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Abstract 
 

An ageing population has resulted in an increasing number of people living with multiple long term 

health conditions, prompting interest in how comorbidity impacts on the survival outcomes of 

patients with cancer diagnoses. To date, no analyses have been undertaken using large population 

data that applies a consistent methodological approach to multiple cancers and comorbidities.  

Using retrospective data from patients with a known cancer diagnosis from the Leeds Cancer Centre, 

a range of descriptive, exploratory, inferential and predictive approaches have been applied to 

assess for bias in the data, as well as describe, infer and predict survival outcomes in up to 24 

cancers and 40 chronic health conditions.  

Analysis results highlighted multiple potential sources of bias within both the hospital and cancer 

dataset, with differences in demographics, missing data and meaningful inaccuracies found within 

the clinical coding data for comorbidity.  

Results from Kaplan Meier and Cox modelling identified that comorbidity was most commonly 

associated with worse survival in cancer patients, however effects were highly variable and several 

comorbidities were found to be associated with improved survival. Cause-specific Cox models 

suggested that in many cases the hazard differences seen were due to a direct association with 

cancer cause-specific hazard. The application of random survival forests was demonstrated to 

provide superior predictions when compared to traditional methods. Further, they demonstrated 

multiple non-linear relationships between predicted survival and predictors such as age, stage and 

grade. 

The results identify multiple potential flaws within previous comorbidity research using 

observational data in both oncology and other medical fields. Despite some potential sources of 

bias, the results presented represent one of the most comprehensive analyses of comorbidity in 

cancer using a consistent methodological approach and further highlight the utility of machine 

learning methods in this form of analysis. 
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Chapter 1: Introduction and Project Overview 
 

1.1 - Clinical Context of Cancer 

Cancer is the second most common cause of death globally and accounts for 28% of deaths1 in the 

United Kingdom (UK). UK government estimates project that one in two people will develop cancer 

in their lifetime2 with 3 million people living with or beyond cancer by 2030.3 The high rate of 

incidence within the population has implications not just for patients, but also for health providers. 

The cost of the average cancer therapeutic has quadrupled over the past decade, with the cost of 

cancer care accounting for 4.3% of the total UK health budget in 20134 and 3% of hospital care 

spending in 2016.5  

Over the past four decades the management of cancer has evolved significantly, with the proportion 

of patients surviving to ten years or more after their cancer diagnosis doubling to over 50%.1 These 

improvements have been driven by advances not only in therapeutic approaches, but also by altered 

health behaviours, improved diagnostics, screening programmes and greater public awareness.6,7  

Despite these improvements, large variations in the outcomes for cancer are seen across Europe and 

globally. Previous research has suggested that this variation may be due to a wide range of factors 

including different clinical practice, timing of presentation, access to secondary care, cancer waiting 

times and access to treatments.7–10 This variation in geographical outcomes has also resulted in a 

number of scientific arguments over whether the differences seen are truly present, or due to how 

data is collected.11–13 Additional debate occurs as to whether these differences in outcomes are in 

fact due to appropriate clinical decision making by taking a more holistic approach to care delivery. 

The best outcome for a patient may not be determined solely by how long they live, but also taking 

quality of life into account. This moves the debate away from just an issue of quantum.14–16  

Cancer represents a condition of particular importance to governments, health care providers and 

the general population due to its impact on individuals, health systems, public policy and public 

finances.17 As a result, understanding what drives the differences in outcomes seen both within 

populations and between populations, is an area of heavy focus for researchers and policy makers 

alike. Much of this research is focussed on health interventions in the form of treatments and 

screening. Beyond this, researchers have also attempted to identify groups who are at a higher risk 

of both developing cancer and having worse outcomes.18–23 This research has often focussed on 

genetics, cancer type, extent of disease at presentation and the patient’s general health at the time 

of diagnosis. Despite this interest, a number of methodological constraints make research of this 

nature challenging and the results of such studies often conflict with one another.24 The presence 

and absence of comorbidity has been a particular focus for cancer outcomes research and will form 

the main focus of this thesis. This chapter will summarise the types of study undertaken in the area 

of comorbidity in cancer, cover some of the key research findings of existing research and highlight 

gaps in the current knowledge base that require further investigation. The key research aims will be 

provided, aimed at covering some of these current gaps in scientific knowledge. 

1.2 - Comorbidity 

Within this introduction and throughout the thesis comorbidity is referred to several times. This 

terminology can be found with relative abundance within the scientific literature, however despite 

this, the terms are applied inconsistently within different domains, such that its use in 

epidemiology25, clinical practice26, health policy27 and management may differ. This issue is further 
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compounded by the use of related terms such as multi-morbidity, frailty, disease burden and burden 

of ill health.28–30 These terms are sometimes used interchangeably with each other and comorbidity, 

but in some literature are used to describe different concepts altogether. This lack of a consistency 

in the use of terminology can produce further uncertainty when attempting to assess the current 

state of research relating to these concepts. Previous research looking at this issue31 identified that 

although each definition was based on an individualised perspective, the researchers describe four 

distinct conceptualisations of comorbidity:  1) the nature of the health condition, 2) the relative 

importance of the co-occurring health conditions, 3) the chronology of presentation of the 

conditions, 4) expanded conceptualisations.  

The nature of the health condition concept is focussed on being able to attribute a specific and 

discrete categorisation to it. If the individual illness, diagnosis or condition is poorly defined or 

nebulous, then there is a risk of overlap between one or more clinical concepts or diagnoses. A key 

example is the co-occurrence of anxiety and depression where without a strict definition of the 

nature of the condition, it is impossible to state whether this is one condition on a spectrum, or two 

co-occurring conditions and thus comorbidities.32  

The importance concept is based on the use of an index condition. Any other condition that occurs 

within the window of time that the individual is affected by the index diagnosis is considered a 

comorbidity. This creates uncertainty, as depending on the clinical or research question, the index 

condition may differ. A patient with congestive heart failure and lung cancer may be regarded as 

having cancer as a comorbidity by their cardiologist and heart failure as a comorbidity by their 

oncologist.  

The chronology of conditions also features heavily within the literature and may be applied 

inconsistently. This perspective encapsulates overlap and sequence, some conditions may occur with 

a time lag but still be interdependent, others might occur synchronously but with differences in the 

initial point of diagnosis. This is further complicated by the distinction between comorbidity and late 

effects, where a related condition that occurs after the first, but is in some way induced by the first, 

may be referred to as a late effect. As with comorbidity, no consensus definition for what constitutes 

a late effect currently exists within the literature.33–37  

The expanded concepts of comorbidity include those with scoring systems which attempt to 

combine multiple aspects of conditions into a single mechanism of assessment. Examples of this 

include the Charlson index38 and Elixhauser score.39 Frailty may also be included within this 

conceptualisation, where the measure attempts to capture the biological effects or phenotypic 

expression of ill health, how this manifests, and may impair function. An example of this includes the 

electronic Frailty Index40 and Hospital Frailty Index.41  

With more people globally living longer, there are a growing number of people living with multiple 

health conditions.42 It is therefore unsurprising that across a range of medical domains there is a 

corresponding growth in research into how patients with multiple health conditions differ in their 

outcome, to those with no other underlying health conditions. The lack of consistency in how the 

concept of comorbidity is applied adds to the existing uncertainty of results, as many studies are not 

comparable. 

As discussed above, the increasing incidence of cancer and improved outcomes combine to create a 

growing population living with and beyond cancer. This has resulted in the generation of a significant 

body of literature focussing on the impact of comorbidities on cancer outcomes.24,43 In addition to 

the issues described above, much of the previous research is limited by other factors. These include 
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a limited number of comorbid conditions assessed, analyses restricted to only the most common 

cancers, small population studies, large population studies but with limited breadth of information 

and a failure to adequately consider methodological limitations of the approaches applied. As a 

result, although a number of studies in this area have been undertaken before, little is known about 

many of the important aspects of the interplay between baseline health status and cancer 

outcomes. Key areas where knowledge is lacking include how accurate records are of health 

conditions in hospital datasets, whether hospitals offer a representative dataset on which to base 

conclusions, the impact of health conditions on less common cancers, the impact of less common 

health conditions on cancer outcomes, whether individual pre-existing health conditions impact on 

cancer outcome and which, if any, health problems are useful in predicting outcomes for cancer 

patients.  

1.3 - Routinely Collected Data (RCD) and Randomised Clinical Trials (RCTs) 

As clinical practice has increasingly focussed on improving the evidence base for care delivery and 

medical interventions, a consensus hierarchy of evidence quality has been established within the 

scientific community. The pinnacle of this is the meta-analysis or systematic review which combines 

multiple studies. The next tier in the evidence hierarchy is the randomised controlled trial (RCT). 44 

The focus of RCTs as the most valuable form of singular study is based on a number of key 

advantages of randomisation. If appropriately sized, confounding is minimised by ensuring that 

confounding factors are equally distributed between the groups under study.45 This can then be 

combined with further measures such as blinding to reduce bias from both clinician and patient 

expectation. Despite these key advantages there are a number of significant limitations.    

High quality randomised controlled trials require significant administration and oversight. This 

results in significant costs in their delivery.46 The costs of RCTs are growing year on year such that 

large scale RCTs are now commonly the purview of only the largest grant providers and commercial 

sponsors.46 These high costs can also result in a number of other study design decisions that can limit 

the utility of the study results. Firstly, follow up times are commonly short to minimise costs. This 

often means that any advantages seen when comparing groups are only those that can be 

demonstrated over a period of a few months or years. The longer the study, the larger the costs 

involved. In some cases this may mean that long term differences, both beneficial and detrimental, 

may never be identified.47 Secondly, in order to obtain clear cut findings limitations may be placed 

on those recruited into the trial. This includes limits on extremes of age and comorbid health 

conditions. This, when combined with difficulties in recruiting certain groups such as ethnic 

minorities and individuals from lower socioeconomic groups, may result in a study population that 

bares very little resemblance to the true population in which one wishes to utilise the intervention 

under investigation.48,49 Within the oncology setting this is particularly true with only 1% of oncology 

patients participating in clinical studies50 and RCTs more generally having been shown to exclude on 

average 77.1% of patients.51–53 This results in a scenario where information on often the fittest 

patients, with lowest burdens of oncological and non-oncological diseases, are used to determine 

the clinical interventions for the majority of less well patients with more advanced disease.47 As a 

result, the data may generalise well within the groups included in the study, however as the 

population is unrepresentative, differences in the impact of a given intervention or effect in other 

subgroups of the population are not assessed and may well diverge from the original study 

population.54  

Additionally, RCTs become problematic when dealing with rare conditions or rare outcomes. This is 

due to either having issues recruiting sufficient numbers, or having to have studies with a large 

enough cohort to capture sufficient numbers of the rare outcomes.55 This in many cases renders an 
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RCT unfeasible. In other cases, RCTs are an inappropriate study design choice due to the 

characteristic of interest not being an intervention or an assignable characteristic. The issue of 

comorbidity and its impact on long term health outcomes is one such example. It is not possible to 

randomly assign someone a long term health condition and thus an RCT would not be conducted. In 

many studies this issue is overcome through the use of subgroup analysis. In such cases the results 

from the RCT are split into the groups of interest and compared. This division into subgroups is a 

form of stratification but that is occurring outside of, and after the randomisation process and thus 

the benefits of controlling for confounding are bypassed.56 This approach is, in effect, an 

observational study within an RCT cohort and dataset. Thus although much of the data collected is 

highly accurate, the population is fundamentally different from that of the wider general population. 

This therefore becomes an unrepresentative observational study but with excellent data quality. 

An alternative approach is to conduct whole population observational studies. This has the 

advantage of including all patients within a given geography, making the cohort inherently more 

representative as it includes everyone. It does not however control for any potential confounding 

caused by systematic differences between the groups of interest, or ensure that the population 

studied is the same as wider populations, therefore also placing limits on the external utility of this 

approach to wider groups.  

Although observational studies can be conducted in a prospective manner, it is also possible to 

conduct them in a retrospective manner. With the rapid growth in the use of electronic healthcare 

records, increasing volumes of clinical data are being captured and recorded year on year57. This 

information has become an increasing focus of study, with retrospective routinely collected data 

forming the basis of many observational studies. This approach results in a number of theoretical 

advantages including reduced costs, a more representative population, longer follow up data, and 

the potential to study rare diseases or outcomes.58  

Despite this, many within the research community have cautioned against the assumption that these 

theoretical advantages are borne out in reality.59–63 The costs of individual studies may be lower, but 

when considering the substantial costs involved in the adoption and maintenance of systems to 

collect and capture routinely collected data (RCD), it may be viewed that the costs have simply 

moved from the research community to healthcare providers instead. Although the population may 

be more representative than in a highly selected RCT, in many instances RCD is still not 

representative of whole populations. This occurs as the source from which data is obtained may not 

include all individuals of interest. This is seen when analysing hospital data, which will show a bias 

towards patients with the greatest levels of ill health or more severe presentations of conditions. If a 

reliance is placed on the use of structured data then accuracy and completeness of this64, which may 

vary between hospitals, may render the data less representative.   

It is common for different health providers to collect their own data. Where patients move between 

different providers, then the RCD can in turn become fragmented, such that an individual data 

source may not hold all the important and relevant data for an individual.65,66 Although these issues 

could be overcome by combining data from multiple sources, this linkage process presents a number 

of legal and ethical issues which can be challenging, time consuming and costly to overcome.67–70 

Although the large volumes of data available present a significant opportunity for novel insight to be 

generated, it also poses a risk. The large cohort sizes result in extremely small p values and therefore 

dramatically increase the risks of false discovery, with highly significant false-positive and false 

negative discoveries being identified.61 As alluded to above, studies without randomisation are at 

risk of being impacted by bias, which can further exacerbate the issues of false discovery. As 
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differences in confounding and bias can exist between groups with identified relationships in 

observational data, accounting for what associations are due to the exposure of interest, and what is 

due to other factors can be extremely challenging.  

These limitations are often used to suggest that the solution to RCT related issues is in fact to 

improve RCTs to make them larger, cheaper and more representative, rather than relying on RCD to 

fill gaps in current RCT knowledge.62,63 In some instances a hybrid approach to trials is being adopted 

to include both traditional RCT data collection and the integration of RCD. This may be in using RCD 

to assist with participant identification and improving recruitment, the use of historic RCD for 

patients recruited to a trial to increase the volumes of data collected within the trial or using RCD to 

assess long term outcomes after formal in trial follow up has ended.63,71,72 In many circumstances 

this may well be a solution, however in the context of an exposure which cannot be assigned, this 

approach cannot be taken. Instead researchers must make use of RCD whilst understanding and 

accepting its benefits and limitations, in order to attempt to answer important clinical questions that 

RCTs are unable to provide the answers to.  

Within the context of cancer research RCTs have over the past several decades formed the backbone 

of research evidence.73 This has been fuelled, in part, by a heavy focus on comparisons of 

interventions, which lend themselves particularly well to this form of study design. As greater focus 

been placed on how representative RCTs are in the cancer population and the rapidly growing costs 

of oncological drugs and drug trials74, the oncology research community has increasingly utilised RCD 

as an adjunct to traditional RCTs.75,76 The RCD approach is often made simpler within the context of 

cancer research as many countries collect cancer data nationally resulting in large well curated RCD 

that can be used for analysis.77 RCD based research is therefore becoming a growing part of the 

cancer research information space, as either a standalone resource or in combination with RCT 

evidence.  

1.4 - Big Data, Statistical Computing, Computational Statistics, Data Science and Machine 

Learning. 

As the adoption of electronic healthcare records has increased over the past decade, the volume of 

health data available has increased exponentially over time.78 When this is combined with other 

potential sources of data relating to health, such as wearable technology and consumer data, the 

volumes of information have become so large that manual calculation of many statistical methods 

would be at best impractical, if not impossible. The term “big data” has often been used to describe 

these large data resources, but despite the frequency with which this term is used within both the 

scientific and more general media, there is no consistency in the definition of the term.79–82 A 

number of formal and informal definitions exist which makes determining what constitutes big data 

challenging and creates potential confusion when comparing studies.83 

Even when focussing on the methodological domains, there is still inconsistency with the 

terminology used. Statistical computing may be broadly thought of as the use of computers to 

undertake statistical analysis.84 Computational statistics is a term that was previously used 

interchangeably with statistical computing, however is now used to provide a slightly different 

meaning. Its use now tends to focus on computer methods that are reliant on approaches that are 

themselves computationally difficult not just by virtue of the size of the data. This includes the 

simulation of a distribution, methods that require multiple analyses, resampling, data partitioning 

and random number generation.84 It is however also used to describe work that attempts to discover 

new information about the structure of a dataset, something that is also termed data mining.85  
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Further confusion is introduced through the use of the term data science. IBM for example defines 

data science as combining “the scientific method, math and statistics, specialized programming, 

advanced analytics, AI, and even storytelling to uncover and explain the … insights buried in data”.86 

When attempting to draw distinctions between these different terms, the scientific literature is of 

little help. Many blogs and websites attempt to differentiate them based on the nature of the 

problem to be solved, scale of data, prediction versus explanation, however even here there is no 

consistency.87,88 The research in these areas are made more difficult to compare as the terminology 

used to describe the same information is different within statistical computing and data science. 

“Variables” are termed “features”, “observations” are termed “instances” and “dummy variables” 

are termed “one hot encoding”. 

The lack of consistency in both describing and defining the data and domain is likely to introduce 

ambiguity and thus focussing on the type of analysis and type of method is a more consistent 

approach. Here the purpose of the analysis can be outlined, such as descriptive, predictive, causal or 

inferential analysis.89 The method itself can also be classified such as traditional statistical methods 

and machine learning. Here traditional statistical methods describes methods that are well 

established and initially implemented for the purpose of trying to infer information through the 

fitting of a project specific probability distribution.90 Machine learning methods are those that use 

adaptive algorithms to identify patterns in complex data where the methods were commonly 

developed with a predictive focus.91  

 

1.5 - Machine Learning in Healthcare 

Over the past decade machine learning technology has been applied in a broad range of healthcare 

settings.91,92 Two areas where the technology has been applied extensively are clinical imaging93 and 

genetics.94 Many of these projects have garnered significant media coverage such as tools to detect 

melanoma from photographs95 and the automated analysis of imaging for retinal disease.96 Despite 

the wide coverage of these in the media, in most cases developments in medical machine learning 

have yet to be translated into real world use of these technologies.97 

Although for some this might be a point of frustration, there are also examples of where the 

technology has performed differently to the way it was intended. A high profile example of this was 

the Chex-Net project98 which aimed to create an algorithm that could detect pneumonia on a chest 

radiograph. The results were published in a high impact journal, however later scrutiny showed that 

the entire project was based on a flawed dataset and thus the algorithm’s accuracy in real world use 

would be much worse than stated, to the extent that if deployed, it would have potentially caused 

harm.99,100  

Within the area of oncology, machine learning applications have mainly been focussed on screening, 

diagnosis, prognostication, staging, treatment selection and drug discovery.101–103 Within the area of 

prognostication the majority of studies have been applied within very narrow confines. These 

include examples of the assessment of single test modalities, using single types of data such as 

genetics, or survival prediction at one fixed time point in a single cancer.101,103 As such, there has 

been limited use of machine learning methods in the prediction of long term cancer outcomes 

across multiple cancers using a large dataset.  Previous research has suggested potential accuracy 

benefits of these technologies over traditional methods, however, despite this, they have yet to be 

explored on a large scale.104–106 
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1.6 - Novelty of the Research 

The work presented in this thesis strives to overcome some of these issues around previous research 

whilst addressing current gaps in understanding about baseline characteristics and in particular, 

prior health conditions and cancer outcomes. It will apply a consistent definition of comorbidity 

across multiple conditions, both common and less common, in a range of cancers that are common 

and less common. A consistent approach will be applied to the description of analyses undertaken, 

focussing on the type of analysis and type of method, such that the analyses will be consistent across 

cancers and comorbidities to allow for easy direct comparisons, which have been challenging in the 

past based on published data. The analyses are additionally focussed on the current gaps in 

knowledge highlighted in the above sections.  

The work will assess the utility of a large English regional dataset of oncology RCD for reliable 

observational studies. The data will be used to describe, infer and predict the survival outcomes of 

cancer patients in the presence and absence of common long term health conditions and compare 

the accuracy of traditional statistical methods to machine learning approaches in cancer survival 

prediction. The seven aims for the research are set out below. 

1.7 - Aims  

1. To describe the characteristics of the research dataset and examine how these may 

introduce, bias, confounding and error into subsequent analysis and interpretation.  

2. Quantify differences in survival outcomes within the Leeds Cancer Centre dataset compared 

to national survival data. 

3. Describe the survival outcomes of cancer patients with and without comorbidity. 

4. Identify which cancers and comorbidities have the most consistent survival effects. 

5. Quantify the association between comorbidity and all-cause mortality in cancer patients 

using a multivariable approach. 

6. Quantify the association between comorbidity and cancer cause-specific mortality in cancer 

patients using a multivariable approach. 

7. Apply a predictive framework using machine learning to assess the utility of baseline 

characteristics including comorbidity in the prediction of survival in cancer patients. 

1.8 - Thesis Structure 

Following this chapter the thesis will continue with details focussing on the methods applied and 

their related theory. This will provide context to the approaches used, but will leave the fine details 

of the exact analyses undertaken to be described in each of the chapters of analysis. Subsequent 

chapters will highlight one or more of the seven aims on which it will focus and describe a number of 

specific objectives through which the aim will be delivered. Each of these chapters will then present 

background information, a detailed account of how the analysis was undertaken, results of the 

analyses followed by a discussion section explaining and expanding on results and placing them in 

the wider context of known and potential future research. The analyses are intentionally ordered 

such that the complexity of them increases as the reader progresses through the thesis. Chapter 3 

will apply predominantly descriptive and exploratory analyses to address aims 1-2. Chapter 4 will 

apply the Kaplan Meier107 method to meet aims 3-4. Chapters 5 and 6 will apply the Cox proportional 

hazards108 model to address aims 5-6. Chapter 7 will apply random survival forests109 to the data to 

address aim 7. The thesis will conclude with a final chapter which will summarise the overall findings 

of the work and address the primary research aims highlighted above. 
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Chapter 2 – Methodology 
 

2.1 - Introduction 

This chapter outlines some of the key methodological concepts that were considered and applied in 

the delivery of the subsequent research. Further, a detailed summary of the dataset generation 

process and tools used in the delivery of the research are provided. The fine detail of methods 

applied to deliver the analyses are covered in the methods section included within chapters 3-7. 

2.1.1 - Understanding Types of Analysis.  

A number of controversial publications have called into question the validity of the majority of 

scientific research.110–113 A key issue that has been highlighted is the application of the correct 

interpretation of findings, relative to the type of analysis being undertaken.114 In many instances 

conclusions are drawn that are beyond the scope of the type of analysis conducted. Data analysis 

can broadly be broken down into six key types which are descriptive, exploratory, inferential, 

predictive, causal and mechanistic. Table 1 provides further detail on each. These distinctions are 

important as the depth and scale of conclusions that can be drawn differ substantially between 

them. When the application of a causal conclusion to an inferential study occurs, particularly 

alongside other inappropriate statistical practices commonly reported such as data tampering115, 

interpreting findings based on expectation, ignoring missing data and violation of assumptions,116,117 

there is the potential to provoke dangerous changes to medical practice which are not evidenced. An 

example is that the rate of Parkinson’s has been shown to be lower in smokers than non-smokers.118 

It would be inappropriate to suggest causation and thus patients with a high risk for Parkinson’s 

should be encouraged to smoke. 

The analyses undertaken within this thesis include; descriptive, exploratory, inferential and 

predictive but intentionally avoid attempts at causal inference due to the potential pitfalls of this 

approach in observational data.119–121 A more detailed discussion on this can be found in chapter 5. 

The following sections of this methodology chapter attempt to address key aspects of the analysis 

undertaken following the order of the analysis types above. Initially the development of the research 

dataset and key concepts underpinning this are described, along with the subsequent descriptive, 

exploratory, inferential and predictive analyses undertaken. 
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Type Characteristics Examples 

Raw Data / 

No Data Analysis 

 No summarisation approaches applied Data table of patient 

observations from EHR 

Descriptive  Data summary 

 No interpretation applied 

Demographics table 

Exploratory  Data summary applied 

 Interpretation applied 

 No attempt to quantify if discoveries will likely 

hold in a new sample or population 

Is there a relationship or 

evidence of correlation 

between age and stage at 

cancer diagnosis? 

Inferential  Data summary applied 

 Interpretation applied 

 Attempt to quantify if discoveries will likely hold in 

a new sample or population 

 Not trying to predict measures for individuals 

 Not trying to assess how changing the average of 

one measurement will affect another 

What is the estimated 

association between prior 

stroke and breast cancer 

survival after accounting for 

age, gender and deprivation? 

Predictive  Data summary applied 

 Interpretation applied 

 Trying to predict measures for individuals or 

populations 

 Attempts to quantify if accuracy will likely hold in 

a new sample or population 

 Not trying to assess how changing the average of 

one measurement will affect another 

Can demographics be used to 

predict an individual patient’s 

survival probability at one 

year after breast cancer 

diagnosis? 

Causal  Data summary applied 

 Interpretation applied 

 Attempts to quantify if discoveries will likely hold 

in a new sample or population 

 Attempts to assess how changing the average of 

one measurement will affect another on average 

 Trying to predict measures for individuals or 

populations 

On average does altering the 

dose of a pain killer reduce 

pain symptoms? 

Mechanistic  Data summary applied 

 Interpretation applied 

 Attempts to quantify if discoveries will likely hold 

in a new sample or population 

 Trying to assess how changing the average of one 

measurement will affect another in a 

deterministic way. 

Does reducing the gauge of 

material used in arterial 

stents reduce iatrogenic 

vascular resistance? 

Table 1: Summary of Data Analysis Types - Derived from publication by Leek et al114, the table provides a list of the seven 
analysis types, a summary of their characteristics and an illustrative example of each. 
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2.2 - Raw Data and Dataset Creation 

Within this section the concepts underpinning the data extraction and cohort identification methods 

applied are described. This includes information on clinical coding, comorbidity scores, cause of 

death data and boundary effects. Further description is provided on how these were considered and 

applied in the development of our dataset. A detailed description is provided for the development of 

the dataset on which all subsequent analyses were conducted.  

2.2.1 - Clinical Coding 

The process of clinical coding involves the application of a recognised medical coded ontology to a 

clinical record. A number of different systems exist which may be designed for a particular setting or 

specialty or may be setting agnostic. Common examples include SNOMED-CT122, Read Codes123,124 

and ICD-10.125 In all cases the aim is to try and have a standardised way of recording clinical 

information. SNOMED-CT and Read codes are more extensive than ICD-10 codes as the coding is 

more granular and also includes clinical events, procedures and investigations codes where ICD-10 is 

just a disease classification, although other elements such as morphology of cancer are also included 

within this. 

The Leeds Teaching Hospitals electronic patient record (EPR) from which our research data is 

derived, is based on ICD-10 diagnostic coding. This coding in done according to national guidelines 

which form the basis of the Hospital Episode Statistics126 database aiming to capture hospital activity 

data nationally. Amongst a number of data items, this database includes information on new and 

established clinical diagnoses. In contrast to primary care where coding is often done during routine 

clinical care delivery, hospital clinical coding is only completed after an admission event. Here, upon 

discharge, a primary code is given as the main reason for admission. Secondary codes are then 

applied which are for any other condition the patient is known to have and also any other reason for 

the admission. In each case the coding is applied based on a review of the clinical notes and 

completed by hospital clinical coders who are specially trained hospital administrative staff.  

This coding database was used as the basis for identification of non-cancer diagnoses in our dataset. 

Clinical concept definitions for each condition of interest was developed by a clinician using ICD-10 

codes. The code definitions table can be found in the appendix.  For a detailed description of the 

data processing done for this, please refer to section 2.2.8 below. 

It is important to note that the primary purpose of hospital clinical coding is financial rather than 

clinical. Until recently the amount that the hospital was paid was dependent on the combination of 

conditions for that patient127. Thus the use of this coding for clinical description is a fundamentally 

different use for this data than the purpose for which it was collected. 

Cancer diagnosis events were identified using ICD-10 codes, however this data is captured more 

widely due to the requirements to provide data to the National Cancer Registration and Analytics 

Service (NCRAS).128 The identification of cancer patients was therefore based on this separate coded 

dataset. 

Histology data recorded alongside cancer diagnostic coding is done using the ICD-10 morphological 

coding. This is very granular however also allows for the use of non-specific codes. This results in 

many subdivisions of common histology. This could create issues when using them as categorical 

variables in analysis as it would create small numbers and low precision.  As such for each cancer, 

histology data was reviewed and grouped based to the common subdivisions guided in part by TNM 

Version 7.129 
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2.2.2 - Comorbidity Scores 

With an ageing population globally particularly in more economically developed countries a growing 

proportion of patients are being managed with multiple health conditions.42,130 The interplay 

between conditions is of huge importance to clinicians, not only on a population level in influencing 

treatment guidelines, but also in assisting with treatment decisions on an individual level.18,30,131–133 

Understanding and representing these complex interactions and their effects on key outcomes is 

often simplified through the use of comorbidity scores and frailty scores. These two approaches are 

similar but subtly different with comorbidity scores usually being based on specific diseases and 

frailty score often being based on clinical concepts in addition. Key examples are the Charlson 

score38, Elixhauser score39, Hospital Frailty Index41, electronic frailty index40, and ACE-27 score.134,135 

These scores often provide weighting for different conditions and also may incorporate some form 

of severity scoring in addition. These scores have been used in multiple clinical contexts to assess if 

they have correlation with clinical outcomes of interest or in some cases are used as the basis of an 

outcome prediction.136,137 

It is important to note that in most cases these scores are derived from administrative data rather 

than data curated specifically for this purpose. Furthermore, in most cases the score is based on 

expert opinion or based on mapping to concepts. They are then subsequently applied to an outcome 

of interest, to assess if it has some predictive value as opposed to developing a score specifically 

optimised for its intended use case. This has the advantage of making them easy to calculate and 

interpret, but does not ensure that optimal predictive power is obtained for all outcomes of interest. 

Some scores are more complex than others such that they take longer to estimate and that they can 

only be scored by a clinical assessment contemporaneously, as opposed to retrospectively. This may 

enhance utility and data accuracy of the scoring, whilst limiting its practicality and implementation. 

Once such detailed scoring system is the ACE-27 score. This is comprised of multiple disease domains 

with a severity grading for each. This score has been extensively assessed in the adult population in 

particular in cancer patients.138–142 The nature of the severity score does however prevent robust 

retrospective calculation of patient scores. In order to select our comorbidities of interest, the ACE-

27 score was used as a framework to identify conditions to assess. All conditions named in the score 

were included for analysis. In some instances conditions grouped in ACE-27 were divided to provide 

a more granular analysis, particularly were conditions in a grouping were considered heterogeneous. 

Two of the domains highlighted by the ACE-27 scoring system were not included, namely mental 

health and substance abuse. These were not included due to issues of data availability. As metal 

health care records and substance abuse records are stored separately they were not available for 

analysis and therefore not included.  
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ACE-27 Domain ACE-27 Named Subdivision Conditions Included For Analysis 
Cardiovascular MI 

Angina/CAD 
CCF 
Arrhythmias 
Hypertension 
Venous Disease 
Peripheral Arterial Disease 

MI 
Angina/CAD 
CCF 
Arrhythmias 
Hypertension 
Chronic Venous Insufficiency 
Thromboembolic Disease 
Varicosities 
Peripheral Arterial Disease 

Respiratory Disease NA Asthma 
Chronic Obstructive Pulmonary Disease 
Restrictive Lung Disease 
Other Respiratory Conditions 

GI Systems Hepatic 
Stomach/Intestine 
Pancreas 

Liver Dysfunction 
Malabsorption 
Inflammatory Bowel Disease  
Pancreatitis 
Peptic Ulcer Disease 

Renal System End Stage Renal Disease Renal Dysfunction 
Endocrine System Diabetes Mellitus Diabetes Mellitus (all) 

Type 1 Diabetes Mellitus 
Type 2 Diabetes Mellitus 
Other Diabetes Mellitus 

Neurological Stroke 
Dementia 
Paralysis 
Neuromuscular 

Stroke 
Dementia 
Demyelination 
Motor Neurone Disease 
Parkinson’s 
Transient Ischaemic Attack  
Other Neuromuscular Disorders 

Psychiatric NA Not included 
Rheumatological NA Ankylosing Spondylitis 

Gout 
Psoriatic Arthritis 
Rheumatoid Arthritis 
Other Rheumatologically Conditions 

Immunological AIDS AIDS/HIV 
Malignancy Solid Tumour 

Leukaemia and Myeloma 
Lymphoma 

As per site specific cohorts 

Substance Abuse Alcohol 
Illicit Drugs 

Not assessed 

Body Weight Obesity Obesity 
Table 2: Summary of ACE-27 – Summary of the domains and subdivisions that make up the ACE-27 scoring system. A final 
column of the derived conditions / comorbidities used for analysis within this study is included in the third column. 

2.2.3 - Identification of the Cohort 

All patients included within the study were identified from the Leeds Cancer Centre’s electronic 

health records. This system, called Patient Pathway Manager (PPM)143, is an electronic clinical record 

keeping system that is underpinned by a SQL based database which captures and stores data from 

clinical systems and allows direct data entry.  

SQL extracts were used to identify all patients with a cancer diagnosis made from 2018 and before 

based on an ICD-10 code starting with “C”. Patients were only included where they had a legitimate 

care relationship with Leeds Teaching Hospitals. Any patients without an NHS number were excluded 

as this risked the incorrect joining of data from across the PPM data sources.  
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2.2.4 - Details of Cancer Diagnosis 

Data relating a patient’s cancer diagnosis was derived from the diagnosis tables of PPM which 

contains all of the key cancer diagnostic information held by Leeds Cancer Centre. This diagnostic 

information includes data items such as demographics, grade, stage, morphology, genetics, 

molecular testing, patient details, path to diagnosis and originating hospital, which is also referred to 

as an originating unit. Patients with multiple cancer diagnoses were included only once in each site 

specific cohort. A single patient could appear multiple times if they had developed multiple cancers. 

Where a patient had developed multiple instances of a given cancer then only the first record of 

diagnosis was included within the site specific group. Inclusion of the same patient multiple times 

would risk over representing their other baseline characteristics within a given cohort. Having them 

represented across multiple cohorts would not be affected by this, as each cohort was analysed as a 

standalone dataset and not combined. 

The cancer sites chosen were based on the published list of common cancers produced by Cancer 

Research UK.1 Where a cancer was provided as a named site in this list it was considered for 

inclusion as a site specific cohort. Cancers not mentioned were included as “other” cancer in the all 

cancer cohort. This produced a total of 24 specified cancer sites and site specific cohorts.  

Each cancer cohort was selected based on the ICD-10 label applied to that instance of cancer within 

the record. A three character ICD-10 match was used for this. This level of ICD-10 coding was 

selected as this depth of coding is highly accurate, whereas there is less consistency in greater 

depths of ICD-10 coding. The data defections of each cancer site can be found in the appendix. 

Tumour staging was available in a number of formats including TNM129, WHO 1-4 and FIGO.144 This 

range of data was kept to allow for more or less granular groupings depending on the analysis 

undertaken. A less granular classification is of utility in trying to reduce the number of  dummy 

variables required within the dataset to allow for regression analysis and also ensures larger 

numbers of patients within each stage group of a given cancer site. More granular data may 

however have utility in enhancing predictions. There is a residual issue that staging systems have 

changed over time. No current method is available for standardising these without a manual review 

of all cases. This would be impractical given the scale of the dataset and was therefore left in its 

original form but represents a potential limitation of the approach. 

Full histology data was also extracted however as with stage data this level of granularity would have 

led to difficulties with regression analyses. All morphological descriptions for each cancer site were 

reviewed and aggregated into clinically relevant morphological groupings by an oncologist. These 

groupings are outlined in Table 21 in the appendix. 

Survival times were calculated based on date of diagnosis and date of death, where a patient was 

not known to have died the censor date applied was the date of extraction.  

2.2.5 - Comorbidity Data 

All conditions described within Table 2 were turned into individual comorbidity labels. For each of 

these a coding definition was developed via a review of the ICD-10 coding system to identify all the 

relevant codes for that condition. These data definitions may be found Table 22 within the appendix. 

Hospital clinical coding data was used as the primary source of comorbidity identification. As 

described above, this data is created for each patient admitted to the hospital. This data therefore 

captures the presence of a given condition on a given admission date. All clinical coding data for 

each patient within the research dataset was algorithmically assessed to identify the first instance 

that a given ICD-10 code appeared within their clinical record. Those patients with it noted on or 
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before the date of cancer diagnosis were treated as a prior diagnosis and those where the first 

recorded data was after the date of cancer diagnosis had the condition treated as a late effect.  

Data enhancement was also undertaken where further data sources were available. In the case of 

diabetes Haemoglobin A1c (HbA1c)145 data was used to identify patients with diabetes who lacked 

relevant clinical codes as well as any earlier evidence of diabetes in those with a clinical code. All 

HbA1c results for patients in the dataset were assessed algorithmically to identify instances of 

results at or above 48 mmol/mol.146 Patients with pre-diabetic HbA1c results were also identified 

using a 42 mmol/mol threshold147 Where these abnormal results were found, the first date of 

abnormal results were identified and used to update the comorbidity data within the study dataset. 

Where both coding and blood data was found, the earliest date of diabetic diagnostic data from 

either source was used as the date of diabetic diagnosis and whether this preceded the cancer 

diagnosis or not.  

Obesity data was also enhanced using height and weight data held within PPM. All height and weight 

records within the trust were combined. BMI148 was calculated for each entry and then labelled as 

either obese, overweight or other. No category of underweight was included as this does not form 

part of the ACE-27 scoring system. Implausible BMI records with those above 100 were excluded 

from the dataset. The date of obesity from height and weight data was then combined with clinical 

coding such that the earliest date was used as the diagnostic date of obesity. 

2.2.6 - Identification of the Leeds Teaching Hospitals Blood Catchment Area 

As the main laboratory for undertaking blood analyses for the Leeds metropolitan area, the majority 

of test results for patients should be available from the hospital EPR. There are however patients 

who are referred from outside of this geographical area for management of their oncological 

diagnosis in Leeds. Some areas may also sit on the boundary with other hospital service areas, with 

some GP practices in these boundary areas sending their blood samples to a different centre for 

processing. This creates what is termed a boundary effect in which patients at or beyond the 

boundary of LTHT’s catchment area have a lower probability of complete and accurate data. It is 

therefore important to be able to distinguish those patients who are inside and those who are 

outside of the area for which the majority or all of a patient’s blood test results will be available in 

LTHT datasets.  

In order to identify these patients, aggregated data was created to identify the GP practices that had 

sent a volume of 10,000 blood tests or more to LTHT. Those meeting this threshold were regarded 

and being within the catchment area. Patients registered to these practice were therefore identified 

as being within the LTHT blood catchment area.  

2.2.7 - De-identification of Data 

All data was extracted such that is was de-identified, removing names, NHS numbers, full postcodes 

and dates of birth. Information required based on dates of birth were calculated apriori, such as age 

at diagnosis with dates of birth being retained in month and year format only. Postcode derived data 

such as deprivation scores were calculated and added at source prior to analysis, such that when 

used for research postcode sector information and IMD quintiles149 were available.  
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2.2.8 - Cohorts Developed 

Two categories of cohort were developed the all cancer cohort and the site specific cohorts. The all 

cancer cohort includes each known cancer patient only once within the dataset. This was achieved 

by limiting patients with multiple cancer diagnoses to only the first cancer diagnosis.  

The second class of dataset was the site specific cohorts. These aim to include all patients with a 

cancer diagnosis in a particular cancer site. This was achieved by limiting each cohort to a specific or 

combination of specific cancers as defined by a 3 digit ICD-10 code. Each patient was represented 

only once such that patients with multiple diagnoses of the same cancer were included based on 

their first diagnosis. As this process was done on a site by site basis, patients may be present 

multiple times across the different site specific datasets but only once in each. 

2.2.9 - Data Pre-processing 

Below is a description of the processing that was conducted in order to generate the research 

datasets for the study. Figure 1 demonstrates the broad steps visually alongside a more detailed 

description provided below. 

1) Cancer Diagnoses 

a) All definitive primary cancer diagnoses prior to 2019 were identified and extracted. 

b) Extended data for patients extracted including performance status, numbered staging data 

and deprivation measures merged with standard diagnostic extract. 

c) Survival time calculated from date of diagnosis and date of death or date of extraction.  

d) Patient age calculated and converted into ten year age band. 

e) ICD-10 Codes used to label cancer diagnosis by cancer site. 

f) Staging data aggregated from numbered subdivisions into just numbers e.g. 2a to 2 and 

standardised to Arabic numerals from roman numerals. 

g) Grade data converted into NA, Ungradable, low, intermediate or high grade (except 

prostate). 

h) Prostate cancer diagnoses converted to standardise recording of Gleason grading. 

i) Histology grouping definitions used to create aggregated histology label. 

2) Cause of Death 

a) All cause of death data for patients extracted. 

b) Partial string match used to identify all deaths with a “C” code ICD-10 code as 1a, 1b or 1c. 

c) Deaths labelled as “cancer” or “non-cancer” death. 

d) Cause of death data joined to cancer diagnosis data. 

e) New cause-specific death status field created. 

f) Non-cancer cause deaths changed from 1 (deceased) to 0 (censored). 

3) Height and Weight Data 

a) Height and weight data from all sources in PPM extracted. 

b) BMI calculated. 

c) Implausible values removed. 

d) Measurements categorised as overweight or obese recorded as binary 0/1 for each. 

e) First date for overweight recordings and obese recordings identified for each patient. 

f) Weight data joined onto cancer diagnosis table. 

 

 

 



30 
 

4) Combined Diabetic Diagnostic Information 

a) All admission events with a diabetic clinical code were extracted. 

b) The earliest admission event for each patient were kept and the others removed. 

c) All HbA1c data for patients were extracted. 

d) All lab results were converted to numerical data type with standardised units of mmol/mol. 

e) Where results were “<20” and “>130” they were converted to 20 and 130 respectively. 

f) HbA1c results were categorised as Normal (<42), pre-diabetic (>= 42 and <48) or Diabetic 

(>=48). 

g) The earliest date for each patient for each category was identified. 

h) Summary statistics for per patient HbA1c results including number of tests, mean, min, max 

and variance. 

i) Results for clinical coding and HbA1c were joined.  

j) Earliest date indicator from either bloods or clinical coding calculated. 

5) Other Comorbidity Data 

a) All clinical coding data for patients extracted. 

b) Table created for each comorbidity of interest containing admission events with a clinical 

code matching those from that condition’s code definition.  

c) The earliest admission per patient was identified with the date stored. 

d) Repeated patient entries removed so that each comorbidity contained patients only once 

with a 1 indicating the presence of the condition and the date it was first recorded. 

e) Height and weight data was combined with obesity data. 

f) Earliest date for evidence of obesity from either coding or height and weight data was 

derived. 

6) Combining data 

a) Cancer diagnosis information was joined with the comorbidity tables. 

b) Where after the join comorbidity information was NA due to them having no evidence of 

comorbidity these were converted to 0. 

c) Each comorbidity was assessed against the cancer diagnosis date to identify if the condition 

predated or post-dated the cancer diagnosis. Where the comorbidity occurred before the 

cancer diagnosis, the comorbidity retained its label of 1 for the comorbidity. It was assigned 

a 0 for the comorbidity as a late effect. Where the comorbidity was diagnosed after the 

cancer diagnosis, the comorbidity label was changed to 0 and the late effect comorbidity 

label was recorded as a 1. 

7) Creating Cohorts 

a) All diagnoses relating to a site were extracted into a new table. The first occurrence of each 

patient was retained with later diagnoses for that patient removed. 

b) Within the original table the first diagnosis of each patient was retained with subsequent 

diagnoses removed. 
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Figure 1: Data Pre-processing Flow Diagram – Visual 
summary of the creation of the research datasets. This 
includes the data sources, data transformations, 
aggregation, de-identification and divisions of the 
cohorts that were undertaken in the creation of the All 
Cancer Cohort and the Site Specific Cohorts 
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2.2.10 – Index of Multiple Deprivation (IMD) 

Within this thesis the English IMD is used as the measure of deprivation for the purposes of analysis. 

The IMD framework is made up of seven domains which include: 

1. Income 

2. Employment 

3. Crime 

4. Living environment 

5. Barriers to housing and services 

6. Education, skills and training 

7. Health Deprivation and disability 

Within these several sub-domains have been created with a total of 37 indicators across the scoring 

rubric. Two of particular note are those relating specifically to income deprivation affecting children 

and income deprivation affecting older people. IMD is calculated on Lower Layer Super Output Areas 

(LSOA) which are then ranked and place in deciles or quintiles.150 As a result, IMD is a tool for 

deprivation discrimination between geographical areas and therefore cannot be used to define 

poverty as there are no absolute values for this.  

Despite its widespread use a number of criticisms and limitations of IMD in general have been 

highlighted. Firstly, as the most granular area is LSOA this can include a wide range of people as this 

covers an area of approximately 1000-2000 people. Previous studies have shown that this creates 

areas within which deprivation levels can vary dramatically with deprived areas showing particularly 

high levels of variation.151 Others have criticised how the raw data used to calculate the scores for 

each domain are not available and thus assessing the usefulness and appropriateness of the score is 

limited.152 The calculation of the score also relies on the use of the same metrics in multiple domains 

such as receiving state benefits for ill health being found within both the income and health 

domains. This double counting introduces a bias in the scoring based on certain data items that 

underlie the index. Others have criticised the relative effectiveness of the score in rural versus urban 

areas although rurality and deprivation were not shown to have correlation when explicitly tested in 

Scotland.151 

Within the Leeds PPM dataset English IMD 2015 data is available for patients as IMD quintile. This is 

based on their most recently registered postcode and therefore introduces several further potential 

pitfalls. Firstly, if patients move outside of England they will not have an IMD score as within the UK 

IMD is calculated within each devolved nation and due to it being a relative index, comparisons 

between nations of the UK are not possible. No UK wide IMD currently exists. A further limitation is 

that if patients are diagnosed and have died prior to IMD 2015’s introduction it is likely that their 

relative and contemporaneous score may be different, however as with the devolved nation data, as 

IMD is a relative scale, comparisons between versions are not a valid approach. Finally the data 

within the PPM dataset does not include information on the breakdown of the domains that make 

up the ranking for IMD which provides less granular information. As IMD quintile was the only metric 

available within the dataset to measure deprivation it was used however the above stated 

limitations should be considered when interpreting the results of later analyses  
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2.3 Descriptive and Exploratory Analyses 

In order to assess and understand both simple and complex analyses conducted on a research 

dataset it is important to first understand the basic characteristics of the raw and pre-processed 

data. Factors such as data provenance, accuracy, missingness, correlation and collinearity can all 

have a significant impact on the choice of approach in data handling, analysis, as well as introducing 

bias and impacting external validity. Here each of these is considered in turn and how in each case 

attempts were made to assess them. 

2.3.1 - Data Provenance 

Data provenance describes the origins of data items and the process by which it arrived in a given 

dataset. When dealing with printed information documents are in essence unable to be altered 

without being replaced with a new edition. In electronic data this is not the case and aspects may be 

altered and transformed in many ways without leaving any obvious trace of how, when or why this 

process took place. Previous research has focussed on three aspects 1) correctness, 2) completeness 

and 3) relevancy153. These concepts are based on the assumption that data capture occurs via an 

automated process which in healthcare delivery is not always the case. As a result, the context of 

data capture is crucial in understanding its provenance and conceptually it can be helpful to separate 

“where”, “why” and “who” provenance into separate groups as each can have a significant impact 

on the data obtained and how this may be impactful154.  

“Where” provenance, the source of data, may initially seem trivial to assess and describe, however it 

can easily become complex and challenging in the real world of healthcare delivery. When a 

collection of data comes from multiple systems a description of the original source may be simple to 

identify. If however information flows into a dataset through a multistep process, it is important to 

identify any data transformations that may have taken place. Changes from original source data such 

as rounding, aggregation and changes in data types can alter the data to an extent that impacts on 

the analysis outcomes obtained. A real world non-healthcare example of this was the loss of 50% of 

the value of the Vancouver stock exchange over 23 months due to rounding error.155 In 1983 after 

the launch of the stock exchange, computer software rounded stock values down using floor() 

functions rather than traditional rounding using round(). This resulted in small losses of stock value 

daily, which eventually accumulated deflating the market value to half of what it should have been. 

If this sort of rounding error was to take place in the context of health economics for example, small 

values, over many patients, over many years could result in large scale differences. If different data 

sources apply different rounding then they may no longer be suitable for combining or comparing.  

“Where” data provenance issues may also arise when the same information is captured in multiple 

locations. An example of this is a patient’s height where it could be recorded on different occasions 

or in different systems. Outside of extremes of age, height is usually a fixed measurement, however 

in the real world height recording may vary. If a system includes just a single value, it is important to 

know where the value comes from, is it an average, a maximum value, the most recent, etc. 

Understanding these small changes are important for knowing how to interpret a given data item 

but also knowing whether or not different measures are comparable. Even where a single value is 

available, software or units of measurement can change over time, meaning that values at different 

time points are no longer directly comparable without the application of considered adjustments 

and alterations. A practical example of this is changes in TNM staging over time in oncology. 

“Why” data provenance issues consider the motivation used for the initial collection of data. This 

can have a profound impact on the data collected and its potential accuracy for the task of interest. 

Where data is being harnessed in analysis for a secondary use, it is important to consider if the data 



34 
 

is fit for purpose or if the analysis or conclusions need to be altered in some way to fit the task of 

interest. An example of this is in the context of primary care clinical coding. One reason for collection 

of this data is in the delivery of care, however a significant amount of coding is conducted for the 

purposes of financial remuneration156. Those conditions that attract a payment may be more likely 

to be recorded than those that do not. As such, the accuracy and completeness of diagnostic 

recording may be heavily influenced by the purpose of the data being input. These differences may 

have meaningful effects if patients are misclassified in the source data and may also result in a 

different scale of impact when considering different conditions.  

“Who” provenance identifies the individual, system or process that input the information. This may 

impact on accuracy and validity in a number of ways. A computer from a laboratory automatically 

storing test results is likely to be more accurate than an individual manually typing in a result from a 

printed report. Knowing this may alter the way that researchers choose to handle outlier results. The 

accuracy of clinical data input by clinicians versus administrative staff may differ depending on 

medical complexity, such that information input by one group may be considered more likely to be 

accurate than another. Clinical coding from a discharge summary letter completed by a trained 

administrator may well differ from the same information recorded by a healthcare professional 

reviewing clinical notes and discussing things with a patient. These distinctions are of importance as 

if a tool is designed to be used obtaining data in the latter setting, then an analysis of historic data 

collected in the former, may yield different or inaccurate results.  

In order to overcome these issues expertise was sought from members of the hospital informatics 

department. Data items included in the analysis were discussed to understand where the 

information was obtained from, identify any transformations that may have been applied and how 

data was originally captured. Additionally where possible front end systems were reviewed to better 

understand potential sources of error and bias. An example of this was the decision not to include 

HbA1c results from the diabetes management system as these were typed in by clinical staff, as 

compared to the laboratory results, which were automatically generated from the laboratory 

machines. Although this did not remove the possibility of testing error, it did remove the risk of 

human typing errors.  

2.3.2 - Missingness 

A key attribute of relevance to any dataset is how complete it is. This can be based on both the 

completeness of discrete cases, i.e. relevant individuals are missed entirely or completeness within 

cases, where data items for a given patient are absent or unknown. In practice, identifying missing 

discrete cases is not possible using a single dataset as it would require information from other data 

sources that may have accurately captured a patient, such as a cancer registry, to identify missing 

individuals.  

Completeness of a dataset within known samples can be quantified by looking at each data item and 

assessing the percentage in which the data is found and recorded. Where data items are missing a 

number of approaches may be used. Firstly, these cases with missing data can be excluded in what is 

called a complete case analysis.157 This approach has a number of pitfalls including reducing the 

sample size, reducing precision of confidence intervals and reducing statistical power. Additionally, 

depending on the pattern of missingness, it may also introduce bias. An alternative approach is to 

impute the value that is missing. This can be considered as a second best approach, where the single 

best approach is to have no missing data at all. A number of methods can be used to impute data, 

however first one must consider the mechanism and pattern of missing data. These are detailed in 

Table 3158. Where a variable is deemed to be “missing completely at random” no specific modelling 
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of the relationship between other variables and an imputed value is needed. Where the variable is 

“missing at random”, some method to model the relationship between other variables and the 

imputed value is needed159–161. Where the value is “not missing at random”, imputation is 

inappropriate. In most cases the distinction between missing at random and not missing at random 

is based on domain knowledge and expertise, as opposed to something that can be assessed 

numerically. 

An additional issue may arise due to the volume of missing data. Where large portions of data are 

missing it may be difficult to create reliable imputations as there is insufficient complete data on 

which to base the imputation process. In order to assess suitability for imputation a two-step 

assessment was used to determine the appropriate approach: 

1. Volume: If more than 20% of data is missing imputation is inappropriate.162  

2. Pattern: Combine analytical approaches and domain expertise to determine the suspected 

pattern of missingness. 

If the first test was failed by a data item then the second test was not investigated further.  

Type Characteristics Example 

Missing 

Completely at 

Random 

(MCAR) 

1. Probability of a variable being 

missing is unrelated to the value of 

that variable. 

2. Probability of a variable being 

missing is unrelated to the value of 

other variables within the dataset. 

3. Probability of a variable being 

missing may be related to the 

value of other variables not within 

the dataset. 

To assess the key determinants of patient 

satisfaction. The MCAR assumption 

would be violated if when assessed 

younger patients were less likely to 

complete their feedback questionnaire.  

Missing at 

Random 

(MAR) 

1. Probability of a variable being 

missing is unrelated to the value of 

that variable. 

2. Probability of a variable being 

missing is related to the value of 

other variables within the dataset. 

 

To assess the key determinants of patient 

satisfaction. The MAR assumption would 

be met if when assessed, younger 

patients were less likely to complete their 

feedback questionnaire, however the 

probability of returning the questionnaire 

is not related to a patient’s level of 

satisfaction. 

Not Missing at 

Random 

1. Probability of a variable being 

missing is related to the value of 

that variable. 

