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Abstract 
 

G protein-coupled receptors (GPCRs) are a superfamily of membrane proteins that 

transduce extracellular signals to invoke physiological responses. Class B GPCRs are 

regulated by peptide hormones and are characterised by a seven transmembrane 

domain, a 120-150 residue extracellular domain (ECD), and an intracellular C-

terminus. The parathyroid hormone 1/2 receptors (PTH1R/PTH2R) belong to this 

family and, despite being closely related, have different physiological roles: PTH1R is 

crucial in bone metabolism, whereas PTH2R function is significantly less well defined.  

 

The original aims of this research were to solve the structures of these two receptors. 

This involved creating various receptor constructs that would be suitable candidates 

for downstream structural trials. Insect cell expressed receptors were quantified 

through fluorescent intensity densitometry analysis and a potential candidate for 

further structural studies was found in the form of a mini Gs protein bound to an 

apocytochrome, b562RIL (BRIL) fusion protein following a FLAG purification. 

However, a constitutively active receptor, created by tethering PTH(1-14) to BRIL-

PTH1R and verified through LANCE® cAMP assays, was unable to form this 

complex.  

 

PTH2R proved a major challenge, so attempts to solve the isolated ECD were made 

instead. This was pursued using Escherichia coli expressed protein in various 

oxidising environments, though due to low protein yields and poor stability it was 

impossible to obtain a candidate for further trials. 
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Finally, the novel integral membrane protein stability selector (IMPROvER) program 

was used to create a thermostable PTH1R. Through fluorescent based thermostability 

assays, 40% of 20 mutations were stabilising with a maximum increase of 3.4 ± 1.1 °C. 

Combinations of these mutations resulted in a construct with an improved stability of 

10 ± 0.76 °C. This research gives a strong foundation for future structural work 

regarding PTH1R and has highlighted that IMPROvER is a valid alternative to more 

laborious methods such as alanine scanning.  
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Chapter 1 Introduction 
 

1.1 G Protein-Coupled Receptors 

 

1.1.1 Overview 

 

G-protein coupled receptors (GPCRs) are a superfamily of integral membrane 

receptors, the primary function of which is to transduce an extracellular signal into the 

cell to promote a large range of physiological effects. Typically, they contain a seven 

transmembrane region with an extracellular N-terminus and an intracellular C-

terminus. To date, over 800 human GPCR genes have been identified (Chung et al., 

2012), which are activated by a diverse range of stimuli including: organic small 

molecules, proteins, peptide hormones, lipids, photons, and ions. This allows GPCRs 

to play a role in practically all elements of human life, including cardiovascular, 

endocrine, immune and nervous systems, as well as cell growth, embryonic 

development and even emotion (Dobolyi, et al., 2012; Wettschureck & Offermanns, 

2005). This also means that GPCR misfunction is involved in a number of diseases 

such as diabetes, cardiovascular failure, bone disorders, and cancer. As such, between 

30-40% of all current drugs target GPCRs (Ghosh et al., 2015). Therefore, by 

understanding GPCR structures and functions, it may be possible to design novel 

drugs to overcome diseases that have long eluded current treatments. 

 

There are several subfamilies of GPCRs, the most abundant of which is the family A, 

or Rhodopsin like-receptors, which account for a minimum of 70%, of all GPCRs 

(Fredriksson, 2003). A significantly smaller subfamily is the Family B, or secretin-

like receptors, which are encoded by only 15 genes in humans. The parathyroid 

hormone (PTH) receptors 1 and 2 (PTH1R/PTH2R) are one of these 15 family B 
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GPCR members, all of which bind to hormone peptides. Other members include the 

glucagon, glucagon-like-peptide 1 and 2 (GLP1R, GLP2R), corticotropin-releasing 

factor (CRF), calcitonin, glucose dependant insulinotropic hormone receptor (GIPR), 

growth hormone releasing hormone, pituitary adenylate cyclase activating polypeptide 

(PACAP), and the secretin receptors. These receptors are characterised by a 120-150 

residue extracellular domain (ECD) that contains six conserved cysteine residues to 

form 3 disulphide bonds, the typical 7 -helical transmembrane domain, and an 

intracellular C-terminus. At the start of this project, it was hypothesised that solving 

the full-length PTH receptor structures could form the foundations for structurally 

based drug design and ultimately lead to the creation of new drugs. 

 

Before the onset of the work described in this thesis, only the ECD of PTH1R had been 

solved (Pioszak & Xu, 2008), but now there are two full-length structures, an inactive 

and an active structure (Ehrenmann et al., 2018; Zhao et al., 2019). In recent years 

techniques have been developed in aiding protein structure determination as typically, 

GPCRs have very low levels of expression and are highly flexible proteins; both of 

these features make crystallisation challenging. Thermostabilising mutations, 

truncated receptors, fusion proteins, and improved expression systems have all been 

utilised in solving GPCR structures. This has led to practically all family B GPCR 

structures being solved as shown in Figure 1.1. 
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At the time of writing, only three family B receptors have yet to be solved: PTH2R, 

GIPR, and the vasoactive intestinal polypeptide (VIP) receptor 2; however, a GIPR 

structure is now available on BioRxiv (Zhao et al., 2021). A significant factor in this 

rise of solved structures was the optimisation of cryogenic-electron microscopy (cryo-

EM), which accounts for 70% of all solved family B structures. At the start of this 

project (2016) only four structures were solved, CRF receptor 1 (CRF1R) and the 

glucagon receptor, all of which were x-ray crystal structures.  The initial aims of this 

work were to solve the structures of the PTH receptors by utilising similar 

methodologies as these previously solved structures; however, with the ever 

increasing knowledge in GPCR structural studies, there were many alternative routes 

and techniques that could be utilised.  

Figure 1.1: A timeline showing the year-on-year rise of solved family B structures. At 

the beginning of the project (2016) only four structures were solved, but by the end of 

2020 this had increased to 49 individual structures, with approximately 70% solved 

using cryo-EM. 

0

10

20

30

40

50

60

2013 2014 2015 2016 2017 2018 2019 2020

To
ta

l n
u

m
b

er
 o

f 
St

ru
ct

u
re

s

Year

cryo-EM Crystal



4 

 

1.2 Techniques to Solve GPCR Structures 

1.2.1 Crystallisation 

Crystallisation of GPCRs has been a major obstacle that has only recently been 

overcome. Natively, GPCRs have low expression levels and are highly flexible 

proteins with multiple conformations. It is also challenging to both solubilise and 

purify the receptors whilst maintaining their functionality. The 2-adrenergic receptor 

(2AR), a family A GPCR, bound to a partial inverse agonist, carazolol, was the first 

non-rhodopsin GPCR to be solved and required a baculovirus-mediated expression in 

insect cells (Rasmussen et al., 2007). Insect cells allow post-translational 

modifications and can produce proteins with a high expression level. The majority of 

solved GPCRs have since used insect cell lines as their primary expression model.  

 

GPCRs typically have highly flexible N and C-termini in addition to a heterogeneous 

third intracellular loop, and thus the  two termini are often truncated (Hollenstein et 

al., 2013; Manglik et al., 2012; Rasmussen et al., 2007; Siu et al., 2013). To stabilise 

the third intracellular loop, a fusion approach is commonly performed i.e. replacing 

the loop with a crystallisable protein that efficiently diffracts such as T4 lysozyme or 

apocytochrome b562RIL (BRIL). These fusion proteins have been used to solve the 

glucagon and  CRF1R structures respectively (Hollenstein et al., 2013; Siu et al., 2013), 

as well as many family A GPCR structures. Fusion proteins can extend the complexes’ 

polar surface area to increase the number of crystal contacts formed throughout 

crystallisation. Maltose binding protein (MBP) has been fused to the ECD of PTH1R 

to solve its structure (Pioszak & Xu, 2008). Another means of increasing receptor 

stability is thermostabilisation, whereby a number of mutants are created and tested 

on their ability to bind ligands at increasing temperatures. Improved thermostability 



5 

 

reduces receptor flexibility and stabilises the protein in a single conformation. This 

method, in conjunction with the fusion of BRIL, was used to solve the CRF1R structure 

(Hollenstein et al., 2013). Often various combinations of these techniques are used to 

produce stable GPCRs that must then be isolated and purified. 

 

Detergents are critical for GPCR solubilisation and removal from the host cell 

membrane. A commonly used detergent is dodecyl maltoside (DDM), which was used 

for the crystallisation of 2AR (Rasmussen et al., 2007). However, the choice of 

detergent must be determined through screening as membrane proteins can lose their 

functionality in the detergent-solubilised state. As GPCRs are embedded membrane 

proteins they are in close proximity to cholesterol. Interactions between GPCRs and 

cholesterol maintain receptor structure and promote stability (Yao & Kobilka, 2005); 

therefore, cholesteryl hemisuccinate (CHS), a cholesterol derivative, is often added to 

detergents during GPCR purification. This creates a more native-like environment and 

can maintain functional receptors for longer periods. The receptors can then be 

purified using affinity tags, such as an amino FLAG and carboxy poly-histidine tag 

(His). These tags can then be targeted in an antibody affinity column or immobilised 

metal affinity chromatography respectively (Manglik et al., 2012). Another form of 

purification is ligand affinity purification, which has the additional benefit of only 

purifying correctly folded and functional receptors (Novick & Rubinstein, 2012). 

 

After the receptors have been purified, they need to maintain their functionality to 

produce meaningful structures. To achieve this, a highly selective ligand that can 

promote the receptor into a certain conformation can be used. Covalent agonists that 

irreversibly bind their receptor can potentially create extremely stable receptors that 



6 

 

remain in single conformations. By utilising this technique, a covalent agonist 

facilitated the crystallisation of the 2AR so that the structure could be determined 

(Rosenbaum et al., 2011); however, the final structure was in an inactive state. 

Contrastingly, virtually all active structures have been solved using non-covalent 

ligands. After the purified GPCR is both stable and retains functionality it often 

becomes crystallised through lipid cubic phase (LCP) crystallisation. In LCP the 

protein becomes embedded in a lipid bilayer to mimic the native environment. The 

most commonly used lipids in LCP are monoolein and cholesterol, though for the 

2AR-Gs complex MAG7.7 replaced monoolein to accommodate for the large 

hydrophilic region of the G protein (Rasmussen et al., 2011b). LCP produces 

microcrystals that are highly fragile and sensitive to radiation damage. As such, 

synchrotron sources have to use microfocus beam lines, as the crystals are often 

invisible to regular beams (Ghosh et al., 2015).  

 

1.2.2 Nanobodies 

 

A major breakthrough was the use of nanobodies; antibodies originating from llamas 

that do not have light chains. Camelids (e.g., camels and llamas) can produce heavy-

chain only antibodies i.e. they do not contain any light chains, and are composed of 

one variable and two constant domains (Hamer-Casterman  et al.,  1998) (Figure 1.2). 

Nanobodies are single domain antibodies; they are made up of a single monomeric 

variable domain This means they are significantly smaller (~15 kDa) than a standard 

antibody (~150 kDa), but they still retain the equal binding capabilities of fully sized 

antibodies. Obtaining a specific nanobody requires immunisation of a camelid, 

harvesting their lymphocytes, and isolation of the mRNA. Functional nanobodies are 

then selected using either phage or yeast displays. 
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The first example of a nanobody being used to solve an active GPCR was nanobody 

80 (nb80), which mimicked G protein behaviour by increasing receptor affinity for its 

agonist upon binding to the β2AR (Figure 1.3B) (Rasmussen et al., 2011a). Shortly 

after this, nanobody 35 (nb35) was utilised to solve the active 2AR-Gs complex by 

stabilising G protein interactions (Figure 1.3A) (Rasmussen et al., 2011b), as nb35 

stabilises the G protein at the / subunit interface and prevents dissociation. 

Nanobodies have since been used to solve various active GPCRs such as GLP1R, the 

calcitonin gene related peptide receptor (CGRP), and the Calcitonin receptor (Liang 

et al., 2018; Liang et al., 2017; Zhang et al., 2018). 

 

Conventional antibodies do not usually bind to clefts on protein surfaces as they 

contain six variable antigen binding loops as opposed to only three from heavy-chain 

only antibodies. The higher number of variable loops in conventional antibodies 

typically form planar surfaces for antigen binding, whereas camelid antibodies have 

Figure 1.2: A simplified schematic highlighting the differences between conventional 

antibodies, camelid antibodies and nanobodies. A conventional antibody contains two 

heavy chains (HC) and two light chains (LC), both of which have constant (C) and 

variable fragments (V), which provides the antibody with different binding 

specificities. Camelid antibodies do not have light chain and are approximately 90 

kDa. The nanobody is a single gene fragment derived from the variable region of the 

camelid heavy chain antibody that retains specificity for its target.   
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convex antigen binding sites, primarily formed by the third variable loop (De Genst et 

al., 2006). This allows heavy-chain only antibodies to access regions in proteins that 

are usually not accessible by conventional antibodies. This, along with the added 

benefit of being able to bind conformational epitopes, establishes nanobodies as highly 

advantageous tools for stabilising proteins and improving crystallisation. 

 

 

A combination of the previously discussed techniques were used to solve the 2AR-

Gs structure (Figure 1.4), the first active GPCR complex structure (Rasmussen et al., 

2011b). To accomplish this, T4 lysozyme was N-terminally tagged to a C-terminally 

truncated 2AR and FLAG purified. All three subunits of the G-protein (, , and ) 

A              B                           C 

Figure 1.3: The comparison of different nanobodies on the structure of the 2AR. A. 

The 2AR-G protein-nb35 complex (PDB entry 3SN6). The nb35 (magenta) protein 

occupies and stabilises the interface between the  (yellow) and  (cyan) subunits, 

there is no interaction with the  subunit (blue). The 2AR (green) is stabilised in an 

active state bound almost exclusively to the  subunit. B. The 2AR (green) bound to 

nb80 (magenta) (PDB entry 3P0G). The nb80 was specifically designed to stabilise 

the receptor in an active state and mimics the  subunit interaction. C. Alignment of 

the two 2AR’s solved using different nanobodies. The receptors align extremely well, 

but there are some differences on the cytoplasmic end, such as a 3 Å movement in 

helix VI of the 2AR-G protein-nb35 complex. 2AR-G protein-nb35 is in green and 

2AR-nb80 complex is in magenta. 
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were expressed in HighFive insect cells, with a 6 x His tag attached to the  subunit. 

Following a His purification they were able to pull down all G protein subunits. The 

heterotrimer was then mixed with an agonist bound-2AR, forming the GPCR-G-

protein complex. After a further FLAG/size exclusion purification they were left with 

a purified 2AR-Gs complex. The nb35 protein, specific for the interface between 

the  and  subunits, was also added to maintain stability of the complex and inhibit 

dissociation. Variations on this protocol have been used to solve active GPCRs 

(García-Nafría et al., 2018a; Liang et al., 2017; Zhao et al., 2020), but the principles 

have remained the same. 

  

Figure 1.4: Alignment of inactive and active 2AR structures. Alignment of the two 

receptor states give a R.M.S.D value of 1.417, the most critical differences being a 

roughly 14 Å bend in helix VI and a cytoplasmic end extension of helix V. The PDB 

entries for the active 2AR (green) and inactive 2AR (orange) are 3SN6 and 3NY8 

respectively. 
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Currently, the techniques available for GPCR crystallisation have made determining 

GPCR crystal structures far more feasible, with over 400 solved structures in the 

protein data base (PDB). With these advances it is now possible to solve GPCR 

structures that were previously unobtainable, such as the PTH receptors. Indeed, using 

several techniques as described here, Ehrenmann et al. (2018) were able to solve the 

inactive PTH1R structure at a 2.5 Å resolution. Furthermore, Zhao et al. (2019) were 

even able to solve the active structure of PTH1R using cryo-EM.  

 

1.2.3 Cryogenic Electron Microscopy 

 

Crystallography relies on the use of X-rays to determine protein structure, through the 

use of x-ray diffraction experiments. Cryo-EM uses electrons to determine atomic 

level details. The use of electrons requires the use of a vacuum, as electrons are 

scattered in air, and have a high chance of causing radiation damage to the protein. To 

minimalize radiation damage the proteins must be held at cryogenic levels (roughly    

-150 C or lower), which also accomplishes protein preservation. Typically only 

around 3 L of sample at a concentration of 0.05-5 M is required for cryo-EM 

(Passmore & Russo, 2016). The sample is applied to a grid, which has a thin ‘holey’ 

carbon film, and any excess liquid is removed using filter paper. The grid is then 

immediately plunged into liquid ethane to cryogenically freeze it. This, ideally, should 

create a very fine layer of ice which contains the protein of interest in several 

confirmations. Two-dimensional (2D) images, or particles, of the protein can then be 

captured and combined to produce a three-dimensional (3D) reconstruction.  

 

At the time the first active GPCR was solved (Rasmussen et al., 2011b) the resolutions 

obtained from cryo-EM were generally poor, ranging from 7-9 Å; these were typically 
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large and stable protein complexes. In 2013, the transient receptor potential cation 

channel subfamily V member 1 (TrpV1), a membrane protein, was solved at 3.4 Å 

(Liao et al., 2013). Now many active family B GPCRs have been solved using cryo-

EM. There are multiple reasons why there has been such an advancement in cryo-EM. 

One critical point is the development of direct electron detectors. These detectors have 

a remarkable efficiency and since cryo-EM can produce images with high levels of 

background noise these detectors have been crucial in improving cryo-EM efficiency 

and resolution. Briefly, instead of creating a single image the detectors can collect 10’s 

of frames per second, essentially capturing a movie of the molecules. Every frame can 

then be corrected for radiation damage. Electrons are significantly more damaging to 

biological samples than x-rays and can very rapidly destroy the sample. The multiple 

frames allow the user to remove particularly blurry images and through averaging 

make the pictures clearer. The development of voltage potential phase plates has also 

allowed users to further increase the contrast between particles and background noise, 

making it easier to isolate the protein (Danev et al., 2019).  

 

Recently, many GPCRs have been solved using cryo-EM including the GLP1R, 

calcitonin, adenosine A1 and A2A receptors (A1R/A2AR), the serotonin 5-

hydroxytryptamine 1B receptor (5-HT1BR), -opioid receptor (-OR), CGRP, the 

human rhodopsin receptor, PTH1R, and many more. (Draper-Joyce et al., 2018; 

García-Nafría et al., 2018a; García-Nafría et al., 2018b; Koehl et al., 2018; Kossiakoff 

& Subramaniam, 2018; Liang et al., 2017; Zhang et al., 2017; Zhao et al., 2019). The 

global resolution of these receptors varies from 3.5 (-OR) up to 4.5 Å (rhodopsin). 

These cryo-EM studies consistently produced similar findings to previously solved 

GPCR and GPCR-G-protein complex crystal structures. The active structure of A2AR 
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was the first instance of directly comparing the same GPCR between cryo-EM and x-

ray crystallography (Carpenter & Tate, 2017; García-Nafría et al., 2018a). The overall 

architecture of these two structures was highly similar, however there were instances 

of disagreement. In the cryo-EM structure, extracellular loop (ECL) II was far more 

disordered and flexible, whereas in the crystal structure it was a helical loop that 

capped the receptor. The reasoning for this alteration was that the cryo-EM structure 

was solved at a more physiological pH (pH 7.5) than the crystal structure. This caused 

the loss of a salt bridge, leading to a more disordered structure. The similarities 

between the two structures highlights how cryo-EM can be used as an alternative to 

x-ray crystallography. 

 

Cryo-EM also has the advantage of speed over x-ray crystallography, as the formation 

of crystals is not required. Typically, to acquire a crystal structure extensive protein 

engineering is a necessity. This can include thermostable mutagenesis, identifying 

optimal protein truncations, and locating the ideal target for a fusion protein insertion. 

This is not necessarily required for cryo-EM, as shown by the full-length calcitonin 

receptor, which only had a N-terminal FLAG and C-terminal His tag modifications 

(Liang et al., 2017). Protein engineering is still utilised to help solve GPCR structures, 

as the rhodopsin receptor was solved with the addition of a C-terminal BRIL insertion 

to facilitate expression (Kossiakoff & Subramaniam, 2018). An additional advantage 

of cryo-EM is that milder detergents such as LMNG can be used for solubilisation and 

purification (Hauer et al., 2015).   

 

A major limitation of cryo-EM is the size of protein that can be solved. Smaller 

proteins (<100 kDa) produce very poor signal to noise ratios, making it extremely 
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difficult to accurately determine particles from background. In 2016 the smallest 

protein to be solved was the 93 kDa isocitrate dehydrogenase (Merk et al., 2016), yet 

just one year later a cryo-EM structure for human haemoglobin (64 kDa) was solved 

to 3.2 Å (Khoshouei et al., 2017). To date, the smallest protein structure solved 

through cryo-EM is 43 kDa, the catalytic domain of protein kinase A (Herzik  et al., 

2019). Natively GPCRs are approximately 30-50 kDa, raising issues regarding the use 

of cryo-EM to deduce their structure. All cryo-EM GPCR structures are solved as 

complexes that typically include a G-protein and a nanobody. For example, the final 

product of the A2AR-G-protein complex was approximately 135 kDa (García-Nafría, 

et al., 2018a). Smaller sizes such as a GPCR-mini G protein complexes (~60-70 kDa) 

and inactive GPCRs are unlikely to be easily solved using cryo-EM due to these size 

limitations. 

 

1.2.4 Mini G Protein 

 

Following the publication of the active 2AR-G protein structure it was revealed that 

more than 97% of contacts made between the receptor and the G protein occurred 

through the GTPase domain of the  subunit. This domain was then engineered into a 

roughly 25 kDa protein termed the mini-Gs protein (Carpenter & Tate, 2016). Mini G 

proteins have several advantages over their heterotrimeric counterparts; as soluble, 

highly expressing proteins that retain stability even in harsh detergents, they are 

extremely useful in the field of structural biology. The protein designed by Carpenter 

& Tate (2016) was efficiently able to bind to the 1AR and form a stable complex, 

even without the  subunit present (Figure 1.5B). By utilising mini-Gs, the crystal 

structure of the A2A receptor has been solved to 3.4 Å (Carpenter et al., 2017). This 
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was the first instance of the A2A in its active form and highlighted the suitability of 

mini G proteins in structural studies.  

 

However, this does not mean a perfect alternative to native G proteins has been 

discovered. Mini G proteins have several limitations; as previously noted they are only 

approximately 25 kDa as opposed to the roughly 90 kDa full-length G protein, 

meaning GPCR-mini Gs complexes would be extremely difficult to solve using cryo-

EM. Furthermore, despite the majority of binding occurring in the GTPase domain of 

the  subunit, a mini G protein removes any potential  interactions that may also be 

occurring. Despite this, there is a cryo-EM structure of A2A that utilised a mini G 

protein (García-Nafría, et al., 2018a); however, in this instance the full structure 

contained a receptor, mini G protein, the -subunit and nb35, allowing the size 

limitation to be overcome. This structure was able to reveal that there are interactions 

between the first intracellular loop and the  subunit, an interaction that would be 

impossible to show in a GPCR-mini G protein structure alone. In family B GPCRs, 

helix 8 is angled approximately 30 more towards the G protein, promoting further 

interactions with the  subunit, which are not seen in family A receptors. Solving the 

structures of G protein bound GPCRs is an integral step in unravelling their structural-

functional relationship and is highly desirable in the development of any future drugs.  
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1.3 Improving and Optimising Workflow 

1.3.1 IMPROvER 

 

Currently, two-thirds of all solved GPCR structures have at least one stabilising 

mutation, highlighting the importance of protein engineering. However, the 

techniques decribed above are not exclusive to solving GPCR structures and can be 

applied to any type of protein structural work i.e. Shi et al. (2019), through protein 

engineering, created a 8 x His-tagged thermostable uricase, expressed in Escherichia 

coli (E. coli) and obtained the crystal structure at a 2.0 Å resolution. Unfortunately, 

creating a thermostable protein is a labour intensive process that continues to hold 

back structural studies. Using an alanine scanning mutagenesis approach, whereby all 

A                              B                       C                               

Figure 1.5: Comparison between a full heterotrimeric G protein structure and the mini 

Gs protein. A. A cartoon representation of the active 2AR (green) bound to the 

heterotrimeric G protein, stabilised by nanobody 35 (yellow). The  subunits are 

represented by cyan and blue respectively (PDB entry 3SN6). B. The active A2A 

receptor (blue), stabilised by a mini G protein. The engineered GTPase domain of the 

 subunit (purple) is able to stabilise the receptor in its active state, allowing 

crystallisation to be performed (PDB entry 5G53). C. Alignment of mini Gs (yellow) 

and the full  subunit (magenta). Over 97% of the receptor-G protein binding 

interactions occur in the GTPase domain, which is the foundation for the mini Gs 

protein. 
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residues are individually mutated into alanines, only 5% of mutations (16/315) for the 

A2AR increased the thermostability by > 1.5 °C (Lebon et al., 2011). Therefore, 

improving these procedures will be a major asset in the field of structural biology. A 

novel approach to this problem is the integral membrane protein stability selector 

(IMPROvER) system.  

 

IMPROvER is a computational pipeline that can identify potentially stabilising 

mutations (Harborne et al., 2020) by using three separate approaches: deep-

sequencing, model-based, and data-driven models. In the deep-sequencing approach, 

IMPROvER sequence aligns over 8,000 sequences to assess natural variation in the 

protein sequences. It uses EVmutation (Hopf et al., 2017) as a basis for this search, 

whereby it compares the current amino acid position against the sequence consensus. 

Residues that have a low occurrence at a set position are candidates for substitution 

and the program nominates amino acids with a higher frequency. EVcoupling module 

plmc creates a matrix with a scoring system based on how similar each position is 

compared to the overall consensus. 

 

In the structure-based module, in-silico mutagenesis is performed on homology 

models using FoldX (Schymkowitz et al., 2005). The ΔΔG, a measure for predicting 

how a single point mutation effects protein stability, is calculated for every residue by 

mutating it to an alanine. From this initial round of mutagenesis, if a position has a 

normalised score above 70% (suggested to be stabilising) it is then mutated to every 

other residue. The energy of unfolding for the final model is then compared to the 

wild-type sequence and calculates the ΔΔG. Each amino acid is then ranked on the 

best substitution. 
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Finally, the data-driven module is based on a single mutation GPCR dataset for most 

positions in the human A2AR, rat neurotensin receptor 1, and the turkey -1 adrenergic 

receptor (1AR), resulting in approximately 2,000 mutational results. Each of these 

were then run through various bioinformatics tools to predict secondary structure, 

disorder, membrane topology, lipid and helix contact, and sequence 

alignment/conservation. By applying a weighted score system to these parameters 

IMPROvER provided a final scoring system, by multiplying the individual values, 

which ranks the mutations from most stabilising to least.  One aim of this research is 

to verify the validity of this novel program, potentially easing the workflow of 

structural studies. 

 

1.4 GPCR signalling 

 

1.4.1 G Protein Signalling 

 

In the classical view of GPCR signalling, to begin the process of signal transduction 

an agonist, or ligand, must bind to a receptor, which then elicits associated downstream 

effects. However, an agonist is not always required to activate a receptor as many 

GPCRs display constitutive activation (Seifert & Wenzel-Seifert, 2002) and it is now 

known that GPCRs have various conformations that can increase basal G protein 

activity. Once the conformation of the GPCR is in a favourable state, the G protein 

can bind the receptor allowing guanine nucleotide exchange to occur. Guanine 

nucleotide exchange is the process by which guanosine triphosphate (GTP) replaces 

the previously bound guanosine diphosphate (GDP) (Sullivan et al., 1987). This 

process ultimately activates the G protein and stimulates its decoupling from the 

GPCR and the dissociation of subunits, thus permitting the associated downstream 

effects. The G protein is composed of three subunits, an α and a βγ complex (Ueda et 
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al., 1994), with the α subunit being responsible for the GDP/GTP binding. Both the α 

and βγ subunits can dissociate from the receptor and bind other molecules to stimulate 

distinct effects. The β and γ subunit are always associated with each other and do not 

exist as individual proteins. The α subunit has its own intrinsic GTPase activity which 

is responsible for hydrolysing the GTP back into GDP and restabilising the G protein 

(Markby et al., 1993). This process is summarised in Figure 1.6. 

 

When the G protein dissociates the individual subunits proceed to activate further 

downstream proteins. There are only 16 genes that encode the α subunits, which are 

classified into 4 main families, Gs, Gi/o, Gq, and G12/13. The C-terminus of the α subunit 

is critical in defining coupling specificity. Mutations in this region can inhibit G 

protein activation and only a 3 amino acid substitution is needed to change from Gq to 

Gs  (Conklin et al., 1993; Semack et al., 2016). These α subunits all have different 

signalling pathways. Gs works by activating the protein adenylyl cyclase, which is 

responsible for the production of the second messenger cyclic adenosine 

monophosphate (cAMP). cAMP can directly activate a number of proteins including, 

but not limited to, Protein kinase A, exchange proteins activated by cAMP and ion 

channels. These proteins then stimulate a range of different downstream effects. 

cAMP dependant pathways are very common amongst GPCRs, such as the β2AR and 

the PTH receptors. As such, when experimenting on Gs, a readout of the cAMP 

response is often used as a direct measurement of activity.  



19 

 

 

 

 

 

Gi has the opposite effect on cAMP production as it is able to inhibit adenylyl cyclase 

activity. This results in a decrease in cAMP. Gq signalling pathways are able to 

increase calcium ion release from the endoplasmic reticulum and can increase protein 

kinase C activity. This is achieved through phospholipase C activation, which 

hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate 

Ligand binding promotes a 

conformational change and 

facilitates G protein binding, 

which facilitates guanine 

nucleotide exchange 

The G protein reforms, 

creating a heterotrimer 

which then binds to a 

new GPCR. The ligand 

is also dissociated. 

RGS activates 

GTPases, which 

converts GTP to 

GDP. 

GTP binding causes 

dissociation of the α 

subunit from the 

GPCR and the βγ 

subunits. These are 

then free to promote 

downstream 

signalling. 

Figure 1.6: Schematic describing the process of GPCR signalling. When the receptor 

is activated by a ligand there is a conformational change, allowing G protein binding. 

The α subunit then facilitates guanine nucleotide exchange, from GDP to GTP. The 

presence of GTP causes the dissociation of the α subunit from the receptor and the βγ 

subunits. These are then able to activate downstream proteins such as adenylyl cyclase. 

Regulators of G protein signalling (RGS) are then able to activate the GTPase function 

of α subunits which catalyses GTP back into GDP. This allows the G protein to reform 

and bind to another receptor.   
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(IP3) and diacylglycerol (DAG). IP3 binds to IP3 receptors on the endoplasmic 

reticulum, promoting the release of calcium ions, facilitating DAG activation of 

protein kinase C.  

 

G12/13 signalling pathways activate RhoGTPase nucleotide exchange factors 

(RhoGEFs), which are GTPase activating proteins (GAPs). G12/13 promotes the 

translocation of RhoGEFs to the membrane, where they can activate RhoA. RhoA can 

activate downstream effectors such as Rho-associated protein kinases, which often 

regulate cellular cytoskeletons. RhoGEFs also contain regulators of G protein 

signalling (RGS) domains which can interact with activated α subunits to promote the 

conversion of GTP to GDP, thus promoting the inactivation of GPCR signalling (Chen 

et al., 2012). GPCRs are not limited to binding only one type of α subunit, for example 

when expressed in Chinese hamster ovary (CHO) cells the A1R can couple to both Gi 

and Gs (Cordeaux et al., 2004). GPCRs may therefore be able to take agonist specific 

conformations based on small differences in ligand structures. These different 

conformations may then be able to lead to G protein specificity. One receptor that has 

demonstrated these multiple conformations is PTH1R, which has two main 

endogenous peptides: PTH and parathyroid hormone related peptide (PTHrP). 

 

1.5 PTH Receptors 

1.5.1 PTH1R 

PTH1R is expressed in the bone and kidneys where, upon activation by PTH, it 

regulates calcium and phosphate homeostasis. A decrease in calcium concentration is 

detected by the parathyroid hormone glands, which then promotes an increase in PTH 

production. Binding of PTH to PTH1R promotes mobilisation of calcium and 
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phosphate from the bones, renal tubular reabsorption of calcium, and an increased 

production of vitamin D (Potts, 2005). PTH promotes the production of active vitamin 

D, which facilitates the absorption of calcium in the small intestine (Figure 1.7). 

PTHrP is also capable of stimulating PTH1R and induces similar effects on bone and 

kidney cells as PTH. PTH1R is primarily coupled to Gs, which, upon PTH binding, 

activates adenylyl cyclase to increase cAMP concentrations and increase protein 

kinase A activity. PTH is a polypeptide of 84 amino acids, PTH(1-84), though in 1971 

it was found that PTH(1-34) was just as effective regarding efficacy and affinity as 

PTH(1-84)  (Potts et al., 1971). Accordingly, it is now commonly used as a treatment 

for osteoporosis, though it can induce hypercalcemia. 

 

 

 

Figure 1.7: The role of PTH in maintaining physiological calcium levels. When the 

parathyroid glands detect a decrease in calcium concentration, they react by producing 

PTH. This is released into the bloodstream and acts in several key regions by binding 

to PTH1R. It increases renal absorbance of calcium, resulting in a decrease of calcium 

lost in the urine, promotes calcium absorption in the intestines, and cause the release 

of calcium from bones. All of these actions increase calcium levels, which is then 

detected by the parathyroid glands. This causes an inhibition and PTH production is 

decreased, helping to maintain normal calcium ion homeostasis. 
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Interestingly, PTH and PTHrP can have both catabolic and anabolic effects on bones, 

which comes from the receptor’s ability to adopt two active conformations termed RG 

and RO (Dean et al., 2008). The RG state is coupled to the G protein, whereas RO is 

independent of G protein activity. These states also have different binding capabilities 

as agonistic ligands were found to bind with a higher affinity to the RG state than to 

RO; however, antagonists did not appear to have any conformational bias (Hoare, et 

al., 2001). The increased agonist affinity may arise from structural variations between 

the two conformations as it is believed the RG state is in a more closed position. This 

hypothesis stems from the pseudo-irreversible binding of agonistic ligands in the RG 

state and the simultaneous binding of two ligands, PTH(1-34) and PTH(3-34) in the 

RO state, suggesting a more open conformation. A chimeric PTH/PTHrP peptide was 

created, which had a high affinity for the RO state and was capable of producing 

prolonged endosomal cAMP signalling, and increasing serum Ca2+ concentrations in 

monkeys (Shimizu et al., 2016).  

 

Ligands that target the two distinct states have different cAMP signalling mechanisms. 

RG state ligands produce cAMP that is localised at the cell surface; this is enabled by 

cAMP phosphodiesterases and receptor internalisation. RO specific ligands can also 

produce cAMP at the cell membrane, but they are capable of prolonged cAMP 

production, which originates from the endosome; these features of conformational 

specific agonists has led to the different responses for clinical PTH(1-34) and 

abaloparatide (Hattersley et al., 2016). Abaloparatide is a synthetic analogue of PTHrP 

that is capable of stimulating bone formation without inducing hypercalcemia, an 

effect that is often observed with PTH(1-34) (Vilardaga et al., 2011). Abaloparatide 

has a higher selectivity for the RG state, thus only producing cell surface cAMP.  
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1.5.2 PTH and PTHrP 

 

Using nuclear magnetic resonance (NMR) spectroscopy, it was initially discovered 

that both PTH and PTHrP shared several structural similarities, including an -helix 

in the N-terminus that extends to residues 13 and 14 for PTHrP and PTH respectively, 

followed by a highly flexible region (Barden & Cuthbertson, 1993). However 

following crystallisation of the peptides, the structure was found, at a 0.9Å resolution, 

to be a single continuous helix (Jin et al., 2000). The reason behind these differences 

is that the helical content of the peptide would increase under conditions that 

mimicked the native environment. This is possibly associated with PTH being a 

hydrophobic peptide and requiring hydrophobic conditions to adapt to its natural 

conformation. The complete structure of PTH(1-34) is a slightly bent amphipathic 

helix, with a 15 bend between the N and C-termini. Glycine at position 12 is a 

conserved residue between both PTH and PTHrP but substitution of this residue with 

proline, a helix breaker, dramatically decreases both the binding affinity and the 

adenylate cyclase activity by 840 and 3500 fold respectively (Chorev et al., 1990). 

This shows that the helical conformation of the peptide is essential for its binding and 

agonistic properties. 

 

Residues 1-14 of PTH and PTHrP have considerable sequence identity (~60%) and 

are essential for hormone function and receptor activation (Luck et al., 1999). Beyond 

these residues, the amino acid sequence is significantly different despite residues 15-

34 being crucial for receptor binding (Jüppner et al., 1994). The way PTH (1-34) binds 

to PTH1R is known as the ‘two-site’ model. In this model, the C-terminus of PTH(1-

34), residues 15-34, interacts with the ECD of the receptor (Bergwitz et al., 1996). 

