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Abstract 

 

Fly vision has often been considered to be quite poor, both temporally and spatially, 

as it is limited by numerous different factors (i.e. number of sampling units, lens 

dimensions, photoreceptors’ slow integration time, ambient light level as well as flies’ 

own speed when in motion) (Mallock, 1894; Fermi and Richardt, 1963; Srinivasan and 

Bernard, 1975; Warrant and McIntyre, 1992; Land, 1997; Warrant, 1999). 

 

Some studies have challenged these views and found that flies have evolved to 

partially overcome these constraints (i.e. via acute zones, head/thorax and body 

movements) (van Hateren and Schilstra, 1999; Hornstein et al., 2000; Burton, Tatler 

and Laughlin, 2001; Burton and Laughlin, 2003). One recent example from Juusola et 

al. (2017) showed that Drosophila photoreceptors contract to light and these 

photomechanical contractions coupled with refractory sampling enable the fly to 

overcome motion blur even to objects smaller than their optical limit.  

 

Following on from this work, my aim was to test whether different aspects of a fast-

flying housefly (Musca domestica) would also have enhanced spatial and temporal 

vision beyond our current understanding. If slow-flying Drosophila with its optically 

poorer vision has evolved to compensate for its limitations, then in theory we should 

see similar, or better, improvements in a faster flying fly such as Musca. Additionally, 

working with Musca created the opportunity to investigate any presence of sexual 

dimorphism, as males have "love spots", which Drosophila males lack (Gonzalez-

Bellido, Wardill and Juusola, 2011; Perry and Desplan, 2016).  

  

My work focussed on examining via in vivo intracellular recordings visual encoding of 

Musca photoreceptors (R1-R6) and what happens to that information when passed 

downstream to large monopolar cells (LMCs, L1-L3). In total, this examination resulted 

in three separate studies: (i) early temporal encoding during body saccades, (ii) R1-

R6 and L1-L3 cells' response properties during light adaptation and its impact on 

underlying quantum bumps (QBs) and (iii) hyperacuity of photoreceptors and LMCs.  

 



I found that temporal encoding of Musca early vision was better than previously 

thought, especially in male flies. Additionally, both photoreceptors’ and LMCs’ 

signalling performance to different stimulus statistics improved when brightening mean 

light levels. However, when looking at spatial encoding, both male and female 

photoreceptors were in general not able to resolve details finer than their optical limit 

i.e. they were not hyperacute. LMCs may have this ability but further investigations are 

required.  
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1. General introduction  1 
 

 

1 General introduction 

 

1.1 The fly visual system 

In this section, I will discuss the fly visual system, with the main focus on early 

information processing. Incoming light is sampled by two separate photoreceptive 

organs: mainly by two compound eyes and three simple lens eyes (ocelli) at the vertex 

of the head. The compound eye is composed of hundreds to thousands of discrete 

visual units, called the ommatidia (~750 units in Drosophila, ~3,500 in Musca and 

~5,600 in Calliphora) (Figure 1-1) (Franceschini and Kirschfeld, 1971a; Hardie, 1985; 

Sukontason et al., 2008; Wada, 1974). The fly visual system consists of four distinct 

retinotopically organised optic ganglia: the retina, lamina, medulla, and the lobula 

complex, composed of the lobula and lobula plate. The modularity begins in the retina 

(Figure 1-2).  

Figure 1-1. The fly compound eye. The compound eye is composed of single visual units, called the 

ommatidia (~750 units in Drosophila, ~3,500 in Musca and ~5,600 in Calliphora) (Franceschini and 

Kirschfeld, 1971a; Hardie, 1985; Sukontason et al., 2008; Wada, 1974). Each ommatidium has a 

dioptric apparatus consisting of a hexagonal facet (forms the cornea) and a fluid-filled pseudocone. In 

addition, each ommatidium contains eight photoreceptor cells (R1–R8), which can be divided into two 

classes: the outer (R1-R6) and the inner (R7-R8) photoreceptors, which are stacked on top of each 

other (Dietrich, 1909). Pigment cells absorb and scatter incoming light to shield the photoreceptors from 

getting scattered light (Stavenga, 1989) (modified from Horridge, 1977; Wolff and Ready, 1993; Sato, 

Suzuki and Nakai, 2013). 
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Each ommatidium consists of an optical structure of two lenses: first, a hexagonal facet 

lens forming the cornea that is followed by a cone-shaped optical material (fluid-filled 

pseudocone). They also contain eight photoreceptor cells (R1–R8) surrounded by 

pigment cells, which shield the photoreceptors from getting scattered light from 

adjacent photoreceptors (called cross-talk) (Stavenga, 1989). 

 

Photoreceptors are arranged in an asymmetrical trapezoidal pattern and can be 

divided into two classes: the outer (R1-R6) and the inner (R7-R8) photoreceptors 

(Dietrich, 1909). The optical waveguides (rhabdomeres) in the photoreceptors are the 

most essential components because they contain the photopigments and the 

phototransduction machinery (Hardie and Raghu, 2001). All the outer photoreceptors 

have a separate rhabdomere, unlike the R7 and R8, which are stacked on top of each 

other, with their rhabdomeres vertically aligned. In advanced flies (suborder: 

Brachycera), all the rhabdomeres in an ommatidium are physically spaced out, forming 

an open rhabdom (Dietrich, 1909; Osorio, 2007). In most insect eyes (e.g. bees, 

butterflies, beetles, and numerous mosquitoes), the rhabdomeres are fused, forming 

a single waveguide (fused rhabdom) and thus, presumably looking at the same point 

in space (Snyder, Menzel and Laughlin, 1973). 

 

The six outer photoreceptors (R1-R6) from neighbouring ommatidia broadly collect 

light information from the same point in visual space (Pick, 1977; Kirschfeld and 

Franceschini, 1969) and their axons terminate in a predetermined lamina cartridge, 

pooling their signals (the neural superposition principle) (Braitenberg, 1967; 

Kirschfeld, 1967). In true flies (Diptera), this is thought to increase the absolute 

sensitivity without sacrificing much acuity (Pick, 1977). All R1-R6 express a single 

blue-sensitive opsin (Rh1) (O’Tousa et al., 1985) with sensitising UV-pigment 

(Kirschfeld, Franceschini and Minke, 1977), detect achromatic contrast and 

predominantly mediate motion vision (Heisenberg and Buchner, 1977). 

 

The inner photoreceptors (R7-R8), apart from their potent gap-junctions to R1 and R6 

axons (Shaw, Fröhlich and Meinertzhagen, 1989; Wardill et al., 2012), bypass the 

lamina and project directly to two separate layers in the medulla (Cajal and Sanchez, 

1915; Melamed and Trujillo-Cenóz, 1967). Unlike the outer photoreceptors, R7 and 

R8 are chromatically heterogeneous and stochastically paired, resulting in three 
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different subtypes of ommatidia: named as pale, yellow and DRA (dorsal rim area) 

(Wernet et al., 2006). These are thought to be primarily involved in colour vision and 

detection of polarised light (Hardie, 1985; Gao et al., 2008; Wernet et al., 2012). 

 

 

Figure 1-2. Neural superposition and the retinotopic organisation of the fly visual system. The 

fly visual system is retinotopically organised into four optic ganglia: the retina, lamina, medulla, and the 

lobula complex, composed of the lobula and lobula plate. Some Diptera such as fruitfly (Drosophila), 

housefly (Musca) and blowfly (Calliphora) have a neural superposition eye. R1-R6 from the same 

ommatidium look at neighbouring points in the visual scene and send their axons to different cartridges 

in the lamina, whereas R1-R6 from the six neighbouring ommatidia have the same visual axis and 

terminate in the same lamina cartridge (Braitenberg, 1967; Kirschfeld, 1967). Unlike the outer 

photoreceptors, R7 and R8 bypass the lamina, apart from their gap-junctions with R1/R6 axons (Shaw, 
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Fröhlich and Meinertzhagen, 1989; Wardill et al., 2012), and project directly to two separate layers in 

the medulla (modified from Fischbach and Dittrich, 1989; Schneider et al., 2018). 

 

1.1.1 Lamina – The first optic neuropil 

The anatomy and connectivity of lamina neurons have been studied thoroughly by 

Golgi studies and electron microscopy (EM) reconstructions in flies, especially in 

fruitfly (Drosophila) (Fischbach and Dittrich, 1989; Meinertzhagen and O’Neil, 1991; 

Rivera-Alba et al., 2011) and in housefly (Musca) (Strausfeld, 1970; Braitenberg, 1967; 

Burkhardt and Braitenberg, 1976; Strausfeld, 1976; Shaw, 1981; Nicol and 

Meinertzhagen, 1982). 

 

Lamina is an array of repeated retinotopically organised cylindrical cartridges (Cajal 

and Sanchez, 1915), which are surrounded and isolated by different glial cells (Rivera-

Alba et al., 2011; Edwards et al., 2012). There is one cartridge for each ommatidium. 

In addition to R1-R6 photoreceptor axons, which are electrically coupled by gap-

junctions (Ribi, 1978; Shaw and Stowe, 1982; van Hateren, 1986), lamina has 12 other 

neuronal cell types: 5 lamina output neurons, 6 putative feedback neurons and one 

lamina intrinsic cell (Fischbach and Dittrich, 1989; Tuthill et al., 2013). Lamina neurons 

can be divided into two classes: eight columnar (one cell per cartridge) and four multi-

columnar (less than one cell per cartridge). The feedforward lamina monopolar cells 

(LMC: L1-L5) and three putative feedback neurons (T1, C2 and C3) are columnar and 

all these cells connect lamina with medulla. The lamina intrinsic (amacrine) neurons 

(Am), two wide-field neurons (Lawf1, Lawf2) and lamina tangential neurons (Lat) are 

multi-columnar. 

 

As mentioned earlier, photoreceptors (R1-R6) form synapses with L1-L3 monopolar 

cells, the amacrine cell, and the epithelial glia with most of these connections to L1, 

L2, and the amacrine cell (Figure 1-3) (Meinertzhagen and O’Neil, 1991; Rivera-Alba 

et al., 2011). This feedforward pathway is histaminergic (Hardie, 1987; Hardie, 1989; 

Sarthy, 1991; Pantazis et al., 2008). Interestingly, L1 and L2 appear electrically 

coupled by gap-junctions (Chi and Carlson, 1980; Joesch et al., 2010) possibly to 

reduce the noise by synaptic R1-R6 signal summation. L1, L3 and L5 are the only 

purely postsynaptic cells in the lamina, as they form no synaptic feedback to 

photoreceptor axons (Rivera-Alba et al., 2011). 
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Besides their output synapses, R1-R6 photoreceptors form small numbers of feedback 

synapses with several lamina neurons, L2, L4 (including L4+x and L4-y), C3, and the 

amacrine cell (Rivera-Alba et al., 2011), presumably enhancing temporal contrast 

detection (Zheng et al., 2006). This feedback is excitatory: glutamatergic and 

cholinergic (Meinertzhagen and O’Neil, 1991; Raghu and Borst, 2011; Takemura et 

al., 2011). L2 is mainly postsynaptic, but it also receives feedback from L4: L2 has 

reciprocal connections with L4 and with the two neighbouring collaterals (L4+x and L4-

y). (Strausfeld and Campos-Ortega, 1973; Meinertzhagen and O’Neil, 1991; Rivera-

Alba et al., 2011). 

 

 

Figure 1-3. Synaptic connectivity between presynaptic and postsynaptic cells in the lamina 

cartridge. R1-R6 photoreceptors form synapses with L1-L3 monopolar cells, the amacrine cell (Am), 

and the epithelial glia with most of these connections to L1, L2, and the amacrine cell. In addition, 

several lamina neurons, L2, L4 (including L4+x and L4-y), C3, and the amacrine cell send feedback input 

to R1-R6. L1, L3 and L5 are purely postsynaptic in the lamina. L2 has reciprocal connections with L4 

and with the two neighbouring collaterals (L4+x and L4-y). The colour scale indicates the number of 

synapses between the presynaptic and the postsynaptic cell (Rivera-Alba et al., 2011). 
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It is possible that every lamina neuron in Musca would have its counterpart in 

Drosophila (Strausfeld, 1976; Fischbach and Dittrich, 1989). However, perhaps due to 

neuroethological adaptations, not every connection that occurs in Drosophila exists in 

Musca. There is some evidence from older studies that find instances of this. First, the 

feedback synapse from Am to R1-R6 present in Drosophila and Calliphora (blowfly) is 

absent in Musca domestica (Trujillo-Cenóz, 1965; Strausfeld and Campos-Ortega, 

1973; Shaw, 1984; Shaw, 1988). Second, there are possibly some differences in the 

L4 synaptic connections. Shown in both species, L4 forms reciprocal connections with 

two neighbouring collaterals (L4+x and L4-y) and L2, and is presynaptic to L1. 

Interestingly, the distal dendrites postsynaptic to amacrine cells are absent in 

Drosophila (Strausfeld and Campos-Ortega, 1973; Fischbach and Dittrich, 1989).  

 

1.2 Fly photoreceptor and LMC responses to light 

Light is a flux of photons. Vision starts when these photons are absorbed by the light-

sensitive pigment (rhodopsin) and converted into electrical signals through a G-

protein-coupled signalling cascade. The Drosophila phototransduction is one of the 

fastest known G-protein-coupled signalling cascades (Montell, 1989; Ranganathan, 

Malicki and Zuker, 1995; Hardie and Raghu, 2001; Hardie and Postma, 2008) and a 

widely used model to explain invertebrate and microvillar visual transduction. 

 

In the animal kingdom, two major classes of photoreceptors have evolved: ciliary 

photoreceptors (vertebrate rods and cones) and microvillar (also called rhabdomeric) 

photoreceptors, which are found in many invertebrates (Arendt, 2003). In microvillar 

photoreceptors (Figure 1-4A), each microvillus contains all the phototransduction 

reactions and therefore, it is called a photon sampling unit (Figure 1-4B) (Smith, 

Stamnes and Zuker, 1991; Hardie and Raghu, 2001). These transduction units 

(~30,000 microvilli in Drosophila, ~60,000 in Musca and ~90,000 in Calliphora) form 

the rhabdomere (Hardie, 1985; Song et al., 2012). 

 

Every microvillus can generate a quantum bump (QB) from a single photon that 

photoisomerises one of its rhodopsin molecules (Figure 1-4C) (Fuortes and Yeandle, 

1964; Kirschfeld, 1966; Lillywhite, 1977; Wu and Pak, 1975; Hardie and Juusola, 

2015). Due to refractoriness (50-300 ms in Drosophila), a microvillus can only produce 
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one QB at a time and during that time window, it cannot respond to another incoming 

photon. QBs (single-photon responses) are then summed to produce photoreceptor’s 

graded macroscopic voltage response (Figure 1-4D) (Wu and Pak, 1975; Dubs, 1981; 

Hochstrate and Hamdorf, 1990; Henderson, Reuss and Hardie, 2000; Song et al., 

2012). Even though the summation appears linear (at dim intensities), the bumps are 

nonlinear events having different waveform and latency distributions. 

 

 

 

Figure 1-4. Quantal light information sampling by Drosophila R1-R6 photoreceptors. (A) A 

longitudinal view of a photoreceptor shows that a rhabdomere is composed of microvilli (~30,000 

microvilli in Drosophila, ~60,000 in Musca and ~90,000 in Calliphora). Yellow microvilli are the ones 

that have absorbed a photon (modified from Montell, 2012). (B) These single photon energies are 

converted into electrical signals (quantum bumps, QBs) through a G-protein-coupled signalling 

cascade. Drosophila phototransduction is one of the fastest known G-protein-coupled signalling 

cascades (Hardie, 2011). (C) Example of QB distributions in time from different microvilli. QBs have 

different waveform and latency distributions (modified from Song, Zhou and Juusola, 2016). (D) All the 

QBs from all the microvilli are summed to produce the macroscopic light-induced current (LIC) and 

eventually the graded macroscopic voltage response (modified from Song, Zhou and Juusola, 2016). 

 

 



1. General introduction  8 
 

 

1.2.1 Photoreceptors depolarise to light increments 

Microvillar photoreceptors depolarise to light increments, unlike ciliary photoreceptors 

(Fain, Hardie and Laughlin, 2010). The macroscopic response is shaped not only by 

the phototransduction cascade but also by the passive (lipid membrane capacitance 

and resistance) and active membrane properties: the voltage- and Ca2+ -gated 

channels and two electrogenic transporters (Na+/K+ ATPase and Na+/Ca2+ 

exchanger). The main potassium channels (Shaker, slowly activating delayed rectifier 

and fast delayed rectifier) are very important in shaping the voltage response. Rapid 

inactivation of the Shaker (voltage-gated K+ channel gene) helps to better allocate 

voltage responses within the cells’ limited bandwidth in light-adapted conditions 

(Hardie et al., 1991; Niven et al., 2003; Juusola, Song and Hardie, 2015). In addition, 

the slowly activating delayed rectifier, which is encoded by the Shab gene, lowers the 

membrane time-constant, supporting fast signal conduction (Vähäsöyrinki et al., 2006; 

Juusola, Song and Hardie, 2015). The fast delayed rectifier is possibly encoded by the 

Shal gene and is likely to be fine-tuning the kinetics of the voltage response (Hardie, 

1991; Vähäsöyrinki et al., 2006) while two different Ca2+-activated K+ channels (Sk 

and Slo) seem to regulate the dynamics of the peak-to-plateau transition (Li et al., 

2019). The Na+/K+ ATPase generates an afterhyperpolarisation under bright 

illumination (Jansonius, 1990; Uusitalo et al., 1995), whereas the Na+/Ca2+ exchanger 

(calx) regulates the cytosolic Ca2+ in the microvilli (Liu et al., 2020). In concordance, 

the calx mutants show reduced sensitivity to light and rapid hyperadaptation (Wang et 

al., 2005). 

 

As introduced earlier, fly photoreceptors have a high single-photon sensitivity and a 

fast temporal resolution. But to encode vast intensity changes (>106 photons/s) in their 

natural environment, they need a large dynamic range (~70 mV) to respond. This is 

done mostly through refractoriness, which can reduce the sensitivity to bright light by 

>99% (Song et al., 2012; Juusola et al., 2017) and by the intracellular Ca2+-dependent 

pupil mechanism (Kirschfeld and Vogt, 1980; Howard, Blakeslee and Laughlin, 1987), 

which together can effectively prevent saturation. Additional cellular mechanisms that 

help the adaptation are the ion channels and the electrogenic transporters (Juusola 

and Hardie, 2001a; Wang et al., 2005; Hardie and Juusola, 2015). Photoreceptors are 

surrounded by pigment granules and during light adaptation, these granules migrate 
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towards the rhabdomere to absorb and reflect the incoming photons, whereas when 

dark-adapted they move radially away. This way the eye is able to control the light flux 

in the rhabdomere, acting as a pupil (Kirschfeld and Franceschini, 1969; Franceschini, 

1972; Stavenga, 1975; Howard, Blakeslee and Laughlin, 1987; Roebroek and 

Stavenga, 1990). Pigment migration has been studied to decrease the photon flux 

through the rhabdomere by up to a factor of 100 (Franceschini, 1972) and, therefore, 

it extends the photoreceptors dynamic intensity range (Howard, Blakeslee and 

Laughlin, 1987; Song and Juusola, 2014). 

 

The most important factor that gives the foundations for a large dynamic range is the 

contrast invariance of the physical world to which animal vision has adapted. This 

comes from the invariance of object reflectance (Carpenter and Reddi, 2012). The 

photoreceptor’s sensitivity decreases to small intensity changes, while the response 

amplitude increases. By Weber’s law, the contrast is defined as:                                                     

 

                                                         𝑐 =
∆𝐼

𝐼
 ,                                                          (1-1) 

 

where ∆𝐼 is change in the intensity divided by the mean intensity (i.e. the background) 

𝐼 (Shapley and Enroth-Cugell, 1984). 

 

Fly photoreceptors code the contrast over all natural light background intensities. The 

photoreceptor’s response amplitude to constant contrast increases with the 

background, until saturation. At a given background, brief negative and positive 

contrast changes produce similar-looking responses (Juusola, 1993; Juusola, Uusitalo 

and Weckström, 1995). This is not true for steady-state adapted peak responses to 

long-lasting contrast stimuli (Zettler, 1969; Juusola, 1993). Effectively, background 

adaptation causes a logarithmic shift in the photoreceptor’s sensitivity (Laughlin and 

Hardie, 1978). Contrast coding is highly advantageous for a fly moving between 

different environments with diverse light levels, enabling it to scale light input 

proportional to mean light intensity without losing the ability to detect behaviourally 

important light changes (Laughlin, 1989; Juusola, 1993). 
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1.2.2 LMCs hyperpolarise to light increments 

Although lamina is the first optic neuropil and contains about 12 anatomically identified 

neurons (Rivera-Alba et al., 2011), only a few of them have been characterised via 

electrophysiological recordings. The lamina interneurons are notoriously small and 

difficult to record from, but by L1-L3 being the largest ones, they are more accessible 

for intracellular recordings (Scholes, 1969; Autrum, Zettler and Järvilehto, 1970; 

Järvilehto and Zettler, 1971; Laughlin and Hardie, 1978; Guy and Srinivasan, 1988; 

van Hateren, 1992b; Uusitalo et al., 1995; Juusola et al., 2016). As more is known 

about them, this chapter will mainly focus on their response properties. 

 

Like R1-R8 photoreceptors, LMCs respond with graded potentials to light changes. 

However, in the LMCs, the signal from the outer photoreceptors (adjacent R1-R6) 

goes through three transformations: inversion, amplification and adaptive response 

waveform changes to intensifying light inputs (Järvilehto and Zettler, 1971; Laughlin, 

1973; Laughlin and Hardie, 1978). Unlike photoreceptors, which depolarise to light 

increments, an LMC responds with a transient hyperpolarisation (ON-transient) 

followed by a light-off response, a depolarising OFF-transient. The inversion is caused 

by the photoreceptors’ inhibitory neurotransmitter (histamine). Histamine binds to the 

chloride channels in the LMC membrane, causing them to open (Hardie, 1989) with 

the resulting inward Cl--flux hyperpolarising the cell. Histamine release is tonic even in 

darkness (Uusitalo et al., 1995). The depolarising OFF-transient is most prominent in 

response to bright light flashes. However, in dim light conditions, the LMC response 

becomes monophasic having only the hyperpolarising light ON-peak. Furthermore, the 

light OFF-transient seems more obvious when recording in chiasma or near medulla 

and thus, it is thought to be generated in the medulla terminal (Järvilehto and Zettler, 

1971; Laughlin and Hardie, 1978; Guy and Srinivasan, 1988). 

 

Amplification and generation of light ON- and OFF-transients are thought to be 

important for efficient information coding of the natural environment. Both 

photoreceptors and LMCs respond with increasing amplitudes (depolarisation vs 

hyperpolarisation) to increasing light contrasts. Pooling six presynaptic photoreceptor 

terminals amplifies the transmitted signals and reduces noise (Laughlin and Hardie, 

1978; Laughlin, 1989). While synaptic adaptation, through dynamic synaptic 
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feedforward-feedback interactions and membrane conductances, reallocates the 

responses within the LMC amplitude and frequency ranges (~60 mV) (Hardie and 

Weckström, 1990; Zheng et al., 2006; Zheng et al., 2009; Nikolaev et al., 2009; Li et 

al., 2019). 

 

Two early static models, predictive coding (Srinivasan, Laughlin and Dubs, 1982) and 

matched amplification (Laughlin, 1981a), were constructed to explain how LMCs, 

respectively, subtract and amplify stationary signals to maximise the information 

transfer from the incoming signal. The key components in predictive coding were 

spatial and temporal inhibition. In the schemes, these were both used to remove the 

redundant (or predictable) component from the input signal to increase the sensitivity 

and to reduce the intrinsic noise (Srinivasan, Laughlin and Dubs, 1982). Thus, within 

these simplified concepts, LMCs were considered to be adaptive spatiotemporal filters 

enhancing the contrast coding by background subtraction.  

 

In space, the adjacent pixel intensities correlate strongly (van Hateren, 1997) and, 

therefore, to combat redundancy, the local weighted average can be calculated and 

then subtracted from the signal (Srinivasan, Laughlin and Dubs, 1982). The weighting 

function presumably depends on the signal-to-noise ratio (SNR) of the input signal and 

can relate to lateral inhibition (Hartline, 1949; Barlow, 1953). In the fly eye, lateral 

inhibition is thought to reflect the centre-surround structure of the LMC receptive field 

(Zettler and Järvilehto, 1972; Dubs, 1982). Subsequently, the net LMC response has 

been approximated as the difference between the response generated in the centre 

of its receptive field and the response of the surround generated by the mean light 

intensity (the background). At bright intensities, the SNR of the light input is high and 

thus, the local average can be calculated using only a few neighbouring 

photoreceptors. This would make the antagonistic surround of the LMC receptive field 

strong but narrow, causing spatiotemporal differentiation. Whereas, at dim light 

intensities, the photon noise is high, reducing the SNR, so more photoreceptors would 

be needed to generate the local average. Therefore, the inhibition would be weaker 

and wider, causing spatiotemporal integration. 
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The temporal inhibition (feedback self-inhibition) contributes clearly to adaptation. The 

net LMC response can be thought as the difference between the current signal and 

the weighted average of the earlier inputs. The temporal weighting function is intensity-

dependent similar to the spatial weighting function. It generates the biphasic response 

– the depolarising light OFF transient to bright light increments, which is not evident in 

dim illumination. This depolarisation is the temporal counterpart to lateral inhibition. 

Interestingly, the shape and the amplitude of the saturated LMC transients change in 

response to the background intensity levels. With a brightening background, a +1-

contrast pulse evokes about equal amplitude but faster hyperpolarising responses, 

whilst a -1-contrast pulse generates larger and faster depolarising responses (Juusola, 

Uusitalo and Weckström, 1995). In conclusion, when the light intensity changes from 

dim to bright, both the spatial and temporal inhibition gets stronger causing the LMCs 

to shift from low-pass filters to band- or high-pass filters. 

 

To make the contrast coding efficient after the presumed subtraction, the remaining 

signal is, nevertheless, amplified. Crucially, the dynamic range of LMCs (~70-100 mV, 

peak-to-peak, Juusola, Uusitalo and Weckström, 1995; Zheng et al., 2009) is 

biophysically limited. Therefore, to combat the saturation, the response amplification 

and frequency distribution should continuously adapt to the statistical distribution of 

contrasts the fly encounters in its natural environment (van Hateren, 1992a; van 

Hateren, 1992b; Zheng et al., 2009). This minimises information loss (Shannon and 

Weaver, 1949; Laughlin, 1981a; van Hateren, 1992a; van Hateren, 1992b; Zheng et 

al., 2009).  

 

Barlow (1961) hypothesised that the goal of early vision is to remove the redundancy 

from the signal. The predictive coding by Srinivasan et al. (1982) explained how 

redundancy can be minimised through spatial and temporal inhibition. In contrast, van 

Hateren (1992a) presented a theory where removing redundancy would not 

necessarily be optimal in every situation, suggesting the goal of the early sensory 

processing is to maximise the information, instead of removing the predictable 

components from the signal. His theoretical model explains how LMCs maximise the 

information transfer by changing their filtering properties - in low light backgrounds 

(dusk/dawn, low-SNR) the response is low-pass-filtered where redundancy will be 

increased. Whereas at bright light backgrounds (daylight, high SNR), the response is 
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band- or high-pass-filtered and thus, redundancy will reduce. To summarise, the 

theory stated that redundancy would be beneficial for the system in low light 

conditions. Later, van Hateren (1992b) tested his computational theory by carrying out 

experiments (in vivo intracellular recordings) at steady-state conditions using blowfly 

(Calliphora vicina) LMCs. The predictions matched reasonably well with the 

experimental results, showing that LMCs shift their “neural” filters according to the 

mean light intensity to maximise the information transfer rate.  

 

A further experimental study from blowfly LMCs (Juusola, Uusitalo and Weckström, 

1995) using a Gaussian white noise (GWN) stimulation, was consistent with the 

previous theory and findings from van Hateren (1992a, 1992b). It should be noted that 

both of the studies by van Hateren and Juusola et al. investigated the information 

processing in LMCs by using either a point source/wide-field or a GWN stimulation, 

respectively, neither of which excite the photoreceptors’ full dynamic range. 