 

Patients who are dissatisfied are more 

likely to return their questionnaire than 

those who are satisfied. 

Table 3: Types of Missingness – Summary of each of the three types of missingness with a corresponding description of its 
characteristics and an example based on a patient feedback questionnaire. 
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2.3.4 - Correlation / Collinearity 

Collinearity usually refers to the non-independence of predictor variables in a regression analysis. 

This presents problems as it increases the variance of the regression parameters which can lead to 

inaccurate assessment and identification of relevant predictors in a statistical model.163 In effect, if 

one variable is a true cause of an outcome of interest and another is strongly associated with that 

predictor, then the effect may be shared between the two, deflating the effect size of the true cause 

and inflating that of the correlated variable.  

As such it is important to understand whether this may be an issue within a dataset such that the 

necessary consideration is given to both the analysis methods applied and interpretation of the 

output results. In order to conduct this assessment our dataset was subjected to pairwise correlation 

estimates with a Spearman’s rank order correlation test.164 This was chosen due to the data items 

predominantly being ordinal or binary, which may be considered as an extreme form of ordinal. In 

each case the analysis focussed on both the statistical significance and scale of correlation. 

2.3.5 - Bias Confounding and Statistical Significance. 

Within any analysis it is important to consider the potential for bias and confounding and how these 

impact on the analysis design and interpretation. There are three main forms of bias 1) selection 

bias, 2) information bias and 3) confounding.165 

Selection bias occurs where the method used to select individuals into a study incorporates 

systematic differences between groups, where these differences impact on the outcome of 

interest166. If for example a study compares outcomes from two different hospitals, then the 

characteristics of the local population may lead to selection bias. If one hospital is located in a more 

affluent area, this may introduce selection bias due to the socioeconomic characterises of the 

population that attend that hospital. Selection bias can take many forms and is a particular risk in 

observational studies where the allocation to a group within a study is often based on the exposure 

of interest. This is in contrast to RCTs where the exposure of interest is determined at random after 

selection. 

In order to look for identifiable selection bias, analysis was undertaken comparing the locally derived 

cohorts to national data to identify any differences. Where differences are found to exist, then this 

will be referenced in the interpretation of results when discussing potential inferential conclusions. 

Information bias is a systematic difference that is introduced through the collecting, processing 

recording or recall of data.166 This includes misclassification error, recall bias and approaches to data 

missingness. As with selection bias this study has a relatively high risk of information bias as it is 

reliant on routinely collected clinical data which is more prone to error than formally collected trial 

data. 

In order to assess for potential information bias an analysis of data missingness and misclassification 

error was conducted. Further information on missingess is found above in section 2.3.3 and an 

assessment of misclassification in section 2.3.5 

Confounding may be considered as a mixing of effects such that the effect of an exposure on an 

outcome of interest is combined with the effect of other factors. This causes the relationship 

between the exposure and outcome to become distorted from that of the true relationship.165 

Confounding may distort effects in either direction such that true effects no longer become 

apparent or that an effect is falsely identified as being present. The presence of confounding can 
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make it particularly challenging to identify causal relationships in data. In order for a variable to be a 

true confounder it must have a number of attributes these include:165 

1) They must have predictive value even in the absence of the exposure. 

2) They must not be an intermediate step between exposure and outcome. 

3) They must be associated with the exposure, but not a proxy for it. 

In order to address confounding within our analyses domain expertise was applied to identify potential 

sources of confounding. Where inferential analyses were being conducted, adjustment for measured 

confounding was applied. Any variables that were temporally downstream of the exposure of interests 

was discounted as a potential confounder as it could be considered a downstream intermediate 

between the exposure and outcome. Where a potential confounder was believed to be present but 

not able to be adjusted for it has been given special comment within the discussion section and used 

to frame the interpretation of the results. 

In many cases issues may also rise due to differing levels of confounding between two groups, such 

that not only is confounding impacting on estimates, but it is effecting the groups being compared 

differently in addition.  

Within the medical literature it is common practice to apply statistical significance tests to analyses. 

This test is an assessment of the probability of the null hypothesis being incorrect with convention 

being that 95% probability or greater is a probability cut off to reject the null hypothesis. It is 

important to note that where an analysis fails to meet this metric it does not mean that there is truly 

no difference and additionally if the p value does meet this threshold, it does not mean a true 

difference does exist. This leads to an inevitable possibility of false discovery including type 1 and 

type II error, where an effect occurring by chance is attributed to a true effect.111,167  

The appropriateness of the application of significance tests is improved when a study includes 

individuals within each group who are truly pulled from the same population. This for example 

occurs in randomised controlled trials. In observational studies this can be an issue as the individuals 

are commonly drawn from different populations, with significant selection bias which limits the 

appropriateness of statistical significance testing.59 

An additional issue can arise with multiple testing. Although in each analysis the probability space 

meets the particular threshold applied, when multiple analyses are done there is an inherent false 

discovery rate even when results are not combined. As such, if a 5% threshold is applied and 100 

analyses undertaken, then 5 significant results would be expected to occur on average by chance 

where the null hypothesis should in fact have been accepted. Some therefore suggest that the p 

value threshold should be adjusted. A number of methods for this exist including the Bonferroni 

correction.168 This involves dividing the 5% threshold by the number of analyses undertaken, to 

create a more stringent threshold. This will reduce the chances of false discovery, however will 

increase the risk of falsely rejecting a true difference. 

p values are also impacted by the power of a study in that large sample sizes impact on the p values 

seen61. This causes issues in studies involving large sample sizes as in such situations small 

differences can be highly statistically significant.  Thus results that have little relevance and are of 

low scientific importance may in fact be seen as spuriously important. 

This study is observational, involves large populations and multiple comparisons and thus is 

potentially prone to all of these issues. In order to address these a number of steps have been taken 

to improve the interpretability of results. In some cases results will be provided with p value 
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thresholds at the standard 95% and corrected level. This allows analysis to take into account 

significance such that both a strict and more lax criterion can be applied. Where significance tests 

are applied, analyses consider the clinical significance of the results, such that small magnitude but 

highly significant statistical tests can be contrasted with less statistically significant but highly 

clinically relevant differences169,170. Further, attempts were made to assess precision. Here the 

confidence interval can be assessed to look at not only whether the null hypothesis should be 

rejected, but also as to whether the results are precise enough to be reassured that the results are 

likely to be of value. Results that have low precision may be considered with a higher level of 

scepticism than results from analyses that have higher levels of precision. 

In view of these potential issues a number of approaches have been applied throughout our 

analyses. 

1) First importance in discussion has been given to try and identify potential bias and 

confounding as potential sources of effect on estimates. 

2) Where an inferential analysis involves the comparison of two groups, no p values are 

provided. Comparisons between values or variables may however be presented with p 

values for descriptive analyses. 

3) Where a p value is presented, it is done in such a way as to enable assessment for a p value 

threshold with and without adjustment. 

4) Confidence intervals will be used as a guide of effect but will not be used to comment on 

statistical significance. 

5) Confidence intervals will be used to assess the precision of estimates. 

6) Effect size and clinical significance will be used in part to determine the importance of a 

result. 

2.3.5 - Accuracy 

In order for any dataset to yield reliable results, it is important that the information stored within 

the dataset is correct. In many instances, it is difficult to assess whether routinely collected data is 

correctly input as there is no other source to which the data can be compared. In cases where a 

comparison can be made, such as in the case of height being recorded multiple times, it is often 

impossible to know when a discrepancy occurs which is the true value. Certain aspects discussed 

above have already highlighted areas where some concerns have been raised within the literature 

already, particularly in relation to cause of death data and clinical coding. As no comparison source 

was available for cause of death data, our accuracy assessment focussed on clinical coding. Here, an 

assessment was conducted to how the recording of clinical coding compared to the comorbidity 

recording of blood tests in the diagnosis of diabetes mellitus. These were compared in terms of the 

proportion of the diabetic population identified, how this changed with geography and how they 

differed in terms of diagnosis date. This analysis allowed for the identification of routes to enhance 

future analyses and inform the interpretation of results. 

2.3.6 - Excess Zeros 

In exploratory analyses where the relationship between two factors includes count data with an 

excess of zeros, there is a need to consider the appropriated distributions used to model these 

relationships. A standard Poisson regression may result in poor performance due to the excess of 

zeros within the data. In such cases, it may be possible to use zero inflated models instead.171,172 This 

involves the development of a two-step model where the first is a logistic regression to estimate the 

relationship between variables and likelihood of being a zero count. The second involves a model to 

assess the relationship with the non-zero count data. To assess whether the standard or zero 
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inflated model is the more appropriate, a Vuong test173 may be applied to identify the best model. 

The zero inflated model allows for interpretation in terms of the risk of being a zero count and also 

the effect on increasing count. Where exploratory analysis demonstrates an excess of zero count 

data then zero inflated models will be employed and compared to standard models to ensure the 

most appropriate model is selected. 

2.4 - Survival Analysis 

Survival analysis aims to quantify the probability of survival from a given dataset. In reality, the end 

point need not be death and thus time-to-event analysis may be a more appropriate term to use. In 

theory, if all information was known about patients then a standard analysis using the total survival 

or event time as the basis for analysis would be feasible. In reality both within observational data 

and clinical trials, the time to event data is incomplete. This can arise if the event does not occur 

before the end of the study period, the data is not recorded or a patient drops out or is lost to follow 

up. In these instances the total time to event is unknown which is what the inclusion of censoring 

attempts to overcome. Within this section we will outline the key methods used for descriptive, 

inferential and predictive survival models utilised within the subsequent analyses. 

2.4.1 - Kaplan Meier Estimates (KM) 

In 1958 Edward Kaplan and Paul Meier107 published a paper outlining a method for analysing data 

with incomplete survival information. This approach is based on assigning three variables to each 

individual within the study:  

1) Length of time known for the individual (serial time). 

2) Event status at the end of their known time (event or censored).  

3) Study group to which they belong.  

By assigning these variables it is possible to include all patients from time 0 until something happens 

for that individual either in the form of an event or them being censored. 

KM analysis is based on the creation of intervals. Each interval end point is defined by the 

occurrence of the event of interest and the start is either time 0 or the previous occurrence of the 

event of interest. Importantly, censoring events are not used to define intervals. Visually intervals 

are the horizontal lines on a KM chart with each vertical shift denoting the start of a new interval. 

One key aspect of KM analysis which particularly enhances its utility is that intervals may vary in 

length. At each interval an interval probability is calculated based on the number of individuals alive 

at the start of an interval divided by the number at risk. This is where censoring influences the 

analysis, the patients who were censored during the previous interval are no longer considered at 

risk and therefore are removed from the denominator. It is important to note however that the 

probability presented on a KM curve is not the interval risk. If this were presented then survival 

could go up over time. Instead it is the cumulative probability that is presented which is derived 

from multiplying the interval probabilities together over time. In the event that censoring occurs at 

the same time as an event defining a new interval then the censoring is considered to have occurred 

after the event.  

Where two groups are being compared then a log rank test is usually applied to assess statistical 

significance.174 This is generated by calculating the chi-square for each time of an event in either 

group which is then summed to derive the ultimate chi-square for comparing the full curves. In 

practice this involves comparing the observed number of events to the expected number of deaths 
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were there to be no difference between the groups. If instead an assessment is wanted to compare 

the event rate in each group relative to one another then a hazard ratio can be generated instead.  

A number of considerations should be applied when assessing KM estimates. Firstly, the shape of the 

curve should be considered as this denotes important information about the population used to 

derive the analysis. Curves with many intervals suggests a larger population. Large vertical drops 

after each event suggests either high levels of censoring or lower population numbers overall. High 

levels of censoring should be interrogated further to understand why this was, particularly in the 

context of an intervention, as it might suggest an issue such as the treatment being so toxic that it 

cannot be tolerated and patients drop out. This is what is termed “informative censoring” as the 

censoring is directly caused by the exposure of interest175. In the context of an observational study it 

may still be of importance as high levels of censoring in one group versus another may suggest 

differences in how groups are followed up or managed.  

The total number at risk should also be assessed at each time point. As the number of events and 

censoring events accumulates over time, the at risk population falls.176 It is also important to note 

that after the first censoring event occurs, the probability shown is not the true probability of 

survival, but rather the estimate, as the true probability is unknown due to the censoring events.  

This means that the higher the level of censoring the greater the levels of uncertainty. The 

combination of a shrinking at risk population, combined with censoring means that with increasing 

time along the curve, the level of precision falls and the uncertainty of estimates increases. Thus 

more weight should be given to the interpretation of earlier survival times with a larger population 

than those later on with low at risk numbers and higher levels of censoring.   

Another key limitation of this approach is that it is limited to a univariate approach and thus cannot 

be used to adjust for potential confounding. Within the subsequent analyses this method will be 

used as an initial screening to identify differential survival based on the presence or absence of 

comorbidities of interest. Differences between the curves will be assessed using log rank tests 

however clinical significance will be assessed using differences in median survival times. This can 

therefore be considered a descriptive or exploratory analysis of survival outcomes, as without 

adjustment for potential confounding it is not possible to infer what results beyond our cohort may 

show. 

2.4.2 - Cox Proportional Hazards 

The Cox proportional hazards108 approach to time to event analysis is the most widely used method 

in the medical literature. It has the advantage over Kaplan Meier estimates in that it allows for a 

multivariable approach. This enables adjustment for confounding to be done within the model 

building process. The inclusion of additional variables, often termed covariates, allows for these to 

be conditioned on and adjusted for. Where these are felt to be potential confounders, their 

influence is in effect removed from that of the variable of interest.  In theory, this leaves just the 

true effect plus any residual confounding. A more detailed discussion on confounding and 

adjustment can be found in chapter 5.  As with KM estimates Cox models allow for the handling of 

censored data. The model is termed a semi parametric model as the underlying hazard model is not 

pre-specified allowing it to take any form, however it is assumed to be proportional over time . The 

relationship between covariates and hazard is then assessed using linear regression against a 

logarithmic scale. This has advantages over other methods which require the baseline hazard to be 

pre-specified as it removes the likelihood of modelling error as a result of an incorrectly specified 

baseline hazard.177  
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An important component of Cox regression analysis is the undertaking of diagnostics on the models 

to understand if violations of the underlying model assumptions have occurred or if models have 

included variables that are highly influential.177 

As mentioned above, Cox models rely on the underlying proportional hazards assumption. This can 

be assessed using Schoenfeld residuals.177 These residuals can be assessed for correlation with time 

to identify time varying effects. This is calculated both globally for the model and individually for 

each covariate. It may be possible to assess this numerically using the p value where a value of less 

than or equal to 0.05 is considered to be evidence of violation of the proportional hazards 

assumption. As detailed above, where large samples are used this may result in small p values in 

almost all cases rendering this approach unsuitable.61 Instead the effects can be assessed graphically 

by plotting Schoenfeld residuals against time. The application of a smoothing curve with splines can 

then be used to assess the relationship. Where there is no violation, one would expect to see a flat 

horizontal line at or close to zero176. If the relationship shows large scale divergence from this 

pattern then it may be considered to have provided graphical evidence of violation of the 

proportional hazards assumption. 

If this assumption is violated a number of approaches can be taken such as including interaction 

terms between the variable that does not have proportional hazards and time. Alternatively the 

cohorts may be stratified. Both approaches have potential limitations which are discussed in more 

detail in chapter 5. Alternatively approaches that do not rely on this assumption may be 

implemented. 

As a semi parametric model the Cox model relies on linear assumptions. Although the baseline 

hazard model is not pre-specified, the relationship of covariates to this is assessed in a log linear 

manner178. It is important to therefore assess for evidence of whether covariates are related to 

outcomes in a non-linear way. This can be assessed using Martingale residuals which are compared 

with increasing value of that variable. Where the general trend strays from a straight line 

relationship, this suggest non-linearity.177 Due to the nature of this assessment it is not applicable to 

categorical variables as these will be treated as dummy variables that are dichotomous.  

Where linear assumptions are violated, the issues can be overcome with stratification by converting 

the continuous variable in grouped categories which are included as covariates. Alternatively 

transformation of the data such as to a log or rooted scale can be attempted to see if this overcomes 

the issue.  

The final diagnostic is to identify any individual cases that may be disproportionately influential in 

their effect on the underlying Cox model. This can be assessed with the use of dfbefta residuals. 

Some heuristics may be applied here such that the maximum acceptable dfbeta is 2/√n where n is 

the number of cases. In individuals where this threshold is breached consideration should be given 

to excluding them from the analysis.177  

2.4.3 - Competing Risks Analysis 

When using time to event analysis for the purposes of survival outcomes a number of different 

metrics may be used. The most common and simplest is the overall survival, in these analyses the 

focus is on any cause of death. Within the oncological literature a number of other events may be 

used including progression, recurrence or time to next oncological treatment. Here, statistics on 

progression free survival, disease free survival and treatment free interval may be quoted. When 

looking at overall survival there may be limitations in the utility of this particularly in the context of 

multimorbid patients. If a patient has both cancer and a second condition, such as heart failure, and 
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the focus for the study is cancer outcomes, then a death from heart failure will compete with cancer 

as the potential cause of death. Once the patient has died from another cause it becomes impossible 

to know how long they would have survived for with respect to the cancer. In order to overcome this 

issue a competing risk analysis may be undertaken, with the aim of estimating the risk of death 

whilst accounting for the competing risks. There are two key ways of doing this analysis, namely, 

cause-specific competing risk and sub-distribution methods such as the Fine and Grey method .  

In both cases there is a reliance on having cause of death data as this allows the attribution of death 

to the cause of interest or not. Within the UK all deaths are registered via a death certificate which 

lists the cause of death in section 1 and section 2.183 Section one is considered the direct cause of 

death and section two comprises conditions that may have contributed but not directly. Within 

section 1 it is subdivided into section a, b and c. Section a must be completed and this is the direct 

cause of death. If appropriate, b is filled out and this is the direct cause of a and c can be used where 

there is a direct cause of b. By way of an example, a cancer patient who dies from a chest infection 

after recent treatment for lung cancer with known heart failure would have 1a: Bronchopneumonia, 

1b) Iatrogenic neutropenia, 1c) Squamous cell lung cancer 2) Congestive cardiac failure. In this 

example the lung cancer leads to the delivery of treatment inducing neutropenia, which in turn lead 

to the susceptibility to infection which in turn caused the pneumonia which cause the death of the 

patient.  

The accurate generation of any competing risk analysis is integrally linked to the accuracy of 

information about the contributors in our case cause of death. As such, misclassification of cause of 

death may introduce error into the analysis184–186. A more detailed description of this can be found in 

chapter 6. Within our study any cancer related cause of death found in section 1a, 1b or 1c was 

regarded as being a cancer related death. Cancer within section 2 was not included as this is not a 

direct cause. 

Cause-specific competing risk attempts to estimate the hazard attributable to a specific cause 

through the use of altered censoring. In our above example the patient who dies of congestive heart 

failure prevents further estimation of that individual’s cancer risk. As such, death by a competing risk 

to cancer can be thought of as a censoring event as opposed to an event. By altering how the data 

records events such that deaths from anything other than our cause of interest are excluded, it is 

possible to generate an estimate of the hazard for that particular cause. In addition to the issues of 

correct cause of death reporting, this method can suffer from a number of other pitfalls. If the 

treatment for the cause of interest increases the likelihood of death from other conditions, this may 

result in increased censoring, reduced numbers at risk and lower precision.175 The increased death 

rate from other conditions may also be of interest despite their exclusion as they are indirectly 

cancer related, but this cannot be identified from the cause of death data. A further criticism of this 

approach is that if the same method is applied to multiple cause-specific risks the sum of those risks 

will exceed the overall risk of death for that population and may even exceed 100% of the 

population.180 This stems from the fact that this approach is trying to estimate the risk in the 

absence of the competing risks and is not attempting to account for them within the analysis. As 

such this approach may be thought of as appropriate if the output of interest is the cause specific 

hazard and how individual covariates contribute to this. If however the outcome of interest is the 

cumulative incidence of events, then this approach would be unsuitable.  

In this alternative scenario where the probability of an incident occurring is of interest the 

alternative sub-distribution approach may be more appropriate. This approach involves a modified 

form of Cox proportional hazards where competing events do not remove the patients from the at 

risk population, but are instead kept in the population with reducing weighting as time progresses.181 



43 
 

This allows the sub-distributions of the total hazard to be calculated resulting in accurate generation 

of the true cumulative incidence overall.180 This difference can be illustrated with the example of 

wanting to understand the risk of developing a treatment toxicity at one year. If there were a 

population of 10 patients, 5 of whom die within the first year and 3 of whom get the side effect at a 

year, then the cause-specific approach would suggest that the probability of toxicity at one year is 

60% that is 5 are no longer at risk and 3/5 have toxicity. The Fine and Grey approach would state 

that the level of toxicity is 30% because of all of those who could have got toxicity 3/10 do. Thus if 

the question is relating to how diabetes impacts on the risk of developing toxicity at one year 

relative to other groups the cause-specific approach is more appropriate. If however the research 

question focusses on how diabetes impacts on the cumulative incidence of toxicity at one year the 

Fine and Gray method would be more appropriate. It is however worth noting that in both methods 

where the exposure of interest is related to both the cause of interest and other causes of death, it 

is possible to generate highly misleading results from either method.180 

This work is trying to demonstrate whether or not comorbidity is associated with differential 

outcomes directly in cancer irrespective of other causes and how at each time point the risk of 

cancer death differs between those who are still alive. As such, the cause specific approach is the 

more appropriate choice and the one that has been implemented and outlined further in chapter 6. 

2.4.4 - Forest Methods 

Random survival forests are a method first described in 2008 applying a modification of the Random 

Forest ensemble learning method to censored survival data.109,187 The method is based upon 

multiple decision tree regressions with randomness integrated through introduced variation 

between the different decision trees. The analysis population is used to draw a random sample, 

usually two thirds, on which to conduct decision tree regression. The selected sample is split into 

two groups where log-rank is calculated and used to select the value of the variable where the log-

rank score is greatest which maximises the survival difference between the two groups. This is done 

multiple times until the population has been divided into small groups. Each selection point of a 

variable number for splitting is termed a node, the split is called a branch and the end groups are 

termed leaves. In order to introduce further randomness not all variables are assessed at each node, 

instead a random selection of variables are chosen which are termed the “candidate variables”. Of 

those candidate variables the most discriminatory variable value is selected for that node and the 

data is then branched. The individual tree often has low predictive power, so to improve this the 

process is repeated multiple times. Due to randomness in the sample selection and candidate 

variable selection, when repeated, the subsequent trees will be different. The multiple trees can 

then be combined to create the “forest” where the combination of many weak learners in an 

ensemble aims to create a strong learner with better predictive accuracy.188  

The model performance can be altered through a process of optimisation via hyper-parameter 

tuning.189 Here the number of candidate variables selected can be changed, the number of trees 

built and changing the minimum number of cases in the terminal leaves altered. The optimal 

combination of these hyper-parameters can then be identified and used within the final model. 

Random forest methods have a number of advantages over other methods. Firstly, they have no 

underlying model assumptions and can therefore be easily used to perform analysis when data has 

been shown to violate proportional hazards assumptions. Additionally, they can be used to identify 

non-linear patterns of association. The method has also been shown to be robust to collinearity and 

the inclusion of non-informative variables.109 
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Unlike other forms of machine learning the resulting model is interpretable rather than being a 

“black box”. It is possible to identify the most important predictors using Variable Importance 

Scores109. Here each variable is randomly permuted and the impact on model performance assessed. 

Where this does not impact on model performance it suggests the variable is not particularly 

important, where permutation has a big impact, then it suggests the variable is important. Although 

the underlying model is not impacted by collinearity, the VIMP scores may be, such that correlation 

between variables may deflate VIMP scores.190 This can be partly overcome by also looking at 

pairwise VIMP. Here the process is the same, however each combination of two variables are 

permuted together to identify pairings of variables that are important together. This also offers a 

method of assessing interactions between variables. Although this in theory could be expanded to 

increasing numbers of combined variables this is a computationally expensive approach and going 

beyond pairwise VIMP quickly becomes impractical.  

An additional measure of information gain can be extracted and analysed using average minimum 

tree depth.109 This involves calculating the average depth of node that a variable is first used across 

the forest. The closer to the root, the greater the information gain that variable has. A threshold for 

important information gain can be calculated in addition to identify those that are important 

variables. 

The models can also be used to create stratified survival curves and conduct partial plot analysis 

where the relationship between individual variables and outcome can be assessed.  The models can 

also be used to create predictions for new patients and if desired these predictions can also be given 

some level of interpretability using counterfactual reasoning or application of methods such as 

Locally Interpretable Model Agnostic Explanations (LIME).191 

This study will apply the RSF method to PPM data and uses VIMP, pairwise VIMP and average 

minimum tree depth to identify variables and combinations of variables that are highly informative 

in generating predictions. The application of partial plot analysis to the variables of interest is used 

to identify how variables relate to the patterns of prediction across the cohort. In view of the 

predictive framework of this approach several key principles are applied in the interpretation of 

results. 

1. Models will first be tuned to optimise predictions prior to interpretation. 

2. Where model accuracy is shown to be poor, low weight will be given to the model outputs. 

3. VIMP scores will be used to compare importance within a model but not between different 

models. 

4. Important predictors will be used to identify baseline characteristics that define a group but 

not suggest analysis provides evidence for a mechanistic or causal link even if a plausible 

explanation exists.  

2.4.5 - Predictive Accuracy 

In order to compare models using a predictive framework it is necessary to use some metrics to 

compare accuracy. Until recently in the domain of survival prediction C index192 was the method of 

choice with this approach assessing the discriminatory power of a model. It is based on creating all 

possible combinations of pairs of subjects from the population and estimating the proportion of the 

cases where the model accurately assess which patient will outlive the other. Recent studies have 

however shown that this approach is flawed as two correlated C statistics do not always converge to 

zero under the null hypothesis resulting in an increased risk of type 1 errors.193 Although work 

around strategies have been suggested including using the confidence interval distributions of the C 

index, as opposed point estimates, this still relies on equal censoring distributions to occur in each 
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group which is most often not the case. As a result, although the C index has been used as a marker 

of discriminatory power within the model building process, it is not employed as a primary 

performance indicator. 

A key issue with survival prediction is that models may perform differently at different time points 

and that different time points have different levels of importance clinically.194,195 A key example is 

death within 30 days of diagnosis. In this cohort it is important not to deliver aggressive treatment as 

this will result in reduced quality of life but with no potential for benefit. Thus being able to identify 

patients who are in this group is of huge importance. If a model therefore has an overall accuracy of 

90% over 5 years however systematically fails to identify these early at risk individual, it may be a 

less useful model than one with a lower overall accuracy but with better accuracy in identifying early 

events. As a result a series of tests and principles are applied to our model accuracy assessment 

1. Separate cohorts will be used to develop and test the error rates. 

2. Integrated Brier score will be used to assess overall model performance.196,197 

3. Time dependent Brier will be used to assess time dependent variation in prediction. 

4. C index will be assessed within model building but viewed as less important that the other 

performance metrics. 

5. Clinical utility and constraints will be assessed alongside performance metrics to assess 

whether models are fit for purpose. 

2.5 - Prognosis Research Strategy Group (PROGRESS)  

Within section 2.1.1 a breakdown of classes of analysis and their relationship to types of conclusion 

is presented. This thinking has been applied to the particular area of health outcome research in the 

work published by the Prognosis Research Strategy (PROGRESS) group. Over the course of four 

publications this multicentre expert group attempts to frame both the value and minimum standards 

of research relating to prognostic modelling. This work builds upon the concepts presented in the 

section 2.1.1 and helps to contextualise the value of the material presented within this thesis, 

despite, by design, not including formal causal analysis.  

Each of the four PROGRESS publications focusses on a different type of analysis namely, descriptive 

survival analysis, survival analysis for prognostic factor identification, survival predictions and 

survival predictions that include treatment information. PROGRESS 1198 focusses predominantly on 

best practice when describing the outcome trajectory for patients with a given condition and this is 

analogous to the work presented within Chapter four with Kaplan-Meier methods. PROGRESS 2199 

focusses on research to identify prognostic factors in relation to the outcome of interest. This is 

applicable to the work presented in chapters 5 to 6 and the variable importance analyses conducted 

in chapter 7. PROGRESS 3200 details prognostic modelling and the value of individual level outcome 

predictions. This aspect of their work relates to the remaining material covered in chapter 7. 

PROGRESS 4201 related to stratified treatment outcome predictions which is not considered within 

this thesis.  

The previous PROGRESS group publications are important in highlighting the value that prognostic 

information can play in clinical decision making, informing future trials, identifying the most at risk 

groups and identifying the factors that define the most at risk cohorts. This information is shown to 

be of clinical and patient benefit even outside of an explanatory framework that is intrinsic to causal 

modelling. This approach to clinical outcome research highlights how the results presented within 

this thesis have the potential to inform and improve clinical care and research in future whilst 
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avoiding the many pitfalls of attempting causal modelling with observational data and its many 

biases and pitfalls120,121. 

2.6 - Software and Tools Used 

All data extraction, analysis and data visualisation was undertaken using R software. Many of the 

analyses required multiple packages not included within base R. A full list of all the packages used 

and their version numbers can be found within Table 23 in the appendix. 

2.7 - Ethics 

This research was conducted after obtaining formal ethics review (IRAS: 277122). The project 

applied a number of data safeguards including removal of patients with recorded opt outs, de-

identification and minimising the number of data items to include only those necessary to undertake 

the analyses. All analysis was undertaken using secure NHS infrastructure on password protected 

and encrypted computers. The project had regular oversite from The Leeds Teaching Hospitals Chief 

Clinical Information Officer, senior oncology clinicians, a number of academics with expertise in this 

area of research and two patient representatives. The projects is entirely compliant with all relevant 

laws including general data protection regulations (GDPR)68 and the data protection act.202 
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Chapter 3 – Descriptive and Exploratory Analysis of the Research Dataset 
 

3.0 - Introduction 

 

3.0.1 - Context 

This chapter builds upon the topics and concepts outlined within the first two chapters of the thesis. 

Before conducting any inferential or predictive analyses it is first important to undertake some initial 

descriptive and exploratory analysis to understand the dataset on which subsequent modelling will 

be conducted. This chapter will focus on describing the baseline characteristics of the study cohorts, 

as well as assessing key features such as missingness, collinearity, accuracy and identifying potential 

sources of bias. By understanding these features of the dataset, we can adapt and identify 

approaches to subsequent inferential and predictive analyses that minimise the effects of these, or 

alternatively, use this information to inform our interpretation of analysis output. Some aspects of 

these dataset characteristics are important for understanding limitations of data more broadly, thus 

informing interpretation of previously published literature in this area of research. Before detailing 

these aspects of the dataset, a brief description of the system from which the data is derived is 

presented in order to provide context to the data provenance on which all subsequent analyses are 

based.  

3.0.2 - Data Provenance: The History and Origins of PPM and the Leeds Dataset 

All of the data used within the subsequent analyses were derived from the Leeds Teaching Hospitals 

Trust (LTHT) EPR system. LTHT has been using electronic patient records for oncology care going 

back as far as the 1990s. The system originally in place was called Patient Pathway Manager (PPM) 

and was designed to capture the required data items needed for the national cancer registry. Over 

time this system was developed to create a full oncology electronic record system that included 

clinical notes, letters, results of investigations etc. The capability of the software was recognised by 

other clinical specialties, such that when in 2011 the hospital were looking to adopt a trust wide EPR, 

two thirds of specialties were already using PPM. The decision was therefore taken to develop PPM 

into a specialty agnostic EPR system for the entire hospital. This new iteration is known as PPM+143. 

The development history of the EPR is reflected in the changes in data available over time such that 

the depth and breadth of information has grown year on year. Key information, such as 

chemotherapy data and admissions are only available from 2004 onwards, whereas cancer 

diagnostic data is available from the 1990s.  

As PPM has been adopted as the trust wide EPR, clinical software tools used for specialist purposes 

have been integrated into it. Each of these commercial software tools will have its own clinical 

dataset that underpins the running and utilisation of it. Although not all of these data items may be 

visible in the PPM front end the use of common identifiers across software databases means that 

these additional sources of clinical data can be used for the purposes of analysis. These are 

commonly referred to as linked systems with key examples being surgical data, pathology data, 

results of investigations and prescribing data, although many more exist. Throughout the thesis the 

dataset will be referred to as the PPM dataset which includes all the data available collected via both 

PPM+, the original PPM and other linked systems. 

Crucially the PPM dataset is the shared care record system for the Leeds City region and is known as 

the Leeds Care Record. The PPM dataset therefore also contains the basic information of patients 

within the region even where they have not accessed hospital services. 
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3.0.3 - Aims and Objectives 

Aim:  

1. To describe the characteristics of the research dataset and examine how these may 

introduce, bias, confounding and error into subsequent analysis and interpretation. 

Objectives: 

1. Describe the basics demographics and compare to regional and national demographics. 

2. Quantify the completeness of the dataset. 

3. Visualise the impact of geography on data accuracy of dataset. 

4. Quantify the accuracy of clinical coding for comorbidity identification using diabetes mellitus 

as a case study. 

5. Assess the prevalence of comorbidity in the cancer population and compare to the 

background population prevalence. 

6. Assess the relationship between age and comorbidity. 

7. Assess the timing of the diagnosis of comorbidity relative to cancer diagnosis. 

8. Quantify collinearity within the dataset. 

3.1 - Methods 

3.1.1 - Identification of the PPM cohort and sub-cohorts: 

The PPM Cohort 

This dataset includes all patients within the PPM dataset with whom LTHT have a legitimate care 

relationship. De-identified demographics information was extracted programmatically using SQL 

(within R) and R to include information about age, gender, postcode sector, year of entry into the 

PPM dataset and death status. This information was subsequently joined with external open source 

data such as the English Index of multiple deprivation149 for each postcode sector. Patients without 

an NHS number were excluded. 

The Cancer Cohort 

A subpopulation of the PPM cohort was identified to include all patients with a cancer diagnosis. The 

PPM database contains information on cancer diagnoses that are used as the basis of the national 

cancer registry submission. All patients with a “C” ICD-10125 code for a malignancy were identified 

from this dataset. As this population is derived from the PPM Cohort all those without an NHS 

number were already absent from the dataset. Diagnoses were limited to confirmed primary 

malignancies, with all recurrence and progression events excluded. Data was extracted relating to 

the basic demographics to match the information detailed above for the general PPM cohort. Where 

a patient was found to have multiple malignancies their first episode by date was kept as their 

diagnosis date and other subsequent diagnoses excluded. Thus patients with multiple malignancies 

are only represented once within the cohort. 
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Cancer Site Specific Cohorts. 

These were derived from the full PPM cohort applying the same exclusion criteria as the cancer 

cohort. Prior to the exclusion of multiple malignancies patients were subdivided into the most 

common cancer diagnoses as discussed in chapter 2. This was achieved using the specific 3 digit ICD-

10 definitions for each cancer as detailed in Table 24 of the appendix. Patients were able to appear 

only once within each site specific cohort such that only the earliest episode of that cancer was 

retained. As each site was treated as a separate cohort the same patient may be present multiple 

times across the cohorts if they have had multiple malignancies in different tumour sites.  

3.1.2 - Demographics and Basic Descriptors 

Analysis was undertaken to understanding the basic make-up of the whole PPM patient population 

in addition to the cancer patient cohort. Comparison was made to the population of the UK and the 

population of the Yorkshire and Humber Region by making use of open source data from the Office 

of National Statistics.203 Summary statistics and exploratory analyses were produced using R to 

include population pyramids, median age, median IMD and percentage by gender. Information on 

the date of registration in PPM was converted into a year of registration with annual and cumulative 

patients entering the dataset calculated from 2004 onwards.  

3.1.3 - Missingness 

In order to assess missingness158 the proportion of missing data for age, gender, deprivation, 

histology, stage and grade were assessed. To assess changes in data quality over time missingness of 

stage and grade data was assessed annually.  

3.1.4 - Patient Geography  

To assess geographical variation in data availability, information was extracted by Colin Johnston 

from LTHT. This information included the proportion of events for patients from each postcode 

where LTHT was the originating / referring unit, i.e. their initial management was in LTHT.  

This was converted into an average percentage by postcode sector and then joined onto the whole 

PPM and cancer cohorts. The longitude and latitude of each postcode sector was obtained from ONS 

and used to produce mappings of the proportion of patients from a given region that had their care 

delivered at Leeds Teaching Hospitals.  
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3.1.5 - Accuracy of Clinical Coding 

3.1.5.1: Study Population and Diabetes Mellitus Definition: 

This analysis made use of the cancer cohort and the site specific cohorts described above. Diabetes 

mellitus (DM) was identified through the programmatic evaluation of clinical coding in PPM or 

abnormal HbA1c results recorded at LTHT. All clinical coding events within a patient’s clinical records 

were analysed to identify any instance of a diabetic ICD-10 code within their coded events (see 

appendix for ICD-10 code DM data definitions). The first occurrence of a DM code was taken as 

being indicative of the diagnosis date for DM. Patients with HbA1c results of greater than or equal to 

48 mmol/mol204  were classified as being diabetic, with the first abnormal HbA1c results taken as the 

date of diagnosis. Subsequently there groups were defined for those identified as having a diagnosis 

of DM: i. Those identified with abnormal HbA1c only, ii. those identified through clinical coding only, 

and iii. those with a hybrid of either abnormal HbA1c or clinical coding (Figure 2a). In the case of the 

hybrid approach, if a patient had both abnormal bloods and clinical coding, then the earlier of these 

two events was treated as the DM diagnosis event. 

To assess the impact of patients living on the edge of the hospital catchment area a sub-population 

of patients was created to include only those patients living within the geography for which LTHT’s 

blood laboratory process General Practice/primary care blood samples, which has been termed the 

“LTHT blood catchment area”. This area was defined by identifying primary care practices that had 

provided 10,000 or more blood samples to the LTHT lab and including all patients registered at these 

practices. The date of DM diagnosis as per the three definitions was compared to the date of cancer 

diagnosis. Those patients with a diabetic diagnosis date on or before the date of cancer diagnosis 

were treated as pre-existing diabetics. As comparisons were made between clinical coding and 

HbA1c, patients were limited to those with a cancer diagnosis from 2005 onwards as blood data was 

only available from 2004. 

Subgroup Analysis 

In order to assess aspects of diabetes identification rates and timings of different DM definitions the 

analysis was conducted on subsets of the hybrid definition DM population. Patients were divided 

into their route to inclusion in the hybrid diabetic cohort (Figure 2b), namely, uniquely identified by 

HbA1c, uniquely identified by clinical coding or universally identified (Identified by both coding and 

HbA1c).  

Temporal Analysis: 

A comparison between the date clinical coding and HbA1c blood results first suggest a DM diagnosis 

was conducted by analysing those patients in the universally identified group of the hybrid DM 

cohort. The earliest indicator of DM from bloods and coding were compared and the time difference 

calculated. The percentage of patients with evidence of diabetes prior to cancer diagnosis that was 

not identified by clinical coding was calculated for the all cancer cohort. 
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Figure 2: Graphical Representation of Diabetes Mellitus Data Definitions and Subgroups –a) Graphical representation of the three data definitions of Diabetes Mellitus used to assess the 
accuracy of clinical coding data. b) Graphical representation of the subgroups of the hybrid definition cohort used in the assessment of patient numbers and timing of diabetes mellitus 
diagnosis. Note that the circle area is not scaled to the patient numbers in the dataset 

a) b) 
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Survival Analysis: 

Survival analysis was conducted using Cox proportional hazard adjusting for age, gender (where 

relevant) and Index of Multiple Deprivation (IMD) quintile.149 Four Cox proportional hazards108 

models were built using a dataset of all patients and datasets of patients defined by each of the 

three definitions of DM. Resultant survival trajectories were compared across the dataset visually 

with survival curves and comparisons of median survival and hazard ratios for clinical significance. 

Statistical significance was not tested due to DM populations having incomplete pairing with some 

cases appearing in multiple diabetes definition groups and some in only one. Hazard ratios were 

extracted from the resultant models in order to identify differences in the hazard estimates 

produced by each of the diabetic definitions.  

3.1.6 - Prevalence of Comorbidity 

ICD-10 code definitions for the comorbidities of interest (see chapter 2 and appendix for more 

details) were used to identify patients with a record of these diagnoses. All clinical coding data for 

each patient was extracted with partial string matching used to identify each event with a code of 

the comorbidity of interest. The earliest coded event was used as the date of diagnosis for that 

comorbidity in that patient. Diabetes Mellitus data was enhanced using HbA1c data, where 

available, such that a result of greater than or equal to 48mmol/mol was treated as diagnostic for 

diabetes.204 Obesity data was enhanced using height and weight data. Implausible or extreme BMI 

results of below 10 and above 100 were excluded along with results where height was implausible or 

extreme namely above 3 meters and below 1 meter. Patients with their comorbidity diagnosed on or 

before the date of cancer diagnosis were treated as having the condition as a pre-existing condition. 

Those where the diagnosis was recorded after their cancer diagnosis had the condition treated as a 

late effect. 

Data for common comorbidities from the NHS Digital Quality Outcomes Frameworks data156 was 

used to determine their prevalence in England and the North East and Yorkshire. These were used as 

comparators to the all cancer cohort at diagnosis and the all cancer cohort at any time. Additionally 

the number of comorbidities per patient was calculated with histograms generated to visually 

demonstrate the distributions. 

3.1.6 - Age and Comorbidity: 

The relationship between age and comorbidity was assessed by calculating the median age of cancer 

site specific cohorts and comparing this to the percentage of the cohort with one or more 

comorbidities. Formal assessment of this relationship was conducted using a zero inflation Poisson 

model.171 The coefficients were then extracted and analysed to reveal the relationship between age 

and being a patient with no comorbidity and the relationship between age and the comorbidity 

count. In order to assess whether the zero inflation model performed better than a standard Poisson 

model both were created and then compared using the Vuong test to assess for superiority or non-

superiority.173 

3.1.7 - Timing of comorbidity analysis 

Analysis of the timing of comorbidity diagnosis in days before or after cancer diagnosis was 

calculated for each patient. Initial analysis included all comorbidities together without distinguishing 

between the specific diagnoses. Data was represented visually using a histogram with 1 month bin 

width and separately with daily bin width. The analysis focussed on the year of diagnosis ranging 

from 6 months prior to six months after cancer diagnosis. The analysis was conducted using the all 

cancer cohort and the site specific cohorts to identify differences in patterns between cancers. A 
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further analysis was undertaken using the all cancer cohort assessing the pattern of diagnosis in the 

15 most common comorbidities by prevalence. Where comorbidities had overlapping definitions i.e. 

any diabetes mellitus and type one diabetes mellitus, the broadest criterion was included and others 

excluded.  

3.1.8 - Collinearity of Variables 

To assess collinearity within the dataset pairwise correlation was calculated across comorbidities, 

age, gender, and deprivation quintiles. This was conducted using a Spearman’s correlation estimate 

along with a significance test. Results are presented with a significance threshold of p=0.05 and 

additionally with a Bonferroni correct p value threshold. The latter is included due to the potential 

for erroneous conclusions to be drawn based on multiple comparisons, this is described in more 

detail in chapter 2. 

3.2 - Results 

3.2.1 - Demographics 

PPM 

The PPM dataset contained 2,764,613 patients when assessed on 05/10/2020. Of these, 459,025 

were deceased, leaving 2,305,588 living patients Figure 3. This equates to a population size 

equivalent to 49.1% of the estimated total population of the Yorkshire and Humber Region. It is 

important to note however that due to migration this is not a true reflection of this proportion of 

the Yorkshire and Humber population. Figure 4 shows the population pyramids for the UK, Yorkshire 

and Humber Region and The PPM cohort. This demonstrates little by way of variation between the 

national and regional data but marked differences in the PPM cohort. PPM contains a lower 

proportion of patients under 20, but more patients between 20 and 55 years of age.  Similar 

proportions are seen in patients in the over 65 age group across all cohorts. Within the PPM cohort 

the reduced number of under 20s translates to a 5 year increase in median age when compared to 

the national data which are 45 and 40 respectively. The PPM cohort demonstrates a higher 

proportion of women, with 53.04% being female compared to 50.63% nationally. 

The development of the PPM cohort over time can be seen in Figure 5. This shows the number of 

registrations since 2004, which is not consistent over time. 2012 is the largest growth year, with 

659,993 new registrations representing 23.87% of all patients registered on PPM. This is over twice 

as many as the next biggest year of 2015 with 295,465 new patients representing 10.69% of PPM 

patients. 
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Total Patients in PPM 

3,241,623 

Patients with NHS Number 

2,764,613 

Patients without NHS Number 

477,010 

Patients with Confirmed Primary 
Malignancy prior to 2019 

223,641 

Patients without Cancer Diagnosis 

2,540,972 

Total Cancer Diagnoses 

933,889 

Cancer Diagnoses prior to 2019 

795, 316 

Diagnoses After 2018 

138,573 

Malignant Cancer 
315,878 

Benign or 
 Provisional Cancer 

Diagnosis 

479,438 

Primary Diagnosis 

278,510 

Recurrence or Progression 

37,368 

a) 

b) 

Figure 3: Consort Diagram for PPM Population - Summary of a) Patient numbers within the PPM cohort and those 
with a confirmed cancer diagnosis b) Number of cancer diagnoses within the PPM dataset 
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Figure 4: National, Regional and Local Population Pyramid Comparison - Population pyramids for the UK, Yorkshire and Humber and PPM populations. The UK and Yorkshire and Humber 
results are derived from ONS data and the PPM results are derived from the local PPM dataset

United Kingdom Yorkshire and Humber 
Region 

PPM Cohort 
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Figure 5: Case Registration Numbers in PPM – Summary of the number of patient registrations, deaths and living patients within the PPM dataset by year. The purple bars represent annual 
registrations with the blue line representing cumulative registrations. The red line represents cumulative deaths registered in PPM and the green line the cumulative number of living patients 
within the PPM dataset. The values provided include only those from 01/01/2004 onwards. 
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Cancer Cohorts 

Cohort 
Median 
Age 

Median 
IMD Male n (%) Female n (%) No Comorbidity n (%) Comorbidity n (%) 

Median 
Comorbidities 

Total 
Cohort 
Size 

All Cancer 67 3 112,550 (50.6) 109,866 (49.4) 179,646 (80.77) 42,770 (19.23) 0 222,416 

Bladder 74 3 5,293 (70.85) 2,178 (29.15) 5,569 (74.54) 1,902 (25.46) 0 7,471 

Brain 58 3 4,106 (60.26) 2,708 (39.74) 5,126 (75.23) 1,688 (24.77) 0 6,814 

Breast 60 3 218 (0.69) 3,1484 (99.31) 28,512 (89.94) 3,190 (10.06) 0 31,702 

Cervical 45 2 1 (0.03) 3,093 (99.97) 2,897 (93.63) 197 (6.37) 0 3,094 

Colorectal 69 3 25,121 (58.76) 17,630 (41.24) 33,582 (78.55) 9,169 (21.45) 0 42,751 

Connective 63 3 1,046 (58.27) 749 (41.73) 1,462 (81.45) 333 (18.55) 0 1,795 

CUP 71 2 2,345 (48.64) 2,476 (51.36) 3,556 (73.76) 1,265 (26.24) 0 4,821 

Endometrial 66 3 0 (0) 5,763 (100) 4,850 (84.16) 913 (15.84) 0 5,763 

Kidney 67 3 3,113 (62.27) 1,886 (37.73) 3,583 (71.67) 1,416 (28.33) 0 4,999 

Laryngeal 66 2 1,696 (80.88) 401 (19.12) 1,717 (81.88) 380 (18.12) 0 2,097 

Leukaemia 63 3 3,130 (58.79) 2,194 (41.21) 4,205 (78.98) 1,119 (21.02) 0 5,324 

Liver 67 3 2,509 (68.76) 1,140 (31.24) 2,535 (69.47) 1,114 (30.53) 0 3,649 

Lung 71 2 16,588 (55.18) 13,473 (44.82) 21,150 (70.36) 8,911 (29.64) 0 30,061 

Lymphoma 63 3 4,419 (54.83) 3,641 (45.17) 6,423 (79.69) 1,637 (20.31) 0 8,060 

Melanoma 60 4 3,213 (46.45) 3,704 (53.55) 6,089 (88.03) 828 (11.97) 0 6,917 

Myeloma 69 3 1,555 (57.25) 1,161 (42.75) 2,002 (73.71) 714 (26.29) 0 2,716 

Oesophageal 70 3 4,277 (68.15) 1,999 (31.85) 4,946 (78.81) 1,330 (21.19) 0 6,276 

Ovarian 63 3 0 (0) 3,751 (100) 3,196 (85.2) 555 (14.8) 0 3,751 

Pancreatic 70 3 2,260 (51.04) 2,168 (48.96) 3,039 (68.63) 1,389 (31.37) 0 4,428 

Prostate 69 3 24,538 (99.97) 7 (0.03) 20,194 (82.27) 4,351 (17.73) 0 24,545 

Skin 73 3 13,475 (53.1) 11,900 (46.9) 18,473 (72.8) 6,902 (27.2) 0 25,375 

Stomach 72 3 2,993 (63.57) 1,715 (36.43) 3,559 (75.59) 1,149 (24.41) 0 4,708 

Testicular 34 3 2,407 (99.96) 1 (0.04) 2,322 (96.43) 86 (3.57) 0 2,408 

Thyroid 49 3 670 (26.83) 1,827 (73.17) 2,097 (83.98) 400 (16.02) 0 2,497 
Table 4: All Cancer Cohort and Site Specific Cohorts Demographics Summary – Summary of patient numbers and baseline characteristics at the point of cancer diagnosis for each of the 
research cohorts including each of the PPM site specific cohorts and the PPM All Cancer Cohort
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The all cancer cohort contains a total of 222,416 unique patients with a total of 223,641 diagnoses 

across the site specific cohorts. As shown in Figure 6 the population make-up of the all cancer cohort 

is different from that of both the PPM population and the national population. It shows much higher 

proportions of patients over the age of 50 and far fewer patients under the age of 20. This is 

demonstrated by the median age in this cohort which is 67 compared to 45 in the PPM cohort. The 

cancer cohort also demonstrates a high burden of ill health with 19.23% of patients having evidence 

of one or more significant health issues at the point of cancer diagnosis. Across the site specific 

cohort there is heterogeneity of baseline characteristics with median age ranging from 34 in 

testicular cancer to 74 in bladder cancer. Similarly, variation is seen in gender balance and 

deprivation levels with different cancers. Cervical, CUP and lung cancer are seen to have higher 

levels of deprivation, where melanoma has lower levels of deprivation. Table 4 also highlights 

potential evidence of inaccurate data, with patients of the wrong gender having a gender specific 

cancer such as prostate, testicular and cervical cancer.  

 

 

Figure 6: Age and Gender Distribution of the PPM All Cancer Cohort – Population pyramid for the PPM All Cancer Cohort 
patients at the point of cancer diagnosis. 
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3.2.2 - Missingness 

 

Site Gender Age Grade IMD  Stage Histology 

Bladder 100 100 79.64 94.66 10.44 100 

Brain 100 100 3.08 94.86 18.52 100 

Breast 99.99 100 83.4 94.28 46.75 100 

Cervical 100 100 71.59 94.21 88.62 100 

Colorectal 99.97 100 61.22 95.11 49.33 100 

Connective 100 100 50.75 95.32 12.2 100 

CUP 100 100 24.02 94.4 1.78 100 

Endometrial 99.98 100 89.4 93.72 81.12 100 

Kidney 100 100 36.81 94.8 8.96 100 

Laryngeal 100 100 68.24 95.57 11.4 100 

Leukaemia 100 100 28.93 95.17 0.56 100 

Liver 100 100 12.33 95.45 6.39 100 

Lung 99.99 100 36.47 95.28 27.15 100 

Lymphoma 100 100 28.06 94.69 23.5 100 

Melanoma 99.99 100 14.25 93 75.21 100 

Myeloma 100 100 29.46 94.88 10.79 100 

Oesophageal 99.98 100 58.12 93.74 18.38 100 

Ovarian 100 100 70.22 93.55 81.07 100 

Pancreatic 99.95 100 18.69 94.22 10.99 100 

Prostate 100 100 60.21 94.24 8.64 100 

Skin 100 100 33.6 96.32 4.42 100 

Stomach 99.98 100 60.99 94.12 10.49 100 

Testicular 100 100 11.17 92.48 72.92 100 

Thyroid 100 100 31.56 95.07 12.05 100 

Table 5: Percentage of Complete Data for Site Specific Cohorts –Summary of the percentage of data that is complete for 
gender, age, grade, deprivation quintile (IMD), stage and histological subtype for each of the PPM site specific cohorts.  

Table 5 quantifies the proportion of cases in each site specific cohort with complete data for age, 

gender, deprivation, histological subtype, cancer stage and grade. Across all cancer sites age, gender 

and histological subtype are available for all or nearly all cases. Deprivation data is available for the 

majority of patients with at worst 7.52% missing in the testicular cancer cohort.  Cancer grade and 

staging data has a lower level of completeness with wide variation between cancer sites. 

Endometrial cancer has on average the most complete data with 10.6% missing grade data and 

18.88% missing cancer staging data. By contrast primary brain tumours have the greatest levels of 

missing data with 96.92% missing a grade and 81.48% missing staging data.
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Figure 7: Annual Missing Cancer Stage and Grade data in the All Cancer Cohort of the PPM Dataset– a) The annual number of patients with missing cancer grade data b) The annual number 
of patients with missing cancer staging data c) The annual proportion of patients with missing cancer grade data d) The annual proportion of patients with missing cancer staging data 
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Figure 7a and Figure 7b show the number of patients with missing grade and stage data annually across the cancer cohort. Figure 7c and Figure 7d 

represents these same data as a proportion of cases. This demonstrates annual variation in the percentage with missing staging data and grade data. 2009 

has the lowest levels of completeness for both data items, where 2013 has the most complete grading data and 2016 has the most complete staging data. 

No clear pattern appears to be identifiable in relation to completeness over time.  

Beyond cancer specific data, further data items are also missing in a high proportion of cases. One key example is that of ethnicity which is recorded and 

unknown, unanswered or missing in 65.7% of the total PPM population. 

