
Logical Methods for Property Testing

in the Bounded Degree Model

Noleen Köhler

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computing

April 2021

The candidate confirms that the work submitted is his/her own, except where work which

has formed part of a jointly authored publication has been included. The contribution of the

candidate and the other authors to this work has been explicitly indicated below. The candidate

confirms that appropriate credit has been given within the thesis where reference has been made

to the work of others.

Some parts of the work presented in Chapters 6, 7, 8 and 9 have been published in the following

articles:

– I. Adler, N. Köhler and P. Peng, On Testability of First-Order Properties in Bounded-

Degree Graphs, In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-

rithms (SODA). Society for Industrial and Applied Mathematics, 2021. S. 1578-1597

– I. Adler and N. Köhler, An explicit construction of graphs of bounded degree that are

far from being Hamiltonian, under review

– I. Adler, N. Köhler and P. Peng, GSF-Locality Is Not Sufficient For Proximity-

Oblivious Testing, In: Proceeding of the 36th Computational Complexity Conference

(CCC 2021). volume 200 of Leibniz International Proceedings in Informatics (LIPIcs),

pages 34:1– 34:27, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik

All three papers are primarily the work of the second author (N. Köhler). Most technical parts

of all three papers were written by the second author. The first author (I. Adler) and the

third author (P. Peng) contributed mostly but not exclusively towards the presentation and

motivation of the results. Some proof ideas and research directions were results of discussions

between all authors on the respective paper. The first author also had the role of primary

supervisor of the candidate.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis maybe published without proper acknowledgement.

©2015 The University of Leeds and Noleen Köhler

Acknowledgements

First and foremost, I would like to thank my supervisor Isolde Adler for her positivity, her

continued support and the many interesting discussion we had. Isolde’s enthusiasm has inspired

me to tackle hard problem with her. I would also like to thank my collaborator Pan Peng for

many fruitful discussions and for sharing his expertise in property testing. I am confident that

Pan’s influence on my research has been positive.

I would like to thank my examiners Anuj Dawar and Haiko Müller for their great effort in

reading my thesis, for the many helpful comments and for the nice discussion we had during

my viva.

I would like to express my gratitude to Jake, Judith, Polly and Sam for proof reading my

thesis.

The School of Computing, at Leeds, has provided me with an enjoyable and productive

research environment. I would like to thank the School of Computing for funding my PhD and

travel whilst studying. During my time at Leeds I have encountered some amazing people who

I have spent many enjoyable times with. I would especially like to thanks Bernard, my coffee

and brownie partner, who I spent many hours talking to. To Luke, Judith and Jake for being

my office mates with lots of interesting, and often random, distractions from work.

I would especially like to mention Polly, my fellow property testing PhD student in the

School of Computing, for many interesting discussions about research. Special thanks also goes

to Sam, who has been my moral support throughout my PhD, who has cheered me up whenever

I needed cheering up and listened to me whenever I became a flibbertigibbet.

I would like to thank “the pub group”, including Luke, Sam, Jake, Judith, Leroy, Bjarki,

Petar, Mark and Guilia for many hours spent in various public houses - discovering British

beers.

Last but not least, I would like to thank my family, especially by parents and my brothers.

My parents continued care and support has been appreciated and has enabled me to get to this

stage in my studies. My brothers endless concern for me has always inspired me to be a better

person.

Abstract

Property testers are randomised sublinear time algorithms which infer global structure from

a local view of an input. In the context of bounded degree graphs, testability of a property is

tightly linked to the question of whether an approximate distribution of r-neighbourhood types

of a graph is sufficient to capture whether the graph has the property or is “far” from having

the property. Our understanding of when this is the case is limited. The central open question

in the field of property testing is to characterise testable properties of bounded degree graphs.

Towards a characterisation of testable properties in the bounded degree model, we study

property testing of properties definable in first-order logic (FO) in the bounded degree model.

By Gaifman’s locality theorem it is known that FO can only express local properties. On the

other hand, testers can explore only local neighbourhoods and hence locality is necessary for

testability. We prove however, that the notion of locality imposed by being definable in FO is

not sufficient for property testing. More precisely, we show that there is a non-testable property

defined by an FO-sentence whose quantifier prefix contains only one quantifier alternation of the

form “∀∃”. We complement this by proving that every FO-sentence not containing a quantifier

alternation of the form “∀∃” can be tested with a constant number of queries. We further

identify some classes of FO-sentences which yield testable properties and contain quantifier

alternations of the form “∀∃”. These sentences express that the distribution of r-neighbourhood

types is of a particular, simple form.

We explore the connection between the notion of locality imposed by FO and the notion

of locality necessary for testability further. We establish links between FO definability and a

generalised notion of subgraph freeness. This notion was introduced in the context of character-

ising one-sided error proximity oblivious testers, a particularly simple type of testers. Using a

variation of our non-testable FO definable property we show that generalised subgraph freeness

does equally not capture the locality needed for testability, which answers an open question

regarding the characterisation of testable properties in the bounded degree model.

Going beyond FO definability, we explore hardness of property testing problems in connec-

tion with classical complexity theory. We obtain a deterministic construction of hard instances

for property testing Hamiltonicity, which is a known non-testable property. This construc-

tion is interesting from the perspective of exploring links between structural properties and

non-testability. We further utilise the lower bound technique developed in the context of our

non-testable FO definable property to prove non-testability of having treewidth logarithmic in

the number of vertices.

Contents

List of Figures v

List of Notation vii

1 Introduction 1

2 Preliminaries 7

2.1 Set notation . 7

2.2 Graphs . 7

2.2.1 Graph representation . 9

2.2.2 Directed graphs and multigraphs . 9

2.2.3 Expansion and hyperfiniteness . 10

2.3 Relational structures . 11

2.3.1 Bounded-degree structures and neighbourhood distributions 12

2.4 First-order logic . 15

2.4.1 Normal forms of first-order logic . 17

3 Background on property testing 21

3.1 The general setting . 21

3.2 The bounded degree model . 27

3.3 An example of a property tester: Testing subgraph freeness 29

3.4 Proximity oblivious testing . 30

3.5 Closure properties of testability . 31

3.6 Local reductions . 34

4 Related work 39

4.1 Algorithmic meta-theorems . 39

4.2 Property testing . 41

4.2.1 The dense model . 42

4.2.2 The bounded degree model . 43

4.2.3 Characterisation results in the bounded degree model 44

i

ii CONTENTS

4.2.4 Lower-bound techniques in the bounded degree model 46

4.2.5 The general model . 46

4.2.6 Testing properties defined by logical formulas 47

4.2.7 Connection to learning and streaming algorithms 48

5 Extending results to relational structures 51

5.1 Canonical tester . 51

5.1.1 Proving the existence of canonical testers in the property testing model

for bounded degree relational structures 52

5.2 Small structures approximating neighbourhood distributions 62

5.3 Summary . 64

6 Classifying testability of prefix classes 65

6.1 A class of expanders definable in FO . 67

6.1.1 Expansion and the zig-zag product . 67

6.1.2 Defining the formula ϕ z . 70

6.1.3 Proving expansion of the property defined by the formula ϕ z 73

6.2 On the non-testability of a Π2-property . 81

6.3 Extension to simple graphs . 85

6.4 On the testability of all Σ2-properties . 90

6.5 Summary . 96

7 Testing properties of neighbourhoods 99

7.1 Neighbourhood freeness and neighbourhood regularity 99

7.2 Prefix classes of neighbourhood properties . 100

7.3 Proving testability . 102

7.4 Summary . 109

8 Comparing locality notions 111

8.1 Generalised subgraph freeness . 112

8.2 Relating different notions of locality . 114

8.2.1 Relating FO properties to GSF-local properties 117

8.3 GSF-locality is not sufficient for POT’s . 121

8.3.1 Characterisation by neighbourhood profiles 121

8.3.2 A local reduction from relational structures to graphs 130

8.3.3 The graph property is GSF-local . 132

8.3.4 Putting everything together . 134

8.4 Summary . 134

CONTENTS iii

9 On testability of NP-hard problems 135

9.1 Lower bound for testing dominating set with two-sided error 137

9.1.1 Property testing model for bounded degree 3-SAT 137

9.1.2 Local reduction from 3-SAT to dominating set 138

9.2 Lower bound for testing Hamiltonicity with one-sided error 141

9.2.1 Construction . 143

9.2.2 The construction is far from being Hamiltonian 144

9.2.3 Ensuring local Hamiltonicity . 149

9.2.4 Deriving the lower bound . 152

9.3 Lower bound for testing treewidth . 152

9.4 Summary . 155

10 Conclusions 157

10.1 Future Work . 158

iv CONTENTS

List of Figures

3.1 Union, intersection and complement of properties. 33

3.2 Simulating a tester using a local reduction. 35

6.1 Zig-zag product of a 3-regular grid with a triangle. 69

6.2 Schematic representation of a model of ϕ z . 71

6.3 Illustration of the proof of Lemma 6.1.14. 78

6.4 Schematic representation of S crossing edges. 81

6.5 Illustration of P 6
3,2(u0, v3). 86

7.1 Example of a neighbourhood regular graph. 101

8.1 One types of bounded degree 2. 115

8.2 Marked graphs for Example 8.2.8. 120

8.3 Overview of all relevant classes of properties. 121

8.4 Different types of arrows in GA. 131

9.1 Illustration of the dominating set reduction. 139

9.2 Graphs which are far from being Hamiltonian but are not locally Hamiltonian. . 142

9.3 Illustration of P (v1, . . . , v31). 143

9.4 A link from P (u1, . . . , u31) to P (v1, . . . , v31) via w1, . . . , w6. 143

9.5 Close-up of GE . 145

9.6 Set of edge disjoint path as in Claim 1. 150

v

vi LIST OF FIGURES

List of Notation

N the set of natural numbers including 0

[n] the set {0, . . . , n− 1}
Sn symmetric group on [n]

t disjoint union

4 symmetric difference

P[A] probability of A

P[A | B] probability of A under condition B

E[X] expected value of random variable X

NP non-deterministic polynomial time

PSPACE polynomial space

O(·) asymtotic upper-bound

o(·) aymtotic tight upper-bound

Ω(·) asymtotic lower-bound

ω(·) asymtotic strict lower-bound

Θ(·) asymtotic strict upper- and lower-bound

z zig-zag product

Kn complete graph on n vertices

h(G) expansion ratio of G

〈S, T 〉G edges crossing S and T in G

σ signature

Cd class of graphs of bounded degree d

Cd class of σ-structures of bounded degree d

Pϕ property defined by formula ϕ

FO first-order logic

CNF conjunctive normal form

DNF disjunctive normal form

GNF Gaifman normal form

HNF Hanf normal form

vii

viii List of Notation

Σi, Πi, ∆i prefix classes with i− 1 quantifier alterations

|= is a model of

≡ equivalence of FO-formulas

≡d equivalence of FO-formulas on structures of bounded de-

gree d

¬, ∧, ∨, →, ↔ logical negation, conjunction, disjunction, implication

and biimplication

∃, ∀ existential and universal quantifier

POT proximity oblivious tester

GSF generalised subgraph freeness

ansA(q) answer to query q to structure A

Chapter 1

Introduction

Computational challenges arising in the context of big data are omnipresent in modern day

computer science. As technology advances, data sets get increasingly large. Due to the nature

of distributed systems we are faced with the challenge of big data sets for which classical

algorithmic approaches are impractical. In order to still do a qualitative analysis of the data,

we have to come up with new algorithmic approaches. In cases where the data set is so large

that storing the entire data set in working memory is infeasible, we can consider streaming

algorithms. These algorithms see a random stream of the data but can only store a certain

amount of it at any point in time (see e. g. [105, 108]). Now assume that the data set is so

large it would even be unfeasible to process it even once. In this case we can consider using

a sampling based algorithm which explores only a small (randomly picked) part of the object.

Property testing is a framework for studying sampling based algorithms that solve a relaxation

of a decision problem. Given a property P , a property testing algorithm (short: tester) for P is

given query access to an input object A (i. e. some large data set) and has to decide whether A
has property P or is far from having property P , where the notion of farness is model dependent.

Property testing was first proposed in 1996 by Rubinfeld and Sudan in the context of program

checking [117]. The idea of property testing was extended to graphs shortly after. In 1996

Goldreich, Goldwasser and Ron introduced the dense model [71]. Property testing on dense

graphs is well understood due to a characterisation of which properties are testable on dense

graphs by Alon, Fischer, Newman and Shapira [7] based on Szemerédi’s celebrated regularity

Lemma [121].

Shortly after the introduction of the dense model, Goldreich and Ron introduced the

bounded degree model [73]. In the bounded degree model we consider graphs of degree at

most d, where d ∈ N is a constant. A tester accesses an input graph via neighbour queries,

i. e. for any vertex v a tester can obtain the i-th neighbour of v where i ∈ {1, . . . , d}. A graph

G on n vertices is ε-far from a property P if more than εdn edge modifications are necessary

to make G have the property P . A tester has to distinguish whether an input graphs G has

1

2 CHAPTER 1. INTRODUCTION

property P or is ε-far from having property P with probability 2
3 correctly, where the number

of queries the tester makes might depend on ε and d, but is independent of the size of G. Since

the introduction of the bounded degree model, extensive research has been done into studying

property testing in this model (see Chapter 4 for an overview). However, in the bounded degree

model no characterisation of which properties are testable is known. This is a long standing

open problem in the area of property testing. In this thesis we approach the question from the

direction of first-order logic.

Studying property testing of first-order logic (FO) definable properties of graphs, we are

aiming for algorithmic meta-theorems. Recall that FO for graphs is recursively defined from

the atomic formulas expressing equality and adjacency of vertices using boolean connectives

(negation, conjunction, disjunction, implication and biimplication) and existential and universal

quantification over vertices. FO can express a variety of properties such as subgraph freeness

and subgraph containment, which are constant query testable in the bounded degree model [73].

There are also properties which are constant query testable but can not be expressed in FO,

e. g. connectivity and cycle freeness [73]. Furthermore, the corresponding decision problem i. e.

deciding a property defined by an FO-sentence on the class of bounded degree graphs, takes

linear time by Seese’s theorem [119].

On bounded degree graphs Hanf’s theorem [83] implies a normal form for FO, so called

Hanf normal form (HNF). A sentence in HNF is a boolean combination of Hanf sentences,

which are sentences of the form ∃≥mxφτ (x) expressing that there are at least m vertices whose

r-neighbourhoods have isomorphism type τ . Every sentence is equivalent to a sentence in HNF

on any class of bounded degree graphs. This implies that satisfying a given formula depends on

which neighbourhood types appear in a graph. On the other hand, property testers for bounded

degree graphs essentially sample a constant set of r-neighbourhoods and compute an answer

only depending on which neighbourhood types they observe (see [78] and [34]). It is known

that a constant query tester can estimate the relative frequencies of neighbourhood isomorphism

types appearing in a bounded degree graph well [112]. This hinges on the following modification

problem. Assume ϕ is a sentence in HNF. For any graph G for which the relative frequencies of

neighbourhood types appearing in G almost satisfy the requirements for satisfying ϕ, is there

a set of at most εdn edge modification to adjust the frequencies of neighbourhoods appearing

in G according to ϕ. Taking into account this close connection between testability and FO

definability, the question of whether all FO definable properties are testable seems reasonable

and was in fact asked in [2].

We study testability of FO definable properties by prefix classes motivated by a similar study

in the dense model by Alon, Fischer, Krivelevich, and Szegedy [6]. Here an FO-sentence is in

the prefix class Σ2 if it is equivalent to a sentence in prenex normal form with quantifier prefix of

the form ∃x1 . . . ∃xk∀y1 . . . ∀y` where k, ` ∈ N. Similarly, a sentence is in Π2 if it is equivalent to

a sentence in prenex normal form with quantifier prefix of the form ∀x1 . . . ∀xk∃y1 . . . ∃y` where

k, ` ∈ N. We obtain the following result for testing FO definable properties in the bounded

3

degree model (proved in Chapter 6).

Theorem. Every FO-sentence ϕ ∈ Σ2 defines a testable property in the bounded degree model.

On the other hand, there is a property in Π2 which is not testable in the bounded degree model.

For the testability of any sentences ϕ in Σ2 we show that ϕ has a certain structure which

allows us to reduce testability of satisfying ϕ to the case of testing subgraph freeness using

certain closure properties of property testing. On the other hand, for the non-testability result

we define an FO-sentence ϕ z of relational structures, which we use for modelling purposes.

The sentence ϕ z essentially defines a property of structures whose underlying graphs are edge

expanders and is equivalent to a sentence in Π2 on structures of bounded degree d. These

structures are constructed exploiting a recursively defined expander construction based on the

zig-zag product introduced by Reingold, Vadhan and Wigderson [115]. Replacing relations by

suitable graph gadgets we obtain an FO definable class of bounded degree expanders. Beyond

the negative algorithmic ramifications, this shows how surprisingly expressive FO is despite

its locality (see Gaifman’s locality theorem [63] and Hanf normal form [83]). Besides our

construction we are not aware of any other (infinite) class of expanders which is definable in

FO.

We explore testability of FO definable properties further in Chapter 7. We call the prop-

erty of all graphs where neighbourhood isomorphism type τ does not appear, τ -neighbourhood

freeness. We show that this generalisation of subgraph freeness, which can be expressed by a

negated Hanf sentence, is testable under some mild assumptions on the degree. We further con-

sider the property where the neighbourhood of every vertex has isomorphism type τ , which we

call τ -neighbourhood regularity. We identify a special class of radius 1 neighbourhood isomor-

phism types τ , for which τ -neighbourhood freeness is testable. Furthermore, τ -neighbourhood

freeness and τ -neighbourhood regularity are in general not expressible by a sentence in Σ2 and

hence testability does not follow from our previous testability result. This further implies that

prefix classes do not yield a characterisation of which FO definable properties are testable.

Modification problem similar to the one stated above form the core of the question of a

characterisation of which properties are testable in the bounded degree model. In their seminal

work on a special class of particularly simple property testers, i. e. proximity oblivious testers

(POTs) with one-sided error, Goldreich and Ron gave a characterisation of POTs with one-

sided error using the notion of generalised subgraph freeness [76]. Generalised subgraph freeness

intuitively expresses that some induced subgraphs can not appear with a specific interface to

the rest of the graph. In [76] the following question is asked, “Is every generalised subgraph

freeness property non-propagating?”, where intuitively a generalised subgraph freeness property

is non-propagating if the removal of a small set of appearances of such generalised subgraphs

can be removed without causing a chain reaction of necessary modification. A recent work of

Ito, Khoury and Newman, in which one-sided error testability of both monotone properties and

hereditary properties is characterised, picks up this open question [89]. Indeed, [89] provides

evidence that a positive answer to the question asked in [76] would lead to a classification

4 CHAPTER 1. INTRODUCTION

of one-sided error testability in the bounded degree model. ‘We answer the question asked

in [76] negatively by showing that a minor variation of the non-testable FO-property defined

by ϕ z can be expressed as a forbidden subgraph freeness property (see Chapter 8). For this

we identify a condition of FO-sentences that implies being a generalised subgraph freeness

property and argue that a slight variation of the sentence ϕ z satisfies this condition. Even

though this is essentially a negative result, it provides us with some insights into the problem

of a characterisation of which properties are testable in the bounded degree model.

We further explore connections between property testing and classical complexity theory.

Reducibility amongst property testing problems requires a notion of reduction that allows sim-

ulating a tester for a problem by another tester. Since query access is local this implies that

the reduction has to be local in the sense that presence of a certain edge in the reduced graph

can only depend on a constant size set of neighbourhoods in the original graph. These local

reductions do not have to be restricted in time, because they are only computed locally in the

simulation. In some cases (particularly but not necessarily when the polynomial time reduction

is linear) polynomial time reductions are essentially local reductions (see e. g. [70,129]). We give

an example of such a case in Section 9.1 for dominating set. The existence of a polynomial time

reduction amongst decision problems restricted to bounded degree graphs does not in general

yield a local reduction, i. e. there are NP-hard problems that are testable in the bounded degree

model (for details see Chapter 9). A problem where the polynomial time reduction known is

not local is treewidth ([14, 66, 68] or [14, 107] for bounded degree planar graphs). We obtain

non-testability for treewidth using a combination of a result from Grohe and Marx showing that

the treewidth of expanders is linear in their size and a lower-bound technique we developed for

proving non-testability of FO definable properties. This lower-bound technique combines a

result by Alon [102, Proposition 19.10] and a theorem by Adler and Harwath [2, Theorem 19],

but only provides non-testability with O(1) queries.

With the aim of understanding structural reasons for hardness we provide a deterministic

construction of hard instances for testing whether a graph is Hamiltonian. Hamiltonicity can

not be tested with a sublinear amount of queries [70, 129], which is due to a local reduction

from 3-SAT. The graphs we construct are both far from being Hamilonian (we need at least

an ε-fraction of edge modifications to make the graph Hamiltonian) while they locally look

Hamiltonian (the neighbourhood of any δ-fraction of vertices appears in a Hamiltonian graph,

for some fixed δ ∈ [0, 1]). The construction uses a base expander and encodes a property into

certain graph gadgets, which can be satisfied at a δ-fraction of the vertices but can not be

satisfied for any larger amount of vertices. We hope that this construction will give us further

insights into connections between non-testability and graph structure.

Outline of chapters In Chapter 2 we recall basic concepts of graph theory, relational struc-

tures and first-order logic and introduce the notation used throughout this thesis. In Chapter 3

we introduce property testing in general, the models relevant for this thesis and local reduc-

5

tions. In Chapter 4 we survey the history and recent developments in related areas such as

model checking and property testing. In Chapter 5 we provide generalisations from bounded

degree graphs to bounded degree relational structure of two results ([102, Proposition 19.10]

and the canonical tester result [34]). In Chapter 6 we provide the proof of the characterisa-

tion by prefix classes of FO definable properties. In Chapter 7 we prove testability results for

neighbourhood regularity and neighbouhood freeness under certain restrictions. We prove that

there is a non-testable generalised subgraph freeness property in Chapter 8. Results related

to testing NP-hard problems are contained in Chapter 9. We provide concluding remarks in

Chapter 10.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this section we give a short overview of the basic concepts and notation used. Note that a

detailed introduction to property testing is postponed to Section 3. Furthermore, some concepts

only needed in specific chapters of this thesis are given in the respective chapter. To keep this

chapter as concise as possible we also omit introducing notions of complexity theory like big-O

notation and refer e. g. to [28].

Besides introducing some general notation in Section 2.1, we introduce basic concepts of

graph theory in Section 2.2. We further introduce relational structures in Section 2.3 including

some notions for bounded degree relational structures. We give an introduction to first-order

logic in Section 6.3 including an introduction to all normal forms for first-order logic required

in this thesis.

2.1 Set notation

In the following N = {0, 1, 2, 3, . . . } denotes the set of all natural numbers. We denote the set

N \ {0} of positive integers by N>0. For any natural number n ∈ N we denote the set of the n

smallest natural numbers by [n] := {m ∈ N : m < n}.
For a function f : A → B we denote by f(S) for some S ⊆ A the set {f(a) | a ∈ S}. We

further denote the restriction of f to S ⊆ A by f |S .

More convention on the notation used in this thesis can be found in the list of notation

given in the preamble.

2.2 Graphs

In this section we give a short introduction to the graph theory concepts we need. A more

detailed introduction to graph theory can be found for example in the book [42]. We further

like to point out that some further notions for graphs are defined in Section 2.3.

7

8 CHAPTER 2. PRELIMINARIES

A (simple, undirected) graph G is a tuple G = (V,E), where V is a finite set and E ⊆ {e ⊆
V | |e| = 2}. We call the elements of V vertices of G and the elements of E edges of G. For

a graph G = (V,E) we denote the set of vertices V by V (G) and the set of edges E by E(G).

We say that a vertex v ∈ V (G) is incident to an edge e ∈ E(G), if v ∈ e. We call two vertices

v, w ∈ V (G) adjacent, if v, w are incident to the same edge. If two vertices v, w ∈ V (G) are

adjacent, we say that w is a neighbour of v (note that the neighbourhood of a vertex is defined

later in Section 2.3). The size of a graph G is defined to be |V (G)| + |E(G)|. The order of a

graph G is the number of vertices |V (G)|. A (graph) isomorphism from a graph G to a graph

H is a bijective map f : V (G)→ V (H) which preserves adjacency, i. e. for any v, w ∈ V (G)

{v, w} ∈ E(G) ⇐⇒ {f(v), f(w)} ∈ E(H).

We say that G and H are isomorphic, denoted G ∼= H, if there is an isomorphism from G to

H. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For any set

S ⊆ V (H) we say that the graph (S,ES), where ES := {e ∈ E(G) | e ⊆ S}, is the subgraph

induced by S. We say that H is an induced subgraph of G if H is the subgraph induced by

some set S ⊆ V (G).

Let G be a graph and v ∈ V (G). The degree of v, denoted degG(v), is the number of edges

v is incident to, i. e.

degG(v) := |{e ∈ E(G) | v ∈ e}|.

The degree of G, denoted deg(G), is the maximum degree of the vertices of G, i. e.

deg(G) := max
v∈V (G)

{degG(v)}.

We say that G is d-regular for some d ∈ N if every vertex in G has degree d. We say that G is

degree-regular if there is d ∈ N such that G is d-regular.

Let G be a graph, v, w ∈ V (G) and ` ∈ N.

– A walk from v to w of length ` is a tuple (p0, . . . , p`) ∈ V (G)`+1 such that v = p0, w = p`

and {pi−1, pi} ∈ E(G) for every i ∈ {1, . . . , `}.

– A path from v to w of length ` is a walk (p0, . . . , p`) from v to w such that {pi−1, pi} 6=
{pj−1, pj} for every i, j ∈ {1, . . . , `} with i 6= j.

– A path (s0, . . . , sk) is a subpath of a path (p0, . . . , p`) if there is an index 0 ≤ i ≤ ` − k
such that sj = pi+j for every 1 ≤ j ≤ k.

– A simple path in G is a path in which no vertex appears twice.

– A cycle of length ` is a path (c0, . . . , c`) such that c0 = c` and (c0, . . . , c`−1) is a simple

path.

2.2. GRAPHS 9

Note that for every vertex v ∈ V (G) the tuple (v) is a path of length 0 from v to v. We define

the graph theoretic distance distG(v, w) between v and w in G to be

distG(v, w) := min

({
`

∣∣∣∣ there is a path of

length ` from v to w

}
∪ {∞}

)
.

We further define an equivalence relation ∼c on V (G) as follows. For every two vertices v, w ∈
V (G)

v ∼c w ⇐⇒ distG(v, w) <∞.

We call a subgraph of G induced by an equivalence class of ∼c a connected component of G.

We say that a graph G is connected if G has only one connected component, that is, if ∼c has

only one equivalence class.

2.2.1 Graph representation

In property testing graph representation plays a fundamental role as it influences which infor-

mation about a graph is accessible in constant time.

Let G be a graph and V (G) = [n]. We call the symmetric matrix M ∈ Nn×n defined by

Mi,j :=

1 if {i, j} ∈ E(G),

0 otherwise.

an adjacency matrix of G. Note that the adjacency matrix depends on the choice of an order

on V (G).

We call a tuple (L1, . . . , Ln) an adjacency list of G where Li ∈ V (G)degG(i) is a tuple such

that

(Li)j := k, where k is the j-th neighbour of i with respect to ≤i,

where ≤i is a total order on the set of neighbours {k ∈ V (G) | {i, k} ∈ E(G)} for every

1 ≤ i ≤ n.

Note that LG depends on the choice of an order on V (G) and the orders of neighbours for every

vertex.

2.2.2 Directed graphs and multigraphs

While we mostly are interested in simple undirected graphs in some chapters we use multigraphs

or directed graphs. Most concepts for simple undirected graphs can be extended to multigraphs

and directed graphs in a straight forward way. Hence we will (besides introducing both types

of graphs) just introduce the notions that are different from simple, undirected graphs.

10 CHAPTER 2. PRELIMINARIES

A multigraph (or an undirected graph with parallel edges and self-loops) G is a triple G =

(V (G), E(G), fG), where V (G) and E(G) are finite sets and

fG : E(G)→ {x ⊆ V (G) | 1 ≤ |x| ≤ 2}.

Here we call fG the adjacency map of G. Let G and H be two multigraphs. We call a pair of

bijective maps (hV , hE), where hV : V (G) → V (H) and hE : E(G) → E(H), an isomorphism

from G to H, if

hV (fG(e)) = fH(hE(e))

for any e ∈ E(G). We say that G and H are isomorphic, denoted G ∼= H, if there is an

isomorphism from G to H. Let us remark here that every simple graph is a multigraph.

A directed graph G is a tuple G = (V (G), E(G)), where V (G) is a finite set and E(G) ⊆
V (G)2. While directed graphs are relational structures, which will be introduced in Section 2.3

in detail, the following concepts are particular for directed graphs. Let G be a directed graph

and v ∈ V (G). We define the set of incoming edges of v to be the set E−G(v) := {e ∈ E(G) |
e = (w, v)} and the set of outgoing edges of v to be E+

G(v) := {e ∈ E(G) | e = (v, w)}.

2.2.3 Expansion and hyperfiniteness

In this section we introduce the concept of expanders and hyperfinite classes of graphs. These

two concepts play a central role in property testing. We define expansion for the general case

of multigraphs. We need hyperfiniteness only for simple graphs.

Definition 2.2.1 (Class of expanders). Let G = (V,E, f) be a multigraph.

– For any subsets S, T ⊆ V , S ∩ T = ∅ let 〈S, T 〉G := {e ∈ E | f(e) ∩ S 6= ∅, f(e) ∩ T 6= ∅}
be the set of edges crossing S and T .

– For any set S ⊆ V , we let h(S) := |〈S,S〉G|
|S| be the expansion of S.

– We let h(G) be the expansion ratio of G defined by

h(G) := min
{S⊆V ||S|≤|V |/2}

h(S).

For any constant ε > 0 we call a sequence (GN)N∈N of graphs a family of ε-expanders, if

|V (GN+1)| > |V (GN)| and h(GN) ≥ ε for all N ∈ N.

We call a class C a class of expanders if C contains some sequence of expanders.

Definition 2.2.2 (Hyperfinite class). Let δ ∈ [0, 1] and k ∈ N>0. A graph G is called (δ, k)-

hyper-finite if we can remove δ · |V (G)| edges and obtain a graph whose connected components

have size at most k.

A class C of graphs is hyper-finite if for every δ ∈ [0, 1] there is a k ∈ N>0 such that every graph

in C is (δ, k)-hyper-finite.

2.3. RELATIONAL STRUCTURES 11

Examples of hyperfinite classes of graphs are the class of all planar graphs or the class of

graphs of bounded treewidth.

2.3 Relational structures

In this section we define all concepts we use for relational structures. Here we dedicate a

subsection to bounded degree relational structures.

A (relational) signature is a finite set σ = {R1, . . . , R`} of relation symbols Ri. Every

relation symbol Ri has an arity ar(Ri) ∈ N>0. For a relational signature σ we denote the

maximum arity of its relation symbols by ar(σ). A (relational) σ-structure is a tuple A =

(A,RA1 , . . . , R
A
`), where A is a finite set called the universe of A (typically we let A = [n]) and

RAi ⊆ Aar(Ri) is an ar(Ri)-ary relation on A for every i ∈ {1, . . . , `}. For σ-structures A,B, C, . . .
we denote their universes by A,B,C . . . and their respective relations by RA, RB, RC . . . for every

R ∈ σ. For a relational signature σ and a σ-structure A we call |A| the size of A. Note that we

define structures to be finite. Let σ = {R1, . . . , R`} be a signature, A = (A,RA1 , . . . , R
A
`) and

B = (B,RB1 , . . . , R
B
`) σ-structures. An isomorphism from A to B is a bijective map f : A→ B

which preserves relations, i. e.(
a1, . . . , aar(Ri)

)
∈ RAi ⇐⇒

(
f(a1), . . . , f(aar(Ri))

)
∈ RBi

for every 1 ≤ i ≤ ` and elements a1, . . . , aar(Ri). We call A and B isomorphic, denoted A ∼= B, if

there is an isomorphism from A to B. The union of A and B, denoted A∪B, is the σ-structure

A ∪ B :=
(
A ∪B,RA1 ∪RB1 , . . . , RA` ∪RB`

)
.

If A∩B = ∅ we often denote the union of A and B by AtB. B is a substructure of A if B ⊆ A
and RBi ⊆ RAi for every i ∈ {1, . . . , `}. For a subset M ⊆ A, we let

A[M] :=
(
M,RA1 ∩Mar(R1), . . . , RA` ∩Mar(R`)

)
be the substructure of A that is induced by M . We call a substructure B an induced substruc-

ture of A, if B is induced by some subset M ⊆ A.

There is a natural way of assigning a graph to a relational structure. Let σ be a relational

signature and A be a σ-structure. The Gaifman graph of A is the graph G(A) = (A,E), where

{x, y} ∈ E, if there is a tuple (b1, . . . , bar(Ri)) ∈ RAi for some 1 ≤ i ≤ `, such that x = bj and

y = bk for some 1 ≤ k, j ≤ ar(Ri) and j 6= k (see for instance [101]). While G(A) does not

capture all the structural information contained in A, we use G(A) to apply graph theoretic

notions to relational structures. For two elements a, b ∈ A we define the distance between a

12 CHAPTER 2. PRELIMINARIES

and b in A, denoted by distA(a, b), to be the graph theoretic distance of a and b in G(A), i. e.

distA(a, b) := distG(A)(a, b).

This allows us to define neighbourhoods and neighbourhood types. Let r ∈ N and a ∈ A. The

r-neighbourhood of a, denoted NAr (a), is the set of all elements in A with distance at most r to

a, i. e.

NAr (a) := {b ∈ A | distA(a, b) ≤ r}.

For a subset of elements S = {a1, . . . , ak} ⊆ A we define the r-neighbourhood of S to be

NAr (S) :=
⋃k
i=1N

A
r (ai). We denote the structure induced by the r-neighbourhood of a by

NAr (a) := A[NAr (a)]

and equivalently we let NAr (S) := A[NAr (S)] for any S ⊆ A. An r-ball is a tuple (B, b) where

B is a σ-structure and b ∈ B such that NBr (b) = B. For an r-ball (B, b) we call b the centre of

(B, b). Two r-balls (B, b), (B′, b′) are isomorphic if there is an isomorphism f from B to B′ such

that f(b) = b′. We call the isomorphism classes of r-balls r-types. Note that by definition we

have that (NAr (a), a) is an r-ball for any σ-structure A and any a ∈ A. For an r-type τ we say

that a has (neighbourhood) type τ if (NAr (a), a) ∈ τ .

Let σ be a signature. A class of σ-structures is a set C of σ-structures, which is closed under

isomorphism, i. e. if A ∈ C and B is isomorphic to A then B ∈ C. For a class C of relational

structures we denote by C|n := {A ∈ C | |A| = n} the subset of all structures on n elements

in C. A property on C is a class P ⊆ C of structures. We say that a structure A ∈ C has

property P if A ∈ P .

Remark 2.3.1. Let σGraph := {E}, where E is a relation symbol of arity 2. We can define

a directed graph G = (A,EG) (or di-graphs) to be a σGraph-structure, where the universe A is

the set of vertices and the tuples in EG define the edges.

We can regard undirected graphs as defined in Section 2.2 as a subclass of directed graphs,

where a directed graph is an undirected graph if the edge relation is symmetric and irreflexive.

Therefore we get that the notion of neighbourhoods, r-balls, r-types, properties and classes

directly translate to graphs.

2.3.1 Bounded-degree structures and neighbourhood distributions

In this section we introduce classes of bounded degree relational structures/graphs which are of

particular interest to us. We further point out some particularities for bounded degree which

are the basis for our work.

2.3. RELATIONAL STRUCTURES 13

Let σ be a relational signature, A be a σ-structure and C be a class of σ-structures. The

degree of an element a ∈ A denoted by degA(a) is defined to be the number of tuples of A in

which a occurs, i. e.

degA(a) :=
∑
R∈σ

∣∣∣{(a1, . . . , aar(R)) ∈ RA
∣∣∣ a ∈ {a1, . . . , aar(R)}

}∣∣∣.
We define the degree of A denoted by deg(A) to be the maximum degree of its elements. For an

r-type τ we let the degree of τ be deg(B) for (B, b) ∈ τ . A structure A is called degree regular

if for every element a ∈ A we have degA(a) = deg(A), i. e. if every element in A has the same

degree. Let d ∈ N. We say that C has bounded degree d if deg(A) ≤ d for all A ∈ C. For d ∈ N
we denote the class of all σ-structures of bounded degree d by Cd. Note that for simplicity we

omit σ from the notation. For d ∈ N we denote the class of graphs of bounded degree d by Cd.

Remark 2.3.2. Note that the degree for undirected graphs defined in Section 2.2 is by a

factor two smaller than the degree defined for the corresponding relational structures due to

the symmetry of the edge relation.

In the following we will argue that for bounded degree structures/graphs there is a finite

number of r-types which allows us to define vectors capturing precisely how often a certain

neighbourhood type appears in a structure/graph. These vectors play a central role both for

first-order logic and property testing and will reoccur throughout the following chapters.

Lemma 2.3.3. Let σ be a relational signature, d ∈ N and A be a σ-structure of bounded degree

d. For all r ∈ N and a ∈ A
|NAr (a)| ≤ (2 · d · ar(σ))r.

Proof. We can write NAr (a) as a disjoint union

NAr (a) =

r⊔
i=0

{b ∈ A | distA(a, b) = i}.

Since every element b ∈ A can be in no more then d tuples, each of which contains fewer than

ar(σ) elements besides b, we get that

∣∣{b ∈ A | distA(a, b) = i
}∣∣ ≤ d · ar(σ) ·

∣∣{b ∈ A | distA(a, b) = i− 1
}∣∣

for 1 ≤ i ≤ r. Hence

|NAr (a)| ≤ 1 + d · ar(σ) +
(
d · ar(σ)

)2
+ · · ·+

(
d · ar(σ)

)r
≤ (r + 1) ·

(
d · ar(σ)

)r
≤
(
2 · d · ar(σ)

)r
,

where we use r + 1 ≤ 2r in the last inequality.

14 CHAPTER 2. PRELIMINARIES

Lemma 2.3.4. Let σ be a relational signature and d ∈ N. Let r ∈ N. The number of different

r-types of bounded degree d is finite and depends only on d, r and σ.

Proof. For any number n ∈ N, the number of non-isomorphic σ-structures with at most n

elements is finite. This is the case as for every isomorphism class of σ-structures there is a

representative A such that A = {1, . . . , k}, k ≤ n. For two non-isomorphic σ-structure A,B
with A = {1, . . . , k} and B = {1, . . . , k} there must be R ∈ σ such that RA 6= RB. But for

every R ∈ σ there is a finite number of ways to pick a set of tuples from {1, . . . , t}ar(R) and since

σ is finite the total number of non-isomorphic σ-structure with at most n elements is finite and

depends only on n and σ.

For any r-type τ and (B, b) ∈ τ Lemma 2.3.3 implies that B has at most (2 · d · ar(σ))r

elements. Furthermore, for any σ-structure B on at most
(
2 ·d ·ar(σ)

)r
elements and any b ∈ B

there can be only one r-type τ with (B, b) ∈ τ . Since there are at most
(
2 · d · ar(σ)

)r
choices

for b the number of r-types of bounded degree d is finite and depends only on d, r and σ.

We can now define the following notions each capturing the appearance of types in a struc-

ture. Note that each of the notions defined in the following depends on some fixed ordering of

the r-types.

Definition 2.3.5 (Histogram vector). Let σ be a signature and d ∈ N. For A ∈ Cd and r ∈ N
we define the histogram vector, denoted histr(A), of A by

(histr(A))i := |{a ∈ A | (NAr (a), a) ∈ τi}|,

where τ1, . . . , τt is a list of all r-types of bounded degree d.

Definition 2.3.6 (Frequency vector). Let σ be a signature and d ∈ N. For A ∈ Cd and r ∈ N
we define the frequency vector, denoted freqr(A), of A by

(freqr(A))i :=
|{a ∈ A | (NAr (a), a) ∈ τi}|

|A|
,

where τ1, . . . , τt is a list of all r-types of bounded degree d.

Definition 2.3.7 (Neighbourhood distribution). Let σ be a signature and d ∈ N. For A ∈ Cd
and r ∈ N we define the r-neighbourhood distribution of A to be the function ρA,r : {X ⊆
{τ1, . . . , τt}} → [0, 1], where τ1, . . . , τt is a list of all r-types of bounded degree d, defined by

ρA,r(X) :=

∑
τ∈X |{a ∈ A | (NAr (a), a) ∈ τ}|

|A|

for any X ⊆ {τ1, . . . , τt}.

Note that we omit σ and d from the notation as they will be clear from the context.

Furthermore, if σ = σgraph then we assume that the list of r-types τ1, . . . , τt does not contain

2.4. FIRST-ORDER LOGIC 15

types τ for which B does not have a symmetric and irreflexive edge relation for any (B, b) ∈ τ .

We essentially omit all σgraph-types which do not represent graphs.

While the histogram vector, the frequency vector and the neighbourhood distribution all

contain essentially the same information, the respective notions are later used in different con-

text where they are the appropriate notion to look at.

2.4 First-order logic

In this section we will introduce first-order logic (FO). A more detailed introduction to relational

structures and FO can be found for example in the books [51,52,101].

Let σ be a signature. Let Var be a infinite, countable set of variables. Typically we denote

variables by x, y, z, x1, x2, . . . , y1, y2, . . . or z1, z2, The alphabet of first-order logic Aσ over

σ is the set

Aσ := Var ∪ σ ∪ {=} ∪ {∀,∃} ∪ {¬,∧,∨,→,↔} ∪ {(,)} ∪ {, },

where ∃ is the existential quantifier, ∀ is the universal quantifier, ¬ is the logical negation,

∧ is the conjunction, ∨ is the disjunction, → is the logical implication and ↔ is the logical

biimplication. The formulas of first-order logic FO[σ] is the following recursively defined subset

of (Aσ)∗

– x1 = x2 is a formula in FO[σ] for all x1, x2 ∈ Var.

– If R ∈ σ is a relation symbol and x1, . . . , xar(R) ∈ Var, then R(x1, . . . , xar(R)) ∈ FO[σ] is

a formula.

– If ϕ ∈ FO[σ] is a formula, then ¬ϕ ∈ FO[σ] is a formula.

– If ϕ,ψ ∈ FO[σ] are formulas, then (ϕ ∗ψ) ∈ FO[σ] is a formula for any logical connective

∗ ∈ {∧,∨,→,↔}.

– If ϕ ∈ FO[σ] is a formula, then ∀xϕ ∈ FO[σ] and ∃xϕ ∈ FO[σ] are formulas for any

variable x ∈ Var.

Formulas of the form x1 = x2, where x1, x2 ∈ Var, or R(x1, . . . , xar(R)), where R ∈ σ is a

relation symbol and x1, . . . , xar(R) ∈ Var, are called atomic formulas. The length of a formula

ϕ ∈ FO[σ], denoted by ‖ϕ‖, is the length of ϕ as a string over the alphabet Aσ.

In a formula of the form Qxϕ, where Q ∈ {∃,∀}, x ∈ Var is a variable and ϕ ∈ FO[σ] is a

formula, we say that every occurrence of x in ϕ is in the scope of Q. For any formula ϕ ∈ FO[σ]

we call the variables in ϕ, that do not occur in the scope of any quantifier, free variables and

denote the set of free variables in a formula ϕ by free(ϕ). We write ϕ(x1, . . . , xk) to specify

that free(ϕ) ⊆ {x1, . . . , xk}. We call a formula ϕ ∈ FO[σ] an FO-sentence if free(ϕ) = ∅.

16 CHAPTER 2. PRELIMINARIES

We define the semantics of FO recursively as follows. For an atomic formula of the form

R(x1, . . . , xar(R)), R ∈ σ and a1, . . . , aar(R) ∈ A we say that A satisfies R(x1, . . . , xar(R)) under

the assignment of variables xi 7→ ai if (A1, . . . , aar(R)) ∈ RA. For an atomic formula of the

form x1 = x2 and a1, a2 ∈ A we say that A satisfies x1 = x2 under the assignment of variables

xi 7→ ai if a1 = a2. This allows us to define recursively when a σ-structure A satisfies a formula

ϕ(x1, . . . , xk) ∈ FO[σ] under variable assignment xi 7→ ai for a1, . . . , ak ∈ A where the logical

connectives as well as existential and universal quantification have the usual meaning. For a

FO-formula ϕ(x1, . . . , xk) ∈ FO[σ], a1, . . . , ak ∈ A we write A |= ϕ[a1, . . . , ak] if ϕ is satisfied

for A under the variable assignment xi 7→ ai. For an FO-sentence ϕ we say that A is a model

of ϕ if A |= ϕ. We can now define equivalence of FO-formulas. Two formulas ϕ(x1, . . . , xk)

and ψ(x1, . . . , xk) are called equivalent, denoted ϕ ≡ ψ, if for all σ-structures and elements

a1, . . . , ak ∈ A the following holds

A |= ϕ[a1, . . . , ak]⇐⇒ A |= ψ[a1, . . . , ak].

The following lemma can be proved by induction over the construction of FO (see e. g. [52]).

Lemma 2.4.1 (Isomorphism Lemma [52]). Let σ be a relational signature and A and B iso-

morphic σ-structures. Then for every FO[σ]-sentence the following holds

A |= ϕ⇐⇒ B |= ϕ.

The isomorphism lemma (lemma 2.4.1) implies that being a model of an FO-sentence is

closed under isomorphism. This allows us to define properties by FO-sentences.

Definition 2.4.2 (Properties defined by FO-sentences). Let σ be a relational structure and C

a class of σ-structures. Then every FO-sentence ϕ ∈ FO[σ] defines a property Pϕ ⊆ C given by

Pϕ := {A ∈ C | A |= ϕ}.

We use the following abbreviations.

– We use x 6= y instead of ¬x = y.

– For any formula ϕ(x) with free variable x we let ∃≥mxϕ(x) be short for

∃x1 . . . ∃xm
(∧

1≤i<j≤m

xi 6= xj ∧
∧

1≤i≤m

ϕ(xi)
)
.

– For any formula ϕ(x) with free variable x we let ∃≤mxϕ(x) be short for ¬∃≥m+1xϕ(x).

– For any formula ϕ(x) with free variable x we let ∃=mxϕ(x) be short for ∃≥mxϕ(x) ∧
∃≤mxϕ(x).

2.4. FIRST-ORDER LOGIC 17

2.4.1 Normal forms of first-order logic

Normal forms for FO play a central role in the analysis of FO-formulas as well as our under-

standing of the expressive power of FO.

Disjunctive normal form

In this section we introduce disjunctive normal form for boolean combinations.

Let σ be a signature and ϕ1, . . . , ϕm be any set of formulas in FO[σ]. The boolean combi-

nations of ϕ1, . . . , ϕm is the following recursively defined subset of FO[σ].

– ϕi is a boolean combination of ϕ1, . . . , ϕm for every 1 ≤ i ≤ m.

– If ψ is a boolean combination of ϕ1, . . . , ϕm then so is ¬ψ.

– If ψ and ψ′ are boolean combinations of ϕ1, . . . , ϕm then so is ψ ∗ ψ′ for ∗ ∈ {∧,∨}.

We say that a boolean combination ϕ of ϕ1, . . . , ϕm is in dijunctive normal form (DNF) if

ϕ =

n∨
i=1

(`i∧
j=1

ψi,j ∧
ki∧
j=1

¬χi,j
)
,

for some n ∈ N, `i, ki ∈ N for every 1 ≤ i ≤ n and ψi,j ∈ {ϕ1, . . . , ϕm} for every i ∈ {1, . . . , n},
j ∈ {1, . . . , `i} and χi,j ∈ {ϕ1, . . . , ϕm} for every i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}. We call the

formulas
∧`i
j=1 ψi,j ∧

∧ki
j=1 ¬χi,j for i ∈ {1, . . . , n} clauses of ϕ. We further refer to the formulas

ψi,j for every i ∈ {1, . . . , n}, j ∈ {1, . . . , `i} and ¬χi,j for every i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}
as literals of ϕ.

The following lemma can be shown with a standard, straight forward argument.

Lemma 2.4.3 (Disjunctive normal form [52]). Let σ be a signature and ϕ1, . . . , ϕm ∈ FO[σ].

Then any boolean combination ϕ of ϕ1, . . . , ϕm is equivalent to a boolean combination of

ϕ1, . . . , ϕm in DNF.

Note that for any signature σ and any two formulas ψ,ψ′ ∈ FO[σ] we have that ψ ↔ ψ′ ≡
(ψ → ψ′) ∧ (ψ′ → ψ) and ψ → ψ′ ≡ ¬ψ ∨ ψ′. Therefore any quantifier-free formula ϕ ∈ FO[σ]

is equivalent to a boolean combination of atomic formulas. This allows us to define DNF for

quantifier-free formulas as follows. Let ϕ ∈ FO[σ] be a quantifier-free formula. We say that ϕ

is in DNF if ϕ is a boolean combination of atomic formulas which is in DNF.

Prenex normal form and prefix classes

In this section we introduce prenex normal form which gives us a way to classify FO-formulas

and properties defined by FO-sentences.

Let σ be a relational signature. An FO[σ]-formula ϕ is in prenex normal form if ϕ is of

the form Q1x1Q2x2 . . . Qkxkψ(x1, x2, . . . , xk, y1, . . . , y`), where Qi ∈ {∃,∀}, xi, yj ∈ Var for all

i ∈ {1, . . . , k}, j ∈ {1, . . . , `} and ψ is an FO-formula not containing any quantifiers.

18 CHAPTER 2. PRELIMINARIES

Theorem 2.4.4 (Prenex normal form [52]). Let σ be a relational signature. For every formula

ϕ(x1, . . . , xk) ∈ FO[σ] there is a formula ϕ′(x1, . . . , xk) ∈ FO[σ] in prenex normal form, which

is equivalent to ϕ.

First-order formulas can be classified by counting the number of alternations between exis-

tential and universal quantifiers in a prenex normal form of the formula.

We define Σ0 = Π0 to be the set of all quantifier-free FO-formulas. We then define recursively

for all i ∈ N>0.

– Σi :=

{
ϕ(y1, . . . , y`) ∈ FO[σ]

∣∣∣∣∣ there is k ∈ N and ψ(x1, . . . , xk, y1, . . . , y`) ∈ Πi−1

s.t. ϕ ≡ ∃x1 . . . ∃xkψ(x1, . . . , xk, y1, . . . , y`)

}
.

– Πi :=

{
ϕ(y1, . . . , y`) ∈ FO[σ]

∣∣∣∣∣ there is ` ∈ N and ψ(x1, . . . , xk, y1, . . . , y`) ∈ Σi−1

s.t. ϕ ≡ ∀x1 . . . ∀xkψ(x1, . . . , xk, y1, . . . , y`)

}
.

– ∆i := Σi ∩Πi.

For a prefix class Γ ∈ {Πi,Σi,∆i} we say that a property P is a Γ-property if P = Pϕ for a

formula ϕ ∈ Γ.

Combining the above definition with Theorem 2.4.4 we get

FO[σ] =
⋃
i∈N

(Σi ∪Πi).

Additionally the following chain of inclusions holds.

∅
⊆

⊆

Σ0

Π0

⊆

⊆
∆1

⊆

⊆

Σ1

Π1

⊆

⊆
∆2

. .
.

. . .

. . .

. .
.
∆2i−1

⊆

⊆

Σ2i−1

Π2i−1

⊆

⊆
∆2i

⊆

⊆

Σ2i

Π2i

⊆

⊆
∆2i+1

. .
.

. . .

Gaifman normal form

In 1981 Gaifman established that an FO-formula can only define local properties by proving

that every FO-formula is equivalent to a formula in Gaifman normal form [63]. To introduce

Gaifman normal form we need the following concepts of locality of formulas.

For any r ∈ N let dist≤r(x, y) ∈ FO[σ] denote the formula, such that A |= dist≤r[a, b] if

and only if distA(a, b) ≤ r for any σ-structure A and a, b ∈ A. Note that we can express

distA(a, b) ≤ r in FO, since we can express that there is a path in G(A) from a to b of length

exactly k for any k ∈ N and hence dist≤r(x, y) is a disjunction of formulas of that form. Let

dist>r(x, y) = ¬dist≤r(x, y).

2.4. FIRST-ORDER LOGIC 19

Let x = (x1, . . . , xk). We define relativised quantifiers ∃y ∈ Nr(x)ψ(y) and ∀y ∈ Nr(x)ψ(y)

which are abbreviations for the formulas

∃y
(k∨
i=1

dist≤r(y, xi) ∧ ψ(y)
)

and

∀y
(k∨
i=1

dist≤r(y, xi)→ ψ(y)
)
.

The formula ϕ(x) is called r-local around x, if all quantification is of the form ∃y ∈ Nr(x) or

∀y ∈ Nr(x). ϕ(x) is called local, if there is an r ∈ N such that ϕ(x) is r-local.

Let r, ` ∈ N, ` ≥ 1. A sentence ϕ ∈ FO[σ] is called basic local (with parameters r, `) if ϕ is

of the form

ϕ = ∃x1 . . . ∃x`
((∧

1≤i<j≤`

dist>2r(xi, xj)
)
∧
(∧̀
i=0

ψ(xi)
))

,

where ψ(x) ∈ FO[σ] is r-local around x.

– A FO[σ]-sentence ϕ is in Gaifman normal form (GNF) if ϕ is a boolean combination of

basic local sentences.

– A FO[σ]-formula ϕ(x1, . . . , xk) is in GNF if ϕ is a boolean combination of basic local

sentences and formulas that are local around x1, . . . , xk.

This allows us to formulate Gaifman’s locality Theorem.

