished, the fuel was no longer glowing and the 

burning rate was consistently zero.  

• The ash was collected and sent to SOCOTEC for composition analysis.  

• Particulate measurements were conducted using only the Dekati Impactors 

with glass fibre filter papers. Emission factors were calculated using this data 

and the filter papers were analysed using SEM-EDX at the University of Leeds.  

7.2.3 Experimental Materials 

 The SRC willow was grown on land at the Renishaw Colliery, near 

Chesterfield in Derbyshire (Fig. D.1). The mine opened in 1860 and ceased operations 

in 1989. The crop was grown on the open cast mine site which was heavily 

contaminated in Zn (137.8 mg kg-1), Pb (100.5 mg kg-1), Cu (39.8 mg kg-1), Ni (31.8 

mg kg-1) and Cr (36.5 mg kg-1). This was more than three times the concentration than 

found in local agricultural soil for all the metals with the exception of Cr which was 

double the concentration. Concerningly, these concentrations, except for Zn, were 

similar to those measured in the average urban soil across the UK found in the 

Environment Agency’s UK soil and herbage pollutant survey [2007] (Table D.1).  The 

Zn concentration was 44.9% higher than the average measured in urban soil (95.1 mg 

kg-1).  It is evident that the historical activity of the site means the land is unsuitable 

for growing food, grazing or development without a large investment to remediate the 

land. The SRC willow was harvested in 2017 after a three-year growth cycle.  

 

7.3 Results and Discussion 

 Analysis of the biomass before pre-treatment (raw) and after various treatment 

methods is shown in the following sections. The initial focus is on composition and 

the latter sections compare the combustion properties. Stove combustion of the 

torrefied fuels was not possible because of briquetting difficulties.  

7.3.1 Biomass Composition 

Table 7.2 shows the elemental analysis of the willow chip before and after pre-

treatment.  
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Table 7.2: Chemical composition of Raw Willow chip (RW), Washed Willow chip 

(WW), Torrefied Raw Willow chip (TRW) and Torrefied Washed Willow chip 

(TWW). Error is in parenthesis.  

    Raw Willow  Washed 

Willow 

Torrefied 

Raw 

Willow 

Torrefied 

Washed 

Willow 

w
t%

 

Moisture (ar) 3.35 (±0.8) 4.86 (±0.9) 1.7 (±0.4) 1.9 (±0.4) 

Volatiles (daf) 85.8 (±2.4) 84.15 (±1.2) 69.23 (±0.9) 71.2 (±0.7) 

Fixed Carbona (daf) 14.2  15.9 30.72  28.9  

Carbon 47.6 (±0.25) 49.1 (±0.15) 59.7 (±0.1) 57.0 (±0.1) 

Hydrogen 6.02 (±0.05) 6.14 (±0.03) 5.83 (±0.03) 5.53 (±0.02) 

Nitrogen 0.69 (±0.08) 0.40 (±0.07) 0.53 (±0.04) 0.51 (±0.03) 

Sulphur 0.06  0.00 0.00  0.00 

Oxygena 45.7  44.4  33.9  36.9  

Chlorine n/d n/d n/d n/d 

Ash (db) 1.8 (±0.3) 1.32 (±0.15) 2.39 (±0.4) 1.77 (±0.1) 

m
g

/k
g

 (
d

b
) 

Antimony * 1.6 (±0.05) 2.7 1.1 

Arsenic * * 0.5 0.4 

Barium 6.9 (±0.2) 6.1 (±0.1) 54.4 24.3 

Beryllium n/d n/d n/d n/d 

Cadmium 1.3 (±0.05) 1.2 (±0.05) 2.1 1.9 

Chromium 0.8 (±0.1) 0.6 (±0.05) 2.6 0.8 

Cobalt 0.5 (±0.0) 0.1 (±0.0) 1.1 0.6 

Copper 6.1 (±0.25) 4.3 (±0.15) 21.7 11.8 

Lead 3.1 (±0.15) 1.2 (±0.0) 9.9 3.9 

Strontium 8.7 (±0.25) 8.1 (±0.1) 14.2 13.1 

Manganese 22 (±0.6) 18.3 (±0.2) 27.8 23.5 

Mercury * * * * 

Molybdenum * * 0.6 * 

Nickel 1.3 (±0.15) 1.4 (±0.1) 6.5 3 

Tin * * 1.1 * 

Vanadium * * 3.6 1.3 

Zinc 98.5 (±3.5) 105.8 (±1.5) 207.7 154.4 

Silicon 2300 (±250) 1800 (±100) 3000 2300 

Aluminium 38 (±3.5) 35 (±1.5) 139 84 

Iron 44 (±1.0) 46 (±1.0) 401 124 

Titanium 11 (±0.0) 8 (±0.5) 43 32 

Calcium 4098 (±350) 3137 (±150) 5381 4238 

Magnesium 310 (±4.5) 295 (±2.0) 562 416 

Sodium 40 (±1.5) 35 (±0.5) 248 38 

Potassium 2480 (±300) 1797 (±50) 3036 2351 

Phosphorus 1029 (±100) 801 (±25) 1179 989 

Sulphur 425 (±15) 238 (±15) 526 333 

d
a

f 

HHV (MJ/kg) 18.9 19.5 24.1 22.7 

Mass Yield, Ym (%) n/a n/a 71.7 80.4 

Energy Yield, Ye (%) n/a n/a 91.4 93.6 

n/d- none detected, n/a- not applicable, *- below the instrument detection limit, acalculated by 

difference. 
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Four fuels are listed- raw, washed, torrefied raw and torrefied washed. The 

values in the parenthesis are error margins based on the standard deviation. Errors for 

the proximate and ultimate analysis are based on three measurements, the metals 

analysis for the raw and washed willow are based on two measurements. Only a single 

measurement was made for the metal’s analysis of the torrefied fuels. Looking at the 

raw willow data, although none of the species exceed the limits specified within Table 

7.1, Zn, Cu and Cd are the closest to exceeding their limits. No chlorine was detected 

in the raw willow chip. 

After washing all of the detected metals in the raw fuel reduce in concentration 

with the exception of Ni and Zn, the latter exceeding the limit (100 mg kg-1) specified 

in Table 7.1. In the case of antimony (Sb) the concentration is only measurable after 

washing. Additionally, the variability after pre-treatment for both washing and 

torrefaction decreases. In the cases Si, Al, Ca, K and P the variability in the raw willow 

measurements is approximately 10%, whereas after washing this variability reduces 

in all of the species to ≤5%. 

As seen in previous research [Akinrinola, 2014] [Vassilev et al., 2017], 

torrefaction causes metals to become concentrated in the biomass, and this is seen in 

Table 7.2. The values for all the metals and inorganics are highest in the torrefied 

willow chip. In the cases of Cd, Cu, Pb and Zn the concentrations exceed the limits in 

Table 7.1. However, since the fuel has now been thermally treated British Standard 

17225-8:2016 [British Standards, 2016] would now apply. Based on the values in 

Table 7.3 from British Standard 17225-8:2016 for a TW3H category fuel (thermally 

treated woody biomass with a net calorific value ≥21.0 MJ kg-1 on a dry basis) all of 

the same elements would exceed the limits making it unsuitable for combustion.  

In the washed and torrefied willow chip the concentration of all the metals are 

lower than in the torrefied willow chip. In the cases of Cd, Cu and Pb the concentration 

decreases significantly, enough to be below the limits specified Table 7.3 and for Cd 

and Pb below the limits in Table 7.1. Although there is a 25.7% decrease in the 

concentration of Zn it is not sufficient to be below the limits specified in Tables 7.1 or 

7.3.  
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Table 7.3: Limits for a TW3H fuel that can be briquetted and is thermally 

treated. Limits can be applied to the torrefied fuels in Table 7.2.  

Property Limit Units 

Chlorine, Cl (ISO 16994) Cl0.1 ≤ 0,1 w-% dry 

Arsenic, As (ISO 16968) ≤ 2 mg/kg dry 

Cadmium, Cd (ISO 16968) ≤ 2 mg/kg dry 

Chromium, Cr (ISO 16968) ≤ 15 mg/kg dry 

Copper, Cu (ISO 16968) ≤ 20 mg/kg dry 

Lead, Pb (ISO 16968) ≤ 10 mg/kg dry 

Mercury, Hg (ISO 16968) ≤ 0,1 mg/kg dry 

Nickel, Ni (ISO 16968) ≤ 10 mg/kg dry 

Zinc, Zn (ISO 16968) ≤ 100 mg/kg dry 

 

 Table 7.4 summarises the trends in Table 7.2 for specific species. In the case 

of volatiles although washing can remove some volatiles the majority are removed by 

torrefaction. However, once the willow chip has been washed, there is a lower extent 

of devolatilisation in the torrefaction process increasing the mass (Ym) and energy (Ye) 

yields as shown in Table 7.2. Past research [Takeshita and Kenji, 2002] [Trubetskaya 

et al., 2018] has shown that the concentration of potassium can greatly influence the 

rate of pyrolysis and thus the extent of torrefaction, however this is discussed in more 

detail in section 7.3.5.  

For C, FC, Ni, Zn and Fe the losses during washing are outweighed by the total 

mass loss, this results in them being concentrated in the WW. The extent of 

torrefaction is much higher for the RW than for the WW and thus these species are 

less concentrated in the TWW than the TRW.   

 For the ash, K, P and S, washing substantially reduces their concentration and 

any concentration of these species during torrefaction is offset by the losses made by 

washing. For Si and Cr, the impact of washing and torrefaction is equal resulting in 

the TWW having the same composition as the RW. The majority of elements follow 

the trend of having a loss during washing but then the impact of torrefaction is much 

greater concentrating them to more than in the raw willow chip. Overall, from the 

trends in Table 7.4 it is evident that washing before torrefaction mitigates any impact 
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of ash/inorganic species concentration of the willow chip composition that would 

otherwise normally occur in torrefaction. 

Table 7.4: Ranking of fuels from Table 7.2 for individual elements. 

