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Abstract 

An extended total Lagrangian explicit dynamic (XTLED) is presented as a potential 

numerical method for simulating interactive or physics-based surgical incisions of soft 

tissues. The simulation of surgical incision is vital to the integrity of virtual reality 

simulators that are used for immersive surgical training. However, most existing 

numerical methods either compromise on computational speed for accuracy or vice 

versa. This is due to the challenge of modelling nonlinear behaviour of soft tissues, 

incorporating incision and subsequently updating topology to account for the incision. 

To tackle these challenges, XTLED method which combines the extended finite 

element method (XFEM) using total Lagrangian formulation with explicit time 

integration method was developed. The algorithm was developed and deformations of 

3D geometries under tension, were simulated. An attempt was made to validate the 

XTLED method using silicon samples with different incision configuration and a 

comparison was made between XTLED and FEM. Results show that XTLED could 

potentially be used to simulate interactive soft tissue incision. However, further 

quantitative verification and validation are required. In addition, numerical analyses 

conducted show that solutions may not be obtainable due to simulation errors. 

However, it is unclear whether these errors are inherent in the XTLED method or the 

algorithm created for the XTLED method in this thesis. 
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1 INTRODUCTION 

Simulators have been used for training in automobile, aerospace, and medicine. 

The use of simulators in these fields enables driving, flying, and surgery respectively, 

to be modelled as virtual tasks [1]. This computation alleviates cost, risk to life and it 

enables easier transition into real life training. However, the challenge to create a 

realistic training experience is still ongoing. 

One of the applications of simulators in the surgical field is surgical training. 

Simulators known as virtual reality simulators (VRS) were developed due to the 

impact of minimally invasive surgery (MIS) on patient recovery. Unlike open surgery 

technique which could require larger incisions to physically access the area of 

operation, MIS technique only requires small incisions of about 0.5cm to 1.5 cm, 

through which surgical instruments are inserted [2], [3]. Due to the small incisions, 

patients are less likely to lose excess blood during operation or require blood 

transfusion, patient’s hospital stay is reduced, surgical scars are smaller and 

aesthetically pleasing, and patient recovery is quick [2], [3].  

However, MIS comes with its own challenges that surgeons must overcome. In 

MIS, a surgeon performs operation by manipulating long slender surgical tools while 

viewing the site of operation on a display screen. The viewing of the site of operation 

is made possible by endoscopes inserted into the patient’s body via incision ports 

(trocars) (Figure 1-1). The lack of direct view and access to the area of operation, as 

present in open surgery,  and constrained movement of the surgical tools inserted in 

trocars, results in restricted view of the operating area, and makes it less easy for the 

surgeons to manipulate surgical tools whilst coordinating both the hands and eyes 

during operation. Consequently, virtual reality simulators (VRS), similar in purpose 
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to flight simulators, were proposed to enable repetitive training and help surgeons 

master MIS skill by overcoming the challenge of coordinating the hands and eyes 

during surgery. 

 

 

  

 

 

Figure 1-1: Minimally invasive surgical set up, showing a surgeon, surgical instruments 

inserted in incision ports (trocar), and display screen [4].  

The VRS mainly consists of a haptic device, surgical instruments, a display 

screen and computational model of the operated organ or site of operation or patient 

(Figure 1-2). The haptic device makes the VRS especially unique, because it is a 

feedback system that allows a surgeon to provide input (touch, pull etc.) and receive 

output from the computational model. Prior to this technological advancement, 

surgeons would mainly train on cadavers, humans, animals, and other training 

alternatives like box trainers, torso, human-like mannequin. However, to reduce the 

risk to patient life, enable realistic and repetitive training, and due to the difference in 

anatomy between humans and animals, VRS was proposed. Consequently, 

commercial and non-commercial attempts have been made to develop virtual reality 

simulators for different surgeries. For example, the first commercial cholecystectomy 

simulator called MIST-VR (Minimally Invasive Surgery Trainer – Virtual Reality) 

was developed by Wolfson Centre for Minimally Invasive Therapy (Manchester) in 
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collaboration with  the company called VR solution; and a cataract simulator was 

developed for removing eye cataract [1], [2]. Moreover, due to the benefits of MIS, 

surgical  societies such as the Society of American Gastrointestinal and Endoscopic 

Surgeons (SAGE) have incorporated structured MIS training into the curricula at 

medical schools and some hospitals across Europe now have dedicated VRS training 

centres [1], [5]. The general feedback is that VRS can be used to improve basic MIS 

skills of surgeons, including suturing, cutting, probing, endoscope manipulation and 

can even be used to model anomalies [6]. 

 

 

 

 

 

Figure 1-2: Surgical training using a virtual reality simulator [7] 

Of the basic skills that could be acquired using VRS, cutting remains an area 

of active research. This challenge persists due to the need to simulate interactive and 

immersive surgical training in real time, using a realistic model. To achieve this using 

the haptic device, haptic feedback should occur at a frequency of at least 1kHz [8]. 

Physics-based or continuum approach (mesh and meshless numerical method) 

has been established as the ideal approach for computing the deformation of objects, 

and many linear and nonlinear deformation of soft tissues have been reported over the 

years [8], [9]. However, cutting adds another layer of complexity, since it involves the 
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separation of a surface, propagation of the cut and topological update of the 

computational and geometric model. This added complexity makes it difficult to 

achieve the required haptic feedback at 1kHz; in mesh based approaches, 

computational speed decreases with increased degree of freedom, as more elements 

are created due to cutting, and elements must be aligned to cut, whereas in meshless 

approaches which do not require elements, other challenges such as the creation of a 

cut surface arise [8], [9]. Furthermore, nonlinear analysis which captures soft tissue 

behaviour should be used to replicate real life incision-induced deformation of soft 

tissues, if VRS is to become a high-fidelity simulator in future. 

These challenge and benefits of VRS is what motivated the investigation of the 

simulation of surgical cutting of soft tissues, using realistic soft tissue behaviour 

without compromising computational speed. 

 

1.1 Aim and Objective 

The aim of this research is to develop a numerical method suitable for realistic and 

real time surgical training. The objective to achieve this aim is to: 

1. develop algorithms for the XTLED numerical method for arbitrary, cut-

induced deformation of soft tissues, without manually conforming the incision 

to finite element faces. 

The following chapters of this thesis are arranged as follows. A review of the state 

of the art in the simulation of surgical cutting is presented in chapter 2. Chapter 3 and 

4 present background details on continuum mechanics and total Lagrangian explicit 

dynamics method. Chapter 5 presents the chosen numerical method, the extended total 
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Lagrangian explicit dynamics method (TLED), its verification and validation; and 

chapter 6 concludes this thesis.  
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2 SIMULATION OF SURGICAL INCISION 

The main area of focus in this thesis is the simulation of the soft tissue cutting. To 

investigate this, existing work on soft tissue behaviour (simple, linear, nonlinear), 

authors’ justifications for such choices and a brief review of the acquisition of soft 

tissue model will be presented. Secondly, various types of cut models according to 

physics and non-physics-based numerical approaches will be presented, along with a 

review of the representation of cuts for soft tissue cutting. Finally, existing approaches 

to accelerate numerical methods and achieve a haptic rate of 1kHz for cut-induced soft 

tissue deformation is reviewed. For a complete picture, a brief overview of VRS is 

presented first. 

 

2.1 VRS Overview 

In its simplest form, the VRS consists of a haptic device via which a user can 

interact with a computational tissue model, a display screen to visualise the interaction, 

and underlying software which run on a computing system (Figure 2-1). 

 

 

 

 

 

 

Figure 2-1: Components of a virtual reality simulator: the haptic device, display screen and 

underlying software [8], [10] 

Processor 

(includes numerical 

simulation and visual 

rendering software) 

Haptic device 
Tactile and mechanical interface 

User 

Visual display 
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2.2 Soft Tissue Model for Realistic Simulation 

2.2.1 Acquisition of soft tissue model 

Accurate anatomic geometries of soft tissues are required for accurate 

simulation of soft tissues deformation. Such representation makes VRS useful for 

surgical planning and image guided therapy, besides surgical training, and  are 

obtained from medical images via techniques such as X-ray, Computed tomography 

(CT) or Magnetic Resonance Imaging (MRI) [9], [11]. From these images, the desired 

tissue is segmented and spatially discretized into a grid-like structure called mesh [12], 

[13]. Once a geometry is obtained, realistic tissue model is required for tissue 

simulation, as is further discussed below. 

 

2.2.2 Modelling Tissue Behaviour 

There are three categories of soft tissues models in literature: heuristic, 

continuum, and data - driven models [6], [9]. Heuristic models include purely 

geometric representations (Figure 2-2), mass spring model (MSM) (Figure 2-3) and 

surface-based models (Figure 2-4). In geometric representation such as free form 

deformation, external control points placed on the geometry can be manipulated to 

give a desired deformation; MSM is a spring-based model where springs are arranged 

in a specific orientation to obtain a desired stiffness; and in surface based models such 

as Chainmail geometric restrictions dictates deformation.  
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Figure 2-2: Free form deformation (FFD) showing geometry with control points [9] 

 

 

 

 

 

 

Figure 2-3: Mass-spring model showing point mass and springs [9]  

 

 

 

 

Figure 2-4: Chainmail model: (a) chainmail with chain elements (b) black chain element is 

moved along the black arrow (c) other chain elements bounded to the black element deform 

accordingly [9] 

Researchers including Delingette et al., Bielser et al. and Misra et al. 

implemented heuristic models due to its simplicity and computational efficiency [14], 

[15], and [6]. However, such models do not realistically capture the behaviour of soft 
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tissues which consist of elastin, collagen fibres and water, and thus are nonlinear, 

anisotropic, nearly incompressible, time dependent, rate dependent, and an 

heterogenous material that undergo large deformation [6], [14],[16]. For instance, the 

structural behaviour of MSM, which has been extensively researched, is heavily 

dependent on the spring length, orientation, and stiffness. These dependencies make it 

difficult to relate constitutive laws to spring mass models and are unideal for 

topological changes. Thus, despite the simplicity of these methods, they cannot be 

used to depict real deformation of soft tissue.   

A more realistic model is the continuum-based model, otherwise referred to in 

literature as physics-based models. This class of material models are mathematical 

models that characterise tissue behaviour based on the continuum mechanics theory. 

The theory assumes that a structure is a continuous medium and characterises its 

behaviour using parameters obtained from experimental analysis. For instance, linear 

structures are characterised using parameters such as Young’s modulus and Poisson 

ratio [6].  

The simplest continuum-based model is the linear elastic model. Like the 

heuristic model, linear elastic model has been used by many researchers for soft tissue 

deformation. However, due to its underlying principle that stress is computed directly 

from the strain and Young’s modulus, the method is only ideal for small deformation 

analysis where elastic deformation is typically 1% - 2% of material or less than 10% 

of mesh size [17] .In other words, the deformation of the soft tissue should be between 

1% - 2% of its dimension or less than 10% of the mesh dimension. Thus, linear elastic 

models cannot be used to capture the large, time dependent, and rate dependent 

deformations present in soft tissues [17].  
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Alternative continuum-based models are the hyperelastic and visco-elastic 

nonlinear models. Some researchers have adopted one of these models or a hybrid, to 

simulate the behaviour of soft tissues. For example, Ogden hyperelastic model was 

used to model incompressible nonlinear deformation; a hybrid of Mooney Rivlin 

hyperelastic model and 2-term Prony series viscoelastic model were used to capture 

porcine liver nonlinearity [8], [9]; and Mooney Rivlin model and exponential 

relaxation parameter were used to model non-linear and anisotropy behaviour of femur 

medial collateral ligament tibia [17]. These models fit differently to different soft 

tissues, and are ideal for large deformation, but are computationally expensive [6], [8], 

[9], [11], [17]. This is because unlike linear models, stresses for these models are 

obtained by differentiating energy functions [8], [16].  Thus, the widespread use of 

nonlinear models for soft tissue cutting in VRS application has been hindered by 

computational cost. 

The final category which includes neural network, machine learning and shape 

modelling, consists of a set of methods that aim to attain computational speed or/and 

enable the use of patient specific data for real time applications [9], [18]. While these 

class of models may allow for differences in patient anatomy and physiology, the 

challenge of using such models lie in difficulty of obtaining patient specific data.  

A summary of the classes of soft tissue material model is given in Table 2-1. 

Interested readers can refer to [9]. 
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Table 2-1: Soft tissue material models for simulating cut 

Tissue model Pro Con 

Heuristic models 

• Free form 

deformation 

• Mass-spring 

model 

• Chainmail 

• Simple 

• Easy computational 

implementation 

• Discrete representation of a 

continuum model 

• Difficult to relate spring 

parameters to that of soft tissues 

(MSM) 

• Unsuitable for non-linear 

deformation due to difficulty of 

determining a suitable spring 

assembly (MSM) 

Physics-based model (Constitutive models) 

• Linear 

 

• Easy to implement • Inadequate representation of soft 

tissue behaviour  

• Nonlinear 

  

• A better approximation of 

material behaviour 

compared to linear model 

• Accounts for creep and 

relaxation (viscoelastic) 

• Does not account for time 

dependent deformation 

(hyperelastic) 

• Unideal for real time application 

due to effect on computational 

time 

Other 

• Data-driven 

approach 

• Machine learning 

• Neural Network 

• Encourages the use of 

patient specific  

• Real time computational 

advantage 

• Minimum error (machine 

learning) 

• Valid data may be difficult to 

obtain (data-driven approach) 

• Machine learning depends on 

training data and learning 

algorithm 

 

Another factor that influences the accuracy of the result obtained in soft tissue 

modelling, besides the geometry of a soft tissue and its behaviour, is the boundary 

conditions imposed by contiguous tissues [6], [19]. Moreover, to realistically simulate 

tissue deformation, the effect of neighbouring tissues should be considered. A research 

that has considered the effect of neighbouring tissues and friction is Courtecuisse et 

al.  [19]. In the article, liver deformation was simulated with the effects of adjoining 

organs (stomach, colon, intestine and diaphragm). Very little research exists about the 

effect of neighbouring tissue and friction, due to the difficulty of obtaining in vivo 

data [6], [9].  
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2.3 Numerical Method for Simulating Surgical Incision 

The type of problem under consideration dictates the equilibrium equation that 

is solved. For structural problems such as the deformation of a soft tissue, the 

mathematically model used is as elliptical equation written as partial differential 

equations (PDE) and governed by boundary conditions [20]. A numerical approach is 

required to solve or discretise this partial differential equation that governs the 

structural response of a deformable body (Figure 2-5). Traditionally, existing 

numerical methods for simulating soft tissue incisions are categorised as mesh and 

meshless methods, based on the technique employed to discretise the computational 

simulation domain [21]. Mesh methods allude to a grid-like spatial domain 

discretization where different elements may be used, while meshless methods describe 

a domain discretised with mass points (Figure 2-5). Different approaches are adopted 

for simulating soft tissue incision using either method or a hybrid. The following 

section looks at mesh-based and meshless method and the associated cutting 

techniques adopted for simulating surgical incision. 
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Figure 2-5: Stages of simulating incision induced soft tissue deformation (left); examples of 

three dimensional mesh-based discretization (right, top), and two-dimensional meshless 

discretization (right, bottom [22])  

 

2.3.1 Mesh Based Methods 

 Of the mesh based methods, finite element method (FEM) is the most 

commonly used method in the field of surgical simulation, due to its accuracy in 

estimating structural response [8], [23]. Other methods such as boundary element 

method (BEM) are scarcely used since, for instance, BEM is only ideal for small 

deformation and its surface-only-discretization approach is unsuitable for volumetric 

topological changes, which exists during tissue incision [24], [25]. FEM is categorised 

into linear, corotational or nonlinear. Regardless of the type of analysis, the 

computational domain (geometry) is subdivided into a mesh of elements 

interconnected at nodes, and the deformation of the structure is computed from the 
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displacements at the nodes using shape functions. These shape functions could be 

polynomials of any order, depending on the dimension of the problem. An 

approximation of the unknown variable is subsequently obtained by refining the mesh 

whilst concurrently ensuring that the generated elements are of good quality, that 

continuity is maintained within elements and that there are no gaps between 

neighbouring elements during deformation. Thus, solution accuracy of FEM (and all 

mesh-based methods) is determined by the shape function (element type) and element 

quality.  

