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Abstract 

The capability to join various metallic and non-metallic materials is crucial to the production of a 

wide array of components across many industries, ranging from the soldering of small scale 

electronics, to the welding of larger scale automotive and aircraft structures. Brazing is a distinct 

joining technique, involving the melting of a metallic filler metal introduced in between two or more 

materials to be joined. While welding requires the melting of the materials being joined, brazing does 

not, and as such the avoidance of welding-induced defects is important to many industries, including 

aerospace. Brazing bears similarities to soldering, and is distinguished from soldering in the 

temperatures at which it is conducted (typically above 450oC). Filler metals used in brazing are 

usually tailored to the particular materials being joined, in terms of melting temperature and 

chemistry. Ni-based filler metals are widely used in the vacuum brazing of high temperature materials 

such as Ni-based superalloys. In order to ensure melting of the filler metal at a temperature below that 

of the base metal, Ni-based filler metals often contain elements such as B, Si and P, which act as so-

called Melting Point Depressants (MPDs). The use of such elements, however, leave brazed joints 

susceptible to formation of brittle intermetallic phases, which may only be removed by prolonged 

time at the brazing temperature or lengthy heat treatments post-braze. In many cases, the current 

commercial Ni-based filler metals have seen little in the way of exploration into compositional 

changes that may alleviate such issues. In highlighting the need for more work in this area, this project 

was concerned with the development of novel Ni-based brazing filler metals, primarily for the brazing 

of Ni-based superalloys, employing alternative MPDs and other compositional changes. Using phase 

diagrams and CALPHAD (CALculation of PHase Diagrams)-based software, the use of elements In 

and Ge as alternative MPDs was investigated. Their use as sole alloying additions to Ni (i.e. wholly 

replacing elements B, Si or P) was deemed unsuitable due to the high liquidus temperatures, which 

were well in excess of those of commercial Ni-based filler metals. The use of In and Ge in 

conjunction with reduced B content was also investigated. While this strategy allowed lower liquidus 

temperatures, the potential for brittle boride formation meant such compositions were deemed 

unsuitable. CALPHAD predictions of the Ni-In and Ni-Ge systems were of limited accuracy, though 

were found to be useful in predicting general trends in liquidus as a function of composition. A further 

strategy, using concepts such as High Entropy Alloys (HEAs) and Multi-Principal Element Alloys 

(MPEAs), was used to design two Ni-based MPEA filler metals, including novel MPD elements In 

and Ge. The first filler metal, based on NiCrMnIn, was found to be unsuitable for the vacuum brazing 

of Inconel-718 (IN718) superalloy due to volatilisation and liquation, though was successfully applied 

to the belt furnace brazing of carbide-tipped drill bits. The second filler metal, based on NiCrFeGeB, 

was successful in the vacuum brazing of IN718. Average joint shear strength of 332 ± 15 MPa was 

recorded following brazing at 1100oC for 60 minutes. While weaker than achievable using 

commercial AWS BNi-2 under similar conditions, the joint microstructure exhibited isothermal 

solidification of an MPEA-like NiCrFeGe solid solution, with limited boride formation in the IN718 

base metal. Overall, this research demonstrated a design strategy for the development of novel Ni-

based MPEA filler metals, and it was found that elements In and Ge may be incorporated into an 

MPEA-type filler metal, allowing the partial or complete replacement of conventional MPD elements 

while achieving a liquidus temperature comparable with commercial Ni-based filler metals (and 

below 1100oC). It is suggested that future work should be focussed on the refinement of the developed 

compositions to address inferior mechanical properties as compared to joints produced using 

commercially available AWS BNi-2. Furthermore, it is proposed that the design strategy for such 

filler metals may be expanded to other brazing applications outside Ni-based superalloys, for example 

in nuclear reactors. 
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Introduction 

Brazing is a method for the joining of various materials, involving the melting of a filler material in 

between the unmelted materials to be joined. Practically any metallic material can be brazed, as can 

many other materials including ceramics, and brazing can also be used in the joining of components 

with complex geometries. As such, brazing is industrially important, and as advanced structural 

materials are developed to meet the needs for the future energy and aerospace industries, this capacity 

for producing metal-ceramic and even additively-manufactured metal joints is likely to prove 

increasingly valuable. The filler metal selected depends on the materials being joined, and is tailored 

as such. As the filler metal is required to melt at a lower temperature than the materials being joined, 

the chemical composition must allow for this, and can be achieved by addition of alloying elements 

that reduce the melting temperature of the filler metal. Consideration is also given to the mechanical 

properties of the filler metals and materials being joined, and so it is usually necessary to select a filler 

metal with a composition based around the same main element as in the alloy or other material being 

joined. 

Brazing bears similarities to other joining techniques such as soldering (conducted at lower 

temperatures) and welding (involving the melting of the materials being joined). Brazing offers 

advantages, however; strengths of brazed joints can be substantially greater than for soldered joints, 

and difficult to weld materials can be joined, and without altering microstructure by melting. Welds 

are also susceptible to defects in the heat-affected zone. As such, brazing is an important joining 

method for many metallic materials, especially Ni-based superalloys. Despite this, there are long 

standing issues in the brazing of metallic materials, such as the formation of brittle intermetallic 

phases both within the joint, and in the regions in the vicinity of the joint. Often, this is a consequence 

of the inclusion of certain elements required to reduce the melting temperature of the filler metal. In 

Ni-based filler metals, used in the brazing of Ni-based superalloys and other high temperature 

materials, elements such as B, Si and P are alloying additions. The presence of such phases is 

detrimental to the mechanical properties of joints, providing crack initiation and propagation paths, 

and potentially compromising resistance to corrosion. 

In order to alleviate such issues, the brazing process may be conducted at higher temperatures, or for 

longer times at temperature, or heat treatments of the joint may be conducted post-braze. These 

processes are conducted to allow the homogenisation of the joint chemistry, such that the 

concentration of undesired phases within and near the brazed region is reduced, or ultimately 

completely removed. There are economic costs with such procedures, however, as they require longer 

furnace operation times, often for many hours. Many of the filler metals used currently in industry for 

the brazing of Ni-based superalloys have been established for decades, with relatively little 

exploration of new compositions conducted in order to address these issues. This leaves a potential 

gap in the market, and attempts to address this (reported in Chapter 3 of this thesis), while often 

involving the investigation of novel compositions, generally place less emphasis on operating at the 

same brazing temperatures as current commercial Ni-based filler metals. There is motivation, 

therefore, for the development of novel brazing filler metal compositions that may also be used at 

temperatures often employed in industry, particularly for the brazing of Ni-based superalloys. This 

project aims to investigate novel filler metal compositions, and the strategy for designing such.  

As is often the case in alloy development, balances must be struck for a development to be of merit. In 

the development of novel filler metals for the brazing of Ni-based superalloys, or indeed other high 

temperature materials, the balance is between the realisation of mechanical and microstructural 

improvements (such as the avoidance of brittle phases), and the melting temperature of the filler 
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metal. One way in which this balance can be struck is through the identification of alternative 

elements for the reduction of filler metal melting temperature. By utilising equilibrium binary phase 

diagrams, as well as software (Thermo-Calc) for the modelling of thermodynamic properties of alloys, 

it may be possible to identify elements that can fulfil the role of lowering filler metal melting point, 

while reducing the potential for formation of brittle phases in brazed joints. Chapter 8 of this work 

details the investigation of two such elements, and their potential for use as replacements for 

conventionally used elements such as B and Si. 

Another strategy involved the application of the concepts of High Entropy Alloys (HEAs) and Multi-

Principal Element Alloys (MPEAs), introduced in Chapter 4, to the design of novel brazing filler 

metals. This relatively new class of alloys, in contrast to conventional alloys such as steels, use 

multiple elements in roughly equal concentrations. Such alloys have been the subject of significant 

interest since the early 2000s, due to the potential for forming solid solution phases with attractive 

mechanical properties. Aside from potential mechanical improvements, another result of such 

compositions is a lower melting temperature than the individual pure elements. The application of this 

strategy is detailed in Chapter 9 of this work, with Chapters 10 and 11 reporting the application of this 

strategy for developing novel Ni-based filler metals for the vacuum brazing of Ni-based superalloy 

Inconel 718. 

In summary, the overall aims of this research are to develop novel Ni-based brazing filler metals, 

primarily for the brazing of Ni-based superalloys, as well as to assess to extent to which the properties 

of such filler metals may be accurately predicted, and designed for. This will be achieved by 

investigating the use of alternative elements for the suppression of filler metal melting temperature, 

and in the application of new alloy design concepts such as those used for HEAs and MPEAs. 

Assessments are also made as to the applicability and effectiveness of such strategies.   
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1. Introduction to Brazing 

Brazing is a process for joining two or more metal or ceramic materials, using a filler metal whose 

liquidus is lower than that of the materials to be joined. As such, brazing differs from welding in that 

no melting of the materials to be joined is required. It closely resembles soldering in this way, though 

is distinguished from this in being defined as being used at temperatures above 450oC. This has 

obvious benefits in that the microstructure of the base metal is left largely uncompromised except for 

in the very near vicinity of the interface with the filler metal.  

Unlike welding of metallic materials, brazing involves the use of an insert metal, or filler metal, which 

is usually placed in between, or applied to the vicinity of, the materials to be joined (referred to as the 

base metal). The filler metal is designed to melt somewhat below the brazing temperature, and the 

interaction between this melt and the base metal results in a metallic joint when solidified. The molten 

filler metal relies on capillary force in order to flow across the surface to be joined, particularly in 

cases where the filler metal is not applied directly on this surface. Fig. 1.1 shows some basic common 

geometries of joint assemblies. Tearing or cracking that can be a problem in welded joints can also be 

avoided, and joints whose composition and microstructure is similar to the base metal are possible. In 

addition, difficult to weld materials such as certain Ni-based superalloys, ceramics and carbides can 

be joined via brazing. Brazing even allows for the joining of dissimilar materials such as one alloy to 

another, or even an alloy to a ceramic, with selection of an appropriate filler metal. Compared to 

soldered joints, the mechanical properties required of brazed joints tend to be greater, and often allow 

for larger assemblies and batch processing. Disadvantages of the joining of materials via brazing 

relate to joint strength, which may be inferior to those achievable from welding. In addition, certain 

brazing techniques, and materials being brazed, can be very sensitive to cleanliness and surface 

preparation, moreso than for soldering or welding. 

 

 

Figure 1.1: Schematic illustrating joint configurations relying on placement of a filler metal foil on the surfaces being 

bonded, and relying on flow of molten filler metal paste in to more complex gap geometries. 
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Brazing as a joining process has been used in some form since ancient times, for such things as Au 

jewellery and joining handles to ceramic pottery. As more and more elements were discovered and 

technology advanced through the middle ages to the industrial revolution and beyond, brazing 

developed into the key joining technology used today, in applications ranging from dentistry and 

jewellery, to gas turbines and jet engines. 

 

1.1 Physical considerations for brazing 

The brazing process relies on certain well documented physical phenomena in order to successfully 

join materials, and achieve joints with the required mechanical properties. One of the most important 

considerations is the wetting of the base materials by the filler metal, and, depending on joint 

geometry, capillary flow of the molten filler metal. Wetting is defined by the contact angle, θ, 

between the solid base metal surface and the liquid filler metal, and depends on the balance of surface 

tensions according to the Young equation: 

𝛾𝑆𝑉 =  𝛾𝐿𝑉 cos 𝜃 +  𝛾𝑆𝐿             (1.1)  

where 𝛾𝑆𝑉, 𝛾𝐿𝑉 and 𝛾𝑆𝐿 are the surface tensions between solid and vapour, liquid and vapour, and 

solid and liquid, respectively. Fig. 1.2(a) illustrates this schematically. The ability of a filler metal to 

wet a given base metal is influenced by various factors including surface roughness, surface 

oxidation, and presence of contaminants, as is discussed briefly in Chapter 2 (Section 2.2). 

 

 

Figure 1.2: (a) Schematic of droplet on solid surface, indicating the three surface tensions related in the Young equation. (b) 

Schematic of capillary action of a molten filler metal between two base metals 

  

Linked to wetting, capillary action is how a molten filler metal can flow and fill the joint gap or 

clearance between the base metals being joined. Generally, to achieve strongest brazed joint for a 

given system, the joint gap should be minimal particularly when relying on capillary action to achieve 

complete filling of the joint by the molten filler metal, as can be shown by considering the Young-

Laplace equation, relating the pressure difference due to capillary action, ∆𝑝, with the surface tension 

of the particular filler metal, 𝛾, and the radius of a spherical meniscus formed between the two base 

metals, 𝑅: 
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∆𝑝 =  
2𝛾

𝑅
        (1.2) 

𝑅 is itself a function of the contact angle between meniscus and base metal, and the half joint gap, 𝑎 

(see Fig. 1.2(b)): 

𝑅 =  
𝑎

cos 𝜃
       (1.3) 

Such that Equation 1.2 becomes: 

∆𝑝 =  
2𝛾 cos 𝜃

𝑎
        (1.4) 

Hence the capillary pressure is greatest for narrower joint gaps.  

Another important physical characteristic to consider, especially when brazing dissimilar materials, is 

the differences in coefficients of thermal expansion (CTE) of the materials. The thermal expansion (or 

contraction) in dimensions in response to changing temperature changes from material to material, 

and so this must be taken into account when designing joint assemblies where two materials being 

joined exhibit different CTEs. The difference in CTE can be large when brazing metals with ceramic 

materials, something which increasingly being explored for advanced applications. For example, 

materials such as alumina (approximately 4.5 µm/m·K) and W carbide (approximately 5.5 µm/m·K) 

have much lower CTEs than 304 stainless steel (approximately 17 µm/m·K) or Cu (approximately 

16.5 µm/m·K). Fixturing of the assembly can help to prevent joint deformation during heating, but 

stresses can also build during different rates of contraction during cooling, possibly causing cracks in 

brazed joints. Therefore, ductile and more deformable filler metals are often preferred for joints with 

large differences in CTE, in order to accommodate such stresses. 

 

1.1 Modern brazing techniques in industry 

There are several types of modern day brazing, from simple manual torch brazing of single 

components, to batch furnace brazing and even induction brazing and laser brazing. Torch brazing is a 

common hands-on form of brazing, whereby typically a rod or wire of filler metal is applied and 

melted directly onto a fixture to be joined by a gas flame torch. Hand-held torch brazing, while 

suitable for small work volumes or otherwise unique and custom jobs, can have high costs in terms of 

labour, and often a lower level of quality control, with the final joint being heavily dependent on the 

skill of the worker. Some of this can be overcome by a fixed-position torch or automated versions of 

torch brazing. To overcome problems with oxidation due to the lack of controlled atmosphere, torch 

brazing often requires a flux, which also helps the molten rod or wire to flow evenly along the joint 

fixture. Otherwise, self-fluxing rods (that is, filler metal rods that contain a fluxing agent which is 

activated during brazing, and hence an additional flux is not required to be applied) or wires may be 

employed. 
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Figure 1.3: Schematic diagram of typical induction brazing set-up. Sample may be placed in a controlled-atmosphere vessel, 

often fused quartz, with heat applied from the exterior coils. 

 

Induction brazing is a potentially very fast technique, and combined with a controlled atmosphere, it 

can be a very attractive option. As shown in Fig. 1.3, It involves the positioning of a joint assembly in 

an electric field produced by coils with an alternating current passed through. This induces a voltage 

in the sample, with its electrical resistance resulting in the production of heat, thus melting the filler 

metal. The assembly of coils may be arranged in such a way as to provide even heating over a larger 

area or targeted heating in a small area as required. Considering heating times, induction brazing coils 

can provide heating at a rate of the order of hundreds of oC per second, which can offer a significant 

time saving advantage over furnace brazing [1]. As furnace brazing often requires prolonged cooling, 

so altogether hours can be saved by using induction brazing. Industrial induction brazing can offer 

very consistent and high quality results, and the possibility of protective atmospheres give it a 

cleanliness advantage over torch brazing in open air. However, induction brazing does not have the 

same batch capacity as furnace brazing, and so may not be as quick a process when considering large 

production volumes. In addition, problems can arise when brazing dissimilar materials via induction 

brazing, due to different electrical resistances and coefficients of thermal expansion [2]. The resulting 

build-up of internal stresses can be a particular problem for the brazing of metal-to-carbide for tooling 

[2]. Another less common method that can offer extremely localised and controlled heat focus, as well 

as high heating and cooling rates potentially exceeding that of induction brazing [3], is laser brazing. 

It also offers extremely precise control of heat application through control of the laser power. Laser 

joining techniques are however more suitable for small-size precision components due to the small 

heating area, making it advantageous in applications such as brazing of thin sheets. 

Of greater relevance to this thesis are two forms of furnace brazing. Continuous belt furnace brazing 

(Fig. 1.4) is important method employed widely across industry, particularly for tool and tool part 

manufacturing [4] and in many cases is the preferred method where shear volume is the primary need. 

It is especially suitable where high volumes of repeatable parts are to be brazed, such as in the 

production of small brazed tool parts. Benefits of continuous belt furnace brazing, as compared to 

typical vacuum furnace brazing, for the brazing of abrasive diamond grains have also been reported 

[4]. Parts are typically prepared and placed at one end of the belt, which are then carried at a 
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controlled speed through the heating chamber or ‘hot zone’, containing a reducing atmosphere, where 

the brazing occurs. Parts continue through a cooling zone to the end of the belt where they can be 

removed. This method allows an effectively constant flow of brazed parts to be produced, with low 

labour costs and reasonable control of cleanliness. The reducing atmosphere used in the hot zone can 

be tailored to be suitable for the materials being brazed, such as pure hydrogen, N, a mix of these, or 

Ar. The limitation of this method of brazing however is its unsuitability for O-sensitive materials. All 

gaseous atmospheres used will not be completely free of O, and so reactive materials such as Ti may 

not be easily brazed using this method. Furthermore, the size and movement (albeit slow) of the 

furnace can limit what can be brazed to certain geometries, as assemblies above a certain height or 

width will simply not fit through the furnace. 

 

Figure 1.4: Schematic of basic continuous belt furnace set-up. 

 

The final method discussed here is vacuum brazing, which offers several advantages for certain 

critical applications, mainly the reduced chance of contamination of the joint, and the ability to 

maintain excellent temperature uniformity, reducing stresses in the joint during the process. Vacuum 

brazing comes with large initial capital costs, and maintenance and cleaning can be time consuming 

and expensive. But despite this, the availability of large vacuum furnaces combined with excellent 

control over atmosphere and temperature, and the batch capability of vacuum brazing makes it one of 

the most commercially important forms of brazing (along with induction and belt furnace brazing) 

across multiple industries today, including the aerospace, power turbine, and Heating, Ventilation and 

Air Conditioning (HVAC) industries. As the majority of the research presented here uses vacuum 

brazing as the preferred method, it will be discussed in more detail here. 

In contrast to continuous belt furnace brazing, vacuum brazing is used to process parts a batch at a 

time (with usually long cycle times), and so the work volume is typically less. Nonetheless, many 

parts can be brazed within one batch, and so has low labour costs (although the initial costs of the 

furnace itself can be large). The entire process of brazing in a vacuum furnace can be referred to as a 

‘brazing cycle’, and is usually pre-programmed by the furnace control panel. The brazing cycle is 

comprised of several stages: 

1. Loading of parts to be brazed. Parts may be placed on ceramic trays to avoid any damage 

from molten filler metal run-off, or bonding to the furnace floor. Thermocouples may at this 

point be placed such that accurate readings of temperature close to the parts are available. 

2. Inducing vacuum. Using typically turbo-pumps or diffusion pumps, air is removed from the 

vacuum chamber in preparation for brazing. The best modern furnaces may achieve down to 
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10-6 torr (10-4 Pa). The time taken to achieve suitable vacuum depends on the capability of the 

pumps and the size of the vacuum chamber. 

3. Ramping up. The heating elements are turned on and the radiating heat increases the internal 

temperature. This is done typically at a rate of 10 – 20oC per minute, depending on capability. 

Too slow a rate will make the process take too long to be economic, whereas to quickly may 

engage the next steps before achieving temperature homogeneity across the vacuum chamber. 

Generally, however, the ramp rate is as quick as possible. 

4. Outgassing hold. This is an optional step which may be introduced if using brazing paste 

which contain a flux or other organics. This stage is usually a hold at 150 – 260oC to allow 

liquids contained in these pastes to vaporise and leave the braze joint. If the ramp rate is 

suitably slow, this stage may not be needed, but sudden outgassing bubbles may be left 

behind if the temperature is moved beyond this range too quickly. 

5. Temperature stabilisation hold. This involves a hold, usually for at least 10 minutes, at a 

temperature up to around 40oC below the brazing temperature. This is performed to allow the 

temperature in any cooler spots to catch up, and to so ensure all thermocouples have reached 

the same temperature. 

6. Hold at brazing temperature. This is the stage where the brazing takes place, at the pre-

determined temperature and for the pre-set time, typically 10 – 60 minutes, depending on size 

and geometry of joints (time must be allowed for filler metal flow where required) and the 

filler metal composition. 

7. Cooling. At this stage cooling can be allowed, either slowly by simple furnace cooling, or 

quickly through introduction of inert gas such as Ar. Again, this is usually determined by 

speed of production requirements, while balancing possible distortion of parts. 

 

1.2 Forms of Filler Metal 

In all brazing techniques, the basic steps include placement of the brazing filler metal depending on 

the form of the filler metal. Several forms of filler metal are recognised and employed in industry [5], 

most commonly including foils, wires and pastes. Some foils are traditionally produced by rolling, 

including Ag-based and Cu-based filler metals, as well as most Au and Pd-based filler metals. 

Annealing steps are often required due to work hardening during rolling. For Ni-based brazing filler 

metals, foils are typically produced via rapid solidification in melt spinning, resulting in an 

amorphous microstructure in the as-cast state. This is important, as the B, Si and P contents of such 

filler metals mean they would be too brittle for rolling in the cast state. Indeed, even some specific or 

specialised Cu-based, Pd-based and Ti-based filler metals, that contain brittle elements, require the 

strip casting method. Foils produced in this way are generally between 10 – 100 µm, with 50 µm 

thickness often being preferred (though this depends on the application and desired joint width) and 

are suitable for placement directly between the base metal components to be joined (not requiring the 

flow of the molten filler metal). Foils are often used in the brazing of Ni-based superalloys with Ni-

based filler metals, as flow of the filler metal over these kinds of surface can often be hindered by 

oxide layers [6]. For example, BNi-2 (a typical commercially available and popular Ni-based filler 

metal), is often used in the form of 50 µm foil pre-placed between the materials to be joined. Other 

methods of foil production have been demonstrated for specific applications, for example rolling of 

mixed powders, followed by sintering, in order to produce Ti-Zr-Cu-Ni and Cu-Sn-Ti filler metals [7]. 

Typical atomisation production routes for these alloys can be cost ineffective and wasteful, and so this 

method is proposed to overcome this [7]. Standards for foil thickness, width, camber and tolerances 

are available [5]. 
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Most filler metals available as foils are also available as powders, usually combined with a binder into 

a paste. Powders can be produced by milling, water atomisation, or for the most consistently spherical 

particles, gas atomisation (see Chapter 7 for more detail on this technique). Pastes are particularly 

useful in cases where multiple walls of a joint require brazing, where otherwise multiple foils in 

different orientations would be required. Pastes can be pre-placed in these situations, but they can also 

take advantage of the capillary force induced by the narrow gap and surface tension. Through careful 

joint design, a sound, defect-free joint can be produced from a single deposit of paste and allowing its 

flow throughout the cavity under capillary force. 

Other less common physical forms of filler metals include preforms, and composite wires and foils. 

Preforms involve modifying the geometry of usually a filler metal foil to fit a certain component 

precisely. This may be advantageous for applications where good flow may not be possible, and so it 

is important that the filler metal is already in place where needed prior to brazing. Novel production 

routes of preforms in recent years have included injection moulding of Ni-based brazing alloy powder 

with thermoplastic polymers [8]. Composite wires and foils generally involve distinct microstructural 

regions, for example, a flexible Ni-rich wire core surrounded by a more brittle shell that contains the 

melting point depressant (MPD) element. Similar structures can be achieved for foils, and this is often 

useful for wider gaps. Also for wider gaps, the filler metal can actually be a pre-made mixture of filler 

metal powder with some percentage of base metal powder. This is often used in the braze repair of 

cracks occurring in single crystal components such as turbine blades. Another less common foil form 

is borided foils, where the required B content of a Ni-based filler metal is added to a pre-made foil via 

boriding (a process typically used for surface hardening) at high temperature and pressure. 

 

1.3 Overview of Brazing Alloy Families 

There are many different filler metal compositions in use for numerous applications today, often 

optimised for joining a certain type of alloy (though some filler metals can be used on several 

different types of alloy – see Table 1.1 for examples). These can be grouped according to the primary 

elemental component comprising the filler metal. As such, various filler metal ‘families’ are generally 

recognised, which have a composition-dependant range of brazing temperature required (Fig. 1.5 

shows typical temperature ranges of common brazing alloy families). For the common families, at the 

lowest brazing temperatures are the Al-based filler metals, operating above 570oC up to around 

620oC. At more intermediate temperatures are the Ag-based alloys (620oC - 980oC) and Cu-based 

alloys (705oC - 1150oC). At higher temperatures are the Au-based alloys (890oC - 1230oC) and Ni-

based alloys (927oC - 1205oC). There are also some higher operating temperature filler metals in the 

form of Fe-based alloys (approx. 1100oC - 1200oC) and Co-based alloys (approx. 1150oC - 1250oC) 

for specific applications. Another precious metal filler family are the Pd-based alloys (approx. 850oC - 

1250oC), initially developed as a slightly cheaper alternative to Au-based alloys. Table 1.1 

summarises briefly the applications of these various families, as well as some common alloying 

additions comprising the filler metals. Of greater importance to this research are the Ni-based brazing 

alloys, particularly valued due to their combination of high temperature mechanical properties, high 

temperature corrosion resistance, and chemistry compatible with Ni-based superalloys being used 

across various industries. Ni-based brazing filler metals are discussed in depth in Chapter 2. 
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Table 1.1: Common applications and alloying additions in various brazing filler metal families. 

Filler Metal Family Joining Applications Common Alloying Additions 

Al-based Al-based alloys, Ti-based 

alloys 

Si, Zn, Cu 

Ag-based Various steels, Ni-based alloys, 

Cu-based alloys, Ti-based 

alloys, some ceramics 

Cu, Zn, Sn, Ni, Mn 

Cu-based Cu-based alloys, Ni-based 

alloys, various steels 

P, Ag, Sn 

Au-based Various steels, Ni-based alloys, 

Cu-based alloys 

Cu, Ni, Pd 

Ni-based Ni-based alloys, Co-based 

alloys, various steels, Cu-based 

alloys 

Cr, Fe, Si, B, P 

Fe-based Various steels (especially 

stainless and those used in 

automotive applications) 

Cr, Ni, Si 

Co-based Co-based alloys Cr, Ni, Si 

Pd-based Ni-based alloys, various steels, 

metallised ceramics 

Ag, Cu, Ni 

 

 

Figure 1.5: Summary of common brazing filler metal families, and the temperature range over which they are used. 
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2. Brazing of Ni-Based Superalloys 

This section will proceed to take a closer look specifically at the brazing of Ni-superalloys with Ni-

based filler metals, as well as the related technique of transient liquid phase bonding (TLPB). The 

filler metals selected to join these high performance materials in many ways have to exhibit properties 

similar to the base material they are to join. The best joints therefore are able to possess tensile or 

shear strengths near that of the base metal, as well as excellent corrosion resistance in service. As 

such, Ni-based filler metals are the preferred option for joining superalloy components across the 

aerospace and other industries. 

 

2.1 Ni-Based Superalloys 

It is first important to discuss the development, properties, and applications of the Ni-based 

superalloys employed in these industries (and which will be used as the base metal in the 

experimental sections of this thesis). Ni-based superalloys, so-named for their superior mechanical 

and corrosion properties at high temperatures, were first developed in the post-WWII period [9], 

where advances in turbochargers and turbine engines required materials capable of performing at very 

high temperatures. These were built upon earlier developments in Ni-alloys such as Ni-20Cr, the 

precursor to alloy families such as Nimonic and Inconel [10,11]. In particular, their ability to retain 

good strength over service lifetimes at temperatures often exceeding 600oC was a key development. 

While the term ‘superalloy’ can in fact be used to describe various series of Ni-, Fe- or Co-based 

alloys, Ni-based superalloys emerged as a widespread solution to metallurgical demands in a diverse 

range of applications over decades since their development. 

Compositionally, Ni-based superalloys are complex but generally comprise transition metals, with a 

majority Ni content in addition to significant contents of Cr, Co and Fe depending on the alloy group. 

Current Ni-based superalloys may contain upwards of nine or ten alloying elements, in weight 

percentages in the tens down to well below one. Some alloying additions, such as Al and Cr, are 

almost universal across Ni-based superalloys. Others, such as Co and Ti, are very common additions 

but their abundance may vary widely, being present only as trace elements in some alloys. Others that 

are almost universal, but in very small quantities, are grain boundary-migrating elements such as B, C 

and Zr. Fe is a major alloying addition for some wrought alloys (see below), but is not used at all in 

cast alloys. These Fe-bearing wrought alloys are therefore often referred to as Ni-Fe superalloys. 

Many other elements are present only in some Ni-based superalloys, from still relatively common Ta 

and W, to less common Ru.  

The primary matrix phase found in Ni-based superalloys is the austenitic gamma (γ) phase. This is the 

FCC phase which accommodates much of the alloying additions with somewhat similar atomic radii 

to Ni, including Fe, Cr and Co (as well as elements such as W, Mo, Re and Ru where they are present) 

[9]. The primary source of the strength of many Ni-based superalloys is the gamma-gamma prime (γ-

γʹ) microstructure. γʹ precipitates are an intermetallic phase of the type Ni3(Al, Ti) (Fig. 2.1(a)), 

coherent with the γ matrix. It possesses an L12 cubic structure, which possesses a primitive cubic 

lattice with Ni at the face-centres and Al/Ti at the cube corners. A dispersion of such precipitates in 

the γ-matrix provides coherence strain in the lattice, impeding dislocation motion through the ductile 

FCC matrix. It is this phase which allows Ni-superalloys to maintain strength at elevated 

temperatures. Some Ni-based superalloys (generally the Ni-Fe superalloys) may instead rely on a 

secondary precipitate known as gamma-double-prime, or γʹʹ, formed through the addition of Nb 
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(particularly in the case of Inconel-718) or V. This is a body-centred tetragonal (D022) intermetallic of 

the form Ni3Nb (Fig. 2.1(b)) or Ni3V, with Nb or V at the cell centre and corners, and provides 

strength through coherence strain and order-hardening. However, the γʹʹ phase is metastable, and 

transforms to the orthorhombic δ (D0a) phase after sufficient time at elevated temperature. Further 

minor, yet important phases found in Ni-superalloys are carbide and boride phases, which are 

typically precipitated at the grain boundaries of the γ matrix, and can reduce tendency for grain 

boundary sliding. The carbides are often referred to as MC carbides, forming with elements such as 

Hf and Ti, and during service other carbides of the form M23C6 may form with elements such as Cr 

and Mo. Similarly, Cr, Mo and W may form borides at the grain boundaries. 

 

Figure 2.1: Unit cells of (a) γʹ Ni3Al and (b) γʹʹ Ni3Nb strengthening phases found in Ni-based superalloys. Images 

reproduced with permission from [9]. 

 

In total, this chemistry of the Ni-based superalloys imparts the properties that make them the material 

of choice for various demanding applications such as gas turbine engines, marine propulsion, nuclear 

reactors (including those on submarines), exhaust nozzles and pressure vessel containers. Aggressive 

hot gas erosion may be encountered, or extreme tensile loading due to centrifugal forces in gas 

turbines [12]. These are among the most demanding applications, and the Ni-based superalloys 

employed require high strength, high elevated temperature strength, high temperature creep 

resistance, high fatigue strength, provided by the careful precipitation of strengthening γʹ and γʹʹ 

phases. In the extreme, Ni-based superalloys can be used at temperatures of up to 90 % of their 

melting temperature which may be experienced in the hottest sections of military-grade engines, 

above 1000oC [11]. For example, the 6th generation Ru-bearing TMS-238 superalloy has a 1000-hour 

creep rupture life (137 MPa load) maximum temperature of up to 1120oC [13]. Resistance to 

corrosion and oxidation in Ni-based superalloys is excellent, and achieved through formation of 

passive surface oxides such as Cr2O3 and Al2O3. 

Reed [9] distinguished two groups of Ni-based superalloys; the cast (often single-crystal) aerofoil 

alloys used predominantly for turbine blades, and the wrought (polycrystalline) alloys used for turbine 

discs. However, such divisions can be somewhat broad, and alternatively another common 

classification might include cast aerofoils (commonly single-crystal and possessing the highest γʹ 

fraction) and polycrystalline alloys (which can be cast or wrought, but possess typically lower γʹ 

volume fraction). The former sets tend to have a greater content of the γʹ forming elements Al and Ti, 

whereas the latter may have significant Fe content which is not used in the former. The use of W and 
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Ta is also somewhat reduced in wrought superalloys, whereas the Cr content is generally increased in 

wrought superalloys. A further significant difference is the presence of Re and Ru in the cast 

superalloys, which are not used in wrought alloys. For the cast single-crystal superalloys, these 

compositions are used with the intent of achieving certain properties such as outlined by Reed, 

namely; promoting a γʹ volume fraction of ~70% (the role of Al, Ti and Ta content); small γ/γʹ lattice 

misfit; sufficient concentrations of creep-strengthening elements (the role of Re, Ru, W and Mo); and 

a composition that prevents surface degredation through corrosive attack (the role of oxide formers Al 

and Cr). For the wrought superalloys, composition is equally important. The γʹ promoting elements 

Al, Ti and Ta are used, though the γʹ volume fraction is typically less at between 40 and 55 %. A 

further consideration for wrought superalloys is the presence of grain boundaries. Therefore, grain 

size should be tailored appropriately, as it correlates directly with creep strength and resistance to 

fatigue crack growth but inversely with yield strength and resistance to fatigue crack initiation. In 

addition, elements that tend to migrate to grain boundaries such as C and B are beneficial in small 

quantities, improving creep and low-cycle fatigue resistance. Zr may also provide some benefit at 

grain boundaries, capturing undesirable contaminants such as S and P [9]. 

Of particular interest to the brazing industry are the Inconel alloys, a family of Ni-Cr and Ni-Cr-Fe 

superalloys. They are employed in a wide range of applications and extreme envFements, from 

cryogenics, to pressure vessel containers, to high-temperature turbine discs and exhaust nozzles. 

Compositionally, the Inconel series varies from alloy to alloy, with common main alloying elements 

including Fe, Co, Mo, Ti, Al and Nb. In those containing Ti and Al, while promoting the γʹ phase, this 

also leaves the alloys susceptible to cracking in the heat-affected zone (HAZ) when welded, and so 

brazing is a crucial joining technology for these alloys. Of particular note for this thesis (see Chapters 

10 and 11) is the aforementioned Ni-based superalloy Inconel-718 (IN718).  

This is particularly the case for Inconel-718 (IN718), an alloy of particular note for this thesis (see 

Chapters 10 and 11). This alloy, whose composition is shown in Table 2.1, possesses a γ (FCC) Ni-

Cr-Fe solid solution, and is primarily strengthened by the γʹʹ phase (making up approximately 20 % 

volume fraction), and contains only a small γʹ volume fraction (approximately 3 %, up to 

approximately 5 %, dependent on heat treatment). IN718 is noted for its retention of higher strength 

over the range 450oC – 700oC range, as well as excellent corrosion and oxidation resistance, and is 

generally considered to have good weldability [14]. It therefore sees wide usage in the cast form for 

hot-section components for aero engines, gas turbines, and applications in the nuclear and other high 

temperature industries. However, Nb, while the primary γʹʹ forming element with Ni, can exhibit 

segregation at grain boundaries [14, 15] and form Laves phase of the form (Ni,Cr,Fe)2Nb, leading to 

microfissuring and liquation cracking in Inconel-718 weldments [14]. 

In summary, Ni-based superalloys see use in a wide variety of demanding applications and 

envFements, representing some of the greatest and most complex advances in alloying. Their high-

temperature mechanical, corrosion and oxidation properties make them ideal materials for such 

components as those found in jet engines and high pressure vessel and containment applications. 

There is often a need to join Ni-based superalloys to produce such components, and difficulty arises in 

attempting to weld them due to their aforementioned susceptibily to the HAZ. The following section 

will discuss the use of brazing as the preferred method for joining Ni-based superalloys. 
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Table 2.1: Typical composition of Inconel-718 superalloy in weight percentage (atomic 

percentage), according to that provided by a supplier (Goodfellow Ltd, Cambridge, UK) 

Ni Cr Fe Nb+Ta Mo Ti Al Co 

53.4 

(52.8) 

18.7 

(20.8) 

17.7 

(18.3) 

5.07 

(3.16) 

2.93 

(1.75) 

0.97 

(1.17) 

0.55 

(1.18) 

0.23 

(0.22) 

Mn Cu Si C P B S  

0.14 

(0.15) 

0.10 

(0.09) 

0.08 

(0.16) 

0.03 

(0.14) 

0.011 

(0.05) 

0.002 

(0.01) 

0.0004 

(0.002) 
 

 

 2.2 Ni-Based Brazing Filler Metals 

Ni-based brazing alloys, as are commercially available today, are a family of brazing filler metals 

comprising mostly, as the name suggests, Ni, along with several other alloying additions. While 

numerous standardised compositions of these alloys see industrial application currently, their initial 

development dates back to the 1950s, just as for Ni-based superalloys. Due to the aforementioned 

difficulties in welding certain superalloys, brazing and related processes were instead considered as a 

solution for joining Ni-superalloy components. Perhaps the earliest alloy system that saw application 

as modern brazing filler metals was the Ni-Cu system. Lynch et al. [16] used such to join Ti, before a 

similar process was conducted by Owczarski et al. [17] to join Zircaloy 2 to 304 stainless steel. 

 

Figure 2.2: Ni-B binary phase diagram, from ASM Handbook [18], and based on [19]. Due to its relevance to Ni-based 

filler metals, the first eutectic point is indicated.  
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Figure 2.3: Ni-Si binary phase diagram, from ASM Handbook [18], and based on [19]. Due to its relevance to Ni-based 

filler metals, the first eutectic point is indicated.  

 

 

Figure 2.4: Ni-P binary phase diagram from ASM Handbook [18], and based on [20]. Due to its relevance to Ni-based filler 

metals, the first eutectic point is indicated. 
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One of the more important aspects of these alloys is the alloying additions of so-called melting point 

depressant (MPD) elements, necessary introductions to ensure melting of the filler metal before 

approaching the solidus temperature of the base metal. Across the vast majority of commercially 

available Ni-based filler metals, the elements used as MPDs are B, Si and P, based on the binary 

phase diagrams of Ni with these elements (see Figs. 2.2 – 2.4, [18 – 20]). The Ni-B and Ni-P systems 

were used by Duvall et al. [21] in a process was that was the first use of the term transient liquid 

phase bonding (TLPB) (see Section 2.3).  Later, the Ni-Cr-B, Ni-Cr-Si and Ni-Cr-B-Si systems, 

which were originally developed for wear-resistant coatings, were touted for use in brazing [22], with 

these systems exploiting the phenomenon of diffusion of B, which, as a small radius element, can 

diffuse interstitionally and hence transport very quickly. This would also have the benefit of 

increasing the ‘re-melt’ temperature of the joint, that is, the melting temperature of the filler metal left 

in the joint increases as B diffuses away, so can withstand higher service temperatures. Knotek and 

Lugscheider [22] proposed that alloys based on the Ni-Cr-Si-B system could be successfully applied 

to brazing production and repair, noting the temperature of the Ni-Ni3B eutectic. It was also noted that 

the Ni-Cr-B ternary is the most important system to consider for these alloys, considering the greater 

effects of B on the melting temperature but also on its extremely limited solubility in Ni an Ni-Cr, in 

comparison to Si. Higher B content also results in a decrease in Si solubility, increasing the propensity 

for both borides as well as silicides. Both Cr and Si were deemed necessary for good wetting, while at 

the same time the lowest liquidus temperatures are found in the Ni-rich corner (the alternative, at high 

B contents, showed almost no plasticity). Therefore, Si and B were suggested to be added only to a 

level such that a desirably low melting temperature is exhibited. 

Lugscheider et al. [23, 24] later investigated specifically B-free filler metals, which are necessary in 

some industries such as nuclear. Ni-Cr-Si-P alloys were suggested as a development on already 

existing Ni-Cr-Si alloys (such as BNi-5), which possess higher liquidus’ than B-containing fillers 

BNi-2, BNi-3 and BNi-4. The use of P as a sole MPD in Ni was previously established as seen in the 

BNi-6 (Ni-P) and BNi-7 (Ni-Cr-P) alloys, but not in conjunction with Si. The effect of P additions to 

a ternary near-eutectic Ni-20.4Cr-11.6Si (wt. %) with liquidus approximately 1077oC were 

investigated, with approximately 0.5 wt. % P reducing the liquidus to approximately 1060oC, 

approximately 75oC lower than for BNi-5. However, with P also possessing very poor solubility in Ni, 

phosphides were formed in this alloy. Lugscheider et al. [25] followed up on this work investigating 

three low-P containing Ni-Cr-Si-P alloys for brazing 321 stainless steel, with the low-P, high-Si 

compositions showing increased Ni-solid solution microhardness due to the higher solubility of Si in 

Ni. Lugscheider and Cosack [26] also later demonstrated the suitability of a Ni-20.3Cr-11.5Si-0.5P 

(wt. %) alloy as a substitute for BNi-5 for brazing this steel, achieving base metal tensile strength in 

the joint after brazing at 1070oC for 10 minutes. Meanwhile, increasing the P content and decreasing 

the Si content resulted in inferior brazing results for this alloy system. 

Today, the composition of alloys in the standardised family of Ni-based brazing alloys has remained 

largely constant for some years, as described in the latest AWS standard under the ‘BNi-‘ designation. 

Table 2.2 shows the standard compositions of the main BNi- series alloys; these are generally given in 

weight percentage. As can be seen, all alloys share several main alloying additions, generally each 

having the role of either MPD as described above (B, Si, P) or solid solution former (Cr, Fe), with 

some also increasing wettability (Cr, Si). The most universal alloying addition among Ni-based filler 

metals is Cr. It is added typically in proportions from 7 (for example in AWS BNi-2) to 15 wt.% (for 

example in AWS BNi-5). Its primary role in brazing alloys is as it is in stainless steels and Ni-based 

superalloys – corrosion resistance, and has been included since early development in Ni-based filler 

metals [22 – 28]. The impact of obtaining this superior corrosion resistance is generally an increase in 
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the brazing temperature necessary to ensure the alloy is fully molten, as can be seen in the different 

industry-quoted melting temperatures of 7 wt.% Cr BNi-2 (998oC) versus 15 wt.% Cr BNi-9 (1055oC) 

[5]. Other brazing filler metal families are known to possess excellent corrosion (and oxidation) 

resistance, notably the precious metal-based Ag, Au and Pd families [30, 31], as well as filler metals 

that simply contain some of these, in particular Pd-bearing filler metals [31-34]. Ag, however, is not 

used in Ni-based filler metals due to both cost and the tendency to reduce the wetting of Ni, while Au 

and Pd have been included in Ni-based filler metals but are less preferred due to cost [35]. Mo has 

been reported as contributing to the corrosion resistance [36, 37] but has seen little attention as an 

addition to Ni-based filler metals for corrosion purposes, perhaps due to the potential for undesirable 

phases, increasing melting temperature, or simply due to there being no demand for such additions. 

Table 2.2: Compositions in weight percent of various commercially available Ni-based brazing 

filler metals from the AWS BNi- series of alloys [5]. 

Alloy Ni Cr B Si Fe P Melting 

Range (oC) 

BNi-1 

Wt. % Bal. 14 3.1 4 4.5 - 980 – 1060 

At. % Bal. 13.1 14 7 3.9 - 

BNi-2 

Wt. % Bal. 7 3.1 4.5 3 - 970 - 1000 

At. % Bal. 6.6 14 7.9 2.6 - 

BNi-3 

Wt. % Bal. - 3.1 4.5 1.5 

(max) 

- 980 - 1040 

At. % Bal. - 14.2 7.9 1.3 

(max) 

- 

BNi-4 

Wt. % Bal. - 1.85 3.5 1.5 

(max) 

- 980 - 1070 

At. % Bal. - 9 6.5 1.4 

(max) 

- 

BNi-5 

Wt. % Bal. 19 trace 10.1 - - 1080 - 1135 

At. % Bal. 18.9 trace 18.6 - - 

BNi-6 

Wt. % Bal. - - - - 11 875 

At. % Bal. - - - - 19 

BNi-7 

Wt. % Bal. 14 - - - 10.1 890 

At. % Bal. 14.3    17.3 

BNi-9 

Wt. % Bal. 15 3.6 - - - 1055 

At. % Bal. 14.4 16.6 - - - 
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While in-depth investigation of wettability was beyond the scope of this project, some points pertinent 

to the work here are mentioned (Gale and Butts [6], among others [31, 38], discuss wettability in 

greater detail). The wettability of the filler metal is crucial to ensure good flow of the molten filler 

metal over the entirety of the surface to be joined. From a compositional perspective, elements such as 

Cr (which can wet oxides can carbides) and Si in the filler metal improve the wettability on Ni-based 

superalloys [23], though Cr can also increase melting temperature, and so may have the opposite 

effect [39]. Again, this was established in early work on Ni-based filler metals, and so these elements 

are still common alloying additions. Other elements that were observed to improve wettability, either 

on Ni-based superalloys or difficult-to-wet surfaces in general, include Ti [40], Zr [31], and V [41]. 

It is worth looking briefly at other brazing applications of these alloys outside the joining of 

superalloys. Indeed, Ni-based brazing alloys have been demonstrated to successfully braze steels [42, 

43], Co-based alloys [44], Mo to steel [45], and various ceramics [46, 47], to name a few examples of 

many. The two base materials being joined need not always be the same alloy; significant research has 

focused on the brazing of dissimilar materials, whether one superalloy to another (such as may be 

found in [48 – 53]), to a steel [54, 55], and to Co and Co-superalloys [56, 57]. Joints of higher cost 

superalloys to cheaper materials such as steels has been seen as an enabling technology for a strategy 

to reduce the costs for certain components in power plant and marine industries, without 

compromising on properties, and in some cases the combination offers technological advantages [55]. 

Ghaderi et al. [58] brazed IN718 to ultrafine-grained 304L stainless steel, using commercial filler 

metal BNi-2, and also using BNi-2, Baharzadeh et al. [55] brazed Inconel X-750 to 2205 duplex steel. 

Similarly, it may be desirable to combine small parts made from ceramics that can be difficult to 

produce in large or complex geometries, but that nonetheless have the required properties, with other 

materials. Ni-based brazing alloys have been applied even for this task. Lu et al. [59] successfully 

brazed Ti2AlC ceramic to Ni using BNi-2 filler metal, achieveing approximately 90 % the strength of 

the ceramic. Lee et al. have successfully brazed yttria-stabilised zirconia (NiO-YSZ) cermets to 306L 

stainless steel using commercial filler metals BNi-2 [60] and BNi-3 [61]. 