Theorem 2.4.5 (Gaifman’s Locality Theorem [63]). Let σ be a relational signature. For every

formula ϕ ∈ FO[σ] there is a formula ϕ′ ∈ FO[σ] in Gaifman normal form, that is equivalent

to ϕ and free(ϕ) = free(ϕ′).

Let us remark that there is an algorithm converting a given formula into GNF. However

computing a GNF for a given sentence is very complex in the sense that there is no k ∈ N such

that there is an algorithm with k-fold exponential running time for computing a GNF [40].

However, there is an algorithm which computes for a given sentence ϕ a sentence in GNF which

is equivalent to ϕ on structures of bounded degree d in triple exponential time [85]. As we

consider the problem of testing a property defined by a fixed sentence, this has no immediate

consequences for our algorithms.

Hanf normal form

Hanf’s Theorem [83] was proved in 1965 and later improved by Fagin, Stockmeyer and Vardi [54].

It roughly states that two structures A,B ∈ Cd are equivalent on all sentences of quantifier rank

at most k if there are r,m ∈ N such that for every r-type τ either τ appears the same number

20 CHAPTER 2. PRELIMINARIES

of times in both A and B or τ appears at least m times in both A and B. Here the quantifier

rank of a formula is the maximum number of nested quantifiers in the formula. This implies a

strong normal form on structures of bounded degree, called Hanf normal form (HNF). We will

define HNF in detail in the following.

Lemma 2.4.6. Let r ∈ N and τ be any r-type. There is an FO-formula φτ (x) such that

A |= φτ (a) iff a has r-type τ for every σ-structure A and every element a ∈ A.

Proof. Let (B, b) ∈ τ be an r-ball with centre b in τ . Let further B := {b0, b1, . . . , b`, . . . , bk}
be the set of elements of B where b0 := b and {b0, . . . , b`} is the set of all elements in B of

distance less than r to b. φτ (x) has to express that there are k + 1 pairwise different elements

x =: x0, . . . , xk containing exactly the tuples in τ . Additionally φτ (x) should express that there

are no additional elements of distance less or equal than r to x. We express this by saying that

all elements which are contained in a tuple with any elements from the set {x0, . . . , x`} have to

be amongst the elements x0, . . . , xk. We set

φτ (x0) := ∃x1, . . . , xk

[∧
0≤i<j≤k

(
xi 6= xj

)
∧
∧
R∈σ

(∧(
bi1 ,...,biar(R)

)
∈RB

R(xi1 , . . . , xiar(R)
) ∧

∧(
bi1 ,...,biar(R)

)
∈Bar(R)\RB

¬R(xi1 , . . . , xiar(R)
)
)

∧
∧
R∈σ
∀y1, . . . , yar(R)

((
R(y1, . . . , yar(R)) ∧

∨
0≤i≤`,

1≤j≤ar(R)

xi = yj
)
→

∧
1≤j≤ar(R)

(∨
0≤i≤k

xi = yj
))]

.

A simple argument shows that indeed A |= φτ (a) iff a has r-type τ for any σ-structure A and

any element a ∈ A.

This allows us to define Hanf normal form. A Hanf-sentence is a sentence of the form

∃≥mxφτ (x), for some m ∈ N>0, where τ is an r-type and φτ (x) is the formula defined in

Lemma 2.4.6. Here r is the locality radius of the Hanf-sentence. An FO sentence is in Hanf

normal form, if it is a Boolean combination of Hanf sentences.

Two formulas φ(x̄) and ψ(x̄) of signature σ are called d-equivalent, if they are equivalent on

Cd, i. e. for all A ∈ Cd and ā ∈ A|x̄| we have A |= φ(ā) iff A |= ψ(ā).

The following theorem follows directly form Hanf’s Theorem

Theorem 2.4.7 (Hanf normal form [83]). Let d ∈ N. Every FO-sentence is d-equivalent to a

sentence in Hanf normal form.

We want to remark that there is an algorithm which computes for a given sentence ϕ a

d-equivalent sentence in HNF in triple exponential time [23].

Chapter 3

Background on property testing

In this section we introduce property testing. For a historical background and development of

property testing, as well as recent advances in the field we refer to Section 4. We introduce

property testing in a general way, focusing on what is in our opinion needed to consider property

testing. This generality is needed to consider reductions between property testing problem.

While all property testing models considered in this thesis fit the general framework introduced

here, we do not claim that this is a full definition of property testing. There are various different

settings, which fit the basic description of a probabilistic algorithm of testing an object for a

property by looking at a set of samples and hence our definition of property testing might not

cover all instances of property testing problems.

We introduce the general setting for property testing in Section 3.1. We introduce the two

most important models for this thesis, the bounded-degree model for graphs and the bounded-

degree model for relational structures, in Section 3.2. We provide a tester for testing subgraph

freeness [69, 73] as an example of a typical property tester and an analysis of correctness in

Section 3.3. We introduce proximity oblivious testers, a special type of property testers in

Section 3.4. We further introduce some basic tools, i. e. property testing being closed under

unions and local reductions, which are used throughout this thesis in Section 3.5 and Section 3.6.

3.1 The general setting

In this thesis we are interested in graph property testing. As property testing was first intro-

duce for functions over finite fields, it is natural to consider graphs as functions representing

their adjacency matrix or adjacency list. In the literature, especially when property testing

is consider more generally then just for graphs, this is sometimes done. However, as we want

to consider structural properties of graphs, we typically want properties to be invariant under

graph isomorphisms. In this sense graph property testing deviates from property testing of

functions and hence we would like to take a slightly different route of introducing property test-

21

22 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

ing in this section without using the generality needed when relating the complexity of different

property testing models via reductions.

Property testing is concerned with solving a relaxed version of the problem of deciding

whether a given input has a certain property. In the following we will explain what classes

of inputs, which relaxed decision problem and what model of computation we consider. As

property testing can be considered in different contexts, we will introduce property testing

models.

Input class: The class of inputs of a property tester can be any class of objects where each

object of the class has a finite encoding. Therefore, let C be a class of objects and ∼= be an

equivalence relation on C, which we call isomorphism. We call two objects A,B ∈ C isomorphic

if they are in the same equivalence class of ∼=.

In the case of graphs we consider ∼= to be the graph isomorphism relation and on the class

of functions or strings we let ∼= be the equivalence relation in which each equivalence class

contains only one object.

We require objects to be finite in the sense that there should exist a finite encoding of the

objects in C. An encoding is an injective function code : C → Σ∗, where Σ is a finite alpha-

bet and Σ∗ the Kleene closure of Σ, having the property that |code(A)| = |code(B)| for all

isomorphic objects A,B ∈ C. We define the size of an object A ∈ C, denoted |A|, to be the

length of its encoding as a string over the alphabet Σ. We set C|n := {A ∈ C | |A| = n} to

be the subset of C of objects of a certain size n ∈ N. Note that the existence of an injective

encoding code : C → Σ∗, where Σ is a finite alphabet, implies that the class C is a countable set.

Relaxed decision problem: A property on C is a subset P of C closed under isomorphism.

We say that an objects of C has the property P if and only if it is contained in P . In classical

complexity theory we consider the following decision problem.

Decision problem for P on C

Input: An object A of C.

Aim: Decide whether A has the property P .

In property testing we want to solve a relaxation of this classical decision problem. This requires

us to have a distance function dist : C × C → R ∪ {∞} on the set of objects C, for which the

following properties hold for all objects A, B and C of C.

3.1. THE GENERAL SETTING 23

(D1) dist(A,B) = 0 if and only if A and B are isomorphic. (definiteness)

(D2) dist(A,B) = dist(B,A). (symmetry)

(D3) dist(A, C) ≤ dist(A,B) + dist(B, C). (triangle inequality)

Note that dist can be considered as being a metric, where in addition we allow objects having

distance infinity.

Remark 3.1.1. Note that there always exists such a distance function. Since isomorphism

is an equivalence relation, we can always pick the trivial distance function for every class of

objects C, which is defined by

dist(A,B) :=

0, if A and B are isomorphic

∞, otherwise.

The function dist allows us to define how far we consider an object from having a property

P . For a property P we define the function distP : C → R ∪ {∞} by

distP (A) :=

∞, if P = ∅

minB∈P {dist(A,B)}, otherwise
.

Let ε ∈ (0, 1). We want to consider an object A of C as being ε-close to the property P if

the distance of A to the property P in relation to its size is smaller than ε, i. e. if

distP (A)

|A|
≤ ε.

We say that the object A is ε-far from having the property P , if A is not ε-close to having P .

For any property P let

ε -farC(P) := {A ∈ C | A is ε-far from P}

be the set of all structures, that are ε-far from P .

Fixing two parameters ε ∈ (0, 1), called the proximity parameter, and δ ∈ (0, 1
2), called

the error probability, we can formulate the following relaxation of the decision problem defined

above.

24 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Relaxation of the decision problem for P

on C with parameters ε, δ

Input: An object A of C.

Aim: Make a conjecture on whether A has the

property P , where the conjecture has to be cor-

rect with probability at least 1 − δ if A is in

P ∪ ε -farC(P).

In property testing we are concerned with solving this relaxed decision problem.

Model of computation: In order to define what a property tester is, we have to consider

the model of computation used. A property tester is given oracle access to its input object. We

can think of oracle access to an object A as a function ansA : QA → AA, where the domain QA

and codomain AA are finite, dependent on A and are property testing model specific. We call

QA the set of permissible queries for A, AA the set of possible answers, an element q ∈ QA a

query and ansA(q) the answer to the query q. In order for the property tester to determine the

set of permissible queries QA it is given some auxiliary information auxA ∈ N` as input where

` ∈ N depends on the model. Here auxA should not encode the object A and hence typically

the size of auxA should be in o(|A|). Specific to the model there has to be a way to determine

the set of permissible queries QA from the auxiliary information. Furthermore, the answer to

a query typically should be considered to take a constant amount of time. Additionally, we

would like the answers to all permissible queries to identify the input object A ∈ C, that is

{(q, ansA(q)) | q ∈ QA} 6= {(q, ansB(q)) | q ∈ QB} for A,B ∈ C, A 6= B.

We define a query access model of C to be a tuple

QA =
(
`, (auxA)A∈C , (QA)A∈C , (AA)A∈C , (ansA)A∈C

)
,

where ` ∈ N, auxA ∈ N` and ansA : QA → AA for every A ∈ C, where QA, AA are finite sets

with the properties described above.

Property testing We will first introduce what we understand under a property testing model

before we introduce property testing.

Definition 3.1.2 (Property testing model). A property testing model is a tuple(
C,∼=,Σ, code,dist,QA

)
,

3.1. THE GENERAL SETTING 25

where C is a class of objects, ∼= is an equivalence relation on C, code : C → Σ∗ is an encoding

of C, dist : C × C → R ∪ {∞} is a distance function with properties (D1), (D2) and (D3) and

QA is a query access model of C.

From now on, if the property testing model
(
C,∼=,Σ, code,dist,QA

)
is uniquely identified

by the class C then we do not explicitly state which property testing model we consider.

Definition 3.1.3 (Property tester). Let P be a property on C. Let ε ∈ (0, 1) and δ ∈ (0, 1
2).

We call a probabilistic algorithm T , which is given auxiliary information auxA about the input

object A and has oracle access to A via queries, an ε-tester for P on C with error probability

δ, if T

– accepts A with probability 1− δ if A ∈ P .

– rejects A with probability 1− δ if A ∈ ε -farC(P).

As is apparent from the definition, a property tester solves the relaxed decision problem

defined above. We are also interested in property testers, which always make the correct

decision for objects having the property.

Definition 3.1.4 (One-sided error property tester). Let P be a property on C. A property

tester T is called a one-sided error tester if T accepts every A of C which has property P

with probability 1. In contrast, we sometimes call property testers two-sided error testers to

explicitly express that they are not required to be one-sided error testers.

We consider the complexity of a property testers in terms of the amount of queries it makes.

Definition 3.1.5 (Query complexity). Let P be a property on C. Let ε ∈ (0, 1) and δ ∈ (0, 1
2).

Let T be a property tester for P on C with parameters ε, δ. The query complexity of T is a

function f : N → N, where f(n) gives the maximum number of queries T makes when testing

any structure A ∈ C of size n.

Remark 3.1.6. We consider a query to take constant time. Therefore the query complexity of

a property tester T only provides a lower bound for the running time of the algorithm but it can

also be significantly worse. The query complexity of a tester should therefore be understood

as a measure of the portion of the input object we need to look at to be able to make a good

conjecture about the object having the property and is therefore an interesting invariant of a

property tester.

Next we would like to remark that every given error probability can be improved by repeating

the tester and deciding according to the majority of outcomes. We formalise this in the following

Lemma.

Lemma 3.1.7. Let P be a property on C, ε ∈ (0, 1), δ, δ′ ∈ (0, 1
2), δ > δ′ and f : N→ N. For

every ε-tester T with error probability δ and query complexity f there is k := k(δ, δ′) ∈ N and

an ε-tester T ′ with error probability δ′ and query complexity k · f .

26 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Proof. Let T ′ be the tester which repeats T exactly k := 2 ·
⌈

1
δ·δ′
⌉

+1 times and decides whether

to accept an input if T accepts the input on more than half of the repetitions.

We say that T or T ′ is successful for input A ∈ P ∪ ε -farC(P) if T or T ′ respectively accepts

A if A ∈ P and rejects A otherwise. Let A ∈ P ∪ ε -farC(P). We need to argue that T ′ is

successful for input A with probability at least 1− δ′. Let Xi be the indicator random variable

which is 1 in the event of the i-th repetition of T being successful and −1 otherwise. Let

Yi := Xi − E[Xi] = Xi − δ and Y :=
∑k
i=1 Yi. Using Chernoff bounds (see Theorem A.1.13

in [13]) we get that the probability of more than half of the repetitions of T being successful is

P[T ′ is not successful] = P[Y < −kδ]

< exp(−k
2δ2

2δk
)

≤ exp(− 1

δ′
)

≤ δ′.

Hence T ′ is an ε-tester with error probability δ′ and query complexity kf .

The dependency of the query complexity on δ and δ′ in Lemma 3.1.7 may be improved using

techniques from approximation algorithms.

The above lemma shows that the precise error probability is in fact not relevant to the

asymptotic growth of the query complexity and hence from now on, unless stated otherwise,

the error probability is always 1
3 . An error probability of 1

3 is an arbitrary but widely used

choice.

Definition 3.1.8 (Uniform/non-uniform Testability). Let C be a class of objects, P ⊆ C be a

property on C and f : N→ N a function.

– P is uniformly testable on C with query complexity f , if for every ε ∈ (0, 1) there exist

an ε-tester for P on C with query complexity f .

– P is (non-uniformly) testable on C with query complexity f , if for every ε ∈ (0, 1) and

n ∈ N there exist an ε-tester for P |n on C|n with query complexity f(n).

– We say that P is uniformly/(non-uniformly) testable on C if P is uniformly/(non-uniformly)

testable on C with query complexity f and f is a constant function.

As indicated in the definition, by testable we mean non-uniformly testable.

Remark 3.1.9. From the definition it is clear that if a property P ⊆ C is uniformly testable

on C then P is also testable on C.

For further reading on property testing we refer the reader to the book [69] by Goldreich or

one of the surveys [57,116].

3.2. THE BOUNDED DEGREE MODEL 27

3.2 The bounded degree model

In this section we will introduce the bounded degree model for simple, undirected graphs and for

relational structures. In both models the key is to encode graphs/structures in an adjacency list,

which keeps the size of the encoding linear in the number of vertices as the degree is bounded

by a constant. We further assume that every vertex/element can be stored in constant space.

The bounded degree model for graphs: In this section we introduce the bounded degree

model for property testing of simple, undirected graphs from [73].

Let d ∈ N and Cd be the class of graphs of bounded degree d with graph isomorphism as

equivalence relation. We consider d to be a constant which is known to any property tester

testing a property on Cd.

We will encode a graph into an adjacency list. Note that this encoding depends on the

choice of an order on V (G) and an order on the set of all neighbours of any vertex in V (G).

We will therefore assume that V (G) = [n] where n := |V (G)|. Since a graph is encoded by an

adjacency list and every vertex has at most d neighbours we set the size of the encoding of a

graph G to be d · n.

The following definition of the distance between graphs satisfies the properties (D1), (D2)

and (D3), which can be easily verified using the definition of isomorphisms of graphs.

Definition 3.2.1 (Distance between graphs). Let G and G′ be two graphs. We allow two

types of edge modifications; deleting an edge from E(G) or E(G′) and adding an edge to E(G)

or E(G′). We define the distance between G and G′, denoted dist(G,G′), to be the minimum

number of edge modifications needed to make G isomorphic to G′ or ∞ if we can not make G

and G′ isomorphic by edge modifications, i. e.

dist(G,G′) = min
{
|E|

∣∣∣ E ⊆ {e ⊆ V (G) | |e| = 2},
(
V (G), E(G) E

) ∼= G′
}
∪ {∞}.

Note that dist(G,G′) = ∞ if and only if |V (G)| 6= |V (G′)|. Furthermore, if a graph G is

ε-far from a property P ⊆ Cd then by definition it takes more than εdn edge modifications

to make G have the property P. On the other hand, if G is ε-close to P then there is a set

E ⊆ {x ⊆ V (G) | |x| = 2} of size at most εdn such that the graph (V (G), E(G) E) ∈ P.

A property tester in this model gets the number of vertices n := |V (G)| as auxiliary infor-

mation. This enables the tester to determine the set of permissible queries QG := [n] × [d].

28 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Then AG := [n] and ansG : QG → AG is defined by

ansG(i, j) :=

k if k ∈ [n] is the j-th neighbour of i,

⊥ if i has less then j neighbours

for i ∈ [n], j ∈ [d].

The bounded degree model for relational structures: The following property testing

model for bounded degree relational structures was defined in [86] and extends the bounded

degree model for simple, undirected graphs from [73] and the bidirectional model for directed

graphs from [34].

For the rest of this section, let σ = {R1, . . . , R`} be a relational signature. Let d ∈ N
and Cd be a class of σ-structures of bounded degree d with isomorphism of relational structures

as equivalence relation. We assume d and σ to be known to any property tester operating on Cd.

We will use an encoding of σ-structures similar to adjacency lists.

Definition 3.2.2 (Encoding of bounded degree relational structures). Let A be a σ-structure

and n := |A|. We assume that A = [n]. We encode the σ-structure A into a tuple LA =

(L1, . . . , Ln), where Li ∈
(
{⊥} ∪

⋃`
i=1{Ri} × [n]ar(Ri)

)d
is defined by

(Li)j :=

⊥ if degA(i) < j,

(R, u) if u is the j-th tuple containing ai and u ∈ RA,

for every i ∈ [n], j ∈ [d]. Note that LA depends on the choice of an order on A and an order

on the set of all tuples containing a specific element of A.

Note that for a σ-structure A with a degree bounded by d ∈ N the size of the encoding

is bound by nd · ar(σ). For simplicity we let |A| = nd which is not a restriction as ar(σ) is a

constant and can be “hidden” in ε.

Definition 3.2.3 (Distance between relational structures). Let A and B be two σ-structures.

We allow two types of tuple modifications; deleting a tuple from RAi or RBi and adding a tuple to

RAi or RBi for any i ∈ {1, . . . , `}. We define the distance between A and B, denoted dist(A,B),

to be the minimum number of tuple modifications we need to transform A into a structure

isomorphic to B or ∞ if we can not make A and B isomorphic by tuple modifications.

It can be easily seen that this distance satisfies properties (D1), (D2) and (D3). In addition

for any two σ-structures A and B we have that dist(A,B) =∞ if and only if |A| 6= |B|.

3.3. AN EXAMPLE OF A PROPERTY TESTER: TESTING SUBGRAPH FREENESS 29

A property tester in this model gets the number of elements n := |A| of the input structure

A as auxiliary information. This enables the tester to determine the set of permissible queries

QA := [n] × [d]. The set of query answers AA is the set {⊥} ∪
⋃`
i=1{Ri} × [n]ar(Ri) and

ansA : QA → AA is defined by ansA(i, j) := (Li)j for every i ∈ [n] and j ∈ [d], where

LA = (L1, . . . , Ln) is the encoding of A defined in Definition 3.2.2.

3.3 An example of a property tester: Testing subgraph

freeness

The aim of this section is to develop an intuition for the way property testers operate. For this

we consider the problem of testing subgraph freeness. This problem is testable and in fact a

tester was given in [73]. The tester explained here is similar to the tester for subgraph freeness

described in [69].

Let d ∈ N be fixed. Consider some graph F ∈ Cd. We say that a graph G is F -free if G does

not contain an induced subgraph isomorphic to F . Let PF ⊆ Cd be the subset of all graphs

that are F -free.

Theorem 3.3.1 (Theorem 5.2 from [73]). For every F ∈ Cd the property PF is testable on Cd.

Proof. We assume that F contains more than one vertex as testing whether a graph is K1-free

can be trivially done by rejecting every graph with at least one vertex. For simplified analysis

we also assume that F is connected. Generalisation to graphs with more than one connected

component is straight forward.

Let r be the radius of F . We call a vertex v ∈ V (F) with distF (v, u) ≤ r for every u ∈ V (F)

a centre of F . To obtain a property tester for PF let us first consider the following algorithm.

Algorithm 1: FindF
Query access: G ∈ Cd
Input : n := |V (G)|

1 Sample a vertex v ∈ V (G) uniformly at random;

2 Do a breadth-first search to depth r from v to obtain some subgraph H of G;

3 if H contains F as a subgraph then

4 Reject G;

5 else

6 Accept G;

7 end

Let ε ∈ (0, 1). We now let T be the algorithm that, given query access to a graph G, repeats

FindF k :=
⌈

4
ε

⌉
times, accept G if every repetition of FindF accepts G and rejects G otherwise.

30 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Let us first observe that if G ∈ PF then the above algorithm will accept G (T is a one-sided

error tester). We use the following claim.

Claim 1. If G is ε-far from PF then it contains at least εn vertices which are the centre of a

copy of F .

Proof of Claim 1. Assume G contains less than εn vertices which are the centre of a copy of F .

Isolating every centre of a copy of F takes at most εdn edge removals and results in a graph

which is F -free. Hence G is ε-close to PF which proves the claim by contraposition. �

Now assume G is ε-far from PF . By Claim 1 we know that G contains at least εn vertices

which are the centre of a copy of F . Hence FindF rejects G with probability ε. Let Xi be the

indicator random variable which is 1 in the event of the i-th repetition of FindF rejects G and

−1 otherwise. Let Yi := Xi − E[Xi] = Xi − ε and Y :=
∑k
i=1 Yi. Using Chernoff bounds (see

Theorem A.1.13 in [13]) we get that the probability of all repetition of FindF accepting G is

P[

k∑
i=1

Xi = −k] = P[Y < −k]

< exp(− k2

2εk
)

≤ exp(−2)

≤ 1

3
.

Hence T accepts G with probability at least 2
3 .

Furthermore, the query complexity of T is clearly constant since the query complexity of

FindF depends only on r and d. This proves that T is an ε-tester for PF . Hence PF is

testable.

We would like to remark that what is shown in Claim 1 is sometimes referred to as a

“removal lemma”. Proving the appropriate “removal lemma” is the key part in the analysis of

a property tester.

3.4 Proximity oblivious testing

In proximity oblivious testing we consider particularly simple property testers where some basic

test is repeated a number of times. Here the basic test does not depend on the proximity pa-

rameter ε and the probability of rejecting an input behaves like a monotonically non-decreasing

function η of the distance of the input to the property. We call such a basic test a proximity

oblivious tester (POT). Repeating a POT some number in Θ
(

1
η(ε)

)
times yields an ε-tester.

Proximity oblivious testing intuitively is one-sided considering that the rejection probability

3.5. CLOSURE PROPERTIES OF TESTABILITY 31

should be proportionate to the distance of an input to the property. Here we will only con-

sider one-sided error POTs and hence sometimes omit stating that a POT is one-sided error.

However, one can also consider two-sided error POTs (see e. g. [69]).

Definition 3.4.1 ((One-sided error) POT). Let C be a class of object and P =
⋃
n∈N P |n be a

property on C. Let η : (0, 1]→ (0, 1] be a monotonically non-decreasing function. A proximity-

oblivious tester (POT) with detection probability η for P |n is a probabilistic algorithm which,

given query access to a structure A ∈ C|n

– accepts A with probability 1 if A ∈ P |n.

– rejects A with probability at least η
(

distP |n(A)
)

if A /∈ Pn.

The query complexity of a POT is the maximum number of queries the POT makes as a function

in the size of the input. We say that a property P is proximity oblivious testable if for every

n ∈ N, there exists a monotonically non-decreasing function η : (0, 1] → (0, 1] and a POT for

P|n of constant query complexity with detection probability η.

Example 3.4.2. The algorithm testF from Section 3.3 is a POT with detection probability

η(ε) = ε as if G has distance ε from PF then G contains at least ε|V (G)| centres of copies

of F and hence FindF rejects G with probability ε. We further demonstrate in the proof of

Theorem 3.3.1 how to obtain a property tester from the proximity oblivious tester FindF for

PF by repeated application of FindF .

We refer to [69] for a proof of the statement that repeating a POT Θ(1
η(ε)) times yields a

property tester, which implies the following theorem.

Theorem 3.4.3 (Theorem 1.9 in [69]). Let C be a class of object and P be a property on C. If

P has a one-sided error POT with query complexity f(n) and with detection probability η then

P has a one-sided error ε-tester with query complexity f ′ ∈ O
(
f(n)
η(ε)

)
for every ε ∈ (0, 1).

In particular, if the property P is proximity oblivious testable then P is testable.

3.5 Closure properties of testability

In this section we show that property testing is closed under union, but is not closed under inter-

section nor taking the complement. Union, intersection and complements are of particular inter-

est considering testing properties defined in logic. We obtain that if Pϕ and Pψ are testable prop-

erties for two FO-sentences ϕ and ψ then Pϕ∨ψ is also testable. Let
(
C,∼=,Σ, code,dist,QA

)
be any property testing model.

Lemma 3.5.1. Let P, P ′ ⊆ C be properties on C. Let ε ∈ [0, 1] and f, f ′ : N → N. If there

is an ε-tester for P on C with query complexity f and there is an ε-tester for P ′ on C with

query complexity f ′, then there is an ε-tester for the property P ∪P ′ on C with query complexity

7(f + f ′).

32 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Proof. Let T be an ε-tester for P with query complexity f and T ′ an ε-tester for P ′ with query

complexity f ′. We first obtain an ε-tester T̃ which on input A ∈ C operates as follows. T̃

repeats the tester T seven times with input A and decides whether to accept A depending on

the majority of outcomes. If A ∈ P ∪ -farC(P) the tester T̃ makes the correct decision with

probability (
7

4

)(
2

3

)4(
1

3

)3

+

(
7

5

)(
2

3

)5(
1

3

)2

+

(
7

6

)(
2

3

)6
1

3
+

(
2

3

)7

≥ 0.82.

Hence T̃ is an ε-tester with error probability 0.82. In the same way we obtain an ε-tester T̃ ′

from T ′ with error probability 0.82. Now we let T∪ be an algorithm that, given oracle access

to an object A ∈ C, operates in the following way; T∪ runs T̃ and T̃ ′ on A and accepts A if

either T̃ or T̃ ′ accept A.

First confirm that the query complexity of T∪ is indeed 7(f + f ′). To prove that T∪ is an

ε-tester let us first assume that A ∈ P ∪ P ′. Since the decisions of T̃ and T̃ ′ are independent,

the probability of T∪ accepting A satisfies the following inequalities

P[T∪ accepts A] ≥ P
[
T̃ accepts A and

T̃ ′ rejects A

]
+ P

[
T̃ rejects A and

T̃ ′ accepts A

]
+ P

[
T̃ accepts A and

T̃ ′ accepts A

]
≥ P[T̃ accepts A] + P[T̃ ′ accepts A]− P[T̃ accepts A] · P[T̃ ′ accepts A]

≥ 2

3
,

where the third inequality holds because P[T̃ accepts A] ≥ P[T̃ accepts A] · P[T̃ ′ accepts A],

P[T̃ ′ accepts A] ≥ P[T̃ accepts A] · P[T̃ ′ accepts A] and at least one of the two probabilities

P[T̃ accepts A] and P[T̃ ′ accepts A] is at least 2
3 depending on whether A ∈ P \P ′ or A ∈ P ′\P

or A ∈ P ∩ P ′.

Now let A be ε-far from having property P ∪ P ′. Since A has distance greater than ε|A|
from any structure in P and any structure in P ′, A is ε-far from P and ε-far from P ′ (see

Figure 3.1). Since the decision of T̃ and T̃ ′ are independent this means for the probability of

T∪ rejecting A

P[T∪ rejects A] ≥ P
[
T̃ rejects A and

T̃ ′ rejects A

]
≥ 0.822

≥ 2

3
.

This proves the existence of a tester with the required properties.

3.5. CLOSURE PROPERTIES OF TESTABILITY 33

C C

P

P ′

P

P ′

P

C

Figure 3.1: Union, intersection and complement of properties.

Corollary 3.5.2. Let C be a class of objects and P, P ′ ⊆ C properties on C. If P and P ′ are

testable on C, then P ∪ P ′ is a testable property on C.

Proof. Let ε ∈ [0, 1] and n ∈ N. Since P and P ′ are testable, there exists an ε-tester for P |n
on C|n and an ε-tester for P ′|n on C|n with constant query complexity. By Lemma 3.5.1

this guarantees the existence of a constant time ε-tester for (P ∪ P ′)|n and hence P ∪ P ′ is

testable.

Corollary 3.5.2 also holds in the case of uniform testability, but is not used in this thesis.

Remark 3.5.3. Figure 3.1 shows why for the boolean operations intersection and comple-

ment we can not show closure for property testing using a similar argument as in the proof of

Lemma 3.5.1. In the case of the intersection of two properties P, P ′ ⊆ C an object A can be

both ε-close to P and P ′ while being ε-far from P ∩ P ′. The decision of both the tester for

P and P ′ is therefore uncertain and hence a tester for P ∩ P ′ can not use the decisions made

by the testers for P and P ′. In the case of the complement of a property P ⊆ C the property

C \ P contains objects that are not in P but ε-close to P and hence rejection of the tester for

P can not be used in deciding property C \ P . In fact in general property testing is neither

closed under intersection nor complement as we will argue in the following.

Lemma 3.5.4. Property testing is not closed under taking complement.

Proof. We consider the bounded degree model for graphs. Let d ∈ N and P ⊆ Cd be the

property of graphs of bounded degree d, that are not bipartite. Then for every ε ∈ (0, 1) the

property P can be tested using the tester which accepts every input graph of large enough size

and calculating an exact answer for small graphs. This tester works because every graph (of

large enough size) is ε-close to being not bipartite, as we only need to ensure one triangle by

removing at most 3 edges to ensure that the graph has 3 vertices of degree < d and then adding

3 edges to form a triangle on these 3 vertices. But the complement of P , i. e. the property of

being a bipartite graph, was shown not to be testable in [73].

34 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Lemma 3.5.5. Property testing is not closed under intersection.

Proof. We consider the bounded degree model for graphs. Let d ∈ N, d ≥ 2 and P ⊆ Cd be

the property of bipartite graphs. Let further P4 ⊆ Cd be the property of graphs that contain a

triangle and P¬4 ⊆ Cd be the property of all triangle-free graphs. Consider the two properties

P ∪P4 and P ∪P¬4. P ∪P4 is testable as every large graph is ε-close to P4 and hence we can

accept all graphs larger than some constant and compute the answer precisely for small graphs.

Furthermore, P ∪ P¬4 = P¬4 and we know from Section 3.3 that P¬4 is testable. But since

(P ∪P4)∩ (P ∪P¬4) = P and P is not testable (see [73]) property testing is not closed under

intersection.

3.6 Local reductions

In this section we will introduce local reductions. Assume we want to reduce testing a property

P ⊆ C in some property testing model to testing property P ′ ⊆ C ′ in some other model and we

have a tester T ′ for P ′. This means that, given query access to some input object A, we need

to be able to decide whether to accept A using tester T ′ as a black box. We can do this if for

any object A ∈ C there is an object B ∈ C ′ such that the probability with which T ′ accepts B
coincides with an appropriate acceptance probability for A and we can simulate query access

to B using query access to A. We will formalise this in the following.

Let
(
C,∼=,Σ, code,dist,QA

)
and

(
C ′,∼=′,Σ′, code′,dist′,QA′

)
be two property testing mod-

els with query access models QA =
(
`, (auxA)A∈C , (QA)A∈C , (AA)A∈C , (ansA)A∈C

)
and

QA′ =
(
`′, (aux′A)A∈C′ , (Q

′
A)A∈C′ , (A

′
A)A∈C′ , (ans′A)A∈C′

)
.

Definition 3.6.1. Let P ⊆ C and P ′ ⊆ C ′ be two properties. A local reduction from P to

P ′ is a function f : C → C ′, for which there exists constants k, t ∈ N (independent of n), a

computable function g : {auxA | A ∈ C} → {aux′A | A ∈ C ′} and a function h : (0, 1) → (0, 1)

such that for every A ∈ C the following properties hold, where B := f(A).

(LR1) If |A| = n then |B| = kn.

(LR2) g(auxA) = aux′B.

(LR3) For every query q ∈ Q′B we can adaptively1 compute t queries q1, . . . , qt ∈ QA such

that the answer to the query q can be computed from the answers to the t queries

q1, . . . , qt. Formally this means that there are computable functions Si : Q′B × (QA ×
AA)i → QA, i ∈ [t] and T : Q′B× (QA×AA)t → A′B such that for every query q ∈ Q′B
the following holds.

ans′B(q) = T (q, (q1, a1), . . . , (qt, at)),

1By adaptively computing queries we mean that the selection of the next query may depend on the answer
to the previous query.

3.6. LOCAL REDUCTIONS 35

A Bf

C C ′

T ′T

?

simulate

ans′B(q) =?

S0(q), S1

(
q, (q1, ansA(q1))

)
, . . .

T (q, (q1, a1), . . . , (qt, at))

decision

Figure 3.2: Simulating a tester using a local reduction.

where

q1 := S0(q),

qi := Si−1

(
q, (q1, a1), . . . , (qi−1, ai−1)

)
and

aj := ansA
(
qj
)

for i ∈ {2, . . . , t}, j ∈ {1, . . . , t}.

(LR4) If A ∈ P then B ∈ P ′.

(LR5) If A is ε-far from P then B is h(ε)-far from P ′.

Lemma 3.6.2. Let P ⊆ C, P ′ ⊆ C ′ be two properties. If there is a local reduction from P

to P ′ then there is a function h : (0, 1) → (0, 1) and constants k, t ∈ N such that if for some

ε ∈ (0, 1) and n ∈ N there is a h(ε)-tester for P ′|kn on C|kn with query complexity f , then

there is an ε-tester for P |n on C|n with query complexity t · f(n).

Proof. Let f̃ be a local reduction from P to P ′ with k, t, g, h as in Definition 3.6.1. Let ε ∈ (0, 1),

n ∈ N and let T ′ be a h(ε)-tester for P ′|kn on C ′|kn with query complexity f . We will

construct an ε-tester T for P |n on C|n as follows. Given auxA as input and oracle access to

an object A ∈ C|n we will first compute g(auxA). (LR2) implies that g(auxA) = aux′
f̃(A)

.

Since f̃(A) ∈ C|kn by property (LR1), we can simulate T ′ on f̃(A) with input aux′
f̃(A)

in

the following way. Whenever T ′ makes a query q ∈ Q′
f̃(A)

we make t queries q1 := S0(q),

q2 := S1

(
q, (q1, ansA(q1))

)
, . . . , qt := St−1

(
q, (q1, ansA(q1)), . . . , (qt−1, ansA(qt−1))

)
and answer

q with T (q, (q1, ansA(q1)), . . . , (qt, ansA(qt))) which is equal to ans′
f̃(A)

(q) by (LR3). We then

accept A if T ′ accepts f̃(A).

Since T ′ is a property tester for P ′|kn the properties (LR4) and (LR5) of local reductions

guarantee that T is an ε-tester for P |n. Furthermore since every query of T ′ is simulated by t

queries T has query complexity t · f .

36 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Lemma 3.6.3. Let P ⊆ C and P ′ ⊆ C ′ be two properties. If there exist a local reduction from

P to P ′ and P is not non-uniformly testable with o(f(n)) queries for some function f : N→ N,

then P ′ is not non-uniformly testable with o(f(n)) queries.

Proof. Let f̃ be a local reduction from P to P ′ with t, k, g, h as in Definition 3.6.1. Towards

a contradiction assume that for every ε ∈ (0, 1) and every n ∈ N there is an ε-tester for P ′|n
on C ′|n with query complexity f ′(n) ∈ o(f(n)) for some function f ′ : N→ N. Hence for every

ε ∈ (0, 1) and every n ∈ N there is a h(ε)-tester for P ′|kn on C ′|kn with query complexity

f ′(kn). Then for every ε ∈ (0, 1) and every n ∈ N there is an ε-tester for P |n on C|n with query

complexity t · f ′(kn) ∈ o(f(n)) by Lemma 3.6.2. This yields a contradiction to P not being

non-uniformly testable with o(f(n)) queries.

Example 3.6.4. Let σ = {R1, . . . , R`} be a relational signature, d ∈ N, d′ := d(ar(σ)− 1) and

P ⊆ Cd be a property such that G(A) ∼= G(B) implies that either A,B ∈ P or A,B /∈ P for any

two structures A,B ∈ Cd. We will show that for such properties “taking the Gaifman graph”

is a local reduction from P in the model of σ-structure of bounded degree d to the property

P := {G ∈ Cd | there is A ∈ P such that G(A) = G}

in the model of bounded degree d′ graphs. For this let us define g(n) = n, h(ε) = ε
2d ar(σ) , k = 1

and f(A) = G(A) for every n ∈ N, ε ∈ (0, 1), A ∈ Cd. Then for constant t = d · ar(σ) and any

A ∈ Cd on n elements properties (LR1) to (LR5) hold as explained in the following.

(LR1) Is true as the number of vertices of G(A) is equal to the number of elements of A.

(LR2) Is true as the number of vertices of G(A) is equal to the number of elements of A.

(LR3) For i ∈ [t] let

Si

(
(j, k),

(
(q1, a1), . . . , (qi, ai)

))
=
(
j, i mod ar(σ)

)
where

q1 := S0(q),

qi := Si−1

(
q, (q1, a1), . . . , (qi−1, ai−1)

)
and

aj := ansA
(
qj
)

Then T
(

(j, k),
(
(q1, a1), . . . , (qt, at)

))
gives the k-th unique element to appear in the

tuples a1, . . . , at. Obviously ansG(A)((j, k)) = T
(

(j, k),
(
(q1, a1), . . . , (qt, at)

))
for

some adjacency list representation of G(A).

(LR4) If A ∈ P then f(A) ∈ P by definition of P.

3.6. LOCAL REDUCTIONS 37

(LR5) If A is ε-far from P then we can show that G(A) is ε
2d ar(σ)) -far from P. Assume

towards a contradiction that this is not the case. Then there is a graph G ∈ P with

dist(G(A), G) < ε
2 ar(σ) · d

′ · n = ε
2 · n. Then we can construct a structure B such that

G(B) = G by modifying tuples in A as follows. For every edge {u, v} which has to be

added to G(A) to get G we add tuple (u, v, . . . , v) ∈ Aar(σ) to RA for some relation

R with ar(R) = ar(σ). Note that if ar(σ) < 2 then all graphs in P are edgeless and

hence we do not have to add edges to G(A). For every edge {u, v} which has to be

deleted from G(A) to get G we replace u by v in all tuples containing both u and v.

For this maximally d tuples have to be added to A and maximally d tuples have to

be deleted from A. Therefore B is (2d × ε
2 · n)-close to A. But since G ∈ P there is

a structure B′ ∈ Cd with G(B′) = G. But then B ∈ P since G(B′) = G = G(B) which

contradicts the assumption that A was ε-far from P .

Using the local reduction from our example we can show the following theorem which was

also shown by Adler and Harwath [2, Theorem 5].

Theorem 3.6.5. Let σ = {R1, . . . , R`} be a relational signature and d ∈ N Let P ⊆ Cd be a

property. Assume that for any two structures A,B ∈ Cd the relation G(A) ∼= G(B) implies that

either A,B ∈ P or A,B /∈ P . Then if the property P := {G(A) | A ∈ P} is non-uniformly

testable on the class of bounded degree d′ := d(ar(σ) − 1) graphs, then P is non-uniformly

testable.

Proof. If P is non-uniformly testable on the class of graphs of bounded degree d′ then for

every ε′ ∈ (0, 1) and every n ∈ N there is an ε′-tester for P|n on Cd|n with constant query

complexity f . Using the reduction from Example 3.6.4 and Lemma 3.6.2 we get that for every

ε ∈ (0, 1) and every n ∈ N there is an ε-tester for P |n on Cd|n with constant query complexity

d · ` · f ∈ O(1).

38 CHAPTER 3. BACKGROUND ON PROPERTY TESTING

Chapter 4

Related work

In this Section we will briefly survey related research area. As this thesis combines different

areas of research, there is a variety of related work. Here our main focus is on algorithmic

meta-theorems, property testing, the intersection of the two and lower-bound techniques for

showing non-testability.

4.1 Algorithmic meta-theorems

Algorithmic meta-theorems aim for an algorithm for a class of problems and thus solving a wide

range of problems simultaneously. The development of algorithmic meta-theorems requires to

generalise and unify certain algorithmic techniques, while their negation yields insights into the

limitations of certain approaches.

Logic provides us with a tool for the systematic study of algorithmic complexity. In the

following we consider algorithmic meta-theorems which are formulated for classes of problems

which are definable in some logic. The most well known such algorithmic meta-theorem is

Courcelle’s theorem which states that any property definable in MSO2 can be decided in linear

time on the class of graphs of bounded treewidth [29]. Note that classes of graphs of bounded

treewidth are sparse (for a definition of treewidth see Section 9.3). Further note that MSO is

the extension of FO allowing quantification over sets of vertices, i. e. MSO is recursively defined

in the same way as FO where we extend FO by a collection of set variables, atomic formulas

expressing containment of a vertex in a set and also allow quantification over set variables.

MSO2 is a further extension of MSO allowing quantification over sets of edges. Deciding some

properties defined by an MSO-sentence or MSO2-sentence is computationally hard as many

NP-complete problems can be defined in MSO/MSO2 (e. g. Hamiltonicity can be expressed in

MSO2 but not in MSO and 3-colourability is expressible in MSO).

More precisely, Courcelle’s theorem considers a more general problem then deciding a prop-

erty defined by a MSO2-sentence, i. e. the sentence is considered to be part of the input. For a

39

40 CHAPTER 4. RELATED WORK

logic L and a class C of graphs, the model checking problem of L on C is defined as the following

problem.

Model checking problem of L on C

Input: A sentence ϕ ∈ L and a graph G ∈ C.
Aim: Decide whether G |= ϕ.

While deciding a property defined in FO can be computed in polynomial time [3,88], FO model

checking is PSPACE-complete in general [125] (PSPACE-hardness follows from the PSPACE-

completeness of QBF satisfiability as QBF satisfiability is equivalent to FO model checking with

a suitable fixed input graph). Furthermore, the FO model checking problem is AW[∗]-complete

and thus not likely to be fixed parameter tractable on general graph classes parametrised by

‖ϕ‖ [45], i. e. there is no algorithm for the model checking problem of FO with running time

f(‖ϕ‖)|V (G)|O(1) for some function f : N → N. Nonetheless, FO model checking is tractable

on certain graph classes. Tractability of FO model checking was gradually extended to more

general sparse graph classes by utilising locality of FO. The starting point was Seese’s Theorem

which shows that FO model checking on classes of graphs of bounded degree is fixed-parameter

tractable in linear time [119]. The proof of Seese’s theorem uses Hanf’s theorem and the

boundedness of the number of r-types of bounded degree. This was extended by Frick and

Grohe to provide a linear time (fixed parameter) algorithm for FO model checking on planar

graph classes and classes that are apex-minor free as well as an O(n1+ε) algorithm for classes of

locally bounded treewidth [62]. Flum and Grohe proved that for classes excluding a minor [60]

FO is tractable, which was further extended by Dawar et al. to classes locally excluding a

minor [38]. Dvořák et al. extended this by proving that there is a linear algorithm for FO

model checking on classes of bounded expansion and a O(n1+ε) algorithms for classes of locally

bounded expansion [50]. The most general sparse graph classes known to be tractable for FO

model checking are nowhere dense graph classes due to a result by Grohe et al. [79]. The notion

of nowhere denseness is a notion of sparsity and was introduced by Nešetřil and Ossona de

Mendez [110, 111]. Intuitively, proving tractable FO model checking uses Gaifman’s locality

theorem by checking satisfiability locally on r-neighbourhoods and solving an independent set

problem.

The result from [79] proving tractability of FO model checking on nowhere dense graph

classes is optimal in the sense that FO model checking on somewhere dense classes (classes

that are not nowhere dense), which are closed under taking subgraphs, is intractable [41].

However, the condition of being closed under taking subgraphs is necessary as there are classes

of graphs which are not sparse but allow tractable FO model checking e. g. classes of bounded

cliquewidth [30] and for certain subclasses classes of interval graphs [64].

4.2. PROPERTY TESTING 41

Meta-theorems have also been developed for optimisation problems. Dawar et al. proved

that FO definable optimisation problem admits polynomial time approximation scheme on

classes forbidding at least one minor [39]. More recently, Dvořák has worked on approximation

problems definable in FO on restricted classes of graphs [48,49].

Logic plays an important role in the context of database queries. We can model relational

databases by relational structures, where each table of the database corresponds to a relation

in the structure and each row of a table corresponds to a tuple in the corresponding relation.

In addition we can model queries to a relational database by formulas (with free variables) of

certain logics. Consider a relational structure A representing a relational database and any

formula ϕ(x), then any tuple of elements a for which A |= ϕ(a) is considered an answer to the

query represented by ϕ. A large amount of research has been undertaken considering query

evaluation and enumeration in different settings. Here query evaluation relates to the problem

of computing the set of all tuples that are answers to a given query and query enumeration refers

to the problem of enumerating all answers to a query allowing some delay time between steps,

after a preprocessing phase. Evaluating FO queries is well known to be PSPACE-complete [120].

However, on relational structures of bounded treewidth MSO queries can be evaluated in poly-

nomial time [31], which was improved to linear time in the size of the structure and the size of

the output [59]. The enumeration problems for MSO can be done with delay proportional to the

size of the next output and linear preprocessing on structures of bounded treewidth [15,96]. FO

query enumeration has been shown to be possible with constant delay and linear preprocessing

time for bounded degree relational structures [46, 95], for structures of low degree [47] and for

structures of bounded expansion [96]. For nowhere dense structures enumerating FO queries

can be done with pseudo linear preprocessing [118].

A recent study by Fomin et al. considers the parametrised complexity of edge/vertex edit dis-

tance to satisfying an FO-sentence [61]. It is shown that in general the problem is not tractable,

however, for some fragments of FO the problem is fixed parameter tractable parametrised by

the number of edits.

4.2 Property testing

In computer science we are often faced with the challenge that we need to solve a problem

efficiently which in general does not allow an efficient solution. Randomised algorithms have

provided some inroads towards providing a solution to this challenge. There are two different

varieties of randomised algorithms, exact randomised algorithms with good running time in

the average case (Las Vegas algorithm) or randomised approximation algorithm (Monte Carlo

algorithm). Property testers are algorithms which use randomness to approximate the solution

to a decision problem guaranteeing correctness with high probability. Property testers might

42 CHAPTER 4. RELATED WORK

be used in practice in cases where running an exact algorithm is infeasible due to the size of

the input considered, when an approximate decision with some accuracy guarantees is sufficient

or as a preprocessing heuristic preceding a computationally expensive exact algorithm. Even

though property testing research is of a theoretical nature, there are efforts being made towards

applicability, i. e. developing new testers with good running times as well as improving the

dependency of the query complexity on the proximity parameter ε.

Property testing was first introduced by Rubinfeld and Sudan in 1996 [117]. They introduce

property testing for testing properties of functions over finite domains. Motivated by developing

program checkers Rubinfeld and Sudan formalized a notion of closeness, where a function f is

considered to be ε-close to having a property P , i. e. a class of functions over a finite domain,

if there is a function in P that differs from f only on an ε-fraction of all possible inputs. Note

that in this setting the distance between functions is therefore the number of inputs on which

they differ and a tester is allowed to query the function f by evaluating it for a specific input.

The emphasis of the paper is on finding local characterisations of low degree univariate and

multivariate polynomials that allow property testers.

Since its introduction 25 years ago property testing has received a lot of research interest.

We will survey work considering graph property testing in the following sections. However, there

are several other settings in which property testing is considered, including testing algebraic

properties of functions (see e. g. [16, 26,113]) and distribution testing (see the survey [25]).

4.2.1 The dense model

The notion of property testing as introduced in [117] was extended to testing graph properties

by Goldreich et al. in 1996 in a preliminary version of [71]. In [71] graphs are considered to be

boolean functions on pairs of vertices. This corresponds naturally to graphs being encoded in

an adjacency matrix. Therefore the size of a graph on n ∈ N vertices is considered to be n2.

A property tester is allowed to query this adjacency function, i. e. for a graph G permissible

query are tuples (u, v) ∈ V (G) × V (G). The oracle answers the query (u, v) with 1 if there

is an edge between u and v and 0 otherwise. In order to determine the set of permissible

queries, the property tester gets the number n := |V (G)| of vertices as auxiliary information.

Distance between graphs is defined in the same way as in the bounded degree model, i. e. as the

minimum number of edge modifications necessary to make two graphs isomorphic. However

due to the different encoding size, a graph is ε-close to a property P, if it can be made into

a graph in P with at most εn2 edges modifications. Note that this notion of closeness can

not distinguish “sparse” graphs from each other. This is because for a classes of graphs with

average degree bound by some function f ∈ o(n) and for large enough n ∈ N all graphs in this

class have less then εn2 edges, implying that all large sparse graphs are close to each other.

Therefore the model is unsuitable for sparse graph classes. Furthermore, “sparse” properties

like planarity are trivial to test in this model. The model of property testing on graphs as in-

troduced in [71] is therefore often referred to as the dense model or the adjacency matrix model.

4.2. PROPERTY TESTING 43

Property testing on dense graphs is well understood and closely connected to Szemerédi’s

Regularity Lemma [121]. This connection was finally established and formalised by Alon et

al. who characterised testable properties in the dense model [7] in 2006. This characterisation

result was proceeded by a characterisation of properties testable with a one-sided testers [12]

and a characterisation of for which graphs H, H induced subgraph freeness can be tested with

very small query complexity i. e. polynomial in 1
ε [11].

Among the testable properties in the dense model are for example bipartiteness, k-colourable

(for k > 1) [71], biclique min-bisection, max-clique [69], subgraph freeness (see [4] and citations

therein) and induced subgraph freeness (see [11] and citations therein). Whereas, on the other

hand there are properties that are not testable with Θ(f(n)) queries for any function f ∈ O(n2)

in the dense model [72]. A natural property that can not be tested with o(n) queries is graph

isomorphism [58].

4.2.2 The bounded degree model

The bounded degree model or adjacency list model was introduced by Goldreich and Ron in

1997 [73]. Since their seminal work the bounded degree model received a great amount of

attention. There are several specific properties for which testers have been developed. Testable

properties in the bounded degree model include connectivity, k-edge-connectivity (for k >

1), cycle-freeness, Eulerianity [73], degree regularity [69], outerplanarity [131] and testing Kt-

subdivision freeness (for k > 1) [94]. Furthermore, there are properties which allow for sublinear

(but not constant) query testing, including bipartiteness [74] (lower bound [73]), expansion

[36,75,91,109] (lower bound [73]) and testing cluster structure (extends expansion) [33].

While there are several different testability results for very specific graph problems, more

general result for property testing were obtained by either restricting the class of bounded

degree graphs further, or considering a particular class of properties or restricting testers (to

e. g. one-sided error testers or POT’s). All of these testing results utilise random walks.

In 2009 Czumaj et al. proved that hereditary properties are testable on certain restricted

classes of bounded degree graphs namely hereditary, non-expanding graph classes [35]. Here

a class of graphs is non-expanding if the class contains only weak expanders (i. e. h(G) ∈
O(1/ log2(n)) for every graph G in the class) and a hereditary class of graphs is a class that is

closed under vertex deletion. Non-expanding hereditary graph classes include the class of planar

graphs, classes of bounded genus and graphs with forbidden minors. However, hereditary

properties are not testable with constant query complexity in general as bipartiteness is a

hereditary property and is shown in [73] to take at least 1
4 ·
√
n queries to test, where n is the

size of the input graph.

Partly using ideas from [35], Benjamini et al. showed that every minor-closed graph prop-

erty is testable on bounded degree graphs with constant query complexity [18]. A minor closed

property is a set of graphs, which is closed under edge and vertex deletion as well as edge

44 CHAPTER 4. RELATED WORK

contraction. The query complexity of testing minor-closed properties was, since the seminal

work [18], gradually improved from triple exponential in 1
ε to polynomial in 1

ε employing new

techniques [97, 99]. This work relies on minor closed properties being hyperfinite. The testers

operate using a partition oracle, which given a vertex v returns the part of the hyperfinite par-

tition of the graph which contains v. Such oracles use a constant number of (neighbour) queries

to access a part of the hyperfinite partition. Furthermore, all answers of such a partitioning

oracles are consistent with one hyperfinite partition of the graph. Since the seminal work of

Hassidim et al. [84], partition oracles have been a very useful tool in property testing and have

been used and improved gradually (see e. g. [97–99]).

Finally, this work culminated in testability results for hyperfinite classes and properties.

Newman and Sohler proved that properties of hyperfinite graphs (which includes minor-closed

properties and planarity) are testable in the bounded degree model and that every property

is testable on any class of hyperfinite graphs using similar methods to the work preceding it [112].