The N-terminus of the agonist then interacts with the transmembrane domain (TMD) 
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of PTH1R. This promotes a conformational change in the GPCR leading to signal 

transduction. This model appears to be true for all family B GPCRs (Pal et al., 2012). 

A commonly used PTH1R antagonist, PTH (7-34), works on the principle that it still 

has the potential to bind the receptor but, due to the truncated N-terminus, is unable to 

activate it. 

 

1.5.3 TIP39 and the PTH2R  

Far less is known about PTH2R, both in terms of structure and function. Discovered 

in 1995, PTH2R is ligand selective for PTH and is not stimulated by PTHrP. It also 

has a highly different distribution than PTH1R as it does not occur in the bones or 

kidneys. Instead, it is primarily found in the brain, pancreas, testis, and placenta (Usdin 

et al., 1995). Additionally, it was discovered that PTH is not the endogenous ligand 

for PTH2R but that it is primarily stimulated by a tuberoinfundibular peptide of 39 

residues (TIP39) (Usdin et al., 1999). TIP39 is unable to activate PTH1R and has a 

limited homology with PTH, however it is capable of binding to PTH1R. There are 

only seven identical residues, the majority of these being at the C-terminus. 

 

TIP39s structure was solved through a combination of NMR and circular dichroism. 

(Piserchio et al., 2000). Based on the circular dichroic results it was estimated that 

TIP39 has a helical content of approximately 85% and the NMR results suggested 

there were in fact two helical components from Ala-5 to Arg-22 and Leu-26 to Leu-

36.   Despite almost no conservation of residues in the N terminus between TIP39 and 

PTH, when comparing the structures of TIP39 with PTH(1-34) many similarities are 

observed. Superposition of the peptides showed a highly conserved distribution of 

polar and hydrophobic amino acids within the N-terminus. The only significant 
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difference was Asp-7 and Arg-13 of TIP39 are charged residues as opposed to the 

hydrophobic Ile-5 and Leu-11 residues seen in PTH(1-34). Therefore, the N-terminus 

of both ligands is likely to have very similar functions regarding signalling. The C-

terminus helix of TIP39 has a lower percentage identity, compared to the N-terminus, 

and a reduced amphipathic nature compared to PTH(1-34). TIP(7-39), a PTH2R 

antagonist, has a 32 fold lower binding affinity to PTH2R than TIP39 (Hoare et al., 

2000).  

 

PTH2R and TIP39 also have strikingly different physiological functions than PTH and 

PTH1R (Figure 1.8). TIP39 increases corticotropin-releasing hormone (a hormone 

associated with the stress response) by over 300% when injected at 100 nM into medial 

basal hypothalamic explants (Ward et al., 2001). In addition, TIP39 administration is 

also capable of increasing luteinising hormone-releasing hormone and as a result also 

increases luteinising hormone concentrations. This directly implicates TIP39 and 

PTH2R as having direct effects on the hypothalamo-pituitary-gonadal axis. Indeed, 

further studies demonstrated that knockout mice for Tifp39, the gene that encodes 

TIP39, are sterile as they lacked any spermatids (Usdin et al., 2008). Furthermore, 

spermatid production could be salvaged if TIP39 was transgenically expressed and 

therefore TIP39 appears to be a requirement for maturation of sperm. There is also an 

association between TIP39 and the pain response as PTH2R is highly expressed in 

neurones that are linked with nociception. A 500 pM intracerebroventricular injection 

of an antagonist of PTH2R known as HYWH-TIP39 (TIP39 with an altered residue 

sequence of His-4, Tyr-5, Trp-6 and His-7) significantly delayed the response to both 

tail-flick and hot-plate tests (Dimitrov et al., 2010). Evidently, it is clear that the 
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physiological roles of PTH and TIP39 vary dramatically, despite activating related 

receptors.  

  

 

 

 

 

 

 

 

 

 

Currently, there are no structures of PTH2R, so knowledge in this area is extremely 

limited. PTH2R shares a 52% identity with PTH1R, though some regions such as the 

C-terminus are as low as 14% (Bisello et al., 2004). These differences lead to different 

functionalities of the receptor i.e. the residues responsible for PTH2R interactions 

with -arrestin are residues 426-457, at the C-terminus, whereas PTH1R--arrestin 

binding occurs at intracellular loop (ICL) III (Ferrari & Bisello, 

2001). Furthermore, PTH(1-34) stimulation of the receptors in human embryonic 

kidney 293 (HEK-293) cells, produces vastly different outcomes. While PTH(1-34) 

promotes -arrestin binding and internalisation of PTH1R, it does not activate this 

Figure 1.8: A simplified schematic showing PTH receptor binding specificity and 

receptor functionality. While PTH (red) is able to activate both receptors, it is unlikely 

to induce PTH2R specific responses due to receptor localisation (brain and testes). 

PTHrP (green) can only activate PTH1R and TIP39 (blue) is similarly restricted to 

PTH2R activation. PTH1R activation results in calcium ion homeostasis and PTH2R 

stimulation leads to multiple physiological effects, such as spermatogenesis, pain, and 

stress. 
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chain of effects in PTH2R, despite producing similar cAMP levels (Bisello et al., 

2004). This suggests that there must be variations within these receptors’ structures, 

which ultimately lead to these various outcomes. 

 

1.6 Solved Family B GPCR Structures 

1.6.1 Conserved ECD Structure 

Before the solution of full family B structures was possible, several ECD structures 

had been solved, such as PTH1R, CGRP, CRF1R, GIPR, GLP1R, PAC receptor 

(PAC1R), and the calcitonin-like receptor (CLR) (Booe et al., 2015; Killion et al., 

2018; Kumar et al., 2011; Pioszak & Xu, 2008; Pioszak et al., 2008; ter Haar et al., 

2010; Underwood et al., 2010). Interestingly, it was discovered that all family B ECDs 

contained two -helices and four -sheets that are arranged into a three layer -- 

fold (Figure 1.9) that is held together through three disulphide bonds. The sequence 

conservation of family B ECDs is limited to only 11 residues, of which six are 

cysteines. This conserved -- fold has since been termed the “secretin family 

recognition fold” (Pal et al., 2012). 

 

Prior to commencing this research, the ECD of PTH1R, bound to both PTH and 

PTHrP, had already been solved (Pioszak et al., 2009; Pioszak, et al., 2008). The 

amphipathic helix of the agonists binds to a hydrophobic groove within the ECD of 

the receptor, antiparallel to the C-terminal helix, resembling a “hot dog in a bun” 

conformation. This orientates the peptides so that the N-terminus is towards the TMD 

of PTH1R. The connection between these two surfaces is primarily through 

hydrophobic interactions originating from Phe-23, Leu-24, Leu-27, and Ile-28 of 

PTHrP and Val-21, Trp-23, Leu-24, Leu-28, Val-31, and Phe-34 of PTH. This 
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suggests that, despite sharing similar structures, PTH and PTHrP must have different 

binding mechanisms. PTH remains as a helix and forms critical hydrogen bonds 

between the C-terminus and the ECD. PTHrP contrastingly unwinds after Ile-31 to 

form additional hydrogen bonds. The ECD accommodates these differences in binding 

through only minor alterations in conformation, including a shift in the Ile-115 side 

chain for PTHrP and a rotamer change at Leu-41, as predicted by Mann et al. (2008).   

 

Despite sharing this highly conserved structure the requirements for it and receptor 

activation vary between family B members. They can be divided into two distinct 

groups, one in which the ECD acts as an affinity trap and is not essential for activation, 

and one in which it is an absolute requirement for activation. PTH1R, CRF1R and 

PAC1R belong to the former group; however, GLP1R and the glucagon receptor cannot 

be activated when the ECD is not present (Zhao et al., 2016). This is one of many 

differences between family B GPCRs, but accurately determining the structures of 

these receptors will aid us in unravelling their mechanisms.  
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1.6.2 Non-PTH Receptor Structures 

 

1.6.2.1 Inactive Receptor Structures 

With the advancements in structural studies, almost all family B GPCRs have now 

been solved. The first family B GPCR to be solved was the crystal structure of the 

glucagon receptor (Siu et al., 2013) at a 3.4 Å resolution. To solve this, the ECD was 

  A                                         B                                                                

  C                               

Figure 1.9: Conserved family B ECD structures. A. The ECD of PTH1R (yellow) 

bound to the C terminus of PTH (cyan). The red line resembles disordered residues 

that were unsolved in the crystal structure. B. The molecular surface binding of PTH 

to the ECD, stabilised by hydrophobic interactions. C. Alignment of isolated family 

B ECD structures. Despite having almost no sequence homology between the 

structures all take on the conserved family B fold characterised by a -- fold. 
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replaced with BRIL, the C-terminus was truncated, and it was stabilised by an 

antagonist. Structurally, the helices of the glucagon receptor are in very similar 

orientations and positions as the helices in family A GPCRs. Where the two classes 

have major differences is within their ligand binding pockets; the heights of 

extracellular loops II and VII have the largest distance between them compared to all 

of the currently solved family A GPCR structures. This creates a wider and deeper 

area for the ligand to bind to than is seen in family A GPCRs.  

 

A unique contrast to family A GPCRs was that the N-terminus end of helix I is far 

longer and exists as three -helical turns above the membrane (Figure 1.10A). This 

12-residue region is known as the stalk and is critical for glucagon binding and 

receptor activation, though it is not currently found in other family B GPCRs, such as 

CRF1R (Hollenstein et al., 2013).  Additionally, the full-length inactive glucagon 

receptor was solved by using an inhibitory antibody (Zhang et al., 2018), which 

showed the stalk region taking on a β-strand confirmation as opposed to the -helices 

previously described (Figure 1.10B). In this structure it was found that ECL I and the 

stalk region interact with each other in order to form a β-sheet, which regulate peptide 

binding by inhibiting the peptide N-terminus from binding in the TMD (Figure 1.10B). 

 

For the two-site model to remain true, ECL I/stalk interactions must be disrupted 

following the binding of the peptide C-terminus to the receptor ECD. The molecular 

interactions between the glucagon receptor and a glucagon analogue were revealed 

through a 3.0 Å crystal structure (Zhang et al., 2018), which revealed an 

approximately 90 angle shift of the ECD compared with the previously solved 

inactive structure (Zhang et al., 2018). ECL I dissociates from the stalk region and 
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forms -helical turns near helix III, while the N-terminal region (towards helix II) 

remains disordered. Following dissociation and conformational rearrangement, both 

regions form multiple interactions with the peptide. ECL I of the glucagon receptor is 

16 residues long, making it much longer than family A ECL I and some family B 

members such as CRF1R (10 residues). However, PTH1R has an even longer ECL I 

(30 residues), which may mean that this region has even more involvement in peptide 

binding and receptor activation. 

 

 

The inactive CRF1R structure was also solved in the same year as the glucagon 

receptor (Hollenstein et al., 2013). The most notable difference between these two 

receptors (excluding the elongated glucagon receptor stalk) are the tips of helices VI 

and VII, with an approximately 14 Å distance between the peaks of helix VII. The 

cytoplasmic half of the receptors adopt similar conformations, which gives both 

proteins a V-shape arrangement, creating a larger peptide binding cavity. Of particular 

       A                                                      B                         

C                                       

Figure 1.10: Cartoon representations of family B GPCR structures. A. Structural 

alignment of the inactive glucagon receptor (orange) and CRF1R (lime) (PDB entries 

4L6R and 4K5Y respectively) . The glucagon receptor has a highly elongated helix I, 

termed the stalk, which is absent in CRF1R, and there is a 14 Å distance between the 

tips of helix VII. Intracellularly the two structures closely align. B. Alignment of two 

separately solved glucagon receptor structures (PDB entries 5XEZ and 5XF1). The 

stalk and ECL I form a β-sheet (green), capping the TMD and regulating ligand 

binding. Upon binding, the stalk and ECL I dissociate, allowing the stalk to take on 

the additional 3 -helical turns seen previously. 



32 

 

interest was the discovery of the antagonist allosteric binding site, which was found 

deep in the cytoplasmic half of the receptor, 18 Å away from the cavity centre, and 4 

Å away from the intracellular boundary of the receptor. CRF2R and CRF1R have a 

very high sequence homology in this hydrophobic binding pocket; however, the 

antagonist (CP-376395) will only bind to CRF1R. Only two major differences between 

receptor sequences exist in this binding site, H199 and M276, and V195 and I272, for 

CRF1R and CRF2R respectively. Mutating the CRF1R residues to CRF2R inhibits 

antagonist binding but has no effect on peptide agonist binding (Hoare et al., 2006). 

Findings such as these highlight the medicinal benefits that structural biology can 

have, as it has identified a novel binding site, which may lead to the discovery of new 

structural based small molecule drugs. 

 

More recently, Wu et al. (2020) solved the full-length GLP1R structure at a 3.2 Å 

resolution. This was an exciting insight into a peptide-free GPCR, which revealed a 

closed conformation of the ECD. To achieve this, Wu et al. (2020) added several 

thermostabilising mutations, an ECD-binding antibody, and a negative allosteric 

modulator to trap the inactive conformation. This new structure aligned well (R.M.S.D 

of 0.6 Å) with the previously solved inactive TMD of GLP1R (Song et al., 2017); 

however, there were differences in ECLs I and III. Previously, these loops were highly 

disordered regions, but when the ECD is present, they take on -helical 

conformations. The ECD is able to form interactions with ECLs I and III, creating a 

closed conformation. Unexpectedly, this conformation does not match the two-site 

binding model that is prevalent in family B GPCRs. It is hypothesised that in the 

peptide-free receptor the ECD has subtle dynamics, but that it favours the closed 
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conformation. These small movements are enough to allow GLP to reach its binding 

site, promoting large conformational changes and peptide binding in the TMD core.      

Comparing this full-length structure to the previously solved glucagon structure 

(Zhang et al., 2018), also bound to an inhibitory antibody, revealed strong similarities 

in the cytoplasmic halves of the receptors (Figure 1.11). This was expected as both 

receptors are Gs coupled and so should have similar binding mechanisms. 

Contrastingly, there are major structural differences on the extracellular half of the 

receptor, especially in ECLs I, III and the ECD. As previously discussed, ECL I and 

the stalk region of the glucagon receptor interact with each other in order to form a β-

sheet to help regulate peptide binding, whereas GLP1R-ECL I has an -helical 

arrangement.  The most significant difference regarding orientation is the ECD; the 

glucagon receptor’s ECD has a far more open arrangement, while, as previously 

mentioned, the GLP1R-ECD is closed. It should be noted that the inhibitory antibody 

interacts with ECL I, limiting the flexibility of the ECD in the glucagon receptor 

structure. Measuring from the C-terminal tips of the α-1 helix of the -- ECD fold, 

there is an approximately 50 Å distance between the two structures. A noteworthy 

observation is that individual mutations of the ECD, ECL I, or ECL III were all able 

to increase the basal activity of the glucagon receptor; thereby suggesting that the ECD 

may be a negative regulator of activity (Koth et al., 2012). The closed conformation 

of the ECD in the GLP1R ECD (Wu et al., 2020) conforms to this hypothesis; however, 

there have been no identifiable mutations in the ECD/ECL interface that increase basal 

activity levels for GLP1R.   
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1.6.2.2 Active Receptor Structures 

As of 2020, we now have a representative active structure from every family B GPCR 

subfamily (Figure 1.12), which were all solved by cryo-EM. To discuss each one in 

detail would be impractical for the purposes of this introduction, so only some of these 

receptors shall be touched upon. The first active family B GPCR to be solved was the 

GLP1R (Zhang et al., 2017). To facilitate the expression and purification of these 

receptors, a FLAG-tag was inserted after a hemagglutinin signal peptide and then 

expressed in insect cells. To increase complex stability nb35 was also co-expressed. 

       A                                                       

 

 

 

 

 

       B                                                              

Figure 1.11: The differences between GLP1R structures and the glucagon receptor. A. 

Comparing the major differences between two inactive state GLP1R structures. The 

major conformational differences lie in ECLs I and III. PDB entries 6LN2 and 5VEX 

B. Alignment of full-length GLP1R and glucagon receptor structures. The ECD are in 

vastly different orientations, with approximately 50 Å between the tips of the 1 helix 

of the secretin family recognition fold. PDB entries 6LN2 and 5XEZ. 
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GLP was found to stably interact with TMD I, II, V, VII, ECL I and II, and the ECD. 

The ECD-GLP binding interactions were identical to the previously solved ECD 

structure (Underwood et al., 2010). ECL II has a key role in GLP binding, and thus 

receptor activation, as there are several polar interactions from residues 297-299 to the 

peptide’s serine residues (S14, 17, and 18). Interestingly, the N-terminus of the peptide 

has an additional helical turn compared to Underwood’s et al., (2020) ECD-GLP 

structure, which allows GLP to reach deeper into the TMD binding pocket, a position 

comparable to the active 2AR structure (Rasmussen et al., 2011b). 

  

Figure 1.12: An overview of the current structural knowledge of active family B 

GPCRs. The colours represent the peptide (orange), receptor (green), Gs (purple), 

nb35 (yellow), -subunit (blue), and the -subunit (cyan). In cases where there are 

multiple active structures such as GLP1R only one active structure is shown. The PDB 

codes for each structure are also shown. As of March 2021, a cryo-EM GIPR structure 

was uploaded to BioRxiv, but the PDB code is not publicly available. 
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At the time of publication there was no inactive GLP1R structure, so the glucagon 

receptor was used to identify key structural changes.  The most significant difference 

between these receptors is a kink found within helix VI (Figure 1.13), which occurs at 

the conserved PXXG motif of family B GPCRs.  Proline and glycine residues make 

this motif more flexible and likely to unwind and appear to be essential for signal 

transduction. This kink has since been found in all other family B GPCR active 

structures (Liang et al., 2020). Ligand binding promotes the unwinding of helix VI, 

which then allows interactions with the 5 helix of Gs, facilitating G protein-receptor 

binding. When superimposed onto the active 2AR an almost identical GPCR-G-

protein conformation is seen; however, there are additional interactions between the  

 subunit and ICL III and helix VIII. The extracellular half of helix VI is also affected 

though an outward movement compared to the inactive glucagon receptor. This allows 

the peptide agonist to bind deeper into the TMD binding cavity by creating a wider 

opening. The other major difference is a bend in helix VII at G359, which ultimately 

creates an approximately 4.5 Å movement of the helix VII tip from the corresponding 

position in the glucagon receptor.  



37 

 

 

 

 

 

 

 

 

 

 

More recently, GLP1R has been solved bound to a non-peptide agonist (TT-OAD2) at 

a 3.0 Å resolution (Zhao et al., 2020). TT-OAD2 binds to the extracellular half of the 

receptor, as opposed to deep within the TMD pocket as seen by the allosteric 

antagonistic binding site in CRF1R (Hollenstein et al., 2013). The primary interactions 

are hydrophobic bonds to residues in TMD I, II, III, and ECL I and II. There is little 

overlap between the TT-OAD2 and GLP binding site (Zhang et al., 2017); of the total 

29 residues that interact with the two agonists, only 10 interact with both agonists. 

GLP also has interactions with TMD V-VII and penetrates much deeper into the TMD 

core. Despite the different binding sites, the two active structures have a high 

alignment (R.M.S.D of 0.68) and are almost identical towards the cytoplasmic half of 

the receptor. This means that despite different binding properties the two agonists are 

able to promote similar conformational changes, such as the kink in helix VI, to allow 

the binding of the G protein. Using molecular dynamic simulations Zhao et al., (2020) 

demonstrated that upon GLP binding, there were persistent interactions with Y152, 

Figure 1.13: Structural alignment of the active GLP1R (green) and the inactive 

glucagon receptor (orange). PDB entries 5VAI and 4L6R respectively. The most 

noteworthy conformational change is the sharp kink in helix VI (now confirmed to be 

highly conserved in all active family B GPCRs) which facilitates G protein binding 

through the 5 helix of Gs. 
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R190, Y241, and E364; however, TT-OAD2 allosterically alters the highly conserved 

central polar network of family B GPCRs, a water network where stable water 

molecules are able to facilitate receptor stability, through K197, Y145, and Y148. 

(Zhang et al., 2017).    

 

With the recent full-length inactive GLP1R structure being solved (Wu et al., 2020) it 

has granted us a new insight into the activation process of family GPCRs (Figure 1.14). 

The activation of GLP1R requires a dramatic 28 Å change to the position of the ECD, 

from a closed to an open conformation. There is a large reorientation of ECL I 

(approximately 180⁰), and an outward movement of 5 Å, which grants the peptide a 

wider opening into the TMD core. Without this movement the sidechain of residue 

D215 would inhibit GLP access to the TMD. There is a large outward movement of 

ECL III of approximately 12 Å. Despite these large openings of the TMD the binding 

pocket surface area remains relatively similar to the inactive state due to an inward 

movement of helix II following peptide binding. With this information we can begin 

to create a step-by-step understanding of GLP peptide binding promoting 

conformational changes, which facilitates G protein binding.  
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A recent breakthrough was achieved by Qiao et al. (2020), who were able to solve the 

active glucagon receptor structure bound to both Gs and Gi. Both proteins bound 

into the cavity created by the kink in helix VI, accompanied by 8 and 2 Å outward 
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Figure 1.14: GLP1R structure and activation process A. Alignment of inactive GLP1R 

(green) and active GLP1R (blue), PDB entries 6LN2 and 5VAI respectively. The 

conserved active helix VI kink is observable, accompanied by large shifts in ECL I 

and III. B. Proposed activation process of GLP1R. In the inactive state the ECD 

preferentially takes a closed conformation but can bind the peptide through minor 

movements. This reorientates the ECD, promoting TMD changes and G protein 

binding.   
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movements of the intracellular half of helices V and VII. These movements were 

conserved in both instances, meaning that there is a common binding pocket for Gs 

and Gi. This does not seem to hold true for family A GPCRs, such as the -OR and 

the 2AR, where the active helix VI position is not conserved (Koehl et al., 2018; 

Rasmussen et al., 2011b). Despite binding in the same cavity, there is a difference in 

the total binding area between the 5 helix of the G protein and the receptor: 802 Å2 

and 551 Å2 for Gs and Gi respectively. The 5 helix of the two G proteins differ at 

residues 23 and 24 (Y23, E24, and C23, G24 for Gs and Gi respectively). Y23 and 

E24 are bulkier residues than C23 and G24, meaning that Gs needs a larger binding 

pocket than Gi. The large outward movement of helix VI creates a cavity that can 

accommodate these larger residues, and preferentially favours the binding of Gs, but 

can still allow Gi binding. Additionally, ICL II has extensive interactions with Gs, 

but is very limited with Gi. 

 

1.7 PTHR Structures 

1.7.1 Inactive PTH1R Structure 

At the onset of this research project very little was known about the PTH receptor 

structures. High-resolution crystal structures of PTH1R ECD had been solved bound 

to both PTH(1-34) and PTHrP (Pioszak & Xu, 2008; Pioszak et al., 2009), but there 

was no structural data on PTH2R. In late 2018 the inactive structure of PTH1R was 

solved at a 2.5 Å resolution (Figure 1.15) through the use of x-ray crystallography 

(Ehrenmann et al., 2018). To create a thermostable receptor, ten point mutations were 

introduced, which were identified through the use of alanine scanning mutagenesis, 

directed yeast evolution, and the addition of a fusion protein, Pyrococcus abyssi 

glycogen synthase (PGS), at ICL III. Disordered residues of the ECD, residues 61-
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104, were also removed.  However, they were unable to obtain a structure using 

endogenous PTH, so they designed a PTH mimetic agonist (ePTH) that was able to 

stabilise the receptor and displayed almost identical interactions as previously solved 

between wild-type PTH and the ECD, excluding two residues (Pioszak & Xu 2008). 

As expected the PTH1R structure closely resembled other solved family B GPCRs and 

maintained the predicted ECD structure (Pioszak & Xu, 2008).  

The particularly long ECL I of PTH1R, approximately 30 residues, was not resolved 

in this structure. The C-terminus of ePTH binds to the ECD and displays extensive 

interactions with the juxtamembrane region; R20 of the peptide forms ionic 

interactions with D137, suggesting that the orientation of the ECD, relative to the 

TMD, is defined by the agonist. When the negative charge of residue 137 is not present 

i.e. through mutagenesis, then the affinity for PTH binding is greatly reduced (Weaver 

et al., 2014). Before this structure was solved, the orientation of the ECD was believed 

A                                    B 

 

 

 

 

 

 

 

 

                                                           

Figure 1.15: Overall structure of the inactive PTH1R bound to ePTH. A. Cartoon 

representation of ePTH (yellow) bound to the inactive PTH1R (cyan) structure (PDB 

entry 6FJ3). B. Structural alignment of PTH1R and the inactive glucagon receptor 

(orange, PDB entry 5XEZ), with a R.M.S.D value of 1.522. 
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to be determined through ECL I and III interactions. There are also interactions 

between the two  helices and the loop connecting β3 and β4 of the secretin family 

fold with ePTH. 

The N-terminus of ePTH lies against helices II, III and ECL II, a position that is locked 

by a homoarginine at residue position 11, which is positioned between helices I and 

II. Further down the peptide, Q6 packs against Y429 of ECL III. At the end of the 

peptide residues 1 and 2 take on non-helical conformations and are positioned next to 

helices V and VI. As previously discussed, a common PTH antagonist, PTH(7-34), 

has antagonistic properties as it can bind the ECD but cannot promote receptor 

activation. From this structure, the N-terminus is positioned to interact with various 

residues such as extracellular helix VII residues E444, M441, M445, which, when 

mutated, significantly decrease peptide affinity (Ehrenmann et al., 2018). ePTH 

residue E4 is also pointed towards highly conserved residues Y195 and R233 of 

helices I and II. 

A crucial domain within GPCRs is the conserved central polar network, previously 

identified in the active GLP1R structure (Zhang et al., 2017), which lies one helical 

turn below the binding pocket. In PTH1R the key residues are R233, N295, H420, and 

Q451. The structure of PTH1R revealed a water molecule that establishes connections 

between helices II, III, and VII through interactions with residues R233, Y296, and 

Q451.  Previous research on PTH1R revealed that mutations of either R233 or Q451 

significantly reduced binding affinity of PTH (Gardella et al., 1996) and the 

importance of these residues is further highlighted as residue 4 of ePTH directly 

interacts with R233, which, in this inactive confirmation, has hydrogen bonds to Q451, 
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stabilising its orientation. Furthermore, interactions between N295 and S229 help 

maintain PTH1R structure.   

The publication of the inactive PTH1R was a major steppingstone in improving our 

understanding of family B GPCRs and their functions. For example, it provided a 

structural explanation of the condition known as Jansen’s metaphyseal 

chondrodysplasia, which leads to dwarfism and hypercalcemia. It is caused by a 

sporadic mutation of I458R that, structurally, could destabilise helix VI, pushing it 

into the kink that is associated with activated receptors. The reason Ehrenmann et al. 

(2018) were unable to solve the active structure was due to the many modifications 

they added to the receptor, such as the stabilising mutants and the inclusion of PGS 

fusion protein. Q440R formed an addition hydrogen bond between helices VI and VII, 

inhibiting helix VI outward movement. Furthermore, Y191C and K240M mutations 

pushed the N-terminus of e-PTH away from helices V and VI, preventing the initial 

movement of helix VI. The primary aim of this research project was to solve the active 

structure of either PTH1R or PTH2R, so the publication of inactive PTH1R was a useful 

tool in attempting to improve experimental methodologies; however, in 2019 the 

active structure of PTH1R was solved using cryo-EM (Zhao et al., 2019)(Figure 1.16). 

 

1.7.2 The Active PTH1R Structure 

 

To overcome the low expression levels associated with GPCRs, Zhao et al. (2019) 

added a double MBP tag to the C-terminus. They also utilised a negative form of the 

G protein, which they stabilised using nb35. Similar to Ehrenmann et al., (2018), a 

modified peptide was required (LA-PTH); a PTH/PTHrP chimera that had a 10-100 

fold higher potency than either of its individual native peptides. LA-PTH also had a 

significantly slower dissociation time than PTH, resulting in prolonged cAMP 
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production, a result of endosomal signalling. LA-PTH is a chimeric PTH/PTHrP 

peptide, where the C-terminus is PTHrP derived. Therefore it was found that the LA-

PTH/ECD binding aligned well with the previous PTHrP/ECD structure (Pioszak et 

al., 2009). The increased affinity for binding is due to additional hydrophobic and 

hydrogen bonds that arise from amino acid changes at residues 10, 11, 12 and 14 

(N10Q, L11R, G12A, and H14W). These additional bonds are also responsible for the 

prolonged signalling response. 

Three distinct states were solved at global resolutions ranging from 3 to 4 Å, where, 

in each case, the ECD was in a different conformational state; however, the TMD was 

constant in all instances. The most striking of these states was one in which LA-PTH 

was no longer interacting with the ECD and was bound solely at its N-terminus. It is 

hypothesised that this is the beginning of the dissociation of the ligand from the 

receptor, which would match the kinetics of receptor activation. Castro et al. (2005) 

discovered that, through the use of fluorescence resonance energy transfer (FRET), 

PTH (1-34) rapidly associates its C-terminus with the ECD in approximately 140 ms, 

whereas the N-terminus can take an entire second to finish binding to the TMD. This 

means that due to the prolonged interaction of the N-terminal LA-PTH with the 

PTH1R TMD, the C-terminal may bind and unbind repeatedly during receptor 

activation, potentially explaining the prolonged signalling that is seen in PTH1R. 

As demonstrated multiple times, the intracellular half of active family B receptors are 

very similar due to their Gs binding (Liang et al., 2017; Qiao et al., 2020; Zhang et 

al., 2017). In all of the solved active structures, only between 32 to 63 % of the 

potential binding pocket space is occupied by the ligand. Furthermore, despite the 

structures taking on a conserved TMD conformation the individual binding pockets 
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are exclusive to the associated receptor due to their unique residue side chains. The 

orientation between the ECD and the TMD is also different for each active receptor, 

which also helps the peptide bind in a unique location. Comparing active PTH1R to 

active GLP1R (Zhang et al., 2017), there is no interaction between PTH1R ECD/TMD 

whereas GLP1R ECL I is able to form van der Waals interactions with the ECD. This 

may explain why the ECD of PTH1R appears to have a higher degree of mobility. 

 

 

 

 

 

 

 

As both the inactive and active structures have now been solved, it has allowed us to 

analyse the conformational changes; of particular note is that the inactive crystal 

structure was the first agonist-bound family B receptor that did not include the G 

protein. Upon structural alignment, the extracellular half of the receptors align almost 

identically, while the intracellular halves are vastly different due to the near 80 kink 

Figure 1.16: Structural alignment of inactive and active PTH1R. The inactive receptor 

(cyan) is bound to ePTH (yellow), and the active receptor (magenta) is bound to LA-

PTH (orange, PDB entries 6FJ3 and 6NBF respectively). The extracellular halves of 

the receptor align well, whereas the cytoplasmic halves have considerable differences, 

primarily due to the kink in helix VI. 
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in helix VI of the active conformation. This aligns with Ehrenmann et al.’s, (2018) 

hypothesis that they captured the receptor in an intermediate state, between active and 

inactive, with the extracellular half of the receptor being in an active state 

conformation.  The outward shift of helix VI is a hallmark of activated GPCRs and 

leads to a large cytoplasmic opening, which promotes G protein coupling through the 

α5 helix of Gαs, while the  subunits can form contacts with helix VIII. Crucially, 

the agonist-receptor interactions are nearly identical between the two structures, 

suggesting that the agonist binds the receptor in a similar manner both with and 

without the G protein being present. 

A crucial residue in PTH1R activation is Q451. As mentioned earlier residues R233 

and Q451 are key components of the central polar network (Ehrenmann et al., 2018). 

In the inactive state R233 has hydrogen bonds to Q451 stabilising its orientation; 

however, following activation, peptide residue E4 interacts with R233 causing a 

rearrangement of the R233-Q451 bond (Figure 1.17). This allows Q451 to re-orientate 

itself and form new bonds with H420 and P415. P415 is part of the highly conserved 

family B motif PXXG, which, as previously discussed, is the origin of the helix VI 

kink. The kink is stabilised by H420, Q451, and N374 through interactions with 

residues 415-417 of helix VI. Many of these residues are highly conserved among 

family B GPCRs in a NPGHQ motif, suggesting that the activation process of these 

receptors is conserved through key residues that stabilise the helix VI kink.   
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1.8 Summary  

Our knowledge of family B structures has expanded rapidly in the past four years, 

revealing several key characteristics in their active conformations. All the receptor 

peptide agonists have -helical conformations that interact deep in the TMD core, in 

close proximity to a central polar network, and with the ECD. The ECD is a highly 

flexible domain that has variable metastable states, which are influenced by peptide 

binding. Another region with a high degree of variability is ECL III and the tips of 

helix VI and VII. This region was not a requirement for TT-OAD2 binding and GLP1R 

activation (Zhao et al., 2020), meaning that, unlike highly conserved regions such as 

the helix VI kink, this area of the receptor is able to take on more conformations while 

still being involved in receptor activation. Contrastingly, TMDs III, IV and V are 

highly conserved, as is ECL II (Figure 1.18).   

A                            B 

 

 

 

 

 

 

 

 

                                                           
Figure 1.17: The alterations in PTH1R that promote the unwinding and kink of helix 

VI. In the inactive state (PDB entry 6FJ3), PTH1R (cyan) residue R233 interacts with 

and stabilises the orientation of Q451 through hydrogen bonds. In the active state 

(magenta, PDB entry 6NBF) the R233/Q451 interaction is broken, allowing Q451 to 

orientate downwards and interact with P415, a conserved residue at the kink of helix 

VI. Some residues were removed to better visualise the area of interest. 
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When inactive structures are available for comparison, there appears to be a 

reconfiguration of ECL II partially facilitated by movements of helices IV and V, 

which additionally reorganises ICL II, ultimately assisting G protein binding. 

Interestingly, the changes in ECL II are not seen in agonist-bound, G protein free 

receptors, such as PTH1R (Ehrenmann et al., 2018), implying G protein binding 

further alters receptor conformation. Towards the intracellular half of the receptors the 

most notable misalignments occur at ICL II, which has interactions with the Gs Ras 

domain, the GTPase domain of G proteins. All receptors also displayed interactions to 

the βγ subunit through helix VIII, which has been shown to be important in receptor 

functionality, as truncating this helix decreased cAMP production for the calcitonin 

and CRF receptors (Liang et al., 2017; Ma et al., 2020).   

Figure 1.18: Structural alignment of all current active family B receptors. The basic 

TMD shape is highly conserved, with the helix VI kink always occurring at the PXXG 

motif. Another conserved region is ECL II, which commonly has interactions with the 

ECD. 
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1.9 Aims 

The primary aims of this research were to unravel the active structures of PTH1R 

and/or PTH2R. If successful it would reveal key structural features that would expand 

our understanding of GPCR activation and signalling. With the huge influx of family 

B GPCR structural data in the past few years we now have a solid comprehension of 

the key conformational changes that occur during GPCR activation. However, 

acquiring these structures is still a laborious undertaking that requires extensive 

amounts of work before any structural studies can be performed. Easing the 

preliminary workload i.e. creating thermostable functional proteins that are good 

candidates for crystallisation or cryo-EM, would be a tremendous benefit in the field 

of structural biology, not only saving time but also easing costs of such experiments. 

Therefore, a further aim of this research was to evaluate the effectiveness of the novel 

IMPROvER program to optimise the selection of candidates for structural trials.   



50 

 

Chapter 2 Methods 

2.1 Standard Protocols 

2.1.1 Buffers and Chemicals 

 

All buffers were prepared with Milli-Q® water and filtered using a 0.22 µm membrane 

filter (GE Healthcare Life Sciences) or sterilised using an autoclave. Unless otherwise 

stated, all chemicals were purchased from Sigma-Aldrich, Melford Laboratories, or 

Thermo Fisher Scientific. 

 

2.1.2 Primers 

 

All primers were purchased via Eurofins Genomics and were produced as standard 

desalted primers. 

 

2.1.3 Media and Agar Plates 

 

E. coli media was prepared using pre-made Luria broth (LB), terrific broth (TB), or 

super broth (SB) granules (Sigma-Aldrich), diluted in Milli-Q® water. Solutions were 

autoclaved and stored at room temperature. Antibiotics were added as required and 

diluted to appropriate working levels. Agar plates were prepared using LB granules 

(Sigma-Aldrich) and agar powder (Melford Laboratories) diluted in Milli-Q® water. 