To model interactive soft tissue incision using the FEM, cutting tool 

representation, cutting techniques and solution of deformation using all types of FEM 

analysis previously mentioned must be considered, and is presented next.  

 

2.3.1.1 Cutting Tool Representation in FEM 

Knowledge of cutting tool representation is required to simulate collision or 

tool-tissue interaction for any chosen cutting technique. This representation varies 

depending on the type of spatial discretization adopted for the computational domain 

of the deformable body. In mesh-based methods where tetrahedral, hexahedral or 

polyhedral are used, the cut is usually represented as triangles or links. For a 

tetrahedral or polyhedral mesh representation, the cut representation is easily extracted 

from the element surfaces of the deformable computational domain. On the other hand, 

surface reconstruction techniques like splitting cube or dual contouring algorithms are 

adopted to create a smooth cut representation due to the jagged surface effect of 

hexahedral mesh [8], [9]. Once this is determined, various individual or hybrid cutting 

techniques may be used. 
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2.3.1.2 Cutting Techniques in FEM 

 

Figure 2-6: Partially empty replicas of a cut element; white circles indicate the virtual 

nodes [26] 

Incisions have mainly been simulated with tetrahedral representations of a 

deformable body because it is easily adaptable to complex geometry due to its shape, 

in comparison to other elements. Consequently, a few methods have been proposed 

for soft tissue cutting using tetrahedral over the years [8], [27]. Of these cutting 

techniques, element duplication (or virtual node method) seems the most suitable for 

achieving arbitrary cutting, since it avoids numerical instability due to ill-shaped or 

silver elements and is applicable to different element types. Molino et al. originally 

proposed this method with tetrahedral and shell elements [26]. The idea was to create 

replicas of the cut element with the same nodal connectivity as the original element 

(Figure 2-6), compute deformation using the well-shaped replica, and to interpolate 

mid-nodes displacements from element nodes. The advantage of this method lies in 

the lack of remeshing, since remeshing could create of silver elements. Consequently, 

element duplication method eliminates instability issues since only well-shaped 

elements are used to compute the deformation response of the body. In other words, 

the resolution of the mesh and deformable geometry are separated. Furthermore, the 

researchers who proposed this method stated that the approach is suitable for multiple 

cuts and the algorithm can handle partially and fully cut elements. However, it is 
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unknowns whether the approach is similarly suited for the incision of an already cut 

elements, and whether cases of silver elements may arise. Furthermore, the method is 

limited by the fact that there must be at least at least one virtual node in the replica 

geometry. To eliminate this limitation, Sifakis et al. proposed a purely virtual node 

element algorithm to enable arbitrary number of element replicas [28]  .  

Prior to element duplication, other methods including element deletion, 

element refinement, splitting along existing element faces, node snapping, element 

refinement and node snapping had been proposed (Figure 2-7).  

 

Figure 2-7: Cutting techniques presented in 2D [8] 

Element deletion was one of the first known cutting techniques proposed and 

adopted for simulating incisions [27], [29]. In this method, elements intersected by a 

cutting tool are deleted. While this method is simple and does not lead to the creation 

of new elements, it violates mass conservation law and is an inaccurate approximation. 

Similar in consequence to element deletion is the technique of cutting along existing 

element face. Here, because the original number of elements prior to cutting is 

maintained, the technique hinders arbitrary cutting and is only ideal if the cut path is 
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known prior to simulation. A fourth technique is element remeshing. Similar to 

element deletion, element remeshing had been used by many researchers at least 

between 1999 and 2001 [27]. However, while element remeshing eliminates the 

inaccuracy due to loss of mass and volume, the number of elements generated due to 

this technique increases the computational time for computing deformation. Hence, 

achieving real time simulation via element remeshing seems farfetched, and there is 

also the possibility of generating ill-shaped elements.  

A common hinderance in the above cutting techniques is the creation of ill 

shaped elements. Researchers such as  Bielser et al. proposed strategies for tetrahedron 

decomposition to prevent creating poor quality elements [15], [30]. Five topological 

configurations were created as a result; two complete partition of a tetrahedron (III, 

IV) and three partial partitions (Figure 2-8, left). Steinemann et al. enhanced the 

method by providing an algorithm that enabled cutting along node, adding three extra 

configurations to those of Bielser et al. [31] (Figure 2-8, right). Other attempts to 

reduce the number of elements generated as a result of element refinement include 

progressive cutting and multiresolution approach [32], [33]. While all these methods 

do work, the creation of new elements does not eliminate the possibility of creating ill 

shaped elements. 
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Figure 2-8: Partial and full topological configuration as proposed by [15], [30]  

A final category of cutting technique aimed at enabling arbitrary cut paths and 

eliminating the creation of poor-quality elements are the node snapping and a hybrid 

of node snapping and element refinement [34]. In the former method, nodes are 

brought onto the cutting path if it is considered too close to any element node based 

on a distance criterion. Consequently, this method reduces the number of new 

elements generated. However, there is still a possibility of creating ill-shaped elements 

which could lead to the removal of such element, thus, leading to an inaccurate 

solution [35]. A summary of all cutting techniques is given in Table 2-2 below. 

Table 2-2: Comparison between cutting techniques 

 Element deletion Element refinement Node snapping Element 

duplication 

Pro  No creation of extra 

elements during 

cutting 

Enables arbitrary 

cutting 

Enables 

arbitrary cutting 

Enables 

arbitrary cutting 

Cons Does not fulfil mass 

conservation law 

Creation of new 

elements after 

cutting 

Creation of ill-

shaped elements 

Unknown if ill-

shaped elements 

are generated 

 

In hexahedral mesh, linked volume representation and adaptive octree grid 

were used to simulate cuts [8]. Although, the hexahedral is not a simple shaped 

element like the tetrahedral, it is a higher order element, and this allows for faster 
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convergence [8]. However, both tetrahedral and hexahedral elements behave overly 

stiff, for nearly incompressible material such as a soft tissues, when the elements are 

fully integrated – this can be overcome using under-integrated elements, where one 

Gauss point is used for integration [36], [37]. This phenomenon of over stiffening of 

fully integrated elements is referred to as volumetric locking.  

Linked representation of cut was proposed by Frisken-Gibson [38]. Here, the 

deformable body is discretized into uniform hexahedral grid with adjacent element 

faces connected by links: six links per hexahedral. These links are disconnected when 

intersected by the virtual cutting tool and information of the point of intersection on 

the link and the normal to the tool is stored to create surface vertices on the affected 

cells (that is the cells containing either ends of the link). Subsequently, a surface is 

created using two surface patches: 2 by 2 triangles per each cut link.  

An alternative cutting technique in hexahedral mesh is the use of adaptive 

octree grid proposed by Wu et al. [8]. Here, the majorly coarse hexahedral elements 

are further refined along the cut, whilst maintaining a smooth transition between 

elements that share edges, vertices or faces. 

Polyhedral mesh has also been used for numerical discretization by Martin et 

al. [39]. Polyhedral allows the flexibility of generating varied number of n-sides 

elements after cutting, unlike the tetrahedral and hexahedral mesh where same-sided 

elements must always be present in the mesh. As a result, polyhedral cutting creates 

reduces number of new elements after incision, compared to previously mentioned 

methods. However, polyhedral discretization is affected by two drawbacks. These 

drawbacks are lack of clarity about element quality of polyhedral, and the possibility 
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of creating of ill shaped elements. As with any mesh-based method, element quality is 

essential for computational accuracy.  

 A comparison of the tetrahedral, hexahedral and polyhedral discretization 

elements is given in Table 2-3. 

Table 2-3: Comparisons of incisions in tetrahedral, hexahedral and polyhedral mesh 

 Tetrahedral Hexahedral Polyhedral 

Pros • Ideal for discretizing 

complex geometries. 

 

• Cutting tool surface 

is easily represented 

by inspecting the 3D 

geometry that is to be 

cut. 

• A higher order element 

than the tetrahedron 

element. 

 

• Higher order element than a 

tetrahedron or hexahedron.  

• Less elements are 

generated. 

• Easy generation of cutting 

tool surface. 

• No restriction of elements 

generated during cutting. 

Cons • Ill shaped elements 

lead to numerical 

instability 

• Computationally more 

expensive due to more 

nodes. 

• Requires a technique 

to generate smooth 

cutting tool surfaces 

• May create ill shaped 

elements which affects 

stability  

 

2.3.1.3 FEM Simulation of Surgical Incision 

A time-dependent partial differential equation or governing equilibrium 

equation must be solved to simulate incision (Figure 2-5). The discretization of this 

equation in FEM, using shapes functions (which translates to elements type used for 

spatial discretization) and time integration methods leads to a system of equations 

which is be solved at every time step. The numerical finite element discretization could 

be linear, co-rotational or nonlinear FEM. As for the time integration, this could be 

implicit or explicit time integration methods. 

The simplest FEM is the linear elastic model which assumes that the material 

undergoes small displacement and strain, and for which the linearized Green strain 
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(Cauchy strain) is used. Many researchers have implemented the linear elastic FEM 

due to its simplicity and computational efficiency.  For example, Song and Reddy 

simulated the cutting of 2D object using linear elastic FEM [40]. Cotin et al. used 3D 

quasi-linear elastic FEM model of a liver and also incorporated force feedback and 

contact algorithm [41]. Update frequencies of 500Hz and 30Hz were reported for force 

and visual updates, respectively. However, linear FEM cannot accurately model non-

linear behaviour and a consequence of such simplification is the ghost forces 

phenomenon, which is due to the use of rotation variant Cauchy strain that results in a 

structure expanding unreasonable during large deformation (Figure 2-9).  

 

 

 

 

 

Figure 2-9: Deformation of a liver using linear elastic model (wire fire) and nonlinear 

elastic model (solid) [17] 

However, the co-rotational method proposed by Müller et al. solves the issue 

by combining linear elastic FEM with Cauchy strain [42]. Here, the reaction force is 

computed with the elements aligned to their reference (undeformed) configuration and 

then rotated back into the deformed configuration. Hence, the choice of the rotation 

technique heavily affects the solution accuracy. 

Non-linear behaviour in FEM is categorised into contact, material and 

geometric nonlinearity. In the context of surgical simulation, accurate real time tool-
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tissue interaction falls under contact while complex or irregular shape of the soft 

tissues fall under material and geometric non-linearity. Some attempts to model non-

linear tissue behaviour include the work of Taylor et al., where Neo-Hookean 

hyperelastic model with explicit time integration method were implemented to model 

brain shift [43]; Ghali and Sirouspour implemented Ogden’s constitutive model for 

material and geometry non-linearity [44]; Picinbono et al. simulated surgical gestures 

in laparoscopy using anisotropic, non-linear St. Venant-Kirchoff constitutive model 

of liver in FEM with explicit dynamic method [17]. An updating frequency of 20Hz 

was reported in the latter. 

 

2.3.2 Meshfree Methods 

Meshless methods have been adopted to avoid the dependency of solution 

accuracy on quality element, as present in mesh-based methods. Even after generating 

quality mesh for a complex soft tissue, it is still possible to produce highly distorted 

elements (i.e. zero or negative Jacobian) during simulations, due to large deformation 

of soft tissues, thus invalidating the solution [9]. 

In meshless methods, the problem domain is discretized by disconnected 

arbitrary nodes and with the displacement at any point of interest is approximated 

using interpolation functions over a support domain consisting of neighbouring nodes,  

(Figure 2-5) [8], [9], [22]. This support domain is usually rectangular or circular. The 

choice of interpolation function in meshless method influences correct and easy 

imposition of boundary conditions, which are essential to creating incision (Table 

2-4). Unlike finite elements, whose shape function possesses all qualities stated in 

Table 2-4, interpolation functions used for some meshless methods do not possess all 

these qualities. For example, the moving least squares interpolation function (MLS) 
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used in Element free Galerkin method (EFG) does not possess the Kronecker delta 

property necessary for easy implementation of boundary conditions. Furthermore, 

specifically for simulating incisions, the benefits of arbitrary nodes with no explicit 

connectivity comes with the drawback that node-to-node adjacency must be 

computed, stored and updated for every simulation step, thereby increasing 

computational time [8]. 

 Some of the most prominent methods in virtual surgical simulation are hereby 

presented with the cutting techniques used for such methods. 

Table 2-4: Shape function properties and implications  

Shape function properties Description and implications 

Consistency or 

reproducibility 

This is the ability to reproduce a certain order of polynomial 

in all support domains across the problem domain. Required 

for passing the standard patch test 

Compatibility Ensures the solution of adjacent elements are the same and 

hence there are no false gaps 

Kronecker delta  𝑢(𝑥) = 𝑢𝑖  

Ensure correct imposition of boundary constraint. That is the 

displacement constraint applied at any point of interest 

equals the nodal displacement at that point. Implies that the 

former can be specified by fixing the latter. All this can only 

happen when the sum of shape function at a node of interest 

equals 1 

Partition of unity (PU) The sum of all nodal shape functions within a support 

domain, evaluated at any point of interest within the same 

domain equals unity. 

Compact Enables sparse and banded discretised system equation 

 

2.3.2.1 Cutting Techniques in Meshless Method 

There are four ways to simulate incision in a meshless domain [8], [22] (Figure 

2-10). Visibility criterion is a technique where the shape function of a point that is 

perceived visible from a simulation node is assigned a zero value, creating an artificial 

discontinuity. The issue with this method is the definition of the visibility criterion can 

leave some nodes wrongly diagnosed as being on either side of a cut. The transparency 
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and diffraction ray methods were proposed to alleviate the wrong diagnosis in 

visibility method. But unlike the visibility criterion, these methods are for 2D 

simulation of a discontinuity. Transparency method creates discontinuity based on a 

distance criterion between the simulation node 𝑥𝑖  and any other arbitrary node 𝑥. On 

the other hand, the diffraction ray method is similar to the transparency method, but 

here, the distance between a simulation point 𝑥𝑖 and an arbitrary point 𝑥 is weighted 

by the distance of 𝑥 from the discontinuity tip. This was extended to 3D by Steinemann 

et al. who proposed the use of visibility graph [31].  

 

Figure 2-10: Techniques for simulating discontinuity in meshless methods[8] 

 

2.3.2.2 Meshless Simulation of Surgical Incision  

There is a long list of meshless methods as a choice of numerical method. A 

few of these methods have been adopted for surgical simulation and others have been 

modified for the same purpose.  

One of the first methods in meshless methods is the smoothed particle 

hydrodynamics (SPH). Although originally created for fluid analysis, SPH was 
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adopted for surgical simulation. In this method, responses including displacements, 

and forces are approximated at any point of interest using kernel shape functions are 

used over a smoothing distance (rather than a well-defined domain). A few 

modifications of SPH including the predictive corrective incompressible SPH, 

normalised total Lagrangian SPH were proposed by Palyanov et al. and Rausch et al. 

respectively [45],[46]. Point Collocation-based method of Finite Spheres (PCMFS) 

was proposed by De et al. for simulating surgical incision [47]. These researchers 

stated that PCMFS is suitable for simulating real time simulation without the need for 

pre-computation. The points stated by the authors was that solution accuracy was 

dependent on the nodal distribution within the domain and the resulting stiffness 

matrix is non-symmetric. The method was compared to the standard FEM using linear 

elasticity theory with the hope of using a non-linear elastic model using 

multiresolution approach in future research.  In 2010, the method was extended  to the 

Point-Associated Finite Approach [6].  