Property testing has also been considered for directed graphs in the bounded degree setting.

There are two natural extensions to the bounded degree model for undirected graphs introduced

by Bender and Ron in [17]. In the unidirectional model only the outdegree of graphs is bounded

and testers can only query outgoing edges. In the bidirectional model both indegree and

outdegree are bounded and testers can query both incoming and outgoing edges. Besides the

introductory paper considering acyclicity and connectivity in both models further work includes

some specific results mainly in the bidirectional model [86, 130]. Furthermore, Czumaj et al.

considered the relationship between the two models and showed that every property testable

in the bidirectional model can be tested with sublinear query complexity in the unidirectional

model [34]. Furthermore, Connectivity yields an example of a property which is testable in the

bidirectional model but requires Ω(
√
n) queries in the unidirectional model [17].

4.2.3 Characterisation results in the bounded degree model

While there is no full characterisation of which properties are testable in the bounded degree

model, there are several partial results making progress towards a characterisation. We will

introduce such results in this subsection. The important technical tool used to prove character-

isation result is to show that testers operate in a canonical way. Such canonical tester results

for the bounded degree model were shown in [34, 78] and used (adapted to suit the individual

settings) in each of the following results.

In 2009 Goldreich and Ron classified properties admitting a one-sided error constant query

POT both in the dense and the bounded degree model [76]. We discuss the bounded degree

model characterisation in more detail in Section 8. Properties having a one-sided error POT are

precisely generalised subgraph freeness properties which are non-propagating (see Section 8.1

for definitions). While this gives a characterisation for testability of any property testable with

4.2. PROPERTY TESTING 45

a one sided-error POT, the characterisation depends on the non-propagation condition which

is similar to saying that a slightly restricted modification problem as mentioned in the Intro-

duction (Section 1) is solvable. The authors leave the question when this modification problem

is solvable open. Hence the strength of this characterisation might lie mostly in the distinction

of which testable property admit a one-sided error POT. The notion of one-sided error POT’s

can be extended to two-sided error POT’s, which were studied by Goldreich and Shinkar [77].

While they exhibit several natural properties in different models that have a two-sided error

POT but no one-sided error POT, a characterisation for two-sided error POT’s is not known yet.

Ito et al. gave a characterisation of which monotone properties and which hereditary proper-

ties are testable by a one-sided error constant query property tester in bounded degree directed

graphs [89]. Here both the unidirectional model and the bidirectional model are considered.

Note that a property is called monotone if it is closed under vertex and edge deletion. Their

characterisation states that a monotone property is one-sided error testable if and only if it is

close to a property that is defined by a set of forbidden subgraphs of constant size. A hereditary

property is one-sided error testable if and only if it is close to a property that is defined by a

set of forbidden induced subgraphs of constant size. We would like to emphasise here that the

characterisation is entirely independent of any removal problem being solvable.

Adler and Harwath give combinatorial classifications of testable properties in the bounded

degree model. To obtain this result they introduce a notion of locality of a property P of

bounded degree relational structures roughly stating that if the relative frequency vector of a

structure A is “similar” to the relative frequency vector of a structure A′ ∈ P then A has to

be ε-close to P . In other words, locality means that the modification problem mentioned in the

Introduction (Section 1) is solvable. According to their classification a property is testable if

and only if it is local (see Section 5 for more details). However, a classification for which prop-

erties the modification problem is solvable is unknown. Furthermore, to consider the question

of a characterisation of testable properties in the bounded degree model settled, we would like

a statement which does not require the modification problem to be solvable.

Fichtenberger et al. prove that every (infinite) property of bounded degree graphs contains

an (infinite) hyperfinite subproperty (were a subproperty is simply a subset which is closed

under isomorphism) [56]. The result is obtained by repeatedly making use of a result from

Alon [102, Proposition 19.10] which roughly states that for every graph G there exists a constant

size graph which realises approximately the same neighbourhood distribution as the original

large graph G (see Section 5.2 for more details). However, it is not true that every property

which contains a hyperfinite subproperty is testable as e. g. bipartiteness is not testable [73].

While this result is highly non-trivial and gives us insights into which properties are testable,

a characterisation requires additional new ideas.

46 CHAPTER 4. RELATED WORK

4.2.4 Lower-bound techniques in the bounded degree model

There are three lower bound techniques known for property testing. To obtain lower bounds on

the query complexity of property testers, one can employ Yao’s principle [126]. It states that

the query complexity of a randomised algorithm can be lower bounded by the query complexity

of a deterministic algorithm solving the problem correctly on average for any distribution of

instances. This allows us, to prove a lower bound by showing that there is a distribution of

instances for which any deterministic algorithm fails. This lower bound technique has been

used for example by Goldreich and Ron to prove a Ω(
√
n) lower bound for bipartiteness and

expansion [73], by Yoshida to provide a Ω(n) lower bound for testing CSP’s [127, 128] and by

Bogdanov et al. to prove a Ω(n) lower bound for 3-SAT [22].

We can reduce testing a property with a known lower bound to testing an other property

yielding a lower bound for the other property. In Section 3.6.1 we introduce the notion of local

reductions which reduce property testing problems to one another. Lower bounds proved using

local reduction can be found in [22,70,129] which we will discuss further in Section 9.

Another method to prove property testing lower bounds was developed using reductions

from known lower bound for communication complexity [21]. Roughly, communication com-

plexity refers to the number of bits exchanged in a two party protocol with shared randomness,

which aims to decide whether the two parties private inputs have a certain property. While

in [21] this method was used to prove lower bounds for property testing of functions, recently

the method was extended to graphs by Eden and Rosenbaum [53]. Eden and Rosenbaum

demonstrated the methods effectiveness by providing simpler proofs of known lower bounds in

graph property testing for problems including estimating the number of edges in a graph and

estimating the number of triangles in a graph.

Methods for proving non-testability, i. e. proving that a property can not be tested with

constant query complexity, also arise from the partial characterisation results from the previous

subsection. For example, an easy corollary of the result from Fichtenberg et al. [56] is that

every infinite property of expanders can not be tested in the bounded degree model as it can

not contain a hyperfinite subproperty.

4.2.5 The general model

While most of the research in graph property testing focuses on the dense and the bounded

degree model, there have been some efforts made into developing testers, which work well for

all graphs. However this is not straight forward and results are very hard to obtain. The most

important question to ask in this context is how graphs should be represented and what types

of queries should be allowed.

4.2. PROPERTY TESTING 47

One could consider extending the bounded degree model to more general sparse classes.

Parnas and Ron introduced a model in which a graph is represented as an adjacency list and a

tester is allowed degree and neighbour queries, which allows the consideration of classes of graphs

of unbounded degree [114]. They show testability results for testing the diameter of a graph.

However, results in [114] are mainly aimed at sparse graph classes as query complexities grow

proportional to the relation of edges to vertices. Furthermore Czumaj and Sohler characterised

which properties of planar graphs can be tested in this model [37].

Kaufman et al. considered a model in which degree queries, neighbour queries and adjacency

queries are allowed and the size of graph is considered to be the number of edges [93]. This

model is suitable for input graphs of all edge densities and hence we call this model the general

model. Kaufman et al. develop a tester for bipartiteness in this model with an almost tight

lower bound. Furthermore, Alon et al. considered testing H-freeness in the general model

especially analysing the query complexity needed dependent on the edge density [8].

Furthermore, Iwama and Yoshida consider parametrised complexity in the general model

extended by random edge queries [90]. They show testability for some parametrised graph prob-

lems that are trivial on bounded degree graphs as well as dense graphs including k-vertex cover,

k-feedback vertex set, k-multicut, k-path-freeness and k-dominating set for k ≥ 1. This work

applies standard parametrized complexity methods (such as branch and bound) for property

testing.

4.2.6 Testing properties defined by logical formulas

The study of testing properties defined by logic was first proposed by Alon et al. in 1999 in a

preliminary version of [9]. They show that regular languages are testable with constant query

complexity (i. e. deciding for a word whether it is in a given regular language) in a property

testing model for strings equipped with Hamming distance. Since regular languages can be

defined in MSO [24], their result shows testability for a certain class of MSO definable proper-

ties. Magniez and Rougemont prove testability of regular (ranked) tree languages in a model

considering edit distance with an additional operation called moves [103], extending the meth-

ods from [9]. Regular tree languages are also MSO definable [44, 122]. Testability of regular

(ranked) tree languages considering edit distance is not known and stated as an open problem

in [103].

The study of logically defined properties was further developed by Alon et al. in 1999 [5].

They study testability of FO definable properties in the dense model. Their result states that

FO-sentences in Σ2 define properties that are testable with a constant number of queries, while

there is a sentence in Π2 which defines a non-testable property. The testability result is obtained

by showing that satisfying a sentence in Σ2 is equivalent to some generalised colouring problem.

To prove testability of these generalised colouring problems the authors obtain a variation of

Szemerédi’s Regularity Lemma. The non-testable property defined by a sentence in Π2 is

48 CHAPTER 4. RELATED WORK

indistinguishable to some graph isomorphism problem, which is shown to be hard to test in the

dense model. The methods used in [5] are not applicable in the bounded degree model.

Recall that Newman and Sohler’s result states that on a hyperfinite class of graphs any

property is testable [112]. Considering the class Ctw
d,k of graphs of bounded degree d and bounded

treewidth k, Newman and Sohler’s result implies testability of any property on Ctw
d,k. This is due

to the class of graphs of treewidth at most k being minor-closed, which implies hyperfiniteness of

Ctw
d,k. However, the testers obtained in [112] are non-uniform. Towards practical applications of

property testing, non-uniformity is problematic. Consider the property P containing precisely

all graphs on n vertices for which n is the Gödel number of a Turing machine halting on the

empty word. As the halting problem is undecidable [123], property P is undecidable. However,

P is non-uniformly testable. Recall that non-uniform testability requires the existence of an

ε-tester for the problem restricted to graphs with n vertices for every n ∈ N. Hence non-

uniform testability of P follows as for every n a tester exists, i. e. either the tester accepting

every graph or the tester rejecting every graph depending on whether the Turing machine with

Gödel number n halts on the empty string.

Taking a step towards practical application, Adler and Harwath generalise Newman and

Sohler’s result to relational structures [2] and show that for properties P definable in monadic

second order logic with counting (CMSO), there is a uniform tester for P on Ctw
d,k with constant

query complexity and poly-logarithmic running time. Here CMSO extends MSO by first-order

modular counting quantifiers ∃m, where ∃mϕ is true in a structure if the number of its elements

for which ϕ is satisfied is divisible by m.

The result from [2] was further extended by Adler and Fahey [1]. They introduce a new

model using an alternative distance function, which allows element modification in addition to

tuple modification. The main result obtained in [1] states that uniform testability of properties

definable in CMSO on Ctw
d,k in this new model is possible with constant query complexity and

constant running time.

4.2.7 Connection to learning and streaming algorithms

Property testing is closely related to the areas of learning and streaming algorithms. In the

PAC-learning (Probably Approximately Correct) model, as introduced in [124], we are given a

concept class, i. e. a set of subsets of a universe, and our aim is to identify a target concept by

sampling elements of the universe and getting the information, if the elements are in the target

concept. We require a PAC-learning algorithm to be able to output with high probability a

concept that approximates the target concept well for every target concept in the concept class.

Goldreich et al. proved in [117] that PAC-learning with a certain sample complexity implies

that the concept class is a testable property with asymptotically similar query complexity.

However, the bounded degree model for example does not fit the setting in which we can

consider PAC-learning because query access is not a boolean function.

PAC-learning has been considered in connections with logic. In this setting, introduced by

4.2. PROPERTY TESTING 49

Grohe and Turán [82], a background structure A and k ∈ N are fixed. The universe is Ak

and the concept class is the set of all sets of tuples, that can be defined by an FO-formula

with k free variables and possibly some other properties (like bounded quantifier rank). Here

a set of tuples X ⊆ Ak is definable by a formula ϕ(x) if A |= ϕ(a) if and only if a ∈ X.

PAC-learning has been proved to be possible in this setting for different types of background

structures and different restrictions on formulas (see e. g. for recent work in this area [19,20,81]).

Another related algorithmic framework are streaming algorithms (see e. g. the survey [105]).

We consider streaming algorithm which obtains a stream of the edges of a graph and have to

solve a problem for the graph represented by the stream using a sublinear (in the size of the

graph) amount of space. The algorithm might receive the edges in an arbitrary or a random

order and it might be allowed multiple passes over the stream of edges. The challenge for such

an algorithm is to decide which edges are important for the algorithmic task at hand. Recently,

Monemizadeh et al. proved that testable properties in the bounded degree model can be tested

by a streaming algorithm with a single pass of a random order stream of the edges in constant

space [106]. This was further extended by Czumaj et al. to the general graph model [32].

50 CHAPTER 4. RELATED WORK

Chapter 5

Extending results to relational

structures

In this chapter we generalise two existing results for bounded degree undirected graphs to

bounded degree relational structures. We would like to note that both generalisations are

straight forward but given for the sake of completeness as both results are later used for rela-

tional structures.

5.1 Canonical tester and a combinatorial characterisation

of testable properties in the bounded degree model

The aim of this section is to verify that a theorem, the so called “canonical tester”, can be

extended to the bounded degree model of relational structures. The canonical tester was proven

in [78] for dense graphs and in [34] for bounded degree graphs and states that every testable

property can be tested by a property tester of a canonical form. This is a very useful tool for

characterisation results in property testing. In [2] Adler and Harwath give a characterisation

of the testable properties in the bounded degree model of relational structures. We apply this

result in Chapter 6 to show non-testability of a certain property. To prove this characterisation

result Adler and Harwath use the canonical tester for relational structures and hence in this

section, for the sake of completeness, we fill the gap and generalise the canonical tester to

relational structures.

Let σ be a signature, d ∈ N and Cd be the class of σ-structures of bounded degree d. The

following notion of repairability of a property was introduced in [2, Definition 7] and was called

locality in the original work.

51

52 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

Definition 5.1.1 (Definition 7 in [2]). Let ε ∈ (0, 1]. A property P ⊆ Cd is ε-repairable on

Cd if there are numbers r := r(ε) ∈ N, λ := λ(ε) > 0 and n0 := n0(ε) ∈ N such that for any

σ-structure A ∈ P and B ∈ Cd both on n ≥ n0 vertices, if ‖freqr(A)− freqr(B)‖1 < λ then B is

ε-close to P . The property P is repairable on Cd if it is ε-repairable on Cd for every ε ∈ (0, 1].

Note that freqr(A) denotes the frequency vector of a structure A defined in Definition 2.3.6.

The following theorem [2, Theorem 19] characterises testability in the bounded degree model

using the notion of repairability.

Theorem 5.1.2 (Theorem 19 in [2]). For every property P ∈ Cd, P is non-uniformly testable

if and only if P is repairable on Cd.

The proof of Theorem 5.1.2 requires the generalisation of the canonical tester to relational

structures (Corollary 5.1.4), which we will prove in the following.

5.1.1 Proving the existence of canonical testers in the property testing

model for bounded degree relational structures

In this section our aim is to show that we can transform every property tester on bounded

degree relational structures into a property tester, that first samples elements, explores their

neighbourhood and then proceeds deterministically.

Similar results were shown by Goldreich and Trevisian [78], proving the existence of a canonical

tester for testable properties in the dense graph model, and by Czumaj, Peng and Sohler [34],

proving the existence of a canonical tester for properties on bounded degree graphs. The proof

we provide here for the existence of a canonical tester for testable properties on bounded degree

relational structures is very similar to the proofs given in [78] and [34], since most arguments

can be used in our model in a similar way.

Let σ = {R1, . . . , R`} be a relational signature. Without loss of generality, we will assume

in this section that the universe of all input structures is [n].

Lemma 5.1.3 (Canonical Tester). Let d ∈ N and P ⊆ Cd be a property that is non-uniformly

testable with error probability δ ∈ [0, 1
2) and constant query complexity c = c(ε, δ). For every ε

there exists a sequence of classes of structures F = (Fn)n∈N such that for any n ∈ N

– Fn is a set of σ-structures, each of them being the union of ar(σ) · q (not necessarily

disjoint) q-balls.

– The property P |n := {A ∈ P | |A| = n} can be tested with error probability at most 2 · δ
by a tester that operates as follows.

◦ Uniformly sample ar(σ) · c elements,

◦ explore the c-neighbourhoods of the ar(σ) ·c sampled elements (deterministically) and

5.1. CANONICAL TESTER 53

◦ accept the input structure if and only if the substructure induced by all explored

elements is not isomorphic to any F ∈ Fn.

We call testers operating in the way the tester in Lemma 5.1.3 does, i. e. first sampling ele-

ments, exploring their c-neighbourhoods and then deciding deterministically whether to accept

the input, canonical testers.

Corollary 5.1.4. Let d ∈ N, P ⊆ Cd be a property and δ ∈ [0, 1
2). If P is non-uniformly

testable with error probability δ then there exists a canonical tester for P with constant query

complexity and error probability δ.

Proof. Since P is non-uniformly testable for every ε ∈ (0, 1) and n ∈ N there exist an ε-tester

Tn with error probability δ for P |n on Cd|n with constant query complexity. By Lemma 3.1.7

we can improve the error probability of Tn to δ
2 by repeating Tn some number of times, which

depends only on δ, and deciding on the majority of outcomes. Now the claim clearly follows

from Lemma 5.1.3.

We will prove the existence of a canonical tester (Lemma 5.1.3) by the following Lemmas,

each containing one step of transforming an arbitrary tester into a canonical tester, where the

steps are the following.

– The first step (Lemma 5.1.6) contains the transformation into a tester, that samples

elements, explores their neighbourhood and then queries the structure no further.

– In the second step (Lemma 5.1.7) we make the testers decision isomorphism oblivious.

This means that we need to make the decision independent of the identity of the samples,

i. e. of the exact location the explored substructure is embedded into the structure, since

any isomorphism of structures is basically a renaming of the elements of the structure.

Additionally the decision needs to be independent of the order we explore the neighbour-

hood of the samples in.

– The third step (Lemma 5.1.8) generates a tester, which makes a deterministic decision on

the basis of the neighbourhoods of the samples.

We further need the following Lemma stating that classes of structures, that are ε-far from

having a property, are closed under isomorphism.

Lemma 5.1.5. Let P ⊆ Cd be a property on Cd and ε ∈ (0, 1). Then ε -farCd(P) is closed

under isomorphism.

Proof. Let A,B ∈ Cd be isomorphic structures, such that A is ε-far from P . Let n := |B|. ´
Assume that B is ε-close to P . Therefore, there is a structure C ∈ P , such that dist(B, C) ≤ εn.

Then (D1) and (D3) imply that

dist(A, C) ≤ dist(A,B) + dist(B, C) ≤ 0 + εn.

54 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

This implies that dist(A,C)
n ≤ ε, which contradicts the initial assumption of A being ε-far from

P . Thus B is ε-far from P and ε -farCd(P) is closed under isomorphism.

Lemma 5.1.6. Let d ∈ N and P ⊆ Cd be a property that is non-uniformly testable with error

probability δ ∈ [0, 1
2) and query complexity c = c(ε, δ). For every ε there exists an ε-tester for

P with error probability δ that operates in the following way.

– Uniformly sample ar(σ) · c elements s1, . . . , sar(σ)·c,

– explore the c-neighbourhoods of the ar(σ) · c sampled elements (deterministically) and

– decide probabilistically without making any further oracle queries to A.

Proof. Let T be a tester for P with error probability at most δ and query complexity c. We

transform T into an ε-tester T̃ that, given access to a structure A, operates as follows:

(1) Sample ar(σ) · c elements s1, . . . , sar(σ)·c ∈ A and explore their c-neighbourhoods, i. e. for

i = 1, . . . , ar(σ) · c we explore the neighbourhood of si with breadth-first search. We get

the structure NAc (s1, . . . , sar(σ)·c).

(2) We will emulate the execution of T on the structure π(A) =
(
A, π(RA1), . . . , π(RA`)

)
as

described below, where π : V → V is a permutation we will select during the emulation

of T and π(RAi) =
{(
π(r1), . . . , π(rar(Ri))

)
|
(
r1, . . . , rar(Ri)

)
∈ RAi

}
.

To emulate T on π(A), we run T normally, but answer the queries as follows:

Let (x, j) be the next query T is making.

(2a) If π(x) is not defined yet, we choose a ∈ {s1, . . . , sar(σ)·c} uniformly out of all elements

in {s1, . . . , sar(σ)·c}, that are not selected to be the π-image of any element yet, and

set π(x) := a.

(2b) We determine the answer to the query (π(x), j). If it is ⊥, we return ⊥ as the answer

to the query (x, j). Otherwise let the answer to (π(x), j) be (R, b1, . . . , bar(R)) ∈
σ× [n]ar(R). For all of the bi, that are not in the image of π yet, we select uniformly

a random element yi ∈ A, such that π(yi) is not defined yet and set π(yi) := bi. We

return
(
R, π−1(b1), . . . , π−1(bar(R))

)
as the answer to the query (x, j).

After answering all queries, we uniformly allocate π-images for the remaining elements

out of the elements, that are not in the image of π yet.

(3) Accept A, if in (2) T accepts π(A).

First note, that we can answer all queries in (2) by using NAc (s1, . . . , sar(σ)·c) from step (1),

since we are either querying elements in {s1, . . . , sar(σ)·c} or neighbours of elements we queried

before and thus the radius of c in step (1) suffices. Additionally ar(σ) · c elements are sufficient,

because we are defining π-image for no more than ar(σ) elements of {s1, . . . , sar(σ)·c} per query

(note that the element x we assign a π-image for in step (2a) is always one of the bi). Therefore

5.1. CANONICAL TESTER 55

T̃ operates in the way we claimed and we are left with the task to argue that T̃ is indeed an

ε-tester for P .

To ensure that T̃ is an ε-tester for P , the choice of the permutation π should be independent

of the execution of T .

Therefore let π′ ∈ Sn be a arbitrary permutation of the elements of A. We want to prove that

P[π = π′] = 1
|Sn| = 1

n! .

Let ai ∈ A be the i-th element T̃ is selecting a π-image for. We can write

P
[
π = π′

]
=P
[
π(a1) = π′(a1)

]
· (5.1)

P
[
π(a2) = π′(a2)

∣∣∣ π(a1) = π′(a1)
]
·

...

P
[
π(an) = π′(an)

∣∣∣ π(aj) = π′(aj) f.a. j < n
]

Let nπ′,i := |{j ≤ i | π′(aj) ∈ {s1, . . . , sar(σ)·c}}|. In case the image of ai+1 is selected in (2a)

we get:

P
[
π(ai+1) = π′(ai+1)

∣∣∣ π(aj) =π′(aj) f.a. j ≤ i
]

= P
[
π′(ai+1) ∈ {s1, . . . , sar(σ)·c}

∣∣∣∣ π(aj) = π′(aj)

f.a. j ≤ i

]
·

P
[
π′(ai+1) is

selected in (2a)

∣∣∣∣ π(aj) = π′(aj) f.a. j ≤ i,
π′(ai+1) ∈ {s1, . . . , sar(σ)·c}

]

=

(
n−i−1

ar(σ)c−nπ′,i−1

)(
n−i

ar(σ)c−nπ′,i

) · 1

ar(σ)c− nπ′,i

=
1

n− i

In the case the image of ai+1 is selected in (2b) we get

P
[
π(ai+1) = π′(ai+1)

∣∣∣ π(aj) =π′(aj) f.a. j ≤ i
]

= P
[
ai+1 is selected as preimage

of π′(ai+1) in (2b)

∣∣∣∣ π(aj) = π′(aj) f.a. j ≤ i
]

=
1

n− i

In the case that the image of ai+1 is selected after all queries are answered the probability

P
[
π(ai+1) = π′(ai+1)

∣∣∣ π(aj) = π′(aj) f.a. j ≤ i
]

= 1
n−i is given. Combined with equation

(5.1) this gives us P[π = π′] = 1
n! .

56 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

Since A is isomorphic to π(A) (π : A→ π(A) is an isomorphism) and properties are closed

under isomorphism, A ∈ P if and only if π(A) ∈ P . Assume that A ∈ P and therefore

π(A) ∈ P . Since π is chosen independent of T , T accepts π(A) with probability 1− δ, since T

is an ε-tester with error probability δ. Hence T̃ accepts A with probability 1 − δ, because T̃

accepts A whenever T accepts π(A).

Now assume that A is ε-far from having property P . According to Lemma 5.1.5 π(A) is

ε-far from having property P and thus T rejects π(A) with probability 1− δ, since π is chosen

independent of T . This implies that T̃ rejects A with probability 1 − δ and therefore T̃ is an

ε-tester for P with error probability δ, that operates in the way we claimed.

Lemma 5.1.7. Let d ∈ N and P ⊆ Cd be a property and T an ε-tester with error probability δ ∈
[0, 1

2), that first samples ar(σ)·c elements, explores their c-balls and then decides probabilistically

(like the tester we get in Lemma 5.1.6). Then there exists a ε-tester for P with error probability

δ that operates in the following way:

– Uniformly sample ar(σ) · c elements s1, . . . , sar(σ)·c,

– explore the c-neighbourhoods of the ar(σ) · c sampled elements (deterministically) and

– decide probabilistically only depending on the substructure NAc (s1, . . . , sar(σ)·c).

Proof. We will transform T into a tester with the required properties in two steps. We first

construct a tester T̂ , that is independent of the identities of the elements in the explored

substructure but depends on an order of the elements in the explored substructure. In the

second step, we will construct a tester T̃ , that is independent of any order of the elements in

the explored substructure in addition.

Construction of T̂ : We can encode the exploration of the c-neighbourhood of the sampled

elements s1, . . . , sar(σ)·c into a query sequence, where we consider a query sequence to be a

sequence of queries, each of them of the form (a, j) = (R, b1, . . . , bar(R)), where R ∈ σ, a ∈ [n],

(b1, . . . , bar(R)) ∈ [n]ar(R) ∪ {⊥} and 1 ≤ j ≤ d. We consider query sequences to be oblivious

of the identities of the elements, which we can achieve by renaming the elements in the query

sequence by some canonical order, i. e. rename the i-th element that appears in the query

sequence with i. Let Q be the set of query sequences we can encounter, when setting T to

explore any union of ar(σ) · c c-balls. Note that a query sequence is a union of c-balls with a

total order on its elements.

5.1. CANONICAL TESTER 57

For a query sequence α ∈ Q and s = (s1, . . . , sar(σ)·c), let ps,α be the probability of T

accepting when sampling s1, . . . , sar(σ)·c and producing the query sequence α. Note that α is

independent of the actual identities of the samples. For α ∈ Q we set

pα :=
∑

s∈[n]ar(σ)·c

ps,α
nar(σ)·c

to be the expected probability of accepting A, when obtaining the query sequence α.

Now let T̂ be the tester, that, given access to a σ-structure A, samples ar(σ) · c elements

s1, . . . , sar(σ)·c, explores there c-neighbourhood with query sequence α and accepts A with

probability pα.

Claim 1. For any σ-structure A, the probability of T̂ accepting A equals the probability of T

accepting a random isomorphic copy of A.

Proof of Claim 1. We identify every isomorphic copy of a structure A with a permutation

π ∈ Sn. The permutation π represents the isomorphic copy π(A) as defined in the proof of

Lemma 5.1.6. For a query sequence α ∈ Q that is acquired when exploring the neighbourhood

of elements s1, . . . , sar(σ)·c, π(α) shall denote the query sequence the tester T acquires, when

exploring the neighbourhood of π(s1), . . . , π(sar(σ)·c) given access to π(A).

Let us fix s = (s1, . . . , sar(σ)·c) ⊆ [n]ar(σ)·c of size ar(σ) · c and the query sequence α ∈ Q,

which T acquires exploring the substructure NAc (s1, . . . , sar(σ)·c). For any π ∈ Sn and any query

(a, j) = (R, b1, . . . , bar(R)) to the structure A, the answer to the π-image of the query (π(a), j)

to the structure π(A) will be (R, π(b1), . . . , π(bar(b))), which follows directly from the definition

of π(A). Since we rename the elements appearing in query sequences in a canonical way, this

implies, that the query sequence obtained by T exploring the neighbourhood of s1, . . . , sar(σ)·c,

given access to A, equals the query sequence obtained by T exploring the neighbourhood of

π(s1), . . . , π(sar(σ)·c), given access to π(A). Hence

P
[
T accepts π(A) | T samples π(s1), . . . , π(sar(σ)·c)

]
= p(π(s1),...,π(sar(σ)·c)),α.

The probability of T accepting a random isomorphic copy of A is the expected probability of

T accepting, when choosing a random π and giving T access to π(A). Therefore we get the

58 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

following:

Eπ
[
P
[
T accepts π(A)

∣∣ T samples π(s1), . . . , π(sar(σ)·c)
]]

=
∑
π∈Sn

P
[
T accepts π(A)

∣∣ T samples π(s1), . . . , π(sar(σ)·c)
]

n!

=
∑
π∈Sn

p(π(s1),...,π(sar(σ)·c)),α

n!

=
∑

s′∈[n]ar(σ)·c

ps′,α
nar(σ)·c

= cα

= P
[
T̂ accepts A

∣∣ T̂ samples s1, . . . , sar(σ)·c
]
.

Since the probability of sampling either s1, . . . , sar(σ)·c or π(s1), . . . , π(sar(σ)·c) for a fixed π is

equal to 1
nar(σ)·c , the claim follows.

�

Construction of T̃ : For any α ∈ Q let Cα be the set of all structures that are isomorphic to

the structure underlying the query sequence α, that is the structure without the order on the

elements. For every union B of (up to) ar(σ) · c different c-balls we set

cB :=
∑
α∈Q,
Cα3B

pα
|{α ∈ Q | B ∈ Cα}|

to be the expected probability of accepting A, when the explored structure is B.

Now let T̃ be the tester which, given access to a σ-structure A, samples ar(σ) · c elements

s1, . . . , sar(σ)·c, explores their c-neighbourhood and accepts A with probability cNAc (s1,...,sar(σ)·c).

Claim 2. For any σ-structure A, the probability of T̃ accepting A equals the probability of T̂

accepting a random representation of a random isomorphic copy of A.

Proof of Claim 2. We identify every representation of an isomorphic copy of a structure A
with a tuple π = (π, π0, . . . , πn−1) of n + 1 permutations, where π ∈ Sn and πi ∈ SdegA(i) for

0 ≤ i ≤ n − 1. Here the permutation π gives us the actual isomorphic copy, namely π(A)

as defined in the proof of Lemma 5.1.6, and the permutations πi account for getting all the

equivalent representations of π(A) by reordering the tuples containing a certain element π(i).

We denote the copy of A identified with a tuple π by π(A). Note that when picking a tuple π

uniformly every isomorphic copy π(A) of A is equally likely to appear as the number of tuples

π in which the first entry equals π is the same for every permutation π. For a query sequence

α ∈ Q that is acquired when exploring the neighbourhood of a elements s1, . . . , sar(σ)·c, π(α)

5.1. CANONICAL TESTER 59

shall denote the query sequence the tester T acquires, when exploring the neighbourhood of

π(s1), . . . , π(sar(σ)·c) given access to π(A).

Let us fix a query sequence α ∈ Q and the underlying structure B, which is the union

of ar(σ) · c c-balls. Therefore B ∈ Cα. Letting π range over all tuples (π, π0, . . . , πn−1) ∈
Sn ×

(
SdegA(i)

)n−1

i=0
, we get the following:

Eπ
[
P
[
T̂ accepts π(A)

∣∣ T̂ obtains π(α)
]]

=
∑

π=(π,π1,...,πn)

P
[
T̂ accepts π(A)

∣∣ T̂ obtains π(α)
]

n! ·
∏n−1
i=0 degA(π(i))!

=
∑
α′∈Q,
B∈C

α′

pα′

|{α′ ∈ Q | B ∈ Cα′}|

= cB

= P
[
T̃ accepts A

∣∣ T̃ obtains α
]
,

where in the second equality we use, that B ∈ Cα implies that B ∈ Cπ(α), and, that the set

of tuples π fixing a certain query sequence α′ ∈ Q is the same for every query sequence and

therefore we have to weigh all α′ equally.

Taking into account that the probability of T̂ or T̃ obtaining a certain query sequence is

equal (it depends on sampling the right sample set), the claim follows. �

To show that T̃ is a ε-tester for P with error probability δ, let us first independently choose

π ∈ Sn and a tuples π′ = (π′, π′0, . . . , π
′
n−1) ∈ Sn ×

(
SdegA(i)

)n−1

i=0
uniformly at random. We

observe that the structure π′(A) is a random isomorphic copy of A and, due to the indepen-

dence of π and π′, the structure π ◦ π′(A) is a random isomorphic copy of π′(A).

Let us now assume that A ∈ Cd has property P . Since properties are closed under isomor-

phism and isomorphisms are closed under composition, the structure π ◦π′(A) has property P .

Therefore T accepts π ◦π′(A) with probability at least 1− δ. According to claim 1 this implies

that T̂ accepts π′(A) with probability at least 1 − δ. Applying claim 2 we get that T̃ accepts

A with probability at least 1− δ.
For any structure A ∈ Cd that is ε-far from having property P , Lemma 5.1.5 implies, that

π ◦ π′(A) ∈ ε − farCd(P). Therefore T rejects π ◦ π′(A) with probability at least 1 − δ. Using

claim 1 and claim 2 we get that T̃ rejects A with probability at least 1− δ. Therefore T̃ is an

ε-tester with error probability δ, who’s decision depends only on the explored substructure.

Now we are able to carry out the final step of the transformation of any tester into a canonical

tester. This step yields a tester, that queries NAc (S) and then decides deterministically.

Lemma 5.1.8. Let Cd be a class of σ-structures of bounded degree d : N→ R≥0. Let P ⊆ Cd be

a property and T a ε-tester with error probability δ ∈ [0, 1
2), that first samples ar(σ) · c elements

60 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

s1, . . . , sar(σ)·c, explores their c-balls and then decides probabilistically depending only on the

substructure NAc (s1, . . . , sar(σ)·c) (like the tester we get in Lemma 5.1.7). Then there exists a

ε-tester for P with error probability 2δ that operates in the following way:

– Uniformly samples ar(σ) · c elements s1, . . . , sar(σ)·c,

– explore the c-neighbourhoods of the ar(σ) · c sampled elements (deterministically) and

– makes a deterministic decision based on NAc (s1, . . . , sar(σ)·c).

Proof. For any union of ar(σ) · c c-balls B we define cB to be the probability of T accepting,

when the explored substructure is isomorphic to B, as defined in Lemma 5.1.7.

Let T̃ be the tester, that, given access to a structure A, samples ar(σ)·c elements s1, . . . , sar(σ)·c,

explores the c-neighbourhood of s1, . . . , sar(σ)·c and then accepts A if cNAc (s1,...,sar(σ)·c) ≥
1
2 .

To show that T̃ is a ε-tester we use the following claim.

Claim 1. Let p1, . . . , pk ∈ [0, 1] for some k ∈ N>0 and
∑k
i=1

pi
k ≥ 1−δ. Then at least d(1−2δ)ke

of the pi are larger or equal than 1
2 .

Proof of Claim 1. Assume that the proposition is false, then at least b2δkc + 1 of the pi are

smaller than 1
2 . Therefore, by using b2δkc + 1 ≥ d2δke ≥ 2δk and bounding the remaining pi

by 1 from above, we get:

k∑
i=1

pi
k
<

2δk · 1
2 + (1− 2δ)k

k
= 1− δ,

which is a contradiction to the assumption. �

To show that T̃ is an ε-tester with error probability 2δ for P , let us first assume that A ∈ P .

Since T̃ accepts with probability
⌊
p + 1

2

⌋
=

1, for p ≥ 1
2

0, for p < 1
2

, if T accepts with probability

p ∈ [0, 1], the probability that T̃ accepts A can be bounded from below as follows:

P
[
T̃ accepts A

]
=

∑
s1,...,sar(σ)·c∈A

P
[
T̃ samples s1, . . . , sar(σ)·c

]
· P
[
T̃ accepts A | T̃ samples s1, . . . , sar(σ)·c

]
=

∑
s1,...,sar(σ)·c∈A

1

nar(σ)·c

⌊
cNAc (s1,...,sar(σ)·c) +

1

2

⌋
≥ 1− 2δ,

5.1. CANONICAL TESTER 61

where the last inequality uses claim 1 and that

P[T accepts A] =
∑

s1,...,sar(σ)·c∈A

1

nar(σ)·c cNAc (s1,...,sar(σ)·c) ≥ 1− δ,

since T is a tester and A ∈ P .

Now assume that the structure A is ε-far from having property P . Since T̃ rejects with

probability
⌈

1
2 − p

⌉
=

1, for p < 1
2

0, for p ≥ 1
2

, if T accepts with probability p ∈ [0, 1], the probability

that T̃ rejects A can be bound from below as follows:

P
[
T̃ rejects A

]
=

∑
s1,...,sar(σ)·c∈A

P
[
T̃ samples s1, . . . , sar(σ)·c

]
· P
[
T̃ rejects A|T̃ samples s1, . . . , sar(σ)·c

]
=

∑
s1,...,sar(σ)·c∈A

1

nar(σ)·c

⌈1

2
− cNAc (s1,...,sar(σ)·c)

⌉
≥ 1− 2δ,

where the last inequality uses, that

P[T rejects A] =
∑

s1,...,sar(σ)·c∈A

1

nar(σ)·c (1− cNAc (s1,...,sar(σ)·c)) ≥ 1− δ,

and therefore, according to claim 1, at least d(1−2δ)
(

n
ar(σ)·c

)
e of the cNAc (s1,...,sar(σ)·c) are larger

than or equal to 1
2 .

Hence T̃ is an ε-tester with error probability 2δ for P .

We are now able to conclude the existence of a canonical tester as in Lemma 5.1.3.

Proof of Lemma 5.1.3. Let T be any non-uniform ε-tester with error probability δ and query

complexity c = c(ε, δ) for the property P on Cd.

We first use Lemma 5.1.6, Lemma 5.1.7 and Lemma 5.1.8 to transform T into a ε-tester T̃ with

error probability 2δ for P on Cd, that, given access to a structure A, uniformly samples ar(σ) ·c
elements s1, . . . , sar(σ)·c, explore the c-neighbourhoods of the ar(σ) · c sampled elements and

makes a deterministic decision based on NAc (s1, . . . , sar(σ)·c).

We now define Fn to be the set of all structures B, such that B is the unions of ar(σ) · c c-balls

and T̂ rejects when the explored substructure is B. Therefore T̃ is a tester, that has all the

requirements we requested.

62 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

5.2 Small structures approximating neighbourhood dis-

tributions

The aim of this Section is to introduce a result proved by Alon [102, Proposition 19.10] for simple

bounded degree graphs which states that for any given precision λ there is a constant size n0

such that the neighbourhood distribution of any bounded degree graph G can be approximately

realised with precision λ by a “small” bounded degree graph H with no more than n0 vertices.

This result gives us insights into the structure of bounded degree properties. And as such it

was extensively used in [56] to prove that every testable property of bounded degree graphs has

a hyperfinite subproperty. This on the other hand implies that if a property of bounded degree

graphs is a class of expanders it can not be testable. To this end we will utilise the result by

Alon [102, Proposition 19.10] later when proving non-testability for certain properties. While

the existence of such small graphs approximating the neighbourhood distribution of large graphs

is unquestionably very useful for property testing, the question of (algorithmically) determining

such a small graph H for a given precision λ and graph G is also of interest. An answer was

determined in the special case of high girth bounded degree graphs [55].

The result proved by Alon [102, Proposition 19.10] for simple graphs holds for relational

structures also and can be proven with a very similar argument as for simple graphs given

in [102, Proposition 19.10]. For completeness sake we will give a proof for relational structures

in the following.

Let σ be a signature, d ∈ N and Cd be the class of σ-structures of bounded degree d. We

let Tr be the set of all r-types of bounded degree d and ρA,r the r-neighbourhood distribution

defined in Definition 2.3.7.

Definition 5.2.1 (Sampling distance). For two σ-structures A,B ∈ Cd we define the sampling

distance of depth r as

δr�(A,B) := max
X⊆Tr

|ρA,r(X)− ρB,r(X)|.

Then the sampling distance of A and B is defined as

δ�(A,B) :=

∞∑
r=0

1

2r
· δr�(A,B).

Note that δr�(A,B) is just the total variance distance between the distributions ρA,r, ρB,r,

and it holds that δr�(A,B) = 1
2 ‖freqr(A)− freqr(B)‖1, where ‖freqr(A)− freqr(B)‖1 is the

expression used in Definition 5.1.1.

We can now state a relational structure version of [102, Proposition 19.10].

Theorem 5.2.2. For every λ > 0 there is a positive integer n0 such that for every σ-structure

A ∈ Cd there is a σ-structure H ∈ Cd such that |H| ≤ n0 and δ�(A,H) ≤ λ.

5.2. SMALL STRUCTURES APPROXIMATING NEIGHBOURHOOD DISTRIBUTIONS63

Proof. Let r := dlog(2
λ)e and t be the number of r-types of bounded degree d, i. e. t := |Tr|.

Let dist : Rt × Rt → [0,∞) be the metric defined by

dist(x, y) = max
I⊆[t]

∣∣∣∑
i∈I

xi −
∑
i∈I

yi

∣∣∣.
Since [0, 1]t is a bounded and closed subset of Rt we get by the Heine-Borel Theorem that [0, 1]t

is compact. Hence there is a finite subset U of the set of all open λ
8 -balls {Uλ/8(x) | x ∈ Rt}

such that [0, 1]t ⊆
⋃
U∈U U , where the open λ

8 - ball around x ∈ Rt is defined as Uλ/8(x) := {y ∈
Rt | dist(x, y) < λ

8 }.
Let Pr ⊆ [0, 1]t be the set of all frequency vectors freqr(A) where A ranges through all finite

σ-structures of bounded degree d. Note that we defined dist in such a way that δr�(A,B) =

dist(freqr(A), freqr(B)) for any A,B ∈ Cd. Hence freqr(A) and freqr(B) cannot be contained

in the same open λ
8 -ball U ∈ U for every two σ-structures A,B ∈ Cd with δr�(A,B) > λ

4 . Hence

any maximal family of σ-structures A1,A2, . . . of bounded degree d with δr�(Ai,Aj) > λ
4 for

i 6= j has to be finite. Let A1, . . . ,Am be such a maximal family. We need the following claim.

Claim 1. For any two σ-structures A,B ∈ Cd and any r ∈ N≥1 the following equation holds.

δ�(A,B) ≤ 2 · δr�(A,B) +
1

2r
. (5.2)

Proof of Claim 1. Note that δi�(A,B) ≤ δi+1
� (A,B) for any i ∈ N. This is the case as ρÃ,r(X) =

ρÃ,r+1(Xext) for any Ã ∈ Cd, any X ⊆ Tr and Xext := {τ ∈ Tr+1 | τ |r ∈ X} the set of

extensions of types in τ , where τ |r is the restriction of type τ to radius r, i. e. τ |r is the r-type

such that (NBr (b), b) ∈ τ |r for (B, b) ∈ τ .

Furthermore note that

r∑
i=0

1

2i
= 2(1− 1

2
)

r∑
i=0

1

2i
= 2

r∑
i=0

(
1

2i
− 1

2i+1
) = 2− 1

2r

and hence we get, making use of that
∑∞
i=0

1
2i is a geometric series

δ�(A,B) =

r∑
i=0

1

2i
δi�(A,B) +

∞∑
i=r+1

1

2i
δi�(A,B)

≤ δr�(A,B)

r∑
i=0

1

2i
−

r∑
i=0

1

2i
+

∞∑
i=0

1

2i

≤ 2 · δr�(A,B)− (2− 1

2r
) + 2,

where we use that δi�(A,B) ≤ 1 in the first inequality. �

By construction of the family A1, · · · Am we have that for any σ-structure A of bounded

64 CHAPTER 5. EXTENDING RESULTS TO RELATIONAL STRUCTURES

degree d there is i ∈ [m] such that δr�(A,Ai) ≤ λ
4 . Then by Claim 1 and choice of r

δ�(A,Ai) ≤ 2 · δr�(A,Ai) +
1

2r
≤ λ

2
+

1

2r
≤ λ.

Hence by setting n := max1≤i≤m |Ai| we have proven the theorem.

5.3 Summary

In this section we verified that two results which we require for relational structures can be

generalised from simple graphs to relational structures. More specifically, we proved a relational

structure version of the canonical tester from [34] and a relational structure version of [102,

Theorem 19.10]. Both generalisations are straight forward using the same argumentation as in

the original proofs.

Chapter 6

Classifying testability of

first-order properties by prefix

classes

In this chapter we consider testability of FO definable properties in the bounded degree model

according to prefix classes, inspired by a similar study by Alon et al. [6] for the dense graph

model. It is easy to observe that properties defined by sentences without quantifier alterations

(sentences that are in Σ1 ∪Π1) are testable. Every sentence ϕ in Σ1 is equivalent to a sentence

of the form ∃x1 . . . ∃xkψ(x1, . . . , xk) where ψ(x1, . . . , xk) is a quantifier-free formula. Editing

the substructure required by ψ into a structure takes a constant amount of edge modifications

implying that every large enough structure is ε-close to satisfying ϕ. This implies that we

can test satisfiability of such a formula by checking precisely for every small structure and by

accepting any large enough structure. Conversely, every sentence ϕ in Π1 is equivalent to a

sentence of the form ¬∃x1 . . . ∃xkψ(x1, . . . , xk) where ψ(x1, . . . , xk) is a quantifier-free formula.

Therefore testing ϕ amounts to testing absence of a finite set of forbidden induced substructure,

which can be done similarly to testing subgraph freeness [73]. For sentences with at least one

quantifier alternation testability is less clear. In this chapter we prove the following theorem

classifying which prefix classes of FO yield testable properties in the bounded degree model.

Theorem 6.0.1. Every FO-sentence ϕ ∈ Σ2 defines a testable property in the bounded degree

model. On the other hand, there is a property in Π2 which is not testable in the bounded degree

model.

To simplify the argument we obtain the non-testable property in the relational structure

model and argue in Section 6.3 how to obtain the result in the bounded degree model for graphs.

Testability for sentences in Σ2 is obtained for both models.

65

66 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

It is worth taking note that the dividing line in Theorem 6.0.1 is the same as for FO

properties in the dense graph model [6]. This is surprising taking into account the very different

nature of the two models. Specifically, the dense model characterisation uses a variation of the

regularity lemma which cannot be applied in the bounded degree model. In order to prove

Theorem 6.0.1 we develop new proof techniques combining graph theory, logic and property

testing. Furthermore, Theorem 6.0.1 answers the open question whether FO definable properties

are testable in the bounded degree model raised by Adler and Harwath in [2].

Proof outline To prove that there is a property defined by a sentence in Π2 which is not

testable in the bounded degree model we define an FO-sentence ϕ z which encodes an elaborate

construction of a class of relational structures. The construction uses the zig-zag product which

was introduced by Reingold, Vadhan and Wigderson in [115]. We give a detailed overview of

the construction at the beginning of Section 6.1.2. The sentence ϕ z defines a class of edge

expanders which we will show in Section 6.1.3. To prove expansion we first show what the

structural appearance of the models of ϕ z is (Lemma 6.1.15), for which the core part is prov-

ing connectivity (Lemma 6.1.14). We further use the structural appearance of the models of

ϕ z to prove expansion using the preservation of edge expansion by the zig-zag product (Propo-

sition 6.1.12). We prove that the property P z defined by ϕ z is not testable in Section 6.2

(Theorem 6.2.1). We use Theorem 5.2.2 to show the existence of arbitrarily large structures

whose frequency vectors approximately look like the frequency vector of a model of ϕ z but

which are far from P z . These structures being far from P z is ensured by the edge expansion

of the models of ϕ z . Non-testability of P z follows using Theorem 5.1.2. We further show in

Section 6.2 that every sentence which only has d-regular models is d-equivalent to a sentence

in Π2 (Lemma 6.2.3). Note that this can be applied to our property as d-regularity of models

of ϕ z is ensured in the construction. Combining Theorem 6.2.1 and Lemma 6.2.3 we obtain

that there is a sentence in Π2 which defines a non-testable property (Theorem 6.2.4). Finally,

in Section 6.3 we show that we can obtain a sentence in Π2 which defines a property of simple

undirected graphs and is not testable in the bounded degree model for graphs (Theorem 6.3.1).

This is shown by carefully replacing tuples by d-regular graph gadgets and arguing that edge

expansion is maintained (Proposition 6.3.4).

In Section 6.4 we prove that every sentence in Σ2 defines a testable property (Theorem 6.4.1).

This applies to both the bounded degree model of relational structures and the bounded degree

model for graphs. We obtain Theorem 6.4.1 by proving that every property defined by a

sentence in Σ2 is a union of properties each of which is indistinguishable from a property in Π1.

The notion of indistinguishability of properties was introduced in [6] for the dense model and

entails that testability of two indistinguishable properties is equivalent. Since properties defined

by sentences in Π1 are testable and property testing is closed under unions (Corollary 3.5.2)

this shows testability of every property defined by a sentence in Σ2. The main challenge

here is to deal with the interactions between existentially quantified variables and universally

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 67

quantified variables. Intuitively, the degree bound limits the structure that can be imposed by

the universally quantified variables. Using this, we are able to deal with the existential variables

together with these interactions. We prove that editing in a required constant size substructure

for every structure of a property results in a property which is indistinguishable.

Combining Theorem 6.3.1 and Theorem 6.4.1 proves Theorem 6.0.1.

6.1 A class of expanders definable in FO

In this section we construct a formula which defines an infinite property consisting of expanders.

The construction is based on the zig-zag product of graphs introduced in [115], which maintains

expansion as was shown in [115]. Since a detailed understanding of the zig-zag product is key

for the construction of our formula, we will introduce the zig-zag product and its properties in

detail in the following.

6.1.1 Expansion and the zig-zag product

In this section we recall a construction of a class of expanders introduced in [87]. This class is

defined by recursively applying some graph operations (taking the zig-zag product, squaring)

which are defined via so called rotation maps. Rotation maps represent graphs similar to

adjacency lists. They depend on an ordering on the neighbours of each vertex. Furthermore,

fixing an ordering of neighbours for every vertex corresponds to a rotation map and hence in

particular for every graph there exists a rotation map. Note that in this subsection all graphs

are multigraphs (graphs with parallel edges and self-loops) as in the original work [115].

Definition 6.1.1. Let D ∈ N and G = (V,E, f) be a D-regular graph on N vertices and I be

a set of size D. Then a rotation map of G is a function ROTG : V × I → V × I such that for

every two not necessary different vertices u, v ∈ V

|{(i, j) ∈ I × I | ROTG(u, i) = (v, j)}| = 2 · |{e ∈ E | f(e) = {u, v}}|

and ROTG is self inverse, i.e. ROTG(ROTG(v, i)) = (v, i) for all v ∈ V , i ∈ I.

There is a tight connection between certain properties of a graph and the eigenvalues of its

adjacency matrix, which we will recall in the following. For a D-regular graph G = (V,E, f)

we let the normalised adjacency matrix M of G be defined by

Mu,v :=
1

D
· |{e | f(e) = {u, v}}|.

68 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

Definition 6.1.2 (Spectrum of a graph). Let D ∈ N, G = (V,E, f) be a D-regular graph and

M the normalised adjacency matrix of G. The eigenvalues of M are called the spectrum of G.

We denote the eigenvalues of M by λ1 ≥ λ2 ≥ · · · ≥ λN . We define

λ(G) := max{|λ2|, |λN |}.

We say that a graph is an (N,D, λ)-graph, if G has N vertices, is D-regular and λ(G) ≤ λ.

Since M is real, symmetric, contains no negative entries and all columns sum up to 1, all

its eigenvalues are in the real interval [−1, 1]. Furthermore 1 is always an eigenvalue of M

corresponding to the eigenvector 1N := (1, . . . , 1)t as G is D-regular and M is normalised.

The spectrum encodes the following properties of a graph.

Lemma 6.1.3 ([87]). The graph G is connected if and only if λ2 < 1. Furthermore, if G is

connected, then G is bipartite if and only if λN = −1.

There is also the following connection between h(G) and λ(G), where h(G) is the expansion

ratio defined in Definition 2.2.1.

Theorem 6.1.4 ([10,43]). Let G be a D-regular graph on N vertices. Then

h(G) ≥ D −D · λ(G)

2
.

This implies that for a sequence {GN}N∈N of graphs of increasing number of vertices, if

there is a constant ε < 1 such that λ(GN) ≤ ε for all N ∈ N, then the sequence {GN}N∈N is a

family of D(1−ε)
2 -expanders.

We now define the basic graph operations used to recursively define a class of expanders

and their properties.

Definition 6.1.5. Let G = (V,E, f) be a D-regular graph on N vertices with rotation map

ROTG : V × I → V × I where I is a set of size D. Then the square of G, denoted by G2, is a

D2-regular graph on V with rotation map ROTG2(u, (k1, k2)) := (w, (`2, `1)), where

ROTG(u, k1) =(v, `1) and

ROTG(v, k2) =(w, `2),

and u, v, w ∈ V , k1, k2, `1, `2 ∈ I.

Note that the edges of G2 correspond to walks of length 2 in G and the adjacency matrix

of G2 is the square of the adjacency matrix of G. Note here that if G is bipartite then G2 is

not connected, which can be easily explained by using Lemma 6.1.3.

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 69

z =

Figure 6.1: Zig-zag product of a 3-regular grid with a triangle.

Lemma 6.1.6 ([115]). If G is an (N,D, λ)-graph then G2 is an (N,D2, λ2)-graph.