3.2.3 - Patient Geography  

 

Figure 8: Boundary Effects - Percentage of the All Cancer Cohort from each postcode whose original cancer diagnosis was Leeds Teaching Hospitals in a) Leeds City Region, b) North of England. 

a) b) 
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The geographical mapping of the oncology population in Figure 8  demonstrates that patients in the 

Leeds city centre are almost exclusively managed within the Leeds Teaching Hospitals network of 

hospitals. The further the distance someone lives away from the hospital, the lower the chances that 

their care is exclusively within LTHT. Areas in close proximity to other hospitals such as Bradford 

Royal Infirmary, Airedale Hospital, Pinderfields and Harrogate General appear to have a smaller 

proportion of patients managed in LTHT than their distance from Leeds might otherwise suggest. 

There are a number of locations where despite being over 25 miles from Leeds a large proportion of 

cases are managed at LTHT, this includes some of the areas around Manchester.  

3.2.4 - Accuracy of Clinical Coding 

A total of 191,420 unique patients were identified in the more limited time period cohort used for 

these analyses. This included 14,206 (7.4%) with a DM diagnosis at any time and 8,567 (4.5%) with a 

DM diagnosis at or before cancer diagnosis.  

The abnormal HbA1c only and clinical coding only definitions identified different individuals as 

having DM, although similar overall numbers of cases (Figure 9). Consequently, the hybrid definition 

identifies a greater number of cancer patients diagnosed with DM at any point. When the population 

analysed is limited those living within the geography served by the LTHT blood laboratory, the DM 

diagnostic accuracy of the abnormal HbA1c definition improves from 73.3% to 91.9%. Conversely, 

the accuracy of the clinical coding only definition declines from 81.1% to 69.9%. 

Temporal analysis of the time DM was first recorded by clinical coding and abnormal HbA1c 

identified low levels of agreement with 64.4% of patients having a date difference of greater than 

one year and 20.4% greater than 5 years. The use of clinical coding alone to identify DM resulted in 

17.5% (over 1 in 6) being incorrectly classified as being diagnosed with DM post cancer diagnosis 

when abnormal HbA1c data identified DM being diagnosed pre-cancer diagnosis. A smaller 4.4% of 

patients are incorrectly classified as being diagnosed with DM post cancer by abnormal HbA1c data 

where clinical coding identified DM being diagnosed pre-cancer diagnosis.  

Cox models generated for each of the DM defined cohorts were used to generate survival estimates 

and then compared these to the total population including both diabetic and non-diabetic patients 

(Figure 11). This identifies differences in the estimated survival trajectories for patients with DM 

dependent on the definition utilised. Abnormal HbA1c produced the most optimistic DM median 

survival of 3.9 years, a 36.5% reduction in median survival time compared to the 6.1 year overall 

median survival for all cancer patients. Clinical coding was the most pessimistic with an estimated 

median survival of 2.6 years (57.2% reduction from baseline median survival) and the hybrid 

definition was in between at 3.4 (43.9% reduction in median survival time). The differences in 

survival curves can be represented by the hazard ratio attributed to DM by each definition (Figure 

12). Clinical coding estimates the hazard to be 3.9 times greater than abnormal HbA1c in the all 

cancer cohort with an excess hazard of 32.6% for the former and 8.3% for the latter. 
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Figure 9: Fidelity of DM Identification - Stacked bar chart demonstrating the number of diabetes mellitus patients and proportion of total diabetes mellitus population identified by each of the 
data definitions. Colour is used to identify the subgroups within that data definition. The left hand plot is based on the All Cancer Cohort. The right hand plot is based on the members of the All 
Cancer Cohort registered to a GP practice that uses Leeds Teaching Hospitals to process its blood samples.  
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Figure 10: Difference in First Diabetic Diagnosis Indication from Clinical Records Comparing Clinical Coding and Abnormal HbA1c – Red = patients defined by both an abnormal HbA1c and 
diabetic clinical coding where the inclusion of HbA1c does not change diagnosis from post cancer to pre cancer. Blue = patients defined by clinical coding as post-cancer diabetics but with 
abnormal HbA1c pre-cancer. Left of black line = abnormal HbA1c earlier than clinical coding. Right of black line = clinical coding earlier than abnormal HbA1c. 
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Figure 11:  Survival Trajectories for Each Diabetic Data Definition and All Patients in the All Cancer Cohort – Cox Proportional Hazard Survival estimates plotted for four separate populations 
i) All patients within the All Cancer Cohort ii) Patients from the All Cancer Cohort identified as diabetic by HbA1c, iii) Patients from the All Cancer Cohort identified as diabetic by Clinical Coding 
iv) Patients from the All Cancer Cohort identified as diabetic by the Hybrid definition. In all cases estimates were adjusted for age, gender and deprivation. Note that this is four separate 
survival curves plotted on a single set of axes, not a stratified Cox as each data definition produces a subgroup of the All Cancer Cohort yielding a partially paired and partially unpaired 
population.
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Figure 12: Impact of Data Definitions on the Cox Derived Hazard Ratios for the Impact of Diabetes - Comparison between 
the estimated point estimate and confidence intervals for the hazard ratio associated with diabetes mellitus in the All 
Cancer Cohort and the Prostate and Breast Cancer Site Specific Cohorts for the three data definitions of diabetes mellitus. 
Dotted line at 1 represents equal hazard in both groups, above the line suggested increased hazard associated with 
diabetes mellitus and below the line suggests an associated decrease in hazard associated with diabetes mellitus. 
Adjustment for age, and deprivation was conducted for all analyses and gender in the case of the Breast and All Cancer 
Cohorts. 

3.2.5 - Prevalence of Comorbidity 

Condition 
England                                                                              

North East and 
Yorkshire 

All Cancer 
Cohort at 
Diagnosis 

All Cancer 
Cohort at or 
After Diagnosis 

Coronary Heart Disease 3.16 3.85 6.66 11.84 
Congestive Cardiac 
Failure 0.83 0.98 1.54 4.81 

Hypertension 13.94 14.87 9.41 20.65 
Peripheral Arterial 
Disease 0.59 0.78 1.01 2.14 

Stroke or TIA 1.76 2.07 1.27 1.27 

Asthma 5.93 6.37 1.86 4.30 

COPD 1.90 2.50 2.73 6.36 

Obesity 9.75 11.92 1.00 6.81 

Chronic Kidney Disease 4.10 4.48 1.12 4.16 

Diabetes Mellitus 6.79 7.12 4.55 9.45 

Dementia 0.76 0.84 0.60 2.78 

Rheumatoid Arthritis 0.75 0.82 0.55 1.14 
Table 6: Comparison of Comorbidity Prevalence in Local, Regional and National Data –Data for population prevalence as 
a percentage of the population. The national (England) and regional (North East and Yorkshire) percentages are derived 
from to 2017-2018 NHS Digital GP Quality Outcomes Framework publically available data. The remaining two columns 
relate to the population prevalence within the all cancer cohort. The prevalence is expressed at the time of cancer diagnosis 
and at any time either at or after cancer diagnosis. The comorbidity groupings for the all cancer cohort were adapted to 
create comparable definitions and do not map onto the comorbidity definitions used elsewhere in analysis 
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Table 6 identifies key differences between the prevalence of comorbidity within the All Cancer 

Cohort and population estimates regionally and nationally. The North East and Yorkshire have a 

higher prevalence of all of the comorbidities when compared to the English average, suggesting a 

greater burden of ill health.  In some cases the regional relative excess is clinically significant such as 

32% for COPD and peripheral arterial disease, 22% for coronary heart disease and obesity with the 

smallest difference seen in hypertension and asthma where there is a 7% relative excess within the 

region.  

When comparing the rates of ill health at the point of cancer diagnosis to the regional prevalence 

the pattern is highly variable with some conditions being more common and other less so. Coronary 

heart disease has the highest relative excess prevalence at 73% above the regional average. Three 

other conditions have a higher relative excess prevalence, namely congestive cardiac failure at 57%, 

peripheral arterial disease at 29% and COPD at 9%. Some conditions have large relative 

underrepresentation, particularly obesity at -92% and chronic renal disease at -75%.  

If the lifetime prevalence of comorbidity for the cancer cohort is examined, this results in sizable, 

clinically relevant shifts, with on average higher levels of comorbidity with the exception of asthma (-

32%), obesity (-43%) and chronic renal dysfunction (-7%). The largest relative excess prevalence is 

for congestive cardiac failure which is 391% higher than the regional average. Other notable 

elevated rates are for dementia (231%), coronary heart disease (208%), peripheral arterial disease 

(174%), and COPD (154%). 

As the publically available data for comorbidity is different to the comorbidity groups used within 

the wider analysis of our cohorts, the prevalence of each comorbidity, as per our study definition, is 

presented in Figure 13. This demonstrates the wide variation in how common comorbidities are. A 

number of comorbidities demonstrate a clear bias towards first detection after cancer diagnosis in 

particular obesity, CCF, and dementia. 
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Figure 13: Prevalence of Comorbidity in the All Cancer Cohort - The percentage of the All Cancer Cohort identified as having each of the comorbidities of interest. Each condition is divided by 
colour into those where the comorbidity was recorded at or before cancer diagnosis (Pre-existing) and those where the comorbidity was recorded after cancer diagnosis (Late-Effects)
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3.2.6 - Timing 

Figure 14  identifies the timing of comorbidity diagnosis in a more granular way than the binary 

allocation of timing into before and after cancer diagnosis. When assessing the all cancer cohort on a 

monthly basis a near symmetrical distribution is identified with peak incidence around the time of 

cancer diagnosis. The peak is in the month leading up to cancer diagnosis representing 6.44% of all 

comorbidity diagnoses. The month after cancer diagnosis remains high, accounting for 5.45% of 

comorbidity diagnoses. The six month period around cancer diagnosis, from three months before to 

three months after, represent 21.25% of all diagnosed comorbidities. The rapid fall off in 

comorbidity diagnosis either prior to, or after this time period means that extending the time 

window to the year of cancer diagnosis only increases the proportion of comorbidity identified to 

27.18%.  

Figure 15 focusses on the year around the cancer diagnoses for the All Cancer Cohort. This 

demonstrates how increasing the granularity further to the daily proportion of comorbidity identifies 

not a single peak, but a biphasic pattern of comorbidity diagnosis. This pattern includes an 

exponential daily increase from a baseline of 0.02% at 3 months before cancer diagnosis to a peak of 

2.03% on the day of cancer diagnosis. This then rapidly falls to a new baseline of 0.07% three days 

after cancer diagnosis, before a more gradual increase to a smaller second peak of 0.16% 56 days 

after cancer diagnosis. Despite the smaller maximum value of the second peak compared to the first, 

its more gradual increase and decrease means that the 3 months after cancer diagnosis accounts for 

10.63% of comorbidity diagnoses, versus 8.58% for the three months prior. Indicating a larger area 

under the curve for the second peak compared to the first. 

When the timing is assessed by separating out different comorbidities (Figure 16) the first peak is 

apparent in all however the second peak is less pronounced in several cases.  Asthma has the highest 

first peak of 3.55% on the day of cancer diagnosis, closely followed by hypertension with 3.44%, By 

contrast, obesity shows a much smaller first peak of 1.79% but a much larger second peak 0.76% 34 

days after cancer diagnosis. The proportion of comorbidity diagnoses daily conducted in the site 

specific cohorts (Figure 17) shows variation across cancer sites with the largest first peak seen in 

primary brain tumours and thyroid cancer. The large second peaks are seen in breast, cervical and 

testicular cancer. 
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Figure 14: Distribution of Comorbidity Diagnosis Event Relative to Cancer Diagnosis - Proportion of all comorbidity events in the All Cancer Cohort that were diagnosed each month over time 
expressed as a percentage. Time zero is the month of cancer diagnosis with negative months being prior to cancer diagnosis and positive months being after cancer diagnosis 
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Figure 15: Distribution of Comorbidity Diagnosis Events Relative to Cancer Diagnosis Daily in the Year of Cancer Diagnosis - Proportion of all comorbidity events in the all cancer cohort that 
were diagnosed each day over time expressed as a percentage. Time zero is the day of cancer diagnosis with negative days being prior to cancer diagnosis and positive days being after cancer 
diagnosis. Although only 6 months before cancer diagnosis to six months prior is plotted the proportions are expressed as function of the number of comorbidities at all times.  
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Figure 16:  Distribution of Comorbidity Diagnosis Events Relative to Cancer Diagnosis by Comorbidity - Proportion of each of the 15 most common comorbidities by prevalence diagnosed 
daily in the all cancer cohort. Time zero is the day of cancer diagnosis with negative days being prior to cancer diagnosis and positive days being after cancer diagnosis. Although only 6 months 
before cancer diagnosis to six months prior is plotted the proportions are expressed as function of the number of comorbidities at all times
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Figure 17: Site Specific Distribution of Comorbidity Diagnosis Events Relative to Cancer Diagnosis Daily in the Year of Cancer Diagnosis - Proportion of all comorbidity events in the Site 
Specific Cancer cohorts that were diagnosed each day over time expressed as a percentage. Time zero is the day of cancer diagnosis with negative days being prior to cancer diagnosis and 
positive days being after cancer diagnosis. Although only 6 months before cancer diagnosis to six months prior is plotted the proportions are expressed as function of the number of 
comorbidities at all times. 
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3.2.7 – Collinearity 

 

Figure 18: Statistical Significant of Pairwise Spearman’s Correlation – p value results for pairwise comparisons of variables in the All Cancer Cohort. Results are shown as whether they are at 
or below the Bonferroni corrected value, at or below 0.05 but above the Bonferroni corrected value or above 0.05. 
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Figure 19: Spearman’s Correlation Coefficients for Pairwise Comparisons – Spearman’s correlation coefficient results for each pair of variables in the All Cancer Cohort.



76 
 

Figure 19 shows the correlation for of each of the pairwise comparisons. The majority of estimates 

yielded a zero or low positive correlation. A number of more strongly positive correlations were 

apparent particularly in relation to cardiac comorbidity where arrhythmias, hypertension, coronary 

artery disease, heart failure and myocardial infarction were all interrelated. Age was demonstrated 

to have weak positive correlation with almost all health conditions. Figure 18 shows the same 

comparisons in terms of their significance tests, using both a standard and adjusted p value 

threshold. This highlights that although most of the correlations are only modest in scale, they are 

highly statistically significant in many instances. The five strongest associations were pre-diabetes 

and diabetes (0.43), hyperlipidaemia and coronary artery disease (0.43), hyperlipidaemia and 

hypertension (0.41), hypertension and coronary artery disease (0.40) and myocardial infarction and 

coronary artery disease (0.37). Scatter plots for each comparison were also checked and identified 

no examples where they were dichotomous. 

2.2.8 - Interaction between Age and Comorbidity 

As demonstrated in Figure 18 and Figure 19 age is significantly associated with the rate of multiple 

comorbidities.  Rather than looking at individual comorbidity an alternative approach would be to 

look at a count of comorbidity. Figure 20 highlights that although having one or more comorbidities 

at the point of diagnosis is common, it is still a minority group representing 19.23% of the All Cancer 

Cohort. This explains why consistently the median number of comorbidity across all the site specific 

cohorts is 0 (Table 4). In order to assess the relationship between age and comorbidity a linear 

regression was fitted in Figure 21 demonstrating that with increasing median age at diagnosis, there 

is a trend towards a greater proportion of patients with one or more significant health conditions at 

the point of cancer diagnosis. Compared to the overall trend, some cancers show higher levels of ill 

health than the modelling might anticipate. Examples of this include primary brain tumours, 

pancreatic cancer and liver cancer. In other cases the level of ill health relative to age is lower such 

as breast cancer, melanoma and ovarian cancer.   

The relationship between age and count of comorbidity was assessed using a zero inflated Poisson 

regression model171. A standard Poisson regression model was applied to the data and compared to 

the zero inflation model using the Vuong test.173 This demonstrated superiority of the zero inflated 

model with a significance level of <2.22 x 10-16 for raw values, AIC and BIC.  Analysis of the zero 

inflated model coefficients demonstrated a relative risk of 0.964 (0.963-0.964) for the logistic 

regression element and a risk ratio of 1.018 (1.017-1.019) for the count model. This can be 

interpreted as with each one year increase in age, the chances of being a patient with no 

comorbidity reduces by 3.6% and the count of comorbidity increases by 1.8%. This identifies a clear 

relationship between the age of diagnosis and the number of comorbidities.  
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Figure 20: Number of Comorbidities per Patient in the All Cancer Cohort - Histogram of the count of comorbidity at the point of cancer diagnosis for the All Cancer Cohort. Where conditions 
of interest overlap e.g. hybrid defined diabetes mellitus and type 2 diabetes mellitus, these were only counted once. 
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Figure 21: Relationship Between Median Age at Diagnosis and and the Percentage of Patients with One or More Comorbidities – The median age at diagnosis and the percentage of the 
population with one or more comorbidities of interest at the point of cancer diagnosis is represented for each of the Cancer Site Specific Cohorts.  The line applied to the plot is a linear 
regression model of x~y with a 95% confidence interval shown in grey
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3.3 - Discussion 

3.3.1 - Demographics: 

PPM Cohort 

It is important to consider the basic composition of the population on which our analysis is based, to 

identify whether there is any form of overt selection bias present. The basic demographic data 

demonstrates differences between both the PPM cohort and the cancer cohorts, when compared to 

the national and regional population data.203 The PPM dataset demonstrates a bias towards patients 

in the 20-50 age range, with a decrease in the proportion of patients in the under 20s. It is important 

to consider here the differences in the way these population numbers are generated. The national 

data is an estimate of the number of people currently living in the area. The PPM numbers, are 

based on patient registrations, not their current geography. As such, patients who move to the area, 

register with the hospital, and move away, will still be represented in the PPM data, where they 

won’t in the regional data. This creates a bias, such that patients of an age where they move more 

geographically, are more likely to be represented. Government data shows those aged 20-55  are the 

most common in recent house movers205, likely because it includes both students and economically 

active individuals.  It is therefore possible that this registration effect is a large contributor to the 

differences seen. Additionally, it is important to note that the median age calculations on the 

national data were based on 1 year increment data. By contract the PPM data was only available in 5 

year bands, with the figure based on the lowest value in the age band. As such, the metrics are not 

in fact entirely comparable. These differences, although potentially explainable, should be 

considered when interpreting any subsequent results. Further research is needed to identify if the 

highlighted demographic differences seen in the PPM cohort are similar in other health regions, to 

understand whether this is a systematic selection bias across secondary healthcare datasets in 

general, or a local phenomenon. 

The assessment of PPM registrations shows non-linear patterns of growth over time, with 2012 

being particularly notable, accounting for almost a quarter of total patient registrations. These 

differences from year to year are likely to be not only because of demand differences, but 

additionally process differences. A key example of this is highlighted in section 2.1.2 which identifies 

that in 2011 PPM was chosen to be used as the main EPR system. As such it is likely that the 2012 

large increase is as a result of adding a significant volume of new patients, as the new EHR was rolled 

out across the trust. Other large increases in other years may represent system changes as opposed 

to demand driven differences. Although this data was not available this could be confirmed through 

the use of hospital activity data such as outpatient clinics, scans etc. and could be a potential focus 

of future research. It does however serve to illustrate the importance of understanding data 

provenance in interpreting data analysis. 

Cancer Cohort 

The All cancer Cohort Demonstrates a number of differences compared to both the PPM cohort and 

the regional population1. The significant increase in median age compared to the background 

population is a reflection of the underlying pattern of disease presentation, with oncological 

processes usually taking many years to develop206. As such, cancer is predominantly a disease of 

older age.19,42,207 The generally older population being studied introduces a number of other 

considerations as age is associated with other forms of chronic health problems beyond cancer42. As 

such, using general population data as a baseline for mortality would be inappropriate as this would 

not account for the differences in the makeup of the cohort. Although this could be mitigated 

through the use of age stratified population data, there are other factors that would need to be 
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considered such as gender208–212 and deprivation213–215 levels both of which have been shown to be 

impactful on survival outcomes in both the cancer and non-cancer related settings. An alternative 

approach would be to use a matched cohort based on these important characteristics.216 This 

process however fell outside of the ethics and scope for this study and has therefore not been 

conducted. It does however identify an area of potential future study. The link between age and 

comorbidity in the cancer cohort has been analysed further and can be found below in section 3.3.6. 

The results presented for the All Cancer Cohort, as described above, treats all cancer patients as a 

single cohort. Although this highlights how the cancer cohort demographics diverge from the general 

population, differences between subpopulations of the cancer cohort also occur. The literature 

clearly outlines differences in the age of presentation of many of the most common cancers by 

prevalence. These differences are demonstrated in the PPM cancer data when assessing the 

population characteristics of the site specific cohorts. Table 4 highlights these differences with 

testicular cancer showing a preponderance of younger patients compared to both the all cancer 

cohort and other cancers such as prostate cancer. The overall trend towards older patients in the all 

cancer cohort is largely driven by the fact that the most common cancers (lung, breast, colorectal 

and prostate cancer) are more common in older patients. The site specific cohort analysis highlights 

differences in the gender make up of different cancers. Some are gender specific such as ovarian and 

prostate, where others simply show a preponderance of a gender such as women and breast cancer. 

The noted cases of gender specific cancers showing patients of the opposite gender may represent 

data errors or how the hospital codes data for people who have are transgender. 

The heterogeneity seen between different cancers is a key reason for the need to conduct site-wise 

analysis, rather than analysing the entire cohort as one. Heterogeneity is also seen in deprivation 

levels across the cancer sites. As age, gender and deprivation vary between cancers, are temporally 

precedent to the cancer diagnosis, and impact on survival, they can be considered potential 

confounders and be incorporated into future analyses.   

3.3.2 - Missingness 

The proportion of patients with missing data is important in determining how to appropriately 

analyse and interpret each data item.157,158 In cases where data is missing, a number of approaches 

may be taken including complete case analysis and imputation all of which are detailed in chapter 2. 
159,161217. In these approaches there is a fundamental assumption that must be made, which is that 

those cases with missing values are missing at random or completely at random. This is important as 

otherwise the exclusion of these cases will introduce a selection bias, or in the case of imputation, 

results of imputed values may be highly unrepresentative of the true unmeasured value. When 

considering this assumption, there are plausible reasons to suggest that the missing data is missing 

not at random. Although the analysis does not demonstrate a clear relationship with missingness 

and year of diagnosis (Figure 7), there are a number of other possible ways in which missing data 

may in fact occur systematically. In many cases the stage and grade data will be input at review 

during a multidisciplinary team (MDT) meeting. Patients who may bypass this process will include 

those too frail to proceed with full investigation and treatment, or those who are at such an early 

stage of disease that they are never sent to an MDT. Systematic variation in how data is input will 

therefore introduce bias by ignoring the fact that the data is missing. An alternative approach in such 

a situation is to treat the missing value as a category of that variable. This will enable the analysis to 

identify whether or not the presence of a missing value is in some way influential in the outcome of 

interest.  



81 
 

Beyond the pattern of missingness, consideration of the scale of missing data is also required. The 

high level of complete data for age, gender and deprivation makes these variables excellent 

candidates for the inclusion in any subsequent modelling strategy. It is however worth noting that as 

highlighted above, data items may be complete but still inaccurate as potentially demonstrated in 

Table 4 where gender specific cancers have patients of the opposite gender. The scale of missing 

data in relation to grade and staging however poses significant issues. The large percentage that is 

missing makes imputations of little value as in many cases we would be imputing a greater 

proportion of cases than those being used to generate the imputations. This is unlikely to result in 

reasonable or reliable estimation of the missing values. A general rule of thumb that is advocate by 

some literature is that the cut off for imputation should be 20% missingness162 as after this point 

there is a high risk of bias being introduced. 

It is also worth considering that as per the features of confounders detailed in chapter 2 grade and 

stage may in fact be mediators of effect in later analysis of the impact of comorbidity.165 Thus in 

addition to concerns over missing data their relationship with both our exposure of interest and 

outcome might cause increased bias via adjustment. This concept is explored further in chapter 5. To 

further assess this a sensitivity analysis was undertaken for the results of chapter 5 and 6 with and 

without grade and stage data, the results can be found within the appendix (Table 27). 

The analysis of missing grade and stage data, along with the proportion of missing ethnicity data, 

highlights one of the common challenges and pitfalls of routinely collected data. Although they 

commonly contain a diverse range of data items, much of the information is found within the free 

text of clinical documents rather than in structured data or are simply missing all together. The 

structured datasets derived from RCD are therefore commonly sparse, requiring important data 

items with a previously demonstrated link to disease outcomes to be excluded from analysis. This is 

a methodological requirement with high levels of missing data, however represents a clear and 

potentially significant limitation. 

3.3.3 - Patient Geography 

Figure 8 highlights potential ways in which geography may impact on data accuracy. In locations 

where patients live approximately equidistant between two hospitals then the total cohort of 

patients in that area may well be distributed between the two different hospital trusts. Individual 

patients may have their care split, such that on some occasions they attend one hospital, and on 

other occasions attend another. This will impact on the accuracy of data held within the PPM 

research dataset, as those closest to the hospital are more likely to have complete data, as 

compared to those further away. This can be demonstrated using a fictional patient that is known to 

be diabetic, is admitted to Bradford Royal Infirmity with a heart attack, but subsequently is 

diagnosed with lung cancer which is managed in Leeds. In this situation the patient will erroneously 

be attributed to the non-myocardial infarction and non-diabetic group, as the clinical coding data 

from the patient’s acute admission is siloed in Bradford and therefore not within the research 

dataset.65,66,126  

This effect may be more pronounced in cases where care is a supra-regional service. Examples of this 

include radiotherapy provision, ovarian cancer care and sarcoma patients. These patients may travel 

large distances for their cancer care, which is unlikely to be true for other routine care. 

There are additionally a number of locations a significant distance away from Leeds which suggest 

that the majority of patients from this area are exclusively managed by Leeds. This is implausible and 

may be explained by how the data is generated. The postcode allocation within the analysis is based 

on current or most recently documented postcode, rather than postcode at the point of diagnosis. 
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This means that patients treated in Leeds who subsequently relocate will appear in their new 

location. The further away the patient is, the less likely it is that others will be referred to Leeds and 

thus it may be that many of these LTHT predominant locations far away, represent a single or small 

number of relocated individuals, rather than a systematic referral process from that location to 

LTHT. 

3.3.4 - Accuracy of Clinical Coding 

The assessment of diabetic cohort size identified variation in numbers across each of the DM 

definitions employed. In the all cancer cohort both HbA1c and clinical coding fail to identify a large 

proportion of diabetic patients, resulting in smaller sample sizes, misclassification error and 

therefore biased estimates of subsequent analysis.218 When the population was limited to the LTHT 

blood catchment area, there was a meaningful improvement in the performance of HbA1c, reducing 

missed diabetic patients from 26.7% to 8.1%. When considered in the context of the boundary effect 

results described above, it is likely that a significant proportion of the diabetic patients missed by 

HbA1c are due to their routine blood sampling being analysed at a different hospital. The variation in 

distance travelled by cancer site might mean that the level of inaccuracy of HbA1c might vary by 

cancer site, although this was not directly assessed.  

Clinical coding by contrast has a lower fidelity when used in the LTHT blood catchment area, with a 

missed diagnosis rate increasing from 18.9% in the full cohort to 31.1% in the LTHT catchment area. 

This fall off in performance may suggest that even when combining HbA1c and clinical coding a 

proportion of diabetic patients are still being missed as the diagnostic blood results that could 

identify them are not contained within the dataset.  The performance of clinical coding in the full 

cohort may therefore be worse than estimated, as there is ongoing misclassification error for 

diabetes which is not able to be assessed or quantified. In either case, the use of the hybrid 

definition substantially increases the diabetic population size and assuming that the coding and 

blood results are not due to an error, then it will additionally minimise misclassification bias. 

When assessing the cohort of patients identified by both HbA1c and clinical coding, it is possible to 

identify that clinical coding also introduces error through the timing of diagnosis. Large discrepancies 

are identified, with HbA1c evidencing diabetes on average earlier than clinical coding. This becomes 

particularly important in analyses relying on an index date, such as the date of cancer diagnosis. The 

data identifies that 17.5% of pre-cancer diabetic patients are missed due to the diagnostic timing 

error of clinical coding. This further compounds the issue of missed diagnoses introducing further 

misclassification error.   

The subsequent modelling data identifies that these areas of inaccuracy are not only of theoretical 

importance, but are also impactful in terms of analysis outcomes. Figure 11 and Figure 12 identify 

clinically meaningful differences in the risk that is attributable to DM depending on the definition 

used. Of interest, clinical coding is shown to be the most pessimistic, HbA1c the most optimistic and 

the hybrid definition somewhere in between the two. It is possible that this is due to the patients 

being missed by each group being systematically different i.e. they are missing not at random. As 

clinical coding requires an admission, these patients may be more likely to have serious health issues 

that have warranted a hospital stay. Those patients with well controlled diabetes and no ill effect 

will be managed in the community but identified on blood testing. Thus those missed by clinical 

coding may be the healthy patients with potentially better outcomes. By contrast the patients 

missed by HbA1c have had an admission and are more likely to be from out of area, increasing the 

likelihood that their issues are serious enough to warrant admission but that their routine care and 

bloods are being done outside of the tertiary centre. This means that the missed patients are likely 
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to be amongst the sickest of patients. By making use of the hybrid definition it is possible to remove 

some of the selection bias and misclassification error introduced by any one definition alone. The 

error in diagnosis timing is also overcome by using this approach. It is worth noting that irrespective 

of the definition used DM is associated with worse outcomes in the All Cancer Cohort with variation 

in the scale of effect, but not the direction of effect. A more detailed analysis and discussion of 

diabetes and cancer outcomes can be found in subsequent chapters and is not covered in detail here 

as the main focus is data accuracy. 

The highlighted accuracy difference based on geography does identify a limitation of HbA1c used in 

a single centre setting. The robustness of the hybrid definition could be further enhanced by 

including data from multiple centres. If all clinical coding from all hospitals and all blood results were 

available it is likely that the accuracy would be further enhanced. If primary care coding was 

included, this would likely further improve the identification of the diabetic cohort. The caveat to 

this is that with increasing numbers of sources, there is an increased chance of an erroneous coding 

or blood results causing misclassification in the other direction.   

The differences in patients being identified by each of the DM definitions highlight potential areas of 

concern surrounding previous research in this area or how research output is used in clinical 

practice. In the case of studies assessing the impact of diabetes on health outcomes in cancer or 

otherwise, a reliance on clinical coding may lead to overestimation of the true hazard. This could 

have a profound effect on patient and clinical decision making if a patient’s risk of an adverse 

outcome are in fact smaller than those quoted in the literature.  

Additionally, it suggests that the true diabetic cohort and the coded diabetic cohort differ in terms of 

outcomes. As such, comorbidity scores that include diabetes for outcome prediction, may produce 

incorrect risk estimates when deployed in the clinical setting.38,39,139 If a score is developed on clinical 

coding but used in practice by collecting information from patients, and these two populations 

differ, then the risk estimates will be inaccurate.  

Although our analysis focusses on diabetes it is plausible that similar accuracy issues may occur in 

other conditions when using clinical coding alone. If this is the case, then comorbidity scores may be 

even more severely affected, due to the combined effect of errors from each comorbidity. This 

provides weight to the argument that scores developed using coded data should only be used 

prospectively on coded data, unless it has been specifically validated in a separate analysis using 

other sources of comorbidity information. This identifies the realistic possibility that many current 

clinical risk scores used in clinical practice may be providing incorrect outcomes estimations for 

many individuals.  

It is important however to caveat these concerns with the limitations of this data. Firstly, this is 

based on a single centre and might reflect more inaccurate clinical coding locally compared to 

nationally. Furthermore, many risk scores are based on international data such as US claims data, 

and the errors in these forms of data may differ. Further study on national and international data is 

therefore needed to assess if this issue is local or more widespread. Issues with clinical coding 

accuracy have been identified extensively in the literature previously219–222. In each of these cases 

the analysis has been based on the accuracy of coding in patients after an admission event. It 

appears that this is the first analysis of clinical coding on a population level that includes patients 

both with and without admission events.  

As a result of this analysis of coding accuracy, the hybrid definition of diabetes has been used in 

subsequent analyses. Results for clinical coding alone is still presented with type 1, type 2 and other 
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diabetes as the hybrid definition is not able to distinguish these. Although this analysis provides an 

argument that other conditions should have had blood test results used to enhance clinical coding, 

this was not undertaken for other conditions. This was for two key reasons, firstly the lack of a clear 

single diagnostic test for many conditions and secondly due to limited access to the results of other 

blood tests.  

3.3.5 - Prevalence of Comorbidity 

Table 6 identifies important differences in the cohorts analysed. In general, it appears as though the 

population of the North East and Yorkshire has a higher level of ill health than the English Average. 

The underlying pathological processes that drive each of these conditions will be multifactorial 

including genetic, environmental and lifestyle factors.42 The differences seen could therefore 

represent regional differences in genetics due to high numbers of particular ethic groups within the 

region. An example of this is the population of people with heritage from the sub Indian continent is 

higher in Yorkshire than the national average. Previous research has demonstrated an association 

between this group and increased cardiovascular risk.223–226 It is import to note however that the 

literature fails to come to a consensus as to whether this is truly a genetic phenomenon, due to 

lifestyle differences, or a combination of the two.  

A further explanation may be environmental, particularly in view of the high levels of manufacturing, 

mining and heavy industry that have taken place within the region in previous decades. This may 

resulted in a larger proportion of the population having significant occupational exposures that may 

impact on their health.227–229 Furthermore, lifestyle differences and socioeconomic differences may 

lead to behaviours that increase the risk of ill health. The higher rates of obesity within the region 

are highly suggestive of this as lifestyle and environment are thought to be greater contributors than 

genetics.230  

When comparing the rates of comorbidity in the cancer population to the regional population there 

is a less clear overall trend. When interpreting these results it is important to consider the data 

generation process for each. The NHS Digital regional data is reliant of GP clinical coding.231 Thus a 

condition where a patient is managed within the community is likely to be well recorded as are 

important hospital events with good survival rates, such as myocardial infarction. The cancer cohort 

data is predominantly based on hospital clinical coding.126 As this data is only generated for patients 

with an acute admission, it may fail to capture conditions managed in primary care or in the 

outpatient setting. Thus patients who are otherwise healthy at the point of cancer diagnosis and 

whose cancer does not require admission, might never have had a hospital admission and thus have 

no clinical coding. Patients who are subsequently treated have a much higher probability of 

admission to hospital, either electively for surgical procedures, or acutely with the effects of their 

cancer or its treatment.  

These different data collection models may explain the differences seen when comparing regional 

prevalence to the point of cancer diagnosis and comparing the point of cancer diagnosis to the 

lifetime cancer cohort prevalence. At the point of cancer diagnosis many patients may never have 

had an admission, thus the lower rates shown for several health conditions may not be a true lower 

prevalence, but simply a reflection of a lack of coding. The plausibility of this explanation is increased 

by virtue of the fact that MI, which forms part of coronary artery disease is a condition requiring 

admission and hospital diagnosis. This comorbidity is more highly represented in the cancer cohort 

than the background population. An alternative explanation for this would be the number of 

common risk factors for multiple health conditions.28,42 Obesity, smoking, lack of physical activity, 

diet and a number of other lifestyle factors are common risk factors for both cancer and heart 
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disease. As a result, the high levels of heart disease in the cancer population could be due to shared 

pathogenesis.  

When assessing the differences between baseline levels of ill health and lifetime levels in the cancer 

cohort there is a general trend towards large increases in ill health over time. This could be due to 

cancer and its treatment causing side effects and long term damage increasing multimorbidity. Many 

cancer treatments have well established side effects that can lead to acute or chronic problems. This 

includes the impact of surgery, radiotherapy and systemic anticancer treatment. Examples of this 

include lung fibrosis from radiotherapy232, cardiovascular, renal and respiratory complications from 

systemic anti-cancer treatments233. Additionally cancer itself can cause issues by direct structural 

damage or by altering physiology such as increasing thrombotic risk.234 The high levels of ill health 

over the lifetime of cancer patients when compared to the general population could be due to the 

disease and its management. The large shift from baseline ill health in the cancer cohort to lifetime 

risk would initially seem to lend weight to this conclusion. This large shift in prevalence may however 

be partly artefactual and due to the way that the data is collected. As mentioned previously, hospital 

clinical coding requires an admission and the risk of admission is increased by having cancer and 

treating it. As a result, longstanding health conditions may be first coded after cancer diagnosis even 

though they have been affecting the patient for a significant period of time. The previous analysis of 

HbA1c and clinical coding diagnosis date would add weight to this theory. 

Thus far the focus of discussion has been on the data derived from the all cancer cohort.  Results 

from the site specific cohorts demonstrate variation in the levels of comorbidity seen. Some cancers 

were associated with lower levels of comorbidity for almost all conditions when compared to the all 

cancer cohort, these included breast, cervical and testicular cancer. Other sites such as bladder, 

renal and pancreatic cancer show typically higher levels of comorbidity. This difference might be 

explained by the average age at diagnosis, with a greater proportion of young patients in those with 

lower levels of comorbidity. It may also be due to a bias in the all cancer cohort towards cancers 

with greater numbers, such that the high comorbidity burden seen in lung and colorectal cancers 

pulls the All Cancer Cohort average up. If the class imbalance seen was addressed with up sampling 

lower frequency cancers or down sampling higher frequency cancers the results might shift. 

Making a clear conclusion as to what is true effect, bias and data artefact is made even more 

challenging in the adult cancer population due to the difficulty in separating out the effects of aging 

and cancer itself42. As demonstrated in Table 4 and Figure 6 the cancer population is on average 

older than the general population. The older someone is the, greater their lifetime exposure to risk 

factors for ill health, thus increasing the risk of developing significant health conditions. This is also 

particularly relevant given the common risk factors for cancer and many common health conditions. 

The higher rates of ill health in the cancer population could therefore simply be due to the selection 

bias introduced by limiting the analysis to the cancer population.  To further understand what may 

underpin the patterns seen a further analysis of the association between age and comorbidity has 

been conducted. Further analysis has been undertaken using more granular data on the timing of 

comorbidity diagnosis both of which are discussed in more detail below.  

3.3.6 - Age and Comorbidity 

The analysis of the relationship between age and comorbidity count demonstrates an overall trend 

towards increased levels of comorbidity with increasing median age at diagnosis. As demonstrated in 

Table 4 the majority of patients have no comorbidities at the point of cancer diagnosis, however a 

significant minority have one or more conditions. Using a standard Poisson model to estimate the 

relationship between age and comorbidity count may therefore be prone to errors as a result of an 
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excess of zero count patients. A zero inflated Poisson mode was therefore developed which in effect 

fits two models, the first a logistic regression to estimate the relationship between age and the 

likelihood of having no-comorbidity and a subsequent Poisson model to estimate the relationship 

between age and the comorbidity count, accounting for the excess of zeros. The results clearly show 

that increasing age results in a reduced chance of having no comorbidity and additionally increasing 

age is associated with a small but significant increase in the chances of having a higher comorbidity 

count. The results of the zero inflated model were compared to those of a standard Poisson 

regression model using the Vuong test. This demonstrated that the zero inflated model performed 

better, however it should be noted that several previous research papers has identified limitations 

to the Vuong test.173 

The nature and scale of this relationship between age and number of comorbidities along with the 

multiple pairwise correlations identified suggests that it may be advantageous to consider 

comorbidities in isolation when analysing the data for the purposes of effect estimates. This is 

because of the high levels of collinearity between these interrelated variables. The counter 

argument could however be made that in doing so there is a risk that part of that effect size may be 

due to another comorbidity and that the condition used is in fact showing all or some of its effect as 

a result of confounding as opposed to a true direct effect.   Due to the complex interplay between 

comorbidities, age and other variables of interest along with variation in the temporal ordering of 

the development of comorbidities, subsequent inferential analysis will focus on individual 

comorbidities.  

3.3.7 – Timing of Comorbidity Diagnosis 

The biphasic nature of the distribution of the diagnosis of concomitant illness in cancer patients 

identified in Figure 15 raises important questions about how patients with cancer present, and how 

cancer and its treatment may impact on the long term health of patients. A possible explanation for 

the patterns seen is that as patients develop cancer they attend community care or acute hospital 

services where previously unknown health conditions are identified as part of the investigations, 

which ultimately result in the diagnosis of cancer. Similarly, as patients are treated for cancer in the 

months after their cancer diagnosis, the exposure to significant health interventions such as surgery, 

radiotherapy and chemotherapy results in the triggering of significant health events. The body of 

research around ill health in cancer would seem to agree with this explanation of the patterns seen, 

with multiple research papers in both the hospital and community setting showing how cancer 

triggers significant health events with treatment and identifies ill health during the diagnostic 

process.233 

There are however several other possible explanations which would suggest that the patterns seen 

are entirely artefactual. As detailed above, clinical coding is only generated by a hospital admission. 

Many of the diagnoses identified by clinical coding may have been present for significant periods of 

time prior to a patient’s first admission. This has been clearly demonstrated by our analysis of 

diabetes mellitus diagnosis. As a result, the peaks seen may in fact represent peaks not in diagnoses 

but peaks of hospital admissions, with many patients being inpatients before their cancer diagnosis 

and being admitted as part of their post diagnosis treatment. 

In the case of obesity, where identification includes the use of height and weight measurements 

these peaks may simply represent the first time a patient is weighed in the hospital setting, as part 

of their initial diagnostic pathway, or as part of their post diagnosis treatment pathway. As the 

development of obesity is a gradual process the initial spike seen at the point of diagnosis with 

consistently low levels prior to this would seem to be incongruous with the manner in which 
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individuals put on weight. Although there is an association between obesity and the development of 

cancer235, it would be more likely that at the point of cancer diagnosis patients would experience 

unexplained weight loss as opposed to rapid unexplained weight gain.  

It is important to recognise the differences in how different illnesses are diagnosed and how this 

may impact on their identification within clinical coding. Myocardial infarction for example is a 

condition which necessitates hospital investigation and intervention. As such, most patients with an 

acute ischaemic event will be admitted to hospital at the time of the event. This means that 

theoretically, one would expect the clinical coding to capture most cases with reasonable accuracy. 

By contrast, hypertension is usually diagnosed in the community and often requires long term follow 

up of patients to confirm the diagnosis. Furthermore, unless the level of hypertension is extreme, it 

does not necessitate admission at the point of diagnosis or at a later stage. As such, it is more likely 

that hypertension is accurately coded in primary care and is inaccurately coded in secondary care 

systems. When comparing the diagnosis date patterns of these two conditions the initial 

hypertension peak at the point of cancer diagnosis is three time higher than that of MI. Additionally, 

MI has no discernible second peak. The theoretical higher accuracy of MI may suggest that the 

pattern seen here is more likely to be the true pattern where hypertension may include more 

artefact. Key differences are a smaller initial peak of MI and the absence of a second peak in the 

months after diagnosis.  It could therefore be argued that the likely true pattern is a smaller but true 

peak of diagnosis around the point of cancer diagnosis.  

A reasonable counterargument to this is that different conditions may have very different patterns 

of presentation. Certain oncological treatments are known to cause risks of significant health events, 

for example 5-flurouracil and related drugs can cause acute coronary artery vasospasm236, lung 

radiotherapy is associated with the development of lung fibrosis232, Herceptin can cause cardiac 

dysfunction and cardiac failure.237 Thus comparing different conditions in the manner conducted 

above could equally lead to the false impression of artefact where none does in fact exist. 

Further research in this area is needed to better understand the relationship between the timing of 

concomitant illness and cancer. This area of research into the late effects of cancer has been noted 

to be particularly challenging in the adult population.37 Distinguishing between the effects of aging 

and the effects of oncological diagnoses and treatment can be extremely challenging. Research in 

paediatric population can however act as a guide as the influence of aging is less problematic. Here, 

research has demonstrated clear links between cancer and a significant increase in the burden of ill 

health amongst survivors. In order to analyse this area of oncology in the future two further sources 

of information will be needed. Firstly access to coding from both primary and secondary care. This 

would enable the differences in the setting in which ill health is identified to be largely overcome. 

This would however fail to overcome the issue of inaccurate data and coding. An additional source 

of information would be a non-cancer control cohort. This could include age, gender and deprivation 

matched controls. This would allow the rates of comorbidity and the patterns of comorbidity to be 

compared to identify either an excess of events in the cancer cohort or differences in the time to the 

diagnosis. 

3.3.8 - Collinearity 

Our pairwise association analysis identifies positive correlation between most of the variables 

analysed. Although many were only weakly correlated several showed more sizable correlation. In 

almost all cases the correlations were highly statistically significant. The value of these significance 

tests is questionable in part due to multiple comparisons but also due to the large numbers of 

patients used in the analysis. Despite this the identification of multiple pairwise associations 
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highlights the issue of multi-collinearity in health data research. Many conditions share similar risk 

factors such as genetics, smoking, and diet. In addition to this, many condition’s underlying 

pathogenic process may cause other forms of ill health such as cardiovascular disease due to 

hyperglycaemia induced endothelial damage in diabetes. The interconnected nature of 

multimorbidity means that collinearity is almost certain when using multiple diseases in a single 

model.  

There is a wealth of evidence of the impact of introducing collinear variables into a regression 

model. It results in both bias and also imprecise estimation of the effect size.163 Both of which are 

important if we aim to estimate the impact of comorbidities on survival in cancer cases. Although 

the scale of correlation between individual pairs is in most instances is low, the inclusion of many 

variables with low levels of correlation could result in significant errors in the effect sizes obtained 

by analysis. It would be impossible to know how imprecise the estimate was and the direction of 

effect of the bias. As a result, including multiple comorbidities in a single inferential model has the 

potential to yield extremely biased results. Additionally using aggregate scores of the count of 

comorbidities could have similar effects due to the association between age and comorbidity.  

 

3.4 - Summary 

This initial descriptive and exploratory analysis has highlighted a number of potential sources of bias 

within the underlying research dataset. Basic demographic data highlights a selection bias with an 

older population with high levels of comorbidity. Several data items show information bias with high 

levels of missing data, misclassification error and issues surrounding data accuracy. Within the 

individual data items there are meaningful associations and correlation which highlight potential 

issues with multicollinearity in later modelling. For some of these issues methods will be introduced 

to mitigate them through enhancement of comorbidity data, analysing comorbidities singly and 

omitting data items with large sale missing data. Despite these strategies much of the potential bias 

identified will persist and thus it is import that these issues are regarded as limitations of the 

analyses and incorporated into the interpretation of subsequent findings. 

In order to complete our exploratory analysis the next chapter will focus on outcomes data and 

apply Kaplan Meier estimates to demonstrate the overall pattern of survival outcomes in patients 

with and without comorbidity.   
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Chapter 4 – Survival Outcomes in Comorbid Cancer Patients Using a Univariate Kaplan 
Meier Approach 

 

4.0 - Introduction 

Within the medical literature one of the most commonly employed approaches to survival analysis is 

the Kaplan Meier method107,238. Chapter 2 provides a detailed summary of this time-to-event analysis 

approach. The application of this method will enable the estimation of the incident rate of the event 

of interest, in this case death, making use of information relating to all the individuals at risk for the 

event. This is an important feature, as although this analysis seeks to use 15 years of follow up data, 

individual patients may not have data available for this full period. This would be the case for 

patients lost to follow-up, or patients who are alive and have received their diagnosis within the last 

15 years. This issue is overcome by making use of censoring175,176 to include all patients, for as long 

as data is available for them, allowing the use of the entire at risk population, at every time point.  

This approach may be used to create a time-to-event estimate in a given population as a function of 

a single variable of interest. This approach is commonly employed in the literature to compare the 

outcomes after the use of a given medical intervention, where the median survival or time point 

specific survival may then be compared for each group174. By taking the same approach it is possible 

to generate a Kaplan Meier estimate of overall survival as a function of the presence or absence of 

comorbidities of interest. The resulting survival functions can then be used to identify conditions 

associated with meaningful differences in survival outcomes. As this approach does not try to make 

adjustments for potential confounding, this may be considered as an exploratory or descriptive 

analysis89. This approach is an estimate of the survival of the cohort divided into groups based on an 

identifying characteristic. As detailed in chapter one, the literature in this area is almost universal in 

suggesting that common comorbidities are associated with worse survival outcomes.19,239,240 Despite 

this, no comprehensive analysis has been conducted on a single large dataset to identify the effect of 

multiple individual comorbidities, in multiple common cancers. Within this chapter the analysis 

builds on the initial descriptive and exploratory analysis conducted in Chapter 3 and will describe the 

survival outcomes of groups defined by the presence or absence of the previously detailed 

comorbidities in the site specific cohorts. The results of these analyses will be used to identify any 

differences in the survival outcomes overall within our dataset and compare these to national 

averages. The comorbidity analyses will guide which cancers and which comorbidities should be 

investigated in more detail with more sophisticated methods in the subsequent chapters. 

4.0.1 - Aims and Objectives 

1. Quantify differences in survival outcomes within the Leeds Cancer Center dataset compared 

to national survival data. 

2. Describe the survival outcomes of cancer patients with and without comorbidity. 

3. Identify which cancers and comorbidities have consistent survival effects for further detailed 

analysis. 

These will be delivered through the following objectives: 

a. Estimate the median survival for each site specific cohort. 

b. Compare local median survival to published site specific cancer outcomes. 

c. Estimate median survival for the site specific cohorts when stratified by the presence or 

absence of comorbidities of interest. 

d. Statistically assess differential survival outcomes using log rank test. 
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e. Assess differential survival for clinical significance. 

f. Quantify the number of cancer sites across each comorbidity with significant differences, to 

determine those comorbidities which are associated with the consistent survival differences. 

g. Quantify the number of comorbidities in each cancer site with significant differences to 

determine the sites, which are associated with the consistent survival differences in patients 

with comorbidity. 

 

4.1 – Methods 

4.1.1 - Survival Methods, Whole Population Survival and Summary Statistics 

Analysis was undertaken using the site specific cohorts detailed in chapters 2 and 3. Kaplan Meier 

survival estimates were obtained using the R “survival” package and plots to visualised survival were 

produced using the “survminer” and “ggplot2” packages. Full details of R packages are found in 

Table 23 of the appendix. Summary survival estimates were extracted in the form of median survival 

from the Kaplan Meier estimates produced. In both the all cancer cohort and site specific cohorts, 

initial estimates were produced on the whole cohort without stratification. In each case a whole 

population overall median survival was extracted.  

Population survival statistics were identified from Macmillan Cancer support publications.241,242 

Where cancer site statistics were available from both our analysis and Macmillan data, the two were 

compared with the relative percentage difference calculated in each case.  

4.1.2 - Stratified Survival of Pre-defined Cancers and Comorbidities 

In each of the site specific cohorts KM estimates were generated as a function of the presence or 

absence of each comorbidity of interest. Median survival for each strata was extracted, with the 

survival difference calculated in time and as a percentage, using the non-comorbid strata as the 

reference group for calculations.  

Statistical significance was assessed using log rank score comparing the survival trajectory for those 

with and without a given comorbidity. A p value of 0.05 was used to determine statistical 

significance however due to the large number of comparisons results are demonstrated with a 

second p value adjusted threshold of 0.00005.168 

Due to the large number of comparisons undertaken, detailed summary information was limited to 

key cancers and key comorbidities. The top 4 cancers by incidence namely breast, colorectal, 

prostate and lung cancer were selected with the impact of all comorbidities assessed in these 

populations. Comorbidities with a high likelihood of accuracy in our dataset were selected which 

included MI, stroke and diabetes for analysis of their impact across all cancers. A further description 

of these choices can be found in the discussion section below.  

To improve the efficiency and ease of interpretation of analysis, results were converted into 

summary plots by cancer site and by comorbidity. In the case of cancer sites the plots demonstrate 

the percentage change in median survival in the comorbid group and whether this was statistically 

significant according to the log rank test applied. In the case of summary by comorbidity, these same 

summary plots were produced, along with a second summary plot with the median survival 

difference described by time. This allows for comparisons between cancers, which may often have 

highly variable median survival times, which is not clearly represented when using percentage 

change alone.  
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4.1.3 - Identifying Comorbidities and Cancer Sites of Focus 

In order to identify other important cancer sites and comorbidities to conducted further analysis on, 

summary statistics were analysed to identify comorbidities where 90% or more of cancer sites had a 

statistically significant log rank score at the 0.05% level and at least 75% of cancers at the 0.00005% 

level. In the case of cancer sites the same thresholds were applied, but assessing the percentage of 

comorbidities meeting the threshold. Any comorbidities or cancer sites meeting this threshold were 

included for detailed analysis with summary plots as described above. Those fulfilling these criteria 

were additionally subjected to further detailed analysis in subsequent chapters. 

4.1.4 - Assessing the Relationship between Comorbidity Impact and Whole Population Survival 

Visual comparisons were made between the median survival of the total cohort and the survival 

difference caused by each comorbidity to assess the relationship between the two. In each case a 

line was fit to estimate the relationship between these two values. Formal correlation between 

median overall survival and percentage difference in median survival between stratified groups, was 

assessed using Pearson’s correlation. 

 

4.2 – Results 

4.2.1 - Total Population Survival and Summary Statistics 

Figure 22 demonstrates the overall median survival for each of the 24 site specific cohorts. The plot 

shows the bars in order of shortest to longest survival with cancer of unknown primary (CUP) 

patients’ having the worst outcomes with 0.2 year median survival. The longest quantifiable overall 

median survival is cervical cancer, with a median survival of 23.8 years. Notably both testicular and 

thyroid cancers have no quantifiable median survival due to the high survival rates seen. This 

prevents the survival estimate ever reaching or falling below 50% survival, thus preventing median 

survival being estimable (Figure 23). This does not preclude analysis of significance in stratified 

curves as the log rank test can still be applied to compare the strata. Results for significance of 

stratification of these cancer sites is therefore available in subsequent sections where appropriate. 

 

Figure 22: Overall Median Survival for Site Specific Cohorts – Kaplan Meier derived median survival estimates in years and 
associated confidence interval for the whole population of each Cancer Site Specific Cohort  
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Figure 23: Overall Survival for Testicular Site Specific Cohort – Kaplan Meier estimate for testicular cancer patients using 
the PPM Cancer Site Specific Cohort. 

