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Abstract

Many disciplines focus on the exploration of human choices, hence consid-
erable progress has been made with respect to understanding how people
make decisions within di�erent �elds. Nonetheless, cross-disciplinary e�orts
are still limited. This is especially apparent for the �elds of choice mod-
elling and neuroscience, mainly due to their contrasting focus. In particular,
choice modelling seeks to understand why speci�c decisions are made, through
capturing the di�erential in�uence of explanatory variables on that decision
process. On the other hand, neuroscience is focused on a direct measure-
ment of the biological activity of the brain under speci�c circumstances to
infer the neurological foundations of the observed behaviour. For decades,
these two disciplines have been developing in parallel, separated by the lack
of practical and theoretical grounds to build on, and also separated by major
di�erences in the type of data used. While choice modelling has looked at
complex multi-alternative, multi-attribute settings, using either revealed or
stated preference data, neuroscience has focussed on simple tasks that are
repeated a very large number of times in a laboratory setting. Technological
advancements such as virtual reality have recently allowed for more dynamic
and complex situations to be reproduced in experimental (lab-based) settings,
while further developments on non-intrusive sensors have made it possible to
collect physiological and neural data in a way that is more comfortable for the
participant and allows for more �exible experimental design. The emergence
of these novel opportunities gave the basis for the work gathered in this
thesis which adopted an integrative approach, combining choice modelling
with virtual reality data collection and neurological measurement, with an
applied focus on cycling behaviour. The conducted studies demonstrate the
feasibility of such complex data collection e�orts and evaluate the impact of
the experimental design in virtual reality on the elicited behaviour and neu-
ral data. With the employed choice models, we demonstrate the di�erences
in behaviour and neural reaction as a result of the adoption of immersive
and non-immersive visual stimuli and changes in the riskiness of simulated
road scenarios. Furthermore, a statistical analysis of the cycling behaviour
and neural data, when two di�erent input devices are employed, yields in-

vii



Abstract

tuitive �ndings providing practical implications for researchers who plan to
use virtual reality in their future research. In the �nal study of this thesis a
hybrid choice model framework is proposed to simultaneously model cycling
behaviour and brainwaves data. It shows that neural inputs can successfully
be used as indicators for a latent construct in a hybrid model structure to cap-
ture risk, serving as an alternative to traditional measures e.g. attitudinal
scales. This work not only demonstrates how to operationalise such mod-
elling e�orts but the addition of a neural perspective allows us to improve
the understanding of cycling behaviour achieved with the existing models.
Taken together, the �ndings presented in this thesis allow us to gain a better
understanding of determinants which in�uence cyclists' choices in risky road
situations, which we would not be able to explore in the real world due to
safety concerns. Finally, they provide evidence of the potential for collabora-
tive research between choice modelling and neuroscience to encourage more
studies in this new direction that would stimulate the development of new
modelling structures incorporating biometric data, enable more extensive ex-
ploration of di�erent stages of the choice process, and consequently lead to
more informed decision-making.
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Chapter 1

Introduction

1 Background

Our everyday life encompasses hundreds of choices ranging from near-automatic
reactions through habitual selections to deliberate decisions typically associ-
ated with long-term consequences. These choices have in�uences on resource
planning and are crucial for the development of the built environment. There-
fore, it is natural that human decision-making is a common interest for a wide
spectrum of disciplines such as neuroscience, philosophy, or economics. This
has, in turn, resulted in the development of a variety of approaches and meth-
ods to explore this phenomenon. In this thesis, two �elds, in particular, are of
interest, namely choice modelling, which aims at using mathematical models
to understand decisions of individuals or groups, and neuroscience which uses
a biological basis to explain human behaviour and choices.

Choice modelling

Choice modelling uses a range of theories and modelling techniques to pro-
vide a representation of how individuals choose (Ben-Akiva et al., 1985).
Choice models operate in a de�ned framework with three key elements: (a) a
decision-maker, who makes the choice, (b) a choice set of collectively exhaus-
tive and mutually exclusive alternatives that can be chosen, de�ned by a set
of attributes, and (c) a decision rule which determines how the choice is made
(Ben-Akiva and Bierlaire, 1999). While the mathematical models allow for
some degree of �exibility concerning underlying decision rules, including, for
example, the most widely used random utility maximisation (RUM) (McFad-
den and Zarembka, 1974) or the random regret minimisation (RRM) (Chorus
et al., 2008) framework, they largely focus on the outcome of the decision pro-
cess rather than the process itself.

1



Chapter 1. Introduction

Furthermore, the methodological approach to data collection for choice mod-
elling purposes typically employs stated or revealed preference choice exper-
iments involving many multi-attribute alternatives (Louviere et al., 2000).
A stated preference (SP) approach elicits responses to a set of hypothetical
scenarios (Arentze et al., 2003; Eboli and Mazzulla, 2008) whereas revealed
preference method is based on a direct observation of individuals' choices to
infer their preferences (Brownstone and Small, 2005; Isacsson, 2007). Tradi-
tionally, the studies have been conducted on large groups (Earnhart, 2002;
Lusk, 2003), nevertheless, more e�cient study designs (Bliemer and Rose,
2005) allow for a signi�cant reduction in the sample size (Hall et al., 2002;
Leitham et al., 2000).

Neuroscience

On the other hand, neuroscience, and more speci�cally behavioural neuro-
science, focuses on a direct measurement of the physical activity of the brain
functions given a speci�c context. For this reason, neuroscienti�c experiments
are usually performed in a laboratory setting, repetitive in nature and based
on simple tasks. They employ a range of neuroimaging devices such as magne-
toencephalography (MEG), electroencephalography (EEG), functional mag-
netic resonance imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS) to make inferences about the decision process (Carlson, 2007). The
EEG measures the electrical activity of the brain, whereas MEG records the
magnetic �elds produced by the electrical current. Both techniques have high
temporal, at the level of milliseconds, and low spatial resolution (da Silva,
2013). On the other hand, fMRI is a brain scanner that monitors changes in
the blood �ow relying on the fact that these are coupled with the activation
of the neurons (Logothetis et al., 2001). It has a lower temporal resolution as
compared to MEG or EEG, however, due to the very high spatial resolution,
it is a suitable tool for mapping brain activations (Glover, 2011). Finally, the
latest equipment is the fNIRS. It can be described as a trade-o� between the
fMRI and the EEG because it relies on hemodynamic responses of the brain
similar to the fMRI while being a less expensive and portable device with
higher temporal resolution (Naseer and Hong, 2015). This thesis employs
the EEG equipment due to its accessibility, portability, a lower cost relative
to the fMRI equipment and the nature of current research, which requires
high temporal resolution of the EGG, to track real-time neural activations
associated with decision-making processes in a dynamic context (Gui et al.,
2010).

Following Glimcher and Fehr (2013) "neuroscience is interested in the inves-

tigation of neurobiological hardware that supports choice behaviour". There-
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1. Background

fore, rather than proposing a general model of decision-making, behavioural
neuroscience explores associations between activation of a particular brain re-
gion and a stimulus, behavioural task or emotional state through the means
of statistical models and tests (Wilcox and Rousselet, 2018). Moreover, it
investigates highly correlated brain regions that exhibit a similar pattern of
activity over time (Bowman et al., 2007). For example, in the case of fMRI,
visual neuroimaging techniques such as voxel-wise analysis1 or Region of In-
terest (ROI) analysis are used to identify the di�erences in signal intensity
across experimental conditions (Carter and Shieh, 2015). Overall, the focus of
neuroscienti�c studies is on identifying neural substrates of di�erent types of
decisions such as sensorimotor (Gold and Shadlen, 2007), value-based (Hunt
et al., 2012; Rangel et al., 2008) or perceptual choices (Wong and Wang, 2006)
in a variety of contexts (Clark et al., 2013; Paulus et al., 2003; Rilling and
Sanfey, 2011). For instance, Mohr et al. (2010) employed fMRI to propose a
neural model of risk processing, di�erentiating brain parts involved at each
stage. Furthermore, a number of studies focused on identifying a structural
basis for heterogeneity in human choices (Kable and Levy, 2015; Kanai and
Rees, 2011), or aimed at predicting individuals' choices solely based on their
neural responses (Knutson et al., 2007; Levy et al., 2011; Smith et al., 2014;
Tusche et al., 2010). These neuroscienti�c studies provide a basis for under-
standing human behaviour by making a direct link between the chemical or
biological brain responses and the changes in the external environment under
speci�c circumstances.

The EEG

As previously mentioned the EEG is based on the recording of the electrical
activity of the brain that produces waveforms (brainwaves) of di�erent fre-
quencies, measured in cycles per second (Hertz) and amplitude, measured in
micro voltages. The waveforms are typically classi�ed into �ve main cate-
gories based on their characteristics (ie. frequency and amplitude). The most
commonly studied brainwaves are delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-
14 Hz), beta (14-30 Hz) and gamma (more than 30 Hz), which are visually
demonstrated in Figure 1.1.

A further division of brainwaves can be made according to the brain region
in which they occurred such as frontal, occipital, parietal and temporal, as
showed in Figure 1.2. They are interesting for researchers because brainwaves
of di�erent frequencies, stemming from speci�c brain regions are associated
with distinct cognitive functions and mental states such as certain levels of
intellectual e�ciency or di�erent levels of awareness, alertness or attention.

1Voxel is a three-dimensional visual representation of the brain structure.

3



Chapter 1. Introduction

Fig. 1.1: Classi�cation of main brainwaves (Teplan et al., 2002)

Consequently, they allow for a better understanding of the biological founda-
tions of human behaviour. Delta wave is the slowest wave and it is the most
prominent in the frontocentral brain region during deep sleep or drowsiness
(Britton et al., 2016). Next, theta wave is typically found during the early
stages of sleep, deep relaxation, fatigue, mediation or daydreaming (Nayak
and Anilkumar, 2021). As a consequence, these two waves are frequently
used in the transport context as a well-established marker of drowsiness and
fatigue in drivers (Awais et al., 2014; Jabbar et al., 2018). Further, dur-
ing a normal awake state beta brainwave is the dominant one, and it has
been showed to increase with concentration and higher engagement in cogni-
tive tasks such as stimulus assessment or decision making (Kropotov, 2009).
Moreover, gamma is the fastest of all waves and it has been attributed to
sensory perception integrating di�erent areas, and in previous research has
been of interest in the context of epilepsy diagnosis (Nayak and Anilkumar,
2021). Therefore, it is less frequently used in research beyond medical disci-
plines. Finally, the alpha wave is observed in a normal awake state in adults.
It tends to decrease under stress (Nishifuji et al., 2010), and has been pre-

4



1. Background

Fig. 1.2: Brain lobes (Lim et al., 2018).

viously linked to attentional processing (Klimesch, 2012). Importantly, the
alpha wave that emerges in the occipital brain region has been demonstrated
to be associated with visual attention (Ergenoglu et al., 2004; Mathewson
et al., 2009). As a result, this particular wave will be explored in this thesis
as a neural marker of visual attention in virtual reality scenarios where the
sight is the key sense employed.

Importantly, a transformation of raw EEG signal into a useable measure re-

Fig. 1.3: EEG data processing pipeline.

quires a rigorous pre-processing and cleaning procedure. Steps involved in
EEG processing can be seen in Figure 1.3. Firstly, EEG data is recorded
using an EEG cap which allows collecting the signal from chosen electrodes,
where each stream of the continuous raw EEG signal corresponds to one
electrode. Secondly, in the data pre-processing phase the band pass �ltering
(BPF) is applied to remove the frequencies that researchers are not inter-
ested in and keep those of interest. In the current thesis, the frequencies 1-20
Hz are retained. Band pass �ltering is a combination of low and high pass
�lters, where low pass keep only low frequencies (0-20 Hz), whereas higher
frequencies are dropped to eliminate so-called line noise, emerging due to the
operating frequency of electrical devices. Further, the high pass �lters drop
frequencies below 1 Hz to remove the noise stemming from direct current
(DC) (Teplan et al., 2002). The next step within data pre-processing is the
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manual removal of artefacts using multiple source analysis method within
BESA 6.0 software (MEGIS Software GmbH, Gräfel�ng, Germany), where
di�erent sources of mixed frequency signal are identi�ed. These can be eye
blinks, movements or coughing. Based on this classi�cation of sources, it is
possible to determine which parts of the signal need to be retained and which
discarded. For example, the frequency of an eye blink often overlaps with
that of a delta wave, hence, it is desirable to remove it to achieve a clean
picture of the brainwave (Kanoga et al., 2016). Once, the data undergoes the
pre-processing stage, it needs to be converted from the time domain to the
frequency domain using Fast-Fourier Transform (FFT) (Brigham and Mor-
row, 1967). This step is required because in the time domain the amplitude
of the EEG signal is reported for each time point, as showed in Sun (2019).
This is unsatisfactory because the EEG signal at each time point consists of
di�erent frequencies. This, in turn, makes it is impossible to establish which
frequency is dominant at each time to then detect any changes in the signal
along the time. For this reason, it is more appropriate to look at the signal
in the frequency domain which then represents the strength of the signal in
di�erent frequencies, which are later classi�ed as speci�c brainwaves. Lastly,
the time perspective is added again to achieve the time-frequency domain
which is a mixture of two and provides information of the power of a spe-
ci�c frequency at a given time point (discrete unit) (Dipoppa et al., 2016).
Importantly, the strength of the signal within each frequency is extremely
di�cult to extract, hence Welch's method is used to compute the estimates
of the power within each frequency (Solomon Jr, 1991). Ultimately, after the
subsequent classi�cation of di�erent frequencies into speci�c brainwaves, an
EEG dataset is produced containing the strength (voltage) of given brain-
wave at each time-point.

Overarching aims

The conclusion from the above is that choice modelling and neuroscience,
although methodologically di�erent, both have a coinciding goal as they
attempt to understand human behaviour, either through the mathematical
models or through the investigation of the brain. Despite this shared ambi-
tion, a cross-disciplinary approach is still scarce. Some have been sceptical
about the applicability of neuroscienti�c inputs in the choice modelling �eld
due to the limited existing evidence of choice modelling contributions to the
neuroscienti�c �eld and to the understanding of underlying biological mecha-
nisms of choices (Gul and Pesendorfer, 2008; Yoon et al., 2012). Nonetheless,
there have been previous attempts, for instance in mathematical psychology
and Decision Field Theory (DFT), that drew on the �ndings of neuroscience
to understand the decision process better. In particular, DFT proposed a
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dynamic model which allows for a stochastic evolution of an individual's pref-
erences over time until the decision is made (Busemeyer and Johnson, 2004;
Hancock et al., 2018). Such an approach allowed for inferences about the
choice process including the time dedicated to each alternative or the charac-
teristics of unchosen options. Interestingly, DFT draws on the drift-di�usion
model used in neuroscience to explain the perceptual decision-making process
where neurons accumulate the evidence in favour of given alternatives and
remove the noise over time (Britten et al., 1992). Therefore, these existing
studies demonstrate that neuroscience has the potential to improve current
mathematical models of choice by shedding light on the neural correlates of
the decision process. Furthermore, in the recent transport studies, a new
trend has been gaining popularity which aimed at the incorporation of phys-
iological indicators in choice models. For example, Paschalidis et al. (2019)
used a latent variable model with heart rate and skin conductance as indi-
cators of unobserved stress to explore its impact on car-following behaviour
in the driving simulator. Further, Castro et al. (2020) proposed a frame-
work to use electrodermal activity in modelling choices of public transport
users, while Tarabay and Abou-Zeid (2021) developed a hybrid choice model
of drivers' stress using heart rate data. Given these promising developments,
this thesis attempts to contribute to the �eld by providing evidence of the
potential that stems from bridging choice modelling and neuroscience, where
it incorporates the neuroimaging data into the existing modelling framework
to test and explore the advantages that it may yield for understanding the
drivers of modelled behaviour.

The introduction of the neuroscienti�c perspective can in�uence the choice
modelling discipline in several ways, �rstly, neural data, if employed in the
study jointly with existing choice modelling methods can provide an addi-
tional source of information on the conclusions reached by the study. For
example, di�erences in response times in choice experiments may have dif-
ferent sources such as task being too complex (or easy) or the participant
being inattentive or inexperienced. These have implications for the results
obtained with the surveys. The employment of neuroscienti�c data could
help to discriminate between these underlying reasons by looking at the cog-
nitive load of an individual. In this sense, neural data yields an additional
angle and depth to the results obtainable with existing methods and provides
additional constraints on the interpretation of choice data (Yoon et al., 2012).

Secondly, neural data can be seen as an un�ltered alternative to traditional,
self-reported measures aimed at deepening the understanding of underlying
drivers of choice such as attitudinal scales or self-reported questionnaires.
They have been widely used in social sciences to explore people's feelings to-
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wards certain situations or issues. For example, a DOSPERT scale has often
been used in psychology to explore domain-speci�c risk attitudes (Blais and
Weber, 2006). Further, in environmental research, the contingent valuation
method (CVM) has been employed to evaluate willingness to pay for envi-
ronment preservation or wildlife conservation (Pedroso and Kung'u, 2019).
In economics, self-reported measures have been used to elicit consumer val-
uation of goods and services (Hao et al., 2019), and in the health domain
to assess the severity of patients' symptoms and physical di�culties (Tuomi-
nen et al., 2011). In transport, self-reported questionnaires and attitudinal
scales have been previously used to obtain insights on the perception of dif-
ferent modes, usually public transport, and willingness to pay for their use
(Román et al., 2014) as well as to assess road users' risk and safety percep-
tion (Zhang et al., 2011). Therefore, Driver Behaviour Questionnaire (Reason
et al., 1990), Young Driver Attitude Scale (Malfetti et al., 1989) or Sensation
Seeking Scale (Zuckerman et al., 1964) are commonly used measures. They
are claimed to perform well when respondents have su�cient experience or
general knowledge about the context to reliably compare the situation in
question, assess and report it (Mummolo and Peterson, 2019). Nonetheless,
these explicit approaches have also been demonstrated to be susceptible to
biases stemming from di�erent sources, such as experimenter e�ect (Iyengar,
2011), degree of familiarity with the topic (Patterson and Mattila, 2008), sur-
vey wording or social desirability bias (Näher and Krumpal, 2012). Therefore,
some studies attempted to resort to more implicit approaches to alleviate the
issues associated with self-reported measures (Bennett and Vijaygopal, 2018).
One of the examples is the Implicit Attitude Test (IAT) that measures the
strength of association between concepts (e.g. man, woman) and evaluations
(e.g. good, bad). It is based on the principle that the response time for
the associations which are consistent with respondents' beliefs will be shorter
than for the inconsistent ones (Greenwald et al., 1998). However, these im-
plicit approaches are not problem less, where a study by Kim (2003) showed
that the respondents can be successfully taught how to in�uence the IAT
results. Beyond, De Houwer et al. (2007) demonstrated that experimenters
were able to induce the formation of new attitudes in participants, which, in
turn, had an impact on the outcome of the IAT measure. On the other hand,
Healy et al. (2015) used electroencephalography (EEG) jointly with IAT to
provide neural correlates of decision-making in the test context. As a result,
a top-down cognitive control was found as a source of noise in IAT results,
con�rming the voluntary modulation of responses. For this reason, instead
of self-reported responses, which are prone to errors, neural or physiological
activations can be measured to provide a raw, neural (or bodily) response to
a speci�c situation.

8



1. Background

Thirdly, neuroscience can help in understanding the connection between de-
cisions and the context in which they occurred to explain how the interaction
between them leads to di�erent choices. This is particularly important in
the context of an increasing consensus that despite the brain's biological
foundations, it is strongly conditioned by the contextual, environmental, and
cultural determinants (Yoon et al., 2012). For example, a study by Schwartz
and Cuadros (2017) showed that individuals under cognitive strain tend to
be more vigilant, trust less intuitive answers and consequently produce more
rational choices, as compared to individuals in a relaxed environment.

Finally, neural data may form novel foundations for the comparison of exist-
ing choice models and therefore, allow for the discrimination between them in
terms of a better representation of the human decision-making process with
respect to the neural mechanisms. For example, assuming that there are two
models which perform equally well in terms of mathematical e�ciency, it is
possible to use insights from neuroscience to distinguish between them based
on how well they mimic the neural process that led to a given decision.

Overall, it can be argued that the incorporation of neuroscienti�c inputs in
choice modelling �eld opens many exciting opportunities, nonetheless, thus
far there have observed limited examples of such e�orts. Consequently, this
works aims at addressing some of these gaps by jointly using behavioural and
neural data. In particular, it demonstrates how the neural perspective com-
plements behavioural results and it employs neural data in a hybrid choice
model to show their usability in a novel context and give evidence of how their
incorporation into mathematical models can increase current understanding
of human choices.

The advancements in neuroimaging equipment and virtual reality technology

One of the many challenges that hinder more pronounced cross-fertilisation
between these two �elds is a considerable methodological mismatch where
the complexity of neuroimaging techniques strongly limits its applicability in
a wider context, outside of laboratories. This can be alleviated, to some ex-
tent, by the advent of new technologies which allows to take a new approach
to the investigation of human choices and gives an opportunity to accelerate
interdisciplinary research.

On one hand, the emergence of multiple ambulatory (mobile) EEG devices
is observed, o�ering more �exibility and su�cient performance capabilities,
which has been demonstrated in multiple previous studies. For example, As-
pinall et al. (2015) used Emotiv EPOC to investigate the impact of urban
designs on the emotional experience of pedestrians. Further, Liu et al. (2013)
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used the MindWave device to record drivers' brainwaves and detect their
drowsiness. Moreover, Doppelmayr et al. (2012) investigated the impact of
long-lasting exercise on alpha (α) rhythm with Varioport EEG, while Askamp
and van Putten (2014) employed Mobita device for at-home EEG recordings
of epileptic patients. Finally, Debener et al. (2012) and Lotte et al. (2009)
used Oldenburg Hybrid-1, a modi�ed EPOC device and Polymate AP216 in
outdoor and indoor walking contexts, respectively. The proliferation of mo-
bile EEG devices in non-medical research in the last decade was possible due
to its low costs, small dimensions, and high temporal resolution, at the level
of milliseconds, which made it highly relevant for dynamic studies (da Silva,
2013). Another available equipment, the fMRI has not been used outside the
laboratory to a similar degree, mainly due to its considerable size and lower
temporal resolution as compared to MEG or EEG (Glover, 2011). Neverthe-
less, a step towards higher accessibility to fMRI beyond static environments
lies in the fNIRS, which can be seen as a middle ground between the mag-
netic resonance and EEG because it relies on haemodynamic responses of the
brain similar to the fMRI while being a less expensive and portable device
with higher temporal resolution (Naseer and Hong, 2015).

On the other hand, a strand of technology that allows for the application of
these compact EEG devices to a wide range of situations is augmented (AR)
and virtual reality (VR), where simulated scenarios are accessed through
head-mounted displays (HMD), immersive caves or driving simulators (Cordeil
et al., 2016). A virtual environment is de�ned as an interface that creates the
e�ect of a three-dimensional world, in which the user directly interacts with
virtual objects and it has been around for more than two decades (Bryson,
1996). However, only recent technological advancements which reduced the
costs and computational requirements of the displays while maintaining, or
frequently increasing, the visual quality of the environments resulted in their
wider adaptation for research purposes (Slater and Sanchez-Vives, 2016).
Virtual reality provides a unique opportunity to investigate the situations
which we would not be able to explore in real life while maintaining a high
level of controllability over confounding factors to ensure internal validity of
the study. The internal validity is concerned with experimental procedure
and re�ects the degree to which an experiment allows to reliably establish
the causal e�ect between the treatment and outcome (Nilsson and Kinateder,
2015). In general, the internal validity of the VR studies is widely recognised
and supported by the existing literature (Dixit et al., 2017; Goedicke et al.,
2018; Reimer et al., 2006), nonetheless, it is bene�cial to provide more evi-
dence in this regard, especially in new contexts and with novel devices. On
the other hand, virtual reality is an inherently safe environment, which may
lead to participants not behaving in the same way as they would in reality,
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which raises concerns about the external validity of the VR studies (Hock
et al., 2018). External validity, also called ecological validity, is de�ned as
the extent to which the result of the study is generalisable to the real world
and applicable to other settings (Harrison et al., 2011). Therefore, external
validity is more di�cult to capture because it requires the comparison of be-
haviour in similar conditions between the simulation and the world outside
the laboratory. This, consequently, limits the phenomena which can be safely
and reasonably investigated. Moreover, studies that aim at establishing ex-
ternal validity are associated with much higher costs, if, for example, driving
performance in the simulator is to be compared with driving in a real car
(Hussain et al., 2019). Nonetheless, there is a growing number of studies
in the transport �eld that exert such e�orts, where they focus on di�erent
measures such as the mean speed (Bella, 2008) or variation in speed (Branzi
et al., 2017), lateral deviation and lane positioning (Wang et al., 2010), lane
changing behaviour (Yun et al., 2017), braking behaviour (Zöller et al., 2019)
or driving errors (Mayhew et al., 2011) to examine the external validity. Fur-
thermore, they frequently take into account biometric measures such as eye
movement (Fors et al., 2013), heart rate (HR) (Johnson et al., 2011) or EEG
signal (Li et al., 2013). Thus far, the literature provides ambiguous evi-
dence on the external validity of virtual environments (Wynne et al., 2019),
where some studies including Davenne et al. (2012); Hallvig et al. (2013);
Shechtman et al. (2009) found signi�cant di�erences between the behaviour
observed in simulated environments and the real world. While another group
of studies provided evidence that the �ndings are, in fact, externally valid
(Bham et al., 2014; Hou et al., 2014; Philip et al., 2005; Risto and Martens,
2014; Yun et al., 2017). Therefore, it results that more research is needed
to establish the validity of virtual reality and driving simulator studies to
cover a wide range of behaviours, devices, conditions and factors that may
in�uence it.

As previously mentioned, the current use of virtual reality in research context
allowed for an exploration of human behaviour in circumstances that could
have not been safely investigated in the real-life settings before, such as risky
driving (Schwebel et al., 2007), as well as it enabled the joint collection of
di�erent data types, such as physiological and eye-tracking measurements, in
these novel contexts (Zimasa et al., 2019). Moreover, it opened new paths
for medical training (Lemole Jr et al., 2007) and rehabilitation (Cox et al.,
2010). Finally, the popularisation of VR served as a catalyst for the use
of neuroimaging devices in the dynamic settings, where there is observed a
considerable acceleration of such studies in many disciplines (Bischof and
Boulanger, 2003; Graefe and Schultheis, 2013; Kober et al., 2012; Lin et al.,
2007).
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Cycling behaviour context

The work in this thesis focuses on the cycling behaviour and there are several
reasons for such a choice. Firstly, most of the current research on dynamic
behaviour on the road focuses on drivers. Hence, there is an obvious gap
in the literature to explore if the phenomena that are mostly investigated
and demonstrated to hold for vehicle drivers are also applicable to cyclists
and to what extent. It is particularly interesting, because, on one hand,
cycling and driving are perceived as similar activities and, for example, mea-
surement instruments developed for investigation of drivers' behaviour are
used to explore behaviour in the cycling context (Feenstra et al., 2011). At
the same time, another group of studies suggests that there are considerable
di�erences between driving and cycling, especially in terms of associated
risks and behavioural patterns, as car occupants have a signi�cantly higher
level of protection in case of an accident, provided by the seatbelts, airbags
and impact-absorbing car structure, compared to a bicycle (Gri�n et al.,
2020; Steriu, 2012). This, in turn, will have an in�uence on risk perception
and resulting behaviour. For instance, studies by Messiah et al. (2012) and
Lardelli-Claret et al. (2003) showed that the mere use of a helmet can re-
sult in risk compensation mechanism and consequently engagement in more
risky cycling behaviour. Beyond, a recent study by Nygårdhs et al. (2020)
showed that experience and skills gained as a driver are not transferred to
the cyclist role on the road, and vice versa, providing little evidence of be-
havioural adaptation due to distinct road-user roles. This further reinforces
the position that cycling and driving should be seen as di�erent in terms of
behavioural analysis. Due to an apparent lack of consensus, if the �ndings
in the driving context are generalisable to cycling, it is important to gather
more evidence in this area.

Secondly, cyclists are particularly prone to �nd themselves in hazardous cir-
cumstances involving both drivers and pedestrians. They are claimed to be
the most vulnerable road users, where, the annual report by the UK Depart-
ment of Transport (2016) showed that cyclists are �fteen times more likely
to be killed on the UK road than drivers. Therefore, risk, along with the
lack of appropriate infrastructure, is one of the main deterrents of bicycle use
(Parkin et al., 2007). Consequently, it is crucial to understand better risk
perception among cyclists and factors that in�uence it, to be able to make
more informed, evidence-based decisions with respect to infrastructure de-
sign, legislation and policy-making. This, then, has the potential to encour-
age cycling uptake among the entire population which brings multifaceted
bene�ts on di�erent levels. For individuals, cycling promotes health by in-
creasing cardiovascular �tness (Cooper et al., 2006) and muscle endurance
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(Andersen et al., 2009), lowering the likelihood of obesity (Wen and Rissel,
2008), reducing the risk of colon cancer (Hou et al., 2004) and cardiovascular
mortality (Matthews et al., 2007) as well as being a cheap and fast form of
transport. Further, on a system level, an increase in the cycling population
leads to the 'Safety in Numbers' mechanism (Elvik and Bjørnskau, 2017)
where more cyclists on the roads contribute to the higher drivers' awareness
which, in turn, decreases the accident risk faced by an average cyclist (Fyhri
et al., 2017).

Thirdly, cycling has an indirect impact on individuals' health by reducing
air pollution if cars are substituted with bicycles for commuting purposes
since automobiles contribute to about half of the overall world production of
carbon dioxide (Cerovsky and Mindl, 2008), with signi�cantly elevated emis-
sions in the time of the tra�c congestions that are frequent during short,
urban trips (Barth and Boriboonsomsin, 2008). Furthermore, swapping the
car for a bicycle allows for the reduction in the water use and contamination
associated with car manufacturing where it is estimated that production of
a single vehicle requires approximately 39.000 gallons of water, making the
automobile industry one of the heaviest users of water (Isaiah, 2014). There-
fore, an increase in bicycles use as opposed to motor vehicles yields obvious
environmental bene�ts. Moreover, a large-scale implication of improvement
in populations' general health is the reduction of the �nancial burden on the
public health services (Oja et al., 2011). Furthermore, poor citizens' health
hinders sustainable economic growth and workers productivity, for example,
a study by Bloom et al. (2004) suggests that a one-year increase in popula-
tion's life expectancy rises economic output by 4%.

Moreover, when considering human behaviour, di�erent levels have been
recognised in the previous literature (see eg. Antonini et al. (2006) for pedes-
trian behaviour). In driving context Michon (1985) proposed three levels
of behaviour. Firstly, the strategical level which encompasses trip planning
activities, such as destination, route or mode choice. Further, the tactical
level involves mid-term manoeuvring actions in response to changing road
circumstances, for example overtaking or lane changing. Finally, the lowest,
operational level of behaviour captures immediate manoeuvres such as steer-
ing or accelerating. Michon's hierarchical model of drivers' behaviour has
been further extended to the cycling context in the recent study by Gavriili-
dou et al. (2019), where the operational level of cycling behaviour has been
split further into mental and physical processes. The mental process encom-
passes path choice within the entire route and the physical process entails the
control of bicycle dynamics through pedalling and steering. Following this
categorisation, the focus of this thesis is the physical process in the opera-
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tional level of cycling behaviour including acceleration, deceleration, braking,
speed maintenance and waiting (standstill).