 

2.3 Transient Liquid Phase Bonding 

An important development in the design and implementation of brazing is the concept of transient 

liquid phase bonding (TLPB). This is essentially the process of brazing carried out to the extent that 

complete isothermal solidification (IS) of the joint takes place during the brazing process at the 

brazing temperature. That is, sufficient diffusion of the MPD element into the base material such that 

the liquidus of the melt increases and surpasses the brazing temperature, and so the solidification of 

the joint, commencing at the interface with the base material, is achieved at the brazing temperature. 

Throughout this project, as will be seen in later chapters, the term ‘brazing’ has been used rather than 

TLPB, even though the brazing conducted has been guided by the principles of TLPB. Gale and Butts 

[6] distinguish TLPB from brazing in its suitability for joining components used in high service 

temperatures, where joint properties close to the base material are required. Through careful 

consideration of the filler metal as well as the brazing parameters such as brazing temperature and 

holding time at temperature, it is therefore possible to achieve a joint whose microstructure is free of 

the centreline eutectic constituent that is often seen in cases where insufficient diffusion of the MPD 

has taken place. Other steps such as diffusion holding at a temperature below the brazing temperature, 

or even post-braze heat treatments, may also be included as part of the TLPB process. Duvall et al. 

[21] considered TLPB to be comprised of three steps: base metal dissolution, followed by isothermal 

solidification, followed by homogenisation of the joint. Later, in the model proposed by Tuah-Poku et 
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al. [62], the base metal dissolution stage was considered to be actually composed of filler metal 

melting and widening of the liquid phase as discrete processes. MacDonald and Eagar [63] then 

proposed another prior stage to account for interdiffusion between filler and base metal during the 

heating stage, before full melting of the filler metal, which may be a problem at slow heating rates or 

for extremely thin filler metal inserts. In the review by Zhou et al. [64], four stages were discussed 

based on the previous works [21, 62, 63], and Gale and Butts summarised the process in three stages 

based on [62] with omission of some heating considerations. Considering the aforementioned works, 

three main stages of importance to this thesis are discussed for a simple filler metal of matrix element 

A with MPD element B:  

 Base metal dissolution / Liquid Homogenisation 

Upon heating and eventual melting of the filler metal, diffusion of B from A into the base 

metal occurs at the interface, which has the effect of adjusting the composition of the adjacent 

base metal towards the solidus, while adjusting the composition of the adjacent liquid filler 

metal toward the liquidus, and so the width of the liquid increases Equilibrium is reached 

when the base metal reaches solidus composition, and molten filler reaches liquidus 

composition, and dissolution ceases with the maximum width of the liquid. This process 

usually completes quickly, from seconds to a few minutes depending on the system, as it does 

not rely on long-range solid diffusion [6]. 

 

Zhou et al. [64] further defines two regimes in this stage for a eutectic filler metal 

composition. The first is during the temperature increase from filler metal liquidus to brazing 

temperature, where the concentration of solute B in the solid and liquid at the interface will 

follow the solidus and liquidus lines as the temperature rises. The second is the continuing 

isothermal dissolution at the brazing temperature, until equilibrium is achieved and 

dissolution ceases. 

 

 Isothermal Solidification 

Following the dissolution stage, further diffusion of B into the base metal at the brazing 

temperature increases the liquidus of the melt. Meanwhile, according to most models, the 

concentration of solute B in the solid and liquid immediately adjacent to the interface remains 

constant at that of the solidus and liquidus respectively, which was achieved at the end of the 

dissolution stage [6]. When the liquidus reaches the brazing temperature, the liquid begins to 

solidify and the liquid width decreases as A-rich solid with B in solution advances toward the 

centre from both sides of the joint. From a technological point of view, the isothermal 

solidification stage is often considered the most important step in the brazing process, as the 

extent of its completion can greatly influence the performance of the resulting joint. This 

stage, however, typically takes much longer than the dissolution stage, as sufficient solid 

diffusion of B into the base metal must occur. Depending on the system (that is, on the 

amount of B that must be diffused, in turn determined by the composition and thickness of 

filler metal), this may take several minutes to several hours, for a given set of brazing 

conditions. As the brazing temperature is increased, so does the diffusivity, D, of B 

(according to the Arrhenius equation shown in Equation 2.1), thus isothermal solidification 

may proceed at a greater rate. 

𝐷 =  𝐷0 𝑒
−𝑄

𝑅𝑇⁄       (2.1)  

where D0 is the temperature-independent material constant, Q is the activation energy for 

diffusion, R is the gas constant, and T is the temperature. However, increasing the 

temperature may result in a greater degree of base metal dissolution in the first stage due to 
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increased diffusion, which effectively creates a wider liquid layer which must solidify, thus 

prolonging the time at the brazing temperature required. Therefore, for a given system there 

exists a brazing temperature for which the time for isothermal solidification is minimum, 

which is of obvious technical importance [63]. 

With this in mind, it is unsurprising that a large amount of interest has been paid to analytical 

approaches to determining the time for isothermal solidification. The models of Tuah-Poku et 

al.  [62] and Zhou et al. [64] based on a half-joint (for symmetry) with a semi-infinite base 

metal layer and a liquid layer, have been widely studied and applied elsewhere [65, 66]. Gale 

and Wallach [67] compared such models with two other approaches, one of which [68] was 

based on work by Nakagawa et al. [69]. This latter approach provided the best agreement 

with experimental observations of isothermal solidification when brazing Ni-Cr alloys with 

BNi-3 [67]. Meanwhile, using the model of Tuah-Poku et al. [62], the time for isothermal 

solidification was overestimated. Ojo et al. [70] also successfully applied the approach used 

by Gale and Wallach. Based on this approach, the MPD concentration, C, at location y and 

time t can be described by Equation 2.2 [67]: 

𝐶𝑦,𝑡 =  𝐶𝑠 [1 + 𝑒𝑟𝑓 (
𝑦

√4𝐷𝑡
)]      (2.2) 

where Cs is the MPD solubility in the base metal at the solidus and D is the diffusivity of the 

MPD (given by Equation 1). Solving Equation 2.2 for the time taken for complete isothermal 

solidification, tf, gives Equation 2.3: 

𝑡𝑓 =  ℎ2 𝜋

4𝐷
(

𝐶𝑙

𝐶𝑠
)

2
     (2.3)      

where h is the half-width of the filler metal and Cl is the MPD concentration in the liquid 

filler metal. This model, however, assumes a stationary solid-liquid interface for the MPD 

distribution described by Equation 2.2 to be accurate, and also that negligible MPD is 

diffused into the base metal before the base metal dissolution has ceased, which is unlikely to 

be the case for fast-diffusing MPDs such a B. This approach has been observed to 

overestimate tf [67, 70]. Similar approaches have also been described by Nakao et al. [71]. 

Alternatives to the above instead treat the liquid layer and semi-infinite base metal as 

continuous without set compositions of the solid and liquid, based on work that suggested that 

the base metal dissolution stages occurred simultaneously rather than as discrete stages [69]. 

This approach has been found to provide good agreement with experimental results for B-

containing filler metal, in the study by Gale and Wallach [67] and Ojo [70]. The MPD 

concentration distribution as a function of distance y away from the centre of filler metal with 

width h, and time t, is given by Equation 2.4: 

 

𝐶𝑦,𝑡 =  𝐶𝑚 +
1

2
(𝐶0 − 𝐶𝑚) [𝑒𝑟𝑓

𝑦 + 𝑤0

√4𝐷𝑡
− 𝑒𝑟𝑓

𝑦 − 𝑤0

√4𝐷𝑡
]      (2.4) 

 

where Cm and C0 are the initial MPD concentrations in base metal and filler metal respectively, 

and w0 is the full width of the filler metal. For the case of complete isothermal solidification 
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after time tf, the MPD concentration at the centre of the joint (i.e. at y = 0) can be assumed to 

have reached the solidus composition of the solidified phase, Cs, such that Cy,t = Cs, and 

Equation 2.4 reduces to Equation 2.5 (noting the property erf(−x)  =  − erf(x)) : 

(𝐶𝑠 − 𝐶𝑚) = (𝐶0 − 𝐶𝑚) [𝑒𝑟𝑓
𝑤0

√4𝐷𝑡𝑓

]      (2.5) 

Therefore, the time taken for complete isothermal solidification can be determined as in 

Equation 2.6: 

𝑡𝑓
2 =  

𝑤0

√4𝐷
 

1

𝑒𝑟𝑓−1 [
𝐶𝑠 − 𝐶𝑚
𝐶0 − 𝐶𝑚

]
      (2.6) 

Deviations from the above models based on simple binary filler metals have been noted by 

several authors, generally for cases where more than one solute MPD element is in the filler 

metal, such as in alloys bearing both B and Si, which in practice is more often the case. This 

results in the presence of two regimes, as proposed by Sinclair et al. [72] due to the different 

solubilities and diffusion coefficients of the two MPDs: 1) A faster first regime controlled by 

diffusion of the faster-diffusing MPD (typically B); and 2) A slower second regime controlled 

by diffusion of the slower-diffusing MPD (such as Si). This was also considered to be the 

case by Yuan et al. [73] for two Ni-Si-B filler metals. In addition, while the above models 

would predict faster completion of isothermal solidification, it has been observed that at 

higher temperatures the isothermal solidification was taking longer, which has been attributed 

to a second, slower regime based not on slower diffusion of a second MPD, but on 

progressively increasing base metal element concentration in the remaining liquid, effectively 

acting as MPDs thus prolonging the solidification time [74]. As mentioned above, increased 

dissolution of base metal at higher temperatures has also been reported as playing a role in 

deviation from the conventional models [75, 76]. 

 Solid Homogenisation 

Upon completion of isothermal solidification, an additional hold at elevated temperature may 

be commenced. This may be at, but typically below, the brazing temperature, and its purpose 

is to allow further diffusion of solute B away from the bonded region. This can be especially 

important to ensure the concentration of B at the joint centre, where the diffusion distance of 

B into the base metal is greatest, is below the room temperature solubility limit in A, thus 

preventing the precipitation of B-rich intermetallic phases. Again, this process can be 

prolonged, as it relies on solid state diffusion and so the temperature of this homogenisation 

hold should still be high enough to achieve this in good time. When sufficient time is allowed, 

the concentration gradient of B across the joint may be negligible and so the microstructure 

may be largely indistinguishable from the base metal. 

 

2.4 Microstructural Features of Brazed Joints 

The evolution of the joint microstructure through the above stages, from the room temperature 

assembled fixture to the complete isothermally solidified and homogenised joint, has been extensively 

documented. For brazed joints that rely on the diffusion of an MPD element, common microstructural 

features or zones in relation to their position are almost universally observed to some degree. The 

presence of such changes with brazing time and temperature and joint composition (both filler metal 

and base metal). Fig. 2.5 shows optical micrographs of joints of IN718 brazed with commercial Ni-
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based filler metals (a) BNi-2 and (b) BNi-3, with the distinct microstructural zones that can be 

exhibited by a brazed joint indicated. Such zones can be explained as follows: 

 Isothermally Solidified Zone (ISZ) – The ISZ is the area of the joint which has solidified at 

the brazing temperature due to the outward diffusion of the MPD into the base metal (as 

described above). The entire width of the joint region may be taken up by the solid solution of 

the ISZ if isothermal solidification has completed, otherwise two separate solidification fronts 

will be evident, having moved inwards from the interface with the base metal. These can be a 

single grain zones. The composition of this zone is the primary γ FCC matrix, rich in Ni with 

elements from both the initial filler metal and the base metal in solution. 

 

 Athermally Solidified Zone (ASZ) – This zone forms in the case of incomplete isothermal 

solidification, where the onset of cooling occurs while liquid remains towards the joint centre. 

Elements with a partition coefficient with Ni of less than one (k < 1), are rejected from the 

advancing γ solid solution fronts during isothermal solidification, pushing the remaining 

liquid gradually towards eutectic composition. When the temperature decreases past the 

liquidus, this remaining liquid begins to freeze and may undergo a single or successive binary 

or ternary eutectic transformations. The resulting solid is typically comprised of intermetallic 

phases such as borides and silicides. Often, this can be observed as a continuous narrow band 

of brittle material along the centre line of the joint (the thickness determined by how much 

isothermal solidification had completed) [53, 77, 78]. This is an important feature to avoid, as 

it clearly provides a continuous crack path potentially leading to brittleness and premature 

joint failure. Further homogenisation may reduce or even eliminate the ASZ, though the time 

and temperature required may be excessive in some cases as diffusion in intermetallics is 

slow. 

 

 Diffusion Affected Zone (DAZ) – The diffusion of MPD elements away from the filler metal 

during brazing often results in a region of high intermetallic concentration in the base metal 

adjacent to the joint region, formed with base metal elements. This is especially common with 

B containing filler metals used to braze Ni-based superalloys, due to the low solubility of B in 

the base metal γ matrix. It is undesirable to retain a region such as this in the final joint 

microstructure, as it can provide a low-resistance path for cracking [79], and boride-forming 

elements such as Cr, Mo, Ti and Nb can be effectively removed from the matrix thus 

impacting the local corrosion resistance [78, 80]. However, it has been noted that 

intermetallics in the DAZ may be less detrimental to joint strength than the ASZ, as they are 

not continuous [81]. Borides in this region may have various morphologies depending on 

where they precipitate, whether in the grains or along grain boundaries. Smaller, blocky 

morphology may be observed close to the joint interface, with elongated needle-like borides 

precipitating well into the base metal grains at increased bonding times [80, 82]. Grain 

boundary borides may in particular be observed well into the base metal due to the fast 

diffusion path provided along grain boundaries [83, 84]. 
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Figure 2.5: Optical micrographs of typical joints of IN718 vacuum brazed with (a) AWS BNi-2 filler metal, and (b) AWS 

BNi-3 filler metal. Brazing temperature and time in each case was 1075oC and 10 minutes respectively, and filler metal foil 

thickness was 50 μm. Regions often observed in such joints are labelled, including athermally soldified zone (ASZ), 

isothermally solidified zone (ISZ) and diffusion affected zone (DAZ). 

 

For this work, it is worth briefly discussing the above features in the context of brazing IN718. As 

described in Section 2.1, IN718 is one of the more widely used superalloys, and as such the joining of 

this material is often required. Despite this, brazing of IN718 in the literature appears to be far from 

the most widely reported. Such microstructural features are not particular to any one base metal – 

filler metal combination, but the compositions of the base and filler metals influence the composition 

of the phases in these features. For example, IN718 superalloy, which notably contains Fe and Nb, in 

addition to elements such as Cr, Ti and Mo, and borides containing these elements can form when 

using B-containing filler metals. These may be found in the DAZ, where outward-diffusing B 

encounters these elements, and in particular Nb and Mo which can be segregated in the IN718 base 

metal. They may also be observed in the joint region due to introduction via base metal dissolution, 

though more commonly is Cr-borides in the ASZ, as filler metals often contain Cr. Ni-silicides can 

also form in the ASZ, due to the high Ni concentration and the relatively slower Si diffusion away 

from the joint. 

 

2.5 Properties of Brazed Joints 

Having looked at the principles behind the brazing and TLPB of Ni-based superalloys, this section 

will look at the properties achievable in brazed and TLPB joints, evidenced in the extensive literature. 

Firstly, joining the same base metals together (often referred to as ‘similar joints’ in the literature) 

represents the simplest cases of brazing, with only two different compositions to consider (that is, the 

initial filler metal composition and initial base metal composition). Except for practical situations that 

may arise due to poor joint design, the interaction between the different chemistries will be essentially 

mirrored on both sides. ‘Dissimilar’ joints, using two difference base metals as opposed to similar 

joints, are likely to have a somewhat asymmetrical chemistry and final microstructure after brazing 

(depending on how different the base materials are). In either case, tensile and shear strengths of 
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brazed joints have been common measures of the quality of a brazed joint because of the generally 

observed relationship between strength and degree to which isothermal solidification is complete. The 

joint strength required can differ depending on the application. For instance, in brazed joints for 

electronics, the joint strength might of less importance than electrical or thermal properties, and some 

joints may prioritise corrosion resistance over strength where aesthetics are a concern. Where a joint 

is formed in order to produce a single component, however, it is often desired to achive a joint shear 

or tensile strength close to that of the base metal(s) being joined, so as to avoid a weaker part of the 

component. Achieving this does not always appear to be of emphasis in the literature, and often a 

study may go only as far as maximising the strength achieved for a given filler metal and base metal 

combination, particularly by maximising isothermal solidification. Regardless, for the brazing of most 

Ni-based superalloys with typical commercially available Ni-based filler metals, the joint shear and 

tensile strengths achieved are generally of the order of hundreds of MPa. 

Speaking generally, and considering the principles discussed so far, increasing hold time for a given 

temperature and filler metal thickness improves joint strength. Increasing bonding temperature for a 

given hold time and filler metal thickness will improve joint strength, up until a certain point past 

which the excessive initial base metal dissolution outweighs the increased diffusion rate of the MPD, 

by changing the chemistry of the melt (thus influencing the solidification) and increasing the diffusion 

distance during isothermal solidification. Examples of this can be seen in [85, 86]. For most cases 

regardless of brazing temperature or hold time, filler metal thickness is kept below 100 µm and above 

25 µm to achieve best joint strength. Too thick, and the diffusion distance is greater thus isothermal 

solidification will be less complete after a given time. Too thin, and the MPD can be entirely 

consumed through diffusion in the heating stage, resulting in no liquid being available at the bonding 

temperature [87]. The interplay of these parameters, and the effect on the joint properties, is widely 

investigated across the literature for many different filler metal and base metal combinations. 

Brazed joints involving just one type of Ni-based superalloy as the base metal are the simplest case. 

Binesh and Gharenbagh [86] systematically studied the effects of bonding temperature, bonding time 

and filler metal thickness on the isothermal solidification rate and shear strength when joining IN738 

with MBF-15 (Ni-13Cr-4.2Fe-4.5Si-2.8B in wt. %). At a constant temperature of 1130oC and 35 µm 

thickness filler metal, shear strength increased with bonding time up to a maximum of almost 700 

MPa after 90 minutes, with a corresponding decrease in ASZ width. In addition, for a constant 

bonding time of 30 minutes and 35 µm thickness filler metal, shear strength decreased with increasing 

temperature from 1130oC to 1170oC, from above 600 MPa to below 450 MPa. This was coincident 

with increasing ASZ width, attributed to increased base metal dissolution. Idowu et al. [74] also 

joined IN738, using Nicrobraz 150 (Ni-15Cr-3.5B in wt. %). Brazing temperatures were between 

1130oC and 1175oC, with hold times from 1 hour to 8 hours, and joint width of 100 µm. The 

completion of isothermal solidification still took 5 hours at least, for a 1145oC temperature, and longer 

was required for lower and higher temperatures. Joint width was also studied at a constant 1160oC 

temperature, with isothermal solidification completing quicker for thinner gaps as expected. The 

authors also described deviation from traditional models of time required for isothermal solidification, 

proposing the two-regime model as described in Section 2.3. Amiri et al. [80] conducted 

investigations on the bonding of γʹ-strengthened GTD-111 with MBF-20 filler metal (Ni-7.6Cr-3.4Fe-

3.6Si-3B in wt. %). Shear strength increased from approximately 425 MPa to approximately 600 MPa 

when increasing hold time from 15 minutes to 105 minutes at 1120oC. Increasing bonding 

temperature from 1080oC to 1180oC (keeping hold time at 15 minutes) achieved complete isothermal 

solidification with an intermetallic-free joint, but intermetallics reappeared when temperature was 

further increased to 1200oC. Pouranvari et al. [78] studied the effect of TLPB temperature and hold 
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time for joining IN718 with BNi-2. For temperatures of 1000oC, 1050oC and 1100oC, isothermal 

solidification completed after approximately 60, 40 and 20 minutes respectively, displaying low time 

and temperature requirements when compared to some other systems. Compared to a partially 

isothermally solidified joint, a fully isothermally solidified joint achieved almost twice the UTS and 

elongation at failure. Other similar systematic studies of similar joint investigating variation of hold 

time and hold temperature include [89] and [90]. 

While not the focus of this work, studies of dissimilar brazed joints and their properties are also 

common in the literature. Dissimilar joints involving combinations of Ni-based superalloys, steels, 

ceramics and other materials, while of growing importance in certain industries, they are beyond the 

scope of this work. Of more relevance are dissimilar joints involving two different Ni-based 

superalloys, as such joints still favour the use of Ni-based brazing filler metals. As mentioned, 

chemical asymmetry in the final joint is likely in these cases, and this is enhanced the more dissimilar 

the base materials are. Despite this, the same principles generally apply, and numerous studies have 

demonstrated that isothermal solidification is an important step for the mechanical properties [52, 53, 

85, 90 – 94]. The effects of the different chemistry on either side of the joint can however be seen 

where isothermal solidification is not completed [85, 91], especially in cases where B may diffuse at 

different rates in the dissimilar base metals [85, 91]. 

Generally, therefore, whether similar or dissimilar joints, mechanical properties can be seen to 

improve with the degree of isothermal solidification completion, and joint strength close to that of the 

base metal(s) is achievable with appropriate brazing cycles. This is of clear importance, not just in 

brazed joints in general, but in braze repair applications where wide cracks in a base metals are filled 

with a mix of base metal powder and brazing filler metal powder [95, 96]. While the most significant 

improvements in joint strength tends to be made up until isothermal solidification is completed, this 

does not necessarily represent the maximum strength that can be achieved in a joint (see ‘Solid 

Homogenisation’ above). Shear strengths have been observed to increase with further heat treatment 

past the completion of isothermal solidification due to continued diffusion of MPD elements away 

from the joint [49, 57, 79, 97-99], as well as dissolved base metal elements within the joint, imparting 

solid solution strengthening [100]. In many cases, therefore, joint shear strengths upwards of 400 MPa 

are achievable when brazing generally between 1050oC and 1150oC, and for hold times less than 60 

minutes. But to achieve the greater shear strengths observed, upwards of 600 MPa, prolonged hold 

times of over 60 minutes, and sometimes prolonged post-braze heat treatments, are required. 

Given the environments in which Ni-based superalloys are employed, such as in temperatures in 

excess of 600oC, the mechanical properties of joints thereof at elevated temperatures are particularly 

important. Despite this, literature investigating mechanical properties of joints at these temperatures is 

more scarce, likely a result of the difficulty in performing such tests, namely high-temperature shear 

and tensile tests, which requires specialist equipment in order to heat the sample and testing rig. That 

which does exist is generally still concerned with the shear or tensile strength behaviour at higher 

temperatures, and how they compare to room temperature strength. Luo et al. [101] brazed Hastelloy-

C276 with BNi-2 filler metal for 25 minutes at 1060oC, and tensile testing the joint at 625oC revealed 

a reduction in UTS and yield strength compared to room temperature results (for example, maximum 

room and high temperature UTS of 403 MPa and 340 MPa respectively). Pilehrood et al. [79] 

conducted high temperature tensile testing (at 650oC, 750oC and 850oC) on IN738LC joints brazed 

with BNi-2 at both 45 and 120 minutes at 1120oC followed by standard heat treatment for IN738LC. 

Compared to the base metal, joints exhibited an average reduction in yield strength and elongation of 

approximately 10 % and 53 % respectively, but these differences lessened at the highest temperature 

of 850oC. The reduction in these properties was attributed to coarsening of γʹ precipitates in the joint 
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region. Hartmann and Marsilius [102] performed tensile testing at high temperatures on 306 stainless 

steel joined with BNi-2 and high-Cr filler metals with both B and P as MPD. In all cases, UTS of 

joints was close to that of the 306 steel base metal, and again the differences decreased with 

increasing test temperature. The sharpest decrease in UTS for all joints and for the steel occurred at 

temperatures above 500oC. In the aforementioned work by Zhang et al. [91], tensile tests on IC10 – 

GH3039 joints were conducted as high as 900oC on joints brazed for 2 hours at temperatures between 

1050oC and 1200oC. All joints achieved approximately 200 MPa, close to the base metal tensile 

strength at that temperature. Furthermore, it was noted that boride concentration had less of an effect 

on the high temperature tensile strength than for the room temperature strength. For dissimilar joints 

of Co-based superalloy X-50 and IN738 brazed with BNi-9, Henhoeffer et al. [49] conducted tensile 

testing at 950oC, achieving slightly higher yield strength than for X-50 base metal, but worse tensile 

strength and much worse ductility. Post-brazing heat treatments improved these joint properties 

somewhat, but only after lengthy treatments of 120 hours at 950oC, and even after 840 hours not all 

detrimental eutectic phases were removed.  

While in many cases it has been seen that brazed joints can achieve a higher percentage of the base 

metal tensile strength as temperature increases, but exceptions exist. Ye et al. [95], conducted braze 

repair of artificial wide cracks in IN738LC using a Ni-Cr-Co-Al-Ta-B filler metal at 1150oC for 18 

hours (achieving isothermal solidification), and followed by various heat treatments. While heat 

treatments resulted in a greater percentage of base metal tensile strength being achieved at 

temperatures of 25oC, 600oC and 800oC, in each case it was the tests performed at 800oC which 

showed the greater disparity between brazed joint tensile strength and base metal tensile strength, 

while tests performed at 25oC showed the lowest disparity. While insufficient detail is given of the 

test pieces in this study to give a full assessment, this result could be due to the greater width of the 

joints, meaning the brazed joint made up a larger portion of the test piece. 

Other easy-to-perform tests of mechanical properties of brazed joints include microhardness 

measurement (details of which are given in Chapter 8). Microhardness can be used as an indicator of 

joint properties such as ductility (or brittleness) and yield strength. With relative ease and speed, 

microhardness profiles across brazed joints from base metal to base metal can be obtained, showing 

the variance in hardness in different microstructural zones of the joint, and hence differences in 

mechanical properties may be inferred. This is illustrated in Fig. 2.6. Common trends in the variance 

are observed across brazed joints, and for joint with similar base materials these are approximately 

symmetrical about the joint, as observed by numerous authors [44, 53, 55, 58, 79, 104]. In the case of 

dissimilar joints, the different chemistries either side of the joint can affect this symmetry, but similar 

trends may still be observed with regard to the distinct microstructural zones. Microstructural zones 

with a high concentration of intermetallic phases such as the ASZ and the DAZ, predictably display 

increased microhardness, whereas the zones formed of FCC solid solution (the ISZ, and the base 

metal sufficiently far from the DAZ) exhibit low microhardness. The difference in microhardness can 

be rather extreme, for instance in cases where regions of highly concentrated boride or other 

intermetallic phases form, which tends to be the case for insufficient brazing hold times. The ISZ is 

usually softer than the base metal, and as it is a γ-Ni solid solution, this is largely dependent upon 

solid solution strengthening from filler metals and base metal elements in solution, as well as by grain 

boundary strengthening. For example, Pouranvari [104] observed significantly greater ISZ hardness 

for joints of IN718 using BNi-9 than for joints using BNi-2 and BNi-3. Considering Gypen and 

Depruyttere’s model for solid solution strengthening [105] and strengthening coefficients for elements 

in Ni alloys proposed by Roth et al. [106], Pouranvari suggests this is due to the higher initial Cr 

content of BNi-9 filler metal, and the higher B content leading to a greater degree of base metal 
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dissolution, and so greater quantities of strengthening elements Nb, Mo and Ti concentrated in the 

ISZ. Homogenisation treatment of the joint will tend to flatten the variation in microhardness over 

time, as represented in fig 2.6. 

 

Figure 2.6: Schematic illustrating the variation of measured hardness across different regions of (a) a joint exhibitng a 

DAZ, ISZ and ASZ, and (b) a joint in which isothermal soldification is completed. 

 

There are multiple other properties of brazed joints that are critical for their performance, but are not 

the focus of this thesis. The corrosion properties of brazed joints are often a consideration, especially 

in automotive exhaust applications [36, 107] along with the effects of composition and brazing 

parameters impacting this. As discussed above, Cr is considered a crucial alloying additions in Ni-

based filler metals as well as in superalloys, yet even in filler metals containing well over 10 wt. % 

Cr, corrosion can occur as a result of incomplete isothermal solidification, whereby Cr forms borides 

and is thus relatively depleted in the surrounding regions [83, 97, 108]. This is similarly the case for 

base metal elements such as Nb, Mo and Ti which tend to form borides is insufficient brazing 

parameters are used, and so regions of local depletion in these elements can be sources of corrosion 

weakness [104, 109]. 

 

2.6 Role of Base Metal 

The role of the base metal in the final properties of a brazed joint must also be considered. This is 

especially important in applications where there is a choice in component material, though this is 

often not the case. Variables such as composition, oxide layers, and surface preparation all have an 

effect on the performance of the brazing process. 
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The impact of filler metal composition on its ability to wet superalloy surfaces was briefly mentioned 

in Section 2.2, but the surface condition and chemistry of the base metal also impacts this. There is a 

general notion that smoother surfaces are preferred to allow for good wetting, which is beneficial for 

joint shear strength [6, 38]. Though, as Way et al. [38] point out, other studies have found that some 

roughness (up to a point) was noted to aid joint shear strength due to increased bonding area and 

infiltration paths of molten filler metal. Way et al. remark that, given the sparse investigative 

coverage of such a large number of base metal – filler metal combinations, it is hard to draw clear 

conclusions on this, and that the ideal surface condition likely differs from system to system [38]. 

Another major consideration is surface oxides of base metals such as Ni-based superalloys (as is 

discussed in [6]). In Ni-based filler metals, wetting and breakdown of surface oxides is aided by 

elements such as Si and Cr. However, the process is often aided in practice by direct mechanical 

removal, or partial removal, of oxide layers by simply grinding and polishing surfaces to be brazed 

prior to brazing. 

Once brazing has occurred, the composition of the base metal can also impact the properties of the 

brazed region, depending on the extent to which base metal elements have made their way into the 

joint. Much of this, as discussed earlier, is achieved in the base metal dissolution stage of the process. 

A slower process for this is solid state diffusion either while still held at the brazing temperature after 

isothermal solidification is achieved, or during subsequent heat treatments. As shown by Pouranvari 

[104] and others [53, 90], this can have a significant impact on solid solution strengthening of the ISZ 

of a brazed joint. 

 

2.7 Chapter Summary 

This chapter has discussed the development of Ni-based superalloys and the filler metals used to braze 

them, as well as the underlying mechanisms in the brazing of Ni-based superalloys. This chapter has 

also detailed the role that elements have in the filler metal, and the mechanical properties that are 

achievable in brazed joints. Despite there being numerous Ni-based filler metals available 

commercially, their composition tends to be based around the inclusion of Cr to aid corrosion 

resistance and solid solution strengthening, and the inclusion of MPD elements which are almost 

universally one or more of B, Si and P. It has been discussed how, aside from lowering the melting 

and thus brazing temperature for such filler metals, these elements, through the phenomenon of 

diffusion, can greatly impact the properties of brazed joints. Their tendency to form brittle 

intermetallics, both inside the joint region (especially where insufficient diffusion has occurred) and 

in the base metal adjacent to the joint region, can be detrimental to the mechanical properties of joints, 

acting as crack propagation sites and even compromising the corrosion resistance in joints. 

Particularly in the case of the commonly used, and fast diffusing B, dissolution of the base metal can 

occur as it diffuses outwards from the joint during brazing, allowing elements found only in the base 

metal to act as solid solution strengthening elements in the isothermally solidified γ-FCC matrix of the 

final joint. Despite this positive effect, this effective widening of the joint can increase the time taken 

to achieve full isothermal solidification across the joint. As seen in the literature, the mechanical 

properties such as shear strength of a joint tend to correlate strongly with the degree to which 

isothermal solidification is completed, and so ensuring its completion is often of technological 

importance in the practical use of the method. This is achieved primarily through careful selection of 

filler metal, as well as brazing parameters such as temperature and hold time (not to mention initial 

joint width). 
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3. Developments in Ni-Based Brazing Alloys 

While it is true that many of the current commercially available Ni-based filler metals have seen little 

alteration in recent times, there have been attempts in the literature to progress from these alloys, 

either in the physical form of the alloy or in its composition, to meet certain needs encountered in 

industry. Some needs have required the avoidance of certain elements, such as B in filler metals for 

the nuclear industry, or P when brazing steels. Other needs encountered have required new physical 

forms of filler metal (such as those discussed in Section 1.2). These have tended to be based around 

existing filler metal compositions, with additions or alterations that either way result in a final joint 

chemistry similar to that achievable with the conventional alloys. Another way in which Ni-based 

filler metals have seen development in research, however, is through compositional changes and the 

use of alternative MPDs to B, Si and P, for reasons of avoiding the detrimental effects their 

intermetallic compounds may have. Compositional changes such as these, despite having seen some 

attention in literature, have seemingly not made their way into industry as of yet. Here, the attempts at 

developing novel Ni-based filler metals in the literature are reviewed. 

 

3.1 Alternative Melting Point Depressants 

 

Figure 3.1: Ni-Ti binary phase diagram. From ASM Handbook [18], and based on [111]. 

 

Of particular interest for the work in this thesis, is compositional developments in the form of 

alternative MPDs to those used currently. As already discussed, the current fillers using elements B, 

Si or P have the downside of forming brittle intermetallic phases, and so any alloying additions that 

could take the role of these MPDs but without forming detrimental phases would be of enormous 

technological interest. At the same time, these elements require relatively little concentration in order 

to achieve a large drop in liquidus temperature. This means the vast majority of the alloy is Ni, thus 

largely matching the FCC matrix of the superalloy being joined. Therefore, when searching for 

alternative MPDs, it must be remembered that just lowering the liquidus could result in other 

microstructural features that would render the element unsuitable, especially in cases where 
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comparatively large quantities are required to achieve the lower liquidus in the first place. As an 

example, consider the Ni-Ti binary phase diagram, shown in Fig. 3.1 (as found in [18], and based on 

[111]). Ti has a solubility limit of up to approximately 13 at. %, this Ti concentration would only 

depress the liquidus temperature to slightly above 1300oC. At a composition of approximately 39 at. 

% Ti, a eutectic transformation occurs at 1118oC, a much lower and more attractive melting 

temperature, but an undesirable NiTi + Ni3Ti intermetallic microstructure would result.  

Most studies investigating alternative MPDs have involved the addition of a single element to Ni, 

with this alloy then being used in a brazing trial. The Ni-Mn system (Fig. 3.2, as seen in [18] and 

based on [112]), having mutual FCC-solubility narrow melting range across the full compositional 

range, was suggested as a B replacement to achieve fast single-phase joint solidification by Laux et al. 

[113]. In this study, the binary Ni-Mn compositions contained significant Mn concentrations, of 36.7 

wt.% and 58.4 wt.% (the azeotropic composition, that is, the point where liquid solidifies into a single 

phase solid of the same composition). Noting the high Mn content required, small Si additions were 

added to produce three further compositions with reduced Mn; Ni-20Mn-2Si; Ni-20Mn-3Si; and Ni-

25M-2Si. The azeotropic composition had a measured liquidus of 1048oC, the lowest of the alloys, 

whereas all other alloys had liquidus temperatures of 1150oC (Ni-36.7Mn) or above. The joints in this 

study were wide (300 µm), yet epitaxial solidification was achieved relatively quickly with brazing 

times of 30 minutes (except for the azeotropic composition, demonstrating the need to limit the 

content of the MPD). This is suggested as a key advantage for wide-gap repairs when compared to 

commercial filler metals using B or Si, such as the D-15 alloy used in the study, as diffusion of Mn 

need not be rate-limiting on to achieve a single phase joint. However, as pointed out by the authors, 

further diffusion holds would not be expected to significantly increase the re-braze temperature as it 

would for B-containing fillers (though the high solidus temperatures of alloys other than the 

azeotropic composition means that the joints may already be suitable for high temperature 

applications). 

 

Figure 3.2: Ni-Mn binary phase diagram. From ASM Handbook [18], and based on [112]. 
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The authors followed up with another study with a wider range of Ni-Mn binary alloys and Ni-Mn-Si 

ternary alloys, along with CALPHAD modelling of the liquidus projection (reproduced in Fig. 3.3) 

and modelling of the joints using Thermo-Calc DICTRA simulations [114]. As in the first study, the 

more promising final joint microstructures were obtained for the moderate Mn content (Ni-38.2Mn in 

at.%) and moderate Mn plus low Si content (Ni-20.6Mn-4Si, Ni-20.4Mn-6Si, Ni-25.7Mn-4Si in at.%) 

alloys, with wide-gap epitaxial solidification achieved. A eutectic composition of Ni-60Mn in at.% 

possessed the lowest liquidus of 1022oC, but this was deemed too low to be of interest for the 

proposed application. 

 

Figure 3.3: Ni-Mn-Si CALPHAD predicted liquidus projection, with Ni composition as balance. From [114]. 

 

Ge was investigated by Dinkel et al. [115] as a prospective sole MPD element replacing B and Si for 

the braze repair of single-crystal turbine components. In this study, the aim was to not only identify a 

suitable MPD, but too also promote beneficial microstructural features such as a γʹ phase, exhibited in 

the Ni-Ge system for Ge concentrations between 27.1-29.9 wt. % (the Ni-Ge binary phase diagram is 

reproduced in Fig. 3.4 [18]). Alloys of Ni-20Ge and Ni-23Ge (in wt. %) were produced, both 

exhibiting dual γ-γʹ microstructures, and used in the braze repair of 200 µm wide slits in 1st generation 

René-N5 and 2nd generation PWA-1483 respectively. Despite these moderately high concentrations of 

the MPD Ge, however, the liquidus temperatures of the alloys according to the Ni-Ge phase diagram 

meant that brazing temperatures investigated in this study were rather high at between 1160oC and 

1230oC (indeed, 1160oC was not adequate for sufficient melting of the NI-20Ge alloy). Furthermore, 

the hold times investigated ranged from 30 minutes to 48 hours, with the full 48 hours (at 1160oC) 

being the only hold time achieving complete isothermal grain growth for the PWA-1483/Ni-23Ge 

sample, and 24 hours and 48 hours required for the René-N5/Ni-20Ge sample. In both cases this is 
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substantially longer than required for B-containing fillers. At higher brazing temperatures, complete 

isothermal solidification was not completed even after 48 hours, attributed to excessive melt-back of 

the base metal in the case of the higher brazing temperatures, which effectively widened the initial 

gap. Nonetheless, promising mechanical results were achieved, with the René-N5/Ni-20Ge joint 

achieving 92% the strength of a reference René-N5 sample, and 97% reference-strength achieved for 

the PWA-1483/Ni-23Ge sample. 

 

Figure 3.4: Ni-Ge binary phase diagram. From ASM Handbook [18]. 

 

There has been a reasonably high amount of attention paid to the use of Hf as a replacement MPD 

element as demonstrated by numerous studies, either as the sole MPD or in combination with other 

elements common in Ni-based superalloys. The Ni-Hf binary phase diagram (as seen in [18], and 

based on [116], reproduced in Fig. 3.5) exhibits a eutectic point at 1190oC and approximately 29 wt. 

% Hf, but at the same time Hf has apparently little solubility in Ni, approximately 3.5 wt.% at 1190oC. 

Hence most studies using Hf as an MPD observe Ni-Hf intermetallic phases, particularly the Ni5Hf 

structure. Zheng and Ruan [117] produced a Ni-18.6Co-4.5Cr-4.7W-25.6Hf (wt. %) alloy for the 

brazing of K3 superalloy (Hf-containing), at 1220oC for 25 minutes. The Ni5Hf intermetallic phase 

was observed, though further heat treatment was used to reduce this through allowing Hf diffusion 

into the base metal. It has been pointed out, however, that the Ni5Hf intermetallic is substantially more 

ductile than for example Ni-boride phases. Lugscheider and Humm [118] suggested a Ni5Hf 

microhardness of 400 HV0.05, versus 2000-2600 HV0.05 for boride phases. In evaluating a series of 

Ni-Cr-Hf alloys as potential filler metals for joining stainless steels and Ni-base superalloys, the 

authors recorded good corrosion resistance, and a maximum joint tensile strength when brazing both 

304 stainless steel and Inconel-600 with Ni-15Hf-13Cr (in wt. %) of 587 MPa and 517 MPa 

respectively. However, in both cases the brazing temperature used was rather high by necessity, at 

1235oC, significantly higher than required for, for example, AWS BNi-2 (generally up to 

approximately 1100oC), and still much higher than for other high Cr filler metals such as AWS BNi-5 

(based on Ni-Cr-Si, brazed generally between 1150oC – 1200oC). 



33 
 

 

Figure 3.5: Ni-Hf binary phase diagram. From ASM Handbook [18], and based on [116]. 

 

This supposed greater ductility afforded by Ni-Hf intermetallics also made its use in brazing repair of 

turbine blades and vanes attractive, as repairs using B-containing filler metals reported by Miglietti et 

al. [119] only achieved 25-51% the ductility of the base material being repaired (despite apparently 

equivalent yield strengths). In addition, the use of Hf with another d-block transition metal, Zr, has 

been investigated, and at least two patents exist for the use of such [120, 121]. The first such focuses 

on a repair process that uses Hf, Zr, both or (less preferably) both in combination with other MPDs 

such as B. The second patent more clearly specifies a compositional range of a Ni-Cr-Co-Hf-Zr filler 

metal with solidus temperature of 1175oC (or 1120oC with composition refinement and the addition of 

Ti and Al). Hypereutectic Ni-Cr-Hf and Ni-Cr-Zr alloys were used in the braze repair of Inconel-738 

by Miglietti and Du Toit [122, 123], as well as tensile testing of MarM247 brazed joints. Intermetallic 

phases including Ni5Hf, Ni7Hf2 and Ni5Zr were reported as having microhardness in the range 250-

400 HV, in comparison to 800-1000 HV for Cr-boride phases. Tensile results at all temperatures from 

room to 980oC for joints brazed at 1238oC were greatest for the Ni-Cr-Zr joints, achieving 52-62% 

MarM247 strength for 40 minutes hold time, and 55-70 % for 4 hours hold time. 

In cases where current MPD elements are used in conjunction with a novel MPD, there has been some 

preference shown for replacing the B content and retaining Si as an MPD, likely due to the greater 

tendency of borides to form and their high brittleness. However, as B is a stronger MPD in most 

systems in terms of liquidus depression, generally a corresponding increase in Si content is required 

so that the brazing temperature required is still sufficiently low. Nb was considered in the 

development of a B-free filler metal for brazing of heat-resistant steels used in liquid rocket engine 

nozzles by Ivannikov et al. [124]. A Ni-8Si-5Nb filler metal in the form of a 50 µm thickness melt-

spun foil with a narrow melting range of 1103oC – 1120oC was trialled, achieving a tensile strength of 

450 ± 30 MPa when a brazing temperature of 1150oC was applied for 30 minutes. 
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Be was also considered as a novel MPD element in combination with Si rather than as a sole addition 

[125]. In this study, a range of alloys with varying Be and Si content around the predicted ternary 

eutectic, ranging from 2 – 5 wt. % and 4 – 8 wt. % respectively, were produced. Again in this study, it 

was found that a compromise must be struck between alloy melting temperature and brittleness, 

especially when in the melt-spun ribbon form which may affect its practical application. The alloys 

Ni-5Si-3Be and Ni-6Si-5Be were selected for brazing trials with a 12Cr21Ni5Ti steel. For a brazing 

temperature of 1150oC and 40-minute hold time, tensile testing resulted in failure in the steel in the 

case of the Ni-6Si-5Be, the more brittle but lower melting temperature of the foils. Meanwhile, a 

tensile strength of 530 ± 50 MPa was achieved by the Ni-5Si-3Be alloy, greater than the 420 ± 30 

MPa achieved by a commercially-available B-containing filler (STEMET 1301-A, Ni-3.5Fe-7.5Cr-

4.5Si-2.6B). Ni with 2 wt. % Be addition was also considered in a computational study as a potential 

replacement of standard Be for joining of Zircaloy-4 used in components in CANDU heavy water 

nuclear reactors [126]. As pointed out in both studies however, Be and its oxides pose a significant 

health hazard. 

A summary of some currently used, and prospective novel MPD elements discussed above, is shown 

in Table 3.1 for comparison. 

Table 3.1: Summary of liquidus temperatures reported for various elements employed as MPD 

in Ni-based brazing alloys. 

Source MPD element(s) Concentration (at. %) Liquidus 

achieved (oC) 

Eutectic 

phase formed 

[19] B 17 (eutectic) ~ 1095 Ni3B 

[19] Si 21 (eutectic) 1143 Ni3Si 

[20] P 17 (eutectic) 891 Ni3P 

[113] Mn 32 / 60 1150 / 1048 - 

[115] Ge 16.7 / 19.4 1271 / 1230 Ni3Ge 

[116] Hf 11.8 (eutectic) 1190 Ni5Hf 

[124] Nb + Si 3 + 15.6 1120 - 

[125] Be + Si 24.3 + 9.3 ~ 915 - 

[126] Be 23.8 (eutectic) 1150 NiBe 

 

3.2 Alternative Melting Point Depressants from Other Systems 

As seen above, only a limited amount of alternative MPDs for use in Ni-based filler metals have been 

investigated. It may, however be beneficial to consider developments in non-Ni-based filler metals, 

especially those that still contain Ni or are used at similar temperatures, for example precious metal-

based (or precious metal–containing) filler metals. These alloys tend to be based on Au or Pd, with 

usually significant Cu, Ag or Ni additions, or a combination thereof (and indeed many Pd-bearing 

alloys contain a majority of Ag or Cu), with the mutual FCC solubilities allowing ductile brazed 
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joints. Others may be Ni-based, with Au or Pd additions to a conventional Ni-Cr-Si-B composition, in 

weight percentages in broadly in the 20 - 36 wt. % range. Lugscheider and Pelster [127] attempted to 

reduce the precious metal content (for economic purposes) of Ni-based filler metals Pd-36 (Ni-

36.8Pd-11Cr-2.2Si-2.4B wt. %), Pd-36M (Ni-36Pd-10Cr-1Si-3B wt. %) and Au-6 (Ni-20.5Au-5.3Cr-

3.4Si-2.3Fe-2.3B wt.%), possessing melting ranges of 818 – 992oC, 825 – 955oC and 943 – 960oC 

respectively. This was achieved with an increase in Si content, resulting in a marked decrease in 

precious metal content required to achieve similar results in brazing trials for two of the developed 

compositions (Ni-19.6Pd-8.8Cr-6.9Si-2.5B and Ni-10.7Au-5.8Cr-5.3Si-3.2Fe-2.8B). Furthermore, a 

reduction in both melting range and melting temperature was achieved for both of these compositions. 

The Ni-19.6Pd-8.8Cr-6.9Si-2.5B composition in particular displayed no brittle phases in the joint 

after brazing at 1000oC for 60 minutes. These appear to be rather promising results for such a low 

brazing temperature, and Au or Pd used as a primary MPD along with typical Si and B contents can 

produce ductile joints at low brazing temperatures. If the liquidus requirements are relaxed somewhat 

up to approximately 1050oC, further reductions in precious metal content and/or B and Si content 

while still allowing sub-1100oC brazing temperatures could be possible. However, it seems likely that 

with even such reductions in precious metal content, the raw cost of these elements means their wide 

use is still limited.  

 

3.3 Other Compositional Developments 

Some attempts at developing novel Ni-based filler metal compositions have focused on aims other 

than replacing current MPDs, instead attempting to enhance other properties of the filler metal. For 

example, Cu additions of 1 to 3 wt. % were added to a Ni-10Cr-3Fe-4.5Si-2.5B alloy by Zhang et al. 