Site 
Published Median in 
Years 

Calculated Cohort  
Median in Years (CI) 

Percentage 
Difference 

Bladder 9 3.9 (3.6-4.1) -57% 

Brain 0.5 0.7 (0.7-0.8) 40% 

Kidney 5.3 6.9 (6.3-7.4) 30% 

Leukaemia 3 7.9 (7.2-8.4) 163% 

Lung  0.4 0.7 (0.7-0.7) 75% 

Myeloma 2.5 3.4 (3.1-3.6) 36% 

Oesophagus 0.7 0.9 (0.9-0.1) 29% 

Ovary 3.1 4.1 (3.7-4.1) 32% 

Pancreas 0.2 0.4 (0.4-0.5) 100% 

Stomach 0.7 0.9 (0.9-1.0) 29% 
Table 7: Comparison of Published Survival Estimates to Calculated Survival Estimates – Median Survival in publically 
available data in years, median survival from PPM site specific cohort in years and the percentage difference in survival 
comparing the local data to national UK data. Not all cancers are included as only those with identical groupings in both the 
Macmillan data and site specific cohorts were included in the comparison 

When comparing the locally derived survival estimates to those found within the public domain241, 

all but one site has improved survival locally. The most marked of these by percentage, are 

pancreatic cancer and leukaemia. In the case of leukaemia where overall survival is longer, this 

equates to a survival difference of 4.9 years longer in the local cohort. Conversely in pancreatic 

cancer where survival is shorter the large percentage difference represents a survival improvement 

of just 2.4 months. The survival from bladder cancer is however much lower in the local data 

representing a 4.9 year reduction in median survival compared to the population estimates.  
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4.2.2 - Stratified Survival 

KM curves were generated as a function of each comorbidity of interest, for each cancer site of 

interest. With 24 cancer sites and 40 comorbidities plus the analysis of the all cancer cohort, this 

yielded a total of 1000 stratified KM curves. Figure 24 is provided as an example of the output of this 

analysis. This volume of granular data is inefficient to analyse in its raw form, so was converted into 

summary plots as described in 4.1.2. A summary plot was produced for each cancer site and each 

comorbidity. The results presented however focusses on the predefined common cancers and 

robustly recorded comorbidities. 

 

 

Figure 24: Breast Cancer Survival Stratified by History of Arrhythmia - Graphical representation of Kaplan Meier estimate 
conditioned on the presence of an arrhythmia ICD-10 code within a patient's clinical records prior to the date of their breast 
cancer diagnosis 

In the breast cancer site specific cohort analysis (Figure 25), all comorbidities were associated with 

reduced survival times compared to the non-comorbid strata. Five comorbidities had an insufficient 

number of cases for estimates to be generated (cardiomyopathy, neuromuscular disorders, motor 

neuron disease, HIV and psoriatic arthritis). Four further comorbidities were found to be associated 

with reduced survival, however were not statistically significant (inflammatory bowel disease, 

malabsorption, pancreatitis and other respiratory disease). Of those with a statistically significant 

difference, the largest was spinal damage, highlighting a reduction in the median survival by over 

99% (p = 1.22 x 10-25) taking the survival in this group to 0.2 years compared to 18.9 years in the non-

spinal injury group . Large differences with a reduction of over 80% in median survival are seen with 

congestive cardiac failure (-89.2%, p = 8.5 x 10-185), restrictive lung disease (-82.6%, p = 0.0053), renal 

dysfunction (-83.2%, p = 2.38 x 10-67), dementia (-90.5%, p = 7.12 x 10-159), gout (-81.7%, p = 1.09 x 

10-12), ankylosing spondylitis (-92.7%, p = 3.72 x 10-6) and peripheral arterial disease (-84.9%, p = 3.54 

x 10--31).  
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Figure 25: Impact of Comorbidity in Breast Cancer - Percentage difference in median survival in comorbid group compared 
to non-comorbid group for each comorbidity of interest in the PPM Breast Cancer Site Specific Cohort. Negative values 
represent a reduced survival in the comorbid group. Significance levels are demonstrated by colour 

The colorectal cancer site specific cohort analysis (Figure 26) demonstrates a different pattern with 

some comorbidities being associated with improved survival outcomes. Varicosities were found to 

be associated with an 88.4% improvement in median survival (p= 0.029). Obesity demonstrated a 

26.3% increase in survival, although this was not found to be statistically significant. Nine other 

comorbidities were found to have non-significant differences including motor neurone disease, 

ankylosing spondylitis, cardiomyopathy, HIV, pre-diabetes, psoriatic arthritis, other forms of DM, 

malabsorption and inflammatory bowel disease. The most impactful comorbidity by percentage was 

dementia (-86.6%, p = 9.34 x 10-43) accounting for a 3.8 year drop in median survival. No other 

comorbidities had an impact beyond 80%. As with the breast cancer cohort some conditions had 

insufficient numbers to generate percentage change estimates, including spinal damage and venous 

insufficiency 

The impact of comorbidity on lung cancer (Figure 27) was less pronounced with 14 comorbidities 

demonstrating non-significant effects. The direction of effect was more varied with three statistically 

significant improvements in survival seen in the cases of hypertension, (1.9%, p = 0.01), asthma 

(29.0%, p = 2.98 x +10-5) and obesity (437.3%, p = 2.01 x 10-66). As the median survival in lung cancer 

is relatively short, the survival time benefit for hypertension and asthma is modest representing 5 

days and 2.4 months respectively. The estimated effect size in obesity is substantially larger equating 

to an over 3 year improvement in the median survival. The largest statistically significant negative 

impact was in motor neurone disease (-76.2%, p = 0.01) equating to just over 6 months reduction in 

median survival.  
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Figure 26: Impact of Comorbidity in Colorectal Cancer - Percentage difference in median survival in comorbid group 
compared to non-comorbid group for each comorbidity of interest in the PPM Colorectal Cancer Site Specific Cohort. 
Negative values represent a reduced survival in the comorbid group. Significance levels are demonstrated by colour 

Prostate cancer (Figure 28) demonstrates a more uniform direction of effect with no statistically 

significant increases in median survival across the comorbidities of interest. Restrictive lung disease 

has the largest effect size of -82.0% (p = 1.21 x 10-17) equating to a reduction in median survival of 

9.9 years compared to those patients without restrictive lung disease. Due to the relatively long 

median survival times in prostate cancer patients, even the least impactful statistically significant 

comorbidity, thromboembolic disease, results in clinically meaningful changes in survival (-2.9 years). 
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Figure 27 : Impact of Comorbidity in Lung Cancer - Percentage difference in median survival in comorbid group compared 
to non-comorbid group for each comorbidity of interest in the PPM Lung Cancer Site Specific Cohort. Negative values 
represent a reduced survival in the comorbid group. Significance levels are demonstrated by colour 

The alternative approach to summarising the results data included analysing the impact of our three 

pre-specified comorbidities in all site specific cohorts. The results of the analysis for diabetes can be 

found in Figure 29a. In the case of thyroid and testicular cancer the lack of median survival estimates 

prevented the calculation of median survival based summary statistics. In both cases however 

diabetic patients has a statistically significant reduction in survival demonstrated by their stratified 

curves and log rank testing. Four cancers sites were found to have no statistically significant survival 

differences, namely; stomach, ovarian, renal, breast and laryngeal cancer. 15 cancer sites were 

associated with worse outcome in the diabetic group with the largest effect by percentage seen in 

cervical cancer representing a 20.7 year reduction in median survival. Due to the large differences 

seen in the median survival of cancers, it is helpful to consider the impact across different sites by 

time rather than percentage. This is demonstrated in Figure 29b which highlights than in many cases 

large percentage changes in median survival often represent more modest changes in time. This is 

demonstrated when looking at the lymphoma and breast cohorts which have similar percentage 

changes of -64.8% and -66.7% respectively, but very different median survival time differences of -

7.4 and -11.8 years. Liver cancer demonstrates a different pattern to the other statistically significant 

comorbidities and is associated with a median survival improvement of 61.4% or 0.64 years (p= 

0.00184). 
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Figure 28: Impact of Comorbidity in Prostate Cancer - Percentage difference in median survival in comorbid group 
compared to non-comorbid group for each comorbidity of interest in the PPM Prostate Cancer Site Specific Cohort. Negative 
values represent a reduced survival in the comorbid group. Significance levels are demonstrated by colour 

The analysis of patients with previous stroke demonstrates a uniform direction of effect, with all 

cancers being associated with decreased survival in this group (Figure 30a). In the case of testicular 

cancer there were insufficient stroke patients for an estimate to be generated. Two cancers were 

associated with non-significant differences, thyroid and laryngeal cancers. The largest impact by 

percentage was seen in lymphoma patients with a -95.5% difference (p = 2.6 x 10-19) closely followed 

by cervical cancer with a -94.4% difference (p=1.04 x 10-10). The smallest percentage effect was seen 

in pancreatic cancer with a 32% (p= 0.008) decrease in survival seen. When these results are 

transformed into time differences (Figure 30b) the level of effect is markedly different with laryngeal 

(-3.6 years) cancer showing a lesser impact of stroke when compared to cervical cancer (-20.9 years), 

breast (-14.1 years), melanoma (-18.2 years) and endometrial cancer (-11.5 years). Thirteen of the 

cancer sites do however show a decrease in survival of one year or more which is highly clinically 

relevant.  
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Figure 29: Association of Diabetes Mellitus to Median Survival in Site Specific Cohorts – a) Difference in the median 
survival in years between patients with evidence of diabetes prior to cancer diagnosis and those without evidence of prior 
diabetes mellitus in each of the Cancer Site Specific Cohorts b)Difference in the median survival in percentage between 
patients with evidence of diabetes prior to cancer diagnosis and those without evidence of prior diabetes mellitus in each of 
the Cancer Site Specific Cohorts Significance levels at 0.05 and corrected for multiple comparisons are denoted by colour 

a) 

b) 
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Figure 30: Association of Stroke to Median Survival in Site Specific Cohorts – a) Difference in the median survival in years 
between patients with evidence of stroke prior to cancer diagnosis and those without evidence of prior stroke in each of the 
Cancer Site Specific Cohorts b)Difference in the median survival in percentage between patients with evidence of stroke 
prior to cancer diagnosis and those without evidence of prior stroke in each of the Cancer Site Specific Cohorts Significance 
levels at 0.05 and corrected for multiple comparisons are denoted by colour 

a) 

b
)
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Figure 31: Association of Myocardial Infarction (MI) to Median Survival in Site Specific Cohorts – a) Difference in the 
median survival in years between patients with evidence of MI prior to cancer diagnosis and those without evidence of prior 
MI in each of the Cancer Site Specific Cohorts b)Difference in the median survival in percentage between patients with 
evidence of MI prior to cancer diagnosis and those without evidence of prior MI in each of the Cancer Site Specific Cohorts 
Significance levels at 0.05 and corrected for multiple comparisons are denoted by colour 

a
)

b
)



101 
 

The association between myocardial infarction and site specific outcomes shows only decreased 

survival where results are statistically significant (Figure 31). Gastric cancer was associated with 

improved survival, however this result was non-significant. Several other sites were associated with 

non-significant survival differences including cervical, bladder, laryngeal, ovarian and testicular 

cancer. As with the other comorbidity analyses, the most impactful sites by percentage and time 

vary, with lymphoma showing a large decrease in survival by percentage of -79.5% (p = 9.55 x 10-13) 

and an 8.5 year decrease by time. Although the percentage change is lower in several other sites the 

time differences seen are larger, as in the case of melanoma (-16.2 years), breast (-13.0 years) and 

endometrial cancer (-9.5 years). In other sites such as pancreatic cancer the large percentage 

difference of -32.9% (p = 0.042) represents a more modest difference of 54 days decrease in median 

survival. 

4.2.3 - Identifying additional Comorbidities and Sites of Interest 

  
Percentage 

p<=0.05 
Percentage 
p<=0.00005 

Congestive Cardiac Failure 96% 83% 

Arrhythmia 96% 71% 

Coronary Artery Disease  96% 67% 

COPD 92% 75% 

Dementia 92% 71% 

Renal Dysfunction 88% 67% 

Stroke 88% 54% 

Peripheral Arterial Disease 83% 50% 

Hypertension 79% 50% 

Diabetes 75% 42% 
Table 8: Ten Most Impactful Comorbidities – A stratified Kaplan Meier estimate was created for each comorbidity in each 
cancer site specific cohort. A log rank test was applied to each and the p value extracted. The percentage of cancer sites 
where each comorbidity had a p value less than the stated cut offs were calculated. The table includes the ten comorbidities 
with the highest percentage of meeting the p value cut offs. Values in green met the predefined threshold for further 
analysis those in red failed to meet the threshold.  

Using our predefined significance threshold, the comorbidity summary results indicated a significant 

level of impact across most cancers in the case of congestive cardiac failure (CCF) and COPD (Table 

8). As a result these comorbidities were added to the list of comorbidities for detailed analysis. None 

of the cancer sites met the required threshold for further analysis. The results of these additional 

comorbidities are presented below. 

CCF is shown to be associated with a reduced survival across all cancers with only laryngeal cancer 

showing a non-significant association (Figure 32). CCF is particularly notable compared to the other 

comorbidities assessed, as all of the estimated changes in median survival were of at least -50% with 

the exception of gastric cancr. Additionally, 6 cancer sites show an 80% or more decrease in median 

survival. This translates to clinically meaningful changes in survival time even in cancers with a 

poorer prognosis. The -74.6% (p = 8.15 x 10-18) change in pancreatic cancer for example represents a 

reduction in median survival of 126 days. Cervical cancer shows the largest change both by time and 

percentage with a -96.2% (p= 9.57 x 10-11) or 21.2 years decrease in survival. In total 8 of the cancer 

sites show reduced survival of over 5 years in those patients with pre-cancer CCF. This on average 

makes CCF the comorbidity most closely associated with poorer outcomes. 
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Figure 32: Association of Congestive Cardiac Failure (CCF) to Median Survival in Site Specific Cohorts – a) Difference in the 
median survival in years between patients with evidence of CCF prior to cancer diagnosis and those without evidence of 
prior CCF in each of the Cancer Site Specific Cohorts b)Difference in the median survival in percentage between patients with 
evidence of CCF prior to cancer diagnosis and those without evidence of prior CCF in each of the Cancer Site Specific Cohorts 
Significance levels at 0.05 and corrected for multiple comparisons are denoted by colour 

a
)

b
)
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Figure 33: Association of Chronic Obstructive Pulmonary Disease (COPD) to Median Survival in Site Specific Cohorts – a) 
Difference in the median survival in years between patients with evidence of COPD prior to cancer diagnosis and those 
without evidence of prior COPD in each of the Cancer Site Specific Cohorts b)Difference in the median survival in percentage 
between patients with evidence of COPD prior to cancer diagnosis and those without evidence of prior COPD in each of the 
Cancer Site Specific Cohorts Significance levels at 0.05 and corrected for multiple comparisons are denoted by colour 

a) 

b
)
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COPD is demonstrated both in terms of time and percentage to have clinically and statistically 

significant associations with survival differences (Figure 33). Ovarian and lung cancer were 

associated with non-significant differences, however all other cancer sites had statistically significant 

decreases in survival in the comorbid group. As with CCF, COPD is associated with large scale survival 

differences with 19 cancers sites having a statistically significant reduction in survival of over 50% 

and 8 cancer sites showing a 5 year or more reduction in medial survival for those with COPD. 

Cervical cancer again shows the largest effect size with a -92.7% (p=0.0006) or -20.5 year change in 

median survival.  

4.2.4 - Relationship between stratified Survival and Overall Survival 

To assess the relationship between the median survival for a given cancer site and the degree of 

effect that a comorbidity has, we calculated the correlation of these two metrics in those 

comorbidity and cancer site combinations that were shown to be statistically significant. This 

resulted in highly statistically significant weak negative correlation between these two metrics. 

When looking at the results of just the diabetes analysis we can see a similar trend with significant 

correlation, however a number of cancer sites can be seen to vary from the overall trend including 

liver, primary brain tumours, leukaemia, lymphoma, renal tumours and CUP.  

 

Figure 34: Correlation between Median Survival and Percentage Change in Median Survival in Comorbid Group - Scatter 
plot for all the Sites Specific Cohorts and all comorbidities. The median overall survival for each cancer is plotted on the 
horizontal axis and the percentage difference between the comorbid and non-comorbid group is plotted on the vertical axis. 
Results are derived from univariate Kaplan Meier estimates. Negative numbers represent a survival disadvantage with the 
comorbidity. A loess curve has been fitted to demonstrate the overall trend and Pearson’s correlation coefficient calculated 
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Figure 35: Correlation between Median Survival and Percentage Change in Median Survival in Diabetic Group - Scatter 
plot for each Cancer Site Specific PPM cohort showing the overall median survival for that cancer site on the horizontal axis 
and the percentage difference in median survival between the subgroup with diabetes mellitus and the subgroup without 
diabetes mellitus. Negative values on the vertical axis represent a negative survival impact of diabetes. Results are derived 
from univariate Kaplan Meier estimates. A Line of best fit has been plotted to show the overall trend. 

 

4.3 - Discussion: 

4.3.1 - Total Population Survival and Summary Statistics 

The non-stratified, site specific analysis demonstrates the wide variation in the median survival 

when comparing different cancers. When comparing the LTHT site specific cohort data, to 

population level survival, clear differences exist. In the case of bladder cancer, the median survival 

locally is 57% reduced relative to the reported national average. The most likely explanation for this 

is in fundamental differences in the makeup of the cohorts, which introduces a form of bias.166 The 

local data is derived from patients excluding in situ diagnoses, whereas, the published information 

does not specify whether these patients are included or excluded. If the national data does not 

exclude these patients it will increase the volume of patients with potentially curable disease, 

resulting in improved survival outcomes.243 

There may be an additional local effect that creates a bias towards more advanced disease in the 

local cohort. As LTHT is the regionally centre for the delivery of radiotherapy, all patients requiring 

this treatment will be included in the PPM cohort. In the case of bladder cancer, radiotherapy is 

offered in patients not fit for surgery, or patients with more advanced disease.244 As a result, this 

may increase the representation of more advanced bladder cancer and more frail patients, as 

compared to the national average.  

Other explanations for regional variation could contribute, such as differences in the health 

presenting behaviours of patients locally.245 If this were the case, it would seem unlikely that health 

seeking behaviour differences would vary substantially between different types of cancer. The wide 

variation seen in the differences between local and national data, makes this explanation seem less 

likely. A further explanation could be due to differences in local treatment offerings. Despite this 

having been highlighted as an issue in other cancer sites previously246,247, it seems unlikely to be the 
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cause of the differences seen due to clinicians using approved guidelines as the framework for their 

clinical decision making.  

When comparing other cancer sites regional and national outcomes data, the local data 

demonstrates favourable survival outcomes. This could be explained by the national data being less 

recent having been published on data from 2007. This was used as no more recent single source of 

UK median survival data could be identified.  Recent treatment advances may therefore be present 

in local data but absent in the national data. The introduction of treatments such as immunotherapy 

over the last 5 years have improved outcomes in a number of cancers including, lung, melanoma and 

renal cancer.248 The effect of improvements on summary outcomes data may vary between different 

cancers, not only due to the effect size in that particular cancer, but due to differences in the overall 

median survival. Where cancers have long survival times, improvements due to new treatments may 

take many years before differences in median survival become apparent across the cohort. 

Conversely where survival times are shorter, it will take less time for the impact of new treatments 

to become apparent. It would therefore be the case that improvements in treatment would be more 

likely to be impactful in cancers with shorted survival times and this pattern is not clearly 

demonstrable in the results data. 

As described for the bladder cancer, population differences in the cohort composition could be 

influential. In some cancers the delivery of specific treatments could cause the opposite effect of 

that described in the bladder cancer cohort. In many cancers, early diagnosis resulting in curative 

treatment, is achieved via surgical intervention, radical radiotherapy and SABR.249 Much of this is 

specialist care which is centralised in Leeds, thus the PPM cohort may have a bias towards early 

stage disease in a number of cancers such as pancreatic, lung, renal and prostate cancer.250,251 This 

would inflate the local survival statistics compared to national data.  

The largest survival improvement seen is in the case of leukaemia. This difference may be due to 

altered case mix. As LTHT is a paediatric oncology centre there will be a relatively high 

representation of paediatrics cases of which leukaemia is common. Typically, paediatric leukaemia 

outcomes are better than those in the adult population.252 As such the differences seen may well be 

due to a form of selection bias. 

These differences identified in the baseline survival are important to consider, as they demonstrate 

the large number of ways in which the local data could differ from those found in other geographical 

areas. The results of the subsequent analyses may therefore not be externally valid if significant 

differences exist in the basic population makeup of other locations. Interpretation of results beyond 

the local dataset should therefore be done with caution.  

4.3.2 - Stratified Survival 

Previous research has suggested almost universally that patients with pre-existing health conditions 

and cancer have a worse survival outcome than those with cancer alone.19,136,239,240,253 Our data 

would mostly support this previous research showing statistically significant negative differences in 

survival outcomes in most comorbidity defined subgroups, in most cancer sites. Despite this, the 

direction and size of effect is not universal, with variation across both cancer sites and comorbidities. 

In the vast majority of cancers and comorbidities the results suggest that having cancer with 

additional comorbidity is associated with a reduction in median survival. There are additionally a 

small number of instances where comorbidities are associated with survival improvements, such as 

diabetes in liver cancer, varicosities in colorectal cancer and obesity in lung cancer. A number of 

possible explanations exist that could contribute to the associations seen in either direction. Initial 
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consideration will be given to conditions associated with decreased survival before exploring those 

associated with improved survival  

Previous research has suggested that a significant component of survival differences seen in all-

cause mortality in patients with cancer and co-morbidity is due to the independent mortality effect 

of the pre-existing health condition.239 In effect, patients have two conditions which have an additive 

effect on the probability of death and thus they have worsened survival. The survival disadvantage is 

however not simply the sum of the risk of death for the two conditions due to overlapping effects. 

This can be understood using a thought experiment where we compare two patients with one 

condition each to one patient with both conditions. In scenario 1 we have a patient with diabetes 

who dies 4 years after index date and a second patient with breast cancer who dies 3 years after 

index date. In scenario 2 we have one patient with both conditions where the mortality effect is the 

same as for the previous pair of patients. In a population made up exclusively of patients like 

scenario one the risk of death would simply be the sum of the risk of cancer death plus the risk of 

diabetes death, plus background risk (assuming that the patient does not have other unmeasured 

risk). In a population made up of patients with scenario 2 then the risk would simply be the risk of 

cancer death plus background risk as the patient is dying of cancer before they can die of diabetes. 

The real world population of multi-morbid cancer patients is however made of those where 

sometimes they die from comorbidity and sometimes from cancer, they cannot die from both. As 

such, one would expect that risk of death would be greater than the risk of any one condition alone 

but less than the risk of both summed.  

This is further complicated by the possible interaction between the conditions independent of this 

overlap. It may be the case that a particular comorbidity may result in direct or indirect risk 

differences. Many conditions have been found to increase the risk of developing cancer. As such the 

comorbidity may be associated with the underlying pathogenic process of oncogenic transformation. 

This may result in biological differences in comorbid patients compared to non-comorbid patients, 

which fundamentally alter how a given cancer develops, progresses and responds to treatment. 

Furthermore, comorbidity may impact treatment choices either by necessity or clinical judgement. 

Patients for example with a high comorbidity burden may not be fit for curative surgery and thus 

may have worse outcomes.30,254 Additionally, existing organ damage may further prevent the use of 

certain other treatment options, such as autoimmune conditions limiting the use of 

immunotherapy255, lung fibrosis preventing the use of lung radiotherapy and liver and renal 

dysfunction limiting systemic anti-cancer treatment dose.256,257 These same effects may occur 

indirectly where one condition is associated with another independent of cancer.28,42 Diabetes for 

example is associated with renal dysfunction and thus the impact of diabetes could be mediated via 

its link to renal dysfunction rather than directly. There is also the impact of clinician bias where a 

clinician or group of clinicians may view certain populations of patients as having different risk and 

therefore offer nonstandard therapy. This could therefore result in different outcomes for this 

group. This effect has previously been demonstrated in the elderly breast cancer population and has 

been used to explain a potential cause for worse breast cancer outcomes in the UK compared to the 

rest of Europe.18,258 

The effect of comorbidity could also be caused by differences in the route to diagnosis. Patients with 

other health conditions may dismiss new symptoms as being related to their known health 

conditions and thus delay presenting to a medical professional.259,260 Additionally, health 

professionals may assume new symptoms are related to known conditions and thus delay 

investigations until they have persisted for a long period of time. In these cases, presentation may be 

delayed with patients being diagnoses at a more advanced stage of disease. Previous research 
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supports this argument having shown patients with several health conditions typically present later 

and with more advanced disease. 

These explanations however assume a worsened outcome which is not the case universally. Our 

data highlights three examples where comorbidity is associated with improved survival outcomes. 

One example of this is in liver cancer where diabetic patients have a 61.4% increase in median 

survival equating to 7.6 months, when compared to non-diabetic liver cancer patients. This 

difference raises important questions as it creates a survival paradox. There is a recognised 

association between diabetes and malignancies of the liver, both hepatocellular carcinoma (HCC)261–

263 and cholangiocarcinoma.264 Patients with diabetes have twice the risk of developing HCC 

compared to the non-diabetic population. Diabetic patients are therefore at greater risk of liver 

malignancies and greater risk of dying from liver malignancy compared to the background 

population. Despite this, our results suggest that within the liver cancer population, diabetic patients 

have a reduced risk of death, thus creating a survival paradox. These paradoxical findings are seen in 

a number of other areas of medical research and have a number of potential explanations.265 

One possible explanation is the effect of treatments for the comorbidity impacting on the cancer. A 

number of medications used in chronic disease such as aspirin266–269 and oral hypoglycaemics270–274 

have been shown to impact on cancer cell growth and the probability of metastasis. Thus the effects 

of other treatments in chronic illness may provide a survival advantage.  

Patients with chronic illness also engage with services differently compared to the background 

population. In many conditions there is a requirement for interval follow up for medication reviews, 

blood test screening and physical examination. This has historically formed part of GP payments via 

QOF.156 As such, patient with certain long term health conditions such as diabetes may have health 

problems in some instances picked up at an earlier stage than the background population. This could 

lead to a true survival benefit as cases may be diagnosed at an earlier and therefore more treatable 

time yielding improved remission rates. Alternatively, it may be the case that the advantage is in fact 

due to lead time bias275 where the outcomes are the same and identified earlier giving the 

appearance of a survival advantage. 

The underlying physiology of patients with comorbidities is also commonly altered. This is often part 

of the link between the co-development of multiple conditions in the same patient.42 This altered 

physiology may result in different forms of cancer developing or behaving differently once 

developed, providing an advantage in some instances. 

A further possibility is that these differences are entirely artefactual due to bias in the data. If by 

assessing a particular cancer site, selection bias166 is introduced, such that the non-comorbid group 

contains a large representation of patients with some particularly harmful characteristic, such as 

extreme age, then when comparing the outcomes, the comorbid group may appear to have an 

advantage. If however this was overcome with adjustment or stratification it may identify that the 

comorbidity is still disadvantageous when accounting for this confounding or selection bias.165 

As discussed above, with the univariable approach employed through the KM estimator, the analysis 

describes the pattern of survival in the two groups. As no adjustment is made for other forms of bias 

and confounding, detailed interpretation of whether the pattern is a fair reflection of an inferred 

association in the wider population is not possible. Further analysis is therefore needed to identify if 

these survival patterns continue to be present, once appropriate conditioning on multiple variables 

has taken place. A condition by condition description of the literature and possible biological 
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mechanisms of the patterns of association will be provided in later chapters, where these 

associations are shown to persist after adjustment. These can be found in chapter 5. 

Another potential bias, reverse causation, might explain the patterns identified within the stratified 

survival curves. This occurs when an end point or intermediary is related to the exposure of interest 

in a causal way but where the direction of causation is the opposite of that assumed by the analysis. 

An example of this could be in the case of the results presented for obesity which in some instances 

are shown to be associated with better outcomes. Here it is plausible that the most aggressive 

cancers are causing significant weight loss and cachexia. If this were true then the presence of an 

aggressive cancer would be causally associated with an increased probability of being in the non-

obese category. Analysis results would therefore suggest obesity is protective when in fact it is 

simply a marker of a less severe cancer which is increasing the likelihood of patients remaining in the 

obese category. This theory could be investigated in future by focussing analysis on patients with 

serial weight measurements and looking at as a variable for specific investigation. This approach has 

been successfully employed previously when investigating the effect of blood pressure lowering 

treatments on survival.276 Previous literature focussing specifically on reverse causality and illness 

related weight loss has however suggested that this form of bias is minimal277 and has therefore not 

been an area focus for the work presented in the later chapters. It could however represent an area 

of future study and research. 

 

4.2.3 - Identifying Additional Comorbidities and Sites of Interest 

Comparisons between median survival outcomes for two of the cancer groups, namely Thyroid and 

Testicular were not possible due to the high survival rates preventing accurate estimation of median 

survival. Despite this, it was possible to demonstrate statistically significant differences between 

survival outcomes when conditioning on individual comorbidities in these cancer populations. When 

assessing the identified survival patterns of comorbidity across the cancer sites that had not been 

pre-selected, none of them met the pre-specified thresholds for further analysis. This may be due to 

the smaller numbers of cases yielding higher p values particularly in the context of rarer 

comorbidities. The presence of low patient numbers in several of the pre-existing conditions impairs 

the ability for drawing meaningful conclusions and warrants further investigation using cohorts with 

greater co-morbid representation. 

When assessing sites by comorbidity, two conditions were found to meet our pre-specified 

thresholds for further investigation, namely, COPD and CCF. The groups defined by these conditions 

were demonstrated to have not only consistent effects, but also large scale survival disadvantages in 

most cases. As described in section 4.2.2, although a number of possible explanations could underlie 

the survival patterns observed, more meaningful discussion will be possible if these relationships 

continue to persist after adjustment. Thus, further detailed discussions can be found in chapter 5 

where relevant.  

4.2.4 - Relationship between Stratified Survival and Overall Survival 

Several previous studies when presented with the results showing an increased risk of death in 

patients with cancer plus comorbidity, have attempted to compare the relationship between survival 

time for a given cancer overall and the impact of a given comorbidity.278–282 The rationale applied, is 

that in cancers where patients live longer there is a greater amount of time for the mortality effect 

of the comorbidity to exert its influence and thus one would expect to see negative correlation 

between overall population survival and comorbid population survival. The above analysis 

attempted to mimic this by comparing the site specific cohort median survival and percentage 
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change in median survival. Our results agree with those found in the previous literature, which 

suggest the arguments outline above seem more plausible. Although the level of correlation found 

was modest at -0.3 the significance levels show a very small p value. There is however a significant 

methodological flaw in both our analysis and those previously published which compromise their 

utility.  

The methodological issue arises as a result of mathematical coupling.283,284 In both of the estimates 

being plotted the values are a product of one another. The total population survival is made up of 

the non-comorbid and comorbid populations. The comparison of the median survival is the division 

of one subset of the same population divided by the other. In effect the difference and the overall 

survival are different mathematical representations of the same information. As a result, they are 

mathematically coupled. This leads to the appearance of correlation even if none exists in what is 

termed spurious correlation.285 The linear regression applied to the data therefore likely represents 

the pattern of coupling, rather than a true association. This does however offer the opportunity to 

derive insight not from the association, but those that deviate from it. In this case the regression line 

can be thought of as the null, that is, the expected pattern. Those that do not conform to this may 

be demonstrating effects outside of the mathematical coupling. Figure 35 identifies a number of 

examples which fall outside of the 95% confidence interval for this null association. These cancer 

diagnoses may be important targets for further investigation as there is some effect beyond the 

association’s inherent to the methodology applied.  

4.2.5 - Limitations: 

In order to understand and interpret the findings presented above it is important to consider the 

limitations of them stemming from the underlying data, methods applied and context of the 

analysis. Some of these have be briefly mentioned in the above sections however are covered in 

more detail below. 

Data Limitations: 

The identification of comorbidity is based on the clinical coding data captured by the hospital trust 

and additionally the HbA1c blood test results in the case of diabetes. As detailed in chapter 2 in 

order for a patient to be coded as having a co-morbidity the patient has to have had an inpatient 

admission within Leeds Teaching Hospitals NHS Trust. Patients who are admitted should be assigned 

both an ICD-10 code for the cause of their admission and ICD-10 codes for all their pre-existing 

health conditions. This coding is not conducted by the clinicians, but by a dedicated team of clinical 

coders. Patients erroneously stating they have a diagnosis or clinicians incorrectly or unclearly 

documenting information, may result in a condition being added to a patient’s coding data that they 

do not have. Clinical coders, although trained, are not healthcare workers and so may misclassify or 

code conditions. As clinical coders assessing subsequent admissions will automatically refer to 

previous clinical coding data, or the same previous clinical records, errors will be propagated 

forwards such that once an incorrect diagnostic label has been applied, it is likely to be repeated on 

subsequent admissions. Errors of omission may occur as patients who have an existing health 

condition will only have this coded if it is recorded within their clinical records. Where clinicians fail 

to capture this, then so too will the resulting clinical coding. This has been demonstrated in previous 

research.219,221,286,287 

As demonstrated by our DM coding analysis in chapter 3, missing diagnostic codes may occur if a 

patient is not admitted to hospital. As a result, patients that have conditions managed in the 

community who never attend hospital with an acute or chronic issue requiring admission, will not 

have their diagnostic information captured by the hospital. Patients may attend other hospitals 
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either through their geographical location, such as those close to another hospital, or through 

personal choice such as those using private care. Patient data from these alternative care providers 

will be unavailable and thus may lead to the omission of further diagnostic codes. These factors may 

introduce systematic misclassification bias to the analysis, such that those within a given 

geographical area may be more or less likely to have clinical codes in their hospital records or those 

from higher socio-economic groups may be less likely to have clinical codes due to the use of private 

care. Additionally, those patients with overall poorer health or worse controlled comorbidity are 

more likely to be coded as they are more likely to require admission.  

A further limitation stems from the clinical coding data capturing only the presence of a diagnostic 

label at a specified time point127. Thus it is impossible to distinguish between longstanding and 

recent diagnoses from this coding. This becomes a particular issue when combined with clinical 

coding only taking place for admissions to hospital and not outpatient contact. Cancer patients with 

pre-existing health conditions managed as an outpatient may only have their diagnosis coded at an 

admission after their cancer diagnosis event. These patients will be erroneously labelled as having no 

evidence of their pre-existing health condition prior to cancer, despite the fact that it is long 

standing. 

These various limitations to the coding data result in the potential for the introduction of 

misclassification bias and selection bias.166,218 The coded population within the hospital record may 

represent a greater severity of a particular condition, lower socio-economic status or greater level of 

frailty, and results may not be externally valid when applied to the wider population with cancer and 

the comorbidity of interest. 

Methodological Limitations 

The Kaplan Meier method relies on a univariate approach when stratifying survival outcomes. In 

situations where there is underlying confounding then a difference may be identified as being 

associated with a particular condition, when this is in fact not the true cause.165 If for example 

patients with diabetes are more likely to be older, then an identified association between diabetes 

and worse cancer outcome might simply be a reflection that older patients have worse outcomes 

and diabetes is a surrogate marker for age. This issue is more significant if trying to draw a causal link 

between and exposure (a prior-health condition) and an outcome (survival). Within the context of 

trying to identify at risk groups based on identifiable baseline characteristics this issue may be less 

important. If we however want to quantify the effect of an association a multivariate approach that 

adjusts for other potential confounders would potentially result in a more accurate approximation of 

the true effect size.  

The use of censoring within any analysis approach introduces some assumptions.175,176 First it 

assumes that those patients who are censored are equally at risk as those that are not censored. 

This assumption cannot be easily assessed. This issue is more likely to be impact full when an event 

is used as a censoring date. An example would include an analysis of survival in liver failure where a 

transplant is used as a censoring date. This bias is less likely to be an issue within this analysis as 

censoring is applied to those with no further clinical records or those who have yet to complete the 

15 year analysis period. It seems unlikely that loss to follow up is a surrogate marker for a variable 

associated with altered survival risk and this assumption is therefore likely to be valid in this 

instance. A second assumption is that patients diagnosed at all time points have an equal risk. This 

could be assessed by comparing survival curves at various time-points to identify differences. The 

literature relating to survival outcomes over the past 15 years have for the most part demonstrated 

improvements in survival outcomes over time.241 It is therefore likely that this assumption has been 
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violated and alternative methods of adjusting for year of diagnosis with alternative methods may 

help mitigate this issue.  

Context Based Limitations 

The use of overall survival as the end point of interest is potentially problematic. Each of the pre-

existing health conditions assessed will have a mortality effect independent of cancer. Thus patients 

with a two conditions with a mortality effect, having worse survival outcomes than those with only 

one, is not overly surprising. Differences between particular conditions and particular cancers may 

still be of clinical and academic interest. The introduction of a control cohort with the prior-diagnosis 

but no cancer would improve the information yielded by the analysis.216 As the cancer and non-

cancer related outcomes work as a competing risk in those patients with both a cancer and a 

comorbidity, combining the independent survival risk from the cancer only cohort to the survival risk 

from the prior-diagnosis may not represent a valid baseline risk comparator. Further analysis that 

estimates the impact on the cancer related outcomes and non-cancer related outcome may 

however be used to overcome this issue and will be address is subsequent chapters.179 

Thresholds for Comorbidities of Interest and Cancers of Interest 

Within our analysis we have highlighted three comorbidities and four cancers in which to focus our 

analysis. The choice of comorbidity was based on the results of the clinical coding accuracy analysis 

that was undertaken in chapter three. This highlighted potential issues around misclassification error 

in clinical coding data which may introduce significant bias into the results of analyses. In the case of 

diabetes mellitus we demonstrated how the inclusion of HbA1c blood results can at least partially 

mitigate this issue. Diabetes mellitus was therefore selected as a key comorbidity of interest. In 

order to select other comorbidities, clinical domain expertise was applied to identify conditions, that 

when they occur, typically result in a hospital admission and require hospital testing in order to 

obtain the diagnosis. Two conditions were felt to meet these criteria and they were myocardial 

infarction and stroke. By selecting these, the nature of the conditions diagnostic pathway increases 

the likelihood of hospital clinical coding and therefore reduces the chances of misclassification bias. 

In each of these conditions all cancer sites were analysed for their association with survival 

outcomes. Despite the domain expertise guided rationale applied here there is still an inherent risk 

of misclassification bias still persisting even if it is to a lesser extent. 

In order to determine the impact of a broad range of conditions the analysis of each comorbidity 

was undertaken in each of the top four cancer sites of interest. This was conducted as due to their 

common nature, the information on the impact of comorbidity in these cancers has the broadest 

potential clinical use. In addition, the relatively large number of cases of each cancer increased the 

likelihood of obtaining sufficient patient numbers with less common comorbidities. Beyond simply 

allow for analysis to take place, it maximises the likelihood of higher precision estimates being 

obtained from any modelling strategies applied.  

Beyond our preselected cancer and comorbidities we specified some pre-analysis thresholds to 

identify other comorbidities or cancers that may be of particular interest. The rule thresholds were 

however entirely arbitrary and not meeting the threshold does not suggest a lack of important 

findings in other comorbidities or cancer sites. Additionally the focus on p value thresholds creates a 

potential bias towards conditions or cancer sites with larger numbers as with increasing numbers of 

patients there is a higher likelihood of small p values even in the context of minimal differences 

between the compared groups. The thresholds applied were as a result of clinical opinions with the 

decision taken to focus additional groups beyond those that were preselected to those with the 
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most significant effect sizes on average. Many other cancers and comorbidities did however show 

evidence of statistically significant differences and thus future research is needed to explore these in 

greater detail in future.  

4.4 - Summary 

These exploratory survival analyses have identified a number of ways in which the outcomes of the 

PPM dataset are different from those quoted nationally. This suggests possible differences in case 

mix and treatment delivery, which may limit the applicability of the research findings to other 

settings. Our analysis highlights large numbers of cancers and comorbidities where statistically and 

clinically significant survival differences occur. The majority of these identify that patients with 

comorbidity are estimated to have worse outcomes than those without comorbidity. Despite this 

general trend, three examples of comorbid patient groups having improved survival estimates are 

demonstrated. Our assessment of all comorbidities and all cancers has highlighted particularly 

marked survival differences on average in COPD and CCF, thus these conditions have been selected 

for further more detailed analysis within both this and subsequent chapters. The analysis of the 

relationship between the prognosis of a given cancer and the effect size of comorbidity highlights 

issues with previous conclusions drawn on the basis of spurious correlation. The results do however 

present an alternative approach to using this data, with utility for identifying conditions with survival 

associations that appear to be particularly impactful. Despite the wide range of findings presented, a 

number of limitations have been discussed including ones based on the methods employed. In order 

to overcome some of these, subsequent analysis using a multivariable approach aiming to deal with 

potential cofounding will be employed and discussed in the next chapter. Additionally, the principles 

set out in chapter two for inferential analysis will be applied, moving away from significance tests 

and placing a greater emphasis of precision of estimates, consistency of effect direction and clinical 

importance. 
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Chapter 5: Multivariable Approach to Analysing the Relationship between Comorbidity 
and Cancer Survival Outcomes 

 

5.0 - Introduction 

Thus far the focus has been on descriptive and exploratory analysis of the data. In doing so, no 

adjustment within the analysis has been undertaken to deal with potential confounding. This has 

prevented the ability for analysis output and the relationships identified, to be used to make 

inferences beyond the study population. Work in chapter 3 highlights population level differences in 

gender, deprivation and age, and discusses how this may be important in interpreting the findings of 

the results seen in chapter 4. This chapter builds on the previous analysis, by employing 

multivariable survival modelling, using the Cox proportional hazard (Cox PH) method for time to 

event analysis.108 This allows for specific adjustment for potential confounders, allowing a greater 

level of inference beyond the PPM cancer cohort. Despite the multivariable approach used, this 

modelling does still not represent an attempt at causal modelling. 

In view of the inferential nature of this analysis, a stricter framework for interpretation has been 

employed to consider on-going bias, effect direction, effect size and precision. More details on this 

can be found in chapter 2. Further discussion is also provided to describe not only previous research 

findings in comorbidity and cancer, but also in research that might be relevant to potential 

mechanisms that might underlie any differences identified. The output of this chapter aims to 

provide insight, which might be more generally applicable in cancer populations outside of those 

recorded in PPM. 

5.0.1 – Aims and Objectives 

Aims 

1. Quantify the association between comorbidity and all-cause mortality in cancer patients 

using a multivariable approach. 

Objectives 

a) Develop Cox PH models for each combination of cancer and comorbidity whilst adjusting for 

age, gender and deprivation as appropriate. 

b) Test for violations of underlying model assumptions. 

c) Identify outlier or influential patients within the dataset and quantify their impact on model 

estimates. 

d) Quantify hazard associated with comorbidity. 

e) Assess the confidence interval for precision. 

f) Assess confidence interval for high or low probability of unidirectional hazard. 
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5.1 - Methods 

5.1.1 - Building Survival Models 

Survival models were built using the Cox proportional hazard approach to time to event analysis.108 

Survival was estimated as a function of the individual comorbidity of interest, age (in 10 year bands), 

gender and deprivation. Data on grade and stage was not included due to the high proportion of 

missing data as outlined in chapter 3 and due to their potential as mediators of effect. Histology was 

not included as per the confounder principles outlined in chapter 2. Models were built for all 

comorbidities of interest in the breast, lung, prostate and colorectal cancer site-specific cohorts. All 

site specific cohorts were assessed for each of the key comorbidities of interest namely, diabetes, 

MI, stroke, CCF and COPD. The focus of analysis is on the impact of comorbidity and thus results are 

predominantly presented based on the coefficients of each individual comorbidity. The inclusion of 

age, gender and deprivation was to control for confounding rather than for direct assessment of 

effect. The covariate model specification for these analyses are detailed in Table 25 of the appendix. 

Models were built using the R “survival” package. Two model versions were built one without 

stratification and one with stratification by comorbidity, to enable both the extraction of hazard 

ratios and also the plotting of stratified survival curves. 

5.2.2 - Analysis of Model Assumptions 

In order to assess for potential violations of underlying Cox proportional hazards model 

assumptions, a number of approaches were applied. Analysis was undertaken using Schoenfeld 

residuals to identify evidence of violations of the proportional hazards assumption.288 Due to the 

large cohort numbers of over 10,000 patients this was done visually, plotting residuals over time for 

each covariate rather than relying on p values (more details can be found in chapter 2 and the 

discussion section below).  

To assess for violations of the linear assumptions Martingale residuals were estimated and plotted 

against the value of the covariate of interest. This was done using the raw values of the covariate 

along with this value after a logarithmic, square root transformation and quadratic transformation. 

Results were assessed visually to identify patterns of nonlinearity and whether scale transformations 

could overcome this.   

Assessment of the effect of outliers on estimates was conducted through the numerical assessment 

and visualisation of calculated dfbeta values for each observation. A cohort size adjusted threshold 

was applied using a cut off of 2/sqrt(n) to identify important and influential outliers.289 To assess the 

impact of these Cox models were generated with and without outliers with the resulting hazard ratio 

estimates for the comorbidity of interest compared. Due to the large numbers of models being 

analysed this outlier exclusion approach was implemented in only the five key comorbidities across 

the top four cancers as example cases.   

5.2.3 - Extraction of Summary Statistics 

In order to assess the relationship between comorbidity and survival, hazard ratios were extracted 

from the completed Cox models by taking the exponent of the coefficients. As the analysis is reliant 

on observational data and large case numbers, p values were not analysed.59,61 Instead the 

confidence intervals were assessed and reported for precision. Results were then categorised as 

having a high probability of unidirectional hazard where the confidence interval did not include 1 or 

a low probability of unidirectional hazard, where it did include one. This is based on the concept that 

where a confidence interval does not include 1 then in 95% of realisations, the population value of 

the hazard ratio is the same direction of effect as the point estimate, that is, it is unidirectional. 
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Where the confidence interval includes 1, or includes values both above and below 1, 95% of 

realisations have a population hazard estimate that suggests the same direction of effect, opposite 

direction of effect or no effect, thus reducing the utility of the estimate, due to the lower probability 

of having the same direction of effect as the point estimate. 

The span of the confidence interval for each estimate was assessed in terms of absolute span and 

the percentage of point estimates. Results were filtered to show the most precise comorbidity 

models by limiting results to those where the confidence interval span was less than or equal to 0.25 

and where the confidence interval span represented less than or equal to 25% of the point estimate. 

This allows for the identification of results which are not only unidirectional but also have high levels 

of precision. 

 

5.3 - Results 

 

5.3.1 - Survival Models 

 

Figure 36: Association between Diabetes and Survival in Breast Cancer - Cox Proportional Hazard Model for Breast Cancer 
Site Specific Cohort Stratified by Diabetic Status. Model includes adjustment for age, gender and deprivation. 

As in chapter 4 for the KM approach, individual stratified survival curves were produced for each of 

the comorbidity and site comparisons undertaken.  This equates to 295 comparisons and an equal 

number of stratified curves. This approach to reviewing the data would prove inefficient and was 

therefore used only as a sense check in order to identify potential issues with data pre-processing. 

The detailed analysis and results presented are based on the summary statistics found in the later 

section 5.3.3 
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5.3.2 - Cox Model Diagnostics 

Proportional Hazards 

Individual plots for each of the models produced were created showing Schoenfeld residuals against 

time for each covariate. On manually review, none of the models were identified as having evidence 

of a meaningful violation of the proportional hazards assumption. Although statistically significant 

assessments were found according to p values, these were disregarded due to the context of high 

population numbers. The absence of a violation of assumptions is demonstrated by the overall trend 

being a straight line at or close to zero. Although some fluctuation is seen over time this is only small 

in size and therefore not deemed to be important for the interpretation of model results. An 

example of these diagnostics plots is included below for reference (Figure 37).  

 

Figure 37: Shoenfeld Residual Plot for Covariates in the Stroke in Breast Cancer Cox Model – The Shoenfeld residuals for 
each variable are plotted on the vertical axis and time is plotted on the horizontal axis. Each red dot represents one patient 
at that time within the Breast Cancer site specific cohort. The black line is the line of best fit and the dotted lines the 
confidence interval. When the black line is horizontal and almost entirely straight there is no evidence for a violation of the 
proportional hazard assumption. If the line is angled or showing multiple areas where the line is curved this provides 
evidence for a breach of the proportional hazard assumption.  
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Linear Assumptions 

The assessment of the linear assumptions of non-categorical variables highlighted patterns 

suggestive of nonlinearity in multiple models. This was most marked in terms of age in decades 

particularly in breast cancer models, but also in prostate and colorectal cancer as well. IMD quintile 

also showed non-linear relationships, although to a lesser extent. Applying the alternative square 

root and logarithmic scale transformation did not resolve the nonlinearity in any of the cases. A 

summary of all models can be found in the Table 9. Figure 38 shows an example of the appearance 

of non-linear relationships using this approach. Sequential quadratic transformation of age was 

attempted to overcome the issue of non-linearity up to 3 degrees. Repeated visual assessment of 

Martingale residual suggested ongoing non-linearity. Increasing numbers of covariates with each 

degree of quadratic adjustment also negatively impacted on the precision of the obtained effect 

estimates. 

Site Age IMD 

All 0 0 

Bladder 0 0 

Breast 1 0 

Cervical 0 0 

Colorectal 1 0 

Connective 1 0 

CUO 0 0 

Endometrial 0 1 

Intracranial 0 1 

Kidney 0 0 

Renal 0 0 

Laryngeal 0 0 

Leukaemia 0 0 

Liver 0 1 

Lung 0 0 

Lymphoma 0 1 

Melanoma 0 0 

Myeloma 0 0 

Oesophageal 1 1 

Ovarian 0 1 

Pancreatic 0 0 

Prostate 0 0 

Skin 0 0 

Stomach 0 0 

Testicular 1 1 

Thyroid 1 1 
Table 9: Summary of Linear Assumptions Assessment – The plots for the Martingale residuals for each continuous variable 
in each site specific cohort was reviewed for evidence of a violation of the linear assumptions. The results are recorded win 
the table with 0 = No evidence of Violation, 1 = Evidence of Violation 
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Figure 38: Assessment of Linear Assumptions of Age in Breast Cancer Site Specific Cohort. = Martingale residuals are 
plotted on the vertical axis against age on the horizontal axis. Three plots represent age on different scale, the top plot 
represents age as completed decades in effect representing ten year age bands. The second plot represents age as the log 
of age in complete decades and the third plot represents age as the square root of age in complete decades. Where linear 
assumptions hold the line should be a continuous straight line. Curves or changes in the trajectory of the line suggest non-
linearity. 

Influential Outliers 

Analysis of the dfbeta values was conducted both visually and numerically. Numerical assessment 

identified that there were no examples of influential outliers for IMD and age. Influential outliers for 

gender were only identified in the context of breast cancer. The majority of influential outlier values 

were for individual comorbidity assessment. This was most commonly the case for comorbidities 

with low numbers within the cohort. In many of these instances the influential outliers were the 

majority of the cases of the comorbid patients. In such a situation it suggests that the variation 

between comorbid cases was high.  When assessing the 4 key cancers and the 5 key comorbidities, 

no influential outliers were found for lung cancer or colorectal cancer models. In breast cancer and 

prostate cancer, the diabetes models were also identified as having no influential outliers. The 

results of the models with and without outlier values for the remaining 4 comorbidities in breast and 

prostate cancer are shown in Figure 39. In some cases, such as CCF and MI in breast cancer and CCF, 

and stroke in prostate cancer, the point estimate without outliers shifts beyond the confidence 

interval of the full cohort estimate. In none of the cases does the direction of effect change or does 

the hazard ratio move to a low probability of unidirectional hazard.  

0 2 4 6 8 10 

0.0 0.5 0.6 2.5 

0.0 0.5 2.0 2.5 3.0 

  0.3 
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Figure 39: Effect of Influential Outliers – Cox derived comorbidity hazard ratios for comorbidities with influential outliers 
identified in a) Breast Cancer and b) Prostate Cancer Site Specific Cohorts. Results in red are the hazard ratios obtained 
when the full site specific cohort was used to generate a Cox model those in blue are where the model was generated after 
the removal of influential outliers. 

a) 

b) 
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5.3.2 - Extraction of Summary Statistics 

40 models were developed per site specific cohort investigated along with 24 models per 

comorbidity of interest. The results of these are demonstrated in summary plots of the hazard ratio 

grouped by site and comorbidity below. Where a hazard ratio is quoted below it is presented as a 

point estimate with its 95% confidence interval following within parenthesis. 

Breast 

A total of 28 comorbidities were found to have a high probability of unidirectional hazard (Figure 

40). In all but one case these associations were with reductions in the survival of these groups. 

Varicosities where however associated with improved survival with a hazard ratio of 0.69 (0.49-

0.97). The largest effect size seen was in ankylosing spondylitis with a hazard ratio of 6.10 (1.96-

18.92). It is however important to note that the precision of this estimate is low with wide 

confidence intervals. Dementia and congestive cardiac failure both had lower point estimates but 

greater levels of precision, with a hazard ratio of 3.08 (2.53-3.75) and 2.97 (2.56 -3.45) respectively. 

Of those estimates with a high probability of unidirectional hazard, the lowest effect size was seen in 

peptic ulcer disease which identified a hazard ratio of 1.35 (1.06-1.71). 

Lung 

Within the lung cancer cohort a total of 22 comorbidities were associated with a high probability of 

unidirectional hazard (Figure 41). Despite this, the effect sizes seen in this cohort were on average 

smaller than those found in the breast cancer population. The direction of effect was more varied, 

with 7 of the 22 comorbidities suggesting a reduction in hazard. The largest reduction was seen in 

obesity with a hazard ratio of 0.44 (0.39-0.48) and showing a high level of precision. The other 

conditions associated with decreased hazard were more modest in terms of effect size, with analysis 

suggesting a hazard ratio of 0.84 (0.78-0.91) for asthma, 0.90 (0.85-0.95)  for hyperlipidaemia, 0.91 

(0.87-0.94) in COPD, 0.92 (0.88-0.98) for diabetes and 0.87 (0.84-0.91) in hypertension. 

Amongst those associated with increased hazard, the largest effect size was seen in motor neuron 

disease with a hazard ratio of 3.61 (1.16-11.19). Due to small case numbers, the precision of the 

estimate was low. Demyelination and HIV have the next highest point estimates, however as with 

MND the precision is low with estimates extending beyond 100% variation of hazard in both 

directions. The remaining comorbidities with a high probability of unidirectional effect have higher 

levels of precision but demonstrate more modest effect sizes. Examples include a hazard ratio of 

1.47 (1.29-1.67)for thromboembolic disease, 1.42 (1.27-1.60) for dementia, 1.11 (1.01 – 1.22) for 

CKD and 1.27 (1.01-1.52) for liver dysfunction.  