Component (Element) Ranking 

C, FC, Ni, Zn & Fe TRW>TWW>WW>RW 

Cd, Cu, Pb, Al, Ti, Ca, Mg & Na TRW>TWW>RW>WW 

Ash, K, P & S TRW>RW>TWW>WW 

Si & Cr TRW>RW=TWW>WW 

Volatiles RW>WW>TWW>TRW 

*Raw Willow chip (RW), Washed Willow chip (WW), Torrefied Raw Willow chip (TRW) and Torrefied 

Washed Willow chip (TWW). 

7.3.2 Fine Material Analysis 

 In order to perform an acid digestion to analyse the composition of the fine 

material removed, the fine material collected from all of the eight washing batches had 

to be combined. This was then ashed and digested at the University of Leeds using the 

method in section 3.3.4.1. The sample was analysed using ICP-MS (section 3.4.5) and 

only specific elements were analysed (K, Ca, P, S, Si, Mg, Zn, Na, Fe, Al, Cu and Cd). 

This was done to try to improve the accuracy of the quantitative result by reducing the 

potential for interference for analysing multiple elements.  

  Table 7.5 shows the composition of the fines, all values are on a dry basis. 

The values for the volatiles and ultimate results are similar to a typical woody biomass 

[Vassilev et al., 2017] and show a strong resemblance to the values for the raw willow 

in Table 7.2. The main difference is the value for the ash which is 8.3 times greater 

than in the raw willow and 3 times greater than in a typical woody biomass [Vassilev 

et al., 2017].   

 The composition of the ash is largely made up of Ca. The nature and structure 

of this Ca was not the focus of this work however based on the work of Zárubová et 

al. [2015] and Sugier and Sugier [2018] Ca is in higher concentrations in willow bark 

and soil than typically found in willow stems and branches. Based on this and Fig. 

3.26 which shows a photograph of the fines collected from the willow washing in this 

work, the collected material is a combination of willow bark and soil (entrained from 

harvesting).  
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Table 7.5: Composition of collected fine material from washing using ICP-MS. 

 Average 
Standard 

Deviation 
Error (%) 

W
t.

 %
 (

d
b

) Ash 19.6 0.48 2.4 

Volatiles 60.5 0.99 1.6 

C 47 1.87 4.0 

H 6 0.49 8.2 

N 1.2 0.13 10.8 

m
g

 g
-1

 o
f 

fi
n

e 
m

a
te

ri
a
l 

(d
b

) 

Ca 212 2.49 2.2 

K 0.3 0.11 38.0 

P 1.1 0.23 21.2 

S 22 6.74 30.7 

Mg 1.22 0.09 7.6 

Si 4.04 0.46 11.3 

Zn 0.07 0.01 4.6 

Fe 1.63 0.08 5.0 

Na 0.05 n/a n/a 

Al 1.43 0.06 4.2 

Cu 0.83 0.03 3.3 

Pb 0.68 0.01 1.4 

Cd 0.031 0.001 4.7 

 

Comparing the components in Table 7.5 relative to the raw biomass: Mg, Si, 

Fe, Al, Cu, Pb and Cd are measured in more significant concentrations. These elements 

are often found in higher concentration in bark and soil comparative to willow stems, 

similar to Ca [Zárubová et al., 2015] [Sugier and Sugier, 2018]. Analysis of the soil, 

Table D.1, shows that the soil was heavily contaminated in Zn. Based on this 

information it could be assumed that the removed Zn in the fines is all from soil 

residue.  

7.3.3 Leachate Analysis 

The leachate analysis results have been combined in Table 7.6 as concentration 

in the leachate. Amounts removed from the fuel are discussed later in section 7.3.4. 

The value shown is the average of eight separate leachates from eight separate washing 

experiments. The pH of the distilled water acidifies during washing, Fig. 7.2, as seen 

in previous research [Deng et al., 2013] [Carillo, Staggenborg and Piñeda, 2014] [Yu 

et al., 2014] [Liu et al., 2015] [Tonn et al., 2012]. Fluoride, nitrate, sulphate, chloride, 

calcium, potassium, magnesium, manganese, iron, nickel, copper and lead 

concentrations all have a standard deviation within 20%. This suggests that the data is 

reproducible.  



229 

 

It is clear from Fig. 7.2, that the water used as a washing medium became 

acidic over the washing process. This result was also seen in Liaw and Wu [2013] 

where further investigation showed that leaching of organic acids such as acetate, 

oxalate and formate had influenced the leaching of alkaline earth metals that were 

insoluble in water but soluble in acid. From Table 7.6 acetate accounts for over 10% 

of the organic carbon leached and over 25% of the K and Ca is leached through 

washing. This is an analogous observation to Liaw and Wu [2013]. 

The high amounts of leached K are common in past research [Liaw and Wu, 

2013] [ Liu et al., 2015] [Runge, Wipperfurth and Zhang, 2013] and it is usually 

accompanied by high amounts of Na leaching, the common factor being that these are 

monovalent cations. Divalent ions, alkaline metals, such as Ca and Mg are harder to 

leach and usually require more acidic solutions to dissolve them [Werkelin et al., 

2010]. It is interesting that Ca leaching has been so effective in this work by the use 

of deionised water. Based on results from Werkelin et al. [ 2010] for water leaching 

from a variety of biomass, a ratio of 1:1 for Ca2+ to C2O4
2- (oxalate) is measured 

implying that calcium oxalate (CaC2O4) minerals can be readily dissolved in water. 

This could explain the result seen in this work but further analysis of the water acids 

would be required to confirm this. 

For the trace metals measured in Table 7.6, Zn leaching is the most effective 

followed by Cu and Cd. This is the same result as Šyc et al. [2012] and Břendová et 

al. [2018] in terms of both these three trace metals being leached the most and in that 

order. The influence of pH, on leaching of these metals as well as Pb, Ni and Al, is 

disputed amongst current research, as well as the influence of particle size, 

temperature, mechanical constraints, drying and storage time [Břendová et al., 2018] 

[Pecorini et al., 2017] [Stals et al., 2010] [Zhao et al., 2017] [Ghosh and Singh, 2005]. 

Using the data in this work it is evident that with a small, self-induced, change in pH 

to make a very weak acid solution, at room temperature and with a small mechanical 

input, leaching of these metals from willow chip (≤30mm) will occur. 
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Table 7.6: Leachate analysis.  

 Average 
Standard 

Deviation 
Limits Reference 

pH 5.18 0.05 6.5-8.5 EPA 
m

g
 L

-1
 

Fluoride 148 7.04 *4 mg L-1 WHO [2017] 

Acetate 220 59.44 -  

Nitrate 90 10.18 *10 mg L-1 WHO [2017] 

Phosphate 230 31.02 0.1 mg L-1 
Water Research 

Centre [No Date] 

Sulphate 74 5.30 *250 mg L-1 WHO [2017] 

Chloride 55 3.54 *250 mg L-1 WHO [2017] 

Sodium 10 2.50 *60 mg L-1 EPA [2018] 

Calcium 600 46.02 

Soft 0-60  

Medium 61-120  

Hard 120-179  

Very Hard ≥180 

DEFRA [2014] 

Ammonium 4.0 0.42 *12 mg L-1 WHO [2017] 

Potassium 700 39.61 411 mg L-1 WHO [2017] 

Magnesium 43 3.08 20-30 mg L-1 DEFRA [2014] 

Total Carbon 1600 268.88 

N/A Inorganic Carbon 10 13.56 

Organic Carbon 1600 266.76 

μ
g

 L
-1

 

Aluminium 38 9.35 200 EPA [2018] 

Chromium 1.0 1.14 *50 WHO [2017] 

Manganese 13 2.02 *50 WHO [2017] 

Iron 35 5.95 *300 WHO [2017] 

Nickel 7.0 1.23 100 EPA [2018] 

Copper 490 86.14 *1300 WHO [2017] 

Arsenic 12 5.63 *10 WHO [2017] 

Selenium 26 6.59 *50 WHO [2017] 

Cadmium 110 23.90 *5 WHO [2017] 

Antimony 3.4 0.91 *6 WHO [2017] 

Mercury 0.01 0.023 *2 WHO [2017] 

Lead 18 3.18 *15 WHO [2017] 

Zinc 11 000 6.78 *5000 WHO [2017] 

*These limits relate to drinking water standards  
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Figure 7.2: pH and temperature over the washing time period.   

  

 Although Cl analysis in the fuel was below the detection limit, in the leachate 

a significant amount of chloride is detected (no chloride was detected in the control 

water sample). The chlorine in the leachate amounts to 0.04 wt.% in the fuel. Based 

on previous work, chlorine is readily leached from biomass due to its high solubility 

[Saddawi et al., 2012]. Therefore, it can be assumed that 100% of the Cl is removed 

from washing.    

 Table 7.6 shows limits that have been imposed on water systems by various 

international and national bodies. In most of these cases, they relate to tap water 

(drinking water) which has to be treated to prevent infection and disease. It is evident 

that the water collected after washing (leachate) is not suitable for discharge. In the 

cases or Ar, Cd, Pb and Zn discharge of these concentrations would cause 

bioaccumulation in the ecosystem and be toxic without treatment [Khan et al., 2019]. 

The phosphate concentration is significantly higher than the recommended; this result 

will cause accelerated eutrophication [Water Research Centre, No Date]. Water 

treatment would be required before discharging this leachate.   
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7.3.4 Mass Balances  

 

Figure 7.3: Model for washing experiments conducted in this work  

 

 

Figure 7.4: Washing outputs based on 1kg of willow and 2kg of water input 
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In order to understand how effective washing is at removing individual species, 

mass balances were used to analyse how removal occurs. In order to do this an overall 

mass balance had to be determined first using data in Table D.2. Fig. 7.3 shows the 

model for the washing process used in the experiments in this chapter; developed from 

experimental data in Table D.2, any value can be determined as long as the mass of 

willow input (at 14 wt.% moisture content) and the mass of water is known (kept fixed 

at a ratio of 1:2 by mass willow chip to water). The model is within 10% of the 

measured values in Table D.2 with the exception of the fines which is within 30%. 