[128], who reported greater solid solution volume fraction, and decreased intermetallics as Cu was 

increased. Isothermal solidification was possible for gap sizes up to 70 µm for this alloy, compared to 

30 µm for a commercial BNi-1a filler metal, for a brazing temperature of 1120oC and a 15-minute 

hold time. The computer-aided design of a Ni-3Cr-4B-0.5Ce (wt. %) alloy was demonstrated by 

Nishimoto et al. [129], with the aim of using an active element, cerium, and increasing wettability on 

high-Al base metals, reducing the occurrence of micro-voids and increasing the creep rupture strength 

of the joint to comparable to the base metal. Another attempt at improving wetting on otherwise 

difficult-to-wet base metals was presented by Sandin [40], simply with additions of 2 – 6 wt. % of Ti 

to conventional Ni-based filler metals BNi-2 and BNi-5. Ceramics such as alumina and yttria-

stabilised zirconia were successfully joined with various materials such as oxide-strengthened alloys, 

high Cr, Al and Ti alloys, and Ni-based superalloys, at temperatures higher than might be suitable for 

conventional precious metal fillers that would typically be used. 

High Fe and Cr, and reduced Ni filler metals were developed by Shi et al. [130] with the motivation 

of reduced cost, using Si and P as MPDs. However, corrosion resistance was compromised in 

comparison to a Ni-29Cr-6P-4Si filler metal. High Cr compositions have also been developed for 

enhanced corrosion resistance in hostile applications, particularly for brazing repair of nuclear reactor 

components for which filler metals require approximately 30 wt. % Cr [131]. Ta additions to such 

alloys in small wt. % were found to be beneficial for solidification cracking resistance when used in 

the weld repair of nuclear reactor component materials [131]. High Cr content was also utilised by 

Persson and Bornegård [132], along with Mo, to develop a filler metal resistant to corrosion from 

coolant used in a plate heat exchanger, for which commercial options did not possess a suitable 

melting range. The Ni-29Cr-8Mo-XFe-YSi filler developed showed shear strengths and corrosion 

resistance equal to or exceeding those of filler metals BNi-5 and Ni613. 
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3.4 Chapter Summary 

This section has reviewed the current literature on investigating novel MPD elements for use in new 

Ni-based brazing filler metals, used either as a complete replacement for current elements, or used in 

tandem with them. It can be seen that, generally, large concentrations of the prospective new MPD 

element are required to adequately suppress the liquidus, as is the case for Mn for example. Others, 

such as Hf, may still produce intermetallic phases but if these are of sufficient ductility, this can still 

represent an improvement compared to the more brittle boride and silicide phases. In the case of Ge, a 

γʹ-like Ni3Ge phase forms, taken advantage of by Dinkel et al. [115] to improve the mechanical 

properties of the joint, as well as supressing the liquidus temperature. 

There are other elements that would be expected to exhibit some MPD effect according to their binary 

phase diagrams with Ni, that haven’t been explored (or at least reported). Notably, there has also been 

little in the way of combining two or more novel MPD elements to further supress the liquidus 

temperature. This could be perhaps due to focus on specific applications where a low brazing 

temperature is not required, or due to the fact that this may require access to binary and ternary phase 

diagrams that might be unavailable or altogether unreported. Clearly though, there is much that could 

still be explored in terms of searching for novel MPD elements, or combinations thereof. 

Some prospective basic requirements of any developed filler metals may be suggested from the 

discussion presented in this chapter. Firstly, it should be considered necessary for a novel MPD 

element to suppress the liquidus temperature to at least approximately 1200oC, in order to enable 

brazing to be carried out comfortably below the solidus temperature of most Ni-based superalloys 

(and indeed, within the capability of many industrial vacuum furnaces). Furthermore, considering 

current commercial alloys, the upper limit of concetration of any novel MPD could be considered 25 

wt. % where possible, so as to ideally allow solidification of an FCC ISZ during brazing, and reducing 

the propensity for brittle intermetallic phases post-braze. To further aid this, any novel MPD should 

exhibit ideally increased solubilty in Ni, certainly as compared to elements such as B and P. As seen 

later in this work, these requirements are considered further. 

 

 

 

 

 

 

 

 

 

 



37 
 

4. High Entropy Alloys, Multi-Principal Element Alloys, and Brazing 

Applications 

The concept of alloying has existed for millennia, and has allowed the development of huge numbers 

of materials whose properties are superior to those of their base elements. Throughout this time, 

alloying has generally meant the small additions of one element to another element with otherwise 

attractive properties acting as a base, most notably the control of carbon impurities in Fe to produce 

steel. As discussed in Chapter 2, the development of Ni-based superalloys in the 20th century 

demonstrated the furthering of this concept to the point where ten or more alloying elements may be 

used, and some in concentrations of over 20 wt. %. Limitations of these alloys however have driven 

the search for materials that can operate at yet higher temperatures for future energy production and 

more efficient propulsion systems. High Entropy Alloys (HEAs), a relatively new class of alloys 

along with the broader idea of Multi-Principle Elements Alloys (MPEAs), have been touted as 

potentially meeting these needs. This section specifically will discuss the potential for their 

application to brazing. Firstly, a brief summary of their definition and background is necessary, before 

looking at the principles of the design and development of these alloys. Finally, this will be brought 

together by looking at how these concepts could be of benefit when applied to alloy development of 

novel brazing filler metals. 

 

4.1 Background to High Entropy Alloys 

HEAs were first reported by two separate authors in 2004 (although work on alloys of this kind 

existed prior to this, the definitions, as are broadly used today, were first introduced then). Yeh et al. 

[133] first defined high entropy alloys as containing five or more elements in roughly equiatomic 

ratios and between 5 – 35 at. % generally. In this work, Yeh et al. reported the solid solution 

formation for various HEAs. For example, the CuCoNiCrAlXFe system exhibited a single FCC phase 

for 0 < X < 5, transforming to dual-BCC and eventually single BCC solid solution as X exceeds 2.8. 

Even for a ten-element equimolar CuCoNiCrAlFeMoTiVZr, a simple as-cast microstructure was 

observed, with three solid solution phases.  

Meanwhile, Cantor et al. [134], first demonstrated the fabrication of an alloy consisting of 5 at. % of 

20 different elements (Mn, Cr, Fe, Co, Ni, Cu, Ag, W, Mo, Nb, Al, Cd, Sn, Pb, Bi, Zn, Ge, Si, Sb and 

Mg). The aim of this was to determine which of these elements would form simple non-intermetallic 

phases together. This resulted in one of the more widely established HEA systems, commonly known 

as Cantor’s alloy, consisting of transition metals Co, Cr, Fe, Mn and Ni. The 20 element alloy was 

found to be formed predominantly of a single FCC phase, rich in these five elements, and with 

substantial concentrations of solution elements. Using equimolar CrMnFeNiCo as a basis, alloys from 

six to nine components were investigated by additions of Nb, Ti, V, Cu and Ge. The primary FCC 

phase was observed to dissolve significant Nb, Ti and V quantities, whereas Cu and Ge were 

segregated. Cantor et al. concluded that the number of phases formed in these alloys was always well 

below that predicted by the Gibbs phase rule, given in Equation 4.1: 

𝐹 = 𝐶 − 𝑃 + 2    (4.1) 

where F is the degrees of freedom (that is, independently variable parameters such as temperature, 

pressure and composition required to completely describe the equilibrium state of the system), C is 

the number of components, and P is the number of phases. 
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These studies, amongst others, generated significant interest in the search for similar groups of 

elements that, when combined in equiatomic amounts (thus maximising the configurational entropy), 

would promote the formation of similarly simple single phase FCC or BCC microstructures, rather 

than several complex intermetallic phases. The purported benefits of this discovery was that these 

alloys would benefit from the contribution of solid solution strengthening and high degree of lattice 

distortion, yet retaining sufficient ductility. This ‘lattice distortion effect’ is one of the widely used 

four core effects of HEAs (detailed by Murty et al. [135] and also discussed at length by Miracle & 

Senkov [136]), the other three being; the high entropy effect (proposes that high configurational 

entropy may encourage solid solution formation rather than intermetallic compounds); the sluggish 

diffusion effect (proposes that diffusion in HEAs is much slower than in conventional alloys; and the 

‘cocktail’ effect (less a physical phenomena, and more (as pointed out in [136]) a decription of the 

unusual and unpredictable properties arising from the combination of individual component elements 

in HEAs). There is some dispute as to whether these effects are universal, or are reproducible, for 

example the purported sluggish diffusion has been questioned by Pickering and Jones [137]. 

However, the effect of solid solution strengthening in a highly distorted lattice, purportedly higher 

than in conventional alloys and arising from the different sized atoms and characterised by the δr 

parameter (see next section), as illustrated in Fig. 4.1, is likely to be of importance. More needs to be 

done to quantify this, however, and to distinguish such effects from other causes [136]. 

 

 

Figure 4.1: Illustration of (a) single component BCC unit cell, as compared to (b) distorted lattice as a result of varying 

atomic sizes of components. 

 

4.2 Empirical Thermodynamic Parameters for HEAs 

As the interest and study of HEAs developed, so did the importance of their design. As more data on 

many various fabricated and characterised HEAs has been catalogued from the literature, trends 

between composition and microstructure could be discerned and used to predict various properties of 

yet more novel HEA compositions, as attempted by various authors including [136, 138 - 140]. 

There are several empirical thermodynamic parameters that have been used to describe some 

fundamental properties of HEAs, and these have emerged as useful tools for the prediction and design 

of HEAs. Some of these are based on the Hume-Rothery rules for solid solution formation [141], 

which suggests that solid solution formation is favoured when elements possess similar atomic size, 
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crystal structure, electronegativity and valence electron concentration (VEC). The atomic size 

mismatch is one such factor considered in the design of HEAs, and a parameter δ describes the 

average atomic size mismatch in an 𝑛-element system (Equation 4.2): 

𝛿 =  √∑ 𝑐𝑖

𝑛

𝑖=1

(1 −
𝑟𝑖

�̅�
)2        (4.2)  

where �̅� is the average atomic radii of all elements in the system, 𝑟𝑖 is the atomic radius of the 𝑖th 

element, and 𝑐𝑖 is the atomic concentration of the 𝑖th element. According to the Hume-Rothery rules 

for conventional alloys, the difference in atomic size between solute and solvent should be less than 

15% [141, 142], and so systems with small δ are predicted to favour solid solution microstructures. 

The Pauling electronegativity difference, ΔχP, which describes an atoms tendency to attract a shared 

pair of electrons, has been considered to address the second Hume-Rothery rule. It is given by 

Equation 4.3: 

∆𝜒𝑃 =  √∑ 𝑐𝑖(𝜒𝑃𝑖 − 𝜒𝑃̅̅̅̅ )2

𝑁

𝑖=1

       (4.3) 

where 𝜒𝑃𝑖 is the Pauling electronegativity of the 𝑖th element and 𝜒𝑃̅̅̅̅  is the average Pauling 

electronegativity of all components. According to the Hume-Rothery rules, ΔχP should be minimised 

between all components in order to promote solid solution. The VEC has also been considered an 

important parameter in predicting the stability of solid solutions, with a particular crystal structure, or 

intermetallics. The average VEC of all components in a system is thought to indicate the crystal 

structure of the formed solid solution (this is discussed in greater detail below). This parameter is 

given by Equation 4.4: 

𝑉𝐸𝐶 =  ∑ 𝑐𝑖𝑉𝐸𝐶𝑖

𝑛

𝑖=1

  (4.4) 

Other approaches to the prediction of stable phases in HEAs use thermodynamic parameters, namely 

the average enthalpy of mixing of binary pairs (ΔHmix) and the entropy of mixing (ΔSmix). ΔHmix 

represents the compatibility of elements in forming solid solutions. A perfect solid solution has ΔHmix 

= 0, whereas a negative value indicates tendency to form intermetallic compounds, and a positive 

value indicates tendency to segregate. The ΔHmix is given by Equation 4.5: 

∆𝐻𝑚𝑖𝑥 = ∑ ∑ 𝛺𝑖𝑗𝑐𝑖𝑐𝑗

𝑛

𝑗>𝑖

𝑛

𝑖=1

=  ∑ ∑ 4𝐻𝑚𝑖𝑥
𝑖𝑗

𝑐𝑖𝑐𝑗

𝑛

𝑗>𝑖

𝑛

𝑖=1

      (4.5) 

where 𝐻𝑚𝑖𝑥
𝑖𝑗

 is the mixing enthalpy of the 𝑖𝑗 binary pair, and 𝑐𝑖 and 𝑐𝑗 are the atomic concentrations of 

elements i and j respectively. ΔSmix represents the configurational entropy - or the degree to which 

atoms in a lattice arrange themselves randomly - which is maximum for equiatomic systems, and is 

given by Equation 4.6: 
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∆𝑆𝑚𝑖𝑥 =  −𝑅 ∑ 𝑐𝑖𝐿𝑛(𝑐𝑖)      (4.6)

𝑁

𝑖=1

 

 where R is the gas constant. Both parameters are related by the Gibbs free-energy of mixing equation 

(Equation 4.7): 

∆𝐺𝑚𝑖𝑥 =  ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥      (4.7) 

No single parameter for a given HEA system gives a complete picture of the resulting microstructure. 

Rather, general correlations between parameters and observed microstructures are used for predictive 

purposes. Guo & Liu [139] suggested that δ is the critical factor determining the formation of solid 

solution or bulk metallic glasses (BMGs). The widely studied equiatomic CoCrFeMnNi alloy exhibits 

a single-phase FCC microstructure, and has a calculated δ of just 1.18 % [143], and additions of Al up 

to a molar ratio of 0.2, and Al and Cu up to molar ratios of 0.3 each retained this, while increasing δ to 

2.77 % and 3.65 % respectively [143]. Recently, Kube et al. [144] analysed some 2478 quinary as-

sputtered HEAs, noting a preference for BCC formation over FCC at higher atomic size differences 

which was attributed to the BCC lattice being able to accommodate greater atomic size differences 

with less strain energy increase. However, it is noted that this preference is likely only realised for the 

extremely fast cooling rates experienced by the sputtering technique, and may not be observed under 

more equilibrium conditions [144]. Zhang et al. [145] plotted δ against ΔHmix for reported HEAs, 

defining zones where only solid solutions, or solid solutions plus second phases, form. Simple solid 

solution HEAs had ΔHmix close to zero (approximately in the range -15 ≤ ΔHmix ≤ 5 kJ mol-1) and 

small δ (approximately in the range 0.5 ≤ δ ≤ 6) in comparison to BMGs (it should be noted that in 

this study, and many others, δ is multiplied by 100 to express as a percentage). However, while 

obeying such rules may be necessary for solid solution formation, it may not always be sufficient 

[146]. This can easily be seen when considering cases where a binary pair in a prospective alloy may 

have ΔHmix << 0 (favouring ordering), while another pair has ΔHmix >> 1 (favouring segregation). The 

two may largely cancel each other out in the expression for calculating ΔHmix, and so give rise to an 

overall value close to zero, indicating solid solution formation may not form despite a ΔHmix that 

suggests it would. But despite this close to zero value, extreme values of ΔHmix between specific pairs 

is likely to mean that a single solid solution microstructure would not be attained with that 

combination of elements. 

As can be seen from Equation 4.6, maximising ΔSmix minimises the Gibbs free energy for a given 

temperature. ΔSmix increases with the number of elements, and is maximised for a given number of 

elements when they are present in equiatomic ratios. Thus, in this way the early HEA research 

introduced the idea that equiatomic solid solutions may be thermodynamically favoured over 

intermetallics by minimising the Gibbs free energy due to the entropy contribution. Adding a third 

axis for ΔSmix, Zhang et al. [145] reported solid solution forming HEAs possessed higher ΔSmix values 

than reported BMGs, in the range 12 – 17.5 J K-1 mol-1. Zhang & Fu [147] created a similar plot for 

various transition metal and Al containing HEAs, proposing rules for single solid solution formation 

of ΔSmix ≤ 13.38 J K-1 mol-1, -10 ≤ ΔHmix ≤ 5 kJ mol-1 and δ ≤ 4. However, the value of ΔSmix here 

represents the theoretical maximum configurational entropy with perfect mixing i.e. no short-range 

ordering, which in reality is most often not the case. As has been discussed, when considering ΔHmix 

of a binary pair, ordered intermetallic phases may form even for a 1:1 ratio of the elements, 

representing maximum ΔSmix for the composition, but with ordered formation in the lattice rather than 

random distribution. Therefore, the use of just ΔSmix in HEA design is not common beyond keeping 

compositions close to equiatomic and within the range proposed by Yeh et al. [133]. 
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The Pauling electronegativity, χP, of elements in an alloy is another Hume-Rothery requirement for 

solid solution formation, and so it has been considered that this may be of similar relevance in HEAs. 

Guo & Liu [139], however, found little correlation between ΔχP (Equation 4.3) and tendency for solid 

solution formation across a wide array of reported HEAs. There are alternative electronegativity 

values defined since Pauling, for instance the Allen electronegativity, ΔχA (relates electronegativity to 

the average s and p valence shell electrons). Poletti and Battezzati [138] plotted ΔχA against δ and 

observing that for 1 < δ < 6 %, and 3 < ΔχA < 6, only solid solutions (BCC, FCC and both) were 

formed for a large catalogue of reported HEAs. Leong et al. [148] also discussed alternative 

electronegativity scales plotted against ΔHmix, concluding that while ΔχA was better in distinguishing 

microstructures of HEAs compared to ΔχP, a third scale, the Mulliken electronegativity, ΔχM (often 

termed an absolute scale, derived from the ionisation energy and electron affinity) was potentially 

better than both. Nevertheless, the incomplete datasets on HEAs (and possible bias towards reporting 

elements that do alloy) renders a clear answer to such questions difficult to obtain [148]. 

The average VEC has received substantial attention for being a predictor of the structure of HEA solid 

solutions, with the solid solution crystal structure (BCC, FCC or both) being distinguished by 

different average VECs. This tends to be separated from parameters like ΔHmix that indicate whether 

solid solution will form or not in the first place. For example, Guo et al. [149] conducted analysis on a 

number of AlxCrCuFeNi and AlxCoCrCuFeNi HEAs, suggesting that while ΔHmix was the important 

parameter for predicting solid solution or intermetallic formation, VEC was useful for distinguishing 

between BCC (VEC ≤ 6.7), FCC (VEC ≥ 8), or mixed (6.7 ≤ VEC ≤ 8) microstructures. Through this 

concept, VEC has been used to optimise compositions of HEAs where σ-phase formers are present in 

order to avoid or reduce its formation. Tsai et al. [150] proposed a σ-prone VEC range of 6.88 to 7.84 

for Cr- and V-containing HEAs (for the set of elements Al, Co, Cr, Cu, Fe, Mn, Ni, Ti and V), 

meanwhile noting the overlap with the dual BCC+FCC VEC range of Guo et al. [149]. Similarly, 

Fang et al. [151] observed a transition to grain boundary σ formation when VEC increased from 7.9 to 

8.0 due to Cr enrichment at the expense of Fe in CoCrFeNi alloys. Recently Yang et al. [152] 

conducted a high throughput CALPHAD investigation of the VEC criteria in the AlCoCrFeNi system, 

finding that over 90% of compositions were BCC for 5.7 ≤ VEC ≤ 7.2, and 100% were FCC for VEC 

≥ 8.4. The limitations of such VEC criteria, however, are that they lose validity over a large number 

of elements and possible systems, and so are most useful for a specific set of elements such as in the 

studies described above. Put another way, the VEC criteria for BCC or FCC formation for one alloy 

system may not be the same for another alloy system. Even within a set of elements, the VEC 

criterion alone is not completely accurate as the alloy density and temperature can play a role in 

determining BCC or FCC formation, as shown by Yang et al. [152]. Nonetheless, most studies 

demonstrate that higher VECs increase the propensity for FCC formation over BCC formation. 

It is also worth noting that for some HEAs, the criteria may only be relevant for the as-cast state in 

which they have been studied. Rapid cooling during fabrication may supress formation of lower 

temperature equilibrium phases precipitating from an otherwise simple solid solution phase, which 

have sometimes only been realised after further processing, heat treatment or alternative fabrication 

techniques. This has been pointed out by Pickering and Jones [137] for the CoCrFeMnNi HEA, which 

has been found to exhibit precipitation of σ-phase after exposure below 800oC [153]. Phase stability 

may also be impacted by irradiation [154, 155]. In all, the above correlations and criteria have 

limitations but can be useful tools for optimising compositions towards solid solution formation over 

intermetallic or glass formation (by looking at δ and ΔHmix), and then for a limited system optimising 

for greater tendency for BCC or FCC formation as desired (by looking at VEC). 
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4.3 Multi-Principal Element Alloys 

As well as the compositional definition put forward by Yeh et al. [133], other early definitions of 

HEAs were based on the calculated ΔSmix value, arising from the ratios of element concentration in a 

system. From this idea, an alloy might be termed ‘low’ entropy (ΔSmix < 0.69 R) or ‘medium’ entropy 

(0.69 < ΔSmix < 1.61), with only those with ΔSmix > 1.61 technically termed as ‘high’ entropy [136]. 

This definition, however, would categorise even an equiatomic quaternary alloy possessing a single 

solid solution phase microstructure as a medium entropy alloy (MEA), as it would for many non-

equiatomic quinary alloys. These rather restrictive definitions have over time broadened, such that 

alloys with only three or four elements, or HEAs with small dopant additions (< 5 at. %) may be 

considered as HEAs, or MEAs, or more generally multi-principal element alloys (MPEAs). The 

importance is on the resulting simple microstructures containing one (or more) solid solution phase, 

with no (or at least only those deliberately introduced for mechanical purposes) intermetallic phases 

while using multiple main alloying elements, rather than on the strict adherence to maximum 

configurational entropy that might result in a less favourable microstructure. 

As it has been noted in, a single FCC phase microstructure may be insufficiently strong, while a single 

BCC phase may be insufficiently ductile [156-158]. Therefore, numerous attempts to address such 

trade-offs by encouraging dual-phase microstructures or additional strengthening phases have been 

made. In some instances, these attempts have been realised by moving compositions of HEA systems 

(either novel or previously studied) away from traditional equiatomic compositions. For example, Li 

et al. [159] demonstrated a strategy to create transformation-induced plasticity assisted, dual phase 

HEAs (TRIP-DP HEAs) by shifting from equiatomic CoCrFeMnNi to a Co10Cr10Fe80-XMnX (at. %) 

system. For X = 30, a TRIP-DP HEA was achieved, whereby a partial martensitic transformation 

from single phase FCC to FCC + HCP was observed. Compared to single phase FCC Co10Cr10Fe80-

XMnX (observed for X = 40 and 45), the TRIP-DP HEA substantially outperformed it mechanically 

both before and after grain refinement. Li et al. [160] also furthered this strategy to demonstrate a 

quinary TRIP-DP HEA, Co20Cr20Fe40-XMn20NiX (at. %, 0 ≤ X ≤ 20), which exhibited greater UTS and 

strain hardenability than the equiatomic composition for X = 6. Some equiatomic HEAs may possess 

dual-phases, such as the equiatomic composition of the widely studied AlCoCrFeNi system, 

possessing both ordered B2 (primitive cubic CsCl structure) and disordered A2 (BCC) solid solutions, 

which Lim et al. [161] observed as having favourable specific yield strength at intermediate 

temperatures compared to Ti alloy IMI834. However, a long-term transformation to FCC + σ above 

500oC resulted in a notable drop in performance. In addition, Ghassemali et al. [162] heat-treated 

equiatomic AlCoCrFeNi resulting in a transition to BCC + FCC solid solutions. Studying the effect of 

crack propagation, the distribution of FCC precipitates acted as obstacles to propagation, either 

stopping cracks or redirecting them. 

Eutectic HEAs and MPEAs further this idea by attempting to achieve a dual solid solution 

microstructure, commonly a stronger, less deformable BCC solid solution or B2 phase and a softer, 

more deformable FCC phase, where fine lamellae of the two phases provide balanced mechanical 

properties. With pearlitic steels, high temperature yield strengths can increase with decreasing 

lamellar spacing, λ, proportional to λ-0.5 – λ-1, and a similar relationship was found for the first eutectic 

MPEA reported, Al15Fe30Mn35Ni20, consisting of FCC and B2 lamellae, which exhibited yield strength 

of 740 ± 30 MPa and 8 % elongation under tension [163]. The stronger phase is not always 

necessarily of BCC structure, and can be an intermetallic. Investigating CoFeMnNiTi eutectic HEAs, 

Jain et al. [164] found the Co25Fe25Mn5Ni25Ti20 composition consisted of FCC and Laves (Ti2(Ni,Co)) 

lamellae, and exhibited good high temperature strength of 560 MPa at 800oC. Chanda and Das [140] 

fabricated CoCrFeNiNbX (0.45 < X < 0.65) and CoCrFeNiTaY (0.2 < Y < 0.5) HEAs, consisting of 
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FCC solid solution and Fe2Nb and Co2Ta Laves phase lamellae respectively. Meanwhile, the BCC 

phase was instead retained by Gao et al. [165] who fabricated an AlCoCrFeNi2.1 alloy, exhibiting a 

dual L12 and B2 microstructure. An excellent combination of mechanical properties was reported, 

with a UTS of 1351 MPa and elongation of 15.4 %. The stability of eutectic microstructures is 

generally found to be dependent on solidification rates, for example [166]. Chanda and Das [140] also 

suggested that eutectic phases (in the FCC + Fe2Nb/Co2Ta eutectic microstructure in their 

CoCrFeNiNb and CoCrFeNiTa HEAs, as well as for others reported in literature) become stable for -

18 ≤ ΔHmix ≤ -6, 6 ≤ VEC ≤ 8.5, and δ > 3 %. 

The introduction of elements in small quantities that may encourage the formation of secondary 

precipitate phases, particularly nano-precipitates, is another strategy. Wu et al. [167] added 0.5 at. % 

C to the extensively studied equiatomic CoCrFeMnNi, as an interstitial element to advance the 

properties for cryogenic applications. The single phase FCC microstructure was retained, while 

improving strain hardening rate, yield strength and UTS. Li et al. [168] also studied C addition of up 

to 3 at. % to CoCrFeMnNi. At 1 at. % C addition, the nano-carbide volume fraction increased to 2.9 

% and caused an increase in yield strength from 371 MPa to 634 MPa. Also for this HEA, Rogal et al. 

[169] investigated adding spherical SiC nanoparticles, through mechanical alloying followed by hot 

isostatic pressing (HIP). The resulting microstructure consisted of FCC solid solution, M23C6 and σ-

phase. An addition of 5 wt. % of the SiC nanoparticles improved compressive yield strength 

significantly, from 1180 MPa to 1480 and 1940MPa (for milling speeds during mechanical alloying of 

100 and 200 RPM respectively), meanwhile reducing plasticity. Oxide dispersions, such as Y2O3, 

have also been shown to significantly improve the mechanical properties of single FCC phase 

CoCrFeNi [170]. 

The above examples demonstrate a trend towards optimising the design of HEAs and MPEAs in order 

to enhance the properties, often requiring deviations from the traditional compositional definition of 

HEAs. In encouraging dual-phase and eutectic microstructures, as well as employing small 

concentrations (less than the usual 5 at. % lower limit for HEAs) of alloying additions in order to 

provide strengthening precipitates, authors have been able to balance the mechanical properties 

offered by single phase BCC or FCC microstructures. 

 

4.4 Application as Brazing Filler Metals 

Despite the aforementioned significant interest in recent years in HEAs and MPEAs, scant literature 

exists for the application of these concepts to brazing. This is perhaps surprising, as this technology 

could stand to benefit from the potentially attractive properties exhibited by some developed HEAs 

and MPEAs, such as high yield and ultimate tensile strengths (at both room and elevated 

temperatures), resistance to crack propagation, and high cycle fatigue strength. One reason for this 

lack of literature could be the still relative immaturity of the HEA field. Much in the way of 

fabrication and processing of HEAs, and the effect on microstructure, is not fully understood. This 

knowledge would be important for use in brazing where materials experience high temperature and 

interacting chemistries. However, a further reason could be that, of the HEAs/MPCAs that have been 

developed for (or applied to) brazing, the liquidus temperature (and hence required brazing 

temperature) is often prohibitively high for practical limitations in industry. Many industrial furnaces 

used for current brazing applications have operating temperatures no higher than 1200oC, and using 

higher temperatures can be costly. Despite this, ternary phase diagrams frequently show that liquidus 

decreases towards more equiatomic compositions, away from the corners of the phase diagram. 
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Therefore, it is possibly the case that the application of HEAs/MPEAs as brazing filler metals has 

been limited more by the lack of attempts at lowering the liquidus, as many of the proposed 

application for HEAs are in high temperature applications. 

There may be a further issue when considering the limited frequency with which some elements are 

used in HEAs and MPEAs. Fig. 4.2 (courtesy of [136]) shows this frequency as of 2017, and it can be 

seen how few elements are used in a substantial proportion of studies. Elements that may have the 

effect if lowering liquidus in a filler metal are rarely used, but again this is not wholly surprising as if 

elements such as B or P were used in large or even equiatomic quantities, the microstructure may be 

comprised mostly of brittle intermetallics. Si has seen more use, in both small [171] and equiatomic 

[172] quantities, but for purposes of mechanical properties [171] or solid solution formation [172]. 

 

Figure 4.2: Frequency with which elements have been found in HEA studies as of 2017. Image reproduced with permission 

from [136]. 

 

Of the studies demonstrating the use of HEA or MPEA filler metals, the base materials being brazed 

have generally been either Ni-based superalloys or ceramics. For the former, the group of Tillmann 

and co-workers in Dortmund has been active in addressing the use of MPDs to allow use of 

HEAs/MPEAs as filler metals. The use of Ge and Sn as MPDs in equiatomic CoCrCuFeNi(Ge or Sn) 
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alloys was reported by the group [171], with the HEA filler metals being used to braze Ni-based 

superalloy Mar M-247. While the alloy melting ranges were not verified by DSC, CALPHAD 

predictions gave the melting ranges of the Ge- and Sn-containing alloys as 918 – 1171oC and 969 – 

1257oC, respectively, and so brazing was conducted at 1200oC and 1275oC respectively. Compared to 

joints brazed with commercial AWS BNi-5 filler metal, which achieved 963.6 ± 63.7 MPa (brazed at 

1200oC), the Ge- and Sn-containing HEA filler metals achieved strengths of 407.3 ± 81.0 and 306.8 ± 

56.2 MPa, respectively. The Sn-containing HEA filler metal reportedly suffered from brittle low-

temperature eutectics, impacting the strength, whereas the Ge-containing filler metal showed evidence 

of ductile behaviour in failure. Conceivably, accurate melting ranges from DSC measurements could 

allow optimisation of the brazing temperatures used for these alloys, potentially resulting in stronger 

joints. Tillmann et al. [172] also investigated the use of Ga in an equiatomic CoCrCuFeNi HEA. The 

equiatomic CoCrCuFeNiGa composition (16.66 at. % each) achieved the lowest liquidus, but this was 

still as high as 1259oC. The as-cast microstructure was found to have three phases, an extra phase 

compared to the 10 at. % Ga composition. When brazing Mar-M 247 Ni-based superalloy with the 

equiatomic CoCrCuFeNiGa filler metal at 1275oC for 30 minutes, a shear strength of 388 ± 73 MPa 

was recorded, where the filler thickness was 200 µm. The joint microstructure post-brazing also 

consisted of just two FCC phases. It is conceivable that a yet lower liquidus could be achieved 

through optimising the composition of the CoCrCuFeNi component for liquidus as well as using Ga 

as MPD, but this was not discussed by the authors.  

 

 

Figure 4.3: (a) As-cast microstructure of fabricated Co0.25FeNiMn1.75Cu MPCA filler metal. (b) Section of IN600-

Co0.25FeNiMn1.75Cu brazed joint. Images reproduced with permission from [176] 

 

Elsewhere, the first published study into using a HEA as a brazing filler metal was by Bridges et al. 

[173]. Laser brazing of IN718 superalloy with a FCC NiMnFeCo0.25Cu1.75 HEA was demonstrated, at 

a brazing temperature of 1165oC (15oC above the reported alloy liquidus temperature) and achieving a 

220 MPa maximum shear strength. The HEA used in this study was cold-rolled to a 400 µm 

thickness, however, which would be considered overly thick for an insert such as a foil. Given the gap 

size here, therefore, it might be more appropriately considered a wide-gap braze, for which longer 

brazing times would likely be required for optimum results. Gao et al. [174] demonstrated joining of 

IN600 superalloy with a Co0.25FeNiMn1.75Cu MPEA. The as-cast MPEA exhibited a dendritic 

microstructure, but with both phases possessing an FCC structure (Fig. 4.3(a)) of similar lattice 

parameters. Again, the MPEA filler metal in this study was rolled only to a thickness of 300 µm, 

which would be likely considered a gap sized more appropriate for braze repair techniques. 
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Nonetheless, joint shear strength increased with brazing hold time up to a maximum of 530 ± 20 MPa 

after 90 minutes. Beyond 90 minutes hold time, the formation of brittle Cr-Mn intermetallics 

occurred, which decreased the strength. Fig. 4.3(b) shows the microstructure of the IN600 - 

Co0.25FeNiMn1.75Cu brazed joint following 120 minutes at 1200oC. 

The brazing of ceramics (either to ceramics or to alloys) using HEA/MPEA filler metals has seen 

perhaps equal attention in the literature as for brazing of metallic materials. Wang et al. [175] used a 

(presumably equiatomic) CoFeCrCuNi HEA to produce joints of SiC ceramic, with the goal of 

achieving intermetallic free joints due to the single-phase microstructure of the HEA. In this study, a 

joint shear strength of 60 MPa was achieved when brazing at 1180oC for 1 hour, with both higher and 

lower temperatures resulting in reduced strength. This strength compared favourably in this 

application to reported maximum strength of 15.9 MPa using a typically used AgTiCu filler metal 

[176]. Again, it should be pointed out the thickness of filler used by Wang, at 600 µm, which would 

be considered wider than typical and is indeed six times thicker than the filler used in the study being 

compared to, rendering that comparison more complex. A dissimilar brazed joint was shown by 

Tillmann et al. [177], who joined Hf-metallised YSZ ceramic to Crofer 22 APU steel using a 

CoCrFeNb0.73Ni2.1 HEA. Using this filler metal, almost double the shear strength was achieved 

compared to when using a typical AgCuTi3 filler metal, albeit at a brazing temperature of 1200oC, 

some 280oC higher than that for AgCuTi3. Zhang et al. [178] brazed a ZrB2-SiC-C ceramic to Ni-

based superalloy GH99, using a composite Ti/CoCrCuFeNi filler metal. A brazing temperature of 

1220oC and 60 minutes hold time was used, with a shear strength of 70 MPa achieved. This high 

temperature needed for brazing, however, caused a reaction between Ni and the ceramic, forming 

brittle intermetallics that limited the strength. 

 

4.5 Chapter summary 

This section has introduced and discussed the concepts of HEAs and MPEAs, their properties, and 

how these properties may make them attractive for use as brazing filler metals. Since the mid-2000s, 

the massive interest in HEAs and MPEAs has led to much research on certain HEA families, 

particularly those based around the Cantor alloy (Cr, Co, Fe, Mn, Ni), other transition metal and 

refractory elements (Cu, Mo, Nb, Ta, Ti, V), as well as the post-transition metal Al. Initially, much 

focus was placed on compositions using these elements that would possess a single phase, solid 

solution microstructure, usually either BCC or FCC. However, in the pursuit of more balanced 

mechanical properties, compositions that could promote dual-phase microstructures, eutectic 

microstructures, or secondary strengthening phases were studied, moving further away from the 

earlier, stricter equiatomic definition of HEAs. Promising combinations of high strength and ductility 

have been reported for several systems, and would clearly be attractive for many applications, 

including as brazing filler metals. However, as shown, only a limited amount of literature exists on the 

use of HEAs and MPEAs as brazing filler metals, perhaps due to greater interest in their promise in 

higher temperature applications, for example as structural materials for nuclear reactors. Of the 

literature that does exist, little has been attempted to suppress the typically high melting temperatures, 

which might otherwise limit their use as filler metals, for example when brazing lower melting point 

superalloys, or due to vacuum furnace temperature capabilities. Some use of MPDs as part of a HEA 

filler metal composition has been reported, but still the melting temperatures reported are high 

compared to conventional Ni-based filler metals used in industry. There exists room for development, 

therefore, in exploring compositions of HEAs and MPEAs with yet lower melting temperatures which 
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could provide the mechanical benefits associated with these alloys, yet be employed within the 

temperature range most relevant for brazing of Ni-based superalloys in industry. 
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5. CALPHAD & Thermo-Calc 

As metallic materials become ever more complex, so does the task of predicting their properties. With 

modern alloys such as the superalloys containing numerous elements, the phase equilibria calculations 

become dauntingly large even when established equations exist. Thankfully, many computing tools 

allow the modelling and prediction of properties of metallic systems, particularly those relevant to this 

thesis such as transformation temperatures, phase constitution and crystal structure. The CALPHAD 

method (CALculation of PHAse Diagrams) is one such, and allows the modelling of thermodynamic 

properties of materials. It greatly benefitted the development of novel alloys through allowing 

screening and mapping of compositions meeting the requirements of the new material, whereas 

previously phase equilibria and diagrams would have to be physically investigated requiring 

enormous time and costs. 

 

5.1 Brief Overview of Development 

Development of the CALPHAD modelling method was initially started by Kaufman in the late 1950s 

[181], and this continued through the 1960s and 1970s through Kaufman and various other research 

groups, including those of Hillert and Ansara [181]. More complete histories of the development 

timeline can be found elsewhere [181, 182]. By the 1970s, several databanks of calculated phase 

equilibria had been and were being established at various institutions, and the forming of a European-

wide common databank was realised with the formation of the Scientific Group Thermodata Europe 

(SGTE) in 1979 [181]. These databases and the advent of more powerful computing later allowed the 

development of software which could undertake the burdensome calculations that previously had to 

be used, such as calculating tangential planes contacting minima of Gibbs energy surfaces for ternary 

systems. Today, numerous databases are in use for CALPHAD modelling of systems. 

 

Figure 5.1: Sequential modelling stages used in CALPHAD. Image reproduced with permission from [183]. 

 

The calculations carried out by the CALPHAD method, in order to predict phase information about 

binary, ternary and even on to high order systems, all essentially start with the minimisation of total 

Gibbs energy. Thorough and extensive descriptions of this can be found in elsewhere, in particular the 
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work of Saunders and Miodownik [182]. For individual elements, this is expressed in polynomial 

form, and the term coefficients are stored in databases [183]. These data are then used in the next step 

which is to consider binary systems, for determining the Gibbs energy of both elements in each phase. 

Due to the complexities of also considering intermediate phases, solubility in phases and interactions 

between elements, it is important to have supporting experimental data on phase equilibria and phase 

thermodynamic properties [183]. With rigorous binary modelling it is then possible to build up to 

ternary system modelling, using only the binary parameters (i.e. constructing the ternary system from 

the three separate binary systems covering possible combinations of three elements). Again, 

supporting experimental data, particularly for ternary phases existing only in the ternary system, is 

required for a complete picture [182, 183]. Continuing to build in this way, the method eventually 

extends to multi-component systems reflecting real-life alloys, with the amount of supporting 

experimental data influencing the overall accuracy (Fig. 5.1, courtesy of [183]). 

The total Gibbs energy of a system is a sum of the Gibbs energies of the phases in the system, and the 

Gibbs energy of each phase has multiple contributing Gibbs energies, depending on the phase. For 

metallic systems, for instance, important contributing Gibbs energies are Gref (weighted sum of molar 

Gibbs energies of each individual element), Gideal (contribution from ideal random mixing of 

elements), and GE (contribution from excess energies not covered by other terms, including non-ideal 

mixing). Therefore, the Gibbs energy of a phase can be expressed as: 

𝐺 =  𝐺𝑟𝑒𝑓 + 𝐺𝑖𝑑𝑒𝑎𝑙 +  𝐺𝐸 …              (5.1) 

Other terms can be included for a complete accounting of contributions, such as Gmag (contribution 

from magnetic behaviour), which is important for magnetic materials, but for others the contribution 

in metallic systems is much less than the terms in Equation 5.1 (though some like Gsurf (contribution 

from surface energy) become more important for nanomaterials [183]). In an n-component case, for a 

phase A, these terms can be calculated as in Equations (5.2) – (5.5): 

𝐺𝑟𝑒𝑓
𝐴 =  ∑ 𝑥𝑖

𝑛

𝑖

∙  𝐺𝑖
𝐴           (5.2) 

where xi is the molar fraction of element i and Gi
A is the Gibbs energy of element i, given by the 

temperature-dependent polynomial expression: 

𝐺𝑖
𝐴 = 𝑎 + 𝑏𝑇 + 𝑐𝑇 ln(𝑇) + ∑ 𝑑𝑖

𝑖

𝑇         (5.3) 

where a, b, c and di are adjustable parameters that are stored in the database, and T is temperature. 

𝐺𝑖𝑑𝑒𝑎𝑙
𝐴 = 𝑅 𝑇 ∑ 𝑥𝑖 ∙  ln 𝑥𝑖

𝑛

𝑖

        (5.4) 

where R is the gas constant. 

𝐺𝐸
𝐴 =  ∑ ∑ 𝑥𝑖𝑥𝑗𝛺𝑖𝑗

𝑗>𝑖𝑖

        (5.5) 

where Ωij is a temperature-dependent interaction parameter between elements i and j, derived from 

Redlich-Kisler formalism [184] as described in [182, 183]. Equation 5.1 now becomes, generally: 
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𝐺𝑟𝑒𝑓
𝐴 =  ∑ 𝑥𝑖

𝑛

𝑖

∙  𝐺𝑖
𝐴 + 𝑅 𝑇 ∑ 𝑥𝑖 ∙  ln 𝑥𝑖

𝑛

𝑖

+  ∑ ∑ 𝑥𝑖𝑥𝑗𝛺𝑖𝑗

𝑗>𝑖𝑖

          (5.6)       

Where ternary interactions are a consideration, extra interaction terms such as Ωijk can be added to 

extend Equation 5.6, but for even higher order systems it has been proposed that contributions from 

higher order terms have a negligible effect, yet would drastically increase the computing demands 

[182]. 

Equation 5.6 is the general case for simple substitutional phases such as liquids, FCCs and BCCs, but 

as described in [182], more complex computational methods have been proposed for interstitial 

solutions and ordered intermetallic. When the Gibbs energy for each phase in a system is calculated in 

this way, the total Gibbs energy of the system can be determined and the minimisation of this (for a 

given composition, temperature and pressure) gives the thermodynamic equilibrium state. The 

construction of accurate and complete databases used in CALPHAD software such as Thermo-Calc 

(TC) relies on rigorous theoretical assessment of available experimental data available in the 

literature, judging the accuracy and reliability of such data. This includes not only phase equilibria 

and boundaries, but other properties including enthalpies of mixing, enthalpies of formation, and heat 

capacities [182, 183]. All this data feeds into the Gibbs energy model in Equation 5.6, allowing its 

optimisation to increase agreement with existing experimental data. Kroupa summarises three 

conditions that constructed databases must fulfil for prediction of properties in multi-component (i.e. 

greater than three components) systems [183]: 

 The polynomials used in the calculation of the composition-, temperature- and pressure-

dependent Gibbs energy of components must be mutually compatible (i.e. parameters used in 

one series must be applicable to a different series). 

 

 Within a database, the same model used for the Gibbs energy determination for a particular 

phase, must be used for other phases of the same or similar crystal structure. 

 

 Identical sets of parameters must be used to describe the Gibbs energy of pure element 

constituents, across all systems in the database. 

In this work, the CALPHAD software used was Thermo-Calc (TC), which contains various databases 

containing assessed data for a variety of alloy types. Two in particular were of importance in this 

project: (1) TCNI8, a Ni-based superalloy database containing experimentally verified binary and 

ternary data for most elements found in Ni-based superalloys, and (2) SSOL4, a more general purpose 

database used for alloy design, containing a much wider range of elements available for selection, 

with most of the binary combinations assessed experimentally. Both have seen wide use across 

literature, though the most up-to-date SSOL database is now the SSOL6 version, containing an 

increased number of assessed binary and ternary systems. Newer databases have included TCHEA4, a 

database for BCC, FCC and HCP HEAs and MPEAs. Table 5.1 summarises some of the relevant and 

recent databases in terms of the elements, phases, binary systems and ternary systems available for 

modelling in TC. The following sections will look at the application of these databases in the 

literature on brazing (and related), more general alloy design (focusing on Ni and its alloys), and 

finally HEAs and MPEAs. 
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Table 5.1: Summary of numbers of elements, phases, and assessed binary and ternary and 

higher order systems included in various TC databases. 

 Elements Phases Binary systems 
Ternary & higher 

order systems 

TCNI8.2 (Ni-superalloys) 27 490 280 272 

TCFE10.1 (Steels/Fe-

alloys) 
29 435 308 346 

TCMG5 (Mg-alloys) 31 478 195 91 

SSOL4 (Alloy solutions) 78 716 N/A* N/A* 

SSOL6 (Alloy solutions) 79 1331 575 153 

TCHEA4 26 500 307 493** 

*while the exact number is not stated on available data sheets, it is likely to be somewhere between that of 

SSOL2 (106 binary and 61 ternary & higher order systems) and SSOL6 (575 binary and 153 ternary & higher 

order systems). 

**192 of which are assessed to the full range of composition and temperature. 

 

5.2 Application to Brazing Filler Metals 

Despite the absence of a dedicated brazing and soldering database, many studies modelling 

equilibrium phases and diffusion processes for brazing applications have employed TC (along with 

the DICTRA module for diffusion), using databases such as the TCNI and SSOL databases instead. 

The majority of brazing studies using TC have done so for reasons of comparison, however, rather 

than as a tool for initial predictions or optimisation. The TCNI databases in particular have seen wide 

use due to the assessed binary and ternary systems including common elements in Ni-based filler 

metals, Ni, Cr, Fe, B and Si. 

Riggs et al. [108] modelled diffusion phenomena and equilibrium phases for comparison with 

experimental results, when brazing CMSX-4 superalloy with AWS BNi-2 (B and Si containing) & 

BNi-9 (B containing), using the TCNI7 superalloys database. Reasonable agreement between 

DICTRA simulations and experiments was found when predicting the maximum gap size permitted 

for complete isothermal solidification when brazing with BNi-2 at 1170oC for various hold times, 

though agreement was better for shorter hold times. It was also noted that the filler metal was 

modelled only as Ni-B, the other elements not included due to the orders of magnitude faster diffusion 

of B comparatively. Predictions of equilibrium phases for both BNi-2 and BNi-9 were also made, and 

were found to correlate well to the phases observed in the joint post-brazing, with agreement on the 

intermetallics formed and the presence of γ-FCC matrix. It should be pointed out, however, that 

predictions made in this way through TC do not take into account compositional changes in the joint 

due to base metal dissolution and diffusion, and so fully accurate predictions would not be expected. 

Ruiz-Vargas et al. [185] previously conducted similar analysis for BNi-2/pure Ni joints brazed as 

DSC couples. Phases predicted by TC were in broad agreement with observations, and in comparable 
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proportions. However, when the compositions of the predicted phases were interrogated, 

discrepancies were observed, in particular a notably reduced Cr content in most phases predicted. 

Furthermore, TC predicted that 76.8 wt. % solid phase remained at 1050oC, contrary to results in this 

study and others, not to mention the widely used industrial standards. Ruiz-Vargas et al. conclude that 

quantitative TC predictions should be used with caution [185]. 