Prostate 

A total of 26 conditions were found to have a high probability of unidirectional hazard in the 

prostate cancer cohort, all of which suggested increased hazard (Figure 42). As with the previous 

cohorts the largest point estimates were associated with low levels of precisions such as liver disease 

and other respiratory diseases, both of which have confidence intervals spanning more than 200% 

risk difference. Of those with a higher degree of precision (CI band smaller than 100% risk 

difference) the largest effect size was seen in CCF with a hazard ratio of 2.42 (2.09-2.79). The 

smallest effect size was in asthma with a hazard ratio of 1.20 (1.01-1.43).  
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Figure 40: Cox Derived Hazard Ratios for Comorbidity in Breast Cancer – Cox derived hazard ratios with 95% confidence interval associated with each comorbidity of interest in the Breast 
Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high probability of unidirectional hazard and 
those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 41: Cox Derived Hazard Ratios for Comorbidity in Lung Cancer – Cox derived hazard ratios with 95% confidence interval associated with each comorbidity of interest in the Lung Cancer 
Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high probability of unidirectional hazard and those in 
grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 42 : Cox Derived Hazard Ratios for Comorbidity in Prostate Cancer – Cox derived hazard ratios with 95% confidence interval associated with each comorbidity of interest in the Prostate 
Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age and deprivation. Those in black have a high probability of unidirectional hazard and those in 
grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 43: Cox Derived Hazard Ratios for Comorbidity in Colorectal Cancer – Cox derived hazard ratios with 95% confidence interval associated with each comorbidity of interest in the 
Colorectal Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high probability of unidirectional 
hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot.
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Colorectal 

23 comorbidities in the colorectal cancer cohort were found to have a high probability of 

unidirectional hazard (Figure 43). Varicosities were the only condition associated with a reduction in 

hazard, with a hazard ratio of 0.63 (0.45-0.86). All other conditions were found to be associated with 

a deleterious impact on survival. Of those with a level of precision showing a CI band of less than 100 

the largest effect size was in dementia with a hazard ratio of 2.46 (2.04-2.96) and the smallest effect 

size in hypertension with a hazard ratio of 1.07 (1.01-1.13). 

Diabetes 

When comparing the association of diabetes with survival across all site specific cohorts, 11 sites are 

associated with a high probability of unidirectional hazard (Figure 44). Of these two are associated 

with survival advantages and nine with survival disadvantages. The greatest survival advantage was 

seen in primary liver malignancy with a hazard ratio of 0.77 (0.68-0.87). As mentioned previously, 

lung cancer had a hazard ratio of 0.92 (0.88-0.98) Of those with increased hazard and a confidence 

interval narrower than 100% risk span, the largest effect was seen in skin cancers with a hazard ratio 

of 1.52 (1.42-1.63). The smallest effect was seen in colorectal cancer with a hazard ratio of  1.15 

(1.07-1.24). 

MI 

A smaller number of sites were associated with unidirectional hazard (8 sites) when assessing the 

impact of MI (Figure 45). The level of precision for most estimates was also low with only prostate 

cancer and skin cancer showing precision of better than a 100% hazard span. In skin cancer, this was 

associated with a hazard ratio of 1. 35 (1.19-1.52) and 1.19 (1.03-1.37) in prostate cancer 

Stroke 

12 cancer sites demonstrated a unidirectional hazard relationship with stroke. In all cases, stroke 

was associated with worse outcomes (Figure 46). The largest risk difference seen was in lymphoma 

with a hazard ratio of 2.25 (1.72-2.95). As with the other analyses this largest effect size was also 

accompanied by low precision, with a confidence interval span exceeding 100% risk difference. The 

majority of unidirectional effects seen, were accompanied by low levels of precision with only lung 

cancer showing a CI span of less than 100%. This was also the lowest effect size seen a hazard ratio 

of 1.25 (1.14-1.37). 

CCF 

The average effect size seen across all sites was largest in CCF compared to all other conditions 

analysed (Figure 47). All but 4 sites were associated with a high probability of unidirectional 

reductions in survival outcomes in the comorbid group. The largest effect size was seen in testicular 

cancer, with a hazard  ratio of 8.21 (1.14-59.1), , despite this, the precision is extremely low with the 

lower bound of the CI suggesting a risk increase of just 14%. CCF was also associated with large 

hazard differences in the breast cancer population with a hazard ratio of 2.97 (2.56-3.45). By 

contrast to testicular cancer the precision of this estimate was far greater leading to higher 

confidence that the true effect is greater than 156% increase in hazard. The lowest effect size was 

seen in lung cancer which showed a hazard ratio of 1.36 (1.26-1.46). 
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Figure 44: Cox Derived Hazard Ratios for Diabetes Mellitus in All Cancer and Site Specific Cancer Cohorts – Cox derived hazard ratios with 95% confidence interval associated with Diabetes 
Mellitus in All Cancer Cohort and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender (where appropriate) and deprivation. Those in black 
have a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of 
the plot. 
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Figure 45: Cox Derived Hazard Ratios for MI in All Cancer and Site Specific Cancer Cohorts – Cox derived hazard ratios with 95% confidence interval associated with MI in All Cancer Cohort 
and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender (where appropriate) and deprivation. Those in black have a high probability of 
unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 46: Cox Derived Hazard Ratios for Stroke in All Cancer and Site Specific Cancer Cohorts – Cox derived hazard ratios with 95% confidence interval associated with Stroke in All Cancer 
Cohort and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender (where appropriate) and deprivation. Those in black have a high 
probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 47: Cox Derived Hazard Ratios for CCF in All Cancer and Site Specific Cancer Cohorts – Cox derived hazard ratios with 95% confidence interval associated with CCF in All Cancer Cohort 
and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender (where appropriate) and deprivation. Those in black have a high probability of 
unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 48: Cox Derived Hazard Ratios for COPD in All Cancer and Site Specific Cancer Cohorts – Cox derived hazard ratios with 95% confidence interval associated with COPD in All Cancer 
Cohort and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender (where appropriate) and deprivation. Those in black have a high 
probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot.
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COPD  

15 cancer sites were associated with a high probability of unidirectional hazard when assessing 

COPD (Figure 48). Lung cancer was associated with a modest reduction in hazard with a hazard ratio 

0.91 (0.87-0.94). All other unidirectional results were associated with worse survival outcomes and 

increased hazard.  Skin cancer demonstrated the largest effect size with a hazard ratio of 2.21 (2.00-

2.44). This was accompanied by reasonable precision with a CI span of less 50%. 

Highest precision results 

Table 10 shows the hazard ratios that met our pre-specified precision cut offs described in the 

methods section. This highlights a number of examples with both a high probability of unidirectional 

effect and high precision for the point estimates. When assessed in the all cancer cohort 20 

comorbidities meet the precision threshold. By contrast in breast cancer only one comorbidity meets 

the threshold, four in prostate cancer, nine in lung cancer and five in colorectal cancer. Hypertension 

features as precise and unidirectional across all of the top four cancers with an increased hazard in 

all but lung cancer, which shows a 10.1% decrease. Diabetes meets the precision thresholds in lung, 

colorectal and prostate cancer. Of note hyperlipidaemia, COPD, asthma and diabetes which all show 

an associated reduction in hazard in lung cancer also meet the precision threshold. 
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  Label 
Hazard 
Ratio 

Lower 
CI 

Upper 
CI 

CI 
Span 

CI Span as 
Percentage 

Breast Hypertension 1.45 1.34 1.56 0.22 15.43% 

  Diabetes 1.36 1.24 1.49 0.25 18.20% 

Prostate Coronary Artery Disease 1.25 1.17 1.34 0.17 13.36% 

  Hypertension 1.23 1.16 1.32 0.16 13.31% 

  Hyperlipidaemia 1.25 1.13 1.38 0.24 19.58% 

  Diabetes 0.92 0.88 0.98 0.10 10.66% 

  T2 Diabetes 0.91 0.86 0.97 0.11 12.13% 

  Congestive Cardiac Failure 1.36 1.26 1.46 0.20 14.96% 

  Hypertension 0.87 0.84 0.91 0.06 7.29% 

Lung Asthma 0.84 0.78 0.91 0.13 14.91% 

  COPD 0.91 0.87 0.94 0.08 8.47% 

  Chronic Kidney Disease 1.11 1.01 1.22 0.21 18.84% 

  Stroke 1.25 1.14 1.37 0.23 18.50% 

  Hyperlipidaemia 0.90 0.85 0.95 0.10 11.13% 

  Diabetes 1.15 1.07 1.24 0.17 15.17% 

  T2 Diabetes 1.22 1.12 1.33 0.21 17.16% 

Colorectal Coronary Artery Disease 1.15 1.08 1.22 0.15 12.96% 

  Hypertension 1.07 1.01 1.13 0.11 10.73% 

  Arrhythmia 1.29 1.19 1.39 0.20 15.25% 

Skin Diabetes 1.52 1.41 1.64 0.23 14.89% 

  Diabetes 1.18 1.16 1.22 0.06 5.07% 

  T1 Diabetes 1.54 1.42 1.67 0.24 15.92% 

  T2 Diabetes 1.30 1.27 1.34 0.08 5.85% 

  Myocardial Infarction 1.18 1.13 1.23 0.10 8.89% 

  Congestive Cardiac Failure 1.68 1.62 1.75 0.13 7.61% 

  Coronary Artery Disease 1.15 1.13 1.18 0.05 4.21% 

  Hypertension 1.11 1.09 1.13 0.04 3.70% 

  Arrhythmia 1.29 1.26 1.33 0.07 5.46% 

  Varicosities 0.81 0.74 0.88 0.14 17.14% 

  Thromboembolic Disease 1.78 1.66 1.90 0.24 13.38% 

  Asthma 1.11 1.06 1.16 0.09 8.34% 

  COPD 1.70 1.65 1.75 0.10 6.02% 

All Inflammatory Bowel Disease 1.20 1.09 1.32 0.23 19.33% 

  Peptic Ulcer Disease 1.25 1.20 1.31 0.11 8.80% 

  Chronic Kidney Disease 1.47 1.40 1.54 0.14 9.39% 

  TIA 1.19 1.09 1.30 0.21 17.71% 

  Stroke 1.58 1.50 1.66 0.15 9.62% 

  Dementia 1.87 1.76 1.98 0.22 11.88% 

  Rheumatological disease 1.20 1.10 1.31 0.21 17.73% 

  Rheumatoid Arthritis 1.32 1.23 1.41 0.19 14.07% 

  Hyperlipidaemia 1.04 1.01 1.08 0.06 5.96% 

  Peripheral Arterial Disease 1.55 1.48 1.62 0.15 9.48% 
Table 10: High Precision Comorbidity Hazard Ratio Results - Hazard ratios associated with comorbidity extracted from 
each Cox proportional hazard model. The confidence interval for the hazard ratio was extracted and is shown as the lower 
confidence interval, upper confidence interval and the total span of the confidence interval. The span is further expressed as 
a percentage of the hazard ratio point estimate. The results shown are limited to those that have a high probability of 
unidirectional hazard, a confidence interval span of less than or equal to 0.25 and where the span was less than or equal to 
25% of the point estimate for the hazard ratio 
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5.4 - Discussion 

5.4.1 - Assessment of Model Assumptions 

As per our analysis framework detailed in chapter 2, first consideration is given to limitations and 

bias within the analysis. A key step in this process is the interpretation of the model assumptions 

applied, and whether these hold. The results of the model diagnostics identify a number of potential 

issues with the models developed. Many of these issues stem from methodological limitations or 

assumptions inherent to the Cox proportional hazards approach.178,288 The assessment of Schoenfeld 

residuals to look for evidence of variables breaching the proportional hazards assumption is in this 

instance, based on a subjective assessment. In most cases a statistically significant p value would be 

an indication that the assumption has been breached. This could either be globally across the model, 

or in terms of individual covariates. The issue with this approach, in this context, is that it is 

recognised that p values are of limited utility in large cohorts, as very small differences in absolute 

values can result in highly significant p values due to the sample size. Previous literature has 

suggested that samples at or above 10,000 should be used as a hard cut off for the utility of p 

values290. Although where researchers choose to draw their arbitrary cut off is a matter for debate, it 

is certainly the case that this is an issue for the high prevalence cancers in PPM that have large 

numbers often exceeding 20,000 patients. This requires instead the assessment of the visual trends 

and the application of a subjective judgement. This approach is inherently more open to variation 

and assessor bias. It could be argued that in the cases of less common cancers the numerical 

approach could have been used due to the smaller sample sizes, however this would have meant 

applying our analysis inconsistently across models.  

When assessing the models visually, it is also important to state that this subjective review might be 

influenced by the scale used within the plots. If plots had been assessed on a smaller scale the level 

of variation from a straight horizontal line would become more apparent. Thus how the results are 

represented could have influenced the interpretation of the proportional hazards assumptions. It is 

also important to note, that in some cases where models were based on smaller samples sizes there 

was disagreement between the numeric assessment produced via p values and the visual 

assessment. This introduces the question of robustness of the visual inspection approach. This issue 

could be entirely avoided through the use of other modelling approaches that do not in rely on the 

proportional hazards assumption. 

The assessment of the linear assumptions showed that both of the continuous variables used 

demonstrated some degree of non-linearity across several of models. As with the interpretation of 

the proportional hazards assumption, the interpretation is subjective and how much deviation away 

from a straight line relationship was regarded as being a violation of the assumption, may not have 

been entirely consistent as a result. The identified of non-linear associations were most apparent 

when assessing age in breast cancer, which is consistent with previous research findings.291 This 

issue is an inherit problem in most methods reliant on linear regression to model a time to event. A 

variety of approaches can be used to overcome this, including dividing up the cohort. Here individual 

models are built using subsets of the population and later plots can be “stitched” together to 

identify the non-linear patterns. This is however only useful if you are attempting to model this 

relationship with age as opposed to trying to develop an overall prediction or explanatory model. 

Where multiple continuous variables are demonstrating nonlinearity, then further subdivisions must 

be made, i.e. each age band in each IMD band. This then produces issues due to having small sample 

sizes with much lower precision of estimates, whilst also requiring a significant increase in the 

number of models being built, impacting on the practicality of this approach. Further, it prevents 

inclusion of interaction terms between these, if this were felt to be required and appropriate. In 
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order to overcome this, alternative flexible non-parametric approaches could be applied which do 

not make linear assumptions.  However, many of these approaches are time consuming and also 

may be less easy to interpret the resulting model outputs. 

The assessment of outliers found that in the majority of models there were no individuals that were 

contributing to large scale shifts in the effect size estimates for each of the variables. Most of the 

examples of influential outliers were in the context of the comorbidity coefficient estimation. This 

was particularly apparent in those comorbidities with low numbers. In many of these cases, the 

majority of comorbid patients were influential, suggesting variance in the outcomes of these 

patients. This variance could be due to the sample size being small and thus insufficient numbers are 

available to accurately estimate the average effect. It may also be the case that the association 

between that comorbidity and outcome is varied in the population and that large sample sizes would 

show the same high variance. As such, further research should be undertaken using larger sample 

sizes to identify whether this solves the variance issue or not. 

The results from analyses with and without influential outliers demonstrates that there is variation 

in both the point estimates and confidence intervals derived from the models. In all cases the 

direction of effect was constant but the precision and effect size was altered. Although the effect of 

outliers was not assessed in terms of hazard ratio in all models, it is reasonable to assume that a 

similar pattern of effect would be seen in other cases. The models more likely to be impacted, are 

those with smaller numbers of comorbid patients. These models have lower precision and should 

therefore be viewed with a higher degree of scepticism as a result. 

Although not explicitly assessed within this chapter, the issue of collinearity, as identified in chapter 

3, is of relevance. Where variables are correlated or collinear there is a risk of inappropriately 

attributing the effect of one covariate to its correlated counterpart. As a result, there is a risk that 

due to the low level, but significant correlation seen between several covariates, this may be 

inflating or deflating the estimates of effect size. It would be possible to introduce interaction terms, 

however as almost all covariates were correlated to some extent, and that the analysis aims to 

estimate the total effect of comorbidity, doing so would risk splitting the effects between multiple 

interaction terms, as well as reducing precision of estimates due to an increasing number of 

covariates on a polynomial scale.  

5.4.2 - Identifying Potential Bias Using Directed Acyclic Graphs (DAGs) 

Within the data exploration outlined in chapter 3 a number of limitations of the underlying dataset 

have been identified and described. These include; missing data, collinearity, limitations of clinical 

coding and patient demographics that are unrepresentative of the wider UK population. Within 

section 5.4.1 a number of methodological assumptions are further identified and assessed, all of 

which may introduce inaccuracy and bias into analysis results. Beyond this, there may be elements 

of the observational study design, which may introduce additional bias and misestimation that must 

be considered. 

The fundamental question at the heart of the analyses undertaken in this chapter and chapter 4, is 

“what is the impact of individual comorbidities on cancer outcomes”? Although the results 

presented are clearly described as associations, descriptive or inferential analyses, the question and 

its ideal answer are causal. The phrase “correlation does not equal causation” is commonly found 

within the literature and popular science writing 292 but despite this, correlated variables are often  

presented as being a finding that is meaningful and potentially clinically relevant or useful. In effect, 

correlation is used to suggest a hint of possible causation. Causal inference research has however 

shown the absence of correlation does not mean the absence of causation, and may be an artefact 
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of the study design and the analysis implemented.293 In view of this, it is important to objectively 

assess the analyses undertaken, to determine if the results are biased, if so how and whether they 

are interpretable enough to draw meaningful conclusions about associations, as potential indicators 

of causal relationships, which require further investigation.  

Although our analysis is not attempting to make causal conclusions, the application of causal 

thinking can still be utilised to suggest additional sources of bias not previously considered or 

detailed. A formal assessment of the analysis can be built around current knowledge of the likely 

temporal ordering of relevant factors. Drawing this knowledge in the form of a directed acyclic graph 

(DAG) allows us to assess potential biases that are introduce throughout study design and the 

analysis approach.294,295  

 

Figure 49: Diabetes and Death Directed Acyclic Graph (DAG) -  Representation of simplified cause and effect of diabetes on 
death. Light blue denotes exposure of interest and red denotes outcome of interst.  

The key desire from any causal analysis is to identify the causal effect of an exposure on an outcome 

of interest. By taking a single example of the impact of diabetes on death in cancer, it is possible to 

start to identify potential pitfalls in the methods applied. As our analysis is concerned with pre-

cancer diabetes, then our exposure is diabetes and our outcome of interest is death (Figure 49). The 

research question concerns the impact of diabetes in a specific population, and thus cancer must be 

added as a mediator (Figure 50). If this simple causal diagram were the true reflection of reality, and 

our estimand (the quantity that is being estimated) was the total causal effect, then the causal 

relationships of interest would be represented by Figure 51.  

  

Figure 50: Diabetes and Death Mediated via Cancer Directed Acyclic Graph (DAG) -  Representation of simplified cause 
and effect of diabetes on death mediated via cancer. Light blue variables denote the exposure of interest, grey denotes 
mediators of effect and red denotes the outcome of interst. 

 

Figure 51: : Total Causal Effect of Diabetes and Death Mediated via Cancer Directed Acyclic Graph (DAG) -  
Representation of simplified cause and effect of diabetes on death mediated via cancer. Light blue variables denote the 
exposure of interest, grey denotes mediators of effect and red denotes the outcome of interst. Grey lines represent causal 
relationships that should not be included within the estimand in order to obtain the desired total causal effect estimate. 

Diabetes Death 

Diabetes Cancer Death 

Diabetes Cancer Death 
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The true causal relationships are however more complex, and this must be reflected in the DAG. It is 

necessary therefore to consider the mediators of death caused by diabetes via cancer and non-

cancer related processes. There are other additional factors beyond these that alter a patient’s risk 

of cancer and also affect death, but are independent of cancer. If these were included as grouped 

entities then the DAG would be represented by Figure 52 . With this particular DAG, the total causal 

effect would be represented by Figure 53.  

 

 

Figure 52:  Detailed Diabetes and Death Mediated via Cancer Directed Acyclic Graph (DAG) -  Representation of cause and 
effect of diabetes on death mediated via cancer with the addition of cancer risk modifiers and mediators of death both 
cancer and non-cancer related. Light blue variables denote the exposure of interest, grey denotes mediators of effect and 
red denotes the outcome of interst.Despite being more detailled this DAG still represents a simplification of the known 
causal relationships.  

 

Figure 53: Detailed Total Causal Effect of Diabetes and Death Mediated via Cancer Directed Acyclic Graph (DAG) -  
Representation of causal pathway of diabetes on death mediated via cancer including the addition of cancer risk modifiers 
and mediators of death both cancer and non-cancer related. Light blue variables denote the exposure of interest, grey 
denotes mediators of effect and red denotes the outcome of interst. Despite being more detailled this DAG still represents a 
simplification of the known causal relationships. Grey lines represent causal relationships that should not be included within 
the estimand in order to obtain the desired total causal effect estimate. 
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Although this appears at first simple to achieve, our study design is limited to cancer patients and 

therefore involves stratifying patients by the presence or absence of cancer, which conditions on 

cancer as a variable.296 This blocks downstream causal effects which are removed, at least in part, 

from any estimates and introduces collider bias, such that all conditions that impact the risk of 

cancer and are associated with death, are added to the estimates obtained. The open causal 

pathways are represented in Figure 54.  

 

Figure 54: DAG of Open and Closed Causal Pathways due to the Study Design – Simplified DAG representing the causal 
pathways due to the implemented study design for assessing the effect of diabetes on death via cancer. Green lines 
represent open pathways, red represent cosed pathways. Mediators within a dotted box represent those that have been 
conditioned upon. . Light blue variables denote the exposure of interest, grey denotes mediators of effect and red denotes 
the outcome of interst. 

In order to overcome this issue it would be possible to condition on the cancer risk factors as shown 

in Figure 55. Although this sounds straightforward, this represents a significant challenge. It assumes 

that all cancer risk factors are known, which is unlikely to be true. Even if all risk factors were known, 

they would all have to be measured and it is probable that some or many would be missing from any 

dataset. Even if they were known and measured, the pattern of relationship between the risk factor 

and death is unknown. Selecting an appropriate model to adjust for this would therefore be 

extremely difficult. If for example the relationship was non-linear, then linear models will not 

adequately remove bias. If we assume that this too was not an issue, and all risk factors were 

known, measured and pattern of association known, even then, conditioning on a variable does not 

entirely remove bias due to natural variation and misclassification, thus residual confounding 

remains.297 In the case of non-cancer death mediators, similar issues are present, however it would 

also need to be known which were cancer related, and which were not. 

A further issue arises via the temporal ordering of variables. If we again take diabetes as an example, 

in many patients renal dysfunction arises after long standing diabetes.298 In this scenario renal 

dysfunction is a mediator of effect and thus should not be adjusted for in the analysis. In other cases 

however, a patient may develop autoimmune renal dysfunction, which is managed in part with 

steroids, which can cause diabetes to develop.299 In this scenario renal dysfunction is a confounder 

and should be adjusted for. This highlights how the ordering of events impacts on the model 

specification300. If this was put into practice, it would require an exponential increase in the number 

of models specifications needed, with the increasing number of variables required to account for 
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confounding. The greater the number of models, the smaller the cohort size for each and thus lower 

levels of precision would be obtained. 

These factors are hugely important when considering how we can and should interpret the results of 

the analysis presented above. The approach undertaken leaves a large number of unknowns about 

the accuracy of the estimates obtained and in some cases the underlying methodology of the 

analysis may introduce false associations. It is therefore important to avoid translating the results 

seen into causal type conclusions. Within the cancer population these associations can be seen, but 

may in fact be due to factors entirely separate to the variable the hazard is attributed to by the 

model. It may be that comorbidity in many instances is simply acting as a surrogate marker for 

another critical causal factor or due to selection bias introduced by conditioning on cancer. 

Additionally, the lack of an identified association does not indicate a lack of a causal relationship, 

which may have been masked due to the analysis employed. 

 

Figure 55: DAG of Open and Closed Causal Pathways Due to Study Design After Adjustment – Simplified DAG representing 
the causal pathways due to the implemented study design for assessing the effect of diabetes on death via cancer after 
adjusting for cancer risk modifiers. Green lines represent open pathways, red represent cosed pathways. Mediators within a 
dotted box represent those that have been conditioned upon. . Light blue variables denote the exposure of interest, grey 
denotes mediators of effect and red denotes the outcome of interst. 

This information could also help to explain the number of survival paradoxes that have been 

identified in our analyses thus far. As outlined above, limiting our study to the cancer population has 

in effect conditioned on cancer. This is a collider, which is temporally downstream of our exposure 

which in this case is comorbidity. This has therefore introduced bias which is in most cases 

unmeasured and unaccounted for within the model. The differences seen, in for example improved 

survival with COPD in lung cancer, may be entirely artefactual or be independent of COPD entirely. 

This is similar to other survival paradoxes which has previously been described in the literature such 

as the birth weight paradox and the obesity cardiovascular paradox.265,301  

5.4.2 - Associations between Comorbidity and Survival 

As with the previous KM analysis, the effect size and direction has been shown to differ across 

comorbidities and cancer sites. Across all comorbidities and all cancers, numerous associations have 

been demonstrated to have a high probability of unidirectional hazard in terms of survival outcomes. 

The majority of these associations suggest that having comorbidity is associated with worse survival 
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outcomes. Despite this, a number of comorbidities are associated with improved outcomes. This 

includes the three conditions identified with the KM analysis, along with five additional conditions 

once adjustment for age, gender and deprivation had been undertaken. As discussed both above 

and in chapter four, the associations could be as a result of a number forms of bias and confounding. 

It could be argued that in several cases this is the most likely cause of the associations seen. Despite 

this, it is important to consider if there are plausible biological mechanisms, which might explain the 

associations seen.  Below, relevant aspects of the literature will be summarised, with an initial focus 

on comorbidity in general before focussing on the interplay between cancer and each of our key 

comorbidities, namely; MI, Stroke, CCF, COPD and DM. Potential biological explanations that might 

account for the highlighted differences in outcome associations will be presented. Beyond these 

comorbidities, focus will also be given to varicosities as the analysis has demonstrated an association 

with improved outcomes in certain cancers, which has not been identified previously. It is important 

to note that these are presented as hypothesis generating, for potential future research, rather than 

having a basis in the analysis results presented above.   

Generic Aspects of Comorbidity 

Although the underlying physiology of each comorbidity discussed is different, there are certain 

aspects of how comorbidity effects individuals, their decision making and their outcomes, which are 

relevant to many significant health conditions. 

Previous research has suggested that patients with comorbidities have increased levels of toxicity 

from systemic anticancer treatment and surgery20,136,302,303, however despite this, comorbid patients 

have still been shown to derive benefit from many of these interventions.23,302–305 

Underrepresentation of comorbid patients within randomised controlled studies50,53,306, also limits 

data available for this group of patients, particularly with new and emerging treatments. This can 

make both patient and clinician decision making extremely challenging and in many cases based on 

opinion, rather than on objective data. As such, decision making in this context may result in 

patients deciding to accept shorter survival, for what they perceive to be a better quality of life.14 For 

many, this balance of quality versus quantity of life, might be viewed as a preferred outcome. The 

analysis presented above, focusses only on survival and therefore fails to capture another end point 

which, to many, is equally, if not more important.  

Patients with chronic health conditions engage and interact differently with health care services than 

those without pre-existing health condition. This can result in differences in the timing of diagnosis. 

Patients who are regularly reviewed, are more likely to have incidental findings identified on routine 

testing.21,307,308 Patients with chronic health conditions, may also receive more encouragement to 

undergo screening and thus have a higher pickup rate of cancer.133,309 Conversely, symptoms of 

cancer may be dismissed as being relevant to the comorbidity, and thus delay the diagnosis of 

cancer.43,310,311 These differences may result not only in potential lead time bias, but also in 

differences in how advanced the cancer is, at the point of diagnosis. This may result in different 

survival outcomes, either with improved outcomes for early diagnosis, or worsened outcomes for 

late diagnosis.  

As shown in chapter 3, although our analysis focusses on individual comorbidities, the real world is 

more complex, with patients often having multiple comorbidities. This is often driven through 

common risk factors such as obesity, smoking, diet and lack of exercise.28,130 These risk factors are 

also found within the literature as being drivers for oncogenic change. If the cancer that results via 

these risk factors in some way differs from those that occur as a result of other processes, then it 

may follow that the behaviour of the cancer may in turn also be different. This may impact on cancer 
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growth, spread and treatment response, ultimately resulting in different outcomes for these 

patients. 

The overlap of multiple health conditions may also significantly impact on suitability for treatment. 

Patients with multiple health conditions may be deemed too frail for treatment, or be treated in a 

fundamentally different way which impacts on treatment outcomes.29,30,131,254,312 This difference in 

treatment may be entirely justified and appropriate, thus the comparison required in this instance 

might be between those with known health conditions who do not receive treatment, those who 

receive standard treatment and those who receive non-standard treatment, with survival and 

quality of life outcomes both considered. This may give a more representative view of which 

treatment route is most appropriate.  

Hereon individual comorbidities are considered along with some of the research in that particular 

condition which may be relevant to survival outcomes.  

Diabetes Mellitus 

The analysis of DM across all cancers patients shows that on average, this group is associated with 

increased hazard. Despite this, when assessing DM on a cancer site basis, the scale, precision and 

direction of effect estimates differ, with 9 cancers showing associations with increased hazard and 

two cancers showing associations with improved hazard. 

Although DM is a condition characterised by abnormal blood sugar homeostasis, this blood sugar 

regulation issue causes systemic effects. As such, diabetes is commonly the cause for other 

conditions driven by microvascular changes, including renal dysfunction, cardiovascular disease, 

neuropathy and stroke, to name but a few.313 Thus patients with DM may have numerous 

physiological changes in other organs which impact on treatment suitability and dosing. This may 

impact on the management of these patients, such that their outcomes are different.136 

Previous research has suggested that some of the treatments used in DM alter oncogenic risk. This is 

particularly relevant to the reduced hazard seen in liver cancer where patients on metformin and 

thiazolidinediones have a 70% reduction in risk of HCC compared to the background diabetic cohort 

risk.314 Metformin use has been demonstrated to lower the cancer risk in a number of other cancer 

types.270–272 In vitro and in vivo studies suggest that metformin has an inhibitory effect on cancer cell 

growth.273,274 It is therefore possible that the improvements in survival seen in both lung and liver 

primary tumours, could be as a result of an effect of metformin on cancer cell growth. If this were 

the case, then it would suggest that lung and liver tumours are particularly affected by metformin’s 

growth inhibitory effects when compared to other cancers, as it is these tumours that show an 

improvement in outcome. 

Other commonly used medications in the diabetic population could also contribute to the effect 

seen. As diabetes is a risk factor for cardiovascular disease, a large number of patients within the 

diabetic cohort are likely to be prescribed aspirin in order to reduce the risk of myocardial infarction 

and cerebrovascular accidents. Research has demonstrated that aspirin may have anti-cancer effects 

across a range of tumour types.266–268 The effects both reduced the chances of developing a range of 

cancers, but also reduce the risk of developing metastatic disease. Thus, the high prevalence of 

aspirin use in diabetic patients might account for the differences seen. As with metformin, the effect 

size of aspirin in liver and lung tumours would need to be greater than in other cancers otherwise, 

one would expect to see similar improvements in multiple cancer sites. The weight of this theory 

appears to be diminished by virtue of the fact that other conditions where aspirin is extensively used 

such as MI, stroke and peripheral arterial disease are not associated with decreased hazard, as is the 
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case in lung and liver cancer. It is however possible that aspirin is dampening down what might 

otherwise be larger effect sizes in these groups.  

The underlying physiology of diabetes might also offer an additional explanation for the differences 

seen. Patients with type 2 diabetes have impaired tissue uptake of glucose, particularly in the liver, 

as one the mechanisms that leads to hyperglycaemia.315 This may alter the glucose taken up within 

the cancerous area affected by liver tumours. If this were the case, then this might slow the growth 

of cancer within this area resulting in survival advantages.  

In the context of primary liver tumours, cirrhosis may also be of relevance with regards to diabetes.  

Cirrhosis is a known predictor of HCC outcome with greater cirrhosis being associated with worsened 

outcomes.316 Other risk factors for liver tumours such as viral hepatitis and alcohol excess are more 

strongly associated with cirrhosis, where diabetes often causes non-alcoholic fatty liver disease, but 

is less commonly associated with cirrhosis.317 If a large proportion of the non-diabetic population is 

made up of cirrhotic patients, it may result in the appearance of improved outcomes. If however the 

group was split into cirrhotic and non-cirrhotic, it may be that the reduction is hazard is no longer 

seen when comparing diabetics to the non-diabetic, non-cirrhotic population.  

Although there are a number of possible explanations for the population level survival advantage 

seen in diabetic liver cancer patients, further study is needed to identify if this is a true difference 

and if so, what is the cause of this difference. If the differences seen are due to diabetic 

pathophysiology or diabetic prescribing, then these could offer potential new avenues to explore in 

developing new treatment strategies for liver and lung cancer patients. 

COPD: 

The results from the analysis suggest that after adjustment for age, gender and deprivation, in most 

cancers COPD is associated with worse outcomes. Of the 16 cancer cohorts shown to have a high 

probability unidirectional hazard, 15 suggested worse outcomes associated with this comorbid 

group. The exception to this trend is in lung cancer, which is associated with a modest reduction in 

hazard of 9% (6-14%). This results is surprising, given that a previous research study using a 

peripheral vascular disease database, identified that COPD was associated with an increased risk of 

death from both lung and extra-pulmonary malignancy with a HR of 2.06 and 1.43 respectively.318 

Our results therefore suggest an example of a survival paradox where it appears patients with COPD 

are more likely to die from cancer and lung cancer in particular, but their risk of death once they 

develop lung cancer is lower. This could be explained by COPD increasing the risk of developing 

cancer to a greater extent than any protective effect of it, once the cancer develops. The increased 

incidence of lung cancer in COPD, is likely to be mediated through the shared exposure of smoking, 

with previous estimates showing lung cancer is five times more common in patients with objectively 

recordable airway obstruction.319 An alternative explanation for the paradox identified is that there 

is a bias from the use of the vascular database in this previous study. The patients with COPD and 

vascular disease may in some way differ from the general population of COPD patients, however the 

increased cancer mortality trend has been previously demonstrated in other more general 

populations, that would be unaffected by this particular bias.320  

As outlined above in the diabetes mellitus section, a number of medications have been investigated 

for their link to changes in cancer outcomes such as oral hypoglycaemics and aspirin. In the context 

of COPD, statins are associated with improved outcomes in patients with lung cancer321. Similar 

patterns have been seen in patients with COPD taking inhaled corticosteroids where non 
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corticosteroid users had a HR of 1.3.322 This could also be a potential explanation for the modest 

reduction in hazard seen in the lung cancer population. 

A number of biological mechanisms linking COPD to cancer have been identified and the risk 

differences seen, whether advantageous or disadvantageous, might be driven by these. Smoking 

leading to COPD has been shown to be driven by oxidative stress.323 This same process forms part of 

the pathogenic process that links smoking to cancer, as in both instances damage to DNA is 

introduced.324 This damage, in the form of point mutations, single strand breaks, double strand 

breaks and crosslinking, if incorrectly or inadequately repaired, result in somatic mutations which 

over time may accumulate and lead to cancer. Further, the nitrogen and oxygen radicals from 

smoking can denature proteins that lead to loss of tumour suppressor function directly.325 Free 

radical exposure has also been shown to induce changes in cells that promote differentiation, 

proliferation and survival, all of which may also impact the behaviour of cancer cells and their 

growth.326 

Beyond the link to smoking, COPD has also been shown to be associated with telomere 

shortening327, which in turn reduces the time taken to reach cell senescence, increasing the risk of 

mutation accumulation. A number of genome wide association studies have identified inherited 

differences which increase the risk of both COPD and lung cancer.328–330 These may in turn impact 

the behaviour of tumours that are driven by this mechanism. Epigenetic differences have been 

found in COPD and lung cancer, such that certain patterns of DNA methylation have been found 

more commonly in COPD patients with non-small cell lung cancer.331–333 

Although not directly studied, the biological differences in COPD patients with cancer may in some 

way contribute to differences in outcomes. Cancer may develop, proliferate and progress in different 

ways, as well as responding differently to common treatments. As such, these biological differences 

could be the driver for differential outcomes in patients with COPD. Furthermore, the effects of 

smoking that relate to COPD and cancer biology are likely to be true also for other conditions where 

smoking is a significant risk factor such as cardiovascular disease and stroke. 

Stroke: 

Stroke is a clinical diagnosis where an acute vascular event within the central nervous system, results 

in loss of neurological function for greater than 24 hours. The precise definition is however different 

globally, with no agreed upon standard.334 The term stroke encapsulates a number of distinct events 

including ischaemic stroke caused by a loss of blood supply and haemorrhagic stroke cause by an 

acute bleeding event. Our analysis demonstrates that where a high probability of unidirectional 

hazard is identified, the association was exclusively with increased hazard. Within the context of 

cancer there are a number of mechanisms by which stroke may be made more likely. Metastatic 

disease of the brain may result in the development of fragile, unstructured blood supply, which can 

be prone to bleeding.335 Patients with cancer are also more at risk haemorrhage if they have 

abnormal blood counts due to bone marrow invasion or due to the side effects of systemic 

anticancer treatments.336 Cancer and its treatment can be pro-thrombotic resulting in ischaemic 

stroke.234 In view of this, the identification of stroke at or before cancer diagnosis may be an 

indicator of patients with more widespread disease. This would explain the adverse outcomes 

associated with these patients in the majority of cancers.  

Where stroke occurs, whether cancer associated or not, it may leave patients with significant 

neurological deficits.337 These deficits may impact on a patients overall fitness in a significant way. 

Patients with a lower performance status, may not be fit enough to undergo the same level of 
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intervention as patients with no history of stroke. As such, the frequency of interventions such as 

surgery, systemic anticancer treatment and radical radiotherapy may also be lower, resulting in 

worse outcomes.  

The level of frailty may extend beyond the direct impact of stroke. The most common type of stroke 

is an ischaemic stroke. Typically, this is associated with risk factors for vascular damage including, 

hypertension, obesity, smoking, diabetes and hyperlipidaemia.28,42,130 As such, patients may have 

features of other conditions that may impact on a patient’s fitness for treatment, or level of 

appropriate dosing, in the case of systemic anticancer treatments. These common risk factors are 

also meaningful in terms of cancer risk.338 As detailed above in the case of COPD, the mechanisms 

such as oxidative stress and DNA damage which can drive the oncogenic process, may result in 

cancer cells that behave differently from those which develop as a result of other exposures. This 

could results in variations in terms of growth, spread and treatment response.  

To date most research in the area of stroke and cancer has focussed on whether cancer increases 

the risk of developing stroke after the cancer diagnosis339,340, and on strokes as a presenting feature 

of cancer.338,341,342 Little has been published on how patients with stroke prior to cancer diagnosis, 

differ from those without, in terms of mortality. Our results show that in majority of cancers, stroke 

was associated with worse outcomes when compared to those with no prior history of stroke. The 

literature provides a number of possible explanations for this relationship, however further study is 

required to understand whether the associations identified are true or artefactual, and if true, which 

mechanisms underlie the associations seen.  

CCF: 

The outcome associations seen in heart failure are more consistent than those seen with other 

comorbidity. All but 4 cancer sites were associated with an increase in hazard that had a high 

probability of being unidirectional. Previous research has identified links between the oncogenic 

process and heart failure, with patients known to have heart failure showing an increased risk of 

developing cancer.343,344 Although many have advocated that this is due to the high level of 

monitoring in CCF patients simply picking up an additional common condition, some recent studies 

have suggested that there is a more fundamental link between them and that cancer may be 

considered a complication of CCF in some cases.344 

Two main hypotheses have been put forwards to explain this increase in cancer incidence. The first 

is that common risk factors exist for both heart failure and cancer.345,346 As a result, patients are 

more likely to develop one if they have developed the other already. These factors may include 

genetic predisposition, other comorbidities such as diabetes and physiological changes such as 

increased oxidative stress.  

Another possibility is that CCF is directly oncogenic. This has been evidenced through studies 

showing altered neuro-hormonal activation in the renin angiotensin aldosterone system, which in 

turn has been linked to tumorigenesis. Additionally animal models have demonstrated that post-

ischaemic heart failure changes, resulted in the secretion of factors which enhance colon cancer cell 

growth.347 If these differences in underlying physiology occur, then it may be that cancer in CCF 

patients behaves differently as a result, which may account for survival differences.  

It is also possible that as with other comorbidities, frailty, multimorbidity and overall fitness impacts 

on patient management which may in turn alter outcomes. A particular consideration with CCF in 

this regard is that patients commonly are unable to lie flat without becoming breathless. This can in 
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severe cases be a barrier to radiotherapy treatment where patients are required to lie flat for several 

minutes at a time. 

Myocardial Infarction (MI) 

As with the other comorbidities discussed thus far, previous research has highlighted an increased 

risk of developing cancer in patients who have had a previous MI.348 A number of possible 

explanations for this have been postulated including common risk factors, MI being a presentation of 

occult cancer and patients being subjected to increased clinical surveillance, increasing the rate of 

diagnosis. Studies focussing on MI in patients with a known active of previous cancer diagnosis, have 

shown that outcomes in the short term are the same as those without cancer, however when 

looking at 1 year post MI the hazard ratio was estimated to be 2.52.349 

More recently, research in breast cancer has provided evidence to suggest that changes in systemic 

homeostasis, mediated via the immune system after an MI, alters tumour behaviour.350 In mouse 

models the study identified that MI created an acute stress response, which altered the central 

regulation of the innate immune system. This results in epigenetic changes within the bone marrow 

which shifts the immune system towards an immunosuppressive state. The immune changes result 

in increased tumour growth. Studies in patients with cancer who developed later MI identified that 

these patients in early breast cancer had an increased risk of developing metastatic disease.  This 

provides a potential physiological explanation for the results demonstrated within our analysis. In 

almost all cancers prior MI was associated with worse survival outcomes. Further study is therefore 

needed to identify whether the mechanisms seen within the breast cancer setting also affect other 

tumour types. Additionally further investigation is needed to attempt causal analysis within the 

context of MI and cancer outcomes.  

Varicosities 

The degree of effect seen in the hazard reduction for varicosities is sizable with a 37% (14-55%) 

reduction in hazard in colorectal cancer and a 31% (3-51%) reduction in breast cancer. Although 

both of these are clinically relevant, the precision of estimates is fairly low. As discussed previously, 

the association could be explained by a number of methodological or behavioural reasons such as 

lead time bias275, collinearity351 with other variables, confounding165 and differences in health 

seeking behaviours.245,352 There are however some potential biological explanations which might 

suggest that there is a physiological link between the development of varicosities and improved 

cancer outcomes. Previous research in patients with varicose veins has attempted to identify 

changes in the expression and production of vascular growth factors.353,354 One study looked at levels 

of Vascular Endothelial Growth Factor (VEGF) production in artificially induced venous stasis, 

comparing those with and without varicose veins.353 This identified that in control patients, artificial 

venous stasis induced via a 90mmHg cuff applied to a lower limb, induced increases in VEGF levels. 

No such rise was seen in patients with varicosities.353 This suggests that patients with varicose veins, 

may have a degree of impairment in their ability to produce VEGF.  This difference may be of 

importance as in a number of cancers VEGF plays a key role.354–356 Two such examples are breast and 

colorectal cancer.  

In the context of colorectal cancer angiogenesis has been shown to be an important factor in 

progression. Evidence from both preclinical and clinical studies have highlighted VEGF as the key 

contributor to angiogenesis in colorectal cancer with expression occurring in approximately 50% of 

colorectal cancer patients.356 Studies looking at the associations between VEGF and colorectal cancer 

outcomes have demonstrated that with increasing disease stage there is also an increase in the 
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prevalence of VEGF expression. VEGF expression has been found to be an important predictor of 

disease specific survival at ten years, with better outcomes seen in those patients with lower levels 

of VEGF expression, along with reduced rates of progression after treatment. The importance of 

VEGF is also highlighted through the use of anti-VEGF treatments in colorectal cancer.357 

In the context of breast cancer, the importance of VEGF is less clear. High levels of VEGF expression 

have been demonstrated in the most aggressive forms of triple negative breast cancer, whilst also 

contributing to the mechanisms driving metastasis.358 Additionally, VEGF levels are higher in patients 

with malignant breast disease compared to benign breast disease.359 The same study however 

demonstrated that VEGF was correlated with oestrogen receptors and inversely correlated with 

disease stage. 

If patients who develop primary varicose veins, do so in part because of altered ability to produce 

VEGF, then the reduction in VEGF production may be having a direct biological effect on the tumours 

these patients develop. This could result in reduced tumour angiogenesis, resulting in reduced 

growth rates, lower levels of metastasis and improving outcomes. A literature search identified no 

previous analyses demonstrating this identified association, however the underlying biology of the 

two conditions suggests a plausible explanation for the improved survival outcomes seen. Further 

research is therefore needed to assess potential causal relationships between varicosities and cancer 

outcomes. 

5.4.3 - Precision and Clinical Relevance: 

When using observational data it is often regarded as inappropriate to apply statistical significance 

tests due to the two compared populations not truly being drawn from the same population.59,61 As 

a result the focus of results is often placed on the clinical significance of the results.360 The 

interpretation of this can often be based on the point estimate of an analysis however in the 

absence of statistical tests, the confidence interval can be used as a guide as to where there is a high 

probability that the true point estimate will lie. The span of this confidence interval can be used as a 

guide to the reliability of the results obtained as a measure of precision. More precise estimates will 

have narrower confidence intervals, where less precise ones have wider confidence intervals. This 

therefore raises an important question about what level of precision one would wish to have to 

determine that the results were meaningful and reliable. Two different approaches could be used. In 

one it could be based on a fixed raw value for example only those with a confidence interval which 

spans less than 0.5 hazard ratio is deemed to be precise enough to suggest reliable results. 

Alternatively the span could be based on the point estimate itself. An example here could be that 

the span must not exceed 25% of the point estimate. The latter has the advantage of taking into 

account that precision with small effect sizes is probably more important than where large effect 

sizes are seen. It does however create the issue that very low precision could still be allowed in the 

presence of a large effect size. An alternative here would be to combine the two such that it must 

fulfil both criteria.60 This allows a minimum precision to be set whilst allowing for some 

accommodation of a need for greater precision with small effect sizes.  

As with a 95% confidence level with statistical significance testing, the threshold to be applied in 

precision is an entirely arbitrary one. Unlike with confidence tests, the choice of cut of does not 

allow any estimation or misclassification error. In clinical practice a difference in hazard of 50% 

would be deemed clinically relevant however getting estimates to this level of precision may be 

challenging unless extremely large numbers are present. Even when large numbers are present, 

where a class imbalance occurs, the precision levels may still be low, as one of the two groups still 

has small numbers. This problem becomes more acute with an increasing precision threshold. Within 
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our results we have applied a 25% and 0.25 hazard ratio precision cut off for Table 10. This has been 

applied to all analyses, and yielded a small number of results. By applying our filter for unidirectional 

hazard and precision cut offs we can identify comorbidities that have strong evidence for association 

in one direction that are also precise. The subsequent task is to determine if those differences are 

clinically relevant. It is important to note however that shifting the precision threshold has a 

profound impact, moving from 0.25 hazard ratio span to 0.5 increased the number of results 

meeting the cut offs by 54. There is an argument for saying that applying a blanket rule is unhelpful 

as the required precision will differ depending on the question being asked and the precise clinical 

scenario. Not having a fixed cut off up front however poses the potential risk of allowing results to 

be significantly impacted by researcher bias, with a post hoc justification applied for allowing one 

result over another.  

The impact of cohort size is highlighted by a number of features in the results. Firstly the greatest 

numbers of comorbidities that meet the precision thresholds are when assessed in the all cancer 

cohort. Amongst the site specific cohorts, the only cancer not in the top 4 to have any models 

meeting the precision threshold is skin cancer which is the next most common cancer. Although the 

relationship between precision and cohort size is unsurprising, it is important to consider that those 

failing to meet this threshold do not need to be discounted, however require a greater degree of 

scepticism when using the point estimate values. 

Overall the effect sizes where there is also high precision are large. Defining what is clinically 

relevant is a somewhat subjective process and there is no commonly accepted threshold. This 

variation occurs in part because of different perceptions of what a meaningful improvement in 

survival is. In some cases it would be balanced against cost, as is the case for National Institute of 

Clinical Excellence assessment. When assessing the site specific cohorts the smallest effect size is 

seen in hypertension in lung cancer with a between 1 and 13% difference in hazard. At 1 % this is 

unlikely to meet the threshold of significance by most clinical standards. At 13% however, this would 

be seen by many as highly relevant. Applying a general rule of thumb of 5% suggests that all other 

comorbidities meeting the high precision threshold are also clinically relevant, even if using the 

smallest hazard difference identified by its confidence interval.  

5.4.4 - Variable Inclusion 

These analyses build upon the results of the initial associations seen in chapter four with the KM 

approach. The introduction of a multivariable approach allows us to adjust for factors which could 

be considered to be confounders of the results initially seen. Due to known associations between 

age, gender, deprivation and population level all cause survival these are potential sources of 

confounding.308,361 The identified correlation between many of the comorbidities analysed and these 

factors, (as seen in chapter two) adds weight to the rationale for their adjustment within the model 

being required. There are however a number of additional parameters that one could consider 

adjusting for that were not included in the models developed within the above analyses. These 

include stage, grade and histology. Clear links have been shown in the literature between increasing 

grade and stage, and decreased survival in the context of most cancers.23,43 Additionally different 

histological types of cancer even in one anatomical site have very different survival trajectories such 

as small cell lung cancer versus non-small cell lung cancer where the five year survival for the former 

is 6% and 24% for the latter.362 It could therefore be argued that not including these potentially 

leaves unresolved confounding within the generated estimates.  

A counter argument to this is however that in the case of most comorbidities studied, links have 

been found between the presence of comorbidity and differences in grade, stage and histology at 
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presentation. As our definition of comorbidity is predicated on the comorbidity being temporally 

precedent to the cancer diagnosis, then any associations between comorbidity and difference in 

grade, stage and histology are in fact part of the mechanism causing differences in survival outcomes 

and should be included in the estimate by not adjusting for them. The issues around adjustment for 

staging data have been highlighted previously in causal inference research which has demonstrated 

that inclusion of this introduces a significant bias and potentially results in worse estimates of the 

true effect size seen.363 

5.5 - Summary 

The results presented in this chapter draw similar conclusions to much of the previous research into 

comorbidity. In general chronic health problems prior to a cancer diagnosis are associated with 

worse outcomes. Despite this a number of conditions are shown to be associated with improved 

outcomes. The findings seen, whether suggesting a survival advantage, or survival disadvantage, 

could be due to various forms of bias and the application of causal inference approaches shows 

further areas of complexity around how the analysis approach hampers interpretation of findings. 

The analysis of underlying model assumptions highlights some specific examples where violations 

have occurred. In such cases further research may be needed to apply alternative methods to 

overcome these potential limitations. Despite the highlighted analysis limitations, a number of 

plausible biological mechanisms have been identified in the literature that could offer explanations 

for the different survival outcomes seen. Across each of these analyses however, no distinction is 

drawn between cancer and those from non-cancer related deaths. To further explore this concept 

analyses in the subsequent chapter will apply cause-specific competing risk methods to estimate the 

cancer-cause specific hazard effects associated with comorbidity. 
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Chapter 6 – Inferential Analysis of the Association between Cause-Specific Cancer Risk and 
Comorbidity in Cancer Patients 

 

6.0 - Introduction 

 

The analyses presented thus far that have focussed on survival outcomes, have utilised overall all-

cause mortality as their end point. This provides insight into the outcomes for patients from any 

cause of death. As discussed in chapters 2, 4 and 5, where multiple conditions co-exist, each with an 

independent mortality effect, it is likely that patients with both conditions will have an overall 

mortality that exceeds patients with any one of those conditions in isolation. An alternative 

approach would be to look at the impact of comorbidity on a specific cause of death, such as cancer 

related deaths.180,181,364 As discussed in chapter 2, this can be approached in a number of ways, 

however given the nature of the questions being asked, a cause-specific approach is the most 

appropriate due to the focus on relative hazards as opposed to cumulative incidence.  

This chapter builds on the work presented in the previous chapter, to conduct the same series of 

analyses, however using the altered end point of cancer cause-specific hazard. As with the previous 

chapter, models will be generated, assessed for model assumptions and then interpreted in terms of 

the principles of inferential analysis detailed in chapter 2. Comparisons between the results for all-

cause and cause-specific mortality will also be made to identify commonalities and discrepancies 

between findings. As with chapter 5, the focus will remain on the hazard attributed to comorbidities 

with other covariates included for the purpose of controlling for confounding, as opposed to for 

direct interpretation. 

Despite the interplay between comorbidity and cause-specific mortality having been researched 

previously in the literature, this has primarily focussed on composite measures of comorbidity.365–367 

The analysis presented below, therefore represents one of the largest and most comprehensive 

assessments of the associations between individual comorbidities and cancer-cause specific hazard 

undertaken to date.   

 

6.0.1 - Aims and Objectives 

Aim 

1. Quantify the association between comorbidity and cancer cause-specific mortality in cancer 

patients using a multivariable approach. 

Objectives 

a. Develop Cox PH models for cancer cause-specific mortality, with each combination of cancer 

and comorbidity whilst adjusting for age, gender and deprivation as appropriate. 

b. Test for violations of underlying model assumptions. 

c. Identify outlier or influential patients within the dataset. 

d. Quantify the effect of influential outliers on hazard estimates. 

e. Quantify hazard associated with comorbidity. 

f. Assess the confidence interval for precision. 

g. Assess confidence interval for high or low probability of unidirectional hazard. 
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6.1 - Methods 

6.1.1 - Data Pre-processing 

To enable analysis of the data some minor pre-processing was required. A cause-specific death label 

was generated, here any patient with a death was categorised as a cancer related death or a non-

cancer related death. Cancer related death was defined as a death with a cancer “C” ICD-10 code in 

section 1a, 1b or 1c or the patient’s death certificate.183 Mention of cancer in section 2 was not 

included in the definition. All patients without a “C code ICD-10 code were classified as a non-cancer 

death. In cases of non-cancer death, a patient’s survival status was altered such that they were 

regarded as censored rather than deceased. Patients who were known to be dead and had no cause 

of death data were excluded from the analysis. Thus our analysis included patients who were alive or 

who have died with a documented cause of death. 