In 2010, Horton et al. proposed the Meshless Total Lagrangian Explicit 

Dynamics method (MTLED) [48]. In this method, the problem geometry or domain is 

discretised into hexahedral that do not conform to the domain and are only used for 

numerical integration. However, this non-conformity results in volume inaccuracy 

during integration when intersected with the domain boundary. The shape function 

used for estimating deformation are non-polynomial functions and its support domain 

spans outside of a single hexahedron. This non-polynomial shape function is ideal for 

approximation rather than interpolation since the evaluation of a function at a node 

using this shape function does not give an exact solution (i.e., lacks Kronecker delta 

property). In addition, MTLED method seems ideal for average or overall reaction 

force and displacement since it does not perform well when nodal estimates of the 
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same variables are required. Nonetheless, similar to TLED from which it was coined, 

the advantage of MTLED is its total Lagrangian finite element formulation which 

enables the computation of derivatives with respect to initial or reference 

configurations and with the use of deformation gradient the system matrix is collated 

per time step. It was reported to be twice as fast as it TLED counterpart using 

hexahedral mesh and thrice as fast using tetrahedral mesh [49]. In trying to solve the 

volume inaccuracy and drawback of inability to easily implement displacement 

boundary conditions present in MTLED, Zhang et al. proposed the use of tetrahedral 

and the combination of MLS with polynomial FEM shape function [50]. The latter, 

however, requires the creation of elements along the domain boundaries. Thus, this 

leads to the same concern of quality mesh present in mesh-based method. Furthermore, 

in 2017, Jin et al. proposed a displacement correction to alleviate the implementation 

of boundary condition issue present in MTLED [51]. While this approach alleviates 

the issue, it is assumed that it leads to increased computational time, since these are 

all corrective measures. Two other improvements were suggested by Zou et al. and 

Chowdhury et al. to enable imposition of boundary condition and obtain a more 

accurate solution as a result [52], [53]. The latter developed a modified MLS (MMLS) 

shape function while the former used radial basis polynomial shape function (RPIM).  

Similar to these are the smoothed point interpolation methods (SPIM). Though not yet 

adopted for any surgical simulation, this class of method which is distinguished by the 

use of radial or point interpolation shape functions and the use of integration cells 

which are only used for integration. An example is the point interpolation method 

(PIM) proposed by Wang et al. [54]. The shape functions possess the Kronecker delta 

property and enables the use of higher order shape functions.  
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Other meshless methods that have been adopted include the analytical 

meshless method by Aras et al.  [55], and the most recent attempt specifically for 

virtual simulator proposed by Cheng et al. [56]. In the latter a viscoelastic material 

model is used and cutting force are considered for tool-tissue interaction. 

The main issues with meshless method are the imposition of essential 

boundary conditions and handling moving discontinuities or the generation of 

computational surfaces to simulate tool-tissue collision, the creation of new surfaces 

due to cut, and the dependency of accuracy on effective distribution of nodes [22]. 

While these problems have solutions, there is an increased computational cost 

associated to them. For example the issue of collision handling was investigated by 

Jung and Lee using dynamic bounding volume hierarchy [57]. Many other proposed 

solutions can be found in the review article by Nguyen et al. [22]. 

 

2.3.3 Other Numerical Methods 

Another class of method between the mesh-based and meshless method is the 

extended finite element method (XFEM). The principle is based on decoupling the 

spatial discretization of the cut from that of the geometry into which it is introduced. 

This distinction of spatial discretization alludes to the possibility of reaching a balance 

between accuracy and speed.  

In XFEM, the cut is modelled into the problem domain by discretizing the 

solution space (as given in FEM but) with an additional discontinuous shape function 

and which amounts to added degree of freedom. The displacement field of the problem 

is thus computed as the summation of a continuous and discontinuous displacement 

fields. The most common choice of the enrichment function which satisfies the 
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Kronecker delta property is the shifted Heaviside function. It preserves the enrichment 

function within the cut elements but vanishes (equals zero) at the element borders and 

beyond thus simplifying the implementation. Authors who have used the method 

include Martin et al. who proposed harmonic enrichment approach that employs one 

type of enrichment function type for partial, multiple, progressive and complete cuts 

[39]. Jeřábková et al. also presented an implementation of the XFEM method with 

total Lagrangian formulation of the FEM, without validation [58]. 

 

2.4 Techniques for Reduced Computational Time 

Reducing computational time is usually done via three ways: using basic soft 

tissue models such as the heuristic or linear elastic model (as described in section 

2.3.1.3), employing means of reducing the size of the stiffness matrix when implicit 

time integration method is used or using a GPU implementation of a numerical 

algorithm.  

One of the earliest and notable attempts to reduce computational time for real time soft 

tissue deformation is the condensation technique proposed by Bro-Nielsen [23] and 

implemented by Kühnapfel et al [59].  The technique which uses volumetric mesh, is 

based on the idea of only calculating the displacement of the nodes in the vicinity of 

the deforming force or tool. Consequently, the global stiffness matrix is only populated 

with local stiffness matrices of the surface nodes. In the author’s work, a linear elastic 

3D model of the lower leg was analysed without any force feedback but with a visual 

update record of 30Hz. A similar concept is utilised in the multiresolution or 

hierarchical approach where information from the local region under deformation is 
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used to solve the system equation [60]. The difference with the condensation method 

is the insertion of new nodes in the region of deformation. 

Reduced order method (ROM) was originally proposed by Krysl et al. [61] and 

implemented by Taylor et al. [37]  This method involves approximating the full 

displacement response of dynamic equilibrium equation using a generalised 

displacement of much lower dimension [43]. Thus, it reduces the size of the dynamic 

system equation that must be solved. The aim of using this method was to alleviate the 

drawback of conditional stability in explicit time integration method. The drawback 

highlighted in the research is the fact that the ROM is only suited for homogeneous 

boundary conditions. 

An alternative optimization method is computing the bulk of the calculation at the pre-

processing stage (prior to the time stepping) as seen in Cotin et al. [41] wherein a 3D 

hybrid model of a liver was used for verification. This method is very efficient and 

can be used with any optimization technique were appropriate. The use of the major 

or significant vibration modes to obtain the deformation of a dynamic problem is 

another way to reduce the computation time. This technique was implemented by 

Basdogan in 2001 [62]. In the same year, Wu et al. proposed the idea of a progressive 

mesh to reduce computational time in FEM and enable real time deformation [63].  

Another important alternative for reducing computational time is the type of system 

equation solver used. For example Cholesky decomposition is faster than LU while 

LU decomposition is said to be slower than direct solvers or methods that require  

inversing the stiffness matrix or factorization [6], [64]. Direct solvers do not consider 

system invariance and they also require large memory for storage. Iterative methods 

on the other hand could be combined with preconditioners to speed up convergence 
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and hence computation time. For example, in the research of Courtecuisse et al., 

conjugate gradient method using an asynchronous preconditioner update at low 

frequency was said to reduce the number of calculations [19]. 

The use of a parallel processor also reduces the computational time. Originally created 

to process graphics, GPU has evolved into a programmable graphics processing unit 

that can now be used to accelerate algorithms of different applications including 

engineering problems. This is because GPU’s can now perform arithmetic operations; 

supports higher precision floating point values (32 bits); has increased memory 

bandwidth; and is faster due to the dedication of its transistors to computing rather 

than extracting instruction-level parallelism as is the case with CPU [65], [66].  

To be able to use GPU, the algorithm must be such that it can be parallelized. 

In other words, the algorithm must have sections that are independent and can be run 

simultaneously. Such parts of the algorithm are usually identified as loops [67]. 

Several reports exist about accelerating algorithms using GPU. In a 2017 report 

by Mariappan et al., a software developed to predict features of a hepatic lesion could 

compute lesions in 3mins within a 26mins ablation procedure. While this time is 

significantly below the requirement for surgical cutting, the report shows that GPU 

implementations of algorithms can improve performance time in important research 

fields such as cancer treatment [68]. Possibly the first implementation of a FEM is the 

2008 report by Taylor et al. [69].  In the publication, Taylor et al. presented a GPU 

implementation of a nonlinear finite element algorithm for brain deformation - this 

was when the programmability of GPU tool was still in its infancy - and an increase 

in performance in comparison to CPU implementation of the algorithm was reported. 

Similarly in 2010, Zhang et al. reported an increase in speed for a GPU implementation 
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of a spring model algorithm used for endoscope image cutting simulation. The GPU 

implementation was reported to be 27.57 times faster per iteration, than its CPU 

counterpart, for a 70 x 70 mesh grid resolution [70]. Intuitively, a significant increase 

in performance is expected with increasing number of iterations for the GPU 

implementation. Similar to Taylor et al.’s 2008 publication, Mafi and Sirouspour, 

developed a GPU implementation of a nonlinear finite element and implicit time 

integration method in 2014. The result obtained confirmed that the GPU 

implementation of the proposed preconditioned gradient (PCG) method could 

potentially be used to achieve a haptic feedback rate of 10-1000Hz for soft tissue 

simulation [71]. In 2015, in the neurosurgical field, Sase et al. compared the 

computational speed for simulating the opening of a brain fissure via blunt dissection 

and brain retraction procedures, in real time, using a CPU, multicore CPU (with 

parallelization) and GPU implementation of nonlinear corotational finite element 

method [72]. The focus of the research was on time consuming aspects of FEM: matrix 

assembly and rearrangement. The computational time reported were 20ms and 80ms 

for blunt dissection and brain retraction respectively. Clearly, from these reports, GPU 

implementation of parallelized algorithms is faster than CPU, and thus GPU 

accelerates computation time for parallelizable algorithms.  

A current trend in research is geared towards a combination of CPU and GPU. 

This is reported in many researches [67], [73]–[75]. The article written by Joldes et al. 

[73] reported 20 times increase in the computation speed for the hybrid method.  

 



42 
  

2.5 Summary of Review 

Many approaches have been adopted by researchers to achieve realistic soft 

tissue deformation induced by cutting.  

Different soft tissue models have been used with numerical method for solving 

soft tissue deformation. The most suitable soft tissue model to achieve realism in 

surgical training application is the nonlinear model, since it better captures soft tissue 

behaviour. In addition, patient specific nonlinear model would be an ideal model, and 

methods such as machine learning are currently geared towards achieving this. 

However, the implication of using a nonlinear soft tissue model is its impact 

on computational time of the numerical solver for solving the structural problem. The 

choice of using a nonlinear soft tissue model further compounds the problem of 

achieving realistic simulation, since displacements are computed from the constitutive 

equations. Thus, nonlinear models are computationally more expensive in comparison 

to linear or spring mass models 

The numerical method used for computing soft tissue deformation puts another 

constraint on computational time. Existing mesh-based and meshless numerical 

methods have inherent limitations. Mesh based methods such as BEM are limited by 

factors such as suitability for large deformation, incorporation of topological changes, 

suitability for volumetric model (BEM). The most promising mesh-based method, 

FEM is affected by the existence of numerical instabilities due to poor mesh quality/ill 

conditioned elements which invalidates solution. Furthermore, there is the challenge 

of non-automated mesh generation of certain mesh types like hexahedral and 

polyhedral mesh which are of better quality than tetrahedral mesh. Furthermore, while 

a tetrahedron is a more appropriate choice for discretizing irregular shapes such as soft 

tissues, it exhibits the locking phenomena which affects solution accuracy. However, 
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existing remedies such as the average nodal pressure tetrahedral elements (ANP) 

proposed by Joldes et al. [36], seem very promising to combat this issue. Hexahedral 

on the other hand are high quality elements but produce jagged problem geometry and 

cut surfaces.  

 As for meshless methods, the main limitation is the additional computational 

cost of creating, storing and updating node to node adjacency and imposition of 

boundary conditions. A possible alternative for simulating arbitrary soft tissue incision 

is the use of a semi-meshless method such as SPIM, where imposition of boundary 

conditions can easily be implemented without any treatment due to the use of a 

polynomial shape function. A more promising and possible the most suitable 

numerical method for simulating discontinuity is the XFEM. Here discontinuities are 

created as an enrichment of the basis function and thus alleviates solution instability 

due to the creation of new and ill-shaped elements as a result of incorporating a cut.  

Harnessing this benefit of XFEM and coupling XFEM method with a time 

integration method such as the explicit time integration method, could enable 

nonlinear simulation soft tissue incision at interactive rates of 1kHz for haptic 

rendering. 
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3 CONTINUUM MECHANICS  

The XFEM method, an extension of the finite element method, is based on 

variational approach which is built upon continuum mechanics theory. The continuum 

mechanics theory assumes that a structure is approximated as a continuous medium 

made of continuum particles. However, in reality, any structure is a composition of 

discrete atoms and subatomic components. Nonetheless, depending on the application 

- here for the purpose of simulating soft tissue deformation due to incision - it is 

sufficient, to predict the behaviour of a structure with continuous functions of variables 

such that the smoothness and continuity of the material holds at any structural level 

(i.e. micro or macro), and the existence of a granular level of discrete particles (atoms) 

is ignored.  

Continuum mechanics covers three main topics: kinematics (motion without 

considering its cause, includes the study of deformation and strain); stress in a 

continuum structure; and the mathematical representation of the physics governing the 

behaviour of a structure. This section introduces the fundamental and relevant 

components of continuum mechanics as a prelude to the variational approach and 

XFEM method presented in chapter 4 and 5. Interested readers can refer to [16], [76] 

for further details.  

 

3.1 Motion, Deformation and Strain Measure 

Kinematics deals with the motion of a body without reference to its mass or 

the influencing force [76]. Motion is that which causes a change in shape 

(deformation), position (translation) or orientation (rotation) of a body.  A measure of 

motion, deformation gradient, is central to kinematics and enables the development of 
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various strain measures. Also, since soft tissue deformation by incision is a dynamic 

process, velocity, acceleration and the rate of change of deformation and strain 

measures are briefly described in the following section. 

 

3.1.1 Characterisation of Motion  

As a body traverses through space it assumes different configurations over a time 𝑡. 

Thus, continuum points in the body at the start of the motion will have corresponding 

unique points at other times during the motion. Figure 3-1 shows a body within a 

Cartesian coordinate system with origin O and coordinate axes defined by unit vectors 

𝒆1, 𝒆2, and 𝒆3, that traverses from an initial (reference) configuration at time 𝑡 = 𝑡0, 

to new configurations (current configuration) after a time 𝑡 in space. The body also 

occupies a region or volume in space (configuration) denoted by 𝛺 and bounded by a 

surface area denoted by 𝛤. The motion of such a body is mathematically defined as 

the vector field 𝝌 that maps a continuum point in the reference configuration, defined 

by a position vector 𝑿, to a unique point in the new configuration, defined by position 

𝒙 eq. (1), where 𝑿 = 𝑋𝑎𝒆𝑎, ,    𝒙 = 𝑥𝑎𝒆𝑎, 𝑎 =1 or 2 or 3 coordinate directions. 

 
𝒙 =  𝝌(𝑿, 𝑡) (1) 
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Figure 3-1: Motion of a continuum body 

For a valid motion, conditions that must be fulfilled are summarised below [16], [77]:  

1. the motion maps a point in the reference configuration to a unique point in the 

current configuration - that is, the motion must result in a 1-to-1 relation between 

these points, 

2. the motion must be invertible: that is, the position of a particle in the reference 

configuration must be obtainable from 𝑿 = 𝝌−1(𝒙, 𝑡), and 

3. the motion should be continuously differential to enable the definition of 

deformation.  

𝑥 
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Based on the different configurations, it is possible to characterise motion with 

respect to either the reference (Lagrangian) or current configuration (Eulerian). The 

approach adopted is dictated by computational convenience of the branch of 

continuum mechanics (i.e. fluid or solid mechanics), although, either approach is 

applicable within all continuum branches. The Lagrangian approach is adopted when 

the focus is the particle (body), whereas Eulerian approach is adopted when the focus 

is on a specific region in space through which the body traverses.  