These were autoclaved, and upon cooling, were poured into plastic petri dishes under 

a fume hood with an appropriate antibiotic. Following solidification, plates were 

stored at 4 °C. 
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2.1.4 Preparation of Competent Cells 

 

Frozen E. coli glycerol stock cells were streaked onto a LB-agar plate, with an 

appropriate antibiotic if required. Plates were typically grown overnight at 37 °C or 

until colonies could be easily identified. A single colony was picked and grown in LB 

medium in a shaking incubator at 200 rpm and 37 ⁰C overnight. A 1/500 dilution of 

the starter culture was added to pre-warmed LB medium and incubated at 37 °C  until 

an optical density, measured at 600 nm (OD600), of 0.4 – 0.6 was reached. All 

subsequent steps were performed on ice. Cells were chilled and centrifuged at 3,000 

x g for 10 minutes. The resulting pellet was gently resuspended in 20 mL of Tbf1 

buffer (Table 2.1) and chilled on ice for 5 minutes. Cells were centrifuged at 3,000 x 

g for 10 minutes and the supernatant discarded. Cells were then resuspended in 1 mL 

of Tbf2 buffer per 50 mL of culture and incubated on ice for 15 minutes. 50 µL aliquots 

were then flash frozen and stored at -80 ⁰C. 

 

Table 2.1: Composition of buffers for making competent cells 

Buffer Compound Final Concentration 

 KAc 30 mM 

 RbCl2 100 mM 

Tbf I Buffer CaCl2.2H20 10 mM 

 MnCl2.4H20 50 mM 

 Glycerol 15% 

 

 

Tbf II Buffer 

MOPS 10 mM 

CaCl2.2H20 75 mM 

RbCl2 10 mM 

Glycerol 15% 
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2.1.5 Heat shock transformation 

 

Transformation of plasmids/DNA into E. coli strains was achieved using a typical heat 

shock protocol. Following the addition of a plasmid to an aliquot of competent E. coli 

cells, they were incubated on ice for 15-20 minutes. Samples were heat shocked by a 

~45 second incubation at 42 °C, then returned to ice for 2 minutes. Approximately one 

mL of sterile LB media was added to aid cell recovery and incubated at 37 °C for one 

hour.  For simple transformations, between 50 and 100 µL of cells were plated onto a 

LB-agar plate with the appropriate antibiotic. For more challenging transformations, 

such as following a cloning reaction, cells were centrifuged for one minute at 3,000 x 

g and fully resuspended using 50-100 µL, all of which was spread onto an appropriate 

agar plate.  

 

2.1.6 Polymerase Chain Reaction 

 

All cloning was performed with Q5 High-Fidelity 2X Master Mix (New England 

BioLabs (NEB)) and a standard polymerase chain reaction (PCR) protocol. For a 

typical 50 µL reaction, 0.5 µM forward and reverse primers, 1 ng/µL vector, and 25 

µL of Q5® High-Fidelity Master Mix were used. The annealing temperatures of 

primers were estimated using the NEB calculator (tm.calculator.neb.com). If reactions 

did not produce the desired band on a gel electrophoresis, optimisation of annealing 

temperature was determined through a gradient PCR. A standard PCR protocol was 

as follows: an initial 95 °C treatment for one minute, 95 °C for 30 seconds, 50-70 °C 

for 30 seconds, 72 °C (1 minute per kb DNA), repeat ~30 times, and lastly 72 °C for 

5 minutes. 
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For determining if insertion and deletion reactions were successful, colony PCR was 

utilised. A master mix containing Q5® High-Fidelity Master Mix and 0.5 µM forward 

and reverse primers was created. 10 µL aliquots were then prepared in PCR tubes. 

Following colony formation, multiple colonies were picked with individual pipette 

tips and mixed into the master mix aliquots. The tip could then either be added to LB 

media to grow overnight cultures or streaked onto a LB-agar plate. PCR thermocycling 

was performed as described above, except the initial 95 °C denaturation step was 

performed for 6 minutes. 

 

2.1.7 Agarose gel electrophoresis 

 

To visualise DNA samples, such as for cloning and screening, a ~1% w/v agarose gel 

was made using 1 x TAE buffer (40 mM tris-acetate, 1 mM ethylenediaminetetraacetic 

acid (EDTA), pH 8.5) and 0.5 x SYBR safe DNA Gel Stain (Invitrogen). A 6 x Purple 

Gel Loading Dye (NEB) was added to samples, which were loaded alongside a 

GeneRuler DNA Ladder Mix (Thermo Fisher Scientific). Gels were run in 1 x TAE 

buffer at either 100 or 75 V and visualised using a G:BOX (Syngene). 

 

2.1.8 In-Fusion cloning 

 

When attempting to insert genes into plasmids, In-Fusion HD Cloning Plus (Takara-

Bio) was used. The genes of interest were amplified, using appropriate forward and 

reverse primers, with a minimum 15 base pair homologous overlap at their termini 

that were complementary to the ends of a linearised vector. Plasmid linearization was 

achieved using inverse PCR, as this allowed flexibility when choosing annealing sites. 

The amplified vector/inserts were loaded onto a 1% agarose gel to determine 

successful amplification, and to identify any contaminating bands.  
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Using a Safe ImagerTM 2.0 Blue-Light Transilluminator (Invitrogen) DNA bands were 

visualised and excised from agarose gels. DNA extraction from gels was achieved 

using a Nucelospin® Gel and PCR Clean Up Kit (Macherey-Nagel). Briefly, the gels 

were melted in 2 volumes of a guanidinium thiocyanate binding buffer at 50 C before 

loaded onto a silica membrane column. The column was washed twice with an 

ethanolic wash buffer and dried via centrifugation. The DNA was then eluted and 

quantified by using the dsDNA application on a DS-11 Spectrophotometer (DeNovix). 

If gel electrophoresis revealed a clean band with no contaminants, gel purification was 

not required. Instead the PCR end-product could be mixed directly with NTI buffer 

and loaded onto a column. 

 

In-Fusion cloning allowed a linearised vector and the genes of interest termini to 

anneal together forming a circular plasmid that could be used to transform E. coli. This 

was performed by incubating the vector and insert at a molar ratio of 1:2 for 15 minutes 

at 50 C; however, the molar ratios were increased up to 1:10 when working with 

smaller inserts. A 5X In-Fusion enzyme premix and MilliQ® water were also included 

in the mixture. A simplified schematic of In-Fusion cloning is shown in Figure 2.1. 
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2.1.9 Mutagenesis 

 

A Q5 site-directed mutagenesis technique was also employed to introduce 

mutations/delete residues through inverse PCR, where the mutations were present on 

the primers being used. Following a PCR, 1 µL of DpnI (NEB) was added per 50 µL 

reaction and incubated at 37 °C for one hour. The sample was then heat treated at 

80 °C for 20 minutes. For a 20 µL reaction, 2 µL of a 10 x T4 DNA Ligase Reaction 

Buffer, 1 µL T4 DNA Ligase, 1 µL T4 Polynucleotide Kinase (NEB), 8 µL MilliQ® 

water, and 8 µL of sample were mixed and incubated at room temperature for ~2-3 

hours. 2.5 µL were then used to transform OmniMAXTM competent E. coli cells 

following the previously stated transformation protocol. Successful mutagenesis was 

verified by sequencing the region of interest (Eurofins Genomics). 

 

Figure 2.1:  A simplified schematic, explaining In-Fusion cloning. A plasmid of 

choice is linearised, either though restriction enzyme digestion or inverse PCR. The 

desired DNA is then amplified using PCR and includes 15 bases that correspond to 

the final 15 bases at either end of the vector. The two segments are then incubated 

with the In-Fusion enzyme at 50 C for 15 minutes, resulting in a complete plasmid  

with the desired gene of interest (GOI). 
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2.1.10 DNA Purification 

 

All small scale DNA purifications were performed using a Nucleospin® Plasmid 

Miniprep Kit (Macherey-Nagel). For high-copy plasmids such as pFastBac, a two mL 

overnight E. coli culture was adequate for acquiring usable DNA concentrations. For 

low-copy plasmids up to 10 mL of overnight culture was used. Cultures were 

centrifuged at 11,000 x g for one minute and resuspended in A1 resuspension buffer. 

Cell lysis was achieved with A2 lysis buffer and neutralised with A3 neutralisation 

buffer. Following a 10 minute centrifugation at 11,000 x g the supernatant was 

transferred to the kit supplied columns. Following a one minute 11,000 x g 

centrifugation, the membrane was washed twice with a wash buffer (AW buffer), 

centrifuged as before and washed once with buffer A4, supplemented with ethanol. 

The membrane was dried through centrifugation and DNA was eluted in elution buffer. 

DNA was quantified in the same manner as stated above. All buffers were supplied in 

the Miniprep kit. 

 

2.1.11 SDS-PAGE 

 

Samples were prepared in a 5 x sodium dodecyl sulphate (SDS) sample buffer (250 

mM Tris-HCl pH 6.8, 10% SDS, 0.25% bromophenol blue, 500 mM Dithiothreitol 

(DTT), and 50% glycerol) and incubated at room temperature for approximately 10 

minutes. Samples were then loaded onto Mini-Protean® TGX (4-20%) or CriterionTM 

TGC (4-20%) precast gels (Bio-Rad). To visualise the molecular weight of the protein, 

protein ladders were loaded alongside samples, such as the Color Prestained Protein 

Standard (NEB). A 10 x SDS running buffer (25mM Tris, 192 mM glycine, 0.1% SDS) 

was prepared and diluted 10-fold for applications. A constant voltage of 150 V in a 1 

x SDS polyacrylamide gel electrophoresis (PAGE) running buffer was applied for 
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approximately one hour. If the protein of interest was fluorescently tagged, it was 

visualised using in-gel fluorescence. Alternatively, if protein expression was high 

enough, visualisation was achieved with Coomassie staining using Quick Coomassie 

Stain (Generon). If protein concentration was insufficient then further analysis would 

require a western blot. All three approaches were visualised with a G:BOX (Syngene). 

 

2.1.12 Western Blotting 

 

Following an SDS or native-PAGE, proteins were transferred onto Polyvinylidene 

difluoride or nitrocellulose membranes using the Trans-blot® turboTM blotting system 

(Bio-rad). Membranes were blocked in Tris-buffered saline with Tween-20 (TBST) 

(Sigma-Aldrich) and 2% bovine serum albumin (BSA) (Sigma-Aldrich) or dried 

skimmed milk powder (Marvel), either at room temperature for one hour or overnight 

at 4 C on a rotating mixer. Membranes were probed with an appropriate antibody, 

which included anti-His (Thermo Fisher Scientific), anti-PTH1R (Atlas Antibodies), 

anti-FLAG (Sigma-Aldrich), anti-MBP (NEB), anti-G protein alpha S (GNAS) 

(Abcam), or anti-G protein subunit gamma 2 (GNG2) (Thermo Fisher Scientific) for 

one hour at room temperature. Membranes were washed three times with TBST and, 

if required, probed with secondary antibodies such as anti-mouse (Invitrogen) or anti-

rabbit (Jackson ImmunoResearch Europe). After washing, membranes were 

developed using ClarityTM Western ECL Substrate (Bio-Rad) and imaged on a G:BOX 

(Syngene). If required, re-probing with additional antibodies was achieved with the 

addition of a mild stripping buffer solution (200 mM glycine pH 8.0, 5mM SDS, 1% 

Tween-20) for 30 minutes, before three washes with TBST. A new antibody could 

then be applied to the membrane. A list of antibodies and their dilutions is shown in 

Table 2.2 
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Table 2.2: Antibodies and dilutions used for western blots. Anti-His antibodies were 

tagged with horseradish peroxidase, so secondary antibodies were not required. All 

other antibodies required secondary, horseradish peroxidase conjugated, antibodies. 

Primary Antibody Dilution Secondary Antibody Dilution 

Anti-His 1:10,000 Not required X 

Anti-PTH1R 1:5,000 Anti-Rabbit 1:5,000 

Anti-GNAS 1:3,000 Anti-Rabbit 1:5,000 

Anti-GNG2 1:8,000 Anti-Rabbit 1:5,000 

Anti-MBP 1:10,000 Anti-Mouse 1:10,000 

Anti-FLAG 1:1,000 Anti-Mouse 1:10,000 

 

2.1.13 Native-Page 

 

Samples were diluted in 4 x native sample buffer (62.5 mM Tris-HCl pH 6.8, 0.01% 

bromophenol blue, and 40% glycerol), and loaded onto a Mini-Protean® TGX (4-20%) 

precast gel (Bio-Rad). Protein migration was initiated in Native-PAGE running buffer 

(25mM Tris, 192 mM glycine, pH 8) subjugated at a constant voltage of 150 V. 

Visualisation of gels was achieved as described above. 

 

2.1.14 Dialysis 

 

Following procedures such as a nickel column purification, dialysis was used to 

remove components, such as high concentrations of imidazole. The solutions were 

dialysed overnight in an appropriate dialysis buffer in Snakeskin Dialysis Membranes 

with various molecular weight cut offs. Following the overnight incubation, the 

dialysis buffer was typically replaced every two hours for a total of at least three buffer 

replacements. 
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2.2 Sf9 Work 

 

Sf9 cells were grown in either Sf9-000 II serum-free media (GibcoTM) or Insect-

XPRESSTM medium with L-glutamine (Lonza). Cells were maintained between ~ 0.5 

to 5 million cells/mL at 27 °C and shaking at 120 rpm. Cell density was counted 

manually with a haemocytometer or automatically with a CountessTM II Automated 

Cell Counter (Invitrogen) and stained with a trypan blue stain (Invitrogen). 

 

2.2.1 Bacmid Preparation and Sf9 Cell Transfection 

 

Two variations of MAX Efficiency DH10Bac cells (Thermo Fisher Scientific) were 

used for isolating recombinant bacmids, one with yellow fluorescent protein (YFP) 

and one without. The presence of YFP made monitoring transfection efficiency viable 

and the YFP-free variant made quantification through GFP-tagged proteins possible. 

Bacmid isolation required multiple antibiotics, and so, following a heat shock protocol, 

cells were incubated at 37 °C for 16 hours. Cells were spread on agar plates containing 

kanamycin, tetracycline, gentamycin, 5-Bromo-4-Chloro-3-Indolyl β-D- 

Galactopyranoside (X-Gal), and β-D-1-thiogalactopyranoside (IPTG) at 50, 10, 7 

and 100 µg/mL respectively and 0.16 mM IPTG. Plates were left to incubate at 37 C 

for approximately 48 hours, or until there was a clear distinction between blue and 

white colonies. White colonies were picked and incubated in 2 mL of LB media for 

16 hours at 37 C. Cultures were harvested, resuspended, lysed and neutralised using 

Macherey-Nagel Nucleospin® Plasmid Miniprep Kit buffers. The supernatant was 

then mixed with isopropanol at approximately a 3:2 ratio and gently mixed before a 

centrifugation at 15,000 x g for 10 minutes. The resulting transparent pellet was 

washed in 200 µL of 70% ethanol and after a final 15,000 x g centrifugation the pellet 

was topped with 50 µL of fresh 70% ethanol.  
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On a 6-well plate, 1x106 Sf9 cells were plated per well in 3 mL total volume of Insect 

X-PRESS media (Lonza). The DNA pellet was air dried for approximately ten minutes 

and then resuspended in 30 µL of sterile Milli-Q® water. X-tremeGENE HP DNA 

Transfection Reagent (Sigma-Aldrich) was individually mixed with the Insect-

XPRESS media and the bacmid DNA in a 1:10 ratio. These were then gently mixed 

at a 1:2 ratio respectively and incubated at room temperature for up to 30 minutes. 150 

L of mixture was added per well and was left to incubate at 27 C for approximately 

six days, sealed with parafilm. If transfected cells had YFP/GFP then it was possible 

to determine successful transfection through imaging the cells under an EVOS 

microscope (Thermo Fisher Scientific). If no fluorescent marker was present, 

transfection was assumed to be successful if cells appeared larger and darker under a 

normal microscope. 60 hours after transfection, the media from the plates was 

harvested as this contained the initial baculovirus (V0) and was stored at 4 °C in a 

LightSafe tube. The media was replaced with fresh Insect X-PRESS media and 

incubated at 27 C for a further 60 hours. Protein expression was the verified using a 

western blot. 

 

2.2.2 Virus amplification 

 

To amplify the baculovirus, 25 mL of Sf9 cells, at a density of 1x106 cells/mL, were 

infected with 1.5 mL of V0. Cell growth was monitored every 24 hours to maintain 

density between 1-1.5 x 106 cells/mL. 1 mL of cells were also harvested by 

centrifugation at 500 x g for ten minutes every 24 hours, and frozen at -20 C, to 

determine the optimal incubation duration. 24 hours after the day cells stop dividing, 

or the day after proliferation arrest (DPA), the V1 baculovirus was harvested by 

centrifugation at 500 x g for 10 minutes and storing the supernatant at 4 °C.  
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2.2.3 Determining Optimal Time to Harvest 

 

When creating the V1 virus, the optimal day of harvesting protein was simultaneously 

determined. Cells were infected with a baculovirus and allowed to grow to DPA + 96 

hours, or until cell viability fell below 60%. Every 24 hours approximately one mL of 

cells at 1x106 cells/mL were collected. Samples were centrifuged and isolated pellets 

were frozen at -20 °C until required. Once all samples were ready for analysis, cells 

were lysed by sonication. Whole cell lysates were used to prepare SDS-PAGE samples. 

If too viscous cells could be centrifuged and the supernatant could be analysed. 

 

2.2.4 Large-Scale Sf9 Expression 

 

In one L Erlenmeyer flasks, 300 mL of Sf9 cells at a density between 1-2 x 106 

cells/mL were infected with a predetermined optimal volume of V1 or V2 baculovirus. 

Cells were maintained at 27 °C with shaking at 120 rpm. Ideally, cells should have 

doubled in density a single time and then be harvested based on the day of best 

expression. Cells were centrifuged at 700 x g for 30 minutes at 4 °C. The supernatant 

was discarded, and cell pellets were resuspended in 1 x phosphate buffered saline (PBS) 

buffer, pre-chilled to 4 °C. Following another centrifugation, as above, cell pellets 

were aliquoted and flash frozen and stored at -80 °C. 

 

2.3 PTH1R and PTH2R Profile Determination 

 

2.3.1 Cloning of Wild-type Constructs 

 

All cloning of PTH1/2R was performed on a human wild-type variant, supplied in a 

pcDNA plasmid (Mann et al., 2008). PTH1/2R were amplified using PCR and 

pFastBac plasmids were linearised using inverse PCR. The two were joined together 

using In-Fusion (Figure 2.2) cloning as described in 2.1.8. 
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2.3.2 Protein Quantification 

 

Multiple ways to determine protein quantification were performed throughout this 

research. Samples were plated onto a 96-well plate and had either their absorbance or 

fluorescence recorded using a FLUOstar Optima microplate reader (BMG LabTech). 

Protein concentrations were calculated following a standard bicinchoninic acid (BCA) 

assay protocol (Thermo Fisher Scientific). Fluorescently labelled protein 

concentrations were calculated by comparing the densities of the fluorescent protein 

against known GFP concentrations. Western blot densitometry analysis of a protein 

Figure 2.2: Basic design of PTH1R-pFastBac constructs. Using In-Fusion cloning it is 

possible to insert PTH receptors into pFastBac CTH and CGVH, resulting in a C-

terminally tagged protein. CTH is a C-terminal His tag, separated by a tobacco etch 

virus cleavage site. CGVH is a C-terminal GFP and His tag separated from the protein 

of interest by a human rhinovirus protease site. 
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against known standards was also performed when fluorescence was not available. 

FIJI image software was used for densitometry analysis of proteins.  

 

2.3.3 Solubilisation Screening 

 

Sf9 cells were infected with the appropriate baculovirus and grown until the day of 

best expression. Following centrifugation, pellets were resuspended in 20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 200 mM NaCl, and 20% 

glycerol buffer solution with a cOmpleteTM Protease Inhibitor Cocktail (Sigma-

Aldrich). Cells were then mixed with a detergent at a 1% w/v concentration, with or 

without cholesterol hemisuccinate (CHS), at 0.2% w/v of the final solution. Samples 

were incubated overnight at 4 °C on a rolling mixer and then ultracentrifuged at 55,000 

rpm for one hour. The supernatant was saved, and the pellet was resuspended in 

HEPES buffer. Samples were then prepared for western blotting as described above. 

Proteins were visualised using anti-His antibodies to determine soluble and insoluble 

receptor density. The detergents used in the detergent screen were n-dodecyl-β-D-

maltopyranoside (DDM) and lauryl maltose neopentyl Glycol (LMNG) with or 

without CHS, and fos-choline-12.  

 

2.3.4 Determining optimal solubilisation time 

 

Determining the optimal solubilisation period was performed as above, changing only 

the period of solubilisation. An overnight incubation was assumed to achieve 

maximum solubilisation; thus, the shorter durations were compared to this to 

determine the optimum solubilisation time. The solubilisation durations ranged from 

one to four hours. 

 



64 

 

2.4 HEK-293 Cell work 

 

2.4.1 DNA MaxiPrep 

 

To ensure viable concentrations of DNA for HEK-293 cell transfection were obtained, 

a Maxiprep kit (Macherey-Nagel) was utilised. 500 mL of cultures, with the 

appropriate plasmid, were grown overnight at 37 C, pelleted, and resuspend in 25 

mM Tris-HCl, 10 mM EDTA, and 50 mg of lysozyme. DNA was denatured by the 

addition of 0.2 M NaOH, 1% SDS, which was neutralised by 3M potassium acetate 

pH 4.8. Samples were centrifuged at 11,000 x g and the supernatant was filtered 

through QIAfilter Maxi Cartridges (Qiagen). 0.6 volume worth of isopropanol was 

added before another centrifugation, after which the supernatant was discarded. Pellets 

were resuspended in 10 mM Tris-HCl, 10 mM EDTA, followed by the addition of an 

equal volume of 5 M LiCl. Following centrifugation to harvest the supernatant, 0.6 

volume of isopropanol was added and centrifuged. Pellets were resuspended in a Tris-

EDTA solution and incubated with heat treated RNase A solution for 15 minutes. 

DNA precipitation was achieved by the addition of 0.25 volume 30% polyethylene 

glycol (PEG) 6000, 2.5 M NaCl, and incubated on ice for 30 minutes. Samples were 

pelleted and resuspended in Tris-EDTA, and an equal volume of chloroform. After 

centrifugation, the top aqueous layer was saved and mixed with 0.1 volume of 5 M 

NaCl and three volumes of ethanol. After centrifugation the pellet was washed with 

70% ethanol and centrifuged one final time. DNA was resuspended in Tris-EDTA. 

 

2.4.2 HEK-293 Cell Maintenance 

 

Human embryonic kidney-293 (HEK-293) cells were maintained in Dulbecco’s 

Modified Eagle Medium (DMEM), supplemented with 10% foetal bovine serum (FBS) 

and incubated at 37 °C at 5% CO2. Cells were maintained at a 20-90% confluency and 

were dislodged by a short 37 °C incubation in 1 X trypsin. Trypsin was neutralised by 
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the addition of fresh DMEM and cells were split into new flasks through gentle 

agitation.  

 

2.4.3 HEK-293 Transfection 

 

HEK-293 cells were seeded at a confluence of 25% in DMEM + 10% FBS and 1% 

penicillin-streptomycin and were left to incubate at 37 C with 5% CO2 for 24 hours. 

An hour before transfection, the medium was replaced with DMEM Table 2.3, 

supplemented with 5% FBS and penicillin/streptomycin. DNA:polyethylenimine (PEI) 

complexes were mixed as described in Table 2.4 and diluted in DMEM/5% 

FBS/penicillin/streptomycin. The resulting solution was added to the cells and left to 

incubate until protein harvesting. Transfection efficiency was determined through 

EVOS imaging of GFP-tagged proteins. Protein expression was determined through 

western blots. 

 

Table 2.3: Volume of DMEM to be added one hour before transfection 

 96 Well 24 Well 6 Well 35 mm T25 T75 

DMEM to be added (µL) 100 400 2000 2000 2000 6000 

 

 

Table 2.4: DNA:PEI ratios for HEK-293 transfection 

 

 96 Well 24 Well 6 Well 35 mm T25 T75 

DNA, 400 µg/mL (µL) 0.83 5.20 25 20.8 65 195 

PEI, 1 mg/mL (µL) 0.33 2.08 10 8.33 26 77.5 

DMEM + 5% FBS (µL) 3.33 20.79 100 83.3 260 777.5 

Total volume (µL) 4.49 28.07 135 112.5 351 1050 
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2.5 PTH Receptor Modification 

Point mutations, deletions, and insertions were achieved using Q5 site-directed 

mutagenesis. Various fusion constructs were created throughout this research 

including BRIL-PTH1R, PTH1R
ECD-PTH2R

TMD, MBP-PTH2R
ECD and GFP-

PTH2R
ECD. To achieve this, the required DNA sequences were amplified using a 

standard PCR reaction with overlapping 15 base pair overhangs.  Infusion HD Cloning 

Plus was then used to join two proteins together and place them in the desired vector, 

such as pFastBac. To create truncated constructs, or single residue mutants, standard 

inverse PCR protocols were performed. Agarose gels were used to determine 

successful amplification of DNA.  

 

2.6 Constitutively Active PTH1R  

 

2.6.1 Creating a PTH-tethered Receptor Construct 

 

To create the constitutively active receptor constructs, PTH residues 1-14 were 

attached to the N-terminus of BRIL-PTH1R, by one of three flexible linkers: 

(GGGGS)1, (GGGGS)3, and GSAGSAAGSGEF (GSAGSA). This was performed 

through two PCR reactions. Firstly, the linkers were attached to PTH1R through an 

inverse PCR reaction, with the sequence of the linker split evenly over the forward 

and reverse primers. Upon sequence verification (Eurofins Genomics), a similar 

procedure was performed using forward and reverse primers with the sequences of 

PTH(1-14) split over the two primers. Tethered receptors were expressed in Sf9 cells 

as described previously.  
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2.6.2 LANCE cAMP Assay Protocol 

 

To determine if the modified receptors retained functionality, a LANCE cAMP assay 

was used (PerkinElmer). Cells transfected with appropriate receptors were grown and 

harvested based on previously established optimisation expression protocols. Cells 

were washed in a stimulation buffer (1 x PBS with 0.1% BSA, and when using cell-

based assays 500 µM 3-isobutyl-1-methylxanthine (IBMX)). To create a cAMP 

standard curve, concentrations ranging from 1 x 10-6 to 1 x 10-11 M of cAMP were 

prepared using stimulation buffer. A 1/100 Alexa fluor® 64-anti cAMP antibody was 

also prepared in stimulation buffer. Solutions containing a 1/18 Eu-W8044 dilution in 

cAMP detection buffer and a 1/6 dilution of Biotin-cAMP in cAMP detection buffer 

were separately prepared. 1/125 dilutions of these two solutions were then each added 

to the same cAMP detection buffer and incubated at room temperature for at least 15 

minutes. To an Optiplate-384 microplate (PerkinElmer), 6 µL of a cAMP standard 

solution or cell suspension and 6 µL of the Alexa fluor® antibody solution were co-

incubated for approximately one hour at room temperature. Following this, 12 µL of 

the detection mixture was added and a further hour incubation was performed. 

Measurements were recorded using a Victor x5 multilabel plate reader (PerkinElmer), 

with an excitation filter of 340 nm and 615/665 nm emission filters. 

 

2.6.3 Optimisation of LANCE® Assay Conditions 

 

To optimise the conditions for the LANCE® cAMP assay, the appropriate cell count 

was determined. To achieve this, forskolin dose response curves were created. 

Forskolin is a GPCR independent means of increasing cAMP production through 

adenylyl cyclase activation. The cAMP assay was prepared with varying numbers of 

cells in each well and a range of forskolin concentrations (10-9 – 10-4 M). The optimal 
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cell count was one in which the Forskolin dose-response curve covers most of the 

linear region in the cAMP standard curve. 

 

2.7 Expression and Purification of the G Protein Heterotrimer  

A rat  subunit and human  and  subunits were all ordered in individual plasmids 

from Addgene (catalogue numbers 24499, 67018, and 67018 respectively). The  and 

  subunits both contained a Halo tag, which was removed by inverse PCR. The  

subunit had the C-terminal residues of Gq (EYNLV), so was mutated to Gs 

(QYELL). Once the desired sequences were confirmed, they were cloned into 

pFastBac vectors for Sf9 cell transfection and a His tag was put onto the C-terminus 

of the  subunit. Protein expression was verified by western blotting with anti-GNAS, 

anti-GNG2 and anti-His. All three subunits were co-expressed in Sf9 cells by infecting 

at a 1:1:1 ratio. Cells were harvested approximately 72 hours after infection and 

resuspended in 50 mM HEPES, pH 8.0, 65 mM NaCl, 1.1 mM MgCl2, 1 mM EDTA, 

5 mM -mercaptoethanol and 10 M guanosine diphosphate (GDP) with protease 

inhibitor tablets. Cells were lysed by 40 strokes with a Dounce homogeniser, followed 

by a slow speed centrifugation. The supernatant was retrieved, and membranes were 

isolated by a high-speed spin. The membranes were resuspended in 50 mM HEPES, 

pH 8.0, 50 mM NaCl, 100 M MgCl2, 5 mM -Mercaptoethanol, 10 M GDP, and 

protease inhibitors. Membranes were flash frozen at -80 C.  

 

To solubilise the G protein, sodium cholate detergent was added to a final 

concentration of 1%, and MgCl2 was added up to a final concentration of 5 mM. The 

samples were gently mixed at 4 C for 40 minutes and then centrifuged. The 

solubilised supernatant was then diluted 5-fold with a nickel-nitrilotriaceteic acid (Ni-
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NTA) loading buffer (20 mM HEPES, pH 8.0, 363 mM NaCl, 1.25 mM MgCl2, 6.25 

mM imidazole, 5 mM -mercaptoethanol, 10 M GDP). Ni Sepharose 6 Fast Flow 

Resin (Sigma Aldrich) was washed several times with water and a loading buffer 

containing the sample of interest, which were then mixed at 4 C for one hour. The 

resin was then collected in a purification column and washed with wash buffer 1 (20 

mM HEPES, pH 8.0, 300 mM NaCl, 2 mM MgCl2, 5 mM imidazole, 0.2% cholate, 5 

mM β-mercaptoethanol, 10 μM GDP), wash buffer 2 (20 mM HEPES, pH 8.0, 50 mM 

NaCl, 1 mM MgCl2, 10 mM imidazole, 0.1% DDM 5 mM β-mercaptoethanol, 10 μM 

GDP), and wash buffer 3 (20 mM HEPES, pH 8.0, 50 mM NaCl, 1 mM MgCl2, 5 mM 

imidazole, 0.1% DDM, 5 mM β-mercaptoethanol, 10 μM GDP). The G protein could 

then be eluted using a Ni-NTA elution buffer (20 mM HEPES, pH 8.0, 40 mM NaCl, 

1 mM MgCl2, 200 mM imidazole, 0.1% DDM, 5 mM -mercaptoethanol, 10 M 

GDP). Complex formation was confirmed by western blotting the elutions with the 

individual subunit antibody. 

 

2.8 Nanobody Work 

 

2.8.1 nb37 Expression and Purification 

 

A nb37 baculovirus was expressed in Sf9 cells using a standard expression protocol. 

The nb37 strain had a membrane signal peptide and a C-terminal His tag for 

purification. Protein expression was achieved following a standard Sf9 transfection 

protocol as described previously. Following expression, cells were lysed in 50 mM 

Tris (pH 8.0), 200 mM NaCl, 1 mM MgCl2, and EDTA-free Protease Inhibitor 

Cocktail (Roche), by approximately 40 strokes using a Dounce homogeniser. 

Membrane proteins were isolated by a high speed centrifugation at 55,000 x g for one 

hour. Membranes were then resuspended in 50 mM Tris (pH 8.0), 100 mM NaCl, 100 
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M MgCl2, 10 mM imidazole and protease inhibitors. Ni Sepharose 6 Fast Flow 

Resin (Sigma Aldrich) was washed with water, followed by resuspension buffer, and 

added to the resuspended membrane proteins. Mixing at 4 °C for one hour was 

performed before the solution was passed through a gravity-flow column. The column 

was repeatedly washed with the resuspension buffer and proteins were eluted in 50 

mM Tris (pH 7.5), 50 mM NaCl, and 300 mM imidazole, which was subsequently 

dialysed against a 50mM Tris (pH7.5), 100mM NaCl buffer. 

 

2.8.2 nb35 Expression  

 

WK6 and BL21 strains of E. coli were used for expression of nb35. The sequence of 

nb35 was obtained from PDB entry 3SN6 and ordered from GeneArt Gene Synthesis 

(Thermo Fisher Scientific). The sequence was cloned into pET28 plasmid for E. coli 

expression with a C-terminal His tag.  E. coli were transformed using a standard 

transformation protocol and plated onto agar plates. A single colony was inoculated 

in LB media and incubated at 37 °C overnight. The following day, the E. coli were 

diluted in a larger volume of LB media (typically 400-500 mL) to an OD600 0.05 and 

incubated at 37 °C, with shaking, until an OD of approximately 0.6 was reached. The 

OD was regularly checked using a Biochrom WPA Biowave II spectrophotometer 

(Thermo Fisher Scientific).  Expression of nb35 was induced by the addition of 1 mM 

IPTG and grown overnight at 28 °C with shaking. Other conditions were tested for 

optimal expression such as changing the IPTG concentration and changing the 

incubation temperature and duration. Expression was confirmed through a Coomassie 

stain and a western blot probed with an anti-His antibody. 
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2.8.3 Osmotic shock 

 

Osmotic shock was used to lyse nanobody expressing E. coli cells. Cell samples were 

centrifuged at 14,000 x g for five minutes and the resulting supernatant was discarded. 

Cells were then resuspended in a 0.2 M Tris-HCl (pH 8.0), 171 g/L sucrose, and 0.1 

M EDTA buffer solution, approximately ¼ of the initial suspension volume. For 

control samples, cells were resuspended in ice-cold water. The resuspended samples 

were incubated on ice for 20 minutes with regular inversions to prevent sedimentation. 

A 14,000 x g centrifugation for 15 minutes was then performed, and the pellet was 

saved. Cells were then resuspended in either a fractionation buffer (50 mM Tris-HCl, 

0.005 M MgSO4, 0.2% SDS), or ice-cold water, in approximately ¼ of the former 

suspension volume. Cells were then incubated on ice for 20 minutes. A final 15 minute 

centrifugation at 14,000 x g was performed and the protein-containing supernatant was 

saved. To determine the degree of lysis achieved, Coomassie staining was performed. 

 

2.8.4 nb35 Purification 

 

Following osmotic shock lysis, nb35 was purified using standard nickel affinity 

chromatography. The supernatant obtained from the osmotic shock lysis was 

supplemented with 10 mM imidazole and bound to Ni Sepharose® 6 Fast Flow Resin 

(Sigma-Aldrich), pre-equilibrated with 50mM Tris-HCl (pH 8.0), 100 mM NaCl, and 

10 mM imidazole. This was mixed at 4 C with shaking for one hour before it was 

applied to a gravity-flow column. The resin was washed with 50 mM Tris (pH 8.0), 

300 mM NaCl and 10 mM imidazole, and nb35 was eluted with lysis buffer 

supplemented with 300 mM imidazole.  The elutions were then pooled and dialysed 

against a 50 mM Tris (pH 7.5), 100 mM NaCl buffer.  
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2.9 Purification of PTH1R-G protein Complex 

 

2.9.1 Co-expression of PTH1R and a G Protein 

 

To achieve co-expression, a range of PTH1R::: baculovirus ratios were tested in 

Sf9 cells, 1:1:1:1, 1:2:2:2, 1:1:2:1, and 1:2:1:1. Each individual baculovirus dilution 

was optimised for expression and used as the basis for the co-expression ratios. 

Proteins were visualised using anti-His, GNAS, and GNG2 antibodies on a western 

blot. Densitometry analysis revealed which ratio was the most appropriate to use.  

 

2.9.2 Complex purification 

 

Sf9 cells were infected with 4 baculoviruses and maintained in either Sf9-000 II serum-

free media (GibcoTM) or Insect-XPRESSTM medium with L-glutamine (Lonza). Cells 

were transfected at a density between 1.5 to 2 x 106 cells/mL, cultured at 27 °C and 

harvested at DPA + 48 hours. Cell pellets were flash frozen and stored at -80 °C until 

required. 

 

Cell pellets were thawed and lysed in 30 mM HEPES (pH 7.4), 150 mM NaCl, 10 mM 

MgCl2, 1 mM MnCl2, and 10% glycerol, supplemented with EDTA-free Protease 

Inhibitor Cocktail (Roche), by approximately 50 strokes with a Dounce homogeniser. 