Definition 6.1.7. Let G1 = (V1, E1, f1) be a D1-regular graph on N1 vertices, I1 a set of size

D1 and ROTG1 : V1× I1 → V1× I1 a rotation map of G1. Let G2 = (I1, E2, f2) be a D2-regular

graph, let I2 be a set of size D2 and ROTG2 : I1× I2 → I1× I2 be a rotation map of G2. Then

the zig-zag product of G1 and G2, denoted by G1 z G2, is the D2
2-regular graph on vertex set

V1 × I1 with rotation map given by ROTG1 z G2
((v, k), (i, j)) := ((w, `), (j′, i′)), where

ROTG2
(k, i) = (k′, i′),

ROTG1
(v, k′) = (w, `′), and

ROTG2(`′, j) = (`, j′),

and v, w ∈ V1, k, k′, `, `′ ∈ I1, i, i′, j, j′ ∈ I2.

The zig-zag product G1 z G2 can be seen as the result of the following construction. First

pick some numbering of the vertices of G2. Then replace every vertex in G1 by a copy of G2

where we colour edges from G1, say, red, and edges from G2 blue. We do this in such a way that

the i-th edge in G1 of a vertex v will be incident to vertex i of the copy of G2 corresponding

to v. Then for every red edge (v, w) and for every tuple (i, j) ∈ I2 × I2 we add an edge to the

zig-zag product G1 z G2 connecting v′ and w′ where v′ is the vertex reached from v by taking

its i-th blue edge and w′ can be reached from w by taking its j-th blue edge. Figure 6.1 shows

an example, wherein the graph on the right hand side we show the 4 edges that are added to

the zig-zag product for the highlighted edge of the graph on the left hand side.

Theorem 6.1.8 ([115]). If G1 is an (N1, D1, λ1)-graph and G2 is a (D1, D2, λ2)-graph then

G1 z G2 is an (N1 ·D1, D
2
2, g(λ1, λ2))-graph, where

g(λ1, λ2) =
1

2
(1− λ2

2)λ1 +
1

2

√
(1− λ2

2)2λ1 + 4λ2
2.

70 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

This function has the following properties.

1. If both λ1 < 1 and λ2 < 1 then g(λ1, λ2) < 1.

2. g(λ1, λ2) < λ1 + λ2.

We can now recursively define a class of expanders. We use the expander construction

from [87].

Definition 6.1.9 ([87]). Let D be a sufficiently large prime power (e.g. D = 216). Let H be

a (D4, D, 1/4) expander (an explicit constructions for H exist, see [115].) We define {G`}`∈N>0

by

G1 := H2 and

G` := G2
`−1 z H for ` > 1.

Proposition 6.1.10 ([87]). For every ` ∈ N>0, the graph G` is a (D4`, D2, 1/2)-graph.

We further require the following lemma.

Lemma 6.1.11. Let G be a D-regular graph and S be the set of vertices of a connected com-

ponent of G2. Then λ(G2[S]) < 1.

Proof of Lemma 6.1.11. Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of G2[S]. By definition

we have that G2[S] is connected and therefore Lemma 6.1.3 implies that λ1 > λ2. Now assume

that −1 is an eigenvalue of G2[S] with eigenvector v. Then the vector v′ defined by v′s = vs

for all s ∈ S and v′s = 0 otherwise is the eigenvector for eigenvalue −1 of the graph G2. But

G2 can not have a negative eigenvalue as every eigenvalue of G2 is a square of a real number.

Therefore λ1 6= λN and λ(G2[S]) < 1 as claimed.

6.1.2 Defining the formula ϕ z

In this section we construct a formula ϕ z , that defines a class of relational structures with

binary relations only (edge-coloured graphs) whose underlying undirected graphs are expander

graphs, arising from the zig-zag product [115]. The motivation behind this is that a property

tester is not able to decide whether a graph is connected or contains a few large connected

components. But a property tester deciding whether a graph is a model of this formula has to

be able to distinguish them, as being an expander ensures that we have to delete more than

an ε-fraction of the edges to disconnect the graph into large connected components for some

constant ε > 0.

We start with a high-level description of the formula. Let {Gm}m∈N>0
be as in Defini-

tion 6.1.9. Loosely speaking, each model of our formula is a structure which consists of the

disjoint union of G1, . . . , Gn for some n ∈ N>0 with some underlying tree structure connecting

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 71

G1

Gm

Gn

Figure 6.2: Schematic representation of a model of ϕ z , where the parts in red (grey) only

contain relations from E and relations in F are blue (black). Relation R and L are omitted.

Gm−1 to Gm for all m ∈ {2, . . . , n}. For illustration see Figure 6.2. The tree structure

enables us to provide an FO-checkable certificate for the expander construction from Defini-

tion 6.1.9. The tree structure is a D4-ary tree, that is used to connect a vertex v of Gm−1 to

every vertex of the copy of H which will replace v in Gm. We use D4 relations {Fk}k∈([D]2)2 to

enforce an ordering on the D4 children of each vertex. We use additional relations to encode

rotation maps as follows. For i, j ∈ [D]2 let Ei,j be a binary relation. For every pair i, j ∈ [D]2

we represent an edge e with f(e) = {v, w} for two not necessarily distinct vertices v, w in Gm

by the two tuples (v, w) ∈ EAi,j and (w, v) ∈ EAj,i. This allows us to encode the relationship

ROTGm(v, i) = (w, j) in FO using the formula ‘Ei,j(v, w)’.

We use auxiliary relations R and Lk for k ∈ ([D]2)2, to force the models to be degree-regular.

The relation R contains the tuple (r, r) for the root r of the tree, and Lk will contain the tuple

(v, v) for every leaf v of the tree.

We now give the precise definition of the formula. Remember that [n] := {0, 1, . . . , n − 1}
for n ∈ N. Let

σ :=
{
{Ei,j}i,j∈[D]2 , {Fk}k∈([D]2)2 , R, {Lk}k∈([D]2)2

}
, (6.1)

where Ei,j , Fk, R and Lk are binary relation symbols for i, j ∈ [D]2 and k ∈ ([D]2)2. For conve-

nience we introduce auxiliary relations E and F with the property that for every σ-structure we

have EA :=
⋃
i,j∈[D]2 E

A
i,j and FA :=

⋃
k∈([D]2)2 F

A
k . In any formula we can reverse using these

auxiliary relations by replacing formulas of the form “E(x, y)” by “
∨
i,j∈[D]2 Ei,j(x, y)” and

formulas of the form “F (x, y)” by “
∨
k∈([D]2)2 Fk(x, y)” below. We use the following formula to

identify the root

ϕroot(x) := ∀y¬F (y, x). (6.2)

We now define a formula ϕtree, which expresses that any model restricted to the relation F

locally looks like a D4-ary tree. More precisely, the formula defines that the structure has

exactly one root, that every vertex apart from the root has exactly one parent and every vertex

72 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

has either no children or exactly one child for each of the D4 relations Fk. It also defines

the self-loops used to make the structure degree regular. That is the root has an R-self-loop

replacing the incoming f -edge and every leaf has D4 L-self-loops to replace the D4 outgoing

F -edges.

ϕtree := ∃=1xϕroot(x) ∧ ∀x
((
ϕroot(x) ∧R(x, x)

)
∨
(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
∧

∀x
([
¬∃yF (x, y) ∧

∧
k∈([D]2)2

Lk(x, x) ∧ ∀y
(
y 6= x→

∧
k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)
)]

∨
[
¬∃y

∨
k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk
(
x 6= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2,k′ 6=k

¬Fk′(x, yk)) ∧ ∀y(y 6= yk → ¬Fk(x, y))
)])

.

(6.3)

The formula ϕrotationMap will define the necessary properties the relations in E need to have

in order to encode rotation maps of D2-regular graphs. For this we make sure that the edge

colours encode a map, i.e. for any pair of a vertex x and index i ∈ [D]2 there is only one pair

of vertex y and index j ∈ [D]2 such that Ei,j(x, y) holds and that the map is self inverse, i.e. if

Ei,j(x, y) then Ej,i(y, x).

ϕrotationMap :=∀x∀y
(∧
i,j∈[D]2

(Ei,j(x, y)→ Ej,i(y, x))
)
∧

∀x
(∧
i∈[D]2

(∨
j∈[D]2

(
∃=1yEi,j(x, y) ∧

∧
j′∈[D]2

j′ 6=j

¬∃yEi,j′(x, y)
)))

.
(6.4)

We now define a formula ϕbase which expresses that the root r of the tree has a self-loop

(r, r) in each relation Ei,j and that the D2 children of the root form G1. Let H be the

(D4, D, 1/4)-graph from Definition 6.1.9. We assume that H has vertex set ([D]2)2. We then

identify vertex k ∈ ([D]2)2 with the element a ∈ A for which (r, a) ∈ FAk for the root r. Let

ROTH : ([D]2)2× [D]→ ([D]2)2× [D] be any rotation map of H. Fixing a rotation map for H

fixes the rotation map for H2. Recall that G1 := H2. We can define G1 by a conjunction over

all edges of G1.

ϕbase :=∀x
(
ϕroot(x)→

[∧
i,j∈[D]2

(
Ei,j(x, x) ∧ ∀y

(
x 6= y →

(
¬Ei,j(x, y) ∧ ¬Ei,j(y, x)

)))
∧

∧
ROTH2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′
(
Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y′)

)])
.

(6.5)

We will now define a formula ϕrecursion which will ensure that level ` of the tree contains G`.

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 73

Recall that G` := G2
`−1 z H. We therefore express that if there is a path of length two between

two vertices x, z then for every pair i, j ∈ [D] there is an edge connecting the corresponding

children of x and z according to the definition of the zig-zag product. Here it is important

that x and z either both have no children in the underlying tree structure or they both have

children. This will also be encoded in the formula.

ϕrecursion :=∀x∀z
[(
¬∃yF (x, y) ∧ ¬∃yF (z, y)

)
∨

∧
k′1,k

′
2∈[D]2

`′1,`
′
2∈[D]2

(
∃y
[
Ek′1,`′1(x, y) ∧ Ek′2,`′2(y, z)

]
→

∧
i,j,i′,j′∈[D],k,`∈([D]2)2

ROTH(k,i)=((k′1,k
′
2),i′)

ROTH((`′2,`
′
1),j)=(`,j′)

∃x′∃z′
[
Fk(x, x′) ∧ F`(z, z′) ∧ E(i,j),(j′,i′)(x

′, z′)
])]

.

(6.6)

We finally let

ϕ z := ϕtree ∧ ϕrotationMap ∧ ϕbase ∧ ϕrecursion. (6.7)

This concludes defining the formula.

6.1.3 Proving expansion of the property defined by the formula ϕ z

We define the following degree bound

d := 2D2 +D4 + 1, (6.8)

where D is the degree of the base expander H used in the construction from Definition 6.1.9.

The degree bound d is chosen in such a way to allow for any element of a σ-structure in Cd

to be in 2D2 E-relations (Gm is D2 regular and every edge of Gm is modelled by two directed

edges), to have either D4 F -children or D4 L-self-loops and to either have one F -parent or be

in one R-self-loop. Let I := {0}t([D]2)2t [D]2 be an index set. We define the underlying graph

U(A) of a model A of ϕ z to be the undirected graph with vertex set A given by rotation map

ROTU(A) : A× I → A× I defined by

ROTU(A)(v, i) :=



(v, 0) if i = 0 and (v, v) ∈ RA,

(w, j) if i = 0 and (w, v) ∈ FAj ,

(w, 0) if i ∈ ([D]2)2 and (v, w) ∈ FAi ,

(v, i) if i ∈ ([D]2)2 and (v, v) ∈ LAi ,

(w, j) if i ∈ [D]2 and (v, w) ∈ EAi,j .

We can understand this rotation map as labelling the tuples containing an element v as follows:

(v, v) ∈ RA or (w, v) ∈ FAk respectively will be labelled by 0, (v, w) ∈ FAk or (v, v) ∈ LAk

74 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

respectively will be labelled by k and (v, w) ∈ EAi,j will be labelled by i. Note that U(A) is

(D2 +D4 +1)-regular. We chose the notion of an underlying graph here instead of the Gaifman

graph as it is more convenient in particular for using results from [115]. However the Gaifman

graph can be obtained from the underlying graph by ignoring self-loops and multiple edges. In

this section we will show the following.

Proposition 6.1.12. The underlying undirected graphs of models of ϕ z are a family of

ε-expander for some ε > 0.

We will show Proposition 6.1.12 in several steps analysing the structure of models of ϕ z in

detail. For this let A be a model of ϕ z . Let A|F := (A, (FAk)k∈([D]2)2) be the {(Fk)k∈([D]2)2}-
structure obtained from A by forgetting relations {Ei,j}i,j∈[D]2 , R and {Lk}k∈([D]2)2 . Recall

that we denote the Gaifman graph of A|F by G(A|F). Let A|E be the {(Ei,j)i,j∈[D]2}-structure

(A, (EAi,j)i,j∈[D]2) obtained from A by forgetting relations {FAk }k∈([D]2)2 , R and {Lk}k∈([D]2)2 .

We further define the underlying graph U(A|E) of A|E as the undirected graph specified by

the rotation map ROTU(A|E) defined by ROTU(A|E)(v, i) := (w, j) if (v, w) ∈ EAi,j . This is well

defined as A |= ϕrotationMap.

We use the substructures G(A|F) and U(A|E) to express the structural properties of models

of ϕ z . More precisely we want to prove that G(A|F) is a rooted complete tree and U(A|E)

is the disjoint union of the expanders G1, . . . , Gn for some n ∈ N (Lemma 6.1.15). To prove

this we use two technical lemmas (Lemma 6.1.13 and Lemma 6.1.14). Lemma 6.1.13 intuitively

shows that the children in G(A|F) of each connected part of U(A|E) form the zig-zag product

with H of the square of the connected part. Lemma 6.1.14 shows that G(A|F) is connected. To

prove Proposition 6.1.12 we use that a tree with an expander on each level has good expansion.

Loosely speaking, this is true because cutting the tree ‘horizontally’ takes many edge deletions

and for cutting the tree ‘vertically’ we cut many expanders.

Lemma 6.1.13. Let A be a model of ϕ z and assume S is the set of all vertices belonging to

a connected component of (U(A|E))2 not containing the root and let S′ := {w ∈ A | (v, w) ∈
FA, v ∈ S}. If S′ 6= ∅ then U(A|E)[S′] is a connected component of U(A|E) and U(A|E)[S′] ∼=
((U(A|E))2[S]) z H.

We use connected components of (U(A|E))2, as the square of a connected component of

U(A|E) may not be connected, in which case the zig-zag product with H of the square of the

connected component cannot be connected.

Proof of Lemma 6.1.13. Assume that S′ 6= ∅. We first show that

U(A|E)[S′] ∼= ((U(A|E))2[S]) z H.

For this we use the following two claims.

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 75

Claim 1. If ROT(U(A|E))2[S] z H((u, k), (i, j)) = ((w, `), (j′, i′)) for some u,w ∈ S, k, ` ∈
([D]2)2, i, j, i′, j′ ∈ [D] then there is v ∈ S such that (u, v) ∈ EAk′1,`′1 and (v, w) ∈ EAk′2,`′2 where

ROTH(k, i) = ((k′1, k
′
2), i′) and ROTH((`′2, `

′
1), j) = (`, j′).

Proof of Claim 1. By assumption we have ROT(U(A|E))2[S] z H((u, k), (i, j)) = ((w, `), (j′, i′)).

This implies that ROT(U(A|E))2[S](u, (k
′
1, k
′
2)) = (w, (`′2, `

′
1)) for ROTH(k, i) = ((k′1, k

′
2), i′) and

ROTH((`′2, `
′
1), j) = (`, j′) by definition of the zig-zag product. Since ROT(U(A|E))2[S] is equal to

ROT(U(A|E))2 restricted to elements of the set S, we have that ROT(U(A|E))2(u, (k′1, k
′
2)) =

(w, (`′2, `
′
1)). Then by definition of squaring ROT(U(A|E))2(u, (k′1, k

′
2)) = (w, (`′2, `

′
1)) implies

that there is v such that ROTU(A|E)(u, k
′
1) = (v, `′1) and ROTU(A|E)(v, k

′
2) = (w, `′2). This

implies the claim by the definition of ROTU(A|E). �

Claim 2. If (u, v) ∈ EAk′1,`′1 and (v, w) ∈ EAk′2,`′2 for some u, v, w ∈ A, k′1, k
′
2, `
′
1, `
′
2 ∈ ([D]2)2 and

there is u′ ∈ A with (u, u′) ∈ FA then there is w′ ∈ A such that (w,w′) ∈ FA. Furthermore

for any i, i′, j, j′ ∈ [D] there are ũ, w̃ ∈ A, k, ` ∈ ([D]2)2 such that (ũ, w̃) ∈ EA(i,j),(j′i′) for

(u, ũ) ∈ FAk and (w, w̃) ∈ FA` where ROTH(k, i) = ((k′1, k
′
2), i′) and ROTH((`′2, `

′
1), j) = (`, j′).

Proof of Claim 2. We only use that A |= ϕrecursion. Since ϕrecursion has the form ∀x∀zψ(x, z)

for some formula ψ(x, z) we know that A |= ψ(u,w). Since (u, u′) ∈ FA we have

A 6|= ¬∃yF (u, y) ∧ ¬∃yF (w, y).

Since additionally

A |= ∃y
[
Ek′1,`′1(u, y) ∧ Ek′2,`′2(w, z)

]
,

this implies that

A |=
∧

i,j,i′,j′∈[D],k,`∈([D]2)2

ROTH(k,i)=((k′1,k
′
2),i′)

ROTH((`′2,`
′
1),j)=(`,j′)

∃x′∃z′
[
Fk(u, x′) ∧ F`(w, z′) ∧ E(i,j),(j′,i′)(x

′, z′)
]
.

Since this conjunction is not empty this implies that there exists an element w′ such that

(w,w′) ∈ FA. More precisely for any i, i′, j, j′ ∈ [D] there are ũ, w̃ as stated. �

We will argue that for every element w ∈ S there is a w′ ∈ S′ such that (w,w′) ∈ FA.

For this pick any u′ ∈ S′. Let u ∈ S be the element such that (u, u′) ∈ FA. By combining

Lemma 6.1.11 and Theorem 6.1.8 and Lemma 6.1.3 it follows that (U(A|E)2[S]) z H is a

connected graph. Therefore, there is a path (u′0, . . . , u
′
m) in (U(A|E)2[S]) z H from u′0 =

(u, (k1, k2)) to u′m = (w, (`1, `2)) for some k1, k2, `1, `2 ∈ [D]2. By Claim 1 there is a path

(u0, v0, u1, v1, . . . um−1, vm−1, um) in U(A|E) from u0 = u to um = w. By inductively using

Claim 2 on the path we find w′ such that (w,w′) ∈ FA.

Combining this with A |= ϕtree implies that the map f : S × ([D]2)2 → S′, given by

f(v, k) = u if (v, u) ∈ FAk , is well defined. Furthermore, Claim 1 and Claim 2 imply that

76 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

if ROT(U(A|E))2[S] z H((u, k), (i, j)) = ((w, `), (j′, i′)) then ROT(U(A|E))[S′](f((u, k)), (i, j)) =

(f((w, `)), (j′, i′)). This proves that f maps each edge in ((U(A|E))2[S]) z H injectively to

an edge in U(A|E)[S′]. Then the map f together with the corresponding edge map is an

isomorphism from ((U(A|E))2[S]) z H to U(A|E) as both are D2-regular.

Moreover, U(A|E)[S′] ∼= ((U(A|E))2[S]) z H implies that U(A|E)[S′] is connected and D2-

regular. Since A |= ϕrotationMap enforces that U(A|E) is D2-regular, no vertex v ∈ S′ can

have neighbours which are not in S′ and therefore U(A|E)[S′] is a connected component of

U(A|E).

Lemma 6.1.14. Let A ∈ Cd be a model of ϕ z . Then G(A|F) is connected.

Proof. Assume that this is false and G(A|F) has more than one connected component. Since

A |= ϕtree there is exactly one element v such that A |= ϕroot(v). Therefore we can pick G′ to

be a connected component of G(A|F) which does not contain v. For the next claim we should

have in mind that (A|F)[V (G′)] can be understood as a directed graph in which every vertex

has in-degree 1 and the corresponding undirected graph G′ is connected. Hence (A|F)[V (G′)]

must consist of a set of disjoint directed trees whose roots form a directed cycle. Consequently

G′ has the structure as given in the following claim.

Claim 1. G′ contains a cycle (c0, . . . , c`−1) and for every vertex v of G′ there is exactly one

path (p0, . . . , pm) in G′ with p0 = v, pm on the cycle and pi not on the cycle for all i ∈ [m].

Proof of Claim 1. Let v0 be any vertex in G′ and let S0 = {v0}. We will now recursively define

vi to be the vertex of G′ such that (vi, vi−1) ∈ FA. Such a vertex always exists and is unique by

choice of G′. We also let Si := Si−1 ∪{vi}. Since A is finite the chain S0 ⊆ S1 ⊆ · · · ⊆ Si ⊆ . . .
must become stationary at some point. Let i ∈ N be the minimum index such that Si−1 = Si

and let j < i be such that vi = vj . Then (vi, vi−1, . . . , vj+1, vj) is a cycle in G′ as by construction

(vk, vk−1) ∈ FA which implies that {vk, vk−1} is an edge in the Gaifman graph G(A|F). Let

C = {c0, . . . , c`−1} be the vertices of the cycle. Since G′ is connected a path such as in

the claim always exists. So let us argue that such a path is unique. Assume there are two

different such path (p0, . . . , pm) and (p′0, . . . , p
′
m′) and assume that pm = ci and p′m′ = cj . Let

k ≤ min{m,m′} be the minimum index such that pk 6= p′k. Such an index must exist as the

paths are different and as p0 = p′0 = v we also know that k ≥ 1. Since A |= ϕtree for every

vertex w of G′ there can only be one vertex w′ of G′ such that (w′, w) ∈ FA. As pm−1 /∈ C and

(c(i−1) mod `, pm) ∈ FA this means that (pm, pm−1) ∈ FA. Applying the argument inductively

we get that (pk, pk−1) ∈ FA. The same argument works for the path (p′0, . . . , p
′
m′) and therefore

(p′k, p
′
k−1) ∈ FA. By the choice of k we know that pk−1 = p′k−1 and pk 6= p′k which contradicts

A |= ϕtree. �

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 77

Let S0 be the vertex set of the connected component of U(A|E) with c0 ∈ S0. Note that S0

might not be contained in G′.

We now recursively define the infinite sequence of sets Si := {w ∈ A | (v, w) ∈ FA, v ∈ Si−1}
for every i ∈ N>0. Let mi := maxv∈Si∩V minj∈{0,...,`−1}{distG′(cj , v)} and let vi ∈ Si ∩ V be a

vertex of distance mi from C in G′. Note here that mi is well defined as cimod ` ∈ Si.

Claim 2. U(A|E)[Si] = (U(A|E)[Si−1])2 z H.

Proof of Claim 2. We show the stronger statement that U(A|E)[Si] is a connected component of

U(A|E) and (U(A|E)[Si])
2 z H = U(A|E)[Si+1] and λ(U(A|E)[Si]) < 1 for i ∈ N by induction.

First observe that U(A|E)[S0] is a connected component of U(A|E) by choice of S0. To

argue that λ(U(A|E)[S0]) < 1 let S̃ := {w ∈ A | (w, v) ∈ FA, v ∈ S0}.
We now argue that (U(A|E))2[S̃] is a connected component of (U(A|E))2. Assuming the

contrary, either a connected component of (U(A|E))2 contains vertices from both S̃ and A \ S̃
or (U(A|E))2[S̃] splits into more than one connected component. Let S′ be the vertices of a

connected component as in the first case. Then |S′| > 1 and hence S′ can not contain the root

as the root is not in any E-relation with any other elements. Hence by Lemma 6.1.13 we get

a connected component of U(A|E) on the children of S′ containing vertices both from S0 and

from A \ S0, which contradicts S0 being a connected component of U(A|E). Now let S′ be a

connected component as in the second case, and pick S′ such that it does not contain the root.

Then by Lemma 6.1.13 S0 must have a non-empty intersection with at least two connected

components of U(A|E) which is a contradiction.

Thus, by Lemma 6.1.11 we have that λ((U(A|E))2[S̃]) < 1. Additionally by Lemma

6.1.13 U(A|E)[S0] = ((U(A|E))2[S̃]) z H. Then Theorem 6.1.8 and λ(H) < 1 ensure that

λ(U(A|E)[S0]) < 1.

For i > 1 inductively we assume that λ(U(A|E)[Si−1]) < 1 which implies by Lemma 6.1.6

and Lemma 6.1.3 that (U(A|E)[Si−1])2 is a connected component1 of (U(A|E))2 and that

(U(A|E))2[Si−1] = (U(A|E [Si−1]))2. Since cimod ` ∈ Si by Lemma 6.1.13 we have U(A|E)[Si] is

a connected component of U(A|E) and U(A|E)[Si] = (U(A|E)[Si−1])2 z H. Additionally this

proves λ(U(A|E)[Si]) < 1 using Lemma 6.1.6 and Theorem 6.1.8. �

Claim 3. For every v ∈ Si there is w ∈ V such that (v, w) ∈ FA.

Proof of Claim 3. By Claim 2 we have that U(A|E)[Si+1] = (U(A|E)[Si])
2 z H. This means

that by definition of squaring and the zig-zag product we know that |Si+1| = D4 · |Si|. But

because in addition A |= ϕtree we know that every element v ∈ Si will contribute to no more

then D4 elements to Si+1. This means by construction of Si+1 that for every element in Si

there must be w ∈ V such that (v, w) ∈ FA. �

1We remark that the statement that (U(A|E)[Si−1])
2 is a connected component does not directly follow from

the fact that U(A|E)[Si−1] is a connected component of U(A|E), as the square of a connected bipartite graph
is not necessarily connected.

78 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

C

c0

S0
S1

S2

S`−1

S` = S0

Figure 6.3: Illustration of the proof of Lemma 6.1.14.

Therefore, for every i ∈ N>0 there is wi ∈ V such that (vi, wi) ∈ FA where vi is the

vertex of distance mi from C in G′ picked above. Let (u0, . . . , umi) be the path in G′ from

u0 = vi to umi ∈ C. Note that it is impossible that wi = u1. This is true as for the path

(u0, ..., umi), we have that (uj+1, uj) ∈ FA for all j ∈ [mi]. Furthermore, since vi = u0 6= u1,

assuming that wi = u1 would imply (vi, u1), (u2, u1) ∈ FA, which contradicts A |= ϕtree. Then

(wi, u0, . . . , umi) is a path in G′ from wi to C. Since wi ∈ Si+1 by construction, Claim 1

implies that mi+1 ≥ mi+1. Therefore mi ≥ i+m0 inductively. But this yields a contradiction,

because `+m0 ≤ m` = m0 and the length of the cycle ` > 0. See Figure 6.3 for an illustration.

Therefore G(A|F) must be connected.

Lemma 6.1.15. Let A ∈ Cd be a (finite) model of ϕ z . Then |A| =
∑n
m=0D

4m for some

n ∈ N; G(A|F) is a D4-ary complete rooted tree, where the root is the unique element r ∈ A
for which A |= ϕroot(r); and U(A|E)[Tm] ∼= Gm where Gm is defined as in Definition 6.1.9

and Tm is the set of vertices of distance m to r in the tree G(A|F) for any m ∈ {1, . . . , n}.
Furthermore, for every n ∈ N there is a model of ϕ z of size

∑n
m=0D

4m.

Proof. Lemma 6.1.14 combined with A |= ϕtree proves that G(A|F) is a rooted tree. Let n be

the greatest distance of any vertex in G(A|E) to the root and let Tm be the vertices of distance

m to the root for m ≤ n. Then U(A|E)[T1] ∼= G1 because A |= ϕbase. Since λ(Gm) < 1 for

every m ∈ N>0 we can use Lemma 6.1.13 to prove by induction that U(A|E)[Tm] ∼= Gm for

every m ∈ {1, . . . , n}. Since Gm has D4m vertices this proves that A has
∑n
m=0D

4m vertices.

Furthermore, for n ∈ N the existence of a model of ϕ z of size
∑n
m=0D

4m is straightforward

by the construction of the formula ϕ z .

6.1. A CLASS OF EXPANDERS DEFINABLE IN FO 79

Now we are ready to finish the proof of Proposition 6.1.12.

Proof of Proposition 6.1.12. We will prove that the models of ϕ z are a class of ε-expanders

for ε := D2

12 . Let A be the model of ϕ z of size
∑n
m=0D

4m and S ⊆ A arbitrary with |S| ≤∑n
m=0

D4m

2 . Let Tm be the vertices of distance m to the root of the tree G(A|F) and let

Sm := Tm ∩ S.

We can assume that |S| > 1 as every vertex has degree at least ε. Let us first assume that

|Sm| ≤ D4m

2 for all m ∈ [n]. Then because Gm is an D2

4 -expander (this follows directly from

Theorem 6.1.4 as λ(Gm) ≥ 1
2) and U(A|E)[Tm] ∼= Gm we know that

|〈S, S〉U(A)| ≥
n∑

m=1

D2

4
|Sm| ≥

D2

12

n∑
m=0

|Sm| =
D2

12
|S|.

Now assume the opposite and choose m′ to be the largest index such that

|Sm′ | >
|Tm′ |

2
=
D4m′

2
. (6.9)

We will use the following claim.

Claim 1.
∑m̃−1
m=0 |Tm| ≤

1
2 |Tm̃| for all m̃ ≤ n.

Proof of Claim 1. Inductively, we argue that

m̃−1∑
m=0

|Tm| =
m̃−2∑
m=0

|Tm|+ |Tm̃−1| ≤
1

2
(3|Tm̃−1|) ≤

1

2
|Tm̃|.

�

Claim 1 implies that

3

4
· |Tn| ≥

1

2
|Tn|+

1

2

n−1∑
m=0

|Tm| =
1

2
|A| ≥ |S| ≥ |Sn|.

In the case that m′ = n, this implies

|〈S, S〉U(A)| ≥
D2

4
(|Tn| − |Sn|) ≥

D2

16
|Tn| ≥

D2

12
· |S|.

Assume now that m′ < n. Since S is the disjoint union of all Sm we know that the set 〈S, S〉U(A)

contains the disjoint sets 〈Sm, Tm \Sm〉U(A), 〈Tm′ \Sm′ , Tm′〉U(A) and 〈Sm′ , Tm′+1 \Sm′+1〉U(A)

for all m ∈ {m′ + 1, . . . , n}. For illustration see Figure 6.4. Since every vertex in Tm′ has D4

neighbours in Tm′+1 and on the other hand every vertex in Tm′+1 has one neighbour in Tm′ we

80 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

know that

|〈Sm′ , Tm′+1 \ Sm′+1〉U(A)| = |〈Sm′ , Tm′+1〉U(A)| − |〈Sm′ , Sm′+1〉U(A)|

≥ D4|Sm′ | − |Sm′+1|

≥ D4

(
|Sm′ | −

D4m′

2

)
.

Since additionally
|Tm′ |

2
≥ |Tm′ \ Sm′ | = D4m′ − |Sm′ |

and Gm is an D2

4 -expander for every m we get

|〈S, S〉U(A)| ≥
∑
m>m′

D2

4
|Sm|+

D2

4
|Tm′ \ Sm′ |+D4

(
|Sm′ | −

D4m′

2

)

=
D2

4

∑
m>m′

|Sm|+
D2

4
(D4m′ − |Sm′ |) +D4|Sm′ | −D4 · D

4m′

2

+
D2

4
|Sm′ | −

D2

4
|Sm′ |

=
D2

4

∑
m>m′

|Sm|+
(
D4 − D2

2

)
|Sm′ | −

(
D4 − D2

2

)
D4m′

2
+
D2

4
|Sm′ |

Equation 6.9

≥ D2

4

∑
m>m′

|Sm|+
(
D4 − D2

2

)
D4m′

2
−
(
D4 − D2

2

)
D4m′

2
+
D2

4
|Sm′ |

Equation 6.9

≥ D2

4

∑
m>m′

|Sm|+
D2

8
|Sm′ |+

D2

8

(
|Tm′ |

2

)
Claim 1
≥ D2

4

∑
m>m′

|Sm|+
D2

8
|Sm′ |+

D2

8

∑
m<m′

|Tm|

|Tm|≥|Sm|
≥ D2

12
|S|.

By choice of ε this shows that the models of ϕ z are a class of ε-expanders.

Hence we have constructed an FO-sentence ϕ z which defines a property of structures,

whose underlying undirected graphs are expanders. In the next section we use the expansion

property of models of ϕ z to prove that the property defined by ϕ z is not testable.

6.2. ON THE NON-TESTABILITY OF A Π2-PROPERTY 81

Sm′

Sm′+1

Sn

Figure 6.4: Schematic representation of S crossing edges (orange and blue) in the underlying
undirected graph in the case of m′ < n.

6.2 On the non-testability of a Π2-property

We first prove that the property defined by the sentence ϕ z is not testable and then we argue

that the sentence ϕ z is d-equivalent to a sentence in Π2 where d is the degree bound defined

in Equation 6.8. We let P z := Pϕ z
for the sentence ϕ z from Section 6.1.2. We also let σ be

the signature from Equation 6.1.

Theorem 6.2.1. P z is not testable on Cd.

Proof. we prove that P z is not repairable and get non-testability of P z with Theorem 5.1.2.

Let ε := 1
144D2 and let r ∈ N, λ > 0 and n0 ∈ N be arbitrary. We set λ′ := λ

t·2r+1 , where t

denotes the number of r-types of bounded degree d, and let n′0 be the positive integer from

Theorem 5.2.2 corresponding to λ′. We now pick n ∈ N such that n =
∑k
i=0D

4i for some

k ∈ N, n ≥ 4n0 and n ≥ 4n′0
λ . Let A ∈ Cd be a model of ϕ z on n elements. By Theorem 5.2.2

there is a structure H ∈ Cd on m ≤ n′0 elements such that the sampling distance of A and B
(Definition 5.2.1) satisfies δ�(A,H) ≤ λ′. Let B be the structure consisting of

⌊
n
m

⌋
copies of

H and n mod m isolated elements (elements not being contained in any tuple). Note that by

choice of B we have that |A| = |B|.
We will first argue that B is in fact ε-far from having the property P z . First we rename

the elements from B in such a way that A = B and the number
∑
R̃∈σ |R̃A∆R̃B| of tuple

modifications to turn A and B into the same structure is minimal. Let us pick a partition

A = B = S t S′ in such a way that (S × S′) ∩ R̃B = ∅, (S′ × S) ∩ R̃B = ∅ for any R̃ ∈ σ and

||S| − |S′|| is minimal among all such partitions. Assume that |S| ≤ |S′|. Since the connected

components of the Gaifman graph G(B) are of size at most m we know that ||S|−|S′|| ≤ m. This

is the case as if ||S| − |S′|| > m we can get a partition B = T tT ′ with ||T | − |T ′|| < ||S| − |S′||
by picking all elements of any connected component of G(B), which is contained in S′, and

moving these elements from S′ to S. Since |S| ≤ |S′| and m ≤ n
4 we know that n

4 ≤ |S| ≤
n
2 .

Since (S×S′)∩ R̃B = ∅ we know that A and B must differ in at least all tuples that correspond

82 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

to an S and S′ crossing edge in U(A) i. e. an edge in 〈S, S′〉U(A). Hence∑
R̃∈σ

|R̃A R̃B| ≥ |〈S, S′〉U(A)|

Def 2.2.1
≥ |S| · h(A)

Prop. 6.1.12

≥ n

4
· D

2

12

=
1

48
D2n

≥ 1

144D2
dn.

Therefore B is ε-far from being in P z .

However, the frequency vectors (Definition 2.3.6) of A and B are similar as the following

shows, proving that P z is not repairable. Let τ1, . . . , τt be a list of all r-types and Tr :=

{τ1, . . . , τt}. We further denote the σ-structure containing a single element and no tuples by

K1.

‖freqr(A)− freqr(B)‖1 =

r∑
i=1

|ρA,r({τi})− ρB,r({τi})|

=

t∑
i=1

∣∣∣ρA,r({τi})− n mod m

n
· ρK1,r({τi})−

⌊ n
m

⌋
· m
n
· ρH,r({τi})

∣∣∣
≤

t∑
i=1

∣∣∣ρA,r({τi})− ρH,r({τi})∣∣∣+

t∑
i=1

∣∣∣n mod m

n
· ρK1,r({τi})

∣∣∣
+

t∑
i=1

∣∣∣ρH,r({τi})− ⌊ n
m

⌋
· m
n
· ρH,r({τi})

∣∣∣
≤

t∑
i=1

∣∣∣ρA,r({τi})− ρH,r({τi})∣∣∣+
2m

n

≤ t · sup
X⊆Tr

|ρA,r(X)− ρH,r(X)|+ 2m

n

≤ t · 2r · δ�(A,H) +
2m

n

≤ λ

2
+
λ

2

= λ.

The last inequality holds by choice of λ′ and Theorem 5.2.2.

6.2. ON THE NON-TESTABILITY OF A Π2-PROPERTY 83

We now argue that ϕ z is d-equivalent to a sentence in Π2. Let us first observe the following.

Remark 6.2.2. Any Hanf sentence ∃≥mxφτ (x) is short for

∃x1 . . . ∃xm
(∧

1≤i,j≤m,i 6=j

xi 6= xj ∧
∧

1≤i≤m

φτ (xi)
)
,

where φτ (xi) is the formula from Lemma 2.4.6. Observe that φτ (xi) can be expressed by a

formula in Σ2. Hence any Hanf sentence is in Σ2.

Lemma 6.2.3. Let d ∈ N, σ any signature and let ϕ be a sentence in FO[σ]. If every model

of ϕ is d-regular, then ϕ is d-equivalent to a sentence in Π2.

The lemma can be equivalently stated by the following syntactic formulation. Let ϕdreg be

the FO-sentence expressing that every element has degree d. Then for every FO-sentence ϕ the

sentence ϕ ∧ ϕdreg is d-equivalent to a sentence in Π2.

Proof of Lemma 6.2.3. By Theorem 2.4.7 ϕ is d-equivalent to a sentence ϕ′ in Hanf normal

form. We can further assume that ϕ′ is a DNF of Hanf sentences (Lemma 2.4.3). Let therefore

ϕ′ =

n∨
i=1

(`i∧
j=1

ψi,j ∧
ki∧
j=1

¬χi,j
)
,

where ψi,j , χi,j are Hanf sentences. Since every ψi,j is of the form ∃≥mxφτ (x), where τ is an

r-type of bounded degree d and φτ (x) is the formula expressing that x has r-type τ , we can

further assume that for every r-ball (B, b) ∈ τ with centre b, we have that degB(b̃) = d for every

element b̃ ∈ B with distB(b, b̃) < r. This is not a restriction as we assumed that every model of

ϕ is d-regular.

We already know that every Hanf-sentence is in Σ2 by Remark 6.2.2. This implies, using

De Morgan’s law, that every negated Hanf-sentence is equivalent to a sentence in Π2. We can

further show the following claim which relies on every model of ϕ being d-regular.

Claim 1. Every ψi,j is d-equivalent to a sentence in Π1.

Proof of Claim 1. Assume that ψi,j = ∃≥mxφτ (x) for some i, j. Let (B, b) ∈ τ be an r-ball

with centre b in τ . Let further B := {b0, b1, . . . , bk} be the set of elements of B where b0 := b.

We set

φ′τ (x0) := ∃x1, . . . ,∃xk
[∧

0≤i<j≤k

(
xi 6= xj

)
∧
∧
R∈σ

(∧(
bi1 ,...,biar(R)

)
∈RB

R(xi1 , . . . , xiar(R)
)

∧
∧(

bi1 ,...,biar(R)

)
∈Bar(R)\RB

¬R(xi1 , . . . , xiar(R)
)
)]
,

84 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

and ψ′i,j := ∃≥mx0φ
′
τ (x0). We now argue that ψi,j is d-equivalent to ψ′i,j . Let therefore

A ∈ Cd be any σ-structure. By construction of φ′τ (x0) we directly get that if A |= ψi,j then

A |= ψ′i,j . Therefore assume A |= ψ′i,j . Then there are m elements a1, . . . , am ∈ A such that

A |= φ′τ (ai) for every i ∈ {1, . . . ,m}. Fix any i ∈ {1, . . . ,m}. By definition of φ′τ (x0) there is

an injective map f : B → NAr (ai) such that f(b) = ai and
(
bi1 , . . . , biar(R)

)
∈ RB if and only

if
(
f(bi1), . . . , f(biar(R)

)
)
∈ RA for any tuple

(
bi1 , . . . , biar(R)

)
∈ Bar(R) and any R ∈ σ. We will

now argue that f is even an isomorphism from B to NAr (ai). For this to be true we have to

argue that the image of the map f is precisely NAr (ai). Assume this is false and a ∈ NAr is

not in the image of f . Since a ∈ NAr there must be a path (ai, p1, . . . , p`−1, a) from ai to a

of length ` ≤ r in the Gaifman graph of A. Hence there must be a tuple t ∈ RA for some

relation R ∈ σ which contains both a and p`−1. Since we assumed that degB(b̃) = d for every

element b̃ ∈ B with distB(b, b̃) < r we know that degA[f(B)](ã) = d for any ã ∈ f(B) with

dist(ai, ã) < r. Hence p`−1 /∈ f(B) as otherwise degA(p`−1) ≥ d+ 1 since a /∈ f(B). Using this

argument inductively proves that ai /∈ f(B) which contradicts the assumption that f(b) = ai.

Hence (NAr , ai) ∈ τ and therefore A |= ∃≥mxφτ (x). This proves that ψi,j is d-equivalent to

ψ′i,j . Observing that ψ′i,j is indeed in Π1 concludes the proof. �

Let ψ′i,j ∈ Π1 be the sentence from Claim 1. Then a straightforward argument shows that

ϕ is d-equivalent to

ϕ′′ :=

n∨
i=1

(`i∧
j=1

ψ′i,j ∧
ki∧
j=1

¬χi,j
)
.

Let ∃xi,jψ̃i,j(xi,j) be a prenex normal form of ψ′i,j where ψ̃i,j(x
i,j) is a quantifier-free formula

and xi,j is a tuple of variables. Let further ∀yi,j∃zi,jχ̃i,j(yi,j , zi,j) be a prenex normal form of

¬χi,j where χ̃i,j(y
i,j , zi,j) is a quantifier-free formula and yi,j , zi,j are two tuples of variables.

Since ψi,j and χi,j are sentences we can assume that the tuples xi,j , yi,j , zi,j contain pairwise

different variables. This implies that we can move the quantifiers to the front of the formula as

long as ∀yi,j appears before ∃zi,j in the quantifier prefix for all i, j. Therefore a prenex normal

form of ϕ′′ is

∀y1,1, . . . ,∀y1,k1 , . . . ,∀yn,1, . . . ,∀yn,kn∃z1,1, . . . ,∃z1,k1 , . . . ,∃zn,1, . . . ,∃zn,kn

∃x1,1, . . . ,∃x1,`1 , . . . ,∃xn,1, . . . ,∃xn,`n
n∨
i=1

(`i∧
j=1

ψ̃i,j(x
i,j) ∧

ki∧
j=1

χ̃i,j(y
i,j , zi,j)

)

proving that ϕ′′ ∈ Π2. Since ϕ is therefore d-equivalent to a formula in Π2 this proves the

claimed statement.

Theorem 6.2.4. There is a d ∈ N such that there exists a property on Cd definable by a

formula in Π2 that is not testable.

6.3. EXTENSION TO SIMPLE GRAPHS 85

Proof. Pick d = 2D2 + D4 + 1 for any large prime power D. Then using the construction

from [115] we can find a (D4, D, 1/4)-graph H. By Theorem 6.2.1, using this base expander H

for the construction of the formula ϕ z we get a property which is not testable on Cd. Since

all models of ϕ z are d-regular by construction, Lemma 6.2.3 gives us that ϕ z is d-equivalent

to a formula in Π2.

6.3 Extension to simple graphs

The construction of a non-testable FO definable property given in the previous Sections relies

on edge colours as a tool for modelling. This raises the question of whether FO definable

properties are testable on the class Cd of simple undirected graphs of bounded degree d. In

this Section we give a negative answer to this by interpreting the edge-coloured directed graphs

of our previous examples in undirected graphs. We encode σ-structures by representing each

type of directed edge by a constant size graph gadget, maintaining the degree regularity. We

then translate the formula ϕ z into a formula ψ z of which these converted graphs are models.

Therefore we obtain a class of simple undirected degree regular expanders, that is defined by

an FO-sentence, and obtain the analogous theorem.

Theorem 6.3.1. There are degree bounds d ∈ N such that there exists a property of simple

undirected graphs on Cd definable by a formula in Π2 that is not testable.

We now give the construction to convert σ-structures into simple undirected graphs in detail.

Let D, d and σ be as defined in Section 6.1.2. We first construct the following arrow-graph

gadgets.

Let Gd(u, v) be the simple undirected graph with vertex set

{u, v, u0, . . . , ud−2}

and edge set {
{u, ui}, {v, ui}, {ui, uj} | i, j ∈ [d− 2], i 6= j

}
.

Let Hd(u, v) be the simple graph with vertex set{
u, v, ui, u

′
j , vi, v

′
j

∣∣∣ i ∈ [⌊d− 1

2

⌋]
, j ∈

[⌈d− 1

2

⌉]}

86 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

u0 v3

Figure 6.5: Illustration of P 6
3,2(u0, v3).

and edge set {
{u, ui}, {v, vi}, {ui, vi}

∣∣∣ i ∈ [⌊d− 1

2

⌋]}
∪{

{u, u′j}, {v, v′j}, {u′j , v′j}}
∣∣∣ j ∈ [⌈d− 1

2

⌉]}
∪{

{ui, uk}, {vi, vk}
∣∣∣ i, k ∈ [⌊d− 1

2

⌋]
, i 6= k

}
∪{

{u′j , u′k}, {v′j , v′k}
∣∣∣ j, k ∈ [⌈d− 1

2

⌉]
, j 6= k

}
∪{

{ui, v′j}, {u′j , vi}
∣∣∣ i ∈ [⌊d− 1

2

⌋]
, j ∈

[⌈d− 1

2

⌉]}
.

Finally, for every ` ∈ N and 0 ≤ p ≤ `, we let P d`,p(u0, v`) be the simple undirected graph

consisting of ` copies Gd(u0, v0), . . . , Gd(up−1, vp−1), Gd(up+1, vp+1), . . . , Gd(u`, v`) of Gd(u, v),

one copy Hd(up, vp) of Hd(u, v) and additional edges {vi, ui+1} for each i ∈ [`]. Note that

P d`,p(u0, v`) has ` · (d+ 1) + 2d vertices, the vertices u0 and v` have degree d− 1 and every other

vertex has degree d. See Figure 6.5 for an example.

Let A ∈ Cd be any σ-structure and let ` := 2 · (3D4 + 1). We obtain a simple graph GA

with bounded degree d out of A with the following operations.

(E) For every i0, i1, i2, i3 ∈ [D] we define p =
∑3
k=0 ik ·Dk and replace every tuple (a, b) ∈

EA(i0,i1),(i2,i3) by P d`,p(u0, v`) and additional edges {a, u0} and {v`, b}. Here all vertices

of P d`,p(u0, v`) are pairwise distinct and new, and we call them auxiliary vertices. Call

this gadget graph an E(i0,i1),(i2,i3)-arrow with end-vertices a and b.

(F) For every i0, i1, i2, i3 ∈ [D] we define p = D4 +
∑3
k=0 ik · Dk and replace every tuple

(a, b) ∈ FA((i0,i1),(i2,i3)) by P d`,p(u0, v`) and additional edges {a, u0} and {v`, b}. Here

all vertices of P d`,p(u0, v`) are pairwise distinct and new, and we call them auxiliary

vertices. Call this gadget graph an F((i0,i1),(i2,i3))-arrow with end-vertices a and b.

(L) For every i0, i1, i2, i3 ∈ [D] we define p = 2D4 +
∑3
k=0 ik ·Dk and replace every tuple

6.3. EXTENSION TO SIMPLE GRAPHS 87

(x, y) ∈ LA((i0,i1),(i2,i3)) by P d`,p(u0, v`) and additional edges {a, u0} and {v`, b}. Here

all vertices of P d`,p(u0, v`) are pairwise distinct and new, and we call them auxiliary

vertices. Call this gadget graph an L((i0,i1),(i2,i3))-arrow with end-vertices a and b.

(R) We define p = 3D4 and replace every tuple (a, b) ∈ RA by P d`,p(u0, v`) and additional

edges {a, u0} and {v`, b}. Here all vertices of P d`,p(u0, v`) are pairwise distinct and new,

and we call them auxiliary vertices. Call this gadget graph an R-arrow with end-vertices

a and b.

All vertices, that are not auxiliary, are called original vertices. Note that the location p of the

gadget Hd(v0, v`) uniquely encodes the colour of the original directed coloured edge. Also note

that each arrow defined above has a direction as the gadget Hd(v0, v`) is always located in the

first half of the path P d`,p(u0, v`).

The following is easy to observe from the construction.

Remark 6.3.2. For every vertex x of GA the following proposition is true. x is an original

vertex if and only if x is contained in no triangle.

We now construct the formula ψ z . For that we let δ(x) be a formula in the language of

undirected graphs σGraph, saying ‘x is an original vertex’, which is easy to do by Remark 6.3.2.

We further let β(x) be a formula saying ‘x is an inner vertex of either an Ei,j-arrow or an Fk-

arrow or an Lk-arrow or an R-arrow for any i, j ∈ [D]2, k ∈ ([D]2)2’. Here an inner vertex of an

arrow refers to any vertex but the two end vertices. Let αEi,j , α
F
k , αLk and αR be the following

σGraph-formulas. Let αEi,j(x, y) say ‘x and y are the end-vertices of an induced Ei,j-arrow’ for

i, j ∈ [D]2, similarly, let αFk (x, y) say ‘x and y are the end-vertices of an induced Fk-arrow’ for

k ∈ ([D]2)2. Furthermore let αLk (x, y) say ‘x and y are the end-vertices of an induced Lk-arrow’

for k ∈ ([D]2)2 and αR(x, y) say ‘x and y are the end-vertices of an induced R-arrow’. Since the

size of all arrow-graph gadgets depends on d the formulas β, αEi,j , α
F
k , αLk and αR are straight

forward to construct.

Given ϕ z , formula ψ z is obtained as follows. In the formula ϕ z we replace each expression

Ei,j(x, y) by αEi,j(x, y), each Fk(x, y) by αFk (x, y), each Lk(x, y) by αLk (x, y) and each R(x, y)

by αR(x, y). In addition, we relativise all quantifiers to the original vertices by replacing

every expression of the form ∃xχ by ∃x (δ(x) ∧ χ) and every expression of the form ∀xχ by

∀x (δ(x) → χ). Let us call the resulting formula ψ′z . Then we set ψ z to be the conjunction

of the formula ψ′z and the formula ∀x(¬δ(x)→ β(x)). Let

P z := {G ∈ Cd | G |= ψ z }.

The following is clear by the construction of GA and ψ z .

Lemma 6.3.3. For any A ∈ Cd the following proposition is true. A |= ϕ z if and only if

GA |= ψ z . Additionally we have that if G ∈ Cd is a model of ψ z then G ∼= GA for some

A ∈ Cd.

88 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

Proof. First assume that A |= ϕ z . Then by the construction of GA and ψ′z we get that

GA |= ψ′z . Since in the construction of GA no auxiliary vertex is added which is not part of

an Ei,j-arrow or an Fk-arrow or an Lk-arrow or an R-arrow for any i, j ∈ [D]2, k ∈ ([D]2)2 we

additionally get that GA |= ∀x(¬δ(x)→ β(x)).

Let us on the other hand assume that G |= ψ z . Then G |= ∀x(¬δ(x) → β(x)). Hence G

consists of a set of original vertices that are connected according to ψ′z with Ei,j-arrow or an

Fk-arrow or an Lk-arrow or an R-arrow. Hence we can reverse the Operations (E), (F), (L)

and (R) to obtain AG the corresponding model of ϕ z for which GAG = G.

In the following, we show that P z is a family of expanders, which allows us to prove

non-testability analogously as in the relational structure case. We remark that one could also

prove the non-testability of P z by showing that the aforementioned transformation (from σ-

structures to simple graphs) is more or less a local reduction that preserves the testability of

properties.

Proposition 6.3.4. The models of ψ z is a family of ξ-expanders, for some constant ξ > 0.

The strategy here is to consider different cases dependent on how the number of original

vertices relates to the number of auxiliary vertices contained in some set S ⊆ V (G) of size

at most V (G)
2 for a model G of ψ z . Since original vertices are only connected to auxiliary

vertices, we get well connectedness of S if the number of auxiliary vertices in comparison to

the number of original vertices contained in S is small. On the other hand, using a similar

argument we obtain well connectedness of S in the case that the amount of auxiliary vertices

is large in comparison to the amount of original vertices in S. In the case that the number

of original and auxiliary vertices differs not too much we can use expansion of the structure

A ∈ P z corresponding to G to prove that S is well connected to the rest of G. We give the

formal proof in the following.

Proof of Proposition 6.3.4. Let G be a model of ψ z and let A be the corresponding model of

ϕ z which exists due to Lemma 6.3.3. Let S ⊆ V (G) such that |S| ≤ |V (G)|
2 . Let Voriginal t

Vauxiliary = V (G) be the partition of V (G) into original and auxiliary vertices. Let Soriginal :=

Voriginal ∩ S and Sauxiliary := Vauxiliary ∩ S.

First note that by the above definitions every tuple in A corresponds to a constant number

c := 2 · (3D4 + 1) · (d + 1) + 2d of auxiliary vertices in Vauxiliary (each of the copies of gadget

P d`,p(u0, v`) contains d + 1 vertices and gadget Hd(v0, v`) contains 2d vertices), where d =

2D2 +D4 + 1 (see Equation 6.8).