 

Displacement, velocity and acceleration  

For a body that undergoes motion, displacement, velocity and acceleration can 

be defined as follows. Displacement is a vector field which describes the change in 

position of a continuum particle during motion and is defined as: 

 𝑼(𝑿, 𝑡) =  𝒙(𝜲, 𝑡) −  𝑿 = 𝝌(𝜲, 𝑡) − 𝑿 (2) 

It relates the reference and current positions of the particle. The corresponding velocity 

and acceleration obtained as first and second time derivatives of the displacement field 

and their corresponding spatial forms are given in the table below: 

 

Table 3-1: Material and Spatial forms of displacement, velocity and acceleration 

Quantities Material form Spatial form 

Displacement 𝑼(𝑿, 𝑡) =  𝒙(𝜲, 𝑡) −  𝑿 𝒖(𝒙, 𝑡) =  𝒙 −  𝑿(𝒙, 𝑡) 

Velocity 
𝑽(𝑿, 𝑡) =

𝜕𝑼(𝑿, 𝑡)

𝜕𝑡
 𝒗(𝒙, 𝑡) =

𝜕𝒖(𝒙, 𝑡)

𝜕𝑡
 

Acceleration 
𝑨(𝑿, 𝑡) =

𝜕2𝑼(𝑿, 𝑡)

𝜕𝑡2
 𝒂(𝒙, 𝑡) =

𝜕2𝒖(𝒙, 𝑡)

𝜕𝑡2
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3.1.2 Measures of Deformation  

Measure of deformation and strain are crucial to nonlinear continuum mechanics, 

since motion causes deformation, that is change in the shape and size of a body. We 

begin with the deformation gradient which is important for the derivation of strain 

measures. Rate of deformation is also introduced to explore the variation of 

deformation with time and this is later used for the derivation of balance principles 

[16]. 

Deformation gradient 

Similar to the displacement which maps a point in the reference configuration 

relates/maps to its corresponding unique point in the current (deformed) configuration, 

the deformation gradient describes deformation of line segment (material fibres) 

within a continuum, that is how a tangent vectors to a curve deform. Given a curve 

with a line segment 𝑑𝑿 in the reference configuration and which maps to 𝑑𝒙 in the 

current configuration, the deformation gradient which relates both line segments is 

given as: 

 
𝑭(𝑿, 𝑡) =

𝜕𝝌(𝑿, 𝑡)

𝜕𝑿
= 𝐺𝑟𝑎𝑑 𝒙(𝑿, 𝑡). (3) 

The deformation gradient is also referred to as the Jacobian matrix of motion and it is 

a 2nd order tensor with 9 components given in matrix form as: 

 

𝑭 =

[
 
 
 
 
 
 
𝜕𝑥1

𝜕𝑋1

𝜕𝑥1

𝜕𝑋2

𝜕𝑥1

𝜕𝑋3

𝜕𝑥2

𝜕𝑋1

𝜕𝑥2

𝜕𝑋2

𝜕𝑥2

𝜕𝑋3

𝜕𝑥3

𝜕𝑋1

𝜕𝑥3

𝜕𝑋2

𝜕𝑥3

𝜕𝑋3]
 
 
 
 
 
 

 (4) 
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To ensure compatibility (i.e. no gaps or overlaps) in the deformable body, the motion 

of a body must have an invertible deformation gradient (eq. 5), whose determinant 

(𝑑𝑒𝑡 𝑭) must not be singular, that is 𝑑𝑒𝑡𝑭 > 0  [16]. 

 
𝑭−1(𝒙, 𝑡) =

𝜕𝝌−1(𝒙, 𝑡)

𝜕𝒙
= 𝐺𝑟𝑎𝑑 𝑿(𝒙, 𝑡),  (5) 

where a component of the tensor is  𝐹𝐴𝑎
−1 =

𝜕𝜒𝐴
−1

𝜕𝑥𝑎
= 𝐺𝑟𝑎𝑑𝑥𝑎

𝑋𝐴. 𝑥𝑎 is the component of 

𝒙 and 𝑋𝐴 is the component of 𝑿.  

The gradient of the displacement field, displacement gradient tensor could be defined 

in relation to the deformation gradient and displacement as: 

 𝐺𝑟𝑎𝑑𝑼(𝑿, 𝑡) =  𝐺𝑟𝑎𝑑𝒙(𝜲, 𝑡) −  𝐺𝑟𝑎𝑑𝑿 

𝐺𝑟𝑎𝑑𝑼 = 𝑭(𝑿, 𝑡) − 𝑰 =     𝑜𝑟     
𝜕𝑈𝑎

𝜕𝑋𝐴
= 𝐹𝑎𝐴 − 𝛿𝑎𝐴 

(6) 

where 𝑰 is the identity tensor and 𝛿𝑎𝐴 is the Kronecker delta. The corresponding spatial 

form is  

 𝑔𝑟𝑎𝑑𝒖(𝒙, 𝑡) =  𝑔𝑟𝑎𝑑𝒙 −  𝑔𝑟𝑎𝑑𝑿(𝒙, 𝑡) 

𝑔𝑟𝑎𝑑𝒖 = 𝑰 − 𝑭−1(𝒙, 𝑡)    𝑜𝑟       
𝜕𝑢𝐴

𝜕𝑥𝑎
= 𝛿𝐴𝑎 − 𝐹𝐴𝑎

−1 

(7) 

Strain Measures 

The strain measure describes the change in length of two neighbouring points as the 

body undergoes motion. Various strain measures exist in literature. Here, the most 

common material and spatial strain tensors in literature will be presented, that is right 

Cauchy Green, left Cauchy Green, Piola deformation and Euler-Almansi tensor.  It 
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should be noted that although there are many strain tensors, anyone of them could be 

used. The variety is probably due to extensive research on the topic. 

The right and left Cauchy Green tensor is defined as eq. (8)  . It is obtained from the 

square of a vector quantity known as stretch.  

 𝝀𝒂𝟎
∙ 𝝀𝒂𝟎

= 𝑭𝒂𝟎 ∙ 𝑭𝒂𝟎 = 𝒂𝟎𝑭
𝑻𝑭𝒂𝟎 = 𝒂𝟎𝑪𝒂𝟎 

𝑪 =  𝑭𝑻𝑭 

(8) 

Stretch is defined with respect to the deformation gradient and 𝒂𝟎 as 

 𝝀𝒂𝟎
(𝑿, 𝑡) =  𝑭(𝑿, 𝑡)𝒂𝟎, (9) 

where 𝒂𝟎 is a unit vector defined with respect to the material line 𝑑𝑿 (Figure 3-2) of 

two points defined by vector 𝑿 and 𝒀 in a body as given by eq. (10) 

   

Figure 3-2: Transformation of a material line from reference to current configuration. 

 

 
𝒂𝟎 = 

𝒀 − 𝑿

|𝒀 − 𝑿|
 

(10) 
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𝑑𝑿 = 𝒀 − 𝑿 = 𝒂𝟎𝑑𝜀 ;   

𝑑𝜀

|𝑿|
≪ 1; 

(11) 

𝑑𝒙 = 𝒚 − 𝒙 =  𝝌(𝒀, 𝑡) −  𝝌(𝑿, 𝑡);  

                                     = 𝝌(𝑿 + 𝑑𝜀𝒂𝟎, 𝑡) −  𝝌(𝑿, 𝑡); 

(12) 

Using Taylor series expansion, total differential, and the distributive property of 𝝌, 

gives 

 𝒚 − 𝒙 = 𝑭(𝑿, 𝑡)(𝒀 − 𝑿) + 𝑜(𝒀 − 𝑿); (13) 

(10) implies that 𝑭(𝑿, 𝑡) linearly maps the material line from the undeformed to the 

deformed configuration, and 𝑜 is the Landau order symbol. Note that dependencies on 

position and time are omitted for ease of reading. Other material and spatial strain tensors 

are summarised in Table 3-2 below.  

Table 3-2: Material and Spatial strain tensors 

Material strain measures Spatial strain measures 

Piola deformation 𝑩 = 𝑪−𝟏

= 𝑭−1𝑭−𝑇 

Left Cauchy-Green  𝒃 = 𝑭𝑭𝑇 

Green Lagrange 
𝑬 =

1

2
(𝑪 − 𝑰) 

Euler-Almansi  
𝒆 =

1

2
(𝑰 − 𝑭−𝑇𝑭−1)  

 

It noteworthy that spatial strain tensors could be derived by resolving vectors along 

triads of basis vectors as shown above. Also, a spatial tensor could be obtained from 

its material counterpart via the push-forward and pull-back operations. The former 

transforms a material strain tensor to a spatial strain tensor and the latter operator does 

the opposite [16]. Similarly, local motion and strain may be written in terms of pure 

stretch or pure rotation by decomposing the deformation gradient [16]. 
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3.2 Stress Measure 

A body will undergo stress when strained, due to deformation. When a body is acted 

upon by an external force such that it deforms and or moves through space to a new 

configuration, reaction or internal forces will be generated. If it is considered that an 

infinitesimal resultant force (𝑑𝒇) (traction force) acts on an infinitesimal spatial 

surface 𝑑𝑠, then it is defined with respect to a spatial traction vector 𝒕 (or 𝑻 in the 

undeformed configuration) as given in (21) and shown in Figure 3-3. 

 𝑑𝒇 = 𝒕𝑑𝑠 = 𝑻𝑑𝑺;         𝒕(𝒐𝒓 𝑻) = 𝒕(𝒙, 𝑡, 𝒏) (14) 

𝒕 is termed Cauchy or true traction while 𝑻 is the first Piola Kirchhoff or nominal 

traction vector. Both are measured as force per unit surface area.  

 

Figure 3-3: Two-dimensional view of an internal force acting on an infinitesimal 

surface element in a continuum body 

Ω0 
Ω Ω0 
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The resulting stress due to this internal traction is a second order spatial stress tensor 

𝝈 defined by (22). (23) shows a similar equation for 𝑷, the first Piola Kirchhoff or 

nominal stress tensor. 

 𝒕(𝒙, 𝑡, 𝒏) = 𝝈(𝒙, 𝑡)𝒏,  (15) 

 𝑻(𝑿, 𝑡, 𝑵) = 𝑷(𝑿, 𝑡)𝑵, (16) 

𝒏 and 𝑵 are unit outward normal in the spatial and material configurations 

respectively, 𝝈 is known as the True Cauchy stress. (22) and (23) are known as the 

Cauchy stress theorem. It states that a traction force which depends on a unit outward 

normal must be linear in 𝒏 and 𝑵. Using relations (15), (23) and Nanson’s formula, 

(23) may be related to (16) and vice versa.  

 𝑷(𝑿, 𝑡) = 𝐽𝝈𝑭−𝑇 ;  

𝝈 = 𝐽−1𝑷𝑭𝑇 = 𝝈𝑇 

(17) 

It should be noted that the material form of stress should not be confused to mean that 

stress exists in the undeformed configuration at time 𝑡 = 0; rather these tensors 

express stress computed with respect to the material configuration.  

Stress, like any tensor, can be expressed in terms of its components. The components 

of the true stress tensor are given by eq. (18), where the diagonal components 

correspond to normal stresses and the off-diagonal terms are shear stresses. 

 
𝝈 = [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

] (18) 
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3.3 Balance Principles 

The third fundamental aspect of continuum mechanics formulations are the balance 

principles, also called conservation laws: Conservation of Mass (CoMs), Conservation 

of Momentum (CoMm) and Conservation of Energy (CoE). CoMm and CoE are 

considered for a purely mechanical system: other types of energy besides mechanical 

energy are ignored, for example, the effects of temperature. 

 

3.3.1 Conservation of Mass (CoMs) 

Under the assumption that matter cannot be created or destroyed, the law states that 

mass cannot be zero and it is conserved during motion: mass of a body in the reference 

configuration is the same as in the current configuration (26): 

 𝑚𝛺0
= 𝑚𝛺 (19) 

An equation that exists from CoMs is the continuity equation given as: 

 𝜌0 =  𝜌𝐽 (20) 

 

3.3.2 Conservation of Momentum (CoMm)  

Newton’s second law states that the rate of change of momentum equals total force 

acting on a body. The conservation of momentum expressed as the material time 

derivative of linear (and angular) momentum with respect to the material configuration 

(material time derivative of momentum) results in a total force (or moment) acting on 

a continuum body: 

 
𝓛̇(𝑡) =  

𝐷

𝐷𝑡
∫ 𝜌0𝑽𝑑𝑉
𝛺0

= ∫ 𝜌0

𝐷𝑽

𝐷𝑡
𝑑𝑉

𝛺0

= 
𝐷

𝐷𝑡
∫𝜌𝒗𝑑𝑣
𝛺

= 𝑭𝒇(𝑡) (21) 
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The force 𝑭𝒇(𝑡) can be split into body force and traction force integrated over the 

reference domain (𝛺0) and reference boundary (𝜕𝛺) respectively, as eq. (22)  

 
𝑭𝒇(𝑡) =  ∫ 𝜌𝒗̇𝑑𝑉

𝛺0

= ∫ 𝒕𝑑𝑠
𝜕𝛺

+ ∫𝒃𝑑𝑣
𝛺

  (22) 

The equivalent material form of eq. (23) is: 

 
𝑭𝒇(𝑡) =  ∫ 𝜌0𝑽̇𝑑𝑉

𝛺0

= ∫ 𝑻𝑑𝑆
𝜕𝛺

+ ∫𝑩𝑑𝑉
𝛺

 (23) 

Body forces include weight while traction are surfaces forces such as frictional 

or contact forces. Although there is angular momentum, for the purposes of this thesis 

only linear momentum will be presented. Using the definition of material time 

derivative of an integral, Cauchy’s stress theorem, and the divergence theorem1, the 

traction term in eq. (22) may be written as a volume integral: 

 
∫ 𝒕(𝒙, 𝑡, 𝒏)𝑑𝑠
𝜕𝛺

= ∫ 𝝈(𝒙, 𝑡)𝒏𝑑𝑠
𝜕𝛺

= ∫𝑑𝑖𝑣 𝝈(𝒙, 𝑡)𝑑𝑣.
𝛺

 (24) 

Cauchy’s equation of equilibrium given in the spatial form as: 

 
𝜌𝒗̇ = 𝑑𝑖𝑣 𝝈(𝒙, 𝑡) + 𝒃  𝑜𝑟 𝜌𝑣̇𝑎 = 

𝜕𝜎𝑎𝑏

𝜕𝑥𝑎𝑏
+ 𝑏𝑎 (25) 

Its material form is obtained based on the polar identity 𝐷𝑖𝑣(𝐽𝑭−𝑇) = 𝒐. Where 𝒐 is a zero 

vector and 𝐷𝑖𝑣 𝑷(𝒙, 𝑡) = 𝐽𝐺𝑟𝑎𝑑𝝈:𝑭−𝑇 +  𝝈(𝒙, 𝑡)𝐷𝑖𝑣(𝐽𝑭−𝑇) = 𝐽(𝐷𝑖𝑣𝝈)𝑭−𝑇 = 𝐽𝑑𝑖𝑣𝝈 as: 

 𝐷𝑖𝑣 𝑷(𝒙, 𝑡) + 𝑩 =  𝜌0𝑽̇ (26) 

This statement ∫ (𝑑𝑖𝑣 𝝈(𝒙, 𝑡) + 𝒃)𝑑𝑣
𝛺

= 0 holds for any arbitrary volume 𝑣, hence, the 

integral has been removed. 

 
1 Also called integration by parts[80] or Gauss theorem [77] 
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3.3.3 Conservation of Energy (CoE) 

Conservation of energy is also called theorem of power expended. It states that the 

rate of change of kinetic energy of a continuum body (
𝐷

𝐷𝑡
𝐾(𝑡)) and the rate of work 

done by internal stress 𝑃𝑖𝑛𝑡(𝑡) equals the rate of external mechanical work done on the 

system 𝑃𝑒𝑥𝑡(𝑡). Mathematically written as:  

 𝐷

𝐷𝑡
𝐾(𝑡) + 𝑃𝑖𝑛𝑡(𝑡) = 𝑃𝑒𝑥𝑡(𝑡) , (27) 

The equivalent of this statement in spatial and material forms are 

𝐷

𝐷𝑡
∫

1

2
𝜌𝒗2𝑑𝑣

𝛺

+ ∫𝝈 ∶ 𝒅 𝑑𝑣
𝛺

= ∫ 𝒕 ∙ 𝒗 𝑑𝑠
𝜕𝛺

+ ∫𝒃 ∙ 𝒗𝑑𝑣
𝛺

, 

𝐷

𝐷𝑡
∫

1

2
𝜌0𝑽

2𝑑𝑉
𝛺

+ ∫𝑷: 𝑭̇ 𝑑𝑉
𝛺

= ∫ 𝑻 ∙ 𝑽 𝑑𝑆
𝜕𝛺

+ ∫𝑩 ∙ 𝑽𝑑𝑉
𝛺

 

respectively, where 𝒅 is the rate of deformation tensor, and  𝑭̇ is the rate of deformation 

gradient tensor. 