Subsequently, such stimuli would underestimate response information transfer rate in 

respect to naturalistic or bursty stimuli (Juusola et al., 1994; van Hateren, 1997; 

Juusola and Song, 2017; Juusola et al., 2017). Therefore, it is important to excite the 

full dynamic range to any sampling nonlinearities, such as refractoriness or saccadic 

photoreceptor photomechanics, by using a stimulus with more complex naturalistic 

and behavioural statistics (Juusola et al., 2017). 

 

1.2.3  Different response properties of L1-L3 

Although I have referred to LMCs as a homogeneous group, detailed anatomical, 

electrophysiological and two-photon imaging research have revealed subtle 

differences between them. Here, I will discuss mainly the electrophysiological findings 

on L1-L3 (Table 1-1). 

 

Like photoreceptors, L1-L3 are non-spiking neurons as opposed to the two remaining 

LMCs (L4 and L5), which are probably spiking neurons (Shaw, 1981; van Hateren and 

Laughlin, 1990). All the L1-L3 get inhibitory feedforward histaminergic input from the 

outer photoreceptors (L1: ~250 synapses, L2: ~250 synapses and L3: ~51 synapses) 

but L2, as well as L4 (including L4+x and L4-y) and amacrine cells, provide excitatory 

feedback to R1-R6 (~6 synapses) (Rivera-Alba et al., 2011). L2 possibly shows 
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stronger lateral inhibition than L1 and L3 (Laughlin and Osorio, 1989). All LMCs 

presumably receive opposing polarity push-pull inputs from the neighbouring 

cartridges (Zettler and Järvilehto, 1972; Strausfeld and Campos-Ortega, 1973; 

Meinertzhagen and O’Neil, 1991; Rivera-Alba et al., 2011), which potentially enhances 

the centre-surround-antagonism.  

 

L1-L3 have different membrane properties (Hardie and Weckström, 1990). Hence their 

voltage responses to light differ from each other. LMCs can be divided into two 

subclasses (L1/L2 and L3) based on their electrical properties. With respect to the 

Calliphora R1-R6’s -60 to -75 mV resting potentials and ~20-35 M𝛺 input resistance 

in darkness, L1 and L2 are more depolarised (~-40 mV) and leakier (10-20 M𝛺). 

However, L3 resting potential is -60 mV and it has a higher input resistance (30-40 

M𝛺) than L1 and L2 (Hardie and Weckström, 1990; van Hateren and Laughlin, 1990). 

Hardie and Weckström (1990) further performed intracellular recordings from L1-L3 to 

examine, which potassium channels contribute to shaping the voltage response to 

light. They found that L1 and L2 mainly express a rapidly inactivating current (an A-

current, Ka), whereas L3 mainly expresses a slowly inactivating current (a delayed 

rectifier current, Kd). Unlike the A-current, the delayed rectifier current is most likely 

activated under normal physiological conditions, potentially shaping the signal by 

sharpening the light OFF depolarisation.  

 

Hardie and Weckström (1990) discovered that L3 has a positive transient 

superimposed on the depolarising light OFF response (Figure 1-5A). This was further 

studied by Uusitalo, Juusola and Weckström (1995) who observed a similar but 

smaller spike-like event in L1 after a brief hyperpolarisation of the resting potential. L2, 

on the other hand, did not show any spike-like events in any conditions tested (Figure 

1-5B). They suggested that the spikes are mediated by the voltage-gated sodium 

channels in the LMC axons. However, none of the LMCs produced spikes in response 

to small contrasts or white noise (WN) stimulation. 
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Figure 1-5: Intracellular responses of Calliphora LMC subtypes (L1/L2 and L3) to light in the 

synaptic site. (A) Top: L3 responds with a brief hyperpolarisation followed by a depolarising light OFF 

response (light grey arrow) to a short 2-ms light pulse. There was a positive OFF spike (dark grey arrow) 

superimposed on the light OFF response. Bottom: L3 response to a long 300-ms light pulse. Longer 

light stimulation produced an additional OFF spike (first dark grey arrow) after the light ON response 

(first light grey arrow). L3 has a resting potential of about -59 mV. (B) L1/L2 has a higher resting potential 

(about -42 mV) and did not produce OFF spikes to either of the light stimuli (top: 2-ms light pulse, 

bottom: 300-ms light pulse). Moreover, the L1/L2 had a much smaller OFF response (light grey arrow) 

to the short light pulse (modified from Uusitalo, Juusola and Weckström, 1995). 

 

In the past, the electrophysiological differences between L1-L3 have been generally 

attributed to their different sizes, synaptic terminal locations (Strausfeld, 1976) and 

axon lengths (van Hateren and Laughlin, 1990), as L1-L3 each feeds to different 

medulla layers; likely contributing to different visual pathways. In the next chapter 

(1.3), I will further discuss their function in the motion pathway, how they feed the two 

parallel ON and OFF motion pathways, and their role in direction selectivity. 
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 Photoreceptors LMCs 

 R1-R6 L1 L2 L3 

Feedforward from R1-R6 
(number of synapses) 

No 
Yes  

(~250) 

Yes 

(~250) 

Yes 

(~51) 

Feedback to R1-R6 
(number of synapses) 

No No Yes (~6) No 

Signal propagation Graded Graded Graded Graded 

Spiking properties No Yes* No Yes 

Lateral inhibition No Yes Strong Yes 

Resting potential (mV) -60 to -75 -40 -40 -60 

Input resistance (M𝛺) 20-35 10-20 10-20 30-40 

Motion/Colour pathway Motion Motion Motion Both 

ON/OFF motion pathway - ON OFF OFF(Both) 

Direction selectivity No No No No 

Table 1-1. Different response properties of fly photoreceptors (R1-R6) and LMCs (L1-L3). All of 

the L1-L3 receive feedforward histaminergic input from R1-R6 (Hardie, 1987; Hardie, 1989; Sarthy, 

1991; Pantazis et al., 2008). Only L2 sends feedback to R1-R6 and has a stronger lateral inhibition than 

L1 and L3 (Laughlin and Osorio, 1989; Rivera-Alba et al., 2011). Note that the number of synapses are 

in Drosophila (larger flies have about four times more synapses) (Rivera-Alba et al., 2011). Although 

being graded neurons, L1 (*only after a brief hyperpolarisation of the resting potential) and L3 exhibit a 

spiking OFF response (Hardie and Weckström, 1990; Uusitalo, Juusola and Weckström, 1995). L1 and 

L2 have very similar membrane properties: expressing mainly a Ka current, -40 mV resting potential 

and 10-20 M𝛺 input resistance (Hardie and Weckström, 1990; van Hateren and Laughlin, 1990). L3 

differs from these two LMCs by expressing mainly a Kd current, having a more negative resting potential 

and a higher input resistance. R1-R6, L1, and L2 are in the motion pathway while L3 feeds both the 

parallel ON and OFF motion pathways (stronger input to OFF pathway) (Joesch et al., 2010; Clark et 

al., 2011; Eichner et al., 2011; Joesch et al., 2013; Silies et al., 2013; Shinomiya et al., 2014; Takemura 

et al., 2017; Shinomiya et al., 2019). Motion is divided into two pathways in the lamina, L1 being the 

major input for ON motion pathway and L2 for the OFF motion pathway. Direction selectivity has been 

shown to arise in the dendrites of the T4 and T5 neurons and thus, photoreceptors nor LMCs are 

considered to be direction-selective (Bausenwein, Dittrich and Fischbach, 1992; Joesch et al., 2010; 

Maisak et al., 2013). 
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1.3 Motion detection – From ON and OFF pathways to 

direction selectivity 

Seeing is very rarely just gazing at a static image – either flies move themselves (flying, 

walking or head-body movements) or something in the scene moves. Therefore, it is 

vital for flies (and animals in general) to distinguish between the background and an 

object moving against it. Furthermore, a key aspect of vision is to extract essential 

image/object properties such as contrast, size, orientation differences, direction and 

velocity. Motion detection, from parallel ON and OFF pathways to direction selectivity, 

have been studied extensively over the past decades, especially in the fruitfly 

(Drosophila melanogaster). 

 

The classical elementary motion detector (EMD), established by Hassenstein and 

Reichardt (1956), remains the most studied local motion detection model in insects. 

The Hassenstein-Reichardt (HR) detector is a generalised model, which computes the 

direction of motion by correlating the temporal luminance changes between two 

adjacent photoreceptors. It does this by multiplying the directional responses (to a 

moving stimulus) of the two neighbouring photoreceptors after one of them has been 

temporally delayed (Figure 1-6A top). The output signals from both photoreceptors 

are then subtracted, enhancing the direction-selectivity: a positive response to motion 

in the preferred direction (PD) and an opposite, negative response to motion in the null 

direction (ND) (Figure 1-6A bottom) (Reichardt, 1961). These direction-selective 

responses have been characterised by physiological recordings of giant lobula plate 

tangential cells (LPTCs), which are considered the output neurons of the EMD model 

(Schnell et al., 2012). 

 

Photoreceptors (R1-R6) are classically thought to only detect luminance changes 

without being able to separate whether those fluctuations are moving or stationary. As 

a result, they have been considered motion insensitive and direction unselective. They 

do, however, provide input to L1 and L2, which are both required for motion detection 

(Rister et al., 2007). In the lamina, motion detection is divided into two parallel motion 

pathways, ON and OFF pathways (Figure 1-6B). Both behavioural and functional 

studies have indicated that L1 is the primary input for ON pathway encoding moving 

light (ON) edges, whereas L2 feeds into the OFF pathway and, accordingly, encodes 
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dark (OFF) edges (Joesch et al., 2010; Clark et al., 2011; Eichner et al., 2011; Joesch 

et al., 2013; Silies et al., 2013). Although both L1 and L2 are inputs for these two 

separate pathways, they seem not directly encode motion nor be direction selective. 

 

Direction selectivity arises in the dendrites of T4 (dendrites in the medulla) and T5 

(dendrites in the lobula) cells, which are the outputs for ON and OFF motion pathways, 

respectively (Figure 1-6C) (Bausenwein, Dittrich and Fischbach, 1992; Joesch et al., 

2010; Maisak et al., 2013). These neurons are considered the local motion detection 

outputs and they respond to one of the four cardinal directions (front-to-back, back-to-

front, upward and downward) according to which one of the four layers in the lobula 

plate they terminate (Buchner, Buchner and Buelthoff, 1984; Fischbach and Dittrich, 

1989; Maisak et al., 2013). In the lobula plate, both of these neurons synapse with 

LPTCs, which process wide-field motion in either front-and-back horizontal (HS cells) 

or up-and-down vertical (VS cells) direction (Scott, Raabe and Luo, 2002; Joesch et 

al., 2008; Schnell et al., 2010). In addition to the direct excitation from T4 and T5 cells, 

to enhance the motion opponency, LPTCs receive indirect inhibition from the 

bistratified lobula plate intrinsic (LPi) cells located in the oppositely tuned, 

neighbouring layer (Mauss et al., 2015). LPi cells receive their input from the T4 and 

T5 cells that terminate in the neighbouring layer. LPTCs further receive collateral 

inputs from the contralateral eye (Farrow, Haag and Borst, 2003). 

 

The medulla columnar neurons that connect LMCs to T4 and T5 cells have been 

identified by extensive EM reconstructions (Takemura et al., 2011; Takemura et al., 

2013; Shinomiya et al., 2014; Takemura et al., 2017; Shinomiya et al., 2019). In the 

ON pathway, medulla intrinsic 1 (Mi1) and transmedullary 3 (Tm3) neurons in 

downstream of L1 are the major inputs to T4. T4 gets additional input from C3, CT1, 

Mi4, Mi9 and from itself (T4) (Takemura et al., 2013; Takemura et al., 2017). Out of all 

the inputs, Mi1, Mi4, Mi9 and Tm3 predominantly shape the direction selectivity of the 

T4 neurons. Mi4 receives indirect input from L1 and L3 through L5 and Mi9. In addition 

to the main input from L3, Mi9 has strong reciprocal connections with Mi4 (Arenz et 

al., 2017; Takemura et al., 2017).  
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In the OFF pathway, the synaptic inputs to T5 neurons are four transmedullary 

neurons: Tm1, Tm2, Tm4 and Tm9 (Shinomiya et al., 2014). L2 synapses with Tm1, 

Tm2 and Tm4 while forming reciprocal connections with L4, which also sends input to 

Tm2 (Takemura et al., 2011). In addition, Tm2 is presynaptic to L5 (Takemura et al., 

2011; Takemura et al., 2013). Even though L3 receives input from R1-R6 much like 

L1 and L2, it was thought to contribute to orientation behaviour and colour pathway, 

rather than having any sort of function in motion detection (Rister et al., 2007; Gao et 

al., 2008). It was later revealed that L3 not only has a substantial role in motion 

detection but, surprisingly, it also feeds into both of the motion pathways: ON pathway 

through Mi9 and OFF pathway via Tm9 (Silies et al., 2013; Shinomiya et al., 2014; 

Takemura et al., 2017; Shinomiya et al., 2019). Out of these two pathways, L3 is 

considered to have a more significant input to the OFF pathway alongside L2. 

 

Because direction selectivity emerges in the dendrites of T4 and T5 cells (Bausenwein, 

Dittrich and Fischbach, 1992; Joesch et al., 2010; Maisak et al., 2013), neither the 

upstream neurons nor photoreceptors are considered to be direction selective. 

However, a recent study (Juusola et al., 2017) found that Drosophila photoreceptors 

contract (front-to-back) to light to enhance the visual acuity and to maximise the 

information capture. In addition, this study found an interesting correlation between 

the photoreceptor contractions and possible direction selectivity. Intracellular 

recordings from Drosophila photoreceptors (R1-R6) revealed a slight difference in the 

voltage response time to rise and decay when responding to a dot moving in opposing 

directions (front-to-back vs back-to-front). The photoreceptor voltage response 

showed faster rising and decaying to back-to-front direction although the time-to-peak 

remained unchanged. The study suggested that this is evidence of direction-selective 

encoding at the level of photoreceptors, which probably reflected their rapid front-to-

back sweeping photomechanical contractions. Further research is required to 

elucidate whether such direction selectivity is indeed present in photoreceptors and 

what impact it has. 
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Figure 1-6. Motion detection in the fly visual system. (A) The Hassenstein-Reichardt (HR) detector 

is the most commonly used elementary motion detection (EMD) model to explain the local motion 

detection in insects. The HR detector is a correlation-type detector, which computes the direction of 

motion by correlating the temporal luminance changes between two adjacent photoreceptors. Top: 

Showing only a half-HR detector in which the signals of the two neighbouring photoreceptors are 

multiplied after one of them has been temporally delayed. Therefore, the response to the motion in a 

preferred direction is larger than to null direction although both produce a positive response. Bottom: 

The full-HR detector is a combination of two mirror-symmetric subunits (half detectors). In the full 

detector after multiplication, the outputs are then subtracted, enhancing the direction-selectivity: a 

positive response to motion in the preferred direction (PD) and an opposite, negative response to motion 

in the null direction (ND). These direction-selective responses have been characterised by physiological 

recordings of giant lobula plate tangential cells (LPTCs), which are considered the output neurons of 

the EMD model (modified from Arenz et al., 2017) (B) Motion detection is divided in the lamina into two 

parallel motion pathways, ON and OFF pathways. L1 is the primary input for ON pathway encoding 

moving light (ON) edges, whereas L2 feeds into the OFF pathway and, accordingly, encodes dark (OFF) 

edges (Ramos-Traslosheros, Henning and Silies, 2018). (C) Direction selectivity arises in the dendrites 

of T4 (dendrites in the medulla) and T5 (dendrites in the lobula) cells, which are the outputs for ON and 

OFF motion pathways, respectively. These neurons are considered the outputs for the local motion 

detection and they respond to one of the four cardinal directions (front-to-back, back-to-front, upward 

and downward) according to which one of the four layers in the lobula plate they terminate. In the lobula 

plate, both of these neurons synapse with LPTCs, which process wide-field motion in either front-and-

back horizontal (HS cells) or up-and-down vertical (VS cells) direction. LPTCs also receive indirect 

inhibition from the bistratified LPi cells located in the oppositely tuned, neighbouring layer. In addition, 

the medulla columnar neurons in the ON pathway are Mi1, Mi4, Mi9 and Tm3 and in the OFF pathway, 

the synaptic inputs to T5 neurons are Tm1, Tm2, Tm4 and Tm9 (from Arenz et al., 2017). 

 

1.4 Visual acuity and optics of the compound eye 

Visual acuity defines the finest detail an animal can see. In my thesis, visual acuity 

(maximum spatial resolution) is defined as the minimum neurally resolvable angle 

between two equally sized objects. It is limited by the optical image quality (diffraction) 

and the image sampling pixel density, which relate to rhabdomere (or rhabdom in 

fused rhabdom eye) and lens dimensions/interommatidial pixel distance (∆φ), 

respectively, and the speed of phototransduction reactions (a photoreceptor’s 

integration time) (Land, 1997). Additionally, the ambient light level and the eye 

movement/object speed impact visual acuity. 
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1.4.1 Diffraction and rhabdomere dimensions 

Mallock (1894) is believed to be the first to consider the optical limitations of compound 

eyes and proposing that it would project a poor quality image. The compound eye is 

composed of hundreds to thousands of ommatidia, with each of them having its own 

lens. These lens-capped facets are very small and, therefore, they are limited by 

diffraction (Figure 1-7). Due to the wave-particle duality, light does not only have 

properties of a particle (photon), but it also behaves like a wave (Broglie, 1924). Hence, 

the incoming light will spread (i.e. diffract) when passing through a lens: 

 

                                                        𝑑 =  
𝜆

𝐷
 .                                                       (1-2) 

 

When this occurs, a point object in the receptive field will not be seen as a point but 

as a blurred spot (an Airy disc) (Kuiper, 1966). The two ways to reduce diffraction are: 

to increase the size of the lens (D) or to reduce wavelength (𝜆) (Land, 1997). 

 

Another important factor is the rhabdomere dimensions. The narrower the 

rhabdomere, the better the resolvability, because it collects light from a narrower 

receptive field in the visual space. How rhabdomere dimensions impact the spatial 

resolution was studied in Drosophila and Coenosia (killerfly) compound eyes 

(Gonzalez-Bellido, Wardill and Juusola, 2011). These similar-sized flies have different 

habitats and lifestyles: Coenosia is a fast-flying diurnal predator, whereas Drosophila 

is a slow-flying crepuscular fructivore. Based on its demanding visual ecology, it is 

especially beneficial for a predatory killerfly to rapidly and accurately detect small prey. 

Intracellular recordings from both of these species implied that Coenosia 

photoreceptors have three-to-four-times better resolvability compared to Drosophila. 

High visual acuity was not a result of diffraction because although Coenosia has two 

to three times more lenses than Drosophila, the lens sizes are similar. Interestingly, 

TEM (transmission electron microscopy) cross-sections of ommatidia showed that 

Coenosia has much smaller (narrower) rhabdomeres. This improved the spatial 

resolution by narrowing their receptive fields and reducing blur and cross-talk between 

neighbouring photoreceptors. 
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However, even the narrowest rhabdomeres (<2 µm) suffer from interference leading 

to waveguide modes. Rhabdomere is a waveguide in which the light propagates by 

internal modes. In narrow rhabdomeres, some of the light propagates outside the 

rhabdomere and is then absorbed by the pigment granules (see pupil mechanism) 

(Snyder, 1975; van Hateren, 1989; Land, 1997). This leakage can potentially lower 

spatial resolution. 

 

Pupil closure reduces these higher-order modes and affects both the angular and 

spectral sensitivity (Hardie, 1979; Vogt, Kirschfeld and Stavenga, 1982; Smakman, 

van Hateren and Stavenga, 1984; Stavenga, 2004). Light adaptation induces pupil 

closure in which the surrounding pigment granules migrate towards the rhabdomere 

to reduce the incoming light flux (Kirschfeld and Franceschini, 1969). The pupil closure 

improves spatial resolution by narrowing the receptive field (its acceptance angle) for 

short wavelengths, causing a blue shift in spectral sensitivity (Stavenga, 2004). By 

contrast, during dark adaptation, the pigment granules move radially away, which 

widens the acceptance angle, reducing the spatial acuity. 

 

1.4.2 Interommatidial angle (∆𝝋) and acceptance angle (∆𝝆) 

Eyes in general, not only insect compound eyes, should thrive to achieve high 

sensitivity to light and a good spatial resolution. Unfortunately, the eye needs to 

compromise one to maximise the other. Due to this trade-off, the spatial resolution is 

highest in bright light conditions where the acuity is classically thought to reduce to the 

interommatidial angle (∆𝜑), the eye’s believed pixel density limit. On the contrary, in 

low light or dark conditions, the eye needs to compromise resolution to maximise 

sensitivity and thus, the limit of acuity is set by the photon catch, which may be neurally 

integrated over multiple ommatidia (Fermi and Richardt, 1963; Warrant and McIntyre, 

1992; Warrant, 1999). 

 

Interommatidial angle (∆𝜑)  is the angular separation between two neighbouring 

sampling units, ommatidia (Figure 1-7). Hence, this angle has been thought to define 

the minimum separable angle or the smallest feature that the eye can resolve. In other 

words, the interommatidial angle sets the limit for spatial resolution (Land, 1997). It 

should be noted that some researchers use partial interommatidial angles (∆𝜑ℎ and 
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∆𝜑𝑣 ) to divide the horizontal and vertical interommatidial angles to match the 

hexagonal shape of the mosaic (Burkhardt, de la Motte and Seitz, 1966; Beersma, 

Stavenga and Kuiper, 1975).  

 

In diffraction-limited eyes, the acceptance angle (∆𝜌)  is the half-width of a 

photoreceptor’s angular sensitivity (receptive field), which has a Gaussian distribution 

(Figure 1-7) (Snyder, 1977). It can also be calculated using the following equation: 

 

                                         ∆𝜌 = √(
𝜆

𝐷
)

2

+ (
𝑑

𝑓
)

2

 ,                                                        (1-3) 

 

where 

λ = light wavelength 

D = lens diameter 

d = rhabdomere diameter 

f = focal distance. 

 

This equation is not reliable, however, for narrow rhabdomeres (<2 µm) because it 

overestimates the value for acceptance angle due to the waveguide modes. 

 

As seen from Table 1-2, the interommatidial and acceptance angles can vary 

throughout the eye. The region where the highest resolution is achieved due to bigger 

facets and smaller interommatidial angles is called the acute zone. Acute zones are 

quite often sex-specific, occurring generally in males; especially, when it is for sexual 

pursuit (Figure 1-8A-B). But in predatory flies, acute zones can be found in both sexes 

(Dietrich, 1909). Interestingly, anatomical differences were found in the male housefly 

(Musca domestica) frontal-dorsal acute zone, usually referred to as the “love spot” 

(Land and Eckert, 1985; Perry and Desplan, 2016). There R7 does not bypass lamina 

and terminate in medulla like in the rest of the eye. Instead, it terminates in the lamina, 

increasing the sensitivity in the acute zone (Hardie et al., 1981). 
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Figure 1-7. Optical parameters that define visual acuity of the compound eye. Musca compound 

eye is composed of about 3,500 small lenses. Due to the small diameter of the lens (D), the eye is 

limited by diffraction. In addition, visual acuity is limited by the interommatidial angle (∆φ) and the 

acceptance angle (∆ρ). Interommatidial angle is the angular separation between two neighbouring 

ommatidia and it defines the minimum angle the eye can resolve. In diffraction-limited eyes, the 

acceptance angle is the half-width of a photoreceptor’s angular sensitivity (values from Table 1-2) 

(modified from Horridge, 1977).  

 

Most acute zones are frontal-dorsal and coherently the interommatidial angles are 

smallest in these regions and increases when moving towards lateral regions in Musca 

(Beersma, Stavenga and Kuiper, 1975) and Calliphora (Franceschini, Münster and 

Heurkens, 1979) (Figure 1-8C-D). In the frontal regions the rhabdomeres are longer, 

lens diameters larger and acceptance angle smaller in Musca (Hauser-Holschuh, 

1975; Hardie, 1979; Hardie, 1985) and Calliphora (Washizu, Burkhardt and Streck, 

1964; Hardie, 1979; Hardie, 1985; Stavenga, Kruizinga and Leertouwer, 1990). By 

contrast, in Drosophila these parameters do not have a similar gradient throughout the 

eye, instead, they remain almost the same (Hauser-Holschuh, 1975; Gonzalez-

Bellido, Wardill and Juusola, 2011; Juusola et al., 2017). 
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Figure 1-8. The sex-specific acute zone “love spot” in flies. Frontal view of (A) male and (B) female 

blowfly (Calliphora erythrocephala) head. Male eyes are bigger and almost merge on the dorsal part of 

the head. This part of the eye is called the “love spot”, which is a male-specific acute zone (AZ) for 

female detection (modified from Strausfeld, 1991). Maps of (C) male and (D) female hoverfly (Volucella 
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pellucens) visual fields and interommatidial angles (see isolines) of the left eye. Male hoverflies have a 

larger acute zone with small interommatidial angles (compare the grey region). 

D=dorsal, V=ventral, A=anterior and L=lateral (modified from Warrant, 2001). Neural images of (E) 

male and (F) female housefly (Musca domestica) acute zones reconstructed from photoreceptor voltage 

responses to a dark target (angular width 3.44o) moving at 180 o/s. The colouring of each hexagon 

indicates the amplitude of each photoreceptor’s immediate voltage response and the cross shows the 

current position of the target. Males have a higher sampling density – photoreceptors are separated 

about 1.6o in male and about 2.5o in female frontal eye regions, which enables males to have a better 

spatial resolution (modified from Burton and Laughlin, 2003). Figure structure taken from (Warrant, 

2016). 

 

 

Lens 

diameter 

D (µm) 

Rhabdomere 

dimensions (µm) 

Interommatidial 

angle ∆𝜑 (o) 

Acceptance 

angle ∆𝜌 (o) 

 
    R1-R6 Horizontal 

∆𝜑ℎ 

Vertical 

∆𝜑𝑣 
R1-R6 

Length Diameter 

Fruitfly 

(Drosophila) 
16-17♀ 83♂♀ 

1.7 ± 

0.15♀ 
4.4-7.5♀ 3-9♀       ~9.5♀ 

Housefly 

(Musca) 

20-36♂ 

20-30♀ 

140-250♂ 

180-230♀ 
1-2♀ 0.8-1.7♂ 1.6-3♂ 2.3-3.5♀ 

Blowfly 

(Calliphora) 
20-40♂ 

230-340♂ 

220-280♀ 
1.7-1.9 0.6-1.3♂ 1-2♂ 1.5-3♀ 

Table 1-2. Eye parameters in fruitfly (Drosophila), housefly (Musca) and blowfly (Calliphora). In 

Musca and Calliphora frontal-dorsal part of the eye, the lens diameter is the largest, R1-R6 

rhabdomeres longest, the interommatidial angle and the acceptance angle smallest. In contrast, 

Drosophila does not have a similar gradient over the eye except for the interommatidial angle. 

Rhabdomere diameter is the widest at distal parts of the eye and gets narrower proximally, which can 

be seen in all the flies above. Note that the horizontal interommatidial angle (∆𝜑ℎ) is smallest in the 

front and increases towards the lateral part of the eye. The vertical interommatidial angle (∆𝜑𝒗) is the 

smallest around the equator and increases towards the dorsal and ventral part of the eye. For 

Drosophila: lens diameter (SEM; Gonzalez-Bellido, Wardill and Juusola, 2011), R1-R6 rhabdomere 

length (EM; Hauser-Holschuh, 1975), R1-R6 rhabdomere diameter (TEM; Juusola et al., 2017), 

interommatidial angle (SEM; Gonzalez-Bellido, Wardill and Juusola, 2011) and R1-R6 acceptance 

angle (intracellular recordings; Juusola et al., 2017). For Musca: lens diameter (EM; Hauser-Holschuh, 

1975), R1-R6 rhabdomere length (theoretical; Hardie, 1985), R1-R6 rhabdomere diameter (EM; 

Boschek, 1971), interommatidial angle (deep pseudopupil method; Beersma, Stavenga and Kuiper, 

1975) and R1-R6 acceptance angle (intracellular recordings, latter value estimated from optical data; 

Hardie, 1979). For Calliphora lens diameter (microreflectometry; Stavenga, Kruizinga and Leertouwer, 
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1990), R1-R6 rhabdomere length (theoretical; Hardie, 1985), R1-R6 rhabdomere diameter (EM; 

Horridge, Mimura and Hardie, 1976), interommatidial angle (behaviour; Franceschini, Münster and 

Heurkens, 1979) and R1-R6 acceptance angle (intracellular recordings; Hardie, 1979). Table updated 

from Hardie (1985). 