TC has also seen use in the design of simple binary and ternary brazing filler metals, including some 

of those already discussed in Chapter 3. In the design of a Ni-Mn-Si filler metal, Piegert et al. [186] 

used DICTRA to model the epitaxial temperature-driven solidification, and also used TC to predict 

the equilibrium phases and liquidus surface over a compositional range. Again, the inability to take 

into account base-metal dissolution was noted as a possible source of inaccuracy, and DICTRA 

simulations of diffusion in the joint showed discrepancies in the final elemental distribution in the 

joint.  

As discussed in Chapter 3, use of the concepts of HEAs and MPEAs for novel filler metals has seen 

some recent attention, and indeed some existing filler metal families already possess compositions 

falling within the wider HEA/MPEA definition, such as Ag-based filler metals. Tillmann et al. used 

TC predictions to screen for compositions giving a suitable melting range in the development of 

equiatomic CoCrCuFeNi+Ga HEA filler metals [173] as well as for equiatomic 

CoCrCuFeNi+(Sn/Ge) filler metals [174]. In the former case, TC predicted narrower melting ranges 

than were measured, with larger discrepancies in the predicted liquidus temperatures, though the 

overall effect on melting temperature measured was generally mirrored by the TC predictions. In the 

latter study, the opposite occurred, with TC predicting a wider melting range than was measured, and 

greater discrepancies in solidus temperature observed, for both the Sn and Ge containing 

compositions. The former study (Ga-containing filler metal) used the SSOL6 database, while the latter 

study used SSOL6 and TCHEA2 for predictions of the Ge- and Sn-containing filler metals 

respectively. The discrepancies may show the inaccuracies that may arise when attempting to predict 

properties of higher order (six components in this case) systems, in cases where not all binary and 

ternary systems are assessed (for example, unassessed systems in the SSOL6 database include the Cu-

Ga, Fe-Ga, Fe-Ge and Ge-Ni binaries). 

Snell [187] compared TC-predicted melting ranges of various four-component Ag-based filler metals 

to the quoted and measured melting ranges. Predicted melting range was consistently wider than 

quoted and measured, though agreement increased for the higher melting temperature alloys (which 

have wider quoted melting ranges than lower temperature alloys), though consistently TC 

overestimated the liquidus. Surprisingly, however, TC predictions actually tended to agree more with 

measured melting ranges (determined by DTA), which had also shown higher liquidus temperatures 

than those quoted for all alloys. This raises and important consideration – quoted values for a 

commercial alloy may show differences to measurements made in the lab, which could be due to wide 

elemental content ranges quoted for the alloy compositions, or the quoted melting range being based 

more on industrial experience rather than on specific laboratory-confirmed values. Despite these 

differences, however, it was seen that broad trends in solidus, liquidus and melting range predicted by 

TC are in agreement with quoted and measured values, even though these compositions are more 

similar (in terms of proportions of components) to HEAs/MPEAs rather than conventional alloys. 

Snell also fabricated a range of novel Ag-based (same elements used but in different proportions) 

brazing filler metals, again comparing predicted and measured melting ranges. Generally, wider 

melting ranges were again predicted than were measured, and liquidus was generally predicted as 

higher than measured. Again, broad agreement in the overall trends in solidus and liquidus due to 

compositional changes was seen. 
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Differences between the TC predictions made here, and the observations reported, raises an important 

consideration when using TC in alloy design, aside from the information on elements for which 

assessed binary and ternary data is available. The CALPHAD method used by TC is provided 

predictions for the equilibrium condition of a system, which is unlikely to be representative of alloys 

produced conventionally that do not solidify under equilibrium conditions. Laboratory-scale 

production of novel filler metals via arc-melting such as those reported by Snell [187] are a clear 

example of this, given the likely high cooling rate experienced (the arc-melting method is discussed in 

greater detail in Chapter 7). For industrially-produced brazing filler metals, particularly those used in 

amorphous foil form which requires rapid-quench melt-spinning, this is even more so the case. The 

result of this is that observed properties such as phase constitution and abundance are generally likely 

to show discrepancies from TC predictions. 

 

5.3 Application to Design of HEAs and MPEAs 

CALPHAD-aided design of HEAs and MPEAs has seen a significant amount of attention since the 

start of the interest in HEAs and MPEAs over the last two decades. As mentioned above, the 

CALPHAD approach relies upon datasets of experimentally assessed binary and ternary systems, and 

so for predictions of higher order systems such as HEAs and MPEAs, extrapolation is required, which 

is the main cause of inaccuracies for this application. Motivation to improve the accuracy of 

extrapolation by including more complete assessed binary and ternary systems for the more common 

elements in HEAs and MPEAs led to the development of a dedicated HEA database (TCHEA1) by 

Chen et al. [188], now in its fourth version (TCHEA4). But even without this, several previously 

existing databases contained assessed binary and ternary systems for elements that are commonly 

employed in HEAs and MPEAs. For example, TCNI8 contains all assessed binary and the majority of 

ternary systems covering the vast majority, if not all, elements used in the CoCrFeMnNi Cantor alloy 

and similar transition metal HEAs. However, these more specific databases, while having fairly 

complete assessments across compositional ranges of possible systems within the database, 

nonetheless have limited element coverage in respect to the full periodic table of elements. On the 

other hand, databases such as the SSOL (currently SSOL6) databases have much wider coverage of 

elements, but the proportion of all possible ternary systems in the database that are fully assessed is 

lower than for the specialised databases, and some atypical binary systems that can be assessed in TC 

also lack experimental verification. The number of assessed binary and ternary systems required for a 

full thermodynamic description of selection of N elements or components is illustrated in Fig. 5.2, for 

up to N = 79 components, as in SSOL4. It is easy to see from this that for databases containing more 

than 20 components, such as all those in Table 5.1, vastly greater numbers of assessed systems would 

be required for complete accuracy. For SSOL4, in fact, the number of binary and ternaries required 

would be 3081 and 79079 respectively. 

It could therefore be expected that properties of HEAs and MPEAs with more common and typical 

compositions such as those based around the Cantor alloy and similar, and which have established 

phase diagrams for binary and most ternary combinations of constituent elements, may be easier to 

predict than for those containing atypical combinations of elements. Miracle and Senkov [136] 

discuss this elemental ‘bias’ across databases, and point out examples such as Fe, Mo, Si, Ti and Zr 

being included in all but one databases, and Ni included in all but two databases. This could go much 

of the way in explaining discrepancies observed between predictions and observations for the HEA 

filler metals developed by Tillmann et al. [174] and by Snell [187] as described in the previous 

section. But at the same time it should not be considered that more widely studied HEAs and MPEAs 
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are fully captured by the CALPHAD modelling, nor that specialist databases such as the TCHEA 

databases automatically provide the most accurate predictions when compared to observations. In 

addition, the aforementioned issue of CALPHAD equilibrium predictions not being directly 

comparable to observations of conventionally fabricated alloys also apply here. 

 

 

Figure 5.2: Number of assessed binary and ternary systems required for a complete thermodynamic description of an N-

component database. Image reproduced with permission from [189]. 

 

Nonetheless, there are numerous examples of agreement between predictions and observations in the 

CALPHAD-aided design of HEAs and MPEAs observations, for example in systems including 

AlCoCrNi [190], AlCoCrFeNi [191], MoNbTaTiVW [192]. It has been observed that non-equiatomic 

compositions possess a great solid solution-forming potential, and the CALPHAD-aided refinement 

of compositions away from equiatomic has also been reported, for example in systems CoCrFeMnNi 

[193], CoCrFeMnNiV [194], CrMoNbTaVW [195] and (Co)CrMoVW [154]. In contrast to the three 

former examples, which used different versions of the TCHEA databases, in this latter example Patel 

et al. [154] used the SSOL4 database for the prediction of solid solution formation of the HEA, 

demonstrating the applicability of databases not necessarily designed with HEAs and MPEAs in 

mind. Limitations of using CALPHAD for such systems, however, include predictions of lower 

temperature phases that were not observed in the final microstructure, for example σ-phase and Ni3Ti 

(D024) in equiatomic CoCrMnNiTi [164] (though attributed to the non-equilibrium cooling of the 
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ingot). Furthermore, Miracle and Senkov [136] reported significant differences in experimental results 

and CALPHAD predictions, noting the much higher preference for solid solution formation 

experimentally than in CALPHAD predictions, whereas solid solution plus intermetallic 

microstructures were predicted by CALPHAD at a higher frequency than was observed 

experimentally. 

 

5.4 Chapter summary 

This chapter has provided a brief introduction to the development of the CALPHAD method, and its 

uses for alloy design, particularly for brazing filler metals and on to higher order systems such as 

HEAs and MPEAs. The nature of CALPHAD is such that the accuracy of extrapolations for high 

order systems is dependent on the availability and inclusion in databases of experimentally validated 

information on binary and ternary systems. For many databases, there are already large amounts of 

such assessed data, and in many cases, such as in the dedicated databases for Ni-based superalloys or 

steels (TCNI and TCFE respectively), all binary systems of included elements are assessed across the 

full compositional range. However, gaps exist in the coverage especially where less commonly seen 

binary systems are concerned, and this in turn means even less coverage of ternary systems that 

include elements not often used together in alloys. More general databases that include a much wider 

range of elements, such as the SSOL databases, give the possibility of modelling some of these 

atypical systems, and while in many cases at least some experimentally validated data exist for these, 

caution must be used when using CALPHAD for such systems, and where possible database 

information sheets detailing the systems that have been assessed should be consulted. Another point 

of consideration leading to discrepancies between CALPHAD predictions and what is observed, is the 

fact that CALPHAD predictions represent the equilibrium condition, unlikely to be directly 

comparable to phase abundance and constitution observed in conventionally fabricated alloys, in 

particular fast-cooling methods such as arc-melting, often used to produce small-scale quantities of 

experimental alloys, and melt-spinning, used in the production of amorphous filler metal foils. 

Nonetheless, the usefulness of the CALPHAD method, as well as software such as TC, has been 

demonstrated across a wide variety of applications. In alloy design for brazing filler metals, TC can be 

used to predict the microstructure, phase abundance, phase composition, solidus temperature and 

liquidus temperatures of both existing filler metals and novel compositions of filler metal. In the case 

of novel compositions where one or more of the involved binary systems is not assessed, TC 

predictions may be taken as an indication of the effect that composition has on properties such as 

melting temperature, rather than as a precise measure, and in this way TC may be used to show 

expected trends in properties as a function of composition. When applied to the design or otherwise 

prediction of HEAs and MPEAs, CALPHAD and TC are again considered useful tools, particularly 

when identifying initial regions of composition space that have predicted single solid solution phase 

microstructures, for instance. Development of the more specialised TCHEA databases have aided the 

application of CALPHAD to these higher order systems, by the inclusion of wide coverage of 

common ternary systems assessed across full compositional ranges. In order to improve CALPHAD 

across all applications, ever increasing coverage of binary and ternary systems is required, particularly 

for those that are less common but still of technological interest, which could greatly expand the 

possibilities for alloy design for future materials. 
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6. Literature Review Summary & Statement of Problem 

The preceding chapters have reviewed the current state of the art as reported in the literature. It is 

clear that brazing, and in particular vacuum furnace brazing (detailed in Chapter 1), is a crucial 

technology for joining a wide range of materials, some of which are unsuitable for other techniques 

such as welding. As discussed in Chapter 2, Ni-based brazing filler metals are generally the preferred 

filler metal for joining Ni-based superalloys, and their use for joining dissimilar materials, steels, Co-

based superalloys and even certain ceramics has been demonstrated. While excellent joint mechanical 

performance is achievable with these alloys, the need for MPD elements, in particular B, Si and P, can 

potentially have a detrimental effect on the joint, due to the formation of brittle intermetallic phases. 

These phases can be avoided (or at least reduced over time) with appropriate selection of parameters, 

including brazing time, brazing temperature, selection of suitable filler metal, and filler metal 

thickness (or overall joint width). The effect of these parameters has been extensively investigated, 

and for a wide range of filler metals (though mostly the commercially available AWS BNi- series 

alloys) and base metals, as reported in Chapter 2. It can be seen in the literature that increased time at 

temperature is often required for best results, and in some cases lengthy post-brazing heat treatments. 

At the same time, relatively little has been attempted to address this, in the decades since many of the 

current commercially used Ni-based filler metals first saw use, by developing novel compositions. 

Development in this area could allow improved joint mechanical properties, and also potentially 

reduce the time required to achieve such properties. Of the attempts to develop new compositions in 

the literature, detailed in Chapter 3, several have focused on the use of alternative MPD elements, 

with the aim of replacing the currently used B, Si and P. In some cases, the proposed new MPD has 

been used alongside Si or B in reduced concentrations. Another development that has seen more 

recent attention in the literature is application of the concepts of HEAs and MPEAs to the 

development of novel brazing filler metals, which was discussed in Chapter 4. However, of the few 

reported studies, most such attempts have focused on applying the more widely studied HEAs and 

MPEAs, such as the CoCrFeMnNi and related alloys, which have liquidus temperatures significantly 

higher than most commonly used Ni-based filler metals. Only one or two have taken the further step 

to produce a HEA or MPEA filler metal containing an MPD element, and even there the 

compositional range studied was limited to equiatomic. 

There is scope, therefore, to explore both the substitution of an alternative, novel MPD for the 

traditionally used B, Si and P, and the use of a novel MPD as part of a HEA or MPEA brazing filler 

metal. Part of this study will also assess the ability of CALPHAD-based software such as Thermo-

Calc to predict trends in melting temperature and phase abundance, especially in cases where 

experimentally verified data may not be available for atypical alloying additions, or compositions 

(such as for Ni binary systems with novel MPD elements, and for HEAs/MPEAs). In this way, the 

usefulness of Thermo-Calc as a design tool for brazing filler metals, and HEAs/MPEAs in general can 

be assessed. There is also room to explore the applicability of the design rules used in the 

development of HEAs and MPEAs, discussed in Chapter 4, to compositions outside the ‘norm’ for 

such alloys (both in the elements used, and in the concentration of each element). 
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7. Experimental Methods 

This chapter details the various experimental techniques used during the research for fabrication, 

characterisation and mechanical testing. The parameters and steps detailed in each section were used 

throughout the research, except for where others are detailed. 

 

7.1 Arc-Melting 

Arc-melting is a process carried out at various scales for the fabrication and casting of alloys from raw 

element feed material. Arc-melting on the laboratory-scale was used extensively during this project, 

primarily on two different arc-melting systems: Edmund Buehler MAM1, and Arcast Arc 200. The 

former was used initially, and was suitable for the preparation of up to 6 x 5g ingots at a time. This 

arc-melting system had limited capacity, and was not suitable for preparing samples containing 

elements with melting points above approximately 1900oC – 2000oC due to limitations on power 

supply. On the other hand, the Arcast Arc 200 system was more suitable for larger scale alloying, able 

to melt a single alloy of up to approximately 200 g at a time (or an amount of alloy that does not 

exceed the melting crucible capacity upon melting). The maximum deliverable current of this system 

was greater than the MAM1, up to 600 A. This system was therefore capable of processing high-

temperature elements, even up to pure W. The vacuum capability of the Arcast Arc 200 system was 

also greater than for the MAM1, and vacuums of the order 10-5 Torr (10-3 Pa) were easily achievable 

thanks to the attached diffusion pump. 

Nonetheless, the principles behind the arc-melting technique are generally consistent across models. 

Fig. 7.1 shows a basic schematic of a typical arc-melting system. A power supply provides a high 

current to a normally W electrode. The electrode is housed at one end inside a Cu fixture, which itself 

is attached to the manipulator stick that extends out of the vacuum chamber for use by the operator. 

The dimensions and tip sharpness of the electrode determine the suitable operating current range (as 

too high a current can lead to damage or even melting of the electrode), and the shape of the arc used 

to melt material (a tip sharpened to a point results in a more diffuse arc that covers a larger area, 

whereas a blunter or flatter tip produces a more focused arc beam). Material to be melted is held in a 

Cu hearth or crucible, the size and shape of which can differ considerable and is often tailored to the 

operators need. For instance, specific shapes or depths may be provided if the final ingot is to be 

formed into such a shape. Cu is chosen as the material due to its extremely high thermal conductivity 

properties (in fact second only to those of Ag), and this ability to conduct away the intense heat from 

the arc is augmented by a network of water-cooling pipes inside and underneath the base of the 

crucible. For this reason, most arc-melting systems need a constant and steady supply of water during 

operation. 

The crucible and electrode assemblies are all encased in the vacuum chamber in which the arc-melting 

is to be performed. To prevent significant contamination and oxidation of the resulting ingot, the 

general procedure is to draw a vacuum in the chamber before melting, ranging from 10-2 to 10-5 Torr 

(10 to 10-3 Pa), depending on the system and the requirements (some elements more readily oxidise 

than others and so a higher vacuum will be required). Often, to aid in protecting the ingot from 

oxidation, a small amount of an element with a high affinity for O (typically Ti or Zr) may be melted 

nearby (but separately) to the material to be melted. These act as a sacrificial ‘getter’, and are used to 

soak up the majority of residual O that may infiltrate the vacuum chamber due to small leaks etc. 

After an adequate vacuum is reached, some medium needs to be introduced to a high enough pressure 
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in order to be ionised, producing the arc of plasma. This is most commonly high-purity Ar gas, which 

may be introduced up to a pressure of -10 and -2 inHg (-34 and -6.7 kPa), depending on the system. 

Under-pressuring of this ‘back-fill’ gas can prevent the arc from striking, whereas over-pressuring the 

chamber can exert excessive force on the chamber door or other ports, which may then break the 

vacuum and introduce leaks. It should be noted that the heat from the arc in operation will also result 

in a slight increase in chamber pressure, which must be taken into account. 

When a suitable back-filled pressure is attained, the current can be delivered safely to the electrode in 

order to strike the arc for melting. It is usually necessary to strike the arc by positioning the electrode 

tip quite close (1-3 mm) from, or even touching, either the getter, a separate W striking pin, or even 

the crucible itself. Using a strike pin in this way can have a slight chance of inadvertently introducing 

molten W as a contaminant to the sample, but at the same time using the crucible to strike arc can 

over time mark, scratch and damage the crucible surface. Once arc is struck and is stable (no more 

than 1 or 2 seconds), the manipulator can be used to raise the electrode tip and apply the arc to the 

material to be melted, generally at a distance of at least 25 mm from the material, otherwise molten 

material may splash or otherwise contaminate the W electrode and result in melting. Once the 

material has been sufficiently melted, it is usually necessary to wait generally 5 - 10 minutes for the 

electrode and crucible to cool. The melting should generally not be sustained for periods more than 60 

seconds at a time to avoid damage to the equipment. Ingots produced may be turned over and re-

melted to improve homogeneity as required. Some systems, such as the Arc 200, can also employ 

magnetic stirring of the molten material (again, this can also increase the internal pressure of the 

chamber and so should be monitored). 

Except where otherwise stated, arc-melting carried out with the Arcast Arc 200 was performed with a 

maximum operating current of 400 A, the amount delivered controlled by a foot pedal. The arc was 

struck on a W striking pin embedded in the side of the Cu crucible, and material was then melted for a 

period of 5 – 10 seconds at a time, for 5 melts. During the final melt, magnetic stirring was employed 

for at least 5 seconds. 

 

Figure 7.1: Schematic of basic arc-melting system used for fabrication of alloys and casting. 
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7.2 Vacuum Furnace and Belt Furnace Brazing 

The principles of brazing in general, and vacuum furnace and belt furnace brazing in particular, are 

covered in Chapter 1 of this work. However, two different vacuum furnaces and one belt furnace was 

used for the research presented here. The majority of trials for vacuum furnace brazing of IN718, 

detailed in Chapters 10 and 11, were conducted at Kepston Ltd. (Walsall, UK). The second vacuum 

furnace, used for further trials in chapter 11, was the furnace installed at the Royce Translational 

Centre, and operated by the National Metals Technology Centre (NAMTEC). The brazing parameters 

used for these trials are detailed where relevant in the proceeding chapters. The belt furnace used in 

this research was operated by Armeg Ltd. (Dronfield, UK), and was used for work detailed in Chapter 

10 (Sections 10.5 and 10.7), with exact parameters detailed there. 

Regardless of which furnaces were used, appropriate preparation of materials was critical. Base 

material to be brazed was in each case ground with p1200 SiC grit papers to remove contaminants and 

oxide layer from the surface prior to brazing (within 24 hours prior). Both base metals and filler 

metals (in foil form) were then also ultrasonically bathed for at least 5 minutes, except where 

otherwise stated. Where the filler metal used was in the form of paste (containing powdered filler 

metal, see next section for details of production), the paste was stored in a plunger syringe used for 

applying the paste. Paste kept this way, where an organic binder is used, is suitable for storage for 

approximately 6 months, preferably refrigerated. As paste used in the present work was used within 

one week of its preparation, refrigeration was not necessary. Paste was added to filler metal powder 

and stirred manually, with a weight ratio of binder to filler metal powder of 12:1, and for this research 

30 g of filler metal paste was produced. 

 

7.3 Gas-Atomisation 

Gas atomisation is a technique for producing metal powders, where the metal is first melted before 

introducing a jet of gas to separate the melt into droplets, which then solidify in powder particles of 

varying sizes, but generally below 150 μm. The solidified droplets then collect at the bottom of the 

chamber, which is typically filled with inert gas. Gas atomisation has been found to produce particles 

of greater sphericity than those produced by water atomisation. The distribution and range of droplet, 

and hence particle size, is dependent on the material, the gas jet velocity and application, and the 

temperature of the melt. The rate of solidification is then also a function of particle diameter, and this 

then has an effect on the microstructure of the metal powder produced. Some atomisation chambers 

may be partially filled with water to increase the cooling rate. Fig. 7.2 shows a basic schematic of a 

gas atomisation set-up. 

The gas to metal ratio is a primary controlling factor in the resulting particle size distribution. The 

ratio itself is a result of the volume of gas delivered to a volume of molten metal in a given period of 

time, and so controlling the gas flow and metal flow is required. The median particle diameter, Dm, 

can be given as a function of gas flow, G, and metal flow, M, as in Equation 7.1: 

𝐷𝑚 =  
𝑘

√𝐺
𝑀⁄

            (7.1) 

where k is a constant median particle size, in μm, for a gas flow of 1 m3 per 1 kg of molten metal. 
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There is a demand, in certain applications (e.g. metal injection moulding), for fine powders of average 

size below 20 μm. Average particle size this low are not typically required for use as brazing filler 

metal powders, and indeed may be undesirable. Filler metal foils generally have a thickness of 50 μm 

for a suitable gap width, and filler metal powders should have a size distribution accordingly. A 

typical size range used in a filler metal paste might have a D90 (that is, the diameter under which 90 

% of the powder particles possess) of 120 μm, a D50 of 60 μm, and a D10 of 20μm. Sieving can then 

be used to further reduce the range of particle size as necessary. As long as a majority of the powder is 

of adequate size (approximately 50 μm), separating out smaller sizes is generally not necessary, and 

the smaller particles can in fact fill in gaps between larger particles. For these reasons, advanced gas 

atomisation techniques that ensure small particles sizes were not required for the filler metal powder 

used in this work. Gas atomisation to produce the powder required for a brazing filler metal paste for 

this work was carried out externally, by Arcast Inc. 

 

Figure 7.2: Schematic of typical gas atomisation set-up for production of metal powders. 

 

7.4 Scanning Electron Microscopy 

Electron microscopy, as the name suggests, uses a beam of electrons in vacuum aimed at a sample 

under investigation in order to analyse the structure of a wide range of biological and non-biological 

materials. Normal ‘optical’ microscopes are limited in their resolution by the wavelength of visible 

light used to illuminate the surface of the sample (approximately 400 – 700 nm). The best resolution 

possible is limited to approximately half of the wavelength used, thus optical microscopy has a 

theoretical maximum resolution of around 200 nm. However, since the wave-like properties of 

particles were posited, wavelengths much shorter than that of visible light could be used to break this 
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limit. The de Broglie wavelength of electrons in the beam, given by Equation 7.2, can be shown to 

depend on the electron velocity, in turn determined by the accelerating voltage as in Equation 7.3. It 

can therefore be determined that the theoretical maximum resolution is less than 4 pm at a 100 keV 

accelerating voltage. 

𝜆 =  
ℎ

𝜌
=  

ℎ

𝑚𝑣
        (7.2) 

𝑒𝑉 =  
1

2
𝑚𝑣2      (7.3) 

where λ is the wavelength, h is the Planck constant (= 6.63x10-34 J∙s), m is the electron mass, v is the 

electron velocity, e is the electron charge, and V is the voltage. Therefore, the electron microscope 

offers the capability to achieve far greater resolutions than traditional optical microscopy. 

Scanning electron microscopy (SEM) is a type of electron microscopy where the image is formed by 

scanning a beam of electron over the sample. Fig. 7.3 shows a schematic representation of a typical 

scanning electron microscope and its components. The electrons interact differently with different 

atoms, and these interactions contain information needed to form an image or determine composition. 

In the normal imaging mode, secondary electrons (that is, electrons that have been emitted from an 

atom as a result of the energy from the incident electron beam) are detected, with the number detected 

determining the signal intensity in the image. As the incidence angle of beam differs across an uneven 

surface, the amount of secondary electrons emitted varies, creating the contrast seen in SEM images 

and allowing the topography of the sample to be observed. Other types of electron detected are known 

as backscattered electrons. These are higher energy electrons originating in the beam, which are 

reflected back from a sample due to elastic scattering when interacting with an atom. The amount of 

scattering is greater for heavy elements and less for light elements, and so this creates a contrast in the 

backscattered electron image between regions of different chemistry. This is particularly useful in 

studying microstructure in metals, allowing the elemental distribution between phases to be observed. 

In most standard SEMs, the electron beam is produced thermionically (released through increasing 

temperature) from an electron gun which has a (typically) W filament. The beam is sequentially 

focused electromagnetically by two condenser lenses. The scanning raster is then implemented by 

deflector coils, allowing the beam to scan lines over the sample. Sample preparation is critical for 

obtaining quality images. While compared to biological samples, preparation for metallic samples is 

simpler, there is still a need to grind and polish samples and to mount in an electrically conductive 

material to fit the sample holder. Unless otherwise stated, samples in the present work were ground, 

sequentially, using p800, p1200, p2500 and p4000 SiC grit papers, before polishing with diamond 

suspensions with particle size 6, 3, 1 and 0.25 μm. Samples were mounted in conductive Bakelite 

using a Buehler Simplimet mounting press. The SEM used in this work was an FEI Inspect F50, and 

unless otherwise stated the accelerating voltage used was 20 keV, the spot size was 4, and a working 

distance of approximately 10 mm was used. 

Another key technique used in the present work was Energy Dispersive X-ray Spectroscopy (EDS). 

EDS is a technique allowing the composition of materials to be examined. The electrons from the 

beam incident on an atom within the sample may excite an electron from an inner, low energy orbital 

shell. A higher energy electron from an outer shell may then fill in the hole left by the escaped 

electron, but as shells can only accommodate discrete electron energy levels, the excess from this 

outer shell is released as an X-ray. As the X-ray energy has a characteristic energy for that atom, the 

atom can be identified. At the same time, the amount of these characteristic X-ray detections gives 
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information on the abundance of that element in the sample. The EDS software used in this project 

was Aztec (Oxford Instruments). 

 

 

Figure 7.3: Basic schematic of standard Scanning Electron Microscope (SEM) and major components. 

 

7.5 X-Ray Diffraction & X-Ray Fluorescence 

X-ray diffraction (XRD) is a useful tool for determining numerous physical properties of a crystalline 

material by exploiting the diffraction of incident X-rays by crystal planes in a material. As X-ray 

wavelengths are in the range 0.01 – 10 nm, this is roughly of the order of separation of crystal planes, 

allowing diffraction to occur. The properties that can be determined through X-ray diffraction include 

phase, crystal structure, orientation, lattice parameter, crystallite size, lattice strain and dislocation 

density, among others. 

The diffraction behaviour between the incident X-rays is described by the Bragg equation in Equation 

7.4: 

𝑛𝜆 =  2 𝑑 sin 𝜃               (7.4) 

where n is the order of reflection (typically only the n = 1 reflection is used in crystallography), λ is 

the wavelength of the incident X-ray, d is the distance between crystal planes, and θ is the angle 

between incident X-ray and the diffracting plane. 

Incident X-rays are either scattered by atoms on a crystal plane or they transmit through unimpeded. 

When an incident beam is diffracted by the first plane, whereas a parallel beam is diffracted by the 
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second plane having transmitted through the first, we may get constructive or destructive interference 

(or in practice, something in between). Complete constructive interference, that is, two in-phase 

beams combining their amplitudes, occurs when the second beam travels an integer number of 

wavelengths more than the first beam. Complete destructive interference, that is, out-of-phase beams 

cancelling out each other’s amplitudes, when the second beam travels a half-integer number of 

wavelengths further than the first. In practice, there is often varying degrees of constructive and 

destructive interference occurring, though the occurrence of constructive interference is what 

produces the characteristic peaks in the X-ray signal. For a single angle of incidence, we see that we 

may not satisfy the Bragg condition for constructive interference which would give us a characteristic 

peak. However, by varying the angle of incidence through a range of θ, we can achieve constructive 

interference at the angle which satisfies the Bragg condition. Therefore, information collected by an 

X-ray diffractometer is generally plotted as a spectra of peak intensity versus 2θ (2θ is used as this is 

the difference in angle between the original incident beam and the diffracted beam detected). 

For simple crystal structures such as FCC and BCC, there are different planar spacings, d, and so for 

any plane (h,k,l), the inter-planar spacing is often denoted dhkl. As the spacings change, so does the θ 

that satisfies the Bragg condition. This means that a certain crystallographic plane will have a 

characteristic peak at a certain 2θ. These peaks can therefore be used to identify crystal structure. For 

multiphase samples, or intermetallic and non-cubic phases, databases XRD spectra exist containing 

patterns for a vast number of phases and compounds, which can be match to the pattern of a sample. 

The XRD in this work was conducted using a Bruker D2 Phaser diffractometer, with a Cu Kα1+2 

anode. An air scatter screen module was used with 3 mm setting, and two Ni Kβ filters were fitted. 

The primary divergence slit was 1 mm. Sample were rotated at 15 revolutions per minute in order to 

maximise the area scanned of irregular shaped samples. Software used for X-ray pattern indexing was 

International Centre for Diffraction Data’s (ICDD) Sieve+. This was used to search Powder 

Diffraction Files (PDF) cards of indexed phases, from the -4+ database. 

X-ray fluorescence (XRF), in contrast to X-ray diffraction, gives information on the composition of a 

material, and has similar principles to EDS. Incident X-rays of sufficient energy on a material may 

ionise the material, causing the excitation and loss of an electron from the lower energy inner orbitals. 

The now unstable atom replaces this electron with one from a high energy outer shell, to regain 

stability. The difference in energies between the electrons is released in the form of photons (hence 

fluorescence) which are characteristic of the particular orbital shell in the particular atom being 

irradiated. In this way, the type of atom can be identified, and so the bulk composition of a metallic 

sample can be determined. XRF conducted throughout this research was performed with a 

PANalytical Zetium spectrometer, and the sample cup spot size used was 6 mm. 

 

7.6 Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) is a technique for determining the temperature at which 

thermally-induced phenomena occur in a sample, and the energy released by such phenomena. This is 

done by heating a sample and measuring the amount of heat applied required to heat the sample. A 

reference sample, usually an empty crucible of the same material as the crucible holding the sample, 

is heated and maintained at the same temperature of the sample, and the different heat required to 

maintain the same temperature provides the DSC signal, generally displayed as heat flow as a 

function of temperature. When a phase transformation, crystallisation or melting occurs, the heat flow 

will need to decrease (for an exothermic reaction) for the sample being analysed compared to the 
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reference crucible, or increased (for an endothermic reaction). In this way, the DSC signal can be used 

to determine such properties as solidus, liquidus, and temperatures at which phase transformations 

occur in a metallic material. 

In this work, samples in Chapter 8 were analysed using a TA Instruments SDT Q600 DSC 

calorimeter, whereas samples in Chapters 10 and 11 were analysed in a Netzsch 404 F1 Pegasus 

calorimeter. For all samples, an alumina crucible was used, and ramp rates used were 20oC min-1 

except where else stated. An inert gas supply of Ar was maintained throughout. Typical sample mass 

used was between 20 and 60 mg, and of sufficient size to fit in the 6 mm diameter alumina crucible, 

covering as much of the base as possible.  

 

7.7 Mechanical Testing 

Of the wide range of mechanical testing available for materials, there are some that are particularly 

relevant for testing the mechanical properties of brazed joints. As the brazed joints produced 

throughout this project were single lap joints or sandwich joints, shear strength of the brazed joint was 

used as a key measure of mechanical integrity, as is commonly used in the literature. Shear can be 

applied to such joints using standard universal testing machines in either tensile or compressive mode. 

For such testing in this work, a Zwick Roell 0.5 tester was used, with 50 kN load cell connected. All 

such testing was performed at room temperature, and the loading rate for shear testing was maintained 

at 2x10-3 mm s-1 for all tests.  

Other methods used for determining mechanical properties of both materials and brazed joints 

included hardness measurements via microindentation. Hardness, while not in itself an inherent 

property of a material, provides insight as to other properties. These rely on optical measurement of 

the dimensions of the indent left on the material by a diamond-tipped indentor after some constant 

compressive load applied for some dwell time. Microhardness can also give an approximate 

indication as to the ductility or brittleness of a material, both in the value itself and by optically 

examining the region of the indent (cracks or deformation may be visible). This can be particularly 

valuable in multi-phase materials, as the relative ductility between phases may be examined. In brazed 

joints, the difference in properties between the base material and the filler material, as well as between 

different phases in the filler material post-braze, can be investigated. In this research, microhardness 

was performed using a Struers Durascan microindentor. Except where otherwise stated, the 

compressive load used was HV0.05 (equivalent to 0.05 kg of compressive load), and the dwell time 

applied was 15 s. 
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8. Selection of Alternative Melting Point Depressants 

This chapter details the early experimental stages of this project, involving the consideration, and then 

evaluation, of potential alternative MPDs that may be useful in the development of novel Ni-based 

filler metal compositions. Using binary phase diagrams of Ni with the prospective MPDs, as well as 

Thermo-Calc (TC) software, potential MPDs were judged on their effect on liquidus temperature in a 

binary Ni alloy, considering both the liquidus achievable and the amount of MPD required for this, 

and also their solubility in an FCC Ni matrix (or low likelihood of forming brittle intermetallics, but 

this is less easy to ascertain). 

Initially, focus was placed on identifying novel, yet ‘conventional’, alloy compositions. That is, being 

similar to current Ni-based filler metals in their majority Ni composition (above approximately 75 wt. 

%), and limiting the content of MPD accordingly. The MPDs were also evaluated for their potential to 

completely negate the need for currently used MPDs such as B and Si where possible, in order to 

avoid possibility of very brittle boride or silicides forming in the joint. However, MPDs that still form 

other intermetallics are not necessarily ruled out unless they are known to be particularly detrimental, 

or more-so than borides or silicides. Thus, potential MPDs were first considered for further 

investigation if they satisfied: 

 A reduction in liquidus to at least below approximately 1200oC, requiring no more than 

approximately 25 wt. % of the MPD in the alloy, according to the binary phase diagram. 

 Solubility in FCC γ-Ni matrix to some degree, greater than that of B and at least comparable 

to that of Si, such that intermetallics might be avoided up to a certain amount of MPD used 

necessary for adequate liquidus suppression. 

 No other incompatibilities for practical (for example, particularly expensive elements or 

elements in a form unsuitable alloy fabrication via arc-melting) or health reasons. 

 

8.1 Ni-In System 

8.1.1 Phase Diagram Consideration  

In, meeting the broad initial requirements detailed above, was selected for further study as a novel 

MPD element to use in a Ni-based brazing alloy. The Ni-In binary phase diagram is shown in Fig. 8.1. 

A eutectic exists at 910oC for a composition of 24 at. % (39.5 wt. %), where liquid freezes to form a 

two-phase ζ (non-stoichiometric) + Ni solid solution. Therefore, between the eutectic and pure-Ni 

compositions, In reduces the liquidus by approximately 13.8oC per 1 wt. %, and so a 1200oC liquidus 

can be obtained with an approximately 18.5 wt. % alloying addition. For comparison, this figure for B 

would be approximately 100.6oC per 1 wt. %. In also exhibits solubility in the FCC γ-Ni of up to 

approximately 7.5 at. % (14.5 wt. %) at 910oC, though this decreases to negligible solubility at 

temperatures below 200oC. 

As an alloying addition, In is not generally used in Ni or its alloys. Several intermetallic phases are 

formed exhibiting various crystal structures: Ni3In (hexagonal, P63/mmc), Ni2In (hexagonal, 

P63/mmc), Ni13In9 (monoclinic, C2/m), NiIn (hexagonal, P6/mmm), NiIn (hexagonal, P6/mmm), Ni2In3 

(trigonal, P3̅m1), Ni3In7 (cubic, Im3̅m), δ (cubic, Pm3̅m) and ζ (undocumented crystal structure). For 

microstructural and mechanical reasons, therefore, it was deemed perhaps necessary to limit the In 

content further than just the 25 wt. % upper limit mentioned above. 
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Figure 8.1: Ni-In binary phase diagram, in ASM Handbook [18], and based on [196]). 

 

8.1.2 Thermo-Calc Analysis 

The Ni-In system was also modelled using TC software for comparative purposes, and to assess the 

accuracy of TC when predicting properties of In as an alloying addition to Ni. This second point is 

important, given that, despite the existence of established phase diagrams for the Ni-In system, no 

database versions (of those available for the duration of the project) within TC contained 

experimentally verified data for the CALPHAD modelling. Therefore, comparisons drawn between 

the established phase diagrams and the predictions of TC may inform the accuracy of further alloy 

development, especially for cases where TC lacks the experimental data. The database used was the 

SSOL4 database, which contains the most elements available for modelling (and the only one 

available to allow modelling of In with Ni). SSOL4 contains experimental data for many binary 

combinations, but not for the Ni-In system. It should be noted that the more recent SSOL6 database 

does contain assessed data for the Ni-In system, but was not available in this project. 

Fig. 8.2 shows the TC Ni-In phase diagram, for In compositions up to 50 wt.%, demonstrating the 

lack of information predicted for the system. Only a Liquid + FCC A1 region is predicted, 

corresponding seemingly only to the upper right corner of Fig. 8.1. Meanwhile, plotting phase 

abundance versus temperature for specific Ni-In compositions (in steps of 5 wt.% In from 0 to 50 wt. 

%) shows that only FCC_A1 solid solution is predicted to exist across all temperatures, and even at 

compositions above where, according to Fig. 1, solid solution would not form. Fig. 8.3 shows the TC 

predicted solidus and liquidus lines for this phase superimposed on the Ni-In phase diagram for 

comparison. 
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Figure 8.2: TC predicted phase diagram for the Ni-In system, for In compositions of up to 50 wt. %. 

 

 

Figure 8.3: TC predicted solidus and liquidus lines for the FCC_A1 phase superimposed on the Ni-In binary phase diagram 

from Fig. 1. 

 

8.1.3 Fabricated Binary Ni-In Alloys 

To further investigate the Ni-In system for prospective application as a filler metal, a series of three 

binary alloys were fabricated via vacuum arc melting. These were made with the aim of comparing 
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the as-cast microstructures and solidus and liquidus temperatures with both the phase diagram in Fig. 

8.1 and the TC predicted phase diagram in Fig. 8.2, and also informing on the feasibility and 

suitability of fabricating such alloys through the arc-melting method in general. It should be noted, 

however, that both the phase diagram and TC predictions represent the equilibrium case, which is 

unlikely to be achieved from the arc-melting process due to the rapid cooling rate. Therefore, 

differences may well be expected between observations and what would be expected considering both 

the phase diagram and TC predictions. However, Ni-based filler metals are often supplied in the form 

of foils or powders, the production of which also involve rapid cooling, and so are also unlikely to be 

in their equilibrium state, so investigating the as-cast state of the Ni-In alloys is still informative. 

Furthermore, given the large difference in melting points and vapour pressures between Ni and In, it 

was not inconceivable that some difficulty in achieving desired alloy chemistry may have been 

encountered, and so the suitability of this fabrication method can be demonstrated. 

Raw materials of Ni foil (0.5 mm thickness) and In shot (4mm size and down) were sourced from 

Alfa Aesar, both with purities above 99 %. Nominal compositions selected for fabrication were 5, 10 

and 15 wt. %, with 5 g of each alloy prepared. The MAM1 arc-melter was used for melting, with the 

current set to 3 on the operating current dial. The chamber was evacuated to achieve a vacuum of 

below 6x10-5 torr (8x10-3 Pa), before backfilling with Ar gas to a partial pressure of -0.7 Bar (-70 

kPa). A Ti getter was placed in the melting crucible, which was melted before each alloy in order to 

trap any residual impurities. Due to the small quantity and difference in melting temperatures, the 

current was applied for no more than 5 seconds at a time, and the formed buttons were flipped and re-

melted 5 times to improve homogeneity. 

Table 8.1 displays XRF-measured bulk composition of the samples, and Fig. 8.4 shows SEM BSE 

micrographs for the as-cast (a) Ni-5In, (b) Ni-10In and (c) Ni-15In alloys, with EDS maps also shown 

in Fig. 8.5. Table 8.2 shows the EDS point scan measurements for the phases in each alloy (averages 

of five measurements). The microstructure of each alloy is characterised by three distinct phases; a 

dark contrast Ni-In solid solution, a grey phase richer in In, possibly an In-saturated solid solution 

according to the phase diagram, and a light contrast phase richer in In but punctuated by small islands 

of Ni-rich phase (~ 1 µm or less but with some larger islands). This latter phase is likely a the Ni3In 

phase according to the phase diagram. The grey phase surrounds the light phase, giving the 

appearance of a somewhat cored microstructure, arising presumably from the solidification sequence 

Ni-In solid solution  In-saturated solid solution  Ni3In phase. The apparent fraction of the light 

contrast Ni3In increased with increasing In content, as in Fig. 8.4(c), whereas the grey contrast phase 

appears to be equally prevalent across compositions. For the Ni-10In and Ni-15In alloys, there was a 

noticeable region exhibiting a different microstructure towards the lower portion of each ingot (i.e. the 

portion in closest contact with the Cu hearth in the arc-melter), with lower concentration of the Ni3In 

phase, but with longer dendrites. 

Table 8.1: Bulk composition in wt.% (at.%) of Ni-5In, Ni-10In and Ni-15In alloys as measured 

by XRF. 

Alloy Ni – wt.% (at.%) In – wt.% (at.%) 

Ni-5In 95.4 (97.6) 4.6 (2.4) 

Ni-10In 90.7 (94.8) 9.3 (5.2) 

Ni-15In 87.0 (92.9) 13.0 (7.1) 
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Figure 8.4: SEM BSE micrographs of as-cast (a) Ni-5In, (b) Ni-10In and (c) Ni-15In, in wt. %. 

 

 

Figure 8.5: SEM BSE micrographs (at increased magnification compared to Fig. 8.4) of as-cast Ni-5In, Ni-10In and Ni-15In 

alloys, with EDS mapping showing distribution of Ni and In in phases observed. 
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Table 8.2: EDS point scan measurements for as-cast Ni-5In, Ni-10In and Ni-15In alloys (average 

of 5 measurements, errors derived from standard deviation). 

Alloy Phase Ni (atomic %) In (atomic %) 

Ni-5In 

Light contrast 75.9 ± 2.3 24.3 ± 2.0 

Grey contrast 92.3 ± 0.84 7.7 ± 0.84 

Dark contrast 99.3 ± 0.05 0.7 ± 0.05 

Ni-10In 

Light contrast 74.7 ± 2.9 25.3 ± 2.9 

Grey contrast 92.2 ± 0.52 7.8 ± 0.52 

Dark contrast 98.2 ± 0.19 1.8 ± 0.19 

Ni-15In 

Light contrast 71.3 ± 1.4 28.7 ± 1.4 

Grey contrast 91.5 ± 0.35 8.5 ± 0.35 

Dark contrast 98.3 ± 0.09 1.7 ± 0.09 

 

Fig. 8.6 shows the XRD spectra for the as-cast Ni-5In, Ni-10In and Ni-15In alloys. For the Ni-5In 

composition, despite two phases being apparent from the SEM BSE micrograph in Fig. 8.4(a), only 

one phase was resolved by XRD, corresponding to the primary Ni-rich FCC phase. For the Ni-10In 

and Ni-15In compositions, which exhibited greater fractions of the light contrast In-rich phase, peaks 

for an Ni0.92-In0.08 solid solution phase were indexed, with a cubic NaCl-type crystal structure 

(space group Fm3̅m), that can be described as two inter-penetrating FCC lattices. In addition peak 

positioned matched those of Ni3In, of hexagonal crystal structure. 

To give some idea of the mechanical properties of these compositions, Vickers microhardness 

measurements were taken. The average value from 5 measurements for each alloy is shown in Fig. 

8.7, with the standard deviation given as the margin of error. The microhardness was found to 

increase with In content, from a minimum of 160 ± 11 HV for the Ni-5In composition, to 302 ± 3 HV 

for the Ni-15In composition. This correlates with the apparent increase in fraction of the Ni3In 

compound observed in the SEM micrographs (Fig. 8.4), indicating possible embrittlement due to the 

phase, but also somewhat due to solid solution strengthening of the Ni. 

Fig. 8.8 shows DSC curves for the as-cast Ni-5In, Ni-10In and Ni-15In alloys, from which solidus and 

liquidus temperatures may be read off. The main probable melting events observed in the DSC curves 

are rather wide as expected from the phase diagram, and clearly much wider than predicted by TC. 

This made the reading off of solidus and liquidus values somewhat inaccurate, and for the Ni-10In 

and Ni-15In alloys smaller events were also recorded (possibly corresponding to melting of Ni3In 

phase), highlighted in Fig. 8.8. As a general observation, however, the onset and completion of 

melting appears to occur at lower temperatures with increasing In content. Comparison between phase 

diagram and TC predicted values of solidus and liquidus are summarised in Table 8.3. 
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Figure 8.6: XRD patterns for as-cast Ni-5In, Ni-10In and Ni-15In, with peaks indexed as FCC and Ni0.92-In0.08 phase. 

 

 

 

Figure 8.7: Average microhardness (HV1) of as-cast Ni-5In, Ni-10In and Ni-15In alloys (average of five measurements). 

Error derived from standard deviation. 
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Figure 8.83: DSC Heating curves for as-cast Ni-5In, Ni-10In and Ni-15In. 

 

Table 8.3: Comparison between phase diagram and TC-predicted solidus and liquidus, for as-

cast Ni-5In, Ni-10In and Ni-15In alloys. 

  Phase diagram TC predictions 

Ni-5In Solidus (oC) 1120 1417 

Liquidus (oC) 1386 1436 

Ni-10In Solidus (oC) 950 1375 

Liquidus (oC) 1317 1416 

Ni-15In Solidus (oC) 910 1331 

Liquidus (oC) 1248 1394 

 

8.2 Ni-In-B System 

Considering the main findings detailed in Section 8.1, the use of In as a sole MPD in Ni for use as a 

brazing filler metal would not be feasible, as high weight percentages (particularly when compared to 

B content in current Ni-based brazing alloys) would be required to allow for a comparable brazing 

temperature to current commercial Ni-based filler metals. This is undesirable on both an economic 

and mechanical basis, as the apparent volume fraction of the intermetallic component of the as-cast 

alloys increases with In composition, and the microhardness measurements, in Fig. 8.7, show 

increasing hardness with increased In content, indicating possibly increased brittleness. It is likely that 

if used during brazing, at a suitably high temperature, this initial as-cast microstructure may be 

changed such that the volume fraction of intermetallics may be reduced by cross-diffusion of 
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elements. However, In diffusion is most likely slow in Ni and Ni-based superalloys, certainly orders 

of magnitude slower than for B, and so homogenisation may require excessive (by typical industrial 

standards) hold times at high temperature. 