From this principle, specifically from the (alternative) expression of the 

internal power, stress-deformation pairs referred to as work conjugates are obtained. 

These includes 𝐽𝝈/𝒅, 𝑷/𝑭̇, 𝑺/𝑬̇ etc (see [16], [76]). 𝑺 is the 2nd Piola Kirchhoff stress. 

Thus, it follows that a system whose sum of external (𝛱𝑒𝑥𝑡) and internal (𝛱𝑖𝑛𝑡) 

potential energy and kinetic energy is unchanged is said to have its energy conserved: 

 𝛱𝑒𝑥𝑡(𝑡) + 𝛱𝑖𝑛𝑡(𝑡) + 𝐾(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (28) 

 

3.4 Hyperelastic Material Models 

Further to the continuum concept presented earlier for the study of the physical 

behaviour of a body, a constitutive model is required to describe the material’s stress-
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strain behaviour. This relation is partly obtained based on the phenomenological 

approach, where a mathematical model (equation) is fitted to experimental data. Here, 

hyperelastic material is considered because it has been presented in many literature as 

the simplest and sufficient model for characterising soft tissue behaviour which are 

known to exhibit large deformation or finite strain [17], [78]. 

Hyperelastic material is a class of nonlinear elastic material characterised by a stored 

potential energy 𝑊, and the work done by its stress field is dependent only on its initial 

and final configuration rather than work path. The stored energy function is a scalar-

valued function more generally referred to as Helmholtz free-energy function, 

measured per unit volume. The constitutive equation is given by 

 
𝑷 = 

𝜕𝑊(𝑭)

𝜕𝑭
,  

𝝈 =  𝐽−1
𝜕𝑊(𝑭)

𝜕𝑭
𝑭𝑇 . 

(29) 

Although (36) shows the strain energy function written as a function of 𝑭, it could also 

be written in terms of 𝑪 or 𝑬 and are all equivalent: 𝑊(𝑭) =  𝑊(𝑪) =  𝑊(𝑬), which 

will produce different stress measures accordingly. The strain energy is said to be 

objective: it is independent of the observer irrespective of translation or rotation in 

space [16]. When written in terms of 𝑊(𝑪) 𝑜𝑟 𝑊(𝑬) it is referred to as a reduced form 

of constitutive equation and mathematically expressed as: 

 
𝑷 =  2𝑭

𝜕𝑊(𝑪)

𝜕𝑪
;  

𝑺 =  2
𝜕𝑊(𝑪)

𝜕𝑪
=

𝜕𝑊(𝑬)

𝜕𝑬
 

(30) 
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A fundamental characteristic of the hyperelastic material is path independency, is 

mathematically expressed as 

 
∫ 𝑷: 𝑭̇ 𝑑𝑡

𝑡2

𝑡1

= ∫
𝜕𝑊(𝑭)

𝜕𝑭
: 𝑭̇ 𝑑𝑡

𝑡2

𝑡1

= ∫
𝐷𝑊(𝑭)

𝐷𝑡
 𝑑𝑡

𝑡2

𝑡1

= 𝑊(𝑭2) − 𝛹(𝑭1) = 0 (31) 

 where 𝑭2 = 𝑭1 

 

3.4.1 Isotropic hyperelastic material 

A material is said to be isotropic if its behaviour is independent of direction and 

therefore (39) holds for a description with respect to the reference configuration. This 

expression implies that the store energy in a body is not affected by orthogonal rotation 

𝑸.  

 𝑊(𝑭) = 𝑊(𝑭∗) 

𝑭 = 𝑭∗𝑸𝑇 

(32) 

For an isotropic hyperelastic material, it is also possible to write the stored 

energy function in terms of principal invariants Ii of 𝐂 (or 𝐛); referred to as the 

representation theorem of invariants (40) and Table 2-1. 

 𝑊 = 𝑊[𝐼1(𝑪), 𝐼2(𝑪), 𝐼3(𝑪)] = 𝑊[𝐼1(𝒃), 𝐼2(𝒃), 𝐼3(𝒃)] (33) 
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Table 3-3:Expression of Invariants of C or b for an isotropic hyperelastic material in 

terms of principal stretches (𝜆𝑖) in all directions and trace (𝑡𝑟) and determinant (𝑑𝑒𝑡) 

operators 

Invariants In terms of 𝒃 or 𝑪 Differential 

𝑰𝟏 𝑡𝑟𝒃 = 𝜆1
2 +  𝜆2

2 + 𝜆3
2 𝜕𝐼1

𝜕𝒃
=

𝜕(𝑡𝑟𝒃)

𝜕𝒃
=

𝜕(𝑰: 𝒃)

𝜕𝒃
= 𝑰 

𝑰𝟐 1

2
[(𝑡𝑟𝒃) − 𝑡𝑟(𝒃𝟐)] = 𝑡𝑟𝒃−1𝑑𝑒𝑡𝒃 

= 𝜆1
2𝜆2

2 + 𝜆1
2𝜆3

2 + 𝜆2
2𝜆3

2 

𝜕𝐼2
𝜕𝒃

=
𝜕

𝜕𝒃
[
1

2
(𝑡𝑟𝒃) −

1

2
𝑡𝑟(𝒃𝟐)] = 𝐼1𝑰 − 𝒃 

𝑰𝟑 𝑑𝑒𝑡𝒃 = 𝐽2 = 𝜆1
2𝜆2

2𝜆3
2 𝜕𝐼3

𝜕𝒃
= 𝐼3𝑪

−1 

 

Correspondingly, strain energy derivatives can be expressed as in (41), where 𝐚 

represents any appropriate strain measure. The partial derivatives of invariants with 

respect to such tensors are given in Table 3-3 above. 

 𝜕𝑊(𝒂)

𝜕𝒂
= ∑

𝜕𝑊(𝒂)

𝜕𝐼𝑖

3

𝑖

𝜕𝐼𝑖
𝜕𝒂

 (34) 

For example, the second Piola-Kirchhoff stress could be re-expressed in terms of the 

principal invariants as 

 
𝑺 =  2

𝜕𝑊(𝑪)

𝜕𝑪
= 2 [(

𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2
) 𝑰 −

𝜕𝑊

𝜕𝐼2
𝑪 + 𝐼3

𝜕𝑊

𝜕𝐼3
𝑪−1] (35) 

A material is said to be incompressible when it experiences insignificant volume 

change under deformation. For such material 𝐽 = 1, and Poisson ratio 𝜈 = 0.5. The 

strain energy function could be expressed in such cases as: 

 𝑊 = 𝑊(𝑭) − 𝑝(𝐽 − 1), (36) 
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where 𝐽 = 𝑑𝑒𝑡𝑭 = 1, the scalar 𝑝 is a Lagrange multiplier, identifiable as the 

hydrostatic pressure.  It is a workless reaction to the kinematic constraint of the 

deformation field, and it is only obtainable from the equilibrium equation and 

boundary conditions. Differentiating eq. (44) and adopting the necessary 

transformation to covert from first Piola-Kirchhoff stress to other stress measures 

gives: 

 
𝑷 = −𝑝𝑭−𝑇 + 2

𝜕𝑊(𝑭)

𝜕𝑭
 

𝑺 = −𝑝𝑭−1𝑭−𝑇 + 𝑭−1
𝜕𝑊(𝑭)

𝜕𝑭
= −𝑝𝑪−1 + 2

𝜕𝑊(𝑪)

𝜕𝑪
 

𝝈 = −𝑝𝑰 + 2
𝜕𝑊(𝑭)

𝜕𝑭
𝑭𝑇 = −𝑝𝑰 + 𝑭(

𝜕𝑊(𝑭)

𝜕𝑭
)

𝑇

 

(37) 

 For an isotropic incompressible hyperelastic material, 𝐼3 = 1. Thus, the strain energy 

function and stress are expressible in terms of the other principal invariants:  

 
𝑊 = 𝑊[𝐼1(𝑪), 𝐼2(𝑪)] −

1

2
𝑝(𝐼3 − 1) 

𝑺 = −𝑝𝑪−1 + 2(
𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2
) 𝑰 + 2

𝜕𝑊

𝜕𝐼2
𝑪 

𝝈 = −𝑝𝑰 + 2
𝜕𝑊

𝜕𝐼1
𝑪 − 2

𝜕𝑊

𝜕𝐼1
𝑪−1 

(38) 

Nearly incompressible hyperelastic have been used to model soft tissue behaviour in 

literature, as they greatly simplify the numerical treatment of the problem; for such 

materials, the Poisson’s ratio is somewhat less than 0.5, with values of around 0.49 

commonly used [16]. An example of Neo-Hookean strain energy function for nearly 

incompressible isotropic hyperelastic material is 
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Neo-Hookean: 
𝛹(𝑪) =

1

2
𝜆0(𝑙𝑛 𝐽)2 − 𝜇0 𝑙𝑛 𝐽 +

1

2
𝜇0(𝑡𝑟𝑪 − 3) 

 

3.5 Conclusion 

The equilibrium equation presented in this chapter is based on the theory of continuum 

mechanics, which is most ideal for computing realistic, nonlinear deformation of soft 

tissues. The continuum mechanics equations presented here will be used in the 

following chapter to derive a weak form of the equation which is pertinent to the FEM 

and upon which the XFEM in chapter 5 will be based. 
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4 VARIATIONAL APPROACH & FINITE ELEMENT 

METHODS 

The continuum mechanics theory presented in chapter 3 will be used here to develop 

the mathematical models which predict the mechanical behaviour of a system. The 

resulting differential equilibrium equations previously obtained could be solved 

directly without transformation into integral (weak) forms only in special cases, that 

is when the solution domain and boundary conditions are “simple” enough to obtain a 

result. However, integral forms are preferred for solid mechanics problems presented 

here, since the differential equation is satisfied in an integral sense rather than at every 

infinitesimal point within the domain. This section looks at the solution of governing 

equilibrium equation using the variational method. 

 

4.1 Variational Approach 

 

 

 

 

 

 

 

Figure 4-1: Boundary-valued problem showing a domain in the cartesian coordinate 

with imposed displacement 𝜕𝛺𝑢 and force 𝜕𝛺𝜎 constraint 

O 

X1  

X2  

X3  

 𝜕Ω𝑢  

 𝜕Ω𝜎   
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The weak form of the differential equilibrium equations of a system, in terms of its 

state variable, is obtainable via the variational method. For a boundary valued problem 

(Figure 4-1), the governing mathematical model (46) which accounts for equilibrium, 

constitutive relations and boundary constraints 𝒖 and 𝒕 are: 

 𝑑𝑖𝑣 𝝈(𝒙, 𝑡) + 𝒃 =  𝜌𝒖̈, 

𝒖 = 𝒖̅ 𝑜𝑛 𝜕𝛺𝑢 , 

𝒕 = 𝒕̅  𝑜𝑛 𝜕𝛺𝜎  ,  

𝒖(𝒙, 𝑡)|𝑡=0 = 𝒖0(𝑿),  

𝒖̇(𝒙, 𝑡)|𝑡=0 = 𝒖̇0(𝑿), 

(39) 

where 𝑑𝑖𝑣 𝝈(𝒙, 𝑡) is the divergence of the internal stress with respect to the current 

configuration and is a function of deformation gradient (37), 𝒃 is the body force measured per 

unit current volume,  𝒖̅ is the prescribed displacement boundary condition on the 

displacement boundary 𝜕𝛺𝑢, 𝒕̅   is the prescribed Cauchy traction vector on the traction 

boundary 𝜕𝛺𝜎 measured per unit surface area, while 𝒖0(𝑿) and 𝒖̇0(𝑿) are initial 

displacement and velocity respectively. The weak formulation simply means an 

integral form of the governing differential equilibrium equations, and unlike (46) 

which must be continuously differentiable twice (𝐶1), its variational (integral) form 

only needs to be continuously differentiable once. The integral form is the basis for 

developing finite element equations for any given structural problem and under any 

given constraint.  

The procedure for obtaining the variational equilibrium equation of a system is as 

follows:  

1. Choose a functional, 𝛱, that is a scalar field, for instance, potential energy. 

2. Invoke stationarity of the variation of the functional: 𝛿𝛱 = 0 
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3. Obtain the governing equilibrium equation and boundary constraints by 

evaluating 𝛿𝛱 = 0 using divergence theorem (integration by parts) and the 

variation condition [79] [80] 

If 𝑚 is the highest order derivative of the test function within a functional, then the 

variation condition states that the variation of the variable and its derivatives up to 

order (𝑚 − 1) must be zero at all essential (or displacement) boundary conditions, 

except at prescribed displacement boundaries where it is equal to the prescribed value.  

In other words, for a functional problem of order 𝐶𝑚−1, the highest derivative in the 

essential boundary condition must be order 𝑚 − 1. Similarly, the highest derivative in 

the natural boundary condition must be 2𝑚 − 1. 

 

4.1.1 Principle of Virtual Work (or virtual displacement) 

There is no unique functional for a problem type. For instance, in structural 

mechanics, one could adopt minimum potential energy, displacement-based 

variational formulations, Hu-Washizu, Hellinger-Reissner principle etc. Here, the 

principle of virtual work is presented as the simplest variational principle and it is 

equivalent to the principle of minimizing the total potential energy of a system [80]. 

The principle of virtual work states that for any compatible or kinematically 

admissible virtual (unreal) displacement applied to a body in equilibrium, that is, the 

displacement is continuous and satisfies the variation condition [80], the external and 

internal virtual work must be equal. The above statement is written mathematically as 
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𝑢 ∈ 𝑉 such that 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)                ∀𝑣 ∈ 𝑉 (40) 

where space 𝑉 is defined as: 𝑉 = {𝑣|𝑣 ∈ 𝐿2(𝐿),
𝑑𝑣

𝑑𝑥
 ∈ 𝐿2(𝐿), 𝑣|𝑥=0 = 0}  

and 𝐿2(𝐿) is a square integral space over length 0 ≤ 𝑥 ≤ 𝐿 written as 

𝐿2(𝐿) = {𝑤|𝑤 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑣𝑒𝑟 0 ≤ 𝑥 ≤ 𝐿 𝑎𝑛𝑑 ∫ 𝑤2𝑑𝑥 = ‖𝑤‖
𝐿2
2 < ∞

𝑙

0
}  

where 𝑎(𝑢, 𝑣) represents the internal work done and (𝑓, 𝑣) represents the external 

work done. 