 

An important optical requirement for neural superposition is that the interommatidial 

angle and the angle between neighbouring rhabdomeres should be equal (Kirschfeld, 

1967; Pick, 1977). In the neural superposition eye, R1-R6 from the same ommatidium 

look at adjacent points in the visual field and send their axons to different cartridges in 

the lamina. The outer photoreceptors from six neighbouring ommatidia, conversely, 

have the same visual axis resulting in a “perfectly” overlapped image that is projected 

to the same lamina cartridge (Braitenberg, 1967; Kirschfeld, 1967). However, Pick 

(1977) showed in Musca that these visual axes are not parallel but they converge 

about 4mm in front of the eye, causing a slightly misaligned (shortsighted) image of 

the same point in space. Due to the overlapping receptive fields, the acceptance angle 

is slightly increased, leading to impaired visual acuity.  

 

Recently, it was shown (Juusola et al., 2017) that photoreceptors possibly overcome 

this limitation by contracting to light, which by dynamically moving and narrowing their 

receptive fields generates a stream of neural snapshots. Moreover, through in vivo 

intracellular recordings and modelling, the study showed how these snapshots may 

enable Drosophila to have hyperacute vision (spatial acuity beyond the eyes’ optical 

limits).    

 

1.4.3 Motion blur 

Previously, I have only discussed how a stationary eye may sample an image of a 

stationary object. However, motion is something that needs to be taken into account. 

Most of the time the animal, its eyes or an object/scene is moving and, therefore, 

motion blur becomes a limiting factor for the spatial resolution. Therefore, a “neural” 

image of a moving point-object should not be a point but rather a horizontal streak. 

This blurring depends on the angular velocity of the object (or the animal itself) and 

photoreceptors’ integration time (Srinivasan and Bernard, 1975).  
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Juusola and French (1997) theoretically simulated how photoreceptors and LMCs 

resolve moving two-point objects with different angular distances in different light 

conditions. All of the data used in this paper was collected from blowflies (Calliphora 

vicina), at rather cool room temperatures (16-18 oC), which slows down vision (Juusola 

et al., 1995). Unexpectedly, photoreceptors and LMCs responded similarly: both were 

able to resolve points with separation below 2o at velocities up to ~200 o/s with LMCs 

responding faster at higher velocities to increasing background illumination. Above this 

threshold, the “neural” image began to blur although flies exhibit different behaviours 

beyond this velocity. Note that this study was based upon Gaussian white-noise 

stimuli, which does not fully test encoding (Song and Juusola, 2014; Juusola et al., 

2017). And, it did not take into account lateral inhibition in LMCs, which would narrow 

the acceptance angle. Moreover, it used an unrealistic value for the acceptance angle 

(0.2o) arguing that at high velocities (>200 o/s) the receptor spacing should not limit the 

resolution.  

 

However, vision has evolved to overcome this motion blur limitation through different 

measures (acute zones, head/thorax and body movements and the combination of 

refractory sampling and photomechanical contractions). Interestingly, the optics have 

developed to minimise the effect of motion blur by having a specific acute zone where 

the optics and phototransduction are enhanced (Figure 1-8E-F) (Hornstein et al., 

2000; Burton, Tatler and Laughlin, 2001; Burton and Laughlin, 2003). Therefore, to 

achieve sharper “neural” images, flies aim to view moving objects in their frontal part 

of the eye. 

 

In addition, flies exhibit saccadic and fixation behaviour: gaze is held still during 

fixation, whilst during saccades flies rapidly shift their gaze predominantly through 

head and body movements (also called body saccades) (Collett and Land, 1975; van 

Hateren and Schilstra, 1999; Schilstra and van Hateren, 1999). Through the head 

saccades, flies (and other flying insects) counter the body movement by moving the 

head and thorax to stabilise the visual scene, reducing the motion blur.  

 

Furthermore, Juusola et al. (2017) were first to show that although flies’ eyes have a 

rigid position in the head, they exhibit rapid photomechanical contractions 

(microsaccades) to light, somewhat comparable to human eye microsaccades. They 
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revealed in Drosophila how refractory sampling and photomechanical contractions 

together enable the fly to overcome the motion blur limit (even at high velocities to 

objects smaller than the optical limit). They also clarified through modelling, in vivo 

intracellular recordings (Figure 1-9A-C) and behavioural (optomotor flight) 

experiments (Figure 1-9D-F) how previous studies (Srinivasan and Bernard, 1975; 

Juusola and French, 1997) overestimate the motion blur and underestimate the spatial 

resolution of the fly eye. In other words, the study showed that Drosophila (and most 

likely flies and other insects) have a hyperacute vision – not only do they see fine 

spatial details but they can resolve them as well. 

 

 

 Figure 1-9. Drosophila hyperacute vision. (A) Top: A schematic illustrating the intracellular setup 

and the 25-point LED array for the light stimulation for Drosophila used in the experiments in (B and 

C). Two bright dots (angular separation 6.8o, which is smaller than the acceptance angle ∆ρ = 8.2o) 

cross photoreceptor’s (R1-R6) receptive field in front-to-back direction at high saccadic speeds (205 o/s 
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or 409 o/s (compare to Juusola and French, 1997). Bottom: The resolvability (R) was calculated by using 

the Rayleigh criterion. R1-R6 intracellular response (black trace) compared to the simulated response 

(blue trace) under (B) dark adaptation and (C) light adaptation. The simulated response is based on the 

classic model predictions (convolving photoreceptor’s impulse response with its angular sensitivity 

function). In both conditions, photoreceptor’s real response gave better resolvability (two separate 

peaks in the voltage response for the two moving dots) than the expected response based on the 

simulation. (D, E and F) Open-loop optomotor flight experiments to show visual hyperacuity. Setup is 

composed of a torque meter measuring the tethered fly optomotor responses to a 360o hyperacute 

black-and-white bar panorama rotating counterclockwise and clockwise (grey, arrows) around the fly. 

(D) Using bars with 1.16o or 2.88o wavelengths (0.58o and 1.44o inter-bar-distances), which are smaller 

than the optical limit (interommatidial angle ∆𝜑 = 2.5o -7o) moving at 45 o/s. (E) Control experiments with 

the same flies to either a white panorama with no bars or to a panorama with wide bars (wavelength 

14.4o, inter-bar-distance 7.2o), which are larger than Drosophila’s interommatidial angle. (F) All the 

tested flies responded to bars that were separated with an angle smaller than their interommatidial 

angle (in theory they could not resolve these bars). 2-tailed t-tested was used (modified from Juusola 

et al., 2017). 
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1.5 Focus of the thesis 

While much is already known about fly vision, some gaps remain in our current 

understanding. As it is valuable to find answers to open questions, I wanted to 

investigate several less charted territories, seek answers to three specific questions, 

and provide novel data to aid further research. In all cases, I used housefly (Musca 

domestica) in the experiments. 

 

1)  How much visual information can Musca photoreceptors and LMCs sample from 

the environment? Is the male’s early visual encoding better? 

 

This question was studied in Chapter 2. Using in vivo intracellular recordings, I 

examined Musca R1-R6 photoreceptors’ encoding capacity to high and mid-

contrast bursty “saccadic” stimuli, which resemble the light input a fly encounters 

when performing head and body saccades. Additionally, I studied what happened 

to that information when passed downstream to L1-L3 LMCs. My results indicated 

that Musca early vision performs well during fast saccadic behaviours. 

Furthermore, male photoreceptors and LMCs seem to better encode “saccadic” 

stimuli, suggesting that this might be more relevant for their visual behaviour. 

 

2) How does light adaptation impact Musca R1-R6 photoreceptors’ and L1-L3 LMCs’ 

response properties and signalling performance? Additionally, how is Musca 

quantum bump (QB) shape and latency distribution affected? 

 

These questions were addressed in Chapter 3. In vivo intracellular recordings from 

photoreceptors and LMCs showed that their signalling performance improved with 

brightening the mean light. Applying shot-noise analysis revealed that 

photoreceptors’ enhanced signalling performance resulted from the integration of 

more and smaller QBs with faster and tighter latency distributions.  

 

3) Do Musca photoreceptors and LMCs resolve hyperacute features? If so, is this 

impacted by the location of the eye, sexual dimorphism and direction selectivity? 
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In Chapter 4, using in vivo intracellular recordings, I attempted to look at how R1-

R6 and L1-L3 cells resolved two separate visual objects (dots or bars) moving 

across their receptive field. These experiments were done using many different 

angular separations, including the hyperacute range, with four different directions 

and various velocities. Additionally, the impact of light adaptation to resolvability 

was addressed by using a moving narrowing bar-grating stimulus. The experiments 

were performed by using either a 25-point LED array or a digital light projector. 

Although there was some indication of photoreceptors resolving within the 

hyperacute range when using the 25-point LED array, this was not replicated when 

testing on a larger scale with a projector system. The projector data ultimately 

undermines the case for hyperacuity or direction selectivity being present within 

photoreceptors. For LMCs however, it does appear from my findings that 

hyperacuity and direction selectivity could be present but further research would 

be needed to make a convincing case for this.  
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 Transformation of information encoding at the first 

synapse 

 

2.1 Introduction 

Like humans, flies are visual animals. Vision is vital for their survival: finding food, 

mates and shelter, and avoiding predators. Therefore, it is essential that flies can 

detect movement relative to their spatiotemporal self-position. Failure to do so would 

be evolutionary highly disadvantageous and, thus, their vision must have evolved to 

match their ecological needs.  

 

Nevertheless, many scientists considered that fly vision has a severely limited capacity 

to resolve details in rapidly changing scenery despite the selective pressures. Flies 

exhibit fast body saccades when changing direction while flying or walking (Geurten 

et al., 2014; Mongeau and Frye, 2017). Such behaviours generate fast angular velocity 

changes, which - together with photoreceptors’ slow integration time - should blur 

vision (Srinivasan and Bernard, 1975; Juusola and French, 1997). Although counter 

head and thorax movements might compensate for the motion blur (Collett and Land, 

1975; van Hateren and Schilstra, 1999; Schilstra and van Hateren, 1999; Blaj and van 

Hateren, 2004) with the fly eyes showing acute-zones of improved vision (Burton and 

Laughlin, 2003), it was argued that flies would effectively be blind during saccadic 

behaviour (Land, 1999). 

 

Juusola et al. (2017) challenged this viewpoint by exploring if, and how, refractory 

sampling and photoreceptor contractions could help flies encode information more 

efficiently. Their work showed that Drosophila photoreceptors contract to light and that 

these photomechanics, combined with refractory photon sampling, enable Drosophila 

to overcome motion blur even during fast saccades. These results were obtained 

through in vivo intracellular recordings, examining how Drosophila R1-R6 

photoreceptors sample information from fast temporal light intensity changes that 

resemble the flies’ saccadic viewing. The results were further tested against 

biophysically-realistic photoreceptor model simulations. 
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Although Drosophila is a widely used model organism, it cannot fully predict vision or 

visual behaviour of other insects, or even other flies, because of their different lifestyles 

and habitats. In this thesis work, the central aim was to test whether Juusola et al. 

(2017) findings were also valid for a different fly species, using the housefly (Musca 

domestica) as the test case. Drosophila is a slow-flying crepuscular fructivore, 

whereas Musca is a bigger fast-flying diurnal carnivore. Hence, Musca has better 

vision; higher temporal resolution (faster phototransduction, which leads to faster 

response dynamics and shorter integration time) (Laughlin and Weckström, 1993; 

Skingsley, Laughlin and Hardie, 1995; Weckström and Laughlin, 1995) and higher 

spatial resolution (bigger lenses and smaller interommatidial angles) (Beersma, 

Stavenga and Kuiper, 1975; Hardie, 1979; Hardie, 1985). 

 

To check whether houseflies are “effectively blind” while performing body saccades, I 

tested if they could respond to behaviourally relevant stimuli that resemble the fast 

temporal changes they encounter while manoeuvring (i.e. during body saccades). 

These experiments were done by recording in vivo intracellular responses from 

houseflies’ R1-R6 photoreceptors while simultaneously presenting them with different 

visual “saccadic” stimuli: mid and high-contrast bursty light-intensity-time-series from 

a point light source. High-contrast “saccadic” stimuli (c ~1.29) had periods of fast light 

changes followed by dark periods while mid-contrast saccadic stimuli (c ~0.61) 

contained less dark periods. The responses to “saccadic” bursts were then compared 

to the ones evoked by low-contrast Gaussian white-noise (GWN) stimuli (c ~0.33), 

which has been regularly used for characterising visual neuron’s maximal information 

capacity. GWN lacks relevant non-linearities, present in natural scenes, which improve 

the visual coding (van Hateren, 1997; van Hateren and Snippe, 2001; Song and 

Juusola, 2014; Juusola and Song, 2017). Moreover, I tested what happens to 

photoreceptor information when transmitted to LMCs (L1-L3) as this has not previously 

been examined with this kind of stimuli. 

 

My investigation indicates that houseflies are likely to see the world in finer temporal 

resolution than previously thought. Not only can Musca R1-R6s encode “saccadic” 

stimuli, but my results show that their information capture is maximised for such 

contrast bursts. This information is further accentuated in LMCs during parallel quantal 

neurotransmitter (histamine) sampling from six photoreceptors in the lamina. 
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2.2 Materials and methods 

 

2.2.1 Fly stocks  

Adult, wild-type houseflies (Musca domestica) were used in the experiments. The 

housefly larvae/pupae were ordered from a commercial provider (Blades Biological 

Ltd, Cowden, Kent, UK). The houseflies, cultured in a standard laboratory incubator 

(60% humidity) at the Department of Biomedical Science, were fed with liver, and 

sugar water. The flies were kept at ~22 oC in a 12:12 h light:dark cycle.  

 

2.2.2 In vivo intracellular recordings  

Preparations for in vivo intracellular recordings were done as described before 

(Juusola et al., 2016). In brief, a housefly was first anaesthetised with ice, and once 

immobilised, its legs and wings were cut off. It was fixed from the thorax, proboscis 

and right eye in a conical fly holder (made out of copper and ceramic) with beeswax 

to minimise recording artefacts caused by head or body movements. A small hole (size 

of 6-10 ommatidia) was cut in the left eye’s dorsal cornea for the recording 

microelectrode, and it was sealed with Vaseline to prevent the eye from drying. Both 

R1-R6 photoreceptors’ and L1-L3 LMCs’ voltage responses were recorded using 

sharp filamented fire-polished borosilicate microelectrodes (Sutter instruments; outer 

diameter: 1.0 mm, inner diameter 0.5 mm) with a 100-250 MΩ resistance, pulled by a 

horizontal laser micropipette puller (P-2000, Sutter instruments). The reference 

electrode was pulled using a different pipette puller program to make the tip blunt.  

 

Recordings from photoreceptors and LMCs were performed separately. Just before 

the experiments, both the recording and the reference electrode were filled from the 

back: the recording electrode with 3 M KCl solution for photoreceptors and 3 M 

potassium acetate with 0.5 mM KCl for LMCs, to maintain the chloride battery. 

Similarly, the reference electrode for photoreceptor and LMC recordings was filled with 

fly Ringer solution (120 mM NaCl, 5 mM KCl, 5 mM TES, 1.5 mM CaCl2, 4 mM MgCl2 

and 30 mM sucrose) (Juusola and Hardie, 2001a). The blunt reference electrode was 

then gently inserted into the ocelli, and the recording electrode was carefully driven to 

the small hole (made earlier) by using a remote-controlled micromanipulator (PM10, 

Mertzhauser) under a stereomicroscope (Nikon SMZ645). 
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The temperature of the fly was kept at 25 ±1 Co by a feedback-controlled Peltier 

device. Only stable, high-quality recordings were used. In the dark, R1-R6 

photoreceptors’ resting potentials were < -60 mV, and maximum responses to 

saturating bright pulses (100 ms) were ≥ 45 mV. For L1-L3, the resting potentials in 

darkness were < -30 mV and maximum responses ≥ 20 mV. The recorded LMCs 

cannot be reliably identified because they were blindly penetrated and not stained. 

However, most of the recordings were probably from L1 and L2 cells because they are 

the lamina’s largest cells. The data collected from LMCs were analysed together owing 

to their similar response properties such as the dark resting potential, 

hyperpolarisation to light increments and the response amplitude. 

 

2.2.3 Visual stimuli 

A high-intensity “white” LED (Seoul Z-Power P4 star, white, 100 Lumens) was used 

for the light stimulation by centring it in the middle of the cell’s receptive field through 

a randomised quartz fibre optic bundle (transmission range: 180-1,200 nm) fixed on a 

rotatable Cardan-arm system, subtending a 3o homogeneous light field seen by the 

fly. The output was controlled by an OptoLED driver (Cairn Research Ltd, UK). 

 

The temporal encoding capacity was measured over different bandwidth and contrast 

distributions. The stimuli consisted of 5 different (20, 50, 100, 200 and 500 Hz) 2-s-

long Gaussian white noise (GWN) light-intensity-time-series patterns (generated by 

using MATLAB’s randn function) with a flat power spectrum and a same peak-to-peak 

modulation (two units), low-pass filtered in MATLAB’s filter toolbox. These bandwidths 

were tested over three different contrast backgrounds: high-contrast BG0 (0 units, 

dark), mid-contrast BG1 (1 unit) and low-contrast BG2 (2 units, bright) on a linear 

intensity scale. The light contrast was defined by using Weber’s law: 

 

                                                        𝑐 =
∆𝐼

𝐼
                                                         (2-1) 

 

where ∆I is the intensity change, and I the mean background intensity (Shapley and 

Enroth-Cugell, 1984). For the white noise (WN) contrast modulation, ∆I is the standard 

deviation (SD) of the stimulation, and I is the mean light intensity of the stimulation. 

The contrast value for high-contrast “saccadic” bursts was c(BG0) = 1.29 ± 0.13, for 
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mid-contrast bursts c(BG1) = 0.61 ± 0.10 and for low-contrast GWN c(BG2) = 0.33 ± 

0.05. Experiments were performed from the lowest to the highest adapting 

backgrounds, and before every stimulation, cells were dark-adapted. Only cells with 

stable electrophysiological recording conditions throughout the entire stimulation (all 

15 different stimulus patterns) were further analysed. In all these experiments, each 

stimulus was repeated 30 times for every recording. 

 

The stimuli and responses were low-pass filtered at 500 Hz (KEMO VBF/23 low-pass 

elliptic filter, UK), and sampled at 1–2 kHz using a 12-bit A/D converter (National 

Instruments, USA). For the information loss calculations (Figure 2-7) the stimuli and 

responses were low-pass filtered either at 500 Hz or 1 kHz (KEMO VBF/23 low-pass 

elliptic filter, UK). A custom-written software system controlled both the stimulus 

generation and data acquisition, Biosyst in MATLAB (MathWorks, USA) (Juusola and 

Hardie, 2001a; Juusola and de Polavieja, 2003), with an interface package for National 

Instruments (Austin, TX) boards (MATDAQ: H. P. C. Robinson, 1997-2005). 

 

2.2.4 Data analysis 

Only the steady-state adapted responses were analysed and, therefore, the first 5-10 

responses to the repeated stimulation (n = 30) were discarded. The signal is the mean 

of all the repetitions, and the noise is the difference between individual traces and the 

mean (Juusola and Hardie, 2001a). Therefore, n repetitions (n = 30) gave one signal 

and 30 noise traces. Both the signal 𝑠𝑣(𝑡) and noise 𝑛𝑣(𝑡) traces were segmented into 

50% overlapping stretches and windowed with a Blackman-Harris 4-term window, 

each giving three 500-point-long samples. A fast Fourier transform (FFT) algorithm 

was used to calculate the signal and noise spectra in the frequency domain, 𝑆𝑉(𝑓) and 

𝑁𝑉(𝑓), respectively. The signal-to-noise ratio in the frequency domain 𝑆𝑁𝑅𝑉(𝑓) is: 

 

                                               𝑆𝑁𝑅𝑉(𝑓) =
|〈𝑆𝑉(𝑓)〉|2

|〈𝑁𝑉(𝑓)〉|2
  ,                                             (2-2) 

 

where |〈𝑆𝑉(𝑓)〉|2 and |〈𝑁𝑉(𝑓)〉|2 are the signal and noise power spectra, respectively. 

v stands for voltage, || denotes the absolute value and ⟨⟩ denotes the average over 

different stretches of the signal and the noise (Juusola and Hardie, 2001a). 
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Information transfer rate (R) was calculated from the 𝑆𝑁𝑅𝑉(𝑓)  using Shannon 

information theory (Shannon, 1948), which has been widely applied for these types of 

signals (Juusola and de Polavieja, 2003; Song and Juusola, 2014; Juusola et al., 

2017). The information transfer rate estimations for photoreceptors and LMCs was 

calculated from steady-state recordings as follows: 

 

                                           𝑅 = ∫ (𝑙𝑜𝑔2[𝑆𝑁𝑅𝑉(𝑓) + 1])𝑑𝑓
∞

0
  (bits/s),                    (2-3) 

 

The data was sampled at 1 kHz and windowed with 500-point Blackman-Harris 

window. Therefore, the integral’s upper and lower bounds are 2 Hz and 500 Hz; not 0 

and infinity (ꝏ). I tested whether the limited bandwidth affects the information transfer 

estimates by recording from photoreceptors and LMCs with 2 kHz sampling rate and 

windowing the responses using 1,000-point data chunks (Figure 2-7). The SNR and 

R were calculated as described earlier, but now having 1,000-point-long samples and 

the range for the integral was from 2 Hz to 1 kHz. 

 

2.2.5 Statistics 

Statistical analyses were carried out in Prism 9 (Graphpad) and MATLAB. Maximum 

information rates between male and female photoreceptors as well as between the 

whole population of photoreceptors and LMCs were compared by using unpaired two-

tailed t-test with Welch’s correction as the raw data passed the Kolmogorov-Smirnov 

normality test. Additionally, a power analysis was performed to confirm that the sample 

sizes were sufficient for the used statistical test. 
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2.3 Results 

 

2.3.1 Photoreceptors respond maximally to “saccadic” stimuli 

To test how well Musca can encode visual information, which mimics light inputs 

during head and body saccades, I first measured in vivo its R1-R6 photoreceptors’ 

intracellular responses to different “saccadic” visual stimuli. The "saccadic" stimuli 

ranged from high-contrast bursts (c ~1.29) to mid-contrast bursts (c ~0.61). These 

responses were then compared to the same cell’s responses to low-contrast GWN (c 

~0.33), often used to determine the maximal information capacity. All the stimuli were 

generated by superimposing a specific (preselected) GWN time-series light-intensity 

pattern on different light levels (BG0, BG1 and BG2); BG0 is darkness and BG2 full 

bright light. The GWN pattern was pre-filtered to different bandwidths (20, 50, 100, 

200 and 500 Hz); the larger the cut-off frequency, the more the light stimulus carries 

information. 

 

Similar to Drosophila (Juusola et al., 2017), intracellular recordings (Figure 2-1A and 

2-2A) from Musca R1-R6 photoreceptors showed that these cells respond maximally 

(largest peak-to-peak responses) to high-contrast “saccadic” bursts, generating 

significantly larger responses than to GWN stimuli (Figure 2-1B and 2-2B). Increasing 

the stimulus contrast increased the responses (Figure 2-1B and 2-2B, rows), 

whereas increasing the stimulus bandwidth reduced the responses (Figure 2-1B and 

2-2B, columns) because the stimulus became too fast to follow. Thus, the signal-to-

noise ratio was highest for high-contrast bursty 20 Hz stimulus and decreased with the 

increasing stimulus bandwidth (Figure 2-3A). 

 

Characteristically, the cell population responses (Figure 2-2; 14 photoreceptors) 

varied more than individual cells’ responses (Figure 2-1; representative cell). This 

difference comes from a combination of factors: variable recording locations 

(responses vary slightly across the eye) (Hornstein et al., 2000), differences between 

sexes (Burton, Tatler and Laughlin, 2001) and differences between R1, R2, R3, R4, 

R5 and R6 response properties (Juusola et al., 2017). Despite these variations, they 

all responded in a highly consistent manner to the tested stimuli.  
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Figure 2-1. High-contrast “saccadic” bursts maximise photoreceptor’s response. (A) Left: A 

schematic of in vivo intracellular recording from Musca eye. Right: An example of a repeated high-

contrast bursty stimulus (pink trace) and a response (black trace) at 20 Hz bandwidth. (B) An R1-R6 

response ranging from high-contrast “saccadic” bursts (BG0) to low-contrast GWN stimuli (BG2) in 

different cut-off frequencies, i.e. bandwidth patterns (20, 50, 100, 200 and 500 Hz). Mean (thick black 

and grey traces) and individual responses (thin, lightly coloured) to 15 different stimuli (colourful traces 

beneath the responses). Yellow box: maximum information responses (at 200 Hz bandwidth). Arrows: 

dark intervals in saccadic stimuli. Vertical dotted rectangle and a horizontal rectangle: responses for 

increasing bandwidth and contrast used in Figures 2-3A-D and 2-3E-H, respectively. These recordings 

are from the same photoreceptor. 
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Figure 2-2. All the R1-R6s respond best to high-contrast saccadic stimuli. (A) Left: A schematic 

of in vivo intracellular recording from Musca eye. Right: An example of a repeated high-contrast bursty 

stimulus (pink trace) and responses of all the recorded photoreceptors (n = 14, black trace) at 20 Hz 

bandwidth. (B) R1-R6 responses (n = 14) ranging from high-contrast “saccadic” bursts (BG0) to low-

contrast GWN stimuli (BG2) in different cut-off frequencies i.e. bandwidth patterns (20, 50, 100, 200 

and 500 Hz). Mean of all the recorded photoreceptor responses (thick black and grey traces) and 

individual photoreceptor responses (thin, lightly coloured) to 15 different stimuli (colourful traces 

beneath the responses). Yellow box: maximum information responses of all the photoreceptors (at 200 

Hz bandwidth). Arrows: dark intervals in saccadic stimuli.  
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2.3.2 Photoreceptors encode maximally high-contrast 200 Hz 

“saccadic” bursts 

Figures 2-1 and 2-2 show that housefly R1-R6 photoreceptors respond vigorously to 

fast “saccadic” light input. To estimate these voltage responses’ information transfer 

rates (R), I used the Shannon formula (Shannon, 1948) (Figure 2-3). To perform these 

estimations, I first calculated the responses’ SNR(f) for all the tested contrast stimuli. 

Figure 2-3A-D shows the results for increasing the stimulus bandwidth, and Figure 2-

3E-H shows the results for increasing the stimulus contrast. 

 

For accurate information transfer estimation, the Shannon formula requires that the 

signal and noise are additive and Gaussian. Favourably, the voltage signals’ 

probability density functions (PDFs; Figure 2-3B, top) to different high-contrast bursts 

(c ~1.29) are Gaussian (500 Hz) or nearly Gaussian (100 Hz and 200 Hz), bar 20 Hz 

and 50 Hz, although all the stimulus intensity distributions were skewed (Figure 2-3B, 

bottom). Previously, it was shown by comparing the information estimates calculated 

using Shannon formula and the triple extrapolation method (Juusola and de Polavieja, 

2003) that the Shannon formula provides reasonably reliable information estimates for 

this kind of stimuli (Juusola and de Polavieja, 2003; Juusola et al., 2017). 

 

Increasing the stimulus contrast resulted in higher SNRs, being the highest to high-

contrast bursty “saccadic” stimuli and the lowest to GWN stimuli (Figure 2-3E). For 

mid-contrast bursty and low-contrast Gaussian stimuli, the Shannon information 

estimates were presumably more accurate because the voltage signals were 

Gaussian (Figure 2-3F). 