This model only applies to the total mass, not the mass of individual species. Fig. 7.4 

shows the predicted outputs based on a 1kg input of willow chip and a 2kg input of 

water. Using these predicted outputs, mass balances for specific elements can be 

calculated, Fig. 7.5a-l.    

Using Fig. 7.5, elements can be split into three categories:  

• Removed by leaching: K, P, Zn and Na 

• Removed through fine material filtration: Si, Al and Pb 

• Removed by both mechanisms: Ca, S, Mg, Cu and Cd 

Losses refers to how much material is unaccounted for. How elements are removed is 

a direct indication of the structures in which they are present in the biomass [Werkelin 

et al., 2010].  

Previous work using chemical fractionation and washing pre-treatments have 

shown that K, P and Na are easily removed by simple water washing because these 

are present in water soluble forms [Wang et al., 2020] [Schmidt et al., 2020] [Bandara, 

Gamage and Gunarathne, 2020] [Wang and Xiong, 2020] [Wigley, Yip and Pang, 

2015] [Zhang et al., 2018]. However, looking at Fig. 7.6 the removal efficiency is 

much lower than shown in previous work. For example, the potassium removal 

efficiency in this work was 42% compared to Wang and Xiong [2020] which measured 

an efficiency of 58%, Carillo, Staggenborg and Pineda [2014] measured 62%, Yu et 

al. [2014] 66% and Abelha et al. [2018] between 50-80%. In all of the aforementioned 

works the ratio of biomass to water was five times the ratio used in this work, this has 

a substantial impact on the removal efficiency along with particle size, water 

temperature and washing time [Bandara, Gamage and Gunarathne, 2020].  
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Figure 7.5: Elemental mass balances for washing process based on a 1kg willow 

input feed (a) calcium (b)potassium (c) phosphorus (d) sulphur (e) magnesium (f) 

silicon. Refer to Fig. 7.4 for details.  
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Figure 7.5 cont.: Elemental mass balances for washing process based on a 1kg 

willow input feed (g) zinc (h) sodium (i) aluminium (j) copper (k) lead (l) 

cadmium. Refer to Fig. 7.4 for details. 
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Zn is often measured in past research [Schmidt et al., 2020] [Wigley et al., 

2015] however it is usually in much smaller quantities compared to the willow chip 

used in this work. In Wigley et al. [2015] 11% of the Zn is removed from pine wood 

chips using deionised water however when washed in 1% HCl the removal efficiency 

increases to 88%. It is evident that increases in acidity improve Zn leaching and this 

is also the case in Nazif et al. [2015] and Amrani, Westfall and Peterson [1999] which 

showed that the solubility of Zn salts such as sulphate, acetate and chloride increase 

when the pH decreases to 4-5.5. Based on Fig. 7.2, as the washing process progresses 

the leachate acidifies, from the removal of organic acids, this subsequently results in 

more Zn salts being dissolved. Based on Fig. 7.5 and 7.6, Zn shows a low removal 

efficiency, 14%, this is also common with Fe, 16%, and Ni, 14%. However, based on 

Table 7.2, the concentration of these three elements increases in the washed willow 

compared to the untreated. This implies that there is a threshold elemental removal 

efficiency, between 16% (Fe) and 24% (Mg), where below this threshold elements 

will appear to be concentrated after washing.    

 Si, Al and Pb were all removed in significant quantities, removal efficiencies 

of 37%, 26% and 69% respectively, with Pb having the greatest removal efficiency of 

all the elements analysed. Unlike the previously discussed elements, these elements 

were measured in the analysis of collected fine material filtered from the leachate. Si 

removal from washing biomass has been analysed in previous work with the general 

conclusion that there is no removal of Si compounds from biomass leaching due to its 

lack of solubility in water [Wang et al., 2020] [Wang and Xiong, 2020] but a small 

amount can be removed by acid washing [Bandara, Gamage and Gunarathne, 2020] 

[Saddawi et al., 2012]. Temperature increases have been shown to improve Si removal 

efficiency [Deng et al., 2013] however the removal mechanism is from leaching of 

amorphous silica and is dependent on how tightly bonded the silica is to the biomass 

matrix. The substantial presence of Si in the collected fine material in this work implies 

that this is the result of the removal of soil and dirt particles from harvesting. This is 

the same for Al and Pb where no material is detected in the leachate. In Schmidt et al. 

[2020] analysis of the leachate from beech, oak and fir washing showed the same result 

where minimal leaching of Al had occurred. However, for willow chips washed in 

water in Břendová et al. [2018] the Pb concentration in the leachate was significant, 

0.63 mg L-1, suggesting that Pb leaching can be the dominant removal mechanism. In 
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the case of this work, Pb concentration in the original biomass was very low and would 

have been present as either PbO, PbCO3 or PbSO4 [Cao et al, 2008] [Guo et al., 2019]. 

Any leached Pb would have readily been reacted with excess P to form pyromorphite 

[Cao et al., 2002], of which a small amount of P was detected in the fines, and bonded 

with clay or silt particles [Shen et al., 2017].      

 Removal of Ca from biomass washing is highly variable. Results from Yu et 

al. [2014], Deng et al. [2013], Wang et al. [2020] and Bandara et al. [2020] all showed 

the Ca content increased in the biomass after washing. In contrast, Wang and Xiong 

[2020] (22%), Wigley et al. [2015] (14.3%) and Zhang et al. [2018] (50%) showed Ca 

reductions after washing. Saddawi et al. [2012] measured a 3% removal efficiency 

based on the leachate analysis after filtration for willow washed in deionised water for 

20h with agitation. The removal efficiency in this work for Ca was 39%, however this 

was split between leaching (19.8%) and insoluble fine material (19%). Wang et al. 

[2020] showed that the insoluble fraction of Ca increased in the fuel when it is washed 

using chemical fractionation. However, the nature of this insoluble Ca is unknown.  It 

should be noted that wood bark is typically very high in Ca and could be forming part 

of the fine material. With refined filtration, as in this work, this insoluble Ca could 

potentially be removed.  

S is present in many forms within biomass, this includes organic compounds 

and inorganic salts [Williams et al., 2012]. Removal of S by leaching has been shown 

to be highly efficient in water. Deng et al. [2013] showed removal efficiencies of up 

to 90%, mainly in straws, and a slightly lower result was seen for rice husks in Zhang 

et al. [2018], 75%. Both are much more efficient than in this work, 55%. Since S is 

in many various forms, some of these forms are water soluble whilst others rely on ion 

exchange reactions to leach from the biomass [Miller and Miller, 2007]. In Deng et al. 

[2013] when the water temperature increased, the S removal decreased because of 

increased ion competition in the leachate. An equilibrium between the fuel and 

leachate forms when the leachate is saturated. This phenomenon is also influenced by 

reduced ratios of biomass to water. This is most likely the effect being measured in 

this work and hence the removal efficiency of S (55%) is lower than compared to past 

work.  
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Mg removal as with Ca removal is highly variable, Wang et al. [2020] reported 

removal efficiencies of up to 80% for rice straw whilst Bandara et al. [2020] reported 

no removal in rice husks. In this work there is a small amount of Mg leaching, which 

makes up 75% of the removal mechanism, most likely from the acidification of the 

leachate as is the case with Ca- both elements being divalent ions.  

The removal efficiency of copper was the fourth highest of all elements 

(≈47%), this was removed mainly as fine material and a small amount of leaching. Cu 

uptake by plants has been studied extensively. Past research has shown that in 

particular Cu (II) in acidic conditions, pH 5, is adsorbed into the bark of biomass such 

as radiata pine [Palma, Freer and Baeza, 2003]. Radiata pine is another softwood like 

willow. Therefore, a reasonable explanation for the removal of Cu is through the 

removal of bark [Palma, Freer and Baeza, 2003]. Some leaching of Cu does occur but 

this could be from either the bark or the willow stem (wood) and cannot be determined 

from the data in this work.  

Cd removal from willow leaching has been measured previously by Břendová 

et al. [2018] with a removal efficiency of up to 39%, based on measurements of the 

leachate. This is a much larger leaching effect than seen in this work where the 

majority is removed by fine material. It must be noted that the willow in Břendová et 

al. [2018] was more contaminated in Cd, twenty times higher, than the willow used in 

this work. The excess Cd could be present in more water-soluble salts and explain the 

differences seen in the removal mechanisms.  

 

Figure 7.6: Removal efficiency of various elements. Cl has been assumed to be 100% 

based on its high solubility and initial concentration in the willow. Below 10% removal efficiency is 

within the experiment error.   
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When comparing results for the removal of ash in this work to other literature, 

washing is less effective than previously reported as shown in Table 7.7. In Yu et al. 

[2014] and Chin et al. [2015] between 48 and 85 wt.% of the ash is removed on a dry 

basis, compared to 28 wt.% in this work. This will be due to differences in the 

experimental methods and fuel types. Some of these differences are listed in Table 7.7, 

however other differences include the size of the washing instrument, the particle size 

and changes in pH.  

Table 7.7: Comparison of ash removal efficiencies  

 Biomass 

Ratio of 

Washing 

Medium 

to 

Sample 

Leaching 

Temperature 

Mechanical 

Action 

Wash 

Time 

(min) 

Ash 

Removal 

(%) 

This 

work 

SRC Willow 

(contaminated) 
2 

room 

drum 

rotation 
20 27 

Yu et al. 

[2014] 

Rice Straw 

variable impeller 

6 hours 

(stirred 

for 2 

minutes 

every 30 

minutes) 

85 

Wheat Straw 76 

Corn Stover 47 

Switchgrass 76 

Miscanthus 61 

Douglas Fir 60 

Chin et 

al. 

[2015] 

Acacia 

10 

stirring 

30 

minutes 

50 

Paraserianthes 

falcataria 
62 

Macaranga 48 

empty fruit 

bunch 
80 

olive palm 

biomass 
50 

Saddawi 

et al. 

[2012] 

Willow 60g to 1L 20 hours 6 

 

 

7.3.5 Stove Combustion  

Combustion of willow and washed willow briquettes made at the University 

of Leeds were combusted on a domestic stove. Batches of the same number of 

briquettes were uniformly loaded into the stove and the lighted using a butane torch. 