As demonstrated in the preceding sections, there is an obvious potential for
an integrative research between the neuroscience and choice modelling, that is
particularly relevant in a transport context to allow for data collection in the
dynamic environments with respect to cycling, driving, pedestrian mobility
as well as other micro-mobility alternatives.

2 Research gaps

The previous section showed that choice modelling and neuroscience share a
common goal to better understand human decision making. It highlighted the
main methodological di�erences between these two disciplines and reviewed
recent technological advancements which show potential for accelerating this
interdisciplinary research. Therefore, the identi�ed research gaps are pre-
sented below and subsequently addressed in this thesis.

Gap 1: Scarce interdisciplinary approach to the investigation of

human behaviour on the road

The �rst gap emerges with the scant evidence of the studies which adopt a
neuroscienti�c and behavioural approach jointly, to explore the di�erences in
human choices, particularly in a dynamic context. Some headway has been
achieved recently, where Cherchi et al. (2020) incorporated the EEG compo-
nent into the stated choice experiment to contrast easy and hard consumer
choices. Nonetheless, the experimental design was based on a number of
static questions administered via an online survey. Therefore, it is not ap-
plicable in the more dynamic settings such as road scenarios and it does not
allow for capturing dynamic changes in perception. The main reason for the
scarcity of such combined experimental designs is their practical complexity
and novelty, where only recent technological advancement of VR technology
and EEG devices allows for undertaking such attempts. Furthermore, it can
be argued that it is feasible in certain cases to use data collected previously
for di�erent purposes. In this instance, possible candidate datasets could be
found in the psychology �eld which o�ers studies that use biometric data for
safety research, for example, to detect drivers' fatigue or drowsiness (Furman
and Baharav, 2010; Hu et al., 2009). However, the majority of them focuses
on the induction of di�erent mental states such as tiredness and does not
involve any choice to enable the construction of the model. For example,
in the study by Awais et al. (2017), participants were required to drive in
a simulator at a constant speed for a prolonged period to evoke drowsiness.
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Meanwhile, their electrical activity of the brain and heart rate data were
recorded to then make inferences about the relationship between these bio-
metric measures and drivers' state. Therefore, this research gap has been
identi�ed because of the scarcity of joint data collection e�orts for choice
modelling purposes.

Gap 2: Need for the internal validation of the studies in virtual

reality

Since the emergence of virtual and augmented reality environments, researchers
aimed at identifying the factors which in�uence the degree of immersion and
presence in the virtual environment de�ned as "the participant's sense of

'being there' in the virtual environment" (Slater et al., 1994). Previous the-
oretical research put forward several hypothesised aspects that were claimed
to in�uence a person's immersion, such as the degree and immediacy of con-
trol within the environment, sensory richness, the extent of isolation from the
outside world, scene realism or simulation's consistency with the real world
(Witmer and Singer, 1998). Interestingly, the impact of these di�erent fea-
tures was almost exclusively established and tested through the questioning
of participants about their perceived presence or realism (Davis et al., 1999;
Dinh et al., 1999). However, little has been done to directly compare the
behaviour under these di�erent settings. Therefore, the second gap is driven
by the fact that virtual reality is still a novel approach to explore human
behaviour and the evidence of the in�uence of di�erent experimental con-
ditions is continuously gathered. In the transport context, previous studies
compared behaviour between real and simulated car (Godley et al., 2002) as
well as attempted to validate the stated responses to assess risk perception
(Andersson, 2013). However, dynamic behaviour under di�erent presentation
methods within the simulated environment has not been compared, hence,
their impact on the elicited choices or the neural processing remains unknown.

Moreover, virtual reality is typically used to test and compare the e�ects of
alternative scenarios in question. For example, the study by Nazemi et al.
(2021) looked at the safety perception of cyclists between multiple designs of
bicycle lanes, whereas Jiang and Kang (2016) looked at the impact of traf-
�c noise on the perceived changes in visual landscape quality of a motorway.
However, little attention was given to the impact of input devices employed in
the virtual reality studies to manifest a person's responses beyond visual stim-
uli. It is particularly surprising given the multitude of equipment available
to researchers and the di�erences in the extent to which they can replicate
real human behaviour. For instance, previous study by Rutledge (1990) com-
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pared the performance of a joystick and mouse in a pointing task, whereas
Sutter and Zie�e (2005) looked at the speed and accuracy of a touchpad and
mini-joystick as a notebook input device. It resulted that the performance of
input devices depends on the design and characteristics of motion required in
the experiment. Therefore, it is necessary to advance the knowledge on their
impact on elicited behaviour in speci�c conditions to allow for more informed
decisions concerning study designs.

Gap 3: Lack of a choice model that incorporates dynamic be-

havioural and neural data

The third gap re�ects the lack of evidence in the existing literature of the use
of dynamic behavioural and neural data in a single model structure, where
these distinct data types have the potential to complement one another in
the attempt to increase the overall explanatory power of the model. For
example, even though, there have been e�orts to investigate the e�ect of
dynamic behaviour (cycling) on neural response using a stationary bicycle
(Scanlon et al., 2017) or naturalistic cycling in the outdoor setting (Scanlon
et al., 2020), the analysis focused on the comparison of neural activations
between di�erent conditions without providing a modelling framework. On
the other hand, Turner et al. (2016) intended to integrate behavioural, EEG
and fMRI data into one model framework and demonstrated that such ap-
proach provides better insights than behavioural data alone. Nevertheless,
the behavioural data were collected in a static, laboratory experiment based
on a choice between delayed and immediate rewards, which limits the scope
of the study with respect to explaining human choices in a dynamic context.
Henceforth, the feasibility and appropriate methodology for the joint use of
neural and behavioural data in a single model to explain complex human
choices should be explored.

3 Objectives

The broad goal of this thesis is to attempt bridging the gap between choice
modelling and neuroscience and show that the neuroscienti�c inputs can, in
fact, complement and enrich the choice modelling �ndings. It will be achieved
through case studies of cycling behaviour in virtual reality which were de-
signed to enable the simultaneous collection of behavioural and neuroimaging
data. They are used to compare and analyse the behaviour elicited in these
studies from distinct perspectives. They allow us to (a) explore the interplay
between observed behaviour and its neural underpinnings using comparative
and descriptive analyses as well as the choice models, (b) assess the appropri-
ateness of virtual reality as a research tool in this context and (c) provide an
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example of preliminary e�orts in this cross-disciplinary research. The speci�c
objectives are described below.

Objective 1: To design an experiment to collect jointly behavioural

responses and neuroimaging data

There is scarce evidence of cross-disciplinary data collection attempts involv-
ing EEG and VR to explore dynamic human behaviour. Therefore, work
in this thesis exerts e�ort to gather simultaneously behavioural data includ-
ing cycling behaviour (eg. to accelerate, brake etc.) and stated data (e.g.
reported risk perception) as well as neural measurements in a single exper-
imental design. The collection of these di�erent types of data allows for
obtaining a more complete perspective on the behaviour of the cyclists in the
simulated environment and enables their joint use to construct a mathemati-
cal model. An example of cross-disciplinary research is provided to encourage
more development in this new direction but also highlight the challenges as-
sociated with such data collection tasks.

Objective 2: To evaluate the impact of di�erent experimental de-

signs on the behaviour in virtual reality

The objective is to evaluate the in�uence of visually di�erent simulated sce-
narios on the cyclist neural processing, behaviour, and risk perception to
provide a multi-angled analysis and identify factors in experimental design
which have an impact on the elicited behaviour. Next, the aim is to compare
the e�ect of di�erent input devices on cycling performance in VR by explor-
ing the di�erences that emerged in the behaviour evoked by the same visual
stimulus but distinct input instruments. Beyond, the di�erences in neural
response as a result of the incorporation of these di�erent pieces of equip-
ment are tested. The aim of this work is to provide guidance and advance the
knowledge concerning the internal validity of VR research studies to improve
the con�dence in the �ndings of such research.

Objective 3: To apply a joint model structure for behavioural and

neural data

The �nal objective is to apply a mathematically tractable framework to dy-
namic behavioural and neural data at the same time. While dynamic choice
models have been used before (Arcidiacono and Miller, 2011), there has not
been any attempts to jointly model cycling behaviour and complementing in-
dividuals' neural responses in a dynamic framework. The aim of the proposed
model is to gain a better understanding of the link between neural process-
ing and the observable choices and expand the understanding achieved by
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the previous models.

4 Thesis outline and contributions

This section provides an outline of each chapter of the thesis, focusing on
their contribution in addressing the research gaps and associated objectives
presented in sections 2 and 3, respectively.

Chapter 2 presents a paper titled "Cycling in virtual reality: modelling

behaviour in an immersive environment" which intends to compare and un-
derstand the impact of immersive versus non-immersive presentation method
in VR on cycling behaviour, perceived riskiness and willingness to cycle as
well as neural processing. Di�erent methods are used to analyse the impact
of these two simulation types on each of these components. In particular,
multinomial logit model (MNL) is used to explore the dynamic behavioural
cycling data, next the ordered logit models are estimated to investigate stated
risk perception and willingness to cycle and �nally the paired t-test on the
peak α amplitude in each condition is performed to establish di�erences of
these two presentation formats on an α brainwave. The results from be-
havioural and neural data congruently show signi�cant di�erences between
responses elicited with immersive and non-immersive scenario while stated
data are not consistent with them. This work, hence, addresses the �rst
research gap, where �ndings based on a primary data collection provide evi-
dence of an interdisciplinary approach to the exploration of human behaviour
and demonstrate the interplay between di�erent data types, allowing to gain
a three-angled perspective on the dynamic risky cycling behaviour.

Chapter 3 presents a paper titled "A comparison of cycling behaviour be-

tween keyboard-controlled and instrumented bicycle experiments in virtual re-

ality" where we compare cycling behaviour with respect to acceleration, brak-
ing, speed and head movement between virtual reality experiments where one
used keyboard and the other instrumented bicycle as an input device. On
top of that, the α amplitudes are contrasted to investigate the level of mental
engagement in these two studies. This work is motivated and partly builds
on the �ndings of work in Chapter 2 where a seemingly small change in the
presentation method leads to the elicitation of di�erent responses. Similarly,
in the current study, considerable di�erences in behaviour as well as neu-
ral processing are found resulting solely from the adoption of distinct input
equipment. This work further reinforces the �ndings of the previous chapter
demonstrating the implications of appropriate design in the case of VR study
beyond visual stimulus. Importantly, the employment of neuroimaging data
allows us to obtain a wider perspective on these di�erences. Together, these

18



References

results address the second research gap as they provide crucial guidance for
researchers who intend to employ VR and EEG in their studies where the
impact of distinct designs for these novel methods is not fully understood.
Notably, the work presented in this chapter required additional data collec-
tion, which was similar to the �rst experiment, but it used an instrumented
bicycle instead of a keyboard. The employment of the bicycle allows us to
test the mobile EEG headset in a more �exible setting and demonstrate its
performance in a case where physical e�ort and head movements are signi�-
cant.

Chapter 4 presents a paper titled "Modelling risk perception using a dy-

namic hybrid choice model and brain-imaging data: application to virtual

reality cycling" which focuses on an application of a dynamic hybrid choice
model to behavioural and neural data simultaneously. Henceforth, it ad-
dresses the third research gap, where it, �rstly, shows that the developed
choice model is suitable to explain cyclists' behaviour in the simulated sce-
narios. In particular, the dynamic features of the scenarios, such as other
moving agents on the road, are included to capture a complex situation that
the cyclist faces. Secondly, the results demonstrate that neural data can be
successfully incorporated into the mathematical model to provide an addi-
tional dimension in understanding cyclists' behaviour and improve the e�-
ciency of the model. A number of steps is taken to ensure the usability of
EEG data in the model, where various speci�cations are tested to replicate
to a large degree the mechanisms of the choice.

Chapter 5 contains the discussion and conclusions that link the work pre-
sented throughout the chapters, reiterate the contribution of this work with
respect to the presented research gaps and objectives as well as it presents
the potential future direction of this research.

References

Andersen, L. B., Lawlor, D. A., Cooper, A. R., Froberg, K., and Ander-
ssen, S. A. (2009). Physical �tness in relation to transport to school in
adolescents: the Danish youth and sports study. Scandinavian Journal of

Medicine & Science in Sports, 19(3):406�411.

Andersson, H. (2013). Consistency in preferences for road safety: An anal-
ysis of precautionary and stated behavior. Research in Transportation

Economics, 43(1):41�49.

Antonini, G., Bierlaire, M., and Weber, M. (2006). Discrete choice models

19



References

of pedestrian walking behavior. Transportation Research Part B: Method-

ological, 40(8):667�687.

Arcidiacono, P. and Miller, R. A. (2011). Conditional choice probability esti-
mation of dynamic discrete choice models with unobserved heterogeneity.
Econometrica, 79(6):1823�1867.

Arentze, T., Borgers, A., Timmermans, H., and DelMistro, R. (2003). Trans-
port stated choice responses: e�ects of task complexity, presentation format
and literacy. Transportation Research Part E: Logistics and Transportation

Review, 39(3):229�244.

Askamp, J. and van Putten, M. J. (2014). Mobile EEG in epilepsy. Interna-
tional Journal of Psychophysiology, 91(1):30�35.

Aspinall, P., Mavros, P., Coyne, R., and Roe, J. (2015). The urban brain:
analysing outdoor physical activity with mobile EEG. Br J Sports Med,
49(4):272�276.

Awais, M., Badruddin, N., and Drieberg, M. (2014). Driver drowsiness de-
tection using EEG power spectrum analysis. In 2014 IEEE Region 10

Symposium, pages 244�247. IEEE.

Awais, M., Badruddin, N., and Drieberg, M. (2017). A hybrid approach to
detect driver drowsiness utilizing physiological signals to improve system
performance and wearability. Sensors, 17(9):1991.

Barth, M. and Boriboonsomsin, K. (2008). Real-world carbon dioxide impacts
of tra�c congestion. Transportation Research Record, 2058(1):163�171.

Bella, F. (2008). Driving simulator for speed research on two-lane rural roads.
Accident Analysis & Prevention, 40(3):1078�1087.

Ben-Akiva, M. and Bierlaire, M. (1999). Discrete choice methods and their
applications to short term travel decisions. In Handbook of Transportation

Ccience, pages 5�33. Springer.

Ben-Akiva, M. E., Lerman, S. R., and Lerman, S. R. (1985). Discrete choice
analysis: theory and application to travel demand. MIT press, Cambridge,
MA.

Bennett, R. and Vijaygopal, R. (2018). Consumer attitudes towards electric
vehicles. European Journal of Marketing, 53(3/4):499�527.

Bham, G. H., Leu, M. C., Vallati, M., and Mathur, D. R. (2014). Driving
simulator validation of driver behavior with limited safe vantage points for
data collection in work zones. Journal of Safety Research, 49:53�60.

20



References

Bischof, W. F. and Boulanger, P. (2003). Spatial navigation in virtual reality
environments: an EEG analysis. CyberPsychology & Behavior, 6(5):487�
495.

Blais, A.-R. and Weber, E. U. (2006). A domain-speci�c risk-taking
(DOSPERT) scale for adult populations. Judgment and Decision Mak-

ing, 1(1):33�47.

Bliemer, M. C. and Rose, J. M. (2005). E�ciency and sample size require-

ments for stated choice studies. (Working Paper ITLS-WP-05-08). Institute
of Transport and Logistics Studies, University of Sydney.

Bloom, D. E., Canning, D., and Sevilla, J. (2004). The e�ect of health on
economic growth: a production function approach. World development,
32(1):1�13.

Bowman, F. D., Guo, Y., and Derado, G. (2007). Statistical approaches to
functional neuroimaging data. Neuroimaging Clinics of North America,
17(4):441�458.

Branzi, V., Domenichini, L., and La Torre, F. (2017). Drivers' speed be-
haviour in real and simulated urban roads�a validation study. Transporta-
tion research part F: tra�c psychology and behaviour, 49:1�17.

Brigham, E. O. and Morrow, R. (1967). The fast Fourier transform. IEEE

spectrum, 4(12):63�70.

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992).
The analysis of visual motion: a comparison of neuronal and psychophys-
ical performance. Journal of Neuroscience, 12(12):4745�4765.

Britton, J. W., Frey, L. C., Hopp, J. L., Korb, P., Koubeissi, M. Z., Lievens,
W. E., Pestana-Knight, E. M., and St Louis, E. K. (2016). Electroen-

cephalography (EEG): an introductory text and atlas of normal and abnor-

mal �ndings in adults, children, and infants. American Epilepsy Society,
Chicago.

Brownstone, D. and Small, K. A. (2005). Valuing time and reliability: as-
sessing the evidence from road pricing demonstrations. Transportation

Research Part A: Policy and Practice, 39(4):279�293.

Bryson, S. (1996). Virtual reality in scienti�c visualization. Communications
of the ACM, 39(5):62�71.

Busemeyer, J. R. and Johnson, J. G. (2004). Computational models of de-
cision making. In Blackwell handbook of judgment and decision making,
pages 133�154. Wiley Online Library.

21



References

Carlson, N. (2007). Physiology of Behaviour. Allyn & Bacon, Boston.

Carter, M. and Shieh, J. C. (2015). Guide to research techniques in neuro-

science. Academic Press.

Castro, M., Guevara, C. A., and Jimenez-Molina, A. (2020). A methodolog-
ical framework to incorporate psychophysiological indicators into trans-
portation modeling. Transportation research part C: emerging technologies,
118:102712.

Cerovsky, Z. and Mindl, P. (2008). Hybrid electric cars, combustion engine
driven cars and their impact on environment. In 2008 International Sym-

posium on Power Electronics, Electrical Drives, Automation and Motion,
pages 739�743. IEEE.

Cherchi, E., Vuong, Q., and Stergiou, A. (2020). Using EEG to understand
how our brain elaborate information in stated choice experiments: Easy
versus hard tasks in the choice of vehicles. bioRxiv, pages 1�14.

Chorus, C. G., Arentze, T. A., and Timmermans, H. J. (2008). A random
regret-minimization model of travel choice. Transportation Research Part

B: Methodological, 42(1):1�18.

Clark, L., Averbeck, B., Payer, D., Sescousse, G., Winstanley, C. A., and
Xue, G. (2013). Pathological choice: the neuroscience of gambling and
gambling addiction. Journal of Neuroscience, 33(45):17617�17623.

Cooper, A. R., Wedderkopp, N., Wang, H., Andersen, L. B., Froberg, K.,
and Page, A. S. (2006). Active travel to school and cardiovascular �tness
in Danish children and adolescents. Medicine and science in sports and

exercise, 38(10):1724�1731.

Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., and Thomas,
B. H. (2016). Immersive collaborative analysis of network connectivity:
cave-style or head-mounted display? IEEE transactions on visualization

and computer graphics, 23(1):441�450.

Cox, D. J., Davis, M., Singh, H., Barbour, B., Nidi�er, F. D., Trudel, T.,
Mourant, R., and Moncrief, R. (2010). Driving rehabilitation for mili-
tary personnel recovering from traumatic brain injury using virtual reality
driving simulation: A feasibility study. Military medicine, 175(6):411�416.

da Silva, F. L. (2013). EEG and MEG: relevance to neuroscience. Neuron,
80(5):1112�1128.

22



References

Davenne, D., Lericollais, R., Sagaspe, P., Taillard, J., Gauthier, A., Espié,
S., and Philip, P. (2012). Reliability of simulator driving tool for evalua-
tion of sleepiness, fatigue and driving performance. Accident Analysis &

Prevention, 45:677�682.

Davis, E. T., Scott, K., Pair, J., Hodges, L. F., and Oliverio, J. (1999). Can
audio enhance visual perception and performance in a virtual environ-
ment? In Proceedings of the human factors and ergonomics society annual

meeting, volume 43, pages 1197�1201. SAGE Publications Sage CA: Los
Angeles, CA.

De Houwer, J., Beckers, T., and Moors, A. (2007). Novel attitudes can
be faked on the implicit association test. Journal of Experimental Social

Psychology, 43(6):972�978.

Debener, S., Minow, F., Emkes, R., Gandras, K., and De Vos, M. (2012).
How about taking a low-cost, small, and wireless EEG for a walk? Psy-

chophysiology, 49(11):1617�1621.

Dinh, H. Q., Walker, N., Hodges, L. F., Song, C., and Kobayashi, A. (1999).
Evaluating the importance of multi-sensory input on memory and the sense
of presence in virtual environments. In Proceedings IEEE Virtual Reality

(Cat. No. 99CB36316), pages 222�228. IEEE.

Dipoppa, M., Szwed, M., and Gutkin, B. S. (2016). Controlling working mem-
ory operations by selective gating: the roles of oscillations and synchrony.
Advances in cognitive psychology, 12(4):209.

Dixit, V. V., Ortmann, A., Rutström, E. E., and Ukkusuri, S. V. (2017). Ex-
perimental economics and choice in transportation: Incentives and context.
Transportation Research Part C: Emerging Technologies, 77:161�184.

Doppelmayr, M., Sauseng, P., Doppelmayr, H., and Mausz, I. (2012).
Changes in EEG during ultralong running. Journal of Human Perfor-

mance in Extreme Environments, 10(1):4.

Earnhart, D. (2002). Combining revealed and stated data to examine hous-
ing decisions using discrete choice analysis. Journal of Urban Economics,
51(1):143�169.

Eboli, L. and Mazzulla, G. (2008). A stated preference experiment for mea-
suring service quality in public transport. Transportation Planning and

Technology, 31(5):509�523.

Elvik, R. and Bjørnskau, T. (2017). Safety-in-numbers: a systematic review
and meta-analysis of evidence. Safety science, 92:274�282.

23



References

Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., and
Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection
performance in humans. Cognitive Brain Research, 20(3):376�383.

Feenstra, H., Ruiter, R. A., Schepers, J., Peters, G.-J., and Kok, G. (2011).
Measuring risky adolescent cycling behaviour. International journal of

injury control and safety promotion, 18(3):181�187.

Fors, C., Ahlström, C., and Anund, A. (2013). Simulator validation with

respect to driver sleepiness and subjective experiences: �nal report of the

project SleepEYE II, part 1. Statens väg-och transportforskningsinstitut,
Stockholm.

Furman, G. D. and Baharav, A. (2010). Investigation of drowsiness while

driving utilizing analysis of heart rate �uctuations. IEEE.

Fyhri, A., Sundfør, H. B., Bjørnskau, T., and Laureshyn, A. (2017). Safety
in numbers for cyclists�conclusions from a multidisciplinary study of sea-
sonal change in interplay and con�icts. Accident Analysis & Prevention,
105:124�133.

Gavriilidou, A., Daamen, W., Yuan, Y., and Hoogendoorn, S. (2019). Mod-
elling cyclist queue formation using a two-layer framework for operational
cycling behaviour. Transportation research part C: emerging technologies,
105:468�484.

Glimcher, P. W. and Fehr, E. (2013). Neuroeconomics: Decision making and

the brain. Academic Press, London.

Glover, G. H. (2011). Overview of functional magnetic resonance imaging.
Neurosurgery Clinics, 22(2):133�139.

Godley, S. T., Triggs, T. J., and Fildes, B. N. (2002). Driving simulator
validation for speed research. Accident analysis & prevention, 34(5):589�
600.

Goedicke, D., Li, J., Evers, V., and Ju, W. (2018). VR-OOM: Virtual Real-

ity On-ROad Driving SiMulation, page 1�11. Association for Computing
Machinery, New York.

Gold, J. I. and Shadlen, M. N. (2007). The neural basis of decision making.
Annual review of neuroscience, 30:535�574.

Graefe, A. C. and Schultheis, M. T. (2013). Examining neurocognitive cor-
relates of risky driving behavior in young adults using a simulated driving
environment. In 2013 International conference on Virtual rehabilitation

(ICVR), pages 235�241. IEEE.

24



References

Greenwald, A. G., McGhee, D. E., and Schwartz, J. L. (1998). Measuring
individual di�erences in implicit cognition: the implicit association test.
Journal of personality and social psychology, 74(6):1464.

Gri�n, W., Haworth, N., and Twisk, D. (2020). Patterns in perceived
crash risk among male and female drivers with and without substantial
cycling experience. Transportation research part F: tra�c psychology and

behaviour, 69:1�12.

Gui, X., Chuansheng, C., Zhong-Lin, L., and Qi, D. (2010). Brain imaging
techniques and their applications in decision-making research. Xin li xue

bao. Acta psychologica Sinica, 42(1):120.

Gul, F. and Pesendorfer, W. (2008). The case for mindless economics. The
foundations of positive and normative economics: A handbook, 1:3�42.

Hall, J., Kenny, P., King, M., Louviere, J., Viney, R., and Yeoh, A. (2002).
Using stated preference discrete choice modelling to evaluate the introduc-
tion of varicella vaccination. Health economics, 11(5):457�465.

Hallvig, D., Anund, A., Fors, C., Kecklund, G., Karlsson, J. G., Wahde,
M., and Åkerstedt, T. (2013). Sleepy driving on the real road and in the
simulator�a comparison. Accident Analysis & Prevention, 50:44�50.

Hancock, T. O., Hess, S., and Choudhury, C. F. (2018). Decision �eld the-
ory: Improvements to current methodology and comparisons with standard
choice modelling techniques. Transportation Research Part B: Methodolog-

ical, 107:18�40.

Hao, Y., Liu, H., Chen, H., Sha, Y., Ji, H., and Fan, J. (2019). What a�ect
consumers' willingness to pay for green packaging? Evidence from China.
Resources, Conservation and Recycling, 141:21�29.

Harrison, G. W., Haruvy, E., and Rutström, E. E. (2011). Remarks on
virtual world and virtual reality experiments. Southern Economic Journal,
78(1):87�94.

Healy, G. F., Boran, L., and Smeaton, A. F. (2015). Neural patterns of the
implicit association test. Frontiers in human neuroscience, 9:605.

Hock, P., Kraus, J., Babel, F., Walch, M., Rukzio, E., and Baumann, M.
(2018). How to design valid simulator studies for investigating user ex-
perience in automated driving: Review and hands-on considerations. In
Proceedings of the 10th International Conference on Automotive User In-

terfaces and Interactive Vehicular Applications, pages 105�117. Association
for Computing Machinery, New York.

25



References

Hou, L., Ji, B.-T., Blair, A., Dai, Q., Gao, Y.-T., and Chow, W.-H. (2004).
Commuting physical activity and risk of colon cancer in Shanghai, China.
American journal of epidemiology, 160(9):860�867.

Hou, Y., Zhao, Y., Hulme, K. F., Huang, S., Yang, Y., Sadek, A. W., and
Qiao, C. (2014). An integrated tra�c-driving simulation framework: De-
sign, implementation, and validation. Transportation Research Part C:

Emerging Technologies, 45:138�153.

Hu, S., Bowlds, R. L., Gu, Y., and Yu, X. (2009). Pulse wave sensor for non-
intrusive driver's drowsiness detection. In 2009 Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society, pages
2312�2315. IEEE.

Hunt, L. T., Kolling, N., Soltani, A., Woolrich, M. W., Rushworth, M. F.,
and Behrens, T. E. (2012). Mechanisms underlying cortical activity during
value-guided choice. Nature neuroscience, 15(3):470.

Hussain, Q., Alhajyaseen, W. K., Pirdavani, A., Reinolsmann, N., Brijs,
K., and Brijs, T. (2019). Speed perception and actual speed in a driving
simulator and real-world: A validation study. Transportation research part

F: tra�c psychology and behaviour, 62:637�650.

Isacsson, G. (2007). The trade o� between time and money: Is there a di�er-

ence between real and hypothetical choices? (CTS Working Paper 2007:3).
Statens väg-och transportforskningsinstitut, Stockholm.

Isaiah, D. (2014). Water, water, everywhere in vehicle manufacturing

- Automotive World. URL: https://www.automotiveworld.com/

analysis/water-water-everywhere-vehicle-manufacturing/ (Ac-
cessed: 16/07/2021).

Iyengar, S. (2011). Laboratory experiments in political science. In Druckman,
J. N., Greene, D. P., Kuklinski, J. H., and Lupia, A., editors, Cambridge
handbook of experimental political science, pages 73�88. Cambridge Uni-
versity Press, Cambridge, Cambridge.

Jabbar, R., Al-Khalifa, K., Kharbeche, M., Alhajyaseen, W., Jafari, M., and
Jiang, S. (2018). Real-time driver drowsiness detection for android appli-
cation using deep neural networks techniques. Procedia computer science,
130:400�407.

Jiang, L. and Kang, J. (2016). E�ect of tra�c noise on perceived visual
impact of motorway tra�c. Landscape and Urban Planning, 150:50�59.

26

https://www.automotiveworld.com/analysis/water-water-everywhere-vehicle-manufacturing/
https://www.automotiveworld.com/analysis/water-water-everywhere-vehicle-manufacturing/


References

Johnson, M. J., Chahal, T., Stinchcombe, A., Mullen, N., Weaver, B., and
Bedard, M. (2011). Physiological responses to simulated and on-road driv-
ing. International journal of Psychophysiology, 81(3):203�208.

Kable, J. W. and Levy, I. (2015). Neural markers of individual di�erences in
decision-making. Current opinion in behavioral sciences, 5:100�107.

Kanai, R. and Rees, G. (2011). The structural basis of inter-individual dif-
ferences in human behaviour and cognition. Nature Reviews Neuroscience,
12(4):231�242.

Kanoga, S., Nakanishi, M., and Mitsukura, Y. (2016). Assessing the e�ects
of voluntary and involuntary eyeblinks in independent components of elec-
troencephalogram. Neurocomputing, 193:20�32.

Kim, D.-Y. (2003). Voluntary controllability of the implicit association test
(IAT). Social Psychology Quarterly, pages 83�96.

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled ac-
cess to stored information. Trends in cognitive sciences, 16(12):606�617.

Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., and Loewenstein, G.
(2007). Neural predictors of purchases. Neuron, 53(1):147�156.

Kober, S. E., Kurzmann, J., and Neuper, C. (2012). Cortical correlate of
spatial presence in 2D and 3D interactive virtual reality: an EEG study.
International Journal of Psychophysiology, 83(3):365�374.

Kropotov, J. D. (2009). Chapter 3 - Beta rhythms. In Quantitative EEG,

Event-Related Potentials and Neurotherapy, pages 59�76. Academic Press.

Lardelli-Claret, P., de Dios Luna-del Castillo, J., Jimenez-Moleon, J. J.,
Garcia-Martin, M., Bueno-Cavanillas, A., and Galvez-Vargas, R. (2003).
Risk compensation theory and voluntary helmet use by cyclists in Spain.
Injury Prevention, 9(2):128�132.

Leitham, S., McQuaid, R. W., and Nelson, J. D. (2000). The in�uence of
transport on industrial location choice: a stated preference experiment.
Transportation Research Part A: Policy and Practice, 34(7):515�535.

Lemole Jr, G. M., Banerjee, P. P., Luciano, C., Neckrysh, S., and Charbel,
F. T. (2007). Virtual reality in neurosurgical education: part-task ven-
triculostomy simulation with dynamic visual and haptic feedback. Neuro-
surgery, 61(1):142�149.

27



References

Levy, I., Lazzaro, S. C., Rutledge, R. B., and Glimcher, P. W. (2011). Choice
from non-choice: predicting consumer preferences from blood oxygenation
level-dependent signals obtained during passive viewing. Journal of neu-

roscience, 31(1):118�125.

Li, J., Zhao, X., Xu, S., Ma, J., and Rong, J. (2013). The study of driving
simulator validation for physiological signal measures. Procedia-Social and
Behavioral Sciences, 96:2572�2583.