Following the procedure outlined in section 4.1 above, the functional is 

obtained from the dot product of an arbitrary virtual displacement field 𝛿𝒖 and linear 

momentum equation (28).  Fulfilling the variational condition that a variation and its 

derivatives are zero at boundaries or equal to the prescribed boundary conditions, 

using integration by parts, and rearranging the resulting equation results in 

 
𝑓(𝒖, 𝛿𝒖) = ∫𝝈 ∶ 𝑔𝑟𝑎𝑑(𝛿𝒖) 𝑑𝑣

𝛺

= ∫ [(𝒃 −  𝜌𝒖̈) ∙ 𝛿𝒖] 𝑑𝑣
𝛺

+ ∫ 𝒕 ∙ 𝛿𝒖 𝑑𝑠
𝜕𝛺

= 0,  

∫𝒖|𝑡=0 ∙ 𝛿𝒖 𝑑𝑣
𝛺

= ∫𝒖0(𝑿) ∙ 𝛿𝒖 𝑑𝑣
𝛺

 

∫ 𝒖̇|𝑡=0 ∙ 𝛿𝒖 𝑑𝑣
𝛺

= ∫ 𝒖̇0(𝑿) ∙ 𝛿𝒖 𝑑𝑣
𝛺

 

(41) 

(41) is what is referred to as a variational equation, and in this case is a spatial 

expression of the problem. The equivalent material form according to the conversion 

∫ 𝝈 ∶ 𝛿𝒆 𝑑𝑣
𝛺

= ∫ 𝝈 ∶ 𝑔𝑟𝑎𝑑(𝛿𝒖) 𝑑𝑣
𝛺

= ∫ 𝐽𝝈 ∶ 𝐺𝑟𝑎𝑑(𝛿𝒖)𝑭−1 𝑑𝑉
𝛺

= ∫ 𝑷 ∶ 𝐺𝑟𝑎𝑑(𝛿𝒖) 𝑑𝑉
𝛺0

, 

is 

 
∫ 𝑷 ∶ 𝐺𝑟𝑎𝑑𝛿𝒖 𝑑𝑉
𝛺0

= ∫ 𝑩 ∙ 𝛿𝒖 𝑑𝑉
𝛺0

+ ∫  𝜌𝒖̈ ∙ 𝛿𝒖 𝑑𝑉
𝛺0

+ ∫ 𝑻 ∙ 𝛿𝒖 𝑑𝑆
𝜕𝛺0,𝜎

 (42) 

As alluded to earlier, adopting the variational equation reduces the smoothness 

requirement of the governing equilibrium equation by virtue of integration by parts. 
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By using this integration method, the derivative of the stress (i.e. 𝑑𝑖𝑣 𝝈(𝒙, 𝑡)) is 

eliminated, and the smoothness requirement of the stress field is correspondingly 

reduced to 𝐶−1 (since the highest derivative of stress is 0). The trial function 

(displacement field), in turn, by virtue of the constitutive relation, only needs to be 𝐶0 

continuous. Similarly, the use of Cauchy’s equation of motion results in the traction 

boundary constraint being inherent in the governing integral equation (see [20], [80]) 

 

4.2 Finite Element method (FEM) 

Approximation techniques are employed to solve equations for which closed forms or 

exact solutions are not attainable. The finite element method (FEM) is one such 

numerical method that could be used to solve the variational equations (48) or (49).  It 

is derived by combining the benefits of the weighted residual Galerkin procedure and 

Ritz methods [80]. In other words, the Galerkin method is written in a form that allows 

the use of polynomial trial functions used in Ritz and thus combines the benefits of 

symmetry, positive definiteness, differentiability of the trial function, and fulfilment 

of boundary constraints. FEM is sometimes referred to as Galerkin FEM in literature. 

 

4.2.1 Discretization of the Weak Form 

In FEM, the solution of the equilibrium equations is obtained by discretizing 

(subdividing) the solution space and system geometry into an assembly of discrete 

non-overlapping sub-bodies (elements), with associated shape functions describing 

the spatial variation of solution variables, interconnected at joints (nodes) (Figure 4-2).  
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Figure 4-2: Finite element mesh using triangular and quadrilateral element 

The displacements within each element (or local displacement) is then 

approximated from the nodes using the function: 

 
𝒖ℎ(𝑥) = ∑𝑁𝑖𝒖𝑖

𝑛

𝑖=1

= 𝑵(𝒙)𝒖(𝑒), (43) 

where 𝒖ℎ(𝒙) = [𝑢(𝑥) 𝑣(𝑥) 𝑤(𝑥)]𝑇 is the approximated displacement at position 

𝒙 = [𝑥 𝑦 𝑧]𝑇. 𝑵(𝒙) = [𝑁1(𝒙)𝑰 𝑁2(𝒙)𝑰 ⋯ 𝑁𝑛(𝒙)𝑰] is a matrix of scalar 

valued shape functions 𝑁𝑖(𝒙), 𝒖𝑖 = [𝑢𝑖 𝑣𝑖 𝑤𝑖]𝑇 is a vector of the displacements of 

the node 𝑖 and is commonly represented using polynomial, 𝒖(𝑒) =

[𝒖1
𝑇 𝒖2

𝑇 ⋯ 𝒖𝑛
𝑇]𝑇 is the vector of displacements for all nodes of element 𝑒, and 𝑛 

is the number of nodes per element. 𝑰 is the identity matrix of order 𝐷, for a 𝐷-

dimensional model. 

To obtain the discretized weak formulation or finite element equations, finite 

element interpolants are substituted into the weak formulation (44) as trial functions: 
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∫𝝈 ∶ (𝛿𝒖 ⊗ 𝜵𝑁𝑖) 𝑑𝑣
𝛺

− ∫ 𝒃 ∙ 𝛿 (∑𝑁𝑖𝒖𝑖

𝑛

𝑖=1

)  𝑑𝑣
𝛺

− ∫  𝜌𝒖̈ ∙ 𝛿 (∑𝑁𝑖𝒖𝑖

𝑛

𝑖=1

)  𝑑𝑣
𝛺

= ∫ 𝒕 ∙ 𝛿 (∑𝑁𝑖𝒖𝑖

𝑛

𝑖=1

)  𝑑𝑠
𝜕𝛺

   

(44) 

 

Given that the nodal displacement is independent of the integration and using the 

contraction property 𝝈 ∶ (𝑢 ⊗ 𝑣) = 𝑢. 𝝈𝑣 gives 

 

𝛿𝒖 ∙ (∫𝝈𝜵𝑁𝑖 𝑑𝑣
𝛺

− ∫𝑁𝑖𝒃 𝑑𝑣
𝛺

− ∫  𝜌𝑁𝑖 ∑𝑁𝑗𝒖̈ 𝑑𝑣

𝑛

𝑗𝛺

− ∫ 𝑁𝑖𝒕𝑑𝑠
𝜕𝛺

) = 0 

 

(45) 

Since the 𝛿𝒖 is arbitrary, it follows that  

 

∫𝝈𝜵𝑁𝑖 𝑑𝑣
𝛺

− ∫𝑁𝑖𝒃 𝑑𝑣
𝛺

− ∫  𝜌𝑁𝑖 ∑ 𝑁𝑗𝒖̈ 𝑑𝑣

𝑛

𝑗𝛺

− ∫ 𝑁𝑖𝒕𝑑𝑠
𝜕𝛺

= 0 (46) 

 

 
∫𝝈𝜵𝑁𝑖 𝑑𝑣
𝛺

− ∫  𝜌𝑁𝑖 ∑𝑁𝑗𝒖̈ 𝑑𝑣

𝑛

𝑗𝛺

− ∫ 𝑁𝑖𝒕𝑑𝑠
𝜕𝛺

− ∫𝑁𝑖𝒃 𝑑𝑣
𝛺

= 0 (47) 

 𝒇𝑖𝑛𝑡 − 𝒇𝑘𝑖𝑛 − 𝒇𝑒𝑥𝑡 = 0 (48) 

Equations (47), (48) are nonlinear equations in 𝒖 and gives 𝑛-simultaneous equations, 

where 𝒇𝑖𝑛𝑡 , 𝒇𝑘𝑖𝑛 and 𝒇𝑒𝑥𝑡 are internal, kinetic and external forces respectively. 

It should be noted that in FEM, nonlinearity (i.e. where any variable in the 

equilibrium equation becomes a nonlinear function of 𝒖) can be introduced in three 

ways: material nonlinearity and contact and kinematic nonlinearity. The latter could 

lead to nonlinearity in the geometry of the body or applied constraint, due to motion. 

Depending on the type of nonlinearity (or, absence of a given type), eq. (48) could be 

simplified accordingly [80]. 
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When the load is slowly applied and the inertia forces are negligible, 𝒇𝑘𝑖𝑛 can be 

dropped to give the static equilibrium equation:  

 𝒇𝑖𝑛𝑡 = 𝒇𝑒𝑥𝑡 (49) 

Note that for discretization of FEM equation using continuous shape function, the 

derivative of the shape function 𝑵 in space with respect to the original configuration 

may be written for the 3D case as 

 

𝝏𝑵𝑿 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑋

𝜕𝑁1

𝜕𝑌

𝜕𝑁1

𝜕𝑍
𝜕𝑁2

𝜕𝑋

𝜕𝑁2

𝜕𝑌

𝜕𝑁2

𝜕𝑍
⋮ ⋮ ⋮

𝜕𝑁𝑛

𝜕𝑋

𝜕𝑁𝑛

𝜕𝑌

𝜕𝑁𝑛

𝜕𝑍 ]
 
 
 
 
 
 

 (50) 

 

4.2.2 Solution of Nonlinear Equilibrium Equations 

For an equilibrium problem which is nonlinear and time dependent, the explicit 

or implicit time integration methods could be adopted. For the iterative step in implicit 

time integration, Newton Raphson based methods are used [80].  These methods which 

combine iterative and time integration algorithm are collectively called direct 

integration methods.  

Both methods can be described as a procedure that solves for static solution of 

equilibrium at discrete time steps. In other words, if a constrained body experiences 

some motion during a given time 𝑇, displacement solutions are obtained at 𝑛 discrete 

periods or time steps based on a chosen time 𝑡 < 𝑇 𝑎𝑛𝑑 𝑛 = 𝑇/𝑡 .  Depending on the 

method, the time 𝑡 could vary over the entire 𝑇 [80].  
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Several types of each methods exist. The explicit time integration method such 

as the central differencing method, differs from its implicit counterparts which 

includes Newmark method from the perspective of stability and solution procedure. 

While explicit integration method is only conditionally stable and the nodal 

displacement solution at a current time step is obtained using solution of variables 

from previous time, implicit time integration method is unconditionally stable and 

solutions of variables at current time step is used. Thus, for this thesis, the explicit 

method was adopted, and further details of the chosen type is given in the next section.  

 

4.3 Total Lagrangian Explicit Dynamics (TLED) 

The TLED method is adopted, where the finite element discretization of the total 

Lagrangian (TL) weak form is combined with the central differencing explicit method.  

 

4.3.1 Dynamic Equilibrium Equation: Total Lagrangian Formulation 

TL formulation computes field variables (i.e. displacement, stress or strain), 

derivatives, and integrals with respect to the reference configuration; as such, second 

Piola-Kirchhoff stress 𝑺 and Green strain 𝑬 are the adopted stress and strain measures. 

For nonlinear analysis, referring variables and integrals to the reference configuration 

has the advantage that element shape functions derivatives remain unchanged 

throughout an analysis and can be precomputed; this is particularly useful for 

simulating soft tissue incisions which is restricted by computational time [81].  

 

Internal forces 

The internal nodal forces 𝒇𝑖𝑛𝑡 may be evaluated element-wise, according to: 
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 𝒇𝑖𝑛𝑡 = ∑𝒇(𝑒)
𝑖𝑛𝑡

𝑒

 (51) 

with 

 𝒇(𝑒)
𝑖𝑛𝑡 = ∫ 𝝏𝑵𝑿𝑺𝑭𝑇𝑑𝛺,

𝛺(𝑒)
  (52) 

Here, 𝒇(𝑒)
𝑖𝑛𝑡 ∈ ℝ𝑛×𝐷, where 𝑛 is the number of nodes per element and 𝐷 is the spatial 

dimensionality of the problem, and the operation described in (56) is in fact an 

assembly, rather than a direct summation and the deformation gradient 𝑭 is computed 

from 

 𝑭 = 𝑰 + 𝑼(𝑒)
𝑇 𝝏𝑵𝑿.  (53) 

𝑼(𝑒) is an 𝑛-by-𝐷 matrix form of the element nodal displacements. 𝛺(𝑒) is the 

undeformed element domain (equivalent to an area and volume in 2D and 3D, 

respectively). The second Piola-Kirchhoff stress 𝑺 is evaluated from an appropriate 

constitutive relation, for example for the hyperelastic case: 

 
𝑺 =

𝜕𝑊(𝑬)

𝜕𝑬
, (54) 

where 𝑊 is a strain energy potential and 

 𝑬 = (𝑭𝑇𝑭 − 𝑰)/2 

 

(55) 

is the Green-Lagrange strain. 

Mass and damping matrices 

As for the internal forces, the mass matrix 𝑴 for the system is obtained as an assembly 

of the element mass matrices: 
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 𝑴 = ∑𝑴(𝑒)

𝑒

, (56) 

with the consistent mass matrix 𝑴(𝒆),, computed as  

 
𝑴(𝑒) = ∫ 𝜌𝑵𝑇𝑵

𝛺(𝑒)

 𝑑𝛺, (57) 

where 𝑴(𝑒) ∈ ℝ𝑛𝐷×𝑛𝐷, 𝑛𝐷  is the product of the number of nodes 𝑛 and degree of 

freedom 𝐷, and 𝜌 is the mass density. In practice, a lumped form of 𝑴, in which 𝑴 is 

rendered diagonal, is usually adopted in explicit analyses, since this greatly simplifies 

the solution of (48) and leads to a far more efficient update formula for nodal 

displacements (i.e. the multiplication with the inverse of 𝑴 is easily obtained since all 

off-diagonal values are zero).  

Mass lumping may be achieved in different ways; in the present work row 

summation is adopted, in which the entries of each row are summed at the 

corresponding diagonal and all other values become zero. In practice, this structure 

can be achieved efficiently by computing the mass of each element directly and 

distributing this evenly to each element’s nodes. So, for a given element 𝑒, with mass 

𝑚, diagonal entries are computed as: 

 𝑀(𝑒)𝑖𝑖 =
𝑚

𝑛
  , (58) 

Also, for computational ease, the mass-proportional Rayleigh damping is employed. 

With damping coefficient 𝛼, we have: 

 𝑪 = 𝛼𝑴.        (59) 
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4.3.2 Explicit Time Integration Method 

To obtain the displacement solutions 𝒖𝑡 at each time point 𝑡, the FE equations 

are discretized in time using the central difference method, which is an explicit time 

integration method. With this method, the incremental update formula only involves 

information from previous and current time steps: 

 𝒖𝑡+∆𝑡 = 𝛾1𝑴
−1(𝒇𝑡

𝑒𝑥𝑡 − 𝒇𝑡
𝑖𝑛𝑡) − 𝛾2𝒖𝑡 + 𝛾3𝒖𝑡−∆𝑡, (60) 

where ∆𝑡 is the time step size, and subscripts have been added to indicate time 

points: 𝑡 + ∆𝑡, 𝑡 and 𝑡 − ∆𝑡 are next, current and previous time steps, respectively. 

Coefficients 𝛾1−3 are functions of the step size and damping parameter: 𝛾1 =

2∆𝑡2 (𝛼∆𝑡 + 2)⁄ , 𝛾2 = 4 (𝛼∆𝑡 + 2)⁄ , and 𝛾3 =  1 − 4 (𝛼∆𝑡 + 2)⁄ . As suggested 

earlier, the use of mass lumping, which turns 𝑴  into a diagonal matrix, makes the 

above formula very cheap to evaluate, since the 𝑴−1 term is then trivially computed.  

Explicit methods are only conditionally stable [80]: the chosen time step must 

be less than some critical value (𝛥𝑡 ≤ 𝛥𝑡𝑐𝑟), which is a function of the maximum 

natural frequency 𝜔𝑚𝑎𝑥 of the system : 

 
∆𝑡𝑐𝑟 =

2

𝜔𝑚𝑎𝑥
. (61) 

For elements with homogeneous strain, Belytschko redefined ∆𝑡𝑐𝑟 as the time taken 

by a sound wave with velocity 𝑐 to propagate through the element of a mesh with the 

shortest characteristic element length 𝐿𝑒: 

∆𝑡𝑐𝑟 =
𝐿𝑒

𝑐
=

𝐿𝑒√𝜌

√𝜆 + 2𝜇
,                                                        (61′) 

where 𝜆 and 𝜇 are Lamé parameters [82]. Due to the danger of round off errors, Cook 

proposed that the chosen time step should in practice not be greater than 0.75∆𝑡𝑐𝑟 

[83].  
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 Although, the explicit method is conditionally stable, parallelization of the 

algorithm gives it an advantage over implicit methods for acceleration of the method 

via GPU implementation [67], [84]. 