Emission factors were calculated over the reload batches and ash analysis was used to 

show the fate of metals during combustion. 

Fig. 7.7 shows the burning rate (a) and the temperature (b) profiles over the 

combustion runs; arrows indicate the reload points. As can be seen in Fig. 7.7 the 
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peaks formed from combustion of the washed willow are larger in magnitude this is 

more discernible for the third batch of fuel. The main peak width is slightly wider for 

the washed fuel however the overall characteristic batch burning time is shorter for 

the washed fuel, this results in a similar conversion efficiency (based on mass) for the 

two fuels (willow 79% and washed willow 76%). 

On Fig. 7.7b boxes highlight when the temperature plateaus, this is a key 

property as it represents a phase termed ‘pre-flaming smoulder.’ During this period 

after reloading fresh fuel devolatilisation occurs. However, after their release 

combustion does not occur because the gaseous mixture is not flammable, this is 

common in the combustion of wet and low calorific fuels, and is characterised by the 

production of plumes of grey smoke [Chen et al., 2010].  

Figure 7.7: Burning rate (a) and temperature (b) profiles for the combustion runs 

 

 

(a) 

(b) 
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As time progresses the fuel dries releasing less moisture and volatiles begin to 

heat up eventually sparking causing ignition and the fuel begins flaming. Fig. 7.8 

shows photos of how the combustion process progresses for the washed willow. 

Comparing this pre-smouldering phase for the willow and washed willow, the time it 

takes for the system to ignite is faster for the washed willow and also does not occur 

on the second reload batch. The reduced volatile and K content of the washed willow 

will increase the activation energy and ignition temperature/delay time (at isothermal 

heating) [Saddawi et al., 2012] [Chin et al., 2016]. Looking at Fig. 7.7(b) the 

temperature in the stove for the washed willow remains hotter so when the fuel is 

reloaded the fuel heats up faster, the reduced fuel ash content and increased HHV aids 

this. Additionally, from Fig. 7.7(a) the burning rate profile is smoother for the washed 

willow than the untreated willow, this will be from the increased homogeneity, see 

Table 7.2. A combination of these factors is most likely improving the flammability 

and combustion performance.    

Figure 7.8: Photos during combustion of washed willow showing (a) batch of fuel 

(b) ‘pre-flaming smoulder’ (c) spark ignition (d) flaming combustion (e) post-

flaming smoulder 
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During this period of pre-flaming smouldering, the emissions of CO2 sharply 

decrease, Fig. D.2, whilst the emissions of CO and THC spike as shown in Figs. D.3 

and D.4. The spike in CO emissions indicates that devolatilisation is occurring but 

conversion to CO2 is not feasible. There is no impact to NOx and SO2 emissions, Figs. 

D.5 and D.6, both peaks coincide with the peak for CO2 when the fuel starts flaming.   

 Table 7.8: Emission factors from the combustion of willow and washed willow, 

factors are for the reload batches. 

  Willow Washed Willow 
  Batch 1 Batch 2 Average Batch 1 Batch 2 Average 

Average 

Emission 

Factors 

(kg GJ-1) 

CO2 48 41 45 73 70 72 

CO 5.6 4.7 5.2 2.4 2.5 2.45 

THC 0.24 0.19 0.22 0.12 0.13 0.125 

NOx 0.05 0.053 0.052 0.064 0.065 0.065 

SO2 0.028 0.026 0.027 0.017 0.018 0.0175 

PM 0.12 0.063 

 

 Table 7.8 shows the emission factors over the reload batches and the average 

emission factor with the exception of the PM which is a single measurement calculated 

over a batch of fuel. Current published research on the impact of washing biomass on 

gaseous emissions is scarce and limited to emissions of CO, NOx and SO2. Table 7.8 

shows that CO2 emissions increase by 60% for the washed willow. The reasoning for 

this is most likely because of the increase in flue gas temperature caused by the 

increased calorific value of the fuel.  Since CO is an intermediate in the formation of 

CO2 after primary oxidation of volatile species from the fuel particle surface, it is often 

dependent on the relative emissions of volatile species (THC) and CO2. Emissions of 

CO are reduced by 50% for the washed willow compared to the willow, the same result 

is observed in Ravichandran and Corscadden [2014] for agricultural biomass and a 

similar reduction range (31-51%) is observed in Schmidt et al. [2018] for washed fir, 

oak and beech. Nishimura, Iwasaki and Horio [2009] suggest the result is from the 

reduced potassium and a slower rate of pyrolysis during the early stages of 

combustion. Leaching of K reduces the rate of gasification of cellulose and pyrolysis 

of saccharide polymers which reduces the concentration of CO and THC during the 

heating up and early devolatilisation/pyrolysis phases. Figs. D.3 and D.4 show that the 

CO and THC spikes are exacerbated during the pre-flaming smoulder period for both 

the washed and untreated willow, these represent the largest peaks in emissions of 
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both these species. The reduced period of pre-flaming smoulder for the washed willow 

fuel has a significant impact on the CO and THC emission factors.   

 From Table 7.8 the NOx emissions are 25% greater for the washed willow 

which is surprising since there is a reduction in the nitrogen content when the fuel is 

washed. In Ravichandran an Corscadden [2014] leaching of reed canary grass caused 

the fuel-N content to decrease by 33% however the NOx emissions also increased. 

Within the same work, leaching of barley, switchgrass and wheat all reduce the 

nitrogen content by up to 50% however the observed impact on the NOx emissions is 

minimal. Release of fuel-N can be through various mechanisms [Williams et al., 2012] 

and is dependent on surrounding concentrations of H, C and O, particle size, heating 

rate and the environment [Ren et al., 2010]. Reducing environments inhibit the 

formation of NOx from the reaction of NO with the char surface, Eq. 7.1 [Wang et al., 

2016]. Na is a catalyst of these reactions and is more effective at lower combustion 

temperatures (<700C) [Zhao et al., 2006]. Leaching of Na from washing is highly 

efficient and in previous work based on coal washing the same result is observed [Liu 

et al., 2005] [Yang et al., 2007] [Zhao et al., 2006] [Zhao et al., 2003]. This is most 

likely the reason for the observed increase in NOx emissions.  

𝑁𝑂 + 𝐶(𝑐ℎ𝑎𝑟) →  
1

2
𝑁2 + 𝐶𝑂   (7.1) 

Although the removal efficiency of S is high, 55%, emissions of SO2 are still 

dependent on the form in which the S is present and the Ca content of the fuel. From 

Table 7.8 the SO2 emissions decrease by 40% for the washed willow compared to 

the willow. S removal occurred from both removal of fine solid particles and through 

leaching, however the most important factor is the removal of organic S which is more 

reactive at lower temperatures. The reduction in SO2 is from the direct reduction in 

fuel-S content and within the removal a large removal of organic S. Ravichandran and 

Corscadden [2014] observed a different result when they combusted various washed 

and untreated agricultural residues, they observed a minimal decrease in the fuel-S 

content and an increase in the SO2 emissions, this result was explained to be from 

averaging spikes in SO2 during hotter combustion periods when the instrument could 

detect S. It is well known that S content in agricultural residues such as straws is higher 

than in woody biomass, and the Ca content, which can prevent SO2 emissions by 

reacting to encapsulate S in the char and ash, is lower [Vassilev et al., 2017]. 
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Ravichandran and Corscadden [2014] did not measure the fuel-Ca content and 

therefore no correlation can be made. However, this is most likely the reason for the 

difference in observed results.   

 

 

 Figure 7.9: Particle size distribution for (a) willow (b) washed willow 

 

The PM emissions were significantly reduced (50%) after washing. Fig. 7.9 

shows the particle size distribution for the discrete particle size categories measured 

by the Dekati impactors. The majority of the reduction is at the sub-1μm level with a 

small reduction in the 1-5m range. Since over 95% of PM emissions are from the 

sub-micron range from domestic stoves it is not surprising that this is where the 

difference is measured.   

Wang et al. [2020] observed the same result for torrefied and washed willow 

compared to torrefied willow, concluding that the observed difference is from the 

reduction in K. This is analogous with the results in this work. Nishimura, Iwasaki and 

Horio [2009] observed the same effect and showed that decreasing K2CO3 in a fuel 

increased the temperature range over which elemental and organic carbon is released 

and this means that the majority of PAH’s are formed at above 600C. This coincides 

with work from Ross et al. [2005], Jones et al. [2020] and Atiku et al. [2017] in that 

slower decomposition of cellulose prevents fuel rich ‘pocketing’ in the flue gas which 

can lead to soot formation from the development of PAH’s in flaming combustion. 
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However, K can also contribute to PM when it condenses from inorganic vapour, this 

is discussed more in the following section, 7.3.5.1.  

7.3.5.1 Particulate Composition 

Figure 7.10: Surface analysis using SEM-EDX of collected sub-micron 

particulates for (a) Ca (b) K and (c) Zn. Images on the left are from willow particulates and 

images on the right are from analysis of washed willow particulates.  

  

SEM-EDX analysis of collected PM was used to compare the composition 

before and after washing. Figs. 7.10a-c show the surface analysis for Ca, K and Zn for 

the willow and washed willow sub-micron PM. These elemental analyses are shown 

since all three elements were detected in the PM1. The surface analysis shows that in 

the cases of Ca and Zn, even though the concentration changes, the elements are still 

(a) 

(b) 

(c) 
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evenly distributed across the collected PM surface. A small amount of agglomeration 

can be seen by brighter spots on Figs. 7.10a and c. In contrast, the K surface analysis, 

Fig. 7.10b shows a large variation in the particle morphology with increased 

agglomeration in certain areas for the washed willow.  

Figure 7.11: Measured composition spectra for PM surface sites from washed 

willow combustion.  