 

In line with Juusola et al. (2017) findings, high-contrast “saccadic” bursty stimuli drove 

the photoreceptor’s maximal information transfer, and it was about 2-to-3-times larger 

than GWN stimuli (Figure 2-3C and 2-3G), being consistent for all the tested 

photoreceptors (n = 14) (Figure 2-3D and 2-3H). Moreover, the information capture 

peaked at 200 Hz in which the photoreceptors had the broadest frequency and 

Gaussian voltage distributions (Figure 2-3A and 2-3B, yellow area). 
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Figure 2-3. Photoreceptors’ (R1-R6) information transfer peaks at 200 Hz and is 2-to-3-times 

larger for high-contrast bursty stimuli than for GWN stimuli. (A) Response signal-to-noise ratio 

(SNR) when increasing the bandwidth from 20 Hz to 500 Hz. (B) Top: Response PDFs are all nearly 

Gaussian except for 20 Hz and 50 Hz. Bottom: Stimulus intensity distributions are skewed Gaussian. 

At 200 Hz the photoreceptor had the widest frequency and Gaussian voltage distribution. (C) The 

information transfer rates (from a representative photoreceptor in Figure 2-1) were best for high-

contrast “saccadic” stimuli, and it peaked at 200 Hz bandwidth (marked with a yellow box). The 

information transfer rates were calculated using the Shannon formula (Shannon, 1948). (D) Information 

transfer calculated for all the photoreceptors measured (n = 14) to all the bandwidths. Bursty “saccadic” 

stimuli drove the maximal information transfer, which peaked at 200 Hz. (E) Response signal-to-noise 

ratio (SNR) at 200 Hz stimulus bandwidth when increasing the contrast from c ~0.33 to c ~1.29. SNR 

is the best for high-contrast bursty stimulus. (F) Top: Response PDFs are Gaussian for low and mid-

contrast stimulus but slightly skewed for high-contrast bursty stimulus. Bottom: Stimulus intensity 

distribution is Gaussian for low-contrast stimulus but slightly skewed for mid and high-contrast stimuli. 

(G) Same as in C but comparing against different contrast levels. (H) Same as in D but comparing 

against different contrast levels. Data in A-C and E-G are from the same photoreceptor (presented in 

Figure 2-1), whereas D and H show the results for all the photoreceptors (presented in Figure 2-2). 

 

2.3.3 LMCs respond best to “saccadic” stimuli 

Earlier, I demonstrated that “saccadic” stimuli do not blind housefly R1-R6 

photoreceptors. Not only do the photoreceptors respond most vigorously to the 

“saccadic” stimulations, but it also produced these cells’ maximal information transfer 

rates. My next aim was to study what happens downstream, specifically in the lamina: 

what kind of stimulus patterns are most amplified and carry most information from 

photoreceptors to LMCs (L1-L3). 

 

I performed similar recordings as from the photoreceptors but now targeting LMCs 

(L1-L3) (Figure 2-4A and 2-5A). Histaminergic transmitter release from 

photoreceptors hyperpolarises LMCs to light increments and depolarises them to light 

decrements (compare Figure 2-1A and 2-4A) (Hardie, 1989). In LMCs, similar to 

photoreceptors, increasing the stimulus contrast evoked larger responses (Figure 2-

4B and 2-5B, rows). However, these changes were less conspicuous (or significant) 

than in photoreceptors. Furthermore, increasing the stimulus bandwidth somewhat 

decreased the peak-to-peak responses (Figure 2-4B and 2-5B, columns). But again, 

this change was less than what we saw in photoreceptors. Interestingly, LMCs 
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responded maximally and almost equally to both mid and high-contrast “saccadic” 

bursty stimuli and less so to GWN (Figure 2-4B and 2-5B, yellow area). 

 

At the population level, the voltage responses of all LMCs varied more than the 

responses of an individual LMC (n = 3, Figure 2-5) compared to responses measured 

from one representative LMC (Figure 2-4); similar to what we saw with the 

photoreceptor output. This variation is most likely caused by differences between L1, 

L2 and L3 (Uusitalo et al., 1995). 

 

 

Figure 2-4. Both mid and high-contrast “saccadic” bursts maximise LMC’s response. (A) Left: A 

schematic of in vivo intracellular recording from Musca eye. Right: An example of a repeated high-
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contrast bursty stimulus (pink trace) and a response (black trace) at 20 Hz bandwidth. (B) An L1-L3 

response ranging from high-contrast “saccadic” bursts (BG0) to low-contrast GWN stimuli (BG2) in 

different cut-off frequencies, i.e. bandwidth patterns (20, 50, 100, 200 and 500 Hz). Mean (thick black 

and grey traces) and individual responses (thin, lightly coloured) to 15 different stimuli (colourful traces 

beneath the responses). Yellow box: maximum information responses. Arrows: dark intervals in 

saccadic stimuli. Vertical dotted rectangle and a horizontal rectangle: responses for bandwidth and 

contrast used in Figure 2-6A-E and 2-6E-H, respectively. The recordings are from the same LMC. 

 

 

Figure 2-5. All the LMCs respond best to mid and high-contrast saccadic stimuli. (A) Left: A 

schematic of in vivo intracellular recording from Musca eye. Right: An example of a repeated high-

contrast bursty stimulus (pink trace) and responses of all the recorded LMCs (n = 3, black trace) at 20 

Hz bandwidth. (B) L1-L3 responses (n = 3) ranging from high-contrast “saccadic” bursts (BG0) to low-
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contrast GWN stimuli (BG2) in different cut-off frequencies i.e. bandwidth patterns (20, 50, 100, 200 

and 500 Hz). Mean of all the recorded LMC responses (thick black and grey traces) and individual LMC 

responses (thin, lightly coloured) to 15 different stimuli (colourful traces beneath the responses). Yellow 

box: maximum information responses of all the LMCs. Arrows: dark intervals in saccadic stimuli.  

 

2.3.4 LMCs’ information capacity peaks at 100 Hz and 200 Hz 

“saccadic” bursts 

LMCs’ information capacity was calculated similarly to photoreceptors. Figure 2-6A-

D shows the increasing stimulus bandwidth results, and Figure 2-6E-H shows the 

increasing stimulus contrast results. Unlike when measuring from photoreceptors, the 

data sampling rate used (1 kHz with 500-point window size) was not sufficient to utilise 

the full encoding capacity of LMCs (except for 20 Hz) because high-frequency 

response components have SNR > 1 and, thus contain signal (compare Figure 2-3A 

to 2-6A). Due to the information loss caused by the limited bandwidth, the calculated 

information transfer rates were underestimates of the real information capacity (further 

discussed in the next chapter). This underestimation only applied to the mid and high-

contrast “saccadic” stimuli and not to the low-contrast Gaussian stimuli (Figure 2-6E).  

 

Moreover, the information capacity estimates at high-contrast were not as accurate as 

for photoreceptors because the voltage signals were not Gaussian (except for 500 Hz) 

(Figure 2-6B). Here, Shannon information estimates were likely more accurate for 

mid-contrast and low-contrast stimuli as both generate voltage signal dynamics with 

Gaussian distributions (Figure 2-6F). 

 

The “saccadic” stimuli drove the LMCs’ (n = 3) maximal information capture (Figure 

2-6C-D and 2-6G-H); similar to photoreceptors. However, in contrast to 

photoreceptors, LMC’s information capacity peaked for both high-contrast and mid-

contrast bursty stimuli. Expectedly, as the LMC noise changes were less prominent, 

the cells’ information capacity peaked to 100 Hz and 200 Hz mid-contrast and high-

contrast bursty “saccadic” stimuli for which the LMC signals showed the broadest 

frequency and voltage distribution (Figure 2-6A and 2-6B, yellow area). 
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Figure 2-6. LMCs’ information capacity is maximally driven by 100 Hz and 200 Hz “saccadic” 

stimuli (both mid and high-contrast). (A) Response signal-to-noise ratio (SNR) to high-contrast 

bursty stimuli when increasing the bandwidth from 20 Hz to 500 Hz. (B) Top: Response PDFs to high-

contrast bursty stimuli are not Gaussian except for 500 Hz. Bottom: Stimulus intensity distributions are 

skewed Gaussian. At 100 Hz and 200 Hz, the photoreceptor had the widest frequency and Gaussian 

voltage distributions. (C) The information transfer rates (from a representative LMC in Figure 2-4) were 

best for mid-contrast and high-contrast “saccadic” stimuli, and it peaked at 100 Hz and 200 Hz (marked 

with a yellow box). The information transfer rates were calculated using the Shannon formula (Shannon, 

1948). (D) Information transfer rates calculated for all the LMCs measured (n = 3) to all the bandwidths. 

Mid and high-contrast bursty “saccadic” stimuli drove the maximal information transfer, peaked at 100 

Hz and 200 Hz. (E) Response signal-to-noise ratio (SNR) at 200 Hz stimulus bandwidth when 

increasing the contrast from c ~0.33 to c ~1.29. SNR is the best for high-contrast bursty stimulus. (F) 

Top: Response PDFs are Gaussian for low and mid-contrast stimulus but skewed for high-contrast 

bursty stimulus. Bottom: Stimulus intensity distribution is Gaussian for low-contrast stimulus but slightly 

skewed for mid and high-contrast stimuli. (G) Same as in C but now comparing against different contrast 

levels. (H) Same as in D but now comparing against different contrast levels. Data in A-C and E-G show 

results from the same LMC (Figure 2-4), while D and H pool all LMC results. 

 

2.3.5 Limited sampling rate causing information loss in LMCs 

All LMC data was sampled at 1 kHz and windowed with 500-point Blackman-Harris 

window. The data (Figure 2-6A and E) suggested that the chosen data sampling rate 

did not drive the LMCs maximally at mid and high-contrasts, leading to 

underestimating the information capacity. Therefore, I tested how much the stimulus 

bandwidth and sampling-rate limited both photoreceptors’ and LMCs’ encoding by 

recording their responses to similar stimuli (20, 50, 100, 200, 300, 500, 600, 750 and 

1,000 Hz cut-off frequencies) when sampled at 2 kHz and windowed with 1,000-point 

window (Figure 2-7).  

 

Recordings from photoreceptors (Figure 2-7A) show no signal (SNR < 1) beyond 500 

Hz for the test stimulus bandwidths shown (200 Hz and 1 kHz) (Figure 2-7B-C). The 

SNR for the stimuli is presented in Figure 2-7G-H. However, LMCs (Figure 2-7D), 

show signal (SNR > 1) beyond 500 Hz (Figure 2-7E-F). Thus, I estimated the 

information loss by calculating the information capacity for the same 2 kHz data by 

down-sampling with 1 kHz; thus, having a 1,000-point window and then comparing 

that value when using a 500-point window. Photoreceptors’ (n = 2) information loss 

was about 5% whereas LMCs (n = 2) was significantly larger, varying between 5-23% 
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depending on the stimulus bandwidth (maximum information loss at 200 Hz) (Figure 

2-7I). Here, photoreceptors’ information loss was very consistent between the tested 

cells, whereas LMCs’ information loss varied substantially between them. 

 

 

Figure 2-7. Information loss in photoreceptors and LMCs resulting from the limited bandwidth. 

(A) A schematic of in vivo intracellular recording from Musca retina. Photoreceptor’s SNR(f) to (B) 200 

Hz bursty stimulus (stimulus in G) and to (C) 1 kHz bursty stimulus (stimulus in H). (D) A schematic of 

in vivo intracellular recording from Musca lamina. LMCs SNR(f) to (E) 200 Hz bursty stimulus and to (F) 

1 kHz bursty stimulus. (I) Information loss calculated for photoreceptors and LMCs. Mean (thick purple 
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for photoreceptors and thick magenta for LMCs) and individual responses (thin, lightly coloured). The 

information loss is relatively small for photoreceptors (~5%) but significantly larger for LMCs, reaching 

23%. 

 

2.3.6 “Saccadic” information is amplified at the first synapse 

In line with Juusola et al. (2017) findings, both photoreceptors and LMCs responded 

best to the fast “saccadic” stimuli. I calculated the maximum information transfer rates 

for all the photoreceptors (n = 20) and LMCs (n = 6) measured. LMCs’ information 

transfer rates were significantly higher (Figure 2-8A). As stated previously, these 

values were underestimates due to the limited bandwidth and, thus, I proposed a way 

to correct the information loss calculated earlier (Figure 2-7). When corrected, LMCs’ 

had even larger R values compared to photoreceptors (Figure 2-8B).  

 

Interestingly, male housefly photoreceptors’ maximum information rates were higher 

than females (Figure 2-8A-B). The recording electrode locations should not bias these 

findings, as I did not specifically target the acute-zone photoreceptors (Dietrich, 1909; 

Land and Eckert, 1985; Perry and Desplan, 2016). While LMC information rates were 

accentuated, I did not collect enough recordings to compare the differences between 

the sexes. However, it seems feasible that this could be the case in LMCs as well. 

 

Figure 2-8. Information amplification at the photoreceptor-LMC synapse and the difference 

between sexes. (A) LMCs (n = 6) have significantly higher (p = 0.0127) information rates than 

photoreceptors (n = 20). In addition, male photoreceptors have higher information rates than females 

(p = 0.0160). (B) When correcting the values for information loss, LMCs’ R values are significantly larger 

than photoreceptors (p = 0.0044) and the sex-specific difference remained significant after the 

correction (p = 0.0160), mean ± SD, unpaired two-tailed t-test with Welch’s correction. 
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2.4 Discussion 

 

2.4.1 Photoreceptors encode fast “saccadic” light changes 

My main aim was to unravel whether houseflies are effectively blind during saccadic 

behaviour – first at the level of photoreceptors (R1-R6) as shown in Drosophila 

(Juusola et al., 2017) and then in their direct outputs (LMCs, L1-L3). In vivo intracellular 

recordings from housefly photoreceptors (R1-R6) showed that not only can they 

encode fast “saccadic” light changes but they encode more information from 

“saccadic” stimuli than GWN stimuli (Figure 2-3D and 2-3H), similar to Drosophila 

(Juusola et al., 2017). Moreover, because Musca is a fast-flying diurnal species, its 

photoreceptors can code more information from the same natural scene, or in this 

case, from the given light stimuli– Musca photoreceptors’ information transfer rate 

peaked at 2,510 bits/s. In contrast, Drosophila photoreceptors reached their maximum 

at 850 bits/s for high-contrast “saccadic stimuli (Musca: Figure 2-3D and Drosophila: 

Juusola et al., 2017). Moreover, Musca can encode better fast rate changes and 

higher temporal frequencies, and therefore, its information capacity peaked at 200 Hz, 

in contrast to Drosophila’s 100 Hz (Musca: Figure 2-3D and Drosophila: Juusola et 

al., 2017). 

 

Visual blurring during body saccades can be reduced by countering head and thorax 

movements, enhanced acute-zone processing, and the combination of 

photoreceptors’ refractory photon sampling and photomechanical contractions in 

response to light. It is important to note that the houseflies were fixed into a conical 

holder during the experiments, cancelling the head/thorax and body movements. 

Moreover, the acute zones were not purposefully targeted when recording from 

photoreceptors, so the recording electrode location should not bias these results. 

Hence, the enhanced sampling to “saccadic” stimuli likely results from the 

photoreceptors’ refractory sampling and photomechanical contractions. High-contrast 

“saccadic” bursts contain bright periods, which should maximally activate the microvilli 

(photon sampling units) and darker periods in which the photoreceptor should recover 

from refractoriness (Figure 2-9). Although GWN stimuli contain more photons, it lacks 

these darker events causing the microvilli to become refractory, preventing them from 

capturing the incoming photons (Song and Juusola, 2014; Juusola et al., 2017). 



2. Transformation of information encoding at the first synapse 54 
 

 

Like Drosophila (Juusola et al., 2017), Musca photoreceptors also contract 

photomechanically (unpublished data), but these dynamics are even faster. In vivo 

high-speed videos revealed that photoreceptor rhabdomeres shift rapidly away from 

the focal point when illuminated with light. This movement might accentuate refractory 

photon sampling – to reduce saturation and maximise encoding capacity. We aim to 

examine these results against biophysically-realistic model simulations, using a 

stochastic model of Musca photoreceptors (akin to the Drosophila R1-R6 model, see 

Juusola et al., 2017).  

 

2.4.2 LMCs amplify “saccadic” light information 

L1-L3s responded maximally to “saccadic” bursty stimuli and less so to low-contrast 

GWN stimuli (Figure 2-9), somewhat comparable to R1-R6 photoreceptors. The LMC 

information capacity estimates for mid and high-contrast “saccadic” stimuli might be 

slightly inaccurate because all the criteria for using Shannon formula were not fully 

met (signal and noise were not perfectly Gaussian) (Shannon, 1948). 

 

LMCs maximum information capacity was to mid and high-contrast bursts at 100 Hz 

and 200 Hz (compare Figure 2-3D and 2-3H to 2-6D and 2-6H), whereas 

photoreceptors’ information capacity peaked to high-contrast 200 Hz bursts. Note that 

the limited bandwidth affected the information capacity estimation, particularly in 

LMCs, because some information from the high-frequency components was lost by 

using a bit too low sampling rate (1 kHz instead of 2 kHz). Information loss was the 

highest for high-contrast bursty stimuli, and it peaked at 200 Hz (Figure 2-7I). This 

finding suggests that LMCs’ maximal information capacity might be to high-contrast 

stimuli at 200 Hz, similar to photoreceptors. 

 

Not only did the “saccadic” stimuli drive maximal encoding, but it amplified LMC 

voltage responses (Figure 2-8) significantly. Therefore, flies are far from being blind 

during body saccades (Land, 1999) and the visual information collected during these 

manoeuvres is not redundant for the visual system. Instead, the resulting bursty stimuli 

contain important features amplified and efficiently passed to the neurons, 

downstream.  
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Figure 2-9. Houseflies’ visual system is adapted to encode fast temporal changes in its 

environment. Both photoreceptors and LMCs respond best to bursty “saccadic” stimuli. Interestingly, 

LMC output is less contrast-specific, suggesting dynamic synaptic contrast normalisation of signals 

routed towards the brain. 

 

2.4.3 Males encode better “saccadic” stimuli 

Both male and female flies responded best to “saccadic” stimuli. Interestingly, male 

photoreceptors (and possibly LMCs) showed significantly higher information transfer 

rates (Figure 2-8). Previously, it has been shown that males have a better temporal 

and spatial resolution in their acute zones (Hornstein et al., 2000; Burton and Laughlin, 

2003), which could contribute to these results. However, I did not purposefully target 

the frontal-dorsal acute zone. Instead, the recording location was quite randomly 

selected by the stable, high-quality microelectrode cell penetrations.  

 

An interesting question arises from this finding: why is it more beneficial for male flies 

to see better during body saccades? One feasible explanation for this sexual 

dimorphism is related to male-specific sexual pursuit behaviour. While chasing flying 

females for mating, males exhibit fast body saccades to change their course, using 

mainly their frontal-dorsal acute zones (“love spots”) (Land and Collett, 1974; 

Wehrhahn, 1979; Wehrhahn, Poggio and Bülthoff, 1982; Wagner, 1986; Burton and 

Laughlin, 2003). By contrast, female houseflies do not have a “love spot”, and their 

ability to track is both infrequent and possibly less well controlled.  
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In future, it would be interesting to stain LMCs (L1-L3) electrophoretically and to test 

whether significant differences are present among them when responding to 

“saccadic” stimuli. For example, we know that L3 is the largest in the male “love spot” 

(Braitenberg, 1972), which can be beneficial during body saccades. 
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 Visual coding under light adaptation in Musca 

photoreceptors and LMCs 

 

3.1 Introduction 

Flies perceive contrast changes in their natural environment in which illumination 

ranges from dim conditions to bright daylight, covering >106 intensity range. This visual 

performance depends upon the fly photoreceptors' rapid adaption, providing high 

single-photon sensitivity in dim conditions and low sensitivity in bright conditions, 

preventing saturation while maximising contrast information capture (Fain, Hardie and 

Laughlin, 2010). Adaptive contrast coding (Juusola, 1993; Juusola et al., 2017) results 

from multiple interconnecting factors affecting phototransduction. These include 

refractoriness (Song et al., 2012; Juusola et al., 2017), intracellular Ca2+-dependent 

pupil mechanism (Kirschfeld and Vogt, 1980; Howard, Blakeslee and Laughlin, 1987), 

ion channels (especially voltage-gated K+ channels) and electrogenic transporters 

(Weckström, Hardie and Laughlin, 1991; Juusola and Hardie, 2001a; Wang et al., 

2005; Hardie and Juusola, 2015).  

 

The fly photoreceptors must rapidly adapt to the natural environment's ambient light 

to maintain a perceptual contrast constancy of the world (Shapley and Enroth-Cugell, 

1984; Laughlin, 1989; Juusola, 1993). Efficient light adaptation is vital for seeing 

animals, living and moving in an environment with vastly changing light intensities. 

Hence, it is not a surprise that light adaptation is evident already at the fundamental 

photon sampling level in elementary responses, so-called quantum bumps (QBs), 

evoked by the absorption of single photons (Wong and Knight, 1980; Juusola and 

Hardie, 2001a; Hardie and Juusola, 2015).  

 

How light adaptation impacts a photoreceptor's QBs, their summed macroscopic 

voltage response and coding/signalling have been studied extensively in Drosophila 

(Wu and Pak, 1978; Johnson and Pak, 1986; Hardie et al., 1993; Henderson, Reuss 

and Hardie, 2000; Juusola and Hardie, 2001a; Juusola and Hardie, 2001b; Gu et al., 

2005) and Calliphora (Weckström, Hardie and Laughlin, 1991; Juusola et al., 1994; de 

Ruyter van Steveninck and Laughlin, 1996). There have also been comparative 
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adaptation studies, including both species (Energy consumption: Niven, Anderson and 

Laughlin, 2007. Adaptive, stochastic sampling: Song et al., 2012; Juusola and Song, 

2017). However, much of the early work on adaptive QBs was performed on the 

horseshoe crab (Limulus) (Dodge, Knight and Toyoda, 1968; Wong and Knight, 1980; 

Wong, Knight and Dodge, 1980).  

 

Although these studies suggest that many aspects of light-adaptation can be 

generalised to other species with microvillar photoreceptors, species-specific studies 

still have their importance. There has been limited research exploring Musca 

photoreceptor light adaptation, with only a few notable examples. The study by Burton 

(2002) investigated long-term light adaptation in the photoreceptors' impulse 

responses and some aspects of their signalling performance. Another Burton (2006) 

article examined how QB waveform change in response to different light background 

intensities, and concluded that increasing the mean light (i.e. higher input SNR) made 

QBs smaller and faster, similar to findings in other Diptera (Drosophila: Juusola and 

Hardie, 2001a Calliphora: Juusola et al., 1994; de Ruyter van Steveninck and 

Laughlin, 1996) and Limulus (Wong and Knight, 1980; Wong, Knight and Dodge, 

1980). However, this study's primary focus was showing the benefits of bispectrum 

estimate (and not the conventional power spectrum estimate) in reconstructing the QB 

shape in dim light levels, which skews voltage response distributions.  

 

Unlike in the species mentioned above, there has been no prior experimental research 

on how Musca QB latency distribution (the time from photon absorption to a QB) 

adapts to vast mean light intensity changes. Hence, I aimed to conduct a detailed 

study exploring Musca R1-R6 photoreceptor response properties (including QB shape 

and latency distribution) and their signalling performance when adapted to different 

light intensity levels, using linear signal and noise analysis. In this in vivo investigation, 

photoreceptors' intracellular voltage responses to contrast stimuli at different light 

levels were recorded at 25 oC. The photoreceptors' coding performance was tested by 

comparing two different contrast series: a high-contrast bursty "saccadic" stimulus and 

a low-contrast GWN stimulus (both introduced in Chapter 2). A shot-noise analysis 

was then used (for responses to low-contrast GWN stimulus) to characterise how QB 

shape and latency distribution adapt at different light levels. 

 



3. Visual coding under light adaptation in Musca photoreceptors and LMCs 59 
 

 

Furthermore, after quantifying photoreceptors' adaptive response properties and 

signalling performance, I aimed to reveal how Musca L1-L3 LMC voltage responses 

adapt to the changing mean light levels, using the same methodology. Analysis of the 

LMC (histamine) QB shape or latency distribution at different adapting backgrounds, 

however, were not performed due to LMCs’ nonlinear nature of responding (Laughlin, 

Howard and Blakeslee, 1987; Juusola et al., 1994; Juusola et al., 1995; Juusola, 

Uusitalo and Weckström, 1995).  

 

For LMCs, the main aim was to quantify how contrast coding differs between two 

different contrast series (high-contrast bursty "saccadic" stimulus and low-contrast 

GWN stimulus) at different adapting backgrounds. The high-contrast bursty stimulus 

has not been tested on LMCs before. 

 

Both photoreceptors' and LMCs' signalling performance (SNR and information transfer 

rates) improved when increasing the mean light levels. Expectedly, their responses to 

contrast stimuli at the lowest light intensities were dominated by photon shot-noise, 

whilst brightening massively improved visual coding (information transfer rate), 

especially for the bursty contrasts. Thus, when adapting to brightening stimuli, the 

high-contrast bursts utilised better the photoreceptors' and LMCs' full dynamic range 

than low-contrast GWN stimuli. Shot-noise analysis of the underlying adaptation 

dynamics revealed that the enhanced macroscopic voltage responses resulted from 

more and smaller QBs being integrated during shorter and tighter latency distributions. 

Somewhat comparable QB dynamics have previously been shown to govern 

Drosophila and Limulus photoreceptors' light-adaptation (Wong and Knight, 1980; 

Wong, Knight and Dodge, 1980; Juusola and Hardie, 2001a). However, these 

dynamics in Musca occur in a much briefer time scale, consistent with its faster visual 

lifestyle. As such, my new results from Musca provide more evidence about how QBs 

adapt. 

 

 

 

 

 



3. Visual coding under light adaptation in Musca photoreceptors and LMCs 60 
 

 

3.2 Materials and methods 

 

3.2.1 Fly stocks  

Adult, wild-type houseflies (Musca domestica) were used in the experiments. The 

housefly larvae/pupae were ordered from a commercial provider (Blades Biological 

Ltd, Cowden, Kent, UK). The houseflies, cultured in a standard laboratory incubator 

(60% humidity) at the Department of Biomedical Science, were fed with liver, and 

sugar water. The flies were kept at ~22 oC in a 12:12 h light:dark cycle.  

 

3.2.2 In vivo intracellular recordings  

In vivo intracellular recordings were performed from R1-R6 photoreceptors L1-L3 and 

LMCs as described in Chapter 2. All the experiments were done at 25 oC, Drosophila's 

preferred temperature (Sayeed and Benzer, 1996; Juusola and Hardie, 2001b). This 

choice enabled direct comparisons of the early visual neurons' signalling performance 

between these two Diptera. 

 

3.2.3 Visual stimuli 

A high-intensity "white" LED (Seoul Z-Power P4 star, white, 100 Lumens) was used 

for light stimulation. Its light output was fed through a randomised quartz fibre optic 

bundle (transmission range: 180-1,200 nm) fixed on a rotatable Cardan-arm system, 

subtending a 3o homogeneous light field seen by the fly. The LED output was 

controlled by an OptoLED driver (Cairn Research Ltd, UK) and monitored with a pin 

diode circuit. 