Assume |Soriginal| > 2
dc · |S|. Then there are |S| − |Soriginal| < dc−2

2 · |Soriginal| vertices in

Sauxiliary. This implies that at least d · |Soriginal| − 2
c ·

dc−2
2 · |Soriginal| of the arrows incident to

6.3. EXTENSION TO SIMPLE GRAPHS 89

a vertex in Soriginal contribute at least one edge to 〈S, V \ S〉G and therefore

〈S, V \ S〉G ≥ d · |Soriginal| −
dc− 2

c
· |Soriginal|

=
2

c
· |Soriginal|

≥ 4

dc2
· |S|.

Assume 1
2dc · |S| < |Soriginal| ≤ 2

dc · |S|. Let ε = D2

12 as defined in the proof of Proposi-

tion 6.1.12. Since each edge in the underlying graph U(A) corresponds to exactly one arrow-

graph gadget in G we get that 〈S, V \ S〉G ≥ 〈Soriginal, Voriginal \ Soriginal〉U(A). Since A is

d-regular and every edge gets replaced by c auxiliary vertices we get |V (G)| = (1 + dc
2) · |A|.

Hence

|Soriginal| ≤
2

dc
· |S| ≤ 1

dc
· |V (G)| = 2 + dc

2dc
· |A|

and |A \ Soriginal| ≥
(

2dc
2+dc − 1

)
· |Soriginal|. Hence from Proposition 6.1.12 we directly get

〈S, V (G) \ S〉G ≥ 〈Soriginal, Voriginal \ Soriginal〉U(A)

= ε ·min{|Soriginal|, |A \ Soriginal|}

≥ ε ·min

{
1

2dc
,

dc

2 + dc

}
· |S|.

Now assume |Soriginal| ≤ 1
2dc · |S|. Therefore there are |S|− |Soriginal| ≥ |S|− 1

2dc · |S| vertices

in Sauxiliary. Of these at least 2dc−1
2dc · |S| − |Soriginal|dc ≥ dc−1

2dc · |S| vertices in Sauxiliary that are

not in a connected component with any element from Soriginal in the graph G[S]. Since any

connected component of G[S] with no vertices in Soriginal contains at most c vertices, we get

that

〈S, V \ S〉G ≥
dc− 1

2dc2
· |S|.

By setting ξ = min{dc−1
2dc2 , ε

1
2dc , ε

dc
2+dc ,

4
dc2 } > 0 we proved the claimed.

Now we obtain Theorem 6.3.1 from Proposition 6.3.4 with the same methods used to prove

Theorem 6.2.4 from Proposition 6.1.12. Alternatively, we can use a result by Fichtenberger,

Sohler and Peng [56] stating that every testable property contains a hyperfinite subproperty.

Since a property consisting of expanders cannot contain a hyperfinite subproperty, which is

an almost immediate consequence from the definitions of these concepts, this implies Theo-

rem 6.3.1. The result in [56] is however shown for simple undirected graphs and relies on the

result by Alon [102] and the canonical tester which we both generalise in Chapter 5. Hence

confirming validity for the result from [56] for relational structures seems more lengthy then

the approach we use in Section 6.2.

90 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

6.4 On the testability of all Σ2-properties

In this section we let σ = {R1, . . . , Rm} be any relational structures and Cd the set of σ-structure

of bounded degree d. In this section, we prove the following.

Theorem 6.4.1. Every property defined by a sentence in Σ2 is testable in the bounded degree

model.

We adapt the notion of indistinguishability of [6] from the dense model to the bounded

degree model for relational structures.

Definition 6.4.2. Two properties P,Q ⊆ Cd are called indistinguishable if for every ε ∈ (0, 1)

there exists N = N(ε) such that for every structure A ∈ P with |A| > N there is a structure

Ã ∈ Q with the same universe, that is ε-close to A; and for every B ∈ Q with |B| > N there is

a structure B̃ ∈ P with the same universe, that is ε-close to B.

The following lemma follows from the definitions, and is similar to [6], though we make use

of the canonical testers for bounded degree structures from Section 5.1.

Lemma 6.4.3. If P,Q ⊆ Cd are indistinguishable properties, then P is testable on Cd if and

only if Q is testable on Cd.

Proof. For any ε ∈ (0, 1) we let N(ε) be the constant from Definition 6.4.2 for P and Q.

First assume that P is testable on Cd and fix an ε ∈ (0, 1). Let T be an ε
2 -tester for P on Cd

with constant query complexity. Repeating T and deciding on the majority of outcomes we can

get an ε
2 -tester T ′ with error probability 1

6 and constant query complexity as in Lemma 3.1.7.

By Corollary 5.1.4 there is a canonical ε
2 -tester T ′′ with error probability 1

6 and constant query

complexity for P on Cd. Therefore there are s, r ∈ N such that T ′′ samples s elements at random

from the input structure, explores their r-neighbourhood and makes a deterministic decision on

whether to accept the input structure depending only on the distribution of r-neighbourhoods

seen.

Let ε′ := min{ ε2 ,
1

16srdr+1 ar(σ)r−1 }. Now consider the following algorithm T ′′′. For any

input structure A ∈ Cd on n < N(ε′) elements we compute precisely whether A ∈ Q and

answer accordingly. For every input structure on n ≥ N(ε′) elements we invoke the tester T ′′

and accept A if and only if T ′′ accepts A. The query complexity of this procedure is clearly

constant.

Now let us first assumeA ∈ Q and |A| ≥ N(ε′). Then by the definition of indistinguishability

there is a structure Ã ∈ P which is ε′-close to A. Hence Ã differs from A in at most ε′dn tuples.

Observe that an r-neighbourhood contains at most

d+ d2 ar(σ) + · · ·+ dr ar(σ)r−1 ≤ rdr ar(σ)r−1

6.4. ON THE TESTABILITY OF ALL Σ2-PROPERTIES 91

tuples. Hence A and Ã differ in at most ε′rdr+1 ar(σ)r−1n neighbourhoods. Therefore with

probability

1− s · ε
′rdr+1 ar(σ)r−1n

n
≥ 15

16

T ′′′ picks s elements from A such that they have the same r-neighbourhood in A and Ã.

Here we want to remark that the probability of T ′′′ picking s elements which have the same

r-neighbourhood in A and Ã and the probability of T ′′′ accepting A are not independent. But

since T ′′′ picks elements uniformly at random the probability of T ′′′ accepting A assuming the

r-neighbourhoods of the elements sampled are amongst the neighbourhoods on which A and Ã
agree is still at least 5

6 −
1
16 ≥

3
4 . Hence the probability of T ′′′ both sampling s vertices which

have the same r-neighbourhood in A and Ã and accepting is at least 15
16 ·

3
4 ≥

2
3 . Hence T ′′′

accepts Ã with probability at least 2
3 .

Now assume that A ∈ Cd with |A| ≥ N(ε′) is ε-far from being in Q. Then A is at least
ε
2 -far from being in P . Since T ′′ is an ε

2 -tester for P , A must get rejected with probability at

least 5
6 ≥

2
3 . This proves that T ′′′ is an ε-tester for Q.

High-level idea of proof of Theorem 6.4.1. Let ϕ ∈ Σ2. We prove that the property

defined by ϕ can be written as the union of properties, each of which is defined by another

formula ϕ′ in Σ2 where the structure induced by the existentially quantified variables is a fixed

structure M (see Claim 2). With some further simplification of ϕ′, we obtain a formula ϕ′′

in Σ2 which expresses that the structure has to have M as an induced substructure and every

set of elements of fixed size ` has to induce some structure from a set of structures H, and

depending on the structure from H a set of ` elements induces there might be some connections

to the elements of M (see Claim 3). We now define a formula ψ in Π1 such that the property

defined by ψ is indistinguishable from the property defined by ϕ′′ in the sense that we can

transform any structure satisfying ψ, into a structure satisfying ϕ′′ by modifying no more then

a small fraction of the tuples and vice versa (see Claim 6). The intuition behind this is that

every structure satisfying ϕ′′ can be made to satisfy ψ by removing the structure M while on

the other hand for every structure which satisfies ψ we can plant the structure M to make it

satisfy ϕ′′. Since it is a priori unclear how the existentially and universally quantified variables

interact, we have to define ψ very carefully. Here it is important to note that the number of

occurrences of structures in H forcing an interaction with M is limited because of the degree

bound (see Claim 4). Thus such structures can not be allowed to occur for models of ψ, as

here the number of occurrences can not be limited in any way. Since properties defined by

a formula in Π1 are testable, this implies with the indistinguishability of ψ and ϕ′′ that the

property defined by ϕ′′ is testable. Furthermore by the fact that testable properties are closed

under union by Lemma 3.5.1, we reach the conclusion that any property defined by a formula

in Σ2 is testable.

92 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

As described in the proof outline we will not directly give a tester for the property Pϕ but

decompose ϕ into simpler cases. However, every simplification of ϕ used is computable, and

therefore (as we do not parametrise by any attribute of the formula) the proof below yields a

construction of an ε-tester for Pϕ for every ε ∈ (0, 1) and every ϕ ∈ Σ2.

For the full proof of Theorem 6.4.1, we use the following definition.

Definition 6.4.4. Let A be a σ-structure with A = {a1, . . . , at}. Let z = (z1, . . . , zt) be a

tuple of variables. Then we define ιA(z) as follows.

ιA(z) :=
∧
R∈σ

(∧(
ai1 ,...,aiar(R)

)
∈RA

R
(
zi1 , . . . , ziar(R)

)
∧

∧(
ai1 ,...,aiar(R)

)
∈Aar(R)\RA

¬R
(
zi1 , . . . , ziar(R)

))
∧
∧

i,j∈[t]
i 6=j

(zi 6= zj).

Note that for every σ-structure A′ and a′ = (a′1, . . . , a
′
t) ∈ (A′)t we have that A′ |= ιA(a′) if

and only if ai 7→ a′i, i ∈ {1, . . . , t} is an isomorphism from A to A′[{a′1, . . . , a′t}]. In particular,

if A′ |= ιA(a′), then {a′1, . . . , a′t} induces a substructure isomorphic to A in A′.

Proof of Theorem 6.4.1. Let ϕ be any sentence in Σ2. Therefore we can assume that ϕ is of

the form ϕ = ∃x∀y χ(x, y) where x = (x1, . . . , xk) is a tuple of k ∈ N variables, y = (y1, . . . , y`)

is a tuple of ` ∈ N variables and χ(x, y) is a quantifier-free formula. We can further assume

that χ(x, y) is in disjunctive normal form, and that

ϕ = ∃x ∀y
∨
i∈I

(
αi(x) ∧ βi(y) ∧ posi(x, y) ∧ negi(x, y)

)
, (6.10)

where αi(x) is a conjunction of literals only containing variables from x, βi(y) is a conjunction

of literals only containing variables in y, negi(x, y) is a conjunction of negated atomic formulas

containing both variables from x and y and posi(x, y) is a conjunction of atomic formulas

containing both variables from x and y. Here a literal is either an atomic formula or a negated

atomic formula.

We now write the formula ϕ given in (6.10) as a disjunction over all possible structures in Cd

the existentially quantified variables could enforce. Since the elements realising the existentially

quantified variables will have a certain structure, it is natural to decompose the formula in this

way.

Let M ⊆ Cd be a set of models of ϕ, such that every model A ∈ Cd of ϕ contains an

isomorphic copy of some M ∈ M as an induced substructure, and M is minimal with this

property.

Claim 1. Every M∈M has at most k elements.

6.4. ON THE TESTABILITY OF ALL Σ2-PROPERTIES 93

Proof of Claim 1. Towards a contradiction assume there is M ∈ M with |M | > k. Since

every structure in M is a model of ϕ there must be a tuple a = (a1, . . . , ak) ∈ Mk such that

M |= ∀y
∨
i∈I

(
αi(a)∧βi(y)∧posi(a, y)∧negi(a, y)

)
. This implies that for every tuple b ∈M ` we

haveM |=
∨
i∈I

(
αi(a)∧βi(b)∧posi(a, b)∧negi(a, b)

)
. Furthermore, since {a1, . . . , ak}` ⊆M `

we have that M[{a1, . . . , ak}] |= ∀y
∨
i∈I

(
αi(a) ∧ βi(y) ∧ posi(a, y) ∧ negi(a, y)

)
. This means

that M[{a1, . . . , ak}] |= ϕ. Hence by definition, M contains an induced substructure M′ of

M[{a1, . . . , ak}]. Since every model of ϕ containing M as an induced substructure must also

containM′ as an induced substructure M\{M} is a strictly smaller set than M with all desired

properties. This contradicts the minimality of M. �

Therefore M is finite. For M∈M let

JM := {j ∈ I | M |= αj(m) for some m ∈M `} ⊆ I.

Claim 2. We have ϕ ≡d
∨
M∈M

(
∃x∀y

[
ιM(x) ∧

∨
j∈JM

(
βj(y) ∧ posj(x, y) ∧ negj(x, y)

)])
.

Proof of Claim 2. Let A ∈ Cd be a model of ϕ. Then there is a tuple a = (a1, . . . , ak) ∈ Ak

such that A |= ∀yχ(a, y). Since {a1, . . . , ak}` ⊆ A` this implies that A[{a1, . . . , ak}] |= ∀yχ(a, y)

and hence A[{a1, . . . , ak}] |= ϕ. In addition, we may assume that we picked a in such a way

that for any tuple a′ = (a′1, . . . , a
′
k) ∈ {a1, . . . , ak}k with {a′1, . . . , a′k} ({a1, . . . , ak} we have

that A 6|= ∀yχ(a′, y). (The reason is that if for some tuple a′ this is not the case then we just

replace a by a′ and so on until this property holds). Hence A[{a1, . . . , ak}] cannot have a proper

induced substructure in M, and it follows that there isM∈M such thatM∼= A[{a1, . . . , ak}].
By choice of JM we get A |= ∀y

[
ιM(a) ∧

∨
j∈JM

(
βj(y) ∧ posj(a, y) ∧ negj(a, y)

)]
and hence

A |=
∨
M∈M

(
∃x∀y

[
ιM(x) ∧

∨
j∈JM

(
βj(y) ∧ posj(x, y) ∧ negj(x, y)

)])
.

To prove the other direction, we now let the structure A ∈ Cd be a model of the formula∨
M∈M

(
∃x∀y

[
ιM(x)∧

∨
j∈JM

(
βj(y)∧posj(x, y)∧negj(x, y)

)])
. Consequently there isM∈M

and a ∈ Ak such that A |= ∀y
[
ιM(a) ∧

∨
j∈JM

(
βj(y) ∧ posj(a, y) ∧ negj(a, y)

)]
. By choice of

JM this implies A |= ∀y
∨
j∈JM

(
αj(a)∧ βj(y)∧ posj(a, y)∧ negj(a, y)

)
and hence A |= ϕ. �

Since the union of finitely many testable properties is testable by Corollary 3.5.2, it is

sufficient to show that the property Pϕ is testable, where ϕ is a sentence of the form

ϕ = ∃x∀yχ(x, y), where χ(x, y) =
[
ιM(x) ∧

∨
j∈JM

(
βj(y) ∧ posj(x, y) ∧ negj(x, y)

)]
, (6.11)

for some M∈M. In the following, we will enforce that for every conjunctive clause of the big

disjunction of χ, the universally quantified variables induce a specific substructure.

94 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

For j ∈ JM let Hj ⊆ Cd be a maximal set of pairwise non-isomorphic structures H such

that H |= βj(b) for some b = (b1, . . . , b`) ∈ H` with {b1, . . . , b`} = H.

Claim 3. We have ϕ ≡d ∃x∀y
[
ιM(x) ∧

∨
H∈Hj ,
j∈JM

(
ιH(y) ∧ posj(x, y) ∧ negj(x, y)

)]
.

Proof of Claim 3. Let A ∈ Cd and a = (a1, . . . , ak) ∈ Ak. First assume that A |= ∀yχ(a, y).

Hence for any tuple b ∈ A` there is an index j ∈ JM such that A |= βj(b)∧posj(a, b)∧negj(a, b).

Then A |= βj(b) implies that A[{b1, . . . , b`}] ∼= H for some H ∈ Hj . Hence A |= ιH(b) and

A |=
[
ιM(a) ∧

∨
H∈Hj ,
j∈JM

(
ιH(b) ∧ posj(a, b) ∧ negj(a, b)

)]
.

For the other direction, we let A |= ∀y
[
ιM(a) ∧

∨
H∈Hj ,
j∈JM

(
ιH(y) ∧ posj(a, y) ∧ negj(a, y)

)]
.

Then for every tuple b ∈ A` there is an index j ∈ JM and H ∈ Hj such that H |= ιH(b) ∧
posj(a, b) ∧ negj(a, b). Therefore A[{b1, . . . , b`}] ∼= H and we know that A |= βj(b). Therefore

A |= βj(b) ∧ posj(a, b) ∧ negj(a, b) and since this is true for any b ∈ A` we get A |= ϕ. �

Thus, it suffices to assume that

ϕ = ∃x∀yχ(x, y), where χ(x, y) :=
[
ιM(x) ∧

∨
H∈Hj ,
j∈JM

(
ιH(y) ∧ posj(x, y) ∧ negj(x, y)

)]
(6.12)

for some M∈M.

Next we will define a universally quantified formula ψ and show that Pϕ is indistinguishable

from the property Pψ. To do so we will need the two claims below. Intuitively, Claim 4 says that

models of ϕ of bounded degree do not have many ‘interactions’ between existential and universal

variables – only a constant number of tuples in relations combine both types of variables. Note

that for a structure A and tuples a = (a1, . . . , ak) ∈ Ak, b = (b1, . . . , b`) ∈ A` the condition

A |= ιH(b) ∧ posj(a, b) ∧ negj(a, b) can force an element of b to be in a tuple (of a relation of

A) with an element of a, even if posj(x, y) is an empty conjunction. For example, it may be

the case that for some tuple b
′ ∈ {b1, . . . , b`}`, every clause ιH

′
(y) ∧ posj

′
(x, y) ∧ negj

′
(x, y)

for which A |= ιH
′
(b
′
) ∧ posj

′
(a, b

′
) ∧ negj

′
(a, b

′
) forces a tuple to contain some element of b

′

and some element of a. We will now define a set J to pick out the clauses that do not force

a tuple to contain both at least one element from {a1, . . . , ak} and at least one element from

{b1, . . . , b`} \ {a1, . . . , ak}. Note that we still allow elements from b to be amongst the elements

in a. In Claim 4 we show that for every A ∈ Cd, a ∈ Ak for which A |= ∀yχ(a, y) there are a

constant number of tuples b ∈ A` that only satisfy clauses which force a tuple to contain both

an element from {a1, . . . , ak} and from {b1, . . . , b`} \ {a1, . . . , ak}.
Let j ∈ JM, H ∈ Hj and h = (h1, . . . , h`) ∈ H` such that H |= ιH(h). We define the set

Pj,H :=
{
hi | i ∈ {1, . . . , `},posj(x, y) does not contain yi = xi′ for any i′ ∈ {1, . . . , k}

}
.

Now we let J ⊆ JM × Cd be the set of pairs (j,H), with H ∈ Hj such that the disjoint union

MtH[Pj,H] |= ϕ. J now precisely specifies the clauses that can be satisfied by a structure A

6.4. ON THE TESTABILITY OF ALL Σ2-PROPERTIES 95

and tuple a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , b`) ∈ A` where A does not contain any tuples

both containing elements from {a1, . . . , ak} and from {b1, . . . , b`} \ {a1, . . . , ak}.

Claim 4. Let A ∈ Cd and a = (a1, . . . , ak) ∈ Ak. If A |= ∀y χ(a, y) then there are at most k · d
tuples b ∈ A` such that A 6|=

∨
(j,H)∈J(ιH(b) ∧ posj(a, b) ∧ negj(a, b)).

Proof of Claim 4. Assume A |= ∀y χ(a, y). First observe that since A |= ∀y χ(a, y), it holds

that A |= ∀y
∨
H∈Hj ,
j∈JM

(
ιH(y)∧ posj(a, y)∧ negj(a, y)

)
by Equation(6.12). We now let B be the

set B := {b ∈ A` | A 6|=
∨

(j,H)∈J(ιH(b) ∧ posj(a, b) ∧ negj(a, b))} ⊆ A`. Then every b ∈ B adds

at least one to
∑k
i=1 degA(ai). Since A ∈ Cd implies that

∑k
i=1 degA(ai) ≤ k · d we get that

|B| ≤ k · d. �

Claim 5. Let ψ be a formula of the form ψ = ∀zχ(z) where z = (z1, . . . , zt) is a tuple of

variables and χ(z) is a quantifier-free formula. Let A ∈ Cd with |A| > d · ar(σ) · t and let b ∈ A
be an arbitrary element. Let A |= ψ and let A′ be obtained from A by ‘isolating’ b, i. e. by

deleting all tuples containing b from RA for every R ∈ σ. Then A′ |= ψ.

Proof of Claim 5. First note that A′ |= χ(a) for any tuple a = (a1, . . . , at) ∈ (A \ {b})t as no

tuple over the set of elements {a1, . . . , at} has been deleted. Let a = (a1, . . . , at) ∈ At be a tuple

containing b. Pick b′ ∈ A such that distA(aj , b
′) > 1 for every j ∈ {1, . . . , t}. Such an element

exists as |A| > d · ar(R) · t. Let a′ = (a′1, . . . , a
′
t) be the tuple obtained from a by replacing

any occurrence of b by b′. Hence aj 7→ a′j defines an isomorphism from A′[{a1, . . . , at}] to

A[{a′1, . . . , a′t}] since b is an isolated element in A′[{a1, . . . , at}] and b′ is an isolated element in

A[{a′1, . . . , a′t}]. Since A |= χ(a′), it follows that A′ |= χ(a). �

Let J ′ ⊆ J be the set of pairs (j,H), with H ∈ Hj , for which posj(x, y) is the empty

conjunction. J ′ contains (j,H) for which we want to use ιH(y) to define the formula ψ.

Claim 6. The property Pϕ with ϕ as in (6.12) is indistinguishable from the property Pψ where

ψ := ∀y
∨

(j,H)∈J′ ι
H(y).

Proof of Claim 6. Let ε > 0 and N(ε) = N := k·`2·d·ar(R)
ε and A ∈ Cd be any structure with

|A| > N .

First assume that A |= ϕ. The strategy is to isolate any element b by deleting all tuples

containing b which is contained in a tuple b ∈ A` such that A 6|=
∨

(j,H)∈J′ ι
H(b). This will

result in a structure which is ε-close to A and a model of ψ.

Let a ∈ Ak be a tuple such that A |= ∀yχ(a, y). Let B ⊆ A` be the set of tuples b ∈ A`

such that A 6|=
∨

(j,H)∈J(ιH(b) ∧ posj(a, b) ∧ negj(a, b)). Then |B| ≤ k · d · ar(R) by Claim 4.

Hence the structure A′ obtained from A by deleting all tuples containing an element of

C := {a1, . . . , ak} ∪
{
b ∈ A | there is (b1, . . . , b`) ∈ B such that b ∈ {b1, . . . , b`}

}

96 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

is ε-close to A. Since A |= ∀yχ(a, y) implies A |= ∀y
∨
H∈Hj ,
j∈JM

ιH(y) by Claim 5 we know that

A′ |= ∀y
∨
H∈Hj ,
j∈JM

ιH(y). For any tuple b = (b1, . . . , b`) ∈ (A \ C)` we have by definition of

J ′ that A |= ιH(b) for some (j,H) ∈ J ′. Furthermore A[{b1, . . . , b`}] = A′[{b1, . . . , b`}] and

hence A′ |=
∨

(j,H)∈J′ ι
H(b). Let b = (b1, . . . , b`) ∈ A` be any tuple containing t elements

from C and let c1, . . . , ct ∈ C be those elements. Pick t elements c′1, . . . , c
′
t ∈ A \ C such that

distA(ai, c
′
i′) > 1, distA(c′i′ , bi) > 1 and distA(c′i′ , c

′
i) > 1 for suitable i, i′. This is possible as

|A| > (k+2`) ·d ·ar(R) which guarantees the existence of k+2` elements of pairwise distance 1.

Let b
′

= (b′1, . . . , b
′
`) be the vector obtained from b by replacing ci with c′i. Since b

′ ∈ A` there

must be j′, H′ ∈ Hj such that A |= ιH
′
(b
′
) ∧ posj

′
(a, b

′
) ∧ negj

′
(a, b

′
). By choice of c′1, . . . , c

′
t

we have that posj′(x, y) must be the empty conjunction and hence (j′,H′) ∈ J ′. Since addi-

tionally bi 7→ b′i defines an isomorphism of A[{b′1, . . . , b′`}] and A′[{b1, . . . , b`}] this implies that

A′ |=
∨

(j,H)∈J′ ι
H(b) for all b ∈ A` and hence A′ |= ψ.

Now we prove the other direction. Let A |= ψ with |A| > N . The idea here is to plant the

structureM somewhere in A. While this takes less then an ε fraction of edge modifications the

resulting structure will be a model of ϕ.

Take any set B ⊆ A of |M | elements. Let A′ be the structure obtained from A by deleting

all edges incident to any element contained in B. Let A′′ be the structure obtained from A′ by

adding all tuples such that the structure induced by B is isomorphic toM. This takes no more

then 2` ·d ·ar(R) < ε ·d · |A| edge modifications. Let a ∈ Bk be such that A |= ιM(a). By Claim

5 we get A′ |= ψ. Therefore pick any tuple b = (b1, . . . , b`) ∈ (A \ B)`. Since by construction

we have that all bi’s are of distance at least two from a we have that A′′ |=
∨

(j,H)∈J′(ι
H(b) ∧

negj(a, b)). By choice of M we also know that A′′ |=
∨
H∈Hj ,
j∈JM

(
ιH(b) ∧ posj(a, b) ∧ negj(a, b)

)
for all b ∈ B`. Therefore pick b = (b1, . . . , b`) containing both elements from B and from A \B.

Now pick a tuple b
′

= (b′1, . . . , b
′
`) ∈ (A\B)` that equals b in all positions containing an element

from A \ B. As noted before there is (j,H) ∈ J ′ such that A′′ |= (ιH(b
′
) ∧ negj(a, b

′
)). By

the definition of J ′ (and since J ′ ⊆ J) this means that A′′[{a1, . . . , ak, b
′
1 . . . b

′
`}] |= ϕ. Since

b ∈ {a1, . . . , ak, b
′
1 . . . b

′
`}` this implies A′′[{a1, . . . , ak, b

′
1 . . . b

′
`}] |=

∨
H∈Hj ,
j∈JM

(
ιH(b) ∧ posj(a, b) ∧

negj(a, b)
)

. Then A′′ |=
∨
H∈Hj ,
j∈JM

(
ιH(b) ∧ posj(a, b) ∧ negj(a, b)

)
and hence A′′ |= ϕ. �

Since ψ ∈ Π1 we have that Pψ is testable, and hence Pϕ is testable by Claim 6.

6.5 Summary

In this Chapter we studied testability of FO in the bounded degree model according to prefix

classes of FO. We obtain a classification result of the form that every property defined by a

sentence in Σ2 is testable while there is a sentence in Π2 which defines a non-testable property.

We caution that we do not prove that every sentence in Π2 defines a property which is not

6.5. SUMMARY 97

testable and in fact we show in Chapter 7 that this is not true. Our result gives a bounded

degree equivalent to the study of FO definable properties in the dense model [6] and answers

an open question from [2]. At the core of our classification result lies a construction of an

FO sentence defining a class of expanders. We think that this construction is of independent

interest.

98 CHAPTER 6. CLASSIFYING TESTABILITY OF PREFIX CLASSES

Chapter 7

An alternative approach: testing

properties of neighbourhoods

In this section we take an alternative approach to testability of properties definable in FO.

While in Chapter 6 we identified the maximal prefix class of testable FO definable properties

(i. e. Σ2), in this section we are interested in identifying further fragments of FO that yield

testable properties. Motivated by Hanf normal form, we study testability of negated Hanf

sentences. Note that a Hanf sentence postulates the existence of a fixed number of vertices

with a particular neighbourhood type. For large enough graph such neighbourhood types can

be edited into any graph using at most a linear fraction of edge modifications. Therefore we

can test whether a graph satisfies a given Hanf sentences by precisely determining the answer

for small graphs and accepting any large graph. We can further prove testability for negated

Hanf sentences under some restriction.

Furthermore, we study the property of neighbourhood regularity which is FO definable.

This can be seen as a generalisation of degree regularity which is a testable property [69]. We

prove testability for neighbourhood regularity for some restricted 1-types.

Here we should also remark that both these classes of properties (i. e. properties defined by

negated Hanf sentences and neighbourhood regularity), even considering the restriction under

which we can prove testability, are not in general definable by formulas in Σ2. Hence the results

obtained in this section are not covered by Theorem 6.4.1.

7.1 Neighbourhood freeness and neighbourhood regular-

ity

In this section we only consider simple, undirected graphs. Let d ∈ N be a degree bound and

Cd the class of simple graphs of bounded degree d. For any r ∈ N we let Tr be the set of all

99

100 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

r-types of bounded degree d.

Definition 7.1.1. Let r ≥ 1 and let τ ∈ Tr be an r-type and let φτ (x) be an FO formula

expressing that x has r-type τ (see Lemma 2.4.6).

– We say that a graph G ∈ Cd is τ -neighbourhood regular, if G |= ∀xφτ (x).

– We say that a graph G ∈ Cd is τ -neighbourhood free, if G |= ¬∃xφτ (x).

– If F ⊆ Tr we say that G ∈ Cd is F-free, if G is τ -neighbourhood free for all τ ∈ F .

We prove the following theorems.

Theorem 7.1.2. Let τ be an r-type, where r ≥ 1. If B ⊆ Cd′ for all (B, b) ∈ τ and d′ < d then

τ -neighbourhood freeness is uniformly testable on the class Cd with constant running time.

Theorem 7.1.3. For every 1-type τ , τ -neighbourhood freeness is uniformly testable on the class

Cd with constant running time.

Theorem 7.1.4. Let τ be a 1-type such that B \ {b} is a union of disjoint cliques for all

(B, b) ∈ τ then τ -neighbourhood regularity is uniformly testable on Cd in constant time.

Recall that a clique in a graph G is a subset W ⊆ V (G) such that {w,w′} ∈ E(G) for every

pair of distinct vertices w,w′ ∈W .

Example 7.1.5. Let us look at an example for a property whose testability follows from

Theorem 7.1.4. For this let B be the graph

B =
({
v1, v2, v3, v4

}
,
{
{v1, v2}, {v1, v3}, {v1, v4}, {v3, v4}

})
and τ be the 1-type for which (B, v1) ∈ τ . Since B \ {v1} is the disjoint union of a K1 and a

K2, the property of being τ -neighbourhood regular is testable by Theorem 7.1.4. Furthermore,

an example of a graph having this property can be constructed by taking a hexagonal grid,

embedded on a torus and then taking the replacement product with a triangle (see Figure 7.1).

7.2 Prefix classes of neighbourhood regularity and neigh-

bourhood freeness

First observe that both τ -neighbourhood freeness and τ -neighbourhood regularity can be de-

fined by formulas in Π2 for any neighbourhood type τ . This can be easily argued considering

that ¬φτ ′(x) ∈ Π2 for any τ ′ ∈ Tr (see Lemma 2.4.6) and ∀xφτ (x) ≡ ∀x
∧
τ ′∈Tr\{τ} ¬φτ ′

and ¬∃xφτ (x) ≡ ∀x¬φτ (x). Therefore the next Lemma shows that there exist neighbourhood

properties that are in Π2, but not in Σ2.

7.2. PREFIX CLASSES OF NEIGHBOURHOOD PROPERTIES 101

Figure 7.1: Example of a neighbourhood regular graph.

Lemma 7.2.1. There exist 1-types τ, τ ′ ∈ Tr such that neither τ -neighbourhood freeness nor

τ ′-neighbourhood regularity can be defined by a formula in Σ2.

Proof. For n ∈ N, let Cn be the cycle on vertex set [n] := {0, 1, . . . , n− 1} and Pn the path on

vertex set [n]. We first show the following claim.

Claim 1. Let ϕ = ∃x∀y χ(x, y) where x = (x1, . . . , xk), y = (y1, . . . , y`) are tuples of variables

and χ(x, y) is a quantifier-free formula. If Cn |= ϕ then Pn−1 |= ϕ for any n > k.

Proof of Claim 1. Assume that on the contrary for some n > k, it holds that Cn |= ϕ,

while Pn−1 6|= ϕ. Since Cn |= ϕ there are k vertices v1, . . . , vk in Cn such that Cn |=
∀y χ((v1, . . . , vk), y). Since n > k, there exists at least one vertex i ∈ [n] that is not amongst

v1, . . . , vk. For j ∈ {1, . . . , k} let v′j := (vj + n − 1 − i) mod n. Since Pn−1 6|= ϕ and

v′j ∈ [n−1], we have that Pn−1 6|= ∀y χ((v′1 . . . , v
′
k), y). Hence there must be vertices w′1, . . . , w

′
`

in Pn−1 such that Pn−1 6|= χ((v′1, . . . , v
′
k), (w′1, . . . , w

′
`)). Now we let wj := (w′j + i+ 1) mod n.

Then vj 7→ v′j and wj 7→ w′j defines an isomorphism from Cn[{v1, . . . , vk, w1, . . . , w`}] and

Pn−1[{v′1, . . . , v′k, w′1, . . . , w′`}]. Hence Cn 6|= χ((v1, . . . , vk), (w1, . . . , w`)) which contradicts that

Cn |= ϕ. �

Now we let τ be the 1-neighbourhood type saying that the center vertex x has exactly one

neighbour. Let τ ′ be the 1-neighbourhood type saying that the center vertex has two non-

adjacent neighbours. Since Cn is τ -neighbourhood free and τ ′-neighbourhood regular, while

Pn−1 is neither, the statement of the lemma follows from Claim 1.

Note that the above lemma implies that we cannot simply invoke the testers for testing Σ2

properties from Theorem 6.4.1 to prove Theorem 7.1.2, Theorem 7.1.3 and Theorem 7.1.4.

102 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

7.3 Proving testability of neighbourhood freeness and neigh-

bourhood regularity with restrictions

The testers for the properties of Theorem 7.1.2, Theorem 7.1.3 and Theorem 7.1.4 proceed in

the same way. Furthermore, the correctness of these testers depends on some removal prop-

erty. This removal property essentially says that a few “forbidden” neighbourhoods can be

removed from a graph by a sub-linear number of edge modifications. We will first describe in

general how such a tester works and provide the analysis of correctness assuming this removal

property holds (Lemma 7.3.2). We will then prove so called removal lemmas (Lemma 7.3.4,

Lemma 7.3.5, Lemma 7.3.6 and Claim 2) which prove that the removal property holds in all

three cases. To describe the tester we use the following algorithms from [112] which estimates

the neighbourhood-frequency vector of a graph. Recall that for fixed r ∈ N we denote the

frequency vector of a graph G ∈ Cd defined in Definition 2.3.6 by freqr(G).

Algorithm 2: EstimateFrequenciesr,s

Query access: G ∈ Cd
Input : n := |V (G)|
Output : A vector f̃req

1 f̃req = (0, . . . , 0);

2 Sample s Elements u1, . . . , us ∈ V (G) uniformly at random;

3 for i = 1, . . . , s do

4 Explore the r-neighbourhood of ui;

5 for j = 1, . . . , t do

6 if (NG
r (ui), ui) ∈ τj then

7 f̃reqj = f̃reqj + 1
s ;

8 end

9 end

10 end

where τ1, . . . , τt is a list of all r-types of bounded degree d.

In the algorithm we mean by exploring the r-neighbourhood of a vertex v ∈ V (G) that

the algorithm performs a breadth-first search from v up to depth r using query access to G.

For any G ∈ Cd we write EstimateFrequenciesr,s(G) to express that we run the algorithm

EstimateFrequenciesr,s given query access to G with input n = |V (G)|. It is easy to

observe that the query complexity of EstimateFrequenciesr,s(G) depends only on r and s

and is independent of |V (G)|. Furthermore, the following lemma [112, Lemma 5.1] states that

the vector returned by EstimateFrequenciesr,s(G) is a good approximation of freqr(G).

Lemma 7.3.1 (Lemma 5.1 in [112]). Let r, s ∈ N and λ ∈ (0, 1]. Let G be a graph of bounded

7.3. PROVING TESTABILITY 103

degree d. If s ≥ t2

2λ2 · ln(t+ 40) then EstimateFrequenciesr,s(G) returns a frequency vector f̃req

satisfying the following property with probability at least 19
20

‖f̃req− freqr(G)‖1 ≤ λ.

Now we can prove the following lemma which provides a framework that will be used in

Theorem 7.1.2, Theorem 7.1.3 and Theorem 7.1.4.

Lemma 7.3.2. Let F ⊆ Tr and let P ⊆ Cd be the set of all graphs that are F-free. Let M ⊆ N
be a decidable set such that G ∈ P implies that |V (G)| /∈M . Let fM : N→ N be a function such

that M can be decided in time fM . Assume for every ε ∈ (0, 1] there exist λ := λ(ε) ∈ (0, 1]

and n0 := n0(r, ε) ∈ N such that every graph G ∈ Cd on n ≥ n0, n /∈M vertices, which is ε-far

from P, contains more than λn elements v with (NG
r (v), v) ∈ τ ∈ F . P is uniformly testable

on Cd in time O(fM).

Proof. Let ε ∈ (0, 1] be fixed and let λ := λ(ε) and n0 := n0(r, ε) ∈ N. Furthermore, let

s = (t2/λ2) ln(t + 40). Consider the following probabilistic algorithm T , which is given query

access to a graph G ∈ Cd and gets the number of vertices n as input. In the algorithm τ1, . . . τt

is a list of all r-types of bounded degree d.

Algorithm 3: Tester framework

Query access: G ∈ Cd
Input : n := |V (G)|

1 Reject if n ∈M ;

2 if n < n0 then

3 Query the entire graph G and decide exactly if G ∈ P;

4 else

5 Run EstimateFrequenciesr,s(G) to get f̃req satisfying ‖f̃req− freqr(G)‖1 ≤ λ
with probability at least 19/20;

6 Reject G if
∑
τi∈F f̃reqi > 0;

7 Accept otherwise;

8 end

Here by querying an entire graph G we mean that we make queries (v, i) for every v ∈ V (G)

and every i ∈ {1, . . . , d}.
The query complexity of T is clearly constant, since s and n0 are constant and the number

of vertices in any r-neighbourhood is bounded by (4d)r for graphs in Cd by Lemma 2.3.3. The

running time of the first step is fM (n) and for the other steps it is constant.

To prove that T is an ε-tester, first assume that G ∈ P. Then n /∈M and (NG
r (v), v) ∈ τ /∈ F

for all vertices v . Hence
∑
τi∈F f̃reqi = 0 and T accepts G.

104 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

Now consider that G is ε-far from P. If n ∈M then G is rejected in the first step. Hence let

n /∈M and assume ‖f̃req− freqr(G)‖1 ≤ λ, which occurs with probability at least 19/20 ≥ 2/3.

Then ∑
τi∈F

f̃reqi =
∑
τi∈F

(freqr(G))i −
∑
τi∈F

(
(freqr(G))i − f̃reqi

)
> λ−

∣∣∣ ∑
τi∈F

(
(freqr(G))i − f̃reqi

)∣∣∣
≥ λ−

∑
τi∈F

∣∣((freqr(G))i − f̃reqi
)∣∣

≥ 0,

where the first inequality holds by the assumption that in graphs that are ε-far from P there

are more than λn vertices of r-type in F made in Lemma 7.3.2. Hence T rejects G.

To illustrate the use of the set M in Lemma 7.3.2 let us consider the following example.

Example 7.3.3. Let P be the property of being K4-neighbourhood regular. Let Gm be the

graph consisting of m disjoint copies of K4 and one isolated vertex. First note that Gm contains

4m + 1 vertices. Being K4-regular implies that every vertex has degree 3. But because every

graph contains an even number of vertices of odd degree, Gm cannot be made K4-neighbourhood

regular by edge modifications. Therefore Gm is ε-far from P. But for m → ∞ the probability

of sampling the isolated vertex in Gm tends to 0 meaning that with high probability the tester

with M = ∅ will accept Gm. We will show in Theorem 7.1.4 that P is testable if we set

M = N \ {4m | m ∈ N}.

Lemma 7.3.4. For r ≥ 1, let τ be an r-type and (B, b) ∈ τ . Let d̃ < d, d 6= 1 be integers and

assume that NB
r−1(b) contains a vertex a with degB(a) = d̃ and that degB(v) 6= d̃ + 1 for all

vertices v in NB
r−1(b). Let ε ∈ (0, 1] be fixed, n0 = 2d2/ε and λ = εd/(14(4d)2r). Every graph

G ∈ Cd on n ≥ n0 vertices which is ε-far from being τ -neighbourhood free contains more than

λn vertices of r-type τ .

Proof. We proceed by contraposition. Assume G ∈ Cd is a graph on n ≥ n0 vertices containing

no more than λn vertices v of r-type τ .

Case d̃ = 0, d > 1. Then we add one edge to every pair of vertices of degree 0. If there is

only one vertex v of degree 0 left, we add an edge from v to any other vertex of degree < d. If

there is no such vertex then there must be vertex u contained in two edges and we replace one

edge {u,w} by {v, w}. That way we obtain G′ which is 2λn ≤ εdn close to G.

Case d̃ = 1. We add edges between pairs of degree 1 vertices. If there are two left, connected

by an edge, we delete that edge. If there is only one vertex v of degree 1 left, then there is

another vertex u of odd degree. By removing an edge {u,w} and adding {v, w} we get that

degG(v),degG(w) > 1. We obtain G′ which is 2λn ≤ εdn close to G.

7.3. PROVING TESTABILITY 105

Case d̃ ≥ 2. Let us pick a set {v1, . . . , vk} of k ≤ λn vertices of degree d̃ such that for every

vertex v of r-type τ there is an index 1 ≤ i ≤ k with vi ∈ NG
r−1(v). We will distinguish the

following two cases.

First assume that there are less than λn vertices of degree d̃, of pairwise distance greater than

2r and of distance greater than 2r from {v1, . . . , vk}. In this case there are less than 2λn(4d)2r

vertices of degree d̃ in total. Let G′ be a graph obtained from G by the following modifications.

For every vertex w of degree d̃ we pick edges {w,w1}, {w,w2}, {v, v′}, {u, u′} such that v, w, u

have pairwise distance at least 3. We delete the edges {w,w1}, {w,w2}, {v, v′}, {u, u′} and insert

the edges {w1, v}, {w2, u}, {v′, u′}, reducing the degree of v while maintaining the degrees of all

other vertices. The resulting graph has no vertex of degree d̃. Note that if such edges do not

exist at any point during the iteration the graph contains no more than 2d3 ≤ εdn edges, and

we delete them all resulting in a graph with no vertex of degree d̃. In total we did no more

than 7 · 2λn(4d)2r ≤ εdn edge modifications which implies that G′ is ε-close to G. In addition,

G′ is τ -neighbourhood free, because a neighbourhood of type τ would imply having a vertex of

degree d̃.

Now assume that there are at least λn vertices of degree d̃, of pairwise distance greater

than 2r and of distance greater than 2r from {v1, . . . , vk}. Let {v′1, . . . , v′k} be a set of vertices

of degree d̃ such that distG(vi, v
′
j) > 2r for all 1 ≤ i, j ≤ k and dist(v′i, v

′
j) > 2r for all

1 ≤ i < j ≤ k. Let G′ be the graph obtained from G by inserting the edges {vi, v′i}. First note

that this takes no more than λn ≤ εdn edge modifications which implies that G is ε-close to G′.

Further assume that v′ is a vertex in G′ of r-type τ . By choice of the set {v1, . . . , vk} we altered

the isomorphism type of each vertex of type τ in G. Therefore NG′

r (v′) 6= NG
r (v′). It follows

that NG′

r (v′) contains an inserted edges (vi, v
′
i). First we prove that either distG′(v

′, vi) < r or

distG′(v
′, v′i) < r. Assume towards a contradiction that this is not the case. Then there is a

path in G′ of the form P = (vi = w−r, w−r+1, . . . , w−1, w0 = v′, w1, . . . , wr−1, wr = v′i) where

wj 6= vi and wj 6= v′i for all −r < j < r. Let −r ≤ j < r be the largest index such that wj ∈
{v1, . . . , vk, v

′
1, . . . , v

′
k}. This implies that the path (wj , . . . , wr = v′i) is a path in G of length

≤ 2r, which contradicts the choice of v1, . . . , vk, v
′
1, . . . , v

′
k. Since degG′(vi) = degG′(v

′
i) = d̃+1,

this implies that NG
r−1(v′) contains a vertex of degree d̃+1, which contradicts that v′ has r-type

τ . Hence G′ is τ -neighbourhood free.

Lemma 7.3.5. For r ≥ 1 let τ be an r-type of degree d and (B, b) ∈ τ . Assume degB(v) = d

for all vertices v ∈ NB
r−1(b). Let ε ∈ (0, 1] be fixed and let λ = ε. Every graph G ∈ Cd on n ≥ 1

vertices which is ε-far from being τ -neighbourhood free contains more than λn vertices of r-type

τ .

Proof. If d = 0 then the Lemma holds. Therefore we can assume that B is not just an isolated

vertex. We proceed by contraposition. Assume G ∈ Cd is a graph on n ≥ 1 vertices containing

no more than λn vertices v of r-type τ . Let G′ be the graph obtained from G by isolating all

vertices v of r-type τ . First note that G′ is ε-close to G since we did no more than dλn ≤ εdn

106 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

edge modifications. Now assume that v′ is a vertex of r-type τ in G′. Since we isolated all

vertices having r-type τ we know that NG′

r (v′) 6= NG
r (v′). Therefore there must be a vertex

v in NG
r (v′) such that v has type τ , because otherwise the r-ball of v′ could not witness any

of the edge modifications. This means that there is a path (v′ = v0, v1, . . . , vk−1, vk = v)

of length k ≤ r in G. Now pick the maximum index i such that distG′(v
′, vi) < ∞. First

observe that because v = vk is isolated in G′ we get that i < k and therefore distG′(v
′, vi) < r.

Since distG′(v
′, vi+1) = ∞ by construction and {vi, vi+1} ∈ E(G), we get degNG′r (v′)(vi) =

degG′(vi) < degG(vi) ≤ d. Since (NG′

r (v′), v′) ∈ τ this yields a contradiction to our previous

assumption that all vertices in NB
r−1(b) have degree d. Hence the graph G′ can not contain a

vertex v′ of r-type τ and is therefore τ -neighbourhood free.

The next Lemma follows from Lemmas 7.3.5 and 7.3.4 since for radius r = 1 the (r−1)-ball

contains only one vertex.

Lemma 7.3.6. Let τ be a 1-type. Let ε ∈ (0, 1] be fixed, n0 = 2d2/ε and λ = εd/(14(4d)2).

Every graph G ∈ Cd on n ≥ n0 vertices which is ε-far from being τ -neighbourhood free contains

more than λn vertices of 1-type τ .

Proof of Theorem 7.1.2. Lemma 7.3.2 with F = {τ} and M = ∅ combined with Lemma 7.3.4

proves Theorem 7.1.2 in all cases apart from when d = 1. In case d = 1 we have d̃ = 0. In this

case we set M := {n ∈ N | n ≡ 1 mod 2} and get that for ε ∈ (0, 1] and λ = ε we have that

every graph G ∈ Cd on n ≡ 0 mod 2 vertices which is ε-far from being τ -neighbourhood free

contains more than λn vertices of r-type τ . This is the case as assuming the number of vertices

of r-type τ is no more than λn we can add an edge between any pair of vertices of degree 0,

obtaining a graph G′ which is λn ≤ εdn close to G.

Theorem 7.1.3 follows from Lemma 7.3.2 and Lemma 7.3.6 where in Lemma 7.3.2 we use

either F = {τ} or F = ∅ depending on whether τ has degree bounded by d.

Proof of Theorem 7.1.4. Let τ be a 1-type such that B \ {b} is a union of disjoint cliques for

all (B, b) ∈ τ as in the statement of the theorem. We define P to be the property of being

τ -neighbourhood regular and let KG be the set of maximal cliques in G, i. e. the set of all

cliques in G which are not properly contained in another clique of G. Let us define the function

maxclG : V (G) × N → N where maxclG(v, i) := |{K ∈ KG | |K| = i, v ∈ K}| is the number of

maximal i-cliques containing v.

Claim 1. If G ∈ P then maxclB(b, i) · n ≡ 0 mod i.

Proof of Claim 1. First note that G ∈ P implies that (NG
1 (v), v) ∈ τ for all v ∈ V (G). There-

fore maxclB(b, i) = maxclG(v, i) for all v ∈ V (G) and

maxclB(b, i) · n =
∑

v∈V (G)

maxclG(v, i) = |{K ∈ KG | |K| = i}| · i ≡ 0 mod i.

7.3. PROVING TESTABILITY 107

�

Let M := {n ∈ N | there is 1 ≤ i ≤ d such that maxclB(b, i) · n 6≡ 0 mod i}. Note that

deciding whether n ∈M only requires standard arithmetic operations.

Claim 2. For ε ∈ (0, 1] let λ = ε/(20d6) and n0 = 20d8. Any graph G ∈ Cd on n ≥ n0, n /∈M
vertices, which is ε-far from P, contains more than λn vertices v with 1-type τ .

Proof of Claim 2. We proceed by contraposition. Let G ∈ Cd be a graph on n ≥ n0, n /∈ M
vertices and assume that G contains no more than λn vertices of 1-type τ . We will now describe

an algorithmic procedure which takes less than εdn edge modifications and transforms G into

a graph G(4) ∈ P, which will prove the claim.

Let Ẽ(1) := {e ∈ E(G) | there are distinct K,K ′ ∈ KG, |K ∩K ′| > 1, e ⊆ K}. Let G(1) be

the graph G(1) = (V (G), E(1)), where E(1) = E(G) \ Ẽ(1). First note that G(1) has no distinct

maximal cliques K,K ′ with |K ∩K ′| > 1. Furthermore

|Ẽ(1)| ≤
(
d

2

)
· |{K ∈ KG | exists K ′ ∈ KG, |K ∩K ′| > 1}| ≤ d3λn

2
,

where the second inequality holds because every K ∈ KG such that there is K ′ ∈ KG with

|K ∩K ′| > 1 and K 6= K ′ must contain one of the λn vertices v of 1-type τ and there are no

more than dλn maximal cliques containing such a vertex. In addition, the removal of the edges

in Ẽ(1) will affect no more than d4λn vertices because there are no more than d3λn vertices

contained within an edge of Ẽ(1), each of their 1-neighbourhoods contains d vertices and any

vertex, whose 1-neighbourhood is affected, must be of distance 1 to one of the vertices contained

in an edge in Ẽ(1). Hence G(1) contains no more than (d4 + 1)λn < 2d4λn vertices v of 1-type

τ .

Note that in G(1) for all vertices v the graph NG(1)

1 (v)\{v} is a disjoint union of cliques but

there might be K ∈ KG(1)

such that maxclB(b, |K|) = 0. We define the edge set

Ẽ(2) := {e ∈ E(1) | exists K ∈ KG(1)

, e ⊆ K,maxclB(b, |K|) = 0} and let G(2) be the graph

G(2) = (V (G), E(2)), where E(2) = E(1) \ Ẽ(2). Furthermore

|Ẽ(2)| ≤ d · |{v | exists K ∈ KG
(1)

, v ∈ K,maxclB(b, |K|) = 0}| ≤ d · 2d4λn,

where the first inequality holds because every clique in G(1) has size ≤ d and the second because

(NG(1)

1 (v), v) /∈ τ for every v ∈ {v | exists K ∈ KG(1)

, v ∈ K,maxclB(b, |K|) = 0}.
Note that maxclB(b, |K|) 6= 0 for all K ∈ KG(2)

, but there might be v ∈ V (G) and i ≤ d

with maxclB(b, i) 6= maxclG
(2)

(v, i). Moreover, note that because n ≥ n0 there are at least

2d balls of radius 4 in G(2) which are completely disjoint from the 4-balls of any vertex v of

1-type τ . G(3) will also have this property. Let G(3) = (V (G), E(3)) be the graph obtained

from G(2) by the following operations. For every pair v, v′ such that there is i ≤ d with

maxclB(b, i) > maxclG
(2)

(v, i) and maxclB(b, i) < maxclG
(2)

(v′, i), let w be a vertex of type

108 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

τ which has at least distance 4 to v and to v′. Let K ′ = {v′1, . . . , v′i−1, v
′} ∈ KG(2)

and

K = {v1, . . . , vi−1, w} ∈ KG
(2)

. Delete the edges {{v′, v′j}, {w, vj} | j ∈ [i − 1]} and add the

edges {{v, vj}, {w, v′j} | j ∈ [i− 1]}. Note that the vertices v1, . . . , vi−1, v
′
1, . . . , v

′
i−1, w are still

contained in the same number of cliques as before, while v is contained in one additional i-clique

and v′ is contained in one less.