 

EDX analysis was also used to estimate and compare the inorganic 

composition of the PM from untreated and washed willow combustion. Fig. 7.11 

shows an example of the measured spectra for an area of collected PM. This was 

performed on multiple sites across the filter surface. The measured spectra were 

normalised to account for C and O from soot and Si from the glass fibre filters and 

then averaged for all the measured sites- Table D.3. The estimated average is 

compared between the untreated and washed willow in Fig. 7.12.    
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 Figure 7.12: Average normalised inorganic PM composition. Estimation based 

on SEM-EDX analysis.   

 

 Based on Fig. 7.12 it is evident that certain ash species are not as prominent in 

the PM from combustion of the washed willow compared to the untreated willow. Ca 

is a low volatile metal that is stable in the ash, Fig. 2.7. Therefore, it is surprising that 

Ca is the most prominent inorganic species in the willow PM. Ca is present in the PM 

because of fine ash particles that fragment and are entrained into the flue gas 

coalescing/agglomerating with sticky soot and condensing volatile inorganics and 

metals. Once the willow is washed, 38.8% of the Ca is removed, Fig. 7.6. Based on 

the observation from Fig. 7.12, the Ca removed must be more involved in forming fine 

ash particles. Ca was removed from willow by both leaching and removal of fine 

material (dirt/bark) in even proportions, Fig. 7.5. Willow bark is typically very high 

in Ca [Vassilev et al., 2010] and it is therefore possible to speculate that the Ca 

removed is from bark and links to the formation of fine ash particles increasing the 

concentration of Ca in PM.  

     The concentration of Na is also less prominent in the washed willow PM. 

As a more volatile metal it is interesting that it is not detected in the PM. From Fig. 

7.6, 30% of the Na in the fuel is removed which suggests that the remaining Na in the 

fuel is in complex ash/silica structures and is retained in the ash during combustion, 

discussed in the following section. A similar conclusion can be deduced for P.  
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 In contrast to the aforementioned species, the concentration of Zn and K in the 

PM significantly increases for the combusted washed willow compared to the 

untreated. Zn and K are more volatile species which are expected to form in flyash 

from both entrained fine ash particles as well as volatile evaporation and 

condensation/sublimation. As seen in Table 7.2, the Zn concentration increases once 

the willow was washed (this was despite the detection of Zn in the leachate and fine 

material discussed in section 7.3.4). This could explain the observed increase in the 

PM. The K observation is more complex since K can form various volatile salts; KOH, 

KCl and K2SO4. Even though no Cl was detected in the fuel, it was evident from the 

leachate analysis, Table 7.6, that some was present in the original fuel. This Cl is 

present in the PM from the untreated willow but is almost completely removed in the 

washed willow PM. Had the Cl increased a correlation between the K and Cl would 

have explained the result. The only feasible change in the fuel composition, from Table 

7.2, that could have aided the increased formation of K in the PM would be the 

reduction of Si; reduced formation of K-(Ca)-silicate. However, it is important to 

remember that the PM emission factor and thus mass of PM collected is significantly 

lower from washed willow combustion (0.063 kg GJ-1) compared to the untreated 

(0.12 kg GJ-1)- Table 7.8. Therefore, the observed result could simply be the reduced 

concentration of other metals increases the proportion of K, i.e there was no change in 

the K volatility.         

 It should be noted that SEM-EDX is limited in its quantitative capabilities as 

shown by the error bars on Fig. 7.12. SEM-EDX is a very accurate technique at 

analysing surface elements however this analysis is for specific sites up to a maximum 

depth of 2m. This limits what can be deduced from this data to obvious comparisons. 

However, combing the observations of the SEM-EDX with combustion data and the 

bottom ash analysis, in the following section, aids the understanding of the fate of 

certain species during stove combustion.  

7.3.5.2 Bottom Ash Composition  

 Table 7.9 shows the bottom ash composition. For both the willow and washed 

willow, the inorganic composition is highest in Ca, followed by K, Si and P. This is 

the same observation as Schmitt and Kalschmitt [2013]. Based on Fig. 7.13, which is 

a mass balance on the stove system, any material not measured in the bottom ash can 

be assumed to be lost. Lost meaning the material has either been entrained in the flue 
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gas as fine ash particles or released from the fuel as volatile gases. From the 

composition of the bottom ash in Table 7.9 and the fuel composition in Table 7.2 the 

partitioning of specific ash species can be determined and thus their retention in the 

bottom ash, Table 7.10.  

Table 7.9: Bottom ash composition 

  

 

 

 

 

 

 

 

 

 

Figure 7.13: Stove Mass Balance  
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Arsenic 0.8 0.6 

Cadmium 7.2 5 

Chromium 35.1 14.2 

Cobalt 6.8 5.8 

Copper 203 195 

Lead 7 4 

Nickel 65.6 64.1 

Zinc 3700 3500 

Silicon 57000 58000 

Aluminium 900 660 

Iron 1600 1300 

Calcium 130000 170000 

Magnesium 13000 14000 

Sodium 1700 1100 

Potassium 91000 91000 

Phosphorus 36000 40000 

Sulphur 6300 6200 
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Table 7.10: Mass fractions for the retention of metal and inorganic species in the 

ash 

Element 
Willow 

Bottom Ash 

Washed Willow 

Bottom Ash 

Cadmium 0.19 0.08 

Chromium 1.00 0.44 

Cobalt 0.35 0.54 

Copper 0.85 0.85 

Lead 0.06 0.06 

Zinc 0.95 0.61 

Silicon 0.63 0.59 

Aluminium 0.60 0.35 

Iron 0.92 0.52 

Calcium 0.84 0.98 

Sodium 0.46 0.87 

Potassium 0.84 0.84 

Phosphorus 0.89 0.93 

Sulphur 0.43 0.47 

 

 From Table 7.10, the retention of Pb, K, P, S, Cu, and Si is mostly unaffected 

by washing the willow; a difference of 0.05 or less. K and Na are considered similar 

ash forming species, however the retention of Na in the bottom ash of the washed 

willow is significantly higher (0.41) than in the untreated. This observation is 

analogous with the results from the SEM-EDX analysis which saw a greater 

proportion of Na in the willow PM. This suggests that washing removes the more 

mobile and reactive Na which is then not released into the flue gas.  

 Zn is also a more mobile ash species however conversely to Na, there is a 

reduced retention of Zn in the washed willow bottom ash (0.339). This is also in 

agreement with the SEM-EDX results. Previous work by Zając, Szyszlak-Bargłowicz 

and Szczepanik [2019] analysed the impact of combustion temperature on the release 

of Zn from various biomass fuels. In all the fuels, including willow, the amount of Zn 

retained in the bottom ash was significantly reduced as the temperature increased, 

especially in the low temperature range (500-600C) [Zając, Szyszlak-Bargłowicz and 

Szczepanik, 2019]. From Fig. 7.7 the temperature profiles for the flue gas show that 

the washed willow releases more heat (peak temperature 640C) compared to the 

untreated willow (510C) and thus the observed result is mostly the effect of 
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temperature. The same result is seen for Cd, with a smaller magnitude, that is also 

observed in Zając, Szyszlak-Bargłowicz and Szczepanik [2019].  

 The Ca retention in the washed willow bottom ash was greater than the 

untreated willow. This was also analogous with the PM measurements.  As discussed 

in the preceding section because Ca is a stable element its release would be by 

fragmentation of fine ash particles being entrained into the flue gas. The data from 

Table 7.10 and Fig. 7.10 suggests that any Ca removed by washing is involved in the 

formation of fine ash particles.  

Conversely, Cr, Al and Fe, that are also stable metals, are retained significantly 

less in the bottom ash for the washed willow combustion compared to the untreated 

willow. This observation suggests that the washed willow forms more fine ash 

particles than the untreated willow and the fragmentation of these particles is 

increased. This could be linked to the increased combustion temperature inducing 

bigger temperature/pressure gradients increasing the rate of fragmentation. It could 

also be a result of changes in the microstructure of the willow chip after it is washed; 

a more porous structure. In both cases further work is needed to verify if these factors 

are influencing the retention of these stable metals in the bottom ash.   

 

7.4 Conclusions 

 Washing willow is a process used to target ash removal, in this work a 28% 

removal efficiency was achieved. The greatest removal efficiencies of inorganic 

species were Pb (69%), S (55%), Cu (47.5%), K (42%) and Ca (38.8%). The general 

trend was that the removal efficiencies measured in this work were lower than those 

reported previously. This was from differences in the washing process, most notably 

the washing time, the use of acids and the process temperature. The lowest removal 

efficiencies were measured for Fe (16.4%), Zn (14.1%) and Ni (13.8%).  

Removal from washing can be categorised into three groups: (i) removal by 

leaching (elements K, P, Zn and Na), (ii) by rinsing off debris (Si, Al and Pb) or (iii) 

a combination of both mechanisms. During washing the leachate acidifies because of 

the release of organic acids and the pH changes from 6.0-5.3. This increases the ability 

of elements such as Ca and Mg to leach; they are more difficult to leach because they 

are divalent ions. Ca removal by leaching (600 mg L-1) is more effective in this work 
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compared to previously reported data from Werkelin et al. [2010]. This could be 

because more Ca in this work is present as CaC2O4, calcium oxalate, which is more 

soluble in water. However, more work would be required to confirm this.    

The majority of past research has not considered the impact of removing debris 

by effective filtration. However, Gudka et al. [2016] showed that removal of debris, 

such as soil trapped in the biomass from harvesting, can result in large decreases in 

certain trace metals. Debris was collected from filtration and termed fine material in 

this work. The fine material was high in Ca (212 mg g-1), S (22 mg g-1) and Si (4.04 

mg g-1).   

During combustion the washed willow fuel achieved higher peak burning rates 

(5 kg h-1), shorter characteristic batch combustion times (20 mins) and hotter flue 

gas temperatures (>600C). When new batches of fuel were reloaded, for both reloads 

of the willow fuel and for the first reload of the washed willow fuel, a new combustion 

phase was observed and it was termed ‘pre-flaming smouldering.’ During this phase, 

the flue gas temperature plateaued and a dense grey smoke persisted to form until the 

gaseous mix was flammable and a spark caused ignition. Emissions of CO and THC 

spiked during this phase whilst emissions of NOx and SO2 were unaffected. Although 

the reduced K and volatile content would suggest that the washed willow will take 

longer to ignite, the increased energy content and homogeneity kept the stove hotter 

and increased the heating rate of the fuel which reduced the ignition delay time.  