Lim, S. H., Nisar, H., Thee, K. W., and Yap, V. V. (2018). A novel method
for tracking and analysis of EEG activation across brain lobes. Biomedical
Signal Processing and Control, 40:488�504.

Lin, C.-T., Chung, I.-F., Ko, L.-W., Chen, Y.-C., Liang, S.-F., and Du-
ann, J.-R. (2007). EEG-based assessment of driver cognitive responses
in a dynamic virtual-reality driving environment. IEEE Transactions on

Biomedical Engineering, 54(7):1349�1352.

Liu, N.-H., Chiang, C.-Y., and Hsu, H.-M. (2013). Improving driver alertness
through music selection using a mobile EEG to detect brainwaves. Sensors,
13(7):8199�8221.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A.
(2001). Neurophysiological investigation of the basis of the fMRI signal.
Nature, 412(6843):150�157.

Lotte, F., Fujisawa, J., Touyama, H., Ito, R., Hirose, M., and Lécuyer, A.
(2009). Towards ambulatory brain-computer interfaces: A pilot study with
P300 signals. In Proceedings of the International Conference on Advances

in Computer Enterntainment Technology, pages 336�339.

Louviere, J. J., Hensher, D. A., and Swait, J. D. (2000). Stated choice meth-

ods: analysis and applications. Cambridge University Press, Cambridge.

Lusk, J. L. (2003). E�ects of cheap talk on consumer willingness-to-pay for
golden rice. American journal of agricultural economics, 85(4):840�856.

Malfetti, J. L. et al. (1989). Young Driver Attitude Scale: The Development
and Field-Testing of an Instrument To Measure Young Driver Risk-Taking

Attitudes. ERIC,Columbia University, New York, NY. Teachers College.

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., and Ro, T. (2009).
To see or not to see: prestimulus α phase predicts visual awareness. Journal
of Neuroscience, 29(9):2725�2732.

28



References

Matthews, C. E., Jurj, A. L., Shu, X.-o., Li, H.-L., Yang, G., Li, Q., Gao,
Y.-T., and Zheng, W. (2007). In�uence of exercise, walking, cycling, and
overall nonexercise physical activity on mortality in Chinese women. Amer-
ican journal of epidemiology, 165(12):1343�1350.

Mayhew, D. R., Simpson, H. M., Wood, K. M., Lonero, L., Clinton, K. M.,
and Johnson, A. G. (2011). On-road and simulated driving: Concurrent
and discriminant validation. Journal of safety research, 42(4):267�275.

McFadden, D. and Zarembka, P. (1974). Frontiers in econometrics. Condi-

tional logit analysis of qualitative choice behavior, pages 105�142.

Messiah, A., Constant, A., Contrand, B., Felonneau, M.-L., and Lagarde, E.
(2012). Risk compensation: a male phenomenon? Results from a controlled
intervention trial promoting helmet use among cyclists. American journal

of public health, 102(2):204�206.

Michon, J. A. (1985). A critical view of driver behavior models: what do we
know, what should we do? In Human behavior and tra�c safety, pages
485�524. Springer, Boston, MA.

Mohr, P. N., Biele, G., and Heekeren, H. R. (2010). Neural processing of risk.
Journal of Neuroscience, 30(19):6613�6619.

Mummolo, J. and Peterson, E. (2019). Demand e�ects in survey experiments:
An empirical assessment. American Political Science Review, 113(2):517�
529.

Näher, A.-F. and Krumpal, I. (2012). Asking sensitive questions: the im-
pact of forgiving wording and question context on social desirability bias.
Quality & Quantity, 46(5):1601�1616.

Naseer, N. and Hong, K.-S. (2015). fNIRS-based brain-computer interfaces:
a review. Frontiers in human neuroscience, 9:3.

Nayak, C. and Anilkumar, A. (2021). EEG normal waveforms. In Stat

Pearls. Treasure Island (FL), StatPearls Publishing. URL: https://www.
ncbi.nlm.nih.gov/books/NBK539805/ (Accessed: 13/05/2021).

Nazemi, M., van Eggermond, M. A., Erath, A., Scha�ner, D., Joos, M.,
and Axhausen, K. W. (2021). Studying bicyclists' perceived level of safety
using a bicycle simulator combined with immersive virtual reality. Accident
Analysis & Prevention, 151:105943.

Nilsson, D. and Kinateder, M. (2015). Virtual reality experiments-the future
or a dead end? In 6th International Symposium Human Behaviour in Fire.

Interscience Communications, Cambridge, pages 319�321.

29

https://www.ncbi.nlm.nih.gov/books/NBK539805/
https://www.ncbi.nlm.nih.gov/books/NBK539805/


References

Nishifuji, S., Sato, M., Maino, D., and Tanaka, S. (2010). E�ect of acoustic
stimuli and mental task on alpha, beta and gamma rhythms in brain wave.
In Proceedings of SICE Annual Conference 2010, pages 1548�1554. IEEE.

Nygårdhs, S., Kircher, K., and Johansson, B. J. (2020). Trade-o�s in tra�c:
does being mainly a car driver or a cyclist a�ect adaptive behaviour while
driving and cycling? European transport research review, 12(1):1�14.

Oja, P., Titze, S., Bauman, A., De Geus, B., Krenn, P., Reger-Nash, B., and
Kohlberger, T. (2011). Health bene�ts of cycling: a systematic review.
Scandinavian journal of medicine & science in sports, 21(4):496�509.

Parkin, J., Wardman, M., and Page, M. (2007). Models of perceived cycling
risk and route acceptability. Accident Analysis & Prevention, 39(2):364�
371.

Paschalidis, E., Choudhury, C. F., and Hess, S. (2019). Combining driving
simulator and physiological sensor data in a latent variable model to in-
corporate the e�ect of stress in car-following behaviour. Analytic methods
in accident research, 22:100089.

Patterson, P. G. and Mattila, A. S. (2008). An examination of the impact
of cultural orientation and familiarity in service encounter evaluations. In-
ternational Journal of Service Industry Management, 19:662�681.

Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., and Stein, M. B.
(2003). Increased activation in the right insula during risk-taking deci-
sion making is related to harm avoidance and neuroticism. Neuroimage,
19(4):1439�1448.

Pedroso, R. and Kung'u, J. B. (2019). Tourists' willingness to pay for
upstream restoration and conservation measures. Journal of Sustainable

Tourism, pages 1107�1124.

Philip, P., Sagaspe, P., Taillard, J., Valtat, C., Moore, N., Åkerstedt, T.,
Charles, A., and Bioulac, B. (2005). Fatigue, sleepiness, and performance
in simulated versus real driving conditions. Sleep, 28(12):1511�1516.

Rangel, A., Camerer, C., and Montague, P. R. (2008). A framework for
studying the neurobiology of value-based decision making. Nature reviews
neuroscience, 9(7):545�556.

Reason, J., Manstead, A., Stradling, S., Baxter, J., and Campbell, K. (1990).
Errors and violations on the roads: a real distinction? Ergonomics, 33(10-
11):1315�1332.

30



References

Reimer, B., D'Ambrosio, L. A., Coughlin, J. F., Kafrissen, M. E., and Bie-
derman, J. (2006). Using self-reported data to assess the validity of driving
simulation data. Behavior Research Methods, 38:314�324.

Rilling, J. K. and Sanfey, A. G. (2011). The neuroscience of social decision-
making. Annual review of psychology, 62:23�48.

Risto, M. and Martens, M. H. (2014). Driver headway choice: A comparison
between driving simulator and real-road driving. Transportation Research

Part F: Tra�c Psychology and Behaviour, 25:1�9.

Román, C., Martín, J. C., and Espino, R. (2014). Using stated preferences
to analyze the service quality of public transport. International Journal of
Sustainable Transportation, 8(1):28�46.

Rutledge, J. D. (1990). Force-to-motion functions for pointing. In Proc,

INTERACT'90: IFIP Conf. on Human-Computer Interaction, pages 701�
705.

Scanlon, J. E., Redman, E. X., Kuziek, J. W., and Mathewson, K. E. (2020).
A ride in the park: Cycling in di�erent outdoor environments modulates
the auditory evoked potentials. International Journal of Psychophysiology,
151:59�69.

Scanlon, J. E., Sieben, A. J., Holyk, K. R., and Mathewson, K. E. (2017).
Your brain on bikes: P3, MMN/N2B, and baseline noise while pedaling a
stationary bike. Psychophysiology, 54(6):927�937.

Schwartz, L. A. and Cuadros, L. (2017). The e�ects of the environment on
decision-making. Journal of Financial Education, 43(2):223�242.

Schwebel, D. C., Ball, K. K., Severson, J., Barton, B. K., Rizzo, M., and Vi-
amonte, S. M. (2007). Individual di�erence factors in risky driving among
older adults. Journal of safety research, 38(5):501�509.

Shechtman, O., Classen, S., Awadzi, K., and Mann, W. (2009). Comparison
of driving errors between on-the-road and simulated driving assessment: a
validation study. Tra�c Injury Prevention, 10(4):379�385.

Slater, M. and Sanchez-Vives, M. V. (2016). Enhancing our lives with im-
mersive virtual reality. Frontiers in Robotics and AI, 3:74.

Slater, M., Usoh, M., and Steed, A. (1994). Depth of presence in virtual
environments. Presence: Teleoperators & Virtual Environments, 3(2):130�
144.

31



References

Smith, A., Bernheim, B. D., Camerer, C. F., and Rangel, A. (2014). Neural
activity reveals preferences without choices. American Economic Journal:

Microeconomics, 6(2):1�36.

Solomon Jr, O. (1991). PSD computations using Welch's method. NASA

STI/Recon Technical Report N, 92:23584.

Steriu, M. (2012). Raising the bar: review of cycling safety policies in the
European Union. European Transport Safety Council, pages 1�54.

Sun, J. (2019). Research on vocal sounding based on spectrum image analysis.
EURASIP Journal on Image and Video Processing, 2019(1):1�10.

Sutter, C. and Zie�e, M. (2005). Interacting with notebook input devices:
An analysis of motor performance and users' expertise. Human Factors,
47(1):169�187.

Tarabay, R. and Abou-Zeid, M. (2021). A dynamic hybrid choice model to
quantify stress in a simulated driving environment. IEEE Transactions on

Intelligent Transportation Systems, pages 1�16.

Teplan, M. et al. (2002). Fundamentals of EEG measurement. Measurement

science review, 2(2):1�11.

Tuominen, R., Azbel, M., Hemmilä, J., and Möttönen, T. (2011). Willingness
to pay for improvement of physical function among rheumatoid arthritis
patients as measured by health assessment questionnaire. Rheumatology

international, 31(3):347�352.

Turner, B. M., Rodriguez, C. A., Norcia, T. M., McClure, S. M., and Steyvers,
M. (2016). Why more is better: Simultaneous modeling of EEG, fMRI,
and behavioral data. NeuroImage, 128:96�115.

Tusche, A., Bode, S., and Haynes, J.-D. (2010). Neural responses to unat-
tended products predict later consumer choices. Journal of neuroscience,
30(23):8024�8031.

UK Department of Transport (2016). Reported casualties in Great Britain:

2016 annual report. URL: https://assets.publishing.service.gov.
uk/government/uploads/system/uploads/attachment_data/file/

648081/rrcgb2016-01.pdf (Accessed: 17/06/2021).

Wang, Y., Mehler, B., Reimer, B., Lammers, V., D'Ambrosio, L. A., and
Coughlin, J. F. (2010). The validity of driving simulation for assessing
di�erences between in-vehicle informational interfaces: A comparison with
�eld testing. Ergonomics, 53(3):404�420.

32

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/648081/rrcgb2016-01.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/648081/rrcgb2016-01.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/648081/rrcgb2016-01.pdf


References

Wen, L. M. and Rissel, C. (2008). Inverse associations between cycling to
work, public transport, and overweight and obesity: �ndings from a pop-
ulation based study in Australia. Preventive medicine, 46(1):29�32.

Wilcox, R. R. and Rousselet, G. A. (2018). A guide to robust statistical
methods in neuroscience. Current protocols in neuroscience, 82(1):8�42.

Witmer, B. G. and Singer, M. J. (1998). Measuring presence in virtual
environments: A presence questionnaire. Presence, 7(3):225�240.

Wong, K.-F. and Wang, X.-J. (2006). A recurrent network mechanism of time
integration in perceptual decisions. Journal of Neuroscience, 26(4):1314�
1328.

Wynne, R. A., Beanland, V., and Salmon, P. M. (2019). Systematic review
of driving simulator validation studies. Safety Science, 117:138�151.

Yoon, C., Gonzalez, R., Bechara, A., Berns, G. S., Dagher, A. A., Dubé, L.,
Huettel, S. A., Kable, J. W., Liberzon, I., Plassmann, H., et al. (2012).
Decision neuroscience and consumer decision making. Marketing Letters,
23(2):473�485.

Yun, M., Zhao, J., Zhao, J., Weng, X., and Yang, X. (2017). Impact of in-
vehicle navigation information on lane-change behavior in urban express-
way diverge segments. Accident Analysis & Prevention, 106:53�66.

Zhang, Q., Fu, R., Guo, Y., Guo, Y., Yuan, W., Wang, C., Wu, F., and Ma, Y.
(2011). Risk attitude, perception, behavior, and personality as indicators
of a driver's risk awareness in China. In 3rd International Conference on

Road Safety and Simulation, pages 1�13.

Zimasa, T., Jamson, S., and Henson, B. (2019). The in�uence of driver's
mood on car following and glance behaviour: Using cognitive load as an
intervention. Transportation research part F: tra�c psychology and be-

haviour, 66:87�100.

Zöller, I., Abendroth, B., and Bruder, R. (2019). Driver behaviour validity
in driving simulators�analysis of the moment of initiation of braking at
urban intersections. Transportation research part F: tra�c psychology and

behaviour, 61:120�130.

Zuckerman, M., Kolin, E. A., Price, L., and Zoob, I. (1964). Development of
a sensation-seeking scale. Journal of consulting psychology, 28(6):477.

33





Chapter 2

Cycling in virtual reality: modelling

behaviour in an immersive environment

Martyna Bogacz1, Stephane Hess1, Chiara Calastri1, Charisma F. Choud-
hury1, Faisal Mushtaq2, Muhammad Awais2, Mohsen Nazemi3, Michael A.B.
van Eggermond3 & Alexander Erath3

Abstract

Nowadays, immersive technologies are gaining popularity as a research tool

in transport as they allow for a more dynamic approach to the exploration

of road users' behaviour providing at the same time full control over inter-

ventions. Nevertheless, their ecological validity is still to be established and

therefore their use in the mathematical modelling of human behaviour in a

transport setting has been scarce. In the present study, we aim to �ll in this

gap by conducting a comparative study of cycling behaviour where both, non-

immersive and immersive presentation methods are used in a virtual reality

setting. Moreover, we developed discrete choice models using the collected

data. The results con�rm our hypothesis that participants behave di�erently

when shown a choice scenario in non-immersive and immersive settings. In

particular, cycling in an immersive setting is characterised by a higher de-

gree of engagement, i.e. more action switches. To gain a more complete

understanding of the processes underlying interactions in immersive environ-

ments, we also captured neural activity (using electroencephalography record-

ings) during task performance. We focused on oscillations in the alpha (α)

band, a neural signature often associated with the �ltering (gating) of sen-

sory information. We found increased suppression in this signal in response
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to the immersive condition relative to the non-immersive. These results com-

plement the behavioural �ndings and indicate that immersive environments

may increase levels of task-engagement.

1 Introduction

The study of road users' behaviour has direct implications for a number of
issues: it is used in road safety, where human factors are a major contributor
to tra�c accidents (Rothengatter, 1997), policy making aimed at improving
transport infrastructures (Cadar et al., 2017; Hood et al., 2011; Leao et al.,
2019; Melson et al., 2014), and the study of how travel mode choices a�ect
tra�c congestion (Chen et al., 2018; Madhuwanthi et al., 2015) and climate
change (Hook, 2007).

In this study we focus on cycling. Many studies have shown the numerous
bene�ts of cycling in terms of sustainability and health; at the same time,
existing research has highlighted a number of risks which represent a major
obstacle to travelling by bicycle. In particular, unpleasant tra�c conditions
(Henson et al., 1997), personal security concerns (Davies et al., 1997), stress
and danger (Gardner, 1998) and tra�c and accidents (Davies and Hartley,
1999) are believed to be related to the low incidence of cycling as a commut-
ing mode.

Nevertheless, data collection is a major challenge in this research area, and
researchers have often resorted to experimental approaches when studying
cyclist behaviour in risky settings, which give the analyst full control over
interventions. Stated preference (SP) methods have been widely used in
di�erent formats in transport and beyond, such as SP surveys with visual
elements (Wardman et al., 1996), SP web surveys (Auld et al., 2012; Cor-
reia and Viegas, 2011), the Lottery Choice Task (Barreda-Tarrazona et al.,
2011) or Balloon Analogue Risk Task (Gordon, 2007; Lejuez et al., 2002;
Vaca et al., 2013). SP methods allow for the control of factors included in
the study design, but their reliability in capturing real-life human behaviour
has often been questioned because of the non-commitment bias (Chatterjee
et al., 1983) and hypothetical bias due to the lack of consequentiality of ac-
tions (Harrison, 2006; Hensher, 2010; Li et al., 2020; Louviere et al., 2000).
Moreover, an additional challenge arises in the case of risky situations on the
road, as the majority of these SP methods are designed for static settings and
fail to account for the dynamic changes in risk and hence potentially also risk
perception. Given these limitations, it is important to seek techniques that
increase the design realism compared to traditional SP experiments.
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A new opportunity to increase the ecological validity of behavioural research,
de�ned as �the applicability of the results of laboratory analogues to non-

laboratory, real-life settings� (McKechnie, 1977), has arisen in recent years
through the increasing prevalence and a�ordability of virtual reality (VR)
technology (Brookes et al., 2020). Virtual reality is typically de�ned as the
computer-generation of three-dimensional interactive environments (Wann
and Mon-Williams, 1996) and used to create naturalistic and immersive expe-
riences. Virtual reality experiences are often deployed through head-mounted
displays (HMDs), which allow experimenters to tightly control the visual in-
put and track behavioural responses. This approach has been shown to add
a level of realism to experiments, even when subjects are aware of the arti-
�cial nature of the scenarios (Rovira et al., 2009; Slater et al., 2006). The
success of VR in the creation of realistic experiences has been demonstrated
in previous studies in a transport context (Farooq et al., 2018; Moussa et al.,
2012), transport risk research (Frankenhuis et al., 2010; Underwood et al.,
2011), urban design research (Erath et al., 2017) and social context (Patter-
son et al., 2017).

The aforementioned studies have shed promising light on the elicitation of
real behaviour in road situations despite the lack of consequentiality. The
�ndings suggest that participants engage to a greater extent with the pre-
sented environment and actively take part in the events, even if in a virtual
way. Nonetheless, further veri�cation is advisable, as a recent study by Mai
(2017), which compared pedestrians' behaviour at midblock crossings be-
tween a PC-based VR and real crosswalk, showed ambiguous �ndings, where
walking speed di�ered signi�cantly between two environments, however the
proportion of decisions to cross were similar. Furthermore, a study by Godley
et al. (2002), which examined the validity of driving simulators by compar-
ing driving behaviour in an instrumented car vs a simulator showed similar
deceleration activity under both conditions. Yet, on the other hand, individ-
uals tended to drive faster in the instrumented car relative to the simulator.
From a technical standpoint, studies which involve the use of simulated envi-
ronments face the potential problem of artefacts stemming from the limited
view �eld, lagged graphics update or low spatial resolution (Loomis et al.,
1999). Studies involving fast motion such as that implied by driving or cycling
are particularly prone to such issues due to so-called Simulator Adaptation
Syndrome (SAS). This emerges mainly with time discrepancies between the
driver's actions (commands) and the simulator's response to the given input.
SAS is hypothesised to take place because participants adopt real driving
as a reference point, and as a consequence, any delays in the simulator's
reaction can lead to headaches, motion sickness, nausea or eye strain (Mol-
lenhauer, 2004). Taken together, extant research shows that VR can be used
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e�ectively in road behaviour research, but also highlights the need to estab-
lish its ecological validity. We aim to advance this research with a study
design that allows for a direct comparison of cycling behaviour as well as
risk perception by manipulating the level of immersion participants experi-
ence (non-interactive information presented on a two-dimensional display vs
interactive, 360-degree virtual environment). Importantly, recent studies by
Xu et al. (2017) and Powell (2017) investigated cycling behaviour in virtual
environments where the former study was limited to the descriptive analysis
of the results while the later was mainly focused on the hardware design of
the bicycling simulator.

In addition to using VR to increase ecological validity, we also set out to ex-
plore the impact of this presentation method on participants' neural activity
as a proxy measure of engagement. We used electroencephalography (EEG),
a scalp-recorded measure of electrical activity generated by the brain. Whilst
this technique has low spatial resolution (and thus, mapping of observed re-
sponses to subcortical structures is a fundamental challenge in contrast to
other neuroimaging approaches such as functional magnetic resonance imag-
ing (fMRI) (Glover, 2011)), EEG has a high temporal resolution. As such,
it is able to capture brain activity in the order of milliseconds (da Silva,
2013) and it is widely used in the study of risk and decision-making (Gui
et al., 2010; Mushtaq et al., 2016). High temporal resolution is particularly
important in the context of our experiment, as naturalistic cycling behaviour
involves continually monitoring the environment and making fast reactions.

It is also worth noting that, until recently, the use of EEG in an experimental
design often involved large bulky equipment with cables connecting a user's
scalp directly to an ampli�er interfacing with a recording PC, thus limiting
its use in experiments designed to examine ecological validity. Recent ad-
vances in wireless EEG technology allow for it to be used in conjunction with
VR in a relatively unobtrusive manner.

The signal-to-noise ratio of EEG is another factor that has constrained possi-
bilities in applied experimental research: artefacts in EEG data can stem from
physiological (e.g. ocular and facial muscle movements) and non-physiological
sources (e.g. electric signals generated by nearby equipment (Puce and
Hämäläinen, 2017)). Virtual reality experiments which allow a great de-
gree of �exibility in participant head and body movement are more prone to
producing artefactual data. Today's wireless systems such as Emotiv Epoc+
(Duvinage et al., 2012) and Enobio (Ratti et al., 2017) are designed for dy-
namic experimental setups and attempt to mitigate the impact of movement
artefacts on the scalp-recorded EEG. However, these systems still require rig-
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orous data pre-processing routines to minimise the in�uence of artefacts and
ensure adequate signal-to-noise ratio.

In the transport literature, the use of EEG has largely focused on the in-
vestigation of driver fatigue and drowsiness (Awais et al., 2017; Craig et al.,
2012; Eoh et al., 2005; Lal and Craig, 2001), level of alertness, attention or
cognitive performance (Klimesch, 1999), except for the studies by Schweizer
et al. (2013) and Vorobyev et al. (2015) which combined brain-imaging tech-
niques and risky driving tasks. Although these studies have contributed to a
better understanding of brain activity associated with driving in various con-
ditions, the impact of di�erent presentational methods while driving/cycling
on human brain processes still remains unclear. In this study, we focused our
analysis on a particular pattern of oscillatory brain EEG activity known as
occipital alpha (α) � which is quanti�ed through frequency analysis of the
signal, focusing on signal power in the 8-14 Hz range. Occipital α is one of the
most commonly observed signatures of brain activity, with numerous studies
demonstrating a relationship between oscillations in this frequency band and
attentional processing (Klimesch, 2012). Current understanding in the �eld
of neuroscience holds that low α power implies increased excitability, and thus
an increased response to external stimulation, most likely re�ecting neural
mechanisms involved in the gating of task-irrelevant information (Jensen and
Mazaheri, 2010; Klimesch et al., 2007). As such, the signal presents an ideal
candidate to investigate the impact of presentation format on participants'
degree of task-relevant engagement.

Additionally, in terms of methodological approach, we develop mathematical
models on the collected data to gain in-depth insights into cyclist behaviour
beyond the statistical description of the data. The use of models allows
us to see the extent to which the behaviour di�ers between immersive and
non-immersive environments and provides new means to evaluate the theory
proposed in the hypotheses. Moreover, the mathematical models used in the
study give more �exibility in establishing the relationship between cyclists'
behaviour and the independent variables and enable us to capture more ac-
curately the complexity of the dynamic process (Cavagnaro et al., 2013).

To summarise, the research objectives of the present paper are threefold.
Firstly, we aim to compare cycling behaviour under two di�erent elicitation
methods, namely non-immersive and immersive videos and validate virtual
reality as a research tool. Secondly, we measure the stated perceived risk
and stated willingness to cycle (SWTC) in the non-immersive and immersive
scenarios to compare the stated attitudes towards cycling in these conditions
as well as comparing behavioural responses (e.g. in terms of acceleration be-
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haviour). Finally, we incorporate a neural perspective with an aim to inves-
tigate di�erences in neural processing of cycling scenarios in non-immersive
and immersive presentations.

The remainder of this paper is organised as follows. We present our speci�c
hypotheses guided by the literature in the next section. The data collection
design and sample characteristics are presented next, followed by the method-
ological approach of the study. We next turn to the results section, followed
by the discussion section which reviews the insights from the analysis.

2 Hypotheses

Five hypotheses are put forward and tested empirically in our work. They
relate to cycling behaviour, risk perception and neural processing, and we
now look at these three groups in turn.

Cycling behaviour

� Hypothesis 1A: there is a di�erence in cycling behaviour between the
non-immersive and immersive scenarios;

� Hypothesis 1B: the number of switches between di�erent actions (accel-
erating, braking and free-wheeling) is higher in the immersive compared
to non-immersive scenarios.

These two hypotheses are based on the �ndings of previous studies, as dis-
cussed in the introduction (Erath et al., 2017; Farooq et al., 2018; Frankenhuis
et al., 2010; Patterson et al., 2017; Rovira et al., 2009; Slater et al., 2006; Un-
derwood et al., 2011), which show that the immersive environment engaged
participants to a larger extent.

Risk perception and willingness to cycle

� Hypothesis 2A: the stated risk is higher in immersive compared to non-
immersive setting;

� Hypothesis 2B: the stated willingness to cycle is lower in immersive
compared to non-immersive setting.

The immersive representation seeks to elicit behaviour similar to a real-world
context and should thus amplify the riskiness compared to the non-immersive
presentation, holding everything else the same. Consequently, a higher risk
perceived in immersive setting should be associated with lower willingness to
cycle under this condition compared to non-immersive one.

Neural processing
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� Hypothesis 3: the peak amplitude of the α waves in trials with non-
immersive presentations format are higher than in the immersive pre-
sentation conditions, re�ecting di�erences in task-relevant attentional
processing.

3 Data collection and sample information

This section describes the experimental procedure and its components fo-
cusing on the details of the combined research approach employed in this
experiment as well as the basic characteristics of the sample.

The single experimental session started with the brie�ng of the participant
who was blinded to the purpose of the experiment. Therefore, the real ob-
jectives of the study were not presented to participants and the instructions
they were given were worded in such a way as to minimise the experimenter's
e�ect for the exact wording see Participant task instructions in Appendix A).
After the introduction, the participant was seated and had an Emotiv Epoc+
EEG headset (EMOTIV, 2018) and an Oculus Rift VR (Oculus.com, 2018)
HMD placed on their head. The Emotiv headset uses 14 electrodes (at AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4; Figure 2.1) sam-
pling across the scalp. The system was selected as its compact design allowed
it to be used jointly with the VR HMD. As a �rst step, the baseline brain
activity was recorded with the sampling rate of 128 Hz, while participants
had their eyes opened and focused their gaze on one point on the screen for
15 seconds. The same procedure was then repeated with eyes closed. Power
in the α wave band (8-14 Hz) is typically highest during relaxation and low
levels of arousal (Lagopoulos et al., 2009) and also increases with the degree
of disengagement from the external, visual environment (Ergenoglu et al.,
2004; Hawkins et al., 2015; Mathewson et al., 2009; Van Dijk et al., 2008).

The experiment encompassed two distinct treatments, where we used a within-
subject design. Both treatments consisted of a presentation of tra�c scenar-
ios from the perspective of the cyclist, however, they di�ered in the method
of presentation: one of them was a non-immersive video, while the other
used an immersive virtual reality setting. Both of these conditions were pre-
sented using the VR headset in order to avoid potential confounds. The non-
immersive video was shown within the boundaries of the static simulation
of a screen displayed in front of the participant in the virtual environment.
In this condition, a participant observed the simulated scenarios as if they
were watching it on a computer screen so that it was not responsive to any
movements of the participant (the left pane of Figure 2.2). In contrast, the
immersive condition was a 360-degree view of the road which surrounded the
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Fig. 2.1: Electrodes position on the scalp (Khazi et al., 2012).

participant and responded to their head movements (the right pane in Figure
2.2). Importantly, based on the feedback received during initial pre-testing
of the set-up, sound was included in both the immersive and non-immersive
conditions, to capture visual and auditory cues that are available to cyclists
in real-life settings. The volume of vehicles was consistent with their dis-
tance to the cyclist so that the sound of an approaching car increased as it
got closer to the cyclist. We believe that this allowed us to better replicate
reality and conduct an analysis where we considered the impact on cycling
behaviour of vehicles not only in front of the cyclists that can be seen but we
also looked at the impact of cars approaching behind the bicycle which could
have been heard.

Fig. 2.2: The non-immersive and immersive views used in the experiment

The visual stimuli in the experiment come from VR road simulations de-
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veloped by Future Cities Laboratory (Schramka et al., 2017) using Unity 3D
Game Engine (Unity, 2017). These stimuli involve pre-programmed envi-
ronments and they do not respond to the actions of the cyclist. We used
two types of tra�c scenarios as seen in Figure 2.3, namely, cycling on the
pavement (on the left) and cycling on the side of the road (on the right).
In the pavement scenarios, the movement of pedestrians was bidirectional ie.
they could walk in the same or the opposite direction to the riding cyclist.
In contrast, in the road scenarios, all the vehicles were driving in the same
direction as the cyclists. The number of people and vehicles di�ered in the
scenarios in�uencing their riskiness. The risky scenarios were characterized
by a higher number of people and more cars passing by as seen in Figure 2.3.
The entire experiment comprised of 12 immersive and 12 non-immersive sce-

Fig. 2.3: A high-risk condition in the pavement and road scenarios

narios resulting in the overall number of 24 scenarios and used an orthogonal
design where a combination of road/pavement and low/high risk scenarios
was shown in non-immersive/immersive environment in random order. Im-
portantly, each participant performed all 24 scenarios and the same scenarios
were used in non-immersive and immersive presentations for the same par-
ticipant, but the order of the treatments (immersive/non-immersive) as well
as the scenarios within each treatment were randomised across participants.
The number and types of scenarios is summarised in Table 2.1.

The task for the participant was to cycle through the scenario at the desired
pace until the �nish line at the end of each scenario (see section 1 in Appendix
A for full task description). In order to navigate through the scenario, par-
ticipants used the keyboard to adjust their speed, but had no ability to turn
left or right. They pressed the up arrow to accelerate and the down arrow
to brake. The keyboard was placed on the table in front of them, and be-
fore the experiment began, they were guided by the experimenter to �nd the
appropriate keys on the keyboard. It is important to note that the use of
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Table 2.1: Number and types of scenarios used.