 

Recordings from R1-R6 photoreceptors and L1-L3 LMCs were done in the dark and 

under different adapting light backgrounds. Neutral density (ND) filters (Thorlabs) were 

used to attenuate the LED light output in 1-log unit steps providing six different 

adapting backgrounds (BG0, BG-1, BG-2, BG-3, BG-4, BG-5). These light intensity 

levels (as effective photons) were determined by counting photoreceptors' single-

photon responses (QBs) to dim illumination (attenuated by ND filters) after a prolonged 

dark-adaptation of at least 30 minutes. The effective photon rate (effective photons/s) 

for each adapting background was then determined by extrapolating the QB rate and 

multiplying it with the ND filter attenuation. Consequently, each adapting background's 
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estimated intensities from the lowest (BG-5) to the highest (BG0, no filter) were 70, 

700, 7,000, …, 7x106 effective photons/s. This method assumes that the number of 

QBs reduces linearly in response to ND filter attenuation. It does not take into 

consideration, the intracellular pupil mechanism (Kirschfeld and Franceschini, 1969; 

Franceschini, 1972; Stavenga, 1975; Howard, Blakeslee and Laughlin, 1987; 

Roebroek and Stavenga, 1990; Song and Juusola, 2014), the refractoriness 

(Hochstrate and Hamdorf, 1990; Song et al., 2012; Song and Juusola, 2014) nor the 

photomechanical photoreceptor contractions (Juusola et al., 2017), which reduce 

quantum efficiency in bright light conditions. As a result, the effective photon rates at 

the highest adapting backgrounds are overestimated. 

 

Light adaptation in photoreceptors and LMCs were tested with two different contrast 

distributions - bursty "saccadic" stimulus and GWN stimulus (see Chapter 2 for more 

details). Photoreceptors were tested with 2-s-long contrast modulations with a 500 Hz 

cut-off frequency whereas LMCs were tested with a 200 Hz cut-off frequency because 

it evoked the maximal information capacity (see Chapter 2).  

 

The light contrast was defined by using Weber's law: 

 

                                                         𝑐 =
∆𝐼

𝐼
 ,                                                           (3-1) 

 

where ∆I is the change in the intensity and I the mean background intensity (Shapley 

and Enroth-Cugell, 1984). For the Gaussian white noise (GWN) contrast modulation, 

∆I is the standard deviation (SD) of the stimulation and I the mean light intensity. The 

contrast (c) for bursty "saccadic" stimulus was ~1.29 and for GWN stimulus ~0.33. 

Experiments were performed from the lowest to the highest adapting backgrounds. 

Only cells that remained stable throughout the entire stimulation protocol were further 

analysed. In all these experiments, each stimulus was repeated 30 times. The stimuli 

and responses were low-pass filtered at 500 Hz (KEMO VBF/23 low-pass elliptic filter, 

UK), and sampled at 1 kHz using a 12-bit A/D converter (National Instruments, USA). 

A custom-written software system controlled both the stimulus generation and data 

acquisition, Biosyst in MATLAB (MathWorks, USA) (Juusola and Hardie, 2001a; 
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Juusola and de Polavieja, 2003), with an interface package for National Instruments 

(Austin, TX) boards (MATDAQ: H. P. C. Robinson, 1997-2005). 

 

3.2.4 Data analysis 

Only the steady-state adapted responses were analysed and, therefore, the first 1-5 

responses to the repeated stimulation (n = 30) were discarded. The analysis in this 

chapter was much performed as described in (Juusola and Hardie, 2001a). 

 

3.2.4.1 Signal, Noise, SNR and Information transfer rate 

The signal 𝑠𝑣(𝑡)  and 𝑆𝑉(𝑓)  and noise 𝑛𝑣(𝑡)  and 𝑁𝑉(𝑓) , and signal-to-noise ratio 

𝑆𝑁𝑅𝑉(𝑓) and information transfer rates (R) were calculated as described in Chapter 2. 

The data was sampled at 1 kHz, and a 500-point Blackman-Harris window was used 

in the analyses. 

 

3.2.4.2 Coherence 

Coherence is the measure of how linear the system is, and is calculated from the 

𝑆𝑁𝑅𝑉(𝑓) (Bendat and Piersol, 1971): 

 

                                                    𝛾𝑙𝑖𝑛
2 (𝑓) =

𝑆𝑁𝑅𝑉(𝑓)

𝑆𝑁𝑅𝑉(𝑓)+1
 .                                          (3-2) 

 

The system is purely linear and noise-free when 𝛾𝑙𝑖𝑛
2 (𝑓) = 1. Thus, the coherence 

function estimates both the system's linearity and signal-to-noise ratio (Bendat and 

Piersol, 1971). 

 

 

3.2.4.3 Frequency and Impulse responses 

Here the autospectrum of the contrast input is 〈𝐶(𝑓) ∙ 𝐶∗(𝑓)〉 and the autospectrum of 

the output (photoreceptor signal) is 〈𝑆𝑉(𝑓) ∙ 𝑆𝑉
∗(𝑓)〉 resulting in their cross-spectrum to 

be 〈𝑆𝑉(𝑓) ∙ 𝐶∗(𝑓)〉. Thus, the frequency response, 𝑇𝑉(𝑓), was calculated: 

 

                                                    𝑇𝑉(𝑓) =
〈𝑆𝑉(𝑓)∙𝐶∗(𝑓)〉

〈𝐶(𝑓)∙𝐶∗(𝑓)〉
 ,                                           (3-3) 
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where the asterisk (*) denotes the complex conjugate and ⟨⟩ denotes the average over 

different stretches of the signal and the noise. 

 

The impulse response 𝐾1(𝑡), (or first-order Wiener kernel) is used to characterise the 

linear filtering properties of a photoreceptor in the time domain and is calculated by 

taking the inverse FFT of its frequency response: 

 

                                                 𝐾1(𝑡) = 𝐹−1𝑇𝑉(𝑓) .                                               (3-4) 
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3.3 Results 

 

3.3.1 R1-R6 Photoreceptors' signalling efficiency improves with 

brightening adapting background 

I wanted to explore the impact of light adaptation to Musca R1-R6 photoreceptors' QB 

and macroscopic response properties and signalling performance using in vivo 

intracellular recordings. Briefly, in Chapter 2, I studied how well Musca photoreceptors 

and LMCs responded to contrast stimulus that resembles the fast temporal changes 

the fly encounters during body saccades by using two different bursty stimuli and GWN 

stimuli. The results showed that both R1-R6 photoreceptors and L1-L3 LMCs 

responded best to bursty "saccadic" contrast stimulation.  

 

Here, I aimed to compare Musca photoreceptors' signalling performance to two of 

these contrast series (high-contrast bursty "saccadic" stimulus, c ~1.29 and low-

contrast GWN stimulus, c ~0.33) at different adapting backgrounds. Unlike bursty 

"saccadic" stimulation, GWN does not have complex naturalistic nor behavioural 

statistics, subsequently linearising photoreceptors' voltage response (Marmarelis and 

Marmarelis, 1978; van Hateren, 1997). Therefore, for analysing the QB shape and 

latency distribution (Chapter 3.3.3 and 3.3.4) GWN stimulation ensures a better 

estimation when using linear signal and noise analysis methods.  

 

Figure 3-1A-B shows an R1-R6 photoreceptor's intracellular voltage responses to 

repeated presentations (n = 30) of two different 2-s-long contrast stimuli at six adapting 

backgrounds (BG0, BG-1, BG-2, BG-3, BG-4 and BG-5). BG0 (no filter) is the brightest 

and BG-5 (attenuated 105 times) the dimmest background. Figure 3-1C-D shows the 

corresponding signal and noise traces (extracted from the voltage responses) and 

their corresponding probability density functions (PDFs) to the contrast stimuli; the 

signal is the mean of the repetitions, and the noise is the difference between individual 

traces and the signal. The instrumental noise (recorded outside the cell in the 

extracellular space in darkness) and the dark noise (noise inside the cell in darkness) 

are shown in Figure 3-1C-D. 
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Noise is the major limitation at the lower light levels (input contains few photons) and 

it includes photon shot-noise, intrinsic transducer noise (from the phototransduction), 

dark noise (stochastic channel openings, synaptic feedback from downstream) and 

instrumental noise (mainly from the high resistance electrodes) (Lillywhite and 

Laughlin, 1979; Laughlin and Lillywhite, 1982). The light-induced photoreceptor 

voltage noise at different mean light intensities was estimated by subtracting the 

instrumental noise - using the corresponding power spectra - by assuming that the 

noise sources are independent and additive. Many previous studies have used the 

estimated dark noise power spectrum for subtraction (Dodge, Knight and Toyoda, 

1968; Roebroek, van Tjonger and Stavenga, 1990; Suss-Toby, Selinger and Minke, 

1991; Juusola and Hardie, 2001a; Burton, 2006; Faivre and Juusola, 2008), but this 

was not done here. Juusola and Hardie (2001a) noted that the photoreceptor 

membrane impedance is not constant under dark adaption and different light 

adaptation levels. As a result, dark noise subtraction is suboptimal when estimating 

the QB waveform and latency distribution from the noise power spectrum. That said, 

Burton (2006) showed that using dark noise for the subtraction can still produce 

reasonable QB estimates, as demonstrated by comparing them to the ones extracted 

from the bispectrum estimate.  

 

The photoreceptor (n = 15 photoreceptors) response properties improved with 

brightening stimulation (Figure 3-1 and 3-2). In the time domain, when increasing the 

mean light intensity, the photoreceptor voltage signal 𝑠𝑣(𝑡) variance increased, more 

so to the high-contrast bursty stimulus (from ~0.2 mV at BG-5 to ~12 mV at BG0) than 

to low-contrast GWN stimulus (from ~0.2 mV at BG-5 to ~3 mV at BG0) (Figure 3-1C-

D and Figure 3-2A-B). Correspondingly, the frequency domain representation of the 

signal power spectrum |〈𝑆𝑉(𝑓)〉|2  amplified and extended to higher frequencies 

(Figure 3-2A-B), carrying more information. The growing signal power was evident for 

both of the contrast series, although the voltage signals to bursty stimulation were 

larger than GWN stimulation. 
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Figure 3-1. Time-domain representation of the photoreceptor responses (signal and noise) to 

two different contrast series (high-contrast bursty "saccadic" and low-contrast GWN) at 

different adapting backgrounds. (A) A schematic showing in vivo intracellular voltage responses 

(showing 1-s-long samples) from Musca photoreceptors (R1-R6) when using a 2-s-long high-contrast 

bursty stimulus (500 Hz cut-off frequency) at six different adapting backgrounds (BG0, BG-1, BG-2, 

BG-3, BG-4 and BG-5). (B) Same as in A but for low-contrast GWN stimulation. (C) Photoreceptor 

voltage signal 𝑠𝑣(𝑡) and noise 𝑛𝑣(𝑡) traces, as well as their corresponding probability density functions 

(PDFs) to high-contrast bursty stimulus at six different adapting backgrounds. (D) The same as in C but 

for low-contrast GWN stimulation. In both C and D, the instrumental noise (measured in the extracellular 

space in darkness) and the dark noise (measured in the cell in darkness) are shown. These recordings 

are from the same photoreceptor. 
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Unlike photoreceptor voltage signal variance, the voltage noise 𝑛𝑣(𝑡)  variance 

increased only up to around BG-2 (with some variation between the 15 recorded 

photoreceptors) and then slightly decreased. These adapting dynamics occurred 

similarly during high and low-contrast stimulations (Figure 3-1C-D and Figure 3-2C-

D), with the photoreceptor noise variance at each adapting background being similar 

for both the stimuli, even though the high-contrast bursts evoked larger voltage 

signals. The frequency-domain representation showed that the photoreceptor noise 

power |〈𝑁𝑉(𝑓)〉|2  shifted to higher frequencies for brightening bursts and GWN 

stimulation (Figure 3-2C-D). Noise dynamics for the GWN stimulation is consistent 

with other findings from Drosophila (Juusola and Hardie, 2001a), Musca (Burton, 

2006) and Calliphora (Juusola et al., 1994). However, the noise power behaved 

somewhat differently during bright contrast bursts, which most likely reflected 

additional nonlinearities. These noise estimates were affected by the instrumental 

noise. Instrumental noise was subtracted when estimating the QB noise (|𝐵𝑉(𝑓)|2 in 

Chapter 3.3.3. 

 

In the time domain, the signal-to-noise ratio 𝑆𝑁𝑅𝑉(𝑡) was calculated by dividing the 

photoreceptor signal variance by its noise variance. Whereas, in the frequency 

domain, the signal-to-noise ratio 𝑆𝑁𝑅𝑉(𝑓)  was calculated by dividing the 

photoreceptor signal power spectrum by its noise power spectrum. Signal-to-noise 

ratio is a good measure of photoreceptor's signalling performance; if 𝑆𝑁𝑅𝑉 < 1, the 

photoreceptor output contains more noise than signal and, thus, is not reliable. In the 

time domain, the maximum 𝑆𝑁𝑅𝑉(𝑡) increased with brightening stimulation; bursty 

stimulation: from ~0.2 at BG-5 to ~400 at BG0, GWN stimulation: from ~0.2 at BG-5 

to ~40 at BG0 (Figure 3-2E-F). The two dimmest adapting backgrounds (BG-4 and 

BG-5) contained more noise than signal (𝑆𝑁𝑅𝑉 < 1), while at the brightest adapting 

background, the 𝑆𝑁𝑅𝑉  curve tails off slightly, presumably reflecting the cells’ 

saturation prevention mechanisms (i.e. the intracellular Ca2+-dependent pupil) 

(Kirschfeld and Vogt, 1980; Howard, Blakeslee and Laughlin, 1987). In the frequency 

domain, the 𝑆𝑁𝑅𝑉(𝑓)  became amplified with increasing the mean light intensity, 

shifting to higher frequencies. 
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Figure 3-2. Brighter light adaptation improves photoreceptors' coding performance to both 

tested contrast series. Response properties to bursty stimulation are shown on the left panel and 

GWN stimulation on the right panel. When increasing the mean light intensity from BG-5 to BG0 (A) the 

photoreceptor signal power spectrum |〈𝑆𝑉(𝑓)〉|2 for bursty stimulus amplified (amplification highest at 

the lowest frequencies) and extended to higher frequencies. Additionally, the photoreceptor (n = 15 

photoreceptors) voltage signal 𝑠𝑣(𝑡) variance increased. (B) The same happened when using GWN 

contrast modulation. (C) For bursty stimulus, the photoreceptor noise power spectrum |〈𝑁𝑉(𝑓)〉|2 shifted 

to higher frequencies, and the lower frequency end was slightly amplified up to around BG-3, slightly 
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attenuating after. Increasing the mean light intensity, the voltage noise 𝑛𝑣(𝑡) variance increased up to 

about BG-2 (some variation between the 15 recorded photoreceptors) before slightly decreasing. (D) 

The voltage noise variance was similar to GWN stimulus. Otherwise, the noise dynamics were 

consistent with previous research from other Diptera (Juusola et al., 1994, Juusola and Hardie, 2001a; 

Burton, 2002). When increasing the mean light intensity for both (E) bursty stimulus and (F) GWN 

stimulus, the 𝑆𝑁𝑅𝑉(𝑓) was amplified and shifted to higher frequencies. Moreover, information and 

information capacity (R) increased for (G-H) the bursty stimulus (more so) and for (I-J) the GWN 

stimulus when brightening the adapting background. 

 

The resulting adaptive signal and noise dynamics, and subsequently, the SNR (Figure 

3-2G and I), meant that photoreceptors sampled more information (bits) and 

distributed it over a broader frequency bandwidth with brightening stimulation (Figure 

3-2H and J). The photoreceptors’ information transfer rate R (bits/s) was calculated 

from 𝑆𝑁𝑅𝑉(𝑓) (Shannon information theory: Shannon, 1948), ranging from ~40 bits/s 

at BG-5 to ~1,440 bits/s at BG0 (bursts) and from ~40 bits/s at BG-5 to ~520 bits/s at 

BG0 (GWN). Both of the contrast series showed a similar enhancement in their coding 

performance, although information transfer rates were 2-to-3-times higher for bursts. 

Chapter 2 explained in detail why the high-contrast bursty stimulus drove 

photoreceptors' encoding better. 

 

3.3.2 Photoreceptor's coherence function and linear impulse 

response at different adapting backgrounds 

I tested whether Musca photoreceptors operate linearly to the two different contrast 

stimuli under different adapting backgrounds (from BG-5 to BG0). The high-contrast 

bursty stimulus excites photoreceptors' full dynamic range better than the low-contrast 

GWN stimulus, which linearises photoreceptor output (Juusola et al., 1994). This 

observation was apparent when comparing the photoreceptor signal and noise PDFs 

to bursty and GWN stimuli. For the bursty stimulus, photoreceptor signal PDFs were 

Gaussian at lower adapting backgrounds but became slightly skewed (towards 

depolarisation) with brightening (Figure 3-1C), indicative of nonlinear (refractory) QB 

summation (Song et al., 2013). However, the noise PDFs were Gaussian for all the 

tested adapting backgrounds. For the GWN stimulus, both the signal and the noise 

were Gaussian, suggesting that the photoreceptor responded linearly to this type of 

light stimulation (Figure 3-1D). 
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Furthermore, the coherence function 𝛾𝑙𝑖𝑛
2 (𝑓) was used to estimate how linear the 

photoreceptor responses were for both contrast stimulations under different adapting 

backgrounds. The system is entirely linear and noise-free when 𝛾𝑙𝑖𝑛
2 (𝑓) = 1 (Bendat 

and Piersol, 1971). For both of the contrast stimuli, the two brightest adapting 

backgrounds (BG0 and BG-1) had 𝛾𝑙𝑖𝑛
2 (𝑓) ≈ 1 over almost the full bandwidth (broader 

for bursty stimulus), suggesting that photoreceptors operated approximately linearly 

at these mean light intensities (Figure 3-3A and 3-3C). However, the signal probability 

distributions at the brightest backgrounds were skewed for the contrast bursts, 

suggesting that the unity of coherence function might result from high signal-to-noise 

ratios, rather than the system's linearity (Figure 3-1C and 3-2E). The dimmer 

intensities produced low coherence values, most likely due to low SNR. GWN contrast 

stimulus at different adapting backgrounds was used for further analysis (QB shapes 

and latency distributions) because a photoreceptor can be treated as a linear system. 

 

Photoreceptor's linear impulse response 𝐾1(𝑡), was calculated for both of the contrast 

series at six different adapting backgrounds, although for the bursty contrasts these 

estimates could be less accurate (due to nonlinearities) (Figure 3-3B and 3-3D). 

These first-order Wiener kernels approximate a photoreceptor’s voltage response to 

a brief contrast pulse at different adapting backgrounds. Increasing the mean light 

intensity (i.e. increasing photons) increased the impulse response amplitude (bursty 

contrasts: from ~0.2 mV at BG-5 to ~27 mV at BG0, GWN stimulus: from ~0.1 mV at 

BG-5 to ~4 mV at BG0), showing little saturation at the brightest backgrounds. 

Besides, the impulse response latency and the total duration reduced with brightening; 

its time-to-peak (𝑡𝑝) shortened from 30 ms at BG-5 to ~10 ms at BG0 for both contrast 

stimuli. The responses were 8-times larger for contrast bursts predominantly because 

such stimulation enables more microvilli to participate in photon sampling, 

accentuating fast contrast changes, rather than keeping most microvilli refractory 

during GWN stimulation (Juusola et al., 2017). 
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Figure 3-3. Photoreceptor's coherence function and linear impulse responses at six different 

adapting backgrounds. (A) Photoreceptor's coherence function to high-contrast bursty stimulus and 

(B) its linear impulse response (i.e. first-order Wiener kernel estimates). (C) Photoreceptor's coherence 

function to low-contrast GWN stimulus and (D) its linear impulse response at BG-5 to BG0. These 

recordings were from the same photoreceptor. 

 

3.3.3 QB shape analysis at different adapting backgrounds 

Here, I aimed to quantify how the average light-induced QB shape adapts to different 

levels. Single-photon absorptions evoke QBs in microvilli (~60,000 in Musca) (Fuortes 

and Yeandle, 1964; Kirschfeld, 1966; Lillywhite, 1977; Wu and Pak, 1975; Hardie and 

Juusola, 2015). QBs can be visible in photoreceptor voltage recordings at very dim 

light conditions. However, at brighter illumination, they sum up to produce the 

macroscopic voltage response, becoming less distinguishable. Shot-noise analysis 

was used to characterise the photoreceptors' QB shape (QB amplitude, waveform and 

duration) at different mean light intensities from dim to very bright, as done previously 

(Wong and Knight, 1980; Juusola et al., 1994; Juusola and Hardie, 2001a).  

 

To accurately estimate the light-induced noise (QB noise) at different mean light levels, 

other noise sources (intrinsic transducer noise, dark noise and instrumental noise) 

needed to be removed, if possible, assuming they are additive and independent. I 

subtracted only the instrumental noise power spectrum from the photoreceptor noise 

power spectrum at different adapting backgrounds (Figure 3-4A): 

 

                              |𝐵𝑉(𝑓)|2 ≅ |〈𝑁𝑉(𝑓)〉|2 − |𝑁𝑉
𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙(𝑓)|

2
.                        (3-5) 

 

This approach is suboptimal because different intrinsic noise sources, such as noise 

from the feedback synapses (Zheng et al., 2006), could further contaminate the QB 
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noise power spectrum in an activity-dependent manner (the feedback is most active 

in darkness). 

 

Another factor to consider when using the noise power spectrum for estimating the QB 

shape, is that the noise power spectrum does not contain any information about the 

phase, and so, QBs are considered to be minimum-phase (i.e. QBs have the smallest 

possible phase lag at all frequency bandwidths) (Wong and Knight, 1980; de Ruyter 

van Steveninck and Laughlin, 1996). Crucially, however, while photoreceptors do not 

operate as minimum-phase systems (French, 1980), the underlying QBs seem to be 

minimum-phase (Burton, 2006). 

 

Here I assumed that the QB shape function (𝑏𝑉(𝑡)) follows the Γ-distribution (gamma 

distribution): 

 

                                𝑏𝑉(𝑡) ∝ Γ𝑉(𝑡; 𝑛, 𝜏) =
1

𝑛!𝜏
(

1

𝜏
)

𝑛

𝑒−𝑡/𝜏,                                       (3-6) 

 

where two parameters (n and 𝜏) were attained by fitting a single Lorentzian to the 

calculated QB noise power spectrum (Figure 3-4B): 

 

                               |𝐵𝑉(𝑓)|2 ∝ |Γ̃𝑉(𝑓; 𝑛, 𝜏)|
2

= [1 + (2𝜋𝜏𝑓)2]−(𝑛+1),                  (3-7) 

 

where Γ̃𝑉 is the Fourier transform of the gamma distribution.  

 

To better understand QB-shape-adaptation, I first estimated the effective duration (T) 

and the mean QB amplitude (𝛼). The effective QB duration (T) was calculated by using 

the two parameters obtained earlier from the fitted single Lorentzian: 

 

                                                         𝑇 = 𝜏
(𝑛!)222𝑛+1

(2𝑛)!
.                                             (3-8) 

 

The mean QB amplitude (𝛼) estimation, follows Campbell's theorem (Rice, 1944), 

which states that QB amplitude and rate can be extracted from Poisson shot noise 
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(composed of superimposed QBs) (Wong and Knight, 1980; Juusola and Hardie, 

2001a). The mean QB amplitude (𝛼) for all the different mean light intensities was 

calculated as shown by Wong and Knight (1980): 

 

                                                             𝛼 =
𝜎2

𝜇
 ,                                                     (3-9) 

 

where 𝜎2 and 𝜇 are the variance and the mean of the photoreceptor voltage noise, 

respectively. The estimated QBs became smaller and briefer (shorter effective 

duration) with brightening (Figure 3-4C).  

 

Figure 3-4. QB shape analysis at different adapting backgrounds. (A) Instrumental noise power 

spectrum (dotted line) was subtracted from the photoreceptor noise power spectrum |〈𝑁𝑉(𝑓)〉|2 at six 

different adapting backgrounds (coloured lines, BG-5 to BG0) to get the QB noise |𝐵𝑉(𝑓)|2. The higher 

frequency range is contaminated by the instrumental noise (50 Hz harmonics). (B) QB noise power 

spectrum shown as dotted lines with a single Lorentzian fitted on them (coloured lines). (C) QB shape 

was estimated from the QB noise and by assuming that it follows the Γ-distribution. The estimated QBs 

got smaller and faster with brightening. These recordings are from the same photoreceptor. 

 

3.3.4 QB latency distribution at different adapting backgrounds 

Microvillar absorption of single photons and phototransduction reactions are 

stochastic; thus, the resulting QBs show variable waveform and latency distributions 

(time from photon absorption to a QB) (Song et al., 2012). This variability over time 

limits the temporal resolution of a photoreceptor's macroscopic (voltage) response.  
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How to estimate the QB latency distribution to increasing light adaptation? Using 

Juusola and Hardie (2001a) method, the QB latency distribution at different adapting 

backgrounds was estimated by deconvolving the QB waveform from the 

photoreceptor's impulse responses at the different mean light intensities; assuming 

the system operates linearly (tested in Chapter 3.3.2, thus low-contrast GWN stimulus 

was used for the analysis). Linear impulse response 𝐾1(𝑡)  can be considered a 

convolution of the QB waveform (𝑏𝑉(𝑡)) and its corresponding latency distribution 

(𝑙(𝑡)) at the same mean light intensity: 

 

                                                 𝐾1(𝑡) =  𝑏𝑉(𝑡) ⨂  𝑙(𝑡),                                       (3-10) 

 

where ⨂  denotes convolution. To minimise the noise in the latency distribution 

estimation at different adapting backgrounds, normalised photoreceptor impulse 

response 𝐾1;𝑛𝑜𝑟𝑚(𝑡)  was fitted with a lognormal function at different adapting 

backgrounds (Figure 3-5A) and QB shape with a Γ-distribution (normalised after) 

(Figure 3-5B). The fitting of the photoreceptor impulse response was done as follows: 

 

                                               𝐾1;𝑛𝑜𝑟𝑚(𝑡) ≅ 𝑒
{

−[ln(𝑡 𝑡𝑝⁄ )]2

2𝑎2 }
 ,                                   (3-11) 

 

where (𝑡𝑝) is the impulse response time-to-peak, and a is the width factor. 

 

Figure 3-5C shows the deconvoluted latency distributions at six different adapting 

backgrounds, and Figure 3-5D shows the normalised latency distributions at the 

corresponding adapting backgrounds. At the brightest mean intensities (BG0, BG-1 

and BG-2), the QB latency distributions were very similar to each other. However, 

when dimming the adapting backgrounds, the latency distributions became slower (𝑡𝑝 

occurred later) and wider. The dimmest adapted background (BG-5) features an 

imprecise estimate, contaminated by recording noise. 
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Figure 3-5. Deconvolving the latency distribution from the linear impulse response and the QB 

shape. (A) Linear impulse response was fitted with a lognormal function at different adapting 

backgrounds. (B) Normalised QB shape at corresponding backgrounds. (C) Latency distribution was 

attained by deconvolving the QB waveforms from the photoreceptor's impulse responses at different 

mean light intensities. (D) Normalised latency distributions. These recordings were from the same 

photoreceptor. 

 

3.3.5 L1-L3 signalling improves with brightening stimulation 

After quantifying the Musca photoreceptors' (R1-R6) response properties and coding 

performance to changing light backgrounds, I aimed to study how light adaptation 

impacted Musca LMC (L1-L3) signalling. Earlier I had shown that Musca 

photoreceptors and LMCs encode better bursty temporal light changes than GWN 

stimuli. This section's focus is to explore light-adapted L1-L3 LMCs' signalling 

performance, using the same stimuli. The LMCs were tested similarly as the 

photoreceptors but now using "saccadic" high-contrast bursts (c ~1.29) and low-

contrast GWN stimulus (c ~0.33) with 200 Hz cut-off frequency (see Chapter 2: this 

stimulus bandwidth generated the highest information transfer). LMC response 

properties were studied at six different adapting backgrounds (BG0, BG-1, BG-2, BG-

3, BG-4 and BG-5) (Figure 3-6A-B). Figure 3-6C-D shows the signal and noise traces 

(extracted from the voltage responses) and their corresponding PDFs to bursty and 

GWN contrast series at different adapting backgrounds. Additionally, the instrumental 

noise and the dark noise were recorded, as shown in the figure. 

 

The LMC (n = 3 LMCs) response properties improved when brightening the adapting 

background (Figure 3-6 and 3-7) (also shown in Calliphora: Juusola et al., 1995), 

similar to photoreceptor signalling. Increasing mean light intensity amplified the LMC 

voltage signal 𝑠𝑣(𝑡) variance; more so for the high-contrast bursty stimulus (from ~0.7 

mV at BG-5 to ~13 mV at BG0) than for low-contrast GWN stimulus (from ~0.7 mV at 

BG-5 to ~7 mV at BG0) (Figure 3-6C-D and Figure 3-7A-B). The LMC signal variance 
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remained unchanged for the two brightest adapting backgrounds (BG-1 and BG0) 

when using GWN, evident in the signal power spectrum |〈𝑆𝑉(𝑓)〉|2  (Figure 3-7B). 