CO2 emissions increased by 60% when the willow was washed. The reason for 

this is most likely from the increased flue gas temperatures of t he washed fuel which 

increases the rate of further oxidation of CO to CO2. Emissions of CO are reduced by 

50% for the washed willow and this was the same result reported by Ravichandran 

and Corscadden [2014] and Schmitt et al. [2018]. This is probably from the leaching 

of K, in particular in the form K2CO3, which slows the rate of gasification and 

decomposition of cellulose. This results in the reduction of CO emissions during the 

early stages of combustion.  

NOx emissions increased by 25% after washing. Similar findings were 

observed when washing Chinese coals and were explained by large reductions in Na 

content. Na can catalyse NOx reduction reactions between NO and char to form N2. 

This is most likely the observed result in this work (Na concentration decreased by 
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12.5% after washing). Emissions of SO2 are reduced by 40% after washing. This was 

directly correlated to the reduction in fuel-S content.  

PM emissions are reduced by 50% after washing and this was all at the sub-

micron level. Reduced K, Cl, S, Si and Ca can all have a large impact on PM formation, 

the former two having the greatest impact in stove systems. Since the Cl content of the 

willow was already low and Cl has a high removal efficiency in water, K removal 

(42%) was considered the main factor in PM reduction. Reduced K can reduce soot 

formation by slowing the decomposition rate of cellulose and thus reducing the 

formation of PAHs from fuel rich “pockets” in the flue gas.  

The composition of PM, analysed by SEM-EDX, increased in Zn and K, and 

decreased in Ca, Na and P when the willow was washed. Although the quantification 

of this analysis was limited by the use of SEM-EDX, it was useful for a comparison 

between the PM for the two fuels. 

Bottom ash analysis was used to determine the fate of metals during 

combustion. The bottom ash composition was highest in Ca (willow 130 g kg-1 db. and 

washed willow 170 g kg-1 db.), K (91 g kg-1 db.), Si (57 g kg-1 db. and 58 g kg-1 db.) 

and P (36 g kg-1 db. And 40 g kg-1 db.). The same trend was observed for willow wood 

ash composition from an ashing oven in Schmitt and Kaltschmitt [2013]. 

Combining the combustion data, the SEM-EDX data and the bottom ash 

analysis willow washing has minimal effect on the fate of Pb, K, P, S, Cu, and Si. In 

the case of Na and Ca their partitioning favoured the bottom ash more after washing. 

The removal efficiency was relatively (30 and 38% respectively) and so it was 

concluded that the material removed must have been in structures that were more 

susceptible to be being vaporised or entrained into the flue gas. The biggest change in 

partitioning in the bottom ash was for Zn. After washing the partitioning decreased by 

0.34 which explained the observed increase in its presence in the PM. Based on 

previous work this was most likely caused by the increase in the combustion 

temperature vaporising more Zn to the flue gas [Zając, Szyszlak-Bargłowicz and 

Szczepanik, 2019].   

The desired outcome of this work was to use pre-treatment (washing) to 

convert an unusable biomass into a fuel that meets British Standards. Unfortunately, 

this objective was not met in the scope of this work and therefore may not warrant 
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further research. However, this work has demonstrated some potential in washing to 

improve the chemical properties of biomass. In order to demonstrate the value of 

washing pre-treatments more work is required with different types of fuels to see the 

removal efficiencies of specific elements- this way a more targeted approach can be 

used. Additionally, concerns over the financial implications of washing need to be 

addressed. In order to do that effective analysis of the increased product value in the 

domestic fuels market, considerations of legislation and the operational improvements 

(mitigation of slagging and fouling) need to be assessed.
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Chapter 8. Conclusions and Future Work  

8.1 Conclusions to Answer the Thesis Aims 

The experiments in this work were focused on analysing the chemical 

composition and combustion properties of various traditional, novel and pre-treated 

biomass. These included five woody biomass, five agricultural residues, five torrefied 

biomass, three biogenic wastes and an energy crop. Combustion experiments were 

predominantly focused on the use of these fuels in domestic stoves since the emissions 

from these systems are an area of growing interest and environmental concern.  

In order to address the research aims in section 1.5, Table 8.1 compares the 

emissions of the various fuels in this work compared to the 2022 EU Regulations for 

eco-stoves [2015]. It should be noted the stove used in the combustion experiments in 

this work was not an eco-stove. From Table 8.1 none of the fuels meet the CO standard 

which initially suggests that none of the fuels tested would be suitable for use in such 

devices. However, this standard is for emissions at the nominal thermal output of the 

stove used rather than an average across the combustion cycle.  

The washed SRC, Chapter 7, was the closest to this standard. This was because 

the periods of flaming combustion were longer, providing sufficient energy for 

secondary reactions to convert CO to CO2. The proportion of flaming combustion to 

smouldering combustion is the critical factor in the emissions of CO. Throughout this 

work various properties have influenced this including:  

• The physical disintegration of the fuel. Fuels which break apart increase the 

surface area to volume ratio.  

• The concentration of K in the fuel. K increases the rate of thermal decomposition.  

• The moisture content of the fuel. Moisture in the flue gas reduces the temperature 

and flammability.  

The first two properties control the rate of devolatilisation. Fuels that devolatilise too 

quickly, from the fuel physically or biochemically disintegrating too quickly, decrease 

the air-to-fuel ratio and prevent oxidation of CO. Conversely fuels that disintegrate, 

and thus devolatilise, too slowly don’t sustain flaming combustion because the air-to-

fuel ratio is too high. 
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Table 8.1: Comparison of emissions from the fuels tested in this work compared to the 2022 EU regulatory standard [2015] 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Average margin of error based on a 95% confidence level is ±15% 

 

Category Fuel Chapter Form 

Emissions at 13% Oxygen 

CO  

(mg m-3) 

Organic  

Gaseous C   

(mgC m-3) 

NOx  

(mg m-3) 

PM  

(g kg-1) 

SO2    

(g kg-1) 

EU regulation 

2015/1185  

DEFRA Limit 

Any fuel except 

compressed wood 
n/a 1500 120 200 2.4 n/a 

Woods 

Spruce 4 

Logs 

9100 420 100 3.9 0.36 

Willow (logs) 4 7000 260 180 6.1 0.39 

Wood Logs (Willow) 5 4600 230 140 3.9 n/a 

SRC Willow 7 

Briquettes 

8600 270 90 2.2 0.51 

Washed SRC Willow 7 3700 140 100 1.2 0.34 

Agricultural Residue 

Barley Straw (423) 6 8000 200 160 5 0.8 

Wheat Straw (093) 6 7700 110 150 6.4 0.5 

Brackettes 6 10000 420 300 3.9 1.6 

Energy Crops Miscanthus 6 8500 160 260 2.7 0.8 

Biogenic Wastes 

Olive 4 6600 135 160 5.8 0.95 

Coffee Logs 5 7300 300 300 7.1 n/a 

Wood Briquettes 

(sawdust) 
6 9000 140 150 3 

0.3 

Thermally pre-

treated 

Torrefied Spruce 4 6000 350 60 1.9 0.32 

Torrefied Willow 4 6900 80 150 4.4 0.36 

Torrefied Olive 4 6000 100 130 4.2 0.58 



257 

 

 Emissions of organic C are mostly as methane but also include formaldehyde, 

furan, propane, hexane, acetylene, ethane, ethylene, ethanol and benzene, all of which 

are measured by the FTIR. These species devolatilise directly from the fuel and 

develop/exit in fuel rich regions of the flue gas without being combusted. Again, 

similar to CO, the emissions of these species are depended on the air-to-fuel ratio 

which is linked to the decomposition rate and the presence of moisture. From Table 

8.1, wheat straw, torrefied willow and torrefied olive are all within the limits of eco-

stove combustion. This is important since it demonstrates that fuel properties can be 

tailored to achieve the same performance as eco-stoves with the advantage that they 

can be implemented without the large investment costs.  

Figure 8.1: Relationship between the C/H ratio and the CH4 emissions 

 

Existing work by Ndiema, Mpendazoe and Williams [2010] demonstrated that 

fuels with increased aromaticity (C/H atomic ratio) can have lower CH4 emissions 

because of a decrease in the thermal decomposition and gasification reactions which 

dictate the production of CH4, Eq. 4.1-4.3. This was demonstrated in Figs. 4.9 and 5.5 

by comparing the data in those chapters and using a single point from Mitchell et al. 

[2016]. However, by using only the data within this thesis excluding the fuels where 

physical disintegration was the determining factor (spruce, torrefied spruce and 

bracken), Fig. 8.1 shows a reasonable correlation (R2=0.7448) between the two 
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parameters. This is not a definitive and there is still a significant influence from other 

variables, such as the rate of decomposition, however it does suggest that a reasonable 

prediction of the CH4 emissions can be obtained from the C/H atomic ratio.    

The NOx emissions from all of the fuels except for the brackettes, the coffee 

logs and the miscanthus were below the limit. Throughout this thesis NOx emissions 

were correlated to the fuel-N content, Fig. 8.2. It is clear that this trend is well 

established as is this case in previous work [Mitchell et al. [2016]. However, some 

new properties were found to have an impact on the NOx emissions particularly for 

the pre-treated fuels; these included:  

• Torrefying biomass increases the char produced during combustion and binds N 

into the char matrix more tightly, e.g in the form of pyrroles and pyridinic-N rather 

than amine-type functionalities. N was therefore released during reducing 

conditions promoting the formation of N2 instead of NOx.  

• Washing biomass can remove Na. Na catalyses the NO+C reduction reactions to 

form N2.  