 

4.3.3 TLED algorithm 

Based on eq. (61)  and associated equations, TLED algorithm is given in Table 4-1 

[84] 

Table 4-1: Algorithm 1 of TLED formulation 

Initialization 

𝛥𝑡 ← choose a time step using (58′) 
𝒖𝑡−∆𝑡, 𝒖𝑡  ← 𝟎  

Precompute lumped element mass 𝑴(𝑒)  

for all e ∈ ElementSet do 

    𝝏𝑵 ← compute shape function derivatives using (50)     

    𝑀(𝑒)𝑖𝑖 ← compute element diagonal nodal mass entries using (58) 

end 

𝑴 ←  ∑ 𝑴(𝑒)𝒆  [Assemble system mass matrix] (56) 

Time integration 

for all TimeSteps do 

    for all e ∈ ElementSet do  

        𝑭 ← compute deformation gradient using (53) 

        𝑺 ← compute 2nd Piola-Kirchhoff stress using (54) 

        𝒇(𝑒)
𝑖𝑛𝑡  ← compute internal forces using (52) 

    end 

    𝒇𝑖𝑛𝑡  ←  ∑ 𝒇(𝑒)
𝑖𝑛𝑡

𝒆  [Assemble global internal force vector] (51) 

    𝒇𝑒𝑥𝑡  ← apply external loads 

    𝒖𝑡+1  ← compute next incremental displacement using (60) 

  Apply constraint for the next time step 

    𝒖𝑡+1  ← apply displacement constraint for the next time step 

    𝒖𝑡−1  ←  𝒖𝑡 

    𝒖𝑡 ← 𝒖𝑡+1 

end 

 

4.4 Conclusion 

Presented in this section is the TLED method which is based on the variational 

formulation. The simplest form of variational approach, principle of virtual work is 

chosen to obtain the weak form of the differential equilibrium equations. With the 
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weak form, solution could easily be obtained for simple and complex boundary 

conditions, since, the weak form is satisfied in the integral sense, as opposed to the 

strong form. To solve the resulting differential equations, the well-established finite 

element method was chosen and formulated using the total Lagrangian (TL) 

formulation, while explicit time integration method was chosen for time integration of 

the equations. The TL formulation ensures that element shape functions derivatives 

remain unchanged throughout the analysis and thus can be precomputed; a particularly 

useful feature for simulating real time soft tissue incision, which is limited by a haptic 

feedback response of about 1kHz. On the other hand, the explicit method which 

although is conditionally stable, has the advantage over the implicit integration method 

of parallelization of the algorithm making the hybrid method, TLED suitable for 

acceleration via GPU implementation and for achieving real time simulation. Thus, 

the TLED method presented here will serve as the basis for the extended numerical 

method presented in the next chapter. 
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5 EXTENDED TOTAL LAGRANGIAN EXPLICIT 

DYNAMICS (XTLED) 

An extended total Lagrangian explicit dynamics method (XTLED) is presented 

here for interactive, physically based simulation of surgical incision of soft tissues. 

The standard formulation described in chapter 3 can in principle be used to simulate 

incision, but this would require repeated updating of the mesh to ensure it conforms 

with the evolving discontinuity. This process, combined with the requirement for 

nonlinear solution procedures, produce algorithms that are prohibitively slow for 

interactive simulations. Therefore, an enrichment-based approach which addresses 

both issues is presented. The algorithm for the XTLED is verified by comparing 

numerical results with FEM analysis and the method is also validated using a silicon 

sample which is cut and which deforms under tension, causing a Mode I deformation 

(opening of the incision). 

 

5.1 Extended Finite Element Methods (XFEM) 

As described in the standard TLED formulation, the analysed structures are 

assumed to be continuous, leading to the displacement approximation (50). However, 

in the presence of a cut, this assumption no longer holds since the displacement field 

becomes discontinuous. Such discontinuity is modelled here using an extended finite 

element method (XFEM) approach. The superiority of XFEM emanates from the lack 

of need to modify the finite element mesh to conform to the cut, or to geometrically 

model or mesh the cut, making it computationally efficient in comparison to other 

mesh based approaches. 
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5.1.1 XFEM Discretization: Shape function enrichment 

XFEM is based on the principle of partition of unity; the summation of a set of 

functions evaluated at a given position equals unity:  

 
∑𝑓𝑖(𝒙)

𝑛

𝑖=1

= 1 (62) 

Based on this, the idea of enriching the standard FEM shape functions with additional 

functions that reflect specific physical phenomena, such as a cut-associated 

discontinuity, arises. The enriched displacement approximation can be written as 

 

𝒖ℎ(𝒙) = 𝒖𝐹𝐸(𝒙) + 𝒖𝑒𝑛𝑟 = ∑𝑁𝑖(𝒙)𝒖𝑖

𝑛

𝑖=1

+ ∑ 𝑁𝑗(𝒙)𝜓𝑗(𝒙)𝒂𝑗

𝑛𝑒𝑛𝑟

𝑗=1

= 𝑵̃(𝒙)𝒖(𝑒) 

(63) 

where 𝜓𝑗(𝒙) is the discontinuous enrichment function, 𝒂𝑗 is a vector of additional 

DOFs for node 𝑗, analogous to 𝒖𝑖, 𝑵̃ =

[𝑁1𝑰 𝑁2𝑰 ⋯ 𝑁𝑛𝑰 𝜓1𝑁1𝑰 𝜓2𝑁2𝑰 ⋯ 𝜓𝑛𝑁𝑛𝑒𝑛𝑟
𝑰] is a matrix of standard and 

enriched shape function terms, and 𝒖̃(𝑒) = [𝒖1
𝑇 𝒖2

𝑇 ⋯ 𝒖𝑛
𝑇 𝒂1

𝑇 𝒂2
𝑇 ⋯ 𝒂𝑛

𝑇]𝑇  

collects displacement vectors for standard and enriched DOFs for element 𝑒 .  

 

5.1.2 Enrichment function  

The choice of the enrichment function depends on the type of discontinuity. 

For example, for a discontinuity such as a crack, the Heaviside and asymptotic crack 

tip enrichments are applied to the crack path and crack tip respectively. The 

enrichment type adopted in many surgical simulation literature [85], [86] and used 

here for modelling a cut is the Heaviside function: 
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 𝐻(𝒙) = 𝑠𝑖𝑔𝑛(𝒙) = {
1

−1
 (64) 

To fulfil the Kronecker delta properties, that is to ensure that the discontinuity vanishes 

beyond nodes that are not within the vicinity of the discontinuity, a shifted Heaviside 

function was proposed as  

 
𝜓𝑗(𝒙) =

𝐻(𝒙) − 𝐻𝑗

2
, (65) 

where 

 
𝐻(𝒙) =  ∑ 𝑁𝑗(𝒙)𝐻𝑗

𝑛

𝑗

. (66) 

 

5.2 XTLED Formulation 

5.2.1 Shape Function Derivative 

For elements containing the discontinuity (enriched elements) enriched shape function 

derivatives matrices 𝝏𝑵̃𝑿 may be defined as 

 𝝏𝑵̃𝑿 = [
𝝏𝑵

𝝏𝑵𝑒𝑛𝑟], 
(67) 

where the corresponding enriched shape function is 

 

𝝏𝑵𝑒𝑛𝑟 = 

[
 
 
 
 
 
 
 𝜓1

𝜕𝑁1

𝜕𝑥
𝜓1

𝜕𝑁1

𝜕𝑦
𝜓1

𝜕𝑁1

𝜕𝑧

𝜓2

𝜕𝑁2

𝜕𝑥
𝜓2

𝜕𝑁2

𝜕𝑦
𝜓2

𝜕𝑁2

𝜕𝑧
⋮ ⋮ ⋮

𝜓𝑛

𝜕𝑁𝑛

𝜕𝑥
𝜓𝑛

𝜕𝑁𝑛

𝜕𝑦
𝜓𝑛

𝜕𝑁𝑛

𝜕𝑧 ]
 
 
 
 
 
 
 

 (68) 

 

Dependences on 𝒙 have been omitted.  
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It should be noted that the shape function derivatives of elements adjacent to 

fully enriched elements remain unenriched (for instance, element A), since enrichment 

is only for the purpose of modelling the discontinuity within cut elements (Figure 5-2). 

As such the enrichment values at and beyond nodes of cut elements should be zero. 

 

 

 

 

 

 

 

 

 

Figure 5-1: Discretised geometry showing enriched elements and nodes (red) 

Since the internal forces 𝒇𝑖𝑛𝑡 and mass matrix 𝑴 are formulated in terms of 

the element shape functions, new formulae are needed to reflect the enrichment of 

these variables, as detailed in the following sections. 

 

5.2.2 Enriched Internal Force 

The enriched element force matrix can be computed as: 

 
𝒇̃(𝑒)

𝑖𝑛𝑡 = ∫ 𝝏𝑵̃𝑿𝑺̃𝑭̃𝑇𝑑𝛺
𝛺(𝑒)

, (69) 

where 

A 
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 𝑭̃ = 𝑰 + 𝑼̃(𝑒)
𝑇 𝝏𝑵̃𝑿, (70) 

is the enriched deformation gradient, with 𝑼̃(𝑒) expressed as 

 
𝑼̃(𝑒) = [

𝑼(𝑒)

𝑨(𝑒)
], (71) 

where 𝑨(𝑒) ∈ ℝ𝑛𝑒𝑛𝑟×𝐷 is a matrix form of the additional degrees of freedom associated 

to an enriched element, analogous to 𝑼(𝑒). Enriched Green-Lagrange strain and 2nd 

Piola-Kirchhoff stresses follow as 

 𝑬̃ = (𝑭̃𝑇𝑭̃ − 𝑰)/2 (72) 

and 

 
𝑺̃ =

𝜕𝑊(𝑬̃)

𝜕𝑬̃
, (73) 

respectively. Global force,  𝒇𝑖𝑛𝑡 is then assembled as: 

 𝒇𝑖𝑛𝑡 = ∑  𝒇(𝑒)
𝑖𝑛𝑡

𝑒

+ ∑ 𝒇̃
(𝑒)

𝑖𝑛𝑡

𝑒

 (74) 

 

 

5.2.3 Enriched Mass 

As for the standard formulation, a lumped mass matrix is desirable. For enriched 

elements, this takes the form: 

 
𝑴̃(𝑒) = [

𝑴(𝑒) 𝟎

𝟎 𝑴(𝑒)
𝑒𝑛𝑟], (75) 

where 𝑴(𝑒) is computed as in (11), and 𝑴(𝑒)
𝑒𝑛𝑟 ∈ ℝ𝑛𝑒𝑛𝑟×𝑛𝑒𝑛𝑟

 is a diagonal matrix whose 

non-zero components may be computed efficiently using 

 
𝑀(𝑒)𝑖𝑖

𝑒𝑛𝑟 =
𝜌

𝑛
∫ 𝜓𝑖

2

𝛺(𝑒)

𝑑𝛺.  (76) 

 Global mass is then assembled as: 
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𝑴 = ∑𝑴(𝑒)

𝑒

+ ∑𝑴̃(𝑒)

𝑒

 (77) 

 

As described in Wu et al., this form is preferable to either a consistent 

formulation or a lumped matrix produced by row summation, since its effect on the 

critical time step is comparatively small (and, certainly, ∆tcr never approaches zero, 

as it does in the consistent matrix case) [21]. The stability and associated 

computational cost of the algorithm are correspondingly similar to those of the 

standard TLED formulation.  

The complete XTLED algorithm is summarised in Table 5-1 
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Table 5-1: Algorithm 2 of XTLED formulation. 

Initialization 

𝛥𝑡 ← choose a time step using (58′) 

𝒖𝑡−∆𝑡, 𝒖𝑡  ← 𝟎  

cutElement ← Compute list of enriched elements 

Assign Heaviside values to each nodes of the cut element by computing signed distances 

Precompute lumped element mass 𝑴 and shape function derivative 𝝏𝑵  

for all e ∈ ElementSet do 

    𝝏𝑵̃𝑿  ← compute shape function derivatives using (67)  

 

        𝑀(𝑒)𝑖𝑖 ← compute element diagonal nodal mass entries using (58) 

    if e ∈ EnrElementSet   

        𝑀(𝑒)𝑖𝑖
𝑒𝑛𝑟   ← compute enriched element diagonal nodal mass entries using (76) 

    End 

       𝑴(𝑒)
𝑒𝑛𝑟 ← compute enriched element diagonal nodal mass entries 

        𝑴̃(𝑒) ←assemble element mass (75) 

end 

𝑴 ←  ∑ 𝑴̃(𝑒)𝑒 + ∑ 𝑴(𝑒)𝑒  [Assemble enriched system mass matrix] (77) 

Time integration 

for all TimeSteps do 

    for all e ∈ ElementSet do  

        if e ∉ EnrElementSet    

            𝑭 ← compute deformation gradient using (53) 

            𝑺 ← compute 2nd Piola-Kirchhoff stress using (54) 

            𝒇(𝑒)
𝑖𝑛𝑡  ← compute internal forces using (52) 

        else 

            𝑭̃  ← compute enriched deformation gradient using (70) 

            𝑺̃  ← compute enriched 2nd Piola-Kirchhoff stress using (8) 

            𝒇̃(𝑒)
𝑖𝑛𝑡 ← compute enriched internal forces using (69) 

        end 

    end 

    𝒇̃𝑖𝑛𝑡  ←  ∑ 𝒇̃(𝑒)
𝑖𝑛𝑡

𝒆  +∑ 𝒇(𝑒)
𝑖𝑛𝑡

𝒆   [Assemble enriched global internal force vector] (74) 

    𝑹 ← apply external loads 

    𝒖𝑡+1  ← compute next incremental displacement using (60) 

Apply constraint for the next time step 

    𝒖𝑡+1  ← apply displacement constraint for the next time step 

    𝒖𝑡−1  ←  𝒖𝑡 

    𝒖𝑡 ← 𝒖𝑡+1 

End 

 

5.2.4 Evaluation of Force and Mass Integrals 

As in the standard finite element case, the force eq. (69) and mass integrals (eq. 76)  

must be evaluated efficiently and accurately. Gauss integration is efficient but is only 

exact for polynomial integrands. Nonetheless, it may give an accurate approximation 

if integrands are smooth and continuous. Therefore, in the present case, each cut 
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element, with domain 𝛺(𝑒), is partitioned into contiguous, non-overlapping, and 

geometrically simple subdomains 𝛺(𝑒)
𝑖 , i.e. ⋃ 𝛺(𝑒)

𝑖
𝑖 = 𝛺(𝑒). Importantly, the 

subdomains conform to the cut, ensuring the integrands are continuous on each 𝛺(𝑒)
𝑖 . 

Figure 5-2 shows an example of an element with integration points prior to and after 

cutting; the subdomains are thus created to align to the edges of the cut.  