To quantify and explore the data on those without a cause of death the number and percentage of 

each cohort that were removed was calculated. Additionally, analysis in the all cancer cohort was 

undertaken to look at the number and proportion of cases by year of death with missing cause of 

death data to identify any patterns over time. 

6.1.2 - Building of Models, Testing Assumptions and Quantification of Associations 

A similar approach was applied to building survival models as those presented in chapter five. Cox 

proportional hazard models were generated as a function of an individual comorbidity, age, gender 

(where appropriate) and deprivation. The updated survival status, based on cause of death was 

utilised to generate a cause-specific quantification. As with the previous chapter, the focus of 

analysis is on the impact of comorbidity and thus results are predominantly presented based on the 

coefficients of each individual comorbidity. The inclusion of age, gender and deprivation was to 

control for confounding rather than for direct assessment of effect. The covariate model 

specification for these analysis were identical to those outlined for chapter 5 and in the appendix. 

The difference is that they are expresses as a function of cancer cause-specific survival rather than 

all-cause survival.  

The same approach for assessing proportional hazards, linear assumptions and outliers were 

employed as those outlined in chapter 5. Quadratic transformation of variables found to have non-

linear relationships was not attempted due to its previously demonstrated deleterious effects on 

precision, which will be amplified due to the higher levels of censoring in this cause-specific 

approach. Point estimates and confidence intervals for hazard ratios were derived from these 

models and used to assess, effect size, consistency of direction of effect, precision and clinical 

relevance. 

As with chapter 5 the analysis will focus on all comorbidities in breast, lung, prostate and colorectal 

cancer. Additionally analysis will cover all cancers in CCF, MI, stroke, COPD and diabetes mellitus. 

6.1.3 - Comparison to All-Cause Results 

To facilitate interpretation of results, the cause specific mortality results will be compared to those 

of the all-cause mortality. Results where both the all-cause and cause specific mortality show a high 

probability of unidirectional hazard and the same direction of effect will be highlighted and 

compared. This will be conducted for the hazard results and additionally the precision analysis.  
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6.2 - Results 

6.2.1 - Data Pre-processing and Exploration 

Figure 56a shows the trend in the number of patients from the All Cancer Cohort with a recorded 

death, but no recorded cause of death annually. Figure 56b represents the same data but as a 

proportion of the deaths in this cohort each year. This shows no clear pattern of association 

between having a missing cause of death and year of diagnosis up until 2017 where there is a 

sudden rise in missing data peaking in 2018 (by number) but remaining at 100% of deaths from 2018 

onwards. Table 11 demonstrates the proportion of each cohort where cause of death data is 

missing. On average, this represents around 1 in 10 patients (10.8%), however the most missing data 

is found in liver malignancy and the least in testicular cancer. 

Site 
Cause of Death 
Complete (n) 

Missing Cause 
of Death (n) Total 

Missing Cause 
of Death (%) 

Breast 29058 2655 31713 8.37 

Prostate 21785 2771 24556 11.28 

Lung 26718 3350 30068 11.14 

Bowel 20135 3006 23141 12.99 

Colorectal 18618 2785 21403 13.01 

Melanoma 6308 617 6925 8.91 

Skin 21725 3685 25410 14.5 

Connective 1589 208 1797 11.57 

Lymphoma 7243 819 8062 10.16 

Kidney 4396 606 5002 12.12 

Laryngeal 1851 246 2097 11.73 

Brain 3059 349 3408 10.24 

Intracranial 3203 362 3565 10.15 

Bladder 6458 1016 7474 13.59 

Pancreatic 3823 607 4430 13.7 

Leukaemia 4777 548 5325 10.29 

Endometrial 5132 634 5766 11 

Testicular 2347 61 2408 2.53 

Oesophageal 5459 820 6279 13.06 

Ovarian 3333 419 3752 11.17 

Stomach 4320 391 4711 8.3 

Liver 2999 651 3650 17.84 

Myeloma 2333 384 2717 14.13 

Thyroid 2390 108 2498 4.32 

Cervical 2909 185 3094 5.98 

CUP 4431 391 4822 8.11 

All 198031 24405 222436 10.97 
Table 11: Summary of Completeness of Cause of Death Data by Cohort – Breakdown of each Site Specific Cohort and the 
All Cancer Cohort by the completeness of cause of death data for patients recorded as being deceased. Results are 
expressed as; number with cause of death data, number missing cause of death data, the total number of patients within 
the cohort known to be deceased and the percentage of the cohort where the cause of death data is missing. 
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Figure 56:  Missing Cause of Death Data in All Cancer Cohort –Summary of a) Number of patients and b) Percentage of 
deaths each year where the cause of death data was unavailable for patients within the All Cancer Cohort 

  

b) 

a) 
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6.2.2 - Model Assumptions 

Proportional Hazard Assumptions 

All of the models were manually reviewed using their Schoenfeld residual plots. None were found on 

this graphical review to demonstrate evidence of proportional hazard violations. As with the all-

cause overall survival, there were some examples where the cohorts had small numbers, visual 

review demonstrated no evidence of a proportional hazard violation, but the numerical analysis 

suggested that a violation had occurred. An example of gender in the CCF and thyroid cancer model 

is presented below to illustrate this (Figure 57). 

 

Figure 57: Shoenfeld Residual Plot for Covariates in the CCF in Thyroid Cancer Cause Specific Cox Model – The Shoenfeld 
residuals for each variable are plotted on the vertical axis and time is plotted on the horizontal axis. Each faint red dot 
represents one patient at that time within the Thyroid Cancer Site Specific Cohort. The black line is the line of best fit and 
the dotted lines the confidence interval. When the black line is horizontal and almost entirely straight there is no evidence 
for a violation of the proportional hazard assumption if the line is angled or showing multiple areas where the line is curved 
this provides evidence for a breach of the proportional hazard assumption. 
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Linear Assumptions 

Visual analysis of the Martingale residuals for continuous variables showed evidence of multiple 

models with non-linear relationships for both age and deprivation quintile. Leukaemia was the only 

cohort to show evidence of non-linearity in both age and deprivation. In several cases the deviation 

from a linear relationship was substantial, as shown in Figure 58. In all cases of nonlinearity some 

non-linearity continued when assessing the variable on different scales. The summary results can be 

found in Table 12. 

Site Age IMD 

All 1 0 

Bladder 0 0 

Breast 1 0 

Cervical 0 0 

Colorectal 1 0 

Connective 1 0 

CUO 0 0 

Endometrial 0 1 

Intracranial 0 1 

Kidney 0 0 

Renal 0 0 

Laryngeal 0 0 

Leukaemia 1 1 

Liver 0 1 

Lung 0 0 

Lymphoma 0 1 

Melanoma 0 0 

Myeloma 0 0 

Oesophageal 0 1 

Ovarian 0 1 

Pancreatic 0 0 

Prostate 0 0 

Skin 1 0 

Stomach 0 1 

Testicular 1 0 

Thyroid 1 1 
Table 12: Summary of Cause-Specific Linear Assumptions Assessment – The plots for the Martingale residuals for each 
continuous variable in each cause-specific Site Specific Cohort and All Cancer Cohort was reviewed for evidence of a 
violation of the linear assumptions. The results are recorded win the table with 0 = No evidence of Violation, 1 = Evidence of 
Violation 
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Figure 58: Assessment of Linear Assumptions of Deprivation Quintile in Thyroid Cancer Site Specific Cohort for Cancer 
Cause-Specific Analysis - Martingale residuals are plotted on the vertical axis against age on the horizontal axis. Three plots 
represent deprivation quintiles on different scales, the top plot represents raw deprivation quintile. The second plot 
represents deprivation as the log of deprivation quintile and the third plot represents age as the square root of deprivation. 
Where linear assumptions hold the line should be a continuous straight line. Curves or changes in the trajectory of the line 
suggest non-linearity. 

Influential Outliers 

Influential outlier values were only identified in relation to gender and specific comorbidities. No 

influential outliers were found for deprivation or age. The results identified that diabetes did not 

have any influential outliers in any of the four common cancer sites. Stroke, CCF, COPD and MI had 

influential outliers in both breast and prostate cancer cohorts. No influential outliers for any 

comorbidity were found in lung cancer patients and only stroke was found to have influential 

outliers in colorectal cancer. The results for the hazard ratios with and without the outlier cases can 

be found in Figure 59 and Figure 60. The breast cancer results highlight that in the case of COPD and 

MI the removal of outliers resulted in hazard ratios moving from a low probability of unidirectional 

effect to a high probability of unidirectional effect. The analysis within the prostate cancer cohort 

identified that CCF, COPD and MI moved from a low probability of unidirectional hazard to a high 

probability with the removal of influential outlier. The remaining comorbidities demonstrated a 

consistent direction and probability of unidirectional effect. 
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Figure 59: Effect of Influential Outliers on Breast and Prostate Cancer-Cause Specific Hazard – Cancer Cause-Specific Cox 
derived comorbidity hazard ratios for comorbidities with influential outliers identified in a) Breast Cancer and b) Prostate 
Cancer Site Specific Cohorts. Results in red are the hazard ratios obtained when the full site specific cohort was used to 
generate a Cox model those in blue are where the model was generated after the removal of influential outliers. 
  

a) 

b) 
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Figure 60: Effect of Influential Outliers Colorectal Cancer-Cause Specific Hazard – Cancer Cause-Specific Cox derived 
comorbidity hazard ratios for comorbidities with influential outliers identified in Colorectal Cancer Site Specific Cohorts. 
Results in red are the hazard ratios obtained when the full site specific cohort was used to generate a Cox model those in 
blue are where the model was generated after the removal of influential outliers. 

6.2.3 – Cancer Cause-Specific Hazards 

Breast 

Of the 40 comorbidities assessed only 9 were identified as having a high probability of unidirectional 

hazard. Of these 8 were associated with an increased hazard and one with decreased hazard. The 

decrease in hazard was in varicosities with a hazard ratio of 0.52 (0.31-0.71). Dementia was 

associated with the largest increase in hazard with a hazard ratio of 3.02 (2.14-4.27%) increase. CCF 

was also associated with a more than doubling of hazard with a hazard ratio of 2.18(1.59-2.82). 

Arrhythmia shows a more modest effect size, but better precision with a hazard ratio of 1.43 (1.16-

1.76%) increase in risk. Chronic kidney disease was associated with a 97% (37-184%) increase in risk. 

Colorectal 

In the colorectal cancer cohort 15 comorbidities were associated with a high probability of 

unidirectional hazard. Of note 6 were associated with decreased hazard including asthma, 

hyperlipidaemia, hypertension, MI, obesity and varicosities. Of these, the largest reduction in hazard 

was for varicosities with a hazard ratio of 1.53 (1.24-1.71). The largest increase seen is in the case of 

dementia with a hazard ratio of 2.46 (1.93-3.15%) increase in hazard. CKD, CCF, COPD, MI, 

paraplegia, stroke and venous thromboembolic disease were also associated with increased hazard. 

Lung 

18 comorbidities showed a high probability of unidirectional hazard. Of these 8 were a reduction in 

hazard and 10 were an increase. The largest decrease in hazard was for obesity with a hazard ratio of 

0.33(0.29-0.38). Malabsorption also showed a large decrease with a hazard ratio of 0.66 (0.33-0.96) 

however the precision was low. The largest increases were seen with HIV and demyelination 

however due to low patient numbers the precision of these estimates was low. Of those with more 

precise estimates thromboembolic disease was the largest increase with a hazard ratio of 1.47 (1.27-

1.71%) increase in hazard.  
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Figure 61: Cox Derived Cancer Cause-Specific Hazard Ratios for Comorbidity in Breast Cancer – Cox derived cancer cause-specific hazard ratios with 95% confidence interval associated with 
each comorbidity of interest in the Breast Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high 
probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 62: Cox Derived Cancer Cause-Specific Hazard Ratios for Comorbidity in Colorectal Cancer – Cox derived cancer cause-specific hazard ratios with 95% confidence interval associated 
with each comorbidity of interest in the Colorectal Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have 
a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the 
plot. 
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Figure 63: Cox Derived Cancer Cause-Specific Hazard Ratios for Comorbidity Lung Cancer – Cox derived cancer cause-specific hazard ratios with 95% confidence interval associated with each 
comorbidity of interest in the Lung Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high 
probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot. 
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Figure 64: Cox Derived Cancer Cause-Specific Hazard Ratios for Comorbidity Prostate Cancer – Cox derived cancer cause-specific hazard ratios with 95% confidence interval associated with 
each comorbidity of interest in the Prostate Cancer Site Specific Cohort. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have a high 
probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the plot.
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Prostate 

Only 4 comorbidities were associated with a high probability of unidirectional hazard. Dementia and 

peripheral arterial disease are associated with an increase in hazard with a hazard ratio of  2.94 

(1.91-4.52) and 1.48 (1.08-2.03) respectively. Hypertension and hyperlipidaemia were associated 

with modest decreases in hazard with a hazard ratio of 1.12 (1.02-1.22%) and 1.28 (1.02-1.32) 

respectively. 

CCF 

CCF was associated with a high probability of unidirectional hazard in 9 cancer sites. All cases were 

increased hazard risk although results had low precision in all but lung cancer. Here it was associated 

with a 1.30 (1.19-1.42) hazard ratio.  

COPD 

Eight cancer sites were associated with a high probability of unidirectional hazard including 

colorectal, CUP, leukaemia, lung, oesophageal, pancreatic, skin and stomach cancer. Of these, lung 

was associated with a reduced hazard and the others an increased hazard. All of the associations 

with increased hazard also had moderate to low precision. The largest effect size was in skin cancer 

with 1.92 (1.50-2.46) hazard ratio. COPD in lung cancer had a high precision with a 1.14 (1.09-1.18) 

hazard ratio. 

Diabetes 

Seven cancer sites were associated with a high probability of unidirectional hazard when assessing 

diabetes. Six of these were reductions in hazard which was the case for bladder, renal, liver, lung, 

ovarian and stomach cancer. Of these the largest decrease is in ovarian cancer with a hazard ratio of 

0.69 (0.49-0.96). Cervical cancer was associated with an increased hazard with a hazard ratio of 2.22 

(1.34-3.63) although the precision of this estimate was low. 

MI 

Three cancer sites were associated with a cause specific high probability of unidirectional hazard. 

Increased hazard was seen in CUP and liver cancer with a hazard ratio of 1.42 (1.09-1.84) and 2.25 

(1.47-3.38) respectively. Higher precision is seen with the reduction in hazard identified as being 

associated with colorectal cancer with a hazard ratio of 0.53(0.22-0.88).  

Stroke 

Eight cancer sites showed an association between stroke and an increased risk of hazard. In most 

cases, precision was low with the exception of lung cancer which showed a hazard ratio of 1.24 

(1.11-1.38) increase in hazard. The largest effect size was in lymphoma with a hazard ratio of 2.17 

(1.49-3.15%) increase in hazard 
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Figure 65: Cox Derived Cancer Cause-Specific Hazard Ratios for CCF in All Cancer and Site Specific Cancer Cohorts – Cox derived cancer cause-specific hazard ratios with 95% confidence 
interval associated with CCF in the All Cancer and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have 
a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the 
plot. 
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Figure 66: Cox Derived Cancer Cause-Specific Hazard Ratios for COPD in All Cancer and Site Specific Cancer Cohorts – Cox derived cancer cause-specific hazard ratios with 95% confidence 
interval associated with COPD in the All Cancer and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black 
have a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of 
the plot. 
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Figure 67: Cox Derived Cancer Cause-Specific Hazard Ratios for Diabetes Mellitus in All Cancer and Site Specific Cancer Cohorts – Cox derived cancer cause-specific hazard ratios with 95% 
confidence interval associated with Diabetes Mellitus in the All Cancer and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender and 
deprivation. Those in black have a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may 
extend beyond the bounds of the plot. 
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Figure 68: Cox Derived Cancer Cause-Specific Hazard Ratios for MI in All Cancer and Site Specific Cancer Cohorts – Cox derived cancer cause-specific hazard ratios with 95% confidence 
interval associated with MI in the All Cancer and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black have 
a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of the 
plot. 
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Figure 69: Cox Derived Cancer Cause-Specific Hazard Ratios for Stroke in All Cancer and Site Specific Cancer Cohorts – Cox derived cancer cause-specific hazard ratios with 95% confidence 
interval associated with Stroke in the All Cancer and Cancer Site Specific Cohorts. Each estimate is derived from a standalone model adjusting for age, gender and deprivation. Those in black 
have a high probability of unidirectional hazard and those in grey have a low probability of unidirectional hazard. Where confidence intervals are large they may extend beyond the bounds of 
the plot.
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Precision 

A total of 19 models met the precision cut offs. Only two cancer sites are represented with 7 

comorbidities in lung cancer and one in colorectal cancer. The remaining models were based on the 

all cancer cohort. Of note, 9 of the 19 models are associations with a reduction in hazard. Within the 

site specific cohorts the largest precise estimate was for CCF which was associated with a hazard 

ratio of 1.3 (1.19-1.42). 

Site 
Comorbidity 

Hazard 
Ratio 

Lower 
CI 

Upper 
CI 

CI 
Span 

CI 
Span 
as % 

  Diabetes 0.87 0.81 0.93 0.11 13.01% 

  T2 Diabetes 0.86 0.80 0.93 0.13 14.58% 

  
Congestive Cardiac 
Failure 1.30 1.19 1.42 0.24 18.16% 

Lung Hypertension 0.84 0.80 0.87 0.07 8.75% 

  Asthma 0.82 0.75 0.90 0.15 17.98% 

  COPD 0.86 0.82 0.91 0.09 10.27% 

  Hyperlipidaemia 0.86 0.80 0.92 0.12 13.64% 

Colorectal Hypertension 0.89 0.83 0.96 0.13 15.06% 

  T2 Diabetes 1.17 1.12 1.21 0.09 8.01% 

  
Congestive Cardiac 
Failure 1.39 1.31 1.47 0.15 10.98% 

  Arrhythmia 1.10 1.05 1.14 0.08 7.75% 

  COPD 1.57 1.50 1.63 0.13 8.02% 

All Peptic Ulcer Disease 1.14 1.07 1.21 0.13 11.84% 

  Chronic Kidney Disease 1.16 1.08 1.24 0.17 14.37% 

  Stroke 1.44 1.35 1.54 0.19 13.17% 

  Rheumatoid Arthritis 1.16 1.05 1.28 0.22 19.39% 

  Obesity 0.83 0.77 0.91 0.14 16.85% 

  Hyperlipidaemia 0.91 0.87 0.94 0.08 8.32% 

  
Peripheral Arterial 
Disease 1.34 1.25 1.43 0.18 13.10% 

Table 13: High Precision Comorbidity Cancer Cause-Specific Hazard Ratio Results –Cancer cause-specific hazard ratios 
associated with comorbidity extracted from each Cox proportional hazard model. The confidence interval for the hazard 
ratio was extracted and is shown as the lower confidence interval, upper confidence interval and the total span of the 
confidence interval. The span is further expressed as a percentage of the hazard ratio point estimate. The results shown are 
limited to those that have a high probability of unidirectional hazard, a confidence interval span of less than or equal to 
0.25 and where the span was less than or equal to 25% of the point estimate for the hazard ratio 

6.2.4 - Comparison with All-Cause Results 

To facilitate model interpretation Table 14 includes only results where both the all-cause hazard 

from chapter 5 and the cause-specific hazard have a high probability of unidirectional hazard and the 

effect estimate is in the same direction. Table 15 includes those results where the precision cut off is 

achieved. A total of 58 site specific analyses showed unidirectional effects in the same direction 

across the all-cause and cause specific analysis. Of these 8 met the precision criteria and were all in 

the lung cancer cohort. 5 of these were for associations with reductions in hazard. 
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Site Label 
All-Cause 
Hazard 

Cause-Specific 
Hazard Span 

  T1 Diabetes 2.54 1.77 2.02 

  
Congestive Cardiac 
Failure 2.97 2.12 1.23 

  Arrhythmia 1.91 1.43 0.60 

  Varicosities 0.69 0.51 0.54 

Breast Chronic Kidney Disease 2.53 1.97 1.47 

  Paraplegias 2.23 2.04 1.96 

  Stroke 1.85 1.45 1.01 

  Dementia 3.08 3.02 2.13 

  
Peripheral Arterial 
Disease 2.23 1.76 1.69 

Prostate Dementia 2.28 2.94 2.61 

  
Peripheral Arterial 
Disease 2.05 1.48 0.95 

  Diabetes 0.92 0.87 0.11 

  T2 Diabetes 0.91 0.86 0.13 

  Other Diabetes 1.26 1.26 0.57 

  
Congestive Cardiac 
Failure 1.36 1.30 0.24 

  Hypertension 0.87 0.84 0.07 

  
Thromboembolic 
Disease 1.47 1.47 0.45 

  Asthma 0.84 0.82 0.15 

Lung COPD 0.91 0.86 0.09 

  Malabsorption 0.63 0.56 0.63 

  Paraplegias 1.24 1.28 0.40 

  Demyelination 1.85 2.21 2.52 

  Stroke 1.25 1.24 0.27 

  Dementia 1.43 1.34 0.39 

  HIV 1.95 2.28 3.70 

  Obesity 0.44 0.33 0.09 

  Hyperlipidaemia 0.90 0.86 0.12 

  
Congestive Cardiac 
Failure 1.89 1.67 0.50 

  Varicosities 0.63 0.47 0.46 

  
Thromboembolic 
Disease 1.60 1.58 0.81 

  COPD 1.54 1.18 0.35 

Colorectal Chronic Kidney Disease 1.70 1.46 0.60 

  Paraplegias 2.29 1.75 1.19 

  Neuromuscular Disease 2.06 1.99 2.37 

  Stroke 2.03 1.74 0.74 

  Dementia 2.46 2.46 1.22 

  
Peripheral Arterial 
Disease 1.51 1.31 0.60 

Skin COPD 2.21 1.92 0.96 

Lymphoma 
Congestive Cardiac 
Failure 2.46 1.76 1.08 

  Stroke 2.25 2.17 1.66 

Pancreatic 
Congestive Cardiac 
Failure 1.73 1.74 0.77 

  COPD 1.41 1.40 0.54 
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Site Label 
All-Cause 
Hazard 

Cause-Specific 
Hazard Span 

  
Congestive Cardiac 
Failure 1.95 1.81 1.23 

Leukaemia COPD 1.78 1.66 1.08 

  Stroke 1.71 1.78 1.45 

Endometrial Stroke 2.24 2.15 2.58 

  
Congestive Cardiac 
Failure 1.41 1.41 0.72 

Oesophageal COPD 1.32 1.31 0.51 

  Stroke 1.78 1.77 0.96 

Stomach COPD 1.37 1.27 0.52 

  Diabetes 0.77 0.75 0.23 

Liver Myocardial Infarction 1.48 2.24 1.90 

  
Congestive Cardiac 
Failure 1.66 1.53 0.95 

Cervical Diabetes 2.05 2.21 2.29 

  Myocardial Infarction 1.43 1.42 0.76 

CUP 
Congestive Cardiac 
Failure 1.62 1.66 0.63 

  COPD 1.32 1.34 0.44 

  Stroke 1.42 1.32 0.63 

  
Congestive Cardiac 
Failure 1.68 1.39 0.15 

All COPD 1.70 1.57 0.13 

  Stroke 1.58 1.44 0.19 
Table 14:  Comorbidity Cancer Cause-Specific Hazard Ratio Results Consistent with All Cause Hazard Results –Hazard 
ratios associated with comorbidity were extracted from each all cause and cancer cause-specific Cox proportional hazard 
model. Where both showed the hazard to have unidirectional effect the hazard estimates and cause specific confidence 
interval span are shown.  

Site Label 

All-
Cause 
Hazard 

Cause-
Specific 
Hazard Span 

Span 
as % 

  Diabetes 0.92 0.87 0.11 0.13 

  T2 Diabetes 0.91 0.86 0.13 0.15 

  
Congestive Cardiac 
Failure 1.36 1.30 0.24 0.18 

Lung Hypertension 0.87 0.84 0.07 0.09 

  Asthma 0.84 0.82 0.15 0.18 

  COPD 0.91 0.86 0.09 0.10 

  Stroke 1.25 1.24 0.27 0.22 

  Hyperlipidaemia 0.90 0.86 0.12 0.14 

  
Congestive Cardiac 
Failure 1.68 1.39 0.15 0.11 

All COPD 1.70 1.57 0.13 0.08 

  Stroke 1.58 1.44 0.19 0.13 
Table 15: High Precision Comorbidity Cancer Cause-Specific Hazard Ratio Results with Results Consistent with All-Cause 
Hazard Ratio –All Cause and cancer cause-specific hazard ratios associated with comorbidity were extracted from each Cox 
proportional hazard model.  . The results shown are limited to those that had a high probability of all-cause and cancer 
cause specific unidirectional hazard, a cause-specific confidence interval span of less than or equal to 0.25 and where the 
cause-specific confidence interval span was less than or equal to 25% of the point estimate for the hazard ratio.  
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6.3 - Discussion 

6.3.1 - Data Pre-processing 

A large proportion of patients have no cause of death data, despite being recorded as deceased. This 

data is imported from external sources as the cause of death is recorded with the registry office and 

shared with the hospital trust at a later stage in some instances.183 The missing data may be due to 

incomplete sharing of data with the hospital trust for patients. As a result, it might be possible to 

enhance this data by asking for a manual extraction of this dataset from the office for data release to 

enhance clinical records. Another possibility is that patients who die, but are not in the UK will not 

be subject to the same processes. As such, a patient may be reported as deceased but no data on 

cause of death that is made available, as the death is recorded in an alternative country. Although 

this may occur in a proportion of cases it seems implausible as the sole explanation given the high 

percentages shown in Table 11.  

When looking at the trend in missing cause of death by year no clear trend is demonstrated up until 

2017. This suggests that the proportion of cases where the data is missing is fairly static over time. 

From 2017 onwards there is a sharp rise in missing data reaching 100% of deaths from 2018 onwards 

showing that the data accuracy is worse in more recent years. This however is a product of how this 

data is derived with it needing to be collected by central government bodies and processed by them 

before it can be made available to the hospital. This is therefore simply a reflection of the long time 

lag that occurs between death and its registration, and the subsequent processing and release of 

cause of death data. The falloff in number of missing cause of death data items in 2020 is shown to 

be an artefact by virtue of the percentage of deaths remaining at 100%. It results from the fixed cut 

off for inclusion within the all cancer cohort at the end of 2018. The number of deaths will start to 

fall annually after this cut off as no new diagnoses are added and thus the number at risk will shrink. 

Although the approach implemented was to exclude patients with missing data, this runs the risk of 

introducing bias to the analysis in the same way that complete case analysis does.162 If the data are 

missing systematically, for certain types of patients, then this could create an inadvertent selection 

bias that may not be dealt with by adjustment with covariates alone. An alternative approach would 

be to include all patients however treat unknown deaths in the same way as non-cancer deaths and 

treat them as a censoring event rather than a death. This would have had the advantage of 

increasing patient numbers and enhancing precision. As the mechanism by which this data is missing 

is not fully understood handling the data in this way would have created potential challenges in 

knowing how to interpret the output of analysis, introduced misclassification error and may have 

introduced a form of censor bias.175  

6.3.2 - Model Assumptions 

Proportional Hazards 

Similar results are identified within the cause-specific models as those found within the all-cause 

models in the previous chapter. The graphical approach identified no instances of a violation of the 

proportional hazards assumption occurring. As with the previous all-cause analysis, due to the large 

numbers of patients the graphical approach was the only method that was applicable to all the 

cohorts under investigation. The identification however of some instances where a given variable is 

derived from a smaller cohort, shows no graphical evidence of a violation, but does show numerical 

evidence of a violation, calls into question the robustness of the graphical approach.  This suggests 

that the subjective elements of a graphical approach do need to be taken into consideration and 

that despite being assessed directly, that there may be some issues that remain in regards to the 

proportional hazard assumptions made. 
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Linear Assumptions 

Several instances of violations of linear assumptions are identified. The non-linear relationships 

between age and outcomes appear to be more marked on average which is reflected in the non-

linear relationship with age occurring in the all cancer cohort. The presence of non-linear 

relationships, suggests a possibility of a greater level of residual confounding when adjusting for 

these covariates within our Cox models. As such, those with identified non-linear relationships are 

likely to have estimates that deviate further from the true effect when compared to those without 

non-linear relationships. This is particularly true for leukaemia where the cohort shows evidence of 

non-linearity with regards to both age and IMD quintile. 

Chapter 5 detailed approaches to overcome non-linearity through cohort stratification. Alternative 

approaches to regression modelling could also be implemented to combat non-linear 

relationships.368 One approach is the use of polynomial regression models.369 Here the non-linear 

variable is included in its raw form, quadratic form and increasing higher order polynomial forms. 

This is continued until as non-significant p value is obtained for the next order polynomial. This 

allows the regression model to capture non-linear relationships, however this will model non-

linearity only to a certain extent. Thus more complex relationships still may not be accurately 

modelled with this approach.  

To improve its performance, this approach can be combined with an approximation to the 

previously detailed stratification method by implementing splines. Here a number of cut off values 

are identified with a polynomial regression model fitted to the data that lies between each cut off 

for that variable. In such cases, finding the appropriate number of and values for cut off points, 

which are termed knots, is crucial in creating a model that appropriately reflects the non-linear 

relationship. In general a higher numbers of knots will result in a closer fit of the model to the data, 

however this also may result in overfitting.370 This may reduce the external validity of the results 

obtained. Lower numbers of knots reduce the risk of overfitting, but may result in a less accurate 

representation of the non-linear patterns seen within the data. These models are also challenging to 

interpret clinically. 

Influential Outliers 

When assessing the impact of influential outliers in Figure 59 and Figure 60 the results suggest that 

in most cases the outlier values are pulling the effect estimate towards the null hypothesis. This may 

be due to the outliers having improved survival estimates, however this is less likely to be the case as 

the opposite effect was seen in the all-cause equivalent analysis. Instead, it is likely that the outliers 

are associated with an increase in the risk on non-cancer deaths. This general trend is in some ways 

helpful for the analysis, as it suggests that where influential outliers are not excluded, it is producing 

a null result where a true difference may exist. If this holds true across the other cancer cohorts, 

then our process of focussing on only those with a high probability of unidirectional hazard is 

unlikely to include results that are only high in probability due to outliers. The negative trade-off is 

however that in some cases we may be discounting some effects which have been deflated by the 

outlier cases. 

6.3.3 - Cause of Death as a Source of Bias 

Competing risks analysis is fundamentally reliant on cause of death data, whether implementing a 

sub-distribution or cause-specific approach. As such, errors in the cause of death data will result in 

misclassification error and biased estimates as a results.218,371 Significant volumes of research have 

been undertaken in numerous countries to assess the quality of cause of death reporting.371–373 In 
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almost all studies high volumes of death certificates have been shown to be incorrect. Despite these 

high volumes of errors identified, the error rate has been shown to be inconsistent when comparing 

different conditions. The accuracy of studies relating to cancer deaths show improved accuracy over 

diagnoses such as cardiovascular disease.184,371,374 As a result, the focus of our analysis being on 

cancer related versus non-cancer related deaths, as opposed to individual cancers as a cause of 

death, or other individual diagnoses as a cause of death, should improve the accuracy of the cause of 

death data. Despite this, there will still be an inherent error rate with this data which will likely result 

in some degree of bias within the estimates generated. 

6.3.4 - Interpretation of Cause-Specific Analysis 

When interpreting the output of these cause-specific analyses it is not sufficient to analyse the 

estimated hazard on its own. As detailed in chapter two, competing risk methodologies can 

demonstrate evidence of reduced risk if there is a rise in a competing risk.180,364 As such, the cause 

specific competing risk should be assessed in tandem with the overall all cause hazard. Where the 

overall mortality demonstrates increased hazard and the cancer-cause specific hazard is reduced 

then it is likely that the increased mortality is caused by non-cancer causes, however it is not 

necessarily true that cancer risk is truly reduced to the extent estimated. If patients who are frail are 

more likely to die from either cause when it occurs in isolation but the effect is greater in the non-

cancer condition, then the process of censoring non-cancer death creates a selection bias. The 

remaining at risk population is in effect stripped of the most vulnerable patients and thus creates the 

appearance of a survival advantage. This is a form of censor bias.175 The converse is also true such 

that if there is an improvement in the hazard of the competing risk then this may cause more frail 

patients to survive making the cause specific outcomes appear worse. Thus, when the all-cause 

hazard and cause-specific hazard show the same direction of effect it is likely that the cause-specific 

effect is a meaningful contributor to the overall effect seen. When however it shows the opposite 

direction of effect, then the analysis result can be considered unclear, it may be a true estimate or 

may be due to censor bias which is not possible to calculate or estimate.  

A further issue arises due to the censoring approach and missing cause of death data. Within the 

cause-specific competing risks approach, deaths from the non-cancer cause are treated as censored 

rather than a true event. In addition the removal of patients without cause of death data, reduces 

the total at risk population. These two factors result in increased levels of uncertainty of the 

measures derived, with wider confidence intervals. This is reflected in the lower numbers of 

comorbidities and cancer sites showing a high probability of unidirectional hazard. It also accounts 

for the smaller numbers of models meeting the precision criteria presented in Table 13. It could 

therefore be argued that a larger study population may be needed when assessing these cause-

specific effects. 

Due to the limitations described above and in chapter 2 interpreting the findings of cause-specific 

analyses can be challenging where the hazard estimates for all-cause mortality and the cause-

specific mortality show opposite directions of effect. As such, although all of the results are 

presented, the discussion will focus primarily on the results presented in Table 14 where the cancer 

cause-specific mortality and all-cause mortality are in agreement on the direction of effect.  

When reviewing Table 14 it is tempting to compare the hazard ratios in more detail and assess what 

proportion of the total hazard is accounted for by the cancer related deaths. This however would be 

inappropriate, as the methods applied in each case serve a different purpose and thus must be 

interpreted differently. The all-cause estimate is the risk of one group versus another taking into 

account all potential causes of death. The cause-specific analysis, attempts to quantify the hazard 
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relating to dying from a particular cause, under the assumption that dying from all other causes 

were not possible. As such the cumulative incidence of events generated from the estimate will be 

higher than in the actual population.179 Due to these differences, comparisons beyond the direction 

of effect should be done with extreme caution. 

6.3.5 - Comparison to Previous Research 

An important step in assessing the potential validity of the analysis output is to compare them to the 

results of previously published research. A significant number of previous studies have attempted to 

assess the impact of comorbidity on cancer survival in the cause-specific context.365–367,375 These 

studies have predominantly focussed on high prevalence cancers such as breast, colorectal, lung and 

prostate cancer. These studies have also largely relied on the use of the Charlson index38, rather than 

analysing the effect of individual comorbidity. The Charlson Index is calculated based on three broad 

components; diagnoses, importance of condition and severity of condition. Any patient diagnosed 

with one of the pre-specified comorbidities results in points for that condition. Some conditions are 

deemed more significant than others, such that they attract more points, for example dementia 

scores 1 point where non-metastatic cancer diagnoses attract 2. Some conditions where severity 

may be assessed, such as diabetes with and without end organ damage, may also attract further 

points. Diabetes for example without end organ damage scores 1 point and those with end organ 

damage score 2 points.  

This approach has the advantage of improving the number of patients within each strata, thus 

improving the precision of results. It also incorporates disease severity information in a way that the 

binary indicator of comorbidity applied in the above analyses does not. Further it attempts to 

incorporate information about several comorbidities into a single analysis.  

Despite these advantages, the approach also has a number of important downsides. The use of any 

composite score results in loss of information as it is possible to derive the same score via multiple 

routes. In addition, the use of the Charlson score introduces a number of assumptions that were not 

in any way tested for in these previous publications. It assumes that amongst conditions which 

attract the same score the effects are equivalent. It also assumes that the weighting of conditions is 

appropriate for this particular context, for example, it assumes having both dementia and chronic 

pulmonary disease is equivalent to having moderate renal impairment only. Further, it assumes that 

disease severity is equivalent to some diagnoses such that that a patient with mild liver dysfunction 

with CCF and a stroke has an equal score and therefore assumed equal risk as someone with 

moderate liver disease.  

This fundamental difference in analysis approach prevents direct comparison of the results 

presented above to the results of previous literature for the most part.  Further, the results of our 

analysis call into question the potential validity of this previous research. Our results clearly 

demonstrate different effect sizes, for different conditions within the same site specific cancer 

cohort. This would suggest a violation of one of the inherent assumptions of the majority of the 

previous research in this area. 

One example of a disease specific approach previous employed was in the analysis of diabetes 

mellitus in colorectal cancer.376 This demonstrated that diabetes was associated with a high 

probability of unidirectional hazard in terms of overall survival for both colon and rectal cancers with 

an increased hazard of 12% and 21% respectively. When assessing cancer cause-specific results, only 

rectal cancer had a high probability of unidirectional hazard, with an estimated 30% increase in 

hazard. The results of the analysis undertaken within chapter 5 showed similar results for overall 

survival with an estimated 15% (7-12%) increase in hazard. Our cause-specific analysis however 
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showed a low probability of unidirectional hazard with a confidence interval from a 6% reduction in 

hazard to a 5% increase in hazard. The differences seen in the PPM analysis results compared to the 

previously published results could be due to several factors. The published analysis separated out 

colon and rectal cancer results, where the PPM based analysis did not. Differences between these 

might exist such that had the PPM analysis made a similar distinction, then the results might have 

been different. An additional factor is the use of the hybrid definition of diabetes throughout the 

study. As described in chapter 3 relying on clinical coding only produces a more pessimistic estimate 

of the effect of diabetes. The enhancement of our data might therefore be appropriately reducing 

the hazard estimation for diabetes.  

6.3.6 - Cause Specific Hazard Estimates 

Lung 

Of the key cancer sites, lung cancer had the greatest number of comorbidities where there was 

agreement between the all-cause and cause-specific effect estimates. Of these 8 are examples of a 

reduction in hazard in the comorbid group and 8 showed an associated increase in hazard. The 

number of conditions with a reduced hazard in the lung cancer population is far larger than those 

found in the other site specific cohorts. It is important to consider if there is something intrinsic to 

the lung cancer population, which makes this more likely. Firstly, the large population numbers with 

high multi-morbidity increases the number of patients with the comorbidity of interest. This in 

general has resulted in more precision, and therefore a greater likelihood of having a high 

probability of unidirectional hazard. The shorter survival seen in lung cancer also amplifies the effect 

of small survival improvements on hazard estimates, whether driven by a true effect or artefact, 

such as lead time bias. As such, a modest survival difference of just a few days or weeks will be 

reflected more in the derived hazard ratio than it would be for longer surviving cancers such as 

breast and prostate cancers. If patients die early from their cancer, then the negative health effects 

of their pre-existing health condition may not have sufficient time to effect either the all-cause or 

cancer cause-specific mortality.  

When taking into account our precision thresholds, the lung cancer cohort was the only site specific 

cohort to generate associations with all-cause and cause-specific agreement and that met the 

precision cut offs. A total of 7 comorbidities in lung cancer met the precision threshold with 5 

showing a reduction in hazard and 2 showing an increase in hazard. The point estimates in each of 

these cases was also of a scale that would be clinically significant with the smallest decrease in risk 

being 13% in Type 2 diabetes and the smallest increase being 24% in stroke.  

Previous research into the impact of comorbidity on lung cancer outcomes has suggested that the 

effects seen may differ with different histological subtypes.377 Within the analyses undertaken in this 

chapter and chapter 5, the impact of histological subtypes was not considered. As highlighted in 

chapter 5, histology could be considered as a potential mediator of effect, however given the 

previous differences identified in the literature further research is needed to assess if these 

previously identified patterns persist when assessing individual comorbidities rather than using 

Charlson score, and if so ,what mechanism is driving this. 

Although several potential sources of bias may be affecting the hazard estimates obtained there is a 

need for more detailed and specific analysis to be undertaken in each of these comorbidities. A 

precisely specified model using DAGs with the use of a more detailed and complete dataset might 

offer the opportunity of attempting a causal analysis that accounts for more of the bias identified. 

This could provide a more definitive answer as to the true nature of the relationship between 

comorbidity and lung cancer survival. This would be particularly important in the cases of improved 
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survival outcomes, as it might offer a potential route to identify new treatment and management 

strategies to use in patients to improve care and outcomes. 

Colorectal 

The second highest number of comorbidities in agreement between all-cause and cause-specific 

hazards is seen in colorectal cancer. Here 8 of the 9 results were associations with increased hazard. 

The exception to this was varicosities which is a pattern identified in both chapter 4 and chapter 5 

previously. The cause specific analysis results identify that varicosities are associated with a 

reduction in the  cancer cause-specific hazard in both the colorectal and breast cancer cohort. This 

would suggest that the reductions in all-cause hazard are primarily attributable to changes in the 

cancer related deaths within these cohorts. A literature search revealed no previous studies in this 

area and identifies a potential future area of focus for further research to identify if this association 

is seen more widely in other centres and geographical regions. If this pattern of association is 

identified wore widely, then further investigation into this effect is warranted to understand in more 

detail the potential drivers of it.  

Despite the large hazard differences identified by the point estimates generated in the colorectal 

cohort, none of the results met the precision criteria. Despite the relatively low precision, when 

looking at the minimum hazard difference indicated by the confidence interval, the scale of effect 

appears to be clinically relevant in many instances. Estimates suggest at least a 44% increase in 

hazard for CCF, 19% for CKD, 41% for stroke, 22% for thromboembolic disease, 26% for paraplegia 

and 13% for neuromuscular disease. These hazard differences translate to large differences in 

projected survival times despite their imprecision, which would likely be of relevance to clinical and 

patient decision making. Other conditions show what may only be more modest differences such as 

COPD at 1% and 4% for peripheral vascular disease. Further analysis is needed using additional 

cohorts that improve the representation of comorbid patients. By increasing the numbers it is likely 

that the precision of results would also increase accordingly. This will provide a clearer idea of the 

true scale of associations seen. 

Breast 

The breast cancer cohort identified 9 comorbidities with all-cause and cause specific agreement. 

Varicosities were the only comorbidity associated with a reduction in hazard. The effect size in all 

conditions was large with the smallest point estimate increase in arrhythmias suggesting a 42% 

increase in hazard. Despite the large effect sizes none met the precision cut offs. As with colorectal 

cancer the minimum effect size suggested by the confidence intervals was still clinically relevant in 

many cases. For example lower confidence interval estimate of effect size was a 37% hazard increase 

for CKD. This example along with those highlighted in colorectal cancer suggests issues with the 

application of multiple cut offs for precision, clinical relevance, confidence interval and all-cause 

versus cause specific agreement.  By applying so many rules to filter results down, there is a risk that 

many valid and clinically meaningful results may be ignored.  

Prostate 

Of all the comorbidities analysed in prostate cancer only two showed a high probability of 

unidirectional effect in both the all-cause and cancer cause-specific models and with the same 

direction of effect. This low number may be representative of the fact that associated differences 

seen in prostate cancer and comorbidity are primarily driven by non-cancer related causes. This 

would fit with arguments made previously in the literature that the effect of comorbidity in cancers 

with a better prognosis is driven by the effect of comorbidity having enough time to manifest366. This 
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does not however remove the possibility that cancer interacts with comorbidity to increase the 

impact of comorbidity in this group of patients. Further study is therefore needed with control 

cohorts to assess the net survival difference when compared to the non-comorbid and comorbid 

population with and without cancer. Additionally the study of other causes of death or ill health 

after cancer might reveal other potential effects. Cancer and its treatment might speed up the 

pathogenic processes driving ill health. As such a study of the time to event of key health conditions 

such as cardiovascular events, might reveal cancer accelerates processes such as this. If this were 

undertaken, then a death would need to be treated as a competing risk and the results compared to 

a non-cancer control group. This might provide insight into the causes of the lower all-cause survival 

seen in prostate cancer patients with many common comorbidities. In the case of the two prostate 

cancer results found in Table 14 neither of these met the precision thresholds. Despite this the 

effect size was marked, suggesting an impact that may be clinically relevant for patients. This is 

especially true given the relatively long survival times seen in prostate cancer when compared to 

other primary malignancies. 

Other Cancer Sites 

Ten further cancer sites are identified as meeting the requirements for Table 14, although none of 

these meet the precision threshold. Amongst these cancer sites certain comorbidities predominate 

including stroke, CCF and COPD. As detailed in chapter 5 there are a number of physiological 

mechanisms which may directly link these conditions with cancer and its pathogenesis. Furthermore 

many of the treatments for common cancers are more limited by the presence of poor lung function, 

cardiac dysfunction and previous ischaemic events. Given the consistency with which these 

comorbidities show an association with differences in cancer cause-specific outcomes they offer a 

compelling target for further investigation into the drivers of this association whether causal or 

artefactual. 

The cause-specific results in liver cancer show that diabetes is associated with a reduction in hazard. 

This echoes the all-cause results shown in chapter 5. These results suggest that the all-cause survival 

advantage seen in this group may be due to a reduction in cancer related hazard with point 

estimates suggesting a 25% reduction in risk. As described in chapter 5 the effects seen may be 

driven by cirrhotic burden and thus further research is needed, with a more detailed dataset that 

can condition on the degree of cirrhosis and hepatitis virus.316 If however, this pattern continued to 

be present after adjustment for these factors more research would be required to understand the 

mechanisms driving these differential survival outcomes.  
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6.4 - Summary 

 The results presented above demonstrate a significant limitation in the previous cause-specific 

cancer research relating to comorbidity. The previous reliance on aggregated comorbidity scores is 

shown to be potentially flawed due to the highly varied nature of different comorbidities within a 

given group of cancer patients and with the same comorbidity across different cancer groups. In 

many of the comorbidities of interest, the effect seen in all-cause mortality appears to be being 

driven in a large part, by an associated effect on cancer cause-specific mortality. The number of 

models with agreement between the all cause and cause specific results appears to be greater in 

those cases where a survival improvement is identified.  

Despite the patterns seen, the majority of comorbidities assessed are not associated with a 

meaningful difference in cancer cause-specific hazard. Of those that do, a further proportion show 

an effect that is opposite to that identified in the all-cause models. This renders the results of these 

analyses uninterpretable. The reliability and interpretability are further hampered when combined 

with the previously detailed issues relating to data bias, potential violations of model assumptions 

and bias introduced through the methods applied, as described in the DAG section in chapter 5. In 

most instances it is not possible to quantify the degree of misestimation of the associations 

identified. An argument could therefore be made that an alternative approach is needed which is 

not reliant on the correct attribution of effects to any given variable. One such approach would be 

the application of a predictive framework rather than an inferential one. Here, the value of 

comorbidities as predictors of outcome can be used. In this way comorbidities can be used as 

potential markers for high risk individuals, whilst accepting that the comorbidity may be 

independent of the cause of the outcome effects which they predict. The subsequent chapter uses 

this alternative approach applying machine learning methods with no underlying model assumptions 

to assess comorbidity in this manner.  
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Chapter 7 – The Application of Random Survival Forests to Assess the Relationship 
between Baseline Characteristics and Cancer Survival Using a Predictive Framework 

 

7.0 - Introduction: 

Chapters 3-6 include a range of analyses that are descriptive, exploratory and inferential in nature. 

They apply traditional statistical methods, to assess relationships between data items and outcomes. 

As discussed in chapters 5 and 6, although we are not attempting to make causal inference, there 

are important aspects of causal inference methodology that can still be used to inform the 

interpretation of the analysis results, in a non-causal way. As discussed, the focus on the cancer 

population introduces a block in causal relationships temporally downstream of the cancer diagnosis 

and introduces collider bias that is impossible to estimate.296 Thus, the associations seen could be 

true, inflated, deflated or even the reverse of the true effect, depending on the level of bias 

introduced. 

An alternative approach is to use a predictive framework to derive insight. Here, instead of 

attempting to quantify the associations seen, prediction is used to identify at risk groups. The 

models can be used to derive descriptions of the patterns of association within predictions. Further 

insight can be generated through the identification of baseline characteristics that are most 

informative or influential in generating predictions. Although the traditional methods used thus far, 

such as Cox proportional hazards108, could be used for prediction, these have underlying model 

assumptions that previous chapters have suggested may not hold in all circumstances. This is 

particularly true for linearity178 and this may result in a reduced ability to produce accurate 

predictions. Within this chapter an alternative method is applied which employs ensemble learning 

using random survival forests109. This method has been utilised due to its lack of underlying model 

assumptions and relative ease of interpretability (see chapter 2 for an overview). Despite this 

method having been described and implemented more than a decade ago, to date, it has been used 

infrequently within medicine and even less frequently in oncology focussed studies.378,379 Within this 

chapter a predictive perspective is used to interrogate the PPM cancer cohorts as an alternative 

approach to generating insight into patient survival outcomes. 

7.0.1 – Aims and Objectives 

Aims 

1. Apply a predictive machine learning approach to identify baseline characteristics that can be 

used to identify at risk patients. 

Objectives 

a) Identify the optimal hyperparameters for the development of accurate random survival 

forests for cancer survival prediction. 

b) Build random forest models for overall all-cause survival in breast, lung, colorectal and 

prostate cancer. 

c) Compare the predictive accuracy of random survival forests to Cox proportional hazards and 

Kaplan-Meier methods. 

d) Assess predictive information gain of individual baseline characteristics using average 

minimum tree depth.   

e) Assess the permutation variable importance scores of baseline characteristic in survival 

predictions. 
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f) Assess pairwise permutation variable importance score of baseline characteristic in survival 

predictions. 

 

7.1 - Methods 

7.1.1 - Testing and Training Sets 

For the development and testing of our predictive models the holdout method was used.380,381 Here 

each cohort was divided into a training and a testing dataset. The training dataset comprised 80% of 

the cohort and the testing set 20% of the cohort. These were divided at random using standard 

packages in R (see appendix). 

7.1.2 - Hyperparameter Tuning 

Model hyperparameter optimisation for sample size of candidate variables at each node and 

minimum size of patient cohorts in terminal leaves was conducted.189 This was achieved using the 

tune.rfsrc function in R. This implements the rfsrc.fast algorithm to assess out of bag (OOB) error382 

for hyperparameter combinations. The rfsrc.fast algorithm uses subsampling to create close 

approximations to the true forests in a fast and computationally efficient manner. The optimisation 

was run using a forest size of 500, with candidate variable sizes increasing from a minimum of 3 

upwards in single variable increments. Terminal node size was assessed from 3 increasing up in one 

unit increments. These parameters were selected due to 3 being the minimum selected for each 

hyperparameter in standard practice. The optimisation was set to stop assessing combinations once 

a combination of hyperparameters had OOB error that was better than the 10 subsequent 

hyperparameter combinations tested. Optimal hyperparameters and subsequent model building 

was undertaken for the top cancer sites by incidence, namely; breast, colorectal, lung and prostate 

cancer. 

7.1.3 - Model Building 

Once the optimal hyperparameters had been identified, these were used to build the full random 

forest model using the rfsrc algorithm.109 The forest size was set to 500 with permutation variable 

importance (VIMP) estimation and split depth by tree being calculated during model building. The 

number of time points used to calculate ensembles was set to 100 in order to enable calculation in a 

memory efficient way due to the limited hardware available for analysis. The models were 

developed using age, gender, deprivation, comorbidity status for each comorbidity of interest, 

histological type, stage and grade. Full model specifications can be found in the appendix (Table 26). 

7.1.4 - Internal Error Assessment 

To assess the suitability of the 500 tree forest size implemented for each model the out of bag (OOB) 

error382 was calculated with each additional tree added to the forest. This was then used to generate 

plots of OOB error through the model development and assess if a steady state of error had been 

achieved.  

7.1.5 - Model Accuracy 

The predictive accuracy of the resulting models was assessed using integrated Brier score and time 

dependent Brier score.383 These were calculated using the holdout testing dataset in order to ensure 

accurate results were not due to overfitting. To provide a performance benchmark Cox proportional 

hazards models were developed to include, age, gender, histology, stage, grade and comorbidities. A 

Kaplan Meier estimate was also generated for benchmarking. The performance metrics were then 

compared. 
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7.1.6 - Assessing Variable Importance 

Interpretation of the model was delivered through a combination of metrics including permutation 

Variable Importance (VIMP) scores188 and minimum tree depth.109 Permutation VIMP was applied to 

identify the most important features (variables) in influencing the model’s predictive accuracy. 

Where a VIMP score was less than or equal to zero it was determined to be non-informative. Where 

VIMP was positive but less than 0.002 it was deemed to be predictive but a low value predictor. 

Those with a VIMP of greater than or equal to 0.002 were deemed to be important predictors.109  

A second method was applied to assess the utility of individual variables. Average minimum tree 

depth was used as an assessment of the relative information gain yielded by each variable.109 This 

was assessed against the calculated model specific cut off109 to identify which variables were 

important in informing the predictions of the models.  

To assess the interactions between variables, pairwise permutation VIMP was also calculated. Here 

the pairwise effect was assessed by calculating the VIMP when both features in the pair were 

permuted simultaneously.384 This was then compared to the additive VIMP of each variable 

permuted individually to identify relationships that were greater or less than would be expected 

given their individual contribution to predictive accuracy. 

7.1.7 - Partial Dependence Plots 

The relationships between important variables and outcomes was assessed using partial 

dependence plots also called partial plots.188,385 Here each individual had their survival probability at 

1,3 and 5 years calculated. Where a continuous variable was being assessed a smooth curve was 

fitted to demonstrate the relationship between increasing values and survival probability. Where 

categorical variables were assessed, box and whisker plots were used to demonstrate the trends in 

the data.  

 

7.2 - Results 

7.2.1 - Hyperparameter Tuning and OOB Error 

Table 16 demonstrates the results from the optimisation algorithm. The optimal hyperparameters 

identified were not consistent across each of the site specific datasets used. Many of the top 

hyperparameter combinations were close in accuracy to one another varying by just a fraction of a 

percent in several cases.  

Site Number of Candidate Variable 

(mtry) 

Minimum Number in Terminal Leaf 

(nodesize) 

Breast 7 10 

Colorectal 12 9 

Lung 22 30 

Prostate 9 15 

Table 16: Optimised Hyperparameters for Random Survival Forests – Optimised hyperparameter results obtained from the 
tune.rfsrc algorithm when applied to the training cohorts for the breast, colorectal, lung and prostate cancer populations. 