10 µM PTH was added to promote complex formation with one unit of Apyrase (NEB) 

and two mg of purified nb35. Lysates were incubated for one hour at room temperature 

to promote PTH binding. PTH-tethered receptors and BRIL-PTH controls did not 

require the addition of PTH. Cell lysates were solubilised with 1% DDM (w/v) and 

0.2% CHS (w/v) at 4 °C for one hour on a mixing roller. Solubilised material was 

isolated by a high speed ultracentrifugation at 55, 000 x g for 1 hour at 4 °C. The 

supernatant was diluted two-fold by adding the same buffer as above, excluding DDM 



73 

 

and CHS, and was incubated with an ANTI-FLAG M2 Affinity gel (Sigma-Aldrich) 

resin, and CaCl2 at a final concentration of 2.5 mM, for one hour at 4 °C with mixing. 

The resin was loaded onto a pre-equilibrated column and was washed with 20 column 

volumes of 30 mM HEPES (pH 7.4), 150 mM NaCl, 2.5 mM CaCl2, 10 mM MgCl2, 

1 mM MnCl2,  0.05% DDM (w/v), 0.0012% CHS (w/v), 10 % glycerol, 1 µM PTH, 

and 25 µM TCEP. The complex was eluted from the FLAG column using a FLAG 

elution buffer, 30 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM MgCl2, 5mM EDTA, 

200 µM FLAG peptide, 1 µM PTH, 25 µM TCEP, 0.05% DDM (w/v), and 0.0012% 

CHS (w/v). 

 

2.9.3 Mini G protein 

 

A baculovirus encoding a C-terminal His-tagged mini G protein was optimised for 

expression in Sf9 as previously described. Co-expression of the mini G protein and a 

PTH1R construct was achieved by infection with a 1:1 ratio of baculoviruses. Co-

expression was determined through an anti-His western blot. 

 

2.9.4 PTH1R-Mini G protein Complex Purification 

 

The purification of the PTH1R-Mini G protein complex was achieved in the same 

manner described in section 2.8.2. The main difference between the two purifications 

was that the addition of nb35 was not required in this instance.  

 

2.10 PTH2R Characterisation 

 

PTH2R characterisation was performed in the same manner as PTH1R. Expression and 

quantification was performed in Sf9 cells with a C-terminal GFP/His tag and standard 

solubilisation protocol performed. Additional detergents used to solubilise PTH2R 
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included decyl maltoside (DM), octyl glucoside (OG), octyl glucose neopentyl glycol 

(OGNG), and cymal 5. Densitometry analysis was performed with FIJI image 

software. 

 

2.11 PTH2RECD Work 

 

2.11.1 Expression and Purification of DsbC 

 

The plasmid used for Disulphide bond C (DsbC) expression was the pCDFDuet-1 

plasmid, however, it only contained DsbC in the second cloning site, the primary 

cloning site did not encode any protein. This was used to transform BL21 (DE3) cells. 

Single colonies were grown in suspension to an OD600 between 0.5-0.6 before they 

were induced with 0.4 mM IPTG. Cells were harvested and resuspended in 50 mM 

Tris-HCl (pH 7.5), 10% glycerol, 150 mM NaCl, 0.5 mM EDTA, and 1 mM DTT. 

Two passes through a cell disruptor at 30 kpsi was efficient to lyse the cells. To isolate 

the protein of interest, ammonium sulphate precipitation was utilised.   Following lysis, 

1.5% streptomycin sulphate was added and mixed for 20 minutes to precipitate the 

nucleic acids. This was centrifuged at 3,000 x g and ammonium sulphate was added 

to 45% saturation and stirred for one hour. Precipitated material was removed by 

centrifugation and the resulting supernatant was brought to 75% saturation. At this 

level DsbC precipitated and could be harvested by centrifugation. The precipitated 

fragment was dialysed to 25 mM Tris-HCl (pH 7.5), 0.5 mM EDTA, and 1mM DTT. 

This was then loaded onto a HiTrapTM Q FF anion exchange column that was 

prewashed in Tris-HCl (pH 7.5), 10% glycerol, 0.5 mM EDTA, and 1 mM DTT. A 

linear gradient from 0 to 0.5 M NaCl was used to elute the protein. Fractions were 

visualised using a Coomassie gel, pooled, and loaded onto a Sephacryl S200 HR gel 

filtration column (GE Healthcare), prewashed in Tris-HCl (pH 7.5), 10% glycerol, 150 
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mM NaCl, 0.5 mM EDTA, and 1 mM DTT. DsbC containing fragments were 

determined using Coomassie staining, pooled and frozen at -80C.  

 

2.11.2 Optimisation of PTH2RECD Expression 

 

PTH2R
ECD (residues 29-144), with an N-terminal MBP/C-terminal His tag, was cloned 

into the first multiple cloning site of a pCDFDuet-1 plasmid. The signal leader of MBP 

was omitted for cytoplasmic expression. DsbC isomerase was cloned into the second 

multiple cloning site of pCDFDuet-1, lacking a signal peptide. Various expression 

trials were then performed to optimise expression of PTH2R
ECD. Firstly, three different 

E. coli strains were tested: Origami (DE3), Rosetta-Gami B (DE3) and BL21 (DE3). 

A standard E. coli IPTG expression protocol was used, as described in 2.9.2. Various 

other conditions were then altered such as IPTG concentration, incubation temperature 

and duration, and media type (LB, TB, SB). 

 

2.11.3 PTH2RECD Protein Expression and Purification 

 

Rosetta-Gami B (DE3) cells were transformed with the pCDFDuet-1 plasmid, 

containing both PTH2R
ECD and DsbC, and colonies were then incubated in LB media 

at 37 C overnight. Cultures were inoculated at an OD600 of 0.05 and grew to midlog 

phase before induction with 0.5 mM IPTG. After a four hour incubation at 37 C, cells 

were harvested and resuspended in 50 mM Tris HCl, pH 7.5, 150 mM NaCl, 25 mM 

imidazole, and 10% glycerol. Cell lysis was achieved by two passes through a cell 

disrupter at 30 kpsi. A slow and fast speed centrifugation removed any unnecessary 

components and left only cytoplasmic proteins. Ni Sepharose 6 Fast Flow Resin 

(Sigma Aldrich) was washed with water, followed by resuspension buffer, and added 

to the cytoplasmic extract. This was gently mixed at 4 C for one hour before it was 
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applied to a gravity-flow column. The column was washed with the resuspension 

buffer and proteins were eluted in 50 mM Tris HCl, pH 7.5, 150 mM NaCl, 250 mM 

imidazole, and 10% glycerol. 

 

2.11.4 Mass Spectrometry 

 

Mass spectrometry was performed at the University of Leeds, Faculty of Biological 

Sciences Mass Spectrometry Facility. SDS-PAGE was performed on the appropriate 

samples and the gels were stained with a Bio-SafeTM Coomassie Stain (Bio-Rad). 

Keratin contamination was minimised by using sterile plastic containers. Protein 

identification was performed with an in-house Synapt HDMS system (Waters) and 

analysed using an UltiMate 3000 HPLC system (Dionex). 

 

2.12 IMPROvER 

 

2.12.1 Acquiring Ordered IMPROvER Mutants 

 

Wild-type PTH1R sequence was inputted into the IMPROvER program (Harborne et 

al., 2020) by Dr Steven Harborne, which produced a ranked list of mutations based on 

three modules: data-drive, deep-sequence, and model based. An exclusion list of 

residues, containing Y191, Y195, H223, M231-D241, L244, Y245, L289, N295, K359, 

K360, T410, M414, P415, H420, Y421, F424, M425, W437, Q440, M441, M445, and 

Q451, was provided and fed to the IMPROvER program to prevent mutagenesis of 

key functional residues. 

 

2.12.2 Cloning of mutants 

 

Forward and reverse primers were designed by the IMPRoVER program but were 

manually altered if the predicted Tm was deemed too high (as predicted by 
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tm.calculator.neb.com). All primers designed had high Tms, therefore, a bulk inverse 

PCR was performed at 69 °C. All samples were visualised through gel electrophoresis 

and, following identification of a positive band, were sequence verified using Eurofins 

Genomics Sanger Sequencing. 

 

2.12.3 High Throughput Transfection of Sf9 Cells 

 

Due to the high number of transfections required to express all IMPROvER predicted 

proteins, a more efficient transfection protocol was utilised: specifically, a scaled 

protocol for 24-well plate transfections. 2 mL of Sf9 cells, at a density of 0.5 x 106 

cells/mL, were added to each well of a poly-D-lysine 24-well cell culture plate 

(Sarsstedt) and allowed to adhere for approximately 20 minutes. XtremeGENE HP 

Transfection Reagent (Roche) was diluted 1:10 in Insect-XPRESS Protein-free media 

(Lonza) and bacmid DNA was added to 10 ng µL-1. This was incubated for up to 30 

minutes at room temperature before being added to the Sf9 cells. Following this, the 

protocol remained identical to the previously described method in 2.2.1 

 

2.12.4 Functional Analysis of IMPROvER Mutants 

 

Functional analysis was performed with the LANCE cAMP assay (PerkinElmer) as 

described in 2.6.2. 

 

2.12.5 Thermostability assay for BRIL-PTH1R Control 

 

A rapid throughput fluorescence based assay was used to determine thermostability of 

the various PTH1R constructs. Sf9 cells were infected with the appropriate baculovirus 

and harvested at DPA + 48 hours, based on previous expression optimisation 

experiments. Cell pellets were then resuspended to 1 mL of 1 X PBS with protease 
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inhibitors. DDM was then added to a concentration of 1 % and the final solution was 

solubilised at 4 °C for one hour. Solubilised proteins were isolated by a one hour 

centrifugation at 21,000 x g at 4 °C. The supernatant was then divided into 50 µL 

aliquots and heat treated at a range of temperatures (34-60 °C) for 10 minutes with a 

4 °C treated control. Samples were incubated for 10 minutes at 4 °C before a 35 minute, 

21,000 x g centrifugation. The supernatants were collected, and an SDS-PAGE was 

performed. The in-gel fluorescence was visualised with a G:BOX (Syngene), and 

densitometry analysis of the heat-treated samples compared to the 4 °C control was 

performed. The survival percentage against the 4 °C control was then plotted onto a 

graph vs temperature to determine the Tm of the BRIL-PTH1R control.  

 

2.12.6 Thermostability Assay for IMPROvER Mutants 

 

To determine potentially stabilising mutations, the mutants were initially only heat 

treated to the Tm of the BRIL-PTH1R control (39 °C). Following densitometry analysis, 

if there was > 50% survival at 39 °C they were deemed potentially stabilising. Full Tm 

curves were then obtained for each of the potentially stabilising mutations using the 

protocol described above in 2.3.4. 

 

2.12.7 CompoMug 

 

As an alternative to IMPROvER, Computational Predictions of Mutations in GPCRs 

(CompoMug) was also utilised (Popov et al., 2018). The knowledge and sequence-

based modules were applied to PTH1R. For the knowledge-based module, the generic 

numbering layout of PTH1R (obtained from www.gpcrdb.org) and the fasta sequence 

were fed to CompoMug, which produced a list of mutations. For the sequence-based 

module, five sequence alignment files were required: ortholog sequences, sub-family 
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sequences, all secretin-based GPCRs, all adhesion-based GPCRs, and sequences 

corresponding to solved family B receptor structures.  

 

2.12.8 Fractional Factorial Design 

 

The fractional factorial design was performed by Dr Steven Harborne using a python 

library (PyDOE), which provided 16 runs in a fractional factorial design vs 256 runs 

in a full two-factor factorial design. A 2IV
8-4 design was chosen whereby 8 factors were 

investigated. The eight factors investigated were confirmed thermostabilising 

mutations through the methodology described in 2.3.5. Please see 5.4.1 for a more in 

depth description on fractional factorial designs. ANOVA test analysis was performed 

with R programming language using a linear regression model.   

  



80 

 

Chapter 3 Towards the Structure of 

PTH1R 
 

3.1 Aims 

 

The aim of this chapter was to express and purify a functional construct of PTH1R that 

could be used as a candidate for downstream structural work. As there were only four 

solved crystal structures at the beginning of this research, much work was needed to 

optimise and create a suitable PTH construct for structural trials. To accomplish this, 

a range of PTH1R constructs were cloned and tested for their total yields and 

functionality. The ideal construct would be one that highly expressed to ensure that 

there was enough protein for efficient purifications. To further aid in solving an active 

structure, a constitutively active receptor construct was pursued through protein 

modifications, specifically by adding PTH(1-14) to the N-terminus, attached via a 

flexible linker. After establishing and optimising protein expression, purification of 

constructs would be required, necessitating further optimisation. Acquiring a G 

protein bound receptor structure also requires the expression of, and complex 

formation between, PTH1R and the G protein. Multiple approaches to create a GPCR-

G protein complex were pursued including the use of a nanobody and the use of a mini 

G protein. Based on these results, either crystallography or cryo-EM could be pursued 

as viable methods to solve the structure of PTH1R.  

 

3.2 Cloning of Constructs 

 

A wild-type PTH1R sequence in a pcDNA3.1 vector was available (Mann et al., 2008); 

however, this plasmid was not suitable for Sf9 transfection. An insect expression 

system was initially chosen, as they account for over 80% of recombinant GPCR 
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expression hosts, with Sf9 cells being the most commonly used (Munk et al., 2019). 

Using the In-Fusion cloning kit, full-length PTH1R was cloned into a pFastBac 

expression vector, containing either a C-terminal GFP-6 x His tag, separated by a 

human rhinovirus protease site, henceforth referred to as PTH1R-CGVH, or a 6 x His 

tag alone, separated by a tobacco etch virus protease site, referred to as PTH1R-CTH. 

This was achieved through In-Fusion cloning, which allows an amplified PCR 

fragment to be inserted into a linearised vector. The following is a representative In-

Fusion cloning reaction. Further cloning results will not be presented in this thesis. 

 

 

 

 

 

 

 

 

The DNA bands shown in Figure 3.1 were all pure fragments without any 

contamination. In these instances, cloning was made easier; however, some 

experiments did have contaminating DNA bands present on gels. When this occurred, 

the desired DNA bands were excised, and gel purified. Regardless, both PTH1R-CTH 

and PTH1R-CGVH were successfully cloned and sequence verified using Eurofins 

Genomics Sanger Sequencing. 

Figure 3.1: A representative In-Fusion cloning reaction. A PTH1R fragment (1782 bp) 

was amplified by a traditional PCR protocol and pFastBac-CGVH (5630 bp) was 

linearised through inverse PCR. The two were joined together through an In-Fusion 

cloning reaction creating PTH1R-CGVH (7412 bp).  
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3.3 Expression of PTH1R 

 

To quantify expression, the PTH constructs were transformed into the E. coli strain 

DH10BacTM, which contained a baculovirus shuttle vector, facilitating the creation of 

a bacmid. Following bacmid DNA isolation, Sf9 cells were individually transfected 

with both PTH1R-CTH and PTH1R-CGVH. PTH1R-CTH/CGVH have molecular 

masses of approximately 70 and 95 kDa respectively, and expression was verified 

through western blots. The use of western blots allowed for the optimisation of 

expression conditions to be obtained, i.e. by collecting 24 hourly samples, the best day 

to harvest cells post transfection can be deduced. Furthermore, visualising the GFP 

fluorescence from the PTH1R-CGVH allowed for the localisation of the receptor to be 

determined.  

 

 

 

  

A                          C    

         

 

B

 

 

      

                 

 

 

 

 

 

 

 

      

 

Figure 3.2: Expression and Optimisation of PTH1R in Sf9 cells. A. An anti-PTH1R 

western blot confirmed receptor expression in Sf9 cells. B. Optimisation of PTH1R 

baculovirus dilution and hours post DPA. C. PTH1R-CGVH fluorescence captured 

with an EVOS microscope. There was a high abundance of fluorescence on the 

circumference of the cells, showing membrane localisation of the receptor. CC = Cell 

control 
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Transfection of PTH1R-CGVH and PTH1R-CTH was verified through an anti-PTH1R 

western blot, as demonstrated by Figure 3.2A, showing approximately 70 and 90 kDa 

proteins. Despite having a similarity of > 50%, anti-PTH1R did not bind to PTH2R 

(expression discussed in Chapter 4), which further verified both the antibody and the 

expression of PTH1R-CTH and PTH1R-CGVH. Densitometry analysis of the bands in 

Figure 3.2A, revealed that both PTH1R constructs had approximately the same density, 

suggesting that the addition of the C-terminal GFP tag did not have a significant effect 

on protein expression. With this knowledge, a GFP tag was assumed not to effect 

PTH1R construct expression. Furthermore, the addition of the GFP tag did not seem 

to affect receptor localisation. Figure 3.2C shows a clear ring of fluorescence on the 

circumference of the cells, which corresponds to receptor localisation within the 

membrane. GFP tagged receptors are thus a reliable and easy method to determine 

receptor localisation. 

 

To accurately quantify how much protein could be obtained from Sf9 cells, it was 

essential to determine the optimal time to harvest cells. To produce proteins in Sf9 

cells, a baculovirus is required. Adding a virus at too high a concentration would result 

in the death of the cells, while too low a concentration would fail to prompt infection, 

and henceforth expression of the protein of interest. Thus, it was crucial to also 

determine baculovirus concentration. Figure 3.2B shows that a 1:1000 baculovirus 

dilution and harvesting at DPA + 48 hours was the optimal day for harvesting. As 

many proteins were expressed in Sf9 cells throughout the duration of this project, 

further expression optimisations will not be presented. 
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Using the optimised conditions of PTH1R expression, quantification was achieved 

through in-gel fluorescence of PTH1R-CGVH compared with known standards of 

GFP. By comparing the densities of the fluorescent bands, it is possible to back 

calculate how much protein is expressed per litre of insect cells. Following cell 

harvesting, whole cells were used to accurately determine total cell yields. 

 

 

 

 

 

 

 

Figure 3.3 revealed that PTH1R-CGVH expression was approximately 50 µg/L, and if 

the GFP tag does not affect expression, then this would also be wild-type PTH1R 

expression levels. However, the total protein yields were not a workable amount of 

protein for structural studies. This was expected as GPCRs are often expressed at low 

yields, and so receptor modifications would be required to increase expression. To 

better characterise the wild-type construct, protein solubility was investigated. A 

common detergent for GPCR solubilisation, DDM (Ehrenmann et al., 2018; 

Rasmussen et al., 2011b; Wu et al., 2020), was used in an initial solubilisation 

screening. To ensure maximum solubility, PTH1R was solubilised overnight at 4 °C. 

Fos-choline 12 was used as a positive control, as it is an extremely potent detergent 

Figure 3.3: Quantification of PTH1R-CGVH. In-gel fluorescence of PTH1R was 

compared to fluorescence of known GFP standards using densitometry. Total PTH1R 

quantification was calculated to be 50 ± 12 µg/L. 
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that will likely solubilise 100% of the protein but is not usable for further downstream 

experiments, as it can destabilise proteins. 

 

 

 

 

Figure 3.4 showed that approximately 50% (44.7 ± 3.7) of total PTH1R was solubilised 

in DDM and DDM with CHS (51.7 ± 2.9), which is an adequate level of solubilisation. 

Unfortunately, this meant that only 25 µg/L of wild-type PTH1R was available to work 

with, assuming a total expression of 50 µg/L. Even further protein losses would occur 

during purification, meaning that this was a completely unviable amount of protein to 

work with for structural studies, as often milligrams of protein are required for 

crystallisation (McPherson & Gavira, 2014).  

 

3.4 HEK-293 Expression 

 

PTH1R was expressed in HEK-293 cells to see if there was any improvement on 

expression. This also had the added benefit of establishing an expression protocol for 

Figure 3.4: Solubilisation of PTH1R-CTH. A. The solubilisation of PTH1R in fos-

choline 12 (Fos), DDM, and DDM with CHS (+ CHS). There was 100% solubilisation 

in the Fos treated lanes and approximately 50% solubilisation in the DDM and DDM 

with CHS treated lanes. S = soluble, In = insoluble. Membrane was probed using an 

anti-His antibody. B. Bar chart showing solubilisation percentages, obtained through 

densitometry analysis using FIJI software. Error bars are standard error of the means, 

obtained from three independent experiments. 

A                       B
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future functional assays. For HEK-293 expression, PTH1R was cloned into pOPIN 

plasmids (Berrow et al., 2007) through In-Fusion cloning and included a C-terminal 

GFP tag. Following sequence verification, HEK-293 transfection was achieved using 

the PEI based protocol described in Chapter 2. As before, optimisation of expression 

had to be solved, which was performed by comparing the fluorescence of HEK-293 

cells. 
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B       

      

 

Figure 3.5: Expression and quantification of PTH1R in HEK-293 cells. A. Optimisation 

of incubation with PEI present. B. Optimal day of expression post transfection. 

Expression was measured through cell fluorescence. Cells were incubated with PEI for 

20 hours. C. Quantification of PTH1R though in-gel fluorescence. PTH1R fluorescence 

could not be visualised on the gel, making quantification impossible. D. Verification 

of PTH1R expression through an anti-PTH1R antibody. 

C                     D 
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Transfection of HEK-293 cells was performed using PEI, which is toxic to cells; 

therefore, optimal exposure time to PEI was determined to be 20 hours before being 

replaced with fresh media (Figure 3.5A). Simultaneously, it was found that 48 hours 

was the optimal time to harvest cells, as 72 hours post transfection cell death began to 

occur (Figure 3.5B).  Despite these optimisations, quantification of PTH1R in HEK-

293 cells was not possible due to low expression levels. PTH expression was verified 

using an anti-PTH1R antibody (Figure 3.5D); however, it was at such a low level that 

the fluorescence was not able to be visualised in the gel. Therefore, the Sf9 expression 

system was chosen for further experiments. The optimisations performed, while not 

useful for solving PTH1R’s structure, were still of use for functional assays further 

downstream.  

 

3.5 Truncation of PTH1R ECD 

 

One of the most common methods to increase GPCR stability and expression is to 

attach a fusion protein to the protein, such as T4 lysozyme or BRIL. To avoid 

inhibiting any intracellular interactions, such as G protein binding, BRIL was fused to 

the N-terminus of the receptor. Four random points, close to the start of helix I, were 

chosen for truncation to determine if it was capable of increasing protein expression 

before BRIL was added. An important factor that must be considered is that removing 

the entire ECD will also remove the signal peptide, which is responsible for localising 

the receptor in the membrane. Therefore, a hemagglutinin signal peptide was cloned 

onto the N-terminus of the truncated and the BRIL-attached receptor. All proteins had 

a C-terminal GFP tag to allow quantification of the receptor. Following sequence 

confirmation, the proteins of interest were expressed in Sf9 cells and harvested at the 

appropriate time.  
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By comparing the in-gel fluorescence of the truncated receptors to known standards 

(as seen in Figure 3.3), it was possible to determine if the truncations had increased 

receptor expression. Truncation at residue 179 appeared to have the largest increase 

in expression as it was double wild-type levels at ~100 µg/L of Sf9 cells. All other 

truncations, while producing small increases in expression, did not achieve the levels 

of 179. Therefore, it was decided that BRIL would be added to this truncated receptor. 

Following the addition of BRIL, quantification was performed by densitometry 

analysis and it was calculated that BRIL-PTH1R expressed at approximately 300 µg/L 

of Sf9 cells. This was six times higher than wild-type expression and is a much more 

realistic expression level for further structural studies. The captured GFP image from 

the cell verified that the modifications to PTH1R did not affect membrane localisation. 

Various other GPCR structures have used a hemagglutinin signal peptide to increase 

A           B

       

      

 

C           D

       

      

 Figure 3.6: Quantification of truncated receptors. A. The ECD was truncated at four 

sites to determine the optimal location to attach the fusion protein, BRIL. The addition 

of BRIL significantly increased protein expression. B. Membrane localisation of 

BRIL-PTH1R determined through GFP fluorescence. Error bars are standard error of 

the mean, obtained from three individual experiments. 
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receptor expression and promote membrane localisation (Milic & Veprintsev, 2015); 

therefore, it was used in all future PTH1R constructs. 

 

One final factor that had to be determined was whether this new BRIL-PTH1R 

construct could still be solubilised. Previously PTH1R had shown solubilisation in 

DDM, so this was used again to test BRIL-PTH1R solubilisation. In addition to DDM, 

LMNG was also tested, as this has been used to solve approximately 30% of GPCR 

structures (Munk et al., 2019), though DDM with CHS remains the most commonly 

used detergent. Another compound known as CHAPS, a zwitterionic detergent, was 

also tested, as it has been shown to create a more stable environment for protein 

purification (Milic & Veprintsev, 2015). 

 

 

 

 

Figure 3.7: Solubilisation profile of BRIL-PTH1R. A. In-gel solubilisation profiles of 

DDM and LMNG, with additives, were tested on their ability to solubilise BRIL-

PTH1R. Membrane was probed with an anti-His antibody. B.  Bar chart showing that 

all detergents achieved approximately 50% solubilisation compared with Fos-choline 

12. Error bars are standard error of the mean, obtained from three individual 

experiments. 

A     B                       

 C     
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The addition of BRIL did not seem to affect the solubilisation profile of PTH1R. 

Approximately 50% of the protein was solubilised in DDM with CHS compared to 

the Fos-choline 12 solubilisation response, as previously seen in Figure 3.4. 

Additionally, the presence of CHAPS did not seem to have any additive effects on 

solubilisation, thus it was not added on subsequent solubilisations. LMNG also did not 

seem to have any major improvements on total solubilisation compared with DDM. 

Therefore, DDM with CHS was chosen as the detergent for further experiments. 

 

3.6 Constitutively Active Receptor 

 

In order to solve an active receptor structure, the protein must be pushed towards an 

active conformation, which is commonly done through the use of an agonist, allowing 

a G protein to bind. However, purchasing peptides can be expensive and does not 

guarantee a stable active conformation, due to the inherently instable nature of GPCRs. 

For these reasons, a constitutively active receptor, created by tethering PTH(1-14) 

onto the N-terminus was pursued. As previously discussed, residues 1-14 are essential 

for receptor activation and are even able to activate PTH1R when the ECD is not 

present (Luck et al., 1999). By attaching a flexible linker between the receptor and 

PTH(1-14) it may be possible for the residues to reach into the receptor core, 

ultimately activating it. This would mean that the receptor to agonist concentration 

ratio would be 1:1 and should always activate the receptor. The principle behind this 

is shown in Figure 3.8. 
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The optimal length of flexible linker had to be determined, so several constructs were 

created using pre-established linkers (GGGGS)1, (GGGGS)3, and GSAGSAAGSGEF 

(GSAGSA) (Chen et al., 2013). These were expressed using the same protocol as wild-

type PTH1R. To efficiently purify the protein two purification tags were added, an N-

terminal FLAG tag (DYKDDDDK) and an 8 x His tag. The full sequence plan for 

these constructs can be seen in Figure 3.9. 

  

Figure 3.8: Schematic of the principle behind a tethered receptor. In the absence of 

PTH(1-14) the receptor will remain in an inactive state. However, when attached to a 

flexible linker it may be possible for it to reach into the receptor core, leading to 

activation. 
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Using two antibodies confirmed both purification tags were present, and that the full-

length protein was being expressed, as the two tags were at opposite termini. After 

expression had been confirmed, it was crucial to determine if the receptors were 

constitutively active; to achieve this the LANCE® cAMP assay was used; a time-

resolved fluorescence energy transfer (TR-FRET) based assay (Figure 3.10). A 

Europium-labelled, biotin-cAMP tagged streptavidin molecule is excited at a 340 nm 

wavelength and, in the absence of free cAMP, fluorescence energy transfer (FRET) 

can occur, due to an Alexa Fluor 647 tagged cAMP antibody binding to the biotin-

cAMP. When excited, the Alexa Fluor molecule emits at a 665 nm wavelength; 

however, in the presence of free cAMP, the measured 665 nm emission will decrease 

as the Alexa Fluor will no longer be in a close enough proximity to the europium label 

for FRET to occur. This is a result of the competitive binding between the cAMP 

antibody and the free cAMP/biotin-cAMP. Therefore, there is an inversely 
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Figure 3.9: Expression of PTH(1-14) tethered PTH1R constructs. A. The design of 

protein constructs. A hemagglutinin signal peptide (HemaG) on the N-terminus, to 

direct the receptor to the membrane, was followed by PTH(1-14) and one of three 

flexible linkers, (GGGGS)1, (GGGGS)3, and GSAGSA. B. Expression of tethered 

constructs verified with anti-His and anti-FLAG antibodies. 
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proportional relationship between cAMP concentration and the 665 nm signal, 

allowing a standard curve to be created. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Forskolin is an activator of adenylyl cyclase and can increase cAMP levels 

independent of GPCR involvement. Therefore, Forskolin was ideal for a GPCR-

independent positive control. The various constructs were expressed in HEK-293 cells 

using the established protocol from Figure 3.5. 

 

A 

 

 

 

 

B 

Figure 3.10: Principles of the LANCE® cAMP assay. A. Excitation in the absence of 

free cAMP. Excitation of Europium at 340 nm allows FRET to occur to the Alexa 

Fluor 647 molecule, which emits at 665 nm. B. Excitation in the presence of free 

cAMP. The Alexa Fluor molecule no longer binds the cAMP labelled streptavidin, 

inhibiting FRET. There is then a decrease in 665 nm emission. 
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From Figure 3.11, it appeared that the constructs were constitutively active. The 

unstimulated, untethered receptor response (control cells) produced only a fraction of 

cAMP compared to all other conditions, while the tethered receptors were capable of 

producing ~50% of the forskolin treated control response (46.3 ± 12.2, 46.4 ± 12.7, 

and 35.1 ± 4.9% for (GGGGS)1, (GGGGS)3, and GSAGSA respectively). When 

Figure 3.11: LANCE cAMP functional assay on tethered PTH1R constructs. A. A 

standard curve created using known concentrations of cAMP. The linear range of the 

curve is highlighted by the red-dashed lines. B. Optimisation of cell count per well 

using known forskolin concentrations. The optimal count was the one which would 

best fit into the linear region of the standard curve responses. Both 5000 and 10000 

cells fit well into the linear range C. cAMP readouts of the various constructs with and 

without 10 µM of Forskolin. Constitutive activity was determined by comparing non-

stimulated untethered receptor responses. All tethered receptors produced significantly 

higher levels of cAMP (p < 0.05) than the untreated control sample and produced 

approximately 50% of the forskolin treated cell responses. Error bars are standard error 

of the mean, obtained from three individual experiments performed in triplicates. 
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Forskolin was added to the tethered receptor wells, cAMP was produced up to control 

stimulated levels, showing that the addition of the linkers and PTH do not appear to 

have any adverse effects on the maximal signalling response. 

 

3.7 GPCR-G Protein Complex Formation 

 

Having created a constitutively active receptor, the next step in solving the active 

structure was to express the G protein and form the full GPCR-G protein complex. As 

discussed in Chapter 1, to prevent dissociation of the G protein, a nanobody, nb35, is 

commonly used; therefore, optimisation of a nanobody expression was pursued. 

Alternatively, a mini G protein that binds the active receptor is another route that can 

be pursued.  

 

3.7.1 G Protein Expression 

 

To solve the active PTH1R structure, it must be bound to a G protein. However, as the 

G protein is composed of three subunits, forming the full protein is not as easy as 

simply expressing a single protein. Therefore, a complex must be formed. The first 

instance of an active GPCR-G protein was solved by Rasmussen et al., (2011b) who 

individually purified a G protein and the β2AR and then formed the complex by mixing 

the two purified proteins. Since this breakthrough in GPCR structural studies, the 

majority of active GPCR structures follow a similar protocol. The sequences for rat α 

subunit and human βγ subunits were ordered from Addgene and required minor 

cloning alterations, such as removing a halo tag, and all were cloned into pFastBac 

plasmids. Expression was achieved by following a standard Sf9 cell transfection 

protocol. The approximate sizes of the individual subunits are 46, 35 and 10 kDa for 

the α, β, and γ subunits respectively. 
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Figure 3.12 showed that it was possible to express all individual subunits of the G 

protein in Sf9 cells using a standard transfection protocol. The α and γ subunits were 

verified using specific antibodies, anti-GNAS and anti-GNG2. The β subunit was 

cloned with an 8 x His tag on the C terminus so an anti-His antibody could be used to 

visualise the β subunit. The additional band at approximately 20 kDa was likely 

aggregation or dimer formation, as the γ subunit is approximately 10 kDa. 

 

The next step was to try and form the full G protein complex. To achieve this, Sf9 cells 

were infected with 3 baculoviruses in a 1:1:1 ratio. The optimal baculovirus titre had 

already been established and acted as the foundation for the ratios. As the β subunit 

was His tagged, it meant that a nickel column purification could be used to purify the 

entire G protein. If a complex is formed, then the α and γ will be pulled down at the 

same time as the β subunit. Following harvesting of the transfected cells, they were 

lysed using a Dounce homogeniser and solubilised with sodium cholate. The 

Figure 3.12: Expression of G protein subunits. The three subunits were visualised 

using anti-GNAS, anti-GNG2 and anti-His antibodies. 
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solubilised samples were then applied to a nickel column purification. Washes and 

purifications were saved to visualise on a western blot to determine any protein losses.  

 

 

 

 

 

 

 

 

From a single purification, all three subunits could be pulled down, suggesting the 

formation of a G protein complex. While some α subunit was lost in the washes, the 

clear majority could be seen eluting with the β subunit. Contrastingly, there appeared 

to be no loss of γ subunit in the washes. Following the success of this experiment, the 

simultaneous expression of four proteins using baculoviruses was pursued: the three 

G protein viruses and a virus for PTH1R. If it were possible to form a GPCR-G protein 

complex from one purification it could eliminate potential protein losses from multiple 

purifications and could eliminate several steps that Rasmussen et al. (2011b) had taken 

to solve the β2AR. 

 

 

 

Figure 3.13: Purification of full G protein complex. Three western blots probing for 

individual G protein subunits after a His purification of the β subunit. Following the 

elution of the His tagged β subunit, the α and γ subunits were eluted simultaneously, 

suggesting a complex was formed. 
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3.7.2 Multiple Protein Expression in Sf9 Cells 

 

Infecting with 4 viruses has the potential to kill the cells quickly, so multiple ratios of 

viruses were used to determine the optimal volume of virus to use. All individual 

viruses had their titres pre-determined by expression tests and through densitometry 

analysis. The dilutions acquired from these experiments were then used as a 

foundation for the multiple virus infection. As a 1:1:1 ratio had previously worked for 

expressing the full G protein, 1:1:1:1 ratios and other ratios were investigated. 

 

 

 

 

 

 

 

 

 

Due to the higher expression levels of the β subunit compared to the PTH1R construct, 

a change in contrast was required to better visualise the proteins simultaneously. Upon 

confirmation of these two proteins, the membrane was stripped and re-probed using 

anti-α and γ antibodies. Adjusting the ratio of baculoviruses did not seem to have any 

major effects on the expression of all four proteins; therefore, a ratio of 1:1:1:1 was 

Figure 3.14: Co-expression of 4 viruses in Sf9 cells. Various ratios of four viruses 

were added to Sf9 cells to determine if expression of four proteins was achievable. 

Lanes A – D represent ratios of 1:1:1:1, 1:2:2:2, 1:1:2:1, and 1:2:1:1 for PTH1R:α:β:γ. 

PTH1R and the β subunit were both His-tagged, so were both observable on a single 

western blot using an anti-His antibody. Contrast levels were significantly altered to 

visualise both proteins simultaneously.  
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chosen for future expression. Having successfully expressed all proteins, it was 

essential to obtain a nanobody that could stabilise the full protein complex. 

 

3.7.3 Nanobody Expression and Purification 

 

Traditionally, nanobodies are expressed in E. coli cells and purified in high 

concentrations. The purified product is then added to a GPCR-G protein mixture to 

form a stable complex. The most used nanobody for stabilising GPCR-G protein 

complexes is nb35 (Manglik et al., 2017) which stabilises the G protein and inhibits 

dissociation; however, nb37 is also a potential candidate for complex stability 

(Westfield et al., 2011). Coincidentally, a nb37 baculovirus was available in the lab. 

Following optimisation of expression, a small scale His purification was performed to 

determine if the Sf9 expression system was a viable alternative to the more traditional 

E. coli expression. 

 

 

 

A     B                       

 C     

        

 

Figure 3.15: Purification and quantification of nb37. A. His purification of nb37.  The 

most prevalent protein was nb37, but other contaminating bands were present. B. 

Quantification of nb37 using known His protein standards. 
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Purification of nb37 was achieved using a His purification protocol and quantified 

through a western blot with known standards of His-tagged proteins.  However, to find 

the range where undiluted nb37 could be accurately quantified, the known standards 

had to be lowered to 0.005 to 0.1 mg/mL. As E. coli expressed nanobodies often 

produces milligrams of purified protein (Pardon et al., 2014), it was not efficient to 

further pursue this line of work; therefore, nb35 was produced in E. coli. 