Furthermore, the signal amplification (especially at the lowest frequencies) for both of 

the contrast series was not as clear as in photoreceptors, most likely due to some 

nonlinearities at the three brightest adapting backgrounds (BG-2, BG-1 and BG0) (see 

PDFs in Figure 3-6C-D).  

 

 

Figure 3-6. Time-domain representation of the LMC responses (signal and noise) to two different 

contrast series (high-contrast bursty "saccadic" and low-contrast GWN) at different adapting 

backgrounds. (A) A schematic showing in vivo intracellular recordings from Musca LMCs (L1-L3) when 

using 2-s-long (only showing 1-s-long samples) high-contrast bursty stimulus (200 Hz cut-off frequency) 

at six different adapting backgrounds (BG0, BG-1, BG-2, BG-3, BG-4 and BG-5) to measure the impact 
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of light adaptation in LMCs' voltage responses. (B) Same as in A but for low-contrast GWN stimulus. 

(C) LMC voltage signal 𝑠𝑣(𝑡) and noise 𝑛𝑣(𝑡) traces and corresponding PDFs to the high-contrast 

bursty stimulus at six different adapting backgrounds attenuating 1-log unit steps from BG0 (no filter) to 

BG-5 (attenuated 105-fold). The noise probability distribution was Gaussian at all the tested adapting 

backgrounds. On the other hand, the signal distribution was Gaussian only at the lowest adapting 

backgrounds (BG-5, BG-4 and BG-3) but then became non-Gaussian. (D) The same as in C but for 

low-contrast GWN stimulus. The noise probability distribution was Gaussian to all the tested adapting 

backgrounds. The signal distribution was Gaussian at the lowest mean light intensities (BG-5, BG-4 

and BG-3) but skewed to hyperpolarising values with brightening. In both C and D, the instrumental 

noise (noise measured in the extracellular space in darkness) and the dark noise (noise measured in 

the cell when in darkness) are shown. These recordings were from the same LMC. 

 

The LMC voltage noise variance at different adapting backgrounds was more 

extensive than LMC dark voltage noise variance (maximum difference in 

photoreceptors ~1 mV and in LMCs ~3 mV) (compare Figure 3-2C-D and Figure 3-

7C-D). The LMC noise variance differed between the two contrast series: for the 

bursts, the noise variance peaked at BG-2 and decreased with further brightening 

(Figure 3-7C). Conversely, for GWN stimulus, the LMC voltage noise variance peaked 

at BG-4 (Figure 3-7D). Furthermore, increasing the mean light intensity broadened 

and attenuated (especially the lower frequency end) the LMC noise power spectrum 

|〈𝑁𝑉(𝑓)〉|2. Note that these noise estimates included the instrumental noise as well as 

the dark noise. 

 

𝑆𝑁𝑅𝑉(𝑡) increased with brightening intensity for both contrast series; contrast bursts 

from ~0.1 (BG-5) to ~307 (BG0), and GWN from ~0.1 (BG-5) to ~97 (BG0) (Figure 3-

7E-F). The LMC responses at the two dimmest adapting backgrounds (BG-4 and BG-

5) contained more noise than signal (𝑆𝑁𝑅𝑉 < 1), whereas at the brightest background, 

the 𝑆𝑁𝑅𝑉  slightly flattened (especially to GWN stimulus), similar to photoreceptors. 

Concurrently, 𝑆𝑁𝑅𝑉(𝑓) increased and shifted to higher frequencies. Whereas, for the 

GWN, the 𝑆𝑁𝑅𝑉  saturated at the two brightest backgrounds (see signal and noise 

variance at these backgrounds in Figure 3-7B and D). For the responses to bursty 

contrasts, the used sampling rate (1 kHz with 500-point window size) was not sufficient 

at the three brightest backgrounds, resulting in signal clipping, and subsequently, a 

loss of information. Such clipping did not occur when using GWN. More about this can 

be found in Chapter 2.3.5. 
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Figure 3-7. LMC signalling efficiency improved to the brightening adapting background to both 

of the tested contrast series. Response properties to the bursty stimulus are shown on the left panel 

and GWN stimulus on the right panel. Brightening from BG-5 to BG0 (A) amplified the LMC signal power 

spectrum |〈𝑆𝑉(𝑓)〉|2 for bursts (maxima at the lowest frequencies) and extended the bandwidth to higher 

frequencies. Concurrently, the LMC (n = 3) voltage signal 𝑠𝑣(𝑡) variance increased. (B) The same 

happened when using GWN contrast modulation, although, the signal variance saturated at two 

brightest adapting backgrounds. (C) For bursty stimulus, brightening broadened the LMC noise power 

spectrum |〈𝑁𝑉(𝑓)〉|2  while attenuating its low frequencies. The noise variance peaked at BG-2 and 

decreased slightly with further brightening. (D) For the GWN stimulus, brightening broadened the LMC 
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noise power and attenuated its low frequencies; its variance peaked at BG-4. With brightening (E) bursts 

and (F) GWN the LMC 𝑆𝑁𝑅𝑉(𝑓)  increased and shifted to higher frequencies. Accordingly, LMC 

information transfer rate (R) increased (G-H) for bursts and (I-J) GWN. 

 

Despite this information (bits) loss due to undersampling, the LMC frequency range 

broadened during brightening bursts (Figure 3-7G) and GWN (Figure 3-7I). 

Accordingly, information transfer rate (R) increased with brightening; burst from ~30 

bits/s (BG-5) to ~1,930 bits/s (BG0), and GWN from ~30 bits/s (BG-5) to ~1,270 bits/s 

(BG0) (Figure 3-7H and J). Chapter 2 explained in detail why the high-contrast bursty 

stimulus drove LMCs' encoding better. 

 

3.4 Discussion 

 

3.4.1 Visual coding improved under light adaptation 

My study provided new insight into how the signalling performance of Musca 

photoreceptors and LMCs adapt. Additionally, I presented the underlying adapting 

elementary response dynamics (QB waveform and latency distribution) to explain the 

improved performance. 

 

The photoreceptor (n = 15) and LMC (n = 3) response properties improved with 

brightening the adapting background (Figure 3-1 and 3-6). The signal power 

increased and broadened to the higher frequencies, indicating that both 

photoreceptors and LMCs employ a larger voltage range to encode fast, high-

frequency contrast changes with brightening adapting background (Figure 3-2 and 3-

7). Concurrently, these adaptive signalling changes were accompanied by diminishing 

noise, which jointly increased visual information flow.  

 

I further explored the impact of stimulus statistics on the photoreceptor and LMC 

signalling performance by comparing their responses to high-contrast bursty and low-

contrast GWN stimuli at different light backgrounds. I showed how brightening bursty 

stimuli evoked larger responses with higher SNR than GWN in both cell types (Figure 

3-2A-F and 3-7A-F), boosting the cells’ information transfer rates (Figure 3-2G-J and 

3-7G-J). 

 



3. Visual coding under light adaptation in Musca photoreceptors and LMCs 80 
 

 

I also showed how 1 kHz sampling rate was not sufficient to fully drive LMCs at the 

three brightest backgrounds for bursty stimulus, which resulted in information loss 

(Figure 3-7E, G and H). Therefore, the information rates calculated for LMCs at these 

light intensities represent underestimates. Although the LMC noise variance 

surpassed photoreceptor noise, LMCs still transmitted more information (compare 

Figure 3-2C-J and Figure 3-7C-J). At bright adapted states, the LMC information 

transfer rates for bursts were just over 1.5-times higher than for GWN (Figure 3-7G-

J). I will not further discuss the differences between photoreceptor and LMC coding, 

as covered in Chapter 2. Moreover, comparisons between photoreceptors and LMCs 

in different light-adaptational states will not be discussed because different stimulus 

bandwidths were used to test these cells (for photoreceptors: stimulus with a 500 Hz 

cut-off frequency and for LMCs: stimulus with a 200 Hz cut-off frequency). 

 

I will, however, discuss why I used linear system analysis as voltage signals from the 

LMCs, especially to bursty stimuli, were not Gaussian (Figure 3-6C) and even in 

response to GWN, the voltage signals were very skewed (Figure 3-6D). This was also 

the case with photoreceptor voltage signals at the brightest mean light intensities but 

only to the bursty stimuli (Figure 3-1C). This shows that LMCs and to a lesser extent 

photoreceptors respond more or less nonlinearly to this type of stimulation, so the 

assumption would be that linear analysis (Shannon information theory: Shannon, 

1948) would not provide a realistic representation of the information transfer rates.  

 

As an alternative, one might opt to use the triple extrapolation method (Juusola and 

de Polavieja, 2003) as it is more suitable to use for calculating information transfer 

rates for nonlinear systems. The encoding performance using this method is not 

derived from the SNR, as when using the Shannon formula, but through dividing the 

continuous voltage response into time intervals and then performing extrapolation for 

the infinite data size, voltage levels and time intervals.  

 

Juusola et al. (2017) used very similar light stimulation (bursty and GWN stimuli) on 

Drosophila, and calculated the information rates using both, Shannon formula and 

triple extrapolation method, to highly non-Gaussian responses (similar to mine). When 

comparing the results, the two methods gave similar estimates (maximally differing 

~5-20%). Two other studies (Song and Juusola, 2014; Dau et al., 2016) found this to 
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be the case as well. As such, it is fair to assume that because similar stimuli were used 

as in Juusola et al. (2017), using the triple extrapolation method would have likely 

produced similar estimates to what I calculated using Shannon formula.  

 

3.4.2 More, smaller and faster QBs increase the photoreceptor 

signalling performance in light adaption 

In this section, I will discuss how light adaptation affects QB waveform and latency 

distribution, shaping photoreceptor's macroscopic voltage response and increasing 

information transfer. A well-established method, the shot-noise analysis (Wong and 

Knight, 1980; Juusola and Hardie, 2001a), was used to characterise the single-photon 

responses (QBs) that sum up the macroscopic voltage responses.  

 

QBs are responses to single-photon absorptions, which follow Poisson statistics and 

take place in the microvillus (photoreceptor's photon sampling unit) (Fuortes and 

Yeandle, 1964; Kirschfeld, 1966; Lillywhite, 1977; Wu and Pak, 1975; Hardie and 

Juusola, 2015). QBs are nonlinear events having variable waveforms and latency 

distributions, mainly due to the stochastic phototransduction cascade (G-protein-

coupled signalling cascade) (Song et al., 2012). However, the convolution of the 

variable QB waveforms and latency distributions smoothens macroscopic response, 

making the QB waveform and latency distribution the key limiting factors of a 

photoreceptor's temporal resolution. The latency distribution determines the 

photoreceptor’s upper signalling speed, constraining its bandwidth.  

 

In adaptation, the phototransduction cascade can improve photoreceptor signalling by 

making QBs smaller and faster, and shortening their latency distribution (Wong and 

Knight, 1980; Wong, Knight and Dodge, 1980; Henderson, Reuss and Hardie, 2000; 

Juusola and Hardie, 2001a). However, ultimately, to improve information sampling, 

the microvilli need to convert more photons to QBs, as information increases with the 

number of synchronised samples. Such dynamics occurred in Musca photoreceptors 

with brightening stimulation (i.e. higher input SNR) as microvilli generated more QBs, 

which became smaller and faster with shorter latencies (Figure 3-4C and 3-5); similar 

to Drosophila photoreceptors (Juusola and Hardie, 2001a). With the tighter latency 

distribution at the three brightest adapting backgrounds (BG-2, BG-1 and BG0), QBs 
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appeared sooner and were better synchronised (Figure 3-5D). Therefore, brightening 

increases QB numbers and broadens the photoreceptor bandwidth, resulting in 

enhanced information transfer to LMCs. 

 

3.4.3 Phototransduction mechanisms underpinning light adaptation 

Light adaptation ultimately results from the microvillar phototransduction reactions and 

the light-insensitive cell membrane working in synchrony in integrating QBs to 

macroscopic responses. However, due to lack of membrane impedance data, I will 

only discuss the former, considering explanations for the light-current QB and latency 

distribution changes. To do this, I will review the current understanding of the 

underlying molecular mechanisms. Drosophila phototransduction is the most studied 

G-protein-coupled signalling cascade and widely used model to explain invertebrate 

and microvillar visual transduction (Montell, 1989; Ranganathan, Malicki and Zuker, 

1995; Hardie and Raghu, 2001; Hardie and Postma, 2008). Assuming these 

photochemical reactions also occur in Musca photoreceptors, I will consider the 

potential molecular mechanisms underpinning light adaptation. 

 

Light is a flux of photons. Photoreceptors are considered (linear) photon counters up 

to moderately bright daylight intensities when microvillar refractoriness and 

intracellular Ca2+-dependent pupil mechanisms kick in (Kirschfeld and Vogt, 1980; 

Howard, Blakeslee and Laughlin, 1987; Song et al., 2012; Juusola et al., 2017). 

Photon absorption photoisomerises the visual pigment, rhodopsin, to its active 

metarhodopsin state. Metarhodopsin then catalyses the activation of a heterotrimeric 

G-protein, causing the GDP/GTP exchange. The G-protein (Gq) activates 

phospholipase C (PLC), which hydrolyses phosphatidylinositol 4,5-bisphosphate 

(PIP2), finally culminating in the opening of two classes of highly Ca2+-permeable light-

sensitive channels, TRP (encoded by the transient receptor potential gene, trp) and 

TRPL (encoded by the trp-like gene). The light-induced current (LIC) that depolarises 

the photoreceptor is a result of Ca2+ (calcium), Na+ (sodium) and Mg2+ (magnesium) 

influx, arising from the light-sensitive channel openings (Hardie and Raghu, 2001; 

Hardie and Postma, 2008). 
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Early genetic studies on Drosophila demonstrated that latency distribution is 

determined by the cascade components upstream of PLC (including PLC), whereas 

the QB amplitude is possibly regulated downstream of PLC (Pak et al., 1976; 

Bloomquist et al., 1988; Scott et al., 1995; Scott and Zuker, 1998). Both QB shape 

(amplitude and duration) and latency distribution are independently mediated by Ca2+, 

with the QB shape being most dependent on it (Henderson, Reuss and Hardie, 2000). 

The QB amplitude and duration decreased to increasing mean light intensity due to 

the negative feedback mediated by Ca2+ - brightening increases calcium influx to the 

microvilli, which inhibit the TRP (and TRPL) channels, causing gain reduction (Juusola 

and Hardie, 2001a; Hardie and Postma, 2008; Hardie, 2011). Moreover, brightening 

depolarises the photoreceptor and, thus, the electromotive driving force (through TRP 

and TRPL channels) also impacts the QB size reduction (Song et al., 2012; Song and 

Juusola, 2017). 

 

3.4.4 Ecological impact – Musca and Drosophila light adaptation 

The project included unravelling different visual coding aspects (both temporal and 

spatial) in Musca. Although Drosophila is the go-to species for studying invertebrate 

vision, I felt Musca could provide new insights due to their different lifestyle and habitat. 

Musca's data could then be compared with Drosophila to see where their visual 

differences lie; and if their unique ecologies would reflect these.  

 

The Musca R1-R6 photoreceptor results of this chapter are broadly consistent with the 

knowledge about visual encoding from Drosophila (Juusola and Hardie, 2001a) and 

Limulus (Wong and Knight, 1980; Wong, Knight and Dodge, 1980). Although the 

tested mean light intensity range differed slightly from the Drosophila study (Juusola 

and Hardie, 2001a), Musca QBs were faster and smaller and had briefer latencies 

than Drosophila (Musca: Figure 3-4C and 3-5 Drosophila: Juusola and Hardie, 

2001a). Two critical factors in their photoreceptor biophysics can explain these results: 

the number of microvilli and phototransduction speed. As Musca is a bigger fast-flying 

diurnal carnivore, it has about 2-times more microvilli (~60,000 in a Musca R1-R6 vs 

~30,000 in a Drosophila R1-R6) and faster temporal resolution (faster 

phototransduction giving faster response dynamics and shorter integration time) 

(Laughlin and Weckström, 1993; Skingsley, Laughlin and Hardie, 1995; Weckström 



3. Visual coding under light adaptation in Musca photoreceptors and LMCs 84 
 

 

and Laughlin, 1995). Thus, R1-R6 photoreceptors’ information rates are consistently 

higher in Musca than Drosophila (Musca: Figure 3-2 Drosophila: Juusola and Hardie, 

2001a). 

 

Another interesting discrepancy between the two species was seen in the QB latency 

distribution variation to different mean light levels. Musca QB latency distribution was 

more affected by the mean light intensity, getting briefer with brightening (Figure 3-

5D), and staying constant only for the three brightest backgrounds. Whereas in 

Drosophila, the latency distributions remained more constant throughout the tested 

light backgrounds (apart from the dimmest, which was noisy) (Juusola and Hardie, 

2001a). Whilst some of these differences may reflect the different light stimuli and 

setups used, it is more likely that the differences were physiological. 

 

3.4.5 Constraints in analysing LMCs’ adapting "histamine" QBs  

Photoreceptor-interneuron synapses have been studied extensively in the past, 

providing insights into how the early insect vision functions (Scholes, 1969; Laughlin, 

1973; Shaw, 1981; Dubs, 1982; van Hateren, 1992b; Juusola et al., 1995; Juusola, 

Uusitalo and Weckström, 1995; Uusitalo, Juusola and Weckström, 1995; Nikolaev et 

al., 2009; Zheng et al., 2009). Visual information from the optically superimposed R1-

R6 photoreceptors from adjacent ommatidia is transmitted to L1-L3 LMCs and 

amacrine cell (Am) (Meinertzhagen and O'Neil, 1991; Rivera-Alba et al., 2011). This 

feedforward pathway is histaminergic, and thus, inhibitory (Hardie, 1987; Hardie, 1989; 

Sarthy, 1991; Pantazis et al., 2008). Presynaptic photoreceptor voltage fluctuations 

cause quantal histamine release, which is then sampled by Cl--channels on the 

postsynaptic LMC membrane. These ligand-biding dynamics govern the channel 

opening probability, causing Cl--influx that hyperpolarises the LMC (Hardie, 1989). 

Even in darkness, the synaptic release is tonic (Uusitalo et al., 1995).  

 

This chapter's main focus was light-adaptational changes in photoreceptor and LMC 

response dynamics, thus I will discuss the first synapse from this perspective. LMCs 

are commonly considered adaptive spatiotemporal filters that maximise information 

transfer to downstream neurons (van Hateren, 1992a; van Hateren, 1992b; Juusola, 

Uusitalo and Weckström, 1995). In dim conditions (i.e. low SNR) the synaptic output 
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appears low-pass-filtered, yet at bright light (i.e. high SNR), the output appears band- 

or high-pass-filtered. However, no studies have revealed whether the synaptic 

(histamine) release adapts to the changing mean light intensities at a single 

postsynaptic (histamine) QB level, similar to photoreceptor QBs, apart from the 

theoretical suggestions (Juusola et al., 1995; Juusola et al., 1996). 

 

This question was briefly touched in one doctoral thesis (Li, 2011) where in vivo 

intracellular recordings from Calliphora photoreceptors and LMCs were analysed to 

extrapolate quantal histaminergic transmission during light adaptation. Linear shot-

noise analysis was used to extract the histamine QB shape in the same way as I have 

shown in Chapter 3.3.3. The results showed that the histaminergic QB waveform 

adapted to the mean light intensities, similar to photoreceptor QBs. More specifically, 

in dim light conditions, the mean histamine QBs were large and slow, whereas they 

were smaller and faster at bright light conditions. Although these results were 

consistent with the pre-existing theory of LMCs operating as adaptive spatiotemporal 

filters (van Hateren, 1992a; van Hateren, 1992b; Juusola, Uusitalo and Weckström, 

1995), this work went deeper by suggesting that the synaptic filtering reflect the 

underlying adaptive quantal sampling process.         

 

However, the extrapolation of LMC QB dynamics has analytical limitations. LMC 

output is more phasic than the corresponding photoreceptor output, showing additional 

nonlinearities (especially at bright light conditions), (Laughlin, Howard and Blakeslee, 

1987; Juusola et al., 1994; Juusola et al., 1995; Juusola, Uusitalo and Weckström, 

1995) that complicate linear analysis and can make it less reliable. The LMC 

responses' phasic nature was addressed (in the thesis) by assuming that QBs follow 

the gamma distribution's first derivative at bright light conditions and the gamma 

distribution at low light levels. Secondly, the QB amplitude and the rates were more 

loosely attained by using Campbell's theorem, normalising the QB by its noise 

variance for an approximate estimation. Finally, because stochastic postsynaptic 

sampling removes presynaptic noise, it was argued that the LMC noise predominantly 

reflected postsynaptic binding of the presynaptically released histamine boluses 

(quanta).  
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In my results, the LMC noise power spectrum followed a similar trend as 

photoreceptors. This finding suggests that the histamine QB waveform could change 

similarly to photoreceptor QBs to brightening mean light intensities (Figure 3-7C-D). 

However, due to the limitations of quantifying the underlying postsynaptic "histamine" 

QB waveforms and latency distributions, no further analysis was made. 
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 Hyperacute resolvability of Musca photoreceptors 

and LMCs 

 

4.1 Introduction 

The previous scientific consensus was that flies have rigid, stationary eyes, with 

relatively low spatial resolution. It was thought their acuity would be limited by (i) their 

small lenses’ diffraction; (ii) rhabdomere dimensions; (iii) interommatidial angle (∆φ) 

(the smallest separable angle the eye can resolve); (iv) their photoreceptors’ slow 

integration time; (v) the low number of photons and motion blur attributable to their 

high-speed behaviours (Mallock, 1894; Fermi and Richardt, 1963; Srinivasan and 

Bernard, 1975; Warrant and McIntyre, 1992; Land, 1997; Warrant, 1999). 

 

However, it seems strange that especially fast-flying flies living in a nonstationary 

environment would have a low spatiotemporal vision from an evolutionary perspective. 

So, it is no surprise that experimental research has discovered different ways the fly 

eyes have evolved to compensate for some of their visual constraints, especially for 

overcoming motion blur. These adaptations involve a range of biological mechanisms, 

such as acute zones and the head/thorax countering body movements (Dietrich, 1909; 

Collett and Land, 1975; van Hateren and Schilstra, 1999; Schilstra and van Hateren, 

1999; Hornstein et al., 2000; Burton, Tatler and Laughlin, 2001; Burton and Laughlin, 

2003), with different fly species having their own mechanisms.  

 

In Drosophila, for instance, recent research (Juusola et al., 2017) found that 

photoreceptors contract photomechanically, narrowing their receptive fields. They 

argued that these photomechanical contractions, with the aid of refractory sampling, 

enables Drosophila to have hyperacute vision, allowing them to see tiny objects 

moving with fast velocities. This study highlighted the dynamic nature of how the 

photoreceptors sample visual information and the resulting fly vision, more generally. 

Additional evidence supporting these ideas (unpublished data) used high-speed video 

imaging to reveal that the direction of the photoreceptors’ photomechanical 

contractions differed throughout the Drosophila eye. 
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Following on from the Juusola et al. (2017) research, I decided to test whether 

hyperacuity was also present in the vision of the much faster flying housefly (Musca 

domestica). The main aim was to test if its R1-R6 photoreceptors and L1-L3 LMCs 

can resolve finer details than its compound eye’s interommatidial angle (∆φ ≈ 0.8°- 3°) 

(Beersma, Stavenga and Kuiper, 1975). As in Juusola et al. (2017), I decided to use 

the interommatidial angle, instead of the acceptance angle (∆ρ ≈ 2.3°- 3.5°, the 

photoreceptor’s angular sensitivity half-width), because, theoretically, ∆φ gives the 

smallest unit the eye can see. So using this value is necessary when determining if 

hyperacuity begins with photoreceptors.  

 

I was also keen to investigate if, due to the photoreceptors’ changing photomechanical 

movement directions throughout the eye, Musca photoreceptors and LMCs would 

display direction selectivity (to any of the four cardinal directions) when testing with 

hyperacute objects (dots, bars and narrowing gratings). During these investigations, I 

studied both male and female flies, separately, to see if there was any evidence for 

enhanced spatial resolution due to sexual dimorphism; as hyperacute perception could 

potentially be enhanced in the “love spot” (the male’s frontal-dorsal acute zone) 

(Hardie et al., 1981; Land and Eckert, 1985; Perry and Desplan, 2016). Photoreceptor 

resolvability has never been studied at this extensive level before. Furthermore, there 

are no previous physiological studies of LMC resolvability, except for one theoretical 

simulation (Juusola and French, 1997). 

 

I performed in vivo intracellular recordings in houseflies’ R1-R6 photoreceptors and 

L1-L3 LMCs to quantify these cells’ resolvability using two separate visual stimulus 

apparatuses: (i) a 25-point LED array and (ii) a digital light projector. First, I quantified 

the cells’ resolvability using a 25-point LED array (Juusola et al., 2017). The used 

stimulation was performed by having two bright light dots (dot size: 0.7o) with different 

angular distances (0.7o, 1.4o and 2.1o) moving in parallel, with two velocities (84 o/s 

and 167 o/s) front-to-back across each studied cell’s receptive field. The moving dots 

separated by an angular distance of 0.7o were less than the eye’s interommatidial 

angle (∆φ) and, thus, resolving them would suggest hyperacuity. The results initially 

suggested that Musca R1-R6 could resolve two moving dots separated by less than 

the interommatidial angle (∆φ < 0.8°) and their resolvability was much higher than in 

Drosophila R1-R6 (Juusola et al., 2017). 
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However, the used light stimulation was suboptimal, especially when exploring LMCs’ 

resolvability. Additionally, the 25-point LED array did not allow me to study the 

resolvability of different objects moving in different directions. Thus, further 

investigation was done using a digital light projector; featuring light dots or light bars, 

instead of the 25-point LED array. The dark-adapted photoreceptors’ and LMCs’ 

resolvability was tested to two bright light dots/bars (dot size/bar width: 0.7o) with 

different angular distances (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) moving with five 

velocities (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) in four different directions (up , 

down , front-to-back → and back-to-front ) across the cell’s receptive field. Finally, 

the impact of light adaptation on the cells’ resolvability was tested by using a novel 

light stimulation: moving bar-grating stimuli that dynamically narrowed in time. The 

width of the bars narrowed from 5o to 0.33o as seen by the fly. This stimulus was tested 

with five different velocities (6 o/s, 20 o/s, 40 o/s, 60 o/s and 120 o/s) moving in four 

cardinal directions across the cell’s receptive field. 

 

Although the experiments with the moving bright dots/bars initially indicated that some 

photoreceptors were able to resolve within the hyperacute range, there was no 

statistically significant evidence supporting hyperacuity. Additionally, even under light 

adaptation, photoreceptors, in general, were not hyperacute. It should also be noted, 

the absence of any strong case for hyperacuity was despite testing at velocities much 

slower than their full flying range due to limitations with the digital light projector. 

Research shows us that the full velocity range fast-flying flies exhibit, either during 

saccadic turns or head/body saccades, can exceed even 4,000 o/s (Wagner, 1986a; 

Wagner, 1986b; Schilstra and van Hateren, 1999; van Hateren and Schilstra, 1999). 

Given that there was a decline in resolvability across velocities I was able to test, it is 

extremely hard to imagine that testing with much faster velocities would have yielded 

any meaningful results. 