Figure 8.2: NOx emissions versus fuel-N content 

 

 Although there is no specified limit on the SO2 emissions, there was significant 

analysis on them throughout this thesis. The main observation was the correlation 

between fuel-S content and the emissions of SO2, Fig. 8.3. There is a strong 
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relationship between the two parameters however it is important to recognise that S is 

present in many various forms. At low temperatures only the organically bound S is 

released, this can be between 50% to as little as 20% of the fuel-S content as shown in 

Fig. 4.12. The concentration of minerals such as Ca and K can prevent the release of 

S during combustion by reacting to form salts that stay in the bottom ash. Fig. 8.4 

shows the relationship between the ratio of Ca/S and the emissions of SO2. It is clear 

that there is a relationship between these two variables. However more data is required 

at below a ratio of 3 to establish if this trend is universally applicable.  

 Figure 8.3: Correlation between the fuel-S content and the emissions of SO2 

 

Figure 8.4: Correlation between the mass ratio of Ca/S and the emissions of SO2 
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 The final conclusion from this thesis is the relationship between fuel properties 

and the PM emissions. It is important to remember that PM is a combination of soot, 

tar, char fragments and fly ash. Based on these properties, Figs. 8.5 and 8.6 show the 

correlation between the PM emissions and the C/O ratio and the K content. This is 

because the C/O ratio is the property associated with the formation of soot and tar 

whilst K is the most influential mineral in the formation of condensable vaporised 

salts. There is a trend between the C/O ratio and the PM emissions for all the fuels, 

with the exception of the torrefied fuels. As described in Chapter 7, section 7.3.5, the 

mineral content of biomass PM is very varied and no single species dominates over 

50% of the composition, Fig. 7.11. Additionally, from Tables 7.9 and 7.10 of the K in 

the fuel only 16% is released during stove combustion.  

Figure 8.5: Correlation between PM emissions and C/O ratio 

 

 The 2022 emissions limits from Table 8.1 show that the future of stove 

combustion, as is currently the case with other combustion utilities, will be subject to 

tougher standards. However, there is an over emphasis on stove technology and the 

progress that can be made because it is evident in this thesis that fuel chemical and 

physical properties are as influential. Fuel physical properties are also very important 

and they can be modified by simple changes in the processing operations. The 

chemical properties are more complex and present a greater challenge when 

considering future fuels. Pre-treatment has demonstrated many advantages, improving 
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heat release, combustion efficiency and most emissions by changing the physical and 

chemical properties, however they are currently underutilised. 

Figure 8.6: Correlation between the fuel-K content and the PM emissions 

 

8.2 How can this Thesis be Applied to the Energy and Fuels Industry? 

 As the world transitions from fossil fuels the need for diverse sources of 

biomass is becoming more apparent. The sustainability of expanding the use of wood 

pellets is being questioned [Gatten, 2021] and energy from biogenic waste is 

increasing. In this thesis it is apparent that agricultural waste (straws and bracken) and 

biogenic waste from food and timber residue (olive, coffee and sawdust) have a 

suitable energy content, between 19-21 MJ kg-1, to be used in various combustion 

devices. There are some concerns over the fuel-N and S content, however in large 

scale utilities these can easily be addressed with abatement technology.  

 This thesis has also demonstrated that pre-treatment can offer many advantages 

to the energy and fuels industry. Washed fuels can reduce the inorganic and mineral 

content of biomass and thus reduce emissions of SO2 and PM. Thermally treated fuels 

have already demonstrated advantages of increased energy release however from this 

thesis it can also be connected to reduced emissions of unburnt hydrocarbons, NOx, 

SO2 and soot. Pre-treatment is not just limited to its advantages in combustion but also 

increasing the diversity of biomass sources and homogenising the composition of 

mixed biomass.  
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The work in this thesis has been focused on combustion in domestic stoves 

however producing premium fuels by washing could mitigate problems from ash and 

so improve plant availability as well as emissions. In both cases fuel users may not be 

willing to source these more expensive fuels. Policy measures may be necessary to 

promote this approach, but more evidence is required to make a compelling case.  

 Stove combustion is an area of research that requires more work. There is 

significant evidence that suggests the reduction in air quality is from stove systems 

and there is increasing concern over the long-term impacts to health. This thesis has 

increased the understanding of how emissions relate to the chemical and physical 

properties of the fuels. This understanding will aid future decisions on the fuels 

suitable for application in these systems and start to encourage the use of premium 

fuels that are pre-treated to protect people’s health.  

 

8.3 Future Work 

8.3.1 Validation and Refinement of Empirical Correlations 

 Throughout this thesis there is substantial evidence that connects the chemical 

composition of fuels to the associated emissions. This data could be expanded further 

to use the correlations within this thesis and develop equations that could be applied 

universally to predict the emissions before a fuel is used in a stove type system. These 

models/equations should focus on the relationship of aromaticity (C/H ratio) to CH4 

emissions, fuel-N content to the NOx emissions, fuel-S and Ca content to the SO2 

emissions or the amount of S converted, and the C/O ratio and ash compositions to the 

emissions of PM. There are some additional elements of interest and further 

experimental work is required to establish their impact on these emissions particularly 

Zn which was measured as the most prominent species in sub-micron PM when the 

alkali and alkaline metal concentration of the biomass is reduced.  

8.3.2 Washing Pre-treatment 

 Within this work washing was demonstrated to have a significant impact on 

the mineral content of SRC willow. However, further experimental work on the 

scalability and robustness of washing operations are required to establish if this is a 

feasible technological solution to the mineral problems with biomass. This 

experimental work needs to focus on the different parameters such as temperature, 



263 

 

mechanical action, washing medium and filtration and their impact on the removal 

efficiency. It is clear from this thesis that an optimal fuel quality could be established 

for particular combustion devices and therefore how can pre-treatment reproducibly 

achieve these properties is the ultimate goal of any pre-treatment experiments.  

 A large body of research would be required to allow full technoeconomic and 

environmental performance modelling of washing pre-treatment as an approach to 

help tackle emissions at the smaller scale and also improve plant performance at the 

larger scale.  

8.3.3 Process Integration 

Combined cycle operations and increased integration of processes is designed 

to improve operation efficiency and reduce waste energy and material. Based on the 

work in this thesis the uptake of pre-treated fuels will help improve operational 

efficiency and reduce emissions, however there are concerns over the economics of 

washing, in particular the use of water and the cleaning processes required before it 

can be discharged, and its effectiveness at large-scale throughputs. By combining 

torrefaction and washing, the warm organic acids produced from torrefaction could be 

used to wash the biomass and help remove more stable minerals such as Ca. The 

leachate produce from washing is high in organic carbon which could be used in 

anaerobic digestion. Further research into these technologies and the process 

economics could promote the use of pre-treated fuels.  

8.3.4 Alternative Fuels 

 Novel fuels such as spent coffee and bracken have provided interesting 

alternatives in stove combustion systems. However, at present these are not suitable 

for use based on their emissions. Since these fuels are currently exempt from the recent 

legislation on suitable fuels for use in domestic stoves, further research could be added 

to the work in this thesis to understand their behaviour and optimise manufacturing to 

improve their performance. Alternatively, application of these fuels in alternative 

conversion methods or their use as additives or soil conditioners merits further 

research.  
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Appendix 

Appendix A- Data and Information relating to Chapter 4 

 

Figures A.1-3: Temperature profiles for (1) Spruce and Torrefied Spruce (2) 

Willow and Torrefied Willow (3) Olive and Torrefied Olive 
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Figure A.4: Comparison of selected detected compounds for fuel pairings a) 

Spruce b) Willow c) Olive  

a) 

b) 

c) 
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Appendix B- Data and Information relating to Chapter 5 

  

 

Figure B.1: Total PM emissions against fuel volatile content, data compared with 

the work of Mitchell et al. [2016] 

 

 

Figure B.2: Correlation of C/O ratio with PMt, data compared with the work of 

Roy and Corscadden [2012]
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Appendix C- Data and Information relating to Chapter 6 

 

Table C.1: Calculated errors for Table 6.2 from the standard deviation of 

measured values  

 

 

 

 

 

 

 

 

 

 

 

 

Sample Site 
Sample 

Period 

Moisture 

(wt.%)ar 

Moisture 

(wt.%)ad 

Volatiles 

(wt.%)db 

Ash 

(wt.%)db 

Bracken 

1 

1 ±7.4 ±1.1 ±3.1 ±0.8 

2 ±7.2 ±1.3 ±3.5 ±0.8 

3 ±6.5 ±1.1 ±3.0 ±0.7 

4 ±3.7 ±0.8 ±2.5 ±0.6 

2 

1 ±10.2 ±1.5 ±3.7 ±0.7 

2 ±8.6 ±1.3 ±3.4 ±0.8 

3 ±7.9 ±1.4 ±3.6 ±0.8 

4 ±5.4 ±0.9 ±2.9 ±0.7 

3 

1 ±9.8 ±1.7 ±2.9 ±0.6 

2 ±7.5 ±1.5 ±3.2 ±0.8 

3 ±7.7 ±1.4 ±3.0 ±0.7 

4 ±5.1 ±1.4 ±2.7 ±0.5 

4 

1 ±11.1 ±1.2 ±4.1 ±0.9 

2 ±10.2 ±0.9 ±3.7 ±0.9 

3 ±7.8 ±1.2 ±3.6 ±0.5 

4 ±6.1 ±1.0 ±3.4 ±0.6 

5 

1 ±8.7 ±1.3 ±3.7 ±0.7 

2 ±8.8 ±1.6 ±4.3 ±0.8 

3 ±8.5 ±1.2 ±3.0 ±0.6 

4 ±4.1 ±0.8 ±3.1 ±0.4 
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Table C.2: Calculated errors for Table 6.3 from the standard deviation of 

measured values and propagation of error for the HHV  

 