Number of scenarios Immersion Scenario riskiness Road type
3 Immersive High Road
3 Immersive High Pavement
3 Immersive Low Road
3 Immersive Low Pavement
3 Non-immersive High Road
3 Non-immersive High Pavement
3 Non-immersive Low Road
3 Non-immersive Low Pavement

a keyboard as opposed to an instrumented bicycle has a signi�cant impact
on the scope of the study and the modelling approach. For example, due to
the use of a keyboard, we decided to model cycling decisions as a discrete
(i.e. accelerate vs brake vs freewheel) instead of a continuous choice (e.g.
level of acceleration). Moreover, the use of a keyboard makes the cycling
experience less realistic because it removes the component of physical e�ort
associated with cycling, and acceleration is more instantaneous when a key-
board is used. On the other hand, the advantages of the use of a keyboard
cannot be ignored. Given the exploratory nature of this study, the simpler
design contributes to less body movement that could adversely impact the
quality of the EEG data in what is already a relatively complex experiment.
It results that the use of an instrumented bicycle should be considered for
future studies, but the keyboard used in this study provides a benchmark
that future studies can build on.

After crossing the �nish line, the participant responded verbally to two ques-
tions: �How risky was the scenario?� and �How likely are you to cycle in this

scenario?�. The answers were measured on a 7-point Likert scale where 1
was the minimum perceived risk/willingness to cycle and 7 was the maxi-
mum perceived risk/willingness to cycle. In addition to the acceleration and
braking behaviour, and the stated risk and willingness to cycle answers, the
study used the mobile EEG headset to collect the neuroimaging data. After
this stage of the experiment, the participants were asked to complete a socio-
demographic survey (see Appendix A for the full questionnaire). At the end
of the experiment, we conducted a short and informal interview to capture
any feedback or comments which were not included in the survey such as
which scenario type was riskier or which element within the scenarios was
the most hazardous. The entire experiment did not exceed 90 minutes where
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the duration of each task was between 1- 2 minutes and varied depending
on the cycling speed of the participant. Furthermore, the transition time
between tasks was approximately 10-15 seconds.

The initial number of recruited participants was 50, from which 4 partici-
pants were removed due to failure to complete the whole experiment, leading
to a �nal sample size of 46 participants (18 males, 28 females), comprising
sta� and students of the University of Leeds as well as the members of the
general public. The mean age of the participants was 30.7 years, with 10.88
years standard deviation (see Appendix A for further details on the sample
characteristics). Importantly, for the EEG data analysis, an additional 16
participants were dropped due to low quality of the EEG data. The exclu-
sion of participants was decided during the manual cleaning of the EEG data
where we removed blocks of continuous signal in which the noise stemming
from the body or head movements of the participant (eg. when an individual
touched his face, adjusted headset during the experiment, talked or changed
his sitting position on the chair) led to a poor connection between the headset
and the scalp. If the proportion of the removed signal was larger than the
remaining signal, then the whole EEG data for a given participant was dis-
carded to increase the reliability, usability and con�dence in the neural inputs
on the sample level. The resulting EEG data sample size is small, but this is
exploratory work and future studies will be able to add additional evidence
with more data. Importantly, this limitation exposes important aspects of
experimental design that can prevent or diminish such occurrences in the fu-
ture. Firstly, when working with novel devices where there is relatively scant
literature that can be used for guidance or when the device is used in new
circumstances, it is recommended to test the device in various conditions,
such as when a person is speaking, mouth breathing, blinking, pulling faces,
moving head, walking etc., to be able to assess the impact of those activities
on the quality of the signal. Moreover, it is useful to give very detailed in-
structions to participants before the experiment begins to minimise data loss
due to behaviour that can be easily avoided. For example, the participant
should be explicitly advised not to touch his head and face or not to talk
after the experiment begins. Consequently, before the commencement of the
experimental session participant and the experimenter should dedicate su�-
cient time to adjust the VR headset and EEG device to ensure the comfort
of the participant for the duration of the experiment. At the same time, it is
important to emphasise that the small sample size is a classic issue faced by
researchers working with VR and/or driving simulator data (Di Stasi et al.,
2012; Katsis et al., 2011; Moussa et al., 2012) as the experiment durations are
much longer and the associated costs are much higher compared to typical
SP studies.
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4 Methodology

The variety of data collected along the course of this study leads to a multi-
stage statistical analysis using behavioural data, stated responses on per-
ceived risk and willingness to cycle and EEG traces, allowing us to address
the three research objectives of this study.

4.1 Cycling behaviour data

In terms of the �rst research objective, we look at the behaviour when cycling
through the interactive scenarios, with three possible actions: acceleration,
braking and freewheeling (i.e. not accelerating or braking, which is set as a
reference category).

We use a multinomial logit model (MNL) (McFadden, 1974) for the choice of
the action in every quarter second. The model assumes that the probability
of participant n performing action i at time t and in scenario s increases
with the value of the deterministic component of utility (Vi,n,t,s). The utility
associated with a particular action is a function of the current state (i.e. ac-
celerating, freewheeling, braking), the attributes of the scenario (e.g. road,
pavement), condition type (e.g. non-immersive and immersive), the position
of other agents (eg. distance to vehicle/pedestrian in front, distance to the
car/pedestrian on the back etc.) and the speed of the cyclists at time t-1 (i.e.
in the previous quarter second). For this last variable, we tested di�erent lag
values ranging from 0.25 second to 2 seconds in quarter-second intervals. The
speed variable was included in the model in a linear, quadratic and cubic fash-
ion to determine any non-linearity in the relationship between the speed and
the dependent variable. The inclusion of polynomials is a common practice
in choice models to account for non-linearity (see for example Train (2016)),
where it is possible to use polynomials of higher degrees as long as the avail-
able degrees of freedom are not exhausted (Ben-Akiva and Lerman, 2018).
Nonetheless, this approach results in the polynomial terms being highly cor-
related, henceforth the coe�cients should be interpreted jointly to provide
a meaningful measure and the goodness of �t should be compared between
models to justify the use of higher-order variables. In the current model,
this speci�c functional form was chosen based on the comparison of model
�t and signi�cance of coe�cients between models which used lower or higher
orders of speed variable. No socio-demographic e�ects were captured given
the small sample size. We use a joint model for the road and the pavement
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scenarios and for non-immersive and immersive environments but incorporate
shift parameters (i.e. additive interaction terms) to allow us to investigate
and compare the behaviour undertaken in non-immersive and immersive sce-
narios and between the two types of scenarios. The utility associated with
the decision of a cyclist n to choose one of the three actions (Acc=accelerate,
Br=brake, FW=freewheel) at time t in scenario s can, therefore, be expressed
as follows, where freewheeling is used as the baseline:

VAccn,t,s = δAcct,s + (βdistfrontAcc
+ ∆β,distfrontAccI

· xIn,s

+ ∆β,distfrontAccroad
· xroadn,s

+ ∆β,distfrontAccroadI

· xIn,s
· xroadn,s

) · xdistfrontn,t,s
+ (βdistrearAcc

+ ∆β,distrearAccI
· xIn,s + ∆β,distrearAccroad

· xroadn,s

+ ∆β,distrearAccroadI
· xIn,s · xroadn,s) · xdistrearn,t,s

+ βspeedAcc
· xspeedn,t−1,s

+ βspeed−secondAcc
· x2speedn,t−1,s

+ βspeed−thirdAcc
· x3speedn,t−1,s

(2.1)

VBrn,t,s
= δBrt,s + (βdistfrontBr

+ ∆β,distfrontBrI
· xIn,s

+ ∆β,distfrontBrroad
· xroadn,s

+ ∆β,distfrontBrroadI

· xIn,s
· xroadn,s

) · xdistfrontn,t,s
+ (βdistrearBr

+ ∆β,distrearBrI
· xIn,s

+ ∆β,distrearBrroad
· xroadn,s

+ ∆β,distrearBrroadI
· xIn,s · xroadn,s) · xdistrearn,t,s

+ βspeedBr
· xspeedn,t−1,s + βspeed−secondBr

· x2speedn,t−1,s

+ βspeed−thirdBr
· x3speedn,t−1,s

(2.2)

VFW = 0 (2.3)

In Equation 2.1 and 2.2, δAcct,s and δBrt,s are alternative speci�c constants
(ASC) which we will look at in more detail below, where the subscripts
show the time and scenario dependent nature of these ASCs. The other
components look at the impact of the other agents in the scenario and the
cyclist's speed at time t-1 on the utilities, where:

� xdistfrontn,t,s
and xdistrearn,t,s

are the variables representing the dis-
tance (measured in metres) at time t to the nearest car/pedestrian in
front and the back of the bicycle respectively, in scenario s for individual
n;
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� xIn,s and xroadn,s are dummy variables indicating whether for individual
n, scenario s is an immersive scenario or a road scenario, respectively
(equal to 1 if true, 0 otherwise), where the index n re�ects the fact that
the order was di�erent across participants

� xspeedn,t−1,s
, x2speedn,t−1,s

and x3speedn,t−1,s
are the variables representing

the cyclist's speed (measured in km/h) at time t-1, for individual n in
scenario s. We use polynomials up to degree 3 to allow for non-linear
impacts.

We estimate baseline parameters that explain the overall sensitivity to these
attributes, along with shifts in these sensitivities for di�erent types of sce-
narios. In particular:

� βdistfrontAcc
and βdistrearAcc

are the baseline parameters representing
the impact on the utility for acceleration by the distance to the nearest
car/pedestrian in front and behind the bicycle, respectively;

� βdistfrontBr
and βdistrearBr

are the baseline parameters representing
the impact on the utility for braking by the distance to the nearest
car/pedestrian in front and behind the bicycle, respectively; and

� βspeedAcc
, βspeed−secondAcc

and βspeed−thirdAcc
are the baseline parame-

ters representing the impact on the utility for acceleration by the speed
of the cyclist at the previous time point in �rst, second and third order,
respectively;

� βspeedBr
, βspeed−secondBr

and βspeed−thirdBr
are the baseline parame-

ters representing the impact on the utility for braking by the speed of
the cyclist at the previous time point in �rst, second and third order,
respectively; and

� The various ∆ parameters are interaction terms capturing the shift
in the values of the associated β parameters in speci�c types of sce-
narios � for example, ∆β,distfrontAccI

and ∆β,distrearAccI
capture the

shift in the values of βdistfrontAcc
and βdistrearAcc

for the immersive
scenarios. We allow for shifts by cycling environment (road vs base of
pavement), by presentation type (immersive vs base of non-immersive)
as well as a joint immersive-road shift. Importantly, the non-immersive
scenarios did not allow participants to look behind their back although
participants were indirectly aware of both the pedestrians and vehicles
behind. For the pedestrians, this is because the respondent will have
just overtaken them. For the vehicles, though the participants are un-
likely to overtake, they are aware of their presence as they could hear
the approaching car from behind.
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The parameters to represent the impact of the current action on the choice
of the next one are included in the utility function via the alternative speci�c
constants (δ) using the expressions below, where we show the full speci�ca-
tions, with some e�ects dropping out in actual model estimation due to low
signi�cance:

δAccn,t,s
= (δAcc−current−Acc + ∆δ,Acc−current−AccI · xIn,s

+

∆δ,Acc−current−Accroad
· xroadn,s + ∆δ,Acc−current−AccroadI

· xroadn,s
· xIn,s

) · xAcct−1
+ (δAcc−current−Br + ∆δ,Acc−current−BrI

· xIn,s
+ ∆δ,Acc−current−Brroad

· xroadn,s
+ ∆δ,Acc−current−BrroadI

· xroadn,s
· xIn,s

) · xBrt−1
+ (δAcc−current−FW + ∆δ,Acc−current−FWI

· xIn,s + ∆δ,Acc−current−FWroad
· xroadn,s + ∆δ,Acc−current−FWroadI

· xroadn,s
· xIn,s

) · xFWt−1

(2.4)
δBrn,t,s

= (δBr−current−Acc + ∆δ,Br−current−AccI · xIn,s
+

∆δ,Br−current−Accroad
· xroadn,s

+ ∆δ,Br−current−AccroadI

· xroadn,s · xIn,s) · xAcct−1 + (δBr−current−Br + ∆δ,Br−current−BrI

· xIn,s
+ ∆δ,Br−current−Brroad

· xroadn,s
+ ∆δ,Br−current−BrroadI

· xroadn,s
· xIn,s

) · xBrt−1
+ (δBr−current−FW + ∆δ,Br−current−FWI

· xIn,s
+ ∆δ,Br−current−FWroad

· xroadn,s
+ ∆δ,Br−current−FWroadI

· xroadn,s · xIn,s) · xFWt−1

(2.5)

Where δAccn,t,s
and δBrn,t,s

are the alternative-speci�c constants for acceler-
ation and braking, respectively, for individual n at time t in scenario s. We
have normalized the alternative-speci�c constant of freewheeling to zero. The
estimated values for δAccn,t,s

and δBrn,t,s
capture the in�uence of the most

recently performed action on the choice of the next action. Speci�cally:

� δAcc−current−Acc, δAcc−current−Br and δAcc−current−FW are the base-
line parameters that represent the impact of acceleration, braking and
free-wheeling, respectively, at time t-1 and scenario s, on acceleration
behaviour at time t ;

� δBr−current−Br, δBr−current−Acc and δBr−current−FW are the baseline
parameters that represent the impact of acceleration, braking and free-
wheeling, respectively, at time t-1 and scenario s, on braking behaviour
at time t ;
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� xAcct−1 , xBrt−1 and xFWt−1 indicate which particular action (acceler-
ation, braking, freewheeling, respectively) was performed at time t-1.
At time t-1, the previous state is set to freewheeling, i.e. do nothing.

� The various ∆ parameters are interaction terms capturing the shift in
the values of the associated δ parameters in speci�c types of scenarios -
for example, ∆δ,Acc−current−AccI , ∆δ,Acc−current−BrI and ∆δ,Acc−current−FWI

are the interaction terms that capture the shift in the values of the base-
line parameters δAcc−current−Acc, δAcc−current−Br and δAcc−current−FW ,
respectively, for the immersive scenarios. We allow for shifts by cycling
environment (road vs base of pavement) and by presentation type (im-
mersive vs base of non-immersive) as well as a joint immersive-road
shift.

With this speci�cation, and using a type I extreme value error term, the
probability (P) of participant n choosing action i (out of 3 possible actions)
at time t in scenario s is given by:

Pi,n,t,s(β) =
eVi,n,t,s

3∑
i=1

eVi,n,t,s

,
(2.6)

where β is a vector combining all model parameters and Vi,n,t,s is the de-
terministic component of the utility for alternative i, as shown in Equations
2.1-2.3.

4.2 Risk perception and willingness to cycle data

In this section, we look at the modelling of the stated risk and stated will-
ingness to cycle (SWTC) in non-immersive and immersive scenarios. We use
an ordered logit model (Greene and Hensher, 2010) as the dependent vari-
ables were measured on a 7-point Likert scale, where we do this separately
for risk and the SWTC. Consequently, Yn,s is an observed value of perceived
risk/SWTC for individual n in scenario s which can take M di�erent possi-
ble values, going from m = 1,...,7. The probability of observing value m is
expressed as:

PYn,s=m
=

eτm−Vn,s

1 + eτm−Vn,s
− eτm−1−Vn,s

1 + eτm−1−Vn,s
, (2.7)

The model assumes a deterministic component of utility (Vn,s) that is a func-
tion of scenario attributes and demographic characteristics, controlling for the
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non-immersive and immersive presentation, and τ are a set of threshold pa-
rameters which are to be estimated. Many di�erent e�ects were tried1, and
the �nal utility functions for stated risk and SWTC can be seen below:

Vstated riskn,s
= ∆SR,I · xIn,s

+ ∆SR,road · xroadn,s
+ ∆SR,male · xmalen

+ ∆SR,high traffic · (xhigh traffic,pavementn,s

+ xhigh traffic,roadn,s) + ∆SR,high traffic,road

· xhigh traffic,roadn,s
+ ∆SR,high traffic,I

· (xhigh traffic,pavementn,s
+ xhigh traffic,roadn,s

)

· xIn,s + ∆SR,high traffic,road,I · xhigh traffic,roadn,s · xIn,s

(2.8)

VSWTCn,s
= ∆SWTC,I · xIn,s

+ ∆SWTC,road · xroadn,s
+ ∆SWTC,male · xmalen

+ ∆SWTC,high traffic · (xhigh traffic,pavementn,s

+ xhigh traffic,roadn,s
) + ∆SWTC,high traffic,road

· xhigh traffic,roadn,s + ∆SWTC,high traffic,I

· (xhigh traffic,pavementn,s
+ xhigh traffic,roadn,s

)

· xIn,s
+ ∆SWTC,high traffic,road,I · xhigh traffic,roadn,s

· xIn,s

(2.9)

In an ordered logit model, the probabilities are driven by comparisons be-
tween the utility and the thresholds. When all attributes (x ) in Equa-
tion 2.8 and 2.9 are zero, we have the base scenario for all characteris-
tics (i.e. non-immersive, pavement, female, etc). We then allow for shifts
in the utility depending on the user and scenario characteristics. In addi-
tion to previously described attributes, we have that xhigh traffic,roadn,s

and
xhigh traffic,pavementn,s

are the variables indicating high tra�c condition on
the road and pavement, respectively, in scenario s, for person n. There are
high and low tra�c scenarios used in the experiment which di�er in the over-
all tra�c volume. The high tra�c scenarios used more than 200 pedestrians
and 40 cars, on pavement and road respectively.

We estimate parameters that explain the shifts in utility for di�erent types
of scenarios. For example, and for ease of notation not showing the sub-

1The explanatory variables tested in the model, both with and without interactions, in-
clude age groups (18-24, 25-29, 30-39, 40-49, 50-59 years and above 60 years old), education
levels (O level, A level, vocational quali�cations, undergraduate, Masters and postgraduate
doctoral degree), marital status, number of children (zero, one and more than 2 children)
and being an active car driver.
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scripts SR (for stated risk) and SWTC (for stated willingness to cycle) in
the text, ∆high traffic,I captures the shift in the utility (and hence the likely
responses) for the high tra�c immersive scenarios. We allow for shifts by
gender (male vs female), cycling environment (road vs pavement), presen-
tation type (immersive vs non-immersive) as well as a joint immersive-road
shift.

4.3 EEG data

For the EEG analyses, we examine di�erences in peak α power under non-
immersive and immersive scenarios. As the EEG readings observed on the
scalp are inherently noisy, we undertake a number of steps to eliminate arte-
facts and improve the signal-to-noise ratio. Prior to undertaking the sta-
tistical analysis of the EEG data, we pre-process the data using BESA 6.0
(MEGIS Software GmbH, Gräfel�ng, Germany). Speci�cally, we �rst ap-
ply a 1-20 Hz bandpass �ltering (BPF), a linear transformation that retains
the components of the data within this speci�c band of frequencies (Chris-
tiano and Fitzgerald, 2003) and removes frequencies outside of this range
that may stem from physiological sources such as galvanic skin responses or
external environmental sources such as electronic equipment (Repovs, 2010) .
Next, we clean the data to remove noise stemming from eyeblinks (movement
artefacts were corrected using a multiple source analysis method (Berg and
Scherg, 1994; Ille et al., 2002). The head movements and other remaining
artefacts are manually marked in BESA by visually inspecting the EEG data.
The processed EEG data is imported to MATLAB along with the manually
marked artefact events. The artefact events are then removed from the EEG
data for further processing. Finally, we compute the power spectrum of the
EEG data using Welch's method (Welch, 1967) which estimates the power
spectra based on Fast Fourier Transform (FFT) (Shaker, 2007). Because of
our interest in occipital α, we perform a region-of-interest analysis and take
an average of the activity from electrodes O1, O2, P7, P8, T7 and T8 to in-
crease the stability of the signal (Oken and Chiappa, 1986). The α power is
computed every quarter of a second to align with the frequency of behavioral
measures, obtained from the MNL model.

5 Results

This section discusses the main �ndings with respect to the research objec-
tives of the paper. All models were estimated using the Apollo software (Hess
and Palma, 2019) where robust t-ratios have been used to account for the
repeated choices of the individuals (Daly and Hess, 2011).
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5.1 Cycling behaviour data

We used the MNL model to analyse the behavioural data where the depen-
dent variable was the decision of a speci�c action at each quarter second.
The estimation results are summarised in Table 2.2 and, Table 2.3, where
signi�cant (95% signi�cance level) or marginally insigni�cant results are re-
ported. It may be noted that non-immersive pavement scenarios were used
as the base, and the e�ects of the immersive presentation and the impact of
the road scenario on behaviour were incorporated in the model in the form
of additive interaction variables.

We �rst look at the alternative speci�c constants (ASCs) in Table 2.2 and
the associated Figure 2.4, where we show the probability of the next action
conditional on the current action. To create these plots, we use the average
values in the data for all other attributes i.e. the distances and the speed.
We can observe that under the non-immersive condition on the pavement,
if a person is currently accelerating, he/she is most likely to brake next (es-
timate = 1.0711; rob.t-ratio = 5.32), followed by free-wheeling and lastly
acceleration (estimate = -2.7259). If we look at the interaction parameters
for immersive scenarios, which are captured as an added shift to the estimates
of the non-immersive base value, we observe that the value for accelerating
is now further from freewheeling (-2.7259 - 0.0296). Furthermore, the value
for braking is also reduced (1.0711 - 0.2376) in immersive scenarios, albeit
that this retains the highest value even after the shift. In a road setting, the
value for the ASC for accelerating (when currently accelerating) is further
decreased by 0.3802 (-2.7259 - 0.3802 = -3.1061), and acceleration becomes
even less likely compared to freewheeling.

In the non-immersive pavement setting, if the person is currently braking, the
next most likely action taken is freewheeling, then acceleration (estimate =
-1.1032) and lastly braking (estimate = -4.1562). The inclusion of the shift
for road scenarios reduces the ASC for braking (if the person is currently
braking) by 2.2766 to -6.4328, making consecutive braking actions very un-
likely.

If a person is currently free-wheeling in a non-immersive pavement scenario,
he/she is most likely to continue freewheeling, followed by acceleration (es-
timate = -2.7050; rob.t-ratio = -34.93) and braking (estimate = -4.6373;
rob.t-ratio = -31.33). Looking at the interaction for immersive scenarios, we
observe that freewheeling continues to be the most likely action if currently
free-wheeling, followed by acceleration with an estimated shift of -0.1508
(rob.t-ratio = -1.81) which changes the non-immersive scenarios base value
from -2.7050 to -2.8558. Following acceleration, the least likely action re-
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mains braking albeit that the immersive interaction reduces the gap between
braking and freewheeling by 0.3201. In road scenarios, we observe a drop
in the value of braking and an increase in the value for acceleration which
continues to grow for the immersive road scenarios.

Finally, we have also tested the addition of a dummy variable which takes a
value of 1 for cyclists and 0 otherwise but found these e�ects to be insignif-
icant on both acceleration (estimate = -0.0056; rob. t-ratio = -0.14) and
braking behaviour (estimate = 0.1668; rob.t ratio = 0.67). For this reason,
we decided to leave out these e�ects.

Table 2.2: A joint MNL model � action switch (robust t-ratios in brackets).

LL(start): -267,853.8
LL(�nal): -155,302.1
AIC: 310,664.2
BIC: 310,976.3

Current action

Next action Acceleration Braking Free-wheeling

Base(δ)
Acceleration -2.7259 (-27.77) -1.1032 (-6.89) -2.7050 (-34.93)
Braking 1.0711 (5.32) -4.1562(-17.25) -4.6373 (-31.33)

Free-wheeling 0 0 0

Shifts in δ (∆δ)

for all Acceleration -0.0296 (-1.38) - -0.1508 (-1.81)
immersive Braking -0.2376 (-3.44) - 0.3201 (2.01)
scenarios Free-wheeling 0 0 0
for all road Acceleration -0.3802 (-7.21) - 0.2614 (3.13)
scenarios Braking - -2.2766 (-9.40) -1.5369 (-9.07)

Free-wheeling 0 0 0
for immersive Acceleration - - 0.5227 (6.10)

road Braking - - -
scenarios Free-wheeling 0 0 0

Taken together, these results show that if a person is currently actively cy-
cling (i.e. accelerating or braking) in non-immersive scenario, then he/she is
most likely to choose braking or freewheeling, and less likely to accelerate.
These di�erences depending on the current action are visually demonstrated
in the top and middle part of Figure 2.4. The immersive interaction reduces
the probability of active cycling being undertaken which shows that the per-
son is more inclined to interchange active cycling with freewheeling. On the
other hand, current passive cycling (i.e. Free-wheeling) increases the proba-
bility of braking and reduces that of acceleration while free-wheeling remains
the most likely next action. Overall, these e�ects could be a result of the
increase in attentional resources required to process richer immersive envi-
ronments resulting in more deliberate and less dynamic cycling behaviour.
Furthermore, if a person is currently passively cycling, the results show that
in a non-immersive environment, the road setting increases the probability
of choosing acceleration as a next action compared to the pavement and this
e�ect is further reinforced in the immersive scenario on the road. These be-
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Table 2.3: A joint MNL model � lagged speed (robust t-ratios in brackets).

Impact on utility for First order lagged speed Second order lagged speed Third order lagged speed
Accelerating 1.0356 (43.27) -0.0657 (-200.53) 0.0011 (23.44)
Braking 0.5869 (14.71) -0.0222 (-15.42) -

havioural di�erences can clearly be observed in the bottom panel of Figure
2.4. Altogether, the results in Table 2.2 highlight di�erences in cycling be-

Fig. 2.4: Visual representation of probabilities of next actions conditional on the current
action.

haviour solely driven by the di�erence in the presentation format where the
immersive setting engages a person to a larger extent. Interestingly, these
�ndings are in accordance with the responses in the post-experiment inter-
views where a majority of respondents stated that they felt more in control
of the bicycle in the immersive scenarios due to the fact that they had a 360-
degree view which enabled them to see and experience their surroundings
better.

In Table 2.3 we show the e�ect of speed of the cyclist at the previous time
point, i.e. lagged by 0.25 sec, on the utility of acceleration and braking where
we observe a signi�cant positive estimate for the �rst and third order (for
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acceleration) terms and a negative estimate for the second order terms, hence
there is a non-linear relationship between the dependent variable and speed.
We interpret these impacts graphically in Figure 2.5, using the immersive sce-
nario on the pavement as our case study and using the average values for the
other attributes in the model. We can observe similar patterns in the top and
bottom panels (when the person is currently accelerating and freewheeling,
respectively) where the probability of acceleration increases as speed goes up
from 0 to approximately 10 km/h after which it starts to fall. Conversely,
the probability of freewheeling falls considerably as the cyclist starts to move
faster until reaching the speed threshold of about 12 km/h. These results
are plausible behaviourally as the cyclist needs to gain speed quickly to start
moving and after reaching a satisfactory speed, they either try to sustain it or
increase further but at much slower rate. Finally, the probability of braking
increases with speed, reaching its peak at about 18 km/h. It might suggest
that this is the most comfortable cycling speed where at the same time the
likelihood of freewheeling sharply increases, and the cyclist is less likely to ac-
celerate, thus transitioning to more passive cycling behaviour. This is in line
with �ndings of naturalistic cycling studies which show that average cycling
speed in the real-world is approximately 16.7 km/h with standard deviation
of 8.4 km/h (Huertas-Leyva et al., 2018). Finally, the middle graph shows
that if person is currently braking, she is most likely to continue braking at
di�erent speed levels, highlighting that braking is often a continuous action.
Moreover, we can observe that a person is least likely to freewheel where
its likelihood falls drastically at low speed which is reasonable from a be-
havioural perspective as in the real world this would lead to person falling of
the bicycle.

Table 2.4 shows the e�ects of the distance to the nearest passing vehicle or
pedestrian on behaviour. Here, it is crucial to note that a negative sign of
the estimate means that the further away a vehicle or pedestrian is, the more
the utility for that action is reduced and hence the less likely it is that the
relevant action is taken. Importantly, the results are very rich and are thus
also summarised in graphs which better explain the combined e�ects.

We observe that in non-immersive scenarios on the pavement (base), as the
distance to the vehicle (or pedestrian) in front of the bicycle reduces, the util-
ity for accelerating and braking increases, relative to freewheeling. This is
in-line with real world behaviour where cyclists also tend to switch to a more
active cycling mode (e.g. accelerate or brake) when they are close to other
agents. The non-immersive setting thus successfully captures realistic deci-
sions. In immersive pavement, non-immersive and immersive road settings,
the impact of distance on acceleration becomes negligible. The impact of dis-
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Fig. 2.5: Impact of speed on the probability of accelerating, braking and freewheeling at
di�erent current actions.
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Table 2.4: A joint MNL model � distance variables (robust t-ratios in brackets).

Distance to nearest

vehicle/pedestrian

in front (metres)

Distance to nearest

vehicle/pedestrian

behind (metres)

Impact on utility
Base(β) -0.0047 (-4.60) -0.0029 (-3.28)

for accelerating
Shift for immersive (∆β) 0.0068 (4.64) -
Shift for road (∆β) 0.0060 (5.37) 0.0024 (2.68)
Shift for road in immersive (∆β) -0.0088 (-6.03) -

Impact on utility
Base(β) -0.0245 (-6.93) -

for braking
Shift for immersive (∆β) 0.0213 (4.53) -
Shift for road (∆β) 0.0234 (5.76) -
Shift for road in immersive (∆β) -0.0187 (-3.66) -

tance on the utility for braking in immersive scenarios is also much smaller
than in non-immersive scenarios, where closer distance still leads to an in-
crease in the utility for braking, however much less so than in non-immersive
scenarios. In the case of braking, the utility increases in non-immersive road
settings and falls in immersive road setting the closer the vehicle in front be-
comes but this e�ect in both cases is much smaller than in the non-immersive
pavement setting. In fact, we see that for braking, a sizeable impact remains
only in the non-immersive pavement scenarios.

In terms of the impact of vehicles and pedestrians behind the bike, i.e. those
already passed by the cyclist or those approaching behind on the road, sig-
ni�cant impacts are only observed for accelerating. In the non-immersive
setting, a smaller distance increases the utility for accelerating as opposed to
freewheeling. Behaviourally, this makes sense, with respondents accelerating
more after just having passed a pedestrian. In a non-immersive road setting,
the impact on acceleration of vehicles behind the cyclist decreases compared
to the pavement scenarios. The e�ect makes sense as respondents are unlikely
to overtake a car (compared to a pedestrian), and less likely to notice a car
behind them.

Overall, these results show that both, immersive and road settings reduce
the utility for active cycling which may be the result of a lower perceived
risk in these scenarios as compared to the pavement scenarios where erratic
pedestrians on the pavement were considered more hazardous than passing
vehicles and the immersive scenarios increased the impression of control over
the bicycle and the environment in comparison to non-immersive simulation.

The results in Table 2.4 show the parameters used in the utilities for accel-
erating and braking. A clearer picture emerges by looking at the resulting
probabilities, where of course the probabilities for all three actions are in�u-
enced by the utilities for all three actions. This is illustrated in six separate
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panels in Figure 2.6, where we look only at the pavement scenarios4. Here,
we look separately at the distance of the closest pedestrian behind (negative
distance) and in front (positive distance), where each �gure assumes that
only one of the two applies while the remaining attributes are �xed at their
average levels (e.g. the �gure for distance behind assumes the average value
in the data for the distance to the pedestrian in front of the bicycle). The
�gures show the di�erences in the e�ect of distance on the probability of the
next actions, di�erentiating between the non-immersive and immersive set-
ting on the pavement. Overall, all of these graphs show cycling trends that
are relatable to real-world cycling behaviour. For instance, the top panel
demonstrates that if a person is currently accelerating, she is most likely to
accelerate next. The distance to the nearest pedestrian behind has a min-
imal impact on probabilities, with acceleration becoming slightly less likely
the closer this pedestrian is. For pedestrians in front, in the non-immersive
scenarios braking and acceleration become substantially less likely as the dis-
tance increases. Conversely, the middle part of Figure 2.6 demonstrates that
current braking is most likely followed by further braking and we observe
a strong impact in the non-immersive scenarios for the pedestrians in front
where their closer distance to the bicycle increases the probability of braking
and decreases that of accelerating. On the other hand, these graphs also
clearly show that although these relationships hold, the impact of the dis-
tance to the other agents in the scenarios is rather weak in some cases. This
is a direct result of the large alternative speci�c constants showing that be-
haviour is driven more by the current action than by the surroundings.