With this in mind, the addition of B was considered to allow a lower liquidus temperature using a 

lower concentration of In than would otherwise be required. This could be attractive for several 

reasons. Firstly, the use of both In and B may mean that, compared to most current B-bearing Ni-

based filler metals, a lower B content (hence potential for boride formation) may be used. With lower 

B concentrations, sufficient diffusion away from the joint may be achieved quicker, thus quicker 

completion of isothermal solidification. Furthermore, the use of elements such as Si (used as a further 

MPD in many Ni-based filler metals) may be avoided, or eventually limited to quantities sufficient to 

improve wettability if required. In, while forming intermetallics with Ni, does not form intermetallics 

with B. If a low combined In and B content can be realised, an optimised brazing cycle could result in 

an intermetallic-free brazed joint consisting only of Ni-In solid solution, in times potentially quicker 

than for current Ni-based brazing alloys. Therefore, a series of Ni-In-B alloys were considered. In 

content was chosen to be kept at 10 wt. % (5.4 at. %) to strike a balance between lower liquidus and 

solubility in Ni. 

 

8.2.1 TC Predictions 

No ternary phase diagram for the Ni-In-B system was known to be established at the time of this 

work. Nonetheless, TC was used in a similar manner to predict the effect of B addition on the liquidus 

of a Ni-In alloy. As in the case of the Ni-In binary alloys, the SSOL4 database was used, and while 

Ni-In and In-B experimental data is not included in the database, the Ni-B binary system is 

experimentally verified. Fig. 8.9 shows the TC predicted phase diagrams for B addition of up to 10 

wt. % in a binary Ni-10In alloy. TC predicts a very limited solubility range, as might be expected 

from knowledge of the Ni-B binary system (for which TC has experimentally verified data). A 

eutectic point is predicted at approximately 3 wt. % B and approximately 1070oC, forming binary 

FCC solid solution and Ni3B eutectic, with remaining liquid. Below approximately 1050oC for 

compositions up to approximately 4 wt. % B, a two-phase microstructure is predicted consisting of 

FCC solid solution and Ni3B intermetallics. From these predictions, liquidus temperature decreases 

with B content until the eutectic composition, at which point the liquidus temperature could be 

comparable to some currently used commercial Ni-based brazing filler metals. Compositions at 1 and 

2 wt. % B would represent sizeable reductions in the B content compared to many, if not most, 

commercially available B-containing Ni-based filler metals, though the liquidus, as it is predicted, 

would still be likely too high to merit use. Meanwhile, the 3 wt. % B composition, while not offering 

a substantial reduction in B content, is predicted to achieve a sub 1100oC liquidus without the use of 

additional intermetallic-forming MPDs such as Si or P. 

Another consideration aside from the solidus/liquidus values predicted for these B-containing 

compositions, is the predicted boride content. If such alloys were to be used in brazing, then some 

diffusion of B would be expected to occur, and so boride content post-brazing might be expected to be 

somewhat diminished compared to any present in an as-cast state (which is what TC predictions of 

boride content would represent). Nonetheless, compositions with a predicted higher boride 

concentration could be expected to retain a higher concentration post-brazing, for a given brazing 

hold-time, while the opposite would be true for compositions with lower predicted boride content. 

Therefore, this would still warrant some consideration. Fig. 8.10 shows the room temperature boride 
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content predicted by TC for the Ni-10In-(1,2,3)B compositions. The only boride phase predicted is 

Ni3B, and the molar percentage of this phase at room temperature predictably increases with B 

content, and it approaches 60 mol. % for the Ni-10In-3B composition, making it the majority phase. 

The only other phase predicted is an FCC solid solution, but as with the Ni-In binary alloys, TC does 

not capture the presence of Ni3In phase that was observed via SEM, and so this phase might be again 

expected here. 

 

Figure 8.9: TC predicted phase diagram for Ni-10In with B addition of between 0 and 10 wt. %. 

 

 

Figure 8.10: TC predictions of Ni3B phase molar fraction (at room temperature) versus B content in Ni-10In-(1,2,3)B 

compositions. 
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8.2.2 Fabricated Ternary Ni-In-B alloys  

To investigate the accuracy of predictions made by TC in Section 8.2.1, B content of 1, 2 and 3 wt. % 

was added to a Ni-10In composition. 5 g alloys of nominal composition Ni-10In-1B, Ni-10In-2B and 

Ni-10In-3B (in wt. %) were fabricated via arc-melting. Pure B (99.5% purity, Alfa Aesar) was added 

to pre-alloyed Ni-10In, using the same parameters described in Section 9.1.3. Due to the aggressive 

arc-melting procedure and the brittleness of B, on several occasions cracked B pieces were ejected 

from the melt, requiring opening of the melting chamber to place the B back in the crucible. 

Therefore, the number of re-melts was not constant for each alloy, but was in each case at least three 

times. Due to the difficulty in detecting light elements such as B, quantification of B content of the as-

cast alloys was conducted via Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-

OES) (AMG Superalloys, Rotherham). 

Table 8.4 shows results of compositional analysis, using XRF (for Ni and In) and ICP-OES (for B). 

Intended compositions were largely achieved except for the B content of the nominal Ni-10In-1B 

alloy, which was found to be 1.655 wt. %. Fig. 8.11(a-c) shows the SEM BSE micrographs for the as-

cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B alloys, with Table 8.5 summarising the composition of 

each phase, from the average of five EDS point scans. EDS maps at a higher magnification are also 

displayed, in Fig. 8.12(a-c). For the as-cast Ni-10In-1B and Ni-10In-3B alloys (Fig. 8.10(a) and Fig. 

8.10(c) respectively), three distinct phases are apparent; a dark contrast Ni-rich phase, a light contrast 

In-rich phase, and a grey matrix phase. In the case of the Ni-10In-3B sample, the dark contrast phase 

takes on a more structured dendritic morphology, whereas for the Ni-10In-1B sample, this phase is 

more globular with broken up rather than continuous dendrites. In both cases, this dark contrast phase 

is lean in In, and the dark contrast of the backscattered electron image suggests the presence of lighter 

elements, and so this phase is likely a Ni-boride phase (the lack of B detection by EDS, as shown in 

Table 3, in this case is due to the known limitation of the method in detecting elements with atomic 

mass below that of F). The light contrast phase is also interdendritic and its morphology suggests it 

was formed from the freezing of the last remaining liquid phase upon solidification. This phase is 

likely to be the same Ni3In as seen in the case of the Ni-In binary alloys in Fig. 4. The grey matrix 

phase is believed to be an In-saturated solid solution, similar to that seen in the Ni-In binary alloys.  

 

Table 8.4: Comparison between phase diagram, TC-predicted, and DSC-measured solidus and 

liquidus, for as-cast Ni-5In, Ni-10In and Ni-15In alloys. 

Nominal (intended) composition Measured composition (XRF + ICP) Comments 

Ni-10In-1B Ni-8In-1.655B Decreased In, 

increased B 

Ni-10In-2B Ni-8In-2.096 Decreased In 

Ni-10In-3B Ni-8In-3.068 Decreased In 
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Figure 8.11: SEM BSE micrographs of the (a) Ni-10In-1B, (b) Ni-10In-2B, and (c) Ni-10In-3B alloys. 

 

 

Figure 8.12: SEM BSE micrographs (at increased magnification compared to Fig. ) of as-cast Ni-10In-1B, Ni-10In-2B and 

Ni-10In-3B alloys, with EDS mapping showing distribution of Ni and In between phases (B could not be sufficiently detected 

by EDS). 
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Table 8.5: EDS point scan measurements of the phases observed in the SEM BSE micrographs 

of as-cast Ni-10In-(1,2,3)B alloys (average of 5 measurements, errors derived from standard 

deviation). 

Alloy Phase Ni (atomic %) In (atomic %) 

Ni-10In-1B Light contrast 75.0 ± 0.4 25.0 ± 0.4 

Grey contrast 91.0 ± 0.4 9.0 ± 0.4 

Dark contrast 98.4 ± 0.1 1.6 ± 0.1 

Ni-10In-2B Light contrast 75.4 ± 1.4 25.4 ± 1.4 

Grey contrast 91.8 ± 0.8 8.2 ± 0.8 

Grey contrast (petals) 91.7 ± 0.1 8.3 ± 0.1 

Dark contrast (bordering petals) 97.4 ± 0.6 2.6 ± 0.6 

Eutectic region 94.3 ± 0.6 5.7 ± 0.6 

Ni-10In-3B Light contrast  74.9 ± 0.3 25.1 ± 0.3 

Grey contrast 92.6 ± 0.2 7.4 ± 0.2 

Dark contrast 98.5 ± 0.1 1.5 ± 0.1 

 

In the case of the as-cast Ni-10In-2B sample, the microstructure exhibits some notable differences. 

Large (> 100 μm) grey contrast petal-like dendrites were observed, as in Fig. 8.11(b), which EDS 

measurements show are likely the Ni-In solid solution. Light, grey and dark contrast phases were also 

observed in between the large petal-like dendrites, with similar compositions to those observed in the 

Ni-10In-1B and Ni-10In-3B alloys. However, the dark contrast (probable boride) phase appears as 

fine (< 5 μm) globules or eutectic lamellae, as well as bordering the large petal-like grey phase, which 

may that some of the remaining liquid during solidification underwent a eutectic transformation. 

While regions of microstructure more similar to the other compositions were observed towards the 

bottom of this ingot, which likely cooled faster, this different microstructure was the dominant one, 

though it is not clear what caused this. 

Fig. 8.13 shows the XRD spectra of the as-cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B alloys. As in 

the XRD spectra for the Ni-In binary alloys (Fig. 8.6), a Ni0.92-In0.08 phase is identified for the Ni-

10In-1B spectra, corresponding to the grey contrast phase in Fig. 8.11(a), and matching the EDS 

measurements. However, this phase apparently dissipates with increasing B according to Fig. 8.13, 

with no peak observed for the Ni-10In-3B alloy. While a grey contrast phase is observed in Figs. 

8.11(b) and 8.11(c), it can be seen in Table 8.5 that the In at. % measured decreases, and this decrease 

may take the composition across a phase boundary into the Ni-In solid solution region, hence leaving 

the FCC peaks. Meanwhile, peaks in Fig. 8.13 appear to match those for a Ni21In2B6 phase with 

similar crystal structure, possibly corresponding the dark contrast, In-lean, possible Ni-boride phase 

observed in Fig. 8.11. Fig. 8.14 shows the microhardness values for the as-cast Ni-10In-1B, Ni-10In-

2B and Ni-10In-3B alloys (average of five measurements for each alloy). A clear increase in average 
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hardness with increasing B content is observed, with an average of 365 HV1 for the sample with 1 wt. 

% B, and 685 HV1 for the sample with 3 wt. %. This trend would point to a predictable increase in 

brittleness with increasing B content. Fig. 8.15 shows the DSC curves for each of the three alloys. The 

read-off solidus and liquidus values are compared to the TC predictions in Table 8.6. Predicted 

solidus temperatures are in each case relatively close to measured, but predicted liquidus 

temperatures, except for the Ni-10In-3B alloy, were significantly different to that measured. XRF had 

confirmed In content to be close to nominal, and wet chemical analysis had confirmed B wt. % to be 

close to nominal except for the Ni-10In-1B sample (1.6 wt.% B). The apparent similarity of measured 

solidus and liquidus between B content values is somewhat surprising, as it would be expected that 

the B content would have a significant influence. 

 

 

 

Figure 8.13: XRD patterns for the as-cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B (in wt. %), with peaks matching FCC Ni 

solid solution and a FCC-type Ni21In2B6 phase. 
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Figure 8.14: Average Vickers microhardness values (HV1) of as-cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B alloys. Also 

plotted for comparison is the value for Ni-10In without B addition, from Fig. 8.6 

 

 

 

Figure 8.15: DSC Heating curves for as-cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B alloys. 
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Table 8.6: Comparison between TC predicted solidus and liquidus temperature and DSC 

measured solidus and liquidus, for as-cast Ni-10In-1B, Ni-10In-2B and Ni-10In-3B alloys. 

Alloy  DSC TC Predictions 

Ni-10In-1B Solidus (oC) 1035 1060 

Liquidus (oC) 1070 1323 

Ni-10In-2B Solidus (oC) 1046 1051 

Liquidus (oC) 1088 1208 

Ni-10In-3B Solidus (oC) 1048 1035 

Liquidus (oC) 1075 1068 

 

8.3 Ni-In & Ni-In-B Systems - Summary 

Section 8.1 shows the fabrication and characterisation of Ni-In binary alloys (Ni alloyed with 5, 10 

and 15 wt. % of In), in order to evaluate the potential for In as a novel MPD element, replacing 

elements such as B and Si. According to the Ni-In binary phase diagram, between the pure Ni 

composition and eutectic composition (24 at. %, 39.5 wt. %), the liquidus of binary Ni-In can be 

reduced by approximately 13.8oC per wt. % of In. While a sub-1200oC liquidus is achievable with 

18.5 wt. % In (or even sub-1100oC for In content above approximately 29 wt. %), these compositions 

are clearly far richer in the MPD than for current commercially available Ni-based filler metals. This 

may prove undesirable for economic reasons (given the raw cost of In) as well as due to mechanical 

performance. By comparison, the TC predictions made for the Ni-In binary alloys was found to differ 

significantly from the phase diagram, although it did at least predict a decrease in liquidus with 

increasing In content. DSC measurements, while not wholly conclusive, appeared to suggest primary 

melting at lower temperatures as In content increased. As-cast binary Ni-In alloys exhibited three-

phase microstructure including Ni solid solution with low In content, a phase richer in In (possibly a 

saturated solid solution), and a phase much richer in In, likely the Ni3In intermetallic phase. While the 

mechanical properties of the intermetallic phase is not known to be documented, microhardness 

measurements indicate a possible increase in brittleness associated with the increasing content of this 

phase. Furthermore, the large atomic size of In suggests that outward diffusion during brazing, which 

allows for the dissolution of brittle boride phases in B-bearing filler metals, would be slow, and hence 

these phases may remain heavily concentrated within the joint, acting as a potential region of 

weakness and crack propagation.  

In order to address these limitations, the use of In in conjunction with B as MPDs was investigated, 

with the idea that a balance may be struck whereby In content is in solution, while the B content 

required to achieve a liquidus comparable to current B-bearing filler metals is reduced. In the series of 

Ni-10In-(1,2,3)B alloys fabricated, DSC measurements actually showed slight increase in solidus with 

increasing B, and the sample with 2 wt.% B actually had the highest liquidus, contrary to expectation. 

While chemical analysis via XRF and wet chemical analysis is taken into account, it is possible that 

inhomogeneity in samples may have altered the composition that was measured. Regardless, TC 

predictions showed some significant discrepancy with DSC results, possibly more than would be 

expected even accounting for different compositions than were nominally expected. At the same time, 
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TC solidus predictions were similar to measure across all compositions, and so it is possible that the 

TC predictions were aided by the presence of assessed binary Ni-B data, even though the Ni-In, In-B 

and Ni-In-B ternary data was not available in the database used. While the use of both In and B as 

MPD elements had the desired effect, it may be inferred from the average microhardness 

measurements that the brittleness increases with B content, and indeed the molar fraction of Ni boride 

phase (in Fig. 8.11) increased with B content. Other Ni-In intermetallic phases were again observed, 

however, in addition to the Ni-boride phases, and these also likely contributed to this. 

 

8.4 Ni-Ge System 

Ge was another element selected as a potential alternative MPD element meriting consideration, 

meeting the broad requirements described at the beginning of this chapter. Fig. 8.16 shows the binary 

Ni-Ge phase diagram. There is a eutectic point at approximately 22 at. % (26 wt. %) Ge, at 1125oC, 

below which liquid transforms to Ni solid solution plus Ni3Ge phase. Interestingly, this Ni3Ge phase 

(23.1 to 25.6 at. %) has the L12 crystal structure similar to the γʹ phase in Ni-based superalloys 

(Ni3(Al,Ti)). This was exploited by Dinkel et al. [115] who produced a joint with γʹ precipitates using 

Ni-Ge filler metal. Between the pure Ni composition and the eutectic point, the average reduction in 

liquidus is 12.7oC per 1 wt. % Ge, slightly less than for In.  

As with In, Ge is not a common alloying element in Ni, and is not used in Ni-based superalloys or 

brazing alloys generally. However, it exhibits greater solubility in Ni as compared to In, up to 

approximately 13.9 at. % (16.6 wt. %) at 1125oC, comparable to that of Si which is used in several 

Ni-based brazing filler metals. Beyond this, the Ni-Ge system exhibits several intermetallic phases: 

Ni3Ge (FCC (L12), Pm3̅m), γ (cubic, Fd3̅m), δ (hexagonal, P63/mmc), GeNi2 (orthorhombic, Pnma), 

Ge3Ni5 (monoclinic, C121), ε (hexagonal, P63/mmc) and GeNi (orthorhombic, Pnma). Beyond 

approximately 29 at. % (33 wt. %) Ge, the liquidus temperature increases again. As per [115], of these 

phases the L12 Ni3Ge phase could be of mechanical benefit to a brazed joint. With this in mind, it was 

deemed that a higher Ge content compared to that of In might be allowed for in a prospective Ni-Ge 

brazing alloy, up to approximately 25 wt. %.  

It can be inferred from Fig. 8.16, however, that the lowest liquidus achievable using Ge as the sole 

MPD is still higher than for In, and factoring in the higher raw cost of Ge compared to In, it is 

unlikely to represent an attractive option as a sole MPD except for situations where the higher brazing 

temperature is acceptable in order to achieve γʹ precipitation in the joint as in [115]. Fig. 8.17 shows 

TC predictions of solidus and liquidus projected on the Ni-Ge phase diagram from Fig. 8.16. 

Immediately these TC predictions appear to more closely match the phase diagram than was the case 

for the Ni-In system. While divergence from the phase diagram increases with wt. % Ge, within the 0 

– 10 wt. % Ge range the agreement is good. Therefore, while perhaps not suitable as sole MPD, TC 

predictions of systems containing Ni and Ge may have reasonable accuracy. 
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Figure 8.16: Ni-Ge binary phase diagram. From ASM Handbook [18], and based on [197]. 

 

 

Figure 8.17: TC predictions of solidus and liquidus temperatures projected on Ni-Ge binary phase diagram. 

 

As with the Ni-In system, it was considered that introduction of a secondary MPD in the form of B 

might allow for a desirably low melting temperature, while requiring lower Ge content and lower B 

content (than in commercial filler metals). Table 8.7 shows TC predictions for Ni-10Ge-(1,2,3)B 

compositions, in weight percent, as a comparison with the Ni-10In-(1,2,3)B alloys in Table 4. These 

predictions are comparable to those for the Ni-10In-(1,2,3)B alloys, and in fact for the Ni-10Ge-3B 

composition the achievable liquidus is lower, though there is a wider melting range as compared to 

the Ni-10In-3B composition. Again, as with the Ni-10In-(1,2,3)B compositions, the fraction of 
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intermetallics predicted is likely an important consideration in addition to the solidus and liquidus 

temperatures. Fig. 8.17 shows TC predictions of boride molar fraction at room temperature for the Ni-

10Ge-(1,2,3)B compositions. As with the Ni-10In-(1,2,3)B predictions, the sole boride phase 

predicted is the Ni3B phase, with a molar fraction approaching 60% for the Ni-10Ge-3B composition. 

It is also notable here that, aside from an FCC solid solution, a pure Ge phase is predicted (denoted 

‘DIAMOND_A4’), suggesting Ge segregation is preferred to forming any Ni-Ge intermetallic phases. 

 

Table 8.7: TC predicted solidus and liquidus for Ni-10Ge-1B, Ni-10Ge-2B and Ni-10Ge-3B 

alloys. 

 TC Predictions 

Alloy Solidus (oC) Liquidus (oC) 

Ni-10Ge-1B 1018 1287 

Ni-10Ge-2B 996 1170 

Ni-10Ge-3B 950 1054 

 

 

 

Figure 8.17: TC predictions of phase molar fraction (at room temperature) versus B content for the Ni-10Ge-(1,2,3)B 

compositions. 
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8.5 Chapter Summary & Implications 

This chapter has detailed investigations into potential alternative MPD elements for use in a Ni-based 

brazing filler metal, namely In and Ge. Both of these elements, while not typical alloying additions to 

Ni or its alloys, nonetheless exhibit a suppressing effect on the liquidus in their respective binary 

phase diagrams with Ni. The first considered element, In, according to the phase diagram could 

suppress the liquidus temperature down to 910oC but would require almost 40 wt. % (24 at. %) of In, 

whereas to achieve a liquidus comparable to current commercial Ni-based filler metals (sub-1100oC), 

almost 30 wt. % (17 at. %) In would be needed. At the same time, while the solubility limit of In in Ni 

solid solution of approximately 7.5 at. % compares very favourably to such common MPDs as B and 

P, confining the In content to within the solubility limit according to the phase diagram would give a 

liquidus of no lower than 1300oC. When this system was modelled using TC software, the effect of 

the lack of experimentally verified Ni-In data was clear, as predictions of solidus and liquidus 

temperature differed significantly from what was observed via DSC and the existing Ni-In phase 

diagram. 

Clearly, the MPD effect of In is not as potent as for B or even Si (which exhibits greater solubility in 

Ni solid solution in any case, at both the limit and at low temperatures). When a series of Ni-In alloys 

was fabricated via arc-melting (in wt. %, Ni-5In, Ni-10In and Ni-15In), in all cases a three-phase 

microstructure of Ni solid solution, an In-saturated solid solution, and Ni3In intermetallic was 

observed. While this represents only the as-cast state from the rapid cooling following arc-melting, 

given the decreasing solubility of In in Ni at lower temperatures, it would be expected to retain the 

Ni3In intermetallic phase, although it remains to be seen if homogenisation treatment could result in a 

finer dispersion of this phase. In the as-cast state, this phase resulted in increasing microhardness with 

increasing In content, pointing towards a tendency for embrittlement. But in either case, all 

indications of solidus and liquidus temperatures from both the phase diagram and DSC measurements 

of the alloys suggest that these compositions do not possess a sufficiently low liquidus as compared to 

commercial Ni-based filler metals such as BNi-2. 

Despite this, an investigation of using In as MPD along with a more potent element (B in this case), 

allowing for a reduced content of both, while possibly achieving a more desirable liquidus 

temperature, was warranted. When Ni-10In-(1,2,3)B, in wt. %, alloys were fabricated, similar phases 

to the Ni-In binary alloys were observed, including the Ni solid solution phase and the probable Ni3In 

intermetallic phase. A starkly different microstructure was observed for the Ni-10In-2B alloy, 

however, with evidence of fine eutectic lamellae between Ni solid solution and a probable Ni-boride 

phase. Large petal-like grains of In-saturated solid solution were observed, as opposed to in the Ni-

10In-1B and Ni-10In-3B alloys, which exhibited this phase only in dendritic morphology. Predictions 

made using TC software (no Ni-In-B ternary phase diagram was known to exist) suggest a liquidus as 

low as 1068oC for the Ni-10In-3B composition, making it comparable to that of commercially 

available Ni-based filler metals, but at 3 wt.% B this hardly represents an improvement in reducing B 

content. Indeed, the combination of probable borides and the Ni3In phase resulted in a high 

microhardness of 685 HV, indicating a probably brittle composition. If such a composition were to be 

used as a filler metal, it is likely that similarly long diffusion times as for commercial B-containing 

filler metals would be required to avoid deleterious boride phases remaining in the joint post-braze. 

The DSC measurements also seemed to indicate that increasing B content from 1 wt. % to 3 wt. % did 

not decrease liquidus further, with all solidus and liquidus temperatures similar amongst alloys with 

measured B content of 1.6, 2 and 3 wt. %, contrary to expectations. 
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The second element considered as an alternative MPD element was Ge. When compared to the In, Ge 

appears to have a slightly less potent MPD effect, with a low liquidus achievable of 1125oC with an 

approximate 26 wt. % (22 at. %) addition required. However, Ge exhibits greater solubility in Ni, with 

the solubility limit of approximately 13.9 at. % at 1125oC being more comparable to that of Si. 

Furthermore, this solid solubility extends down to lower temperatures, in contrast to In. Also of note, 

is the much better agreement between the Ni-Ge phase diagram and the predictions made by TC. 

While the solidus and liquidus lines predicted by TC diverge increasingly from the phase diagram as 

Ge content increases, there is good agreement within at least the first 10 – 15 wt. % Ge. 

Another consideration for the use of Ge is the Ni3Ge intermetallic phase, which possesses the same 

L12 structure as the strengthening γʹ Ni3(Al,Ti) intermetallics found in many Ni-based superalloys. As 

mentioned, this has been exploited in the literature [115]. However, while this phase may be 

beneficial mechanically, the liquidus temperature achievable using Ge, at least as a sole MPD 

element, is still considerably higher than for most commercially available Ni-based filler metals. 

Combined with the high raw cost of Ge (exceeding that of In and B), Ge is unlikely to be feasible as a 

sole MPD element. The addition of B was considered for the Ni-Ge system, as it was for the Ni-In 

system. Again, TC predictions showed the Ni-10Ge-3B (in wt. %) composition, for example, could 

have a liquidus of approximately 1054oC, comparable to the commercially available filler metals and 

below that predicted for Ni-10In-3B, but with a much wider predicted melting range which could pose 

problems for usage. In addition, as already mentioned for the Ni-10In-3B composition, 3 wt. % B 

would not constitute a significant reduction as compared to such filler metals as BNi-2 for example, 

and a high hardness and thus possible brittleness would be expected for a Ni-10Ge-3B composition, 

without any potential benefit from Ni3Ge phase. If the Ge content of a prospective Ni-Ge-B 

composition was increased such as to encourage the formation of γʹ Ni3Ge, it is not known how B 

content would affect this. It may be possible, inferring from the Ni-Ge phase diagram and from TC 

predictions, that a γʹ-forming Ni-23Ge (wt. %) composition with a small B content may achieve a 

desirably low liquidus temperature while forming the γʹ Ni3Ge phase, but even so heat treatment 

would likely be required to obtain a sufficiently fine dispersion of the phase, as seen in [115]. 

In all, while the considered elements In and Ge are unlikely to be attractive as like-for-like switches 

with currently used MPD elements in Ni-based filler metals such as B, Si and P, the potential for 

combining them with elements such as B is likely to permit a temperature suitable to be used in 

standard brazing cycles for filler metals such as BNi-2, for which a sub-1100oC liquidus would be 

required. However, balance must be struck between striving for a low enough liquidus temperature, 

raw element cost, and ensuring a mechanically desirable microstructure without excessive 

concentration of intermetallic compounds. At least for the Ni-In-B and Ni-Ge-B systems, striking this 

balance is apparently not readily feasible. However, this does not rule out the concept, rather, it only 

speaks to the feasibility when such MPDs are added to Ni. If the concept of using novel MPDs such 

as In and Ge, as well as using them in conjunction with a more potent MPD element (for Ni and its 

alloys) such as B, is extended to other systems other than just pure Ni, it is conceivable that a suitably 

low liquidus is achievable while restricting the MPD content to levels that will not encourage 

excessive formation of brittle intermetallics. For example, the Ni-Cr-Fe system (which forms the basis 

for many Ni-based superalloys and Ni-based filler metals) exhibits lower liquidus temperatures than 

pure Ni, particularly toward more superalloy-like and equiatomic compositions. The following 

chapters in this work aim to investigate and test this concept further. 
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9. MPEA Filler Metal Design Approach 

Considering the conclusions of Chapter 8, in which In and Ge were deemed insufficient as sole 

additions to Ni as novel MPD elements for use as brazing filler metals, another strategy was 

attempted, based on what was discussed in Chapter 4 of this work. This strategy involves the design 

of a MPEA filler metal, yet one which also contains a suitable element as part of the composition that 

acts as both MPD and solute in an ideally FCC solid solution. 

For this strategy to be feasible, there were several points to consider initially. Firstly, as is the case for 

any brazing filler metal, the elements used should be compatible with the base metal being joined. For 

this reason, it was considered that Ni should be a major component of the alloy, such that it would be 

present in concentrations at least equal to, or greater than, other elements in the alloy. These other 

elements could feasibly be selected from the elements common in transition metal FCC HEAs and 

MPEAs, namely Al, Co, Cr, Cu, Fe and Mn, and a wider selection may even include other elements 

found in Ni-based superalloys such as Nb, Ta and Ti. Cr is almost universally used as an alloying 

addition in Ni-based superalloys, and so was selected for use in the proposed MPEA filler metal. Fe is 

also used in certain Ni-Fe superalloys, including Inconel 718, and is furthermore an inexpensive 

element and exhibits full solubility in an FCC solid solution according to the Ni-Fe phase diagram 

[198]. The Ni-Cr-Fe ternary liquidus projection is established, as seen in Fig. 9.1 [199], and it shows 

the liquidus temperature decreases somewhat towards the equiatomic region. The Cr-Fe-Ni ternary 

phase diagram also shows the γ-FCC formation region for Ni-rich compositions, for example see Fig. 

9.2 [199]. For these reasons, the prospective MPEA filler metal was chosen to be based around a Ni-

Cr-Fe system, providing an inexpensive basis with anticipated good compatibility with most Ni-based 

superalloy base metals, as well as potentially allowing the formation of FCC solid solution. 

As was the case for the binary and ternary alloys described in Chapter 8, some conditions were 

considered necessary to narrow the potential alloy combinations of interest: 

 Liquidus below 1100oC, such that the developed MPEA filler metal can be used under 

similar conditions to many commercial Ni-based brazing filler metals. 

 To retain good chemical compatibility with the base metal, and to increase likelihood of FCC 

formation, no element should be present in concentration greater than Ni. The minimum Ni 

content, and maximum MPD content, would be 25 at. % (i.e. the equiatomic composition). 

 In keeping with the empirical thermodynamic parameters, based on the classical Hume-

Rothery rules and used for the design of HEAs and MPEAs as discussed in Chapter 4, 

compositions that minimise |ΔHmix| and δr, and maximise VEC, such that FCC solid solution 

is promoted (but not at the expense of a low liquidus temperature). 

These conditions prioritise achieving a low liquidus of the prospective MPEA filler metal, as the aim 

is to develop a novel filler metal operating in the same temperature range as commercially available 

Ni-based brazing filler metals. In addition, consideration was given to the very likely compositional 

and microstructural changes to the MPEA filler metal during the brazing process, due to diffusion and 

relatively slow heating and cooling rate (compared to that experienced during the arc-melting 

fabrication process). Essentially, achieving a MPEA-like solid solution microstructure post-brazing 

may likely be of more importance than achieving it in the as-cast MPEA filler metal pre-brazing 

(though interaction with base metals and cross-diffusion during brazing could make this harder to 

achieve). This chapter details the development of MPEA filler metals, employing phase diagrams, the 

CALPHAD method implemented via Thermo-Calc (TC) software, and empirical thermodynamic 

parameters described in Chapter 4. 
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Figure 9.1: Cr-Fe-Ni ternary liquidus projection. From ASM Handbook [18], and based on [199]. 

 

 

Figure 9.24: Cr-Fe-Ni ternary isothermal section at 1000oC. From ASM Handbook [18], and based on [199]. 
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10. MPEA Filler Metal Incorporating In as Melting Point Depressant 

Having set out the basis for the MPEA filler metal design strategy in the previous chapter, this chapter 

will document the development of such, using In as the primary novel MPD element. This work 

began considering the equiatomic NiCrFeIn system. 

 

10.1 NiCrFeIn System 

Using the strategy described in the previous chapter, and considering what was discussed in Chapter 

8, In was selected as a MPD alloying addition to a Ni-Cr-Fe basis. As a starting point, the simple 

equiatomic composition was considered. This system was modelled in TC software, with Fig. 10.1 

showing the predicted phase abundance as a function of temperature. For this system, TC predicts a 

liquidus temperature of approximately 1152oC, with solidification of FCC A1 then BCC A2 solid 

solutions, and a solidus temperature of approximately 953oC. The compositions of the FCC and BCC 

solid solutions at solidus are predicted, in atomic percent, as Ni(27.9)-Cr(22.2)-Fe(26.0)-In(23.8) and 

Ni(11.9)-Cr(37.4)-Fe(20.4)-In(30.3) respectively. However, upon cooling to room temperature, the 

BCC A2 phase becomes the majority, with an almost 50 % molar fraction, with a Cr(50.0)-In(50.0) 

composition, with no Ni or Fe. Rather, the Ni and Fe have segregated completely, as the initial FCC 

A1 phase gives way to a second FCC A1 phase of approximate composition Ni(59.0)-Fe(41.0), and a 

minor (~ 8 mol. %) second Fe-rich BCC A2 phase, of approximate composition Fe(96.0)-In(4.0). At 

first glance, such a (largely) dual phase equilibrium microstructure may be desirable, if it proved 

possible to achieve an adequate dispersion of a BCC phase in a FCC phase, possibly imparting 

increased strength while retaining ductility. However, maintaining this post-braze would be a further 

challenge, and the predicted liquidus temperature would be considered too high to be of interest for 

use as a filler metal in this study. 

 

Figure 10.1: TC predictions of phase abundance versus temperature for the equiatomic NiCrFeIn system. 
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Aside from the TC predictions, the empirical thermodynamic parameters discussed in Chapter 4 were 

used as a design tool. For the equiatomic NiCrFeIn composition, these parameters were calculated as 

shown in Table 10.1. Values used in calculations of ΔHmix were obtained from [200], based on the 

Miedema model [201], atomic radii were obtained data compiled in [37]. 

 

Table 10.1: Calculated values of ΔHmix, δr and VEC for the equiatomic NiCrFeIn. 

 ΔHmix (kJ mol-1) δr (%) VEC 

NiCrFeIn (equiatomic) 7.75 3.86 6.75 

 

To establish comparisons between these predictions and observations of a fabricated MPEA filler 

metal, fabrication of the equiatomic NiCrFeIn system was attempted by arc-melting. However, it was 

found that this system did not adequately mix and form an alloy, with pools of molten segregated 

material sat on top of an already solidified portion of the material. Potential technical issues aside (if 

indeed there were any), no abnormal occurrences were noted during the melting (which was attempted 

three times), and so this could have been a result of the chemistry of the equiatomic composition. 

According to calculations by Takeuchi and Inoue [200] based on the Miedema model [201], the 

mixing enthalpies of both Cr and Fe with In are high, at 20 and 19 kJ mol-1 respectively, meaning that 

segregation between these elements is likely and this potentially led to the issues with alloy formation 

observed. This contributed to the positive average ΔHmix value of 7.75 kJ mol-1, which would likely be 

considered high compared to the vast majority of indexed solid solution-forming HEAs and MPEAs. 

This observation is also apparently somewhat in disagreement with the TC predictions; whereas In 

segregation from Fe was predicted, TC also predicted In preferentially forming a BCC phase with Cr, 

even though this binary pair has the highest mixing enthalpy. Another consideration is the apparent 

lack of a reported phase diagram for the Cr-In system, which may otherwise have informed this 

attempted fabrication, and may also go some way to explaining the TC predictions. 

 

10.2 NiCrMnIn System 

To reduce the overall impact of the high mixing enthalpies, replacement elements for Cr or Fe were 

considered, prior to optimisation of the composition. The replacement element must equally satisfy 

the conditions set out above, and in particular retain a good chemical compatibility with Ni-based 

superalloy base metal. Co, a common alloying addition in Ni-based superalloys, was considered; it 

has a lower mixing enthalpy with In than either Cr or Fe (7 kJ mol-1). Co does however have potential 

for greater costs, and future geopolitical issues. Mn, which has a yet lower mixing enthalpy with In (3 

kJ mol-1), was also considered. Mn is not a common addition in Ni-based superalloys; it may be 

discouraged due to factors including the potential for forming σ-phase intermetallics with Cr. 

However, Mn does exhibit complete solid solubility in FCC Ni and Fe, and according to the binary 

Ni-Mn, Cr-Mn and Fe-Mn phase diagrams, is likely to further reduce the liquidus temperature 

(indeed, Mn was used as MPD in [113]). Therefore, Mn was considered a suitable replacement 

element for Cr or Fe in the prospective MPEA filler metal. Retaining both Cr and Fe in a Mn-

containing alloy was considered undesirable, as it could both increase the likelihood of σ-phase 
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formation (considering the Cr-Fe-Mn ternary phase diagram [199]), and also retain the problem of 

high mixing enthalpy between the Cr-In and Fe-In pairs. Fe was selected to be replaced by Mn in the 

alloy; this had the positive effect of retaining Cr for corrosion properties of the MPEA filler metal, but 

perhaps reduced the tendency for FCC solid solution formation. 

The equiatomic NiCrMnIn system was taken as a starting point, and TC software was used to predict 

the phases formed and melting range. Fig. 10.2 shows the phase abundance against temperature, along 

with the solidus and liquidus temperatures, for the equiatomic NiCrMnIn system. TC predicts a 

liquidus temperature of approximately 1156oC, and solidification of a BCC A2 then FCC A1 phase 

takes place. At the solidus (923oC), the compositions of these, in atomic percent, are Ni(15.1)-

Cr(34.2)-Mn(19.6)-In(31.1) and Ni(35.4)-Cr(15.4)-Mn(30.6)-In(18.6) respectively. This dual-phase 

microstructure remains down to room temperature, though the abundance varies throughout cooling, 

with the molar fraction of the BCC and FCC phases predicted as approximately 52 % and 48 % 

respectively. The room temperature composition of the BCC and FCC phases is predicted as Cr(47.4)-

Mn(4.5)-In(48.0) and Ni(51.9)-Cr(1.0)-Mn(47.0) respectively. Only at very low temperatures are two 

other phases predicted in small molar fractions, a Cr3Mn5 and then a cubic A13 phase (denoted 

CUB_A13 in Fig. 10.2), with composition Ni(42.4)-Mn(57.5). As with the equiatomic NiCrFeIn 

system, this mostly dual-phase microstructure could be desirable, though the predicted liquidus 

temperature is considered too high to be of interest for use. The preference of In to form a BCC phase 

with Cr is again predicted despite what might be otherwise expected considering the large mixing 

enthalpy, with the Ni and Mn content forming the FCC solid solution, which is feasible. 

 

 

Figure 10.2: TC predictions of phase abundance versus temperature for the equiatomic NiCrMnIn system. 
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Table 10.2: Calculated values of ΔHmix, δr and VEC for the equiatomic NiCrMnIn. 

 ΔHmix (kJ mol-1) δr (%) VEC 

NiCrMnIn (equiatomic) 3.00 3.98 6.50 

 

Table 10.2 shows calculated thermodynamic parameters for the equiatomic NiCrMnIn system. 

Compared to the equiatomic NiCrFeIn system, the ΔHmix values is reduced, with a slight increase in 

δr. This could indicate a slightly greater tendency to solid solution formation, but, meanwhile, the 

VEC is reduced, indicating a greater preference for BCC crystal structure over FCC. From these 

values, clearly the high positive mixing enthalpy of Cr-In again shifts the average ΔHmix to slightly 

positive. Conceivable changes to the equiatomic NiCrMnIn compositions, therefore, may be in 

reducing the In content to a level that may be soluble in a Ni-Cr-Mn matrix. Reducing to too low a 

level, however, would be expected to increase the liquidus temperature. At the same time, Cr content 

may be considered for reduction, which may allow solution in a Ni, Mn-rich FCC phase and reduce 

BCC content. These changes were investigated systematically using TC software. Fig. 10.3 shows a 

‘heat-map’ indicating abundance of liquid at 1100oC as Cr and In content varies (keeping Mn content 

at 25 at. % and Ni as balance). TC predicts that a maximum liquid phase content, hence liquidus, of 

1100oC (i.e. the darkest red regions on Fig. 10.3) is achieved for In contents above 14 at. %, but only 

up to Cr contents of approximately 22 at. %. The In content appears to have a greater influence on the 

liquidus temperatures predicted. Fig. 10.3 does show, however, that both Cr and In content can be 

suitably decreased to promote FCC solid solution formation, while still achieving a liquidus of no 

higher than 1100oC. 

 

Figure 10.3: TC 'heat map' showing Cr and In contents required for a predicted maximum liquidus of 1100oC. 
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Meanwhile, the effect of altering element abundance on the abundance of phases in the resulting alloy 

can be predicted. Fig. 10.4 shows the room temperature phase abundance versus element abundance, 

for varying amounts of Cr, Mn and In (in each case, the element is varied from 0 to 25 at. %, while Ni 

is kept as balance and the other two elements are kept at 25 at. %). Increasing Cr, Mn and In content, 

is predicted to decrease the room temperature FCC A1 abundance and increase the BCC A2 

abundance in the NiCrMnIn system. However, The BCC A2 promotion is reduced when increasing 

Mn concurrently with a reduction in both Cr and In, as shown in Fig. 10.5. At the same time, as 

shown in Fig. 10.3, reducing In content below approximately 14 at. % will likely increase the liquidus 

temperature even at low Cr content. While this could perhaps be offset by increasing Mn content, this 

might be deemed undesirable to avoid increasing the potential for σ-phase formation due to 

interaction with the base metal during brazing, and to keep Ni as the majority element for good 

compatibility with a Ni-based superalloy base metal. Meanwhile, some Cr is deemed necessary to 

provide corrosion resistance in any potential MPEA filler metal, and to reduce the potential for the 

predicted tertragonal phase (labelled TETRAGONAL_A6 in Fig. 10.4). 

 

Figure 10.4: TC predictions for room temperature phase abundance (at room temperature) versus concentration of (a) Cr, 

(b) Mn and (c) In. For each case, Ni was the balance and the other two elements were maintained at a constant 25 at. %. 
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Figure 10.5: Room temperature abundance of BCC A2 phase for varying Cr and In at. %. Ni content is maintained at 50 at. 

%, while Mn is maintained as balance (such that Mn content varies from 0 - 30 at. %). 

 

Figure 10.6: TC predictions of phase abundance versus temperature for the Ni(50)-Cr(9)-Mn(25)-In(16) composition. 

 

Considering these predictions, a Ni(bal.)-Cr(9)-Mn(25)-In(16) (in at. %) was deemed of interest. Fig. 

10.6 shows the TC-predicted phases against temperature, along with solidus and liquidus temperatures 
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for this composition. The liquidus temperature is predicted as approximately 1088oC, below which an 

FCC A1 phase solidifies, with solidus at 985oC. This composition is predicted to remain single phase 

to below 500oC, where a BCC A2 phase precipitates. At room temperature, the predicted 

compositions of the FCC and BCC phases, in atomic percent, is Ni(65.2)-Cr(2.0)-Mn(32.6) and 

Cr(32.7)-In(67.3), respectively. At room temperature, the FCC solid solution phase molar fraction is 

predicted as approximately 76 %, comparing favourably to the 48 % predicted for the equiatomic 

composition as in Fig. 10.2. 

Aside from the TC predictions for this optimised composition, thermodynamic parameters were also 

calculated, as shown in Table 10.3. This optimisation for both liquidus and FCC solid solution 

abundance is reflected in the calculated parameters, with a small ΔHmix and δr. Due to the high Ni 

content, the VEC is predictably greater and likely favours FCC solid solution over BCC. Considering 

these values and the TC predictions, solid solution formation, either single or dual phase, could be 

seen as more likely. However, it is still noted that the TC predictions have In and Cr preferentially 

forming BCC phase, despite the large mixing enthalpy of this pair. How this manifests in the 

fabricated alloy will be explored in the next section. 

 

Table 10.3: Calculated values of ΔHmix, δr and VEC for the optimised Ni(50)-Cr(9)-Mn(25)-

In(16). 

 ΔHmix (kJ mol-1) δr (%) VEC 

NiCrMnIn (optimised) 2.62 3.18 7.77 

 

 

10.3 Fabrication of Optimised NiCrMnIn MPEA Filler Metal 

A 20 g ingot of the optimised NiCrMnIn alloy (of nominal composition bal.-9-25-16 in at. %) was 

arc-melted from Ni foil (0.5 mm thickness), Cr pieces (irregular), Mn pieces (12 mm and down) and 

In shot (4 mm and down), all of at least 99.5 % purity (Alfa Aesar). The Arcast Arc-200 system with 

water-cooled Cu melting crucible was used for melting, with an operating current of 400 A. The 

chamber was evacuated down to below 4x10-5 Torr (5.3x10-3 Pa), before backfilling with Ar to a 

partial pressure of between -10 and -2 inHg (-34 and -6.7 kPa). The ingot was flipped and re-melted 5 

times to improve homogeneity, with magnetic stirring also employed. 

The as-cast microstructure was analysed by SEM in BSE mode, with two distinct regions in terms of 

phase morphology observed. Figs. 10.7 and 10.8 show SEM micrographs and EDS maps of typical 

sections of the upper, majority microstructure and the lower, minority microstructure, respectively. 

Table 10.4 shows EDS point scan measurements confirming the composition of these phases 

(averages of five measurements). These differences in microstructure are believed to be a result of the 

rapid cooling experienced by the lower portion of the ingot in contact with the water-cooled Cu 

crucible. The majority microstructure as shown in Fig. 10.7 is typified by regions of Cr-rich phase of 

irregular morphology (marked 1), which in some cases are surrounded by a phase (marked 2) with the 

same dark contrast, but which the EDS maps indicate are somewhat Ni-rich as well as containing 

significant Cr content. Both such phases are devoid of In. Other regions consist of fine eutectic 

lamellae (marked 3), separated by regions of light contrast phase (marked 4) which also surround the 
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phases marked 1 and 2, though EDS maps do not appear to distinguish between these regions 

compositionally, suggesting the only the dark contrast lamellae are distinct from the light contrast 

phase (the dark contrast lamellae were too fine to obtain point scan measurements in this case, and so 

are not included in Table 10.4). In Fig. 10.8, again EDS maps indicate the presence of the Ni- and Cr-

rich phase (marked 5), this time of dendritic morphology, with only few regions of the predominantly 

Cr-rich phase (marked 6). Both the fine eutectic lamellar and light contrast phases as observed in Fig. 

10.7 are observed here (marked 7 and 8 respectively). In both Figs. 10.7 and 10.8, the Mn content 

appears to be more homogenously distributed, with somewhat decreased content only in the Cr-rich 

cores. Meanwhile, In and Cr segregation is apparent in both figs. EDS revealed compositions of these 

phases to closely resemble those reported for phases in Fig. 10.7, and are not reported again in Table 

10.4. 

 

 

Figure 10.7: SEM BSE micrograph of typical portion of majority microstructure observed for as-cast Ni(bal)-Cr(9)-Mn(25)-

In(16) filler metal. EDS Maps (right) indicate elemental distribution between phases. 

 

 

Figure 10.8: SEM BSE micrograph of typical portion of minority microstructure observed for as-cast Ni(bal)-Cr(9)-Mn(25)-

In(16) filler metal. EDS Maps (right) indicate elemental distribution between phases. 



96 
 

Table 10.4: EDS point scan measurements (average of five) of various phases observed in the 

majority microstructure of the as-cast optimised Ni(bal.)-Cr(9)-Mn(25)-In(16) filler metal. 