Sample Site 
Sample 

Period 

C 

(wt.%)db 

H 

(wt.%)db 

N 

(wt.%)db 

S 

(wt.%)db 

HHVb 

(MJ kg-1)db 

Bracken 

1 

1 ±0.15 

±0.03 ±0.02 n/a 

±0.22 

2 ±0.08 ±0.13 

3 ±0.09 ±0.14 

4 ±0.04 ±0.12 

2 

1 ±0.10 ±0.15 

2 ±0.11 ±0.16 

3 ±0.09 ±0.14 

4 ±0.05 ±0.12 

3 

1 ±0.06 ±0.12 

2 ±0.13 ±0.19 

3 ±0.09 ±0.14 

4 ±0.06 ±0.12 

4 

1 ±0.11 ±0.16 

2 ±0.07 ±0.12 

3 ±0.09 ±0.14 

4 ±0.08 ±0.13 

5 

1 ±0.13 ±0.19 

2 ±0.14 ±0.20 

3 ±0.08 ±0.13 

4 ±0.07 ±0.12 
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Figure C.1: CO2 and CO emissions from stove combustion of the miscanthus 

 

 

Figure C.2: CO2 and CO emissions from stove combustion of the barley straw 
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Figure C.3: CO2 and CO emissions from stove combustion of the wheat straw 

 

 

Figure C.4: CO2 and CO emissions from stove combustion of the wood briquettes 
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Table C.3: Emissions factor relative errors (%) 

 

 CO2 CO TOC NOx SO2 HCl PMt 

Bracken ±8 ±14 ±16 ±10 ±12 ±8 ±5 

Miscanthus ±11 ±9 ±12 ±12 ±18 ±7 ±8 

Barley 

Straw 
±13 ±12 ±22 ±11 ±14 ±8 ±6 

Wheat 

Straw 
±6 ±7 ±14 ±7 ±3 ±12 ±4 

Wood 

Briquettes 
±4 ±23 ±18 ±25 ±15 ±9 ±7 
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Appendix D- Data and Information relating to Chapter 7 

  

 

Figure D.1: Renishaw Colliery (a) location (b) early mining operations (c) later 

operations [Bridgewater, No date] 

 

Table D.1: Soil analysis of the Renishaw site and comparison to the UK urban 

average [Environment Agency, 2007] [1] 

Element 

Soil heavy metal concentrations (mg kg-1) 

Renishaw UK Average [1] 

Local Agricultural Open-cast soil Urban 

Cu 10.1 39.8 42.5 

Zn 41.6 137.8 95.1 

Ni 11.8 31.8 28.5 

Pb 17.9 100.5 110 

Cd 0.1 0.7 0.44 

Cr 19.4 36.5 34.3 
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Table D.2: Mass balance calculation (a) inputs (b) willow and fines output (c) 

leachate output (d) overall balance 

(a) Input 

 Willow ar. 

(14.8% M) (g) 
Willow Dry (g) 

Willow 

Moisture (g) 

Water 

(g) 
Total Water (g) 

# [1] [2] [3] [4] [5] 

Eq. [1] [2]=[1]x0.852 [3]=[1]-[2] [4] [5]=[4]+[3] 

1 519 442 77 1038 1115 

2 524 446 78 1048 1126 

3 499 425 74 999 1073 

4 513 437 76 1025 1101 

5 518 441 77 1035 1112 

6 521 444 77 1041 1118 

7 531 452 79 1061 1140 

8 520 443 77 1041 1118 

Average 518 441 77 1036 1113 

Standard 

Deviation 
9.17 7.81 1.36 18.12 19.48 

Error 2 2 2 2 2 

 

(b) Willow Output 

 
Willow ar. 

(8% M)  

(g) 

Willow Dry 

(g) 

Willow 

Moisture (g) 

Fines 

ar. (g) 
Fines Dry (g) 

Fines 

Moisture (g) 

# [6] [7] [8] [9] [10] [11] 

Eq. [6] [7]=[6]x0.92 [8]=[6]-[7] [9] [10]=[9]x0.965 [11]=[9]-[10] 

1 426 392 34.1064 23 22 0.8 

2 431 397 34.496 20 20 0.7 

3 414 381 33.0896 29 28 1.0 

4 418 384 33.412 19 18 0.7 

5 423 389 33.8584 12 12 0.4 

6 429 395 34.3288 20 19 0.7 

7 436 401 34.9064 19 18 0.7 

8 429 394 34.3008 8 8 0.3 

Average 426 392 34.0623 19 18 0.7 

Standard 

Deviation 
7.38 6.79 0.59 6.35 6.12 0.22 

Error 2 2 1.7 29 29 28.7 
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Table D.2 Cont.: Mass balance calculation (a) inputs (b) willow and fines output 

(c) leachate output (d) overall balance 

(c) Leachate Output 

 Leachate 

(g) 
Willow in Leachate (g) 

Water in 

Leachate 

(g) 

Water 

Lost in 

Drying 

(g) 

Total Willow (g) 

# [12] [13] [14] [15] [16] 

Eq. [12] 
[13]=[12]x[1/ρLeachate] 

x[Solid Conc] 

[14]=[12]-

[13] 

[15]=[5]-

[8]-[11]-

[14] 

[16]=[7]+[10]+[13] 

1 658 2.5 655 425 417 

2 708 2.7 705 385 419 

3 645 2.5 642 397 411 

4 650 2.5 648 419 405 

5 620 2.4 618 460 404 

6 676 2.6 674 409 417 

7 696 2.7 694 411 422 

8 619 2.4 617 467 405 

Average 659 2.5 657 422 412 

Standard 

Deviation 
32.66 0.13 32.53 28.63 7.41 

Error 5 5.0 5 7 2 

 

(d) Overall Balance 

 Willow 

Balance (g) 
Unaccounted (%) 

# [17] [18] 

Eq. [17]=[2]-[16] [18]=[17]/[2]x100 

1 25 6 

2 27 6 

3 14 3 

4 32 7 

5 37 8 

6 27 6 

7 30 7 

8 39 9 

Average 29 7 

Standard 

Deviation 
7.68 1.71 
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Figure D.2: CO2 emissions from willow and washed willow  

 

Figure D.3: CO emissions from willow and washed willow 
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Figure D.4: THC emissions from willow and washed willow 

 

Figure D.5: NOx emissions from willow and washed willow  
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Figure D.6: SO2 emissions from willow and washed willow  
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Table D.3(a): Sub-micron PM composition analysis from willow combustion using SEM-EDX 

 

 

  

 

 

Element 
Site 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Average 

C 51.1 50.9 54.6 55.8 57.3 49.8 46.8 41.4 57.8 52 52.4 55.3 54.8 47.2 61.2 57.4 53.7 55.9 53.08 

O 24.5 26.2 19.3 24.6 18.9 22.3 28.9 17.53 24.5 27.4 24.3 20.7 20.5 25.6 28.2 23.46 23.4 25.67 23.66 

Ni 0.21 0.37 0 0 0.28 0.08 0 0 0 0 0 0.15 0 0 0 0 0 0.06 0.06 

Zn 0 0.24 1.11 0 0.34 0 0.81 2.13 0 0 3.11 0 0 1.32 0.71 0.91 0.74 1.45 0.72 

Si 18.22 14.2 17.17 15.61 15.62 23.21 18.52 30.01 8.21 15.7 15.69 17.81 20.35 22.43 5.21 10.64 19.03 9.76 16.52 

Al 0.22 0.46 0.85 0.06 2.11 0.09 0.81 0.62 1.23 0.08 0 0 0.36 1.06 1.34 0.98 0.05 0.61 0.61 

Fe 0 0.02 0 0 0 0 0.4 0 0 0 0 0.4 0 0 0 0.3 0 0 0.06 

Ca 1.87 3.44 4.61 0.57 0.86 1.03 1.49 5.06 0.25 0.61 0.86 2.31 0.45 0.42 0.76 0.65 0.23 0.89 1.46 

Na 2.35 0.98 0.79 0.56 1.89 0.84 0 0.93 1.65 2.53 0 1.43 1.89 0.42 2.01 3.61 1.86 1.78 1.42 

K 0.89 2.84 0.56 0.34 2.14 1.98 0.94 1.26 0.97 0.79 2.56 0.78 0.89 0.23 0.49 0.67 0.51 1.06 1.11 

P 0.15 0 0 1.41 0 0 0 0 4.31 0.44 0.29 0 0 0 0 0 0 1.93 0.47 

S 0 0 0.23 0.11 0 0 0.34 0 0 0 0 0.21 0.64 1.09 0 1.32 0 0 0.22 

Cl 0.49 0.35 0.78 0.94 0.56 0.67 0.99 1.06 1.08 0.45 0.79 0.91 0.12 0.23 0.08 0.06 0.48 0.89 0.61 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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Table D.3(b): Sub-micron PM composition analysis from washed willow combustion using SEM-EDX 

Element 
Site 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Average 

C 53.3 47.8 51.1 45.7 54.8 51.3 51.2 56.4 53.7 50.8 46.6 50.1 50.6 52.7 47.6 50.2 50.87 

O 18.9 26.9 24.5 23.6 26.5 25.5 19.4 22.1 24.6 25.1 24.3 27.8 26.4 24.7 27.5 26.4 24.64 

Ni 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0.01 

Zn 1.69 7.91 4.12 3.02 0.94 5.47 1.54 7.89 2.47 0 6.24 5.47 3.48 8.71 6.03 7.46 4.53 

Si 18.09 11.22 16.48 20.83 14.8 15.43 18.16 11.24 17.34 15.69 15.73 15.58 15.71 6.25 16.69 8.316 14.85 

Al 2.98 0 0 0 1.84 1.61 0 1.99 0 1.77 1.31 0 1.96 1.43 0 0 0.93 

Fe 0 0 0.08 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.01 

Ca 0.54 0.78 1.23 1.56 0.21 0.34 1.87 0.38 0.49 0.08 0.75 0.24 0 0.46 0.29 0.664 0.62 

Na 0 0 0 0.03 0 0 0 0 0 0 0.02 0 0 0 0 0 0.00 

K 3.76 5.31 2.49 4.65 0 0 7.75 0 0.06 5.88 3.47 0.81 0 5.64 1.89 5.78 2.97 

P 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0.00 

S 0.65 0 0 0.46 0.84 0.24 0 0 0.97 0.46 1.57 0 1.85 0 0 1.18 0.51 

Cl 0.09 0.08 0 0.15 0.07 0.11 0.04 0 0.27 0.22 0 0 0 0.11 0 0 0.07 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 

 

 

 

 