 

Periplasmic expression of nb35 and a nickel affinity chromatography purification can 

result in high yields of the protein (Pardon et al., 2014). In order to perform the His 

purification, the cells must be lysed; however, this procedure is different than Sf9 cell 

lysis. One technique that can be utilised is osmotic shock. Osmotic shock lyses cells 

through changes in salt concentrations and inward movements of water into the cell. 

The increased pressure of water in the cells causes the cells to lyse. The WK6 E. coli 

strain is often used for expression of nb35 due to the high levels of protein that can be 

obtained (Pardon et al., 2014).  Following protein expression, cells were resuspended 

in ice-cold TES (0.2 M Tris-HCl, 0.1 M EDTA, and 200 g L-1 sucrose) and incubated 

on ice. Following this, cells were centrifuged and resuspended in ice-cold water. After 

a further ice incubation and centrifugation, nb35 was obtained from the supernatant.  
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Expression of nb35 in WK6 cells was not achieved but was feasible in BL21 cells. 

This was unexpected, as nb35 has previously been expressed in WK6 cells (Pardon et 

al., 2014). Various methods of expressing nb35 in WK6 cells were attempted (longer 

incubation times, different IPTG concentrations) but with no success (data not shown). 

Regardless, protein expression was achieved in BL21 cells. Following an osmotic 

shock protocol (performed on nb35 expressing BL21 cells), it was revealed that it was 

not completely effective as most of the protein remained in the pellet. Only a small 

amount of protein was present in the supernatant, which explains the faint bands seen 

in the purification Coomassie stain. Due to the unsuccessful lysis, quantification of 

the elution was not performed as it could be vastly improved by improving the osmotic 

Figure 3.16: Expression and purification of nb35. A. Expression trials of nb35 in WK6 

and BL21 cells. Expression was unsuccessful in WK6 cells but did express in BL21. 

B. Centrifugation of cells post osmotic shock. Most of the protein was still in the pellet 

suggesting lysis was not efficient. C. Coomassie stain showing the results of a His 

purification. 

A         

 

                                  

        C 

 

 

B          
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shock protocol. The conditions for purifying nb35 therefore had to be heavily 

optimised before they could be used for structural studies. 

 

3.7.4 Optimisation of Nanobody Purification 

 

As the ice-cold water approach was not efficient, different solutions to promote cell 

lysis were investigated, namely a 0.01 M Tris-HCl, 0.005 MgSO4, and 0.2% SDS 

buffer. To determine if lysis was improved, final densities of pellet-bound and 

supernatant containing nb35 were compared. Improvement was deemed successful 

when there was more nb35 present in the supernatant, as this would suggest increased 

cell lysis. 

 

 

Figure 3.17 showed that the new fractionation buffer (containing MgSO4) caused the 

highest cell lysis, as following a centrifugation there was proportionally more protein 

in the supernatant than in the pellet compared with TES and water treated samples. 

Figure 3.17: Optimisation of nb35 purification: A. Osmotic shock using different 

solutions. The presence of 5 mM MgSO4 appeared to have the greatest effect on cell 

lysis. The control (treatment with only ice-cold water) showed almost no proteins in 

the final supernatant. Error bars are standard error of the mean, obtained from three 

individual experiments. B. Coomassie staining of nb35, purified using nickel affinity 

chromatography.  

A         B                       

 C       
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This then allowed more protein to be available for purification. The total yield of 

purified nb35 was determined to be 3.8 mg/L of E. coli cells. With these yields, nb35 

could then be used for complex formation experiments. Due to the significant 

improvement of protein yields compared with nb37 and the relative ease of using E. 

coli cells over Sf9 cells, it was decided to use nb35 exclusively in future experiments. 

 

3.8 Formation of the GPCR-G Protein Complex 

 

3.8.1 GPCR-G Protein-nb35 Complex 

 

Having obtained a viable PTH1R construct, demonstrated purification of a G protein 

and nb35, formation of a full GPCR-G protein complex was pursued. Sf9 cells, 

simultaneously co-expressing PTH1R, the α, and βγ subunits were lysed and complex 

formation was initiated with the addition of 10 µM PTH, 2 mg nb35, and Apyrase. 

Apyrase is added to GPCR-G protein solutions to hydrolyse any GDP released from 

the α subunit as it can inhibit receptor-G protein binding if present. The complex can 

then be solubilised and purified. As the receptor and β subunit are both His-tagged, a 

FLAG purification of the receptor was required to avoid co-purification of the β 

subunit. 
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Figure 3.18 shows an attempt at forming the GPCR-G protein complex, using nb35. 

The (GGGGS)1 construct appeared to be able to form a complex with the α subunit, 

but the βγ subunits were lost in the flow-through. This suggests that nb35 was unable 

to stabilise the interaction between the βγ and α subunit. Had a complex formed, then 

the βγ subunits would be visible in the elution and not in the flow-through. As the 

GPCR was able to bind the α subunit, this was a promising sign that an alternative 

approach to forming an active complex could work: a GPCR-mini G protein complex.  

 

3.8.2 GPCR-Mini G Protein Complex 

 

Simultaneously, work was being performed on creating a PTH1R-mini G protein 

complex. As this complex lacks the βγ subunits its overall size is significantly smaller 

than a full GPCR-G protein complex. Therefore, cryo-EM would be more challenging.  

Due to the previous success of the G protein complex formation (Figure 3.13), a 

Figure 3.18: Attempted GPCR-G protein complex formation. A. Elutions from a 

FLAG purification showing a GGGGS1 and α subunit complex formation. Control 

samples were treated with PTH and apyrase but nb35 was not present. B. 

Representative western blots showing the loss of the β and γ subunits in the flow-

through, suggesting the desired complex did not form. Anti-GNAS, GNG2 and anti-

His antibodies were used to visualise the three subunits. 

A                   B                       

 C       
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PTH1R-mini G complex by co-expression of the two proteins in Sf9 cells was pursued. 

The mini G protein was His tagged (as well as PTH1R). This meant that following a 

purification it would be possible to see both the receptor and the mini G protein in one 

western blot. Expression of the mini G protein was optimised and co-expression using 

a 1:1 ratio was achieved. Purification was achieved in a similar manner to the 

previously attempted GPCR-G protein-nb35 complex formation, in that Apyrase and 

10 µM of PTH were added post cell lysis. The approximate weight of the mini G 

protein is 27 kDa.  

 

Interestingly, when using a control BRIL-PTH1R construct (without any tethered 

ligand) and co-expressing the mini G protein, it appeared that a complex was formed 

(Figure 3.19A). Following a Flag purification, a western blot was probed using an 

Figure 3.19: Purification of GPCR-mini G protein complex. A. Flag purification of an 

untethered BRIL-PTH1R, showing the co-purification of the mini G protein, suggesting 

complex formation. B. Attempted complex formation with PTH(1-14)-(GGGGS)1-

PTH1R (GGGGS1). There was no sign of the mini G protein in the elutions suggesting 

that the protein was lost in the flow-through. C. Presence of the mini G protein in the 

flow-through, showing that GGGGS1 was unable to form the GPCR-G protein complex. 

All membranes were probed with an anti-His antibody 

A                           B                       

 C       

      

 

C                       

 C       
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anti-His antibody. In the presence of 10 µM PTH there was a band at approximately 

25 kDa which corresponds well with the 27 kDa mini G protein. However, when using 

a PTH-tethered construct, GGGGS1, there was no sign of the mini G protein in the 

elutions. Instead it appeared that the protein was lost in the flow-through (Figure 

3.19C). This means that the complex was not formed. One potential reason for this 

was that since the (GGGGS)1 receptor is constitutively active they will be going 

through the process of desensitisation. This means that the intracellular half of the 

receptor may be phosphorylated, from G protein receptor kinases, and bound to 

proteins such as arrestins, ultimately desensitising the receptor from the mini G protein. 

If this was occurring, then there would be no access for the mini G protein to bind and 

thus the complex would not be formed. If this reasoning is accurate, then constitutively 

active receptors are not a viable choice for determining active receptor structures. 

 

3.9 Conclusions 

 

It quickly became apparent that PTH1R was a difficult protein to work on, primarily 

due to its extremely low expression levels of 50 µg/L. Low expression levels are 

common when working with GPCRs, which is why extensive alterations are often 

required. Through truncations and the addition of BRIL, the expression levels were 

increased up to 300 µg/L, a far more realistic level for structural studies. PTH1R also 

had a highly standard GPCR solubilisation profile, in that it had approximately 50 % 

solubilisation in DDM, a detergent that has been used to solve over 50 % of all GPCR 

structures (Munk et al., 2019). In a unique take on solving active structures, a 

constitutively active tethered receptor was created and verified through cAMP 

functional assays. Towards the active structure, purification of the G protein complex 

was pursued and achieved following previously established protocols (Rasmussen et 
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al., 2011b); however, to improve upon the efficiency of this protocol, it was 

demonstrated that both receptor and G protein could be co-expressed simultaneously. 

To capture the GPCR-G protein complex in an active state a stabilising nanobody is 

required. The expression and purification of nb35 was successful, though the insect-

expressed nb37 yields were too low to be a viable alternative. 

 

Despite these successes, the formation of the GPCR-G protein-nb35 complex was not 

obtained, as the βγ subunits were lost in the purification flow-through. However, the 

α subunit was co-purified with the receptor, which indicated that a mini G protein 

could be a viable alternative. Following co-expression of the receptor and a mini G 

protein, complex formation was still not achieved using a PTH-tethered receptor. 

Constitutive activation may have led to desensitisation of GPCR-G protein binding, 

which may explain the failure to form a complex. Contrastingly, when using BRIL-

PTH1R there was co-purification of the mini G protein and the GPCR. This may have 

been an ideal target to start running crystallisation trials on had the research proceeded; 

however, both an inactive and active full PTH1R-G protein structure were solved 

during the duration of this research (Ehrenmann et al., 2018; Zhao et al., 2019). 

Comparisons between the protocols used to solve these structures and the research 

presented here will be discussed in Chapter 6. Regardless, this work has demonstrated 

the expression and purification of a PTH1R construct and the complex formation 

between it and a mini G protein, which had not been demonstrated at the start of this 

research. 
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Chapter 4 Towards the PTH2R Structure 
 

 

4.1 Aims 

 

The aims of this chapter were to improve our knowledge and understanding of PTH2R 

by solving its structure. Far less information is known about PTH2R than PTH1R, and 

even at this present day, there is still no structural knowledge regarding PTH2R. 

Therefore, any structural determination would be highly desirable, even solving the 

ECD. It became readily apparent that solving the full-length PTH2R structure would 

be incredibly difficult and so efforts were placed into solving the ECD. To this end, 

the ECD was expressed in E. coli cells and purified to attempt to solve the structure. 

As disulphide bonds are essential for maintaining the correctly folded ECD shape, a 

number of methods to ensure the correct formation of these bonds was pursued such 

as using E. coli strains with oxidised environments (Origami and Rosetta-Gami), co-

expression with a disulphide bond isomerase and incubation with a purified isomerase. 

This, in tangent with the work on PTH1R, could hopefully increase our knowledge of 

the PTH receptors. 

 

4.2 Expression and Quantification of PTH2R in Sf9 Cells 

As previously established with PTH1R, the addition of GFP did not have any 

significant effects on protein expression levels. Therefore, the same technique was 

used to try and solve PTH2R expression. As with PTH1R, a wild-type PTH2R sequence 

(Mann et al., 2008) was cloned into pFastBac-CTH and CGVH, creating PTH2R-CTH 

and PTH2R-CGVH. These plasmids were transformed into MAX Efficiency 

DH10Bac cells in order to obtain a bacmid. Sf9 cells were transfected with a 

baculovirus and following confirmation of protein expression the baculovirus was 
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amplified to V1. After determining optimal time of harvesting and baculovirus dilution 

(data not shown), quantification of PTH2R was achieved by comparing in-gel 

fluorescence to known GFP standards. 

 

 

 

 

 

 

Unfortunately, PTH2R levels were even lower than wild-type PTH1R and were only 

approximately 25 µg/L, as determined through densitometry analysis of the bands. 

This was a completely unusable level of protein, and as such, significant protein 

modifications were required to increase this value. The ECD of PTH1R and PTH2R 

have almost no conservation between them, but the TMDs do share approximately 50% 

sequence identity. Therefore, a chimeric PTH1R
ECD-PTH2R

TMD construct was 

designed. Using In-Fusion, the ECD of PTH1R was cloned onto the TMD of PTH2R 

and expressed in Sf9 cells.  Alternatively, the ECD was truncated as this was 

previously established to increase expression in the case of PTH1R. If expression 

levels improved by adequate amounts, then the truncated sites would be ideal spots to 

Figure 4.1: Quantification of PTH2R. The quantification of PTH2R using in-gel 

fluorescence compared to known standards of GFP. PTH1R was also quantified to 

show a comparison between the two receptors. The PTH2R bands were very faint and 

so are highlighted by the red square. Through densitometry PTH1R had almost double 

the expression of PTH2R. 
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add the fusion protein BRIL, as this was able to increase expression six-fold over 

native PTH1R levels. Furthermore, a random site on the C-terminus of the receptor 

was picked for truncation as another means of increasing expression. All constructs’ 

expression trials were optimised before quantification through in-gel fluorescence and 

densitometry analysis. 

 

 

 

 

PTH2R modifications showed a similar pattern as PTH1R regarding expression. When 

the ECD was truncated at various points it was able to double expression up to 

approximately 50 µg/L, which is comparable with wild-type PTH1R yields. However, 

this was still an unusable level or protein for structural studies. If the addition of BRIL 

had a similar result as shown for PTH1R, then it should be approximately three times 

higher than the ECD truncated construct. This would only boost expression to around 

150 µg/L, which is still not an ideal level to work with. The addition of PTH1R ECD 

A                     B 

      

      

 

Figure 4.2: Expression of PTH2R Mutants. A. In-gel fluorescence of various PTH2R 

mutations compared to 5 ng of GFP. Although C-439 did not appear to be expressing, 

it was verified using an anti-His western blot (not shown). B. Bar chart showing the 

expression levels of wild-type PTH2R and its mutants. Truncating the N-terminus or 

replacing the ECD with PTH1R ECD doubled wild-type expression. Truncating the C-

terminus appears to have no effect on protein expression. Error bars are standard error 

of the mean, obtained from three individual experiments. 
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to PTH2R TMD had a similar effect as truncating the ECD, by effectively doubling 

wild-type expression. Truncating the C-terminus caused no significant change to 

protein expression levels, though it did likely create a more stable receptor by 

removing the highly mobile disordered C terminus.  

 

4.3 Solubilisation of PTH2R 

Simultaneously, a solubilisation profile of PTH2R was investigated by performing a 

solubilisation screen with various detergents. Following cell transfection, cells were 

harvested and allowed to solubilise overnight at 4 °C in the appropriate detergent to 

allow maximum solubilisation to occur. Cell samples were put through a high-speed 

centrifugation to separate insoluble and soluble matter and visualised using an Anti-

His western blot. Detergent efficiency was determined by comparison with a Fos-

choline 12 response.  

 

 

 

Figure 4.3: Solubilisation of PTH2R. A. Solubilisation of PTH2R in 1% (w/v) dodecyl 

maltoside (DDM) with and without 0.2% cholesteryl hemisuccinate (CHS) (w/v) 

compared to fos-choline 12 (Fos). Fos-choline 12 solubilised the majority of PTH2R 

but DDM showed almost no signs of solubilisation. B. Solubilisation screen of PTH2R 

using decyl maltoside (DM), lauryl maltose neopentyl glycol (LMNG), octyl 

glucoside (OG), octyl glucose neopentyl glycol (OGNG), and cymal 5. There was no 

sign of successful solubilisation in any of the detergents. Representative image of 

failed solubilisation attempts. All samples were visualised using anti-His antibodies. 

S = soluble, In = Insoluble. 

 

A                   B 
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Initially, PTH2R was solubilised only in DDM (+/- CHS), as this was used to solubilise 

approximately 50% of PTH1R constructs; however, there appeared to be no 

solubilisation of PTH2R in this detergent. Fos-choline 12 was the only detergent 

capable of causing solubilisation. Following these results, a solubilisation screen was 

performed using a wider range of detergents (DM, LMNG, OG, OGNG, and Cymal 

5) however, all detergents failed to solubilise PTH2R. At this point it was determined 

that attempts to solve the full PTH2R structure would be fraught with difficulties. The 

protein had very poor levels of expression and was difficult to solubilise. For these 

reasons, it was concluded to move away from solving the full structure and instead 

focus on a potentially less problematic aspect of family B GPCR structures, the ECD. 

 

4.4 A General Method for Solving Family B GPCR ECD Structures 

As previously discussed in Chapter 1, family B GPCRs have a conserved ECD 

structure, the secretin family recognition fold, characterised by a -- fold. This 

was determined long before full family B GPCR structures were being solved, as the 

ECD is a soluble region of the receptor. Different techniques can be utilised to solve 

the ECD structure, such as expressing in inclusion bodies and refolding the protein 

into its native state (Underwood et al., 2010), but a more common and reproducible 

method was developed by  Pioszak et al., (2008)  where an N-terminal MBP fusion 

protein was fused to the ECD along with a His tag on the C-terminus. As the ECD is 

a heavily folded structure maintained by disulphide bonds it is essential that these 

bonds are present in the structure to ensure a native conformation is achieved. 

 

To this end, the protein can be expressed in an E. coli strain that has been specifically 

modified to promote disulphide bond formation, such as Origami (DE3) cells. Origami 
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cells have mutations in gor and trxB genes; this creates an oxidised cytoplasm, which 

can facilitate disulphide bond formation. However, there is a chance that non-native 

disulphide bonds will form. To prevent this, the protein can be co-expressed with 

another protein known as DsbC. DsbC, and other disulphide bond isomerases, can 

break non-native disulphide bonds, helping ensure the formation of native protein 

structures. Even with all these measures, incorrectly folded proteins were still obtained 

by Pioszak & Xu (2008) during their PTH1R ECD research. A final incubation step 

was required to remove the misfolded protein, leaving only a homogenous, correctly 

folded ECD. Purified DsbC could be incubated with the purified MBP-ECD protein 

in addition with reduced and oxidised glutathione to promote disulphide bond 

shuffling. Pioszak & Xu (2008) determined that by performing this additional 

incubation they obtained far less misfolded protein. The general workflow for 

obtaining the ECD can be seen in Figure 4.4. 
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4.5 Purification of DsbC 

 

DsbC is a highly expressing and stable 25 kDa protein and was expressed in E. coli 

BL21 (DE3) cells. Cells were grown and induced with 0.4 mM IPTG for four hours 

to express DsbC. Following cell harvesting, cells were lysed via a French pressure cell 

press. Protein precipitation using ammonium sulphate was used to isolate the protein 

of interest. At low ion concentrations, the solubility of proteins tends to increase, a 

phenomenon referred to as ‘salting-in’. As ion concentration is increased protein 

solubility decreases and will eventually lead to the precipitation of the protein. As 

individual proteins have different solubilities in higher ionic conditions, it is possible 

Figure 4.4: A schematic for obtaining correctly folded family B ECD structures. The 

ECD of interest (PTH2R) is N-terminally tagged with an MBP fusion protein and C-

terminally His tagged. It is then co expressed in an appropriate E. coli strain with 

DsbC, which is also individually purified. Following an amylose and His purification, 

the resulting product is incubated with purified DsbC and reduced/oxidised 

glutathione to promote correct folding of the ECD. 
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to isolate proteins based on their solubility. DsbC can be partially purified by bringing 

ammonium sulphate levels up to 75% saturation, as at this level it will precipitate. 

Many other proteins can be precipitated at only 45% saturation, thus facilitating the 

purification of DsbC. 

 

 

 

 

 

 

 

 

 

 

Following the ammonium sulphate precipitation, DsbC was dialysed and loaded onto 

a HiTrap™ Q FF Anion exchange column, which is used to separate proteins based 

on their charge. The column contains a positively charged resin, which can trap 

negatively charged proteins. Elutions were then performed by using an increasing 

anion gradient; in the case of DsbC, 0-0.5 M NaCl was used. The increase in Cl- ions 

competes with the protein for resin binding and promotes elution. The elutions were 

then pooled and loaded onto a gel-filtration, or size-exclusion, column. Proteins move 

through highly porous beads, with smaller proteins travelling further into the pores 

Figure 4.5: Ammonium sulphate precipitation of DsbC. A precipitation purification of 

DsbC in BL21 cells. Cells were lysed and centrifuged, creating the lysis precipitate 

and supernatant. Ammonium sulphate was added at various saturations and 

precipitates were collected via centrifugation.  
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than larger proteins, resulting in a slower movement of smaller proteins. The proteins 

are then eluted from the column in a decreasing order of size. By using these three 

purification protocols it was possible to purify DsbC. 

 

 

 

Following the protocol used by Pioszak & Xu (2008), a highly purified form of DsbC 

was obtained and concentrated to 3 mg/mL. This would facilitate native disulphide 

bond formation following PTH2R
ECD purification, which was required by Pioszak & 

Xu (2008) to create homogenous, correctly folded PTH1R ECD. 

 

4.6 PTH2RECD Purification 

 

PTH2R
ECD residues 25-144 were cloned into the first cloning site of a pCDFDuet-1 

plasmid using In-Fusion cloning, with a C-terminal His-tag. An MBP tag was then 

also cloned onto the N-terminus, to allow for an amylose purification downstream. In 

the second cloning site of pCDFDuet-1, DsbC was cloned without any tags. Once the 

A                              B 

            

 

Figure 4.6: Purification of DsbC. A. Anion exchange purification elution fractions. 

DsbC was very apparent in at least three of the elution fractions. Six of the fractions 

were pooled for further purification. B. Size exclusion purification of DsbC. Elution 

fractions provided purified DsbC. Other bands at approximately 50 kDa were also 

present but were most likely aggregates of DsbC or dimers. 
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MBP-PTH2R-DsbC pCDFDuet-1 plasmid was complete it was expressed in the E. coli 

Origami (DE3) strain. 

 

MBP-PTH2R
ECD is approximately 58 kDa in size and DsbC is 25 kDa. The pCDFDuet-

1 plasmid was transformed into E. coli cells, induced with IPTG, and expressed at 

37 °C for 4 hours. Cells were harvested and lysed using a French pressure cell press. 

A nickel-based His purification was then performed to purify the protein of interest. 

 

 

 

 

 

 

 

 

 

 

There appeared to be a prominent band at 25 kDa which likely corresponded to DsbC, 

though it was significantly less than what was seen previously when individually 

purifying DsbC. This may have been because the location of expression had been 

changed, or perhaps when co-expressing two proteins using the pCDFDuet-1 plasmid 

expression levels were not as high. The purified DsbC from above was expressed using 

the pCDFDuet-1 plasmid, but it was the only protein being expressed. A His 

Figure 4.7: Purification of MBP-PTH2R
ECD. A Coomassie gel showing a His 

purification of MBP-PTH2R
ECD through all stages of the purification. The protein of 

interest was released in the two elution lanes but was also partially retained in the 

resin. The prominent band at 25 kDa was likely DsbC. 



118 

 

purification was performed to try and purify MBP-PTH2R
ECD. The protein at 25 kDa, 

assumed to be DsbC, was lost in the flow-through and subsequent washes. This was 

expected as it was untagged so should not bind to the nickel resin. A prominent band 

was present in the elutions, though was also still bound to the resin, at approximately 

58 kDa, the predicted mass of MBP-PTH2R
ECD. The next stage of purification was to 

perform an amylose purification. 

 

 

  

 

 

 

 

 

 

Following an amylose purification, it appeared that most of the protein was lost in the 

flow-through. Upon close inspection there was a very faint band that appeared to be 

present in the elutions lane. However, due to the failure of the purification protocol, 

in Figure 4.8, mass spectrometry analysis was used to verify the expression of MBP-

PTH2R
ECD. The 58 kDa band was excised and sent to the University of Leeds Mass 

Spectrometry facility to determine the protein identity. Unfortunately, upon receiving 

the results, it appeared that the protein that was believed to be MBP-PTH2R
ECD was in 

Figure 4.8: Attempted amylose purification of MBP-PTH2R
ECD. A coomassie gel 

showing the attempted amylose purification of MBP-PTH2R
ECD. Almost all protein 

from the previous His purification was lost in the flow-through. There was only a very 

faint band in the elution lane. 
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fact something entirely different. The closest protein identified, with a 54 % sequence 

identity, was an alkyl hydroperoxide reductase subunit. This is an E. coli protein which 

is a scavenger for hydrogen peroxide and provides protection to the cells. As this 

protein does not have an MBP tag it was lost in the flow-through of the amylose 

purification. His purifications, while useful for primary purifications, often co-purify 

native E. coli proteins which have multiple histidine residues in their sequences and 

thus bind to nickel resin. In order to proceed with solving the ECD structure, several 

optimisations had to be performed. 

 

4.7 Optimisation of PTH2RECD Expression 

 

As mentioned previously, solving family B ECDs using an E. coli strain that is capable 

of promoting disulphide bond formation is a useful tool. As the Origami strain failed 

in expressing PTH2R
ECD, Rosetta-Gami cells, which combine the features of Origami 

and BL21 strains, were investigated as an alternative expression host. Rosetta-Gami 

cells combine the characteristics of Origami and BL21 strains to potentially express 

correctly folded proteins at a high level.  
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Figure 4.9 displayed that BL21 cells could successfully express the protein of interest, 

which the Origami strain was not able to achieve. The second lower band present in 

the western blots likely corresponded with endogenous MBP (a molecular weight of 

approximately 42 kDa), as an anti-MBP antibody was used for probing. Rosetta-Gami 

cells were able to express the desired protein, however the expression was 

significantly lower than BL21 cells. Regardless, as E. coli cells are reasonably easy to 

express in large volumes, it was decided that this would be the cell line to proceed 

with. Furthermore, due to the characteristics of Rosetta-Gami cells increasing 

disulphide bond formation, expression in this host was more desirable than BL21 cells. 

Native-PAGE was used to determine if Rosetta-Gami cells produced a noticeable 

effect on disulphide bond formation. 

A                           B

      

       

 

Figure 4.9: Expression of MBP-PTH2R
ECD in two E. coli strains A. Anti-His western 

blot of PTH2R
ECD expression in Origami and BL21 strains. Expression was achieved 

in the BL21 strain but was not present in the Origami cells. B. Expression in Rosetta-

Gami (RG) and BL21 strains. Both strains showed expression of PTH2R
ECD. 
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The native gel showed that there was a clear difference between BL21 expressed 

MBP-PTH2R
ECD and Rosetta-Gami expressed protein. In BL21 cells there is one clear 

band that was relatively high up the gel; however, for the Rosetta-Gami cells there 

were multiple bands present at various location on the gel. The more disulphide bonds 

present the lower it would move through the native gel. This likely meant that the 

Rosetta-Gami strain was creating multiple proteins with varying numbers of 

disulphide bonds, resulting in misfolding of the protein. This aligns with Pioszak and 

Xu’s (2008) findings, which required an additional overnight incubation with purified 

DsbC to create conformational homogeneity.  

 

The expression of MBP-PTH2R
ECD was considerably lower than expected, as Pioszak 

and Xu (2008) were ultimately able to purify the PTH1R ECD at 50 mg/L. Conversely, 

MBP-PTH2R
ECD failed to show expression on a Coomassie gel. As It was 

simultaneously  co-expressed with DsbC, expression trials with just one protein were 

investigated, to determine if co-expression hampered total yields. 

Figure 4.10: Native gel of MBP-PTH2R
ECD in different E. coli strains. Comparing the 

Rosetta-Gami (RG) and BL21 strains, there were two additional lower bands in the 

Rosetta-Gami cells, likely representing PTH2R
ECD with additional disulphide bonds. 
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Interestingly, it appeared that MBP-PTH2R
ECD expression was not possible when it 

was not co-expressed with DsbC. Despite being designed to provide ideal conditions 

for disulphide bonds to form, the Rosetta-Gami strain was unable to express the 

protein unless DsbC was co-expressed. The same was true of the BL21 strain, 

suggesting that the presence of DsbC was more important for expression than the 

environment provided by the Rosetta-Gami cells. However, the Rosetta-Gami strain 

was still clearly affecting the protein as demonstrated in Figure 4.10.  

 

A major issue that frequently occurred was the degradation of the protein. As already 

shown, expression of the protein seemed to be ‘hit or miss’, with some occurrences of 

the protein failing to express even when using identical protocols as previously 

successful expressions. To further increase the difficulties of working with this protein, 

in some instances the protein would almost completely degrade as highlighted below. 

A                       B

      

       

 

Figure 4.11: Expression of PTH2R
ECD with and without DsbC. A. Expression in 

Rosetta-Gami cells. B. Expression in BL21 Cells. In both cell types expression of 

PTH2R
ECD was not achieved when DsbC was not co-expressed. All data obtained 

through anti-His western blots 
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As shown in Figure 4.12, most of the protein was degraded and only a very faint band 

at the original 58 kDa size of the protein remained. In cases such as this, further 

purification was impossible due to the low levels of protein. This occurred frequently, 

despite protocols being performed at 4 °C and having protease inhibitors present.  

 

Another major issue that was ever present was the incredibly low yields of protein that 

were obtained. Using a standard E. coli expression protocol, quantification of total 

protein was determined through densitometry analysis, following an anti-His western 

blot using known His-tagged protein standards. 

Figure 4.12: Degradation of expressed PTH2R
ECD protein. Following successful 

expression of the ECD the protein showed extreme degradation after cell harvesting. 

Membrane was probed using anti-His antibodies. 
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Unfortunately, when using a standard E. coli expression protocol on the PTH2R
ECD 

construct, an exceedingly low level of expression was obtained. To overcome this 

issue, and potentially protein degradation, optimisation of the expression conditions 

was performed. To optimise protein expression, many variables were evaluated such 

as inducing with different IPTG concentrations, temperatures, incubation times, and 

different media. The conditions for expression shown in Figure 4.14 were as follows: 

37 °C treated cells were grown for four hours post-IPTG induction, 30 °C for 6 hours, 

25 °C and 20 °C were incubated overnight. Cell expression was determined using an 

anti-His western blot.  

A                                      B

             

 

Figure 4.13: PTH2R
ECD quantification though western blot densitometry analysis. A. 

An anti-His western blot with known concentrations of His-tagged human rhinovirus 

protease (HRV). Concentrations included 10, 25, 50, 100, 150 and 200 µg/L. MBP-

PTH2R
ECD (2R) could not be visualised due to low expression levels. B. An anti-His 

western blot of 10 µg/L HRV and MBP-PTH2R
ECD, to facilitate visualisation of the 

protein of interest (highlighted in red); however, expression levels were still lower 

than 10 µg/L. 
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Table 4.1: The conditions investigated for expression of PTH2R
ECD. Media, 

temperature, incubation period, and IPTG concentration were all investigated as a 

means of creating a more reproducible expression system in Rosetta-Gami cells. 

Inconsistent expression was characterised by protein detection only achievable in 

some instances. 

 

Media Temperature (°C) Incubation Period 

(Hours) 

IPTG Conc. 

(mM) 

Expression 

LB 37 4 0.2 Inconsistent 

LB 37 6 0.2 Inconsistent 

LB  37 4 0.5 Inconsistent 

LB  37 4 1 Inconsistent 

LB 30 8 0.2 No 

LB 25 16 0.2 No 

LB 20 16 0.2 No 

TB 37 4 0.2 No 

TB 37 4 0.5 No 

TB  30 8 0.2 No 

TB 30 8 0.5 No 

TB 25 16 0.2 No 

TB 25 16 0.5 No 

Figure 4.14: Expression trials using different medias and temperatures. Only a single 

trial was successful in expressing PTH2R
ECD, as shown by the presence of a band at 

58 kDa in the Luria broth (LB), 37 °C lane. There was no expression in any terrific 

broth (TB) or super broth (SB) trials. 
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Media Temperature (°C) Incubation Period 

(Hours) 

IPTG Conc. 

(mM) 

Expression 

TB 20 16 0.2 No 

TB 20 16 0.5 No 

SB 37 4 0.2 No 

SB 37 4 0.5 No 

SB  30 8 0.2 No 

SB 30 8 0.5 No 

SB 25 16 0.2 No 

SB 25 16 0.5 No 

SB 20 16 0.2 No 

SB 20 16 0.5 No 

 

Surprisingly, of all 12 variables examined in Figure 4.14, expression was only 

successful in one instance, a 4 hour incubation at 37 °C using LB media. Table 4.1 

shows various other conditions that were investigated to improve expression; however, 

infrequent expression was only obtained in LB grown cells at 37 °C. When LB was 

replaced with TB or SB, expression was not successful. Unfortunately, even in 

conditions where expression was achieved, the reliability of expression was low. 

Newly ordered and freshy prepared Rosetta-Gami cells were unable to reliably express 

the protein in conditions proven to work. This meant that creating a large-scale 

expression was incredibly difficult. In a further attempt to optimise expression, the 

effects that aeration had on E. coli suspensions were investigated. To achieve this, 

different volumes of E. coli cultures were grown in 2 L flasks and expression was 

determined through a western blot.  
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Growing cells in 400 mL cultures produced the lowest intensity PTH2R
ECD band as 

shown in Figure 4.15, highlighting that a lower level of expression was obtained than 

from growing in 200 or 300 mL cultures. Densitometry analysis revealed that 300 mL 

was the optimal volume for growing large-scale cultures, despite the large degradation 

product. Despite the many optimisation attempts this construct was proving incredibly 

difficult to work with, especially as confirming expression required a western blot. To 

alleviate this issue, the MBP tag was replaced with a GFP tag. This could have 

potentially increased protein expression and made visualisation of protein expression 

considerably easier, as it could be performed by shining a blue light and seeing if the 

cells appeared green, assuming that the protein expression was high enough that it 

would be visible. 

 

Figure 4.15: The effects that different growth volumes of E. coli have on expression. 

At 400 mL per 2 L flask there was the lowest level of expression for the 58 kDa 

PTH2R
ECD. The highest level of expression was obtained at 300 mL per 2 L flask, 

though there is also the highest level of degradation.  
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Figure 4.16 showed that the addition of GFP failed to express PTH2R in the Rosetta-

Gami cells but was successful in BL21 cells. The expression levels of BL21 versus 

Rosetta-Gami were hugely significant; however, using this system would likely limit 

the degree of natively folded proteins as shown in Figure 4.10. Therefore, the MBP-

PTH2R
ECD construct was expressed in Rosetta-Gami cells and purified.  

  

Figure 4.16: GFP versus MBP tagged PTH2R
ECD. The MBP tag was replaced with a 

GFP tag to determine if this increased expression of the ECD. Rosetta-Gami and BL21 

cells were tested for expression using anti-His antibodies. 
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As Figure 4.17B showed, it was actually possible to determine if protein expression 

was achieved by performing a Coomassie stain. In all instances, if DsbC was 

expressed (as shown by a very large band at 25 kDa) then PTH2R
ECD was also 

expressed, despite not being visible on the same gel. Following successful expression 

of PTH2R
ECD, it was possible to attempt small scale purifications. A standard His 

protocol was performed, which when evaluated through a western blot, showed that 

the majority of the protein could be purified.  Similarly, there were no apparent issues 

in the amylose purification. A range of elution buffers were used to determine what 

Figure 4.17: A His and amylose purification of PTH2R
ECD. A. His purification of 

PTH2R
ECD verified with an anti-MBP antibody. B. A Coomassie stained gel of the His 

purified PTH2R
ECD. The large bands at 25 kDa are the co-expressed DsbC proteins. C. 

An anti-MBP western blot of an amylose purification using a range of maltose elution 

concentrations ranging from 2-10 mM. 

A                        B

      

       

 

C      
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concentration of maltose the protein would be eluted with. All of the available protein 

was eluted by using up to 4 mM of elution buffer.  

 

Unfortunately, this was only a small scale purification that, though it was successful 

in purifying PTH2R
ECD, would be incredibly difficult to replicate in large scale. Since 

the protein is so unreliable in expression it would be impossible to reliably transform 

over 3 L worth of E. coli cells. Meaning that, for some unknown reasons, the 

techniques that have been used to solve various other family B GPCR ECDs were not 

applicable to PTH2R
ECD in Rosetta-Gami cells. The success rate for expression was 

higher in BL21 cells so another approach may be more applicable to PTH2R
ECD 

structure determination, such as producing the protein in inclusion bodies and 

refolding the protein, as was performed for the GLP1R ECD (Underwood et al., 2010), 

see Chapter 6 for more details. 