Moreover, we compared the frequency of action switches between each time
unit which took place in the immersive and non-immersive setting. We found
that in the immersive scenarios, participants switch between actions more
often as opposed to non-immersive ones (an increase from 36.9% in non-
immersive to 54% in immersive scenarios). These �ndings are in accordance
to what was found before, i.e. that the immersive scenarios increase the
propensity to switch between subsequent actions and it might suggest higher
risk perception in the immersive scenarios although participants felt more in
control. This result is consistent with our hypothesis 1B proposed above.

Overall, these results on the behavioural data conform to our hypotheses. We
show that behaviour elicited under the non-immersive and immersive scenar-
ios di�ers signi�cantly, where the immersive presentation leads to more action
changes, as a higher level of attention is maintained throughout the cycling
scenarios. Di�erently, in non-immersive scenarios, there is an observed ten-

4Similar �gures for the road scenarios can be seen in the Appendix A, Fig. A.1.
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Fig. 2.6: Example of the impact of distance to pedestrians on the choice of the next
action.
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dency to perform more abrupt action changes in response to the major events
in the environment, which suggest a lower degree of attentional involvement.

5.2 Risk perception and willingness to cycle data

Stated risk and SWTC were modelled using two separate ordered logit mod-
els where the explanatory variables were the scenario attributes in the form
of the number of pedestrians and vehicles and the presentation method. We
did not include any socio-demographic characteristics other than gender due
to the small sample size. Table 2.5 shows the results of the estimated model
where the dependent variable is the question �How risky was the scenario?�,
asked at the end of each of the 24 scenarios.

The answer was measured on a 7-point Likert scale, which resulted in six
risk thresholds in the model. The classical and robust t-ratios are reported,
where, given that we now only have one observation per respondent per sce-
nario, the sample size is so small that lower levels of con�dence should not be
discarded. We �rst observe that the high tra�c scenarios have a signi�cant
impact on risk perception, where the higher number of pedestrians and cars in
the scenarios increases perceived risk (estimate = 0.4770; class.t-ratio = 2.27;
rob.t-ratio = 3.12). Interestingly, we observe a lower perceived risk for all
road scenarios (estimate = -0.3896; class.t-ratio = -1.81; rob.t-ratio = -1.39).
Finally, we see a positive shift from the base value for male respondents,
i.e. men perceive the risk to be higher. This �nding contrasts with a large
body of literature which shows that women typically perceive cycling risk as
higher, compared to men, see for example Bösehans and Massola (2018) or
Prati et al. (2019). This can be the consequence of a relatively small sample
where socio-demographic e�ects may not be fully reliable, especially if we
see that in the stated willingness to cycle model this parameter is no longer
signi�cant. Nevertheless, some studies point out that the lower participation
of females in cycling activity is not only due to higher risk perception and
concerns about personal safety but also other factors such as activity prefer-
ences or more joint travels with children (Garrard et al., 2012). Further, no
di�erences are observed between the non-immersive and immersive scenarios,
nor is the di�erence between low and high tra�c between the pavement and
road scenarios. Again, we tested the addition of an e�ect for cyclists but the
coe�cient was insigni�cant (estimate = 0.2218, rob.t-ratio = 0.76). Because
of this we decided to not include it in the �nal model.

Altogether these results indicate that the impact of scenario design is a crucial
factor in risk perception but not considerably di�erent under non-immersive
and immersive presentations. This further con�rms that the risk perceived in
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these two conditions is e�ectively similar when captured with a simple ques-
tion at the end. These results contrast with our hypothesis 2A which states
that immersive presentation will lead to higher perceived risk. Our results
can be a consequence of the static nature of this question which performs
poorly in describing behaviour in a dynamic environment and henceforth
emphasises the need for a dynamic approach to risk analysis.

Table 2.5: An ordered logit model for stated risk with interactions (classical and robust
t-ratios in brackets).

LL(0): -2,886.306
LL(�nal): -1,908.386
AIC: 3,844.77
BIC: 3,914.49

Dependent variable: Stated risk

Estimate (classical; rob. t-ratios)

Shifts (∆)

For male 0.5108 (4.61; 1.59)
For all immersive scenarios 0.1216 (0.59; 0.77)

For all road -0.3896 (-1.81; -1.39)
For high tra�c scenarios 0.4770 (2.27; 3.12)

For high tra�c road scenarios 0.1102 (0.36; 0.48)
For all immersive road -0.1572 (-0.52; -0.67)

For immersive high tra�c -0.0495 (-0.17; -0.28)
For immersive road high tra�c 0.2189 (-0.17; -0.28)

Risk thresholds

1 -1.2265 (-7.41; -5.36)
2 -0.0138 (-0.09; -0.06)
3 0.8974 (5.54; 3.05)
4 1.6295 (9.72; 4.98)
5 2.5924 (14.15; 7.38)
6 4.1254 (16.26; 8.35)

Table 2.6 shows the results of a second ordered logit model where the depen-
dent variable is willingness to cycle which was also captured on the 7-point
Likert scale with the question �How likely are you to cycle in this scenario?�.
As in the risk model, we �nd that the high tra�c scenarios signi�cantly
in�uence willingness to cycle (estimate = -0.4553; class.t-ratio = -1.44; rob.t-
ratio = -4.24). Hence, as the number of people and cars in the scenario
increases, participants are less willing to cycle, which is behaviourally plau-
sible. Again, similarly to our risk model, there is a signi�cant e�ect (in this
case a positive shift) in willingness to cycle for all road scenarios (estimate
= 0.6929; class.t-ratio = 2.07; rob.t-ratio = 1.36). We do not �nd any e�ects
for the remaining variables (including male, all immersive scenarios and high
tra�c road scenarios) which contrasts with our hypothesis 2B stated above.
Nevertheless, the �ndings summarised in Table 2.6 are consistent with the
results for stated risk where the same variables have opposite e�ects on risk
and willingness to cycle, as expected. This suggests that these stated vari-
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ables are complementary and consistent with one another. At the same time,
they appear to be equally ine�ective in describing cycling behaviour under
risk, at least if that risk is dynamic and the question is only asked at the end.

Table 2.6: An ordered logit model for stated willingness to cycle with interactions (clas-
sical and robust t-ratios in brackets).

LL(0): -1897.973
LL(�nal): -811.6235
AIC: 1651.25
BIC: 1708.65

Dependent variable: Willingness to cycle

Estimate (classical; rob. t-ratios)

Shifts (∆)

For male 0.0324 (0.19; 0.07)
For all immersive scenarios 0.1692 (0.53; 0.8)

For all road 0.6929 (2.07; 1.36)
For high tra�c scenarios -0.4553 (-1.44; -4.24)

For high tra�c road scenarios 0.0483 (0.1; 0.24)
For all immersive road 0.0422 (0.09; 0.13)

For immersive high tra�c 0.0167 (0.04; 0.07)
For immersive road high tra�c -0.3712 (-0.55; -0.83)

SWTC thresholds

1 -2.5874 (-8.78; -4.61)
2 -1.4482 (-5.72; -3.71)
3 -0.7412 (-3.04; -1.99 )
4 -0.2509 (-1.04; -0.67 )
5 0.423 (1.74; 1.12)
6 1.0961 (4.41; 2.94)

5.3 EEG data

As a �nal step, we conducted an exploratory analysis to examine whether
the two experimental conditions (immersive vs non-immersive) elicited dif-
ferences in the occipital α wave. Figure 2.7 shows the mean of the maximum
α power in the immersive and non-immersive scenarios in arbitrary units
(a.u). We found an increase in α wave power in the non-immersive presenta-
tion method where this increase is signi�cant at the 95% level of con�dence
(t = 2.045, p-value = 0.05).

The results presented here are in line with previous literature showing a ro-
bust relationship between increases in α power and relaxed states (Eoh et al.,
2005; Lagopoulos et al., 2009) and decreases in α power and increased cog-
nitive workload (Glass and Kwiatkowski, 1970; Osaka, 1984). Finding lower
α power in the immersive condition suggests that this condition potentially
requires more cognitive engagement than the non-immersive one. The reason
for the observed results can be sought in the complexity of the environment
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Fig. 2.7: Di�erence in alpha as a function of condition. Error bars represent standard
errors of the mean.

presented to the participant where the non-immersive scenarios which pro-
vided a lower level of di�culty resulted in higher occipital α wave, whereas the
more complex, immersive scenarios required more attentional resources lead-
ing to relatively lower α power. Therefore, we speculate that these �ndings
may be more likely to re�ect the cognitive processes involved in performing
real-world cycling behaviour.

6 Discussion

The objective of the present paper was to investigate the di�erences in cy-
cling behaviour and risk perception using behavioural, stated and neural data
elicited by a laboratory experiment conducted in virtual reality.

The results of the MNL model on the behavioural data are in line with our hy-
potheses, showing that there are signi�cant di�erences in cycling behaviour
between the non-immersive and immersive scenarios (Hypothesis 1A). We
observe that the immersive scenarios engage participants to a larger extent
where less extreme actions are undertaken. At the same time, we observe
a higher frequency of action switching compared to the non-immersive ones
(Hypothesis 1B). This could suggest that in non-immersive scenarios, lower
attentional resources are employed leading to more drastic behaviour in the
form of sudden acceleration and braking as well as overall more passive be-
havioural patterns. One could thus argue that an immersive VR presentation
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can potentially be a better tool for simulating a cycling environment and
safety analyses in the context of cycling behaviour experiments. Of course,
the actual proof of this would be the comparison with real world cycling in
a comparable setting, and this is an important topic for future work. Ei-
ther way, our results indicate the importance of the experimental design in
research investigating road users' behaviour. Importantly, the remit of the
study is only cycling, therefore, based on our results, we are not able to draw
conclusions about other modes of transport.

The investigation of the perceived risk and willingness to cycle variables
showed that the factors in the estimated ordered logit models that had the
most impact were scenario attributes, but we did not �nd any signi�cant dif-
ferences in risk perception or SWTC between the non-immersive and immer-
sive presentation methods. These results do not conform to our expectations
laid out in the hypotheses (2A and 2B) and suggest that only the most salient
elements in�uencing stated risk and SWTC were captured. Therefore, they
do not perform well in detecting more subtle di�erences in risk perception
between the non-immersive and immersive scenarios as the majority of the
remaining variables used in the models, including the immersive scenarios
dummy variable, were insigni�cant. Finally, it is important to stress that
these variables are coherent with one another as the factors which positively
in�uence risk perception decrease the willingness to cycle.

Lastly, we used the neural data to provide additional insights into processing
of risky cycling behaviour. We examined α power in the non-immersive and
immersive scenarios and found an increase in this signal in non-immersive
scenarios (as proposed in Hypothesis 3). We note that di�erences were sig-
ni�cant at the 95% level, where this is acceptable given the small sample size.
Nevertheless, interpretations of these results should be treated with some de-
gree of caution.

It is worth noting that the results are in alignment with a large body of work
showing α power to be a well-established correlate of attentional processing
with an increase in power found as participants fatigue and attention drifts
away from the task (Craig et al., 2012; Hawkins et al., 2015). As described
in the introduction, recently, lower α power has been hypothesised to re-
�ect neural mechanisms involved in the gating of task-irrelevant information
(Jensen and Mazaheri, 2010; Klimesch et al., 2007) and our results extend
this work, through providing empirical evidence which shows that immersive
environments elicit lower α power relative to traditional experimental display
formats due to higher complexity of the presented environment.

In summary, these results lead us to the conclusion that the immersive pre-
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sentation improved the design of this experiment that explored dynamic risky
cycling behaviour. Additionally, the neural perspective allowed for a further
con�rmation of the behavioural responses and the veri�cation of the previ-
ously identi�ed characteristics of the EEG signal in a more complex context
by providing evidence of the application of the neuroimaging technique in a
virtual reality study. This experiment serves as a case-study which employs
a three-angled approach to explore existing and novel research methods and
can be seen as a starting point to more and improved studies of this kind,
including with larger sample sizes and in other (non-cycling) settings.

In terms of the practical implications of this study, this work contributes to
a better understanding of the factors that in�uence the behaviour of cyclists
and emphasizes the importance of the experimental setup in a VR study. By
comparing the behaviour of cyclists in the two di�erent VR environments, the
paper provides guidance to researchers investigating cycling behaviour in dy-
namic settings, which can feed into safety research and/or capacity analyses.
The �ndings also shed light on the level of behavioural congruence of exist-
ing VR studies, with clear implications for the interpretation and the level
of con�dence in their results. This is important not only for researchers,
who are directly concerned with improvements to experimental designs to
obtain more reliable data, but indirectly for society and policymakers where
improved data collection methods will ultimately provide better foundation
for more informed decision-making. Cycling is particularly relevant because
of the multidimensional advantages of this mode of transport, which, at the
same time, is characterised by underdeveloped infrastructure and therefore
perceived as too dangerous by many travellers. Previous research shows that
cycling is one of the least safe modes of transport with 5.5 times more deaths
per kilometre travelled when compared to car (Hartog et al., 2011). Further
research needs to be done to generalize these �ndings for which we recommend
testing more scenarios in transport and beyond and potentially comparing
the behaviour with real-world decisions.

Moreover, our study provides insights into potential cycling solutions: based
on the results of the ordered logit models, it can be concluded that cycling
on the road is perceived to be less risky compared to cycling on the pavement
amongst pedestrians. Similarly, the MNL model shows that participants in-
deed brake more often while cycling on the pavement. This can be a result of
higher unpredictability of pedestrians movement as compared to cars, where
the �ow of vehicles is less erratic. Pedestrians are more likely to suddenly
stop or change walking direction which signi�cantly increases the possibility
of collision with the cyclist, especially if the pedestrian is facing away from
the cyclist and is unaware of the approaching bicycle. On the other hand,
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although the consequences of an accident with the vehicle are more severe
compared to a collision with a pedestrian, the probability of crashing is lower
because vehicles that drive along the lane are less likely to change their be-
haviour unexpectedly, which makes them more predictable and gives more
time for a cyclist to react. These �ndings have been further con�rmed in the
anecdotal evidence gathered through the post-experimental interviews where
the majority of respondents claimed that cycling among walking pedestrians
was more challenging. The �ndings are expected to be useful for planners
who are interested in deploying VR to more realistically test the impact of dif-
ferent urban designs on propensity to cycle, indicating, for example, the road
and pavement features which contribute to the higher perception of safety
among cyclists. The research �ndings can hence help transport and urban
planners in making more informed choices regarding urban infrastructure. In
closing, the �ndings thus demonstrate the value-added by immersive tech-
nologies in the detailed modelling of cycling behaviour and our work paves
the way for further research on factors that can lead to wider adoption and
utilization of this sustainable transport mode.
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Abstract

The use of virtual reality (VR) in transport research o�ers the opportunity

to collect behavioural data in a controlled dynamic setting. VR settings are

useful in the context of hypothetical situations where real-world data does not

exist and/or in situations which involve risk and safety issues making real-

world data collection infeasible. Nevertheless, VR studies can contribute to

transport-related research only if the behaviour elicited in a virtual environ-

ment closely resembles real-world behaviour. Importantly, as VR is a rela-

tively new research tool, the best-practice in terms of the experimental design

is still to be established. In this paper, we contribute to a better understand-

ing of the implications of the choice of the experimental setup by comparing

cycling behaviour in VR between two groups of participants in similar immer-

sive scenarios � the �rst group controlling the manoeuvres using a keyboard

and the other group riding an instrumented bicycle. We critically compare the

speed, acceleration, braking and head movements of the participants in the two

1Institute for Transport Studies and Choice Modelling Centre, University of Leeds (UK)
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experiments. We also collect electroencephalography (EEG) data to compare

the alpha wave amplitudes and assess the engagement levels of participants

in the two settings. The results demonstrate the ability of VR to elicit be-

havioural patterns in line with those observed in the real-world and indicate

the importance of the experimental design in a VR environment beyond the

choice of audio-visual stimuli. The �ndings will be useful for researchers in

designing the experimental setup of the VR for behavioural data collection.

1 Introduction

Virtual reality (VR) has become an increasingly popular tool for travel be-
haviour research. This is because in the transport domain, it is often in-
herently di�cult to collect real-life data in hazardous road circumstances.
VR provides a high degree of experimental control, safety and ease of data
collection, while at the same time allowing to collect data in a dynamic set-
ting. Further, as in other domains, VR makes it possible to collect data in
hypothetical future scenarios allowing to pre-test behavioural responses in
the context of new modes and novel urban design. Consequently, it has been
widely used in previous studies in a transport context. For example, Mai
(2017) evaluated VR as a tool to analyse pedestrian behaviour at midblock
crossings and Frankenhuis et al. (2010) explored male risk-taking behaviour
while crossing a bridge in an immersive environment. Finally, Moussa et al.
(2012) tried to apply the Augmented Reality Vehicle system to left-turn ma-
noeuvres at two-way stop-controlled intersections.

Nevertheless, the potential disadvantages of VR include motion sickness, high
costs and most importantly, the risk of an unrealistic representation of real-
ity. The ecological validity of VR experiments is one of its main issues, as
it is widely known that experimental designs which have a di�erent degree
of immersion or employ di�erent equipment can elicit distinct behavioural
responses. For example, Farooq et al. (2018) elicited preferences over Con-
nected and Autonomous Vehicles comparing three methods: an immersive
reality technology, a conventional visual presentation and text-only descrip-
tions. The �ndings showed that preference for autonomous vehicles increased
from 50% in text-only case, through 40% in a visual presentation to 70% if VR
was used. It was concluded that preferences elicited with immersive equip-
ment were more consistent with real world preferences and the understanding
of scenarios improved. Furthermore, Bogacz et al. (2019), which looked at
the di�erences in risk processing between 2D and 3D cycling scenarios in VR,
showed that the behavioural patterns from the experiments were similar to
the actual behaviour of cyclists on the roads. Moreover, the study found that
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the propensity to brake was higher in the 3D presentations compared to the
2D scenarios. Patterson et al. (2017) conducted two experiments to investi-
gate the in�uence of the presentation method on neighbourhood choice. The
�rst one was based on the textual description of the living area, while the
second used VR simulations of the neighbourhood. The results showed that
preferences elicited with text-only surveys re�ected participants' subjective,
imagined illustration of the described place, whereas, in the case of the visu-
alizations, the preferences were based on the observed material. It suggests
that VR technology allows for constructing experimental scenarios that give
the researcher more control over factors that a�ect the respondents' choices,
but at the same time these studies clearly exhibit the fact that preferences
are highly dependent on the presentation format. This e�ect is expected to
be even stronger within immersive technology experiments, as they engage
individuals to a larger extent than traditional survey methods. However, as
VR is still an innovative and relatively new research tool, the best practices
are yet to be established especially in the light of mixed evidence in the ex-
isting literature.

In contrast, the domain of driving simulators represents an exception, as
there has been extensive research on the factors that a�ect the behavioural
congruence in simulated driving. For instance, Underwood et al. (2011), who
assessed the comparability of driving on a road and in a simulator, concluded
that driving simulators can demonstrate similar patterns of di�erences across
drivers as observed on actual roads. However, this was only relative, in the
sense that they were unable to create the same hazardous situations on a
road as can be designed in a simulator. Furthermore, Godley et al. (2002)
examined the validity of driving simulators by comparing driving behaviour
in an instrumented car vs a simulator. They showed similar deceleration ac-
tivity under both conditions. Yet, on the other hand, individuals tended to
drive faster in the instrumented car relative to the simulator. To the best
of our knowledge, there has not been any similar in-depth investigation on
the factors that a�ect the behavioural congruence in the context of di�erent
variants of immersive cycling environments. In this paper, we address this
research gap and contribute to a better understanding of the implications of
the choice of the experimental setup by comparing the cycling behaviour in
VR between two groups of participants in similar immersive scenarios � the
�rst group controlling the manoeuvres using a keyboard and the other group
riding an instrumented bicycle.

These two types of equipment both have their advantages and drawbacks.
The use of a keyboard signi�cantly reduces the cost of the experiment as well
as the setup time but diminishes the realism of the experiment. The employ-
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ment of an instrumented bicycle in the experiment is more e�ort consuming
and requires novel engineering design (e.g. measuring wheel and pedal rota-
tion, braking force etc.) and is not portable. Nevertheless, the latter provides
participants with an experience which resembles reality to a larger extent and
allows analysts to obtain richer data from the sensors installed on the bicycle.
This is also likely to be re�ected in their neural activity, which can be used
as an indicator of the level of engagement.

There are several studies in cognitive psychology which have looked at the
e�ects of the use of di�erent input devices on the neural processing and the
elicited behaviours. For example, key presses can be considered discrete deci-
sions and while they have been widely used in PC-based experiments before
(Szul et al., 2020) many studies have shown a continuous �ow of informa-
tion between the brain systems involved in motor processes as opposed to
previous assumptions about sequential stages in motor outputs (Cisek and
Kalaska, 2005; Spivey et al., 2005). These �ndings suggest that devices which
allow for continuous rather than discrete input in terms of motor decisions
better mimic the neural processing of such decisions. Moreover, a study
by Rupp et al. (2015) demonstrated that the use of a joystick, as opposed
to a keyboard, resulted in lower mental workload in a di�cult task, which
could suggest that keyboards are unsuitable input devices in complex control
tasks. Finally, a study by Chung et al. (2018) investigated online shopping
experience and purchase patterns using both mouse-controlled and touch in-
terface settings. They found that shoppers who used a touch interface to
browse products (vs. mouse) have a signi�cantly higher engagement with
their shopping experience. The studies mentioned above show that there
are possible di�erences in behaviour resulting from the type of input device
adopted, making the search for and testing of alternative solutions in dy-
namic experiments a research priority.

In addition to comparing cycling behaviour in VR when using di�erent de-
vices to elicit preferences, we also set out to explore the latter's impact on
participants' neural activity as a proxy measure of engagement. For this rea-
son, we employed electroencephalography (EEG), a scalp-recorded measure
of the electrical activity generated by the brain. Typically, in the transport
literature, the use of EEG has largely focused on the investigation of driver
fatigue and drowsiness (Awais et al., 2017; Craig et al., 2012; Eoh et al., 2005;
Lal and Craig, 2001), level of alertness/attention or cognitive performance
(Klimesch, 1999). However, little has been done to evaluate the engagement
of participants in the immersive environment from a neural perspective. In
particular, the use of neuroimaging devices in applied experimental research
has been heavily constrained by the signal-to-noise ratio of EEG, where arte-
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facts in the data can stem from physiological (e.g. ocular, facial and body
muscle movements) and non-physiological sources (e.g. electric signals gen-
erated by nearby equipment, as shown by Puce and Hämäläinen (2017)).
Therefore, VR experiments which allow a great degree of �exibility in partic-
ipants' head and body movements are more prone to producing artefactual
data. However, recent wireless systems such as Emotiv EPOC+ (EMOTIV,
2018) and Enobio (Ratti et al., 2017) are designed for dynamic experimen-
tal setups and attempt to mitigate the impact of movement artefacts on the
scalp-recorded EEG.

In this paper, we compare a particular pattern of oscillatory brain activity
known as occipital alpha (α) to infer participant's engagement in the task.
Occipital α, which is quanti�ed through frequency analysis of the signal rang-
ing from 8 to 14 Hz, is one of the most commonly observed signatures of brain
activity, with numerous studies demonstrating a relationship between oscil-
lations in this frequency band and attentional processing (Klimesch, 2012;
Klimesch et al., 1998; Sauseng et al., 2005; Thut et al., 2006). As such, the
signal presents an ideal candidate to investigate the impact of presentation
format on participants' degree of task-relevant engagement.

The remainder of this paper is organized as follows. We present our speci�c
hypotheses in the next section. The survey design and sample characteristics
for the two experiments are discussed next, followed by the methodological
approach of the study. We next turn to the results section, followed by the
discussion that reviews the insights from the analysis.

2 Hypotheses

Five hypotheses are put forward based on the evidence from the existing lit-
erature presented above and tested empirically using our data. They relate
to cycling speed, head movements (an indicator of engagement with the sur-
roundings beyond peripheral vision), acceleration and braking behaviour as
well as neural processing. We now look at these �ve in turn.

2.1 Cycling speed

Hypothesis 1A: The average speed is higher in the keyboard-controlled ex-
periment as opposed to instrumented bicycle one.

Hypothesis 1B: There is more variance in speed in the instrumented bicycle
experiment than in the keyboard experiment.

It is hypothesized that the average speed will be higher in the keyboard-
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controlled experiment as it requires less physical e�ort to accelerate compared
to an instrumented bicycle. Moreover, the acceleration is more instantaneous
when using the keyboard. For the same reason, we expect that there will be
more variation in the speed observed in the instrumented bicycle experiment,
as more physical e�ort is needed to move through the scenarios, making it
more di�cult to maintain constant speed levels.

2.2 Head movement

Hypothesis 2: The average head movement is higher in the instrumented
bicycle experiment than in the keyboard experiment.

We expect that the use of the instrumented bicycle will induce participants to
inspect the environment, resulting in more head movement (Hu et al., 2017;
Sitzmann et al., 2018). This would be due to the higher level of immersion in
the environment, due to the improved design compared to the keyboard, and
due to the fact that braking in case of any hazardous circumstances on the
road will take longer on the instrumented bike compared to instantaneous
reaction while pressing the arrows on the keyboard.

2.3 Acceleration & Braking

Hypothesis 3: There is more variance in the acceleration behaviour in the
instrumented bicycle experiment than in the keyboard experiment.

Hypothesis 4: There is more variance in the braking behaviour in the instru-
mented bicycle experiment than in the keyboard experiment.

Hypotheses 3 and 4 stem from the fact that the use of the instrumented
bicycle provides more scope to control behaviour, as participants intertwine
acceleration and deceleration more often compared to a keyboard. Cycling on
the bike requires more physical e�ort and time to switch between subsequent
actions or respond to changing conditions on the road, whereas acceleration
and braking are more instantaneous with the keyboard.

2.4 Neural processing

Hypothesis 5: The mean amplitude of the alpha wave is higher in keyboard-
controlled experiment compared to that of the instrumented bicycle.

Hypothesis 5 is based on the evidence from a large body of work showing the
α wave to be a well-established correlate of attentional processing with an
increase in amplitude found as participants' attention drifts away from the
task (Craig et al., 2012; Hawkins et al., 2015). On the other hand, current
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understanding in neuroscience holds that a low α wave implies increased
excitability, and thus an increased response to external stimuli (Jensen and
Mazaheri, 2010; Klimesch et al., 2007). Therefore, we hypothesize that if the
keyboard-controlled experiment engages participants to a lower extent, the
mean α amplitude is expected to be higher as opposed to the instrumented
bicycle data.

3 Experimental design

This section describes the common experimental procedure used for the two
experiments. It also discusses the components that were di�erent between
keyboard-controlled and instrumented bike experiment as well as the basic
characteristics of the two samples.

3.1 Keyboard-controlled experimental setup

The experimental session started with the participant being seated on a chair
and having an Emotiv Epoc+ EEG headset (EMOTIV, 2018) and an Oculus
Rift VR (Oculus.com, 2018) head mounted display (HMD) placed on their
head. The Emotiv headset uses 14 electrodes (at AF3, F7, F3, FC5, T7, P7,
O1, O2, P8, T8, FC6, F4, F8 and AF4) sampling across the scalp. The sys-
tem was selected as its compact design allowed it to be used jointly with the
VR HMD. As a �rst step, the baseline brain activity was recorded with the
sampling rate of 128 Hz, while participants had their eyes open and focused
their gaze on one point on the screen for 15 seconds. The same procedure
was then repeated with their eyes closed. Importantly, before the main part
of the experiment started, the participants had an opportunity to familiarise
themselves with the equipment in a trial run. The experiment used six sce-

Fig. 3.1: The immersive scenarios used in the experiment.

narios with an immersive presentation of tra�c from the perspective of the
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cyclist. All the scenarios had a number of common elements. Firstly, the
cyclist was riding on the pavement. Secondly, in each scenario, there were
four locations where a potential collision with other road users could occur,
namely, two junctions and two points along the cycling lane where pedestri-
ans could cross to reach the bin on the right side of the bike lane, as seen in
Figure 3.1. Thirdly, all the scenarios featured pedestrians as well as cars and
the percentage of pedestrians and cars which would cross the bike lane or
turn at the junction was constant. At the same time, there were also random
components in each scenario which stemmed from the fact that in each sce-
nario, the speci�c movements of crossing pedestrians and turning cars were
presented randomly, while keeping their overall percentage the same across
all the scenarios. This resulted in di�erences between scenarios in terms of
the actual number of pedestrians or cars at the �collision locations� when the
cyclist was passing by these points. This was clearly also in�uenced by the
speed of the cyclist, and hence the point in time at which the �collision loca-

tions� were reached. Altogether, these elements gave basis for the complex
tra�c scenarios which participants were required to navigate. The scenarios
encompassed a 360-degree view of the road which surrounded the participant
and responded to their head movements. Importantly, based on the feedback
received during initial pre-testing of the set-up, sound was also included to
capture both visual and auditory cues that are available to cyclists in real-
life settings. The volume of vehicles was consistent with their distance to the
cyclist so that the sound of an approaching car increased as it got closer to
the cyclist.

The experiment comprised the same six scenarios. The repetition was used
because we also collected neural data which required a higher number of trials
in order to obtain more stability in the EEG signal. The task for the partic-
ipant was to cycle through the scenario at the desired pace until the �nish
line at the end of each scenario. In order to navigate through the scenario,
participants used the keyboard to adjust their speed but had no ability to
turn left or right. They pressed the up arrow to accelerate and the down
arrow to brake. The keyboard was placed on the table in front of them, and
before the experiment began, they were guided by the experimenter to �nd
the appropriate keys on the keyboard. The experimental setup of a keyboard-
controlled experiment can be seen on right-hand side of Figure 3.2.

The visual stimuli in the experiment come from VR road simulations devel-
oped by Future Cities Laboratory (Schramka et al., 2017) using Unity 3D
Game Engine (Goldstone, 2009). These stimuli involve pre-programmed en-
vironments where the cars and pedestrian movements do not respond to the
actions of the cyclist. That is to say, other road users do not accelerate or de-
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celerate in reaction to the chosen action of the cyclist (participant), therefore
collisions between the cyclist and cars/pedestrians were possible. Collisions
were detected if a cyclist overlapped visually with any other agent. Even
though participants were speci�cally instructed to avoid any collisions, there
were 19 instances (3.2 % of all scenarios by all participants) of collisions with
other road users. When this happened, the experiment was interrupted, and
the participant was asked to start again from the beginning of that scenario.

The initial number of recruited participants was 50, from which 4 participants
were removed due to failure to complete the whole experiment, leading to a
�nal sample size of 46 participants (18 males, 28 females), comprising sta�
and students of the University of Leeds as well as members of the general
public. The mean age of the participants was 30.7 years, with a standard
deviation of 10.88 years.