 

Somewhat surprisingly, the male “love spot” did not show any enhancement in the 

resolvability to moving hyperacute dots/bars/narrowing bar-gratings compared to other 

parts of the eye and the female eye. As research indicates that this would be the most 

optimal location for resolving fine details, it appears that neither the part of the eye nor 

the sex of the fly has much of an impact on hyperacuity.  
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When testing the LMC resolvability (using one long-lasting stable LMC recording), the 

cell showed clear hyperacuity to two moving dots but significantly weaker hyperacuity 

to bars. Furthermore, the tested LMC showed clear direction-selectivity for resolving 

both dots and bars. These results indicate that the early Musca domestica vision 

cannot encode hyperacute features at the level of photoreceptors, but conclusions 

cannot be drawn regarding LMCs until more research is done. 
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4.2 Materials and methods 

 

4.2.1 Fly stocks  

Adult, wild-type houseflies (Musca domestica) were used in the experiments. The 

housefly larvae/pupae were ordered from a commercial provider (Blades Biological 

Ltd, Cowden, Kent, UK). The houseflies, cultured in a standard laboratory incubator 

(60% humidity) at the Department of Biomedical Science, were fed with liver, and 

sugar water. The flies were kept at ~22 oC in a 12:12 h light:dark cycle.  

 

4.2.2 In vivo intracellular recordings  

In vivo intracellular recordings from R1-R6 photoreceptors and L1-L3 LMCs were 

performed as described in Chapter 2. In the 25-point LED array experiments, the fly’s 

temperature was kept at 25 ± 1 oC by a feedback-controlled Peltier device. However, 

when using the digital light projector for the visual stimuli, a feedback-controlled Peltier 

device was not used, and instead, the recordings were performed at room temperature 

warmed by the projector (24 ± 1 oC). This approach was chosen to minimise 50 Hz 

harmonic noise from the temperature controller during the recordings. 

 

4.2.3 Visual stimuli 

Musca photoreceptors’ (R1-R6) and LMCs’ spatial resolvability to moving objects in 

vivo was tested separately using two different visual stimulators: (i) a 25-point LED 

array or (ii) a digital light projector.  

 

4.2.3.1 The 25-point LED array 

The 25-point LED (light-emitting diode) array was fixed on a rotatable Cardan-arm 

system and placed 17 cm away from the fly, subtending a viewing angle of 16.73o. 

Therefore, each (LED) point subtended an angle of ~0.7o with a 0.7o minimum inter-

dot-distance (or angular separation) seen by the fly (Figure 4-1). Two DA-converter 

channels were used to run the system (voltage input range: 0 – 10 V): Channel 0 

selected the light point/points for the stimulation, and Channel 1 set the intensity of the 

light point/points. Dark-adapted photoreceptors’ (R1-R6) and LMCs’ (L1-L3) 

resolvability was tested using two bright light dots (dot size: 0.7o) with different angular 

distances (0.7o, 1.4o and 2.1o) moving with two velocities (84 o/s and 167 o/s) front-to-
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back across each tested cell’s receptive field. Furthermore, the cells’ voltage 

responses to one bright dot (dot size: 0.7o) moving with two velocities (84 o/s and 167 

o/s) front-to-back across its receptive field were tested. This control stimulation was 

done to exclude the possibility of voltage responses to two moving light dots being 

merely temporal responses instead of spatial. For producing the front-to-back moving 

bright light dot/dots, Channel 0 was driven with an increasing ramp whilst Channel 1 

was driven with a 2 V DC signal. The increasing ramp turned one light point, or two 

adjacent light points, on and off after each other. This sequence created the movement 

seen by the fly. Additionally, slower velocities (8 o/s, 16 o/s, 23 o/s and 40 o/s) were 

tested. However, predictably - as such stimuli moved in a slow step-wise manner - the 

resulting responses consisted of multiple light-on- and light-off-peaks. Thus, only the 

responses to the fastest velocities were analysed for resolvability. 

 

 

Figure 4-1. In vivo intracellular setup using a 25-point LED array for visual stimulation. Musca 

photoreceptors’ and LMCs’ resolvability to two bright light dots (dot size: 0.7o) with different angular 

distances (0.7o, 1.4o and 2.1o), moving with two velocities (84 o/s and 167 o/s) front-to-back across its 

receptive field, was tested using this setup. Additionally, a close-up image (modified from Juusola et al., 

2017) from the 25-point LED array showing two bright light dots (moving) 6.8o apart. 
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A custom-written software system controlled both the stimulus generation and data 

acquisition, Biosyst in MATLAB (MathWorks, USA) (Juusola and Hardie, 2001a; 

Juusola and de Polavieja, 2003), with an interface package for National Instruments 

(Austin, TX) boards (MATDAQ: H. P. C. Robinson, 1997-2005). For more information 

about the 25-point LED array, see Juusola et al. (2017). 

 

4.2.3.2 The digital light projector 

A digital light projector (EKB DLP® LIGHTCRAFTER™ E4500 MKII™, EKB 

Technologies Ltd, Israel) fixed on a rotatable Cardan-arm system was used for the 

light stimulation (Figure 4-2). The projector had three independent LED sources: UV 

(385nm), Blue (460nm) and Green (520nm). The 360 Hz UV-stimulation was focused 

onto a back-projection (diffuser) screen using three close up lenses (ZEIKOS, Japan, 

model  68 mm, +10, +5,+1). This system provided a native 912 x 1140 pixel 

resolution for the fly. The projector can run with 8-bit depth. However, my recordings 

only required 1-bit depth to turn the pixels on and off. The projector was shielded in 

copper mesh fabric and grounded to reduce electrical noise contamination during the 

data acquisition. 

 

The stimuli were produced using the open-access Psychophysics toolbox 

(http://psychtoolbox.org) in Matlab (MathWorks, USA). A custom-written software 

system controlled the data acquisition, Biosyst in MATLAB (MathWorks, USA) 

(Juusola and Hardie, 2001a; Juusola and de Polavieja, 2003), with an interface 

package for National Instruments (Austin, TX) boards (MATDAQ: H. P. C. Robinson, 

1997-2005). Biosyst was synchronised with Lightcrafter (projector software). 

 

Three different visual stimuli were used to test dark-adapted R1-R6 photoreceptors’ 

and L1-L3 LMCs’ resolvability: moving dots, bars and narrowing grating stimuli. For 

the dot stimulation, resolvability was tested using two bright light dots (dot size: 0.7o) 

with different angular distances (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) moving with 

five velocities (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) across the cell’s receptive field. 

Moreover, to test whether resolvability was affected by the motion direction, the dots 

were run in four different directions (up , down , front-to-back → and back-to-front 

). The corresponding control recordings used one dot. 
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Figure 4-2. In vivo intracellular setup using a digital light projector for visual stimulation. Musca 

photoreceptors’ and LMCs’ resolvability to three different visual stimuli (moving dots, bars and 

narrowing gratings) were tested using this setup. For dots and bars: two bright light dots/bars (dot 

size/bar width: 0.7o) with different angular distances (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) moving 

with five velocities (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) across the cell’s receptive field. This was 

tested by stimulus moving in four cardinal directions (up , down , front-to-back → and back-to-front 

). Furthermore, the voltage responses to one moving dot/bar were tested with the same velocities 

and the four directions mentioned earlier. The impact of light adaptation was investigated using the 

moving dynamically narrowing grating stimulus that continuously decreased its wavelength (i.e. the two-

bar distance) from 5o to 0.33o as seen by the fly. This stimulus was tested for five different velocities (6 

o/s, 20 o/s, 40 o/s, 60 o/s and 120 o/s) moving in four cardinal directions (up , down , front-to-back → 

and back-to-front ) across the cell’s receptive field. 

 

The experiments using the bars were performed the same way as with dots but now 

having two bright bars (bar width: 0.7o) with different angular distances (0.7o, 1.4o, 

2.1o, 2.8o, 3.5o, 4.9o and 6.3o) moving with five velocities (10 o/s, 21 o/s, 42 o/s, 84 o/s 

and 168 o/s) across the cell’s receptive field. Again, the direction selectivity was tested 
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in four cardinal directions (up , down , front-to-back → and back-to-front ). 

Recordings were repeated using the one bar controls.  

 

Moving narrowing bar-grating stimulus was used to test the resolvability under light 

adaptation, which narrows the photoreceptors’ receptive field, enabling higher 

resolvability (Stavenga, 2004; Juusola et al., 2017). The grating continuously 

decreased its wavelength (i.e. the inter-bar width) from 5o to 0.33o, as seen by the fly 

(Figure 4-3A-C).  
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Figure 4-3. The four-parameter bar-grating stimulus for testing photoreceptors’ resolvability 

(smallest resolved angle, SRA). (A) The moving narrowing grating was used to test R1-R6 

resolvability under light adaptation. (B) The grating (its bar width) continuously decreased from 5o to 

0.33o, as seen by the fly. (C) The same as in B, but shown against the time the stimulus requires to run. 

(D) An example of a photoreceptor’s voltage response to a narrowing grating stimulus moving with an 

angular velocity of 6 o/s. The resolvability was estimated by determining the SRA from the voltage 

response. One of the main limiting factors for resolvability is the noise level acquired when the projector 

is on without any stimulus. The cell was deemed not to resolve the grating when its peak amplitudes 

became smaller than the noise threshold. 

 

The stimulus was programmed by Keivan Razban Haghighi in MATLAB (MathWorks, 

USA) using a novel four-parameter bar-grating definition. The four parameters were 

the speed (s), motion direction (), starting wavelength (0 = 5o) and the last 

wavelength (1 = 0.33o). The inter-bar wavelength (i.e. the angular distance of the 

bars) over time followed a geometric sequence: 

 

                                 𝜆(𝑡 + 𝑑𝑡) = (
𝜆1

𝜆0
)

1
𝐷⁄

𝜆(𝑡) = 𝜆0 (
𝜆1

𝜆0
)

𝑡
𝐷⁄

,                               (4-1) 

 

where D is the duration of the stimulus, each intracellularly recorded cell was 

simultaneously presented the moving narrowing grating with five different velocities (6 

o/s, 20 o/s, 40 o/s, 60 o/s and 120 o/s) in four cardinal directions (up , down , front-to-

back → and back-to-front ) across its receptive field. 

 

4.2.4 Data analysis 

 

4.2.4.1 Resolvability of two moving light points using the 25-point LED array 

Each stimulus was repeated 20-30 times. Only the steady-state adapted responses 

were analysed and, therefore, the first 5-10 responses to the repeated stimulation 

were discarded. The resolvability (R) for the two moving bright dot recordings was 

calculated by using the Rayleigh criterion (Born and Wolf, 1999): 

 

                                                           𝑅 =
𝑑

𝑃
%,                                                   (4-2) 
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where P is the amplitude of the larger peak (most often the first peak) and d is the 

depth of the dip between the two peaks in the voltage response (Figure 4-4). Two 

separate peaks in the voltage response indicated that the dots were resolved neurally. 

Conversely, if the response had a single peak, the dots were not neurally resolved. 

Some cells’ resolvability changed over time between the stimulus repetitions. So the 

total resolvability was calculated by averaging each repetition’s resolvability (Figure 

4-7). 

 

4.2.4.2 Resolvability of two moving light dots/bars using the digital light 

projector 

Each recording from photoreceptors and LMCs, using either dots or bars, were 

repeated only once. The resolvability was calculated using the Rayleigh criterion (Born 

and Wolf, 1999) (Equation 4-2 and Figure 4-4). 

 

 

 

 



4. Hyperacute resolvability of Musca photoreceptors and LMCs 98 
 

 

Figure 4-4. Applying the Rayleigh criterion for calculating photoreceptors’ and LMCs’ 

resolvability to two moving dots/bars. Photoreceptors depolarise to light increments (two bright 

dots/bars), whereas LMCs hyperpolarise to the same stimulus. Nonetheless, if the voltage response 

had just one superimposed peak, the moving two dots/bars were not neurally resolved. However, if the 

voltage response consisted of two separate peaks, the Rayleigh criterion was used to determine the 

cell’s resolvability. 

 

4.2.4.3 Smallest resolvable angle (SRA) when using moving narrowing bar-

grating 

For the moving narrowing grating (consisting of bars) stimulus, the resolvability was 

estimated by determining the smallest resolvable angle (SRA) from the voltage 

response. This measure was achieved by feeding the voltage response as an input to 

a six hyperparameter algorithm in Python (written by Keivan Razban Haghighi), which 

then returned the SRA as the output (Figure 4-3D). In the algorithm, the resolvability 

was calculated using the Rayleigh criterion (Born and Wolf, 1999): 

 

                                                      𝑅 =
𝑃𝑚𝑖𝑛−𝑇

𝑃𝑚𝑎𝑥−𝑇
 ,                                                     (4-3) 

 

where T is the trough and Pmin and Pmax are the smallest and highest peak, 

respectively. Two of the six parameters (noise threshold and inter-peak noise 

threshold) determine the peak detection accuracy from the voltage response. The first 

requirement for a successful peak detection is that 𝑃𝑚𝑖𝑛 − 𝑇  > noise threshold, 

otherwise 𝑅 = 0 (the cell does not resolve the grating at that time point). Another 

requirement is that the inter-peak noise < inter-peak noise threshold, otherwise 𝑅 = 0. 

Two other parameters are used to detect false negatives, while the remaining two 

parameters determine the last pair of peaks that are resolved (𝑅 > 0) and give the 

SRA as the output. 

 

4.2.5 Statistics 

Statistical analyses were carried out in Prism 9 (Graphpad) and MATLAB. The 

differences between male and female resolvability to two moving bright dots (Figure 

4-6) and photoreceptors’ resolvability to moving dots/bars (Figure 4-10 and Figure 4-

13) were compared using either parametric (unpaired or paired two-tailed t-test) or 

non-parametric tests (Mann-Whitney, Friedman or Wilcoxon signed-rank test) 
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depending on whether the raw data passed the Kolmogorov-Smirnov normality test. 

For unpaired t-test, if the two compared data sets had different variances, Welch’s 

correction was applied. When required, power analysis was performed to confirm that 

the sample sizes were sufficient for the used statistical test.  
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4.3 Results 

 

4.3.1 Photoreceptors’ resolvability using the 25-point LED array 

I aimed to test whether Musca R1-R6 photoreceptors can resolve small objects moving 

with different velocities. Specifically, I asked could these cells resolve moving light 

dots, which were less than the 0.8o interommatidial angle apart? In vivo intracellular 

recordings were performed from individual R1-R6s while exposing the fly to bespoke 

stimuli, consisting of two bright dots (dot size: 0.7o) with different inter-dot-distances 

(0.7o, 1.4o and 2.1o), moving with two velocities (84 o/s and 167 o/s) across the tested 

photoreceptor’s receptive field (Figure 4-5A-B). Here, only the 0.7o inter-dot-distance 

stimuli were less than the Musca compound eye’s interommatidial angle (∆φ ≈ 0.8o – 

3o). The two moving bright dots were created using the 25-light-point array by rapidly 

turning each of its light points on and off, one after another, in the front-to-back 

direction.  

 

Resolvability (R) was calculated using the Rayleigh criterion (Figure 4-4). Two peaks 

in the voltage response showed that the dots were resolved neurally, while a single 

peak indicated this was not the case.  

 

When testing with the slower velocity (84 o/s), almost all the Musca photoreceptors (14 

out of 15) resolved the two dots at the hyperacute range (0.7o angular separation) 

(Figure 4-5C-D). However, increasing the stimulus speed to 167 o/s, reduced the 

resolvability significantly with only 3 out of 15 photoreceptors resolving dots with 0.7o 

separation (Figure 4-5E-F). Figure 4-5A-B shows a widespread R1-R6 response to 

this type of stimuli, but in some cases, the resolvability was extremely good, as shown 

in Figure 4-5C and E. Note that due to the limited number of one bright dot (dot size: 

0.7o) experiments, it was not possible to perform statistical analysis to rule out that 

these peaks were merely temporal responses caused by the LEDs going on and off. 
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Figure 4-5. Musca photoreceptors’ resolvability to two moving bright dots using the 25-point 

LED array. In vivo intracellular recordings were performed from R1-R6 while simultaneously showing 

the fly visual stimuli of two bright dots (dot size: 0.7o) with different inter-dot-distances (0.7o, 1.4o and 

2.1o), moving front-to-back (A) with a velocity of 84 o/s or (B) 167 o/s across its receptive field. 

Additionally, responses to one bright dot (dot size: 0.7o) were measured using both velocities. Note that 
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only the dots with 0.7o angular separation was considered hyperacute. (C) The resolvability (R) was 

calculated using the Rayleigh criterion. Two peaks in the voltage response indicate that the dots were 

resolved neurally, whereas a single peak indicates that the dots were not neurally resolved. Some cells 

responded exceptionally well to the hyperacute objects moving with 84 o/s speed (showing the best 

response recorded from one photoreceptor). (D) Calculated resolvability (velocity of 84 o/s) of all the 

recorded photoreceptors (n = 15), mean ± SD. (E) Few cells responded exceptionally well to the 

hyperacute objects moving with 167 o/s (the same photoreceptor as in C). (F) Calculated resolvability 

(velocity of 167 o/s) of all the recorded photoreceptors (n = 15 photoreceptors), mean ± SD. The arrows 

point out the peaks in the voltage response that determine whether the two bright dots were resolved 

(two peaks = resolved, one peak = not resolved). The photoreceptor coloured orange in A and B and 

the photoreceptor coloured dark green in C and E can be identified using the same colour in figures D 

and F. In C to F, the yellow box indicates the angular separation that is considered hyperacute.  

 

To explore to what extent, if any, sexual dimorphism was responsible for the distinct 

differences in resolvability, I analysed the data by sex (Figure 4-6). I found no 

differences between the male and female resolvability across both velocities when the 

angular separation was smaller than the interommatidial angle (< 0.8o). However, 

when the separation was wider (1.4o and 2.1o), males could resolve significantly better 

than females (Figure 4-6B). This finding was even more pronounced when testing 

with the slower velocity.  

 

 

Figure 4-6. Differences between male and female resolvability to two moving bright dots. (A) 

Male and female average resolvability to two bright dots (dots size: 0.7o) with three different angular 

separations (0.7o, 1.4o and 2.1o) moving front-to-back with two different velocities (84 o/s and 167 o/s). 

Only the dots with 0.7o angular separation was considered hyperacute (yellow box). (B) There were no 

significant differences between male and female photoreceptors’ resolvability to hyperacute dot 
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separation. However, males better resolved the dots with larger angular separations (1.4o and 2.1o) 

when the dots moved slower. Unpaired two-tailed t-test with Welch’s correction or Mann-Whitney U test 

used when comparing the male photoreceptor resolvability to that of the females, mean ± SD, *P < 0.05, 

**P < 0.01. Paired two-tailed t-test or Wilcoxon signed-rank test used when comparing the same sex at 

different velocities, mean ± SD, *P < 0.05. Number of recorded photoreceptors: n♀ = 7 and n♂ = 8 for 

both of the tested velocities. 
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Figure 4-7. Photoreceptor’s resolvability changes dynamically in time. (A) R1-R6 photoreceptor’s 

voltage responses to two moving bright dot stimuli (with 167 o/s speed and 0.7o inter-dot-distance) 

repeated one after another (showing n = 18 traces). (B) Some example traces highlighted from A show 

the change in resolvability. (C) Calculated resolvability in time for the photoreceptor. The mean 

resolvability is approximately 21%. However, the response dynamics were highly nonstationary. The 

same photoreceptor is shown in Figure 4-6D and F (magenta trace). 

 

It is important to note that some recorded photoreceptors had highly nonstationary 

response dynamics (Figure 4-7), possibly suggesting active vision. Sometimes the 

photoreceptor’s optical axis moved in the middle of the experiments (for the shown 

cell, between traces 8 and 9), which caused a drop in the resolvability (Figure 4-7B). 

Such changes could result from intrinsic intraocular muscle activity. Nevertheless, the 

photoreceptor could resolve the dots in all the trials (Figure 4-7C), having a mean 

resolvability of ~21%. Because of such dynamic (intrinsic) modulation, the resolvability 

was calculated for each repetition separately, and the mean of them was then used to 

describe the photoreceptor’s total resolvability. 

 

4.3.2 LMCs’ resolvability using the 25-point LED array 

After finding some evidence that photoreceptors could resolve small dots closer than 

the interommatidial angle, I aimed to explore whether this was also the case for L1-L3 

LMCs. LMCs could have better resolvability than photoreceptors to rapidly moving 

objects because LMCs receive similar input from six outer photoreceptors and, thus, 

the signal-to-noise ratio could improve up to √6 -fold (Braitenberg, 1967; Kirschfeld, 

1967; de Ruyter van Steveninck and Laughlin, 1996; Zheng et al., 2006). Besides, 

lateral inhibition occurs in lamina neurons, narrowing their receptive fields and 

improving their resolvability (Reichardt and Poggio 1976; Srinivasan et al., 1990).  

 

There has been no prior experimental research on LMC acuity, except a theoretical 

study from Juusola and French (1997). Using Calliphora vicina, they simulated how 

photoreceptors and LMCs might resolve moving two-point objects with different 

angular distances in different light conditions. These simulations did not reveal 

hyperacuity, possibly due to several factors, such as being based upon a low recording 

temperature (16-18 oC) and not considering lateral inhibition.  
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While performing in vivo intracellular recordings, I tested the LMCs’ resolvability to two 

bright dots with different inter-dot-distances (0.7o, 1.4o and 2.1o), moving with two 

velocities (84 o/s and 167 o/s) in the front-to-back direction across its receptive field, 

using the 25-light-point array (Figure 4-8A-B). Here, only the 0.7o inter-dot-distance 

stimuli were finer than the Musca compound eye’s interommatidial angle (∆φ ≈ 0.8o -

3°). Additionally, LMCs’ responses to one bright dot (dot size: 0.7o) moving with the 

same velocities were measured to rule out that these peaks were temporal responses 

to LEDs turning on and off.  

 

 

Figure 4-8. Musca LMCs’ resolvability could not be attained using the 25-point LED array. The 

LMCs’ (n = 3) resolvability was tested using two bright dots with different inter-dot-distances (0.7o, 1.4o 

and 2.1o), moving with two velocities (A) 84 o/s and (B) 167 o/s in the front-to-back direction across its 
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receptive field. Additionally, LMCs’ responses to one bright dot (dot size: 0.7o) moving across its 

receptive field, was tested. Comparing the voltage responses for one dot and two dots suggested that 

the fluctuations in the responses might be produced by the LEDs turning on and off. Thus, LMCs 

hyperacuity could not be tested using this type of stimulation. 

 

Unfortunately, this light stimulation was not sufficient to record the resolvability in 

LMCs. This finding may result from LMCs having faster temporal responses, which 

meant they likely responded to the LEDs turning on and off (Figure 4-8), as suggested 

by comparing the one-moving-dot LMC responses to the responses evoked by two 

moving dots. Because of this stimulation method’s spatiotemporal and directional 

limitations, I later began using a digital light projector rather than the 25-point LED 

array as a more suitable stimulus for LMCs as well photoreceptors. 

 

4.3.3 Photoreceptors’ resolvability to moving light dots using a 

digital light projector 

The digital light projector stimulator system enabled more detailed resolvability 

studies, using different objects (light dots, light bars, narrowing gratings) with a wider 

variety of angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) and velocities 

(10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) (Figure 4-9A-E). Again, only the 0.7o angular 

separation was considered hyperacute. Additionally, the projector system enabled 

changing the objects’ movement direction (up , down , front-to-back → and back-

to-front ) to test whether Musca photoreceptors are direction-selective to the 

hyperacute features. 
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Figure 4-9. Dark-adapted Musca photoreceptor’s voltage responses to one or two moving bright 

light dots with a broad range of angular separations and velocities. (A) Photoreceptor’s 

intracellularly recorded voltage responses to one dot or two dots with different angular separations (0.7o, 

1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) with a velocity of 10 o/s tested in four different directions (up , down 

, front-to-back → and back-to-front ). Dot/dots were moving with a velocity of (B) 21 o/s, (C) 42 o/s, 

(D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered hyperacute (yellow box). 

Green traces indicate angular separations, which the photoreceptor was able to separate. Additionally, 

the red traces indicate the double-peaked voltage response to only one moving dot. The photoreceptor 

is named photoreceptor #1 and can be identified in Figure 4-10. The same photoreceptor’s responses 

to one bar/two bars are shown in Figure 4-12 and Figure 4-13. 

 

The digital light projector was used to examine both photoreceptors’ and LMCs’ 

resolvability, but here I will only talk about R1-R6 photoreceptors’ responses to bright 

dots before moving onto bright bars and narrowing gratings. LMC data will be 

discussed in Chapters 4.3.6 and 4.3.7. Interestingly, with photoreceptors (n = 28), only 

very few (six photoreceptors at 10 o/s and one at 168 o/s) could resolve two moving 

dots with a 0.7o angular separation across all the tested velocities (Figure 4-10A-E). 

This should not be viewed as compelling evidence of hyperacuity, however, as 

photoreceptors’ voltage responses also had two peaks to one moving dot (dot size: 

0.7o) (Figure 4-9, red traces). Therefore, to rule out the possibility of the two-peaked 

responses being merely a result of the biphasic temporal modulation (on-off) to one 

dot moving across the photoreceptor’s receptive field, statistical comparisons 

(Friedman test with Dunn’s multiple comparisons test) looking at the resolvability of 

each angular separation against the respective one moving dot control were 

performed. Conclusions from the statistical analysis showed that photoreceptors’ 

resolvability to dots with 0.7o angular separation was not significant and therefore, 

hyperacuity was not demonstrated for this type of stimulation (Figure 4-10A-E). In 

addition, for all the tested velocities, resolvability to dots with 1.4o angular separation 

did not significantly differ from the respective one dot resolvability. In general, the 

resolvability became worse for angular separations < 2.8o as the velocity increased.  
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Figure 4-10. Photoreceptors’ resolvability to two moving bright light dots. Musca photoreceptors’ 

(n = 28) resolvability to one dot/two dots with 0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o separation moving 

in four different directions (up , down , front-to-back → and back-to-front ) with a velocity of (A) 10 

o/s, (B) 21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered 

hyperacute (yellow box). Mean ± SD. Statistical comparisons of resolvability to each angular separation 

were made against the respective one moving dot control: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001, Friedman test with Dunn’s multiple comparisons test. The same photoreceptor is shown by a 

unique colour and shape combination throughout this figure and Figures 4-13 and 4-15. 

 

As for direction selectivity, those photoreceptors that could resolve did not always do 

so in all tested directions (only to one or to its reverse direction). For instance, the 

photoreceptor shown in Figure 4-9 had better resolvability to front-to-back (→) 

direction than any other tested. Statistical analysis was performed to find out if the 

apparent preference for certain directions was of significance. This proved not to be 

the case when directions at each angular separation were compared to one another.   

 

Going back to hyperacuity, although only a small minority of photoreceptors showed 

a two-peaked voltage response at 0.7o angular separation, I wanted to investigate 

whether or not there were any differences between the different parts of the eye. If all 

the gathered responses did come from the same location (for example, where the 

interommatidial angle is the smallest) then this would suggest that there is a 

hyperacute zone within the eye. As such, I performed separate intracellular recordings 

from the back, middle and front of the eye, doing so for both males and females 

(Figure 4-11A). Note that based on how I chose to divide the eye, the male “love spot” 

is located in the middle. Dividing the results further by sex enabled me to see any 

potential influence of sexual dimorphism on the acquired photoreceptors’ resolvability.   

 

When looking at males and females separately, there was no significant enhancement 

across the different locations in the eye, regardless of the velocity the two dots were 

moving (Figure 4-11B-F). Although neither sex showed any location preference, there 

were some differences between them. None of the tested male photoreceptors could 

separate the dots beyond 21 o/s, whereas a few female photoreceptors managed to 

resolve them up to 168 o/s. Given the limited number of photoreceptors being 

compared, this data should be treated with some caution. 
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Figure 4-11. Comparing photoreceptors’ hyperacute resolvability to two moving bright dots 

across the whole compound eye between males and females. (A) In vivo intracellular recordings 

were performed from Musca photoreceptors from different eye locations (front, middle, back). The male 

“love spot” is considered to be in the middle section. The resolvability of male (left) and female (right) 

photoreceptors to two bright light dots with 0.7o angular separation (hyperacute) moving in four cardinal 

directions with a velocity of (B) 10 o/s, (C) 21 o/s, (D) 42 o/s, (E) 84 o/s and (F) 168 o/s. Number of recorded 
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photoreceptors in the n♂(front) = 5, n♂(middle) = 3, n♂(back) = 6, n♀(front) = 4, n♀(middle) = 6 

and n♀(back) = 4, mean ± SD. 