Note that in G(3) either maxclB(b, i) ≥ maxclG
(3)

(v, i) for all vertices v ∈ V (G) or

maxclB(b, i) ≤ maxclG
(3)

(v, i) for all v for every i ∈ [d]. Let G(4) be the graph obtained

from G(3) by the following operations. For every i such that there is a vertex v ∈ V (G)

with maxclB(b, i) < maxclG
(3)

(v, i), we pick i not necessarily distinct vertices v1, . . . , vi with

i · maxclB(b, i) <
∑
v∈{v1,...,vi}maxclG

(3)

(v, i). Note that these choices are possible because∑
v∈V (G) maxclG

(3)

(v, i) ≡ 0 mod i and maxclB(b, i) · n ≡ 0 mod i by assumption n /∈ M and

hence we have
∑
v∈V (G)(maxclG

(3)

(v, i) − maxclB(b, i)) ≡ 0 mod i. Let K1, . . . ,Ki ∈ KG
(3)

be distinct cliques such that vj ∈ Kj for every 1 ≤ j ≤ i. Let K = {w1, . . . , wi} ∈
KG(3)

such that the distance between any pair vj , wk is at least 4. Remove the set of edges

{{wj , wk}, {vj , v} | v ∈ Kj , j, k ∈ [i]} and add the set of edges {{wj , v} | v ∈ Kj , j ∈ [i]}.
Note that this reduces the number of maximal i-cliques v1, . . . , vi are in by one, while leav-

ing the number of cliques w1, . . . , wi are in the same. Similarly, for every i such that there

is a vertex v with maxclB(b, i) > maxclG
(3)

(v, i) we pick i not necessarily distinct vertices

v1, . . . , vi with i · maxclB(b, i) >
∑
v∈{v1,...,vi}maxclG

(3)

(v, i). Let w1, . . . , wi be vertices with

maxclB(b, i) = maxclG
(3)

(wj , i) such that w1, . . . , wi are of distance at least 4 from every vj ,

1 ≤ j ≤ i, and w1, . . . , wi are pairwise of distance at least 4. Let Kj ∈ KG
(3)

with wj ∈ Kj

for 1 ≤ j ≤ i. Remove the set of edges {{wj , w} | w ∈ Kj , 1 ≤ j ≤ i} and add the set of

edges {{vj , w}{wj , wk} | w ∈ Kj , j, k ∈ [i]}. Note that this adds one to the number of i-cliques

v1, . . . , vi are in, while leaving the number of i-cliques w1, . . . , wi are in the same.

By construction G(4) ∈ P. The number of edge modifications in total is |E(1)|+ |E(2)| plus

the number of modifications it takes to transform G(2) into G(4). First note that

d∑
i=2

∑
v∈V (G)

|maxclB(b, i)−maxclG
(2)

(v, i)| ≤ 2d · 2d4λn

since every of the at most 2d4λn vertices v in G(2) of 1-type τ can contribute at most 2d to

the sum above. Since transforming G(2) into G(4) we proceed greedily, meaning we reduce the

number
∑d
i=3

∑
v∈V (G) |maxclB(b, i)−maxclG

(2)

(v, i)| by at least one in every step, and every

such reduction takes a maximum of 4d2 edge modifications in total we need less than

|E(1)|+ |E(2)|+ 4d2 · 2d · 2d4λn ≤ 20d7λn = εdn

edge modifications. �

Let F := {τ ′ | τ is a 1-type , τ 6= τ ′}. Note that |F| ≤ |Tr| < ∞, where equality occurs

7.4. SUMMARY 109

when B /∈ Cd. Then Claim 2 combined with Lemma 7.3.2 for M and F defined as above proves

the Theorem.

7.4 Summary

In this section we have shown that there are certain fragments of FO which yield testable

properties. More precisely we consider the fragment of FO sentences expressing that a certain

r-neighbourhood can not appear in a graph and prove testability under a mild assumption

on the degrees. Moreover, we consider the fragment of FO sentences expressing that every

vertex has to have the same r-neighbourhood and show testability for radius r = 1 in some

special cases. The properties considered in this section are interesting as they are natural

extensions of properties that are known to be testable (i. e. properties defined by a Hanf sentence

which are trivially testable, degree regularity [69]). Furthermore, there are sentences defining

neighbourhood regularity and neighbourhood freeness which are contained in Π2 \ Σ2. This

implies that there can not be a dichotomy of the form that an FO sentence defines a testable

property if and only if it is contained in Σ2. We believe that the study of the properties in this

section enhances our understanding of testability of FO definable properties.

110 CHAPTER 7. TESTING PROPERTIES OF NEIGHBOURHOODS

Chapter 8

Comparing locality notions and

answering an open question

Since Gaifman’s locality Theorem [63], it is known that FO can only express local properties,

for some notion of locality. And hence in Chapter 6 we proved that locality, as prescribed in

Gaifman’s locality Theorem, is not sufficient for property testing in the bounded degree model.

Since a constant query property tester can only explore a graph locally, locality plays a central

role in property testing. Indeed, considering how property testers explore graphs has led to a

different notion of locality. With the purpose of characterising properties which have a one-

sided error POT, Goldreich and Ron in [76] defined local properties as generalised subgraph

freeness properties. We refer to this notion of locality as GSF-locality. In [76] Goldreich and

Ron show that the graph properties that allow constant query proximity oblivious testing in

the bounded degree model are precisely the properties that are GSF-local and satisfy the non-

propagation condition. Whether the non-propagating condition is necessary is formulated as an

open question in [76]. We answer this question negatively by proving the following Theorem.

Theorem 8.0.1. There exists a GSF-local property that is not testable in the bounded degree

graph model. Thus, not all GSF-local properties are non-propagating.

The notion of GSF-locality has also been used by Ito, Khoury and Newman in their re-

cent work [89] which classifies which monotone properties and which hereditary properties are

testable by a one-sided error constant query property tester in bounded degree digraphs (in

both the unidirectional and the bidirectional model). In monotone GSF-local properties and

in hereditary GSF-local properties the non-propagating condition is always satisfied and hence

the classification given in [89] is not effected by our result. The authors further prove that ev-

ery property which is testable by a one-sided error constant query property tester for bounded

degree digraphs is close to being a GSF-local property. Whether the converse is true is asked

as an open question in [89]. Indeed, if this question could be answered positively we could

111

112 CHAPTER 8. COMPARING LOCALITY NOTIONS

characterise properties which are testable by a one-sided error constant query property tester.

Our result shows that this is already not possible in the bounded degree model which can be

seen as a special case of both bounded degree digraph models considered in [89].

Proof outline To prove Theorem 8.0.1 we make use of the FO definable property P z from

Section 6. Hanf’s Theorem [83] implies that we can understand locality of FO as prescribing

upper and lower bounds for the occurrence of certain local neighbourhood (isomorphism) types.

On the other hand, a GSF-local property as defined in [76] refers to properties which do

not contain embeddings of some constant size marked graphs. Here the markings of graphs

signify how the embedded graph interacts with the rest of the graph. This is motivated by the

fact that a property tester does not just obtain an induced subgraph of the input graph but

also obtains the information how this induced subgraph is connected to the rest of the graph.

However, forbidding the embedding of such a marked graph is intuitively similar to excluding

certain neighbourhood types, or in other words, limiting the number of occurrences of certain

types.

Building upon the above observations, we establish a formal connection between FO prop-

erties and GSF-local properties. We first encode the possible bounds on occurrences of local

neighbourhood types into what we call neighbourhood profiles, and characterise FO definable

properties of bounded degree relational structures as finite unions of properties defined by neigh-

bourhood profiles (Lemma 8.2.3). We then show that every FO formula defined by a non-trivial

finite union of properties which in turn is defined by so-called 0-profiles, i. e. the prescribed lower

bounds are all 0, is GSF-local (Theorem 8.2.5). Given the fundamental role of local properties

in graph theory, graph limits [102], we believe this new connection is of independent interest.

For technical reasons, we make use of the property P z of relational structures instead of

directly using the non-testable graph property from Section 6.3. We further prove that a variant

of the relational structure property P z , which we denote by P ′z , can be defined by 0-profiles

(Lemma 8.3.2). Finally, we construct a non-testable graph property Pgraph by a local reduction

from the σ-structure property P ′z (Lemma 8.3.3). In the reduction we maintain being definable

by 0-profiles which proves GSF-locality of the graph property Pgraph (Lemma 8.3.4).

8.1 Generalised subgraph freeness

Now we present the formal definition of generalised subgraph freeness, GSF-local properties

and the notion of non-propagation, which were introduced in [76].

Definition 8.1.1 (Generalized subgraph freeness (GSF)). A marked graph is a graph with

each vertex marked as either ‘full’ or ‘semifull’ or ‘partial’. An embedding of a marked graph

F into a graph G is an injective map f : V (F) → V (G) such that for every v ∈ V (F) the

following three conditions hold.

– If v is marked ‘full’, then NG
1 (f(v)) = f(NF

1 (v)).

8.1. GENERALISED SUBGRAPH FREENESS 113

– If v is marked ‘semifull’, then NG
1 (f(v)) ∩ f(V (F)) = f(NF

1 (v)).

– If v is marked ‘partial’, then NG
1 (f(v)) ⊇ f(NF

1 (v)).

The graph G is called F -free if there is no embedding of F into G. For a set of marked graphs

F , a graph G is called F-free if it is F -free for every F ∈ F .

Based on the above definition of generalised subgraph freeness, we can define GSF-local

properties.

Definition 8.1.2 (GSF-local properties). Let P =
⋃
n∈N Pn be a graph property where Pn =

{G ∈ P | |V (G)| = n} and F = (Fn)n∈N a sequence of sets of marked graphs. P is called

F-local if there exists an integer s such that for every n the following conditions hold.

– Fn is a set of marked graphs, each of size at most s.

– Pn equals the set of n-vertex graphs that are Fn-free.

P is called GSF-local if there is a sequence F = (Fn)n∈N of sets of marked graphs such that P
is F-local.

The following notion of non-propagating condition of a sequence of sets of marked graphs

was introduced to study constant query POTs in [76].

Definition 8.1.3 (Non-propagating). Let F = (Fn)n∈N be a sequence of sets of marked graphs.

– For a graph G, a subset B ⊆ V (G) covers Fn in G if for every marked graph F ∈ Fn and

every embedding of F in G, at least one vertex of F is mapped to a vertex in B.

– The sequence F is non-propagating if there exists a (monotonically non-decreasing) func-

tion τ : (0, 1]→ (0, 1] such that the following two conditions hold.

• For every ε > 0 there exists β > 0 such that τ(β) < ε.

• For every graph G and every B ⊆ V (G) such that B covers Fn in G, either G is

τ
(
|B|
n

)
-close to being Fn-free or there are no graphs with n vertices that are Fn-free.

A GSF-local property P is non-propagating if there exists a non-propagating sequence F
such that P is F-local.

In the above definition, the set B can be viewed as the set involving necessary modifications

for repairing a graph G that does not satisfy the property P that is F-local, and the second

condition says we do not need to modify G “much beyond” B. In particular, it implies we

can repair G without triggering a global “chain reaction”. Note that there are sequences

F = (Fn)n∈N that are propagating as mentioned in [76].

Goldreich and Ron gave the following characterisation for the proximity-oblivious testable

properties in the bounded degree model of graphs.

114 CHAPTER 8. COMPARING LOCALITY NOTIONS

Theorem 8.1.4 (Theorem 5.5 in [76]). A graph property P has a constant query POT if and

only if P is GSF-local and non-propagating.

The following open question was raised in [76].

Question 8.1.5 (Are all GSF-local properties non-propagating?). Is it the case that for every

GSF-local property P =
⋃
n∈N Pn, there is a sequence F = (Fn)n∈N that is non-propagating

and P is F-local?

8.2 Relating different notions of locality

In this section we define properties by prescribing upper and lower bounds on the number of

occurrence of neighbourhood types. These bounds are given by neighbourhood profiles which

we will define formally below. We use these properties to give a natural characterisation of FO

properties of bounded degree structures in Lemma 8.2.3, which is a straightforward consequence

of Hanf’s Theorem (Theorem 2.4.7). We use this characterisation to establish links between FO

definability and GSF-locality. This connection is the key ingredient in the proof of our main

theorem.

Let σ be a signature and d ∈ N. For every r ∈ N we assume we fixed an ordering of all

r-types of bounded degree d. We further associate with each σ-structure A ∈ Cd its r-histogram

vector histr(A) defined in Definition 2.3.5 with respect to the chosen ordering of r-types. We

let

I := {[k, l], [k,∞) | k ≤ l ∈ N}

be the set of all closed or half-closed, infinite intervals with natural lower/upper bounds.

Definition 8.2.1. Let r ∈ N and t be the number of r-types of bounded degree d.

1. An r-neighbourhood profile of degree d is a function ρ : {1, . . . , t} → I.

2. For a structure A ∈ Cd, we say A obeys ρ, denoted by A ∼ ρ, if

(histr(A))i ∈ ρ(i) for all i ∈ {1, . . . , t}.

Let Pρ be the set of structures A that obey ρ, i.e., Pρ = {A ∈ Cd | A ∼ ρ}.

3. We say that a property P is defined by a finite union of neighbourhood profiles if there is

k ∈ N such that P =
⋃

1≤i≤k Pρi where ρi is an ri-neighbourhood profile and ri ∈ N for

every i ∈ {1, . . . , k}.

Let us consider the following example in which we find a representation by neighbourhood

profiles for an FO-property.

8.2. RELATING DIFFERENT NOTIONS OF LOCALITY 115

τ1 τ2 τ3 τ4

Figure 8.1: One types of bounded degree 2, where the centres are marked in green.

Example 8.2.2. Let us consider the following FO-sentence.

ϕ := ∀x∀y¬E(x, y) ∨ ∀x∃y1∃y2

(
y1 6= y2 ∧ E(x, y1) ∧ E(x, y2)

∧∀z(z 6= y1 ∧ z 6= y2)→ ¬E(x, z)
)
.

The property Pϕ defined by the sentence ϕ is the property containing all edgeless graphs and

all graphs that are disjoint unions of cycles.

For degree bound 2 all 1-types are listed in Figure 8.1. Let ρ1 : {1, . . . , 4} → I be the

neighbourhood profile defined by ρ1(1) = [0,∞) and ρ1(i) = [0, 0] for i ∈ {2, 3, 4}. Furthermore,

let ρ2 : {1, . . . , 4} → I be the neighbourhood profile defined by ρ2(i) = [0,∞) for i ∈ {3, 4} and

ρ2(j) = [0, 0] for j ∈ {1, 2}. It is easy to observe that the properties Pϕ and Pρ1 ∪Pρ2 are equal.

Indeed representing FO-properties by neighbourhood profiles works in general. The fol-

lowing lemma shows that bounded degree FO properties can be equivalently defined as finite

unions of properties defined by neighbourhood profiles. Here the technicalities that arise are

due to Hanf normal form not requiring the locality-radius of all Hanf-sentences to be the same.

Lemma 8.2.3. For every non-empty property P ⊆ Cd, P is FO definable on Cd if and only if

P can be obtained as a finite union of properties defined by neighbourhood profiles.

Proof. For the first direction assume ϕ is an FO-sentence. Then by Hanf’s Theorem (Theo-

rem 2.4.7) there is a sentence ψ in Hanf normal form such that Pϕ = Pψ.

We will first convert ψ into a sentence in Hanf normal form where every Hanf sentence

appearing has the same locality radius. Let r ∈ N be the maximum locality radius appearing

in ψ, and let ϕ≥mτ := ∃≥mxφτ (x) be a Hanf sentence, where τ is an r′-type for some r′ < r. Let

τ1, . . . , τk be a list of all r-types of bounded degree d for which (NBr′ (b), b) ∈ τ for (B, b) ∈ τi,
for every 1 ≤ i ≤ k. Let Π be the set of all partitions of m into k parts. Let

ϕ̃≥mτ :=
∨

(m1,...,mk)∈Π

k∧
i=1

∃≥mixφτi(x).

Claim 1. ϕ≥mτ is d-equivalent to ϕ̃≥mτ .

Proof of Claim 1. Assume that A ∈ Cd satisfies ϕ≥mτ , and assume that a1, . . . , am are m dis-

tinct elements with (NAr′ (aj), aj) ∈ τ , for every 1 ≤ j ≤ m. Let τ̃j be the r-type for which

116 CHAPTER 8. COMPARING LOCALITY NOTIONS

(NAr (aj), aj) ∈ τ̃j . By choice of τ1, . . . , τk, we get that there are indices i1, . . . , im such that

τ̃j = τij . For i ∈ {1, . . . , k} let mi = |{j ∈ {1, . . . ,m} | ij = i}|. Hence A |=
∧k
i=1 ∃≥mixφτi(x)

and since additionally (m1, . . . ,mk) ∈ Π this implies A |= ϕ̃≥mτ .

On the other hand, let A ∈ Cd satisfy ϕ̃≥mτ , and let (m1, . . . ,mk) ∈ Π be a partition of

m such that A |=
∧k
i=1 ∃≥mixφτi(x). For every 1 ≤ i ≤ k, let ai1, . . . , a

i
mi be mi distinct

elements such that (NAr (aij), a
i
j) ∈ τi, for every 1 ≤ j ≤ mi. By choice of τ1, . . . , τk, we get

that (NAr′ (aij), aij) ∈ τ , for every pair 1 ≤ i ≤ k, 1 ≤ j ≤ mi. But since m1 + · · ·+mk = m this

implies that A |= ϕ≥mτ . This proves that ϕ≥mτ and ϕ̃≥mτ are d-equivalent. �

Let ψ′ be the formula in which every Hanf-sentence ϕ≥mτ for which τ is an r′-type for some

r′ < r gets replaced by ϕ̃≥mτ . By a simple inductive argument using Claim 1, we get that ψ is d-

equivalent to ψ′, and hence Pϕ = Pψ = Pψ′ . Furthermore since ϕ̃≥mτ is a Boolean combination

of Hanf-sentences for every ϕ≥mτ , and any Boolean combination of Boolean combinations is

a Boolean combination itself, ψ′ is in Hanf normal form. Furthermore, every Hanf-sentence

appearing in ψ′ has locality radius r by construction.

Since any Boolean combination can be converted into disjunctive normal form (Lemma 2.4.3),

we can assume that ψ′ is a disjunction of sentences ξ of the form

ξ =

k∧
j=1

∃≥mjxφτj (x) ∧
∧̀

j=k+1

¬∃≥mj+1xφτj (x),

where ` ∈ N≥1, 1 ≤ k ≤ `, mi ∈ N≥1 and τi is an r-type for every 1 ≤ i ≤ `. We can further

assume that every sentence in the disjunction ψ′ is satisfiable by some A ∈ Cd, as any sentence

with no bounded degree d model can be removed from ψ′.

Let τ̃1, . . . , τ̃t be a list of all r-types of bounded degree d in the order we fixed. Let

ki := max({mj | 1 ≤ j ≤ k, τj = τ̃i} ∪ {0}) and `i := min({mj | k + 1 ≤ j ≤ `, τj = τ̃i} ∪ {∞})
for every i ∈ {1, . . . , t}. Since ξ has at least one bounded degree model ki ≤ `i for every

i ∈ {1, . . . , t}. Let ρ : {1, . . . , t} → I be the neighbourhood profile defined by ρ(i) := [ki, `i] if

`i < ∞ and ρ(i) := [ki, `i) otherwise. Then by construction, we get that Pρ = Pξ. Since ψ′

is a disjunction of formulas, each of which defines a property which can be defined by some

neighbourhood profile, we get that Pψ′ must be a finite union of properties defined by some

neighbourhood profile.

On the other hand, for every r-neighbourhood profile ρ of degree d, τ1, . . . , τt a list of all

r-types of bounded degree d in the order fixed and the formula

ϕρ :=
∧

i∈{1,...,t},
ρ(i)=[ki,`i]

(
∃≥kixφτi(x) ∧ ¬∃≥`i+1xφτi(x)

)
∧

∧
i∈{1,...,t},
ρ(i)=[ki,∞)

∃≥kixφτi(x)

it clearly holds that Pρ = Pϕρ . Hence every finite union of properties defined by neighbourhood

profiles can be defined by the disjunction of the formulas ϕρ of all ρ in the finite union.

8.2. RELATING DIFFERENT NOTIONS OF LOCALITY 117

8.2.1 Relating FO properties to GSF-local properties

We now prove that FO properties which arise as unions of neighbourhood profiles of a partic-

ularly simple form are GSF-local. For this let

I0 := {[0,∞), [0, k] | k ∈ N} ⊆ I.

We call any neighbourhood profile ρ with codomain I0 a 0-profile, as all lower bounds for the

occurrence of types are 0.

Observation 8.2.4. Let ρ be a 0-profile, r ∈ N and t be the number of all r-types of bounded

degree d. If two structures A,A′ ∈ Cd satisfy (histr(A))i ≤ (histr(A′))i for every i ∈ {1, . . . , t}
and A′ ∼ ρ, then A ∼ ρ.

In particular, the existence of an r-type cannot be expressed by a 0-profile.

While we need the concept of a 0-profile for relational structures in general the following

theorem can only be stated for graphs as the concept of GSF-locality is not defined for struc-

tures. Hence for the following theorem we only consider graphs. Let d ∈ N and Cd be the class

of all graphs of bounded degree d.

Theorem 8.2.5. Every finite union of properties defined by 0-profiles is GSF-local.

Proof. We prove this in two parts (Claim 1 and Claim 2). We first argue that every property

Pρ defined by some 0-profile ρ : {1, . . . , t} → I0 is GSF-local, where τ1, . . . , τt denotes a list of

all r-types of bounded degree d and r ∈ N is fixed. For this it is important to note that we can

express a forbidden r-type τ by a forbidden generalised subgraph. For (B, b) ∈ τ , the set of

all graphs with no vertex of neighbourhood type τ is the set of all B-free graphs where every

vertex in V (B) of distance less than r to b is marked ‘full’ and every vertex in V (B) of distance

r to b is marked ‘semifull’. Since a profile of the form ρ : {1, . . . , t} → I0 can express that some

neighbourhood type τ can appear at most k times for some fixed k ∈ N, we need to forbid all

marked graphs in which type τ appears k + 1 times. We will formalise this in the following

claim.

Claim 1. For the r-neighbourhood profile ρ : {1, . . . , t} → I0, there is a finite set F of marked

graphs such that Pρ is exactly the property of F-free graphs.

Proof of Claim 1. Assume τ is an r-type and k ∈ N>0. Then we say that a marked graph F is

a k-realisation of τ if F has the following properties.

– There are k distinct vertices v1, . . . , vk in F such that (NF
r (vi), vi) ∈ τ for every i =

1, . . . , k.

– Every vertex v in F has distance less or equal to r to at least one vertex vi.

– Every vertex v in F of distance less than k to at least one vi is marked as ‘full’.

118 CHAPTER 8. COMPARING LOCALITY NOTIONS

– Every vertex v in F of distance greater or equal to k to every vi is marked as ‘semifull’.

We denote by Sk(τ) the set of all k-realisations of τ .

Now we can define the set F of forbidden subgraphs to be

F :=
⋃

k∈N, 1≤i≤t
ρ(i)=[0,k]

Sk+1(τi).

Let P be the property of all F-free graphs. We first prove that the property P is contained

in Pρ. Towards a contradiction assume that G ∈ Cd is F-free but not contained in Pρ. As G is

not contained in Pρ there must be an index i ∈ {1, . . . , t} such that (histr(G))i /∈ ρ(i). Since

ρ(i) ∈ I0 there is k ∈ N such that ρ(i) = [0, k] and hence (histr(G))i > k. Hence there must be

k+1 vertices v1, . . . , vk+1 in G such that (NG
r (vi), vi) ∈ τi. We define the marked graph F to be

the subgraph of G induced by the r-neighbourhoods of v1, . . . , vk+1, i. e. G[∪1≤i≤k+1N
G
r (vi)], in

which every vertex of distance less than k to at least one of the vi is marked as ‘full’ and every

other vertex is marked as ‘semifull’. Then F is by definition a (k+1)-realisation of τi and hence

F ∈ F . We now argue that F can be embedded into G. Since F is an induced subgraph of G

the identity map gives us a natural embedding f : F → G. Let v be any vertex marked ‘full’ in

F . By construction of F , there is i ∈ {1, . . . , k+1} such that f(v) is of distance less than r to vi

in G. But then NG
1 (f(v)) is a subset of NG

r (vi). As F without the marking is the subgraph of

G induced by ∪1≤i≤k+1N
G
r (vi) this implies that f(NF

1 (v)) = NG
1 (f(v)). Furthermore, assume

v is a vertex marked ‘semifull’ in F . Then f(NF
1 (v)) = NG

1 (f(v))∩f(V (F)) holds as F without

the markings is an induced subgraph of G. This proves that G is not F -free by Definition 8.1.1.

This is a contradiction to our assumption that G is F-free and F ∈ F .

Similarly, we can show that Pρ ⊆ P by assuming G ∈ Cd is in Pρ but not F-free, and

showing that the embedding of any graph of F into G yields an amount of vertices of a certain

type contradicting containment in Pρ. �

Next we prove that classes defined by excluding finitely many marked graphs are closed

under finite unions. For two marked graphs F1, F2 consider the union of the class of all {F1}-
free graphs with the class of all {F2}-free graphs. Every graph in this union excludes F1 as a

generalised subgraph or excludes F2 as a generalised subgraph. Hence we have to forbid any

marked graph whose presence in a graph G as a generalised subgraph would imply that both

F1 and F2 are generalised subgraphs of G. We formalise this in the following claim.

Claim 2. Let F1,F2 be two finite sets of marked graphs. For i ∈ {1, 2}, let Pi be the property

of Fi-free graphs. Then there is a set F of generalised subgraphs such that P1 ∪ P2 is the

property of F-free graphs.

Proof of Claim 2. We say that a marked graph F is a (not necessarily disjoint) union of marked

graphs F1, F2 if

8.2. RELATING DIFFERENT NOTIONS OF LOCALITY 119

– there is an embedding fi of Fi into the graph F without its markings as in Definition 8.1.1

for every i ∈ {1, 2}.

– for every vertex v in F there is i ∈ {1, 2} and a vertex w in Fi such that fi(w) = v.

– every vertex v in F is marked ‘full’, if there is i ∈ {1, 2} and a ‘full’ vertex w in Fi such

that fi(w) = v.

– every vertex v in F is marked ‘semifull’, if there is i ∈ {1, 2} and a ‘semifull’ vertex w in

Fi such that fi(w) = v and fi(u) 6= v for every i ∈ {1, 2} and every ‘full’ vertex u.

– every vertex v in F is marked ‘partial’ if fi(u) 6= v for every i ∈ {1, 2} and every ‘full’ or

‘semifull’ vertex u.

We define S(F1, F2) to be the set of all possible (not necessarily disjoint) unions of F1, F2. We

can now define the set F to be

F :=
⋃

F1∈F1,F2∈F2

S(F1, F2).

Let P be the property of all F-free graphs. Now we prove P ⊆ P1 ∪ P2. Towards a

contradiction assume G is F-free but G is in neither P1 nor in P2. Then for every i ∈ {1, 2}
there is a graph Fi ∈ Fi such that G is not Fi-free. It is easy to see that there is a union F∪ of

F1 and F2 such that G is not F∪-free, which contradicts that G is F-free.

Conversely, in order to prove P1 ∪ P2 ⊆ P, if G is Fi free for some i ∈ {1, 2} then G must

be F-free by construction of F . �

Combining the two claims above proves the Theorem 8.2.5.

Further discussion of the relation between FO definablility and GSF-locality First

let us remark that it is neither true that every FO definable property is GSF-local, nor that

every GSF-local property is FO definable.

Example 8.2.6. The property of bounded degree graphs containing a triangle is FO definable

but not GSF-local.

Indeed, the existence of a fixed number of vertices of certain neighbourhood types can be

expressed in FO, while in general, this cannot be expressed by forbidding generalised subgraphs.

If a formula has a 0-profile (and hence does not require the existence of any types) then the

property defined by that formula is GSF-local, as shown in Theorem 8.2.5.

Example 8.2.7. The class of all bounded degree graphs with an even number of vertices is

GSF-local but not FO definable.

120 CHAPTER 8. COMPARING LOCALITY NOTIONS

partial partial

partial

partial full full

G1 G2 G3

Figure 8.2: Marked graphs for Example 8.2.8.

Furthermore, if a GSF-local property P is not definable in FO then the sequence used to

define P must be non-stabilising. More precisely, if a property P is F-local for a sequence of

marked graphs F = (Fn)n∈N and there is n0 ∈ N such that Fn = Fn+1 for every n ≥ n0 then

P is FO definable. That is as up to n0 we can express in FO exactly which graphs are in P
and we can express in FO that every graph with at least n0 vertices is Fn-free.

Let us remark that Theorem 8.2.5 combined with Lemma 8.2.3 proves that every finite union

of properties definable by 0-profiles is both FO definable and GSF-local. Hence it is natural to

ask whether the intersection of FO definable properties and GSF-local properties is precisely

the set of finite unions of properties definable by 0-profiles. However, this is not the case. The

following example shows that there are properties which are both FO definable and GSF-local

but cannot be expressed by 0-profiles.

Example 8.2.8. Let d ≥ 2 and let B1 := ({v}, {}), B2 = ({v, w}, {{v, w}}) be two graphs. We

further let τ1, τ2 be the 1-types of degree d such that (B1, v) ∈ τ1 and (B2, v) ∈ τ2. Consider

the property P defined by the following FO-formula

ϕ := ¬∃x(x = x) ∨ ∃=1x
(
ϕτ1(x) ∧ ∀y

(
x 6= y → ϕτ2(y)

))
.

P contains, besides the empty graph, unions of an arbitrary amount of disjoint edges and one

isolated vertex. To define a sequence of forbidden subgraphs we let G1, G2, G3 be the marked

graphs in Figure 8.2. Let Feven := {G1} and Fodd := {G2, G3} and let F = (Fn)n∈N where

Fi = Feven if i is even and Fi = Fodd if i is odd. Note that every graph on more than one vertex

with an odd number of vertices which is Fodd-free must contain a vertex of neighbourhood type

τ1, and that the set of Feven-free graphs contains only the empty graph. Hence P is F-local.

Now assume towards a contradiction that P =
⋃

1≤i≤k Pρi for 0-profiles ρi. Let Gm be the

graph consisting of m disjoint edges and one isolated vertex and Hm the graph consisting of

m disjoint edges. Since Gm ∈ P there is i ∈ {1, . . . , k} such that Gm ∼ ρi. By choice of Gm

and Hm we have 0 ≤ (histr(Hm))j ≤ (histr(Gm))j ∈ ρi(j) for every j ∈ {1, . . . , t}, where t

is the number of 1-types of bounded degree d. Since additionally ρi(j) ∈ I0 this implies that

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 121

GSF-local

FO

POT

0-profiles

Pgraph

P8.2.8

P8.2.7

P8.2.6

Cd

Figure 8.3: Overview of all relevant classes of properties. Here Pi refers to the property from
Example i, Cd refers to the property of all graphs of bounded degree d and Pgraph is the property
defined in Section 8.3.2.

(histr(Hm))j ∈ ρi(j). But then Hm ∼ ρi which yields a contradiction as Hm /∈ P. Hence P
can not be defined as a finite union of 0-profiles.

Figure 8.3 gives a schematic overview of all classes of properties discussed here and their

relationship.

8.3 GSF-locality is not sufficient for proximity-oblivious

testing

In this section we prove Theorem 8.0.1. We start by describing a property of relational struc-

tures, similar to a property in Section 6, which is not testable. We then show that the property

can be expressed by a union of 0-profiles. This will be used later to show that a certain

graph property, which we obtain from the relational structure property by a local reduction, is

GSF-local using Theorem 8.2.5.

Let σ be the signature from Section 6.1.2 Equation 6.1, d ∈ N as in Section 6.1.3 and P z
be the property of σ-structures of bounded degree d from Section 6.2.

8.3.1 Characterisation by neighbourhood profiles

Our aim in this section is to prove that a minor variation of the property P z of relational

structures can be written as a finite union of properties defined by 0-profiles of radius 2. As the

existence of a certain vertex cannot be expressed with a 0-profile (see Observation 8.2.4) and

ϕ z demands the existence of a certain vertex (the root vertex), the property P z cannot be

expressed in terms of 0-profiles. However we define a slight variation of the formula ϕ z which,

as we will see later, can be expressed by 0-profiles. Let

ϕ′z := ϕ′tree ∧ ϕrotationMap ∧ ϕbase ∧ ϕrecursion,

122 CHAPTER 8. COMPARING LOCALITY NOTIONS

where we obtain ϕ′tree from ϕtree by replacing the subformula ∃=1xϕroot(x) by ∃≤1xϕroot(x),

where ϕroot(x), ϕtree, ϕrotationMap, ϕbase and ϕrecursion are the formulas given in Section 6.1.2

Equations 6.2, 6.3, 6.4, 6.5 and 6.6. We define the property

P ′z := {A ∈ Cd | A |= ϕ′z }.

We denote the empty structure by A∅ (i. e. A∅ = ∅).

Lemma 8.3.1. The properties P ′z and P z ∪ {A∅} are equal.

Proof. We first prove that P ′z ⊆ P z ∪ {A∅}. Consider the formula ϕ̃ z which is obtained

from ϕ z by removing the subformula ∃=1xϕroot(x). We use the following observation which is

proved by a simple analysis of the formula.

Claim 1. Satisfying ϕ̃ z is closed under disjoint unions on Cd.

Proof of Claim 1. Let A,A′ ∈ Cd such that A |= ϕ̃ z and A′ |= ϕ̃ z . Our aim is to prove that

A t A′ |= ϕ̃ z where A t A′ denotes the disjoint union of A and A′. For this we essentially

prove that for any two elements a ∈ A and b ∈ A′ the formula ϕ̃ z does not require a tuple

containing a and b.

Let us define the following subformulas of ϕtree (see Section 6.1.2 Equation 6.3)

ϕ := ∀x
((
ϕroot(x) ∧R(x, x)

)
∨
(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
,

ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x) ∧ ∀y
(
y 6= x→

∧
k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)
)

and

χ(x) := ¬∃y
∨

k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk
(
x 6= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2,k′ 6=k

¬Fk′(x, yk)) ∧ ∀y(y 6= yk → ¬Fk(x, y))
)
.

Then ϕ̃ z := ϕ ∧ ∀x(ψ(x) ∨ χ(x)) ∧ ϕrotationMap ∧ ϕbase ∧ ϕrecursion. Hence it is sufficient to

prove that AtA′ |= ϕ, AtA′ |= ∀x(ψ(x) ∨ χ(x)), AtA′ |= ϕrotationMap, AtA′ |= ϕbase and

A tA′ |= ϕrecursion.

We first argue that A t A′ |= ϕ. Let a ∈ A t A′ be arbitrary and assume without loss

of generality that a ∈ A. Assume that A t A′ 6|= ϕroot(a) ∧ R(a, a). Since ϕroot(x) :=

∀y¬F (y, x) this implies that A 6|= ϕroot(a) ∧ R(a, a). Furthermore, since A |= ϕ we get

that A |= ∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence there is an element b ∈ A such

that (b, a) ∈ FA. Furthermore, for every b′ ∈ A, b′ 6= b we have (b′, a) /∈ FA, (a, b′) /∈ RA

and (b′, a) /∈ RA. But because a cannot be in a tuple with any element in A′ we get that

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 123

A tA′ |= ∃=1yF (y, a) ∧ ¬∃yR(a, y) ∧ ¬∃yR(y, a). Hence A tA′ |= ϕ.

Next we prove that A t A′ |= ∀x(ψ(x) ∨ χ(x)). Let a ∈ A t A′ be arbitrary and assume

without loss of generality that a ∈ A. First assume that (a, b) /∈ FAtA′ for every b ∈ A t A′.
Since A is an induced substructure of A t A′ this means that A |= ¬∃yF (a, y). But then

A 6|=
∧
k∈([D]2)2 ∃yk

(
a 6= yk ∧ Fk(a, yk)

)
which implies A 6|= χ(a). Since A |= ∀x(ψ(x) ∨ χ(x))

this implies that A |= ψ(a). Hence for every k ∈ ([D]2)2 we have (a, a) ∈ LAk and for every

b ∈ A, b 6= a we have (a, b), (b, a) /∈ FAk . Since there are no tuples containing both elements

from A and A′ this directly implies that A tA′ |= ψ(a).

On the other hand, assume that there is b ∈ A t A′ such that (a, b) ∈ FAtA
′
. Since we

are considering the disjoint union of A and A′ this implies that b must be an element from

A. Hence A 6|= ψ(a). Since A |= ∀x(ψ(x) ∨ χ(x)) this implies that A |= χ(a). Then for every

k ∈ ([D]2)2 there is an element b ∈ A such that (a, b) ∈ FAk , (a, b) /∈ FAk′ for every k′ ∈ ([D]2)2,

k′ 6= k and (a, b′) /∈ FAk for every b′ ∈ A, b′ 6= b. But since in A t A′ there are no tuples

containing both elements from A and A′ this implies that A t A′ |= χ(a). In conclusion we

proved that A tA′ |= ∀x(ψ(x) ∨ χ(x)).

We now prove A t A′ |= ϕrotationMap. Hence assume a, b ∈ A t A′ are arbitrary elements.

First consider the case that a, b are either both from A or both from A′. In this case, if for

some i, j ∈ [D]2 we have that (a, b) ∈ EAtA′i,j then (b, a) ∈ EAtA′j,i because A |= ϕrotationMap

and A′ |= ϕrotationMap. Now consider the case that |{a, b} ∩ A| = 1. Then (a, b) /∈ EAtA
′

i,j

and (b, a) /∈ EAtA
′

j,i and hence we get A t A′ |=
∧
i,j∈[D]2(Ei,j(a, b) → Ej,i(b, a)). Therefore

A tA′ |= ∀x∀y
(∧

i,j∈[D]2(Ei,j(x, y)→ Ej,i(y, x))
)

.

Now consider an arbitrary element a ∈ A t A′ and any i ∈ [D]2. Without loss of gen-

erality assume a ∈ A. Since A |= ϕrotationMap there must be an index j ∈ [D]2 and an

element b ∈ A such that (a, b) ∈ EAi,j . Furthermore, for every b′ ∈ A, b′ 6= b we have

(a, b′) /∈ EAi,j and for every j′ ∈ [D]2, j′ 6= j and every b̃ ∈ A we have (a, b̃) /∈ EAi,j′ .

But since a ∈ A it also holds that (a, b′) /∈ EAi,j′ for every b′ ∈ A′ and every j′ ∈ [D]2.

Hence AtA′ |=
∨
j∈[D]2

(
∃=1yEi,j(a, y) ∧

∧
j′∈[D]2

j′ 6=j
¬∃yEi,j′(a, y)

)
. This concludes the proof of

A tA′ |= ϕrotationMap.

We now prove A t A′ |= ϕbase. Assume a ∈ A t A′ is an arbitrary element such that

A t A′ |= ϕroot(a). Without loss of generality assume a ∈ A. Since ϕroot(x) := ∀y¬F (y, x)

and A t A′ |= ϕroot(a) we get that A |= ϕroot(a). Since A |= ϕbase this means that for every

i, j ∈ [D]2 we have (a, a) ∈ EAi,j and (a, b), (b, a) /∈ EAi,j for every b ∈ A, b 6= a. Since further

(a, b), (b, a) /∈ EAtA′i,j for every b ∈ A′ this implies that AtA′ |=
∧
i,j∈[D]2

(
Ei,j(a, a) ∧ ∀y

(
a 6=

y →
(
¬Ei,j(a, y) ∧ ¬Ei,j(y, a)

)))
. Furthermore, since A |= ϕbase and A |= ϕroot(a) for ev-

ery k, k′ ∈ ([D]2)2, i, i′ ∈ [D]2 for which ROTH2(k, i) = (k′, i′) there are b, b′ ∈ A such that

124 CHAPTER 8. COMPARING LOCALITY NOTIONS

(a, b) ∈ FAk , (a, b′) ∈ FAk′ and (b, b′) ∈ EAi,i′ . Since A is a substructure of AtA′ this proves that

A tA |= ϕbase.

Finally we prove A t A′ |= ϕrecursion. Hence assume a, c ∈ A t A′ are arbitrary elements.

Assume A t A′ 6|= ¬∃yF (a, y) ∧ ¬∃yF (c, y) and assume without loss of generality that there

is ã ∈ A t A′ such that (a, ã) ∈ FAtA′ . Since there are no tuples containing both elements

from A and A′ we get that a, ã are from the same structure. Without loss of generality assume

a, ã ∈ A. Assume that for indices k′1, k
′
2 ∈ [D]2, `′1, `

′
2 ∈ [D]2 and some element b ∈ A t A′

we have (a, b) ∈ EAtA
′

k′1,`
′
1

and (b, c) ∈ EAtA
′

k′2,`
′
2

. As b also has to be in A and A |= ϕrecursion

this implies that for every i, j, i′, j′ ∈ [D], k, ` ∈ ([D]2)2 for which ROTH(k, i) = ((k′1, k
′
2), i′)

and ROTH((`′2, `
′
1), j) = (`, j′) there are elements a′, c′ ∈ A t A′ such that (a, a′) ∈ FAtA

′

k ,

(c, c′) ∈ FAtA′` and (a′, c′) ∈ EAtA′(i,j),(j′,i′). Hence A tA′ |= ϕrecursion. �

Since A∅ ∈ P z ∪{A∅} it is sufficient to consider only non-empty structures in the following.

Therefore assume that there exists A ∈ Cd with A 6= ∅ such that A |= ϕ′z and A contains no

element a for which A |= ϕroot(a). Let A′ ∈ Cd be any model of ϕ z with A ∩ A′ = ∅. Then

AtA′ |= ϕ̃ z by Claim 1. Furthermore, AtA′ |= ∃=1xϕroot(x), which implies AtA′ |= ϕ z .

By construction, the Gaifman graph G((A tA′)|F) of the structure A|F := (A, (FAk)k∈([D]2)2)

has more than one connected component as both A 6= ∅ and A′ 6= ∅ and AtA′ is a disjoint union

of A and A′. Hence we obtain a contradiction to Lemma 6.1.14. Therefore every non-empty

structure satisfying ϕ′z must satisfy ∃=1xϕroot(x), and hence also ϕ z .

Conversely, if A ∈ Cd is a model of ϕ z then A |= ∃=1xϕroot(x). This implies directly that

A |= ∃≤1xϕroot(x) and hence A |= ϕ′z . Furthermore, A∅ ∈ P ′z as A∅ |= ∃≤1xϕroot(x) and

A∅ |= ϕ̃ z as ϕ̃ z is a conjunction of formulas of the form ∀xψ(x) for some formula ψ(x). Hence

P z ∪ {A∅} ⊆ P
′
z .

We now define the 0-profiles which express the property P ′z . For all σ-structures in P z
(all σ-structure in P ′z but A∅) it is crucial that they are allowed to contain precisely one

root element. Hence the neighbourhood profile describing P ′z must restrict the number of

occurrences of the 2-type of the root element. But since in P z , the root elements in different

structures may have different 2-types, we partition P z into parts P1, . . . , Pm by the 2-type of

the root element. Note that the number m of parts is constant as there are a constant number

of 2-types in total. For each of these parts we then define a neighbourhood profile ρk such that

Pk ∪ {A∅} = Pρk . We would like to remark here that the roots of all but one structure in P z
actually have the same 2-type. Hence the partition only contains two parts and one of the two

parts only contains one structure. We now define the parts and corresponding profiles formally.

Let τ1, . . . , τt be a list of all 2-types of bounded degree d. Assume without loss of generality

that the 2-types τ1, . . . , τt are ordered in such a way that for (B, b) ∈ τk, it holds that B |=

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 125

ϕroot(b) if and only if k ∈ {1, . . . ,m} for some m ≤ t. For k ∈ {1, . . . ,m}, let

Pk := {A ∈ P z | there is a ∈ A such that (NA2 (a), a) ∈ τk}.

Since every A ∈ P z satisfies ∃=1xϕroot(x) we get that

P ′z =
⋃

1≤k≤m

Pk ∪ {A∅}

and this union is disjoint. Furthermore, for k ∈ {1, . . . ,m}, let Ik ⊆ {1, . . . , t} be the set of

indices j such that there is a structure A ∈ Pk and a ∈ A with (NA2 (a), a) ∈ τj . For every

k ∈ {1, . . . ,m} we define the 2-neighbourhood profile ρk : {1, . . . , t} → I0 by

ρk(i) :=


[0, 1] if i = k,

[0,∞) if i ∈ Ik \ {k},

[0, 0] otherwise.

To prove that these 0-profiles of radius 2 define the property P ′z , the crucial observation is

that for every element a of some structure in Cd, the FO-formula ϕ′z only talks about elements

of distance at most 2 to a (i. e. ϕ′z is 2-local). Hence the 2-histogram vector of a structure

already captures whether the structure satisfies ϕ′z . We will now formally prove this.

Lemma 8.3.2. It holds that P ′z =
⋃

1≤k≤m Pρk .

Proof. We first prove that P ′z ⊆
⋃

1≤k≤m Pρk . First note that trivially A∅ ∈
⋃

1≤k≤m Pρk .

Now assume A ∈ P z . This implies that there is k ∈ {1, . . . ,m} such that A ∈ Pk. By con-

struction we have that for every a ∈ A, there is i ∈ Ik such that (NA2 (a), a) ∈ τi. Furthermore,

since A |= ϕ z , we have that A |= ∃=1xϕroot(x), and that there can be at most one a ∈ A such

that (NA2 (a), a) ∈ τk. Therefore A ∈ Pρk .

To prove
⋃

1≤k≤m Pρk ⊆ P ′z , we prove that every structure in
⋃

1≤k≤m Pρk must satisfy

ϕ′z . We will prove that every A ∈
⋃

1≤k≤m Pρk satisfies ϕ′z in the following four claims. Note

that A∅ |= ϕ′z by Lemma 8.3.1 and hence we exclude A∅ in the following.

Claim 1. Every structure A ∈
⋃

1≤k≤m Pρk \ {A∅} satisfies ϕ′tree.

Proof of Claim 1. LetA ∈
⋃

1≤k≤m Pρk\{A∅}. Then there is k ∈ {1, . . . ,m} such thatA ∈ Pρk .

By definition (see Section 6.1.2 Equation 6.3), ϕ′tree := ∃≤1xϕroot(x)∧ϕ∧ ∀x(ψ(x)∨ χ(x)),

126 CHAPTER 8. COMPARING LOCALITY NOTIONS

where

ϕ := ∀x
((
ϕroot(x) ∧R(x, x)

)
∨
(
∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)

))
,

ψ(x) := ¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x) ∧ ∀y
(
y 6= x→

∧
k∈([D]2)2

¬Lk(x, y) ∧
∧

k∈([D]2)2

¬Lk(y, x)
)

and

χ(x) := ¬∃y
∨

k∈([D]2)2

(
Lk(x, y) ∨ Lk(y, x)

)
∧

∧
k∈([D]2)2

∃yk
(
x 6= yk ∧ Fk(x, yk) ∧ (

∧
k′∈([D]2)2,k′ 6=k

¬Fk′(x, yk)) ∧ ∀y(y 6= yk → ¬Fk(x, y))
)
.

Thus, it is sufficient to prove that A |= ∃≤1xϕroot(x), A |= ϕ and A |= ∀x(ψ(x) ∨ χ(x)).

To prove A |= ∃≤1xϕroot(x) we note that by construction of ρk we have A 6|= ϕroot(a) for

any a ∈ A for which (NA2 (a), a) /∈ τk. Since ρk restricts the number of occurrences of elements

of neighbourhood type τk to at most one, this proves that there is at most one a ∈ A with

A |= ϕtree(a) and hence A |= ∃≤1xϕroot(x).

To prove A |= ϕ, let a ∈ A be an arbitrary element. Since A ∈ Pρk , there is an i ∈ Ik

such that (NA2 (a), a) ∈ τi. But then by definition, there exist Ã |= ϕ z and ã ∈ Ã such

that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Assume f is an isomorphism from (NA2 (a), a) to (N Ã2 (ã), ã).

First consider the case that A |= ϕroot(a) := ∀y¬F (y, a). Assume there is b̃ ∈ Ã such that

(b̃, ã) ∈ F Ã. Since b̃ ∈ N Ã2 (ã), there must be an element b ∈ NA2 (a) such that f(b) = b̃.

Since f is an isomorphism mapping a to ã, this implies (b, a) ∈ FA, which contradicts A |=
ϕroot(a). Hence Ã |= ϕroot(ã). Since Ã |= ϕ′tree, it holds that Ã |= ϕ, which means that

(ã, ã) ∈ RÃ. But since f is an isomorphism mapping a onto ã, this implies (a, a) ∈ RA. Now

consider the case that A 6|= ϕroot(a). Then there is b ∈ A with (b, a) ∈ FA. Since f is an

isomorphism, this implies (f(b), ã) ∈ F Ã. Hence Ã |= ∃=1yF (y, ã) ∧ ¬∃yR(ã, y) ∧ ¬∃yR(y, ã),

as Ã |= ϕ. Now assume that there is b′ 6= b such that (b′, a) ∈ FA. Then f(b) 6= f(b′) and

(f(b), ã), (f(b′), ã) ∈ F Ã. Since this contradicts Ã |= ∃=1yF (y, ã) we have A |= ∃=1yF (y, a).

Furthermore, assume that there is b′ ∈ A such that either (a, b′) ∈ RA or (b′, a) ∈ RA. Then

either (ã, f(b′)) ∈ RÃ
′

or (f(b′), ã) ∈ RÃ, which contradicts Ã |= ¬∃yR(ã, y) ∧ ¬∃yR(y, ã).

Therefore A |= ¬∃yR(a, y) ∧ ¬∃yR(y, a) which completes the proof of A |= ϕ.

We prove A |= ∀x(ψ(x) ∨ χ(x)) by considering the two cases A |= ¬∃yF (a, y) and A |=
∃yF (a, y) for each element a ∈ A. For this, let a ∈ A be any element. By the construction of ρk

there is Ã |= ϕ z and ã ∈ Ã such that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Let f be an isomorphism from

(NA2 (a), a) to (N Ã2 (ã), ã). First consider the case that A |= ¬∃yF (a, y). If there was b̃ ∈ Ã
with (ã, b̃) ∈ F Ã then (a, f−1(b̃)) ∈ FA contradicting our assumption. Hence Ã |= ¬∃yF (ã, y)

which implies that Ã 6|= χ(ã). But since Ã |= ϕ z , it holds that Ã |= ∀x(ψ(x) ∨ χ(x)),

which implies that Ã |= ψ(ã). Hence (ã, ã) ∈ LÃk for every k ∈ ([D]2)2. Since f is an

isomorphism and f(a) = ã, it holds that (a, a) ∈ LAk for every k ∈ ([D]2)2, and hence A |=∧
k∈([D]2)2 Lk(a, a). Furthermore, assume that there is b ∈ A, b 6= a and k ∈ ([D]2)2 such

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 127

that either (a, b) ∈ LAk or (b, a) ∈ LAk . Since f is an isomorphism this implies that either

(ã, f(b)) ∈ LÃk or (f(b), ã) ∈ LÃk which contradicts Ã |= χ(ã). Hence A |= ∀y
(
y 6= a →∧

k∈([D]2)2 ¬Lk(a, y) ∧
∧
k∈([D]2)2 ¬Lk(y, a)

)
proving that A |= ψ(a).

Now consider the case that there is an element b ∈ A such that (a, b) ∈ FA. Since this

implies that (ã, f(b)) ∈ F Ã, we get that Ã 6|= ψ(ã), and hence Ã |= χ(ã). Now assume

that there is a b ∈ A and k ∈ ([D]2)2 such that either (a, b) ∈ LAk or (b, a) ∈ LAk . But

then either (ã, f(b)) ∈ LÃk or (f(b), ã) ∈ LÃk , which contradicts Ã |= χ(ã). Hence A |=
¬∃y

∨
k∈([D]2)2

(
Lk(a, y) ∨ Lk(y, a)

)
. For each k ∈ ([D]2)2, let b̃k ∈ Ã be an element such

that Ã |= ã 6= b̃k ∧ Fk(ã, b̃k) ∧ (
∧
k′∈([D]2)2,k′ 6=k ¬Fk′(ã, b̃k)) ∧ ∀y(y 6= b̃k → ¬Fk(ã, y)). Since

f is an isomorphism, this implies that a 6= bk := f−1(b̃k), (a, bk) ∈ FAk and (a, bk) /∈ FAk′ ,

for each k′ ∈ ([D]2)2, k′ 6= k. Furthermore, assume there is b ∈ A, b 6= bk such that (a, b) ∈
FAk . Since f is an isomorphism, this implies f(b) 6= f(bk) = b̃k and (ã, f(b)) ∈ F Ãk , which

contradicts Ã |= ∀y(y 6= b̃k → ¬Fk(ã, y)). Hence A |= ∀y(y 6= bk → ¬Fk(a, y)) and therefore

concluding that A |= χ(a). This proves that in either case A |= ψ(a) ∨ χ(a) and therefore

A |= ∀x(ψ(x) ∨ χ(x)). �

Claim 2. Every structure A ∈
⋃

1≤k≤m Pρk \ {A∅} satisfies ϕrotationMap.

Proof of Claim 2. Let A ∈
⋃

1≤k≤m Pρk \ {A∅}. Then there is a k ∈ {1, . . . ,m} such that

A ∈ Pρk .

By definition (Section 6.1.2 Equation 6.4), ϕrotationMap = ϕ ∧ ψ, where

ϕ := ∀x∀y
(∧
i,j∈[D]2

(Ei,j(x, y)→ Ej,i(y, x))
)

and

ψ := ∀x
(∧
i∈[D]2

(∨
j∈[D]2

(
∃=1yEi,j(x, y) ∧

∧
j′∈[D]2

j′ 6=j

¬∃yEi,j′(x, y)
)))

.

Thus, it is sufficient to prove that A |= ϕ and A |= ψ.

To prove A |= ϕ, assume towards a contradiction that there are a, b ∈ A such that for some

pair i, j ∈ [D]2, we have that (a, b) ∈ EAi,j , but (b, a) /∈ EAj,i. By construction of Pρk , there is a

structure Ã |= ϕ z and ã ∈ Ã such that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Assume f is an isomorphism

from (NA2 (a), a) to (N Ã2 (ã), ã). Note that f(b) is defined since b is in the 2-neighbourhood of a.

Furthermore since f is an isomorphism, (a, b) ∈ EAi,j implies (ã, f(b)) ∈ EÃi,j , and (b, a) /∈ EAj,i
implies (f(b), ã) /∈ EÃj,i. Hence Ã 6|= ϕ, which contradicts Ã |= ϕrotationMap.