3.2 Instrumented bike experimental setup

The experimental design for the instrumented bicycle data collection was
similar to the keyboard counterpart in terms of the audio and visual stimuli
used and number and types of cycling scenarios. The experimental session
commenced by familiarizing the participant with the instrumented bicycle,
including demonstrating how to use a hand brake (all the participants could
ride a bike in reality). Subsequently, the participant mounted the bike and the
HTC Vive head mounted display (HMD) (Borrego et al., 2018) and Enobio
(Riera et al., 2008) devices were placed on their head. The Enobio headset
uses 8 electrodes (at FP1, FP2, Fz, C3, Cz, C4, P3 and P4) sampling across
the scalp. The system allowed joint use with HTC Vive HMD. As a �rst step,
the baseline brain activity was recorded with the sampling rate of 128 Hz,
while participants had their eyes open and focused their gaze on one point on
the screen for one minute. The same procedure was then repeated with eyes
closed. Before the main part of the experiment started, participants could
familiarise themselves with the use of the bicycle and the environment in a
trial session.

The experiment consisted of six immersive presentations of tra�c scenarios
from the perspective of the cyclists, shown in random order. The visual
stimuli proceeded from the same source as before. Similarly, the participant
was asked to cycle through the scenario at the desired pace until the �nish
line at the end of each scenario. In order to navigate through the scenario,
the participant used the pedals of the bicycle and had no ability to turn
left or right. To brake, the participant used a hand brake positioned on
the right side of the handlebar. For the exact instructions see Participant
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task instructions in Appendix B. The instrumented bike can be observed on
the left-hand side of Figure 3.2. The instrumented bike belongs to Future
Cities Laboratories in Singapore. The scenarios used in these experiments

Fig. 3.2: Instrumented bicycle (FCL Singapore) and keyboard-controlled experiments
(University of Leeds)

allowed for recording of cycling behaviour with respect to changing tra�c
environment. The speci�c variables of interest, which are described in detail
in the next section, included the cycling speed, braking activity, acceleration,
horizontal head movements as well as the EEG signal. We put forward several
hypotheses based on these variables, as speci�ed in the section above.

Fifty participants were recruited for the experiment, however two of them
were removed due to failure to complete the whole experiment, leading to a
�nal sample size of 48 participants (29 males, 19 females), comprising sta�
and students of the National University of Singapore as well as the members
of the general public. The mean age of the participants was 26.5 years,
with 6.7 years standard deviation (for more details regarding the sample
see Appendix B). The socio-demographic characteristics of the sample were
collected using a PC-based survey, see Appendix B for the full questionnaire.
It is important to emphasize that the small sample size in both experiments is
a typical issue faced by researchers working with VR and/or driving simulator
data (Di Stasi et al., 2012; Katsis et al., 2011; Moussa et al., 2012) as the
experiment duration is much longer and the associated cost much higher
compared to typical stated preference (SP) studies.
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4 Methods

In this section, we present the methodology used to test our hypotheses. We
conducted a between-subject comparison of the behaviour in two samples,
where one sample used a keyboard and the other used the instrumented bike
to cycle through the scenarios. As a result of this experimental design, none
of the participants took part in both treatments. To compare the behaviour,
we analysed the following variables: acceleration, braking, speed and head
movement. We also looked at the di�erence in mean α amplitude in the two
experiments. The sampling rate for all variables except EEG was 4 Hz. To
test the proposed hypotheses, we conduct a Welch's t-test (Welch, 1947) on
the mean values of Speed, sideways movements of the head (Head Yaw) as well
as α-wave amplitude. This test was chosen due to the slightly unequal sample
sizes, where keyboard sample contains 46 participants and the instrumented
bicycle sample includes 48 participants. Furthermore, the F-test (Johnston,
1972) was used to make inferences about the variances in Speed, Acceleration

and Braking between two experiments. The individual variables produced
during the experiments were the following:

Acceleration

The acceleration variable (a) is the rate of velocity gain and is measured in
metre per squared second (m/s2). The formula used to calculate acceleration
can be seen in Equation 3.1 :

a =
∆v

∆t
, (3.1)

Where ∆ denotes changes in velocity (v) and time (t), respectively.

Braking

In the instrumented bicycle experiment, braking is measured as the degree
of deviation of the braking pad from its default position. It ranges from 0
to 15o. In the keyboard setting, the braking variable recorded the degree
to which the down-arrow key was pressed, and the values range from 0 to
1. In order to be able to compare these values, we performed a min-max
normalization on the values of Braking for the instrumented bicycle.

Speed

The speed is expressed in kilometres per hour (km/h). In the keyboard-
controlled experiment, the maximum speed was capped at 25 km/h. This
level was chosen based on the previous literature which showed that the av-
erage speed of cycling in the real world is between 13.5-16 km/h with standard
deviation ranging from 3.2 - 8.4 km/h (Dozza and Werneke, 2014; Huertas-
Leyva et al., 2018; Schleinitz et al., 2017). Di�erently, in the instrumented
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bicycle experiment, there was no limit on the maximum speed. The restric-
tion on the keyboard-controlled experiment was imposed in order to avoid
unreasonable speeds, which could have been easily achieved with the constant
pressing of the key, and to minimize the risk of motion sickness.

Head movement

The head movement is based on head yaw - the sideways movement of the
head. It is measured in degrees from the default position (looking straight
ahead), and can range from −180o to +180o, where turning the head (as well
as the torso) to the left produces negative values while a movement to the
right results in positive scores.

EEG

For the EEG analyses, we examined di�erences in mean α amplitude in
keyboard-controlled and instrumented bicycle experiments. As the EEG sig-
nal collected through the scalp are inherently noisy, we undertook a number
of steps to eliminate artefacts and improve the signal-to-noise ratio. Speci�-
cally, we �rst applied a 1-20 Hz bandpass �ltering (BPF), a linear transfor-
mation that retains the components of the data within this speci�c band of
frequencies (Christiano and Fitzgerald, 2003) and removes frequencies out-
side of this range that may stem from physiological sources such as galvanic
skin responses or external environmental sources such as electronic equip-
ment (Repovs, 2010). Next, we cleaned the data to remove noise stemming
from eyeblinks (movement artefacts were corrected using a multiple source
analysis method (Berg and Scherg, 1994; Ille et al., 2002). Finally, we com-
puted the power spectrum of the EEG data using Welch's method (Welch,
1967) which estimates the power spectra based on the Fast Fourier Transform
(FFT) (Shaker, 2007). Because of our interest in occipital α, we performed a
region-of-interest analysis and took an average of the activity from electrodes
O1, O2, P7, P8, T7 and T8 in the keyboard-experiment and electrodes P7,
P8, C3, C4 in the instrumented bicycle to increase the stability of the signal
(Oken and Chiappa, 1986).

5 Results

In this section, we present visual pro�les of Speed and Braking for the two
experiments and an overview of the descriptive statistics in Table 3.1. The
table highlights clear di�erences between the mean values of the variables of
interest in the two samples. Next, these di�erences are tested more rigorously
using t-test and F-test, and the results are reported for each variable.

In Figure 3.3, we plot the pro�les of the variables Speed and Braking for
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Table 3.1: Summary statistics of the variables of interest.

Variable

Units
of
mea-
sure-
ment

Mean val-
ues in the
keyboard-
controlled
experiment

Standard
deviation
values in the
keyboard-
controlled
experiment

Mean values
in instru-
mented
bicycle ex-
periment

Standard
deviation
values in in-
strumented
bicycle ex-
periment

Speed km/h 22.90 4.93 14.32 7.03
Head Yaw degrees 1.76 8.52 4.93 27.71
Break degrees 0.03 0.10 0.23 0.25
Acceleration m/s2 0.11 1.29 0.02 2.68

two randomly chosen participants cycling in similar immersive scenarios but
in the two di�erent experimental settings. The graphs highlight that both
experiments captured participants' behaviour correctly, as higher values of
Braking are associated with lower Speed. At the same time, it is clear that
the employment of the instrumented bike resulted in a considerably higher
amount of variation in Speed and Braking compared to the keyboard exper-
iment, where the pro�les are smoother and less dynamic.

Fig. 3.3: Pro�les of Braking and Speed in the two experiments for two randomly chosen
participants.

5.1 Speed

The one-sided Welch's t-test performed on the mean values of Speed at the
individual level showed that the mean Speed is signi�cantly higher in the
keyboard-controlled experiment (t = -16.163, df = 70.134, p-value ∼ 0). This
result is in line with our Hypothesis 1A, where we expected that the lack of

89



Chapter 3. A Comparison of Cycling Behaviour between Keyboard-Controlled

and Instrumented Bicycle Experiments in Virtual Reality

physical e�ort and consequently relative easiness in developing higher speed
would result in higher average speed in the keyboard-controlled experiment.
Moreover, when we compared the variances in mean Speed, we found that
the variance in the instrumented bicycle experiment was signi�cantly higher
compared to the keyboard-controlled counterpart (F(47,45) = 3.9252, p-value
∼ 0). Again, this result conforms to our Hypothesis 1B. We show that the
use of the bicycle induces people to adjust their speed more often. It is also
interesting to look at the density histogram of Speed in these two experiments
(Figure 3.4). We can see the near bell-shaped distribution of Speed in the
experiment using the bicycle, where the values are centred around the mean
and there is more variation observed in contrast with the keyboard-controlled
experiments. A peak near zero can be observed in the instrumented-bicycle
setting: this relates to small movements when participants slowed down to
stop (while waiting to cross the street or give priority to pedestrians who
crossed their bike lane). In contrast, in the keyboard experiment, we observe
a skewed distribution of Speed where the majority of observations correspond
with the maximum possible level, equal to 25 km/h. This suggests that the
removal of physical e�ort and the use of a keyboard contributes to the choice
of maximum speed regardless of the scenario conditions.

Fig. 3.4: Histograms of Speed in the two experimental settings.
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5.2 Head movement

Head movement is an indication that the participant is making an e�ort to
gather information beyond the peripheral vision. The one-sidedWelch's t-test
of Head Yaw demonstrated that the average head movement is signi�cantly
higher in the instrumented bicycle experiment as opposed to the keyboard-
controlled setting (t = 2.3944, df = 89.987, p-value = 0.009362). This is in
line with our Hypothesis 2, where we expected more head movement to the
sides in the instrumented bicycle experiment due to more complex mechanism
of control over the bicycle compared to keyboard, which in turn required
participants to explore the environment to a larger extent in order to be able
to react more quickly. The density histogram of the Head Yaw values (Figure
3.5) shows this trend, as it includes a wider range of values for instrumented
bicycle compared to the keyboard experiment. It suggests that the use of the
instrumented bicycle induces participants to inspect the environment more
than a keyboard due to the higher level of immersion in the environment and
due to the fact that braking in case of any hazardous circumstances on the
road will take longer on the instrumented bike compared to instantaneous
reaction while pressing the arrow on the keyboard.

Fig. 3.5: Histograms of Head Yaw in the two experimental settings
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5.3 Acceleration

The results of the one-sided F-test showed that the variance of Acceleration is
signi�cantly larger in the instrumented-bike experiment (F (47,45) = 3.1474,
p-value = 0.00008789). This is in line with our Hypothesis 3: we expected
higher variation in acceleration due to the presence of physical e�ort and
higher di�culty in maintaining constant speed. The density histogram for
Acceleration presented in Figure 3.6 re�ects the results of the test, as we
observe that the Acceleration values are accumulated near the mean with
little variation in the keyboard-controlled experiment and have a near bell-
shape distribution in the other experiment.

Fig. 3.6: Histograms of Acceleration in the two experimental settings.

5.4 Braking

The result of one-sided F-test showed that the variance of Braking is sig-
ni�cantly larger in the instrumented-bike experiment (F (47,45) = 3.8141,
p-value = 0.000007114). This result conforms to our Hypothesis 4 that more
variance is present in the instrumented-bicycle experiment. Again, the den-
sity histogram of Braking in Figure 3.7 visually re�ects the results of the test,
as there is more variation in an experiment that used an instrumented bicy-
cle. Importantly, as mentioned in section 4, Braking variables had di�erent
scales in the two experiments, hence, data from the instrumented-bicycle ex-
periment was normalised (using min-max normalisation function) to be able
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to compare them and present jointly in a single �gure.

Fig. 3.7: Histograms of Braking in the two experimental settings.

5.5 Amplitude of α wave

The one-sided Welch's t-test demonstrated that the mean α amplitude is
lower in the instrumented bicycle experiment as opposed to the keyboard-
controlled at the 90 % con�dence level (t = 1.35, df = 40.79, p-value = 0.09),
which is in line with our Hypothesis 5, where we expected a lower α amplitude
in instrumented bicycle experiment due to the more immersive setting and
higher cognitive engagement compared to the keyboard.

6 Discussion

VR experiments can e�ectively contribute to transport research only if the
behaviour elicited in a virtual environment closely resembles real-world be-
haviour. Hence, it is important to be able to discriminate between di�erent
experimental designs that employ immersive technologies. The objective of
the present paper was to compare the cycling behaviour elicited in two sep-
arate experiments which used the same visual stimuli but di�erent devices
to control the navigation through the simulated scenarios. The �rst one em-
ployed a keyboard and the second one an instrumented bicycle. In order to
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draw conclusions about the behaviour, we analysed participants' speed, ac-
celeration, braking and head movements, along with data about their neural
activity. The results are summarized in Table 3.2, where we also show ex-
amples from the existing literature which reached similar results in di�erent
experimental contexts. This highlights not only that our �ndings are in line
with the literature, but that we con�rm these results for the context of cy-
cling and for the joint use of immersive technology and EEG.

Overall, the results show signi�cant di�erences in behaviour. A more active
and varied behaviour is observed in the instrumented bicycle experiment as
compared to the keyboard-controlled study. For instance, the average speed
is lower and more heterogeneous in the instrumented bicycle experiment,
suggesting that participants dedicate more time to explore the environment.
Moreover, the average speed in the instrumented bicycle experiment of 14.32
km/h is closer to the average speed of cycling in reality, which ranges be-
tween 13.5-16 km/h, in contrast to the keyboard counterpart where average
speed was considerably higher in spite of the cap of 25km/h. It suggests that
the use of the instrumented bicycle instead of the keyboard allows for better
approximation of the real cycling kinematics.

More variation in acceleration and braking, as well as more head movement is
also observed in the instrumented bicycle setting, implying a higher degree of
engagement with the environment. This is further con�rmed by the analysis
of the EEG data, where a lower amplitude of the α wave in the instrumented
bicycle experiment suggests higher mental engagement in the task compared
to the keyboard-controlled one.

Our work provides evidence that the instrumented bicycle is more e�ective
than the keyboard controls in eliciting behavioural patterns demonstrated
by previous naturalistic studies of cycling behaviour. We use these studies
as a benchmark due to the lack of evidence in the previous literature with
regard to typical, real-life cycling behaviour in absolute terms. Moreover,
our results are consistent with previous studies conducted in other contexts
that investigated the e�ects of the use of various input devices on behaviour,
as presented in the introduction and in Table 3.2. In particular, the use of a
keyboard, or in fact any other input device such as a joystick or touchpad,
makes the cycling experience clearly less realistic as the user does not need to
exert physical e�ort, a crucial component associated with cycling. It, then,
follows that changes in action could be seen as less consequential as they do
not have impact on physical fatigue. This relates, both, to the actual ac-
tion (e.g. accelerate) as well as the degree thereof. Existing literature shows
similar patterns, where a previous study by Tran et al. (2018) compared the
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Table 3.2: Summary of results.

No. Hypotheses Result
Similar conclusions in the

literature

1A

Average speed is higher in the
keyboard-controlled experiment
than in instrumented bicycle
one.

True
Bella (2008) and Changbin et al.
(2015) with driving simulators

1B

There is more variance in speed
in the instrumented bicycle ex-
periment than in the keyboard
experiment.

True
Bhise and Bhardwaj (2008) with
two driving simulators

2

The average head movement is
higher in the instrumented bicy-
cle experiment than in the key-
board experiment.

True

Sitzmann et al. (2018) focusing
on head movement in VR; Un-
derwood et al. (2011) with driv-
ing simulator context

3

There is more variance in the ac-
celeration behaviour in the in-
strumented bicycle experiment
than in the keyboard experi-
ment.

True
Reymond et al. (2001) with driv-
ing simulator

4

There is more variance in the
braking behaviour in the instru-
mented bicycle experiment than
in the keyboard experiment.

True
Zöller et al. (2019) focusing
on braking behaviour in driving
simulator

5

The mean amplitude of α wave
is higher in the keyboard-
controlled experiment compared
to an instrumented bicycle.

True
Argento et al. (2017) in the con-
text of brainwave entertainment
in VR
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perception of speed in VR between instrumented bicycle that was powered by
throttling (electric-based power) or participant pedalling. They found that
when pedalling, participants' perception of speed was more accurate and the
perception of presence in the virtual environment was higher. Similarly, in
pedestrian research, a study by Boletsis and Cedergren (2019) compared the
performance of walking simulator, VR controller and VR teleportation (in
which the user's viewpoint is instantaneously moved to a prede�ned loca-
tion through visual 'jumps') when navigating through a simulated city. The
results showed that the walking simulator provided the highest level of im-
mersion relative to other methods, but also resulted in the highest level of
physical fatigue.

Beyond the physical e�ort, hand-held motion recognition devices lack the ap-
propriate kinematics associated with cycling and, therefore, constrain natural
body movement used to modulate cycling behaviour. This, in turn, reduces
the immersion in the virtual experience. Consequently, in recent years, the
number of cycling simulators, developed for research purposes, increased sig-
ni�cantly (Michahelles and Wintersberger, 2021; O'Hern et al., 2017; Ranky
et al., 2010; Schramka et al., 2017; Shepherd et al., 2018; Tran et al., 2018).
In other contexts, this trend is also noticeable, where, for example, a study
by Kreimeier et al. (2020) focused only on the walking simulators based on
walk-in-place locomotion technique, namely, Vive Trackers, Virtux Omni and
Cyberith Virtualizer to explore their relative performance.

Finally, in terms of functional considerations, the use of a keyboard jointly
with a head-mounted display is simply impractical, when participants are not
able to see the physical world around them (LaViola Jr et al., 2017). This
is particularly di�cult in the case of cycling because the movement with the
keyboard is not as intuitive compared to the instrumented bicycle.

On the other hand, the advantages of the employment of a keyboard or
other simple devices cannot be ignored. Their use is cheaper and less time
consuming than the employment of the stationary bicycle, where the design
and manufacturing of custom-built bike takes approximately nine to twelve
months and is about twenty times more costly relative to controllers readily
available on the market.

Keyboard and other standardised input devices should also be considered dur-
ing study design, given the �ndings of a large body of literature which shows
that, in certain scenarios, these commercial devices perform equally well as
more advanced ones. For example, a study by Fund (2015) showed that
mouse and keyboard outperformed Xbox controller and joystick in steering
task. Similarly, Ardito et al. (2009) demonstrated that keyboard and mouse
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were faster and more e�cient than Xbox and Nintendo Wii controllers in
the task that required moving objects in the virtual environment. Therefore,
researchers can exploit the fact that the majority of participants is familiar
with these devices which allows them to perform certain tasks easier and
faster (Cabral et al., 2005)

Further, the hand-held motion recognition devices are also more portable
which makes it more convenient to collect data in di�erent locations. This
may be particularly bene�cial if speci�c segments of the population are of
interest. For example, Syed-Abdul et al. (2019) studied the acceptance and
use of virtual reality among the elderly population. The data collection was
conducted in an ageing centre with HTC Vive controllers because the porta-
bility of VR devices was an absolute priority.

Moreover, the emergence of movement artefacts in the EEG signal is a widely
recognised issue in current literature (Hertweck et al., 2019; Li et al., 2020;
Tauscher et al., 2019; Tremmel et al., 2019). Hence, if VR is used jointly
with neuroimaging devices, then a simpler input device o�ers a more static
approach, reducing the extent of potential noise in the neural data stemming
from body movements.

Overall, the choice of input device for VR experiments is not an arbitrary
decision and should be aligned with the objectives of the study to not con-
strain the spectrum of behaviour which can be captured and minimise the
potential biases resulting from the mere choice of the controller. Moreover,
the decision of an appropriate input tool also has to be weighed against tech-
nical capabilities such the budget, duration of the experiment and comfort
of the participants as well as a possibility of joint use with other equipment
employed in the study. In this paper, we compare only two devices. However,
it is important to take into consideration other available appliances such as a
3D mouse, joystick, steering wheel, gamepad or hybrid controller which may
o�er di�erent bene�ts depending on the design of the study.

The results thus emphasize the importance of the experimental setup in a
VR experiment beyond the choice of appropriate visual stimulus. The �nd-
ings extend understanding of the e�ects of the use of distinct input devices
within the VR domain by demonstrating that the use of an instrumented
bicycle increases the realism of the cycling simulations by in�uencing the
manoeuvring decisions. These results were further reinforced by the anal-
ysis of neural data. Further research needs to be conducted to generalize
these �ndings. In particular, we recommend testing di�erent cycling scenar-
ios as well as experiments focusing on di�erent aspects of travel behaviour
to compare participants' actions in the experimental setting with real-world
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decisions. The �ndings shed light on the level of behavioural congruence of
the state-of-the-art VR studies which will be valuable in the interpretation
and the level of con�dence in the results of di�erent VR studies. It is also
expected to be a valuable resource to researchers and practitioners planning
to administer VR-based data collection and help them to better design the
experimental setup as there has been a signi�cant interest in using VR for
modelling cycling behaviour (Nazemi et al., 2018, 2021). By comparing and
contrasting the behaviour of cyclists in the two VR environments, the paper
is expected to provide guidance to researchers investigating cycling behaviour
in dynamic setting and hence improve the modelling of speed and accelera-
tion of cyclists which can feed into safety research or capacity analyses for
instance. The �ndings are also expected to be useful for planners who are
interested in deploying VR to more realistically test the impact of di�erent
urban designs on the propensity to cycle, indicating, for example, the road
and pavements features which contribute to the higher perception of safety
among cyclists. The research �ndings can hence help transport and urban
planners in making more informed choices regarding urban infrastructure.
Finally, VR tools are increasingly being used in designing vehicles of the fu-
ture � the interaction between connected and automated vehicles (CAVs) and
other road users. The �ndings can help researchers modelling the interaction
between cyclists and CAVs in designing their experiments and better inter-
preting the results by giving an idea about the comparative realism of the
collected data.
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Abstract

Road risk analysis is one of the key research areas in the transport, where

the impact of perceived risk on choices, especially in a dynamic setting, has

been long recognised. However, due to the lack of dynamic data and the di�-

culty in capturing risk perception, the existing studies typically resort to static

and stated approaches to infer the experienced level of risk of individuals. In

this paper, we aimed to address this research gap through developing a hy-

brid choice model that jointly employed dynamic data on cycling behaviour

in virtual reality and neural data to evaluate how the �uctuations in momen-

tary risk perception in�uence the behaviour of cyclists. The results of the

developed model con�rm our hypotheses, demonstrating that the cyclists re-

duce their speed when approaching a junction as the potential for a collision

with passing cars increases. Moreover, the latent component allowed us to

establish a link between the neural data, the amplitude of alpha brainwaves,

and objective risk measures. In line with our hypothesis, we found that de-

1Institute for Transport Studies and Choice Modelling Centre, University of Leeds, UK
2School of Psychology & Centre for Immersive Technologies, University of Leeds, UK
3Future Cities Laboratory Singapore-ETH Centre Zurich
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creased alpha amplitude is associated with higher perceived risk which in turn

increases the likelihood of braking. The implications of our study are mani-

fold. On the one hand, it shows the ability of virtual reality to elicit complex

cyclists' behaviour and the feasibility of a joint collection of dynamic neural

and choice data. On the other hand, we demonstrate the potential of the

employment of neural data in a hybrid model framework as an indicator of

risk that allows us to gain a better understanding of cycling behaviour and

associated neural processing. These promising �ndings pave the way for fu-

ture studies that would explore the advantages of neuroscienti�c inputs in the

choice models.

1 Introduction

Modelling risk perception in the transport context plays a critical role in the
prediction of individuals' behaviour in a risky situation on the road. Tradi-
tionally, perceived risk and its e�ect on choices have been explored by means
of paper or web-based stated preference (SP) surveys or simple laboratory
experiments. In particular, direct questionnaires and attitudinal scales have
been widely used in the transport context (Ram and Chand, 2016; Rundmo
and Iversen, 2004; Ulleberg and Rundmo, 2003).The major issue associated
with this approach is the possible incongruence between the stated and ex-
perienced risk and between the stated and actual actions. For instance, An-
dersson (2013) found a signi�cant discrepancy between stated and observed
willingness to pay for tra�c safety, with Svensson (2009) also showing an
inconsistency between the willingness to pay for risk reduction and the pre-
cautionary behaviour actually used to reduce it.

Additionally, a limitation arises from the lack of dynamic data on risk, where
attitudinal questions provide only a static indication of the inherently dy-
namic risk perception. While the experimental techniques may not capture
the experience of risk to the same degree as real-life settings, some headway
can be made with augmented and virtual reality (VR) technologies. These
have been previously used, mostly in psychology research, to measure risk
perception (Dixit et al., 2015) as well as physiological responses (Chirico
et al., 2017; Johnson et al., 2011; Shechtman et al., 2009). A key advantage
is the dynamic nature of the VR experiments, where many studies, focussed
on risk, have adopted such a dynamic approach to improve realism and better
capture the reactions to momentary changes in risk perception on the road
(Frankenhuis et al., 2010; Mai, 2017; Underwood et al., 2011).

Virtual reality provides an alternative to the established methods of mea-
suring risk perception and associated stress levels. Crucially for the present
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work, it also enables a joint use with physiological devices and neuroimaging
techniques such as electroencephalography (EEG), where the signal can be
a proxy for risk perception. Therefore, a major opportunity arises with the
greater accessibility to neuroimaging equipment to provide a new perspective
on behaviour in risky and stressful conditions. Studies in neuropsychology
have established that α waves4 are a reliable stress marker (Lewis et al., 2007;
Nishifuji et al., 2010; Seo and Lee, 2010; Vanitha and Krishnan, 2016; Verona
et al., 2009) and links have been made between α wave variations and its role
in attention and perception (Cooper et al., 2006; Magosso et al., 2019; Ray
and Cole, 1985). In particular, a study by Brouwer et al. (2011) looked at
neural correlates of stress evoked by the use of virtual reality. They found
that simulated stressful conditions signi�cantly in�uenced several physiolog-
ical stress indicators used in the study, including frontal α power. Finally,
Magosso et al. (2019) used virtual reality simulations and electroencephalog-
raphy to detect changes in attention. The results of the study demonstrated
that the α power decreased during tasks which required high attention to the
external environment and conversely, α amplitude increased when the atten-
tional demands of the task diminished. The results of these studies provide
a promising basis for using α wave data as an indicator for the perceived
risk, in the transport context, which increases the attentional demands. In
particular, its usefulness in modelling of the perceived risk on the road could
be explored if continuous EEG and behavioural data are collected jointly.

In a choice modelling context, previous attempts to combine neuroscienti�c
concepts with mathematical models resulted in the emergence of decision
�eld theory (DFT) (Hancock et al., 2018), which allowed for an adoption
of a new, underlying decision rule in the models. However, in the current
study, a model based on the random utility maximisation (RUM) theory is
used to incorporate neural data. It was chosen because, on one hand, RUM
is su�ciently �exible and powerful to allow for the incorporation of neural
inputs, while at the same time being a relatively simple and well-understood
method. For this reason, it has been selected for the �rst attempts to use
jointly with novel data. Beyond the model's decision rule, there are di�erent
possible approaches to include neural data as indicators in the model. For
example, structural equation modelling (SEM) allows accounting for the fact
that both, the choice and the indicators are driven by the same underlying
latent variable. However, SEM produces ine�cient estimates, where they

4Brain patterns form sinusoidal waves that are measured from peak to peak, with am-
plitude ranging from 0.5 to 100 µV. The brainwaves are measured in cycles per second
(Hertz) which are also known as a frequency of brain wave activity. There are �ve ma-
jor brainwaves identi�ed: beta, alpha, theta, delta and gamma. The frequency of alpha
brainwaves ranges between 8-13 Hz (Ambekar and Achrekar, 2014; Isa et al., 2014; Teplan
et al., 2002).
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only use the information provided by the indicators and the information on
the choices made by the respondent is not accounted for (Civelek, 2018).
Further, indicators could be directly incorporated into the choice model as
explanatory variables. However, this approach can give rise to the endogene-
ity bias, if some unobserved factors in�uence both choices and indicators.
Then, treating indicators as a direct, error-free measure of the latent variable
can lead to inconsistent estimates. Finally, this method assumes causality
between the indicators and the observed behaviour, which is particularly
problematic because we cannot safely assume that a certain response to the
indicator has a causal relationship with the observed choice (Hensher et al.,
2005). For this reason, Hybrid Choice Models (HCM) are the most suitable
framework to incorporate neural data into the model because they do not as-
sume causality between the indicators and the dependent variable. Instead,
they allow capturing simultaneously the impact of the exogenous variables on
the choices and the indicators of the latent variable to create a link between
them (Vij and Walker, 2016). HCMs have been previously used mostly to
combine latent constructs such as attitudes, opinions or perceptions together
with observed choices in a single model structure by the means of measurable
indicators (Abou-Zeid and Ben-Akiva, 2014; Ben-Akiva et al., 2002; Bolduc
and Alvarez-Daziano, 2010). More recently, Paschalidis et al. (2019) applied
a hybrid framework with heart rate and skin conductance as indicators of
unobserved stress to investigate its impact on driving behaviour.

The present paper addresses the shortcoming of past work by exploiting these
novel opportunities in terms of an experiment that employs neuroimaging
techniques to explore cycling risk perception in virtual reality simulation.
We employ a dynamic HCM with an unobserved risk as a latent variable and
we use α wave data as an indicator of the perceived risk to better explain
the behavioural responses of the cyclist in the simulated environment. This
approach allows us to achieve better understanding of cyclists' choices and
make inferences about their neural background.

The remainder of this paper is organised as follows. We present our speci�c
hypotheses guided by the literature in the next section. The data collection
design and sample characteristics are presented next, followed by the model
structure and speci�cation. We next turn to the results section, followed by
the discussion section which reviews the insights from the analysis.

2 Hypotheses

In this section, we propose a number of hypotheses related to the changes in
cyclists' behaviour with respect to �uctuations in the perceived level of risk
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due to dynamic tra�c conditions and associated neural processing of their
choices.

2.1 Behavioural data

� Hypothesis 1a: The presence of a passing car at the junction increases
perceived risk, which in turn increases cyclists' propensity to reduce
speed.

� Hypothesis 1b: The increase (or decrease) in perceived risk and hence
the propensity to reduce (or increase) speed is a function of the remain-
ing distance to reach the junction. That is, a shorter distance until
the potential collision with the car at the junction increases cyclists'
propensity to reduce speed.

These hypotheses are driven by the fact that junctions are parts of the road in
our experiment where accidents with cars are possible, while speed reduction
is the most common avoidance manoeuvre among cyclists (Johnson et al.,
2010). Therefore, closer proximity to the junction and the presence of a car
are expected to make cyclists brake more often in order to avoid collisions
with other agents on the road or to gain more time to assess the dynamic
situation at the junction, similarly to how we expect cyclists to react in reality
when approaching a dangerous road.

2.2 Neural data - α amplitude

� Hypothesis 2: The α wave decreases (or increases) with increased (or
reduced) risk.