 

4.8 Conclusions 

 

Unfortunately, no major findings were discovered during the research into PTH2R. To 

date it remains one of three family B GPCRs that has yet to be solved (PTH2R, GIPR, 

VIP2R). Whether this is happenstance or is a result of PTH2R being a particularly 

challenging protein to do structural work with is open for debate. The full-length 

receptor had levels even lower than that of PTH1R, at only approximately 25 µg/L, 

and proved difficult to even solubilise. As the project moved to solving the ECD 

structure, countless problems were encountered such as the protein failing to express, 

protein degradation, and low expression levels, all of which made solving the structure 

of PTH2R
ECD impossible with the methods utilised.  
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Chapter 5 IMPROvER 
 

5.1 Aims of the Chapter 

The aim of this chapter was to verify the novel program, IMPROvER, and 

simultaneously create a thermostable variant of PTH1R. If successful, this would prove 

the validity of IMPROvER and could be used on other proteins, including PTH2R. The 

usual approach for identifying thermostabilising mutations is via alanine scanning 

mutagenesis (Magnani et al., 2008; Serrano-Vega et al., 2008; Shibata et al., 2013); 

whereby amino acids are mutated to alanine and alanines are mutated into leucines. 

Through in-silico tests, based on previously established stability data, IMPROvER 

predicts potentially stabilising mutations, (see Chapter 1 and Figure 5.1). Since 

IMPROvER can predict hundreds of results so a high throughput system is required 

to efficiently determine whether the mutations are stabilising. To overcome this, GFP 

was cloned onto the C-terminus of BRIL-PTH1R and expressed in Sf9 cells. Following 

solubilisation in DDM and membrane isolation, stability testing was performed by 

heating the protein to a desired temperature, removing precipitated protein, and 

comparing the resulting supernatant to a 4 ⁰C treated sample. From a ten-temperature 

challenge, a melting curve was created, and thus, the apparent melting temperature 

(Tm) could be obtained. By comparing the Tm to a non-mutated PTH1R, it would be 

possible to determine if the mutant construct affected stability. 
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Improving stability is not the only trait that has to be investigated, as to have 

physiological relevancy, the mutant constructs must maintain functionality. Therefore, 

thermostabilised mutants were also assessed on their functionality through a 

LANCE® cAMP assay.  

 

The final aim of this chapter was to use a fractional factorial design to create a highly 

thermostable receptor. In a two-level full factorial design with seven factors (27), 128 

individual experiments would be required; however, this can be significantly 

decreased using a fractional factorial design. Fractional factorial designs involve a 

determined subset of combinations from a full factorial design, which are likely to 

Figure 5.1: Schematic of IMPROvER workflow to obtain a ranked list of most 

stabilising mutations. Three modules are used to create the predicted mutations: deep-

sequence (red), data-driven (blue), and model-based (green). This produces a list of 

mutations which are compared to a list of residues to be excluded due to critical 

functional characteristics. Image adapted from Harborne et al. (2020). 
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reveal significant information about the system being studied. Through this technique 

it should be possible to significantly reduce the workload in obtaining a highly stable 

construct and determine which mutations are having the most significant effects on 

stability. 

 

5.2 Identification of Stabilising Mutants 

5.2.1 Predicted Stabilising Mutants 

IMPROvER was fed with a wild-type PTH1R sequence and was told to exclude 

various residues that were previously shown to be important in receptor functionality: 

Y191, Y195, H223, M231-D241, L244, Y245, L289, N295, K359, K360, T410, M414, 

P415, H420, Y421, F424, M425, W437, Q440, M441, M445, and Q451 (Bisello et al., 

1998; Clark, 1998; Gensure et al., 2003; Gensure et al., 2001; Hollenstein et al., 2014; 

Liang et al., 2018; Schipani et al., 1997). Only the top 10% of mutants suggested by 

IMPROvER were considered for in vitro experiments. From these, 30 potentially 

stabilising mutations were identified, of which three were excluded for being at 

functionally important sites (identified above).  Nine mutations for each approach, 

deep-sequence, model-based, and data-driven analysis, were ultimately identified. 

These were ranked from most likely to be stabilising to least likely (Table 5.1). Once 

the mutation list had been acquired, the next step was to individually clone all the 

mutants, through Q5 mutagenesis. The IMPROvER program provided a list of forward 

and reverse primers that can be used to create the mutations (Appendix) and the 

appropriate Tm to use in a PCR reaction. As the provided Tms were all high (> 66 °C) 

a single Tm of 69 °C was used for all reactions. The conditions for the inverse PCR 

protocol are described in Chapter 2. Of the 27 mutations, 20 were successfully cloned 

and sequence verified using Eurofins Genomics Sanger Sequencing. 
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Table 5.1: The top 10% of IMRPOvER’s predicted stabilising mutations. The 

program’s ranking of most likely to be stabilising is shown in descending order for 

each approach. Highlighted in green are mutations that were successfully cloned and 

expressed in Sf9 cells, cells in grey either failed during cloning or Sf9 expression. 

 

Model-based Data-driven Deep-sequence 

S198M T203A T427M 

S229S A337L A275K 

S201F A369L G188Y 

F291T A333L M189L 

T249N Q401A L228V 

D251R F288A S356A 

S370A E391A G188K 

E259P T294A A274D 

E260R G323A T427L 

 

 

5.2.2 Melting Temperatures of IMPROvER Mutants 

To better visualise the fluorescence of the receptor, the ECD of PTH1R was replaced 

with BRIL to increase expression, and a GFP was joined to the C-terminus (see 

Chapter 3). Mutations were introduced through inverse site-directed PCR mutagenesis 

and sequence verified before they were expressed in Sf9 cells. Optimisation of 

expression is also described in Chapter 3. Before any mutant constructs could be tested 

for stability, it was essential to determine the wild-type Tm. To this end, following 

BRIL-PTH1R expression, cells were diluted to 20 x 106 cells/mL and solubilised in 1% 

DDM. Following centrifugation, aliquots of the supernatant were heat treated for 10 

minutes at a range of temperatures, before a final centrifugation to remove precipitated 

proteins. The supernatants were transferred onto a gel and the density of the 

fluorescent bands, relative to a 4 ⁰C treated sample, was recorded using FIJI software. 

The Tm of the BRIL-PTH1R control was ultimately determined to be 38.7 ± 0.8 ⁰C. 
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Having obtained the Tm of the control construct, it was possible to determine the Tms 

of the mutant constructs. To identify stabilising mutations, the constructs of interest 

were heated to the Tm of BRIL-PTH1R (39 °C) and compared to a 4 °C treated sample 

(Figure 5.3). If they had a survival greater than 50%, they were potentially stabilising 

as they had a higher survivability than the “wild-type” BRIL-PTH1R construct. 

Potentially stabilising constructs had their full melting curves determined to verify 

improved stability.   

A              B 

     

       

 

Figure 5.2: Expression and Tm of BRIL-PTH1R. A. GFP fluorescence of BRIL-PTH1R 

in Sf9 cells. B. BRIL-PTH1R stability assessed through in gel fluorescence. Protein 

survival was calculated as a percentage of the 4 °C sample. Tm was calculated to be 

38.7 ± 0.8 °C. Error bars are standard error of the mean, obtained from five individual 

experiments performed in triplicates. 
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Figure 5.3 identified several mutations that may have induce stabilising effects; ten of 

the 20 mutants selected had over 63% survival at 39 °C (Table 5.2). Three further 

mutants also had borderline improved thermostability, resulting in 13 potentially 

stabilising mutations out of 20, a 70% success rate. The mutations of interest were: 

G188K, G188Y, M189L, S198M, D251R, D260R, A274D, F288A, F291T, G323A, 

A333L, E391A, and Q401A. To determine their Tm, full melting curves were obtained 

for every mutation of interest. 

  

A       B  

     

      

 

Figure 5.3: Single point temperature assay on IMPROvER mutants. A. Representative 

GFP fluorescence in Sf9 cells of mutant T203A. B. Identifying potentially stabilising 

mutants. PTH1R mutants were heat treated at 4 and 39 °C to determine survival. A 

survival > 50% (0.5 scaled GFP) suggested potential thermostabilisation. In gel 

fluorescence image was mutant T203A. Error bars are standard error of the mean, 

obtained from three individual experiments performed in triplicates. 
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Table 5.2: Overview of IMPROvER mutant thermostability. Mutations are listed in 

ascending residue order, sorted by IMPROvER deep-sequence, model-based, and 

data-driven approaches. Remaining GFP signal was calculated by in-gel fluorescence 

after a 39 °C heat treatment. Full Tm curves were only obtained if initial survival was 

> 60%. Average Tm was calculated from three individual Tms estimated from three 

repeats. *Standard error of the mean (SEM). – Represents constructs that did not have 

full melting curves determined. 

Module Construct Remaining

GFP (%) 

Error 

(± %)* 

Tm 

(°C) 

Error 

(± °C)* 

ΔTm 

(°C) 

 Control 54.0 2.2 38.7 0.8 0.0 

Deep-sequence G188K 64.0 2.1 40.3 1.2 1.6 

Deep-sequence G188Y 64.6 1.0 41.2 0.7 2.5 

Deep-sequence M189L 62.3 1.4 39.1 0.9 0.4 

Deep-sequence L228V 41.7 1.9 - - - 

Deep-sequence A274D 64.6 6.3 39.1 0.1 0.4 

Deep-sequence A275K 47.5 12.2 - - - 

Deep-sequence S356A 55.4 5.7 - - - 

Deep-sequence T427L 51.3 5.4 - - - 

Deep-sequence T427M 54.0 1.2 - - - 

Model-based S198M 67.0 0.8 42.1 0.8 3.4 

Model-based D251R 67.2 1.5 41.7 1.5 3.0 

Model-based E259P 51.4 4.0 - - - 

Model-based E260R 62.1 1.6 39.7 1.5 1.0 

Model-based F291T 65.8 2.2 40.9 0.9 2.2 

Data-driven T203A 56.2 1.6 - - - 

Data-driven F288A 72.0 3.5 41.5 0.7 2.8 

Data-driven G323A 74.6 1.8 41.5 0.6 2.8 

Data-driven A333L 66.5 0.5 - - - 

Data-driven E391A 63.6 6.0 39.4 0.2 0.5 

Data-driven Q401A 68.1 2.7 40.7 0.2 2.0 
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Table 5.2 and Figure 5.4 revealed that eight of the 13 tested mutations had an increased 

Tm of  >1.1 °C, which was larger than the average SEM of ∆Tm: G188K, G188Y, 

S198M, D251R, F288A, F291T, G323A, and Q401A. Two mutations also had 

borderline stabilising effects, E260R and E391A, meaning that there were potentially 

10 stabilising mutations identified through IMPROvER, a 50% success rate from the 

20 constructs successfully expressed in Sf9 cells. A333L thermostability results were 

inconclusive and thus are not shown. The most stabilising mutation was S198M with 

a Tm of 42.1 ± 0.8 °C.  

A                      B

      

       

 

C                      D

      

       

 

Figure 5.4: Melting curves of PTH1R mutants and Tm analysis. A. A 10 temperature 

thermostability assay at 4, 34, 36, 38, 40, 42, 45, 48, 54, and 60 °C to determine the 

Tm for model-based IMPROvER mutants. Data was collected as an average of three 

repeats. B. Data-driven Tm analysis. C. Deep-sequence Tm analysis. D. Bar chart of 

determined Tm values for control and mutant constructs. S198M fluorescence is shown 

as a representative in-gel GFP fluorescence for melting curve analysis. Error bars are 

standard error of the mean, obtained from three individual experiments performed in 

triplicates. 
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Using the inactive PTH1R structure as a model (Ehrenmann et al., 2018) allowed the 

mapping of IMPROvER predicted mutants (Figure 5.5). However, the missing regions 

such as ECL I had to be filled in using SWISS-MODEL, a protein homology 

modelling server. Mapping the mutations onto this model made it possible to speculate 

the rationale behind the cause of stabilisation. The most stabilising mutation, S198M, 

lies in helix I and faces into the helical bundle between helices II and VII. Helix VII 

of family B GPCRs has shown to be a dynamic region of the TMD and has large 

structural changes following activation (Hollenstein et al., 2013; Zhang et al., 2017; 

Zhao et al., 2019). By mutating S198M it may be that this construct increased the 

rigidity of helix I, ultimately increasing stability. 

 

A rationale behind E260R and D251R as stabilising mutations is more challenging as 

they are in the disordered ECL I region. In contrast to wild-type PTH1R, the constructs 

used throughout this chapter had a truncated ECD, which was replaced with a BRIL 

fusion protein. It may be possible that E260R and D251R interact with BRIL, which 

Figure 5.5: Location of IMPROvER predicted mutations in PTH1R. The mutations are 

colour coded, based on the IMPROvER module used to identify them, model-based 

(green), data-driven (blue), and deep-sequencing (red). Inactive PTH1R (PDB ID 

6FJ3) was used as a template model in SWISS-MODEL to fill in gaps such as ECL I, 

so that mutations could be more easily identified. 
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would increase protein stability for this construct, but would not be present in a fully 

wild-type PTH1R construct; however, for the purposes of solving an active PTH1R 

structure the BRIL-PTH1R constructs would still be viable mutations, assuming 

functionality was retained.  

 

Further work into IMPROvER was performed by Harborne et al., (2020), which 

demonstrated the capabilities of the program in a more general capacity than just 

GPCR thermostability. The success rate for non-GPCRs using IMPROvER was 27% 

for a Clostridium leptum pyrophosphatase (CIPPase) and 12% for human equilibrative 

nucleoside transporter isoform 1 (hENT1). For CIPPase, the biggest increase in Tm 

was 13 ± 1.4 °C with only 4% of constructs being deemed as destabilising. hENT1 

was more in line with PTH1R Tm changes, as the most stabilising mutation was 2.6 ± 

1.3 ° C; however, 15 destabilising mutations were found (a 36% rate), which while 

high, is still lower than random mutations in GPCRs (48.5%).  

 

5.2.3 Functional Analysis of Stabilising Mutants 

An important aspect of stabilising mutations is that they must maintain protein 

functionality, so that they better represent the native protein conformation. To this end, 

the LANCE® cAMP assay was performed on the top eight most stabilising mutations 

that would also be used in further downstream experiments: G188Y, S198M, D251R, 

E260R, F288A, F291T, E391A, and Q401A. For continuity, the constructs used for 

the functional assays were ΔECD, BRIL-PTH1R proteins (not including GFP). 

Compared to wild-type PTH1R, the truncated form requires higher concentrations (up 

to 1 µM) of PTH before activation occurs (Luck et al., 1999). Therefore, by comparing 
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the BRIL-PTH1R mutant constructs to a BRIL-PTH1R control, it would still be 

possible to determine if the mutation of interest would influence functionality. 
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Figure 5.6: Functional assays of wild-type PTH1R and mutant constructs. A. 

Comparison of wild-type PTH1R and BRIL-PTH1R. The replacement of the ECD with 

BRIL caused a significant decrease in the efficacy of PTH(1-34) to stimulate cAMP 

production. B. Comparison of IMPROvER mutations with the BRIL-PTH1R control. 

The majority of mutations did not appear to effect receptor functionality, excluding 

F288A and S198M which showed considerable decreases in cAMP production. Error 

bars are standard error of the mean, obtained from three individual experiments 

performed in triplicates. 
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Table 5.3: IMPROvER functional assay results. The percentage of the maximal forskolin results were obtained from three separate LANCE cAMP 

functional assays. All errors are standard error of the mean. – Indicates that the construct was not measured at the respective concentration. 

 

 Wild-type Control G188Y S198M D251R 

Concentration 

(M) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

1.00 x 10-4 107.21 4.04 106.88 8.93 110.11 4.45 47.90 3.41 113.91 5.09 

5.00 x 10-5 - - 101.93 6.14 100.62 4.44 44.79 3.55 105.12 3.79 

2.50 x 10-5 - - 85.76 5.06 78.28 2.28 29.75 2.13 88.07 1.79 

1.25 x 10-5 105.1 3.89 62.46 1.72 59.91 1.68 26.01 1.29 70.27 0.82 

6.25 x 10-6 - - 38.93 2.13 43.56 2.49 24.24 1.96 41.43 2.98 

1.00 x 10-6 101.01 3.11 12.41 1.96 18.29 3.47 17.93 2.31 17.61 1.14 

1.00 x 10-7 97.67 2.72 8.14 2.64 14.21 5.49 13.71 6.36 11.98 2.50 

1.00 x 10-8 100.13 2.92 7.35 2.74 9.39 1.89 14.13 3.31 7.52 1.34 

1.00 x 10-9 88.69 1.76 - - - - - - - - 

1.00 x 10-10 35.36 3.52 - - - - - - - - 

1.00 x 10-11 8.1 0.52 - - - - - - - - 

1.00 x 10-12 4.47 1.54 - - - - - - - - 

 E260R F288A F291T E391A Q401A 

Concentration 

(M) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

% of Maximal 

Forskolin 

Response 

Error 

(± %) 

1.00 x 10-4 120.70 5.92 37.02 2.29 107.60 6.51 123.31 5.04 105.70 4.16 

5.00 x 10-5 108.21 6.03 31.97 2.51 81.17 5.35 91.33 4.41 102.29 4.91 

2.50 x 10-5 96.91 7.12 20.96 1.55 46.99 3.06 66.64 3.18 76.65 3.18 

1.25 x 10-5 70.83 2.52 21.07 1.73 19.01 1.16 58.69 2.72 62.35 1.86 

6.25 x 10-6 39.06 2.37 11.83 1.92 17.75 2.88 32.48 2.73 35.42 3.53 

1.00 x 10-6 18.92 1.11 13.27 3.30 13.51 3.91 15.02 4.36 17.98 1.53 

1.00 x 10-7 15.67 2.73 11.99 2.88 12.86 2.91 10.42 3.38 12.35 1.76 

1.00 x 10-8 10.75 3.13 12.09 0.96 13.76 2.47 10.09 2.52 9.28 1.45 
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Figure 5.6A and Table 5.3 verified previous studies (Luck et al., 1999; Zhao et al., 

2016) in that the removal of the ECD significantly decreases the ability of PTH(1-34) 

to stimulate PTH1R; however, the constructs described in this research required 100 

fold higher PTH(1-34) concentrations for maximal cAMP production than previous 

research. Instead, these response curves closely resembled PTH(1-14) ΔECD-PTH1R 

response curves (Luck et al., 1999), where concentrations ranging from 1 to 100 µM 

were required for activation. This may be due to the presence of BRIL, which could 

partially inhibit ligand binding, by blocking the binding pocket. 

By comparing the maximum cAMP levels produced by the constructs it became very 

apparent which mutants affected functionality. F288A has previously been 

demonstrated to inhibit functionality (Ehrenmann et al., 2018) as it has key binding 

interactions with residue 5 of PTH. From Figure 5.6B, F288A failed to reach the 

cAMP levels of other mutations and the control, reinforcing the findings by 

Ehrenmann et al., (2018). S198M, a fully conserved residue in all secretin related 

GPCRs, and the most stabilising point mutation identified, also showed reduced 

functionality. As discussed previously, S198 appears to be involved in helix-helix 

interactions between helix I and VII. By replacing S198M with a large hydrophilic 

residue it may increase the rigidity of helix I, ultimately inhibiting key helix 

movements required for receptor activation. Finally, there also appeared to be a small 

shift to the right in the dose response curve of F291T. F291 is only one helical turn 

away from F288 and, following mutagenesis, may increase helix II and III packing 

interactions. For activation of PTH1R, the peptide forms interactions with every helix, 

excluding helix IV (Zhao et al., 2019); therefore, any mutations that increase helix 

rigidity/packing have the potential to reduce functionality by inhibiting native peptide-
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receptor interactions. However, these are not true representations of the mutations in 

wild-type PTH1R due to the absence of the ECD and so functional assays on wild-type 

receptors with the mutations would be desirable data. 

 

Due to heavy time restraints, a result of the coronavirus outbreak, it was not possible 

to perform these functional tests on full-length PTH1R constructs. However, as the 

functional assay could still identify previously established inhibiting mutations such 

as F288A (Ehrenmann et al., 2018), it is likely that these results would translate to 

full-length PTH1R constructs. 

 

5.3 Comparison with CompoMug 

 

IMPROvER is by no means the first program to attempt to identify stabilising 

mutations. One such program that was released recently is CompoMug 

(COMputational Predictions Of MUtations in GPCRs) (Popov et al., 2018), which is 

similar to IMPROvER in that it decides which mutations to mutate based on previous 

family A GPCR mutant data. In a knowledge-based module, known stabilising 

mutations, such as a mutation to tryptophan at position 3.41 (family A GPCR 

numbering) (Ballesteros & Weinstein, 1995) are applied to the protein of interest to 

help identify potentially stabilising mutations. Another module utilised by 

CompoMug is the sequence-based module. Through this, CompoMug searches for 

residues that deviate from the conserved sequence of related GPCRs. For PTH1R, it 

was compared against PTH1R orthologs, the entire family B GPCR branch, and solved 

family B structure sequences. The assumption that CompoMug makes is that mutating 

outliers to the more conserved residue is likely to increase stability. These two 

modules have many similarities with the data-driven and deep-sequence modules of 
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IMPROvER, which is why they were used to provide a list of mutations to be 

compared with the mutations provided by IMPROvER. 

 

Table 5.4:  A list of mutations obtained from CompoMug. Two modules were utilised, 

knowledge-based and sequence-based to obtain a list of mutations. The knowledge-

based module was incompatible with PTH1R, but mutations were obtained from the 

sequence based module. Highlighted in green are identical mutations suggested by 

IMPROvER, blue are mutations at the same location but mutated to different residues, 

and yellow are mutations within one residue of an IMPROvER suggested mutation. 

 

 

Immediately, a major drawback of CompoMug was revealed, as it was unable to create 

mutations for PTH1R, a family B GPCR. CompoMug was designed solely to identify 

mutations in family A GPCRs. Specifically, the knowledge-based module searches for 

crucial conserved regions of family A GPCRs, such as the Na+ binding pocket. 

Mutations in this region, such as D2.50N, S3.39A, and D7.49N, can often promote stability 

by decoupling ligand binding and intracellular conformational changes (Fenalti et al., 

2014; Katritch et al., 2014; Kruse et al., 2012). As family B and A GPCRs have 

different binding mechanisms and conserved sites the knowledge-based module was 

unable to work efficiently and ultimately could not provide a single mutation.  

 

The sequence-based module was able to give a list of 29 mutations it deemed as 

potentially stabilising. Interestingly, five of these residue locations were also 

identified by IMPROvER of which two were identical, reinforcing the validity of the 

two programs. The five mutations were not solely from IMPROvER’s deep-

Knowledge-based                                 No Viable Mutations 

 R186Q G188Y M189I V197L T203L V206L 

 A210L H225N A272V T286V S308T M312V 

Sequence-based G323L V326L F327I V340A S341V V365G 

 S370A V372L L373V L406A M414V M425A 

 A426F Q440E Y443F M445L L446F  
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sequencing module and were obtained from all three modules: G188Y and M189L 

were obtained from deep-sequencing, T203A and S370A from model-based, and 

G323A from the data-driven module. Furthermore, two mutations were within one 

residue of those identified by IMPROvER, including V197L, which is adjacent to 

S198, the most stabilising mutation. The success rate of CompoMug for mutations 

with greater than 1.5 °C thermostability for 5-HT2C was 25% (Popov et al., 2018). 

Under this criterion, IMPROvER had an approximately 20% success rate for 

mutations with a substantial stability increase. By combining their mutants, Popov et 

al., (2018) were able to create a triple mutant that had a melting temperature 

approximately 13 °C above wild-type. As several stabilising mutations were identified, 

finding the optimal combination of mutations would be challenging. Therefore, a 

fractional factorial experimental design was utilised. 

 

5.4 Fractional Factorial 

5.4.1 Theory of Fractional Factorial Design 

 

A fractional factorial experiment is one in which only a subset of total combinations 

is required to identify the most important features of a full factorial run. For example, 

if there are six factors in an experiment, then in a full, two-level, factorial experiment 

there would be 26 or 64 potential runs, which is a large volume of work. A fractional 

factorial design exploits what is known as the sparsity-of-effects principle, which 

states that results are usually determined by main effects (single factor) and two-factor 

interactions. The higher the order of interaction then the less likely it is to influence 

the result. In Layman’s terms, only a few effects are statistically significant. Fractional 

factorial designs have been used to improve protein expression by examining factors 

such as growth media, E. coli strains, and fusion tags (Papaneophytou & Kontopidis, 
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2014). To better explain a fractional factorial design, a three factor experiment (23) 

will be demonstrated: 

 

Table 5.5: An example of results to highlight the concept of fractional factorial 

experimental designs. This is a two-level full factorial design with three factors X1, 

X2, and X3. The observations (Y) for each run are also recorded. 

 

 

 

 

 

 

 

 

 

 

 

The Y column represents the recorded response for an experimental run and the X 

columns are factors being investigated. The two-levels being investigated are -1, 

which is a ‘low’ setting and +1 is a ‘high’ setting. By performing all possible 

combinations, we can calculate the effects each factor has i.e. the average of all ‘high’ 

settings minus the average of all ‘low’ settings:  

 

 

 

 

Run X1 X2 X3 Y 

1 -1 -1 -1 Y1 = 13 

2 +1 -1 -1 Y2 = 43 

3 -1 +1 -1 Y3 = 21 

4 +1 +1 -1 Y4 = 37 

5 -1 -1 +1 Y5 = 37 

6 +1 -1 +1 Y6 = 31 

7 -1 +1 +1 Y7 = 39 

8 +1 +1 +1 Y8 = 33 
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X1: (43+37+31+33)/4 - (13+21+37+39)/4 = 36-27.5 = 8.5    

However, it is possible to get similar data using a smaller number of runs. By using 

runs 1, 4, 6, and 7 the equation is as follows: 

X1: (37+31)/2 – (13+39)/2 = 34-26 = 8 

In this instance, the value obtained from the fractional factorial experiment is very 

close to the value obtained by performing all possible experimental runs. 

 

Specifically, the design that was chosen for this research was a 2IV
8-4 design. Fractional 

designs are expressed using Ik-p. I is the number of levels of each factor to be 

investigated. For the IMPROvER mutant design, I was equal two, as the two factors 

were mutated and non-mutated. K was the number of factors being investigated (eight 

stabilising mutations) and p was the size of the fraction of the full factorial design (2k-

1 will be half as many experiments, 2k-2 will be a quarter and so on). IV represents the 

resolution, which means that no main effects are confounded with any two-factor 

interactions and that they are only confounded with three-factor interactions and 

higher. Two-factor interactions may be confounded with other two-factor interactions; 

therefore, it cannot be determined which of the 2-way interactions are important and 

so further research would be needed to confirm any findings.   

 

5.4.2 Fractional Factorial Design on IMPROvER Mutants 

 

IMPROvER accurately predicted up to 10 stabilising mutations, which created up to 

a 3.4 °C increase in Tm (S198M). Due to the low stability of GPCRs, an even higher 

increase was desirable. Towards this goal, various combinations of the identified 

mutations were tested to determine if they had additive effects on stability. As both 

mutations at G188 were determined to be stabilising, only G188Y was investigated as 
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it had a higher degree of thermostability. Furthermore, G323A was excluded due to 

the presence of double banding as shown in  Figure 5.7. 

 

 

 

 

 

The remaining eight mutations (G188Y, S198M, D251R, E260R, F288A, F291T, 

E391A, and Q401A) were studied for any additive effects on stability (eight factors 

for the fractional factorial design). Testing all possible combinations (256) would 

create an extensive workload, thus a fractional factorial design was used to identify 

the best possible combinations (Table 5.6). 

 

 

Figure 5.7: Presence of double banding in G323A. In-gel fluorescence of temperature 

challenged mutations G323A and G188Y. G188Y showed a single band in all lanes, 

whereas G323A showed two bands. 

Table 5.6: Fractional factorial design. The mutations required to create the 16 

constructs needed for a fractional factorial experiment. 
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Following mutagenesis and sequence verification, the constructs were all expressed in 

Sf9 cells, excluding construct 2, which did not express. Regardless, it was still possible 

to obtain results using the available 15 constructs.  

 

Table 5.7: Fractional factorial construct thermostability data. The Tm for each 

construct was obtained through triplicate in-gel fluorescent intensities using 

temperatures ranging from 4 to 60 °C. The error is shown as a SEM. 

Construct Tm (°C) ΔTm (°C) Error (±°C) 

1 39.10 0.00 0.68 

3 47.16 8.05 0.98 

4 47.58 8.48 0.64 

5 46.55 7.44 1.41 

6 44.78 5.68 0.21 

7 43.92 4.82 1.57 

8 48.15 9.05 1.05 

9 47.83 8.73 1.25 

10 46.16 7.05 0.51 

11 49.16 10.05 0.76 

12 47.71 8.60 1.39 

13 44.45 5.35 0.49 

14 47.42 8.32 2.04 

15 42.15 3.05 0.33 

16 44.87 5.76 1.68 
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Figure 5.8: Tm of fractional factorial constructs. A. A representative melting curve of 

all constructs demonstrated by construct 10. B. Tm bar chart of all constructs including 

the control. C. ΔTm of the fractional factorial constructs, calculated by subtracting the 

Tm of the control construct. All error bars are standard error of the mean obtained from 

three individual experiments performed in triplicate. D. Location of all eight mutations 

using inactive PTH1R (PDB 6FJ3) as a model. Gaps such as ECL I were modelled 

using SWISS-MODEL.  

A      B    

         

 

 

 

 

 

 

 

C 

 

 

 

 

D 
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It was immediately apparent that having all eight mutations (construct 16) was less 

stable than some of the other constructs, such as construct 11 (44.87 and 49.16 °C 

respectively). This highlights that the stabilising effects of the mutations are not 

additive, likely because there are negative two-way interactions. Essentially, when two 

mutations are combined, they produce a Tm which is lower than the individual effects 

combined. This may mean that the mutations are stabilising PTH1R in similar manners, 

such as stabilising the same helix, so the combined effects are not as prominent as the 

individual mutations. The most stable construct was construct 11, which included 

S198M (the most stabilising individual mutant identified), E260R, F291T, and E391A. 

The least stabilising construct, construct 15, only had a ΔTm of 3.05 °C and contained 

S198M, D251R, E260R, and F288A; therefore, certain combinations of mutations are 

detrimental to protein stability.  

 

Unfortunately, due to the resolution of the design and that only 15/16 constructs were 

fully evaluated, the results of F288A and F291T were confounded with each other. 

This means that it is not known which one of these mutations was having the primary 

stabilising effect on the receptor. Looking at the individual stabilising mutation data 

(Figure 5.4 and Table 5.2), F288A did have a higher melting point than F291T, which 

may imply that F288A was having the main stabilising effects at that region of the 

receptor. A linear regression model of ΔTm and the magnitude of main effects, 

determined by Dr Steven Harborne with R programming, was able to show a 

correlation between the fractional factorial main effects and ΔTm. 
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Figure 5.9: The effects of mutations on the magnitude of main and two-way effects. 

A. The order of main and two-way effects. S198M, the most stabilising individual 

mutation, had the greatest effect on protein stability, while a combination of G188Y 

and E391A appeared to be the most detrimental. F291T and F288A are shown together 

as their results were confounded with each other. Refer to table 5.7 for all confounding 

two-way interactions B. Correlation between the ΔTm and the fractional factorial main 

effects. The equation of the line was determined by excluding E260R and E391A. P < 

0.05 for S198M, E260R, F288A (or F291T), and Q401A. Error bars are standard error 

of the mean, obtained from three individual experiments performed in triplicates. 

 

 

A 

 

 

 

 

 

 

 

B         
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           Table 5.8: The confounding aliases of the fractional factorial design 

 

 

 

 

 

 

When the main effects were paired with the individual mutation ΔTm values, all but 

two correlated well. If the two outliers, E260R and E391A, are omitted then the R2 

value is 0.85. Upon re-evaluation of E260R, three measurements were taken to deduce 

the average ΔTm, 41.65, 41.20, and 39.63 °C. It may be that the 39.63 °C was an outlier 

which, if ignored, significantly raises the ΔTm and would better fit with the results 

shown above. Furthermore, from Figure 5.9, E391A has very little effect in the 

fractional factorial constructs. E391A was a highly borderline stabilising mutation and 

was not expected to cause significant improvements to receptor stability. The 

mutations with the highest magnitude of effect were S198M, E260R, and F288A (or 

F291T). Taking this into consideration, construct 11 was able to have a ΔTm of 10 °C, 

through the stabilising effects of just three mutations.  

 

The most beneficial combination of mutations appeared to be S198M and G188Y. 

Indeed, when this combination was present in constructs 4, 8, and 12, the ΔTms of 

these constructs were all above 8 °C. While both residues are positioned on helix I, 

they face different directions. S198 faces the pocket between helices II and VII, while 

G188 faces away from the binding core, towards the lipid bilayer. These two methods 

Confounding aliases 

G188Y:S198M = D251R:E391A = E260R:Q401A  

G188Y:D251R = S198M:E391A = F288A:Q401A = F291T:Q401A 

G188Y:E260R = S198M:Q401A = F288A:E391A = F291T:E391A 

G188Y:F288A = G188Y:F291T = D251R:Q401A  

G188Y:E391A = S198M:D251R = E260R:F288A = E260R:F291T 

G188Y:Q401A = S198M:E260R = D251R:F288A = D251R:F291T 

S198M:F288A = S198M:F291T = D251R:E260R = E391A:Q401A 
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of stabilisation may be independent enough from each other that they both have 

positive effects on stability. Surprisingly, one of the most negative combinations 

appears to be G188Y and E391A. This combination is harder to explain, as E391 is 

located in ICL III. It may be that this mutation affects the cytoplasmic position of the 

receptor helices, which alters the conformation of the receptor and prevents G188Y 

from interacting with its stabilisation target. A similar effect may be occurring with 

F288A and Q401A mutations, which also showed negative effects on stability.  

 

From Figure 5.9A, G188Y, S198M, E260R, and F288A (or F291T) appeared to be the 

most likely combination to create a  highly thermostable construct. Individually, 

G188Y did not have any significant main effects on stability; however, when in 

combination with S198M there did appear to be a positive change. Furthermore, 

G188Y, S198M and E260R were all present in construct 12, which had a ΔTm of 8.60, 

while construct 11 (the most stabilising construct) contained S198M, E260R, F291T, 

and E391A. By replacing E391A with G188Y, it may create a construct with an even 

higher melting temperature. Had the Tm of construct 2 also been solved then it would 

have made it easier to identify the optimal combination of mutations as F288A and 

F291T would not have been confounded.  

 

A caveat of this design was that the two-way interactions were confounded with each 

other. To create a fractional factorial design, aliases are required to reduce the number 

of experiments required. For example, G188Y:S198M = D251R:E391A = 

E260R:Q401A, making it difficult to accurately determine which of these 

combinations was responsible for the effect (see Table 5.7). As E391A and Q401A 

were present in the other aliases, and did not appear to have positive effects on stability, 
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it appeared that G188Y and S198M were the most effective of these aliases; however, 

further studies would be required to verify this.  

 

Ultimately, by using a fractional factorial design, the optimal combination of 

mutations was discovered: G188Y, S198M, E260R, and F288A (or F291A). 

Furthermore, when combining the stabilising mutations, it appeared to be most 

effective to avoid including Q401A and E391A. 
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Chapter 6 Conclusions and Discussion 
 

 

6.1 Overall Conclusions 

 

Unfortunately, many aspects of this project were fraught with difficulties. Initially, 

quantification of wild-type PTH1R and PTH2R revealed very low yields of 50 and 25 

µg/L respectively. Low expression yields of GPCRs are a commonly known 

characteristic of this family of receptors (McCusker et al., 2007), but with PTH2R even 

solubilisation was a major hurdle. This resulted in a shift towards solving the ECD of 

PTH2R with limited success. Work on PTH1R proved more successful but was halted 

following the release of the active structure (Zhao et al., 2019).  In an attempt to 

optimise the structural biology work pipeline (designing stabilised constructs), 

IMPROvER was used to create thermostabilising mutations of PTH1R, the success 

rate of which was well above the more conventional alanine scanning mutagenesis 

approach. 

 

6.1.1 PTH1R 

 

As demonstrated in Chapter 3, low expression of PTH1R was overcome by truncating 

the ECD, inserting a hemagglutinin signal peptide, and inserting a BRIL fusion protein 

at the N-terminus, a method that was utilised to solve the structure of the glucagon 

receptor (Siu et al., 2013). This increased the yields of PTH1R in Sf9 cells up to 

approximately 300 µg/L, a far more feasible level for structural studies. In a novel 

approach to solving an active GPCR structure, a constitutively active PTH1R was 

created by tethering PTH(1-14) to the N-terminus using linkers of varying lengths: 

(GGGGS)1, (GGGGS)3, and GSAGSA. All tethered constructs that were created 

showed constitutive activation through LANCE® cAMP functional assays as all three 
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constructs reached ~50% of the forskolin-treated control cell response, while untreated 

control cells were only at approximately 1%. With this knowledge in hand, attempts 

were made to co-purify a PTH1R-G protein complex using a tethered receptor. To this 

end, co-expression of BRIL-PTH1R, the α, and the βγ subunit in Sf9 cells was 

performed. This is now a commonly used protocol for solving GPCR structures (Duan 

et al., 2020; Liang et al., 2018; Wang et al., 2020). 