Region Phase Ni (at. %) Cr (at. %) Mn (at. %) In (at. %) 

Upper majority 

microstructure 

(Fig. 10.7) 

1 7.5 ± 1.0 87.1 ± 1.3 5.3 ± 0.35 0.2 ± 0.05 

2 52.7 ± 1.2 24.3 ± 2.3 22.0 ± 1.6 1.1 ± 0.1 

4 48.8 ± 0.4 3.7 ± 0.5 28.7 ± 0.4 18.9 ± 0.3 

 

 

 

Figure 10.9: XRD Pattern for as-cast optimised Ni(50)-Cr(9)-Mn(25)-In(16) filler metal, with peaks matching 

Ni2In0.36Mn2 phase, and BCC solid solution. 

 

SEM and EDS analysis of the as-cast optimised NiCrMnIn alloy was complemented by XRD 

analysis, with the XRD patterns shown in Fig. 10.9. As with the SEM observations, at least two 

phases are captured in the analysis. From PDF card matching, the majority of the alloy appears to be 

analogous to a cubic L21 Ni2Mn1.36In0.64 phase (of space group Fm-3m), corresponding most likely to 

the light contrast matrix phase (marked 4 in Fig. 10.7). The particularly prominent peak at 2θ = 42o is 

likely due to favourable orientation for this reflection. Other peaks of smaller magnitude were less 

easily identified, with peaks matching BCC Cr solid solution possible, which may well correspond to 

the dark contrast Cr-rich phase (marked 1 in Fig. 10.7). As these other phases were somewhat less 

prevalent, this likely contributed to the low magnitude peaks in Fig. 10.9. 

Fig. 10.10 shows a DSC curve for the as-cast optimised NiCrMnIn alloy. The main endothermic peak 

was taken to be the primary melting of the eutectic component of the as-cast optimised NiCrMnIn 

alloy, with solidus and liquidus temperatures of 943oC and 966oC read off. A minor lower temperature 

endothermic peak was observed at approximately 800oC, though given the other two phases observed 



97 
 

in the as-cast state were rich in Ni and Cr and lean in In, it was deemed unlikely that these peaks 

correspond to any melting as they likely have a higher melting point than the matrix Ni-Mn-In 

eutectic. TC predictions of solidus and liquidus temperatures were 985oC and 1088oC respectively, for 

the alloy as a whole, or for a more direct comparison for the DSC-derived values that likely 

correspond to the eutectic matrix, the TC solidus and liquidus predictions for the composition reported 

under phase 4 in Table 10.4 would be 903oC and 1035oC respectively. While these values more 

closely agree with the DSC measured values, this actually represents a widening of the predicted 

melting range, suggesting TC does not predict this accurately. Finally, microhardness indentation was 

performed on the as-cast optimised NiCrMnIn alloy to assess the hardness as a basic indicator of the 

mechanical properties. Five measurements were taken of both microstructural regions identified in 

figs. 10.7 and 10.8, but it was found that the difference in phase morphologies had little impact on the 

values. The average microhardness values for the majority microstructure and minority microstructure 

were 408 ± 8 HV1 and 398 ± 8 HV1 respectively (with error derived from the standard deviation). 

 

 

Figure 10.10: Example DSC heating curve for as-cast Ni(bal.)-Cr(9)-Mn(25)-In(16) filler metal, with read-off solidus and 

liquidus values of 943oC and 966oC respectively. 

 

10.4 Vacuum Brazing of IN718 

The optimised NiCrMnIn filler metal was trialled in the vacuum brazing of IN718, using vacuum 

furnace facilities at Kepston Ltd. (Wednesbury, UK). A 3 mm diameter cylinder was extracted from 

the as-cast optimised NiCrMnIn ingot via EDM. This was then sectioned so as to obtain thin discs of 

3 mm diameter. A disc was then manually ground using a steel holding jig with p800 grit paper, until 

a foil thickness of approximately 55 μm was achieved. This was placed between two tokens of IN718, 

each with dimensions of 25 x 25 x 1 mm, forming a sandwich joint. Prior to brazing, IN718 tokens 

were ground with p1200 grit papers to remove surface oxides, before treatment in an ultrasonic bath 

along with the optimised NiCrMnIn foil in acetone for 10 minutes. The brazing cycle consisted of 

heating at 15oC min-1 up to 900oC, where the temperature was held for 5 minutes to equalise the 

temperature, before again ramping up to the brazing temperature of 1060oC. The brazing temperature 

was held for 10 minutes, before furnace cooling down to 900oC commenced, followed by N gas 

quenching. 
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Upon inspecting the joint following the brazing cycle, it was found that the foil was unsuccessful in 

joining the IN718 tokens, with the foil bonding somewhat to the lower token of the assembly, while 

the upper token remained loose. Fig. 10.11 shows an SEM BSE micrograph of a typical section of the 

foil-IN718 bond for the lower token. Some infiltration along grain boundaries of the IN718 base metal 

is apparent (light contrast phase, marked 1), extending some 350 – 400 μm into the IN718. EDS point 

scan measurements (summarised in Table 10.5) revealed this phase to be rich in In and Ni, but lean in 

Mn compared to the expected composition of the filler metal, and also very little Cr content. 

Meanwhile, EDS analysis also revealed some Mn content in the IN718 grains infiltrated by the filler 

metal (dark contrast, marked 2), much above what would be expected, suggesting diffusion of Mn 

into the IN718 base metal.  

To explain this phenomenon, it appears that Mn depletion from the matrix phase seen in the as-cast 

state of the optimised NiCrMnIn alloy has resulted in liquation, that is, the separation of low melting 

temperature constituents from the bulk alloy. The Mn separation seems to have occurred either due to 

significant diffusion into the base metal, which EDS measurements seem to suggest, but also possibly 

due to the known high vapour pressure of Mn, causing volatilisation in the vacuum furnace. While 

some diffusion of Mn is evident, Mn is not expected to diffuse quickly into the IN718 filler metal, and 

so in order to be observed at distances of the order of hundreds of μm from the interface with the filler 

metal, the diffusion may have occurred after infiltration of the IN718 grains from the liquated In- and 

Ni-rich phase. However, due to initial dissolution of the IN718 base metal during heating, some 

diffusion of Ni and Mn away from the matrix Ni-Mn-In eutectic may have occurred, resulting in a 

phase comparatively richer in In, as indicated by Table 10.5. TC predictions for the composition of 

this phase suggest the onset of melting at temperatures below 300oC, which, even allowing for a 

substantial margin of error due to aforementioned TC inaccuracies, suggests that this phase is likely to 

melt and begin to flow due to capillary action, with this occurring on the lower IN718 token simply 

due to gravity. Given the heating rate of 15oC used in the brazing cycle, the assembly will have spent 

a significant amount of time at the intermediate temperatures allowing melting of this phase with no 

melting of the other higher temperature phases. 

 

 

Figure 10.11: SEM (BSE) micrograph of section of lower portion of failed vacuum brazed NiCrMnIn-IN718 joint. EDS maps 

(right) indicate elemental distribution. 
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Table 10.5: EDS point scan measurements (average of five) of phases observed in the failed 

vacuum furnace brazed optimised NiCrMnIn-IN718 joints, based on Fig. 10.10. Errors derived 

from standard deviation. 

 EDS point scan measurement (average of 5) (at. %) 

 Ni Cr Mn In Fe 

1 32.2 ± 0.2 <1 ± 0.1 12.0 ± 0.1 33.5 ± 0.2 1.3 ± 0.1 

2 45.5 ± 0.2 15.0 ± 0.1 8.2 ± 0.1 <1 ± 0.1 10 ± 0.2 

 

10.5 Belt Furnace Brazing of IN718 

Taking into account what was learnt in the preceding section, it was considered that the developed 

optimised NiCrMnIn filler metal may be better suited for belt furnace brazing using a protective inert 

atmosphere. This is expected to aid the brazing process by introducing the assembly to the brazing 

temperature faster, while the atmosphere will help to prevent Mn volatilisation and hence avoid 

liquation. Downsides may include less time at temperature, which may result in incomplete isothermal 

solidification. However, this alloy composition does not contain any fast diffusing elements such as B 

regardless, and so its use as a brazing filler metal is less dependent upon diffusion processes. 

 

Figure 10.12: Schematic showing (a) brazed joint to be shear tested, and (b) side and front view of steel rig used to seat 

sample for shear testing by applying compressive load. 

 

The belt furnace trial was conducted at Armeg Ltd (Dronfield, UK). For this trial, fabrication took an 

essentially similar route, with the differences being in the dimensions. In order to facilitate 

mechanical testing of any produced joint, the optimised NiCrMnIn filler metal disc was 8 mm in 

diameter, and was ground to an approximate thickness of 60 μm. This foil was placed in between an 

IN718 cylinder of 5 mm height and 8 mm diameter, and an IN718 token with dimensions 25 x 25 x 

3.7 mm. Such an assembly was produced in order to sit in a steel testing rig, whereby a compressive 
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load is applied in order to provide shear on the joint (see Fig. 10.12). The brazing cycle conducted by 

the belt furnace involved approximately 16 minutes moving through three consecutive heating 

chambers at 1070oC, 1090oC and 1100oC, followed by gas quenching. It should be noted that this 

cycle was not optimised specifically for the brazing of IN718 with the optimised NiCrMnIn filler 

metal, rather it was the normal operation cycle employed by Armeg Ltd for their usual business. 

Fig. 10.13 shows an SEM BSE micrograph of a typical section of the optimised NiCrMnIn-IN718 

joint, with EDS point scan measurements for various regions and phases summarised in Table 10.6 

(averages of five measurements). Supplementary EDS mapping at higher magnification is displayed 

in Fig. 10.14. A distinctive non-planar interface is observed on both sides of the joint, with an 

apparently abrupt change in composition judging by the contrast change from light to dark. Compared 

with the as-cast state, post-braze it is immediately obvious that the initial microstructure of the 

optimised NiCrInMn alloy has altered due to interaction with the base metal. The light contrast phase 

in the joint region (marked a in Fig. 10.13) is rich in Ni, Mn and In, consistent with the primary 

matrix phase in the as-cast optimised NiCrMnIn filler metal, but slightly richer in In and slightly less 

rich in Mn. However, compared with the as-cast state, the eutectic lamellae were not observed post-

brazing, indicating the composition may have moved away from eutectic due to the inclusion of base 

metal elements such as Fe, Nb, Mo and Ti. Regions of a darker irregular morphology phase were 

observed (marked b in Fig. 10.13), which possibly mark the grain boundaries of the primary light 

contrast Ni-In-Mn phase. This phase was found to be Ni, Cr and Mn-rich, and so seemingly 

corresponds to the phase marked 2 in Fig. 10.7 for the as-cast optimised NiCrMnIn filler metal. 

However, the presence of Fe is due to the dissolution of the base metal and diffusion of Fe. Notably, 

in contrast to the as-cast state, none of the Cr-rich phase (marked 1 in Fig. 10.7) was observed. 

 

Table 10.6: EDS point scan measurements (average of five) of various phases observed in the 

belt furnace brazed optimised NiCrMnIn-IN718 joints, based on Fig. 10.12. 

Phase Ni Cr Mn In Fe Nb Mo Ti 

a 
48.5 ± 

0.1 
2.7 ± 0.3 

24.4 ± 

0.2 

21.8 ± 

0.2 
1.2 ± 0.1 

0.7 ± 

0.04 
0.1 ± 0.1 0.4 ± 0.0 

b 
51.3 ± 

0.5 

21.7 ± 

0.8 

16.4 ± 

0.2 
1.2 ± 0.4 7.6 ± 0.2 1.2 ± 0.1 0.5 ± 0.2 0.1 ± 0.2 

c 
49.4 ± 

0.2 

25.2 ± 

0.2 

13.4 ± 

0.3 
0.6 ± 0.1 9.5 ± 0.1 0.8 ± 0.1 

1.1 ± 

0.04 
0.1 ± 0.1 

d 
52.3 ± 

0.1 

21.5 ± 

0.1 

0.3 ± 

0.04 
0.0 ± 0.0 

18.7 ± 

0.1 
3.0 ± 0.1 1.7 ± 0.1 

1.2 ± 

0.04 
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Figure 10.13: SEM (BSE) micrograph of typical section of optimised NiCrMnIn-IN718 belt furnace brazed joint. Distinct 

microstructural features are labelled, with the wavy interface between base metal (d) and joint region (a) also of note. 

 

 

Figure 10.14: EDS maps of highlighted region of belt furnace brazed NiCrMnIn-IN718 joint. 
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Figure 10.15: EDS Linescan of section of NiCrMnIn-IN718 belt furnace brazed joint, highlighting elemental ditribution 

across joint, and the extent of cross-diffusion between base and filler metal elements. 

 

The EDS line scan (Fig. 10.15) showed the In content was largely confined to the light contrast joint 

phase, with little evidence of diffusion into the IN718 base metal. However, some inter-diffusion 

particularly between Mn and Fe evidently took place, resulting in the zone marked c in Fig. 10.13. 

This region is also slightly richer in Cr than even the IN718 base metal (marked d), possibly 

explaining the absence of the Cr-rich phase (seen in the as-cast state) in Fig. 10.13. Immediately 

beyond the region marked c, no appreciable Mn content beyond the nominal IN718 content was 

measured, indicating Mn diffusion confined only to within approximately 40 μm of the joint 

centreline. In all observed phases, in similarity with the as-cast state, the Cr and In content remain 

very much segregated. 

Taking into account partition coefficients, segregation and melting temperatures of phases, the 

resulting microstructure of the brazed joint can be explained as follows. As the joint assembly reaches 

temperature during the brazing cycle, the primary eutectic component of the as-cast optimised 

NiCrInMn filler metal proceeds to melt. Dissolution of the IN718 base metal occurs at the interface 

with the filler material primarily due to Mn diffusion, introducing base metal elements into the melt 

and hence the Fe, Nb, Mo and Ti content of phases a and b in Fig. 10.13. Segregation and diffusion of 

Cr away from the In-rich melt results in isothermal solidification of a Ni, Cr-rich phase, also 

containing Mn and Fe (marked c in Fig. 10.13). As the isothermally solidified front advances, In is 

rejected, enriching the already Ni, In-rich melt further with In. Meanwhile, the Ni, Cr-rich dark phase 

within the joint region, marked b in Fig. 10.13, may not have experienced melting, or was initially 

dissolved during brazing before solidifying due to Cr-In segregation upon cooling. As the time spent 

at temperature during this belt furnace brazing cycle is not long, and due to the lack of presence of 

fast-diffusing elements such as B, the isothermal completion was not completed. As the joint reaches 

the cooling zone of the belt furnace, the remaining light contrast Ni, In-rich melt finally solidifies, 

pushing the dark contrast phase to grain boundaries. In comparison to elements such as B, solid-state 

diffusion of the elements involved in this scenario is expected to be much slower. Mn has been 

suggested to diffuse at a rate similar to other alloying additions to Ni, but much slower than B [176]. 
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This, combined with the relatively short time at high temperature, means further homogenisation of 

the joint did not occur, and also the region of the base metal immediately outside region marked c 

remained undisturbed, with no apparent evidence of intermetallic phases either intra-or inter-granular. 

Typically, in brazing, isothermal solidification results in an approximately planar growth of the solid 

from the joint interface inwards. Clearly, in the resulting joint microstructure observed in Fig. 10.13, 

this is not achieved, with cellular protrusions instead evident. Such phenomena may be explained by 

the presence of an atypically high constitutional undercooling, that is, the constitution-dependant 

presence of liquid below the freezing point. While under ideal conditions of no undercooling, any 

protrusions from a planar solid-liquid interface are energetically unfavourable due to the need for 

increased heat flow through a larger interfacial area. In reality however, impurities can lead to 

constitutional undercooling, and a protrusion would then encounter undercooled liquid ahead of it 

able to freeze, thus furthering the protrusion into the features observed in Fig. 10.13. 

 

 

Figure 10.16: Microhardness profile taken across the optimised NiCrMnIn-IN718 brazed joint. 

 

A profile of the microhardness of the joint was obtained to give some indication as to the mechanical 

properties of the resulting joint, as shown in Fig. 10.16. While the limited diffusion from the filler 

metal and lack of intermetallic formation in the vicinity of the joint interface resulted in a mostly flat 

profile until within the joint region, the measured microhardness within the joint region almost 

doubled to approximately 450 HV(0.05). This is slightly higher than the measured microhardness for 

the as-cast optimised NiCrMnIn alloy (approximately 400 HV1 on average), possibly due to the 

presence of base metal elements in solution. The region immediately outside the joint region (c in Fig. 

10.13), exhibited a slight increase in hardness as compared to the base metal, perhaps due to increased 

Cr and Mn content. While this increase in hardness between the base metal and joint is significant, it 

is also less than is commonly observed for joints using commercial filler metals which exhibit a brittle 

eutectic centreline, for example in [109], though it is higher than for joints exhibiting completed 

isothermal solidification across the joint, for example in [79]. Despite this, as the primary joint phase 

is likely to be of the same cubic crystal structure as the primary matrix phase in the as-cast state 

(according to the EDS measurements in Tables 10.4 and 10.6), it is not believed to be of particular 
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brittleness, and the increased hardness could be due to solid solution strengthening. When tested in 

shear, however, the joint achieved only approximately 40 MPa. This is an order of magnitude lower 

than can be achieved for IN718 brazed joints, and so in its current form this filler metal is unlikely to 

be attractive for applications where joint strength is important. 

 

10.6 Use in Other Brazing Applications  

With the knowledge that the developed optimised NiCrMnIn filler metal is unsuitable for vacuum 

brazing applications, but has been successfully used for brazing in a belt furnace with an inert or 

reducing atmosphere, opens up the possibility of using this alloy for the joining of other materials that 

are often brazed in this manner. In addition, the composition of the alloy may lend its applicability to 

materials outside Ni-based superalloys. Mn in particular is a useful alloying addition as an active 

element, increasing the ability to wet ceramics such as carbides [202]. Meanwhile, In has previously 

seen use as a MPD in some Cu and Cu-Ag filler metals to improve ductility. 

Another application that this filler metal might be expected to be suitable for, therefore, is the brazing 

of W-carbide drill tips to steel drill bits. Such carbide-tipped drill bits are a widely used tool for the 

most demanding drilling applications, and yet are relatively cheap and easy to make. They are 

generally produced quickly in batch brazing using a belt furnace with reducing atmosphere. The 

geometry of these parts, specifically the small amount of brazed surface between the steel drill bit and 

carbide tip, means that only small amounts of filler metal are required, but is more suited for flow of 

molten filler metal as opposed to direct placement of a foil, due to multiple surfaces with various 

orientations. As such, filler metal in the form of powder or paste is more commonly used. In terms of 

joint mechanical properties, the forces applied to the joint while in operation are complex and not 

unidirectional, and so shear or tensile strength in any specific direction is not a major consideration 

(indeed, the carbide tips are generally expected to wear out during use before the joint itself fails). 

Instead, a bigger concern might be (as for all instances of metal-to-ceramic joints) differences in 

thermal expansion coefficients, sufficient ductility, and ability to adequately wet both metal and 

ceramic. 

To investigate the applicability of the optimised NiCrMnIn filler metal to the brazing of W-carbide 

tips to steel drill bits, brazing trials were conducted at Armeg Ltd., using a production line belt 

furnace currently used for the production of carbide-tipped drill bits. 

 

10.7 Brazing of W-carbide to EN24T steel drill bit 

W-carbide drill tips were joined to EN24T steel drill bits (Cr, Ni and Mo-containing) via belt furnace 

brazing at Armeg Ltd. (Dronfield, UK), using both the optimised Ni(bal.)-Cr(9)-Mn(25)-In(16) (in at. 

%) filler metal and currently commercially used Cu(bal.)-Mn(12.5)-Ni(2.3) filler metal, known 

commercially as C-Bronze (Table 10.7 shows the two compositions in at. %, and melting ranges, for 

comparison). Although the nature of the two materials is different, and the application is rather 

different than what had been envisaged with designing the alloy, it was felt that the similarity of 

melting temperatures and constituents in the alloy might allow successful brazing in this application. 

The brazing cycle used was the same as for the belt furnace brazing of IN718 with optimised 

NiCrMnIn as described in Section 10.5, involving approximately 16 minutes at temperature moving 

through three consecutive heating chambers at 1070oC, 1090oC and 1100oC, followed by gas 
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quenching. This is the same cycle Armeg Ltd use for commercial production of the drill bits using the 

C-Bronze filler metal. 

The geometry of the joint makes the use of foil form of the optimised NiCrMnIn filler metal likely to 

be unsuitable. For this reason, a 20 g ingot was fabricated via arc-melting in the same manner as 

described in Section 10.3. This ingot was then crushed manually into a coarse powder using a steel 

billet and cup, with sieving used to remove particles larger than approximately 300 μm. Due to the 

low amount of alloy needed, other powder production routes such as attrition milling, which require 

substantially more feed material, were deemed unsuitable for this study. The C-Bronze filler metal 

was provided in powder form by Armeg Ltd. The method of application of both filler metals to the 

surfaces to be joined involved application of a binder paste to the pre-assembled drill bit, before 

dipping into a container of the filler metal powder. When assembled, the drill bits were placed on the 

conveyor belt and experienced the same brazing conditions in the belt furnace as for the 

commercially-produced drill bits. 

 

Table 10.7: Nominal compositions, in at. %, and solidus and liquidus, values of commercial C-

Bronze filler metal and optimised NiCrInMn filler metal. 

 Composition (at. %) Solidus (oC) Liquidus 

(oC) 

Filler 

metal 

Ni Cr Mn In Cu   

C-Bronze 2.3 - 12.5 - 85.2 965 995 

Optimised 

NiCrMnIn 

50 9 25 16 - 943 966 

 

 

 

Figure 10.17: Photograph taken of example drill bits brazed using (a) commercial C-Bronze filler metal and (b) optimised 

NiCrMnIn filler metal. 



106 
 

Fig. 10.17 shows a photograph illustrating the differences in drill bits brazed using the C-Bronze and 

optimised NiCrMnIn filler metals. Figs. 10.18 and 10.19 show SEM BSE micrographs of typical 

sections of brazed drill bits using the commercial C-Bronze filler metal and optimised NiCrMnIn 

filler metal, respectively. It should be noted here that due to the extremely hard W-carbide tip, 

sectioning of the joint in order to observe the internal microstructure of the joint was not possible, and 

so the micrographs in Fig. 10.18 and 10.19 show the microstructure closer to the outer region of the 

joint where grinding with SiC papers was possible. In Fig. 10.18, it can be seen that substantially 

more interaction with the EN24 steel has occurred than with the W-carbide drill tip (marked i), as 

evidenced by the apparently largely intact interface with the drill tip. Meanwhile, penetration of the 

EN24 steel grains appears to have occurred, and EDS point scans (Table 10.8), average of five 

measurements) shows diffusion of Cu and Mn into the steel (marked i). According to the Cu-Fe phase 

diagram, this Cu concentration is above the solubility limit in Fe, though the presence of Mn, Ni and 

Cr may extend this limit. The joint region itself (marked ii), spanning approximately 100 – 150 μm, is 

slightly reduced in Mn content and the presence of a small Fe content was detected, presumably due 

to dissolution and diffusion processes. No appreciable W content was detected in this region. The 

arrow on Fig. 10.18 points to a region within approximately 25 μm of the interface with the W-

carbide tip, where an apparently Fe-rich phase was observed, which may have formed due to rejection 

from the Cu, Mn-rich melt during solidification. With little or no diffusion, or other interaction, with 

the W-carbide tip, this phase appears to have built up along the interface. Referring to the Cu-Fe 

phase diagram and the EDS measured composition of the primary Cu, Mn-rich phase of the joint 

region, this region likely consisted of γ-Fe solid solution + liquid at the highest brazing temperature. 

Upon quenching, the Cu-rich liquid solidified, and so it is possible that while before this occurred, the 

Fe-rich phase, un-melted, simply built up at the W-carbide interface due to gravity. Another 

possibility is due to some kind of reaction layer at the W-carbide interface, but without further study, 

the origin of this Fe-rich phase is difficult to determine. 

In comparison, when using the optimised NiCrMnIn filler metal (the microstructure for which is 

shown in Fig. 10.19), the joint was observed to be much narrower, with a joint width below 

approximately 50 μm. EDS point scan measurements are recorded in Table 10.9 (average of five 

measurements). The microstructure somewhat bears resemblance to that observed when belt furnace 

brazing IN718 with the optimised NiCrMnIn filler metal (see Fig. 10.13), with a central In, Ni-rich 

phase (marked I), outside which is a darker contrast phase (marked II) rich in Ni, Fe and Mn, 

evidencing some probable dissolution and cross-diffusion of particularly Fe, which is not present in 

the filler metal. However, EDS measurements revealed a Cu contamination in this phase, which is 

most likely to have occurred just prior to brazing where some contact with the C-Bronze filler metal 

powder may have occurred. The interface between these two regions is again notably wavy rather 

than planar, though not to the extent as was observed in Fig. 10.13. Another noticeable difference as 

compared to the joint produced using the C-Bronze filler metal in Fig. 10.18, was the apparently much 

more limited interaction with the EN24 steel (marked III) in this case. No grain boundary penetration 

of the filler metal melt was observed. When also considering qualitative observations of the drill bits 

shown in Fig. 10.17, in which the C-Bronze filler metal could be seen to have flowed some distance 

along the steel drill bit, the reason for the differing interactions with the steel by the two filler metals 

may be due to differences in wetting. The better-wetting C-Bronze filler metal was apparently able to 

penetrate the grain boundaries of the EN24 steel whereas the optimised NiCrMnIn filler metal was 

not. 

Due to the geometry of these joints and the materials used in the drill bits, there was limited capability 

to perform quantitative mechanical testing, such as shear or tensile testing. However, measurements 
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of microhardness of different regions of the joints were performed, to give an indication as to the 

difference in mechanical properties across different regions. The ability to join such materials as W-

carbide to tool steels, in a way that can accommodate the different thermal responses of the materials, 

is of particular importance in the tool production industry. As such, a filler metal used to join such 

materials should be sufficiently ductile, thus preferably of FCC crystal structure, in order to 

effectively deform and relieve stresses built up during the brazing process, and for this reason Cu-

based filler metals such as the C-Bronze used here are often selected. Microhardness measurements 

may offer some indication of how the C-Bronze and optimised NiCrMnIn filler metals compare in this 

regard. Fig. 10.20 shows plots showing the average microhardness (HV0.05, five measurements) for 

the EN24 steel and W-carbide base materials, as well as for the primary joint region microstructure in 

both of the above joints. The lowest hardness, and hence likely highest ductility, was obtained for the 

joint using the C-Bronze filler metal, at 215 ± 31 HV0.05, which was less than half that of the joint 

using the NiCrMnIn filler metal, at 447 ± 57 HV0.05. 

 

 

Figure 10.18: SEM (BSE) micrograph of typical section of drill bit brazed using commercial C-Bronze filler metal. EDS 

maps (right) highlight the elemental distribution between phases. 

 

Table 10.8: EDS point scans (average of five) showing elemental concentration of various phases 

observed in Fig. 10.18 

 Cu Mn Ni Fe W Cr Mo 

i 0.3 ± 0.4 0.2 ± 0.1 - 0.2 ± 0.2 82.4 ± 1.1 0.3 ± 0.1  - 

ii 86.3 ± 0.7 9.2 ± 0.3 2.2 ± 0.3 1.9 ± 0.2 0.2 ± 0.3 0.1± 0.1 0.1 ± 0.2 

iii 4.0 ± 2.6 3.5 ± 2.1 3.4 ± 1.4 86.8 ± 5.9 0.5 ± 0.3 1.6 ± 0.2 0.4 ± 0.2 
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Figure 10.19: SEM (BSE) micrograph of typical section of drill bit brazed using optimised NiCrMnIn filler metal. EDS maps 

(right) highlight the elemental distribution between phases. 

 

Table 10.9: EDS point scans (average of five) showing elemental concentration of various phases 

observed in Fig. 10.19 

 Ni Cr Mn In Fe Cu Mo 

I 1.9 ± 0.3 1.9 ± 0.2 0.9 ± 0.2 0.1 ± 0.1 95.2 ± 0.8 -  0.3 ± 0.3 

II 25.5 ± 4.6 - 16.4 ± 3.0 32.9 ± 0.4 1.6 ± 0.2 23.4 ± 7.8 0.1 ± 0.1 

III 38.4 ± 1.4 3.1 ± 0.3 18.7 ± 1.2 1.5 ± 0.3 28.9 ± 2.3 8.3 ± 0.5 0.2 ± 0.2 

 

 

 

Figure 10.20: Average microhardness measurements of different regions of brazed drill bits, including EN24 steel and W-

carbide base materials, and the joint regions using both commercial C-Bronze and optimised NiCrMnIn filler metals, as in 

indication as to the variation of mechanical properties across the joints. 
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10.8 Chapter Summary and Implications 

This chapter, building upon the investigations into using In as a novel MPD element as detailed in 

Chapter 8, reports the design, development and trialling of a novel NiCrMnIn MPEA filler metal, with 

composition, in at. %, of Ni(50)-Cr(9)-Mn(25)-In(16). Design began by considering equiatomic 

NiCrFeIn, only to find that due to excessive elemental segregation, this composition was unable to be 

satisfactorily fabricated via arc melting. This led to the consideration of Mn as a substitution for Fe, 

which was predicted to have a better alloy forming ability with In due to the lower mixing enthalpy of 

the Mn-In binary as compared to the Fe-In binary. Furthermore, Mn was also predicted to further help 

reduce the liquidus according to the Ni-Cr-Mn ternary phase diagram, and so essentially acting as a 

secondary MPD element. Cr, while also expected to segregate from In (even though TC actually 

predicted the formation of a Cr-In BCC phase, likely due to the lack of assessed data for the Cr-In 

system), was deemed a necessary inclusion in order to provide corrosion resistance to the alloy. 

Therefore, a reduced Cr content was included. 

By comparing observations of the as-cast state of the fabricated optimised NiCrMnIn filler metal with 

TC predictions, an assessment was made as to the suitability and usefulness of TC as an alloy design 

tool for such applications and alloys. As noted in this chapter, and in Chapter 8, experimentally 

assessed data for the binary In systems was not included in the databases available for the duration of 

this project. Phase diagrams for both Ni-In and Mn-In do, however, exist. Considering the mixing 

enthalpies, ΔHmix, of all binary pairs in the NiCrMnIn system, Ni-In and Mn-In have ΔHmix = 2 kJ 

mol-1 and ΔHmix = 3 kJ mol-1 respectively, whereas Cr-In has ΔHmix = 20 kJ mol-1, which would 

suggest likely segregation of the two elements. Indeed, this was seen to be the case in the as-cast 

microstructure, but TC instead had predicted the opposite, with Ni-Mn forming an FCC A1 phase and 

Cr-In forming a BCC phase (it should be noted that these are equilibrium predictions). Therefore, for 

specific phase information such as crystal structure and composition, TC should be used with caution, 

particularly in cases where assessed binary information is not available for certain elements in a 

composition. Rather, the use of established phase diagrams and empirical thermodynamic parameters 

used in the design of MPEAs and HEAs can be used in conjunction in order to help predict the 

formation of solid solutions or other phases. At the same time, TC proved more useful as a tool for 

optimising solidus and liquidus temperatures for this system. While comparisons between DSC 

measurements and TC predictions for solidus and liquidus showed discrepancy in the specific values, 

the process of finding local minima in liquidus temperatures in TC proved useful in optimising the 

composition for liquidus, which was of importance in this work, in the aim to develop filler metals 

with sub-1100oC liquidus temperature so as to be comparable with current commercially used Ni-

based filler metals. 

When used in the vacuum brazing of IN718, the optimised NiCrMnIn filler metal was found to be 

unsuitable, as it was observed that it had failed to adequately join the IN718 due a combination of 

high vapour pressure particularly of Mn, as well as liquation of the low temperature matrix phase of 

the filler metal. However, when used to join IN718 in a belt furnace with a reducing atmosphere, the 

optimised NiCrMnIn filler metal successfully joined the IN718. Post-braze, the microstructure 

exhibited a primary Ni, In, Mn-rich phase, from which Cr was largely segregated. Meanwhile, cross-

diffusion of Fe and Mn resulted in the formation of a Ni, Mn, Fe and Cr-rich phase immediately 

outside the primary In-containing phase. The transition between these two phases was abrupt, with 

only Mn and Fe showing gradual concentration gradients whereas Cr and In were largely confined to 

their respective phases. The interface morphology was also observed to exhibit more cellular 

protrusions into the In-containing phase, attributed to a high degree of constituent undercooling. 

Beyond the Ni, Mn, Fe and Cr containing phase, little diffusion of filler metal elements into the IN718 
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base metal was observed, leaving its microstructure largely intact. Mechanically, however, when 

tested in shear the joint only achieved a low strength of approximately 40 MPa. Overall, this filler 

metal is unlikely to be useful in the brazing of Ni-based superalloys in its current form, in applications 

where joint strength is important. 

Finally, due to the cubic FCC-type crystal structure of the primary Ni-In-Mn matrix phase of the as-

cast optimised NiCrMnIn filler alloy, as well as the known ability of Mn to wet carbide and other 

ceramic surfaces, an opportunity to trial the filler metal in the brazing of W-carbide drill tips to EN24 

steel drill bits was taken. While the ductility of the braze (judging from microhardness measurements) 

seemed to be less than that obtained for a standard joint using Cu-based C-Bronze filler metal, the 

microstructure of the joint appeared to show less effect on the EN24 steel as compared to the C-

Bronze joint, leading to a narrower joint on average. It may be foreseen that further optimisation of 

the NiCrMnIn filler metal towards this application could be of merit. 
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11. MPEA Filler Metal Incorporating Ge as Melting Point Depressant 

The previous chapter detailed the development and trialling of an MPEA filler metal utilising In as the 

MPD element. As was detailed, high mixing enthalpies between In and Cr and Fe contributed to the 

inability to form an alloy, leading to the selection of Mn to replace Fe. While this allowed an alloy to 

be fabricated, the high volatility of Mn (even exceeding that of In) meant it was unsuitable for 

vacuum brazing. This chapter will detail research on using the other investigated MPD element, Ge, 

in a similar manner. 

 

11.1 NiCrFeGe System 

As discussed in Chapter 9, for reasons of compatibility with a Ni-based superalloy base metal and for 

promoting an FCC solid solution, a Ni-Cr-Fe basis was considered to which Ge would be the MPD 

element, and the equiatomic NiCrFeGe composition was first considered. Fig. 11.1 shows the TC 

predictions of phase abundance versus temperature for this system. The liquidus temperature 

predicted is approximately 1110oC, with the first solidified phase an FCC A1 solid solution, followed 

by BCC A2 solid solution. The composition of these phases, at the solidus of approximately 897oC, is 

Ni(35.3)-Cr(19.0)-Fe(27.9)-Ge(17.8) and Ni(15.4)-Cr(30.6)-Fe(22.3)-Ge(31.8) respectively, in atomic 

percent. Of note, is the predicted precipitation of a phase denoted ‘DIAMOND_A4’ at approximately 

740oC, composed entirely of Ge, and so a prediction of complete segregation of the Ge content from 

the BCC solid solution, which decreases in abundance. At approximately 350oC and down to room 

temperature, the first FCC A1 phase is predicted to give way to a second FCC A1 phase and a second 

BCC A2 phase. The final room temperature microstructure is predicted as comprising a Ni-Fe FCC 

solid solution, with completely segregated Cr, Fe and Ge (denoted as the two BCC A2 phases and the 

‘DIAMOND_A4’ phase). These predictions seem spurious; Ge might be expected to form 

intermetallic phases with Ni, Cr and Fe rather than segregate (according to phase diagrams and 

mixing enthalpy of binary pairs), and there is apparently little reason to expect segregation of Fe and 

Cr from each other, let alone from Ni. It is possible that the lack of accurate, experimentally assessed 

ternary, and perhaps even binary, systems including Ge with Ni, Cr and Fe led to these unexpected 

predictions. 

As with the previous chapter, empirical thermodynamic parameters (detailed in Chapter 4) were also 

used as a design tool, for assessing likelihood of solid solution formation and the crystal structure of 

the NiCrFeGe system. Table 11.1 shows the calculated values of ΔHmix, δr and VEC for the 

equiatomic composition. The ΔHmix and δr values are both rather extreme compared to what would be 

expected for solid solution formation. When looking at individual binary pairs, it is clear that the 

ΔHmix for Ge with Ni, Cr and Fe is highly negative, particularly for Ni which is -23.5 kJ mol-1. 

Furthermore, Ge has a much smaller atomic radius than Ni, Cr and Fe, contributing disproportionately 

to the high δr value. Clearly, a single solid solution formation would not be expected for this 

equiatomic composition. 
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Figure 11.1: TC predictions for phase abundance versus temperature for the equiatomic NiCrFeGe system. 

 

Table 11.1: Calculated values of ΔHmix, δr and VEC for the equiatomic NiCrFeGe system. 

 ΔHmix (kJ mol-1) δr (%) VEC 

NiCrFeGe 

(equiatomic) 

-16.88 10.15 7.00 

 

11.2 Fabrication of Equiatomic NiCrFeGe Alloy 

In order to assert the extent to which such predictions offer an accurate picture, the equiatomic 

NiCrFeGe composition was fabricated by arc-melting. As was the case for the In-containing MPEA 

filler metal, the Arcast Arc-200 with water-cooled Cu melting crucible was used for melting, with an 

operating current of 400 A. The chamber was evacuated down to below 4x10-5 Torr (5.3x10-3 Pa), 

before backfilling with Ar to a partial pressure of between -10 and -2 inHg (-34 kPa and -6.7). The 

ingot was flipped and re-melted 5 times to improve homogeneity. Raw material of Ni foil (0.5 mm 

thickness), Cr plate (irregular pieces), Fe pieces (8 mm and down) and Ge pieces (12 mm and down), 

of at least 99.5 % purity (Alfa Aesar) was used. 

Fig. 11.2 shows an SEM BSE micrograph of the as-cast microstructure of the equiatomic NiCrFeGe 

alloy, along with EDS maps showing elemental distribution. Three distinct phases are apparent – dark 

grey, medium grey and light grey contrasts in Fig. 11.2. EDS point scans were used to quantify the 
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composition of each phase (average of five point scans), and the results are summarised in Table 11.2. 

The dark grey phase, marked 1, appears to be an elongated and blocky intermetallic phase, mostly 

below 25 μm in length, and found to be rich in Cr and Ge, with a small Fe content and very little Ni. 

The medium grey phase, marked 2, is rich in Fe, Ni and somewhat less Ge, with a minor Cr content, 

and is potentially a solid solution phase. The light grey phase, marked 3, appears to be interdendritic, 

and is rich in Ni and Ge, with somewhat less Cr and leaner in Fe. Notably, the Ge appears to be more 

evenly distributed between the phases compared to the other elements, whereas it might have been 

expected to preferentially migrate to the Ni content due to the more negative mixing enthalpy. Each 

phase also contains at least some percentage of each element, meaning identification of specific 

phases is complex. The solidification sequence, which may be inferred from TC predicted liquidus 

temperatures, is likely to have been (using the phase labels in Fig. 11.2) 1  2  3. 

 

 

Figure 11.2: SEM BSE micrograph of the as-cast equiatomic NiCrFeGe alloy. EDS maps (right) show elemental distribution 

between phases. 

 

Table 11.2: EDS measurements (average of 5) of composition of phases identified in Fig. 2, in 

atomic percent. Errors derived from standard deviation. 

 EDS measured atomic percentage 

Phase Ni Cr Fe Ge 

1 3.7 ± 0.1 59.3 ± 0.4 14.1 ± 0.4 22.9 ± 0.3 

2 30.7 ± 1.2 11.4 ± 0.4 35.2 ± 1.1 22.7 ± 0.3 

3 34.4 ± 1.0 20.3 ± 0.8 14.2 ± 1.1 31.1 ± 0.5 

 

These SEM findings are complimented by XRD phase analysis, shown in Fig. 11.3. Most peaks were 

matched by a Cr3Ge phase, which likely corresponds to the phase marked 1 in Fig. 11.2, though with 

all phases containing roughly similar Ge contents, there may be some peak overlaps, and double peaks 
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indicating phases with similar lattice parameters. The indexed Cr3Ge phase is of space group Pm-3n, 

which is a cubic system with Ge atoms at the cube corners and centre, and two Cr atoms at the face 

centres. Other peaks, including the prominent double peaks at approximately 2θ = 65o, appear to best 

match a BCC crystal structure, presumably corresponding to the solid solution phases marked 2 and 3 

in Fig. 11.2, though the double peaks at approximately 2θ = 30o was not able to be identified. 

 

 

Figure 11.3: XRD spectra and identified peaks for the as-cast equiatomic NiCrFeGe alloy. 

 

When compared to predictions from TC software, and the empirical thermodynamic parameters in 

Table 11.1, the as-cast equiatomic alloy exhibited some comparable features but also significant 

differences. As seen in Fig. 11.1, TC initially predicted the solidification of Fe and Ni-rich FCC and 

Cr and Ge-rich BCC phases, eventually giving way to segregated elemental Cr, Fe and Ge throughout 

equilibrium solidification. These may correspond to the observed phases 2 and 1 from Table 11.2 

respectively (i.e. the dark contrast and medium grey contrast phases in Fig. 11.2), though whether 

these phases are in fact FCC and BCC in structure is perhaps disputed by XRD observations. The 

indexing of peaks shows that phase 1 in Fig. 11.2 is analogous to a cubic Cr3Ge intermetallic. 

Meanwhile, predictions based on the calculated thermodynamic parameters are comparable to the 

observations, with the highly negative mixing enthalpy of Ge with Ni and Cr contributing to the 

formation of intermetallics rather than a solid solution phase. The average VEC of 7.00 would also 

suggest a mix of FCC and BCC, or a slight favouring of BCC, structures for formed solid solutions, 

which is reflected in the TC predictions. 

 

11.3 NiCrFeGe System – Optimisation 

Considering the above, the composition of the NiCrFeGe system was optimised for promotion of FCC 

solid solution, using TC software and considering thermodynamic parameters. This was attempted as 
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a further test of the TC software for these alloys, allowing an assessment of its ability as a 

microstructure-optimising tool, rather than just a liquidus-optimising tool. Fig. 11.4 shows the TC 

predictions for room temperature FCC phase abundance as a function of (a) Cr content, (b) Fe content 

and (c) Ge content. In each case, Ni was maintained as balance while the other two elements were 

maintained at 25 at. %. TC predicts a clear decrease in FCC molar fraction with increasing Cr and Ge 

content, whereas increasing Fe is predicted to decrease FCC molar fraction to a lesser extent. 

Concurrently, total molar fraction of BCC phases is predicted to increase with increasing Cr, Fe and 

Ge. Looking closer, the rate of increase in FCC molar fraction, per at. % Cr removed, decreases past 

15.6 at. % Cr, according to TC predictions. At the same time, simply reducing the concentration of Cr, 

Fe and Ge, and increasing Ni concentration, is predicted to increase the liquidus temperature (Fig. 

11.5), therefore some attention was paid to balancing an increased FCC molar fraction with a lower 

liquidus. For this reason, Ge content was maintained at 25 at. % while the effect of Cr and Fe content 

on liquidus temperature was investigated. Fig. 11.6 shows a TC predicted heat-map of the fraction of 

liquid at 1150oC, while maintaining Ni as balance and Ge at 25 at. %. According to these predictions, 

an increase in Fe content towards 29.5 at. % would allow a reduction in Cr content to the 15.6 at. % 

mentioned, while keeping the liquidus below 1150oC.  

 

 

Figure 11.4: TC predictions of room temperature phase abundance versus atomic percentage of (a) Cr, (b) Fe and (c) Ge. In 

each case, Ni is kept as balance and the other two elements are maintained at 25 at. %. 
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Figure 11.5: TC-predicted liquidus projection (at mol. fraction liquid = 1.0) for (a) NiCr(5-25 at.%)FeGe, (b) NiCrFe(5-25 

at.%)Ge, and (c) NiCrFeGe(5-25 at.%). 

 

 

Figure 11.6: TC predictions of Cr and Fe concentration required for a maximum liquidus of 1150oC, while maintaining Ni 

as balance and Ge at 25 at. %. 

 

Based on these predictions, a Ni(bal.)-Cr(15.6)-Fe(29.5)-Ge(25) composition (hereafter referred to as 

‘optimised NiCrFeGe’) was predicted as having a majority FCC solid solution microstructure. Fig. 

11.7 shows the TC predictions of phase abundance versus temperature, and Table 11.3 shows the 

calculated thermodynamic parameters for this composition. A liquidus of approximately 1141oC is 

predicted, with solidification of an FCC A1 solid solution commencing. At approximately 850oC, a 

BCC A2 phase forms. At the solidus (approximately 791oC), the composition of the FCC and BCC 

phases, in atomic percent, is Ni(33.3)-Cr(14.1)-Fe(30.7)-Ge(21.8) and Ni(12.9)-Cr(24.2)-Fe(23.9)-
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Ge(39.0). Again, just below 800oC, the Ge is predicted to completely segregate from the FCC and 

BCC solid solutions, and at room temperature the near complete segregation of each element has been 

predicted, with only an FCC Ni-Fe solid solution making up approximately 50 % molar fraction.  

 

Figure 11.7: TC predictions of phase abundance versus temperature for the optimised Ni(bal.)-Cr(15.6)-Fe(29.5)-Ge(25) 

composition. 

 

Table 11.3: Calculated values of ΔHmix, δr and VEC for the optimised Ni(bal.)-Cr(15.6)-

Fe(29.5)-Ge(25) composition. 

 ΔHmix (kJ mol-1) δr (%) VEC 

NiCrFeGe (optimised) -16.58 9.67 7.29 

 

11.4 Fabrication of Optimised NiCrFeGe Alloy 

To determine the accuracy of the TC predictions for the optimised Ni(bal.)-Cr(15.6)-Fe(29.5)-Ge(25) 

composition, this alloy was fabricated, in the same manner as the equiatomic alloy. Fig. 11.8 shows 

the SEM BSE micrograph of the as-cast alloy, along with EDS maps. For this optimised composition, 

two main solid solution phases are apparent, a dark grey contrast phase and lighter grey interdendritic 

phase, marked A and B respectively in Fig. 11.8. EDS point scans were again used to determine the 

composition of these phases, with the findings summarised in Table 11.4 (average of 5 

measurements). The phases appear to have somewhat similar compositions to the medium grey and 

light grey phases in Fig. 11.2 (marked 2 and 3 respectively), with phase A being rich in Fe and Ni, and 

phase B rich in Ni and Ge. Fe appears to be the most distinctly segregated between the two phases. 

Most notable is the almost complete absence of the Cr,Ge-rich intermetallic phase that was observed 
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in Fig. 11.2 (marked 1). Small instances only (< 5 μm) of what is likely the same phase are identified 

by noting the bright patches on the Cr Kα1 EDS map in Fig. 11.8 (top right), and are marked C, but 

these were not measured by EDS point scanning, being too small for accurate measurement. Inferred 

from TC predictions of liquidus temperature, the solidification sequence of the two majority phases 

was likely A  B. 

 

Figure 11.8: SEM BSE micrograph of as-cast optimised Ni(bal.)-Cr(15.6)-Fe(29.5)-Ge(25) alloy, with EDS maps showing 

elemental distribution between phases. 

 

Table 11.4: EDS measurements (average of 5) of composition of phases identified in Fig. 4, in 

atomic percent. Errors derived from standard deviation. 