This hypothesis draws on the existing literature which links α wave to stress,
visual attention, task performance and information processing relevant to
the task (Borghini et al., 2014; Fairclough et al., 2005; Fournier et al., 1999;
Slobounov et al., 2000; Verona et al., 2009). In particular, multiple previous
studies have shown that the changes of α activity were related to the strength
of attention to external stimuli required by the task (Lei and Roetting, 2011;
Mann et al., 1996; Simon et al., 2019; Vanni et al., 1997). In other words,
the presence of a dangerous element in the scenario (car crossing at the
junction) is considered to increase the task complexity, and consequently,
higher attentional demands lead to a decrease in the α power. Therefore, it
is hypothesised that α power is negatively associated with perceived risk.
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3 Experimental design and sample information

This section explains the experimental procedure, technical details of the data
collection and describes the equipment employed in the experiment i.e. the
instrumented bicycle, virtual reality goggles and the EEG device. Beyond,
we present the basic characteristics of the sample.

The experiment used six scenarios with an immersive presentation of tra�c
from the perspective of the cyclist. All the scenarios had a number of com-
mon elements. Firstly, the cyclist was riding on the pavement. Secondly, in
each scenario, there were two locations where a potential collision with cars
could occur, namely two junctions, as seen in Figure 4.1. Thirdly, all the sce-
narios featured pedestrians as well as cars and the percentage of pedestrians
and cars which would cross the bike lane or turn at the junction was con-
stant. At the same time, there were also random components in each scenario
which stemmed from the fact that in each scenario, the speci�c movements of
crossing pedestrians and turning cars were presented randomly, while keeping
their overall percentage the same across all the scenarios. This resulted in
di�erences between scenarios in terms of the actual number of cars at the
�collision locations� when the cyclist was passing by these points. This was
clearly also in�uenced by the speed of the cyclist, and hence the point in time
at which the �collision locations� were reached. Altogether, these elements
gave basis for the complex tra�c scenarios which a participant was required
to navigate. The microsimulation of tra�c used in the scenarios was designed
using PTV Vissim software (PTV-Group, 2021) and later developed in Unity
as a 3D, virtual reality scenario (Unity, 2017). Therefore, the scenarios en-
compassed a 360-degree view of the road which surrounded the participant
and responded to their head movements. Importantly, based on the feedback
received during initial pre-testing of the set-up, sound was also included to
capture both visual and auditory cues that are available to cyclists in real-life
settings. The volume of noise generated by the vehicles was consistent with
their distance to the cyclist so that the sound of an approaching car increased
as it got closer to the cyclist.

Several scenarios were used because we collected neural data which requires
a higher number of trials in order to obtain more stability in the EEG signal.
The task for the participant was to cycle through the scenario at the desired
pace until the �nish line at the end of each scenario. In order to navigate
through the scenario, the participant used the pedals of the bicycle and had
no ability to turn left or right. To brake, the participant used a hand brake
positioned on the right side of the handlebar. The instrumented bike can
be observed in Figure 4.2. The instrumented bike belongs to Future Cities
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Fig. 4.1: An example of collision point - a junction.

Laboratories in Singapore.

Each experimental session started with familiarising the participant with the
instrumented bicycle, including demonstrating how to use the hand brake
(all participants could ride a bike in reality). Subsequently, the participant
mounted the bike and the HTC Vive head mounted display (HMD) (Borrego
et al., 2018) and the EEG recording device Enobio (Riera et al., 2008) were
placed on their head. The Enobio headset used 8 electrodes (at FP1, FP2, Fz,
C3, Cz, C4, P3 and P4) sampling across the scalp. The system allowed for
a joint use with HTC Vive HMD. As a �rst step, the baseline brain activity
was recorded with the sampling rate of 128 Hz5, while participants had their
eyes open and focussed their gaze on one point on the screen for 1 minute.
The same procedure was then repeated with eyes closed. Before the main
part of the experiment started, participants had a trial session to familiarise
themselves with the use of the bicycle and the virtual environment. The
summary of the data collected in the experiment is presented in Table 4.1.

Fifty individuals participated in the experiment, comprising of sta� and stu-
dents of the National University of Singapore as well as members of the
general public. Nonetheless, two of them failed to complete the whole ex-
periment hence the �nal sample size was 48 individuals. The mean age of
the participants was 26.5 years, with 6.7 years standard deviation. It is im-

5Hertz (Hz) is a unit of temporal frequency which denotes the number of occurrences
of an event per one second. For example, a recording resolution of 128 Hz means that the
data has been collected 128 times per one second.
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Fig. 4.2: Instrumented bicycle used in the experiment

Table 4.1: Summary of data collected in the experiment.

Data type Variable
Resolution of

recording

Unit of mea-

surement

Behavioural Speed 4 Hz km/h
Behavioural Acceleration 4 Hz m/s2

Neural α wave amplitude 128 Hz µV (microvolt)

portant to emphasize that the small sample size is a typical issue faced by
researchers working with VR and/or driving simulator data (Di Stasi et al.,
2012; Katsis et al., 2011; Moussa et al., 2012) as the experiment duration is
much longer and the associated cost much higher compared to typical stated
preference studies.

4 Methods for EEG data cleaning and extrac-

tion

The EEG signals collected through the scalp are inherently noisy and we thus
applied a number of steps to eliminate artefacts and improve the signal-to-
noise ratio. Speci�cally, we �rst applied a 1-20 Hz bandpass �ltering (BPF),
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a linear transformation that retains the components of the data within this
speci�c band of frequencies (Christiano and Fitzgerald, 2003) and removes
frequencies outside of this range that may stem from physiological sources
such as galvanic skin responses or external environmental sources such as
electronic equipment. Next, we cleaned the data to remove noise stemming
from eyeblinks (movement artefacts were corrected using a multiple source
analysis method) (Berg and Scherg, 1994; Ille et al., 2002). We next com-
puted the power spectrum of the EEG data using Welch's method (Welch,
1967) which estimates the power spectra based on the Fast Fourier Transform
(FFT) (Shaker, 2007), before we averaged the EEG data from 128 Hz to 4
Hz to match the resolution of the behavioural data. Finally, we normalized
the logarithm of α wave so that for each individual α values have mean of 0
and the standard deviation of 1.

5 Modelling framework

In this section we describe the modelling framework used in this study, where
we developed a hybrid choice model with discrete and continuous choice com-
ponents and a latent variable. Cyclists' choices of action in the virtual envi-
ronment were recorded every quarter of a second. In Figure 4.3, the latent
variables are presented in ovals and the observed variables are presented in
rectangles. The utility of each of the discrete actions (i.e. accelerate, brake,
decelerate, maintain speed and wait) is in�uenced by the di�erent exogenous
variables related to the situation in the scenario and latent perceived risk.
The latent component of the model consists of the latent risk with α wave as
its indicator and two explanatory variables. If the cyclist chooses to acceler-
ate, brake, or decelerate, then the continuous component for a given action is
considered. Importantly, in the continuous part, the acceleration is split into
two cases, namely acceleration when previously stopped and when previously
in motion. We present a more detailed description of each model component
in turn.

5.1 Speci�cation of latent risk

The developed hybrid choice model encompasses a latent component that
seeks to capture the impact of risk on cyclist's actions, where it is believed
that in real life the individuals also adjust their cycling in response to observed
level of risk. Based on the existing literature, it is assumed that the perceived
risk is in�uenced by a cyclist's distance to the junction (Carter et al., 2007;
Landis et al., 2003; Wang and Akar, 2018) and the presence of a car at the
junction (Chaurand and Delhomme, 2013; Gri�n et al., 2020). The latter
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Fig. 4.3: A model structure

was included as an additive interaction term. The structural equation for the
latent variable can be seen in Equation 4.1.

θlatent−risk = (γdist−to−junction + γcar−present

· xcar−present) · xdist−to−junction + ε
(4.1)

Where:

� xdist−to−junction is the variable representing the cyclist's distance to
the junction (measured in meters);

� xcar−present is a dummy variable, taking value 1 if a car is present at
the junction at current point in time and 0, otherwise;

� ε is an error term.

Further, the corresponding parameters:

� γdist−to−junction is the parameter representing the in�uence of the cy-
clist's distance to the junction on the perceived risk;

� γcar−present is the interaction parameter representing the additive shift
in the perceived risk if a car is present at the junction.
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Importantly, di�erent forms of structural equations for the latent variable
were tested, including for example, discrete levels of time to collision, however
the �nal speci�cation was chosen as described above because the analysis of
the data showed that the level of risk that the cyclist perceives in each time
point is related to their distance to the hazardous part of the scenario, i.e. the
junction. This particular relationship can possibly be explained by the fact
that distance is an easier feature to be judged by the cyclist compared to, for
example, time until arrival to the junction. Then, we included the presence of
the car at the junction which undoubtedly ampli�es the perceived risk since
it materialises the potential hazard.

5.2 Speci�cation of discrete component

5.2.1 Dependent variable

The choice variable for the discrete part of the model allows for �ve possi-
ble actions, namely, accelerate, brake, decelerate, maintain speed, and wait.
These actions are linked to the changes in cycling speed, where accelerate

refers to an increase in speed, brake encompasses cases of an abrupt decline
in speed, while decelerate covers instances where a person slows down at a
slower rate than when braking. This distinction was made to account for dif-
ferent underlying reasons for these actions. For example, braking may be the
result of a sudden emergence of a car at the junction leading to an increase
in the risk of collision; while deceleration may be chosen when there are no
imminent risks of collision, but the need for increased caution (e.g. when the
cyclist is still far from the junction) or it is possible that deceleration arises
simply when the cyclist stops or reduces pedalling due to physical exhaus-
tion. Cases where a person is moving while keeping a constant speed are
classi�ed as maintain speed. Finally, wait refers to instances where a cyclist
has stopped and remains still. Importantly, wait is not available when the
cyclist is currently moving. On the other hand, when the cyclist in not in
motion, the only two available actions are wait and accelerate. Wait was in-
cluded as an alternative because we observed in the data that cyclists chose
it close the junction to allow for the tra�c to clear and cross the junction at
an appropriate time.

To summarise, when the cyclist is moving, the available actions are: acceler-
ate, brake, decelerate, maintain speed, whereas when the cyclist is not moving,
he can either wait or accelerate. For this reason, the reference category in the
model is accelerate because this is the only action which is always available,
whether moving or not. Finally, this categorisation of actions was chosen be-
cause it allows us to capture a cyclist's reactions to the dynamic environment
in the scenario by the degree to which he adjusts his current speed, similarly
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to individuals cycling in the real world. In other words, we are interested
in the instances when the changes in the external environment induce the
cyclist to switch his currently chosen action to a di�erent one.

5.2.2 Utility functions

As a result of our approach described in the previous section, the utility
associated with each action is a function of:

� the cyclist's distance to the junction;

� the cyclist's speed;

� the presence of a car at the junction and the time until the collision
with the given car (if there is one), considering current speed of the
cyclist.

In order to account for the potential non-linear e�ects of distance and speed,
we included the polynomials of distance to the junction and cyclist's speed
up to the third order. Furthermore, the impact of a car being present at the
junction is captured by a dummy which indicates a potential collision with a
car, given the cyclist's current distance to the junction and his current speed,
which are recorded every quarter second. The reason for using the attribute
on a possible collision in the future is that it allows us to capture how a
cyclist adjusts his current behaviour to avoid colliding with the car. We did
not use the presence of the car at the junction, because, while it increases
the perceived risk, it does not automatically require acting upon. In other
words, it would not enable us to observe how a cyclist changes his behaviour
as a result of increase in situation riskiness. Moreover, we included a variable
that accounts for the time remaining until collision (again with the resolution
of a quarter second) if a car is present at the junction. This time component
allows us to consider the impact of the remaining time to the collision on the
choice of di�erent actions. Finally, we also included a random variable to
account for individuals' heterogeneity in preferences for di�erent actions.

Therefore, below we present the utility functions associated with the decision
of a cyclist n to choose one of the �ve actions (Acc=accelerate, Br=brake,
Dec=decelerate, Maintain=maintain speed, Wait=wait) at time t, where ac-
celerate is used as the baseline. Importantly, Equations 4.2 - 4.5 show full
speci�cation but some components were removed during the actual estima-
tion of the model because they were insigni�cant, or they were not relevant
explanators for that given alternative6. For instance, in the actual utility

6Beyond, there were other variables such as cyclist's distance to the junction after
crossing it, which were tested as well but not included in the �nal models due to non-
intuitive sign and statistical insigni�cance.
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function for Wait, we did not retain the speed or distance to the junction as
they were not meaningful components when the cyclist was not moving.

VMaintainn,t
= δMaintain + σMaintain · ξMaintain

+ βdist−to−junctionMaintain
· xdist−to−junctionn,t

+ βdist−secondMaintain
· x2dist−to−junctionn,t

+ βdist−thirdMaintain
· x3dist−to−junctionn,t

+ βspeedMaintain
· xspeedn,t + βspeed−secondMaintain

· x2speedn,t

+ βspeed−thirdMaintain
· x3speedn,t

+ βcollisionMaintain

· xcollisionn,t
· xλtime−collisionMaintain

time−collisionn,t
+ βriskMaintain

· θlatent−risk
(4.2)

VBrn,t
= δBr + σBrake · ξBr

+ βdist−to−junctionBr
· xdist−to−junctionn,t + βdist−secondBr

· x2dist−to−junctionn,t
+ βdist−thirdBr

· x3dist−to−junctionn,t

+ βspeedBr
· xspeedn,t

+ βspeed−secondBr
· x2speedn,t

+ βspeed−thirdBr
· x3speedn,t

+ βcollisionBr
· xcollisionn,t

· xλtime−collisionBr

time−collisionn,t
+ βriskBr

· θlatent−risk
(4.3)

VDecn,t = δDec + σDec · ξDec
+ βdist−to−junctionDec

· xdist−to−junctionn,t + βdist−secondDec

· x2dist−to−junctionn,t
+ βdist−thirdDec

· x3dist−to−junctionn,t

+ βspeedDec
· xspeedn,t

+ βspeed−secondDec
· x2speedn,t

+ βspeed−thirdDec
· x3speedn,t

+ βcollisionDec
· xcollisionn,t · x

λtime−collisionDec

time−collisionn,t
+ βriskDec

· θlatent−risk
(4.4)
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VWaitn,t
= δWait + σWait · ξWait

+ βdist−to−junctionWait
· xdist−to−junctionn,t + βdist−secondWait

· x2dist−to−junctionn,t
+ βdist−thirdWait

· x3dist−to−junctionn,t

+ βspeedWait
· xspeedn,t

+ βspeed−secondWait
· x2speedn,t

+ βspeed−thirdWait
· x3speedn,t

+ βcollisionWait
· xcollisionn,t

· xλtime−collisionWait

time−collisionn,t
+ βriskWait

· θlatent−risk
(4.5)

VAccn,t
= 0 (4.6)

The δi parameters in Equations 4.2 to 4.5 above represent the alternative
speci�c constants (ASC), where the subscripts refer to each action. We al-
lowed for random heterogeneity in these preferences through the additional
terms σi, which multiply a standard Normal variate ξi.

Also, there are several other components which look at the impact of
di�erent variables in the scenarios on the utilities, as seen in Table 4.2.

The Equations 4.2 to 4.5 also have parameters for each action, where for the
ease of notation we use subscript i in the text that can denote Accelerate,
Brake, Decelerate, Maintain speed and Wait :

� δi represent the alternative speci�c constant (ASC) for each action;

� σi captures the heterogeneity in the alternative speci�c constant (ASC)
for each action;

� βdist−to−junctioni , βdist−secondi and βdist−thirdi are parameters which
represent the impact of the distance to the junction on the utility for
each action, �rst, second and third order, respectively;

� βspeedi , βspeed−secondi and βspeed−thirdi are parameters which represent
the impact of the cyclist's speed on the utility for each action, �rst,
second and third order, respectively;

� βcollisioni are the parameters which show the impact of the potential
presence of the car at the junction on the utility for each action;

� βriski are the parameters that represent the impact of latent risk on
di�erent actions;
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Table 4.2: Variables used in the utility functions.

Variable

name
Variable meaning Units

xdist−to−junction

cyclist's distance to the junction; used also
in polynomial form: xdist−to−junction2 and
xdist−to−junction3 to capture the non-linear
impacts

metres

xspeed

cyclist's speed; used also in polynomial form:
xspeed2 , xspeed3 to capture the non-linear im-
pacts

km/h

xcollision

dummy variables which denote if there would
be a collision with the car at the junction when
the cyclist would arrive there, given his cur-
rent speed and distance to the junction

equal to 1
if true, 0
otherwise

xtime−collision

remaining time to collision between cyclist and
the car given cyclists current speed and dis-
tance to the junction

seconds

θlatent−risk latent risk variable -

ξi
random variable that represent the individ-
ual's heterogeneity for di�erent actions

-

� λtime−collisioni
are the parameters which represent the impact of the

time left until the collision on each action.

5.3 Speci�cation of continuous component

The continuous component of the model was developed to give an additional
level of detail on cycling behaviour, providing information on the magni-
tude of the actions chosen in the discrete component. This not only allows to
achieve higher level of understanding of modelled behaviour, but its also helps
to validate further the adopted methodological approach. Consequently, in
the continuous component of the model, the dependent variables are the
continuous values of accelerate, decelerate and brake (called acceleration,
deceleration and braking deceleration, respectively, in the continuous part),
chosen by the cyclist. The model assumes that the cyclist �rstly chooses one
of these three actions in the discrete part of the model and subsequently he
decides on the acceleration/deceleration associated with the chosen decision
in the continuous part. The continuous decision is thus conditional on the
discrete choice. In the case of acceleration in the continuous part, it di�er-
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entiates between accelerating when the cyclist was moving in the previous
time point and when he was waiting (i.e. was stopped). For the former, the
current cycling speed is expected to a�ect the chosen value of acceleration
while for the latter, the current speed is zero. Guided by the shapes of the
distributions of the observed acceleration and deceleration values, the depen-
dent variable is assumed to follow a log-normal distribution with the mean
being a function of explanatory variables (e.g. current speed).

5.4 Speci�cation of measurement component

The �nal component of the hybrid structure is the measurement model which
is used to link the latent variable with its indicators. In our model, the risk is
not observed or measured directly, but instead it is manifested in its indicator,
the alpha (α) brain activity, derived from the EEG data. To account for the
heterogeneity in the α ranges across the respondents, normalized values of α
have been employed (as used by Paschalidis et al. (2019) for physiological in-
dicators and Makeig and Jung (1995) for the EEG signal). Multiple previous
studies showed that the changes of α activity were related to the strength of
attention to external stimuli required by the task, where naturally more haz-
ardous elements increase these attention demands. The measurement model
can be seen in Equation 4.7.

α = ζαθlatent−risk + να (4.7)

Where,

� θlatent−risk is latent risk variable;

� να is an independent error term,

and the corresponding parameter:

� ζα is a parameter relating the latent risk to its indicator, the α wave.

6 Results

This section presents the full results of the hybrid model in Table 4.3 and
the di�erent components of the modelling approach developed in this paper
are described in turns. The model was estimated using the Apollo software
(Hess and Palma, 2019).
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Table 4.3: A discrete-continuous model (robust standard errors and t-ratios in brackets).

LL(start): -152236.00
LL(�nal, whole model): -149642.40
AIC: 299370.70
BIC: 299752.40
LL(�nal, choice component): -45129.09
LL(�nal, acceleration when static): 464.95
LL(�nal, acceleration when moving): -14384.50
LL(�nal, deceleration): -7492.83
LL(�nal, braking deceleration): -8338.87
LL(�nal, α): -74790.59

Action Estimate (rob. std.err.; rob.t-ratios)

ASC (δ)

Maintain -0.2644 (0.0797; -3.32)
Brake -2.4598 (0.1256; -19.58)

Decelerate -2.9847 (0.1183; -25.23)
Wait 4.1069 (0.1869; 21.98)

Accelerate 0

Individual's heterogeneity (σ)
Maintain 0.2241 (0.0217; 10.34)
Brake 0.0363 (0.0397; 0.92)

Decelerate -0.1051 (0.0445; -2.36)

Collision (βcollision)

Maintain 0.2031 (0.0384; 5.28)
Brake 0.7535 (0.1542; 4.89)

Decelerate 0.3616 (0.1185; 3.05)
Wait 0.6292 (0.1758; 3.58)

Time to collision (λtime−collision)
Brake -0.5280 (0.0905; -5.83)

Decelerate -0.1612 (0.1508; -1.07)

Distance to junction (βdist−to−junction)

1st order Maintain 0.0444 (0.0038; 11.68)
2nd order Maintain -0.0835 (0.0085; -9.86)
1st order Brake 0.1900 (0.0138; 13.78)
2nd order Brake -0.2708 (0.0604; -4.48)
3rd order Brake 0.0195 (0.0080; 2.44)
1st order Decelerate 0.0850 (0.0125; 6.78)
2nd order Decelerate -0.2446 (0.0621; -3.94)
3rd order Decelerate 0.0166 (0.0078; 2.12)

Speed (βSpeed)

1st order Maintain 0.0605 (0.0062; 9.80)
2nd order Maintain -0.0026 (0.0004; -5.79)
1st order Brake 0.0458 (0.0141; 3.26)
2nd order Brake 0.0014 (0.0006; 2.25)
1st order Decelerate 0.1931 (0.0270; 7.16)
2nd order Decelerate -0.0058 (0.0019; -3.09)
3rd order Decelerate 0.0001 (0.0000; 3.06)

Continuous acceleration when stopped
µ -3.0631 (0.1386; -22.10)
σ 2.2931 (0.0795; 28.84)

Continuous acceleration when in motion
µ -0.3722 (0.0336; -11.09)
σ 1.0912 (0.0144; 75.58)

Speed 0.0518 (0.0022; 23.90)

Continuous deceleration
µ -0.2864 (0.0435; -6.59)
σ 1.1047 (0.0196; 56.38)

Speed 0.0394 (0.0026; 15.15)

Continuous braking deceleration
µ -0.4394 (0.0639; -6.87)
σ 1.1958 (0.0253; 47.32)

Speed 0.0602 (0.0038; 15.97)

Latent risk (θ)

Brake (βriskBr
) 0.3285 (0.0774; 4.24)

Distance to the junction (γdist−to−junction) -0.0762 (0.0058; -13.11)
Presence of the car at the junction (γcar−present) 0.0041 (0.0015; 2.72)

ζα -0.0937 (0.0187; -5.01)
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6.1 Latent component

We start by looking at the latent variable since it is a key component of the
model, where we see that higher risk signi�cantly increases the propensity
to brake (estimate = 0.3285), whereas for the other actions the e�ect is not
signi�cantly di�erent from that to accelerate. The result for brake is plausible
because higher risk induces more braking.

6.1.1 Measurement model

Then, looking at the results of the measurement model, we observe a negative
and signi�cant ζα coe�cient, which suggests that increased risk decreases the
amplitude of α wave, which is in line with the existing literature.

6.1.2 Structural model

Furthermore, in the structural model within the latent component we observe
a negative relationship between distance to the junction and perceived risk
(estimate = -0.0762), which again makes sense where higher distance to the
hazardous area decreases perceived risk. Then, the presence of the car at the
junction dummy variable is an additive shift for when there is a car present at
the junction regardless of the cyclist's distance to the junction. The e�ect (of
a car being present) on risk perception is visualised in the Figure 4.4, where
we see that the presence of the car results in an upward shift in the perceived
risk. To clarify, the negative sign of the perceived risk is not relevant here
because it only shows us the relationship within the latent construct where
the plot allows us to understand how the explanatory variables (here the
distance and presence of the car) in�uence the unobserved risk.

6.2 Discrete component

We, then, turn to the discrete component of the model, where the ASCs rep-
resent the impact of di�erent actions on utility, all else being equal. In the
current model, the ASCs are highly signi�cant which may partly be caused by
some relevant explanatory variables being omitted from the model or due to
an intrinsic bias towards one of the alternatives. For example, the latter can
be observed in the large positive ASC for Wait which suggests that cyclists
have an inherent preference for waiting (being stopped) relative to Accelerate.
Moreover, in the case of dynamic data, such as the one used in the current
model, it is not unexpected because the individuals perform some actions
signi�cantly more often than others (Lorenzo Varela, 2018). Nonetheless, to
alleviate this issue, beyond scenario related variables, additional parameters
for random heterogeneity were included in the model. In particular, the σ
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Fig. 4.4: Risk perception plot.

estimated for maintain speed and decelerate are statistically signi�cant show-
ing the individual's heterogeneity for these two actions, while σ for wait and
brake was not signi�cantly di�erent from zero. It suggests that individuals
di�er in their propensity to maintain speed and decelerate regardless of their
perceived risk, which may be related to other factors such as the level physi-
cal �tness, personal traits or cycling style.

Next, the dummy collision variables demonstrate that the potential presence
of a car at the junction when cyclists arrive at the junction increases the
propensity to brake. The next more likely actions are wait and decelerate

and �nally maintain speed (all relative to accelerate, which is therefore the
least likely action). These again show realistic cycling behaviour which we
would observe in real life situation when cyclists approach a junction in the
presence of a car.

Moreover, the time to collision parameters for brake and decelerate allowed
us to factor in the time left to the collision given a cyclist's speed and distance
to the junction. These show us that less time left to the collision increases
the probability of braking and decelerating relative to accelerating. Again,
these results are plausible where closeness to a potential accident with a car
at the junction increases the likelihood of reaction by decreasing the speed.
Further, for maintain speed and wait, the e�ect was not signi�cantly di�erent
compared to accelerate.

Then, we see a number of distances to junction variables, where the results
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of these variables are demonstrated in the Figure 4.5. We can see the graphs

Fig. 4.5: 3D graphs of the utilities for each action given cyclist's current speed and
distance to the junction.

of utility for decelerate, maintain speed and brake depending on the cycling
speed and distance to the junction. The same graph is shown from di�erent
angles to make the interpretation easier.

Looking at the graph for brake, we observe that the utility for this action is
the highest at high speed levels and it decreases as the cycling speed falls.
In particular, it increases 10 to 20 meters from the junction which is an area
where cyclists tend to slow down (or stop) to assess the situation at the junc-
tion. On the other hand, utility for braking is lower when the cyclist is far
away from the junction or very close to it because he has no reason to brake
far away and he wants to cross quickly when at the junction.
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Next, looking at the graph for decelerate, we see that the utility for deceler-
ating is the highest at the high speed levels where there is the biggest scope
for physical exhaustion to emerge, and it falls with speed. Similar to brake,
utility for decelerate increases between 10-20 meters from the junction.

Finally, looking at the graph for maintain speed, we see that the utility for
this action is the highest when cyclists are going at low to medium speed
levels and decreases as the cycling speed goes up, independently of the dis-
tance to the junction. Moreover, it also increases up to about 30 meters away
from the junction, where it starts falling, as the cyclists becomes closer to
the junction.

6.3 Continuous component

Finally, the continuous part of the model shows us that all the estimates are
signi�cant. Importantly, the dependent variables in all four cases are derived
from the absolute values of acceleration but for each of them, the values
are only considered when the given action is chosen in the discrete part, as
described above. Therefore, for correct interpretation of the parameter esti-
mates, it should be noted that the acceleration refers to increasing velocity
in the case of accelerate as a discrete choice and decrease in velocity for de-
celeration and braking deceleration. The µ and σ in the model denote the
means and standard deviations of the logarithm of the dependent variables.

Firstly, comparing the values of µ for acceleration when static and moving
we see a considerably more negative value in case of stationary acceleration.
This suggests that, on average, the acceleration rates are smaller when cy-
clists only start accelerating after being stopped, than when already moving,
which can be expected as cyclist is only gaining speed from a standstill.

Next, looking at the values of σ for acceleration when static and when in mo-
tion, we see that the standard deviation of acceleration from static position
is twice as high, which can be attributed to the higher variability of indi-
vidual strength input when starting the bicycle. Whereas when moving, the
level of force required to accelerate is more homogenous because individuals
bene�t from momentum leading to smaller standard deviation of accelera-
tion. Notably, the σ for acceleration when previously moving, deceleration
and braking deceleration are similar in magnitude.

Further, the estimated parameters for speed are positive in all three cases (it
has been dropped from the model for acceleration when previously waiting
because in this case the cycling speed is zero) and they show that at higher
current speed, the magnitude of acceleration changes more. In the case of

127



Chapter 4. Modelling risk perception using a dynamic hybrid choice model and

brain-imaging data: application to virtual reality cycling

braking deceleration and deceleration, it shows that the scope for reducing
the speed is larger if cyclist is going at a higher speed. While, in case of
acceleration, we see that it becomes easier to accelerate.

6.4 Hybrid choice model e�ciency gain

Finally, to assess the impact of the inclusion of the neural data in the hybrid
model, we compare the model results between our model as showed in Table
4.3, and a reduced model, where the measurement component in the latent
part was dropped (see Appendix C, Table B.1 for the full model output).
Hence, the role of the latent variable is explained only by the choice data.
We, then, see that removing a measurement model changes the magnitude
of distance variable in the structural equation and it becomes less signi�cant
(change from t-ratio = -13.11 to t-ratio = -1.72). Moreover, in the reduced
model, the standard errors of variables increased from 0.0058 to 0.0305 for
distance variable and from 0.0015 to 0.0021 for car presence variable. There-
fore, the inclusion of the measurement model not only increases the e�ciency
of the parameters, but also con�rms the directionality of the link between
risk and α wave amplitude as demonstrated in the previous literature.

7 Discussion

The aim of the current paper was to jointly model behavioural and neu-
ral data in the hybrid choice model framework to gain insights into cycling
behaviour and associated neural processing and consequently, deepen our
understanding achieved with the previous models. Therefore, we proposed
three hypotheses with respect to observed behaviour and the α amplitude.

The results of the developed hybrid model are in line with our hypotheses.
The model estimates indicate that the cyclists in the virtual scenarios are in-
deed more likely to reduce their speed when approaching the junction where
passing cars are present (Hypothesis 1a). They also demonstrate that the
reaction to the passing cars becomes stronger as the cyclists get closer to the
potential collision (Hypothesis 1b). Further, the model allowed us to quan-
tify the relative impact of a range of in�uencing variables (such as a cyclist's
current speed or distance relative to the junction) on the cyclist's responses.
Together, they build a complex picture of cyclist's behaviour where we ob-
serve that among them, the most impactful on the choice of current action is
the possibility of collision with other road users, providing evidence that our
experiment was able to elicit realistic reactions to the tra�c events.

Further, the employment of the instrumented bicycle allowed us to capture
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the physical e�ort exerted by the cyclists, where we observe that high speed
levels increase the physical tiredness and results in a gradual loss of speed.
We could also observe that typical speed level developed by the cyclists in
our experiment is in line with that observed in other studies and that cyclists
naturally converged to that desired level by increasing or decreasing accelera-
tion rate accordingly. In particular, cyclists were more inclined to accelerate
or maintain speed if their current speed was below or within the range of
average speed developed by the cyclists in reality (Schleinitz et al., 2017).

The inclusion of the continuous element showed the magnitudes of the per-
formed actions allowing us to reach additional levels of detail with respect to
how cyclists behave. This in turn allowed us to expand current knowledge
of cyclists' choices in a dynamic environment. Moreover, these behavioural
results provide evidence that VR can be a reliable equipment in transport
safety research provided that the experimental design is suitable to capture
wide range of potential behaviour and encourages natural responses rather
than hinders the extent to which participants can represent their reactions.

Furthermore, the latent component in the model showed that the decreased
α amplitude is associated with the increased perceived risk and elevated com-
plexity of the task faced by the cyclist which in turn increases the propensity
to brake which con�rmed our hypothesis (Hypothesis 2). The bene�ts of
incorporating the neural data in explaining the behaviour are re�ected in
the improvement in the e�ciency (i.e. smaller standard errors) of variables
included in the structural equation (in comparison with a model that does
not use the neural data). These results, taken together, demonstrate a be-
havioural and neural congruence. In this sense, the neural data could be
seen as an alternative or at least an addition to attitudinal scales, frequently
used in the latent constructs. As these are claimed to be prone to bias of
the respondent (conscious or unconscious), heavily dependent on the choice
of scale or be susceptible to the experimenter e�ect. Therefore, neural data,
seen as an un�ltered response, could help o�setting these e�ects and provide
a validation tool if used jointly in the models. The results also demonstrate
the feasibility of successful incorporation of neural data into mathematical
models in general through the hybrid structure.