 

Attempts were made to purify Sf9 cell expressed nb37; however, the final yields were 

too low for further downstream experiments. Ultimately, it was decided that the more 

conventional E. coli produced nb35 would be utilised. Despite being unable to produce 

nb35 in WK6 cells, high yields were obtained using BL21 cells (3.8 mg/L). A sound 

rationale behind the lack of expression in WK6 cells cannot currently be provided, 

excluding some type of issue that was present with the strain that was available in the 

lab, as even creating new competent cells was not enough to solve the issue. 

 

Unfortunately, co-purification of a tethered receptor with the complete G protein 

heterotrimer was not achieved; however, the α subunit could be co-purified by using 

a FLAG purification. The reasons for this dissociation are provided below in 6.2. The 

pull-down of the α subunit redirected the research towards co-purification with a mini 

G protein, as it is primarily based on the α-subunit and does not require the βγ subunit 

(Carpenter & Tate, 2016). In this instance co-purification was achieved using an 

untethered BRIL-PTH1R construct but was not possible when using a tethered receptor. 

This may be due to receptor modifications in a constitutively active environment, 

which prevents the mini G protein from binding. The data shown in this thesis is the 

first example of a PTH1R-mini G protein complex and may be suitable for further 
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structural studies. Interestingly, a PAC1R structure was solved using an engineered G 

protein (Kobayashi et al., 2020). PAC1R is similar to PTH1R in that it does not require 

the ECD for receptor activation. To solve the structure of PAC1R, a mini Gs protein, a 

βγ subunit, and nb35 were used. They expressed and purified the mini Gs from E. coli 

cells, while the βγ subunits were from insect cells. After purifying the engineered G 

protein, it was mixed with nb35, purified and concentrated. This allowed them to 

obtain a structure at a 3.9 Å resolution, highlighting that a mini G protein can be used 

to solve family B GPCRs.  

 

6.1.2 PTH2R 

 

Research on full-length PTH2R was far more challenging than initially expected due 

to the limitations described above in 6.1. Therefore, efforts were made to try and solve 

the structure of the PTH2R
ECD, a soluble domain that theoretically should have been 

easier to solve than a full-length structure. To this end, the methodology described by 

Pioszak & Xu (2008) was used, as they created general workflow that was used to 

solve the ECD structures of PTH1R, PAC1R, and CRF1R (Kumar et al., 2011; Pioszak 

& Xu, 2008; Pioszak et al., 2008). To help facilitate the formation of native disulphide 

bonds that are required for the structure of the ECD, DsbC was successfully purified 

following Pioszak and Xu’s (2008) methods. Once obtained, attempts were made to 

purify the ECD; however, difficulties with expression quickly became apparent as 

traditional techniques, such as expressing in Origami cells, were not working. 

Expression was reliably achieved in BL21 cells, though this did not provide the 

environment required for disulphide bond formation, as shown through native gels 

(Figure 4.10). Expression was achieved in Rosetta-Gami cells; however, after multiple 

rounds of optimisation, it was still too difficult to reliably express the protein of 



160 

 

interest. Difficulties with this protein were further exacerbated by degradation of the 

protein and low expression. Using small-scale purifications, purification of the ECD 

was achieved with little loss in the flow-through; however, as reliable expression was 

unobtainable, the work on PTH2R was halted. As stated earlier, PTH2R is one of the 

few family B receptors remaining that has yet to be solved. A potential explanation 

for this could be due to issues with expression of the receptor, as this has been the 

most recurrent problem faced throughout this research. 

 

As briefly alluded to in Chapter 5, an alternative approach to solving PTH2R
ECD 

structure may be pursued in the form of refolding experiments. The biggest issue that 

was faced throughout this chapter was the reliability of expression in the Rosetta-Gami 

cell line; however, BL21 cells were able to express the ECD. Underwood et al., (2010) 

successfully solved the GLP1R ECD structure through expression in BL21 cell 

inclusion bodies. Inclusion bodies are a collection of highly aggregated proteins often 

observed when expressing recombinant proteins. Following expression, the ECD-

containing inclusion bodies can be solubilised in guanidine-HCl and DTT, which 

denatures the protein. Removal of the DTT is achieved by dialysis. To refold the 

protein, L-arginine and various ratios of reduced and oxidised glutathione can be 

added to the samples. L-arginine can aid in protein refolding by inhibiting protein 

aggregation, whereas the glutathione promotes disulphide exchange. Initially this 

route was not pursued for PTH2R
ECD, as there are often complications in the refolding 

stage (Thomson et al., 2012); however, given more time, this may have been a viable 

route to pursue. 
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6.1.3 IMPROvER 

 

Despite the issues concerning PTH2R and the slow progress on PTH1R, the final aspect 

of this research, IMPROvER, proved to be highly successful. By providing 

IMPROvER with the wild-type PTH1R sequence and a list of functional residues to 

avoid mutating, it produced a ranked list of potentially stabilising mutations. Only the 

top 10% of mutations (30 in total) were investigated for their effects on stability. Of 

these, three were excluded for functional roles and seven failed to make it to successful 

Sf9 expression. Through a high-throughput, in-gel fluorescence-based thermostability 

assay it was discovered that the Tm of BRIL-PTH1R was 38.7 ± 0.8 ⁰C, and that eight 

single point mutations had an increased thermostability of > 1.1 °C, a success rate of 

40% for the constructs that were successfully expressed in Sf9 cells. 

 

Many of these mutations also retained functionality relative to the control BRIL-

PTH1R construct, but there were still some which reduced function such as F288A. 

Unfortunately, the most stabilising mutation, S198M, also inhibited receptor 

functionality; however, it could be that this mutation stabilises an inactive state. This 

was shown in the human A2A receptor,  where certain thermostabilising mutations 

(A208L) decreased constitutive activity and simultaneously abolished agonist induced 

signalling (Bertheleme et al., 2013). Interestingly, this was not due to reduced G 

protein coupling. The LANCE cAMP assay cannot determine the cause of receptor 

function loss; therefore, further studies would be required. One such experiment would 

be to determine ligand binding affinity in both the absence and presence of a G protein. 

G protein binding increases the receptor’s binding affinity through alterations to the 

receptor’s structure; therefore, comparisons between a +/- G protein strain could 

reveal if loss of function is due to the inhibition of G protein binding.  
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IMPROvER also produced seven closely related mutations that were obtained from a 

different program, CompoMug. The major advantage of IMPROvER over 

CompoMug is that it can be applied to any protein, whereas CompoMug is specifically 

for GPCRs. As stated by the authors, the machine-learning-based module (not used 

for PTH1R) would require retraining on other target families before it could be used. 

The success rate of CompoMug for mutant construct Tms > 1.5 °C was 25%. Under 

the same criterion, there were four constructs with Tms of 41.5 °C or higher, a success 

rate of 20% for IMPROvER, which is comparable with CompoMug. IMPROvER also 

had success with non-GPCR proteins, with a 27% success for CIPPase and 12% for 

hENT1 (Harborne et al., 2020). Traditional alanine scanning mutagenesis approaches 

have significantly lower levels of success; approximately 5% for the A2AR (16/315) 

and 1.5% (5/297) for the endothelin receptor for Tms of > 1.5 and 1.7 °C respectively 

(Lebon et al., 2011; Okuta et al., 2016).  

 

To reduce the workload associated with creating stabilised membrane receptors, an 

experimental design known as a fractional factorial design was utilised. By using a 

two-factor experimental design the total amount of experiments required was 

decreased from 256 constructs to just 16. Due to time constraints, not all experiments 

could be completed; however, only one construct failed to have it ΔTm solved, which 

was still enough to analyse the effects of combining different mutations. When 

combining all eight mutations, the ΔTm was only 5.76 °C, which was lower than many 

other constructs investigated, highlighting that the stability of each mutant was not 

additive and when combined could be detrimental to stability. The most stabilising 

construct consisted of S198M, E260R, F291T, and E391A. E391A was only a 

borderline stabilising mutation and did not appear to have much effect on the fractional 
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factorial constructs, meaning that, potentially, the 10 °C ΔTm came from just three 

mutations. Popov et al., (2018), through CompoMug, were able to create a triple 

mutant construct with a ΔTm of approximately 13 °C, which is only slightly higher 

than the most stabilising fractional factorial construct.  

 

Following analysis of the constructs, the most likely combination to improve stability 

looked to be G188Y, S198M, E260R, and F288A (or F291T). Furthermore, it 

appeared that E391A and Q401A could have negative effects when combined with 

other mutations. This may be due to their location at ICL III, which may cause a 

reorganisation of the cytoplasmic halves of the helices. If this occurs, then other 

mutations may no longer be able to interact with the region that is required for 

stabilisation. Natively, GPCRs are highly mobile proteins; therefore, any stabilising 

mutation is likely to affect other regions of the receptor, even if the two regions are 

not in close proximity. This is one reason why finding stabilising mutations can be 

challenging, as it is often difficult to reason where certain stabilising mutations may 

be placed in a proteins structure. Having a program such as IMPROvER will therefore 

facilitate the discovery of new stabilising mutations in proteins, which will ultimately 

make solving new protein structures an easier task. 

 

6.2 Comparing PTH1R efforts to the solved PTH1R structures 

 

As noted by Zhao et al., (2019), they also had to overcome the issues of low receptor 

expression and instability of the PTH1R-G protein complex (see 1.7.1 and 1.7.2 for 

further detail concerning the PTH1R structures). To achieve this, they fused a double 

MBP tag to the C-terminus of the receptor and used a dominant negative form of the 

G protein, stabilised by nb35. This dominant negative G protein was first engineered 
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by Liang et al., (2017) to help solve the GLP1R structure, and was created with 9 

stabilising mutations that stabilise interactions with the βγ subunit and inhibit protein 

dissociation. Even with this more stable G protein, nb35 was still required for the 

structure to be solved. The data acquired in this research only had nb35 to stabilise the 

G protein, likely resulting in the loss of the βγ subunit. Had the dominant-negative 

form of the G protein been used, it may have helped inhibit subunit dissociation. 

Additionally, Zhao et al., (2019) used a modified PTH agonist termed long acting PTH 

(LA-PTH), which was 10-100 fold more potent than endogenous PTH and maintained 

the GPCR-G protein complex for longer due to its longer lasting nature. The degree 

of stabilisation they were able to achieve was far higher than this research was able to 

accomplish and explains how they were able to succeed. Another difference between 

our purification protocols was the detergent used for solubilisation. In this research 

DDM with CHS was used, whereas LMNG with CHS was used to solve the active 

structure; however, there appeared to be no significant difference in solubilisation 

between these detergents (Figure 3.7), so likely not a major contributing factor as the 

inactive PTH1R structure was solved using DDM (Ehrenmann et al., 2018). 

 

Even so, there were also several methodological similarities between this research and 

that of Zhao et al., (2019). For one, at the outset of this PhD there were very few active 

GPCR structures available, the most cited being the active β2AR, which individually 

purified the GPCR and G protein (Rasmussen et al., 2011b). As shown in Figure 3.14, 

co-expression of the GPCR and the G protein was achieved, which resulted in the 

avoidance of having to perform extra purification steps and potential protein losses. 

This has now become a standard protocol to purify an active GPCR-G protein complex 

(Duan et al., 2020; Liang et al., 2018; Wang et al., 2020). As with most GPCR 
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structures, a hemagglutinin signal peptide was used to further increase receptor 

expression and almost identical conditions were used for Sf9 expression of the G 

protein and receptor. Additionally, Zhao et al., (2019) expressed nb35 in BL21 cells. 

Initially, there was issues expressing nb35 in the conventional WK6 cell line, as was 

performed by Rasmussen et al., (2011b), and so expression was attempted in BL21 

cells. There are now multiple structures solved using BL21 expressed nb35. (Duan et 

al., 2020; Zhao et al., 2019). Despite these similarities, the complex still dissociated, 

highlighting the importance of LA-PTH and the negative G protein. 

 

6.3 Future Work 

 

To further the work relating to the BRIL-PTH1R-mini Gs complex, it has become 

apparent that using a wild-type peptide sequence for PTH would be inefficient, due to 

the issues of stability found by Ehrenmann et al., (2018) and Zhao et al., (2019). 

Therefore, a modified peptide such as ePTH or LA-PTH would be beneficial. These 

should be tested on the IMPROvER constructs with improved thermostability to 

determine if they are still capable of binding the mini Gs protein. If so, then this would 

be a highly viable candidate for further structural trials. As the βγ subunits would not 

be present the size of the complex would be significantly smaller than full GPCR-G 

protein complexes, potentially making cryo-EM studies more challenging; however, 

the cryo-EM structure of the catalytic domain of protein kinase A, a 43 kDa protein, 

was solved at a ~ 6 Å resolution (Herzik et al., 2019), which means that solving the 

PTH1R-mini Gs complex is well within the realms of possibility.  

 

Having verified IMPROvER, it would be useful to determine stabilising mutations for 

PTH2R, as it remains one of the few family B GPCRs yet to be solved. With just how 
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rapidly full family B structures are being solved, it is logical to focus on the full 

structure over the ECD for PTH2R. Due to the difficulties associated with PTH2R, it 

would be valuable to find an optimal fusion protein, and location, that could both 

increase expression and solubility. Due to the similarities between PTH1R and PTH2R 

(~60% sequence identity) it may be beneficial to follow the methods that Zhao et al., 

(2019) used i.e. having a double MBP tag at the C-terminus.  

 

Assuming a stable complex can be created, it would be of great interest to try and 

solve the active structure with two ligands, TIP39 and PTH. TIP39 activation of 

PTH2R promotes sustained cAMP production, whereas PTH activation only briefly 

induces cAMP. This is due to different downstream effects that occur following ligand 

activation; TIP39 promotes β-arrestin mobilisation and internalisation, while PTH 

does not (Bisello et al., 2004), likely due to subtle structural changes. It would be 

interesting to compare the structures of a TIP39 bound PTH2R and a PTH bound 

structure, as this could reveal key residues that promote receptor internalisation. It is 

likely that a modified PTH would be required, such as LA-PTH or ePTH, to improve 

the stability of the active complex, but it is also likely that a long acting TIP39 would 

need to be designed. Regardless, a significant amount of work is required before an 

active PTH2R structure can be solved. 
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6.4 Final Remarks 

 

Despite the set-backs, a potentially viable construct was found in the form of a BRIL-

PTH1R-mini Gs. PTH2R proved to be extremely difficult to work with and failed to 

reproduce results using established methodologies for solving family B ECD 

structures. However, the full-length PTH2R structure could be solved in the future by 

utilising IMPROvER, which proved to be a highly valuable tool by effectively 

reducing the workload associated with finding stabilising mutations. At the time of 

writing, only two family B GPCR structures remain unsolved. In just four years, over 

two thirds of all family B GPCRs were solved, leading to the conclusion that it is only 

a matter of time until we have structures for every single member. 

  



168 

 

Chapter 7 References 
 

Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of 

three-dimensional models and computational probing of structure-function 

relations in G protein-coupled receptors. Methods in Neurosciences, 25, 366–428. 

https://doi.org/10.1016/S1043-9471(05)80049-7 

Barden, J. A., & Cuthbertson, R. M. (1993). Stabilized NMR structure of human 

parathyroid hormone(1-34). European Journal of Biochemistry, 215, 315–321. 

Bergwitz, C., Gardella, T. J., Flannery, M. R., Potts, J. T., Kronenberg, H. M., 

Goldring, S. R., & Jüppner, H. (1996). Full activation of chimeric receptors by 

hybrids between parathyroid hormone and calcitonin. Evidence for a common 

pattern of ligand-receptor interaction. Journal of Biological Chemistry, 271(43), 

26469–26472. https://doi.org/10.1074/jbc.271.43.26469 

Berrow, N. S., Alderton, D., Sainsbury, S., Nettleship, J., Assenberg, R., Rahman, N., 

Stuart, D. I., & Owens, R. J. (2007). A versatile ligation-independent cloning 

method suitable for high-throughput expression screening applications. Nucleic 

Acids Research, 35(6), e45. https://doi.org/10.1093/nar/gkm047 

Bertheleme, N., Singh, S., Dowell, S. J., Hubbard, J., & Byrne, B. (2013). Loss of 

constitutive activity is correlated with increased thermostability of the human 

adenosine A2A receptor. British Journal of Pharmacology, 169(5), 988–998. 

https://doi.org/10.1111/bph.12165 

Bisello, A., Adams, A. E., Mierke, D. F., Pellegrini, M., Rosenblatt, M., Suva, L. J., 

& Chorev, M. (1998). Parathyroid hormone-receptor interactions identified 

directly by photocross-linking and molecular modeling studies. Journal of 

Biological Chemistry, 273(35), 22498–22505. 

https://doi.org/10.1074/jbc.273.35.22498 

Bisello, A., Manen, D., Pierroz, D. D., Usdin, T. B., Rizzoli, R., & Ferrari, S. L. (2004). 

Agonist-specific regulation of parathyroid hormone (PTH) receptor type 2 

activity: structural and functional analysis of PTH- and tuberoinfundibular 

peptide (TIP) 39-stimulated desensitization and internalization. Mol Endocrinol, 

18(6), 1486–1498. https://doi.org/10.1210/me.2003-0487 

 

 

 



169 

 

Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., 

Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. 

L., & Pioszak, A. A. (2015). Structural Basis for Receptor Activity-Modifying 

Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled 

Receptor. Molecular Cell, 58(6), 1040–1052. 

https://doi.org/10.1016/j.molcel.2015.04.018 

Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W., & Tate, C. G. (2017). Structure 

of the adenosine A2A receptor bound to an engineered G protein. Nature, 

536(7614), 104–107. https://doi.org/10.1038/nature18966.Structure 

Carpenter, B., & Tate, C. G. (2017). Expression, Purification and Crystallisation of 

the Adenosine A2A Receptor Bound to an Engineered Mini G Protein. BIO-

PROTOCOL, 7(8), e2234. https://doi.org/10.21769/BioProtoc.2234 

Carpenter, B., & Tate, C. G. (2016). Engineering a minimal G protein to facilitate 

crystallisation of G protein-coupled receptors in their active conformation. 

Protein Engineering, Design and Selection, 29(12), 583–593. 

https://doi.org/10.1093/protein/gzw049 

Castro, M., Nikolaev, V. O., Palm, D., Lohse, M. J., & Vilardaga, J. P. (2005). Turn-

on switch in parathyroid hormone receptor by a two-step parathyroid hormone 

binding mechanism. Proceedings of the National Academy of Sciences of the 

United States of America, 102(44), 16084–16089. 

https://doi.org/10.1073/pnas.0503942102 

Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design 

and functionality. In Advanced Drug Delivery Reviews (pp. 1357–1369). 

https://doi.org/10.1016/j.addr.2012.09.039 

Chen, Z., Guo, L., Hadas, J., Gutowski, S., Sprang, S. R., & Sternweis, P. C. (2012). 

Activation of p115-RhoGEF requires direct association of Gα 13 and the Dbl 

homology domain. Journal of Biological Chemistry, 287(30), 25490–25500. 

https://doi.org/10.1074/jbc.M111.333716 

Chorev, M., Goldman, M. E., McKee, R. L., Roubini, E., Levy, J. J., Gay, C. T., 

Reagan, J. E., Fisher, J. E., Caporale, L. H., Golub, E. E., Caulfield, M. P., Nutt, 

R. F., & Rosenblatt, M. (1990). Modifications of position 12 in parathyroid 

hormone and parathyroid hormone related protein: Toward the design of highly 

potent antagonists. Biochemistry, 29, 1580–1586. 

 



170 

 

Chung, Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Mathiesen, J. M., Shah, 

S. T. a, Lyons, J. a, Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, 

W. I., Roger, K., & Kobilka, B. K. (2012). Crystal Structure of the B2 Adrenergic 

Receptor-Gs protein complex. Nature, 477(7366), 549–555. 

https://doi.org/10.1038/nature10361.Crystal 

Clark, J. A. (1998). Multiple Regions of Ligand Discrimination Revealed by Analysis 

of Chimeric Parathyroid Hormone 2 (PTH2) and PTH/PTH-Related Peptide 

(PTHrP) Receptors. Molecular Endocrinology, 12(2), 193–206. 

https://doi.org/10.1210/me.12.2.193 

Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D., & Bourne, H. R. (1993). 

Substitution of three amino acids switches receptor specificity of G qα to that of 

Giα. Nature, 363(6426), 274–276. https://doi.org/10.1038/363274a0 

Cordeaux, Y., Ijzerman, A. P., & Hill, S. J. (2004). Coupling of the human A 1 

adenosine receptor to different heterotrimeric G proteins: Evidence for agonist-

specific G protein activation. British Journal of Pharmacology, 143(6), 705–714. 

https://doi.org/10.1038/sj.bjp.0705925 

Danev, R., Yanagisawa, H., & Kikkawa, M. (2019). Cryo-Electron Microscopy 

Methodology: Current Aspects and Future Directions. In Trends in Biochemical 

Sciences (pp. 837–848). https://doi.org/10.1016/j.tibs.2019.04.008 

De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., 

Muyldermans, S., & Wyns, L. (2006). Molecular basis for the preferential cleft 

recognition by dromedary heavy-chain antibodies. Proceedings of the National 

Academy of Sciences, 103(12), 4586–4591. 

https://doi.org/10.1073/pnas.0505379103 

Dean, T., Vilardaga, J. P., Potts, J. T., & Gardella, T. J. (2008). Altered selectivity of 

parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct 

conformations of the PTH/PTHrP receptor. Molecular Endocrinology, 22(1), 

156–166. https://doi.org/10.1210/me.2007-0274 

Dimitrov, E. L., Petrus, E., & Usdin, T. B. (2010). Tuberoinfundibular peptide of 39 

residues (TIP39) signaling modulates acute and tonic nociception. Experimental 

Neurology, 226(1), 68–83. https://doi.org/10.1016/j.expneurol.2010.08.004 

Dobolyi, A., Dimitrov, E., Palkovits, M., & Usdin, T. B. (2012). The neuroendocrine 

functions of the parathyroid hormone 2 receptor. Frontiers in Endocrinology, 1–

10. https://doi.org/10.3389/fendo.2012.00121 



171 

 

Draper-Joyce, C. J., Khoshouei, M., Thal, D. M., Liang, Y.-L., Nguyen, A. T. N., 

Furness, S. G. B., Venugopal, H., Baltos, J.-A., Plitzko, J. M., Danev, R., 

Baumeister, W., May, L. T., Wootten, D., Sexton, P. M., Glukhova, A., & 

Christopoulos, A. (2018). Structure of the adenosine-bound human adenosine A1 

receptor–Gi complex. Nature, 558(7711), 559–563. 

https://doi.org/10.1038/s41586-018-0236-6 

Duan, J., Shen, D., Zhou, X. E., Bi, P., Liu, Q. feng, Tan, Y. xia, Zhuang, Y. wen, 

Zhang, H. bing, Xu, P. yu, Huang, S. J., Ma, S. shan, He, X. heng, Melcher, K., 

Zhang, Y., Xu, H. E., & Jiang, Y. (2020). Cryo-EM structure of an activated VIP1 

receptor-G protein complex revealed by a NanoBiT tethering strategy. Nature 

Communications, 11(1), 4121. https://doi.org/10.1038/s41467-020-17933-8 

Ehrenmann, J., Schöppe, J., Klenk, C., Rappas, M., Kummer, L., Doré, A. S., & 

Plückthun, A. (2018). High-resolution crystal structure of parathyroid hormone 

1 receptor in complex with a peptide agonist. Nature Structural and Molecular 

Biology, 25, 1086–1092. https://doi.org/10.1038/s41594-018-0151-4 

Fenalti, G., Giguere, P. M., Katritch, V., Huang, X. P., Thompson, A. A., Cherezov, 

V., Roth, B. L., & Stevens, R. C. (2014). Molecular control of δ-opioid receptor 

signalling. Nature, 506(7487), 191–196. https://doi.org/10.1038/nature12944 

Ferrari, S. L., & Bisello, A. (2001). Cellular distribution of constitutively active 

mutant parathyroid hormone (PTH)/PTH-related protein receptors and regulation 

of cyclic adenosine 3’,5’-monophosphate signaling by beta-arrestin2. Molecular 

Endocrinology (Baltimore, Md.), 15(1), 149–163. 

https://doi.org/10.1210/mend.15.1.0587 

Fredriksson, R. (2003). The G-Protein-Coupled Receptors in the Human Genome 

Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and 

Fingerprints. Molecular Pharmacology, 63(6), 1256–1272. 

https://doi.org/10.1124/mol.63.6.1256 

García-Nafría, J., Lee, Y., Bai, X., Carpenter, B., & Tate, C. G. (2018a). Cryo-EM 

structure of the adenosine A2A receptor coupled to an engineered heterotrimeric 

G protein. ELife, 7, e35946. https://doi.org/10.7554/eLife.35946 

García-Nafría, J., Nehmé, R., Edwards, P. C., & Tate, C. G. (2018b). Cryo-EM 

structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature, 

558. 

 



172 

 

Gardella, T. J., Luck, M. D., Fan, M. H., & Lee, C. (1996). Transmembrane residues 

of the parathyroid hormone (PTH)/PTH-related peptide receptor that specifically 

affect binding and signaling by agonist ligands. Journal of Biological Chemistry, 

271(22), 12820–12825. https://doi.org/10.1074/jbc.271.22.12820 

Gensure, R. C., Shimizu, N., Tsang, J., & Gardella, T. J. (2003). Identification of a 

Contact Site for Residue 19 of Parathyroid Hormone (PTH) and PTH-Related 

Protein Analogs in Transmembrane Domain Two of the Type 1 PTH Receptor. 

Molecular Endocrinology, 17(12), 2647–2658. https://doi.org/10.1210/me.2003-

0275 

Gensure, R. C., Petroni, B., Jüppner, H., & Gardella, T. J. (2001). Identification of 

determinants of inverse agonism in a constitutively active PTH/PTHrP receptor 

by photoaffinity crosslinking and mutational analysis. Journal of Biological 

Chemistry, 276(46), 42692–42699. 

Ghosh, E., Kumari, P., Jaiman, D., & Shukla, A. K. (2015). Methodological advances: 

the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol, 

16(2), 69–81. https://doi.org/10.1038/nrm3933 

Hamer-Casterman,T, C., Muyldermans, S., Robinson, G., Hamers, C., Bajyana, E., 

Bendahman, N., & Hamilton, R. (1998). Naturally occurring antibodies devoid 

of light chains. Nature, 363(June), 446–448. 

Harborne, S. P. D., Strauss, J., Boakes, J. C., Wright, D. L., Henderson, J. G., 

Boivineau, J., Jaakola, V. P., & Goldman, A. (2020). IMPROvER: the Integral 

Membrane Protein Stability Selector. Scientific Reports, 10(1), 15165. 

https://doi.org/10.1038/s41598-020-71744-x 

Hattersley, G., Dean, T., Corbin, B. A., Bahar, H., & Gardella, T. J. (2016). Binding 

selectivity of abaloparatide for PTH-type-1-receptor conformations and effects 

on downstream signaling. Endocrinology, 157(1), 141–149. 

https://doi.org/10.1210/en.2015-1726 

Hauer, F., Gerle, C., Fischer, N., Oshima, A., Shinzawa-Itoh, K., Shimada, S., 

Yokoyama, K., Fujiyoshi, Y., & Stark, H. (2015). GraDeR: Membrane Protein 

Complex Preparation for Single-Particle Cryo-EM. Structure, 23(9), 1769–1775. 

https://doi.org/10.1016/j.str.2015.06.029 

Herzik, M. A., Wu, M., & Lander, G. C. (2019). High-resolution structure 

determination of sub-100 kDa complexes using conventional cryo-EM. Nature 

Communications. https://doi.org/10.1038/s41467-019-08991-8 



173 

 

Hoare, S. R. J., Brown, B. T., Santos, M. A., Malany, S., Betz, S. F., & Grigoriadis, 

D. E. (2006). Single amino acid residue determinants of non-peptide antagonist 

binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochemical 

Pharmacology, 72(2), 244–255. https://doi.org/10.1016/j.bcp.2006.04.007 

Hoare, S. R. J., Clark, J. A., & Usdin, T. B. (2000). Molecular determinants of 

tuberoinfundibular peptide of 39 residues (TIP39) selectivity for the parathyroid 

hormone-2 (PTH2) receptor: N-terminal truncation of TIP39 reverses PTH2 

receptor/PTH1 receptor binding selectivity. Journal of Biological Chemistry, 

275(35), 27274–27283. https://doi.org/10.1074/jbc.M003910200 

Hoare, S. R. J., Gardella, T. J., & Usdin, T. B. (2001). Evaluating the signal 

transduction mechanism of the parathyroid hormone 1 receptor. Effect of 

receptor-G-protein interaction on the ligand binding mechanism and receptor 

conformation. Journal of Biological Chemistry, 276(11), 7741–7753. 

https://doi.org/10.1074/jbc.M009395200 

Hollenstein, K., Kean, J., Bortolato, A., Cheng, R. K. Y., Doré, A. S., Jazayeri, A., 

Cooke, R. M., Weir, M., & Marshall, F. H. (2013). Structure of class B GPCR 

corticotropin-releasing factor receptor 1. Nature, 499(7459), 438–443. 

https://doi.org/10.1038/nature12357 

Hollenstein, K., De Graaf, C., Bortolato, A., Wang, M., Marshall, F & Stevens, R. C., 

(2014). Insights into the structure of class B GPCRs. Trends Pharmacol Sci, 

35(1), 12–22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931419/ 

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P. I., Springer, M., Sander, 

C., & Marks, D. S. (2017). Mutation effects predicted from sequence co-variation. 

Nature Biotechnology, 35, 128–135. https://doi.org/10.1038/nbt.3769 

Jin, L., Briggs, S. L., Chandrasekhar, S., Chirgadze, N. Y., Clawson, D. K., Schevitz, 

R. W., Smiley, D. L., Tashjian, A. H., & Zhang, F. (2000). Crystal structure of 

human parathyroid hormone 1-34 at 0.9-Å resolution. Journal of Biological 

Chemistry, 275(35), 27238–27244. https://doi.org/10.1074/jbc.M001134200 

Jüppner, H., Schipani, E., Bringhurst, F. R., McClure, I., Keutmann, H. T., Potts, J. T., 

Kronenberg, H. M., Abou-Samra, A. B., Segre, G. V., & Gardella, T. J. (1994). 

The extracellular amino-terminal region of the parathyroid hormone (PTH)/PTH-

related peptide receptor determines the binding affinity for carboxyl-terminal 

fragments of PTH-(1-34). Endocrinology, 134(2), 879–884. 

https://doi.org/10.1210/en.134.2.879 



174 

 

Katritch, V., Fenalti, G., Abola, E. E., Roth, B. L., Cherezov, V., & Stevens, R. C. 

(2014). Allosteric sodium in class A GPCR signaling. In Trends in Biochemical 

Sciences (pp. 233–244). https://doi.org/10.1016/j.tibs.2014.03.002 

Khoshouei, M., Radjainia, M., Baumeister, W., & Danev, R. (2017). Cryo-EM 

structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nature 

Communications, 8. https://doi.org/10.1038/ncomms16099 

Killion, E. A., Wang, J., Yie, J., Shi, S. D.-H., Bates, D., Min, X., Komorowski, R., 

Hager, T., Deng, L., Atangan, L., Lu, S.-C., Kurzeja, R. J. M., Sivits, G., Lin, J., 

Chen, Q., Wang, Z., Thibault, S. A., Abbott, C., Meng, T., Clavette, B., 

Murawsky, C. M., Foltz, I., Rottman, J., Hale, C., Veniant, M., &  Lloyd, D. J. 

(2018). Anti-obesity effects of GIPR antagonists alone and in combination with 

GLP-1R agonists in preclinical models. Science Translational Medicine, 10(472). 

https://doi.org/10.1126/scitranslmed.aat3392 

Kobayashi, K., Shihoya, W., Nishizawa, T., Kadji, F. M. N., Aoki, J., Inoue, A., & 

Nureki, O. (2020). Cryo-EM structure of the human PAC1 receptor coupled to 

an engineered heterotrimeric G protein. Nature Structural and Molecular Biology, 

27, 274–280. https://doi.org/10.1038/s41594-020-0386-8 

Koehl, A., Hu, H., Maeda, S., Zhang, Y., Qu, Q., Paggi, J. M., Latorraca, N. R., Hilger, 

D., Dawson, R., Matile, H., Schertler, G. F. X., Granier, S., Weis, W. I., Dror, R. 

O., Manglik, A., Skiniotis, G., & Kobilka, B. K. (2018). Structure of the µ-opioid 

receptor–Gi protein complex. Nature, 558(7711), 547–552. 

https://doi.org/10.1038/s41586-018-0219-7 

Kossiakoff, A. A., & Subramaniam, S. (2018). Cryo-EM structure of human rhodopsin 

bound to an inhibitory G protein. Nature, 558(7711), 553–558. 

https://doi.org/10.1038/s41586-018-0215-y 

Koth, C. M., Murray, J. M., Mukund, S., Madjidi, A., Minn, A., Clarke, H. J., Wong, 

T., Chiang, V., Luis, E., Estevez, A., Rondon, J., Zhang, Y., Hötzel, I., & Allan, 

B. B. (2012). Molecular basis for negative regulation of the glucagon receptor. 

Proceedings of the National Academy of Sciences of the United States of America, 

109(36), 14393–14398. https://doi.org/10.1073/pnas.1206734109 

 

 

 

 



175 

 

Kruse, A. C., Hu, J., Pan, A. C., Arlow, D. H., Rosenbaum, D. M., Rosemond, E., 

Green, H. F., Liu, T., Chae, P. S., Dror, R. O., Shaw, D. E., Weis, W. I., Wess, 

J., & Kobilka, B. K. (2012). Structure and dynamics of the M3 muscarinic 

acetylcholine receptor. Nature, 482, 552–556. 

https://doi.org/10.1038/nature10867 

Kumar, S., Pioszak, A. A., Zhang, C., Swaminathan, K., & Xu, H. E. (2011). Crystal 

structure of the PAC1R extracellular domain unifies a consensus fold for 

hormone recognition by class B G-protein coupled receptors. PLoS ONE, 6(5), 

e19682. https://doi.org/10.1371/journal.pone.0019682 

Lebon, G., Bennett, K., Jazayeri, A., & Tate, C. G. (2011). Thermostabilisation of an 

agonist-bound conformation of the human adenosine A2A receptor. Journal of 

Molecular Biology, 409(3), 298–310. https://doi.org/10.1016/j.jmb.2011.03.075 

Liang, Y. L., Khoshouei, M., Deganutti, G., Glukhova, A., Koole, C., Peat, T. S., 

Radjainia, M., Plitzko, J. M., Baumeister, W., Miller, L. J., Hay, D. L., 

Christopoulos, A., Reynolds, C. A., Wootten, D., & Sexton, P. M. (2018). Cryo-

EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature. 

https://doi.org/10.1038/s41586-018-0535-y 

Liang, Y. L., Belousoff, M. J., Zhao, P., Danev, R., Sexton, P. M., Wootten, D., Liang, 

Y., Belousoff, M. J., Zhao, P., Koole, C., Fletcher, M. M., & Truong, T. T. (2020). 

Toward a Structural Understanding of Class B GPCR Peptide Binding and 

Activation Article Toward a Structural Understanding of Class B GPCR Peptide 

Binding and Activation. Molecular Cell, 77(3), 656–668. 

https://doi.org/10.1016/j.molcel.2020.01.012 

Liang, Y. L., Khoshouei, M., Deganutti, G., Glukhova, A., Koole, C., Peat, T. S., 

Radjainia, M., Plitzko, J. M., Baumeister, W., Miller, L. J., Hay, D. L., 

Christopoulos, A., Reynolds, C. A., Wootten, D., & Sexton, P. M. (2018). Cryo-

EM structure of the active, G s -protein complexed, human CGRP receptor. 