When these hyperparameters were implemented to build the full model, the OOB error 

demonstrates that the error rate stabilised at fewer than 100 trees across each of the four models.
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Figure 70: Effect of forest size on Out of Bag (OOB) Error – Graphical representation of the OOB error rate, measured in C-Index, plotted against the number of trees within the forest. Results 
are shown for each of the four models developed using the PPM cancer site specific cohorts training data subsets with results of OOB error calculated as the forest were being trained. 

Prostate Lung 

Colorectal Breast 
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7.2.2 - Predictive Accuracy 

The overall model predictive accuracy as assessed by integrated Brier score showed that overall the 

RSF was more accurate than the Cox proportional hazard or Kaplan Meier estimator in generating 

survival estimates for patients. The results of the integrated Brier scores for the models can be found 

in Table 17. All modelling strategies were better than both random guessing (0.5) and attributing all 

cases to a 50% risk (0.25). 

 

Kaplan 
Meier 

Cox Proportional 
Hazard 

Random Survival 
Forest 

Prostate 0.114 0.111 0.079 

Colorectal 0.193 0.148 0.129 

Lung 0.118 0.118 0.097 

Breast 0.198 0.153 0.134 
Table 17: Comparison of KM, Cox and RSF Integrated Brier Scores – Integrated Brier Scores for Kaplan Meier, Cox and 
random survival forest methods models trained on training datasets for prostate, colorectal, lung and breast cancer 
patients. Integrated Brier scores are based on the holdout testing dataset derived from each cohort. 

When assessing the model accuracy over time (Figure 71) in the case of all but prostate cancer, the 

RSF approach was more accurate at all time-points from 0 to 10 years. In the case of prostate cancer 

the model accuracy for RSF was greater from 0-8 years, however the RSF approach showed a 

reduction in accuracy after this time dropping to a lower level of accuracy than both Cox and KM 

approaches.
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Figure 71: Time Dependent Accuracy with Brier Scores - Comparison of predictive accuracy of Kaplan Meier, Cox and random survival forests modelling approaches using the testing holdout 
data subset in each of the four Cancer Site Specific Cohorts. Accuracy is assessed using time dependent Brier Scores. 

Breast 

Prostate 

Colorectal 

Lung 
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7.2.3 - VIMP 

The variable importance scores derived from the breast cancer model identified 7 highly important 

predictors including age, stage, grade, histological subtype, deprivation quintile, coronary artery 

disease and hypertension (Figure 72a). Of these, age was the most important variable with a VIMP 

score 33% higher than stage, the next most important variable. 7 variables were identified as not 

being important predictors including gender, paraplegia, malabsorption, pancreatitis, spinal injury, 

MND and other respiratory diseases. The remaining variables show evidence of some but more 

limited predictive value. 

The average minimum tree depth demonstrates a similar pattern overall with the top three variables 

being the same using this approach (Figure 72b). Histology is ranked as slightly lower than by the 

VIMP and COPD deemed more informative. Of note two of the variables classified as noise variables 

by VIMP are shown to have tree depths suggestive of useful information gain which includes 

paraplegia and gender. Three variables with low predictive VIMP have scores below the average tree 

depth cut off suggesting they do not provide significant information gain and these included 

Parkinson’s, venous disease and cardiomyopathy. 

The colorectal cancer VIMP scores showed stage to be the most important variable, being more than 

twice as important as the next variable of age (Figure 73a). A further 5 variables have VIMP scores 

suggesting a high predictive value which included grade, deprivation quintile, gender, arrhythmia, 

and CCF. Seven variables showed VIMP scores of less than 0 including venous disease, other 

respiratory disorders, spinal injury, MND, Parkinson’s, demyelination and TIA. The other variables 

have VIMP scores suggestive of limited predictive value. 

The average minimum tree depth measures show the same top three variables although the 

information gain advantage of stage over age was more limited than the difference seen in VIMP 

score (Figure 73b). Gender and IMD were ranked lower in their tree depth measures than by VIMP. 

TIA which was suggested to have no predictive utility by VIMP score was shown to demonstrate 

useful information gain by the tree depth measure. The non-informative variables as defined by tree 

depth, otherwise matched those suggested by the results of the permutation VIMP scores. 

The lung cancer VIMP scores identified just 4 highly predictive variables which were stage, histology, 

age and grade (Figure 74a).  The stage of cancer was scored very highly compared to the other 

variables with an importance score more than 8.5 times higher than age, the next most important 

variable. A larger number of variables were shown to have VIMP scores below zero, suggesting that 

they were not useful predictors. These included venous disease, MND, spinal injury, other 

respiratory diseases, rheumatoid arthritis, cardiomyopathy, demyelinating disease, liver dysfunction, 

neuromuscular disorders, other rheumatological diseases, peptic ulcer disease, TIA and Parkinson’s. 

Tree depth measures showed lower levels of agreement with VIMP than in the other cancer sites 

with only 3 of the top five variables being consistent across the two measures (Figure 74b) Tree 

depth suggested IMD and gender were less informative than the VIMP measures. Four of the 

variables with VIMP scores below zero were also ranked as showing information gain including liver 

dysfunction, rheumatological diseases, peptic ulcer disease and TIA. Peripheral arterial disease and 

malabsorption however fell below the tree depth cut off suggesting low information gain where 

VIMP suggested some predictive value. 
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Figure 72: Breast Cancer Importance Scores – a) Single variable permutation importance scores with colour denoting the predictive utility of the variable. b) Average minimum tree depth 
measures where points to the left of the vertical dotted line denotes a variable with useful information gain. Both measures are derived from the breast cancer random survival forest 
developed using the training subset of the Breast Cancer Site Specific Cohort. 

a) b) 
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Figure 73: Colorectal Cancer Importance Scores – a) Single variable permutation importance scores with colour denoting the predictive utility of the variable. b) Average minimum tree depth 
measures where points to the left of the vertical dotted line denotes a variable with useful information gain. Both measures are derived from the colorectal cancer random survival forest 
developed using the training subset of the Colorectal Cancer Site Specific Cohort. 

a) b) 
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Figure 74: Lung Cancer Importance Scores – a) Single variable permutation importance scores with colour denoting the predictive utility of the variable. b) Average minimum tree depth 
measures where points to the left of the vertical dotted line denotes a variable with useful information gain. Both measures are derived from the lung cancer random survival forest developed 
using the training subset of the Lung Cancer Site Specific Cohort. 

a) b) 
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Figure 75: Prostate Cancer Importance Scores – a) Single variable permutation importance scores with colour denoting the predictive utility of the variable. b) Average minimum tree depth 
measures where points to the left of the vertical dotted line denotes a variable with useful information gain. Both measures are derived from the prostate cancer random survival forest 
developed using the training subset of the Prostate Cancer Site Specific Cohort.

a) b) 
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The VIMP scores for the prostate cancer model demonstrate far fewer variables with predictive 

value (Figure 75a). Seven variables were shown as being highly predictive, 8 as lower value 

predictors but the majority were deemed of no predictive value. The most valuable predictor was 

stage which had a VIMP score over 3 times that of grade, the next most important variable. Other 

highly predictive variables included, age, diabetes, hypertension, coronary artery disease and 

hyperlipidaemia. Low value predictors included inflammatory bowel disease, peripheral arterial 

disease, rheumatoid arthritis, COPD, obesity, liver dysfunction, CCF and paraplegia. 

The average minimum tree depth measures also suggest that fewer variables are important in the 

context of prostate cancer (Figure 75b). Deprivation levels are however deemed to provide 

information gain despite being the lowest in terms of VIMP score. All the other variables above the 

information gain threshold were also found to have VIMP scores above zero although some with 

VIMP above zero fell below the information gain threshold by minimum tree depth. These included 

inflammatory bowel disease, rheumatoid arthritis, obesity, congestive cardiac failure and paraplegia. 

7.2.4 - Pairwise Permutation VIMP 

When analysing the largest pairwise VIMP scores as shown in Table 18, there is overlap between the 

top single VIMP results shown in the above section and those represented in the pairs. Of the top 

pairwise results the majority are lower than the additive value in breast, colorectal and prostate 

cancer. In Lung cancer however all of the top results exceed the additive VIMP 

The results in Table 19 highlight that in breast cancer only one of the breast cancer results has a 

pairwise VIMP excess of over 0.002109, the threshold for highly predictive results. None meet this 

threshold in colorectal cancer, all meet it in lung cancer and all but one meet it in prostate cancer.  

Table 20 identifies the five most suppressed pairwise VIMP scores. Here results show that the 

pairwise VIMP is less than the sum of the single VIMP scores. Overall the level of predictive 

suppression seen is greater than the level of predictive value seen in the largest differences in Table 

19. The exception to this is in lung cancer 
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Variable 
1 Variable 2 

Variable 
1 VIMP 

Variable 
2 VIMP Paired Additive Difference 

  Age Stage 0.09529 0.07154 0.17036 0.16683 0.00353 

  Age Grade 0.09529 0.02530 0.10666 0.12059 -0.01393 

Breast Stage Grade 0.07154 0.02530 0.09144 0.09684 -0.00540 

  Age 
Deprivation 
score (IMD) 0.09529 0.00382 0.09119 0.09911 -0.00792 

  Age 

Coronary 
Artery 
Disease 0.09529 0.00248 0.08816 0.09777 -0.00961 

  Stage Age 0.11997 0.05890 0.17381 0.17887 -0.00506 

  Stage Grade 0.11997 0.00693 0.12610 0.12690 -0.00080 

Colorectal Stage 
Deprivation 
score (IMD) 0.11997 0.00389 0.11911 0.12386 -0.00475 

  Stage 

Congestive 
Cardiac 
Failure 0.11997 0.00215 0.11816 0.12212 -0.00396 

  Stage Arrhythmia 0.11997 0.00217 0.11792 0.12214 -0.00422 

  Stage 
Histological 
Subtype 0.17669 0.02072 0.19913 0.19741 0.00172 

  Stage Age 0.17669 0.01134 0.18853 0.18803 0.00050 

Lung Stage Obesity 0.17669 0.00095 0.18095 0.17764 0.00331 

  Stage 

Coronary 
Artery 
Disease 0.17669 0.00147 0.17997 0.17816 0.00181 

  Stage 

Congestive 
Cardiac 
Failure 0.17669 0.00103 0.17974 0.17772 0.00202 

  Stage Grade 0.12384 0.04163 0.18613 0.16547 0.02066 

  Stage Age 0.12384 0.02652 0.15078 0.15036 0.00042 

Prostate Stage Diabetes 0.12384 0.00812 0.11644 0.13196 -0.01552 

  Stage 

Other Chronic 
Respiratory 
Disorder 0.12384 0.00000 0.11415 0.12384 -0.00969 

  Stage 

Inflammatory 
Bowel 
Disease 0.12384 0.00169 0.11396 0.12553 -0.01157 

Table 18: Top 5 Pairwise VIMP Results in Each Cancer Site Specific Cohort - The table includes the site specific cohort the 
analysis was conducted in, the pair of variables for which the results are presented, the VIMP of the first variable on its own, 
the VIMP for the second variable on its own, the paired VIMP is where both variables are permuted simultaneously, the sum 
of the VIMP results for the two variables when estimated alone (additive) and the difference between the pairwise and 
additive VIMP 
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  Variable 1 Variable 2 
Variable 
1 VIMP 

Variable 
2 VIMP Paired Additive Difference 

  Age Stage 0.09529 0.07154 0.17036 0.16683 0.00353 

  

Chronic 
Renal 
Disease 

Chronic Liver 
Disease 0.00069 0.00009 0.00101 0.00078 0.00023 

Breast 

Chronic 
Renal 
Disease Neuromuscular 0.00069 0.00003 0.00087 0.00072 0.00015 

  

Chronic 
Renal 
Disease 

Restrictive Lung 
Disease 0.00069 0.00001 0.00084 0.00070 0.00014 

  

Chronic 
Renal 
Disease Cardiomyopathy 0.00069 0.00000 0.00083 0.00069 0.00014 

  Paraplegia 
Parkinson's 
Disease 0.00009 0.00000 0.00012 0.00009 0.00003 

  Paraplegia Malabsorption 0.00009 0.00002 0.00014 0.00011 0.00003 

Colorectal Paraplegia Venous Disease 0.00009 0.00000 0.00011 0.00009 0.00002 

  Paraplegia 

Other Chronic 
Respiratory 
Disorder 0.00009 0.00000 0.00011 0.00009 0.00002 

  Paraplegia 
Motor Neuron 
Disease 0.00009 0.00000 0.00011 0.00009 0.00002 

  Stage Obesity 0.17669 0.00095 0.18095 0.17764 0.00331 

  Stage 
Connective 
Tissue Disease 0.17669 -0.00005 0.17898 0.17664 0.00234 

Lung Stage Paraplegia 0.17669 0.00002 0.17904 0.17671 0.00233 

  Stage 
Restrictive Lung 
Disease 0.17669 0.00003 0.17904 0.17672 0.00232 

  Stage 
Peptic Ulcer 
Disease 0.17669 -0.00005 0.17895 0.17664 0.00231 

  Stage Grade 0.12384 0.04163 0.18613 0.16547 0.02066 

  Age COPD 0.02652 0.00050 0.03004 0.02702 0.00302 

Prostate Age 
Deprivation 
score (IMD) 0.02652 -0.00754 0.02168 0.01898 0.00270 

  Age 
Chronic Renal 
Disease 0.02652 -0.00015 0.02842 0.02637 0.00205 

  

Inflammatory 
Bowel 
Disease Arrhythmia 0.00169 -0.00067 0.00300 0.00102 0.00198 

Table 19: Top 5 Feature Combinations in Each Cancer Site Specific Cohort Where Pairwise VIMP Exceeds Additive VIMP- 
The table includes the site specific cohort the analysis was conducted in, the pair of variables for which the results are 
presented, the VIMP of the first variable on its own, the VIMP for the second variable on its own, the paired VIMP is where 
both variables are permuted simultaneously, the sum of the VIMP results for the two variables when estimated alone 
(additive) and the difference between the pairwise and additive VIMP 
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  Variable 1 Variable 2 
Variable 
1 VIMP 

Variable 
2 VIMP Paired Additive Difference 

  Grade 
Histological 
Subtype 0.0253 0.00697 0.01523 0.03227 -0.01704 

  Age 
Histological 
Subtype 0.09529 0.00697 0.08667 0.10226 -0.01559 

Breast Age Grade 0.09529 0.0253 0.10666 0.12059 -0.01393 

  Grade 
Deprivation 
score (IMD) 0.0253 0.00382 0.0159 0.02912 -0.01322 

  Stage 
Histological 
Subtype 0.07154 0.00697 0.06606 0.07851 -0.01245 

  Age 
Deprivation 
score (IMD) 0.0589 0.00389 0.04963 0.06279 -0.01316 

  Age Sex 0.0589 0.0038 0.04978 0.0627 -0.01292 

Colorectal Age Hypertension 0.0589 0.00099 0.04784 0.05989 -0.01205 

  Age 
Histological 
Subtype 0.0589 0.0019 0.04902 0.0608 -0.01178 

  Age 
Coronary Artery 
Disease 0.0589 0.00127 0.04848 0.06017 -0.01169 

  
Histological 
Subtype Grade 0.02072 0.00468 0.01635 0.0254 -0.00905 

  Age Grade 0.01134 0.00468 0.00851 0.01602 -0.00751 

Lung 
Histological 
Subtype COPD 0.02072 0.00093 0.01532 0.02165 -0.00633 

  
Histological 
Subtype Arrhythmia 0.02072 0.00051 0.01508 0.02123 -0.00615 

  
Histological 
Subtype Hyperlipidaemia 0.02072 0.00079 0.01546 0.02151 -0.00605 

  Grade Hypertension 0.04163 0.00491 0.02543 0.04654 -0.02111 

  Grade Diabetes 0.04163 0.00812 0.03054 0.04975 -0.01921 

Prostate Grade 
Coronary Artery 
Disease 0.04163 0.00325 0.02631 0.04488 -0.01857 

  Stage Hyperlipidaemia 0.12384 0.00288 0.10903 0.12672 -0.01769 

  Grade Hyperlipidaemia 0.04163 0.00288 0.02683 0.04451 -0.01768 
Table 20: Top 5 Feature Combinations in Each Cancer Site Specific Cohort where additive VIMP exceeds pairwise VIMP- 
The table includes the site specific cohort the analysis was conducted in, the pair of variables for which the results are 
presented, the VIMP of the first variable on its own, the VIMP for the second variable on its own, the paired VIMP is where 
both variables are permuted simultaneously, the sum of the VIMP results for the two variables when estimated alone 
(additive) and the difference between the pairwise and additive VIMP 

There were no instances where both variables are singly deemed to be non-predictive but are 

predictive when combined 
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7.2.5 - Partial Plots 

Age: 

In the breast (Figure 76), colorectal (Figure 77) and prostate cancer (Figure 79) cohorts a non-linear 

relationship between age and survival outcomes it identified. In the breast cancer cohort this 

relationship suggests that younger patients below the age of 50 have worse outcomes than those 

between 50 and 69. Those aged 70 or over however, have worse outcomes than both younger 

groups. As time since diagnosis increases, the patterns become more apparent with greater survival 

differences identified within these age bands. The median probability of survival at 10 years for 

patients 30-39 was estimated to be 75%, 82% for 50-59 year olds and 56% for 70-79 year olds. 

Within the colorectal cancer population, discerning a clear pattern is made more challenging by the 

higher levels of uncertainty introduced through the low numbers of patients within the younger age 

bands. The point estimate identifies a similar pattern as seen in breast cancer with worse outcomes 

in patients under 40, the best outcomes in patients aged from 40-59 before an increasing impact of 

age with each subsequent decade. The confidence interval of the curve applied in Figure 77 shows 

that the upper bounds of the confidence interval for the younger age groups overlap with the upper 

confidence bound of the middle age patients. Thus it is unclear if the worse outcomes suggested are 

a meaningful pattern or not.  

The patterns seen within the lung cancer population appears to be linear, with no large scale shifts 

from this identified (Figure 78). The survival differences between ages are more apparent early on in 

disease follow up, with outcomes differences becoming less pronounced across age groups with 

increasing time. This is demonstrated via the falling incline of the overall trend line. Despite this, 

younger patients still have more favourable predicted survival with median predicted survival of 7% 

at 10 years for patients in their 30s versus 4% for patients in their 80s. 

Within the prostate cancer cohort there is a gradual decrease in the median survival probability with 

increasing age in a linear fashion until the age of 80 or above (Figure 79). At this age there is a large 

and rapid fall off in survival probability which becomes more marked with increasing time after 

cancer diagnosis. At 5 years the median probability of survival is 89% for patients 70-79 falling to 

61% in those aged 80-89. By 10 years post follow up the linear trend with increasing age transitions 

to a sharp fall off at an earlier age of 70 with median predicted survival of 91% for patients aged 60-

69, falling to 62% for patients aged 70-79. 
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Figure 76: Relationship Between Age and Predicted Survival in Breast Cancer at 1, 5 and 10 Years - Individual patient’s predicted probability of survival derived from breast cancer random 
survival forest model is plotted against their age band. Patients who were alive at that point are plotted as blue circles. Those that were deceased are plotted as red crosses. The line is a 
smooth loess curve fitted to the data.  
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Figure 77: Relationship Between Age and Predicted Survival in Colorectal Cancer at 1, 5 and 10 Years - Individual patient’s predicted probability of survival derived from colorectal cancer 
random survival forest model is plotted against their age band. Patients who were alive at that point are plotted as blue circles. Those that were deceased are plotted as red crosses. The line is 
a smooth loess curve fitted to the data. 
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Figure 78: Relationship Between Age and Predicted Survival in Lung Cancer at 1, 5 and 10 Years - Individual patient’s predicted probability of survival derived from lung cancer random 
survival forest model is plotted against their age band. Patients who were alive at that point are plotted as blue circles. Those that were deceased are plotted as red crosses. The line is a 
smooth loess curve fitted to the data. 
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Figure 79: Relationship between Age and Predicted Survival in Prostate Cancer at 1, 5 and 10 Years - Individual patient’s predicted probability of survival derived from prostate cancer 
random survival forest model is plotted against their age band. Patients who were alive at that point are plotted as blue circles. Those that were deceased are plotted as red crosses. The line is 
a smooth loess curve fitted to the data.
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Stage 

A similar pattern of results is seen across all the cancers. With increasing stage there is a 

corresponding fall in predicted survival. Of note however, the survival difference is not consistent in 

magnitude with increasing stage and is not consistent over time. In the case of breast cancer at one 

year although there is a decrease in predicted survival of stage 2 patients, relative to stage one, and 

stage 3 ,relative to stage 2, these differences are relatively small with median predicted survival for 

stage 3 showing a 2% absolute reduction compared to grade 1. Stage 4 however, even at 1 year, 

shows a large fall off in median predicted survival with a 31% absolute reduction in probability. It is 

however important to note that there is higher variance in the stage 4 results than stage 1-3 at one 

year. As time from diagnosis increases so too do the differences between stages. At 5 years the 

median predicted survival for Stage 2 is 13% lower than grade 1 and stage 3 is 22% lower than stage 

2. Stage 4 shows an even larger fall with median predicted survival being just 21%. At ten years post 

diagnosis, median predicted survival for stage 1 is estimated to be 88%, 71% for stage 2, 46% for 

stage 3  and just 13% for stage 4. With increasing time from diagnosis the variance for each of the 

stages also increases. 

In the prostate cancer cohort the survival differences seen by stage is modest even in the highest 

stages of patients, with stage 4 disease showing an absolute reduction in median predicted survival 

of just 7%. The differences seen increase over time, but in stages 1-3 the differences seen are still 

modest such that at 5 years post diagnosis median predicted survival for stage 2 and 3 is 1% lower 

than stage 1. Stage 4 however shows a large absolute decrease in median predicted survival, falling 

by 40% to 54%. Even at 10 years post diagnosis stage 1 and stage 2 show similar outcomes with a 

median predicted survival of 92% and 91% respectively. Stage 3 however shows a larger fall off in 

median predicted survival dropping to 78%. Stage 4 is however markedly worse with a median 

predicted survival of 42%. As with the breast cancer results with increasing time from diagnosis the 

variance of predicted survival increases across all stages. Stage 4 however shows higher variance at 

year 1 and year 5 however has lower variance than the other stages at 10 years.  

Within the colorectal cancer cohort the effect of stage is more pronounced at year 1 compared to 

breast and prostate cancer. Median predicted survival for stage 2 and 3 is 5% lower than that of 

stage 1. Stage 4 is markedly lower at 56% representing a further absolute reduction of 34%. At 5 

years post diagnosis clear differences are seen between all stages with median predicted survival 

being 81% for stage 1, 62% for stage 2, 52% for stage 3 and 10% for stage 4. By ten years the 

outcome differences continue with median predicted survival results of 66% for stage 1, 48% for 

stage 2, 40% for stage 3 and 6% for stage 4. The spreads of predicted survival in stages 1-3 increases 

with time from diagnosis. Of note, stage 4 results show the converse with decreasing variance in 

predicted survival with increasing time from diagnosis. 

Lung cancer patients show the largest predicted survival differences by stage at 1 year. Stage 1 

patients have a median predicted survival of 85%, 75% for stage 2, 53% for stage 3 and 18% for stage 

4. The differences between stages narrows over time due to reduced survival in the earlier stages of 

disease such that at 10 year post diagnosis median predicted survival for stage 1 is 19%, 20% for 

stage 2, 18% for stage 3 and 3% for stage 4.
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Figure 80: Partial Plots for Cancer Stage at Presentation – Each individual plot represents the predicted survival derived from a random survival forest model for each patient at 1, 5 and 10 
years with increasing stage at presentation along the horizontal axis. A box and whisker plot is the overlaid to demonstrate the distribution of predictions. Results are shown for the four cancer 
site specific models.

a) Breast b) Colorectal 

d) Prostate c) Lung 
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Grade: 

The partial dependence plots demonstrate that there is a corresponding decrease in predicted 

survival with increasing grade. This increase is shown to be inconsistent between grades, times and 

cancers. Within the breast cancer cohort, the association between grade and survival is minimal at 1 

year but increases over time. At 1 year the median predicted survival for low grade tumours is 100% 

compared to 99% for high grade tumours. At five years, the disparity grows such that low grade 

tumours have a median predicted survival of 96% versus 89% for intermediate grade and 78% for 

high grade tumours. By 10 years, low grade has a median predicted survival of 91%, versus 76% for 

intermediate grade and 67% for high grade. Across all grades the variance of the survival predictions 

increases with increasing time since diagnosis.  

The colorectal cancer cohort shows falling survival probability with increasing grade although the 

results are more marked at 1 year than in breast cancer. At one year post diagnosis low grade 

patients’ have a median predicted survival of 92% compared to 90% for intermediate grade tumours 

and 73% for high grade tumours. By 5 years this falls to 61% for low grade, 56% for intermediate 

grade and 35% for high grade. At 10 years this falls further to 44% for low grade, 39% for 

intermediate grade and 35% for high grade. These results demonstrate that at 1 and 5 years the 

effect of predicted survival of high grade is far larger than that of intermediate grade. This difference 

does however shrink over time demonstrating that the impact is inconsistent with regards to time 

and increasing grade.  

Within the lung cancer cohort the pattern is similar to that seen with increasing stage, in that the 

differences are most apparent earlier in the follow up period and become less marked as time goes 

on in terms of absolute survival. At 1 year median predicted survival is 78% in low grade tumours, 

64% in intermediate grade and 46% in high grade. By 10 years this falls to 19% for low grade, 11% for 

intermediate grade and 6% for high grade. Despite the fall off in absolute difference in survival, the 

relative difference has in fact increased from 41.1% to 68.4% when comparing low to high grade at 1 

and 10 years. 

The comparisons for grade in prostate cancer are slightly different due to the use of the Gleason 

grading system. This results in grades from 6-10, as opposed to the low, intermediate and high 

grades for the other cancers sites presented above. With increasing grade there is evidence of a 

reduction is predicted survival on average. This difference increases over time with meaningful 

differences being demonstrated in both relative and absolute terms. At 1 year Gleason 6 patients 

have a median predicted survival of 100% versus 96% for Gleason 9 and 83% for Gleason 10. By 10 

years survival predications fall to 97% for grade 6, 47% for grade 9 and 29% for 10.
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Figure 81: Partial Plots for Cancer Grade at Presentation – Each individual plot represents the predicted survival derived from a random survival forest model for each patient at 1, 5 and 10 
years with increasing grade at presentation along the horizontal axis. A box and whisker plot is the overlaid to demonstrate the distribution of predictions. Results are shown for the four 
cancer site specific models.

a) Breast b) Colorectal 

d) Prostate c) Lung 
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7.2.6 - Survival Curves 

The models generated for each site were used to derive survival curves for each of the key 

comorbidities of interest. CCF was associated with worse outcomes across all four cancer sites 

although the degree of effect is different for each (Figure 82). The largest survival difference is seen 

in breast cancer where the effect grows over time until the end of the analysis window. In lung 

cancer the effect of CCF increases with the greatest impact occurring in the first year before the 

impact gradually decreases until approximately 7 years after diagnosis where the effects plateau. In 

prostate cancer the pattern is less smooth and thus more difficult to interpret. Overall, CCF patients 

do worse, although the effects appear most marked from 26 months onwards. In colorectal cancer 

the association with adverse outcomes is greatest in the first 6 months before slowing gradually and 

reaching a plateau at 8 years post diagnosis. 

The MI stratified curves show a similar patterns with breast cancer continuing to show increased 

mortality associated with MI patients throughout the analysis period (Figure 83). Lung cancer 

showing the greatest association with increased adverse outcomes in the first 6 months before 

slowing to a plateau between 8 and 9 years. Prostate cancer appears to show on ongoing association 

with adverse outcomes in the patients with previous MI throughout the analysis period however as 

with the CCF results, the lack of a smooth curve makes interpretation less precise. Colorectal cancer 

demonstrates that again MI is associated with a lower probability of survival with the net deaths 

associated with MI being at the highest rate for the first 6 months before levelling out and a falling 

rate of death plateauing at around 100 months post diagnosis. 

The results for COPD are less consistent with breast, prostate and colorectal cancers all showing an 

association between COPD and adverse outcomes (Figure 84). In the case of lung cancer, the results 

echo those shown in chapters 4 and 5 with COPD being associated with improved survival. The 

improvements in predicted survival do however only appear to be apparent from 6 months to 9 

years post cancer diagnosis. Before and after this time window the survival trajectory of patients 

both with and without COPD appear similar.  

The predicted outcomes for stroke patients are worse in breast, lung and colorectal cancer (Figure 

85). The effect size appears to be more modest in the case of lung cancer compared to breast and 

colorectal cancer. The pattern of results in prostate cancer is again difficult to interpret given the 

jagged nature of the curve, however would appear to suggest no clear difference in the prostate 

cancer patients with previous stroke.  

Diabetes is shown to be associated with worse survival predictions in all four cancer sites (Figure 86). 

Breas cancer shows the largest survival disadvantage followed by colorectal cancer and prostate 

cancer. Lung cancer predicted outcomes are least associated with DM. 
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Figure 82: RSF Derived Stratified Survival Curves for Patients with Prior CCF – Stratified survival curves generated from each of the site specific random survival forest models. 

Breast 

Prostate 

Colorectal 

Lung 



205 
 

 

Figure 83: RSF Derived Stratified Survival Curves for Patients with Prior MI– Stratified survival curves generated from each of the site specific random survival forest models 
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Figure 84: RSF Derived Stratified Survival Curves for Patients with Prior COPD – Stratified survival curves generated from each of the site specific random survival forest models. 
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Figure 85: RSF Derived Stratified Survival Curves for Patients with Prior Stroke – Stratified survival curves generated from each of the site specific random survival forest models. 
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Figure 86: RSF Derived Stratified Survival Curves for Patients with Prior DM – Stratified survival curves generated from each of the site specific random survival forest models.
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Figure 87: RSF Derived Stratified Survival Curve Varicosities in Colorectal Cancer – Stratified survival curve for patients 
with and without varicosities derived from the Colorectal Cancer Site Specific Cohort RSF 

The stratified survival curves focussing on varicosities in colorectal cancer and obesity in lung cancer 

are shown in Figure 87 and Figure 88. In the case of varicosities although the general trend suggests 

that patients with varicose veins have an association with worse outcomes the lack of precision of 

these estimates results in the curves overlapping therefore not providing evidence of different 

outcomes in this group. Obese lung cancer patients are however shown to have marked and 

consistently better predicted outcomes than their non-obese comparator group. These results echo 

those derived from the Cox modelling undertaken in chapter 5. 

 

Figure 88: RSF Derived Stratified Survival Curve Obesity in Lung Cancer – Stratified survival curve for patients with and 
without obesity derived from the Colorectal Cancer Site Specific Cohort RSF 
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7.3 - Discussion 

7.3.1 - Optimisation: 

For results to be as informative as possible within a predictive framework of analysis the models 

developed need to have the greatest possible accuracy. As such hyperparameter tuning is a crucial 

step in developing all subsequent model output.189 If a model is not sufficiently accurate in 

determining the true outcome for a patient or group of patients, then the relationships between 

features and predictions cannot be relied upon. The methods that have been implemented relied 

upon the fast forest approximation method. Although computationally efficient, the results provided 

are an estimate of the accuracy not the true accuracy. This is however accepted practice within the 

field.  

If resources and time were unconstrained than a manual process of building full random forests with 

each hyperparameter combination would have been undertaken. These could then have been tested 

on the holdout dataset to identify the most accurate model. The implementation of the random 

survival forest algorithm is such that increasing numbers of variables have no effect on CPU runtime, 

increasing numbers of trees results in a linear increase in CPU runtime and increasing numbers of 

patients, results in an exponential increase in CPU run time. As the analyses are focussed on large 

cohorts the run time of the algorithm training is substantial taking around 20-30 minutes per model. 

To reach the same optimisation parameters identified using the fast forest approach would have 

taken approximately 20 days using full forest development. As a result, full optimisation using fully 

trained models was not possible due to computational and time limitations. This does however 

mean that in each case we have what we approximated to be the optimal hyperparameters, 

however there may be even better hyperparameter combinations that could be identified had full 

model training and testing been undertaken.  

The analysis of the OOB error rate demonstrates that in each of the models fewer than 100 trees 

resulted in a steady state of error being achieved. This is relevant as it suggests that each model is 

comprised of a forest that is large enough in size to have yielded results that would not improve 

through increasing the size of the ensemble. The size of 500 does however exceed the steady error 

threshold suggesting that in future analysis it may be appropriate to reduce the forest size to for 

example 100-200 to improve the efficiency of the model development process. 

7.3.2 - Predictive Accuracy 

The comparison of the accuracy of the three methods identifies that the random survival forest 

approach outperforms both the Cox and KM methods. The reasonable scores shown when being 

assessed on the holdout dataset suggest that the RSF models are likely to generalise to a population 

beyond that on which it is trained.54,380 It is however important to note that the results of chapter 3 

highlight that the PPM population may be different to the wider cancer populations. As such the 

model may require further training using more representative data in order to perform well on other 

populations that include a different population make up. Despite the RSF approach being superior in 

its predictions, it could be argued that the comparison to Cox was not entirely valid as no 

optimisation was undertaken for the Cox model. A number of methods could have been employed 

including forwards and backwards elimination, using the VIMP to guide feature selection or a brute 

force approach (assessing all possible combinations of variables). It is therefore possible that the 

correct combination of features when included within a Cox model might outperform the random 

survival forest approach and this could be an area for further research. 

The result showing enhanced performance of the RSF approach has been identified previously in 

other medical contexts.378,386,387 Despite its advantages, the RSF approach has not been widely 
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adopted within the medical research domain. This may be due to it being less well established, a lack 

of implementation in commercial software offerings, less familiarity or a lack of applicability in 

causal estimation. The results of our analysis would seem to lend weight to the increased use of this 

approach in future medical research focussing on prediction. Future work could however focus on 

the use of condition inference forests388 or deep neural network survival389 approaches to assess 

how these compared in this analysis setting. 

7.3.3 - Single Feature VIMP and Tree Depth 

The use of permutation VIMP presents a number of distinct advantages.188 As a measure of the 

model error introduced through the destruction of each feature’s information in turn, it acts as a 

concise measure of insight into the whole model. In permuting each feature it removes the effect of 

that feature and all of its interactions allowing, that feature’s global effects to be assessed (in 

random forests publications “interaction” is sometimes used to describe how the selection of one 

feature influences the subsequent use of other variables in split points,  the use of interaction above 

is in the traditional sense390).  Further the measure is derived directly from the model and does not 

require any further retraining to be calculated.  

Despite this there are some disadvantages. Firstly the VIMP is integrally linked to the overall 

performance of the model, thus may be less informative in a poorly performing model. The reliance 

on randomness can result in VIMP scores that are different if repeated several times. Finally 

correlated features may result in the artificial deflation of VIMP such that although the model is not 

affected by collinearity, the VIMP score may be.391 This is the case when two features encode the 

same information or some of the same information. Once one feature has been used for a given split 

the second variable adds no further information and this is deemed to not be predictive, although it 

is predictive in the absence of the other feature. Across the forest the two features may be used 

interchangeably and thus when permuted individually the forest may retain its performance.190,392  

A further issue is whether the VIMP should be derived from the training data or the testing data. 

Using the training data increases the number of patients represented and removes the need for 

repeated subsampling of a smaller population. If however the model has overfit the data, there is a 

risk that using the training data might suggest a variable is important when it isn’t.393 Using the 

testing data overcomes the latter issue but introduces the first two. Within our analysis we have 

used the training dataset as we have demonstrated that the model is providing reasonable 

performance on the holdout dataset suggesting that there is generalisability54 and thus the 

overfitting issues are a lesser concern. 

When assessing the results of the single variable permutation VIMP and average minimum tree 

depth, it is important to understand that these measures are fundamentally different to one 

another, and reflect subtly different information. Minimum tree depth identifies important variables 

in a different way to VIMP, within the model development, at each node, the most discriminatory 

value of one of the selected candidate variables, is used to divide the cohort. The choice of variable 

and cut off value is optimised to maximise the survival difference between the groups created by the 

division. Thus the earlier a variable is used the greater the discriminatory power it has.109  

To better conceptualise this it is possible to think of the game “20 questions”, where an individual 

thinks of an object, item or person and the players have 20 questions with which to identify the 

thing that has been picked. Asking if the choice is a plant provides greater discrimination than asking 

if it is a rose, as in the former question a significant proportion of possible answers are removed no 

matter the response, whereas with the latter, if the item is not a rose all other answers are still 

possible. If as in the case with random survival forests the algorithm is optimised towards 
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discriminating two groups then the earlier the variable is used the greater information it is providing.  

Despite this, there are still a number of potential pitfalls. If a feature is continuous versus, ordinal 

versus binary the number of potential values for splitting by that feature changes. As such there is a 

greater likelihood of a variable being discriminatory where more potential values to delineate groups 

are available.190 Age for example as a continuous variable as opposed to in 10 year age bands might 

be a better discriminator. Thus, when we interpret the results, it is unsurprising that in many cases 

comorbidities which are recorded as binary in our dataset, do not perform as well as other variables 

that are ordinal. Additionally where the number of cases of comorbidity are small the likelihood that 

the information about that variable is the most discriminatory is reduced. This is particularly true 

when there is variation in outcomes amongst the group with that condition. If the cohort had better 

representation of these conditions then the average minimum tree depth might also improve.  

Across the models for breast, lung, prostate and colorectal cancer there was broadly agreement 

between the VIMP and average tree depth as to which variables were important.  In each of the 

models one variable was shown to be contributing the most to predictive accuracy by a large margin, 

this being stage in prostate, colorectal and lung cancer, and age is breast cancer. Stage in breast 

cancer was shown to be the second highest VIMP score and age was in the top 5 for all models. The 

variables that would traditionally be used to determine outcomes based on clinical expertise which 

include, grade, stage, age and histological subtype were almost always in the highly predictive 

variable lists. Of interest, there are a number of occasions where variables were shown by VIMP to 

have low or no predictive importance that average minimum tree depth identified as providing 

significant information gain. These scenarios may represent occasions where VIMP is being impacted 

by collinearity.  

Two significant drawbacks are present when applying either of these methods. Firstly it fails to 

capture interactions between variables as it incorporates the direct and interaction effect into one 

estimate.  Secondly these scores do not provide any information as to the direction of effect that a 

given variable has. In order to address these two issues further analysis with pairwise VIMP and 

partial plots are demonstrated in the sections below. 

7.3.4 - Pairwise VIMP 

When analysing the pairwise VIMP there are a number of considerations. The most basic is the 

assessment of the ranking of the pairwise VIMP scores. This provides the most influential pairs of 

variables in determining the predictions. Further insight can however be gained by comparing the 

pairwise VIMP to the scores obtained from single variable VIMP permutation. These differences can 

be used to identify potential interactions or collinearity between these pairs of variables and can 

occur in a number of ways which are detailed below. 

1) Both variables are independently important, but their combined VIMP exceeds their 

additive VIMP. This suggests that one or both of the variables are being deflated when 

assessed singly due to some degree of information overlap. 

2) Both variables are independently important, but their combined VIMP is less than their 

additive VIMP. This suggests that there is an interaction between the two variables. As 

single VIMP removes all the direct effects and interaction effects the interaction effects are 

included in both single VIMP scores. As such the additive VIMP will exceed the pairwise 

VIMP.  

3) One variable is independently important but their combined VIMP exceeds the VIMP of 

independently important one. Here this suggests that the single variable deemed to have 
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low importance may share overlap of predictive power with the other feature tested. This 

could be due to collinearity or both being a surrogate marker for other information. 

4) None are independently important but their combined VIMP is deemed predictive. This 

could occur if both features encode the same information as one another about a patient 

either directly or indirectly. When testing only one at a time the predictive information is still 

available via the other feature in the analysis. If however they are both lost, then the shared 

encoding is also lost and thus they can be seen to be encoding important predictive 

information.  

 

Due to the previously discussed issues around the potential for variation in VIMP scores the ideal 

results would be based on multiple calculations of VIMP and then taking an average across these. 

Unfortunately due to the computational time required to generate the pairwise VIMP this was 

impractical. Instead we will use the 0.002 threshold suggested by the previous research as being a 

cut off for VIMP suggesting a strong predictor.109 

The results showing the top pairs of predictors includes results that are largely unsurprising (Table 

18). Age, stage, grade and histology were shown to be strong predictors when assessed 

independently and are shown to be meaningful in previously published research.394,395  

The results in Table 19 identify cases where the pairwise VIMP exceeds the additive VIMP. As 

individual VIMP scores include the direct effect and interactions one would expect that if no 

interaction was present the pairwise and additive VIMP would be broadly the same. If an interaction 

effect was present then one would expect the pairwise VIMP to be lower as the interaction effect 

would be double counted in the additive VIMP. The results seen in this table therefore represent 

those where collinearity may have artificially supressed the individual VIMP score of one or more of 

the two variables. These pairs are therefore the ones whose collinearity is resulting in less reliable 

individualised VIMP scores.  

Due to the low level of difference seen in the breast and colorectal cancer cohorts these results are 

unlikely to suggest the influence of collinearity. In the case of lung cancer however the top five all 

exceed the 0.002 threshold. All of these examples include stage and a comorbidity. This may suggest 

that in the context of lung cancer the stage data encodes information that an individual’s 

comorbidities capture. Thus some of the results where individual comorbidities when assessed are 

suggested to be non-predictive or minimally predictive of outcomes may in fact have predictive 

value, but that the VIMP is being suppressed by correlation to stage data. The prostate cancer data is 

similar to that of lung in that 4 of the 5 results highlighted meet the 0.002 threshold. The fact that 

these two cancers are affected, one being a short prognosis cancer and the other a long prognosis 

cancer, suggests that this effect is not related to median survival time. 

Table 20 shows results where the paired VIMP scores are lower than the additive VIMP. These 

suggest instances where there is an interaction between the two variables. In all cases these 

differences dramatically exceed 0.002 and the paired results exceed 0.002. This suggests that the 

variables are highly predictive together but have interactions that are in and of themselves 

predictive.  

As the above section demonstrates, pairwise VIMP although potentially useful, is both difficult to 

interpret and inefficient. Although it would be possible to look at triplet VIMP and quadruplet VIMP 

this creates an exponential number of combinations that require assessment. This would be both 

computationally and analytically inefficient. Further work is therefore needed to apply additional 
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methods of model interpretability which might provide greater insight with a summary of the 

contribution of a given variable taking into account all other variables. An example of this would be 

the use of local interpretability with Shapley Values and global interpretability with global surrogate 

models.396 Although still computationally complex these would provide an importance metric based 

on all possible combinations of other variables and thus be far simpler to interpret.  

As with single VIMP scores the pairwise VIMP does not provide information on the pattern of 

association found and thus below we discuss the partial plots which demonstrate the patterns seen 

within our dataset.  

7.3.5 - Partial Plots 

When assessing the patterns seen within the partial plot analysis it is important to consider exactly 

what results are being reviewing and how this affects the interpretation of them . These plots are 

generated by creating a prediction of the survival probability for each of our patients at predefined 

times. In this analysis predictions were generated for 1 year, 5 years and 10 years post cancer 

diagnosis. The plots then represent the trend of predictions once grouped by a given characteristic. 

As the aim is to identify what characteristics can be used as an identifier of different or worse 

outcomes, this approach is a practical way of identifying this information. The estimates for each 

patient take into account all of their baseline characteristics, which are used to inform the 

predictions generated. It is however crucial to make the distinction between accounting for these 

factors and adjusting for them. Unlike in traditional methods such as Cox proportional hazards this 

approach is not designed to create an estimate of the effect of the feature being assessed, whilst 

removing the effect of the other included variables. As such when a pattern of outcomes is seen 

based on a given feature, e.g. age, it is important to understand that the relationship could be 

directly due to age, due entirely to other features correlated with age or a mixture of the two. It is 

not possible to identify the causal contributions of any given parameter using this approach. As such, 

the approach is in effect, using a predictive model to make inferences about how patients with a 

given characteristic may differ in terms of survival, but without making any attribution as to the 

cause for the difference that is identified. 

Age 

The results across the four cancer sites when assessing the relationship with age show signs of non-

linear associations. This is consistent with the results presented in chapter 5 where Cox models were 

assessed for possible violations of the underlying linear assumptions. These partial plot analyses 

highlight the significant drawback of using a hazard ratio to describe the relationship between age 

and survival. These machine learning derived associations demonstrate that the relationship is far 

more complex and nuanced than traditional methods would suggest. This is particularly true in the 

case of breast cancer and may be true for colorectal cancer. These analyses suggest that younger 

patients may have worse outcomes than those who are middle aged. This is plausible if we look at 

the underlying physiology of cancer in young patients with these two oncological diagnoses. Patients 

with early cancer typically have inherited mutations which increase the likelihood of developing 

cancer. In breast and colorectal cancer this may include BRCA1 and BRCA2 mutations.397 In colorectal 

cancer this may include additional genetic syndromes including familial adenomatous polyposis398, 

attenuated familial adenomatous polyposis and Lynch syndrome.399 The route to development of 

tumours as a result of these familial genetic risk factors results in cancers that behave in a 

fundamentally different way, responds differently to treatment, have different chances of 

recurrence and are often associated with risks of other cancers outside of that primary site. As a 
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result the colorectal cancer and breast cancer of the younger patients is fundamentally different 

from those who develop cancer at an older age. Thus outcome differences are unsurprising.  

Previous research has highlighted the importance of age which has been shown to be associated 

with differential outcomes. In the context of breast cancer the non-linear effects have been 

demonstrated by placing patients into age bands of less than 40, 40-49 and 50+.395 This showed that 

the best survival was seen in the 40-49 year olds followed by the under 40s and the worst outcomes 

in the patients aged 50 plus. Research using European data has suggested the survival disparity 

between middle aged and older aged patients is growing across seven cancers.400 When looking just 

at patients offered curative surgery, which in effect focusses on the earlier diagnoses and fitter 

patients, age is associated with adverse outcomes.401 Although these previous studies have 

highlighted age as an issue, the methods employed have been limited in how they distinguish 

between ages and use a traditional inferential approach. The results presented above provide 

greater granularity, do not rely on linear assumptions178 between age cut offs or proportional 

hazards assumptions402 and are thus more likely to demonstrate more complex patterns with 

respect to age where they exist.  

Stage 

The results for the partial plots showing the relationship between stage and survival show the 

pattern that would be expected based on the previous literature, which is that with increasing stage 

there is a corresponding reduction in survival probability.403–405 This is unsurprising given how cancer 

stage is assigned and that the staging system is developed to provide outcome discrimination. With 

increasing stage there in increasing levels of local and distant spread, the more anatomically 

dispersed a cancer is the lower the likelihood of curative intervention being possible. As such, those 

patients with high stage disease are in most instances offered only palliative treatment. Although 

the use of radical intervention with surgery and radiotherapy with curative intent does not 

guarantee becoming disease free, the use of palliative treatment will almost never result in patients 

becoming disease free, thus physiologically accounting for disparities.  

These results further highlight that the differences between stages are inconsistent. These 

inconsistences occur both when comparing different cancers and when comparing the same cancer 

at one or multiple time points. This suggests a violation of both linear assumptions and proportional 

hazard assumptions. This would result in incorrect estimates of the relationship between stage and 

survival using the traditional Cox approach. It highlights that when using staging information to 

inform clinical and patient decision making, the conversation may shift depending on when the 

discussion is taking place. How stage at diagnosis influences outcomes after a period of survival will 

be different from at the time of diagnosis. This highlights a clear area that is in need for further 

research which is survival predictions that are dynamic rather than static and produce estimates 

based on having already survived after a cancer diagnosis for a given period of time.  

As demonstrated in chapter 4, the overall survival differs substantially between cancers. As such the 

wide variations seen when comparing across fixed time points is unsurprising. Further work could be 

undertaken to use time points for each cancer that represent a percentage of median survival. It 

could be possible that the effect of stage is more consistent if for example it was assessed not at 1, 5 

and 10 years but instead at 50%, 100% and 150% of median overall survival for that cancer.  

A further consideration when assessing this data is the high levels of missing staging data highlighted 

in chapter 3. This has resulted in many of the patients being excluded from these summary statistics 

as their stage was not known. If there are certain types of patients whose staging data is consistently 
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missed, this may result in biased results for those who have complete data. As such further work is 

needed to enhance the missing data and repeat the analysis to ensure that the results found are 

consistent when more complete data is available.  

Grade 

Tumour grade refers to the morphological characteristics of the cancer cell and how far they diverge 

from the original cell structure406. The increasing phenotypic changes seen with increasing grade 

reflect increasing numbers of genetic abnormalities within that cell. This may result in increasingly 

abnormal cell behaviour which is why high grade disease is often associated with an increased risk of 

metastatic spread, treatment resistance and more rapid progression22,394. Given these physiological 

differences it is unsurprising that the results of the above analysis show that on average with 

increasing grade there is an increase in risk of mortality. The effects are however different across the 

cancers studied and vary with respect to time from diagnosis. The use of flexible non-parametric 

modelling in the form of RSFs makes the identification of these complex relationship easier, 

especially given the absence of underlying model assumptions.  

The outcome effects associated with grade appear less marked than those seen with stage data. This 

is likely to be due to the fact that grade encodes information about the risk of metastatic disease 

and disease severity whereas stage directly reflects the actual disease severity and presence or 

absence of metastatic disease.  

Further Analysis and Work 

Although not directly covered within the results above, the models generated could be used to 

assess the relationship between other variables and outcome predictions. Further work is therefore 

needed to assess the relationship with IMD which has been shown to be an influential predictor. The 

VIMP results suggest that in many instances there are interactions between variables and overlap of 

encoded information. Stratified partial dependence plots could therefore be used to identify 

differences in the patterns of predicted outcomes within substrata. An example of this would be the 

effect of grade in patients with and without hypertension in prostate cancer which had the largest 

suggested interaction of the results found in Table 20. 

Previous research has called into question the validity of results obtained using both partial plots 

and VIMP in the context of correlated variables.190,391,392 These previous studies have highlighted 

issues such as incorrect VIMP estimation and identification of stronger associations between 

features using partial dependence plots than are truly present within the data. Within the PPM 

dataset some correlation has been identified and thus may be a factor in the results seen. Future 

work could therefore use alternative approaches for example those based on permutation and 

relearning.391 Here the value is permuted and the model retrained using this new permuted data. 

The resulting model accuracy can then be compared which combats the issues highlighted above. 

The significant trade-off is the vastly increased number of models that are needed to be trained and 

thus the amount of compute resource that these would require. Further these issues are far more 

important if trying to identify a biological mechanism driving a process.392 As the approach employed 

above is solely trying to identify at risk individuals the bias is inconsequential so long as the outcome 

prediction is accurate. As a result of these issues, this approach was not employed despite its 

theoretical advantages.  
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7.3.6 - Associations between Comorbidity and Predicted Survival 

When attempting to interpret the results for the stratified survival curves it is notable that the 

prostate cancer curves are jagged and therefore difficult to interpret. This is due to a limitation of 

the model building process. During the model building process it is possible to specify the parameter 

ntime as part of the hyperparameters. This is a count of the number of time points that survival 

differences are estimated during the model building process which is subsequently used to derive 

the stratified survival curves. Correspondence with the authors of the original random survival forest 

publication109 (see appendix) has highlighted that reducing the ntime time reduces the memory 

requirements for model training and improves the model training time without significantly 

impacting on accuracy. By default the “ntime” is set to the number of events within the dataset. 

During our model building it was set to 100, which was done due to the limited computational 

resources available. It was found that increasing “ntime” above 100 results in insufficient memory 

being available to train the models, thus resulting in failure to generate the models. This in effect 

means that the survival curves shown are generated from 100 equally spaced estimates completed 

between time zero and the last recorded death. In the case of prostate cancer where the last 

recorded death is a longer time after diagnosis that the other patients this results in fewer estimates 

within the 10 year analysis period and thus a more jagged and less precise line being output. Future 

work building upon this should ideally take advantage of improved compute to allow ntime to equal 

the number of events yielding more precise stratified survival curves. 

The results of the stratified survival curves largely mirror the results found in chapter 4 and chapter 

5 with comorbidity being associated with worse outcomes across the four most common cancers. A 

couple of notable exceptions to this are once again highlighted including COPD in lung cancer and 

obesity in lung cancer. The results assessing varicosities in colorectal cancer do not however agree 

with those derived from the Cox models in chapter 5 with no difference clearly demonstrated with 

the RSF model approach. The large scale survival differences noted are important to contrast with 

the relatively low importance scores seen for most within the VIMP analysis. This suggests that 

comorbidities are likely to be closely related to several other key features such as age, grade and 

stage. Thus it may be true that these other features act as potential confounders, mediators or can 

be used to encode much of the same information as is provided by comorbidity status. This may in 

part be due to the binary nature of the comorbidity information that has been used as the basis of 

the analysis undertaken. As shown in the time of diagnosis analysis undertaken in chapter 3 using 

more granular information can provide additional insight. Future work should therefore look to 

move beyond a binary indicator of comorbidity and incorporate alternative information such as time 

from comorbidity diagnosis to cancer diagnosis. This would allow further analysis as to whether 

comorbidity diagnosed at different time points provides different information either due to its long 

standing nature or due to proximity to cancer suggesting a possible direct connection.407–410 

Additional measures of disease severity could be introduced such as those based on blood results. 

Previous research in the area of diabetes has demonstrated that HbA1c is important in assessing 

severity but can be assessed based on HbA1c variance in an individual which suggest labile blood 

sugar control and therefore poor control.411–413 Other measures such as this could improve predictive 

performance, as well as greater insight into the behaviour of comorbidity subgroups. The more 

granular the data the greater need for increased number of comorbid patients and thus larger 

samples might be needed to generate enough precision of estimates.  
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7.4 - Summary 

Our analysis demonstrates that when comparing traditional methods in the form of Cox and Kaplan 

Meier models to random survival forests, the machine learning approach has improved predictive 

accuracy. The models provide valuable information about which features are most informative or 

influential in generating those predictions. The features can therefore be used to identify individuals 

who may have either higher or lower risk of adverse outcome and could be the target of further 

study and research. The use of partial dependence plots provides insight into the complex 

relationships that individual features have in relation to outcomes. The complex nature of these 

relationships are such that a standard Cox model is unable to provide accurate estimations of the 

true pattern without multiple complex adjustments.  