The integrals are then evaluated piecewise over the subdomains of the cut elements, 

where the integrands indeed satisfy these requirements. The integrals become: 

 
∫ (∙)
Ω(e)

dΩ = ∑∫ (∙)
Ω(e)

i
dΩ

i

. (78) 

Element subdomains are formed by finding the element-incision intersection points 

and constructing a Delaunay triangulation from the combined element nodal 

coordinates 𝒙𝑖 (𝑖 = 1…𝑛) and intersection point coordinates.  
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Figure 5-2: a) Triangular element with showing 3-point integration points before (top) 

and after (bottom) incision (red line)  

The location of the Gauss points in the integration cells are obtained by 

isoparametric mapping using the standard displacement interpolation function. The 

algorithm is given in  Table 5-2: Algorithm for computing the integration points of elements 

intersected by a cut. 
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Table 5-2: Algorithm for computing the integration points of elements intersected by a cut 

1. Intersection points using Fast Triangle Intersection [87] 

2. Loop through the elements and compute signed distances of nodes from the cut. An 

additional condition is added to eliminate elements whose product of signed distances 

is positive. (this implies that the element is not cut) 

 

3. Loop through the edges of all cut elements; determine if any edge is cut; compute 

intersection points 

 

for all 𝑖 ∈ nEdg do 

   ϕ𝑛𝑜𝑑𝑒 1 ← Get the distance of node 1 of the 𝑖𝑡ℎ edge  

   ϕ𝑛𝑜𝑑𝑒 2 ← Get the distance of node 2 of the 𝑖𝑡ℎ edge 

   If ϕ𝑛𝑜𝑑𝑒 1  × ϕ𝑛𝑜𝑑𝑒 2 < 0  [i.e. the cut intersects the edge] 

      r ← ϕ𝑛𝑜𝑑𝑒,𝑖/(ϕ𝑛𝑜𝑑𝑒,𝑖 − ϕ𝑛𝑜𝑑𝑒,𝑖+1) [compute ratio] 

      LIntPnt ← (1 − r)coord𝑛𝑜𝑑𝑒,𝑖 + (r)coord𝑛𝑜𝑑𝑒,𝑖 [get intersection points using 

interpolation function] 

      N ← compute shape function of the nodes at the intersection point, L_IntPnt 
      intCoord ←  ∑ N𝑇coord𝑛   [get global intersection point] 

      coord ← [coord, intCoord]  [store point] 

      localCoord ← [coord, L_lntPnt]      
   end 

end 

 

4. Using local intersection points, localCoord, Delaunay triangulation in MATLAB, 

subdivide elements into integration cells. Then delete cells with one subdomain 

       

       𝐶𝑒𝑙𝑙𝑠 ← Get integration cells 

 

5. Get the standard Gauss points (𝑞, 𝑤)  for a 3-point integration for a tetrahedral 
[q,w] ← Gauss 

 

6. Get Gauss points within integration cells by mapping 

for all 𝑛𝐶 ∈ 𝑛𝐶𝑒𝑙𝑙𝑠 do 

   L_coordCell ←  Get the local nodal coordinates of the integration cell 

   G_coordCell ←  Get the global nodal coordinates of the integration cell  

   for all 𝑖 ∈ 𝑁𝒊𝒏𝒕𝑷𝒕𝒔 do 

      N ← compute shape function of the nodes at the integration point, q𝑖 

      gpCell ←  ∑ N𝑇
𝑛 × L_coordCell [compute Gauss points for the integration cell] 

      gpCell𝑛𝐶𝑒𝑙𝑙𝑠 × 𝑑𝑜𝑓 ←  gpCell 

      detJ ← get determinant of Jacobian  

      detJ𝑛𝐶𝑒𝑙𝑙𝑠 × 1 ← detJ  
   end 

end 

 

 

Although a tolerance value was used when selecting the elements that were cut, the 

use of Delaunay triangulation as an additional constraint to delete all elements which 

returned only one cell after triangulation ensured the eliminated of unenriched 
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elements. This is very important, since zero entries in the mass matrix implies an 

infinite displacement solution (that is division by zero). 

 

5.3 Numerical Analysis 

The suitability of the XTLED for creating incisions of nonlinear soft tissue was 

verified by conducting numerical tests, using cuboid and brain sample with soft tissue 

properties. XTLED was also validated via experimental tensile tests using a silicon 

strip. The tensile test displacement results obtained via 2D digital image correlation 

technique was compared with results from FEM and XTLED. FEM simulations were 

conducted using Abaqus/CAE 6.14-2.  

 

5.4 Verification of XTLED using 3D Geometries 

5.4.1 Cuboid Sample: Numerical Simulation Details 

Cuboid samples with horizontal and kinked edge cuts are presented here. The former 

sample is displaced by 22cm at the top surface and fixed at the bottom face, while the 

latter sample with kinked cut is displaced by 3mm at the top surface and fixed at the 

bottom surface (Figure 5-3). XTLED and FEM results begins with Figure 5-4.  
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Figure 5-3: Cuboid with horizontal cut, fixed in all DOF at the bottom surface and displaced 

by 22mm at the top surface 

 

 

 

 

 

 

 

 

Figure 5-4: XTLED (left) and FEM (right) result of deformed cuboid with horizontal cut 
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To be sure that deformation is as expected: there are no volumetric locking 

effects due to the tetrahedral elements, the sample in Abaqus was discretized using 

wedges (C3D6) at the cut tip (C3D6) and hexahedral elements (C3D8R), elsewhere 

(Figure 5-5).  Results of the displacement contour of cuboid sample with kinked cut is 

shown in Figure 5-6. 

 

 

 

 

 

 

 

 

Figure 5-5: Cuboid sample with hexahedral and wedge elements 
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Figure 5-6: XTLED (left) and FEM (right) results of deformed cuboid with kinked cut  

Comparison of the cut opening of each sample above are presented in Figure 5-13. 

 

5.5 Verification of XTLED using Brain sample 

Further verifications were attempted using soft tissues such as a brain model. The brain 

model used was obtained from Taylor et al. [75] (Figure 5-7). The brain model was 

constraint at the brain stem and displaced at the frontal lobe by 0.01m and the analysis 

type was nonlinear analysis that considered change in geometry. The brain was 

modelled as a hyperplastic, Neo-Hookean material with Lame parameter, 𝜆 =

49329Pa, 𝜇 = 1007Pa, for a brain with stiffness value 𝐸 = 3000Pa and Poisson 

ration of 0.49. The brain was discretized into meshes of 6000 to 39323 elements. For 

FEM, the cut was conducted using the contour integral method used for crack analysis. 

For XTLED, the cut plane was extracted from the FEM model and its dimensions were 
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used to create a distance map from which the location of cut was determined; and 

intersection algorithm with the MATLAB code were used to enrich the elements 

intersected by the  cut.  

 

Figure 5-7: Brain sample constrained at the stem and displaced at frontal lobe with cut along 

red line for Mode deformation 

 

5.5.1 Simulation Results of a Brain Sample 

The XTLED simulation of the brain with a cut was implemented but a solution could 

not be obtained due to complex number errors. Possible reasons for this error include 

warped or ill conditioned elements that arise during deformation of the brain sample, 

especially in regions of sharp corners where the tetrahedral elements are significantly 

small in comparison to other elements in the brain. It is also likely that the errors were 

caused by volumetric locking due to the use of fully integrated tetrahedral elements 

[36].  Another reason could be that the applied displacement constraint was too high. 

Stem 

Frontal 

lobe 
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It is stated in Taylor et al. [75] that a displacement of 20% was applied for soft tissue 

deformation not induced by cutting. 

 

5.6 Numerical Validation of XTLED: Silicon Strip Sample 

XTLED method was validated by comparing experimental and FEM results of a 

tensile test on silicon strip to results from XTLED. 

5.6.1 Simulation Details of Silicon Strip Sample 

DIC technique and sample set up 

DIC technique was used to determine the displacements of the silicon sample. The 

DIC technique is an optical technique which measures displacements of a sample by 

tracking points or features on the sample over time, then assigning and comparing the 

positions of the points to a predetermined coordinate system. The method used is 

called cross correlation method. 

To measure displacement of points on the sample, a recognizable pattern on the sample 

is required to create a contrast across the sample to enable distinguished recognition 

of points or regions, for displacement measurement. This pattern is usually referred to 

as a speckle pattern. The pattern was created by spraying the sample with aerosol spray 

(Figure 5-8); other methods of creating a speckle pattern include brush flicking, 

airbrushing and rubber stamp.  
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Figure 5-8: The creation of speckle pattern on sample 

 

The equipment used for the DIC technique typically include light source, two 

cameras mounted on an adjustable stand (Figure 5-9).  

  

 

 

 

 

 

 

 

 

 

Figure 5-9: Sample set up for tensile experiment and DIC technique 

Both cameras and the light were set up such that the images obtained from the 

cameras were clear (no reflection due to light), sharp (good camera focus), and 

Specimen clamped in 

tensile machine using 

spring grips 

DIC camera  
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included the area of interest on the sample (cut and region around it). These images 

were viewed using the accompanying DIC software. The system was then calibrated 

using a standard calibration target (Figure 5-10).  

 

Figure 5-10: Calibration target 

The target was placed in front of the camera, such that it filled the field of view 

of both cameras, to enable extraction of calibration images and points on images. The 

calibration target was placed in front of the specimen and tilted to obtain fifty 

differently oriented images from each camera; note that the number of images taken 

can vary. Images were taken by rotating calibration target in the vertical and horizontal 

axis and in-plane rotation. Calibration helps to “triangulate the cameras positions 

relative to one another and also calculates and corrects any lens distortions”. The 

calibration pictures taken are used to determine a reference coordinate system and 

subsequent images are referred to that reference image. Depending on the software 

used, a calibration score could be generated to ascertain the quality of the calibration 

done and whether there is need to repeat calibration. 
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Images of the sample are then taken over the duration of a test. Thereafter, 

post-processing is done to obtain the displacements of the sample at any given time 

during the tensile test.  

Tensile Test 

Tensile tests were conducted on two silicon samples of dimension (100mm by 40mm 

by 10 mm) each (Figure 5-11). Sample T1 had a cut at mid-height and halfway along 

40mm dimensions while sample T2 had a similar cut but with the cut inclined upwards 

at 45 degrees 10mm along 40mm dimension.  

 

 

 

 

 

 

 

Figure 5-11: Silicon samples with horizontal, T1 (LHS) and kinked cut, T2 (RHS) 

Both samples were fixed at the bottom surface but displaced at the top surface by 

22mm and 3mm, respectively. Displacement was applied at a rate of 0.8mm/min and 

2mm/min for T1 and T2, respectively. The displacement contour of the sample was 

obtained using the DIC technique as described above. Table 5-3 gives a summary of 

the samples. 
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Table 5-3: Sample specifications for DIC technique 

Sample Gauge dimension 

(mm) 

Frame 

number 

Applied 

displacement 

(mm) 

Linear/Nonlinear 

T1 56 x 40 x 10 2000  22 Nonlinear 

T2 54 x 40 x 10 100 3 Linear 

Images were captured every minute 
 

5.6.2 Results of Validation analysis 

Contour plots of the displacement field for both samples as obtained from the DIC 

technique is shown in Figure 5-12. These results were compared to FEM and XTLED 

simulation results which were obtained using Abaqus/CAE 6.14-2 and MATLAB 

codes respectively. 

 

 

Figure 5-12: Vertical displacement contour plots of sample T1 (LHS), and T2 obtained from 

DIC analysis 
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Figure 5-13:Comparison of T1 (top) and T2 (bottom) sample deformation obtained from 

XTLED, FEM and tensile experiment 
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5.7 Discussion and Conclusion 

A cuboid and brain samples were simulated to verify the solution obtained from 

XTLED method while the silicon samples were used to validate XTLED method. The 

final displacement results of sample T1 using FEM method were obtained from a mesh 

of 1770 nodes, and 7867 tetrahedral elements, while results from XTLED were 

obtained using 2604 nodes, and 11,250 tetrahedral elements. Unlike in Abaqus FEM, 

where the mesh around the cut tip region could be more refined than other parts of the 

geometry, this feature is not present in the current version of XTLED. This could 

explain the substantial difference in the number of elements used in both methods. 

Nonetheless, the deformed shape of TI sample obtained from both methods agree, by 

visual inspection (Figure 5-4: XTLED (left) and FEM (right) result of deformed cuboid 

with horizontal cut, Figure 5-13). Similarly, displacement results of T2 were obtained 

from a mesh of 4679 nodes and 864 elements (hexahedral and wedge elements); while 

results from XTLED were obtained from 15750 nodes and 3544 elements. The 

difference in mesh can be attributed to the higher order of hexahedral elements and 

mesh refinement at cut tip. 

A comparison of these results with those obtained from the tensile experiments 

was obtained by registering all three results about the cut tip Figure 5-13. By visual 

inspection of the T1 sample results, both XTLED and FEM methods conform to the 

deformation pattern obtained from the tensile experiment. It should be noted that while 

the scattered points in XTLED and FEM represent the nodal points within the mesh, 

that of the DIC experiment are sample points selected by DIC system. In addition, the 

points that form the cut opening in XTLED method are actually nodes of the elements 

that were intersected by the cut, thus, the cut opening shown here is not the actual cut 

opening but the edges of the elements adjacent to the elements that were cut; the cut 
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was created within elements in XTLED, unlike in FEM. This explains why most of 

the nodes around the cut tip for XTLED solution do not exactly match the cut opening 

from the experiment of FEM, although the deformation is the same across all three 

methods. 

For a better quantitative analysis, a point-wise comparison of the sample 

results could not be computed. More recent 2D DIC software could be used to obtain 

specific points on the samples and this could then be compared to the results from 

XTLED and FEM. Theoretically, displacements of the cut opening of the samples 

from XTLED could be computed by finding the elements within which this 

coordinates/points belong and then using the enriched displacement interpolation 

function (eq. (63)) to obtain the displacement at this specific points. Since different 

element types were adopted in FEM and XTLED and only tetrahedral are present in 

the XTLED algorithm, points defining the cut opening would be used for the 

computation.   

Similarly, the brain sample was simulated to verify XTLED method. However, 

not-zero-number (NAN) errors were obtained during the solution and the solution had 

to be aborted. It is not yet clear what the cause of these is since global mass matrix had 

no zero entries. 

To compare the simulation time in XTLED and FEM, XTLED would need to be 

written and implemented using an executable language such as C++. Currently in 

MATLAB, majority of the computational time is spent creating subdomains and this 

is repeated twice in computing mass and force.  
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6 CONCLUSION 

6.1 Thesis Outcome and Contribution 

The focus of this thesis is the development of a suitable numerical method for 

surgical incision, which can potentially alleviate the compromise of accuracy for 

computational speed present in existing numerical methods. Towards this, the 

extended Lagrangian explicit dynamic method (XTLED) was developed in MATLAB. 

The development of XTLED meets the objectives stated in chapter 1: to develop a 

numerical method that enables arbitrary cutting of deformable soft tissue. 

The stated objective presents a similar work as earlier authors, Jeřábková et al.  

[58] who also combined XFEM and total Lagrangian finite element formulation. 

However, in this thesis, detailed implementation of the method, specifically the 

method adopted to determine enriched elements is presented. This was achieved via 

intersection algorithm and the use of Delaunay triangulation to ensure that the global 

mass matrix had no zero entries. This aspect is essential, in my opinion, otherwise the 

displacement solution obtained becomes an infinite solution.  

The outcome of the above objective is as follows: 

• Despite the conditional stability of the explicit time integration method, it is 

possible to create arbitrary cut in a cuboid sample subjected to tension: fixed 

at one end and extended along an opposite face by at least 30% of its dimension 

along the stretch. This was validated using a silicon strip as presented in 

Chapter 5. Thus, XTLED method is a potential method for simulating 

interactive surgical incision. 
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6.2 Limitations and Further Studies 

The element type used in XTLED for simulating incisions is tetrahedron. These 

elements are known to exhibit volumetric locking for incompressible material. 

However solutions such as average nodal pressure have been reported to alleviate this 

issue [36]. Thus, a natural first step would be the incorporation of ANP with XTLED. 

While this might increase computational time, investigations would have to be carried 

out to determine how significantly this affects computational time. 

A second limitation of the presented method, for which further studies are required, is 

that it only simulates static incision. Thus, for interactive purposes, XTLED should be 

adapted for interactive simulation. This could be achieved via the level set method 

which has been used to track discontinuities such as crack [88], [89]. 

A recommendation is the acceleration of XTLED via GPU implementation and 

verification of the method for interactive simulation. Here the implementation could 

be incorporated in an open source surgical simulating software such as SOFA 

(sofa.org). Such a simulation will give a clear indication of the use of the presented 

method for interactive surgical incision. 
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