To prove A |= ψ, assume towards a contradiction that there is an a ∈ A and i ∈ [D]2

such that A 6|= ∃=1yEi,j(a, y) ∧
∧
j′∈[D]2

j′ 6=j
¬∃yEi,j′(a, y) for every j ∈ [D]2. We know that

there is a structure Ã |= ϕ z and ã ∈ Ã such that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Let f be an

isomorphism from (NA2 (a), a) to (N Ã2 (ã), ã). Since Ã |= ψ, there must be j ∈ [D]2 such

that Ã |= ∃=1yEi,j(ã, y) ∧
∧
j′∈[D]2

j′ 6=j
¬∃yEi,j′(ã, y). Hence there must be b̃ ∈ Ã such that

128 CHAPTER 8. COMPARING LOCALITY NOTIONS

(ã, b̃) ∈ EÃi,j , which implies that (a, f−1(b̃)) ∈ EAi,j . Since we assumed that A 6|= ∃=1yEi,j(a, y)∧∧
j′∈[D]2

j′ 6=j
¬∃yEi,j′(a, y), there must be either b 6= f−1(b̃) with (a, b) ∈ EAi,j , or there must be

j′ ∈ [D]2, j′ 6= j and b′ ∈ A such that (a, b′) ∈ EAi,j′ . In the first case (ã, f(b)) ∈ EÃi,j , since f

is an isomorphism. But then Ã 6|= ∃=1yEi,j(ã, y), which is a contradiction. In the second case,

we get that (ã, f(b′)) ∈ EÃi,j′ . But then Ã 6|=
∧
j′∈[D]2

j′ 6=j
¬∃yEi,j′(ã, y), which is a contradiction.

Hence A |= ϕ ∧ ψ. �

Claim 3. Every structure A ∈
⋃

1≤k≤m Pρk \ {A∅} satisfies ϕbase.

Proof of Claim 3. Let A ∈
⋃

1≤k≤m Pρk \ {A∅}. Then there is a k ∈ {1, . . . ,m} such that

A ∈ Pρk .

By definition (Section 6.1.2 Equation 6.5), ϕbase := ∀x
(
ϕroot(x)→ (ϕ(x) ∧ ψ(x))

)
, where

ϕ(x) :=
∧

i,j∈[D]2

(
Ei,j(x, x) ∧ ∀y

(
x 6= y →

(
¬Ei,j(x, y) ∧ ¬Ei,j(y, x)

)))
and

ψ(x) :=
∧

ROTH2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′
(
Fk(x, y) ∧ Fk′(x, y′) ∧ Ei,i′(y, y′)

)
.

Thus, it is sufficient to prove that A |= ϕ(a) and A |= ψ(a) for every a ∈ A for which

A |= ϕroot(a). Therefore assume a ∈ A is any element such that A |= ϕroot(a). Because

A ∈ Pρk there is an i ∈ Ik such that (NA2 (a), a) ∈ τi. Then by definition there is a structure

Ã |= ϕ z and ã ∈ Ã such that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Let f be an isomorphism from

(NA2 (a), a) to (N Ã2 (ã), ã). Assume that there is an element b̃ ∈ Ã such that (b̃, ã) ∈ F Ã.

Since f is an isomorphism and b̃ ∈ N Ã2 (ã) we get that (f−1(b̃), a) ∈ FA which contradicts that

A |= ϕroot(a) as ϕroot(x) := ∀y¬F (y, x). Hence there is no element b̃ ∈ Ã such that (b̃, ã) ∈ F Ã

which implies that Ã |= ϕroot(ã). But since Ã |= ϕ z we have that Ã |= ϕbase and hence

Ã |= ϕ(ã) and Ã |= ψ(ã).

To proveA |= ϕ(a) first observe that (a, a) ∈ EAi,j for every i, j ∈ [D]2 since Ã |= ϕ(ã) implies

that (ã, ã) ∈ EÃi,j for every i, j ∈ [D]2 and f is an isomorphism mapping a onto ã. Assume

that there is an element b ∈ A, b 6= a and indices i, j ∈ [D]2 such that either (a, b) ∈ EAi,j or

(b, a) ∈ EAi,j . Since b ∈ NA2 (a) and f is an isomorphism we get that f(b) 6= f(a) = ã and either

(ã, f(b)) ∈ EÃi,j or (f(b), ã) ∈ EÃi,j . But this contradicts Ã |= ϕ(ã) and hence A |= ϕ(a).

We now proveA |= ψ(a). Let k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such that ROTH2(k, i) = (k′, i′).

Since Ã |= ψ(ã) there must be elements b̃, b̃′ ∈ Ã such that (ã, b̃) ∈ F Ãk , (ã, b̃′) ∈ F Ãk′ and

(b̃, b̃′) ∈ EÃi,i′ . But since b̃, b̃′ ∈ N Ã2 (ã) we get that f−1(b̃) and f−1(b̃′) are defined and since f is

an isomorphism we get that (a, f−1(b̃)) ∈ FAk , (a, f−1(b̃′)) ∈ FAk′ and (f−1(b̃), f−1(b̃′)) ∈ EAi,i′ .
Hence A |= ∃y∃y′

(
Fk(a, y) ∧ Fk′(a, y′) ∧ Ei,i′(y, y′) for any k, k′ ∈ ([D]2)2 and i, i′ ∈ [D]2 such

that ROTH2(k, i) = (k′, i′) which implies that A |= ψ(a). �

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 129

Claim 4. Every structure A ∈
⋃

1≤k≤m Pρk \ {A∅} satisfies ϕrecursion.

Proof of Claim 4. Let A ∈
⋃

1≤k≤m Pρk \ {A∅}. Then there is a k ∈ {1, . . . ,m} such that

A ∈ Pρk .

By definition (Section 6.1.2 Equation 6.6), ϕrecursion := ∀x∀z
(
ϕ(x, z) ∨ ψ(x, z)

)
, where

ϕ(x, z) :=¬∃yF (x, y) ∧ ¬∃yF (z, y) and

ψ(x, z) :=
∧

k′1,k
′
2∈[D]2

`′1,`
′
2∈[D]2

(
∃y
[
Ek′1,`′1(x, y) ∧ Ek′2,`′2(y, z)

]
→

∧
i,j,i′,j′∈[D],k,`∈([D]2)2

ROTH(k,i)=((k′1,k
′
2),i′)

ROTH((`′2,`
′
1),j)=(`,j′)

∃x′∃z′
[
Fk(x, x′) ∧ F`(z, z′) ∧ E(i,j),(j′,i′)(x

′, z′)
])
.

Let a, c ∈ A. Assume first that there is b ∈ A with (a, b) ∈ FA. Hence A 6|= ϕ(a, c). Since

ϕrecursion := ∀x∀z
(
ϕ(x, z)∨ψ(x, z)

)
we aim to prove A |= ψ(a, c). By construction of ρk, there

is an i ∈ Ik such that (NA2 (a), a) ∈ τi. Therefore there is a structure Ã |= ϕ z and ã ∈ Ã such

that (NA2 (a), a) ∼= (N Ã2 (ã), ã). Let f be an isomorphism from (NA2 (a), a) to (N Ã2 (ã), ã). Since

b ∈ NA2 (a), we get that f(b) is defined. Since f is an isomorphism mapping a onto ã, we have

that (a, b) ∈ FA implies that (ã, f(b)) ∈ F Ã. Hence Ã 6|= ϕ(ã, c̃), for every c̃ ∈ Ã. But since

Ã |= ϕrecursion, as Ã |= ϕ z , this shows that Ã |= ψ(ã, c̃) for every c̃ ∈ Ã.

Let k′1, k
′
2 ∈ [D]2 and `′1, `

′
2 ∈ [D]2 be indices such that there is b′ ∈ A with (a, b′) ∈ EAk′1,`′1

and (b′, c) ∈ EAk′2,`′2
. Since b′, c ∈ NA2 (a), by assumption we get that f(b′) and f(c) are de-

fined. Furthermore, (a, b′) ∈ EAk′1,`′1
and (b′, c) ∈ EAk′2,`′2

imply that (ã, f(b′)) ∈ EÃk′1,`′1
and

(f(b′), f(c)) ∈ EÃk′2,`′2 , since f is an isomorphism mapping a onto ã. We proved in the previous

paragraph that Ã |= ψ(ã, f(c)). Hence we can conclude that for all indices i, j, i′, j′ ∈ [D],

k, ` ∈ ([D]2)2 for which ROTH(k, i) = ((k′1, k
′
2), i′) and ROTH((`′2, `

′
1), j) = (`, j′), there are

elements ã′, c̃′ ∈ Ã such that (ã, ã′) ∈ F Ãk , (f(c), c̃′) ∈ F Ã` , and (ã′, c̃′) ∈ EÃ(i,j),(j′,i′). Since

ã′, c̃′ ∈ N Ã2 (ã), we get that a′ := f−1(ã′) and c′ := f−1(c̃′) are defined. Furthermore, we get

that (a, a′) ∈ FAk , (c, c′) ∈ FA` and (a′, c′) ∈ EA(i,j),(j′,i′). This proves that A |= ψ(a, c).

In the case that there is b ∈ A with (c, b) ∈ FA, we can prove similarly that A |= ψ(a, c),

by considering that there exist Ã |= ϕ z and c̃ ∈ Ã such that (NA2 (a), c) ∼= (N Ã2 (c̃), c̃) by

construction of ρk. Finally if there is no b ∈ A such that (a, b) ∈ FA or (c, b) ∈ FA then

A |= ϕ(a, c). Since this covers every case we get that A |= ϕrecursion. �

Assume A ∈
⋃

1≤k≤m Pρk . As proved in Claims 1, 2, 3 and 4 this implies that A |= ϕ′tree,

A |= ϕrotationMap, A |= ϕbase and A |= ϕrecursion. Since ϕ′z is a conjunction of these formulas,

we get A |= ϕ′z and hence A ∈ P ′z .

130 CHAPTER 8. COMPARING LOCALITY NOTIONS

8.3.2 A local reduction from relational structures to graphs

In this section we construct a property Pgraph from the property P ′z . We obtain this graph

property as f(P ′z) by defining a map f : Cd → Cd. To define f we introduce a distinct arrow-

graph gadget for every relation in σ (i. e. for every edge colour). The map f then replaces every

tuple in a certain relation (every coloured edge) by the respective arrow-graph gadget. We

further prove that this replacement operation defines a local reduction f from P ′z to Pgraph.

Recall that a local reduction is a function maintaining distance that can be simulated locally by

queries. Since by Lemma 3.6.3 local reductions preserve testability, we use the local reduction

from P ′z to Pgraph to obtain non-testability of the property Pgraph from the non-testability of

P ′z which easily follows from the non-testability of P z . We will now define f formally.

Let ` be the number of relations (the number of edge colours) in σ. We first introduce the

different types of arrow-graph gadgets we need to define the local reduction. For 1 ≤ k ≤ `, we

let Hk be the graph with vertex set V (Hk) := {a1, . . . , a2`+2, b1, b2} and edge set

E(Hk) := {{ai, ai+1} | 1 ≤ i ≤ 2`+ 1} ∪ {{a`+1+k, bj} | j ∈ {1, 2}}.

We call Hk a k-arrow. For any graph G and vertices v, w ∈ V (G), we say that there is a

k-arrow from v to w, denoted v
k−→ w, if there are 2` + 2 vertices v2, . . . , v2`+1, w1, w2 ∈ V (G)

and an isomorphism g : Hk → NG
1 (v2, . . . , v2`+1, w1, w2) such that g(a1) = v and g(a2`+2) = w.

We now define a second arrow gadget. For 1 ≤ k ≤ `, we let Lk be the graph with vertex

set V (Lk) := {a1, . . . , a`+1, b} and edge set E(Lk) := {{ai, ai+1} | 1 ≤ i ≤ `} ∪ {{ak, b}}.
We call Lk a k-loop. For any graph G and vertex v ∈ V (G), we say that there is a k-loop

at v, denoted v
k−→ v, if there are ` + 1 vertices v1, . . . , v`, w ∈ V (G) and an isomorphism

g : Lk → NG
1 (v1, . . . , v`, w) such that g(a`+1) = v. Finally we let H⊥ be the graph with vertex

set V (H⊥) := {a1, . . . , a`+1, b} and edge set E(H⊥) := {{ai, ai+1} | 1 ≤ i ≤ `} ∪ {{ai, b} |
i ∈ {1, 2}}. We call H⊥ a non-arrow. For any graph G and vertex v ∈ V (G), we say that

there is a non-arrow at v, denoted v 6→, if there are `+ 1 vertices v1, . . . , v`, w ∈ V (G) and an

isomorphism g : H⊥ → NG
1 (v1, . . . , v`, w) such that g(a`+1) = v.

We now define a function f : Cd → Cd by f(A) := GA, where GA is the graph on vertex set

V (GA) := A ∪ {vka,i, wa,i | 1 ≤ i ≤ d, a ∈ A, 1 ≤ k ≤ `} and edge set

E(GA) :=
{
{a, v`a,i} | a ∈ A, 1 ≤ i ≤ d

}
∪
{
{vka,i, vk+1

a,i } | 1 ≤ k ≤ `− 1, a ∈ A, 1 ≤ i ≤ d
}

∪
{
{vkb,j , wb,j}, {vkb,j , wa,i}, {v`a,i, v`b,j} | a 6= b, ans(a, i) = ans(b, j) = (k, a, b)

}
∪
{
{vka,i, wa,i} | ans(a, i) = (k, a, a)

}
∪
{
{v1
a,i, wa,i}, {v2

a,i, wa,i} | ans(a, i) = ⊥
}
,

where ans(a, i) = (k, a, b) denotes that the i-th tuple of a is (a, b) and is in the k-th relation.

Hence GA is defined in such a way that if (a, b) is a tuple in the k-th relation of σ in A, then

a
k−→ b in GA, and a has a non-arrow for every i satisfying that ans(a, i) = ⊥ for every k. For

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 131

a v`a,i v2
a,i

v1
a,i

wa,i

(a) Case ans(a, i) = ⊥

a v`a,i vka,i v1
a,i

wa,i

(b) Case ans(a, i) = (k, a, a)

a v`a,i v1
a,i

wa,i

bv1
b,j vkb,j v`b,j

wb,j

(c) Case ans(a, i) = ans(b, j) = (k, a, b)

Figure 8.4: Different types of arrows in GA.

illustration see Figure 8.4.

Now we define property Pgraph := {f(A) | A ∈ P ′z } ⊆ Cd.

Lemma 8.3.3. The map f is a local reduction from P ′z to Pgraph.

Proof. First note that for any A ∈ P ′z , we have that f(A) ∈ Pgraph by definition and hence

property (LR4) of local reductions follows. Furthermore, properties (LR1) and (LR2) are

trivially true.

Now let c := 2d + 2d2`. We prove that if A ∈ Cd is ε-far from P ′z then f(A) is ε
c -far

from Pgraph by contraposition. Therefore assume that f(A) =: GA is not ε
c -far from Pgraph

for some A ∈ Cd. Then there is a set E ⊆ {e ⊆ V (GA) | |e| = 2} of size at most εd|V (GA)|
c ,

and a graph G ∈ Pgraph such that G is obtained from GA by modifying the tuples in E. By

definition of Pgraph, there is a structure AG ∈ P ′z such that f(AG) = G. First note that

|AG| = |A|, as (1 + d`)|A| = |V (GA)| = |V (G)| = (1 + d`)|AG|. Hence there must be a set

R of tuples that need to be modified to make A isomorphic to AG. First note that R cannot

contain a tuple (a, b) where {a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤ k ≤ `} ∩ e = ∅ for every

e ∈ E. This is because if (a, b) is a tuple in A, then a
k−→ b for some k in GA. But since

{a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤ k ≤ `} ∩ e = ∅ for every e ∈ E, we have that a
k−→ b in

G. But then (a, b) must be a tuple in AG, and hence (a, b) cannot be in R. The same argument

works when assuming that (a, b) is a tuple in AG. Since for every e ∈ E, there are at most 2d

132 CHAPTER 8. COMPARING LOCALITY NOTIONS

tuples (a, b) such that {a, vka,i, wa,i, b, vkb,i, wb,i | 1 ≤ i ≤ d, 1 ≤ k ≤ `} ∩ e 6= ∅, we get that

|R| ≤ 2d2ε · |V (GA)|
c

=
2(1 + d`)εd2 · |A|

c
= εd · |A|.

Hence A is not ε-far to being in P ′z . This implies property (LR5) of local reductions.

Let t := d + 1. Let A ∈ Cd and GA := f(A). Note that any a ∈ A is adjacent in GA to

v`a,i, for every 1 ≤ i ≤ d. Hence any neighbour query in GA to a can be answered without

querying A. Assume v ∈ {vka,i, wa,i | 1 ≤ k ≤ `} for some a ∈ A and some 1 ≤ i ≤ d.

Then we can determine all neighbours of v by querying (a, i) and further if ans(a, i) 6= ⊥ and

ans(a, i) = (k, a, b), then we need to query (b, j) for every 1 ≤ j ≤ d. Hence we can determine

the answer to any query to GA by making t queries to A which implies property (LR3) of local

reductions. This proves that f is a local reduction from P ′z to Pgraph.

We remark that Pgraph is a simpler version of the simple graph property defined in Section 6.3

where extra care had to be taken to define degree-regular graphs.

8.3.3 The graph property is GSF-local

Let Pgraph be the graph property as defined in Section 8.3.2. We now show that Pgraph is

GSF-local.

Lemma 8.3.4. The graph property Pgraph is GSF-local.

Proof. For this we will prove that Pgraph is equal to a finite union of properties defined by 0-

profiles, and then use Theorem 8.2.5 to prove that Pgraph is GSF-local. We define the 0-profiles

for Pgraph in a very similar way to the relational structure case, and then use the description

of P ′z by 0-profiles shown in Lemma 8.3.2. To this end let τ1, . . . , τt be a list of all 2-types

of σ-structures of bounded degree d and τ̂1, . . . , τ̂s be a list of all (4` + 2)-types of graphs of

bounded degree d. Assume that the (4` + 2)-types τ̂1, . . . , τ̂s are ordered in such a way that

(N f(B)
4`+2(b), b) ∈ τ̂k, for every k ∈ {1, . . . ,m} and (B, b) ∈ τk, where m is the number of parts

of the partition of P z defined in Subsection 8.3.1. Recall that Pk is a part in the partition

of P z defined in Section 8.3.1 for every k ∈ {1, . . . ,m}. For k ∈ {1, . . . ,m}, let Îk be the set

of indices i such that there is A ∈ Pk, and v ∈ V (f(A)) for which (N f(A)
4`+2 (v), v) ∈ τ̂i. Let

ρ̂k : {1, . . . , s} → I0 be defined by

ρ̂k(i) :=


[0, 1] if i = k,

[0,∞) if i ∈ Îk \ {k},

[0, 0] otherwise.

Claim 1. It holds that Pgraph =
⋃

1≤k≤m Pρ̂k .

8.3. GSF-LOCALITY IS NOT SUFFICIENT FOR POT’S 133

Proof of Claim 1. First we prove Pgraph ⊆
⋃

1≤k≤m Pρ̂k . Assume G ∈ Pgraph and let A ∈ P ′z
be a structure such that G = f(A). If A = A∅ then clearly G ∈

⋃
1≤k≤m Pρ̂k . Hence assume

A 6= A∅. Then A ∈ Pk for some k ∈ {1, . . . ,m}. By the construction of Îk we know that for

every v ∈ V (G) we have (NG
4`+2(v), v) ∈ τ̂i for some i ∈ Îk. Furthermore, since A ∈ Pk there is

at most one a ∈ A with (NA2 (a), a) ∈ τk. This implies directly that there can be at most one

vertex v ∈ V (G) with (NG
4`+2(v), v) ∈ τ̂k and hence G ∈ Pρ̂.

Now we prove that
⋃

1≤k≤m Pρ̂k ⊆ Pgraph. Let G ∈
⋃

1≤k≤m Pρ̂k and let k ∈ {1, . . . ,m} be

an index such that G ∈ Pρ̂k .

First note that every model of ϕ z is d regular for some large d. Then for any A |= ϕ z ,

every vertex in f(A) has either degree less or equal to 4 or degree d . Since every structure in

P ′z apart from the empty structure A∅ is a model of ϕ z , this implies that every vertex in any

graph G′ ∈ Pgraph has degree ≤ 4 or degree d. Since for every i for which ρ̂(i) 6= [0, 0], there is

a graph G′ ∈ Pgraph and v ∈ V (G′) such that (NG′

4`+2(v), v) ∈ τ̂i, we get that every vertex in G

has to have degree less or equal to 4 or degree d. Using this argument further, we get that every

vertex v ∈ V (G) of degree less or equal 4 has to be contained in the (`+ 1)-neighbourhood of a

vertex of degree d, and that the (2` + 1)-neighbourhood of every vertex v ∈ V (G) of degree d

is the union of k-arrows, k-loops and non-arrows which are disjoint apart from their endpoints.

Hence there is a σ-structure A such that f(A) ∼= G. Let g be an isomorphism from f(A) to G.

Now we argue that A ∈ Pρk . First assume that there are two elements a, b in A with

(NA2 (a), a) ∈ τk and (NA2 (b), b) ∈ τk. By definition, we get that (N f(A)
4`+2 (a), a) ∈ τ̂k and

(N f(A)
4`+2 (b), b) ∈ τ̂k. Since g is an isomorphism, the restriction of g to N

f(A)
4`+2 (a) must be an

isomorphism from N f(A)
4`+2 (a) to NG

4`+2(g(a)), and hence (NG
4`+2(g(a)), g(a)) ∼= (N f(A)

4`+2 (a), a) ∈
τ̂k. But the same holds for the (4` + 2)-ball of g(b), and hence we contradict the assumption

that G ∈ Pρ̂k since ρ̂k(k) = [0, 1]. Let us further assume that there is an a ∈ A such that

(NA2 (a), a) ∈ τi for some i /∈ Ik. Let j be the index such that (N f(A)
4`+2 (a), a) ∈ τ̂j . Additionally

note that a must have degree d in f(A) by construction of f . As g is an isomorphism, we get

that (NG
4`+2(g(a)), g(a)) ∈ τ̂j , and g(a) has degree d. But then by construction of ρ̂k, there

must be G′ ∈ Pgraph and a vertex v ∈ V (G′) of degree d such that (NG′

4`+2(v), v) ∈ τ̂j . By

construction of Pgraph, there is a structure A ∈ P ′z such that f(A′) = G′. Since v has degree

d, it must be an element in A′. Furthermore (NA′2 (v), v) ∈ τi by choice of i and j. Hence

A′ /∈ Pρk . But this contradicts Lemma 8.3.2.

Hence we have shown that A ∈ Pρk . Then by Lemma 8.3.2 A ∈ P ′z , and by construction

G ∈ Pgraph. �

Since by Claim 1 we can express Pgraph as a finite union of properties each defined by a

0-profile, Theorem 8.2.5 implies that Pgraph is GSF-local.

134 CHAPTER 8. COMPARING LOCALITY NOTIONS

8.3.4 Putting everything together

Now we prove the main theorem of this section.

Proof of Theorem 8.0.1. Let the property P ′z of relational structures be as defined above. Note

that P ′z is not testable, as P z is not testable by Theorem 6.2.1 and P ′z only differs from P z
by the empty structure. By Lemma 8.3.3 and Lemma 3.6.3, the graph property Pgraph that

is locally reduced from P ′z is not testable. Lemma 8.3.4 shows that Pgraph is also a GSF-

local property. Hence there exists a GSF-local property of bounded degree graphs which is not

testable. Furthermore, since having a POT implies being testable (Theorem 3.4.3), this proves

that there is a GSF-local property which has no POT. By Theorem 8.1.4 this implies that not

all GSF-local properties are non-propagating.

8.4 Summary

In this chapter we have utilised the construction of an FO definable property, which is not

testable, to prove that generalised subgraph freeness properties are not in general testable.

This entails that it is not in general possible to modify a graph containing a few copies of

forbidden marked graphs without causing a chain reaction of necessary edge modifications.

This answers an open question from [76] and provides a missing piece of understanding in

the characterisation of properties which allow constant query one-sided error POT’s given in

[76]. Our result also proves that the characterisation of which monotone properties and which

hereditary properties have one-sided error constant query testers can not be extended to non-

monotone, non-hereditary properties, which was asked as an open question in [89]. We believe

that our result will aid our understanding of which properties are testable and may be useful

for the goal of characterising which properties are testable in the bounded degree model.

Chapter 9

On testability of NP-hard

problems and construction of

hard instances for property

testing

Since the seminal work of Cook [27] and Karp [92] the study of NP-hard problems plays a central

role in Computer Science. Besides identifying such problems, a great deal of research has been

conducted into developing exact efficient algorithms for NP-hard problems by restricting the

set of inputs in some way and into finding approximation algorithms for NP-hard problems. In

most known cases NP-hard problems appear to be hard in the setting of property testing as well.

Several problems which remain NP-hard on graphs of bounded degree have query complexity

Θ(n), such as 3-SAT, 3-colourability [22], Hamiltonicity [70, 129], Independent Set [70], 3-

edge-colourability, 3-dimensional matching [129]. On the other hand, there are some NP-hard

problems which are constant query testable, e. g. Hamiltonicity on bounded degree planar graphs

for which NP-hardness was shown in [67] and, as planar graphs are hyperfinite, testability follows

from the result of Newman and Sohler [112] which states that every property can be tested for

the class of hyperfinite graph of bounded degree. There is a variety of problems which remain

NP-hard on bounded degree planar graphs (see e. g. [65]) which therefore yield examples of

testable NP-hard problems.

In this chapter we study the complexity of property testing of NP-hard problems with the

aim of investigating what constitutes hardness in the context of property testing. Besides

showing lower-bounds for two NP-hard problems (i. e. dominating set and treewidth) we also

investigate hardness for property testing by providing a deterministic construction of hard-

instances for a known hard problem for property testing, i. e. Hamiltonicity. We believe that

135

136 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

this construction advances our understanding of property testing complexity.

Overview of results and techniques In this Section we show three property testing lower

bounds for three different NP-hard problems using three different techniques. We want to re-

mark here that graph property testing does not allow an input parameter. We solve this here by

considering properties were the parameter is determined by some function of n – the number of

vertices. To extend property testing in such a way as to allow an input parameter there should

be some consideration of an appropriate extension of the notion of ε-farness.

In Section 9.1 we show that testing whether a graph has a dominating set containing at

most a quarter of all vertices takes at least a linear amount of queries. We show this via a local

reduction from 3-SAT, for which a linear lower-bound on the query complexity has been shown

in [22]. Showing hardness via a local reduction has been used in this context in [22,70,129]. Fur-

thermore, the local reduction presented in this section is a slight variation of a straightforward

polynomial time reduction from 3-SAT. We adjust this reduction in such a way as to benefit

simplicity of proving that the reduction is local. To our knowledge the result presented in this

Section was not previously known. Note that for fixed parameter k, considering k-dominating

set on bounded degree graphs is of no interest as any large enough graph can not contain such

a dominating set.

In Section 9.2 we give an explicit deterministic construction of a class of graphs of bounded

degree that are locally Hamiltonian, but (globally) far from being Hamiltonian. By locally

Hamiltonian we mean that every subgraph induced by the neighbourhood of a small vertex set

appears in some Hamiltonian graph. More precisely, we obtain graphs which differ in Θ(n)

edges from any Hamiltonian graph, but non-Hamiltonicity cannot be detected in the neigh-

bourhood of o(n) vertices. Our class of graphs yields a class of hard instances for one-sided

error property testers with linear query complexity. It is known that any property tester (even

with two-sided error) requires a linear number of queries to test Hamiltonicity [70,129]. This is

proved via a randomised construction of hard instances. We hope that studying hard instances

will further our understanding of the complexity of property testing. A similar approach was

taken in [22] for 3-colourability, where graphs, which are far from being 3-colourable but locally

look 3-colourable, are implicitly obtained using a reduction from the constraint satisfaction

problem (CSP). An explicit construction of a CSP, which is far from being satisfiable but every

sublinear subset of constraints is satisfiable, is given. To our knowledge this is the only other

known deterministic construction of a similar kind.

In Section 9.3 we discuss the testability of treewidth. First observe that for fixed parameter

k, testing the property Ptw
≤k of bounded degree graphs with treewidth at most k can be done

with a constant number of queries. This is due to Ptw
≤k being minor-closed which implies

9.1. LOWER BOUND FOR TESTING DOMINATING SETWITH TWO-SIDED ERROR137

testability [18]. We show that for every sub-linear, super-constant function f ∈ o(n) ∩ ω(n) we

can not test whether a given bounded degree graph G on n vertices has treewidth at most f(n).

Hence we can for example not test the property of all graphs whose treewidth is logarithmic in

the number of vertices of the graph. We use a theorem of Grohe and Marx [80] that shows that

expanders have linear treewidth and conclude non-testability by using a similar argument as in

the proof of Theorem 6.2.1. We argue that any graph with linear treewidth is far from having

treewidth f(n) and combine the theorem by Alon introduced in Section 5.2 [102, Proposition

19.10] and the theorem by Adler and Harwath introduced in Section 5.1 [2, Theorem 19] to

prove non-testability.

9.1 Lower bound for testing dominating set with two-

sided error

In this section we prove that testing dominating set size takes at least a linear amount of

queries. We first briefly introduce the dominating set problem. Let G be a graph. For any

subset D ⊆ V (G) and any vertex v ∈ V (G) we say that D dominates v if v ∈ D or there is

w ∈ D such that {v, w} ∈ E(G). A subset D ⊆ V (G) is called a dominating set of G if D

dominates every vertex v ∈ V (G). The minimum size of a dominating set of G is called the

domination number of G. Let d ∈ N and PDS
d ⊆ Cd be the property of all graphs G of bounded

degree d with domination number no more than |V (G)|
4 .

We show that PDS
d is hard to test for degree d = 5 using a local reduction from 3-SAT. The

reduction we use is similar to a straightforward approach of reducing 3-SAT to dominating set.

We will first introduce the model for testing 3-SAT and then we will give the reduction.

9.1.1 Property testing model for bounded degree 3-SAT

We use the model for testing whether a 3-CNF formula is satisfiable or not as in [22].

Here we consider propositional formulas i. e. quantifier-free formulas over the language σ

consisting of one unary relation T . We denote the set of variables of a propositional formula

ϕ by Var(ϕ). We say that a propositional formula ϕ is satisfiable if there is an assignment

α : Var(ϕ) → {0, 1} of the variables of ϕ such that the σ-structure A = ({0, 1}, TA), where

TA = {(1)}, satisfies ϕ under the assignment α. We remind the reader that a propositional

formula ϕ over the set of variables Var(ϕ) is in 3-CNF if it has the form

ϕ =

m∧
i=1

(
`1i ∨ `2i ∨ `3i

)
,

where `ji ∈ {x,¬x | x ∈ Var(ϕ)} for i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}. We call `ji a literal and

`1i ∨ `2i ∨ `3i a clause of the CNF. Note that we can assume that every clause has precisely three

138 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

literals, as ` ≡ ` ∨ ` for any literal `. Additionally we assume that all clauses are pairwise

distinct.

Let d ∈ N. We say that a 3-CNF formula has bounded degree d if every variable is contained

in at most d clauses, where variable x is contained in a clause if either x or ¬x is a literal of the

clause. Note that deciding satisfiability of a bounded degree 3-CNF remains NP-hard for degree

bound 3 as we can rename each appearance of a variable x by a different auxiliary variable and

then force all auxiliary variables to have to be assigned the same value. Let CNFd be the set

of all 3-CNFs of bounded degree d and let PdSAT ⊆ CNFd be the set of all satisfiable 3-CNFs of

bounded degree d.

We encode a 3-CNF ϕ as a membership list Mϕ which contains for each variable x ∈ Var(ϕ)

and each 1 ≤ j ≤ d the j-th clause x is contained in or ⊥ if x is contained in fewer than j

clauses. Furthermore a property tester is given n = |Var(ϕ)| as auxiliary information and we

allow queries from Qϕ := [n]× [d] and the property tester obtains the following answer

ansϕ(i, j) :=

`1k ∨ `2k ∨ `3k if `1k ∨ `2k ∨ `3k is the j-th clause of xi,

⊥ if xi is contained in less than j clauses.

Distance in this model is defined in terms of clause addition or removal. This leads to the

following definition.

Definition 9.1.1 (Distance to satisfiability). We say that a 3-CNF ϕ of bounded degree d with

|Var(ϕ)| = n is ε-far from being satisfiable if any formula obtained from ϕ by removing any

subset of at most εdn
3 clauses is not satisfiable.

We use the following hardness result for property testing PdSAT.

Lemma 9.1.2 (Lemma 20 in [22]). For every ε ∈ (0, 1
8) there are constants d ∈ N, c > 0

such that every algorithm that distinguishes satisfiable instances of CNFd with n variables from

instances that are ε-far from satisfiable must have query complexity at least cn.

9.1.2 Local reduction from 3-SAT to dominating set

In this section we show the following theorem using a local reduction from 3-SAT.

Theorem 9.1.3. The property PDS
d is not testable with o(n) queries on the class Cd for d ≥ 5.

Proof. We prove this theorem by defining a local reduction from Pd′SAT to PDS
d , where d′ is the

degree bound from Lemma 9.1.2. The theorem then follows from Lemma 9.1.2 and Lemma 3.6.3.

We define f : CNFd′ → Cd as follows. For a CNF ϕ =
∧m
i=1

(
`1i ∨ `2i ∨ `3i

)
∈ CNFd′ with

9.1. LOWER BOUND FOR TESTING DOMINATING SETWITH TWO-SIDED ERROR139

x̃1x3d

x̃3

x2

¬x2

x̃2

x1

¬x1

xc2

xc1

V
ar

ia
b
le
x ansϕ(x,2)=

¬x∨y∨z

ỹ3

y2¬y2
ỹ2

y1

¬y1

ỹ1

y3d

yc1

yc2

Variable
y

ansϕ(y,1)=
¬x∨y∨z

z3d

z̃1

¬z1
z1

z̃2

¬z2

z2

z̃3

zc1

zc2

Variable z

ansϕ(z,1)=
¬x∨y∨z

Figure 9.1: Illustration of the dominating set reduction.

|Var(ϕ)| = n we let f(ϕ) = Gϕ, where

V (Gϕ) :=
{
xi,¬xi, x̃i, xci

∣∣∣ x ∈ Var(ϕ), i ∈ {1, . . . , d′}
}

and

E(Gϕ) :=
{
{x̃i,¬xi}, {¬xi, xi}, {xi, x̃j}

∣∣∣ i ∈ {1, . . . , d′}, j = i+ 1 if i < 3d′, j = 1 otherwise
}

∪
{
{`i, ycj}

∣∣∣ ` ∈ {x,¬x}, i, j ∈ {1, . . . , d′}, ansϕ(x, i) = ansϕ(y, j)
}

∪
{
{xi, yci }, {¬xi, yci }

∣∣∣ i ∈ {1, . . . , d′}, ansϕ(x, i) = ⊥
}
.

Hence Gϕ consists of a cycle of length 3d′ and d′ extra vertices, which we refer to as clause

vertices, for every variable. Clauses get encoded into edges between cycle and clause vertices.

For illustration see Figure 9.1. Note that a 3-CNF on n variables gets mapped to a graph on

4d′n vertices which implies property (LR1). This also implies we can compute the auxiliary

information for graph Gϕ from the auxiliary information for ϕ showing property (LR2).

140 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

In order to prove that f defines a local reduction we need to prove that f can be computed

locally (LR3), that if ϕ is satisfiable then Gϕ has a dominating set of size at most
|V (Gϕ)|

4 (LR4)

and that there is a function h : (0, 1) → (0, 1) such that if ϕ is ε-far from satisfiable, then Gϕ

is h(ε)-far from PDS
d (LR5).

In order to prove (LR3), we first define a sequence of functions which, given a query (v, j) to

Gϕ, determine adaptively the appropriate sequence of queries to ϕ needed to answer query (v, j).

By construction of Gϕ we can determine all neighbours of any vertex in v ∈ {xi,¬xi, x̃i, xci}
by knowing that ansϕ(x, i) = `1 ∨ `2 ∨ `3 and knowing for every other variable y contained in

`1 ∨ `2 ∨ `3 for which j ∈ {1, . . . , d′} we have that ansϕ(x, i) = ansϕ(y, j). Hence the sequence

of queries required to answer (v, i) for v ∈ {xi,¬xi, x̃i, xci} is to first query (x, i) and then query

(y, j) for every variable y contained in ansϕ(x, i) and every j ∈ {1, . . . , d′}. On the other hand

we can now define a function which, given a query (v, i) to Gϕ and given this sequence of queries

and their respective answers, provides the answer to query (v, i). Since the number of queries

to ϕ needed to answer a query to Gϕ is 2d′ + 1 which is independent of n we get that (LR3)

holds.

To prove (LR4) we assume that ϕ is satisfiable and that α : Var(ϕ)→ {0, 1} is a satisfying

assignment of the variables of ϕ. Now we define set D ⊆ V (Gϕ) as follows. Let

D :=
{
xi

∣∣∣ i ∈ {1, . . . , d′}, α(x) = 1
}
∪
{
¬xi

∣∣∣ i ∈ {1, . . . , d′}, α(x) = 0
}
.

As Gϕ has 4d′n vertices and D contains d′ vertices for each of the n variables of ϕ we get

that |D| =
|V (Gϕ)|

4 . We now argue that D is a dominating set of Gϕ. Since for each of

the cycles of Gϕ the set D contains every third vertex of the cycle, clearly every vertex on

any of the cycles is dominated by D. Now let x be any variable of ϕ and 1 ≤ i ≤ d′. If

ans(x, i) = `1 ∨ `2 ∨ `3 then there must be one literal ` ∈ {`1, `2, `3} such that ` evaluates to

true under the assignment α. Assume ` ∈ {y,¬y} for some variable y and let 1 ≤ j ≤ d′ be

the index such that ansϕ(y, j) = ansϕ(x, i). Since ` evaluates to true under the assignment

α we get that `j ∈ D by construction of D. Since additionally {`j , xci} ∈ E(Gϕ) the vertex

xci is dominated by D. On the other hand if ans(x, i) = ⊥ then xci is dominated by D as

{xi, xci}, {¬xi, xci} ∈ E(Gϕ) and either xi or ¬xi is in D. Therefore all clause vertices are

dominated by D and D is a dominating set of Gϕ.

To prove (LR5) let ε′ := g(ε) := ε
12(d′)2 . We argue by contraposition. Therefore assume Gϕ

is ε′-close to having a dominating set containing no more than 1
4 of the vertices. Hence there is a

set E′ ⊆ {e ⊆ V (Gϕ) | |e| = 2} with |E′| ≤ ε′d|V (Gϕ)| such that the graph (V (Gϕ), E(Gϕ) E′)

has a dominating set D with |D| ≤ |V (Gϕ)|
4 . Let B be the set of all variables x ∈ Var(ϕ) which

satisfy the following two conditions

1. {xi,¬xi, x̃i, xci | 1 ≤ i ≤ d′} ∩ e 6= ∅ for some e ∈ E′,

2. |{xi,¬xi, x̃i, xci | 1 ≤ i ≤ d′} ∩D| 6= d′.

As |E′| ≤ ε′d|V (Gϕ)| there can be at most 2ε′d|V (Gϕ)| variables with the first property. Fur-

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 141

thermore, since the minimum size of a dominating set of any cycle with 3d′ vertices is d′, any

edge in E′ can produce at most one variable for which the first condition does not hold and the

second condition holds. Hence in total |B| ≤ 3ε′d′|V (Gϕ)|. Now let ϕ′ be the formula obtained

from ϕ by removing every clause containing at least one variable from B. Now we define the

following assignment α : Var(ϕ)→ {0, 1} by

α(x) :=


0 if x ∈ B,

1 if x /∈ B and x1 ∈ D,

0 if x /∈ B and x1 /∈ D.

Now assume that `1 ∨ `2 ∨ `3 is any clause in ϕ′ and assume that ansϕ(x, i) = ansϕ(y, j) =

ansϕ(z, k) = `1 ∨ `2 ∨ `3. Hence x, y and z are not contained in B by construction of ϕ′ and

therefore {xi,¬xi, x̃i, xci | 1 ≤ i ≤ d′} ∩D must be either {xi | 1 ≤ i ≤ d′} or {¬xi | 1 ≤ i ≤ d′}
or {x̃i | 1 ≤ i ≤ d′}. Since D therefore cannot contain xci and D is a dominating set the

intersection of the set of neighbours of xci with D must be not empty, i. e. {`1i , `2j , `3k} ∩D 6= ∅.
Assume without loss of generality that `1i ∈ D. Then if `1 = x then xi ∈ D which implies

that x1 ∈ D and hence α satisfies `1 ∨ `2 ∨ `3. On the other hand if `1 = ¬x then ¬xi ∈ D
which implies that x1 can not be in D and hence α satisfies `1 ∨ `2 ∨ `3. Therefore α satisfies

every clause of ϕ′ and hence ϕ′ is satisfiable. As we obtained ϕ′ by removing no more than

d′|B| ≤ 12(d′)2ε′d′n clauses from ϕ we get that ϕ is ε-close to being satisfiable.

9.2 Lower bound for testing Hamiltonicity with one-sided

error and an explicit construction of hard instances

In this section we study graphs that are far from being Hamiltonian, with the aim of finding

hard instances for property testing Hamiltonicity in the bounded degree model. Here we call

a graph G Hamiltonian if G has a Hamiltonian cycle, i. e. a cycle which contains every vertex

of G. For fixed d ∈ N the property Hamiltonicity on Cd contains all Hamiltonian graphs of

bounded degree d.

First note that it is easy to find graphs that are far from being Hamiltonian. For example,

let G be a caterpillar graph on n = 2k vertices as shown in Figure 9.2 for k = 10 (i. e. G is a

path of length k where every vertex has a pendant edge). With a degree bound of at most 3,

G is 1
13 -far from being Hamiltonian, because n

4 edges need to be added to make G 2-connected.

As another example, consider the graph H consisting of k 4-cycles (C4’s) arranged in a cycle

as shown in Figure 9.2 for k = 9. Assume k > 1. The graph H has n = 4k vertices and, with

a degree bound of 3, H is 1
25 -far from being Hamiltonian. This is because any Hamiltonian

cycle in a graph has to traverse both edges incident to any vertex of degree 2. Hence in H a

Hamiltonian cycle would have to traverse all four edges of every C4. To avoid this we have to

increase the degree of at least one of the degree 2 vertices for every C4 and hence we have to

142 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

(a) Caterpillar (b) C4’s arranged in a cycle.

Figure 9.2: Example graphs which are far from being Hamiltonian but are not locally Hamil-
tonian

add at least n
8 edges to make H Hamiltonian.

In both examples it is possible to see locally, in the neighbourhood of a constant number of

vertices, that the graphs are not Hamiltonian. We ask whether there exist graphs that locally

look as if they might be Hamiltonian, but globally they are far from being Hamiltonian, and

we give a positive answer to this. More precisely, we construct a sequence of graphs (GN)N∈N

of increasing order such that there are constants ε, δ ∈ (0, 1) for which every GN is ε-far from

being Hamiltonian but the 1-neighbourhood of any δ-fraction of vertices of GN appears in some

Hamiltonian graph. Hence non-Hamiltonicity can not be observed locally, even looking at a

large portion of GN . We call this notion local Hamiltonicity and define it formally below.

The existence of the sequence (GN)N∈N has implications in property testing. We can show

the known linear lower bound for property testing Hamiltonicity in the case of one-sided error

testers for which our constructed sequence (GN)N∈N yields a sequence of hard instances.

Definition 9.2.1 (Locally Hamiltonian). Let C be a class of graphs and let δ ∈ (0, 1]. A graph

G ∈ C is called δ-locally Hamiltonian on C if for every set S ⊆ V (G) of at most δ ·|V (G)| vertices

there is a Hamiltonian graph H := HS ∈ C with |V (H)| = |V (G)|, a subset T := TS ⊆ V (H)

and an isomorphism from G[NG
1 (S)] to H[NH

1 (T)] which maps S onto T .

Note that by relaxing |V (G)| = |V (H)| to |V (H)| > δ|V (G)| we get an equivalent definition

in the sense that the same graphs are δ-locally Hamiltonian.

Remark 9.2.2. Let C be a graph class. Every Hamiltonian graph in C is δ-locally Hamiltonian

for every δ ∈ (0, 1]. And every graph G ∈ C is 1-locally Hamiltonian iff G is Hamiltonian.

Let d ≥ 2. A graph on n vertices is 1
n -locally Hamiltonian on Cd iff the minimum degree of

G is greater than 1.

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 143

v1 v2 v3 . . . v31

Figure 9.3: Illustration of P (v1, . . . , v31).

u1

u3

u5

u8 u9

u12

u14
w1

w2

w3 w4

w5

w6

v31

v29

v24v23

v18

Figure 9.4: A link from P (u1, . . . , u31) to P (v1, . . . , v31) via w1, . . . , w6.

9.2.1 Construction

In this section we introduce the main step of our construction of graphs which are locally

Hamiltonian and far from being Hamiltonian. At a high level, we construct a graph GE by

choosing a d-regular base graph E and building GE by introducing a path-gadget for every edge

of E , connecting these path-gadgets into a large cycle and linking path gadgets together if the

edges of E corresponding to the path gadgets are incident to the same vertex. We give the

precise construction in the following.

First we create a gadget (see Figure 9.3 for illustration). Let {v1, . . . , v31} be a set of vertices.

Then we let P (v1, . . . , v31) be the graph with vertex set {v1, . . . , v31} and edge set

{
{vi, vi+1}, {vj , vj+3}, {vk, vk+5} | i ∈ {1, . . . , 30}, j ∈ {2, 30}, k ∈ {6, 12, 15, 21}

}
.

For a graph G for which {u1, . . . , u31, v1, . . . , v31, w1, . . . , w6} ⊆ V (G) and it holds that

G[u1, . . . , u31] = P (u1, . . . , u31) and G[v1, . . . , v31] = P (v1, . . . , v31) we say that G contains

a link from P (u1, . . . , u31) to P (v1, . . . , v31) via w1, . . . , w6 (see Figure 9.4 for illustration), if

E(G) contains{
{u3, v23}, {v18, u8}, {u9, v29}, {v24, u14},{u5, w1}, {w1, w2}, {w2, w3}, {w3, v23},

{v24, w4}, {w4, w5}, {w5, w6}, {w6, u12}
}
.

Finally to any graph G we associate a directed graph ~G which is the graph that is obtained

from G by replacing every edge {u, v} ∈ E(G) by the two directed edges (u, v) and (v, u). We

can now define the graph construction.

144 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

Definition 9.2.3. Let E be a d-regular graph (the base graph) and f : E(~E)→ {1, . . . , |E(~E)|}
be any linear order on E(~E). We define the graph GE as follows.

V (GE) := {ae1, . . . , ae31 | e ∈ E(~E)} ∪ {bv1, . . . , bv6 | v ∈ V (~E)}.

E(GE) consists of the minimum set of edges such that

– GE [a
e
1, . . . , a

e
31] = P (ae1, . . . , a

e
31) for every e ∈ E(~E),

– a
f−1(i)
31 is adjacent to a

f−1(j)
1 for every i ∈ [|E(~E)|], j := 1 if i = |E(~E)| and j := i + 1

otherwise and

– GE contains a link from P (a
(v,w)
1 , . . . , a

(v,w)
31) to P (a

(u,v)
1 , . . . , a

(u,v)
31) via bv1, . . . , b

v
6 for every

triple of vertices u, v, w ∈ V (~E) with (u, v), (v, w) ∈ E(~E).

See Figure 9.5 for an illustration. Note that the construction of GE depends on f as well as

E , but since the properties of GE are independent of which linear order f we use, we omit the

dependency on f .

Remark 9.2.4. If E is d-regular, for d ≥ 1, and |V (E)| = n, then the degree of GE is at most

d+ 3 and |V (GE)| = (6 + 31d)n.

Note 9.2.5. GE contains a large cycle of length 31dn, i. e., the cycle

(. , a
f−1(i−1)
31 , a

f−1(i)
1 , a

f−1(i)
2 , . . . , a

f−1(i)
31 , a

f−1(i+1)
1 ,).

However GE also contains 6n vertices which are not part of this cycle.

9.2.2 The construction is far from being Hamiltonian

In this section we prove the following.

Theorem 9.2.6. For every d ∈ N>1 there is ε = ε(d) ∈ (0, 1) such that for any d-regular graph

E the graph GE constructed in Definition 9.2.3 is ε-far from being Hamiltonian.

For technical reasons we use this slightly unusual definition of a subpath of a cycle in which

it does not matter whether the subpath appears in the cycle or the reversed cycle. Let G be an

undirected graph. A path (s0, . . . , sk) in G is a subpath of a cycle (c0, . . . , c`) in G if there is an

index 0 ≤ i ≤ ` such that (s0, . . . , sk) is either a subpath of the path (ci, . . . , c`, c1, . . . , ci−1) or

of the path (ci−1, . . . , c1, c`, . . . , ci). Here a subpath of a path is defined in the usual way (see

Section 2).

To prove Theorem 9.2.6 we require the two technical Lemmas below (Lemma 9.2.8 and

Lemma 9.2.9). They will be applied to graphs G obtained from GE by modifying a small frac-

tion of the edges of GE . Therefore they are stated for graphs G which share certain induced

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 145

a
(v,w)
1 a

(v,w)
6 a

(v,w)
12 a

(v,w)
21 a

(v,w)
27

a
(u,v)
20 a

(u,v)
26 a

(w,x)
5 a

(w,x)
11

bv2 bv5 bw2 bw5

Figure 9.5: Close-up of GE with vertices of high degree (d + 1, d + 2 or d + 3) indicated by
‘fans’.

subgraphs with GE . The first of the two Lemmas (Lemma 9.2.8) states that if G has a Hamil-

tonian cycle and a certain induced subgraph, which also appears in GE , then the Hamiltonian

cycle has certain subpaths. The proof of Lemma 9.2.8 is illustrated in Figure 9.5. We will use

the following easy observation in the proof of Lemma 9.2.8.

Remark 9.2.7. Let G be a graph, u ∈ V (G) a vertex of degree 2 and v, w the two neighbours

of u. Then any cycle C containing the vertices u, v and w must contain (v, u, w) as a subpath.

Lemma 9.2.8. Let E be any d-regular graph and GE as defined in Definition 9.2.3. Pick

v ∈ V (~E) and let Sv := {aei | e ∈ E(~E), e is incident to v} ∪ {bv1, . . . , bv6}. Let G be a graph with

Sv ⊆ V (G). Assume GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] and f : Sv → Sv defined by f(v) = v for

v ∈ Sv is an isomorphism from GE [Sv] to G[Sv]. Then for every Hamiltonian cycle C in G and

every edge e ∈ V (~E) incident to v the following properties hold.

1. Either (ae1, . . . , a
e
5) or (ae1, a

e
2, a

e
5, a

e
4, a

e
3) is a subpath of C.

2. Either (ae27, . . . , a
e
31) or (ae29, a

e
28, a

e
27, a

e
30, a

e
31) is a subpath of C.

3. Either (ae12, . . . , a
e
20) or (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15, a

e
20, a

e
19, a

e
18) is a subpath of C.

4. If e ∈ E+
G(v) then either (ae6, . . . , a

e
11) or (ae8, a

e
7, a

e
6, a

e
11, a

e
10, a

e
9) is a subpath of C.

5. If e ∈ E−G(v) then either (ae21, . . . , a
e
36) or (ae23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24) is a subpath of C.

Proof. To prove (1) let us observe that ae1 and ae4 have degree 2 in G, as GE [N
GE
1 (Sv)] ∼=

G[NG
1 (Sv)] and ae1 and ae4 have degree 2 in GE . Hence (ae1, a

e
2) and (ae3, a

e
4, a

e
5) have to be

subpaths of C as in Remark 9.2.7. Since ae2 has exactly three neighbours ae1, a
e
3 and ae5 in GE and

GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] we get that either (ae1, . . . , a
e
5) is a subpath of C or (ae1, a

e
2, a

e
5, a

e
4, a

e
3)

is a subpath of C. Property (2) follows with a similar argumentation.

For (3) let us assume that neither (ae12, . . . , a
e
17) nor (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15) appear in

C as a subpath. Since both ae13 and ae16 have degree 2 in G, we know that (ae12, a
e
13, a

e
14) and

(ae15, a
e
16, a

e
17) are subpaths of C. Hence neither (ae14, a

e
15) nor (ae12, a

e
17) are subpaths of C.

Since both ae15 and ae17 have degree 3 in G, this implies that (ae20, a
e
15, a

e
16, a

e
17, a

e
18) is a subpath

146 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

of C. Since ae19 has degree 2, then (ae20, a
e
15, a

e
16, a

e
17, a

e
18, a

e
19, a

e
20) has to be a subpath of C.

Since this is a cycle, C must be equal to (ae20, a
e
15, a

e
16, a

e
17, a

e
18, a

e
19, a

e
20) which contradicts the

assumption that Sv is contained in C. A symmetric argument shows that either (ae15, . . . , a
e
20)

or (ae17, a
e
16, a

e
15, a

e
20, a

e
19, a

e
18) has to be a subpath of C, proving (3).