Despite these benefits the model development process required more steps, was more time 

consuming and required much more computational resources to be delivered. The large impact of 

increasing case numbers on model development time provides a potential barrier to the use of this 

method when using national datasets unless significant compute resources are available. More work 

is needed to explore how these models can be used for individualised predictions with 

accompanying explanations and to assess this approach prospectively. Overall however this 

modelling approach has yielded results that would be challenging to capture using traditional 

approaches and should be considered for use more widely within other time to event analyses in 

healthcare. 

The results with respect to the use of comorbidity as predictors of outcome is somewhat mixed. 

Patients with comorbidity on average are shown to have similar outcome differences to those 

highlighted in chapters 4-6. Despite this, in many instances comorbidities provide little additional 

predictive benefit when used in combination with other features such as grade, age and stage. This 

suggests that although comorbid patients have worse outcomes there are more efficient predictors 

of outcome that can be used instead.  

The final chapter that follows attempts to bring together the findings of all the analyses undertaken 

across chapters 3-7. It will address our original research questions and provide further details on 

what the results mean for both existing research and future research in this area.  
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Chapter 8 – Conclusions and Further Work 
 

8.0 - Introduction 

Through the investigation of the seven key aims of the research presented within this thesis a 

number of key questions are brought to the fore. Is hospital data accurate reliable and 

representative? What is the impact of comorbidity on cancer outcomes? What information can be 

used to predict cancer outcomes for patients? Does machine learning provide better survival 

predication for cancer patients? Although these may appear superficially to be basic and simple 

questions, the results presented prove that the attempts to answer them are anything but simple 

and are hugely dependent on the situation and interwoven with a need for nuance and caveats. 

Each of these key questions and the aims to which they refer will be discussed below within the 

context of the results presented. This concluding chapter will build on the individual chapter 

discussions and summarise the overall results within the context of potential future work whilst also 

giving focus to the limitations of the analyses undertaken. 

8.1 - Accuracy, Reliability and Representativeness of Hospital Data 

If we first take the issue of hospital data accuracy, then it is clear from the results that there are a 

number of flaws. In some cases the information is missing in large volumes, diabetes data has been 

shown to be inaccurate in a large percentage of the population and the cohort found within the 

hospital record was not representative of the wider region and UK. It could be argued that basing 

findings on missing, inaccurate and unrepresentative data is of little use.  

The reality is that the relative utility is not black and white, and is very much dependant on the way 

in which one hopes to use the information. It would be inappropriate to extrapolate the findings of 

these analyses from one population, to another which is known to be fundamentally different. An 

example of this is knowing that hospital clinical coding appears to capture the diabetic patients with 

worse outcomes, results based on clinical coding alone should only be used when looking at other 

patients with hospital clinical coding for diabetes. This provides insight for this more limited group 

and although not as useful as it would be if the information was relevant to all diabetic patients, it 

still represents a step forwards, over and above having no information at all.  

The results of the research presented cover large numbers of cancer sites and comorbidities, many 

of which have never been studied in combination before. Even where studied previously, these have 

been based on inconsistent approaches and definitions.240,414,415 Despite the underlying data 

limitations, the results provide valuable new information that was not previously known. It is 

important to ensure that as with the diabetes example the interpretation of results is appropriately 

constrained. It should be based on the identification of patients using the same method and in a 

population that is similar. For the information to be used in a less constrained manner further 

research would be needed to improve the quality of data or use a more representative population 

and further information on this can be found in section 8.5 below. 

The identification of limitations in hospital data also has potentially profound and far reaching 

effects on the interpretation of previous comorbidity research, not only in oncology, but other 

medical fields as well. The heavy reliance on clinical coding to identify comorbidity in hospital 

datasets is shown to be problematic. This approach results in substantial misclassification error and 

incorrectly assigns the timing of first diagnosis often by a period of several years in the context of 

diabetes mellitus. Although not directly studied, it is plausible to assume that similar issues may 

affect clinical coding in other conditions. Beyond the diagnostic information simply being incorrect, 
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the results of our analyses demonstrate that this has a clinically meaningful impact of the analysis 

results. 

In the majority of previous comorbidity research based on hospital clinical coding the results are 

presented as being representative for all patients with that diagnosis without drawing a distinction 

between the coded patient population and the true population with that condition.416–418 In the case 

of diabetes mellitus it is reasonable to say that all research using only clinical coding should be 

extrapolated beyond the study population in a highly constrained way to avoid incorrectly informing 

policy and clinical decision making that could disadvantage patients. It is likely that same is also true 

for other conditions and thus the output of previous research into comorbidity using clinical coding 

should be used with a much higher degree of caution and constraint. Further research is needed to 

assess this issue across other common conditions and quantify the extent of the problem both with 

the UK and internationally.  

The implications of this misclassification error218 also cross over into the use of comorbidity scoring 

systems. It is common practice to develop a risk score using coding data and then validate it using 

prospective coding data or a holdout dataset.38,39,41 If the score is then implemented in clinical 

practice such that clinicians are getting comorbidity information directly patients, then the 

information is not being used with the appropriate constraints that should be applied.  

Concerningly, the results of the data accuracy analysis identified that diabetes mellitus was 

associated with worse outcomes using any of the three data definitions, however the scale of effect 

differed substantially. This could result in a situation where if a score system based on diabetes 

mellitus clinical coding was implemented using broader data, such as self-reporting, and was 

subsequently assessed, it would still potentially appear to be useful, as it would correctly identify 

worse outcomes for diabetic patients. The issue however is that the scale of risk quoted to large 

numbers of patients would be incorrect and potentially negatively influence their management 

inappropriately. As a result, comorbidity scoring systems currently in regular use within the clinical 

setting need to be reviewed to identify any potential examples that may be subject to this pitfall 

across all areas of medical practice. Examples of scores being used in this way can be see frequently 

within the literature.419–421  

8.2 - The Impact of Comorbidity on Cancer Patient Survival 

When attempting to address the question of what is the impact of comorbidity on survival outcomes 

in cancer, our analyses have looked at this in three broad ways, descriptive, inferential and 

predictive. Across all the approaches implemented a common theme arises, the associations seen 

vary for the same comorbidity across cancers and for the same cancer with different comorbidities. 

The variation of associations seen is substantial, to the extent that in some instances comorbidities 

are associated with improved survival outcomes and in other cases worsened survival outcomes. 

The variation of effects identifies a further potential issue with previous research. Many comorbidity 

studies in oncology may focus on multimorbidity rather than individual comorbidities to conduct 

their analysis. This is commonly achieved through the use of a comorbidity score such as the 

Charlson score.38 The different outcomes identified with different comorbidities suggests that a 

composite comorbidity score is likely to be inappropriate, as the score will draw false equivalence of 

effect between different comorbidities. This may result in analysis outcomes which are an average 

effect estimate that will be influenced not only by the effect sizes for each condition, but also how 

well represented each condition is, relative to one another, within the population. The results of 
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these previous studies using this approach should therefore be viewed with caution and a degree of 

scepticism.  

This concept can be taken a step further, as the approach implemented within this thesis although 

assessing comorbidity individually, treats all individuals with that condition as the same. The clinical 

reality is that within the population of patients with a given condition there is wide variation in the 

severity of disease and degree of impact on each individuals’ activities of daily living. Within the 

population of patients with a given condition there is likely to be variation in its impact on outcomes 

and the use of more granular data might enable this to be better understood. Further discussion on 

this can be found in section 8.5. 

The interpretation of many of the results presented is somewhat challenging due to a range of 

potential sources of error and bias.163,218,275,296,371 In addition to the issues of comorbidity 

misclassification error discussed above, our results identified potential selection bias, violations of 

model assumptions, and through the application of causal methods, highlighted collider bias that 

could introduce further error into the estimates obtained. When combined with potential 

organisational forms of error such as lead time bias, different patterns of and timing of referrals, 

identifying what is a clinically relevant association is made more difficult. The use of observational 

data preventing the use of a statistical test precludes the application of a single simple test to 

identify which results are “significant”.59 Instead the analysis becomes reliant on confidence intervals 

to estimate likely direction of effect and precision of effect estimates. The lack of a commonly used 

universal threshold for each of these measures gives the impression of the results being far more 

arbitrary in the selection of a cut off. The reality is however that a 95% confidence threshold for a p 

value is just as arbitrary, however is more established.  

The interpretation of results is further complicated when using competing risk analyses as is the case 

in Chapter 6. To interpret the cancer cause-specific results they must be assessed in comparison to 

the all-cause results.179–181 This creates a scenario where the direction of effect and precision 

interpretation is applied to both, such that in many cases so many thresholds are applied that the 

number of “positive” results are small. This may be entirely appropriate, however may also be a 

reflection of dismissing meaningful results through the application of so many cut offs. When 

combined with known issues of cause of death reporting errors185,371, providing robust estimates on 

which one can draw meaningful conclusions is difficult. 

When taking into account the various sources of error and bias from the data and the methods 

applied it is reasonable to wonder whether there is actual value in the results obtained. It could be 

argued that as the sources of error cannot be removed or quantified, it is impossible to know if the 

results seen are inflated, deflated or even reversed. If one is trying to attribute the effects seen to a 

cause then this concern is entirely valid. If however one is simply interested in knowing if patients 

with a given condition do worse than those without, then there is still value to be obtained. It could 

therefore be argued that in this scenario the descriptive analysis undertaken in chapter 4 is more 

appropriate than the results seen in chapters 5 and 6, as the multivariable approaches, although not 

trying to assign causality, does attempt to attribute an effect to particular variables.  

The use of simple description is however of limited clinical benefit. Knowing that patients with a 

given condition have different outcomes is useful in prognostication, however does not provide any 

insight into how the delivery of care could be altered to improve outcomes or even if that is possible. 

In many cases the associated differences in outcomes may be totally or partially explained by other 

related variables hence the need for adjustment. This may also result in misleading information 

being used in clinical decision making. An example of this would be that if a given condition is 



222 
 

associated with older aged patients and it is their age that results in worsened survival, a young 

patient with that condition may be falsely thought of as having a worse prognosis even though this is 

not the case. This can be overcome to an extent with a multivariable approach which brings the 

argument full circle and back to the issues around methods and error highlighted above. 

An alternative is the predictive approach which allows the analysis to move beyond simple 

description and can be used to identify higher risk populations based on one or more factors. The 

results of the predictive analysis identified that although comorbidity did contain information in 

many cases that was useful for prediction, other patient level characteristics were in general much 

more useful in the identification of a patient’s likely outcome. This approach enables the 

investigation of complex non-linear patterns of association. The predictive approach is however not 

particularly useful in explanatory terms. If we identify that a given characteristic has a pattern of 

association with outcomes, the natural question that will follow is why? Predictive methods simply 

cannot answer this. To answer this sort of question a causal analysis in needed. As highlighted in 

chapter 5 the issues around collider bias and temporal ordering of conditions makes undertaking 

robust causal analysis both challenging and time consuming, and would be impractical to conduct 

across the cancers and comorbidities assessed within the analyses presented within this thesis.  

Thus the reality is that despite the limitations of descriptive, inferential and predictive analysis they 

are a necessary part of answering these why questions. They perform the important role of 

identifying clinically meaningful outcome differences that are worthy of further investigation. They 

can be used to identify the groups or targets of further study in which well thought out and 

meticulously designed causal analyses may be undertaken. If a well-designed causal study identifies 

a potential explanation, then this can be used to inform an interventional study which could be in 

the form of an RCT. As discussed in chapter 1 RCTs cannot assign comorbidity but RCD based 

observational studies, in the way described, can provide an evidence base to enable the study of 

improving outcomes related to comorbidity, through carefully identified interventions. In this 

situation it would therefore seem that the argument of what is “better” descriptive, inferential 

predictive or causal analysis, observational or randomised studies are not in fact helpful. Instead a 

greater focus is needed on how these different analyses can be used together in a complimentary 

manner to affect improvements in knowledge and patient care in the most robust, time efficient and 

cost efficient manner. 

8.3 – Information for Predicting Cancer Outcomes 

The analyses undertaken in chapter 7 provide information on the relative contribution of a number 

of baseline characteristics in predicting cancer outcomes. Although the relative value of each 

characteristic differs to some extent based on the interpretability measure used and the model 

assessed, it is clear the age, stage, grade, morphology and gender are in general the most significant 

contributors to predictions. This is in many ways reassuring as historically these have been the 

features consistently relied upon by clinical professionals to determine likely outcomes for cancer 

patients. Other characteristics such as the presence or absence of comorbidities was more variable 

in its contribution to predictions and although in many cases they had some predictive capability, it 

was modest. 

It is important to consider that the predictive contributions quantified in each case is within the 

context of having the information of the other characteristics to rely on. As such comorbidity if used 

alone may provide valuable information, however if this is true, then its value is diminished when 

other more useful information is available. This is extremely important when interpreting the clinical 

relevance of the results presented within chapters 4-7 which show that when looking at comorbid 
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populations, those with comorbidity commonly have different outcomes in cancer patients. When 

however faced with an individual patient with comorbidity, if the clinician is attempting provide a 

survival prediction, then if key baseline characteristics such as the patient’s age, gender, stage and 

grade have already been accounted for then the presence or absence of comorbidity is unlikely to 

further inform the survival prediction given. This is in some ways counterintuitive however highlights 

the need for further study into the causal relationships and effect overlaps between these 

characteristics. 

8.4 - Traditional Statistical Methods versus Machine learning Methods 

When looking at the results of the predictive analyses the more traditional methods of Cox and KM 

were show to have inferior predictive capabilities when compared to the random survival forest 

approach. The ability of random forests to identify non-linear patterns within the data also suggests 

potential interpretability advantages over the more traditional methods which are constrained by 

linear assumptions and proportional hazards assumptions. Despite this, it could be argued that the 

random forest approach is inferior in a number of other ways. Firstly the process of developing the 

optimised survival models was both time and computer resource intensive. This grows with 

increasing patient numbers such that for many institutions using this approach to analyse their data 

would be impractical. The interpretation of which variables are the most important predictors is also 

challenging due to known issues with the bias seen with VIMP scores and partial plots.391 Although 

this issue can be overcome with alternative interpretation methods, these alternatives make the 

development process require even more resource. 

To understand the true value of Cox in prediction further iterations of variable specification would 

be needed to include interaction terms and different combinations of these with other variables. It 

could in fact be the case the correct specification of a Cox model could outperform the RSF 

approach.  

In either case however it would appear to be that with increasing model accuracy there is an 

increasing cost in terms of resource both time and computational. The degree of accuracy needed is 

going to very much depend on how one intends on using the model. If the aim is to identify broad 

population level patterns to inform future study it might be acceptable to have a lower accuracy 

requirement than if the intention was to provide prospective survival predictions to individuals.  

8.5 – Study Limitations  

Within the preceding chapters and the above sections a number of potential pitfalls and limitations 

have been highlighted. The following section outlines some of these areas with greater detail and 

the subsequent section 8.6 focuses on the potential next steps in overcoming these issues and 

building upon the work presented within this thesis 

1) Unrepresentative Populations 

The results presented in chapter 3 clearly demonstrate a number of ways in which both the PPM 

population and more specifically the PPM cancer population differ from the wider population. These 

differences in the basic demographics of the cohorts and levels of the population with comorbidity 

may impact on the external validity of the results. Thus the reliance on a single UK centre is a 

limitation to the potential applicability of the results both nationally and internationally. Even if the 

results do generalise their being unrepresentative may result in poor external validity of results. 
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2) Accuracy of Clinical Coding 

Our result have demonstrated that within the PPM dataset clinical coding when used in isolation is 

not a reliable method for the identification of all patients with known diabetes mellitus. The issues 

with clinical coding may also extend beyond DM and affect other conditions. Data enhancement was 

only undertaken for DM data and obesity data but not the other comorbidities of interest. 

3) Missing Data 

The lack of complete data for grade and stage resulted in its exclusion from the analyses undertaken 

using traditional statistical techniques. They were however shown in chapter 7 to provide important 

predictive information. The lack of their inclusion due to missingness in chapter 4-6 may have 

resulted in inaccurate results if these factors are important within the context of inferential analyses. 

4) Reliance on Structured Data 

The analyses undertaken within this thesis rely solely on structured data. It is estimated that the 

majority (circa 80%) of clinical information is however recorded within the unstructured data of an 

EPR.64 The lack of access to this information may introduce misclassification error. 

5) Treating Comorbidity as Binary 

The method of describing comorbidity was to define the presence or absence of each condition at 

the point of cancer diagnosis. This is however a simplification of the complex reality of comorbidity, 

where disease severity and length of time with the condition may also be of importance. These 

aspects where not considered. 

6) Overall Survival as the Only End Point 

The analyses rely on overall survival or cause-specific survival as the only end point for analysis. This 

fails to consider disease progression, treatment free time and quality of life. These alternative end 

points are in many cases as, if not more important to many patients and have not been assessed.  

7) Limited Cox Optimisation 

When comparing the performance of Cox to RSFs efforts were made to optimise the RSFs however 

the same level of optimisation was not applied to the Cox approach. It could be argued that this may 

have resulted in a potential performance advantage of RSFs over Cox when comparing their relative 

accuracy. 

8.6 - Further Work 

1) Inclusion of More Data 

In order to overcome the highlighted issues of how representative the PPM population is, data could 

be gathered from other settings. This could include the addition of other cancer centres in the UK 

and internationally, but could also include the addition of linked primary care data. The use of 

national registry data such as national HES data could provide further data making the dataset more 

representaive.126Although this approach would be subject to additional legal and ethical 

considerations, adding data would serve to improve how representative the study population is and 

may also help to overcome some of the issues of missing and inaccurate data as well. For this to take 

place the study would need to be undertaken within an NHS data safe haven.67 As a result, this 

research may be best suited to the analysis being undertaken within central organisations such as 

NHS digital. 
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2) Improving the Accuracy of Clinical Coding 

As in the previous section the analysis could be completed on national HES data.126 This would 

require some form of data linkage to occur as routine blood results do not currently form part of any 

of the nationally collected datasets. This approach would provide a much more accurate 

understanding of how widespread the limitations of clinical coding for DM are and whether 

significant local variation is identified. A further similar investigation could also be undertaken using 

international data to identify whether similar issues occur when using administrative data from 

other geographical locations. 

DM is an easy target for analysis due to the easy to identify diagnostic test of HbA1c. Many other 

conditions are not as simple to identify from a single test, these include chronic kidney disease, 

chronic liver disease and autoimmune conditions. Involvement with domain experts could be utilised 

to create rule based approaches to blood based definitions being incorporated. This could allow 

assessment of whether other conditions require enhanced data definitions in the same way as DM 

within our analysis. The accuracy could be further improved by linking together primary and 

secondary care data. This has been shown, particularly during the COVID-19 crisis to yield additional 

insight that cannot be provided by secondary care data alone.422 

3) Accessing Unstructured Information 

Natural language processing methods could be applied to clinic letters to extract further 

information.423 This could be used not only for the purposes of comorbidity information but could 

also be used to identify missing information such as the stage and grade data that was missing in 

many of the diagnoses recorded within the PPM dataset.  

4) More Granular Comorbidity Data 

Further analysis could be undertaken to include comorbidity data in a more granular way. One 

example could be to represent comorbidity as a time before cancer diagnosis. This would allow the 

relationship between when the patients develops comorbidity to be assessed for its association with 

survival outcomes. Comorbidity severity could also be included in some way. In the case of diabetes, 

HbA1c blood results could be used in the form of summary statistics which might provide further 

information to help inform analyses 

5) Alternative End Points. 

Assessing the relationship between comorbidity and patient reported outcomes could further our 

understanding of the patient experience with and without comorbidity. This sort of quality of life 

study would be unlikely to be possible using retrospective data as patient reported outcomes data is 

not currently routinely collected for patients. This information could however be collected via survey 

data and subsequently analysed. 

The lack of the availability of this data routinely for patients does highlight a large gap in the 

available information for patients in the UK. With quality of life issues being of such huge 

importance, the absence of this information creates an information bias when clinicians and patients 

are making decisions. Either a stronger focus is placed on survival, where there is more extensive 

evidence and information, or there is a greater reliance of professional opinion and weak trial data 

when discussing quality of life. This is therefore an area that needs further research to address this 

current limitation on informed decision making.  
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Additionally, the relationships between recurrence, progression and toxicity could be studied as 

alternative end points, however as with quality of life, this information the data is not readily 

available and may benefit from approaches such as natural language processing as discussed above. 

6) Late Effects 

The analysis undertaken focussing on the relationship between cancer and the later development of 

serious health conditions was only analysed in a descriptive manner within this thesis. As detailed in 

chapter 2 little research has been undertaken to fully understand how cancer and its treatment 

impact on the long term health of patients living beyond their oncological diagnosis. This further 

analysis could be done in a number of ways. The impact of the later development of chronic health 

problems could be assessed to identify whether this is associated with altered survival outcomes in 

the same way that up front health conditions have been shown to. This would need to overcome the 

issue of immortal time bias through the use of time dependent variables.  

The use of additional control cohorts could also provide information as to whether cancer has a 

greater association with later health problems than the background population. Using a matched 

control cohort the prevalence of comorbidity in a fixed period after index date could be compared 

across the cancer and control groups. An alternative approach would be to analyse the development 

of comorbidity as a time-to-event analysis. This could identify not only differences in the cumulative 

incidence but also time variations such that if cancer and its treatment is associated with speeding 

up a pathological process, this could be identified even in the absence of changes in the prevalence. 

7) Further Comparison of Cox to RSFs 

Our results have demonstrated the superiority of random survival forests over Cox models 

constructed in several ways. Further investigation is needed to determine whether there are 

circumstances in which Cox models could outperform RSF. This could be done by comparing 

forwards elimination, backwards elimination, VIMP informed variable selection and all possible 

combinations of variables achieved by brute force. Additionally, the inclusion of interaction terms 

might alter the performance of a Cox model. It could be the case that Cox models could outperform 

RSFs however it would require the correct model specification to achieve.  

8) Enhancing RSF Analysis 

Although our analysis suggested that RSFs outperform Cox models a number of other pitfalls relating 

to variable selections and interpretability have been highlighted in the literature. Further analysis 

could therefore be undertaken using alternative approaches to model interpretability using for 

example permute and retrain or totally different metrics altogether. A comparison to conditional 

inference forests would also allow for assessment as to whether the ordinal nature of some of the 

data is influencing the accuracy of the prediction or the interpretation of the models.  

9) Using RSFs for Unsupervised Learning 

The random survival forest methods employed can be used to generate proximity and distance 

measures. The proximity measures are based on the proportion of the time that two patients are in 

the same terminal leaf within the forest. The distance measure is a measure of the percentage of the 

total possible maximum distance between two patients along the edges of the graph representing 

the tree. This data can be used as a distance matrix and subjected to unsupervised learning for 

clustering using either K-means or Hierarchical clustering.424 Clustering could be used to identify 

whether groups with different patterns of survival outcomes can be identified. The defining 

characteristics of these groups could then be used to identify combination clinical phenotypes that 
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may indicated different survival outcomes. This would in effect use the random survival forests as a 

dimensionality reduction method for multidimensional clustering to create an efficient approach to 

an otherwise computationally complex process. This could be particularly useful in identifying 

particularly high or low risk groups for further study but that incorporate information about as wide 

range of patients level characteristics simultaneously.  

10) Other forms of Machine learning 

Within the results presented only a single machine learning approach has been implemented. As 

discussed above there are a number of forest based methods that offer slight variations on the 

approach used which could be employed. There are however also a number of other approaches 

that could be undertaken using completely different approaches. Some examples of survival analysis 

optimised machine learning methods have been developed and described within the literature 

including support vector machines425 and deep neural networks389. Further analysis could be 

undertaken by implementing these alternative approaches to identify whether they can be used in 

this clinical context to improve the predictive performance of the models.  

11) Multimorbidity 

Although some of the methods suggested above would provide insight into multimorbidity a more 

focussed approach could also be undertaken, particularly in the area of prediction. If a score system 

was to be used then this could be done using the comorbidity data and optimising the score towards 

the specific survival task. Given the results we have presented this would likely need to be done on a 

cancer site by cancer site basis.  

12) Causal Inference Analysis 

One area of analysis that has been intentionally avoided is that of causal inference. From our 

conditions that have been shown to have an association with differential outcomes, formal causal 

analysis could be undertaken. Here precise expert informed DAGs could be developed to inform the 

analysis and design of a study. It is likely that the precise estimand would need to be well defined 

and might need to differ from the idea estimand, in order to produce a reliable estimate.  

13) Exploring Missing Data 

Further work could be undertaken to assess whether the data that is missing within the dataset was 

associated with other parameters such as comorbidity, age etc. This along with data visualisation 

could enable a better understanding of the missingness of the data and offer the potential of the use 

of imputation methods where further data cannot be added or obtained. 

14) Covid-19 

The data from this study is from 2018 and before, and as such Covid-19 is irrelevant to the analyses 

undertaken. Covid-19 has however resulted in substantial changes to how medicine is being 

practiced and is also impacting on outcomes from a range of diseases with cancer being just one 

example. The methods employed to assess comorbidity within this thesis could equally be applied to 

assess comorbidity in Covid-19 patients or treat Covid-19 as a comorbidity in cancer patients. 
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8.7 - Summary 

Despite the limitations stated and potential areas for further study, overall the analyses presented 

enable us to draw a number of conclusions. 

1. Clinical Coding alone does not robustly record diabetes mellitus within the PPM cancer 

population. 

2. The diabetes mellitus misclassification error occurring as a result of clinical coding affects the 

results of survival analysis in cancer patients. 

3. The PPM dataset is not representative of the wider cancer population. 

4. Patients with comorbidities commonly have different outcomes than those without 

comorbidity although this is not universally true.  

5. The effect associated with comorbidity is dependent on the cancer that the patient has.  

6. It is unclear as to whether the outcome differences seen are attributable to that 

comorbidity. 

7. The associated effects of comorbidity are not always negative. 

8. Binary indicators of individual comorbidity perform poorly as predictors of outcomes when 

compared to other patient level characteristics. 

9. Using composite scores that combine comorbidities risk providing inaccurate estimates of 

effects associated with comorbidity. 

10. Random survival forests may outperform Cox proportional hazards for cancer survival 

prediction. 

These conclusions add to the growing body of literature in the area of comorbidity research and 

should serve to inform and enhance studies of this nature in future, both in oncology and beyond.  
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Appendix 
 

Site Histology Group 

Bladder Adenocarcinoma, Leiomyosarcoma, Other, Papillary, Squamous Cell, Transitional Cell, Unspecified 

Brain Astrocytoma, Glioblastoma, Glioma, Medullobastoma, Oligodendroglioma, Other, Unspecified 

Breast Ductal, Lobular, Medullary, Mixed, Mucinous, Other, Papillary, Tubular, Unspecified 

Cervical Adenocarcinoma, Mixed, Other, Small Cell, Squamous, Unspecified 

Colorectal Adenocarcinoma, Mucinous Adenocarcinoma, Neuroendocrine, Other, Squamous Cell, Unspecified 

Connective Adenocarcinoma, Other, Sarcoma, Unspecified 

CUP Adenocarcinoma, Other, Squamous, Unspecified 

Endometrial Adenocarcinoma, Clear Cell, Mixed, Other, Papillary Serous, Unspecified 

Kidney Adenocarcinoma, Other, Transitional Cell, Unspecified 

Laryngeal Other. Squamous, Unspecified 

Leukaemia Acute Lymphoblastic Leukaemia, Acute Myeloid Leukaemia, Acute Promyelocytic Leukaemia,  

Chronic Lymphoblastic Leukaemia, Chronic Myeloid Leukaemia, Myelodysplastic Syndrome, Other, Unspecified 

Liver Adenocarcinoma, Cholangiocarcinoma, Hepatocellular Carcinoma, Mixed, Other, Unspecified 

Lung Adenocarcinoma, Large Cell, Mixed, Neuroendocrine, Other, Small Cell, Squamous, Unspecified, Unspecified Non-Small Cell 

Lymphoma Hodgkin Lymphoma, Mixed, Non-Hodgkin Lymphoma 

Melanoma Acral lentiginous, Lentigo Maligna, Nodular, Other, Superficial Spreading, Unspecified 

Myeloma Myeloma, Plasmacytoma 

Oesophageal Adenocarcinoma, Other, Squamous, Unspecified 
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Site Histology Group 

Ovarian Adenocarcinoma, Clear Cell, Endometroid, Mixed, MMMT, Mucinous, Other, Serous, Unspecified 

Pancreatic Adenocarcinoma, Cholangiocarcinoma Duct Cell, Neuroendocrine, Other, Unspecified 

Prostate Adenocarcinoma, Other, Unspecified 

Skin Basal Cell Carcinoma, Other, Squamous Cell Carcinoma, Unspecified 

Stomach Adenocarcinoma, Other, Unspecified 

Testicular Non-germinal, Non-Seminoma, Other, Seminoma, Unspecified 

Thyroid Follicular, Medullary, Other, Oxyphilic, Papillary, Unspecified 

 Table 21: Histological Groupings Applied in Each Cancer Site  
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Comorbidity Code Definitions 

Acute MI I21, I22, I23, I24.1 

Angina/CAD I20, I24.8, I24.9, I25, I70 

Ankylosing Spondylitis M45, M08.1 

Arrhythmia I44, I45, I47, I48, I49 

Asthma J45, J46 

Cardiomyopathy I42, I43 

CCF I50 

COPD J41, J42 , J43, J44, J47  

Dementia G30, G31, F03, F00, F01, F02, F03 

Demyelination G35, G37 

Diabetes Mellitus (Other) 
E12, E13, E14, O24.2, O24.3, G59.0, G63.2, H28.0, H36.8, 
I79.2, M14.2, N08.3 

Diabetes Mellitus (Type 1) E10, O24.0 

Diabetes Mellitus (Type 2) E11, O24.1 

Gout M10 

HIV B20, B21, B22, B23, B24, F02.4, R75, z21 

Hyperlipidaemia E78 

Hypertension I10, I11, I12, I13, I15 

IBD K50, K51 

Liver Dysfunction 
K70, K71, K72, K73, K74, K75.2, K75.4, K75.8, K75.9, K76.1, 
k76.3, K76.5, K76.6, K76.7, K77.8 

Malabsorption K91.2, K90 

MND G12.2 

Neuromuscular 
G10, G11, G12, G13, G23, G32, G70, G71, G72, G73, G93.1, 
G95.0 

Obesity E66 

Other Rheumatological Disease 
M09, M08, M30, M31, M32, M33, M34, M35, J99.0, J99.1, 
N16.4, N08.5, G05.8, G73.7, M07 

PAD I70.2, I73.9 

Pancreatitis K85, K86.0, K86.1 

Paraplegia G14, G80, G81, G82, G83 

Parkinsons G20, G21, G22 

Peptic Ulcer Disease K22.1, K25, K26, K27, K28 

Psoriatic Arthritis M07.0, L40.5, M09.0, M07.1, M07.2, M07.3 

Renal Dysfunction N01, N03, N05, N07, N08, N11, N14, N16, N18 

Respiratory (Other) J95.3, J96.1, J99.0, J99.1 

Restrictive Lung Disease J60, J61, J62, j63, J64, j65, J66, J67, J68.4, J70.1, j70.3, J84 

Rheumatoid Arthritis M05, M06 

Spinal Cord Injury T09.3, S34.1, S14.1, S24.1, S34.3 

Stroke G46, I60, I61, I63, I64, I69 

TIA G45 

Varicose Veins I83 

Venous Insufficiency I87.2 
Venous Thromboembolic 
Disease I26, I81, I82 

Table 22: Comorbidity Code Definitions - ICD-10 Code definitions used for string matching in clinical coding data 
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Package Version  Package Version  Package Version  Package Version   

abind 1.4-5  formatR 1.7  readr 1.4.0  TH.data 1.0-10 

D
a
ta

 W
ra

n
g

li
n

g
 

base 4.0.2  formattable 0.2.0.1  readxl 1.3.1  tibble 3.0.4 

bitops 1.0-6  glue 1.4.2  reshape 0.8.8  tidyr 1.1.2 

blob 1.2.1  haven 2.3.1  reshape2 1.4.4  tidyselect 1.1.0 

boot 1.3-25  hms 0.5.3  rio 0.5.16  tidyverse 1.3.0 

caTools 1.18.0  janitor 2.0.1  rlang 0.4.8  timereg 1.9.8 

cellranger 1.1.0  lubridate 1.7.9  rpart 4.1-15  units 0.6-7 

class 7.3-17  magrittr 1.5  rstatix 0.6.0  usethis 2.0.0 

data.table 1.13.2  Matrix 1.2-18  snakecase 0.11.0  xlsx 0.6.4.2 

dbplyr 2.0.0  mgsub 1.7.2  SparseM 1.78  xlsxjars 0.6.1 

desc 1.2.0  openxlsx 4.2.2  stats 4.0.2  XML 3.99-0.5 

dplyr 1.0.2  pillar 1.4.6  stats4 4.0.2  xml2 1.3.2 

DT 0.16  plyr 1.8.6  stringi 1.5.3  xopen 1.0.0 

forcats 0.5.0  pryr 0.1.4  stringr 1.4.0  yaml 2.2.1 

foreach 1.5.1 
 

purrr 0.3.4 
 

summarytools 0.9.8 
 

zoo 1.8-8 

fastmap 1.0.1  maps 3.3.0  raster 3.4-5  sp 1.4-4 

G
IS

 isoband 0.2.2  maptools 1.0-2  rgdal 1.5-18  spatial 7.3-12 

leaflet 2.0.3  OpenStreetMap 0.3.4  RgoogleMaps 1.4.5.3  
  

leaflet.providers 1.9.0  osmdata 0.1.4  sf 0.9-6  
  

broom 0.7.2  MatrixModels 0.4-1  randomForest 4.6-14  
  

M
o

d
e
ll
in

g
 

car 3.0-10 
 

minqa 1.2.4 
 

randomForestSR
C 

2.9.3 
 

  

cluster 2.1.0  modelr 0.1.8  ranger 0.12.1  
  

clValid 0.6-9  My.stepwise 0.1.0  riskRegression 0.02.05  
  

cmprsk 2.2-10  nlme 3.1-148  risksetROC 1.0.4  
  

conquer 1.0.2  nnet 7.3-14  rms 6.0-1  
  

e1071 1.7-4  pbkrtest 0.4-8.6  sm 2.2-5.6  
  

exactRankTests 0.8-31 
 

pec 
2019.11.0

3  
splines 4.0.2 

 
  

generics 0.0.2  polspline 1.1.19  SQUAREM 0.5  
  

KernSmooth 2.23-17  polynom 1.4-0  statmod 1.4.35  
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km.ci 0.5-2  prodlim 9.11.13  survival 3.1-12  
  

KMsurv 0.1-5  pscl 1.5.5  survivalROC 1.0.3  
  

lava 1.6.8  psych 2.0.9  survMisc 0.5.5  
  

lme4 1.1-25  qap 0.1-1  tmvnsim 1.0-2  
  

lmtest 0.9-38  quantreg 5.74     
  

crosstalk 1.1.0.1  shiny 1.5.0  shinyWidgets 0.5.4  
  

W
e
b

 T
o

o
ls

 

httpuv 1.5.4  shinyBS 0.61  webshot 0.5.2  
  

httr 1.4.2  shinycssloaders 1.0.0  
  

 
  

rvest 0.3.6  shinydashboard 0.7.1      
 

brew 1.0-6  ggsci 2.9  latticeExtra 0.6-29  
  

P
lo

tt
in

g
 a

n
d

 T
a
b

le
 G

e
n

e
ra

ti
o

n
 

cli 2.1.0  ggsignif 0.6.0  pander 0.6.3  
  

colorspace 1.4-1  gplots 3.1.1  plotly 4.9.2.1  
  

corrgram 1.13  graphics 4.0.2  plotrix 3.7-8  
  

corrplot 0.84  grid 4.0.2  png 0.1-7  
  

cowplot 1.1.0  gridBase 0.4-7  prettydoc 0.4.0  
  

dendextend 1.14.0  gridExtra 2.3  prettyunits 1.1.1  
  

dichromat 2.0-0  gtable 0.3.0  RColorBrewer 1.1-2  
  

ellipsis 0.3.1  gtools 3.8.2  rmarkdown 2.5  
  

gclus 1.3.2  hexbin 1.28.1  rpart.plot 3.0.9    

GGally 2.0.0  htmlTable 2.1.0  scales 1.1.1  
  

ggcorrplot 0.1.3  htmltools 0.5.0  sunburstR 2.1.5  
  

ggfortify 0.4.11  htmlwidgets 1.5.2  survminer 0.4.8  
  

ggmap 3.0.0  igraph 1.2.6  treemap 2.4-2  
  

ggplot2 3.3.2  jpeg 0.1-8.1  viridis 0.5.1  
  

ggpubr 0.4.0  kableExtra 1.3.1  viridisLite 0.3.0  
  

ggRandomForest
s 

2.0.1 
 

labeling 0.4.2 
 

xtable 1.8-4 
 

  

ggrepel 0.8.2  lattice 0.20-41     
  

askpass 1.1 
 

crayon 1.3.4 
 

highr 0.8 
 

multcom
p 

1.4-14 

O
th

e
r 

assertthat 0.2.1 
 

credentials 1.3.0 
 

Hmisc 4.4-1 
 

munsell 0.5.0 

audio 0.1-7 
 

curl 4.3 
 

ini 0.3.1 
 

mvtnorm 1.1-1 

backports 1.1.10  d3r 0.9.1  iterators 1.0.13  nloptr 1.2.2.2 
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base64enc 0.1-3  datasets 4.0.2  jsonlite 1.7.1  nortest 1.0-4 

beepr 1.3 
 

DBI 1.1.0 
 

knitr 1.3 
 

numDeri
v 

2016.8-
1.1 

BH 1.72.0-3 
 

devtools 2.3.2 
 

later 1.1.0.1 
 

openssl 1.4.3 

bit 4.0.4 
 

digest 0.6.27 
 

lazyeval 0.2.2 
 

pacman 0.5.1 

bit64 4.0.5  doParallel 1.0.16  lifecycle 0.2.0  parallel 4.0.2 

callr 3.5.1  evaluate 0.14  magick 2.5.2  pkgbuild 1.1.0 

carData 3.0-4 
 

fansi 0.4.1 
 

markdown 1.1 
 

pkgconfi
g 

2.0.3 

checkmate 2.0.0 
 

farver 2.0.3 
 

MASS 7.3-51.6 
 

pkgload 1.1.0 

classInt 0.4-3  foreign 0.8-80  matrixStats 0.57.0  praise 1.0.0 

clipr 0.7.1  Formula 1.2-4  maxstat 0.7-25  processx 3.4.4 

codetools 0.2-16  fs 1.5.0  memoise 1.1.0  progress 1.2.2 

commonmark 1.7  gert 1.0.2  methods 4.0.2  promises 1.1.1 

compiler 4.0.2  gh 1.2.0  mgcv 1.8-31  proto 1.0.0 

covr 3.5.1  gitcreds 0.1.1  mime 0.9  ps 1.4.0 

cpp11 0.2.3  grDevices 4.0.2  mnormt 2.0.2  Publish 0.10.27 

R6 2.4.1  roxygen2 7.1.1  whisker 0.4  
  

rappdirs 0.3.1  rprojroot 1.3-2  withr 2.3.0  
  

rapportools 1  rstudioapi 0.11  xfun 0.18  
  

rattle 5.4.0 
 

rversions 2.0.2 
 

zip 2.1.1 
 

  

rcmdcheck 1.3.3 
 

sandwich 3.0-0 
 

  
 

  

Rcpp 1.0.5 
 

selectr 0.4-2 
 

  
 

  

RcppArmadillo 
0.10.1.0.

0  
seriation 1.2-9 

 
  

 
  

RcppEigen 0.3.3.7.0 
 

sessioninfo 1.1.1 
 

  
 

  

RcppGSL 0.3.8 
 

sourcetools 0.1.7 
 

  
 

  

RcppZiggurat 0.1.6 
 

sys 3.4 
 

  
 

  

registry 0.5-1 
 

tcltk 4.0.2 
 

  
 

  

rematch 1.0.1  testthat 2.3.2  
  

 
  

remotes 2.2.0  tinytex 0.27  
  

 
  

reprex 0.3.0  tools 4.0.2  
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rex 1.2.0  translations 4.0.2  
  

 
  

Rfast 2.0.1  TSP 1.1-10  
  

 
  

rJava 0.9-13  utf8 1.1.4  
  

 
  

rjson 0.2.20  utils 4.0.2  
  

 
  

RODBC 1.3-17  vctrs 0.3.4    
 

  

Table 23: Complete List of R Packages and Versions Used Grouped by Package Utility
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Cancer Site Code Definition 

Brain C71 

Breast C50 

Cervical C53 

Colorectal C18, C19, C20 

Connective Tissue C49 

CUP C80 

Endometrial C54 

Laryngeal C32 

Leukaemia C91, C92, C93, C94, C95 

Liver C22 

Lung C34 

Lymphoma 
C81, C82, C83, C84, C85, 
C86 

Melanoma C43 

Myeloma C90 

Oesophageal C15 

Ovarian C56 

Pancreatic C25 

Prostate C61 

Renal C64 

Skin C44 

Stomach C16 

Testicular C62 

Thyroid C73 
Table 24: Cancer Site Specific Cohort ICD-10 Code Definitions 
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Cancer Cohort Model Specification 
 Bladder 

Survival ~ Comorbidity of Interest + Age + Gender + Deprivation 
Quintile 

Brain 

Breast 

Colorectal 

Connective 
Tissue 

CUP 

Laryngeal 

Leukaemia 

Liver 

Lung 

Lymphoma 

Melanoma 

Myeloma 

Oesophageal 

Pancreatic 

Renal 

Skin 

Thyroid 

Cervix 

Survival ~ Comorbidity of Interest + Age + Deprivation Quintile 

Endometrium 

Ovarian 

Prostate 

Testicular 

Table 25: Model Specification for Cox Models - Covariates specified in the model development process for the all-cause and 
cancer cause-specific models in chapters 5 and 6 

 

Cancer 
Cohort Model Specification 

Breast Survival ~ Age + Gender + Deprivation Quintile + Stage + Grade + Morphology + 
Diabetes + CCF + COPD + MI + Stroke + Type 1 Diabetes + Type 2 Diabetes + 

Other Diabetes + Obesity + Hypertension + Hyperlipidaemia + HIV + Rheumatoid 
Arthritis + Ankylosing Spondylitis + Psoriatic Arthritis + Gout + TIA + Dementia + 

MND + Neuromuscular Disease + Other Rheumatological Disease + PAD + 
Spinal Injury +Paraplegia + IBD + Demyelination + Parkinson's + Liver 

Dysfunction + Renal Dysfunction + Pancreatitis + Malabsorption + PUD + Venous 
Disease + Varicosities + Arrhythmias + Angina + Thromboembolic Disease 

Colorectal 

Lung 

Prostate 

Survival ~ Age + Deprivation Quintile + Stage + Grade + Morphology + Diabetes 
+ CCF + COPD + MI + Stroke + Type 1 Diabetes + Type 2 Diabetes + Other 
Diabetes + Obesity + Hypertension + Hyperlipidaemia + HIV + Rheumatoid 

Arthritis + Ankylosing Spondylitis + Psoriatic Arthritis + Gout + TIA + Dementia + 
MND + Neuromuscular Disease + Other Rheumatological Disease + PAD + 

Spinal Injury +Paraplegia + IBD + Demyelination + Parkinson's + Liver 
Dysfunction + Renal Dysfunction + Pancreatitis + Malabsorption + PUD + Venous 

Disease + Varicosities + Arrhythmias + Angina + Thromboembolic Disease 

Table 26: Random Survival Model Specification - Detailed model specification for each RSF model developed in each site 
specific cohort
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Figure 89: Correspondence with Dr Hemant Ishwaran - Evidence of stable error with reducing ntime hyperparameters when training RSF models 
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    Without Stage and Grade With Stage With Grade With Grade and Stage 

Bladder 

CCF 1.42 (1.20-1.69)   1.36 (1.12-1.66)   

COPD 1.37 (1.20-1.58)   1.29 (1.10-1.51)   

DM 1.03 (0.91-1.15)   0.99 (0.87-1.12)   

MI 1.02 (0.84-1.24)   1.06 (0.86-1.31)   

Stroke 1.42 (1.16-1.75)   1.29 (1.01-1.65)   

Breast 

CCF 2.97 (2.56-3.45)   3.15 (2.66-3.74)   

COPD 2.11 (1.81-2.47)   2.35 (1.98-2.79)   

DM 1.39 (1.25-1.55)   1.45 (1.29-1.62)   

MI 1.66 (1.35-2.06)   2.01 (1.59-2.53)   

Stroke 1.85 (1.51-2.26)   1.93 (1.54-2.41)   

Cervical 

CCF 2.20 (1.14-4.26) 1.21 (0.5-2.93) 1.97 (0.81-4.77) 1.05 (0.34-3.3) 

COPD 1.40 (0.77-2.54) 1.38 (0.69-2.78) 1.35 (0.64-2.84) 1.31 (0.62-2.77) 

DM 2.05 (1.39-3.04) 1.64 (1.09-2.46) 1.72 (1.10-2.70) 1.59 (1.27-1.92) 

MI 1.06 (0.44-2.57) 0.48 (0.178-1.27) 0.52 (0.13-2.10) 0.43 (0.11-1.73) 

Stroke 2.06 (0.97-4.34) 1.24 (0.51-3.02) 1.95 (0.87-4.40) 1.15 (0.42-3.13) 

Endometrial 

CCF 1.60 (1.08-2.35) 1.70 (1.03-2.79) 1.36 (0.87-2.11) 1.72 (0.97 - 2.63) 

COPD 1.37 (0.93-2.02) 1.38 (0.86-2.19) 1.29 (0.83-2.01) 1.36 (0.84-2.20) 

DM 1.35 (1.13-1.61) 1.45 (1.20-1.76) 1.50 (1.24-1.81) 1.57 (1.27-1.92) 

MI 1.03 (0.58-1.81) 1.00 (0.48-2.11) 1.13 (0.60-2.11) 1.03 (0.46-2.31) 

Stroke 2.24 (1.43-3.53) 2.05 (1.21-3.49) 2.30 (1.46-3.62) 1.94(1.14-3.30) 
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Melanoma 

CCF 1.97 (1.35-2.84) 2.44 (1.58-3.76)     

COPD 1.61 (1.03-2.54) 1.67 (1.02-2.74)     

DM 1.29 (1.03-1.63) 1.53 (1.18-1.99)     

MI 1.25 (0.82-1.90) 1.38 (0.87-2.21)     

Stroke 1.59 (0.98-2.56) 2.25 (1.32-3.83)     

Ovarian 

CCF 1.58 (1.03-2.44) 1.43 (0.85-2.38) 1.36 (0.75-2.47) 1.45 (0.80-2.64) 

COPD 0.91 (0.60-1.39) 1.66 (1.02 - 2.68) 1.07 (0.64-1.78) 1.57 (0.90-2.72) 

DM 0.84 (0.64-1.09) 0.98 (073-1.31) 0.90 (0.66-1.23) 1 (0.72-1.39) 

MI 1.07 (0.55-3.06) 1.57 (0.65-3.78) 1.29 (0.54-3.10) 1.57 (0.59-4.20) 

Stroke 1.47 (0.87-2.48) 1.23 (0.66-2.29) 0.97 (0.48-1.95) 1.11 (0.55-2.22) 

Testicular 

CCF 8.22 (1.14-59.13) 18.17 (2.47-133.47)     

COPD 2.24 (0.3-16.32) 4.36 (0.58-32.70)     

DM 2.15(0.68-6.81) 7.01 (2.16-22.72)     

MI 0.00 (0-inf) 0.00 (0-inf)     

Stroke NA NA     

Table 27: Sensitivity Analysis of All-Cause Mortality Cox Models - Comorbidity hazard ratio point estimates and confidence intervals from Cox Models with and with the inclusion of stage and 
grade data on a complete case analysis for cancer sites with 30% or less missing data for each of these data items. Combinations of cancer and comorbidity where the models without stage 
and grade showed a low probability of unidirectional hazard are coloured grey. 

Table 27 presents the results of the sensitivity analysis completed using the all-cause mortality cox models. Each cancer cohort where less than 30% of 

stage and grade data was missing was analysed with and without the inclusion of stage and grade data. Where one of these data items had more than 30% 

missing this was not analysed and is represented as a greyed out section within the table. This sensitivity analysis highlights that in all examples where the 

results without stage and grade show a high probability of unidirectional hazard the results with adjustment for stage and grade data either singly or 

together maintains the same direction of effect for the point estimate. In most instances the degree of change within the point estimate is modest however 

several examples a more clinically meaningful change is seen. One such example is CCF in cervical cancer which changes from 2.20 (1.14-4.26) to 1.05 (0.34-

3.3) after adjustment for stage and grade. It is however worth noting that in this case the original point estimate is within the new confidence interval for 
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the models with full adjustment.  As would be expected due to an increased number of covariates and smaller numbers of cases due to the exclusion of 

incomplete cases the confidence intervals for the models adjusting for stage and grade have wider confidence intervals. This effect is amplified by the 

cohort size with more uncertainty occurring in those with smaller populations such as testicular cancer. This also explains to some extent the larger shifts in 

point estimates seen in these populations. The results of this sensitivity analysis suggest that the results obtained within chapter 5 are likely to be robust in 

terms of direction of effect, however may vary somewhat in terms of scale of effect when grade and stage data is included. There does however remain the 

debate as to whether this form of adjustment should be conducted as previous studies have demonstrated how inclusion of stage and grade adjustment 

biases results.363 

    Without Stage and 

Grade 

With Stage With Grade With Grade and Stage 

Bladder 

CCF 0.89 (0.66-1.22)   0.66 (0.45-0.95)   

COPD 0.91 (0.72-1.14)   0.76 (0.58-1)   

DM 0.73 (0.61-0.88)   0.63 (0.51-0.78)   

MI 0.80 (0.59-1.07)   0.87 (0.64-1.18)   

Stroke 1.11 (0.80-1.55)   0.79 (0.52-1.20)   

Breast 

CCF 2.12 (1.59-2.82)   1.79 (1.27-2.53)   

COPD 1.16 (0.85-1.60)   1.15 (0.81-1.64)   

DM 0.86 (0.71-1.04   0.86 (0.70-1.06)   

MI 1.29 (0.88-1.89)   1.21 (0.78-1.89)   

Stroke 1.45 (1.03-2.04)   1.47 (1.02-2.14)   

Cervical 

CCF 1.65 (0.53-5.13) 0.89 (0.36-2.07) 0.51 (0.43-1.94) 0.44(0.06-3.14) 

COPD 0.96 (0.40-2.31) 1.52 (0.48-2.78) 0.98 (0.36-2.61) 0.98 (0.35-2.63) 

DM 2.21 (1.35-3.63) 1.41 (0.85-2.33) 1.53 (0.86-2.73) 1.43 (0.79-2.58) 

MI 1.13 (0.42-3.03) 0.45 (0.14-1.41) 0.34 (0.05-2.43) 0.28 (0.04-2.01) 

Stroke 1.60 (0.59-4.29) 1.19 (0.44-3.21) 1.27 (0.40-3.97) 1.04  (0.33-3.29) 
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Endometrial 

CCF 1.21 (0.67-2.20) 0.86 (0.72-3.65) 0.92 (0.44-1.94) 0.74 (0.06-3.15) 

COPD 0.93 (0.50-1.73) 0.67 (0.28-1.62) 0.73 (0.33-1.63) 0.58 (0.22-1.55) 

DM 0.98 (0.75-1.29) 1.00 (0.74-1.35) 1.07 (0.79-1.44) 1.06 (0.76-1.47) 

MI 1.17 (0.52-2.62) 0.70 (0.18-2.82) 1.36 (0.57-3.29) 0.93 (0.23-3.73) 

Stroke 2.15 (1.22-3.80) 1.80 (0.85-3.79) 2.40 (1.36-4.25) 1.61 (0.76-3.41) 

Melanoma 

CCF 0.88 (0.42-1.86) 1.63 (0.72-3.65)     

COPD 1.09 (0.52-2.30) 1.46 (0.65-3.28)     

DM 0.79 (0.52-1.19) 0.86 (0.51-1.44)     

MI 0.53 (0.22-1.27) 0.69 (0.30-1.86)     

Stroke 1.68 (0.87-3.23) 2.58 (1.22-5.46)     

Ovarian 

CCF 1.45 (0.89-2.39) 1.41 (0.78-2.56) 1.18 (0.56-2.49) 1.25 (0.59-2.65) 

COPD 1.01 (0.63-1.63) 2.02 (1.19-3.44) 1.26 (0.71-2.22) 2.05 (1.13-3.74) 

DM 0.69 (0.49-0.96) 0.76 (0.52-1.12) 0.69 (0.46-1.04) 0.77 (0.50-1.19) 

MI 1.03 (0.49-2.17) 1.28 (0.41-3.98) 0.97 (0.31-3.02) 1.06 (0.27-4.27) 

Stroke 1.19 (0.62-2.29) 0.93 (0.42-2.07) 0.77 (0.32-1.87) 0.91 (0.38-2.18) 

Testicular 

CCF 0 (0-inf) 0 (0-inf)     

COPD 0 (0-inf) 0 (0-inf)     

DM 1.41 (0.19-10.29) 15.01 (1.88-119.83)     

MI 0 (0-inf) 0 (0-inf)     

Stroke NA NA     

Table 28: Sensitivity Analysis of Cancer Cause-Specific Mortality Cox Models - Comorbidity hazard ratio point estimates and confidence intervals from cancer cause –specific Cox Models with 
and with the inclusion of stage and grade data on a complete case analysis for cancer sites with 30% or less missing data for each of these data items. Combinations of cancer and comorbidity 
where the models without stage and grade showed a low probability of unidirectional hazard are coloured grey.
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The results for the sensitivity analysis in the cancer cause specific models are presented in Table 28. 

These show similar results to those of the all-cause mortality models, with those modes showing a 

high probability of unidirectional hazard maintaining their direction of effect when adjusting for 

stage and grade. As the precision of estimates for the cause specific models is already reduced due 

to the removal of cases with no cause of death data and higher levels of censoring the further 

removal of cases with missing data for stage and grade makes these estimates even less precise. In 

many instances this results in the adjusted models showing a low probability of unidirectional hazard 

due to wide confidence intervals. This makes the interpretation of these more challenging. In order 

to gain a clearer understanding of the effects of these adjustments a larger dataset would be needed 

in order to improve the precision of results and could be a focus of future work.  
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