 

4.3.4 Photoreceptors’ resolvability to moving light bars using a 

digital light projector 

Although hyperacuity was not evident when using light dots, I wanted to test if this 

remained the case when using another type of stimuli. For this, I used two bright light 

bars with a range of angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) with 

a comprehensive velocity range (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) moving 

across the photoreceptor’s receptive field (Figure 4-12A-E) with only 0.7o angular 

separation considered hyperacute. Moreover, direction selectivity was addressed by 

moving the bars in different directions (up , down , front-to-back → and back-to-

front ). 

 

Initially, there seemed to be some interesting data produced by the light bar stimulus. 

For example, when using two bars, more photoreceptors could resolve the bars with 

0.7o angular separation compared to dots (compare Figure 4-10 to Figure 4-13) 

across all the tested velocities. The maximum resolvability was attained to two moving 

bright light bars at 21 o/s, where 12 out of 28 photoreceptors responded to hyperacute 

bars (Figure 4-13B) while the lowest resolvability was seen for the fastest velocity 

(168 o/s), where only 5 photoreceptors responded to bars with 0.7o angular separation 

(Figure 4-13E).  

 

Despite this, it is crucial to note that more photoreceptors displayed double-peaked 

voltage responses to one bar (bar width: 0.7o) at all tested velocities (Figure 4-12A-

E). Due to the results of the one bar control, it was necessary to exclude the possibility 

that the two-peaked responses were merely a result of the biphasic temporal 

modulation (on-off) to one bar moving across the photoreceptor’s receptive field. This 

was done by performing statistical analysis (Friedman test with Dunn’s multiple 

comparisons test), which found that, as with dots, the resolvability to two bars with 0.7o 

angular separation was not statistically significant, so there was no real evidence of 

hyperacuity in this instance.  
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Figure 4-12. Dark-adapted Musca photoreceptor’s voltage responses to one or two moving 

bright light bars with a broad range of angular separations and velocities. (A) Photoreceptor’s 

intracellularly recorded voltage responses to one bar (bar width: 0.7o) or two bars with different angular 

separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o) with a velocity of 10 o/s tested in four different 

directions (up , down , front-to-back → and back-to-front ). Bar/bars were moving at the velocity of 

(B) 21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered 

hyperacute (yellow box). Green traces indicate angular separations, which the photoreceptor was able 

to resolve. The red traces indicate the double-peaked voltage response to only one moving dot. The 

photoreceptor is named photoreceptor #1 and can be identified in Figures 4-9, 4-10 and 4-13. 

 

Results from wider angular separations (Figure 4-13) also support the idea that 

hyperacuity is not present within the eye. Many tested photoreceptors failed to resolve 

two bars at angular separations wider (1.4o and 2.1o) than what was considered 

hyperacute. Most surprisingly there was a significant number of them that failed to 

resolve two bars with the largest angular separation (6.3o), which is well above the 

optical limit. To remove the possibility that the order of the stimuli (dots, bars and 

narrowing gratings) impacted the results, photoreceptors were tested in a 

pseudorandom order.  

 

As with dots, some photoreceptors initially seemed to have a directional preference 

when shown moving bars, supporting the possibility that there could be some direction 

selectivity. The photoreceptor presented in Figure 4-12, for instance, showed direction 

selectivity to front-to-back (→), and with some velocities, to back-to-front () as well. 

The same photoreceptor showed better resolvability to the front-to-back direction 

when tested with dots (Figure 4-9). To investigate how significant this apparent 

direction preference was, statistical analysis was performed across the 

photoreceptors. Results of the analysis failed to show that there was any significant 

evidence of direction selectivity in response to the moving light bars.   
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Figure 4-13. Photoreceptors’ resolvability to two moving bright light bars. Musca photoreceptors’ 

(n = 28) resolvability to one bar/two bars with 0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o separation moving 
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in four different directions (up , down , front-to-back → and back-to-front ) with a velocity of (A) 10 

o/s, (B) 21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered 

hyperacute (yellow box). Mean ± SD. Statistical comparisons of resolvability to each angular separation 

were made against the respective one moving bar control: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001, Friedman test with Dunn’s multiple comparisons test. The same photoreceptor is shown by a 

unique colour and shape combination throughout this figure and Figures 4-10 and 4-15. 

 

In addition to examining direction selectivity, I also investigated whether or not the 

location of the eye, or sex of the fly, had any impact on the flies’ ability to resolve 

hyperacute features. Although statistical analysis later showed that the resolvability to 

two bars at an angular distance of 0.7o was not significant overall, this is not to say 

this would apply to each location within the eye. To test this, I performed separately in 

vivo intracellular recordings from the back, middle and front of the eye, doing so for 

both males and females.  

 

My assumption, as with dots, was if there were areas of greater resolvability, it would 

be found within the “love spot” of the tested males. Again though, this was not the case 

when looking at the data as a whole (Figure 4-14A-E). When using the light bar 

stimulus there were no major differences when it came to the location of the eye, nor 

sex of the fly.  
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Figure 4-14. Comparing photoreceptors’ hyperacute resolvability to two moving bright bars 

across the whole compound eye between males and females. (A) In vivo intracellular recordings 

were performed from Musca photoreceptors from different eye locations (front, middle, back). The male 

“love spot” is considered to be in the middle section. The resolvability of male (left) and female (right) 

photoreceptors to two bright light bars with 0.7o angular separation (hyperacute) moving in four cardinal 

directions with a velocity of (B) 10 o/s, (C) 21 o/s, (D) 42 o/s, (E) 84 o/s and (F) 168 o/s. Number of 
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recorded photoreceptors in the n♂(front) = 5, n♂(middle) = 3, n♂(back) = 6, n♀(front) = 4, 

n♀(middle) = 6 and n♀(back) = 4, mean ± SD. 

 

4.3.5 Photoreceptors’ resolvability to moving narrowing bar-grating 

The aforementioned moving light dots and bars experiments were both carried out 

using dark-adapted R1-R6 photoreceptors. However, light adaptation can improve 

spatial resolution by narrowing the photoreceptor’s receptive field (Stavenga, 2004; 

Juusola et al., 2017). This acuity improvement is achieved through pupil closure: 

during light adaptation, pigment granules surrounding the eye migrate towards the 

rhabdomere to reduce the light flux by absorbing and reflecting the incoming photons 

(Kirschfeld and Franceschini, 1969; Franceschini, 1972; Stavenga, 1975; Howard, 

Blakeslee and Laughlin, 1987; Roebroek and Stavenga, 1990).  

 

To examine the light-adapted photoreceptors’ resolvability, I used a novel moving 

narrowing bar-grating stimulus. This type of stimulus was chosen over dots/bars 

because using the digital light projector with either was not feasible for light-adapted 

experiments. The grating continuously decreased its wavelength (the bar width) from 

5o to 0.33o, as seen by the fly (Figure 4-15A). In vivo intracellular recordings were 

performed from R1-R6 photoreceptors while presenting the stimulus moving with five 

different velocities (6 o/s, 20 o/s, 40 o/s, 60 o/s and 120 o/s) in four cardinal directions (up 

, down , front-to-back → and back-to-front ) across their receptive field (Figure 

4-15B-F). The resolvability was determined by detecting the narrowest pair of gratings 

that the photoreceptor could separate using a six hyperparameter algorithm in Python. 

Rayleigh criterion was applied to calculate the resolvability limit, which was called the 

smallest resolvable angle (SRA) here. 
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Figure 4-15. Photoreceptors’ resolvability (SRA) to moving narrowing bar-grating stimuli. (A) 

Musca photoreceptors’ (n = 22) resolvability under light adaptation was tested to moving narrowing bar-

grating. The grating wavelength (i.e. bar width) continuously decreased from 5o to 0.33o, as seen by the 

fly. Showing one photoreceptor’s intracellular voltage responses the stimulus moving with a velocity of 

(B) 6 o/s, (C) 20 o/s, (D) 40 o/s, (E) 60 o/s and (F) 120 o/s. Additionally, the stimuli were run in four different 

directions (up , down , front-to-back → and back-to-front ). Photoreceptors’ voltage responses were 

recorded 5 s after the stimulation while the projector was on without the stimulus. The noise threshold 
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was acquired from this period. Note the drops in the voltage responses, especially when testing with 

higher velocities, were due to the photoreceptor detecting the decrement of the bar wavelengths (see 

Figure 4-3B-C). (G) The resolvability was estimated by determining the smallest resolvable angle 

(SRA) from the voltage response. The cell could resolve the gratings until its response peak amplitudes 

became smaller than the noise threshold. Only when SRA < 0.8o (smaller than ∆φ) was the resolvability 

considered to be hyperacute (yellow box). The same photoreceptor is shown by a unique colour and 

shape combination throughout this figure and Figures 4-10 and 4-13. Mean ± SD. 

 

Only 3 of the 22 photoreceptors tested were able to resolve gratings narrower than the 

optical limit (< 0.8o) among all the tested velocities (Figure 4-15G). This shows that 

even under light adaptation, when acuity should be improved, still photoreceptors were 

not able to resolve these gratings that had hyperacute angular separation. This could 

be influenced by the type of stimulation and analysis, where the noise threshold was 

the resolvability limit. Although instrumental noise was kept as minimal as possible, 

some levels are unavoidable, which contaminates the recordings and affects the 

estimation of the SRA. However, based on the analysis from dots and bars, it seems 

safer to assume that the results are as they are simply because Musca photoreceptors 

do not appear to be hyperacute, not even when light-adapted. All these recordings 

were performed in a pseudorandom order; thus, the recording order did not impact 

these results.  

 

With the moving narrowing gratings, I also looked at how the overall resolvability was 

distributed throughout the eye, performing in vivo intracellular recordings from the 

back, middle and front of the eye from both males and females (Figure 4-16). Although 

only a few photoreceptors (3 out of 22) could resolve hyperacute gratings, the potential 

influence of sexual dimorphism and direction selectivity was tested nonetheless. 

Interestingly, all the three cells that resolved beyond the hyperacute limit were all 

recorded from the female eye (one front, two back), not from the male “love spot” 

(Figure 4-16C-E). Due to the limited number of cells that responded in the hyperacute 

range, however, no strong conclusions should be made from this.  
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Figure 4-16. Comparing photoreceptors’ hyperacute resolvability to moving narrowing bar-

grating across the whole compound eye between males and females. In vivo intracellular 

recordings were performed from Musca photoreceptors from different eye locations (front, middle, 

back). The male “love spot” is considered to be in the middle section. The resolvability (SRA) of males 

(left) and females (right) to the grating narrowing from 5o bar width to 0.33o moving in four cardinal 

directions with a velocity of (A) 6 o/s, (B) 20 o/s, (C) 40 o/s, (D) 60 o/s and (E) 120 o/s. Only when SRA 
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< 0.8o (smaller than ∆φ) was the resolvability considered to be hyperacute (yellow box). n♂(front) = 5, 

n♂(middle) = 3, n♂(back) = 3, n♀(front) = 3, n♀(middle) = 5 and n♀(back) = 3, mean ± SD. 

 

4.3.6 LMC’s resolvability to moving light dots using a digital light 

projector 

To summarise findings from R1-R6 photoreceptors so far, there was no statistically 

significant evidence of hyperacuity nor direction selectivity to moving bright light dots, 

bars and narrowing gratings (Figure 4-9, 4-10, Figure 4-12, Figure 4-13 and Figure 

4-15). After studying resolvability in photoreceptors, I aimed to test how L1-L3 LMCs 

resolve similar stimuli (moving light dots and bars). I did not, however, test LMCs’ 

intracellular voltage responses to moving narrowing bar-grating stimulus. 

 

There is no prior experimental research on LMC resolvability, only one theoretical 

study (Juusola and French, 1997). However, based on the neural structure of the fly 

compound eye (neural superposition) and the neural connections (lateral inhibition), it 

is a real possibility that LMCs could resolve even finer details than photoreceptors 

(Braitenberg, 1967; Kirschfeld, 1967; Reichardt and Poggio 1976; Srinivasan et al. 

1990; de Ruyter van Steveninck and Laughlin, 1996; Zheng et al., 2006).  

 

In Chapter 4.3.2, I tested LMCs’ resolvability using a 25-point LED array. 

Unfortunately, this method was not appropriate to test the resolvability in LMCs. After 

this, I instead studied LMC resolvability to two moving bright light dots, using a digital 

light projector, with the same angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 

6.3o) and velocity ranges (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) as with 

photoreceptors (Figure 4-17A-E). Only the angular separation of 0.7o was considered 

hyperacute. Direction selectivity was tested moving the two light dots in four different 

directions (up , down , front-to-back → and back-to-front ). As when testing 

photoreceptors, the responses to one dot moving were also recorded.  
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Figure 4-17. Musca LMC’s voltage responses to one or two moving bright light dots with a broad 

range of angular separations and velocities. (A) LMC’s intracellularly recorded voltage responses to 

one dot (dot size: 0.7o) or two dots with different angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o 

and 6.3o) with a velocity of 10 o/s tested in four directions (up , down , front-to-back → and back-to-

front ). Dot/dots were moving at the velocity of (B) 21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only 

the angular separation of 0.7o was considered hyperacute (yellow box). Purple traces indicate angular 

separations, which the photoreceptor was able to resolve. The red traces indicate the double-peaked 

voltage response to only one moving dot. The photoreceptor is named LMC #1 and can be identified in 

Figures 4-18, 4-19 and 4-20. 

 

The tested LMC resolved two moving bright light dots with an angular separation of 

0.7o across all the tested velocities (Figure 4-17A-E and 4-18A-E). This LMC’s 

hyperacute resolvability was evident and largely velocity-independent (compare 

Figure 4-18 and 4-10). Additionally, the LMC did not produce double-peaked 

responses to one dot moving across its receptive field (only to up () direction at 168 

o/s), whereas this often occurred with photoreceptors (Figure 4-17, red trace). 

However, as only one LMC was recorded, compared to 28 photoreceptors, stark 

conclusions should not be drawn based on this data. 

 

According to the classical EMD model, LMCs are not thought to be direction-selective 

nor motion-sensitive. It is interesting, therefore, that the recorded LMC resolved two 

moving light dots in the up () and the down () directions (Figure 4-17). In both cases, 

but especially to down (), where the voltage responses were the largest. This finding 

could indicate that LMCs are direction-selective. 

 

Interestingly, the front-to-back (→) and back-to-front () moving dots only produced 

responses with one peak or no peak (flat response). The limited or null responses to 

the orthogonal directions give support to the presence of direction-selectivity. It is 

possible, however, albeit unlikely, that this was because the receptive field was moving 

off-axis, and thus, the dots would not be crossing the centre of the receptive field. 
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Figure 4-18. LMC’s resolvability to two moving bright light dots. Musca LMC’s (n = 1, male) 

resolvability to one dot/two dots with 0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o separation moving in four 

different directions (up , down , front-to-back → and back-to-front ) with a velocity of (A) 10 o/s, (B) 

21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered 

hyperacute (yellow box). Mean ± SD. 
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4.3.7 LMC’s resolvability to moving light bars using a digital light 

projector 

After testing resolvability to hyperacute light dots, I tested LMC’s resolvability to two 

moving bright light bars with the same angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 

4.9o and 6.3o) and velocity ranges (10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s) as before 

(Figure 4-19A-E). Again, only the angular separation of 0.7o was considered 

hyperacute, and direction selectivity was addressed by moving the bars in four 

different directions (up , down , front-to-back → and back-to-front ).  

 

Surprisingly, the tested LMC (same as used for moving light dots) struggled to resolve 

the two bars beyond the optical limit (0.7o) at most tested velocities and failed to do so 

with the fastest velocity (Figure 4-19A-E and Figure 4-20A-E). Compared with the 

dots, the resolvability to two bars with larger angular separations was relatively low. 

This specific LMC resolving two hyperacute dots, but not bars, could be due to lateral 

inhibition. Another possibility for the non-resolvability is that the LMC was starting to 

detach from the electrode, which would lead to the recording being slightly unstable.  

 

As for direction selectivity, when using bars, LMCs displayed a preference to the down 

() direction only, as opposed to dots, which resolved better both up () and down () 

directions. While this is another intriguing finding from my research, it is essential not 

to make any firm conclusions using the data as only one LMC was examined. To fully 

understand LMC resolvability, direction selectivity and the impact of lateral inhibition, 

further LMCs need testing with the dots/bars stimuli.   
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Figure 4-19. Musca LMC’s voltage responses to one or two moving bright light bars with a broad 

range of angular separations and velocities. (A) LMC’s intracellularly recorded voltage responses to 

one bar (bar width: 0.7o) or two bars with different angular separations (0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o 

and 6.3o) with a velocity of 10 o/s tested in four different directions (up , down , front-to-back → and 

back-to-front ). Bar/bars were moving at the velocity of (B) 21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 

o/s. Only the angular separation of 0.7o was considered hyperacute (yellow box). Purple traces indicate 

angular separations, which the photoreceptor was able to resolve. The LMC is named LMC #1. 
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Figure 4-20. LMC’s resolvability to two moving bright light bars. Musca LMC’s (n = 1, male) 

resolvability to one bar/two bars with 0.7o, 1.4o, 2.1o, 2.8o, 3.5o, 4.9o and 6.3o separation moving in four 

different directions (up , down , front-to-back → and back-to-front ) with a velocity of (A) 10 o/s, (B) 

21 o/s, (C) 42 o/s, (D) 84 o/s and (E) 168 o/s. Only the angular separation of 0.7o was considered 

hyperacute (yellow box). Mean ± SD. 
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4.4 Discussion 

 

4.4.1 Photoreceptors’ hyperacute resolvability 

I found no strong evidence of hyperacuity to dots nor bars (Figure 4-10 and Figure 4-

13) and even when replicating the experiments using the narrowing bar-grating, to test 

the impact of light adaptation, the resolvability was surprisingly low (Figure 4-15G). 

The results were largely consistent when looking at different locations within the eye 

and between sexes (Figure 4-11, Figure 4-14 and Figure 4-16), although small 

discrepancies were noted in a couple of instances. None of these discrepancies 

indicated that hyperacuity was possible in a specific region of the eye for either males 

or females.    

 

This is a contrast to the data gathered using the 25-point LED array (used in the 

Juusola et al., 2017 article as well), which showed a much higher resolvability to 

hyperacute stimuli (Figure 4-5). However, neither myself nor Juusola et al. carried out 

a substantial amount of one dot control experiments – they performed none while I 

only performed a limited number as initially I did not even consider the possibility that 

one moving light point could result in a double-peaked voltage response. Additionally, 

there were some limitations to the LED setup itself. Firstly, the LEDs had different 

intensities reaching maximally up to a ~6.5-fold intensity difference (Juusola et al., 

2017). Secondly, the movement on the 25-point array was created by turning on one 

light point, or simultaneously two adjacent light points, on and off after each other, 

which the fly might not see as smooth movement but rather a sequence of flickering 

lights. As a final point, I later noticed that when testing with two moving light points, 

there was a slight delay with the second light point, which should have been triggered 

simultaneously with the first. Not only did the second light point appear with a small 

delay but it was also slower than the first light point moving ahead of it. This could 

have impacted the results using the 25-point LED array in Juusola et al. (2017) as well 

as mine. 

 

Subsequently, I would suggest that fresh experiments would need to be performed on 

Drosophila to demonstrate if hyperacuity is present. Given that my projector data 

shows the ability to resolve fine details is unlikely to be a feature of Musca vision, this 
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raises the question of why such a feature would be found in a slower flying Drosophila 

with optically much poorer vision.  

 

As just mentioned, although my data indicates that hyperacuity is highly unlikely to be 

a feature of Musca photoreceptors, there is some evidence from Drosophila that 

photomechanical contractions differ in their direction throughout the eye (unpublished 

data), and this might be the reason why a minority of photoreceptors were able to 

resolve the light dots/bars with small angular distances. While this could be a feasible 

explanation, it needs to be quantified in Musca by high-speed imaging of the deep-

pseudopupils (Franceschini and Kirschfeld, 1971b; Franceschini, 1972). Specifically, 

the photoreceptor contractions need to be combined with the direction that produced 

the biggest resolvability. This approach would require testing, via in vivo intracellular 

recordings, possibly using more angles than the four used in my research, although 

there is little evidence to suggest testing more directions would unearth something 

novel. Additionally, to locate the specific photoreceptor being tested, it might be 

necessary to stain the recorded R1-R6 cells electrophoretically. 

 

As an alternative, it is plausible that some photoreceptors better resolved smaller 

details due to their differing rhabdomere diameter and subsequent differing 

acceptance angles (Juusola et al., 2017). This structural difference means that some 

photoreceptors can resolve smaller details; R2 and R4 rhabdomeres, for example, are 

smaller than R1, R3 and R6. It is also possible, albeit improbable, that despite R1-R6 

being discussed, some R7 and R8 cells were captured during the recordings. If either 

were recorded, their small rhabdomere diameters would result in enhanced 

resolvability beyond what R1-R6 can. Given that the digital light projector used UV 

light for stimulation, R7 cells would respond well because they express Rh3 and Rh4, 

which are UV-sensitive pigments (Fryxell and Meyerowitz, 1987; Montell et al., 1987; 

Feiler et al., 1992).  

 

Although I tested a range of velocities across all the stimuli used, I was limited by the 

digital light projector itself - the projector could only handle velocities up to ~168 o/s. 

However, Musca males have shown to perform saccadic turns with angular velocities 

>1,000 o/s when detecting a target (Wagner, 1986a). By and large, it is not uncommon 

for Musca to move at ~100 o/s – 1,000 o/s (Burton and Laughlin, 2003). Even with the 
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velocities used in my experiments (dots/bars: 10 o/s, 21 o/s, 42 o/s, 84 o/s and 168 o/s; 

gratings: 6 o/s, 20 o/s, 40 o/s, 60 o/s and 120 o/s) though, hyperacute resolvability 

weakened, quite significantly, as the velocities increased (Figure 4-10, Figure 4-13 

and Figure 4-15). Therefore, it is unlikely (but not impossible) that photoreceptors 

would resolve anything considered hyperacute with considerably faster velocities. To 

be sure, these velocities could be tested by using a laser galvanometer system (with 

two mirrors).  

 

Finally, although not shown in my data, I did test several photoreceptors with two 

moving light dots and bars (dot size/bar width: either 0.18o or 0.4o) with angular 

separations of 0.18o and 0.4o, but in no instances were these objects resolved. 

 

4.4.2 LMCs’ hyperacute resolvability 

The LMC recorded for my research showed hyperacuity to dots and a lesser extent to 

bars (Figure 4-18 and Figure 4-20). Direction selectivity was also shown, but as only 

one LMC was examined, more data is required before any conclusions can be safely 

made. In future, it would be interesting to study, ideally through staining 

electrophoretically, if there are any differences between L1, L2 and L3 cells.  

 

L1 and L2 are the primary inputs for the ON and OFF motion pathway, respectively 

(Joesch et al., 2010; Clark et al., 2011; Eichner et al., 2011; Joesch et al., 2013; Silies 

et al., 2013). If further research finds direction selectivity in LMCs and slight differences 

between L1-L3, it would be interesting to see how this would impact motion vision 

(possible motion opponency) and upstream visual encoding. 

 

4.4.3 Optomotor responses to hyperacute features 

Juusola et al. (2017) showed via open-loop optomotor flight experiments that 

Drosophila responds to hyperacute black-and-white bar panorama. However, when 

testing with more natural closed-loop flight experiments (magnetic tethering) using a 

static panorama, Salem et al. (2020) did not show hyperacuity in Drosophila. Ideally, 

further research would examine hyperacuity in even more natural conditions that 

mimic real-world environments. It is important to see that hyperacute features occur 

naturally and are not merely induced by specific lab conditions. This reasoning should 
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also apply to the stimuli used, so rather than solely using full contrast light bars/dots, 

a more comprehensive range of contrast/objects should be tested. 

 

It would be worthwhile to test both closed-loop flying and walking optomotor responses 

with Musca. However, to match the velocities used in my in vivo experiments with the 

optomotor behaviour, testing walking using a virtual reality (VR) trackball system would 

be more suitable. I attempted to carry out this myself, but our VR trackball system was 

initially designed for cockroach (Periplaneta americana) use, and thus, it was so large 

that Musca was physically unable to move it. Unfortunately, therefore, I could not 

proceed with this line of investigation.  
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 General discussion 

At the end of each thesis chapter, I have thoroughly discussed its specific research, 

strengths and limitations, and future work ideas. Here, I intend to provide a much more 

general overview of all the work I undertook while exploring broader points about fly 

visual research.  

 

I find these general points of discussion fascinating, especially as my thesis covered 

such a broad range of investigations. Rather than attempting to unravel one single 

aspect of Musca vision, I set out to study multiple aspects using a range of different 

stimuli and setups. In all cases, what I chose to examine had not been looked at 

previously in Musca, or there was very little relevant work. In total, I ended up 

examining three different areas, which are briefly summarised below:  

 

1) How much information Musca photoreceptors encode when performing body 

saccades and how much of this information is passed downstream to LMCs. This 

was tested using light stimuli, which broadly resembled the temporal changes a fly 

sees while performing head and body saccades. 

2) How light adaptation shapes the R1-R6 photoreceptors’ and L1-L3 LMCs’ 

response properties, and how this can be explained through the changes occurring 

at the level of the elementary responses (quantum bumps, QBs). 

3) How Musca R1-R6 and L1-L3 cells encode hyperacute objects, given the opto-

physiological constraints of its compound eye. 

 

Through my research in these three areas, I discovered that Musca vision, in some 

areas, is more advanced and better performing than what was thought previously. For 

one, I found that Musca, especially males, were able to see the world in much finer 

temporal resolution. This raises the important question as to why it has evolved to 

such an extent, particularly in males. After all, the better the vision, the more energy it 

consumes (Niven, Anderson and Laughlin, 2007). Even if vision is the most important 

sense for fly survival, it has evolved well beyond expectations in this area.  
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Musca vision did not always manage to impress, however. When attempting to resolve 

objects closer than their interommatidial angle, most photoreceptors failed to do so 

regardless of the velocity tested. There is some indication that LMCs can resolve 

within the hyperacute range but more research is needed before any conclusions can 

be made.      

 

While discussing my results, an essential point to consider is that all my data was 

collected in lab conditions drastically different from the flies’ natural environment. 

Musca may respond a certain way, when waxed to a cone, to a single light stimulus, 

but is this something that would be replicated in a more natural environment? It is 

already known that when behaving (i.e. flying, walking), flies’ downstream neurons 

exhibit changes in their visual processing (Chiappe et al., 2010; Maimon, Straw and 

Dickinson, 2010; Jung, Borst and Haag, 2011; Suver, Mamiya and Dickinson, 2012; 

Strother et al., 2018). Although these changes are thought to be mostly octopamine 

mediated, enhancements could still happen in photoreceptors. Ideally, this could be 

tested in the virtual reality (VR) system by performing simultaneous in vivo intracellular 

recordings while the fly is in motion (tethered walking or flying).   

 

To better understand how flies explore their natural environment, their visual neurons 

need to be tested by more than one kind of light stimuli. For in vivo intracellular 

recordings, a single stimulus can be highly beneficial, but a fly would seldom see just 

one moving object in a real-life setting. Among other things, testing with multiple stimuli 

would allow us to study the selective attention span between hyperacute and non-

hyperacute features.  

 

When acquiring in vivo intracellular responses, we are limited to one photoreceptor at 

a time. Thus, simultaneous two-photon imaging of multiple neurons could be combined 

with these electrophysiological findings to improve our understanding of parallel neural 

processing. Note that two-photon imaging is often limited by the relatively slow calcium 

dynamics when using calcium indicators (such as Gcamp6f) or SNR when using 

voltage indicators (such as ASAP2f or ASAP3) (Yang et al., 2016; Villette et al., 2019). 
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It would also be valuable to expose flies to other sensory cues beyond vision. 

Multimodal sensory information in a natural environment could very feasibly enhance 

fly vision. One assumption is that multisensory integration could heighten 

photoreceptor encoding and enhance downstream neurons’ response properties to 

visual stimuli even further. The influences of other factors were not something I could 

consider while concentrating solely on vision.  

 

Overall, my research data should not be considered conclusive due to the lack of ‘real-

life’ testing conditions. It does, however, provide a strong foundation for further 

research.  
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