 EDS measured atomic percentage 

Phase Ni Cr Fe Ge 

A 28.4 ± 0.2 16.7 ± 0.1 31.2 ± 0.2 23.6 ± 0.1 

B 37.0 ± 0.5 14.7 ± 0.1 16.9 ± 0.7 31.6 ± 0.3 

 

Fig. 11.9 shows the XRD spectra with indexed peaks for the as-cast optimised NiCrFeGe composition 

(Bruker D2 phaser). Again, due to the composition of each of these phases, identification of a specific 

matching phase was unlikely. However, the XRD spectra indicates that both phases are BCC solid 

solution phases with similar lattice parameters (hence the apparent double peaks). EDS measurements 

(Table 11.4) showed these phases are of slightly different composition than the BCC phases in the 

equiatomic alloy, which may explain the peaks here being more resolvable from each other. The peak 

at approximately 2θ = 30o was again unable to be identified. This XRD analysis is in contrast to TC 

predictions for these phase compositions however, which indicates probable majority FCC crystal 

structure. However, this could be a result of the prediction of Ge segregation at temperatures below 

approximately 800oC, leaving only FCC Ni-Fe-Cr phases, whereas we see in the as-cast alloys the 

presence of Ge in the solid solution phases appears to promote the BCC crystal structure. 
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Figure 11.9: XRD pattern for as-cast optimised NiCrFeGe composition, with peaks matching two seperate BCC solid 

solution phases. 

 

When compared to the TC predictions, the as-cast optimised NiCrFeGe composition again exhibits 

significant differences. While the primary phase, marked A in Fig. 11.8, may correspond to the 

predicted FCC phase (see Fig. 11.7), XRD indexing suggests this is in fact a BCC solid solution. The 

phase marked B is perhaps captured by the TC prediction of the BCC phase (Fig. 11.7), and the XRD 

peaks indicate this is indeed a BCC solid solution phase with lattice parameter similar to phase A. 

Only marginal reductions in |ΔHmix| and δr were calculated for the optimised NiCrFeGe composition, 

due again to the contributions to these calculations from the Ge content (the second most abundant 

element in the optimised composition). Despite this, two solid solutions appear to have formed, 

though small instances of the previously observed (in Fig. 11.2) Cr,Ge-rich intermetallic were likely 

observed in Fig. 11.8, indicating that not all the Ge is in solution. 

 

11.5 Differences in Mechanical Properties Following Optimisation 

As a simple indication of the change in mechanical properties between the equiatomic and optimised 

NiCrFeGe compositions, microhardness measurements of both as-cast alloys were taken (Fig. 11.10). 

The average of 5 measurements for each showed values of 720 ± 15 HV1 for the as-cast equiatomic 

alloy, and 550 ± 11 HV1 for the as-cast optimised alloy. This might be tentatively linked with an 

expectation for decreased brittleness following the composition optimisation, mainly as a result of the 

avoidance of the Cr,Ge-intermetallic phase in the optimised case. Therefore, despite differences 

between TC predictions and findings, this approach to composition refinement could be a useful tool. 

Despite this anticipated beneficial increase in ductility, however, TC predictions show that the 

objective of a sub-1100oC liquidus would not be met by these compositions. Indeed, TC predicted 

that, for the NiCrFeGe system, only a higher Ge content, towards 30 at. %, would meet this objective. 
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As detailed in the requirements proposed in Chapter 9, however, this would be deemed undesirable 

for the microstructure of the MPEA filler metal, as it would presumably promote intermetallic 

formation and discourage solid solution formation. For this reason, the introduction of a minor 

addition of a further MPD element was considered. 

 

 

Figure 11.10: Average microhardness values for as-cast equiatomic NiCrFeGe and TC-optimised NiCrFeGe, with erros 

derived from standard deviation. 

 

11.6 NiCrFeGeB System 

Preliminary TC investigations as to what element might be selected as a minor MPD addition to the 

NiCrFeGe system revealed that elements including In, Mn, or others that according to their binary 

phase diagrams with Ni, Cr and Fe might suppress liquidus temperature, would still require a 

significant concentration. Furthermore, TC optimisation for a quinary alloy, with two additions that 

have limited or no assessed data either with each other or with Ni, Cr and Fe, is likely to be yet more 

inaccurate than for a quaternary alloy, or for a quinary whose fifth element is more widely used. 

With this in mind, currently used MPDs Si and B were considered, as it was deemed likely that a 

reduced concentration of these might be required as compared to those in current commercial brazing 

alloys (for example, AWS BNi-2 contains approximately 14 at. % B). However, as already discussed, 

including these elements runs the increased risk of intermetallic formation in the form of borides and 

silicides. B was ultimately selected, as aside from being the faster diffusing element, the ΔHmix of the 

Ge-B pair was lower than that for Ge-Si (-0.5 kJ mol-1 versus -14.5 kJ mol-1) [200]. In order to merit 

the inclusion of B, it was considered that the concentration should be limited at 5 at. % as a starting 

point, representing a significant reduction as compared to filler metals such as AWS BNi-2. 

With a suitable small B addition, a sub-1100oC liquidus MPEA filler metal may be obtained, which 

following brazing, would diffuse away the B content, leaving behind an otherwise MPEA-like 

NiCrFeGe-based composition in the joint region. This could have potentially beneficial mechanical 

properties from solid solution strengthening, as well as a higher post-braze melting temperature 
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(meaning the joint may withstand much higher temperatures). The following section of this chapter 

(Section 11.7) is a journal article manuscript, now published in Metallurgical and Materials 

Transactions A, detailing an investigation into developing a NiCrFeGeB composition for the brazing 

of IN718. 

 

11.7 Development & trialling of NiCrFeGeB filler metal for brazing of IN718 

(See journal article manuscript attached overleaf. Figures, tables, subheadings and references are 

self-contained) 
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Abstract 

Brazing is a crucial joining technology in industries where Ni-superalloy components must be joined. 

Ni-based brazing filler metals are extensively employed, possessing excellent mechanical properties, 

corrosion resistance and retained strength at elevated temperatures. To function as a filler metal, the 

alloy melting point must be reduced to below that of the materials being joined, but the addition of 

melting point depressants (MPDs) such as B, Si, and P can, however, lead to the formation of brittle 

intermetallics, potentially compromising the joint performance. In the present work, a novel multi-

principal element brazing alloy (in the style of a high entropy alloy), utilising Ge as an alternative 

MPD along with a reduced B addition, is investigated. The design process considered binary phase 

diagrams and predictions based on Thermo-Calc software and empirical thermodynamic parameters. 

The alloy was used to vacuum braze Ni-superalloy Inconel-718, and microstructural and mechanical 

investigations are reported. The maximum shear strength achieved was 297 MPa with a brazing 

temperature of 1100oC and 60-minute hold time, with isothermal solidification completed. Shear 

strength was only slightly reduced with increased joint width. Assessments are made of the ability to 

accurately predict properties of multi-principle element alloys using Thermo-Calc software and 

empirical thermodynamic parameters. 

Introduction 

Brazing has become an important technology for the joining of materials unsuitable for welding, such 

as Ni superalloys, which could otherwise be susceptible to strain age cracking in the post-weld heat 

affected zone. Brazing instead employs a filler metal which melts and bonds the two materials 

through a diffusion-controlled process. This may be either placed directly in the joint, or applied such 

that capillary action will draw the molten filler metal into the joint. Current commercially available 

Ni-based filler metals are preferred for the brazing of Ni superalloy components in applications 

demanding high mechanical performance, at elevated temperatures and in corrosive envFements. The 

properties of such alloys are generally achieved by alloying additions including Cr for enhanced 

corrosion resistance [1] and Fe for increased solid solution strengthening [2]. In addition, to enable 

brazing at a suitably low temperature, elements acting as melting point depressants (MPDs) are added 

to the brazing alloy in relatively small weight percentages in order to attain a suitable liquidus. The 

most prevalent of these elements are B, Si and P. 

It is well documented, however, that such additions encourage the formation of undesirable 

intermetallic phases in the form of borides, silicides and phosphides, particularly with the elements 

Ni, Cr and Fe [3-5] whose solubility limit of these elements is typically very low. Fig. 1 shows 

schematically the basic sequence of processes occurring during brazing (or transient liquid phase 

bonding (TLPB), discussed in detail elsewhere [6]) of a base metal with a solid filler metal containing 

an MPD (Fig. 1(a)). When the brazing temperature is reached, the filler metal is fully molten (Fig. 

1(b)), and a widening of the liquid may occur as the composition at the solid/liquid interface is 

adjusted to that of the solidus/liquidus MPD concentrations (Fig. 1(c)). Diffusion of MPD elements at 

the brazing temperature from the molten filler into the materials being bonded (which, under the 

definition of brazing, remain solid at the processing temperature) gradually increases the liquidus of 

the melt, until an elemental concentration is reached locally where the melt begins to solidify at the 

brazing temperature, a process known as isothermal solidification. This occurs as two solidification 

fronts move inwards from the interfaces with the base material (Fig. 1(d)). When the time at the 

brazing temperature is not sufficient for isothermal solidification of the entire joint, and the onset of 

cooling follows, brittle intermetallic phases can form via eutectic transformation of the remaining 

melt, enriched in these elements due to their low solubility in the advancing gamma matrix phase, 

usually occurring along the joint centre [7,8]. A joint examined at this stage may exhibit two 

phenomena often referred to as the isothermally solidified zone (ISZ), and the athermally solidified 

zone (ASZ). Furthermore, fast diffusing elements such as B can react with the base metal elements, 

creating what is commonly referred to as a diffusion-affected zone (DAZ) at the interface of filler 



124 
 

metal and into the base metal [9,10], which may remain even if isothermal solidification is complete 

within the joint. These phenomena are represented in Fig. 1(e). As well as providing a potentially 

continuous crack propagation path, reacting with base metal elements such as Cr, Nb and Mo can 

result in their diminished concentration within the base metal matrix, and thus reduce the corrosion 

resistance locally. When sufficient time at the brazing temperature is allowed, however, isothermal 

solidification may progress fully across the joint. Further homogenisation heat treatments following 

brazing may be used to remove the DAZ through further diffusion, as is typically the final stage in 

TLPB. In this case, a brazed joint may be largely indistinguishable from the original base metal, as in 

Fig. 1(f). In total, the inclusion of the current MPD elements in concentrations used in current brazing 

alloys, can cause increased brittleness and ultimately premature failure in the joint [11-13] without the 

use of either prolonged brazing cycles or post-braze heat treatments, both of which are economically 

undesirable, and may present practical challenges. 

 

Fig.1. Typical stages in brazing; (a) Initial set-up of joint; (b) Molten filler upon reaching TB; (c) 

Dissolution of base metal and widening of liquid layer; (d) Isothermal solidification stage and 

reduction of width of liquid layer; (e) Remaining DAZ and ASZ as a result of cooling onset before 

isothermal solidification; (f) Joint where isothermal solidification is allowed to complete before onset 

of cooling, and DAZ removed via homogenisation. 

The majority of studies into viable alternative MPDs involve exploration of the addition of a single 

alternative MPD element to Ni. Dinkel et al. (2008) investigated the use of Ge as a potential MPD in 

binary Ni-Ge alloys, for brazing superalloys PWA 1483 and René N5 with Ni-23wt.%Ge and Ni-

20wt.%Ge respectively [14]. With joint gaps reported as 200 µm, for the first alloy 48 hours at 1160oC 

was required for gap closure, and 24 hours at 1180oC for the second alloy. Laux et al. (2008) trialled a 

range of Ni-Mn (36.7 and 58.4 wt.%Mn) and Ni-Mn-Si (20wt%Mn-2wt.%Si, 20wt%Mn-3wt.%Si and 

25wt%Mn-2wt.%Si) alloys for the wide-gap brazing of a Ni-7.5Co-7.0Cr-1.5Mo-5.0W-6.5Ta-6.2Al-

3.0Re (in wt. %) superalloy [15]. For constant brazing hold times of 30 minutes, brazing temperatures 

ranged from 1040oC for the highest Mn content (Ni-58.4Mn in wt.%), to 1260oC for the lowest Mn 

content (Ni-20Mn-2Si in wt.%). Evidently, such alloys often require substantial amounts of the 

proposed MPD, yet the liquidus temperature is often still considerably higher than for most current 
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Ni-based brazing filler metals (which would typically be between 1000oC and 1150oC). There is 

motivation, therefore, to seek novel compositions that can achieve a strong joint, free of brittle 

intermetallic phases within typical industrial brazing cycles. 

In recent years significant attention has been paid to high entropy alloys (HEAs), a relatively new 

class of materials comprising typically 5 or more elements, in roughly equiatomic proportions or 

concentrations originally defined as 5 – 35 at.% [16]. They are so-named due to the supposed role that 

their enhanced configurational entropy plays on their potentially unique properties. More recently, the 

definition of HEAs has undergone some broadening, extending to non-equiatomic compositions, or 

systems with as few as three elements [17]. Such systems are sometimes referred to generally as 

multi-principal element alloys (MPEAs) [18,19]. Often based on transition and/or refractory metals, 

HEAs and MPEAs have proved of interest due to their potentially exceptional mechanical properties 

[20-22] and corrosion resistance [23-25]; properties which could be of clear benefit to brazing 

applications. However, perhaps due to both the typically high melting point of such systems (although 

melting temperature often tends to decrease towards equiatomic compositions), and little or no 

attempts at designing for a melting temperature relevant to brazing (through refining composition or 

and/or use of a MPD element), relatively little has been published on employing HEAs as brazing 

filler metals. From those studies that do exist, the brazing temperature required is often significantly 

higher than typically used for current brazing filler metals. Bridges et al. (2017) demonstrated laser 

brazing of IN718 superalloy with a Ni-Mn-Fe-Co-Cu HEA, at a brazing temperature of 1165oC and 

achieving a 220 MPa maximum shear strength [26]. Tillmann et al. (2018) joined Hf-metallised YSZ 

ceramic to Crofer 22 APU steel using a Nb-Co-Cr-Fe-Ni HEA, achieving almost double the shear 

strength than when using a typical AgCuTi3 filler metal, albeit at a brazing temperature of 1200oC, 

some 280oC higher than that for AgCuTi3 [27]. Gao et al. (2019) demonstrated a maximum shear 

strength of 530 MPa when joining IN600 superalloy with a Fe-Co-Ni-Mn-Cu MPEA, with a brazing 

hold time of 90 minutes at 1200oC [28]. 

The present work therefore demonstrates an alloy design process, with the aim of developing a novel 

HEA or MPEA-derived filler metal composition able to produce superior joints when used within 

typical industrial brazing cycles. This process employs binary and ternary phase diagrams, empirical 

thermodynamic parameters, and Thermo-Calc software (SSOL4 database), which uses the 

CALPHAD method of extrapolating thermodynamic information of a system from experimentally 

verified data on binary and ternary systems. 

Preliminary Alloy Design Study 

It is clear from binary Ni phase diagrams and the literature [14,15] that, of numerous candidate MPD 

elements (transition and post-transition metals, metalloids and refractories), most would require 

excessive atomic percentages (compared to that of B or Si) to achieve a liquidus comparable to 

current B/Si-containing filler metals; in many cases 30 at.% or more of addition would be needed. In 

other cases, the liquidus may still be over 150oC above that of B/Si-containing filler metals. In this 

study, Ge was considered as an alternative MPD. According to the Ni-Ge binary phase diagram (Fig. 

2), a liquidus of 1125oC is achieved with 22 at.% Ge [29], hence a reasonable MPD effect is exhibited. 

Ge also exhibits a greater solubility in Ni than B or P, at approximately 13 at.% at 1125oC, which is 

closer to that of Si at 14.6 at.%.  As reported in the phase diagram [29] a gamma-prime (γʹ) phase is 

formed at compositions between approximately 23 and 26 at. % Ge, which could enhance mechanical 

properties of the joint through a similar mechanism to the γʹ phase in standard Ni superalloys. Fig. 3 

and Fig. 4 show the binary phase diagrams for the Cr-Ge [30] and Fe-Ge [31] binary systems 

respectively. As is the case in the Ni-Ge binary system, at high Ge contents, numerous intermetallic 

phases form with Cr and Fe, though it can also be seen that Ge has a similar effect on the liquidus of 

the Cr-Ge (1564oC at approximately 25 at.% Ge) and Fe-Ge (1105oC at approximately 30 at.% Ge) 

binary systems, and exhibits somewhat similar solubility (11 and 16 at.% Ge respectively). 
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Fig. 2. Ni-Ge binary phase diagram. 

 

Fig. 3. Cr-Ge binary phase diagram. 

 

Fig. 4. Fe-Ge binary phase diagram 
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Clearly, however, the use of Ge as a like-for-like substitute for B or Si in a conventional Ni-based 

filler metal, despite any potential microstructural improvements in the form of gamma-prime 

precipitates, would not achieve a liquidus similar to those of many current commercial brazing alloys. 

While increasing the at. % of Ge in any developed alloy may well further reduce the liquidus and 

hence brazing temperature, this increases the risk of brittle intermetallic formation. However, 

according to the liquidus projection in the Cr-Fe-Ni ternary system [32], the liquidus decreases 

towards the equiatomic composition, reaching 1390oC at approximately equiatomic concentrations. In 

addition, Ni, Cr and Fe are chemically compatible with a superalloy base metal, and exhibit an 

extended mutual solubility range, providing an intermetallic-free, lower liquidus matrix to which less 

Ge may be added than may otherwise be required. An increased Fe content may also confer cost 

benefits. Data on the diffusivity of Ge in Ni and Ni-superalloys exists [33] and so with an appropriate 

brazing cycle sufficient Ge diffusion may take place such that the remaining Ge in the joint is soluble 

in a superalloy-like Ni-Cr-Fe joint matrix. 

In light of this, the addition of Ge to an initially equiatomic NiCrFe ternary system was considered, 

utilising both Thermo-Calc (TC) software, as well as empirical thermodynamic parameters used in the 

design of HEAs; the average enthalpy of mixing of binary pairs (ΔHmix); the average atomic size 

mismatch (δr); and the average valence electron concentration (VEC). TC software may be useful in 

predicting the melting temperature of a developed filler metal. Considering typical brazing cycles 

used in industry, it was deemed necessary to aim for a filler metal liquidus of no higher than 1100oC, 

and for it to ideally possess a predominantly FCC microstructure, in order to more closely match the 

base metal gamma-matrix. The empirical thermodynamic parameters could aid in predicting the 

microstructure. In keeping with classic guidelines based on the Hume-Rothery rules, it has been 

suggested that minimising | ΔHmix | promotes the formation of solid solution, with negative or positive 

values promoting intermetallic formation or segregation respectively [34]. Similarly, a small δr is 

considered beneficial for promoting solid solution [34,35]. In other studies, it is suggested that the 

average VEC can be used to predict crystal structure of the solid solution, with higher VEC associated 

with FCC and lower with BCC (though the exact threshold values differ between systems) [36,37]. 

For example, it is suggested that an average VEC of over 8, or below 6.87, would favour promotion of 

a FCC or BCC microstructure respectively [36,37]. For 8 ≥ VEC ≥ 6.87, both FCC and BCC phases 

would be present. Each of these parameters can be calculated using Equations (1) – (3): 
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Alloy Design Results 

Fig. 5 shows the TC property diagram for the equiatomic NiCrFeGe system, exhibiting solidus and 

liquidus temperatures of 900oC and 1110oC respectively. The TC predictions show a multi-phase 

microstructure upon solidification to room temperature, but with a desirable FCC majority phase. 

Promotion of the primary FCC phase was possible by moving away from the equiatomic composition, 
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but this resulted in an increase in the predicted liquidus temperature. A predicted compromise 

between increased FCC content and decreased liquidus content could be achieved for a Ni(bal.)-

Cr(15.6)-Fe(29.5)-Ge(25) at.% composition, but the predicted liquidus was still higher than in the 

equiatomic case, and so neither composition was deemed of interest for this study. 

 

Fig. 5. Thermo-Calc diagram showing predicted proportion of phases as a function of temperature for 

the equiatomic Ni-Cr-Fe-Ge composition. 

Fig. 6. Thermo-Calc diagram showing (a) predicted liquidus projection for B addition (in at. %) to 

Ni(bal.)CrFeGe, and (b) Thermo-Calc diagram showing predicted room temperature proportion of 

Cr2B phase in NiCrFeGe+B, for B concentration of 0 – 5 at. %. 

Indeed, it was found that, except at Ge concentrations of approximately 30 at. % and higher, a sub-

1100oC liquidus was not predicted to be achieved in the NiCrFeGe system. Given both the need for 

good chemical compatibility with a prospective Ni-based superalloy, and the high raw cost of Ge, it 

was however deemed necessary to limit the Ge content to 25 at. % and to ensure that no one element 

is present in a higher concentration than Ni. B, as discussed, is widely employed as an MPD in Ni-

based filler metals and is well known as a fast diffusing element in Ni-based superalloys. It can 

therefore be conceived that an appropriately small amount of B (compared to current commercially 
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available options that utilise B as MPD) contained by the developed filler metal may sufficiently 

reduce the liquidus temperature, and during brazing diffuse away from the joint over the course of an 

appropriate brazing cycle, leaving behind a HEA or MPEA-like central joint region. Initially, a B 

content of between 0 and 5 at. % was therefore considered as an addition to the equiatomic NiCrFeGe 

system, while noting the additional need to consider the boride content now predicted by TC. A 

suitable predicted liquidus temperature was achieved at 2.5 at. % B, giving solidus and liquidus 

temperatures of 840oC and 1038oC respectively, with TC predicting a low CrB content of 7.5 mol.% 

(in comparison, for BNi-2, TC predicts approximately 13 mol.% and 15 mol.% of Cr2B and Ni2B 

respectively). This B concentration is significantly lower than contained in, for example, BNi-2 which 

has approximately 14 at. % B. 

Upon further optimisation of the composition (in terms of predicted liquidus temperature, predicted 

FCC content, and predicted boride content), this alloy design approach resulted in the development of 

a Ni-rich off-equiatomic MPEA with a composition (in at.%) of Ni(30.5)-Cr(25)-Fe(18)-Ge(24)-

B(2.5). Predicted solidus and liquidus temperatures for this composition were 820oC and 1062oC, with 

a primary FCC matrix and predicted Cr-boride molar concentration of under 10%. The TC predicted 

phase diagram for this composition is shown in Fig. 7. The predicted properties of the above series of 

alloy compositions is summarised in Fig. 8. 

 

Fig. 7. Thermo-Calc diagram showing prediction proportion of phase as a function of temperature for 

the final Ni(30.5)-Cr(25)-Fe(18)-Ge(24)-B(2.5) composition. 

Investigating the constitution of these predicted phases, the primary FCC phase was predicted to 

consist of only a Ni-37at.%Fe solid solution, whereas the Cr and Ge content was predicted to be 

completely segregated in the microstructure, showing as BCC_A2 and DIAMOND_A4 respectively 

in Fig. 7, which may be attributed to the lack of assessed Ge binary or ternary systems data in the 

SSOL4 database. At the same time, the SGTE Solutions SSOL databases, such as SSOL4, are the 

only current databases to include Ge along with elements Ni, Cr, Fe, and B. Rather, the previously 

mentioned empirical thermodynamic parameters, shown in Table 1, were also considered. For the 

Ni(30.5)-Cr(25)-Fe(18)-Ge(24)-B(2.5) composition, it can be seen that the average VEC tends toward 

favouring mixed BCC/FCC formation, but that |ΔHmix| is also minimised compared to the other 

compositions. It must be noted here that such trends between microstructure and these parameters 

arises from the screening of numerous HEAs, and is mainly based only on transition and refractory 

metals, and very little has been established for cases of mixed transition metal – metalloid systems 

such as this. Table 1 summarises the development of the composition in terms of the empirical 

thermodynamic parameters. 
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Fig. 8. Chart summarising predicted melting range, FCC mol.% and Cr2B mol.% of each alloy 

composition throughout the design process 

Table 1. Calculated empirical thermodynamic parameters ΔHmix, δr, and VEC for each alloy 

composition throughout the design stage. 

Parameter 
NiCrFeGe 

(equiatomic) 

NiCrFeGe 

(optimised for 

FCC) 

NiCrFeGe 

(equiatomic) + 2.5 

at.% B 

Ni(bal.)-Cr(25)-

Fe(18)-Ge(24)-

B(2.5) 

ΔHmix (kJ 

mol-1) 

 

7.75 -4.00 5.60 3.00 

 

δr 

 

2.85 3.98 3.60 3.98 

 

VEC 

 

7.00 7.3 6.8 7.0 

 

Experimental Procedure 

Pure elements (of at least 99.9% purity, Alfa Aesar) were arc-melted in an Arcast 200 Arc-melter, 

producing an ingot of the NiCrFeGeB alloy of approximately 20 g in a water-cooled Cu crucible. The 

operating current was 450 A, and the ingot was flipped and re-melted five times to improve 

homogeneity, with electromagnetic stirring also applied for this reason. An 8 mm Ø cylinder of length 
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10 mm was removed from the as-cast ingot via electron discharge machining. Thin slices (400 – 800 

μm) were then sectioned from this cylinder, which were then manually ground to a thickness of 

approximately 65 μm using a stainless steel grinding jig and SiC grit papers. A further slice was 

ground to a thickness of approximately 100 µm in order to demonstrate the effect of increased gap 

size for the developed composition.The NiCrFeGeB foils were used to vacuum braze 8 mm Ø, 5 mm 

length cylinders of Inconel-718 (IN718) to 25 x 25 x 5 mm sheets of IN718. A schematic of the 

brazed joint is shown in (Fig. 9(a)). Brazing was performed at 1100oC for 15 (for 65 µm thickness) 

and 60 (for 65 µm and 100 µm thickness) minutes. In each case, a 15-minute equalisation hold was 

performed at 1010oC below the brazing temperature. After brazing, the joints were furnace cooled to 

900oC before gas quenching. Ramp rates were 15oC min-1 in each trial. The same brazing cycles were 

repeated for AWS BNi-2 in melt-spun foil form of 50 μm thickness (VBC Group, Loughborough, 

UK) for mechanical comparison. Prior to brazing, all IN718 pieces were ground with P1200 papers, 

before ultrasonic cleaning in acetone for 10 minutes along with the NiCrFeGeB and BNi-2 foils. A 

load of 0.02 kg was placed on each joint during the brazing cycles. Shear testing of the brazed joints 

through applying compression was performed based on the method of Matsu et al. [38], with the aid 

of an EN30B steel test fixture (shown schematically in Fig. 9(b)). In addition, in order to observe any 

microstructural changes induced under approximate service conditions (as superalloys are normally 

used at elevated temperatures for extended times), a 5 mm length section of a joint brazed at 1100oC 

for 60 minutes was heat treated in an inert atmosphere at 700oC for 100 hours. 

 

Fig. 9.; (a) Schematic of brazed joint specimen; (b) Schematic of steel fixture used to seat brazed joint 

specimen for shear testing. 

The composition of the as-cast NiCrFeGeB alloy was measured via X-ray fluorescence (XRF) 

(PANalytical Zetium), and phase analysis was performed by X-ray diffraction (Bruker D2 Phaser). 

Microstructural investigation of the as-fabricated alloys was performed via SEM (BSE) (FEI Inspect 

F50 operated at 20 keV) and energy dispersive spectroscopy (EDS) using Aztec software. Differential 

Scanning Calorimetry (DSC) of a 30 mg sample of the as-cast NiCrFeGeB alloy was performed in an 

Ar atmosphere with heating and cooling rate of 20oC min-1 (Netzsch 404 F1 Pegasus). Average peak 

onset of three heating curves was determined with Proteus software. The NiCrFeGeB and BNi-2 

brazed joints were imaged via SEM. Further elemental distribution analysis was performed by 

Electron Probe Micro-Analysis equipped with Soft X-ray Emission Spectrometer (EPMA-SXES) 

(JEOL JXA-8530F). Micro-hardness measurements of the as-fabricated alloys and both NiCrFeGeB 

and BNi-2 brazed joints were performed using a Struers Durascan, with a dwell time of 15 seconds. 1 
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kg load was used for the as-cast sample, and 0.05 kg load was used for hardness profiles of the joints 

post-braze. 

Results & Discussion 

As-Cast NiCrFeGeB Alloy 

Bulk composition of the as-cast NiCrFeGeB alloy, as measured by XRF, is shown in Table 2. The 

typical as-cast NiCrFeGeB microstructure SEM micrograph is shown in Fig. 10 (a), along with EDS 

maps showing the elemental distribution (Fig. 10 (c)). Four distinct phases were observed; a thin 

needle-like phase (black contrast) between 50 – 200 μm length (marked 1); an irregular-shaped phase 

(dark grey contrast), approximately 20 μm in size (marked 2); and upon increasing magnification (Fig. 

10 (b)) two further phases (medium and light grey contrast respectively) (marked 3 and 4). The 

needle-like dark phase is most likely a Cr-rich boride (known difficulties in detecting light elements 

via EDS means B concentration may be inaccurate), containing also some amount of Fe. The more 

irregular dark grey phase was found to be more complex, primarily containing Cr but with significant 

Ge content, as well as Fe. The medium and light grey phases were found to contain all Ni, Cr, Fe and 

Ge, with the light grey being more Ge-rich and the medium grey more Ni-rich. The composition in 

atomic percent of each phase is reported in Table 2, as the average of five EDS point scan 

measurements. Average Vickers microhardness for the as-fabricated NiCrFeGeB alloy was found to 

be 773 ± 10 HV1. 

Table 2. Bulk composition (converted to at. %) of NiCrFeGeB alloy as measured by XRF. This 

technique is not capable of quantifying B content. 

 Ni (at. %) Cr (at. %) Fe (at. %) Ge (at. %) 

As-cast NiCrFeGeB alloy 29 ± 2 26 ± 2 20 ± 2 21 ± 2 

 

Table 3. EDS-determined (average of 5 point measurements) composition of phases identified in Fig. 

10. Errors derived from standard deviation of measurements. 

Phase 

Element concentration (at. %) 

Ni Cr Fe Ge B 

1 0.8 66.5 8.3 0.6 23.7 

2 3.5 63.8 10.2 22.6 - 

3 34.0 11.4 26.3 27.6 - 

4 34.4 16.5 9.8 36.0 - 
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Fig. 10. (a) SEM micrograph of typical section of as-cast Ni(30.5)-Cr(25)-Fe(18)-Ge(24)-B(2.5) alloy 

with EDS mapped region highlighted, (b) Magnified micrograph of EDS-mapped region highlighted 

and distinct phases marked, (c) EDS maps of (a) showing elemental distribution. 

Fig. 11 shows a representative DSC cooling curve for the as-cast NiCrFeGeB ingot. Solidus and 

liquidus temperatures of 1038oC and 1055oC were determined from this. It is possible that the two 

phases marked 1 and 2 in Fig. 10, both being rich in Cr, possess much higher solidus and liquidus 

temperatures and so no transition relating to their melting was recorded for the temperature range used 

in the DSC cycle. 

 

Fig. 11. Average of three DSC cooling curves for 30 mg sample of the as-cast NiCrFeGeB alloy. 
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Brazed Joints (Microstructure) 

Typical sections of the NiCrFeGeB-IN718 joint microstructures are shown in Fig. 12, for both (a) 15-

and (b) 60-minute braze cycles (65 µm foils). The primary microstructural difference immediately 

noticeable is the presence of boride phases, apparently retained from the as-cast microstructure, in the 

case of the 15-minute brazing time, which is not observed in the 60-minute case (marked A in Fig. 

12). This suggests that while the 15-minute hold time did not result in significant dissolution of these 

boride phases, after 60 minutes at the hold time sufficient dissolution of the boride phases had 

occurred. Furthermore, in both cases distinct zones containing a white-contrast phase were evident, 

commencing at a distance of approximately 30 µm from the joint centre (marked B in Fig. 12). This 

irregular, globular shaped phase appears to primarily form along grain boundaries (GB) and EDS 

point scans revealed it to be rich in Ni, Ge and Nb, and of similar composition for both 15 and 60-

minute braze cylces. The presence of Nb (not contained by the filler metal), and the location of the 

phase, indicates base metal dissolution was the primary cause of formation. As well as possessing a 

highly-negative mixing enthalpy with the filler metal elements Ni and Ge, Nb segregation is a known 

phenomenon in Inconel-series alloys [39], factors which encouraged the formation of this phase. 

Similarly, Ni-Ge-Nb phase was observed within the joint region for the 15-minute hold time sample 

(marked C in Fig. 12), attributed to rejection from advancing IS fronts, followed by the onset of 

cooling before IS could complete and the phase dissolved through diffusion processes. Given that this 

phase was not seen in the joint region for the 60-minute hold time sample, this lends credence to the 

notion that IS was completed in this case. 

 

 

Fig. 12. SEM micrographs of brazed joint microstructures for; (a) 15-minute at hold time at 1100oC; 

(b) 60-minute at hold time at 1100oC. Identified phases marked A-F, and microstructural regions 

labelled. 

Extending approximately 50 μm into the base metal from the interface are boride phases forming a 

relatively sparse DAZ (compared to DAZs commonly seen for B-bearing filler metals in literature). 

This includes GB Nb-Mo borides, and other coarser X-borides (where X represents base metal 

elements including Nb, Mo and Ti) (marked D and E in Fig. 12 respectively). The GB borides were 

observed generally out to a greater distance from the interface with the base metal, owing to faster 

diffusion along grain boundaries. While these were too fine to accurately measure with EDS point 

scans, EDS mapping indicated the presence of Nb and Mo (Fig. 12 (a)). The X-boride phases 
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observed were generally found to be few and far between, but were typically larger than the Nb-rich 

DAZ phase and of differing composition from instance to instance. The abundance of these phases 

was also reduced compared to similar joints using B-bearing filler metals seen in the literature. Of 

note is the greater concentration of GB borides in the case of the 15-minute hold time (a potential 

cause of which is mentioned in the discussion below). Probable fine Nb-borides were again observed 

predominantly along GBs in the IS grains in the 60-minute hold time sample (marked F in Fig. 12), 

but again these were too fine for EDS analysis. For both 15-minute and 60-minute braze cycles, the 

grey contrast matrix phase in the joints is the isothermally solidified Ni-rich solid solution, with 

noticeably reduced Ge content compared to the as-cast filler metal composition. Base metal elements 

were also observed in solution in this phase. A summary of EDS measurements of the main observed 

phases (A, B, C and solid solution ) is shown in Table 3. 

Table 4. EDS-determined (average of 5 point measurements) composition of phases identified in Fig. 

12. Errors derived from standard deviation of measurements. 

Phase 

Element concentration (at. %) 

Ni Cr Fe Ge Nb Mo Ti  

A 1.4 68.7 6.6 0.4 - 2.1 -  

B 39.2 5.7 5.8 15.6 24.8 1.1 1.6  

C 38.5 11.4 26.3 27.6 28.8    

Solid 

solution 

39.9 25.3 20.8 10.2 1.2 1.4 0.4  

 

Fig. 13 (a) shows a typical section of the NiCrFeGeB-IN718 joint brazed for 60 minutes followed by 

heat treatment at an approximate service temperature of 700oC for 100 hours, in an inert atmosphere. 

The microstructure is largely comparable to Fig. 12 (b), with the Ni-Ge-Nb phase and DAZ remaining 

largely undisturbed by the heat treatment process. Upon higher magnification (Fig. 13 (b)), fine GB 

borides are again observed in the ISZ, as marked by the arrow in Fig. 13 (b) (though these were on too 

fine a scale for quantification via EDS techniques). 
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Fig. 13. (a) SEM micrographs of typical section of brazed joint (60-minute hold time at 1100oC) 

following heat treatment at 700oC for 100 hours in inert atmosphere, with magnified region indicated. 

(b) Magnified region of part (a) with GB borides indicated.  

Fig. 14 shows a typical section of the NiCrFeGeB-IN718 joint brazed using the 100 µm foil for 60 

minutes, with EDS measurements shown in Table 4. Immediately observable is the increased joint 

width, due to the initial thickness of the foil. In addition, the presence of retained boride phases 

(marked X in Fig. 14) is apparent, despite the 60-minute hold time seemingly being adequate to 

dissolve these phases in the case of the 65 µm thickness foil. The borides observed in this case are 

typically reduced in size (under approximately 30 µm) compared to in the as-cast state of the 

NiCrFeGeB alloy, indicating some partial dissolution of these phases has occurred. Furthermore, there 

appears to be a reduced concentration of the Ni-Ge-Nb phase at the interface with the base metal 

(marked Y in Fig. 14), yet an increased concentration of the white contrast phase within the joint 

region (marked Z in Fig. 14), generally close to the joint centre presumably as a result of incomplete 

IS. An increased concentration of Nb-Mo borides was observed in the DAZ instead, extending out to 

between 50 to 100 µm into the base metal, but this phase was not quantified by EDS point scans due 

to its fineness. 
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Fig. 14. SEM micrograph of brazed joint (60-minute hold time at 1100oC) using 100 µm thickness 

foil. 

Table 5. EDS-determined (average of 5 point measurements) composition of phases identified in Fig. 

14. Errors derived from standard deviation of measurements. 

Phase 

Element concentration (at. %) 

Ni Cr Fe Ge Nb Mo Ti  

X 1.4 68.7 6.6 0.4 - 2.1 -  

Y 49.4 3.3 4.8 22.1 17.9 1.1 2.2  

Z 49.6 2.8 4.2 27.6 17.3 - 3.1  

Solid 

solution 

39.8 24.8 20.0 10.3 0.6 0.8 0.4  

 

Brazed Joints (mechanical properties) 

Microhardness profiles taken across the brazed joints are shown in Fig. 15 for each of the brazed 

joints (15-minute hold, 60-minute hold, 60 minute hold with 100 µm foil). Little variation in 

microhardness was observed across the joints for all cases, with only localised changes in the joint 

centreline. Here, in the case of the 15 minute hold time, a sharp increase in microhardness was 

presumably caused by the presence of retained boride. On the other hand, the 60 minute hold time 

sample exhibited a slight reduction across the ISZ zone, owing to the dissolution of borides phases 

and the joint region consisting of just Ni-rich solid solution. In the case of the 100 µm foil sample, 

again an increase in hardness was observed, likely due to the presence of the retained boride phases 

near the joint centre, but also possibly due to the increased presence of the Ni-Ge-Nb phase in this 

region. 

Fig. 16 shows the comparison of measured shear strengths for the three NiCrFeGeB-IN718 joints, and 

the BNi-2-IN718 joint. For the NiCrFeGeB filler metal, the highest shear strength was observed for 

the 60-minute hold time sample at 296 MPa, and the 60-minute hold time joint using the 100 µm foil 

was only marginally weaker than this at 292 MPa. For the 15-minute hold time sample, the maximum 

shear strength was 269 MPa. By comparison, the joint using BNi-2 had an average shear strength of 

476 MPa. 
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Fig. 15. Microhardness (HV0.05) profiles for different brazed joints (15-minute hold time at 1100oC, 

60-minute hold time at 1100oC and 15-minute hold time at 1100oC using 100 µm thickness foil). 

 

 

Fig. 16. Comparison of shear strengths of each joint using NiCrFeGeB filler alloy. 

 

In the case of many HEA and MPEA studies, the aim has been to achieve a single (or occasionally 

dual) phase microstructure, either FCC or BCC, in order to achieve superior mechanical properties. In 

other cases, secondary precipitates may be intentionally sought in order to strike a balance between 

ductility and strength. However, the as-cast microstructure of the NiCrFeGeB MPEA in the present 

study was observed to possess multiple phases, two of which were likely undesirable intermetallic-
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type phases. As evidenced by the high microhardness measurement, this as-cast state was particularly 

hard and brittle due to these phases. This is despite, according to the TC predictions and empirical 

thermodynamic parameters in Equations (1) – (3), a majority FCC or mixed BCC/FCC 

microstructure, respectively, might have been predicted. A possible cause of this intermetallic-

consisting microstructure could be found when looking at the ΔHmix values for specific binary pairs, in 

this case the Ni-Ge, Cr-Ge and Fe-Ge pairs. These values are -23.5, -18.5 and -15.5 kJ mol-1 

respectively, all very negative compared to those for the binary pairs between Ni, Cr and Fe. 

Therefore, despite a small, slightly positive average ΔHmix, this is not sufficient for solid solution 

formation due to the dominance of the extreme values for binary pairs with Ge. Indeed, this also 

applies for explaining the presence of borides in the as-cast state. 

Considering this, it appears that TC was unable to capture all the resulting phases accurately. First of 

all, the predictions of Cr(Fe)-boride phase stand up well to the microstructural observations, though 

EDS did demonstrate the presence of some Fe in solution in these phases in the as-cast state not 

captured by TC. Nonetheless, the ability to predict the abundance of this phase is understandably 

useful for such alloy design applications. The other phases predicted by TC, however, were clearly 

not borne out in the experimental observations and demonstrates a limitation of the CALPHAD 

approach for such alloys, and of this SSOL4 database in particular, in that the lack of experimentally 

verified binary systems in the database has resulted in TC treating the Cr and Ge as entirely 

segregated from the other phases. While perhaps less surprising in the case of Ge given that assessed 

binary data is not available in SSOL4, it is more surprising that the Cr content was predicted to be 

completely separate from the Ni and Fe content. We see instead from the observations of the as-cast 

state that, aside from the aforementioned Cr(Fe)-borides, the Cr is also in each other phase observed, 

and the Ge is present in each phase apart from the Cr(Fe)-borides. 

It is also worth noting how the predicted solidus and liquidus temperatures differ from those measured 

via DSC. In the case of the solidus temperature, TC predicted 816oC, a significant discrepancy of 

approximately 200oC. Meanwhile, the liquidus prediction is in much more agreement with the 

measured liquidus, with TC predicting 1062oC versus the DSC-measured 1055oC. Apparently, the 

prediction of the Cr and Ge segregation into the BCC_A2 phase at approximately 950oC, and then the 

Ge segregation into DIAMOND_A4 phase may have depressed the prediction of the solidus 

temperature. Despite this discrepancy, it is still considered that TC can be useful in predicting trends 

on liquidus temperature, if not the exact temperatures. It is also worth noting that TC predictions are 

for equilibrium-state conditions (i.e. infinitely slow cooling), which is clearly not the case for the 

rapid cooling that occurs following arc-melting. This, in addition to the aforementioned lack of 

complete experimentally-validated databases, means TC should be used with caution in such cases, 

and is better used for investigating broader changes resulting from composition changes, rather than 

for precise predictions. 

A marked change in microstructure occurs when this alloy is applied to the brazing on IN718 in this 

study. Brazing or transient liquid phase bonding (TLPB) is considered to be comprised of a series of 

sequential steps in most models, which have been discussed at greater length elsewhere [6]. Typically, 

these steps are: 

 Base metal dissolution / Liquid Homogenisation 

 Isothermal Solidification 

 Solid Homogenisation 

The microstructures resulting from the described brazing cycles can be understood by considering 

these steps in the context of the presented results.  

In each case, there has been to some extent dissolution of the base metal, as indicated on figs 11(a) 

and (b). The degree to which base metal dissolution occurs is a function of brazing temperature (a 

constant in this study), composition of filler and base metal (a constant), hold time, and initial joint 

width. Upon reaching the brazing temperature, the NiCrFeGeB is fully molten, and during the whole 
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heating stage, the concentrations of MPD elements Ge and B in the solid base metal and molten filler 

metal follow the solidus and liquidus lines respectively. Therefore, as the concentration of Ge and B 

in the liquid decreases until it reaches liquidus composition, a corresponding increase in width of the 

liquid occurs until the solid immediately adjacent to the liquid achieves its solidus composition. At 

this point, dissolution of the base metal ceases and the concentrations at the solid-liquid interface 

maintains this equilibrium. 

After the base metal dissolution has completed, cross-diffusion of the MPD elements from filler metal 

and base metal elements occurs, resulting in the liquidus temperature of the melt increasing and the 

onset of isothermal solidification. It is considered that in this case B is the dominant diffusing element 

as its reported diffusion coefficient in Ni (6.22x10-11 m2s-1 as used in [9,40]) is orders of magnitude 

greater than for Ge (4.5x10-14 m2s-1[33]). This is backed up by the presence of GB-borides in the base 

metal at a greater distance away from the joint region, especially in the case of the 15-minute hold 

time. When a critical amount of the B has diffused into the base metal, grains of solidifying liquid 

form at the solid-liquid interface. It is believed that at this stage the Ni-Ge-Nb phases formed (white 

contrast on Fig. 12), owing to Ge rejection from the forming Ni-rich solid solution, and the large 

negative mixing enthalpies between Ni, Ge and Nb. The grain sizes of the solid solution here are 

notably smaller compared to those that eventually form towards the joint centre as isothermal 

solidification proceeds. Similar findings were reported by Ghaderi et al. [9], who attributed this to 

boride formation in the region close to the base metal providing a barrier to grain growth. In this case 

it is presumed that the Ni-Ge-Nb phase similarly hindered grain growth. This formation of the phase 

largely ceases abruptly and larger grains form, indicating Nb presence only in this region that was 

dissolved initially.  

In the case of the 15-minute hold time, the isothermal solidification progresses to an almost complete 

stage, but as seen in Fig. 12 some residual Ni-Ge-Nb phase is observed within the IS zone after 

brazing, again seemingly resulting from rejection from the now larger solid solution grains. In the 

case of the 60-minute hold time, only fine GB borides are observed in the IS zone, suggesting the 

prolonged hold time was sufficient for a greater degree of back-diffusion to occur after IS has 

completed. Several modelling approaches to estimating the time for isothermal solidification have 

been put forward and employed. Gale & Wallach [41] and later Ojo et al. [42] found good agreement 

between calculations based on Equation (4) and experimental observations.  

𝐶𝑆 − 𝐶𝑀 = (𝐶0 − 𝐶𝑀) {𝑒𝑟𝑓
𝑤

√4𝐷𝑡𝑓
}  (4)                                                                                                        

Where CS, CM, and C0 are the MPD (B) solubility limit in the base metal, concentration in the base 

metal, and concentration in the filler metal respectively; w is the half-width of the brazed joint; D is 

the MPD (B) diffusivity in the base metal; and tf is the time for isothermal solidification. This 

approach is derived from Fick’s second law of diffusion and treats B as the sole solute in a simple Ni-

B filler metal. This approach has, however, not been applied to cases where a HEA or MPEA is used 

as the filler metal. Nonetheless, it is considered appropriate to use in this case due to the evidence of B 

being the dominant diffusing element. The values used for each term in Equation (4) are as follows: 

 CS = 0.3 at.% [41] (based on Ni-B phase diagram from [43]) 

 CM = 0.0628 at.% 

 C0 = 2.5 at.% 

 w = 65 µm (based on width following base metal dissolution) 

 D = 6.22x10-11 m2s-1 [9,40] 

Using Equation (4), the expected time for IS to complete based only on B diffusion is approximately 

30 minutes. This is in reasonable agreement with the experimental observations, with the 15-minute 

hold time being insufficient to complete IS, whereas an extra approximately 30 minutes for continued 

diffusion and homogenisation was allowed in the case of the 60-minute hold time. 
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Lastly, the different hold times had clear effects on the degree of homogenisation seen in the brazed 

joints. A notable difference between the 15-minute and 60-minute hold times was the presence, or 

lack, of Cr(Fe)-borides apparently retained from the as-cast state. While the borides phases were 

observed post-braze for the 15-minute hold time with only slight size reduction, in the case of the 60-

minute hold, these borides were apparently dissolved due to diffusion processes over this hold time. 