We will prove (4) and (5) simultaneously using a counting argument. Let us first ob-

serve that for every edge e ∈ E(~E) incident to v we know that (ae6, a
e
7, a

e
8), (ae9, a

e
10, a

e
11),

(ae21, a
e
22, a

e
23) and (ae24, a

e
25, a

e
26) are subpaths of C, because ae7, ae10, ae22 and ae25 have de-

gree 2 in G. Let S be the set of all maximal subpaths of C which only contain vertices from

{ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)}. Since there are no edges of the form {aei , aẽj}

for i, j ∈ {6, . . . , 11, 21, . . . , 26}, e 6= ẽ ∈ E(~E), every subpath in S is either of length 3 or length

6. For every path P = (p1, . . . , p`) ∈ S, we define the vertices uP , wP to be the neighbours

of P on C, i.e. (uP , p1, . . . , p`, wP) is a subpath of C. Since GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] and

every path P ∈ S is maximal, we know that uP , wP ∈ {ae18, a
e
20, a

e
27, a

e
29, a

ẽ
3, a

ẽ
5, a

ẽ
12, a

ẽ
14 | e ∈

E−~E (v), ẽ ∈ E+
~E

(v)} ∪ {bv3, bv4}. Properties (1),(3) imply that for every edge e ∈ E−~E (v), only

one of the two vertices ae18, a
e
20 and only one of the two vertices ae27, a

e
29 can be in the set

{uP , wP | P ∈ S}. Similarly, (2),(3) imply that for every edge e ∈ E+
~E

(v) only one of the two

vertices ae3, a
e
5 and only one of the two vertices ae12, a

e
14 can be in the set {uP , wP | P ∈ S}.

Furthermore there are two not necessarily distinct edges e, ẽ ∈ E+
~E

(v) such that (ae1, . . . , a
e
5, b

v
1)

and (bv6, a
ẽ
12, . . . , a

ẽ
20) are subpaths of C and hence the vertices ae3, a

e
5, a

ẽ
12, a

ẽ
14 cannot be in

{uP , wP | P ∈ S}. Hence |{uP , wP | P ∈ S}| ≤ 2|E+
~E

(v)| − 2 + 2|E−~E (v)|+ 2 = 4d. In addition,

note that (1), (2), (3) and degG(bv2) = 2 and degG(bv5) = 2 imply that no maximal subpath of C

only containing vertices in Sv \ {ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)} has length at

most 1 and hence |{uP , wP | P ∈ S}| = 2|S|. Therefore |S| ≤ 2d. If any path in S has length

3 then |S| > 2d, since |{ae21, . . . , a
e
26, a

ẽ
6, . . . , a

ẽ
11 | e ∈ E−~E (v), e′ ∈ E+

~E
(v)}| = 12d. This yields a

contradiction and hence (4) and (5) are true.

Let G be a graph with aei , . . . , a
e
j ∈ V (G) for some edge e ∈ E(~E) and 1 ≤ i ≤ j ≤ 31.

Assume C is a cycle in G which contains aei , . . . , a
e
j . We say that C traverses the vertices

aei , . . . , a
e
j in order if (aei . . . , a

e
j) is a subpath of C and we say that C traverses aei , . . . , a

e
j out

of order otherwise. Note that for certain 1 ≤ i ≤ j ≤ 31 and e ∈ E(~E) there is only one way in

which a cycle C can traverse aei , . . . , a
e
j out of order (as specified in Lemma 9.2.8).

The next lemma shows that for every vertex v ∈ V (~E) and every Hamiltonian cycle C in

GE the number of edges e ∈ E−~E (v) for which C traverses ae12, . . . , a
e
20 out of order is exactly

one larger than the number of edges ẽ ∈ E+
~E

(v) for which C traverses aẽ12, . . . , a
ẽ
20 out of order.

This still holds for every graph G which contains a certain induced subgraph of GE .

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 147

Lemma 9.2.9. Let E be any d-regular graph and GE as defined in Definition 9.2.3. Let Sv :=

{aei | e ∈ E(~E), e is incident to v} ∪ {bv1, . . . , bv6} for some v ∈ V (~E). Let G be a graph with

Sv ⊆ V (G). Assume GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] and f : Sv → Sv defined by f(v) = v for

v ∈ Sv is an isomorphism from GE [Sv] to G[Sv]. Then for every Hamiltonian cycle C in G the

cardinalities of the two sets

T in
v,C :=

{
e ∈ E−~E (v) | (ae12, a

e
17) is a subpath of C

}
and (9.1)

T out
v,C :=

{
e ∈ E+

~E
(v) | (ae12, a

e
17) or (ae12, b

v
6) is a subpath of C

}
(9.2)

are equal.

Proof. Note that the condition GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] implies that no vertex in the set

{ae15, . . . , a
e
30, a

ẽ
2, . . . , a

ẽ
17 | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)} ∪ {bv1, . . . , bv6} has neighbours in G \ Sv. This

will implicitly be used in the following argument whenever we exhaustively consider neighbours

of vertices in G as successors on C.

Let us first define a map Fv,C : T in
v,C → T out

v,C , given by Fv,C(e) := ẽ, where ẽ ∈ T out
v,C is the

edge such that (ae18, a
ẽ
8) is a subpath of C. We first have to argue that Fv,C is well defined.

By Lemma 9.2.8 (3), e ∈ T in
v,C implies that (ae14, a

e
13, a

e
12, a

e
17, a

e
16, a

e
15, a

e
20, a

e
19, a

e
18) is a sub-

path of C. Since the two neighbours ae17 and ae19 of ae18 are already part of this subpath this

implies that (ae18, a
ẽ
8) has to be a subpath of C for some edge ẽ ∈ E+

~E
(v). This implies that

(aẽ6, . . . , a
ẽ
11) cannot be a subpath of C and hence, by Lemma 9.2.8 (4), (aẽ8, a

ẽ
7, a

ẽ
6, a

ẽ
11, a

ẽ
10, a

ẽ
9)

has to be a subpath of C. This further implies that (aẽ11, a
ẽ
12) cannot be a subpath of C. If

(aẽ12, . . . , a
ẽ
20) is a subpath of C then (aẽ12, b

v
6) has to be a subpath of C by excluding all possible

other neighbours of aẽ12. On the other hand, if (aẽ12, . . . , a
ẽ
20) is not a subpath of C then, by

Lemma 9.2.8 (3), (aẽ14, a
ẽ
13, a

ẽ
12, a

ẽ
17, a

ẽ
16, a

ẽ
15, a

ẽ
20, a

ẽ
19, a

ẽ
18) is a subpath of C and hence (aẽ12, a

ẽ
17)

is a subpath of C. Therefore ẽ ∈ T out
v,C . This shows that Fv,C is well defined.

Furthermore Fv,C is injective since if (ae18, a
ẽ
8) and (ae18, a

e′

8) are subpaths of C then ẽ = e′

because (ae19, a
e
18) is also a subpath of C. Fv,C is surjective as for ẽ ∈ T out

v,C both (aẽ12, a
ẽ
17) or

(aẽ12, b
v
6) being a subpath of C together with Lemma 9.2.8 (3) implies that (aẽ12, a

ẽ
11) cannot

be a subpath of C. This further implies that (aẽ8, a
ẽ
7, a

ẽ
6, a

ẽ
11, a

ẽ
10, a

ẽ
9) is a subpath of C by

Lemma 9.2.8 (4) and hence there is an edge e ∈ E−~E (v) such that (ae18, a
ẽ
8) is a subpath of C.

Then with the same argument as before (ae12, a
e
17) is a subpath of C and hence e ∈ T in

v,C and

Fv,C(e) = ẽ. Therefore Fv,C is bijective which implies the statement of the lemma.

As a direct consequence from Lemma 9.2.9 we get that GE cannot be Hamilonian for any

base graph E . That is true because if there is a Hamiltonian cycle C in GE then by Lemma 9.2.9

the equation
∑
v∈V (~E) |T

in
v,C | =

∑
v∈V (~E) |T

out
v,C | must hold. But since every edge in T in

v,C is also

contained in T out
v,C and T out

v,C must contain some edges (all the edges (v, w) for which (a
(v,w)
12 , bv6)

is a subpath of C) that are not contained in T in
v,C , the equation cannot hold and hence GE

cannot be Hamiltonian. This argument works similarly if a small number of edges in GE have

148 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

been altered and the equality from Lemma 9.2.9 still has to hold for many vertices. This will

be our proof strategy for Theorem 9.2.6.

Proof of Theorem 9.2.6. Let ε := 1
(8(d+3)2(6+31d)) . Assume E is d-regular and n := |V (E)|. Let

n′ := V (GE) = (6 + 31d)n and d′ := d+ 3 the degree of GE .

Towards a contradiction let us assume that GE is not ε-far to being Hamiltonian and let E

be a set of edges such that |E| ≤ εd′n′ and the graph G := (V (GE), E(GE) E) is Hamiltonian.

Let B ⊆ V (~E) be the set of vertices defined by

B :={v ∈ V (~E) | there is e ∈ E, i ∈ {1, . . . , 31}, ẽ ∈ E−G(v) ∪ E+
G(v) such that aẽi ∈ e}

∪{v ∈ V (~E) | there is e ∈ E, i ∈ {1, . . . , 6} such that bvi ∈ e}.

Note that |B| ≤ 4 · εd′n′, because every edge e ∈ E contributes at most 4 vertices to B, and

hence |V (~E) \B| ≥ n− 4εd′n′ > n
2 .

Let C be a Hamiltonian cycle in G. Then for every vertex v ∈ V (~E) \ B we have that

Sv ⊆ V (G), GE [N
GE
1 (Sv)] ∼= G[NG

1 (Sv)] and f : Sv → Sv defined by f(v) = v for v ∈ Sv is an

isomorphism from GE [Sv] to G[Sv] where Sv := {aei | e ∈ E(~E), e is incident to v}∪{bv1, . . . , bv6}.
Since C is Hamiltonian, C contains all vertices in Sv for every v ∈ V (~E) \B (amongst others).

Hence by Lemma 9.2.9 we have |T in
v,C | = |T out

v,C | for every v ∈ V (~E) \B where T in
v,C and T out

v,C are

as defined in Equation 9.1 and Equation 9.2. Therefore∑
v∈V (~E)\B

|T in
v,C | =

∑
v∈V (~E)\B

|T out
v,C |. (9.3)

As bv6 has precisely one neighbour in G for every v ∈ V (~E) \ B, which is not of the form ae12

for some e ∈ E+
G(v) and this neighbour has degree 2 in G, we know that for precisely one edge

e ∈ E+
G(v) the sequence (bv6, a

e
12) is a subpath of C. Hence∑

v∈V (~E)\B

∣∣∣{e ∈ E+
G(v) | (ae12, b

v
6) is a subpath of C

}∣∣∣ =
∣∣E(~E) \B

∣∣ > n

2
. (9.4)

Since every edge (u, v) ∈ E(~E) such that u, v ∈ V (~E) \ B contributes 1 to both sides of Equa-

tion 9.3, Equation 9.3 and Equation 9.4 imply that∑
v∈V (~E)\B

∣∣∣{(u, v) ∈ E(~E) | u ∈ B, (a(u,v)
12 , a

(u,v)
17) is a subpath of C

}∣∣∣ > n

2
.

But this is a contradiction as the number of edges (u, v) ∈ E(~E) for which u ∈ B is bounded

from above by d′|B| ≤ n
2 .

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 149

9.2.3 Ensuring local Hamiltonicity

In this Section we prove the following Theorem.

Theorem 9.2.10. For any d-regular graph E with expansion ratio h(E) ≥ 1 the graph GE

constructed in Definition 9.2.3 is δ-locally Hamiltonian for some constant δ = δ(d) ∈ (0, 1].

Our proof strategy for Theorem 9.2.10 is to add edges to GE which are incident to at most

one vertex in NGE
1 (S) to obtain a graph H which is Hamiltonian, for any given S ⊆ V (GE) of

size at most δ|V (G)|. We prove the Hamiltonicity of H by dividing the vertex set of H into

pairwise disjoint small sets. For each of these sets we obtain a set of vertex disjoint paths which

cover the entire small set and start and end in prescribed vertices. To conclude the proof of the

Hamiltonicity of H we find a Hamiltonian cycle by patching together these paths. The next

Lemma will be used to show the existence of such paths for all those subsets of vertices of H

which contain a vertex from S.

Lemma 9.2.11. Let E be any d-regular graph and GE as defined in Definition 9.2.3. Let

v ∈ V (~E) and Sv := {ae18, . . . , a
e
31, a

ẽ
1, . . . , a

ẽ
17 | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)} ∪ {bv1, . . . , bv6}. Let G

be a graph such that GE [Sv] is a subgraph of G. Then for any two sets T in
v ⊆ E−~E (v) and

T out
v ⊆ E+

~E
(v) with |T in

v | − 1 = |T out
v | there is a set of 2d pairwise vertex disjoint simple paths

{P in
e , P

out
ẽ | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)} in G with the following properties.

– If e ∈ T in
v then P in

e is a path from ae20 to ae31.

– If e ∈ E−~E (v) \ T in
v then P in

e is a path from ae18 to ae31.

– If e ∈ T out
v then P out

e is a path from ae1 to ae15.

– If e ∈ E+
~E

(v) \ T out
v then P out

e is a path from ae1 to ae17.

– The set {x ∈ V (G) | x is contained in P in
e or P out

e for some e} is equal to Sv.

Proof. First we pick a vertex n(v) ∈ V (~E) such that (v, n(v)) /∈ T out
v . This is possible because

v has the same number of incoming and outgoing edges and |T in
v | − 1 = |T out

v |. Then |T in
v | =

|T out
v ∪ {(v, n(v))}|, and hence we can find a bijection g : T in

v → T out
v ∪ {(v, n(v))}. Then we

can define the paths as follows. For e ∈ T in
v we let

P in
e := (ae20, a

e
19, a

e
18, a

g(e)
8 , a

g(e)
7 , a

g(e)
6 , a

g(e)
11 , a

g(e)
10 , a

g(e)
9 , ae29, a

e
28, a

e
27, a

e
30, a

e
31),

P out
g(e) := (a

g(e)
1 , . . . , a

g(e)
5 , bv1, b

v
2, b

v
3, a

e
23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24, b

v
4, b

v
5, b

v
6, a

g(e)
12 , . . . , a

g(e)
17)

if g(e) = (v, n(v)) and

P out
g(e) := (a

g(e)
1 , a

g(e)
2 , a

g(e)
5 , a

g(e)
4 , a

g(e)
3 , ae23, a

e
22, a

e
21, a

e
26, a

e
25, a

e
24, a

g(e)
14 , a

g(e)
13 , a

g(e)
12 , a

g(e)
17 , a

g(e)
16 , a

g(e)
15)

if g(e) 6= (v, n(v)).

150 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

S′

s1
q11 s2

q12
s3q13

s4

q14

s5q15

s6

q16

s7

q17

s8

q18

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Figure 9.6: Set of edge disjoint path as in Claim 1.

Furthermore, for e ∈ E−~E (v) \ T in
v , we let P in

e := (ae18, . . . , a
e
31) and for e ∈ {(v, w) ∈

E+
~E

(v) \ T out
v , we let P out

e := (ae1, . . . , a
e
17). These paths clearly satisfy all conditions.

Proof of Theorem 9.2.10. Let δ := 1
(2·(6+31d)) and let S ⊆ V (GE) be any set of vertices with

|S| ≤ δ · |V (GE)|. We will find a Hamiltonian graph H by modifying GE in such a way that

GE [N
GE
1 (S)] is not affected by any modifications.

Let Sv := {ae18, . . . , a
e
31, a

ẽ
1, . . . , a

ẽ
17 | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)}∪{bv1, . . . , bv6} for every v ∈ V (~E).

Let S′ := {v ∈ V (~E) | Sv ∩ S 6= ∅}. By Remark 9.2.4 |V (GE)| = (6 + 31d) · |V (E)|. Since the

sets Sv are pairwise disjoint this implies that |S′| ≤ |S| ≤ δ · |V (GE)| = 1
2 · |V (E)|. Let

S′ = {s′1, . . . , s′m} where m := |S′|.

Claim 1. There are pairwise edge disjoint paths Q1, . . . , Qm in E such that Qi is of the form

Qi = (q1
i , . . . , q

`i
i) for some `i ∈ N and q`ii = si, q

j
i ∈ S′ for all j > 1 and q1

i ∈ V (E) \ S′.

For illustration at an example, see Figure 9.6.

Proof of Claim 1. By induction on the size of S′. If |S′| = 1 then this is trivially true. If

|S′| = n then h(E) ≥ 1 implies that there must be a vertex v with at least as many neighbours

in V (E)\S′ as neighbours in S′. Then S \{v} has n−1 vertices. Hence by induction hypothesis

there is such a set of paths for S′ \ {v}. But then we can extend every path which starts in v

by a different edge so it starts in V (E) \ S. �

Let Q1, . . . , Qm be as in Claim 1. Further, for every vertex v ∈ V (E)\S′ we pick one vertex

u ∈ V (E) with (v, u) ∈ E(~E) and define n(v) := u. Now let E be the set{{
bv3, a

(v,n(v))
4

}
,
{
bv4, a

(v,n(v))
13

} ∣∣∣∣ v ∈ V (E) \ S′
}
∪
{{

a
(q1i ,q

2
i)

14 , a
(q1i ,q

2
i)

17

}} ∣∣∣∣ 1 ≤ i ≤ m
}
.

We now define the graph H by setting V (H) := V (GE) and E(H) := E(GE)∪E. Note that H

9.2. LOWER BOUND FOR TESTING HAMILTONICITY WITH ONE-SIDED ERROR 151

has degree d + 3, as we only added at most one edge to vertices of degree at most d + 1.

Further note that by definition of S′ we have that S ⊆
⋃
v∈S′ Sv. Since every edge in E is

incident to at most one vertex in NG
1 (
⋃
v∈S′ Sv) it follows that if H is Hamiltonian then it

fulfils the conditions from Definition 9.2.1. Therefore, if we prove that H has a Hamiltonian

cycle then GE must be locally Hamiltonian.

Claim 2. There is a set of 2d pairwise vertex disjoint simple paths {P in
e , P

out
ẽ | e ∈ E−~E (v), ẽ ∈

E+
~E

(v)} for every v ∈ V (~E) \ S′ with the following properties.

– If e ∈ E−~E (v) then P in
e is a path from ae18 to ae31.

– If e = (q1
i , q

2
i) for some i ∈ {1, . . . ,m} then P out

e is a path from ae1 to ae15.

– If e ∈ E+
~E

(v) \ {(q1
i , q

2
i) | 1 ≤ i ≤ m} then P out

e is a path from ae1 to ae17.

– The set {x ∈ V (G) | x is contained in P in
e or P out

e for some e} is equal to Sv.

Proof of Claim 2. This can be achieved by letting P in
e := (ae18, . . . , a

e
31) for e ∈ E−~E (v). Ad-

ditionally, for every edge e = (q1
i , q

2
i) we let P out

e := (ae1, . . . , a
e
14, a

e
17, a

e
16, a

e
15) if q2

i 6= n(q1
i)

and P out
e = (ae1, . . . , a

e
4, b

v
3, b

v
2, b

v
1, a

e
5, . . . , a

e
12, b

v
4, b

v
5, b

v
6, a

e
13, a

e
14, a

e
17, a

e
16, a

e
15) otherwise. Finally

for e ∈ E+
~E

(v) \ {(q1
i , q

2
i) | 1 ≤ i ≤ m} we set P out

e := (ae1, . . . , a
e
17) for e = (v, w), w 6= n(v) and

P out
e := (ae1, . . . , a

e
4, b

v
3, b

v
2, b

v
1, a

e
5, . . . , a

e
12, b

v
4, b

v
5, b

v
6, a

e
13, . . . , a

e
17) for e = (v, n(v)). �

For v ∈ S′ we define the sets T in
v := {(qj−1

i , qji) | 1 ≤ i ≤ m, 2 ≤ j ≤ `i, q
j
i = v} and T out

v :=

{(qji , q
j+1
i) | 1 ≤ i ≤ m, 2 ≤ j ≤ `i − 1, qji = v}. Since for every v ∈ S′ there is exactly one path

out of Q1, . . . , Qm that ends in v, we get that |T in
v |−1 = |T out

v | and hence the preconditions for

Lemma 9.2.11 are met. Therefore we obtain a set of paths {P in
e , P

out
ẽ | e ∈ E−~E (v), ẽ ∈ E+

~E
(v)}

for every v ∈ S′ as in Lemma 9.2.11.

Since Sv ∩ Sw = ∅ for every pair v, w ∈ V (~E) with v 6= w, we now have a set of pairwise

vertex disjoint simple paths {P in
e , P

out
e | e ∈ E(~E)} such that every vertex of H is contained

in one of the paths. For every edge e ∈ E(~E) we now concatenate P out
e with P in

e to a path

Pe. This is possible as for every edge e ∈ E(~E) the end vertex of P out
e and the start vertex

of P in
e are adjacent. Finally we concatenate all paths Pe in the order given by the ordering

f : E(~E)→ {1, . . . , |E(~E)|} used in the construction of GE . This gives us a cycle which contains

every vertex in H precisely once. Hence H is Hamiltonian.

Theorem 9.2.12. There are d ∈ N and constants δ := δ(d), ε := ε(d) ∈ (0, 1) and a sequence of

graphs (GN)N∈N of bounded degree d and increasing order such that GN is δ-locally Hamiltonian

and ε-far from being Hamiltonian for every N ∈ N.

Proof. Let D ∈ N and (EN)N∈N a sequence of D-bounded degree expanders of increasing order.

Such expanders exist and there are even some known explicit constructions (see for example [104]

152 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

or [115]). Then for every N ∈ N we set GN := GEN be the graph constructed in Defini-

tion 9.2.3. By Theorem 9.2.6 and Theorem 9.2.10 there is a degree bound d and constants

δ, ε ∈ (0, 1), whose size only depends on D, such that GN has degree bounded by d and GN is

δ-locally Hamiltonian and ε-far from being Hamiltonian.

9.2.4 Deriving the lower bound

We now obtain the following result as a corollary of Theorem 9.2.12.

Corollary 9.2.13. Hamiltonicity is not testable with one-sided error and query complexity

o(n) in the bounded degree model.

Proof. Pick d as in Theorem 9.2.12 and let P ⊆ Cd be the class of all Hamiltonian graphs of

degree at most d. Towards a contradiction, assume that for every ε ∈ (0, 1] and n ∈ N there

is a one-sided error ε-tester for P ∩ {G ∈ Cd | |V (G)| = n} with query complexity o(n). Let

δ, ε ∈ (0, 1) be constants such that there is a sequence of d-bounded degree graphs (GN)N∈N of

increasing order such that GN is δ-locally Hamiltonian and ε-far from being Hamiltonian for

every N ∈ N. Note that δ and ε exist by Theorem 9.2.12. Let T be an ε-tester for P with

query complexity f(n) ∈ o(n). Since f(n) ∈ o(n) there must be n0 ∈ N such that f(n) ≤ δn

for all n ≥ n0. Let N ∈ N such that |V (GN)| ≥ n0. Since GN is ε-far from P there must be

a sequence of queries (q1, . . . , qm) with m ≤ δn such that T queries the sequence (q1, . . . , qm)

with non-zero probability and rejects GN with non-zero probability after performing the queries

(q1, . . . , qm). Let S be the set of vertices v ∈ V (GN) such that there is a query qi = (v, j) for

i ∈ [m]. Because GN is δ-locally Hamiltonian and |S| ≤ δn there is a graph H ∈ P on n vertices

and T ⊆ V (H) such that there is an isomorphism GN [NGN
1 (S)] to H[NH

1 (T)] which maps S to

T . Hence, after renaming the vertices in NH
1 (T), the tester T gets exactly the same answers for

queries in q1, . . . , qm for GN and H. This implies that T queries the sequence (q1, . . . , qm) in H

with non-zero probability and hence must reject H with non-zero probability. This contradicts

the assumption that T was a one-sided error tester for Hamiltonicity.

Note 9.2.14. Note that the above argument is not sufficient for two-sided error testers, because

a two-sided error tester would be allowed to reject H with probability less than 1
3 .

9.3 Lower bound for testing treewidth

In this section we show that treewidth is not constant query testable. Let us first recall the

concept of treewidth. A tree decomposition of a graph G is a pair (T,B) where T is a tree and

B is a function B : V (T)→ {X | X ⊆ V (G)} with the following properties.

9.3. LOWER BOUND FOR TESTING TREEWIDTH 153

(TW1) For every v ∈ V (G) there is t ∈ V (T) such that v ∈ B(t).

(TW2) For every e ∈ E(G) there is t ∈ V (T) such that e ⊆ B(t).

(TW3) The graph T [{t ∈ V (T) | v ∈ B(t)}] is connected for every v ∈ V (G).

The width of a tree decomposition (T,B) of a graph G is the size of the largest bag reduced by 1,

i. e. maxt∈V (T) |B(t)|−1. The treewidth of a graph G, denoted by tw(G) is the minimum width

of any tree decomposition of G. For the rest of the section we let d ∈ N be a fixed degree bound.

For any function f : N → N we define the property Ptw
≤f := {G ∈ Cd | tw(G) ≤ f(|V (G)|)} on

the class Cd of graphs of bounded degree d. We show the following theorem.

Theorem 9.3.1. The property Ptw
≤f is not constant query testable for every f ∈ o(n) ∩ ω(1).

To prove this we use a theorem from Grohe and Marx showing that (vertex) expanders have

treewidth linear in the amount of vertices [80]. This enables us to argue similarly as in the

proof of Theorem 6.2.1 using both Theorem 5.2.2 from [102] and Theorem 5.1.2 from [2].

We first show that edge expanders have linear treewidth which is a straight forward conse-

quence of [80].

Corollary 9.3.2 (Edge expansion version of Theorem 3 in [80]). Let d ∈ N and E be a class

of expanders of bounded degree d. There is a constant β > 0 such that tw(G) ≥ β · |V (G)| for

every G ∈ E .

Proof. Since E is a class of edge expanders we know that there is a constant ε > 0 such that

the edge expansion h(G) > ε for every G ∈ E , where

h(G) := min
{S⊆V (G)|

0≤|S|≤|V (G)|/2}

|〈S, S〉G|
|S|

.

Additionally, since every G ∈ E has bounded degree d, every vertex in the open neighbourhood

NG
1 (S) \ S of any set S ⊆ V (G) can contribute at most d edges to the set of S-crossing edges

〈S, S〉G. Hence we get for the vertex expansion of any graph G ∈ E

vx(G) := min
{S⊆V (G)|

0≤|S|≤|V (G)|/2}

|NG
1 (S) \ S|
|S|

≥ h(G)

d
>
ε

d
=: ε′ > 0.

Now [80, Theorem 3] implies that there is a constant β > 0 such that tw(G) ≥ β · |V (G)| for

every G ∈ E .

In the following lemma we argue that reducing the treewidth of a class of expanders to some

sublinear function takes at least a linear amount of edge deletions.

Lemma 9.3.3. Let E be a class of expanders and β > 0 the constant from 9.3.2. For every

f ∈ o(n) and every ε ∈ (0, β2d) there is a constant n0 ∈ N such that every G ∈ E with |V (G)| ≥ n0

is ε-far from Ptw
≤f .

154 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

Proof. Let f ∈ o(n) and ε ∈ (0, β2d) be arbitrary. Since f ∈ o(n) there is a constant n0 ∈ N
such that

f(n) <
β

2
· n (9.5)

for every n ≥ n0.

Assume that the assertion is not true. Hence there must be a graph G ∈ E with |V (G)| ≥ n0

which is ε-close to Ptw
≤f . Hence there is a graph G′ with tw(G′) ≤ f(|V (G′)|) which can be

obtained from G by adding/deleting no more than εdn edges. Let (T ′, B′) be a tree decompo-

sition of G′ with |B′(t)| ≤ f(|V (G′)|) for every t ∈ V (T ′). We now pick S to be a minimal set

containing at least one vertex of every edge in E(G) \ E(G′). Then (T,B) where T := T ′ and

B(t) := B′(t) ∪ S for every t ∈ T ′ is a tree decomposition of G. Furthermore, for every t ∈ T
we have

|B(t)| = |B′(t)|+ |S| ≤ f(|V (G)|) + εdn < βn

where the last inequality follows by choice of ε and n0. This contradicts that tw(G) ≥ βn.

We can now prove Theorem 9.3.1.

Proof of Theorem 9.3.1. Let (Gi)i∈N be a family of expanders of bounded degree d and E :=

{Gi | i ∈ N}. Let β > 0 be the constant from Corollary 9.3.2 and ñ0 be the constant from

Lemma 9.3.3.

To prove that Ptw
≤f is not testable we prove Ptw

≤f is not repairable and then apply Theorem

5.1.2. Let ε ∈ (0, β2d) and let r ∈ N, λ > 0 and n0 ∈ N be arbitrary. We set λ′ := λ
(t·2r+1) ,

where t is the number of r-types of bounded degree d, and let n′0 be the positive integer from

Theorem 5.2.2 corresponding to λ′. Let i ∈ N be any fixed index such that for G := Gi we

have n := |V (G)| ≥ n0, f(n) ≥ n′0, n ≥ 4n′0
λ and n ≥ ñ0. Choosing i in such a way is always

possible as (Gi)i∈N is a family of expanders, implying that there are arbitrarily large expanders

in E and f ∈ ω(1). By Theorem 5.2.2 there is a graph H with m := |V (H)| ≤ n′0 such that

the sampling distance δ�(G,H) (see Definition 5.2.1) is less than or equal to λ′. Let G′ be the

graph consisting of
⌊
n
m

⌋
copies of H and n mod m isolated vertices. Note that we picked G′

such that |V (G)| = |V (G′)|. Furthermore, the treewidth of H is less than m and therefore

tw(G′) ≤ m ≤ n′0 ≤ f(n) = f(|V (G′)|).

Hence G′ ∈ Ptw
≤f . On the other hand, we know that G is ε-far from Ptw

≤f by Lemma 9.3.3 as

|V (G)| ≥ ñ0.

Let τ1, . . . , τt be a list of all r-types and Tr := {τ1, . . . , τt}. Similarly to the argument in the

9.4. SUMMARY 155

proof of Theorem 6.2.1 we have

‖freqr(G)− freqr(G
′)‖1 =

t∑
i=1

|ρG,r({τi})− ρG′,r({τi})|

=

t∑
i=1

∣∣∣ρG,r({τi})− n mod m

n
· ρK1,r({τi})−

⌊ n
m

⌋
· m
n
· ρH,r({τi})

∣∣∣
≤

t∑
i=1

∣∣∣ρG,r({τi})− ρH,r({τi})∣∣∣+

t∑
i=1

∣∣∣n mod m

n
· ρK1,r({τi})

∣∣∣
+

t∑
i=1

∣∣∣ρH,r({τi})− ⌊ n
m

⌋
· m
n
· ρH,r({τi})

∣∣∣
≤

t∑
i=1

∣∣∣ρG,r({τi})− ρH,r({τi})∣∣∣+
2m

n

≤ t · sup
X⊆Tr

|ρG,r(X)− ρH,r(X)|+ 2m

n

≤ t · 2r · δ�(G,H) +
2m

n

≤ λ

2
+
λ

2

= λ.

This proves that Ptw
≤f is not repairable.

9.4 Summary

In this section we studied property testing for some NP-hard problems. Utilising a standard

approach of showing hardness for property testing, we use a local reduction to show that

testing dominating set size is NP-hard, where the local reduction is derived from a standard

polynomial time reduction. Motivated by understanding non-testable properties we constructed

a sequence of hard instances for Hamiltonicity, a problem which is known to have no tester of

query complexity o(n) [70,129]. At the core of the construction we use expanders to guarantee

local Hamiltonicity, while farness from Hamiltonicity is enforced by using gadgets to encode

a condition which can not be satisfied for too many vertices at once. Finally, we show that

treewidth is not testable which is a consequence of expanders having linear treewidth. This

result is partial in the sense that we currently do not know what the query complexity of testing

treewidth is. We elaborate on this open question in the Conclusions.

156 CHAPTER 9. ON TESTABILITY OF NP-HARD PROBLEMS

Chapter 10

Conclusions

In this thesis we have tackled the question of whether FO definable properties are testable in the

bounded degree model, raised by Adler and Harwath in [2]. We take a first step towards a full

logical characterisation of testable graph properties in the bounded degree model by showing

that all properties defined by a sentence in the prefix class Σ2 are testable while there exist a

sentence in the prefix class Π2 which is not testable. This yields the first study of testability

of properties defined in FO in the bounded degree model without restrictions and provides a

missing equivalent to a study of FO definable properties in the dense model by Alon et al. [6].

Our negative result is furthermore interesting from a model theoretic point of view providing in-

sights into the expressive power of FO. Specifically, it proves the existence of a class of bounded

degree expanders which is definable in FO. We further prove testability for properties defined

by specific classes of FO definable properties expressing that the frequency vector capturing

which neighbourhood types appear in a graph are of a particular form.

Utilising the FO counter example we answer an open question asked by Goldreich in the

context of characterising properties testable by a one-sided error POT in [76]. More precisely,

we showed that there exists a GSF-local property which is not testable. Since every GSF-local

property which is non-propagating admits a POT (see [76]) and hence is testable, our result

specifically implies that there is a property which is GSF-local and non-propagating. This is

a valuable realisation concerning the search for a characterisation of testable properties in the

bounded degree model. Ito et al. suggest in [89] that properties which are close to being GSF-

local might characterise testability, which we disproved.

In the later part of this thesis we have drawn inspiration from classical complexity theory

and studied problems which are NP-hard. We gave a local reduction to prove that testing

dominating set size is not possible with o(n) queries, which was unknown to our knowledge.

We further gave a construction of hard instances for testing Hamiltonicity with one-sided error

157

158 CHAPTER 10. CONCLUSIONS

with the goal of understanding structural connections to hardness for property testing. We

have further given a partial result into the direction of determining the complexity of testing

treewidth in the bounded degree model.

10.1 Future Work

One of the major open questions in the field of graph property testing is the question of how

to characterise testable properties in the bounded degree model. The crucial piece of under-

standing we are missing here, is the question of when GSF-local properties are propagating.

Understanding this connection is therefore a very interesting goal. The following more ap-

proachable questions of interest are left open in this thesis.

– Can we find other, possibly smaller or simpler, counter examples, i. e. properties that are

GSF-local and are propagating?

– Are there any other applications of the class of expanders which is FO definable and

GSF-local?

– Can sentences in Σ2 be tested uniformly?

– Can neighbourhood regularity be tested in general?

– Can we characterise which FO-definable properties are testable?

– Can we characterise which FO definable properties are GSF-local?

Regarding the last question we would like to remark that example 8.2.8 shows that it is not

true that FO definable properties are GSF-local if and only if they are definable by 0-profiles.

Hence the connection between FO definability and GSF-locality is complicated. An answer to

this question would yield a characterisation of FO properties having a one-sided error POT

dependent on the non-propagating condition building on the characterisation from [76].

An effort worth while would also be to put some effort into gearing results towards applica-

tion. We could consider and try to improve the dependency of the query complexity on ε and

d and the running times for the testers developed in this thesis.

We think that the question of the relationship between classical polynomial time reductions

and local reductions yields interesting research questions. In general, it is not true that NP-

hard problems are not testable as there are testable problems which are NP-hard. On the other

hand, when the reduction uses gadgets, which interact depending on single edges, polynomial

time reductions are local. Hence, it is interesting to study problems like treewidth, for which

the classical reduction is not of this form. Furthermore, we are interested in the question of

10.1. FUTURE WORK 159

whether linear time reductions yields local reductions.

A further research direction of interest is to extend results from the bounded degree model

to more general sparse graph classes. There is a rich variety of structure of sparse graph

classes being exploited for algorithmic result and it would be interesting to explore what can

be achieved in the property testing setting. For example, in [100] the authors show sublinear

testability of Hamiltonicity in the general model for minor-free classes of graphs.

160 CHAPTER 10. CONCLUSIONS

Bibliography

[1] I. Adler and P. Fahey. Faster property testers in a variation of the bounded degree

model. In 40th IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K

Birla Goa Campus, Goa, India (Virtual Conference), pages 7:1–7:15, 2020.

[2] I. Adler and F. Harwath. Property testing for bounded degree databases. In 35th Sym-

posium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March

3, 2018, Caen, France, pages 6:1–6:14, 2018.

[3] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proceedings of

the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 110–119, 1979.

[4] N. Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21(3–

4):359–370, 2002.

[5] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.

In FOCS ’99 Proceedings of the 40th Annual Symposium on Foundations of Computer

Science, pages 656–666, 1999.

[6] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs.

Combinatorica, 20(4):451–476, 2000. Preliminary version in FOCS’99.

[7] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of

the testable graph properties: It’s all about regularity. SIAM Journal on Computing,

39(1):143–167, 2009.

[8] N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in general

graphs. SIAM Journal on Discrete Mathematics, 22(2):786–819, 2008.

[9] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable

with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862, 2000.

[10] N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and superconcen-

trators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.

161

162 BIBLIOGRAPHY

[11] N. Alon and A. Shapira. A characterization of easily testable induced subgraphs. Com-

binatorics Probability and Computing, 15(6):791–806, 2006.

[12] N. Alon and A. Shapira. A characterization of the (natural) graph properties testable

with one-sided error. SIAM Journal on Computing, 37(6):1703–1727, 2008.

[13] N. Alon and J. Spencer. The Probabilistic Method. John Wiley, New York, 2 edition,

2000.

[14] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in

ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[15] G. Bagan. Mso queries on tree decomposable structures are computable with linear delay.

In International Workshop on Computer Science Logic, pages 167–181. Springer, 2006.

[16] A. Belovs, E. Blais, and A. Bommireddi. Testing convexity of functions over finite do-

mains. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 2030–2045. SIAM, 2020.

[17] M. A. Bender and D. Ron. Testing properties of directed graphs: Acyclicity and connec-

tivity. Random Structures & Algorithms, 20(2):184–205, 2002.

[18] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse graphs

is testable. In Advances in Mathematics, volume 223, pages 2200–2218. 2010.

[19] S. van Bergerem. Learning concepts definable in first-order logic with counting. In 2019

34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13.

IEEE, 2019.

[20] S. van Bergerem, M. Grohe, and M. Ritzert. On the parameterized complexity of learning

logic. arXiv preprint arXiv:2102.12201, 2021.

[21] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication

complexity. computational complexity, 21(2):311–358, 2012.

[22] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in

bounded-degree graphs. In 43rd Symposium on Foundations of Computer Science (FOCS

2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages 93–102, 2002.

[23] B. Bollig and D. Kuske. An optimal construction of Hanf sentences. Journal of Applied

Logic, 10(2):179–186, 2012.

[24] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic

Quarterly, 6(1-6):66–92, 1960.

[25] C. L. Canonne. A survey on distribution testing: Your data is big. But is it blue? Theory

of Computing, pages 1–100, 2020.

BIBLIOGRAPHY 163

[26] X. Chen, R. A. Servedio, L.-Y. Tan, E. Waingarten, and J. Xie. Settling the query

complexity of non-adaptive junta testing. Journal of the ACM (JACM), 65(6):1–18,

2018.

[27] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third

Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York,

NY, USA, 1971. Association for Computing Machinery.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.

MIT press, 2009.

[29] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite

graphs. Information and computation, 85(1):12–75, 1990.

[30] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

[31] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of

graph enumeration problems definable in monadic second-order logic. Discrete applied

mathematics, 108(1-2):23–52, 2001.

[32] A. Czumaj, H. Fichtenberger, P. Peng, and C. Sohler. Testable properties in general

graphs and random order streaming. In Approximation, Randomization, and Combinato-

rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19,

2020, Virtual Conference, pages 16:1–16:20, 2020.

[33] A. Czumaj, P. Peng, and C. Sohler. Testing cluster structure of graphs. In Proceedings of

the forty-seventh annual ACM symposium on Theory of Computing, pages 723–732, 2015.

[34] A. Czumaj, P. Peng, and C. Sohler. Relating two property testing models for bounded

degree directed graphs. In STOC ’16 Proceedings of the forty-eighth annual ACM sym-

posium on Theory of Computing, pages 1033–1045, 2016.

[35] A. Czumaj, A. Shapira, and C. Sohler. Testing hereditary properties of nonexpanding

bounded-degree graphs. SIAM Journal on Computing, 38(6):2499–2510, 2009.

[36] A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. Combinatorics,

Probability and Computing, 19(5-6):693–709, 2010.

[37] A. Czumaj and C. Sohler. A characterization of graph properties testable for general

planar graphs with one-sided error (it’s all about forbidden subgraphs). In 2019 IEEE

60th Annual Symposium on Foundations of Computer Science (FOCS), pages 1525–1548.

IEEE, 2019.

[38] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In 22nd Annual IEEE

Symposium on Logic in Computer Science (LICS 2007), pages 270–279. IEEE, 2007.

164 BIBLIOGRAPHY

[39] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation schemes for first-

order definable optimisation problems. In 21st Annual IEEE Symposium on Logic in

Computer Science (LICS’06), pages 411–420. IEEE, 2006.

[40] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Model theory makes formulas

large. In International Colloquium on Automata, Languages, and Programming, pages

913–924. Springer, 2007.

[41] A. Dawar and S. Kreutzer. Parameterized complexity of first-order logic. In Electronic

Colloquium on Computational Complexity, TR09-131, page 39, 2009.

[42] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.

Springer, 2012.

[43] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain ran-

dom walks. Transactions of the American Mathematical Society, 284(2):787–794, 1984.

[44] J. Doner. Tree acceptors and some of their applications. Journal of Computer and System

Sciences, 4(5):406–451, 1970.

[45] R. G. Downey, M. R. Fellows, and U. Taylor. The parameterized complexity of relational

database queries and an improved characterization of W[1]. DMTCS, 96:194–213, 1996.

[46] A. Durand and E. Grandjean. First-order queries on structures of bounded degree are

computable with constant delay. ACM Transactions on Computational Logic (TOCL),

8(4):21–es, 2007.

[47] A. Durand, N. Schweikardt, and L. Segoufin. Enumerating answers to first-order queries

over databases of low degree. In Proceedings of the 33rd ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 121–131, 2014.

[48] Z. Dvořák. Baker game and polynomial-time approximation schemes. In Proceedings of

the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2227–2240.

SIAM, 2020.

[49] Z. Dvořák. Approximation metatheorem for fractionally treewidth-fragile graphs. arXiv

preprint arXiv:2103.08698, 2021.

[50] Z. Dvořák, D. Král, and R. Thomas. Deciding first-order properties for sparse graphs. In

2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 133–142.

IEEE, 2010.

[51] H. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, Berlin Heidelberg

New York, 2 edition, 1999.

BIBLIOGRAPHY 165

[52] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag, New

York, 2 edition, 1994.

[53] T. Eden and W. Rosenbaum. Lower bounds for approximating graph parameters via

communication complexity. arXiv preprint arXiv:1709.04262, 2017.

[54] R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs monadic co-NP.

Information and Computation, 120(1):78–92, 1995.

[55] H. Fichtenberger, P. Peng, and C. Sohler. On constant-size graphs that preserve the local

structure of high-girth graphs. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015,

Princeton, NJ, USA, pages 786–799, 2015.

[56] H. Fichtenberger, P. Peng, and C. Sohler. Every testable (infinite) property of bounded-

degree graphs contains an infinite hyperfinite subproperty. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 714–726. Society for In-

dustrial and Applied Mathematics, 2019.

[57] E. Fischer. The art of uninformed decisions: A primer to property testing. Science,

75:97–126, 2001.

[58] E. Fischer and A. Matsliah. Testing graph isomorphism. SIAM Journal on Computing,

38(1):207–225, 2008.

[59] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. Journal of

the ACM (JACM), 49(6):716–752, 2002.

[60] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model-checking.

SIAM Journal on Computing, 31(1):113–145, 2001.

[61] F. V. Fomin, P. A. Golovach, and D. M. Thilikos. On the parameterized complexity

of graph modification to first-order logic properties. Theory of Computing Systems,

64(2):251–271, 2020.

[62] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable

structures. Journal of the ACM (JACM), 48(6):1184–1206, 2001.

[63] H. Gaifman. On local and non-local properties. In Proceedings of the Herbrand Sympo-

sium, Logic Colloquium ’81, pages 105–135. North-Holland, 1982.

[64] R. Ganian, P. Hliněnỳ, J. Obdržálek, J. Schwartz, J. Teska, et al. Fo model checking of

interval graphs. In International Colloquium on Automata, Languages, and Programming,

pages 250–262. Springer, 2013.

166 BIBLIOGRAPHY

[65] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, 1979.

[66] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete problems.

In Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63,

1974.

[67] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit problem

is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[68] F. Gavril. Some NP-complete problems on graphs. Technical report, Computer Science

Department, Technion, 2011.

[69] O. Goldreich. Introduction to Property Testing. Cambridge University Press, New York,

1 edition, 2017.

[70] O. Goldreich. On testing hamiltonicity in the bounded degree graph model. Electronic

Colloquium on Computational Complexity (ECCC), (18), 2020.

[71] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning

and approximation. Journal of the ACM, 45(4):653–750, 1998.

[72] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy theorems for

property testing. computational complexity, 21(1):129–192, 2012.

[73] O. Goldreich and D. Ron. Property testing in bounded degree graphs. In STOC ’97

Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages

406–415, 1997.

[74] O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs.

Combinatorica, 19(3):335–373, 1999.

[75] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. In Studies

in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and

Computation, pages 68–75. Springer, 2011.

[76] O. Goldreich and D. Ron. On proximity-oblivious testing. SIAM Journal on Computing,

40(2):534–566, 2011. Preliminary version appeared at Proceedings of the 41st Annual

ACM Symposium on Theory of Computing (STOC 2009).

[77] O. Goldreich and I. Shinkar. Two-sided error proximity oblivious testing. Random Struc-

tures & Algorithms, 48(2):341–383, 2016.

[78] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random

Structures & Algorithms, 23(1):23 – 57, 2003.

BIBLIOGRAPHY 167

[79] M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense

graphs. Journal of the ACM (JACM), 64(3):1–32, 2017.

[80] M. Grohe and D. Marx. On tree width, bramble size, and expansion. J. Comb. Theory,

Ser. B, 99(1):218–228, 2009.

[81] M. Grohe and M. Ritzert. Learning first-order definable concepts over structures of small

degree. arXiv:1701.05487, 2017.

[82] M. Grohe and G. Turán. Learnability and definability in trees and similar structures.

Theory of Computing Systems, 37(1):193–220, 2004.

[83] W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Addison,

L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North Holland,

1965.

[84] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for

approximation and testing. In 2009 50th Annual IEEE Symposium on Foundations of

Computer Science, pages 22–31. IEEE, 2009.

[85] L. Heimberg, D. Kuske, and N. Schweikardt. An optimal Gaifman normal form construc-

tion for structures of bounded degree. In 2013 28th Annual ACM/IEEE Symposium on

Logic in Computer Science, pages 63–72. IEEE, 2013.

[86] F. Hellweg and C. Sohler. Property testing in sparse directed graphs: Strong connectivity

and subgraph-freeness. In L. Epstein and P. Ferragina, editors, Algorithms – ESA 2012,

volume 7501 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2012.

[87] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. BULL.

AMER. MATH. SOC., 43(4):439–561, 2006.

[88] N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing,

16(4):760–778, 1987.

[89] H. Ito, A. Khoury, and I. Newman. On the characterization of 1-sided error strongly-

testable graph properties for bounded-degree graphs. (to appear) Journal of Computa-

tional Complexity. arXiv:1909.09984, 2019.

[90] K. Iwama and Y. Yoshida. Parameterized testability. ACM Trans. Comput. Theory,

9(4):16:1–16:16, 2018.

[91] S. Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM Journal

on Computing, 40(3):709–720, 2011.

[92] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer

computations, pages 85–103. Springer, 1972.

168 BIBLIOGRAPHY

[93] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in

general graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.

[94] K. Kawarabayashi and Y. Yoshida. Testing subdivision-freeness: property testing meets

structural graph theory. In Proceedings of the forty-fifth annual ACM symposium on

Theory of computing, pages 437–446, 2013.

[95] W. Kazana and L. Segoufin. First-order query evaluation on structures of bounded degree.

arXiv preprint arXiv:1105.3583, 2011.

[96] W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures

with bounded expansion. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of database systems, pages 297–308, 2013.

[97] A. Kumar, C. Seshadhri, and A. Stolman. Random walks and forbidden minors II: a

poly(dε−1)-query tester for minor-closed properties of bounded degree graphs. In Pro-

ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages

559–567, 2019.

[98] A. Kumar, C. Seshadhri, and A. Stolman. Random walks and forbidden minors

III: poly(dε−1)-time partition oracles for minor-free graph classes. arXiv preprint

arXiv:2102.00556, 2021.

[99] R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded

minor. ACM Transactions on Algorithms (TALG), 11(3):1–13, 2015.

[100] R. Levi and N. Shoshan. Testing hamiltonicity (and other problems) in minor-free graphs.

arXiv preprint arXiv:2102.11728, 2021.

[101] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An

EATCS Series. Springer, 2004.

[102] L. Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications.

American Mathematical Society, 2012.

[103] F. Magniez and M. de Rougemont. Property testing of regular tree languages. Algorith-

mica, 49(2):127–146, 2007.

[104] G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii,

9(4):71–80, 1973.

[105] A. McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20,

2014.

BIBLIOGRAPHY 169

[106] M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler. Testable bounded degree

graph properties are random order streamable. In 44th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,

pages 131:1–131:14, 2017.

[107] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees.

Theoretical Computer Science, 58(1-3):209–229, 1988.

[108] S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers Inc, 2005.

[109] A. Nachmias and A. Shapira. Testing the expansion of a graph. Information and Com-

putation, 208(4):309–314, 2010.

[110] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European Journal of

Combinatorics, 32(4):600–617, 2011.

[111] J. Nešetřil and P. Ossona de Mendez. Sparsity: graphs, structures, and algorithms, vol-

ume 28. Springer Science & Business Media, 2012.

[112] I. Newman and C. Sohler. Every property of hyperfinite graphs is testable. SIAM Journal

on Computing, 42(3):1095–1112, 2013.

[113] K. Oono and Y. Yoshida. Testing properties of functions on finite groups. Random

Structures & Algorithms, 49(3):579–598, 2016.

[114] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures & Algorithms,

20(2):165–183, 2002.

[115] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,

and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.

[116] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends

in Theoretical Computer Science, 5(2):73–205, 2010.

[117] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[118] N. Schweikardt, L. Segoufin, and A. Vigny. Enumeration for fo queries over nowhere

dense graphs. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, pages 151–163, 2018.

[119] D. Seese. Linear time computable problems and first-order descriptions. Mathematical

Structures in Computer Science, 6(6):505–526, 1996.

[120] L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD

thesis, Massachusetts Institute of Technology, 1974.

170 BIBLIOGRAPHY

[121] E. Szemerédi. Regular partitions of graphs. In Proc. Colloq. Inter. CNRS, 1978.

[122] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application

to a decision problem of second-order logic. Mathematical systems theory, 2(1):57–81,

1968.

[123] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London mathematical society, 2(1):230–265, 1937.

[124] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

1984.

[125] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the four-

teenth annual ACM symposium on Theory of computing, pages 137–146, 1982.

[126] A. C. Yao. Lower bounds by probabilistic arguments. In 24th Annual Symposium on

Foundations of Computer Science (sfcs 1983), pages 420–428. IEEE, 1983.

[127] Y. Yoshida. Lower bounds on query complexity for testing bounded-degree csps. In 2011

IEEE 26th Annual Conference on Computational Complexity, pages 34–44. IEEE, 2011.

[128] Y. Yoshida. Optimal constant-time approximation algorithms and (unconditional) in-

approximability results for every bounded-degree CSP. In Proceedings of the forty-third

annual ACM symposium on Theory of computing, pages 665–674, 2011.

[129] Y. Yoshida and H. Ito. Query-number preserving reductions and linear lower bounds for

testing. IEICE Trans. Inf. Syst., 93-D(2):233–240, 2010.

[130] Y. Yoshida and H. Ito. Testing k-edge-connectivity of digraphs. Journal of systems science

and complexity, 23(1):91–101, 2010.

[131] Y. Yoshida and H. Ito. Testing outerplanarity of bounded degree graphs. Algorithmica,

73(1):1–20, 2015.

	List of Figures
	List of Notation
	Introduction
	Preliminaries
	Set notation
	Graphs
	Graph representation
	Directed graphs and multigraphs
	Expansion and hyperfiniteness

	Relational structures
	Bounded-degree structures and neighbourhood distributions

	First-order logic
	Normal forms of first-order logic

	Background on property testing
	The general setting
	The bounded degree model
	An example of a property tester: Testing subgraph freeness
	Proximity oblivious testing
	Closure properties of testability
	Local reductions

	Related work
	Algorithmic meta-theorems
	Property testing
	The dense model
	The bounded degree model
	Characterisation results in the bounded degree model
	Lower-bound techniques in the bounded degree model
	The general model
	Testing properties defined by logical formulas
	Connection to learning and streaming algorithms

	Extending results to relational structures
	Canonical tester
	Proving the existence of canonical testers in the property testing model for bounded degree relational structures

	Small structures approximating neighbourhood distributions
	Summary

	Classifying testability of prefix classes
	A class of expanders definable in FO
	Expansion and the zig-zag product
	Defining the formula
	Proving expansion of the property defined by the formula

	On the non-testability of a 2-property
	Extension to simple graphs
	On the testability of all 2-properties
	Summary

	Testing properties of neighbourhoods
	Neighbourhood freeness and neighbourhood regularity
	Prefix classes of neighbourhood properties
	Proving testability
	Summary

	Comparing locality notions
	Generalised subgraph freeness
	Relating different notions of locality
	Relating FO properties to GSF-local properties

	GSF-locality is not sufficient for POT's
	Characterisation by neighbourhood profiles
	A local reduction from relational structures to graphs
	The graph property is GSF-local
	Putting everything together

	Summary

	On testability of NP-hard problems
	Lower bound for testing dominating set with two-sided error
	Property testing model for bounded degree 3-SAT
	Local reduction from 3-SAT to dominating set

	Lower bound for testing Hamiltonicity with one-sided error
	Construction
	The construction is far from being Hamiltonian
	Ensuring local Hamiltonicity
	Deriving the lower bound

	Lower bound for testing treewidth
	Summary

	Conclusions
	Future Work