Nature, 561(7724), 492–497. https://doi.org/10.1038/s41586-018-0535-y 

Liang, Y. L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., 

Thal, D. M., Furness, S. G. B., Christopoulos, G., Coudrat, T., Danev, R., 

Baumeister, W., Miller, L. J., Christopoulos, A., Kobilka, B. K., Wootten, D., 

Skiniotis, G., & Sexton, P. M. (2017). Phase-plate cryo-EM structure of a class 

B GPCR-G-protein complex. Nature, 546(7656), 118–123. 

https://doi.org/10.1038/nature22327 



176 

 

Liao, M., Cao, E., Julius, D., & Cheng, Y. (2013). Structure of the TRPV1 ion channel 

determined by electron cryo-microscopy. Nature, 504, 107–112. 

https://doi.org/10.1038/nature12822 

Luck, M. D., Carter, P. H., & Gardella, T. J. (1999). The (1-14) fragment of 

parathyroid hormone (PTH) activates intact and amino-terminally truncated 

PTH-1 receptors. Molecular Endocrinology. 

https://doi.org/10.1210/mend.13.5.0277 

Ma, S., Shen, Q., Zhao, L. H., Mao, C., Zhou, X. E., Shen, D. D., de Waal, P. W., Bi, 

P., Li, C., Jiang, Y., Wang, M. W., Sexton, P. M., Wootten, D., Melcher, K., 

Zhang, Y., & Xu, H. E. (2020). Molecular Basis for Hormone Recognition and 

Activation of Corticotropin-Releasing Factor Receptors. Molecular Cell, 77(3), 

669–680. https://doi.org/10.1016/j.molcel.2020.01.013 

Magnani, F., Shibata, Y., Serrano-Vega, M. J., & Tate, C. G. (2008). Co-evolving 

stability and conformational homogeneity of the human adenosine A2a receptor. 

Proceedings of the National Academy of Sciences of the United States of America, 

105(31), 10744–10749. https://doi.org/10.1073/pnas.0804396105 

Manglik, A., Kobilka, B. K., & Steyaert, J. (2017). Nanobodies to Study G Protein–

Coupled Receptor Structure and Function. Annual Review of Pharmacology and 

Toxicology, 57, 19–37. https://doi.org/10.1146/annurev-pharmtox-010716-

104710 

Manglik, A., Kruse, A. C., Kobilka, T. S., Thian, F. S., Jesper, M., Sunahara, R. K., 

Pardo, L., Weis, W. I., & Kobilka, B. K. (2012). Crystal structure of the µ-opioid 

receptor bound to a morphinan antagonist. Nature, 485(7398), 321–326. 

https://doi.org/10.1038/nature10954.Crystal 

Mann, R., Wigglesworth, M. J., & Donnelly, D. (2008). Ligand-receptor interactions 

at the parathyroid hormone receptors: subtype binding selectivity is mediated via 

an interaction between residue 23 on the ligand and residue 41 on the receptor. 

Molecular Pharmacology, 74(3), 605–613. 

https://doi.org/10.1124/mol.108.048017 

Markby, D. W., Onrust, R., & Bourne, H. R. (1993). Separate GTP binding and 

GTPase activating domains of a Gα subunit. Science, 262(5141), 1895–1901. 

https://doi.org/10.1126/science.8266082 

 

 



177 

 

McCusker, E. C., Bane, S. E., O’Malley, M. A., & Robinson, A. S. (2007). 

Heterologous GPCR expression: A bottleneck to obtaining crystal structures. In 

Biotechnology Progress (pp. 540–547). https://doi.org/10.1021/bp060349b 

McPherson, A., & Gavira, J. A. (2014). Introduction to protein crystallization. In Acta 

Crystallographica Section F:Structural Biology Communications (pp. 2–20). 

https://doi.org/10.1107/S2053230X13033141 

Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P., Davis, M. I., Pragani, 

R., Boxer, M. B., Earl, L. A., Milne, J. L. S., & Subramaniam, S. (2016). 

Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell, 

165(7), 1698–1707. https://doi.org/10.1016/j.cell.2016.05.040 

Milic, D., & Veprintsev, D. B. (2015). Large-scale production and protein engineering 

of G protein-coupled receptors for structural studies. In Frontiers in 

Pharmacology (pp. 1–24). https://doi.org/10.3389/fphar.2015.00066 

Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., Hanson, M. 

A., Stevens, R. C., Deupi, X., & Gloriam, D. E. (2019). An online resource for 

GPCR structure determination and analysis. Nature Methods, 16(2), 151–162. 

https://doi.org/10.1038/s41592-018-0302-x 

Novick, D., & Rubinstein, M. (2012). Ligand affinity chromatography, an 

indispensable method for the purification of soluble cytokine receptors and 

binding proteins. Methods in Molecular Biology, 820, 195–214. 

https://doi.org/10.1007/978-1-61779-439-1_12 

Okuta, A., Tani, K., Nishimura, S., Fujiyoshi, Y., & Doi, T. (2016). 

Thermostabilization of the Human Endothelin Type B Receptor. Journal of 

Molecular Biology, 428(11), 2265–2274. 

https://doi.org/10.1016/j.jmb.2016.03.024 

Pal, K., Melcher, K., & Xu, H. E. (2012). Structure and mechanism for recognition of 

peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacologica 

Sinica, 33(3), 300–311. https://doi.org/10.1038/aps.2011.170 

Papaneophytou, C. P., & Kontopidis, G. (2014). Statistical approaches to maximize 

recombinant protein expression in Escherichia coli: A general review. In Protein 

Expression and Purification (pp. 22–32). 

https://doi.org/10.1016/j.pep.2013.10.016 

 

 



178 

 

Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkönig, A., Ruf, A., 

Muyldermans, S., Hol, W. G. J., Kobilka, B. K., & Steyaert, J. (2014). A general 

protocol for the generation of Nanobodies for structural biology. Nature 

Protocols, 9(3), 674–693. https://doi.org/10.1038/nprot.2014.039 

Passmore, L. A., & Russo, C. J. (2016). Specimen Preparation for High-Resolution 

Cryo-EM. In Methods in Enzymology (Vol. 579, pp. 51–86). 

https://doi.org/10.1016/bs.mie.2016.04.011 

Perrin, M. H., Grace, C. R. R., Riek, R., & Vale, W. W. (2006). The three-dimensional 

structure of the n-terminal domain of corticotropin-releasing factor receptors 

sushi domains and the B1 family of G protein-coupled receptors. Annals of the 

New York Academy of Sciences, 1070, 105–119. 

https://doi.org/10.1196/annals.1317.065 

Pioszak, A. A., Parker, N. R., Suino-Powell, K., & Xu, H. E. (2008). Molecular 

recognition of corticotropin-releasing factor by its G-protein-coupled receptor 

CRFR1. Journal of Biological Chemistry, 283(47), 32900–32912. 

https://doi.org/10.1074/jbc.M805749200 

Pioszak, A. A., & Xu, H. E. (2008). Molecular recognition of parathyroid hormone by 

its G protein-coupled receptor. Proceedings of the National Academy of Sciences, 

105(13), 5034–5039. https://doi.org/10.1073/pnas.0801027105 

Pioszak, A. A, Parker, N. R., Gardella, T. J., & Xu, H. E. (2009). Structural basis for 

parathyroid hormone-related protein binding to the parathyroid hormone receptor 

and design of conformation-selective peptides. The Journal of Biological 

Chemistry, 284(41), 28382–28391. https://doi.org/10.1074/jbc.M109.022905 

Piserchio, A., Usdin, T., & Mierke, D. F. (2000). Structure of tuberoinfundibular 

peptide (TIP39). J Biol Chem, 275(401), 27284–27290. 

Popov, P., Peng, Y., Shen, L., Stevens, R. C., Cherezov, V., Liu, Z. J., & Katritch, V. 

(2018). Computational design of thermostabilizing point mutations for G protein-

coupled receptors. ELife, 7, e34729. https://doi.org/10.7554/eLife.34729 

Potts, J. T. (2005). Parathyroid hormone: Past and present. Journal of Endocrinology, 

187(3), 311–325. https://doi.org/10.1677/joe.1.06057 

 

 

 

 



179 

 

Potts, J. T., Tregear, G. W., Keutmann, H. T., Niall, H. D., Sauer, R., Deftos, L. J., 

Dawson, B. F., Hogan, M. L., & Aurbach, G. D. (1971). Synthesis of a 

biologically active N-terminal tetratriacontapeptide of parathyroid hormone. 

Proceedings of the National Academy of Sciences of the United States of America, 

68(1), 63–67. https://doi.org/10.1073/pnas.68.1.63 

Qiao, A., Han, S., Li, X., Li, Z., Zhao, P., Dai, A., Chang, R., Tai, L., Tan, Q., Chu, 

X., Ma, L., Thorsen, T. S., Reedtz-Runge, S., Yang, D., Wang, M.-W., Sexton, 

P. M., Wootten, D., & Wu, B. (2020). Structural basis of Gs and Gi recognition 

by the human glucagon receptor. Science, 367(6484), 1346–1352. 

https://doi.org/10.1126/science.aaz5346 

Rasmussen, S. G. F., Choi, H.-J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., 

Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. 

F., Schertler, G. F. X., Weis, W. I., & Kobilka, B. K. (2007). Crystal structure of 

the human β2 adrenergic G-protein-coupled receptor. Nature, 450(7168), 383–

388. https://doi.org/10.1038/nature06325 

Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., 

Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., 

Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. 

I., & Kobilka, B. K. (2011a). Structure of a nanobody-stabilized active state of 

the β(2) adrenoceptor. Nature, 469(7329), 175–180. 

https://doi.org/10.1038/nature09648 

Rasmussen, S. G. F., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. 

S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. 

T. A., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, 

W., Sunahara, K., & Kobilka, B. K. (2011b). Crystal structure of the β2 

adrenergic receptor-Gs protein complex. Nature, 477(7366), 549–555. 

https://doi.org/10.1038/nature10361 

Rosenbaum, D. M., Zhang, C., Lyons, J. a, Holl, R., Aragao, D., Arlow, D. H., 

Rasmussen, S. G. F., Choi, H.-J., Devree, B. T., Sunahara, R. K., Chae, P. S., 

Gellman, S. H., Dror, R. O., Shaw, D. E., Weis, W. I., Caffrey, M., Gmeiner, P., 

& Kobilka, B. K. (2011). Structure and function of an irreversible agonist-β(2) 

adrenoceptor complex. Nature, 469(7329), 236–240. 

https://doi.org/10.1038/nature09665 

 



180 

 

Schipani, E., Jensen, G. S., Pincus, J., Nissenson, R. A., Gardella, T. J., & Jüppner, H. 

(1997). Constitutive activation of the cyclic adenosine 3’,5’-monophosphate 

signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors 

mutated at the two loci for Jansen’s metaphyseal chondrodysplasia. Molecular 

Endocrinology, 11(7), 851–858. https://doi.org/10.1210/me.11.7.851 

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). 

The FoldX web server: An online force field. Nucleic Acids Research. 

https://doi.org/10.1093/nar/gki387 

Seifert, R., & Wenzel-Seifert, K. (2002). Constitutive activity of G-proteins-coupled 

receptors: Cause of disease and common property of wild-type receptors. In 

Naunyn-Schmiedeberg’s Archives of Pharmacology (pp. 381–416). 

https://doi.org/10.1007/s00210-002-0588-0 

Semack, A., Sandhu, M., Malik, R. U., Vaidehi, N., & Sivaramakrishnan, S. (2016). 

Structural elements in the Gαs and Gβq C termini that mediate selective G 

Protein-coupled Receptor (GPCR) signaling. Journal of Biological Chemistry, 

291(34), 17929–17940. https://doi.org/10.1074/jbc.M116.735720 

Serrano-Vega, M. J., Magnani, F., Shibata, Y., & Tate, C. G. (2008). Conformational 

thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. 

Proceedings of the National Academy of Sciences of the United States of America, 

105(3), 877–882. https://doi.org/10.1073/pnas.0711253105 

Shi, Y., Wang, T., Zhou, X. E., Liu, Q. feng, Jiang, Y., & Xu, H. E. (2019). Structure-

based design of a hyperthermostable AgUricase for hyperuricemia and gout 

therapy. Acta Pharmacologica Sinica, 40(10), 1364–1372. 

https://doi.org/10.1038/s41401-019-0269-x 

Shibata, Y., Gvozdenovic-Jeremic, J., Love, J., Kloss, B., White, J. F., Grisshammer, 

R., & Tate, C. G. (2013). Optimising the combination of thermostabilising 

mutations in the neurotensin receptor for structure determination. Biochimica et 

Biophysica Acta - Biomembranes, 1828(4), 1293–1301. 

https://doi.org/10.1016/j.bbamem.2013.01.008 

Shimizu, M., Joyashiki, E., Noda, H., Watanabe, T., Okazaki, M., Nagayasu, M., 

Adachi, K., Tamura, T., Potts, J. T., Gardella, T. J., & Kawabe, Y. (2016). 

Pharmacodynamic Actions of a Long-Acting PTH Analog (LA-PTH) in 

Thyroparathyroidectomized (TPTX) Rats and Normal Monkeys. Journal of Bone 

and Mineral Research, 31(7), 1405–1412. https://doi.org/10.1002/jbmr.2811 



181 

 

Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., Zhou, C., Xu, Q., 

Wacker, D., Joseph, J. S., Liu, W., Lau, J., Cherezov, V., Katritch, V., Wang, M.-

W., & Stevens, R. C. (2013). Structure of the human glucagon class B G-protein-

coupled receptor. Nature, 499(7459), 444–449. 

https://doi.org/10.1038/nature12393 

Song, G., Yang, D., Wang, Y., De Graaf, C., Zhou, Q., Jiang, S., Liu, K., Cai, X., Dai, 

A., Lin, G., Liu, D., Wu, F., Wu, Y., Zhao, S., Ye, L., Han, G. W., Lau, J. Wu, 

B., Hanson, M., Liu, Z., Wang, M., & Stevens, R. C. (2017). Human GLP-1 

receptor transmembrane domain structure in complex with allosteric modulators. 

Nature, 546(7657), 312–315. https://doi.org/10.1038/nature22378 

Sullivan, K. A., Miller, R. T., Masters, S. B., Beiderman, B., Heideman, W., & Bourne, 

H. R. (1987). Identification of receptor contact site involved in receptor-G protein 

coupling. Nature, 330(6150), 758–760. https://doi.org/10.1038/330758a0 

ter Haar, E., Koth, C. M., Abdul-Manan, N., Swenson, L., Coll, J. T., Lippke, J. A., 

Lepre, C. A., Garcia-Guzman, M., & Moore, J. M. (2010). Crystal structure of 

the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site 

of drug antagonism. Structure, 18(9), 1083–1093. 

https://doi.org/10.1016/j.str.2010.05.014 

Thomson, C. A., Olson, M., Jackson, L. M., & Schrader, J. W. (2012). A Simplified 

Method for the Efficient Refolding and Purification of Recombinant Human GM-

CSF. PLoS ONE, 7(11), e49891. https://doi.org/10.1371/journal.pone.0049891 

Ueda, N., Iniguez-Lluhi, J. A., Lee, E., Smrcka, A. V., Robishaw, J. D., & Gilman, A. 

G. (1994). G protein βγ subunits. Simplified purification and properties of novel 

isoforms. Journal of Biological Chemistry, 269(6), 4388–4395. 

Underwood, C. R., Garibay, P., Knudsen, L. B., Hastrup, S., Peters, G. H., Rudolph, 

R., & Reedtz-Runge, S. (2010). Crystal structure of glucagon-like peptide-1 in 

complex with the extracellular domain of the glucagon-like peptide-1 receptor. 

Journal of Biological Chemistry, 285(1), 723–730. 

https://doi.org/10.1074/jbc.M109.033829 

Usdin, T. B., Gruber, C., & Bonner, T. I. (1995). Identification and functional 

expression of a receptor selectively recognizing parathyroid hormone, the PTH2 

receptor. In Journal of Biological Chemistry (Vol. 270, Issue 26, pp. 15455–

15458). https://doi.org/10.1074/jbc.270.26.15455 

 



182 

 

Usdin, T. B., Hoare, S. R., Wang, T., Mezey, E., & Kowalak, J. a. (1999). TIP39: a 

new neuropeptide and PTH2-receptor agonist from hypothalamus. Nature 

Neuroscience, 2(11), 941–943. https://doi.org/10.1038/14724 

Usdin, T. B., Paciga, M., Riordan, T., Kuo, J., Parmelee, A., Petukova, G., Daniel 

Camerini-Otero, R., & Mezey, É. (2008). Tuberoinfundibular peptide of 39 

residues is required for germ cell development. Endocrinology, 149(9), 4292–

4300. https://doi.org/10.1210/en.2008-0419 

Vilardaga, J. P., Romero, G., Friedman, P. A., & Gardella, T. J. (2011). Molecular 

basis of parathyroid hormone receptor signaling and trafficking: A family B 

GPCR paradigm. In Cellular and Molecular Life Sciences (Vol. 68, Issue 1, pp. 

1–13). https://doi.org/10.1007/s00018-010-0465-9 

Wang, J., Song, X., Zhang, D., Chen, X., Li, X., Sun, Y., Li, C., Song, Y., Ding, Y., 

Ren, R., Harrington, E. H., Hu, L. A., Zhong, W., Xu, C., Huang, X., Wang, H. 

W., & Ma, Y. (2020). Cryo-EM structures of PAC1 receptor reveal ligand 

binding mechanism. Cell Research, 30, 436–445. 

https://doi.org/10.1038/s41422-020-0280-2 

Ward, H. L., Small, C. J., Murphy, K. G., Kennedy, A. R., Ghatei, M. A., & Bloom, 

S. R. (2001). The actions of tuberoinfundibular peptide on the hypothalamo-

pituitary axes. Endocrinology, 142(8), 3451–3456. 

https://doi.org/10.1210/en.142.8.3451 

Weaver, R. E., Wigglesworth, M. J., & Donnelly, D. (2014). A salt bridge between 

Arg-20 on parathyroid hormone (PTH) and Asp-137 on the PTH1receptor is 

essential for full affinity. Peptides, 61, 83–87. 

https://doi.org/10.1016/j.peptides.2014.09.004 

Westfield, G. H., Rasmussen, S. G. F., Su, M., Dutta, S., DeVree, B. T., Chung, K. Y., 

Calinski, D., Velez-Ruiz, G., Oleskie, A. N., Pardon, E., Chae, P. S., Liu, T., Li, 

S., Woods, V. L., Steyaert, J., Kobilka, B. K., Sunahara, R. K., & Skiniotis, G. 

(2011). Structural flexibility of the Gαs α-helical domain in the β 2-adrenoceptor 

Gs complex. Proceedings of the National Academy of Sciences of the United 

States of America, 108(38), 16086–16091. 

https://doi.org/10.1073/pnas.1113645108 

Wettschureck, N., & Offermanns, S. (2005). Mammalian G Proteins and Their Cell 

Type Specific Functions. Physilological Review, 85(4), 1159–1204. 

https://doi.org/10.1152/physrev.00003.2005. 



183 

 

Wu, F., Yang, L., Hang, K., Laursen, M., Wu, L., Han, G. W., Ren, Q., Roed, N. K., 

Lin, G., Hanson, M. A., Jiang, H., Wang, M.-W., Reedtz-Runge, S., Song, G., & 

Stevens, R. C. (2020). Full-length human GLP-1 receptor structure without 

orthosteric ligands. Nature Communications, 11. https://doi.org/10.1038/s41467-

020-14934-5 

Yao, Z., & Kobilka, B. K. (2005). Using synthetic lipids to stabilize purified ??2 

adrenoceptor in detergent micelles. Analytical Biochemistry, 343(2), 344–346. 

https://doi.org/10.1016/j.ab.2005.05.002 

Zhang, H., Qiao, A., Yang, L., Van Eps, N., Frederiksen, K. S., Yang, D., Dai, A., Cai, 

X., Zhang, H., Yi, C., Cao, C., He, L., Yang, H., Lau, J., Ernst, O. P., Hanson, M. 

A., Stevens, R. C., Wang, M., Reedtz-Runge, S., Jiang, H., Zhao, Q., & Wu, B. 

(2018). Structure of the glucagon receptor in complex with a glucagon analogue. 

Nature, 553(7686), 106–110. https://doi.org/10.1038/nature25153 

Zhang, Y., Sun, B., Feng, D., Hu, H., Chu, M., Qu, Q., Tarrasch, J. T., Li, S., Sun 

Kobilka, T., Kobilka, B. K., & Skiniotis, G. (2017). Cryo-EM structure of the 

activated GLP-1 receptor in complex with a G protein. Nature, 546(7657), 248–

253. https://doi.org/10.1038/nature22394 

Zhao, F., Zhang, C., Zhou, Q., Hang, K., Zou, X., Chen, Y., Wu, F., Rao, Q., Dai, A., 

Yin, W., Shen, D., Zhang, Y., Xia, T., Stevens, R., Xu, E., Yang, D., Zhao, L., & 

Wang, M.-W (2021). Structural insights into hormone recognition by the human 

glucose-dependent insulinotropic polypeptide receptor. 

https://doi.org/10.1101/2021.03.18.436101 

Zhao, L. H., Ma, S., Sutkeviciute, I., Shen, D.-D., Zhou, X. E., de Waal, P. W., Li, C.-

Y., Kang, Y., Clark, L. J., Jean-Alphonse, F. G., White, A. D., Yang, D., Dai, A., 

Cai, X., Chen, J., Li, C., Jiang, Y., Watanabe, T., Gardella, T., Melcher, K., Wang, 

M., Vilardaga, J. & Zhang, Y. (2019). Structure and dynamics of the active 

human parathyroid hormone receptor-1. Science, 364(6436), 148–153. 

https://doi.org/10.1126/science.aav7942 

Zhao, L. H., Yin, Y., Yang, D., Liu, B., Hou, L., Wang, X., Pal, K., Jiang, Y., Feng, 

Y., Cai, X., Dai, A., Liu, M., Wang, M. W., Melcher, K., & Xu, H. E. (2016). 

Differential requirement of the extracellular domain in activation of class B G 

protein-coupled receptors. Journal of Biological Chemistry, 291(29), 15119–

15130. https://doi.org/10.1074/jbc.M116.726620 

 



184 

 

Zhao, P., Liang, Y. L., Belousoff, M. J., Deganutti, G., Fletcher, M. M., Willard, F. S., 

Bell, M. G., Christe, M. E., Sloop, K. W., Inoue, A., Truong, T. T., Clydesdale, 

L., Furness, S. G. B., Christopoulos, A., Wang, M. W., Miller, L. J., Reynolds, 

C. A., Danev, R., Sexton, P., & Wootten, D. (2020). Activation of the GLP-1 

receptor by a non-peptidic agonist. Nature, 577, 432–436. 

https://doi.org/10.1038/s41586-019-1902-z 

 

  



185 

 

Appendix 
 

Primers 

 

Putting PTH1R and PTH2R into pFastBac CTH/CGVH 

 

Primer name Sequence Tm (°C) 

PTH1R-CTH Forward ACAGCGATGCCTAGGATGGGGACC 

GCCCGGATC 

 

 

PTH1R-CTH Reverse GTTTTCCGTACCGCCTGCAGGCATG 

ACTGTCTCCCACTC 

62 

PTH2R-CTH Forward ACAGCGATGCCTAGGATGGCCGGG 

CTGG 

 

PTH2R-CTH Reverse GTTTTCCGTACCGCCTGCAGGGAGA 

ACATCCTCAGTTTCTCC 

62 

PTH1R-CGVH 

Forward 

GAAACAGCGATGCCTAGGATGGGG 

ACCGCCCG 

 

PTH1R-CGVH Reverse TAGTACTTCTAGTCCTGCAGGCATG 

ACTGTCTCCCACTCT 

64 

PTH2R-CGVH 

Forward 

GAAACAGCGATGCCTAGGATGGCC 

GGGCTGG 

 

PTH2R-CGVH Reverse TAGTACTTCTAGTCCTGCAGGGAGA 

ACATCCTCAGTTTCTCC 

62 

pFastBac-CTH     

Linear Forward 

CCTGCAGGCGGTACG  

pFastBac-CTH     

Linear Reverse 

CCTAGGCATCGCTGTTTC 63 

pFastBac-CGVH 

Linear Forward 

CCTGCAGGACTAGAAGTA  

pFastBac-CGVH 

Linear Reverse 

AAGGAAACAGCGATGCC 60 

 

 

Receptor modifications 

 

Primer 

name 

Sequence Tm (°C) Description 

PTH1R -

Hema 

Forward 

AGCTACATCTTCTGCCTGGTATTC 

GATGCAGATGACGTCATG 

  

 

Inserting N- 

PTH1R-

Hema 

Reverse 

CAGGGCGATGATCGTCTTCATCCT 

AGGCATCGCTGTTTC 

 

61 terminal 

signal peptide 
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Primer 

name 

Sequence Tm (°C) Description 

PTH2R-

Hema 

Forward 

AGCTACATCTTCTGCCTGGTATTC 

CAGCTGGATTCTGATGGC 

 

  

 

Inserting N- 

PTH2R-

Hema 

Reverse 

CAGGGCGATGATCGTCTTCATCCT 

AGGCATCGCTGTTTC 

 

63 terminal 

signal peptide 

PTH1R-

ECD 

Forward 

GAAACAGCGATGCCTAGGATGGG 

GACCGCCCGG 

  

 

Creating PTH 

PTH1R-

ECD 

Reverse 

GTAGTTGGCCCACGTCCT 68 chimera 

construct 

PTH2R-

TMD 

Forward 

ACGTGGGCCAACTACTCAGACT   

 

Creating PTH 

PTH2R-

TMD 

Reverse 

TAGTACTTCTAGTCCTGCAGGGA 

GAACATCCTCAGTTTCTCCTTGG 

67 Chimera 

construct 

PTH1R-169 

Forward 

GAGTGTGTCAAATTTCTCAC   

Truncating  

PTH1R-169 

Reverse 

GAATACCAGGCAGAAGATGTA 59 receptor 

PTH1R-179 

Forward 

GAACGGGAGGTGTTTGA   

Truncating 

PTH1R-179 

Reverse 

GAATACCAGGCAGAAGATGTA 61 receptor 

PTH2R-124 

Forward 

GACTGCCTTCGCTTTCTGCAG   

Truncating 

PTH2R-124 

Reverse 

GAATACCAGGCAGAAGATGTA 61 receptor 

PTH2R-128 

Forward 

TTTCTGCAGCCAGATATCAG   

Truncating  

PTH2R-128 

Reverse 

GAATACCAGGCAGAAGATGTA 61 receptor 

BRIL-

PTH1R 

Forward 

TGCCTGGTATTCGCTGCGGATCT 

GGAAGATAA 

  

 

Adding BRIL 

BRIL-

PTH1R 

Reverse 

AAACACCTCCCGTTCCAGATATT 

TCTGAATATACGC 

56 To PTH1R 
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G Protein 

 

Primer name Sequence Tm (°C) Description 

pFastBac-

CTH Forward 

GGATCCGAATTCAAGCTTG   

Removing the  

pFastBac-

CTH Reverse 

CCTAGGCATCGCTGTTTC 62 His tag 

γ-Forward ACAGCGATGCCTAGGATG 

GCCAGCAACA 

  

Insert γ into  

γ-Reverse CTTGAATTCGGATCCTTAA 

AGGATAGCACAGAAAAAC 

57 pFastBac 

α-Forward ACAGCGATGCCTAGGATG 

GGCTGCCTCGG 

  

Insert α into 

α-Reverse CTTGAATTCGGATCCTTAG 

ACCAGATTGTACTCGCG 

65 pFastBac 

β-Forward ACAGCGATGCCTAGGATGG 

GATCCGAAATCG 

  

Insert β into 

β-Reverse CGTACCGCCTGCAGGTTAG 

TTCCAAATCTTGAGAAG 

57 pFastBac 

 

 

Tethered Receptors 

 

Primer 

name 

Sequence Tm (°C) Description 

FLAG 

Forward 

CTACTAAAAGCGGATCTGG 

AAGATAAC 

  

Adding a  

FLAG 

Reverse 

ATCGTCTTTGTAATCAGCGA 

ATACCAGGCAGAA 

60 FLAG tag 

GGGGS1 

Forward 

GGAGGGTCAGCGGATCTGGA 

AGATAAC 

  

Adding 

GGGGS1 

Reverse 

ACCGCCTTTGTCATCATCGTC 

TTTG 

58 GGGGS(1) 

GGGGS3 

Froward 

GGAGGTGCAGGAGGTGGTGG 

TGCTGCGGATCTGGAAGATAAC 

  

Adding  

GGGGS3 

Reverse 

TCCACCTGACCCTCCACCGC 

CTTTGTCATCATCGTCTTTG 

58 GGGGS(3) 

GSA 

Forward 

GCCGGATCGGGGGAATTTAG 

CGGATCTGGAAGATAAC 

  

Adding  

GSA 

Reverse 

TGCAGATCCAGCTGAACCTTT 

GTCATCATCGTCTTTG 

58 GSAGSA- 

AGSGEF 
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Primer 

name 

Sequence Tm (°C) Description 

PTH-GS1 

Forward 

CGAAAGTGATGATTGTGATGG 

GCGGTGGAGGTG 

 

 

59 

 

Adding 

PTH(1-14) to 

PTH-GS1 

Reverse 

CCATATCTTTCGCCGGAATCAT 

TTTGTCATCATCGTCTTTGTA 

 GGGGS(1) 

PTH-GS3 

Forward 

CGAAAGTGATGATTGTGATGGG 

CGGTGGAGGGT 

 

 

61 

 

Adding 

PTH(1-14) to 

PTH-GS3 

Reverse 

CCATATCTTTCGCCGGAATCATT 

TTGTCATCATCGTCTTTGTAATC 

 GGGGS(3) 

PTH-GSA 

Forward 

CGAAAGTGATGATTGTGATGGG 

TTCAGCTGGATCTGCA 

 

 

61 

 

Adding 

PTH(1-14) to 

PTH-GSA 

Reverse 

CCATATCTTTCGCCGGAATCATT 

TTGTCATCATCGTCTTTGTAATC 

 GSAGSA- 

AGSGEF 

pOPINE 

Linear 

Forward 

GTGATTAACCTCAGGTGC  

 

 

59 

 

 

Tethered 

receptors into 

pOPINE 

Linear 

Reverse 

TCCGTAATCATGGTCATAG  mammalian 

vector 

PTH-

pOPINE 

Forward 

GACCATGATTACGGAATGA 

AGACGATCATCGCC 

 

 

 

61 

 

 

Tethered 

receptors into 

PTH-

pOPINE 

Reverse 

CCTGAGGTTAATCACTCACA 

TGACTGTCTCCC 

 mammalian 

vector 
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PTH2RECD 

 

 

Primer 

name 

Sequence Tm (°C) Description 

pCDFDuet 

Linear-1 

Forward 

AATTCGAGCTCGGC  

 

 

56 

 

 

Linearise 

cloning 

pCDFDuet 

Linear-1 

Reverse 

CCATGGTATATCTCCTTATTA  Site 1 

pCDFDuet 

Linear-2 

Forward 

TTCGAGTCTGGTAAAG  

 

 

55 

 

 

Linearise 

cloning 

pCDFDuet 

Linear-2 

Reverse 

TATCTCCTTCTTATACTTAACTA 

AT 

 site 2 

PTH2R ECD 

Forward 

GGAGATATACCATGGCAGCT 

GGATTCTGATGGCA 

 

 

Place ECD 

into pCDF- 

PTH2R ECD 

Reverse 

GCGCCGAGCTCGAATGAGGCGTT 

CAAAGAATTCTTG 

63 Duet plasmid 

DsbC 

Forward 

TATAAGAAGGAGATAATGAAA 

AAAGGCTTTATGCTG 

 

 

60 

 

Place DsbC 

into pCDF- 

DsbC 

Reverse 

TTTACCAGACTCGAATTTGCC 

GCTGGTCATTT 

 Duet 

MBP-2R 

Forward 

GGAGATATACCATGGAAAATC 

GAAGAAGGTAAACTGG 

 

 

61 

 

Adding MBP 

to PTH2R   

MBP-2R 

Reverse 

ATCAGAATCCAGCTGCGGACC 

CTGGAACAGA 

 ECD 

GFP-2R 

Forward 

GGAGATATACCATGGATGAGT 

AAAGGAGAAGAAC 

 

 

56 

 

Replacing 

MBP with 

GFP-2R 

Reverse 

GCTCGCATTACCATGGCTAG 

CAGAACCAGC 

 GFP 
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Primer 

name 

Sequence Tm (°C) Description 

MBP-2R 

Linear 

Forward 

CATGGTAATGCGAGCTC  

 

 

56 

 

 

Replacing 

MBP with 

MBP-2R 

Linear 

Reverse 

CCATGGTATATCTCCTTATTA 

 

 

 GFP 

 

 

 

IMPROvER Mutations 

 

*Mutation is highlighted in red 

Primer Name Sequence Tm (°C) 

G188K Forward TGACCGCCTGAAGATGATTTACACCGT 72 

G188K Reverse AACACCTCCCGTTCCAGATATTTC 67 

G188Y Forward TGACCGCCTGTACATGATTTACACCGTG 72 

G188Y Reverse AACACCTCCCGTTCCAGATATTTCTG 68 

M189L Forward CCGCCTGGGCCTGATTTACACCG 75 

M189L Reverse TCAAACACCTCCCGTTCCAGATATTTCT 69 

S198M Forward CCGTGATGCTGGCGTCCCT       74  

S198M Reverse AGTAGCCCACGGTGTAAATCATGC     69 

S201F Forward GTCCCTGGCGTTCCTCACCGTAG  74 

S201F Reverse ACGGAGTAGCCCACGGTG    70 

T203A Forward GTCCCTCGCCGTAGCTGTGCTCATC    76 

T203A Reverse GCCAGGGACACGGAGTAGC 71 

L228V Forward GCACCTGTTCGTGTCCTTCATGCTG  73 

L228V Reverse ATGTGGATGTAGTTGCGCGTG     68 
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Primer name Sequence Tm (°C) 

S229S Forward TTCCTGAGCTTCATGCTGCGC 71 

S229S Reverse CAGGTGCATGTGGATGTAGTTGC 69 

T249N Forward GCGCCAACCTTGATGAGGCTGAG 73 

T249N Reverse CAGAGTAGAGCACAGCGTCCT 69 

D251R Forward CACGCTTCGTGAGGCTGAGCG 74 

D251R Reverse GCGCCAGAGTAGAGCACAG    68 

E259P Forward CCTGAGCTGCGCGCCATC    73 

E259P Reverse CTCGGTGAGGCGCTCAG    69 

E260R Forward CACCGAGGAGAGGCTGCGCGCCA 81 

E260R Reverse AGGCGCTCAGCCTCATCAAGCG    75 

A274D Forward GCCTGCCACCGACGCTGCCGGCT 85 

A274D Reverse GGCGGGGGCGCCTGGG 81 

A275K Forward TGCCACCGCCAAGGCCGGCTACG 82 

A275K Reverse GGCGGCGGGGGC    73 

F288A Forward ACCTTCGCCCTTTACTTCCTGGC 72 

F288A Reverse CACAGCCACCCTGCAGC 70 

F291T Forward CTTCCTTTACACCCTGGCCACCAACTAC 73 

F291T Reverse AAGGTCACAGCCACCCTG    68 

T294A Forward CTTCCTGGCCGCCAACTACTACTGG    74 

T294A Reverse TAAAGGAAGAAGGTCACAGCCACC 69 

G323A Forward GTACCTGTGGGCCTTCACAGTCTTC     71 

G323A Reverse TTCTTCTCTGAGAAGAAGGCCATGAAG    68 
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Primer name Sequence Tm (°C) 

A333L Forward TGCCCCTGGTCTTCGTGGCTG 75 

A333L Reverse GACCCCAGCCGAAGACTGTGAA    72 

A337L Forward TTCGTGCTGGTGTGGGTCAGTGT 74 

A337L Reverse GACAGCGGGCAGACCC 70 

S356A Forward GGACTTGAGCGCCGGGAACAAAAAGT     74 

S356A Reverse CAGCACCCGGTGTTGGC 71 

A369L Forward CATCCTGCTCTCCATTGTGCTCAAC     70 

A369L Reverse GGCACCTGGATGATCCACTTTTT     68 

E391A Forward CAAGCTGCGGGCGACCAACGCCG 81 

E391A Reverse GTGGCGAGCACCCGGACGATATTGATGA 76 

Q401A Forward ACGGGCTCAGTACCGGAAGCTG 74 

Q401A Reverse GTGTCACACCGGCCGG 70 

T427L Forward CTTCATGGCCCTGCCATACACCGA    74 

T427L Reverse ACAATGTAGTGGACGCCAAAGAGG 69 

T427M Forward CTTCATGGCCATGCCATACACCGAGGT    75 

T427M Reverse ACAATGTAGTGGACGCCAAAGAGG 69 

 

 

 

 

 

 

 

 

 