The retention or dissolution of these borides can be understood by considering the effect of time and 

temperature on the diffusion processes, and the driving force provided by the steep concentration 

gradient between the B-rich borides and the B-lean ISZ. The dissolution of the borides appears to 

have been a relatively sudden evolution, as they are only slightly reduced after the 15-minute hold 

time, but for the 60-minute hold time (in which IS completed), the borides were able to completely 

dissolve. This could be explained by the increased time for B diffusion away from the joint. Perhaps 

surprisingly, the B released from this dissolution did not form a significant amount of boride phases in 

what is usually presented as a diffusion-affected zone (DAZ). In fact, the 15-minute hold time sample 

exhibited a greater abundance of Nb-Mo borides in the base metal than for the 60-minute hold time 

sample (which in turn exhibited a greater abundance than for the 60-minute + homogenisation 

sample). This suggests not only that these Nb-Mo borides eventually dissolved due to increased hold 

time (and then to an even greater degree with subsequent homogenisation), but these borides likely 

formed before the completion of IS rather than after, similar to findings in [9, 44] and contrary to 

previous assumptions [45]. It appears that only the Ni-Ge-Nb phase discussed above remained largely 

unchanged by either increasing the hold time or even homogenisation. 

The effect of increased joint width for this filler metal was investigated through use of a 100 μm foil. 

Despite being held for 60 minutes at the same temperature, in the case of the 100 µm foil the borides 

were still evident post-brazing, albeit apparently reduced in size suggesting partial dissolution over 

the course of the braze cycle. While the initial joint width (defined by the initial foil thickness) will 

have an effect on the time needed to achieve complete isothermal solidification, it is not immediately 

apparent why the borides were not dissolved completely in this case. However, when considering the 

fact that the increased foil thickness results in a greater diffusion distance for B into the IN718 base 

metal, it can be understood that an increased concentration of B still remained in the melt when 

isothermal solidification commenced. Thus, the concentration gradient and hence the driving force for 

diffusion of B from boride into ISZ was diminished, allowing the borides to remain. 

The sample using the 100 µm foil also showed differences to both 65 µm foil samples in the 

concentration of the Ni-Ge-Nb phase (caused by base metal dissolution) and the Nb-Mo borides along 

grain boundaries in the base metal (caused by outward B diffusion). The concentration of the former 

phase is reduced at the interface with the base metal, instead observed in greater concentration within 

the joint due to incomplete IS. The concentration of the Nb-Mo borides, however, is increased. It is 

possible that the increased joint width led to a lesser degree of base metal dissolution, resulting in less 

of the Ni-Ge-Nb phase. An increased degree of boride dissolution then resulted in diffusion of now-

freed B, producing the increase in GB Nb-Mo boride concentration observed. 

Of particular note also is the chemistry of the final ISZ in each case. As determined by the EDS 

analysis, the initial microstructure of the as-cast state of this alloy possessed not just the Cr(Fe)-boride 

intermetallic, but also a Cr/Ge-rich intermetallic phase. Rather, this appeared to be a stable phase 

which would probably be undesirable in the final joint. However, unlike the Cr(Fe)-borides this phase 

was not retained in the final microstructure. This is attributed to the large concentration gradient of Ge 

that existed between the NiCrFeGeB alloy and the IN718 base material, providing a high driving 

force for diffusion. In addition, as already mentioned, the solubility of Ge in the base metal is likely 

significantly greater than for B. Indeed, the grains in the ISZ were found by EDS to contain Ge in a 

concentration likely to be at the solubility limit. The composition of this ISZ is approximately, as 

expected, a HEA- or MPEA-like Ni(41)-Cr(25)-Fe(20)-Ge(10)-X(bal.) (in at.%) solid solution, with X 

being a mixture of base metal elements Al, Mo, Nb and Ti. Calculation of average VEC (= 7.92, using 

Equation (3)), suggests that this would be more likely to possess a desirable FCC solid solution 

structure. 
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In terms of mechanical properties, the shear strengths measured in this study are generally in line with 

expectation. The greatest shear strength was demonstrated for the case of the 60-minute hold time 

using the 65 µm foil, likely due to the completion of IS, complete boride dissolution and greater 

degree of homogenisation. The weakest shear strength was that of the 15-minute hold time using 65 

µm foil, likely owing to the retained borides in the joint microstructure. The 60-minute hold time 

using 100 µm foil had the second highest measure shear strength, despite also possessing retained 

borides and having the largest joint width (hence least completion of IS). This sample did, however, 

possess a lower concentration of the Ni-Ge-Nb phase at the base metal interfaces as compared to both 

the samples that used 65 μm foils. This perhaps counteracted some of the detrimental effect of the 

retained boride phases, enough to achieve a strength greater than that for the 15-minute hold time, but 

not greater than that for the 60-minute hold time. Compared to the commercially available AWS BNi-

2 filler metal, which achieved an average shear strength of 476 MPa in this study, the shear strengths 

achieved by the NiCrFeGeB filler metal in each trial was weaker, the highest being 296 MPa. In the 

literature, strengths of often over 500 MPa may be reached for BNi-2, using comparable brazing 

cycles. Pouranvari et al. achieved a shear strength of approximately 580 MPa when brazing IN718 

with AWS BNi-2 at 1100oC with a 60-minute hold time, and the ISZ had a comparatively low 

hardness of 150 - 200 HV0.01 (increasing towards the joint centre) [46]. Nonetheless, this is a 

promising result when considering further optimisation that may be made to the alloy. Indeed, the 

findings suggest that the joint width in the NiCrFeGeB-IN718 joints does not have a large impact on 

the shear strength, and may be less sensitive to joint width than current filler metals such as BNi-2. 

This may have a potential benefit in situations where joint gap is hard to control, such as in repair, or 

in the joining of components with rough surface finish, such as additively manufactured parts. 

 

Conclusions 

In the present study, a novel NiCrFeGeB MPEA-derived filler metal was designed using TC software 

and empirical thermodynamic parameters employed in the design of HEAs. The designed alloy was 

used, in the form of 65 µm thick foil, to braze Ni-based superalloy IN718 at 1100oC for both 15 

minutes and 60 minutes. The stability under approximate service conditions (700oC for 100 hours) 

was also investigated. A further trial was conducted at 1100oC for 60 minutes using a 100 µm thick 

foil to investigate the effect of increased joint width. The main findings can be summarised as: 

 TC predictions of the as-cast NiCrFeGeB alloy microstructure had mixed accuracy. While Cr-

borides were captured by the predictions, the lack of experimentally established data for Ge-

containing binary systems appeared to limit the accuracy of the predictions. Predictions for 

the alloy solidus temperature were significantly different to that measured by DSC, while the 

liquidus prediction differed from that measured by only a 3oC. TC is best used to investigate 

broad trends during alloy development rather than to use for precise predictions. 

 Contrary to most of the TC predictions and empirical thermodynamic parameters, the as-cast 

alloy was characterised by Cr(Fe)-borides and a Cr-Ge-rich intermetallic phase, in addition to 

two other phases, one Ni-rich and one Ge-rich. This is likely due to the very negative ΔHmix 

between binary pairs of Ni, Cr and Fe with Ge and B, which overrules the average ΔHmix of all 

binary pairs which was calculated as slightly positive. 

 Base metal dissolution resulted in the formation of a Ni-Ge-Nb rich phase in the vicinity of 

the interfaces with the base metal in all samples. 

 Isothermal solidification was completed to varying degrees depending on hold time and joint 

width. IS was incomplete for the 15-minute hold time and the 100 µm thickness foil samples, 

both exhibiting residual rejected Ni-Ge-Nb phase in the joint. IS was completed for the 60-

minute hold time sample, with IS grains spanning the original gap width. These grains (in all 

samples) possessed an FCC Ni-rich, HEA-like composition. In the case of the 15-minute hold 
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time and the 100 µm thickness foil samples, Cr(Fe)-borides, apparently retained from the as-

cast microstructure, were observed post-braze. This was attributed to the insufficient time at 

temperature for the former case, and to the increased joint width in the latter case. 

 Shear strengths of the NiCrFeGeB brazed joints ranged from 269 MPa (15-minute hold, 65 

µm foil) to 296 MPa (60-minute hold, 65 µm foil). Using the increased thickness 100 µm foil 

resulted in only a small decrease in joint shear strength. 
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11.8 Electron Probe Microanalysis with Wavelength Dispersive Spectroscopy of B-containing phases 

in brazed joints 

As detailed in the previous chapter, at least two phases were believed to be boride phases, one of 

which was likely to be Cr-boride phase retained from the as-cast state of the NiCrFeGeB filler metal, 

the other being possibly a GB boride phase. In order to confirm that these phases were indeed B-

containing, Electron Probe Microanalysis with Wavelength Dispersive Spectroscopy (EPMA (WDS)) 

was used to map an area of a separate joint brazed with the NiCrFeGeB filler metal for 15 minutes at 

1100oC (using foil thickness of approximately 65 μm), and in keeping with the 15-minute hold time 

braze cycle described in Section 11.7. Preparation of base metal and filler metal was also the same as 

described in Section 11.7. The EPMA was conducted at an accelerating voltage of 5 kV for B 

measurement, enhancing the sensitivity to the light element, and 15 kV for other elements. 

Fig. 11.11 shows EPMA (WDS) maps of a typical section of the brazed joint, with the legend 

showing relative abundance of elements (light contrast represents most abundant). The blocky Cr-rich 

phase seen in the joint region (marked ‘Cr-B’), which was presumed to be a Cr-boride phase, was 

confirmed to also be rich in B. Furthermore, the Nb-rich GB phase (marked ‘Nb-B’) was also 

confirmed as being B-rich. It was also observed that some instances of the previously mentioned light 

contrast Ni, Ge, Nb-rich phase in the joint region (see Fig. 12 in Section 11.7) also contain B, as 

indicated by the encircled region in Fig. 11.11. 

 

 

Figure 11.11: EPMA (WDS) maps showing distribution of B, Cr and Nb, allowing confirmation of Cr-boride and Nb-boride 

phases formed in the vacuum brazing of IN718 with the developed NiCrFeGeB filler metal (15 minutes, 1100oC). 

 

11.9 NiCrFeGeB filler metal powder 

In Section 11.7, the successful application of the developed NiCrFeGeB filler metal composition for 

the brazing of Inconel 718 was demonstrated. The extreme hardness and high degree of brittleness, 

however, meant that production of foil-thin pieces of the alloy, of suitable size for brazing, was 

difficult and not time-efficient. As mentioned previously, typically such foils would be produced 
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using the melt-spinning technique, but in the absence of melt-spinning facilities in place at the time of 

this work, alternatives were considered. 

Firstly, attrition milling was considered an option for producing powder from bulk as-cast alloy. 

Recently, the Royce Translational Centre (RTC) was equipped with a Union Process HD01 CE 

attrition mill. The attrition milling technique relies on rapid vibration of grinding medium (usually a 

ceramic or steel) in the form of balls of various sizes (typical sizes for this model is less than 5 mm). 

The attrition mill is most effective when attempting to grind coarse broken pieces, roughly the size of 

the grinding media and smaller, down to finer sizes. Attempting this technique with approximately 30 

g of pre-crushed alloy failed to reduce the size of the pieces, attributed to an unsuitable amount of 

material being used, as the mill is designed to be most effective when the grinding chamber is at least 

half full. For the scope of this work, this was unfeasible as it would require several hundred grams of 

alloy. 

Other routes to powder production exist, however. One such route, detailed in Chapter 7, is gas 

atomisation. While in theory this technique works with any quantity of material, in practice many 

external gas atomisation services generally handle hundreds of kilograms of material at one time for 

efficiency, or are otherwise unable or unwilling to handle experimental alloys such as the developed 

NiCrFeGeB alloy. Fortunately, gas atomisation services were provided by Arcast Inc. (ME, USA), 

who were able to trial gas atomisation of smaller quantities (hundreds of grams) of experimental 

material. Therefore, 350 g of NiCrFeGeB alloy was prepared in the form of 3 x 100 g and 1 x 50 g 

ingots via arc-melting. As previously, the operating current used was 400 A, and initially 7 x 50 g 

ingots were produced, with homogeneity improved by flipping and re-melting 5 times followed by 

magnetic stirring. 6 of these ingots were combined to produce 3 x 100 g ingots, which were again re-

melted 3 times followed by magnetic stirring. The yield from the gas atomisation process conducted 

by Arcast Inc. was approximately 250 g (with losses from powder unable to be collected from the 

equipment). Investigation of the microstructure of the gas atomised alloy is discussed in the next 

section.  

 

11.10 NiCrFeGeB Powder Brazing Trial 

The size distribution of the received NiCrFeGeB alloy powder was analysed using a Mastersizer 

3000, before which extremes in large sizes were sieved out using a 90 μm gap size sieve (Fischer 

Scientific). From a 20 g sample of powder, the size distribution was determined from an average of 10 

measurements. This method uses the refractive index of a material, and as this was not known for this 

developed alloy, the value for Ni-based superalloy IN718 was used, 1.958 [203]. Table 11.5 reports 

the D90, D50 and D10 values for this sample (taken as representative of the powder as a whole), and 

the average full size distribution is shown in Fig. 11.12. The following section will detail brazing 

trials using this powder to braze Inconel 718, and a comparison to findings from brazing using the 

NiCrFeGeB foils in Section 11.7. 

Fig. 11.13 shows SEM BSE micrographs of the as-received NiCrFeGeB brazing alloy powder. 

Microstructure of individual particles was not consistent from one to the next, with some exhibiting 

larger blocky Cr-boride intermetallics, as in Fig. 11.13(a), with clear cracks occurring presumably as a 

result of stresses surrounding the boride phases following rapid cooling. Others exhibited much finer 

Cr-boride intermetallics, as in Fig. 11.13(b). 
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Table 11.5: Particle size distribution obtained from Mastersizer 3000. 

Interval Size (μm) 

D90 102 

D50 56.3 

D20 25.4 

 

 

 

Figure 11.12: Particle size distribution of NiCrFeGeB powder obtained from Mastersizer 3000. 

 

 

Figure 11.13: SEM (BSE) micrographs of typical NiCrFeGeB powder particles (a) containing Cr-boride phase, with 

noticeable cracking, and (b) dispersion of much finer boride phases. 
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To produce useable brazing alloy paste from this powder, it was combined with a commercial organic 

binder material (VBC 4841 Braze Binder, supplied by VBC Group, Loughborough). 30 g of brazing 

paste was produced by combining powder with binder in a 12:1 weight percentage ratio, and then 

stirring manually. While this ratio is not defined by any particular standard, ratios ranging from 10:1 

to 14:1 are commonly used in industry, giving a consistency that is easily extruded from a plunger in 

order to apply the paste. Paste was inserted into a plunger to allow direct and controlled application of 

brazing paste to a surface for brazing. 

The base alloy for this study was again Inconel 718. As with the trials described earlier in this chapter, 

8 mm ø, 5 mm height stubs of IN718 were electron discharge machined from IN718 plate, and 25 x 

25 x 3.7 mm IN718 tokens were sectioned from plate, to which the stubs were to be brazed. Surface 

preparation of the bonding surfaces of the stubs and tokens involved grinding with p1200 SiC grit 

paper followed by treatment in an ultrasonic bath in acetone for 10 minutes. Brazing alloy paste was 

then applied via plunger directly on the bonding surface of the stubs, which were then placed down 

onto the tokens, with a weight of 10 g applied to each. The brazing trials consisted of two brazing 

trials based on those described in Section 11.7; (a) 1100oC for 15 minutes, and (b) 1100oC for 60 

minutes. Ramp rate up to temperature was 15oC min-1 with a 15-minute equalisation hold at 1010oC, 

in each case. Post-brazing, joints were furnace cooled to 900oC before gas quenching. Microstructural 

analysis of the joints was conducted by SEM in BSE mode (FEI Inspect 50, operated at 20 keV), 

along with EDS analysis (Aztec software). Microhardness profiles of the joints were performed using 

a Struers Durascan indentor with 0.05 k-g load (HV0.05) and 15 s dwell time. 

Typical sections of the 15-minute hold time sample is shown in the SEM BSE micrograph in Fig. 

11.14, with Fig. 11.14(a) showing a section displaying voids, and Fig. 11.14(b) showing a section free 

of voids. The presence of such voids may indicate poor flowing of the filler metal paste (thus 

inadequately filling any regions with less paste applied prior to brazing), or they could be a result of 

the presence of air bubbles within the filler metal paste (while every care was taken to remove these, it 

is difficult to guarantee their absence). The voids could potentially also be a sign that more filler metal 

paste was required. The voids, which tended to be between 50 – 100 μm in size, were not found along 

the interfaces with the base metal, which may lend more credence to the air bubbles or need for more 

paste explanations, rather than the poor flowing. Indeed, the NiCrFeGeB alloy, when used in foil form 

as in Section 11.7, did not exhibit any noticeable problems with flow, and the addition of binder to the 

NiCrFeGeB powder may be expected to improve flow.  

The majority of the joint was apparently void free, as in Fig. 11.14(b), in which five distinct phases 

were observed, appearing largely comparable to the microstructure observed in Fig. 11 from Section 

11.7. These include Cr-boride phases (marked i), Ni-, Ge- and Nb-rich light contrast observed in the 

joint region (marked j), Ni-, Ge-, Nb- and Cr-rich light contrast phase observed mostly at the interface 

with the base metal, but also occasionally within the joint region (marked k), Ni-rich solid solution 

(marked l), and GB Nb-borides (marked m). EDS analysis confirmed that these phases are similar in 

composition to those observed for the joints brazed using the NiCrFeGeB foil as in Fig. 11 from 

Section 11.7, and point scan measurements are summarised in Table 11.6 (average of five 

measurements). The Cr boride phase typically range in sizes from 5 – 30 μm in length. Again, EDS 

was unable to measure B content due to its limitations in detecting light elements. 
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Figure 11.14: SEM (BSE) micrographs of typical section of IN718 brazed with developed NiCrFeGeB filler metal powder 

for 15 minutes at 1100oC, (b) region displaying microvoids potentially formed from outgassing, and (b) area free of voids, as 

seen across the majority of the sample. 

 

Table 11.6: EDS measurements (average of 5) of composition of phases identified in Fig. 11.13, 

in atomic percent. 

 Ni Cr Fe Ge Nb Mo Ti Al 

i 2.5 87.1 8.0 1.0 0.1 0.9 0.3 0.1 

j 49.0 3.6 4.7 22.5 17.0 0.5 2.3 0.4 

k 31.4 15.3 11.1 18.7 15.9 6.2 1.3 0.2 

l 39.6 25.5 21.2 11.7 0.4 0.7 0.3 0.6 

m 3.8 1.7 1.6 1.2 81.9 1.1 8.4 0.3 

 

Fig. 11.15 shows an SEM BSE micrograph of a typical section of a joint following brazing at 1100oC 

for 60 minutes. As with the joint produced with a 15-minute hold time, EDS point scan measurements 

(in Table 11.7) distinguished at least six phases present, matching those seen in joints produced so far 

using the NiCrFeGeB filler metal. These are the Cr boride intermetallic (marked n), Ni-, Ge- and Nb-

rich light contrast phase (marked o), Ni-, Ge-, Nb- and Cr-rich light contrast phase (marked p), Ni-

rich solid solution (marked q), and grain boundary Nb borides (marked r), the latter being to small to 

accurately measure with EDS point scanning. There were also instances of blocky Nb-rich phase 

towards the base metal interface (possibly also Nb boride or carbide phase).  

However, the joint produced for the 60-minute hold time appears to be notably wider than in the case 

of the 15-minute hold time (approximately 200 μm versus 60 μm). Given the similar distribution of 

the above phases, it is believed that this increased width is a result of excess filler metal applied 

and/or insufficient downward pressure applied to the joint. This resulted in some microstructural 

differences compared to the 15-minute hold time joint. Notably, the 60-minute hold time joint appears 
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to have isothermally solidified solid solution grains originating from the joint centre, rather than just 

in isothermal solidification fronts originating at the interface with the base metal. However, the 

presence of the light contrast Ni, Ge and Nb containing phase apparently surrounding these solid 

solution grains indicates that isothermal solidification was not completed despite the 60-minute hold 

time due to the increased joint width (this time appeared to be sufficient for the joints using 

NiCrFeGeB foils of approximately 65 μm foils). This would suggest the formation of the light 

contrast phase is formed due to rejection from the growing isothermally solidified solid solution 

phase. The size of the Cr boride intermetallics appears to have remained somewhat larger as 

compared with those observed in the 15-minute hold time joint, with typical length ranging from 15 – 

40 μm, although some smaller sizes were also observed below 10 μm. This is perhaps a result of 

lower driving force for diffusion with higher B content still in the joint due to the longer diffusion 

distances. The concentration of phases observed at the interface with the base metal also appear 

somewhat altered apparently as a result of the increased joint width, with a greater concentration of 

the light contrast Ni, Ge, Nb and Cr rich phase observed for the 15-minute hold time joint, and a 

comparatively reduced concentration for the 60-minute hold time. This could point to a decreased 

extent of base metal dissolution due to the increased initial joint width, due to the further diffusion 

distance for elements B and Ge. While this might be expected to also result in lower Nb content 

particularly towards the joint centre, the Nb here is not thought to have diffused, rather the advancing 

isothermal solidification fronts at the base metal-joint interface have pushed the remaining melt, 

enriched in rejected Nb, inwards until encountering outward-solidifying fronts forming at the joint 

centre. Furthermore, it is possible that this Ni, Ge and Nb-containing phase observed in these joints is 

related to the orthorhombic δ Ni3Nb phase that forms from transformation of metastable γʹʹ in Nb-

containing superalloy such as IN718 (see Chapter 2, Section 2.2). 

 

 

Figure 11.55: SEM (BSE) micrographs of typical section of IN718 brazed with developed NiCrFeGeB filler metal powder 

for 60 minutes at 1100oC,. 
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Table 11.7: EDS measurements (average of 5) of composition of phases identified in Fig. 11.14, 

in atomic percent. 

 Ni Cr Fe Ge Nb Mo Ti Al 

n 2.5 87.1 8.0 1.0 0.1 0.9 0.3 0.1 

o 49.0 3.6 4.7 22.5 17.0 0.5 2.3 0.4 

p 31.4 15.3 11.1 18.7 15.9 6.2 1.3 0.2 

q 39.6 25.5 21.2 11.7 0.4 0.7 0.3 0.6 

s 3.8 1.7 1.6 1.2 81.9 1.1 8.4 0.3 

 

The composition of the isothermally solidified grains, as was discussed in Section 11.7, was observed 

to be a Ni-rich MPEA-like solid solution, with the Ge reduced from the higher initial concentration in 

the filler metal down to what may be the solubility limit in a single phase Ni-Cr-Fe-Ge system. While 

the mechanical properties of this solid solution phase are not fully established in this work, in Section 

11.7, the solid solution phase (which was continuous across the joint width due to completion of 

isothermal solidification) resulted in a decrease in microhardness even compared to the base metal, 

possibly indicating increased ductility which could be of benefit to the overall joint mechanical 

properties. It is promising to see the formation of an isothermally solidified MPEA-like solid solution 

phase following the sufficient diffusion of the MPD element, in this case B. As was the case in 

Section 11.7, the reduced Ge content of this phase due to rejection encouraged the formation of the 

Ni, Ge and Nb containing phases, whose properties are also not known, but is unlikely to be desirable 

if only for the tying up of Nb that would otherwise be required in the base metal matrix for formation 

of γʹʹ intermetallic. Furthermore, the outward diffusion of B resulted in the formation of Nb-borides at 

grain boundaries in the base metal. 

Mechanical testing was on brazed joints using the NiCrFeGeB filler metal powder, with hold times of 

15 and 60 minutes at 1100oC, in order to investigate the effect of holding time. The test method used 

was that described previously (Chapter 10, Section 10.4, Fig. 10.12). Three joints for each hold time 

were shear tested in this manner, and Fig. 11.16 shows the average joint shear strength for the 15- and 

60-minute hold times (with error determined from the standard deviation). The joints brazed for the 

longer hold time of 60 minutes exhibited an increased average joint shear strength of 332 ± 15 MPa, 

compared to 257 ± 26 MPa for the 15-minute hold time. In each case, failure occurred along the 

brazed seam. Currently, the average joint gap for each hold time is not determined, and although in 

the microstructural analysis of joints brazed at 1100oC for 15- and 60-minute hold times (as in Fig. 

11.14 and Fig. 11.15 respectively) it was observed that the latter exhibited greater joint width, it is not 

known if this was representative of all such joints. If it was representative, it might be expected that 

shear strength would decrease for the 60-minute hold time joints, due to isothermal solidification 

being incomplete even after 60 minutes according to Fig. 11.15. As it stands, assuming the difference 

in joint widths between Fig. 11.14 and Fig. 11.15 is not representative of all samples, it appears that 

the longer hold time was beneficial to joint shear strength. This same trend was observed in Section 

11.7, where, for hold times of 15 and 60 minutes using 65 μm thickness NiCrFeGeB foils, shear 

strengths of 269 MPa and 292 MPa were measured, respectively. However, as reported in Section 
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11.7, joints brazed with commercially available BNi-2 achieved a shear strength of 476 MPa 

following a hold time of 60 minutes at 1100oC, using the same test method. 

 

 

Figure 11.16: Average shear strengths of vacuum brazed IN718-NiCrFeGeB powder joints, brazed at 1100oC for 15 minutes 

and 60 minutes, and IN718-BNi-2 foil joints, brazed at 1100oC for 60 minutes. 

 

 

Figure 11.17: Example stress-strain curves of IN718-NiCrFeGeB powder joints, at both brazing conditions, and compared 

to an example curve for a IN718-BNi-2 joint (brazed at 1100oC for 60 minutes, 50 μm foil). 

 

Example stress-strain curves of joints brazed with both NiCrFeGeB and BNi-2 filler metals are shown 

in Fig. 11.17. This gives some indication as to the nature of the joints giving rise to the greater shear 

strength exhibited when using the BNi-2 filler metal. The curve for the BNi-2 filler metal shows a 

large plastic regime before failure, showing a larger amount of plastic deformation was sustained 

before failure. In contrast, the curves for the NiCrFeGeB filler metal exhibit much shorter plastic 

regimes before failure, and so comparatively little plastic deformation can be sustained. This seems to 
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even be the case for the 60-minute hold time joint, where isothermal solidification would be expected 

to have progressed much further, if not completed, and despite this only a marginally increased plastic 

regime was observed. The ductility of the primary isothermally solidified MPEA-like NiCrFeGe 

phase may therefore be limited. However, for both filler metals the yield strength was comparable, in 

the region of 250 MPa. 

 

11.1 Chapter summary & implications 

This section has primarily been concerned with the use of Ge as an MPD element for inclusion in a 

Ni-Cr-Fe-based MPEA filler metal, for the brazing of Ni-based superalloy IN718. Informed by what 

was discussed in Section 8.4, Chapter 9, and Section 10.1, initial investigations using TC software 

were conducted, primarily to attempt optimisation in order to encourage FCC solid solution formation 

without sacrificing liquidus temperature. As a measure of the usefulness of TC in such optimisation, 

both equiatomic NiCrFeGe and TC microstructure-optimised NiCrFeGe were fabricated, and 

compared with the predictions. As already mentioned, TC predictions represent the equilibrium case, 

and so predicted phases and phase composition may differ from those observed for the rapidly-cooled 

as-cast ingots. The as-cast equilibrium NiCrFeGe alloy was defined by three distinct phases, with two 

of the phases containing over 10 at. % of each element. These included a Cr-rich, Ni-lean phase 

identified via XRD as being similar to a Cr3Ge intermetallic phase, as well as two probable BCC solid 

solution phases.  

The most notable difference between these observations and TC predictions was the lack of Ge 

segregation at lower temperatures that was predicted. The plausibility of this prediction was 

disputable when considering empirical thermodynamic parameters such as the mixing enthalpy, 

ΔHmix, for which the Ni-Ge, Cr-Ge and Fe-Ge binary pairs all have very negative values, suggesting 

the formation of ordered compounds would be preferred.  Furthermore, the final room temperature 

phases were predicted as including segregated pure Cr, Fe and Ge, with only a Ni-Fe solid solution. 

Only at higher temperatures did TC predict the solidification of two solid solution phases (Ni, Fe-rich 

FCC and Cr, Ge-rich BCC), which are somewhat more in line with the observed microstructure. 

When also considering the parameters δr and average VEC, which were 10.15 % and 7.00 

respectively, a single solid solution phase would not be expected according to typically proposed 

design ‘rules’ such as those in [139], even without noting the very negative average ΔHmix of -16.88 

kJ mol-1, dominated by the binary Ge-containing pairs. However, the apparent formation of two solid 

solutions as opposed to solely intermetallic compounds suggests that such design rules, which were 

proposed by cataloguing phase formation for generally more common HEAs and MPEAs using 

mostly transition and refractory metals, may not fully capture the reality when using less common 

alloying additions such as Ge. 

TC was then used to identify a composition that would maximise the FCC solid solution molar 

fraction, but Ge content was maintained at 25 at. % in order to ensure a low liquidus temperature. The 

optimised Ni(bal.)-Cr(15.6)-Fe(29.5)-Ge(25) composition was fabricated, and was observed to 

possess two solid solution phases, of similar composition to those in the equiatomic case, and which 

were observed to be of BCC crystal structure rather than FCC. At the same time, the presence of the 

Cr3Ge-like phase was greatly reduced to only a few instances observed. Therefore, the optimisation 

process apparently resulted in increased solid solution while decreasing the Cr3Ge-like intermetallic, 

but the solid solutions predicted to form were incorrectly predicted to be of FCC crystal structure in 

the first place. When comparing microhardness measurements, as a basic indication as to their 
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mechanical properties, the optimisation process resulted in a significant reduction in hardness, 

apparently as a result of almost complete suppression of the Cr3Ge-like intermetallic. When 

considering the change in calculated empirical thermodynamic parameters, the optimised composition 

moved the values of ΔHmix, δr and average VEC only slightly more towards values that would predict 

a single solid solution phase. As such, according to these parameters the microstructure may not have 

been expected to change substantially, in the case of the two BCC solid solution phases observed this 

holds. Again however, the fact that, despite the still very negative average ΔHmix value, solid solution 

phases formed and the intermetallic Cr3Ge-like phase was reduced, which suggests HEA design rules 

often proposed may be suitable only for a narrow range of possible HEAs if less common elements 

such as Ge are considered. 

It was also clear that, regardless of the microstructure that may be achievable for the NiCrFeGe 

system, the use of Ge as a sole MPD element was unlikely to achieve a sub-1100oC as desired. 

However, the use of Ge in conjunction with another MPD, B, was considered, following on from what 

was learnt in Chapter 8. In using a reduced (as compared to current commercial B-containing filler 

metals) B content, and a slightly reduced Ge content, a desirably low liquidus could be obtained. 

Furthermore, the reduced B content would require less time at temperature to fully diffuse away, 

potentially resulting in a joint formed primarily of an MPEA-like NiCrFeGe composition with an 

increased liquidus temperature, and the potential for solid solution strengthening benefits purported 

for MPEA and HEA systems. Indeed, the work in Sections 11.1 – 11.4 shows that solid solutions in 

the NiCrFeGe system can form, perhaps contrary to often proposed HEA/MPEA design rules. 

The design of a NiCrFeGeB filler metal was reported in Section 11.7, which contains a journal article 

currently under review for publication. When fabricating the filler metal via arc-melting, the primary 

effect of the addition of 2.5 at. % B was to result in the formation of a Cr-boride phase, with no 

observed evidence of other boride phases (though this Cr-boride phase did have some amount of Fe in 

solution). Other phases appeared to be similar to those observed in the NiCrFeGe alloys discussed in 

Sections 11.1 – 11.4, which included a Cr, Ge-rich phase similar to a Cr3Ge intermetallic, as well as 

two BCC solid solution phases (Ni, Ge-rich and Ni, Ge, Fe-rich). The developed composition was 

found to possess a high microhardness of 773 ± 10 HV1, due to the presence of the Cr3Ge-like 

intermetallic as well as the Cr-type borides. 

When used to vacuum braze IN718 superalloy at 1100oC, the expected B diffusion occurred as 

evidenced by a reduction in the size of Cr-borides in the joint (which were retained from the as-cast 

state), and observation of probably Nb-borides at the grain boundaries of the IN718 in the vicinity of 

the joint interface. It was found that, when brazing at 1100oC for 15 minutes and 60 minutes, using 

NiCrFeGeB foils of approximately 65 μm thickness, complete isothermal solidification was not 

accomplished for the former but was for the latter. In fact, calculations in Section 11.7 suggest that 

approximately 30 minutes at temperature would be required for complete isothermal solidification for 

such a joint thickness using the NiCrFeGeB filler metal. In the case of the completely isothermally 

solidified joint, the joint contained primarily a Ni-rich NiCrFeGe solid solution. While the exact 

nature of this phase is not known, it is expected to be FCC crystal structure according to TC 

predictions, empricial thermodynamic parameters, and considering phase diagrams. In the case of the 

incomplete isothermal solidification, in addition to the NiCrFeGe solid solution, interdendritic regions 

of a Ni, Ge, Nb-rich phase which was likely solidified final liquid in the joint, enriched in Ge and Nb 

due to rejection from the advancing isothermally solidifying phase. In both 15-minute and 60-minute 

hold times, a separate Ni,Ge, Nb-rich phase was observed at the interface with the IN718 base metal. 

It is believed that dissolution of the base metal due to B, and to a lesser extent, Ge diffusion during 

heating, resulted in a widening of the liquid phase and introduced base metal elements to the liquid, 
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Nb in particular. The diffusion of B also resulted in the formation of Nb-boride phase along grain 

boundaries in the IN718 following both brazing cycles. 

In terms of the mechanical performance of the joints brazed using the developed NiCrFeGeB filler 

metal, there was an increase in joint shear strength for the 60-minute hold time as compared to the 15-

minute hold time (292 MPa versus 269 MPa). However, this was still substantially lower than was 

achieved when using the commercially available BNi-2 filler metal under the same conditions (60 

minutes at 1100oC), which achieved 476 MPa. However, considering potential optimisation of the 

composition of this filler metal (see Chapter 12), it is deemed promising that the shear strength 

achieved are comparable to that of a commercial filler metal. Furthermore, the BNi-2 filler metal was 

supplied as melt-spun foil of thickness 50 μm; this represents the widely used form of this filler metal, 

having been used and optimised as such in industry for decades. Considering that such a foil thickness 

was not achieved for the NiCrFeGeB filler metal, it might be expected that further optimisation of its 

production may be benficial to the mechanical properties, to say nothing of the increased capacity for 

testing this would result in. 

As such, it was of interest to explore the production of greater quantities of useable forms of the 

developed NiCrFeGeB filler metal. This was realised in the production of filler metal powder via gas 

atomisation. When IN718 was again brazed for 15 and 60 minutes at 1100oC using this powder, the 

resulting microstructure was largely comparable than observed when using the foil (despite an 

increased gap width being inadvertently produced in the case of the analysed 60-minute joint). Further 

mechanical testing of the alloy was made possible, and average joint shear strengths of 332 ± 15 MPa 

and 257 ± 26 MPa were recorded for the 60-minute and 15-minute braze times respectively. While 

comparisons using powdered BNi-2 filler metal were not made during this project (and in fact there 

would not be expected to be differences in strength due to using either foils or powders), but it is 

expected that the shear strength of the joints using powdered NiCrFeGeB powder measured here 

would still be somewhat below that achievable for BNi-2.  

When compared microstructurally to a BNi-2 brazed joint (for examples, see [58,78,98]), the 

NiCrFeGeB brazed joints appear to have some potential advantages. The phases observed at the 

interface with the base metal in the NiCrFeGeB brazed joints were observed to be relatively sparse 

when compared to phases, primarily borides and carbides, often observed in the so-called DAZ when 

using BNi-2. Furthermore, while the 15-minute braze time was not sufficient for isothermal 

solidification when using the NiCrFeGeB filler metal, there was no continuous centreline band of 

athermally solidified eutectic phases that are often observed for BNi-2 joints that have insufficient 

time for isothermal solidification. The reason for this weaker shear strength is believed to be due to 

decreased ductility of the isothermally solidified MPEA-like NiCrFeGe solid solution phase, as 

compared to the primary γ-Ni solid solution often formed for isothermally solidified joints of BNi-2. 

This is evidenced by the lower displacement at failure achieved during the shear testing; at 

approximately 2 mm on average for the NiCrFeGeB joints, this is approximately half that achieved 

for BNi-2 joints. A further contribution may well be the tying up of Nb, the element responsible for 

formation of strengthening Ni3Nb γʹʹ phase in IN718, in some of the phases observed post braze, 

including the GB Nb-borides and Ni, Ge, Nb-rich phases. 

The final chapter of this work follows, in which the main conclusions and implications for both the 

developed NiCrMnIn and NiCrFeGeB filler metals is summarised, and the potential future work on 

these alloys is explored. 
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12. Conclusions & Future Work 

This research was aimed at developing Ni-based brazing filler metals of novel compositions, and 

investigated the potential for use of primarily two alternative MPD elements, to discourage 

excessively brittle intermetallic formation in the final brazed joint. At the same time, it was also an 

objective that developed compositions may be used under similar brazing conditions as current 

commercially available Ni-based brazing filler metals; as such, liquidus temperatures below 1100oC 

were aimed for, as well as primarily FCC microstructures. 

 

12.1 Main Findings & Conclusions 

Initially, this research involved identification, via consideration of phase diagrams, elements that 

would act as MPD elements in a binary Ni system, while also having some degree of solid solubility 

in Ni, and not known as forming particularly brittle intermetallic phases with Ni. These were, namely, 

In and Ge. Ultimately, while both In and Ge were considered as requiring too high a content to 

achieve a liquidus low enough for feasible use as a binary filler metal alloy, being unattractive for 

both microstructural and economic reasons. When used in conjunction with a small B weight 

percentage (as compared to that found in current commercial B-bearing filler metals), lower liquidus 

temperatures were achievable in the Ni-10-(1,2,3)B systems fabricated, and indeed a sub-1100oC was 

achieved for 3 wt.% B, but this was not deemed to represent an improvement in terms of the tendency 

for boride formation. While not fabricated, the Ni-Ge-B system was judged likely to have the same 

limitations, and so a further strategy was needed.  

At the same time, this was used as an opportunity to assess the accuracy of TC predictions for such 

systems, which were without experimentally verified data in the SSOL4 database. Of the two systems, 

the Ni-In appeared to show greater deviation from the established phase diagram, whereas Ni-Ge TC 

predictions showed much better agreement within the range Ni-(0-10 wt.%)Ge. Furthermore, phases 

predicted by TC were only FCC A1 solid solutions, in clear contrast to the phase diagrams. Overall, 

these results suggest that quantitative TC predictions should be made with caution, and phase 

diagrams should be consulted and used in conjunction. TC can prove useful in showing overall trends 

in solidus and liquidus temperatures (whether an element can be expected to decrease/increase these), 

and so is of some use for the design of alloys requiring a liquidus such as those for current Ni-based 

brazing filler metals. 

Chapters 10 and 11 detail the development of NiCrMnIn (composition in at. % of 50-9-25-16) and 

NiCrFeGeB (composition in at.% of 30.5-25-18-25-2.5) MPEA filler metals, with the aim of reaching 

lower liquidus temperatures than for sole novel MPD addition, and to potentially take advantage of 

purported promising mechanical properties of such alloys. The latter achieved a very low liquidus 

temperature of 966oC, but due to high volatility of elements Mn and In, as well as observed liquation 

during brazing, this filler metal was found to be unsuitable for vacuum brazing. However, belt furnace 

brazing of IN718 was successful, albeit with poor mechanical properties. When applied to the belt 

furnace brazing of W-carbide drill tips to EN24 steel drill bits, taking advantage of the low liquidus, 

probable FCC-type microstructure and ability of Mn to react with W, the NiCrMnIn was again 

successful. TC predictions, meanwhile, again showed discrepancies, particularly in the phases formed 

and their composition. Most notably, In was predicted to form a BCC phase with Cr, despite 

expectations when considering ΔHmix values. Their preference for segregation instead was observed. 

Again, however, TC proved more useful in optimising this composition for a low liquidus 
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temperature, and indeed the sub-1000oC liquidus shows this. But it is again noted that the exact 

liquidus value predicted was significantly greater than measured, and so TC can be used for general 

trends rather than quantitatively. 

Meanwhile, the use of Ge as MPD in a NiCrFeGe system was also investigated. As a further 

investigation of TC as an alloy design and optimisation tool for such systems, it was used in an 

attempt to optimise the equiatomic NiCrFeGe composition towards one that would promote FCC solid 

solution. What was found, however, was that while solid solution was promoted, it was in the form of 

two apparently BCC phases, while a Cr, Ge-rich intermetallic phase was suppressed. This was 

deemed to be due to TC having predicted that Ge would completely segregate from other elements at 

lower temperatures in the equilibrium case, whereas observations confirmed Ge relatively evenly 

distribute between the two phases. The Ge content of the phases therefore promoted the BCC crystal 

structure over FCC, which was not captured by TC predictions. 

The developed NiCrFeGeB composition achieved a promising liquidus temperature of 1055oC, with a 

B content of 2.5 at. %, representing a substantial reduction as compared to, for example, BNi-2 which 

has approximately 14 at. % B, and thus reduced concentration of boride phases was expected. When 

used in the vacuum brazing of IN718, the NiCrFeGeB filler metal was successful in both foil and 

powder form. For a joint gap of approximately 65 μm, isothermal solidification was achieved for a 

brazing hold time of 60 minutes at 1100oC, and calculations suggest isothermal solidification may 

have been completed in as short a time as 30 minutes. The small B content meant that relatively little 

in the way of borides was observed. However, owing to base metal dissolution, rejection and diffusion 

of Ge, and the highly negative mixing enthalpy of binary pairs of Ni, Ge and Nb, phases rich in these 

elements were observed at the base metal interface. When brazed for just 15 minutes at 1100oC, 

isothermal solidification was incomplete, and such phases were then also observed in the joint region. 

The isothermal solidification of a NiCrFeGe MPEA-like solid solution provided an intermetallic free 

joint centre for the 60 minutes brazing time, though where isothermal solidification was not complete, 

remaining Cr-boride phases were observed in the joint, apparently left over from the fabrication of the 

filler metal. 

In terms of mechanical performance, the NiCrFeGeB MPEA filler metal achieved a joint shear 

strength in excess of 300 MPa for the 60 minutes at 1100oC braze cycle. This was somewhat lower 

than the 476 MPa achieved using BNi-2 under identical conditions, and stress-strain curves suggest 

limited capacity for plastic deformation in the NiCrFeGe MPEA-like solid solution phase. 

Nonetheless, this is considered a promising result and one which could justify further optimisation of 

composition and brazing parameters for this filler metal. 

As such, the main findings of this research can be summarised as: 

 Elements In and Ge are not suitable for use as sole MPDs in a binary Ni alloy, allowing the 

removal of brittle phase forming elements such as B, Si or P, due to not achieving a suitably 

low liquidus temperature. 

 The strategy of combining the use of MPD elements with concepts such as HEAs and 

MPEAs has been shown to be effective in achieving a liquidus temperature comparable with 

current commercially used Ni-based filler metals, allowing its use in typical brazing cycles. 

 For the brazing of Ni-based superalloys, the developed NiCrFeGeB filler metal shows 

promise, with isothermal solidification achievable well within typical brazing times. 

Comparatively small boride concentration at base metal interface was observed along with an 

isothermally solidified MPEA-like solid solution phase in the joint region. 
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 Joint shear strength using this filler metal was inferior to that when using AWS BNi-2 under 

the same conditions, due largely to limited plastic deformation capacity. 

 TC can be useful as a tool for designing alloys for a low liquidus, though predictions of phase 

composition and quantitative temperature values should be taken with caution. Phase 

diagrams and empirical thermodynamic parameters can be useful aids to make up for the 

shortfalls of TC in such an endeavour.  More complete databases, including assessed 

experimental data for a greater variety of binary and ternary systems is encouraged to open 

up more possibilities for design of novel filler metals, and alloys in general. 

 

12.2 Future Work 

In terms of future work, there are several recommendations that may be made. Firstly, this work has 

demonstrated the need for more complete thermodynamic assessment of binary and ternary alloy 

systems for use in CALPHAD software such as Thermo-Calc. This could allow exploration of largely 

unexplored compositions, which could be of enormous benefit the design of novel brazing filler 

metals even outside the Ni-based filler metals. The demand for greater jet engine efficiency in the 

future, for example, will in turn demand alloy performance at yet higher temperatures. New filler 

metals capable of withstanding such temperatures are therefore likely to be needed, and must be 

designed. In addition, while the advent of HEAS and MPEAs has promised the potential for 

discovering new alloys with superior properties in the vast compositional space now opened up, such 

discoveries have been rather limited to alloys sharing a select few elements in general. Therefore, the 

assessment of yet more binary and ternary systems will be needed to allow the design of new HEAs 

and MPEAs, particularly as compositions move away from equiatomic and the sole aim of achieving 

a single phase solid solution. In addition, DICTRA calculations could be used to model diffusion 

phenomena across such joints as were presented in this work, and thus inform brazing parameters 

used when trialling such developed filler metals. 

With regards to the particular MPEA filler metals developed as part of this research, the NiCrMnIn 

filler metal could offer some potentially promising microstructural features that may be beneficial for 

the joining of W-carbide to tool steel, as compared to joints analysed that used the conventional Cu-

filler metal. It is believed that further optimisation of the composition to encourage a softer FCC solid 

solution, perhaps sacrificing somewhat the low liquidus, could result in this MPEA filler metal being 

a viable option for this application. Furthermore, this alloy could warrant trialling in the brazing of a 

wider range of tool materials and carbides (or other ceramics used in such applications), where the 

greater strength of Ni over other used elements such as Cu could be of benefit. 

The NiCrFeGeB MPEA filler metal may also warrant further optimisation of composition. For 

example, this may be done to enhance the ductility of the isothermally solidified NiCrFeGe MPEA-

like solid solution formed as a result of the B diffusion. Ideally, if Ge can also be reduced without 

compromising on the achieved low liquidus, this would represent both a cost benefit, and may help 

reduce the tying up of Nb from the base metal. Nonetheless, the promising initial results from this 

filler metal would warrant its trialling on various other Ni-based superalloys. Important assessments 

may also be made of the high temperature strength of joint brazed using this alloy, and it may be 

interesting to investigate any benefits to high temperature strength that the possession of an MPEA-

like joint region may incur. Likewise, the performance of the joints brazed with this alloy in corrosive 

and oxidising envFements would be of interest, and comparisons with joints produced with 

commercial alloys would be valuable as an indicator as to the usefulness of HEA or MPEA-like filler 

metals for such applications. It would also be of interest to investigate the use of this filler metal for 
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the brazing of other superalloys, such as those containing γʹ rather than γʹʹ. This may be particularly 

interesting when considering the possibility of forming Ge-containing γʹ. Fractography of failed joints 

following shear testing would also be of benefit, in order to correlate microstructural features with 

failure mechanisms. Particularly for the NiCrFeGeB filler metal, which exhibited several phases when 

used to braze IN718, fractography could aid understanding as to consequences such phases have on 

the joint mechanical properties. Outside of brazing, alloys such as this one, with a high hardness 

measured, could see use in wear-resistant materials and coatings. 

As for the design strategy detailed in this work, it need not stop at considering In and Ge as novel 

MPD elements, nor at Ni-based filler metals. Such a strategy could be employed to develop filler 

metals for existing and future brazing applications. It could be of particular use for designing filler 

metals for the brazing of dissimilar materials, as well as HEAs which may see use as future structural 

materials in applications such as cryogenics and fusion reactors. 
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