Nonetheless, it is crucial to be aware of the potential constraints of this type
of work. Even though, in this study we chose α power, which is a relatively
well-understood brainwave with a broad spectrum of studies which explored
it in di�erent conditions, it is important to take our results with a degree of
caution because this is an exploratory work. It attempts to marry di�cult
disciplines, therefore the promising results presented here are only a small
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step forward where undoubtedly more research is required to build a strong
case.

Another potential limitation of this work are the aspects in the scenario such
as the elements of urban infrastructure or features of other agents that also in-
�uence cyclists' behaviour, as suggested by the signi�cant alternative speci�c
constants in the model output, but which are not accounted for in the model.
Future work should, thus, consider the inclusion of other variables to fully
capture the physical changes in the scenarios, such as walking pedestrians,
as well as more random variables to account for inter-individual (between
di�erent respondents) and intra-individual (across observations within the
same person) heterogeneity (Hess and Train, 2011).

Overall, the practical implications of this study are three-fold. Firstly, this
study extends the practical knowledge on the VR study design for those
researchers who plan to implement it in the future, where we were able to
capture the complex behaviour and reactions of the cyclists depending on the
changing situation on the road. This, builds and increases the con�dence in
the validity of VR studies in transport context. Secondly, we provide evidence
that behavioural and neural data can be collected jointly using state-of-art
equipment currently available on the market with respect to HDMs and neu-
roimaging. Thirdly, we demonstrate how neural data can be incorporated
into the mathematical models and provide an example of an integrative ap-
proach to understanding human choices in the dynamic context. This serves
as the �rst step in bridging the gap between mathematical modelling and
neuroscience and is expected to encourage further research in this direction.
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Chapter 5

Discussion and conclusions

1 Summary

The broad goal of this thesis was to attempt to build bridges between choice
modelling and neuroscience. For this purpose, two case studies of cycling
behaviour in a virtual reality setting were designed to enable the simultane-
ous collection of behavioural and neuroimaging data. They allowed me to
explore the interplay between observed behaviour and neural measures, as-
sess the appropriateness of virtual reality as a research tool in this context,
and provide an example of preliminary e�orts of cross-disciplinary research
in this area. The introduction outlined several research gaps and this chap-
ter summarises the contribution of this thesis with respect to these identi�ed
gaps and creates a link between the separate chapters.

Gap 1: Scarce interdisciplinary approach to the investigation of

human behaviour on the road

In recent decades there has been enormous progress in neuroscienti�c research
concerning understanding the underlying neural mechanisms of observable
human behaviour, with the ultimate goal of departing from the concept of
the brain as a "black box". Nevertheless, thus far, the literature has shown
limited evidence of cross-disciplinary research studies in a transport context
that draw on the achievements of neuroscience or employ its methodology to
continuously record the neural activity of the brain while putting people in
complex, dynamic situations such as driving or walking. Nonetheless, such
research is crucial for providing insights into rapid changes in human percep-
tion that in�uence behaviour in a given dynamic situation. This has been
a consequence of lacking technology that would allow, on one hand, for the
gathering of neuroimaging data in a less rigorous setting, and on the other
hand, would enable the recreation of dynamic situations for research purposes
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beyond textual description, static pictures, or short videos. More recently,
the development of mobile EEG devices and virtual reality equipment made
these kinds of research e�orts more accessible and a�ordable. In order to
address this gap, the initial steps in the interdisciplinary research of such
nature are demonstrated, providing a prototype of the experimental setup,
and attempts to build a wholesome picture of cycling behaviour to emphasise
the potential of this combined research. Therefore, two case studies are con-
ducted that gave the basis for work presented in Chapters 2, 3 and 4. Their
design allowed for collecting choice (behaviour) data that could later be used
to construct mathematical models, and enabled me to simultaneously collect
neural data. Consequently, it was possible to make a link between the ob-
served behavioural data and corresponding neural activations. This was an
important contribution given the scarcity of existing datasets which would
allow for similar analysis and modelling.

Further, a sequential approach to these case studies, where one built upon
the achievements of the other, allowed me to draw conclusions in terms of
the suitability of di�erent solutions in such joint experimental e�orts. In
particular, both experiments used virtual scenarios and employed a mobile
EEG device but they used distinct input devices. The keyboard was used to
begin with because it o�ered more stability for participants' body movements
which is crucial in the case of the collection of neural data. Hence, the �rst
case study could be considered as a proof of concept that tested the feasibil-
ity of joint use of VR and EEG. Moreover, the successful completion of the
�rst case study encouraged trials in a more complex setting, which, in turn,
o�ered a higher degree of realism and gave more �exibility in terms of poten-
tial cycling behaviour that can be elicited. Consequently, it was possible to
compare the joint performance of VR and EEG under di�erent experimen-
tal settings to constitute a rich source of practical and behavioural insights.
They are particularly important as currently, this is still the beginning of this
research path.

Gap 2: Need for the internal validation of the studies in virtual

reality

There are previous studies that used virtual reality for behaviour research
in a transport context, nonetheless, little attention has been given to their
internal validation. Typically, the notion of validity in the context of VR
studies refers to their realism - the ability to reliably mimic the real world,
the degree of immersion or experienced presence in the virtual environment
(Schubert et al., 1999). Importantly, it is distinguished between internal va-
lidity which is the extent to which the observed results represent the truth
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in the studied population (Patino and Ferreira, 2018), and external validity
which refers to generalisability of the results of a study to a di�erent pop-
ulation or settings (Calder et al., 1982). This thesis focuses on an internal
validity of VR due to challenges associated with data collection in similar sce-
narios in real life. Nonetheless, it is considered a crucial interim step towards
an external validation. Therefore, it is important to test and investigate the
in�uence of di�erent experimental designs including audio-visual stimuli, em-
ployed equipment, or control devices on the responses elicited through these
means. Gathering abundant evidence on factors that play a role in shaping
the behaviour observed in VR allows for a critical assessment of its suitability
in a wide range of research contexts.

The work presented in Chapter 2 aimed at diminishing this gap, where the
participants were presented with two versions of the same cycling scenarios
where one was presented as a 360 degree immersive simulation and the other
as a non-immersive, two-dimensional video. Then, the cycling behaviour,
neural processing, and stated responses are compared in these two counter-
parts. This approach allowed for the achievement of two goals. Firstly, it
was possible to capture the in�uence of di�erent presentational methods on
risk elicitation in VR and discriminate between them based on the �ndings.
Secondly, the results obtained with distinct data types could be compared
and conclusions could be drawn about their suitability in a simulated cycling
context. Consequently, the �ndings presented in Chapter 2 demonstrated
that the seemingly minor change in a visual presentation led to a di�erence
in risk perception between these two scenario types based on the analysis of
cycling behaviour and neural processing. Interestingly, stated responses were
not congruent with these �ndings, therefore no distinction in perceived risk
could be made based on stated data. It suggests that this type of data may
not have been a suitable approach in this context.

The developments presented thus far were further expanded through the work
in Chapter 3 of this thesis, where the neural and behavioural data, elicited
by keyboard and the instrumented bicycle while using the same visual stim-
uli, was analysed. Such a direct comparison reduced the risk of confounding
e�ects and enabled me to attribute the observed di�erences to the introduced
changes. The study yielded several conclusions with respect to cycling per-
formance as well as neural processing, where it was evident that the use of
the instrumented bicycle played a signi�cant role in in�uencing individuals'
interactions with the simulated environments. Moreover, the multi-angled
approach allowed for obtaining a better understanding of its e�ect and could
draw conclusions about the interaction between di�erent types of responses.
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Gap 3: Lack of a choice model that incorporates dynamic be-

havioural and neural data

In the introduction of this thesis, key constraints that hinder interdisciplinary
research in this area were identi�ed. As a result of a mismatch in data
collection techniques, lacking operational model structures and established
methodologies for the embodiment of neuroimaging or physiological data
into a single modelling framework, there has been little progress in such
cross-disciplinary research. Nevertheless, the importance of the inclusion of
biometric responses in choice models in transport research has been previ-
ously recognised by attempts such as the study of Paschalidis et al. (2018)
who looked at the e�ects of stress on driving decisions through the incor-
poration of heart rate measure into a discrete choice model. Therefore, in
Chapter 4 of this thesis, a hybrid model was developed which not only ex-
plained the dynamic behaviour of cyclists but also incorporated neural data
as an indicator for perceived risk that contributes to a better understanding
of actions chosen by the cyclists. At the same time, it provided evidence of
the possibility of the inclusion of biometric data in mathematical modelling.

2 Objectives and contributions

In the introduction of this thesis, three distinct objectives for bridging the
gap between choice modelling and neuroscience were proposed. The following
section summarises how achieving these objectives enabled me to contribute
to the �eld of behavioural modelling.

Objective 1: To design an experiment to collect jointly behavioural

and neuroimaging data

This objective was met with the developments in Chapter 2, 3 and 4, where,
for the work presented in these three chapters, two experiments in virtual re-
ality were designed. In the �rst experiment, participants cycled through the
simulated scenarios using the keyboard while stated responses about the per-
ceived risk, dynamic cycling behaviour data as well as the continuous EEG
signal were simultaneously collected. In the second experiment, dynamic
cycling data and EEG signals were collected while participants navigated
the simulated scenarios on the instrumented bicycle. Therefore, this thesis
contributes by proposing an experimental framework for combined research
where implications are relevant for researchers interested in conducting VR
studies with a neuroimaging component because it shows that HMD and
EEG which are both placed on the participant's head can be e�ectively used
at the same time. This minimises the need for time-consuming EEG equip-
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ment modi�cations or the involvement of alternative, often more costly, VR
appliances such as immersive caves. Moreover, the �ndings provide guidance
in terms of the suitability of di�erent data types for the elicitation of mo-
mentarily risk perception and demonstrate the interplay between them. They
emphasise the importance of the choice of appropriate measures according to
the research aims, where in the dynamic context, behavioural and neural data
were shown to be more appropriate in capturing changes in perceived risk,
while stated data was less relevant. This gives some indication of the relative
advantages of di�erent data types. Behavioural as well as neural data could
have been recorded which much higher frequency than stated data where it
would be impossible to ask participants to report their perceived risk four
times per second (which is the recording resolution of behavioural data in the
experiments). Additionally, the reliance on observed behaviour and neural
measures rather than stated responses addresses the issue of misreported or
biased responses with regard to perceived risk.

Overall, this practical work demonstrated the feasibility of combined research
in a transport context, providing a benchmark for future studies and increased
the awareness concerning the challenges associated with this integrated re-
search.

Objective 2: To evaluate the impact of di�erent experimental de-

signs on behaviour in virtual reality

This objective was met with the developments in Chapter 2 and 3. In partic-
ular, in Chapter 2, multinomial logit model (MNL) was estimated to obtain
insights into di�erences in cycling behaviour between immersive and non-
immersive presentation methods in VR. Moreover, an ordered logit model
was used to investigate how these two presentation methods in�uence stated
risk and �nally their e�ect on neural processing was tested with the paired
t-test. Furthermore, in Chapter 3, the di�erences in behaviour and neural
processing, elicited by two experiments where one used a keyboard and the
other employed the instrumented bicycle to navigate through the simulated
environment, were statistically tested. The work from both chapters showed
signi�cant di�erences as a result of the applied modi�cation in the experimen-
tal design, highlighting its importance for the validity and generalisability of
the �ndings.

Firstly, the results emphasise the importance of the experimental design con-
cerning the impact of visual stimuli on behaviour. It is important because in
the VR domain, there are frequently studies that aim at investigating the per-
ceptions of thus far non-existent products such as fully autonomous vehicles
or novel contexts, for example, a new public transport route. The research

141



Chapter 5. Discussion and conclusions

of such exploratory nature, presented in this thesis, is valuable since all the
considerations concerning equipment and/or graphic design of the VR study
ought to be weighed against their costs. Consequently, this thesis contributes
by increasing researchers' awareness of the impact of di�erent designs on the
results which only then allows for drawing valid conclusions.

Secondly, it was found that the type of data chosen for the study can lead
to distinct conclusions. Therefore, it should be selected carefully depending
on the design of the study and its purpose to minimise its impact on partici-
pants' choices. For instance, surveys and stated responses are a popular and
useful tool in social and psychological research where respondents can rely on
their past experience or have su�cient general knowledge about the context
to reliably compare the situation in question to a number of other scenar-
ios, quantitatively assess and report it. Naturally, these do not guarantee
that what people report conforms with their behaviour, however, it at least
gives the researchers some degree of con�dence in the results. This, how-
ever, may not be the case for dynamic contexts where a person's momentary
perceptions �uctuate with changing situations, henceforth, the measurement
approach has to be adjusted accordingly. Alternatively, it is possible to com-
bine two distinct methods (eg. static and dynamic) to increase the certainty
in the observed �ndings. Therefore, the crucial contributions of this thesis
show the trade-o� between di�erent technological solutions and the partici-
pants' behaviour and provide insights into the suitability of distinct research
methods in dynamic experimental designs.

Objective 3: To apply a joint model structure for behavioural and

neural data

This objective was met with the developments in Chapter 4, where a hy-
brid choice model that incorporated both behavioural cycling data and α

wave amplitudes was presented to provide an example of a single mathe-
matical structure that encompasses two di�erent data types. The proposed
modelling allowed me to explain the dynamic behaviour of the cyclists with
respect to the changing circumstances in the simulation i.e., the presence of
cars and distance to the junctions and enabled me to use α amplitudes as
an indicator of unobserved perceived risk to then relate it to observed ac-
tions. This work provides evidence that neuroscienti�c inputs can be used
in mathematical models where they contribute to a better understanding of
human behaviour and improve the e�ciency of the model. Therefore, the
main contribution is the proposed hybrid structure for the simultaneous use
of behavioural and neural data. It allows for future developments in this di-
rection where other hypotheses linking the behaviour and di�erent neural and
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biometric data can be tested. For example, the developed framework can be
applied in other contexts to explore the relationship between choices and dif-
ferent brainwaves. Furthermore, the existing framework could be expanded
by combining neural data and traditional data within a latent construct to
not only explore their relative performance in explaining individuals' choices
but also provide the basis for their cross-validation.

3 Limitations

This section discusses the main limitations of this thesis that emerged due
to the study design, equipment availability or lack of previous studies that
could serve as a blueprint for experimental approach and data analysis.

The work presented in this thesis is to a high degree interdisciplinary, hence-
forth, it not only required the expertise of di�erent disciplines and collabo-
ration between departments but also involved a variety of equipment and re-
sources including virtual reality headsets, instrumented bicycle, mobile EEG
devices as well as appropriate simulated scenarios. Consequently, to minimise
the costs while ensuring that the research objectives are met, the physical
equipment available at the department and the existing virtual reality sce-
narios were used. As a result, the two experiments presented in Chapter 3
used di�erent HMDs, where the �rst study employed an Oculus Rift and the
second one HTC Vive. Therefore, a limitation emerged, that was associated
with the fact that di�erent headsets have di�erent �elds of view (FOV), de-
�ned as the area that each of the user's eyes is expected to see (Arvilab.com,
2018; Yoo, 2017). Both headsets have the same diagonal FOV of 110◦ (Lange
et al., 2020; So�el et al., 2016; Yoo, 2017). However, the horizontal FOV dif-
fers between them, where Oculus is said to have about 90◦ while HTC Vive
100◦ FOV (Hunt, 2016). Consequently, these di�erences could have had an
impact on the extent of horizontal head movement required to compensate for
smaller FOV in the case of the Oculus Rift headset and the results presented
in section 5.2 in Chapter 3. Importantly, though, these values are an approx-
imation because HMD's �eld of view is a subjective measure that depends on
di�erent factors such as face geometry, the distance between eyes and lenses
or distance between pupils, which lead to di�erent space perceptions among
individuals. For example, Borrego et al. (2018) reported values of 94◦ and
100◦ horizontal FOV for Oculus Rift and HTC Vive, respectively. Beyond,
FOV is only one of many HMD features, together with display resolution,
refresh rate and types of lenses, that in�uence the overall experience of the
simulated environment (Bezmalinovic, 2020). In the case of currently used
devices, all these parameters are the same, with a resolution of 2169 x 1200
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pixels per eye OLED, Fresnel lenses and 90 Hz refresh rate (Borrego et al.,
2018).

Altogether, given the individual subjectivity of FOV and similarity of other
parameters between these two devices, it is assumed that the e�ect of di�er-
ent headsets on the overall results, although cannot be ruled out, is expected
to be negligible.

Furthermore, the study presented in Chapter 2 used a newly purchased mo-
bile EEG device that has not been previously tested within the department,
hence the speci�c guidelines for experimental design have not been developed
yet. Moreover, the experiment itself allowed for more �exibility and move-
ment than typical EEG studies. For these reasons, as well as limited existing
literature that would use the speci�c device, the case study in Chapter 2 faced
an issue of low-quality EEG data, which consequently led to an exclusion of
data for 16 participants. The resulting sample size made it impossible to
construct the choice model. A pilot study and preliminary tests of the equip-
ment conducted before the main data collection helped to reduce the extent
of the data loss caused by the misplacement of electrodes or interference of
VR googles. However, some factors such as participants movement (as dis-
cussed in section 3) could have been minimised if more precise instructions
were given. This has been later recti�ed in the second experiment, where the
participant's instructions were improved (see section 1 in appendix B).

Next, the study presented in Chapter 3 uses a between-subject design, while
the study in Chapter 2 adopts the within-subject approach. Therefore, the
implications of the use of both methods are discussed. Firstly, in the between-
subject design, each participant is exposed to only one experimental treat-
ment and the cause-and-e�ect is concluded based on the comparison of re-
spondents in di�erent conditions (Charness et al., 2012; Hampton, 2018). In
contrast, the within-subject design exposes the respondent to all experimen-
tal treatments and the comparison is made within the same person across
di�erent treatments to establish a causal relationship (Charness et al., 2012;
Hellier, 2018). The 'within' approach is more prone to di�erent confounds
resulting from one participant being repetitively subjected to experimen-
tal conditions such as sequence or order e�ects, where the possibility arises
that the order of the treatments may matter and the next treatment will
be a�ected by the preceding treatment (Glen, 2014). Further, practice and
fatigue e�ects may respectively lead to an improvement or deterioration in
performance due to task repetition (Süss and Schmiedek, 2000). Finally, car-
ryover or context e�ect can give rise to the situation where being tested in
one treatment changes how participant perceives the stimuli in the following
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treatments (Chong and Ahmed, 2017).

In the current study, in Chapter 2, there has been a particular potential for
the emergence of context e�ect when participants' responses regarding their
perceived risk and willingness to cycle could have been in�uenced by the com-
parison to the stimulus observed in the previous treatment. Nonetheless, this
and other potential biases due to within-subject design were minimised by
counterbalancing (through orthogonal design and randomisation) in which
the participants received all combinations of treatments in di�erent orders
(Hellier, 2018). On the other hand, the within-subject design o�ers internal
validity that is not dependent on random assignment, as is the case in the
between-subject approach. It frequently reaches higher statistical power and
is more aligned with theoretical foundations that are more likely to apply to
a single person being a�ected by a change, for example, in observed risk level
rather than two individuals being a�ected by di�erent levels of risk in two
di�erent situations (Charness et al., 2012).

With respect to between-subject design, its validity is based on a random
assignment of individuals to two separate groups to ensure that the base-
line characteristics are comparable across them (Charness et al., 2012). This
gives rise to the limitation of the study presented in Chapter 3, where there
are considerable di�erences in socio-demographic characteristics between the
samples. The comparison of the mean level of several variables using an un-
paired t-test showed that some of the values are signi�cantly di�erent. In
particular, the sample in the �rst study is signi�cantly older (t-ratio = 2.68)
and has more car drivers (t-ratio = 5.74) as compared to the sample in the
second study. Furthermore, on average individuals in the �rst study per-
ceived cycling as signi�cantly more risky (t-ratio = 5.66). Moreover, gender
di�erences between the two samples were marginally signi�cant (t-ratio =
1.91). At the same time, the statistical analysis found that the education
level (t-ratio = 0.88) and cycling frequency between November and February
(t-ratio = 0.84) and March to October (t-ratio = 0.70) as well as the involve-
ment in the accident on the bicycle (t-ratio = 1.06) do not signi�cantly di�er
between the two samples.

Even though these di�erences exist, they are expected to have a limited im-
pact on the results presented in Chapter 3, for two reasons. Firstly, the
sample sizes in both studies are relatively small, therefore, they are ex-
pected to have little in�uence on the results. In particular, a similar sit-
uation was observed in the models' outputs presented in Chapter 2 where
socio-demographic characteristics were mostly insigni�cant, suggesting that
they do not have considerable importance for the modelled behaviour. Sec-
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ondly, the conducted analysis refers to the operational level of behaviour
as discussed in Chapter 1, hence the individual-speci�c characteristics are
expected to have minimal impact as compared to time-dependent scenario
attributes such as current level of observed risk, cycling speed or distance
to other agents. This is further supported by the previous literature where
the impact of socio-demographic characteristics was mainly explored in the
context of cycling behaviour on a strategical level such as frequency of bicy-
cle use (Wang and Lindsey, 2019), travel activity patterns (Mitra and Nash,
2019) or active travel choices (Freeman et al., 2013) but less so in a dynamic
cycling behaviour on the road (Auer et al., 2021).

The �nal limitation emerged due to the fact that in the existing virtual reality
scenarios the cyclists could only move straight ahead, without the possibility
of steering. This constrained the scope of the study where steering can be
considered an alternative action, beyond accelerating and decelerating, that
is used to avoid collision with other roads users (Gavriilidou et al., 2019).
Consequently, the choice modelling assumption about the choice set being
collectively exhaustive (encompassing all possible alternatives), as discussed
at the beginning of Chapter 1, is relaxed. Instead, a restricted choice set
is used to represent the actual spectrum of alternatives faced by the indi-
vidual in the scenario (Thill, 1992). Restricted choice set (in the literature
also called constrained choice set) is often observed in the transport context,
for example, with respect to route (Prato and Bekhor, 2007) or mode choice
(Ton et al., 2018). For instance, Gehrke and Clifton (2014) excluded public
transport as an alternative for individuals who lived further than a certain
distance from the nearest bus stop or train station to ensure that only avail-
able modes are present in the choice set. Beyond, constrained choice sets have
been previously used in studies concerning residential choices (Timmermans
et al., 1996; Zolfaghari et al., 2012), shopping destinations (Ma et al., 2017;
Scott and He, 2012) or locations of discretionary activities (Mariante et al.,
2018). Nonetheless, in the current study this limited the range of cycling
behaviour that could have been explored, henceforth, the future work should
consider the inclusion of steering to provide more comprehensive analysis, as
discussed in the next section.

4 Future work

This thesis presented several contributions that demonstrated the attempts
to advance the interaction between choice modelling and neuroscience with
respect to the following:

� The design of primary data collection;
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� The internal validation of the novel research tools;

� The evidence of the complementarity of data from these two �elds;

� The methodological developments for the use of behavioural and neural
data in a single model structure.

The work presented in this thesis is to a large extent exploratory, but can
nonetheless be considered a vital �rst step that paves the way for future
investigations. Therefore, in this section, future directions of this work are
discussed with respect to identi�ed research gaps.

Firstly, two experiments that provided a foundation of this thesis and used a
combined approach by incorporating the EEG signal, dynamic VR simulation
and stated data demonstrate that current technological advancement makes
this kind of research e�orts possible. Nonetheless, the scope of current work
was limited to cycling. Therefore, it is advisable to gather more evidence
in di�erent contexts to be able to generalise the �ndings to a larger extent
and assess the joint performance of VR and neuroimaging tools. Interesting
examples include risky driving, evacuation behaviour or interaction between
autonomous vehicles and traditional human-operated ones, where the inves-
tigation of neural correlates could shed some light on people's behaviour in
these extraordinary or new circumstances.

Secondly, the complexity of the data collection constrained the sample size
used in the studies in this thesis and did not allow to fully capture the role
of demographics. Therefore, future research with larger and more diverse
samples could enable the exploration of di�erent aspects of the observed
behaviour, for example, gender or cultural e�ects in these contexts. Further-
more, as discussed in section 3, the limitation emerged due to the di�erences
in sample composition while employing between-subject design. Hence, the
analysis of cycling behaviour elicited with di�erent input devices with a more
homogenous sample would further reinforce current �ndings.

Thirdly, the studies conducted in this thesis remained within the virtual re-
ality sphere. Consequently, they did not allow for comparing virtual reality
and real-life behaviour, making an external validation impossible. Therefore,
future studies that would compare the cycling behaviour between real-life
and simulated scenarios are advisable to contribute to the literature on the
external validity of VR studies in the cycling context. More sophisticated and
robust EEG devices may make it feasible to collect at least some �eld data.
Therefore, it would also be bene�cial to test and compare the applicability
of di�erent neuroimaging devices available on the market in a single experi-
ment as well as in a real-life setting to be able to compare their performance
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and determine relative advantages in these frameworks. This is important
because neuroimaging equipment o�ers a variety of features, for example,
EEG equipment has a signi�cant advantage in terms of its temporal resolu-
tion, while fMRI or portable fNIRS are superior in terms of spatial precision
(Wallois et al., 2012).

Further, given the limitation of current choice set identi�ed in the previous
section, future work should aim at accounting for the whole spectrum of pos-
sible behaviours including steering (Gavriilidou et al., 2019). The inclusion of
steering manoeuvres as a collision evasive action is an important extension to
current work because it would allow for gaining a more complete perspective
on the trade-o�s between di�erent actions as a result of the current situation
on the road and perceived level of risk (Lin et al., 2014). In particular, it
would allow for assessing the extent of compensatory behaviour in cases, such
as the current one, when not all the actions are available. For example, it
would indicate the degree to which deceleration/braking is chosen more often
to compensate for the lack of steering possibility to bypass the potential col-
lision. This would, then, expand current understanding of cycling behaviour
and contribute to a better design of cycling studies in VR.

Moreover, the di�erences in behaviour and neural processing that are a result
of di�erent presentation methods or input devices, as demonstrated in this
thesis, can identify the congruence (or lack thereof) between di�erent data
types. Consequently, it calls for gathering more evidence of the impact of
di�erent experimental designs in VR using this integrated approach, possi-
bly in a more varied context. It would then increase our con�dence in this
novel data collection method and facilitate its popularisation in a variety
of disciplines. Further, it is necessary to conduct studies that combine the
established and novel data types and allow for their cross-validation and as-
sessment of the relative performance which will put us in a better position
to determine their suitability in speci�c research contexts.

Finally, a wider application of biometric data in choice models would acceler-
ate the di�usion of new modelling techniques and structures. It is important
because at the moment, there is little evidence in the literature on appro-
priate methods for the inclusion of biometric data in mathematical models
and what aspects of data collection are crucial in this respect. Moreover,
methodological questions arise while using jointly behavioural and biomet-
ric data. For example, in psychology, biometric data is typically collected
with very high resolution such as 128 Hz or 256 Hz. On the other hand, the
behavioural or stated data collected for the purpose of choice modelling are
less temporally rich, where dynamic driving simulator studies usually record
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one observation per second (1 Hz). Therefore, there is a signi�cant di�er-
ence in the format/resolution of the biometric and behavioural data, which
poses di�culties in how they can be used jointly without losing their rich-
ness. The literature proposes transformations such as averaging, majority
voting or a maximum/minimum value within a certain time frame, however,
it is still unknown which is the most appropriate for choice models or how
these methods would a�ect the results. Similarly, the relative advantages of
temporal and spatial features of the data could be compared in mathematical
models. Therefore, it can be seen that studies of this nature are needed, and
could contribute to the more varied application of these data. For instance,
in the provision of neural foundations of the models or new decision rules,
reductions in the random model components or providing the new basis for
discrimination between models.

The future research proposed in this section would extend the �ndings of
current work and gather more evidence in a broader range of contexts to
facilitate more informed and e�cient research e�orts with respect to the use
of VR as a research tool, use of biometrics data in mathematical models, or
the design of studies using an integrative approach.
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Appendix A

Appendix to Chapter 2

1 Participant task instructions

You will be presented with 24, 2D and 3D road simulations in virtual reality
environment (in Oculus Rift Headset) from the perspective of a cyclist. Your
task is to take an active role as a cyclist by manipulating your speed using
keyboard. On my sign, you can start cycling through the scenario. You can
perform two actions: accelerate and brake. To accelerate press arrow up
on the keyboards and to brake press arrow down on the keyboard. You are
free to move your head around while interacting with the virtual reality but
please remain seated back on the chair. At the end of each simulation you
will hear a number of questions regarding the riskiness of the scenario that
you have just observed and you will be asked to state your answer verbally.
In particular you will be asked to rate di�erent aspects of the scenario on
the scale 1-7 where (1 is minimum value, 7 is maximum value).In particular,
the questions will ask: On a scale 1-7 (where 1-no risk, 7-maximum risk)

rate how risky did you �nd the observed scenario? You are asked to say
a number corresponding to level of riskiness perceived between 1-7. Then,
On a scale 1-7 rate how willing are you to cycle in the conditions observed

in the scenario? You are asked to say a number corresponding to level of
willingness to cycle between 1-7. Whilst performing the task you will be
wearing an electroencephalogram (EEG) scanner that will record your brain
activity and e4 wristband to measure your heart rate.

2 Socio-demographic questionnaire used in the

experiment

1. Please state your age group:
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� 18-24

� 25-29

� 30-39

� 40-49

� 50-59

� 60-65

� 66-75

� 76 or above

2. Please state your gender:

� Male

� Female

3. What is your country of origin?

4. What is the highest level of education you have obtained? (If currently
enrolled, highest degree received.)

� O level/Secondary Education/General Certi�cate of Education

� A-Level/Baccalaureate/Pre-University Education

� Vocational quali�cation

� Undergraduate degree

� Masters

� Ph.D

5. Please state your marital status:

� Single

� Married

� Cohabiting

� Divorced

� Widowed
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2. Socio-demographic questionnaire used in the experiment

6. How many children in the following age categories, do you have? (Please

tick the box that applies to you)

• 0-3 years: 0 � 1 � 2+ �

• 4-7 years: 0 � 1 � 2+ �

• 8-11 years: 0 � 1 � 2+ �

• 12-15 years: 0 � 1 � 2+ �

• 15+ years: 0 � 1 � 2+ �

7. Please state your personal annual income (before tax):

� Below ¿10,000

� ¿10,000 - ¿20,000

� ¿30,000 - ¿40,000

� ¿40,000 - ¿50,000

� ¿50,000 - ¿75,000

� ¿75,000 - ¿100,000

� ¿100,000 - ¿125,000

� ¿125,000 - ¿150,000

� Above ¿150,000

� Do not know

� Prefer not to say

8. Please state your household annual income (before tax):

� Below ¿10,000

� ¿10,000 - ¿20,000

� ¿30,000 - ¿40,000

� ¿40,000 - ¿50,000

� ¿50,000 - ¿75,000

� ¿75,000 - ¿100,000
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� ¿100,000 - ¿125,000

� ¿125,000 - ¿150,000

� Above ¿150,000

� Do not know

� Prefer not to say

9. Are you an active car driver?

� Yes

� No

10. How often do you use a bike between March and October?

� Everyday

� Multiple times a week

� On weekends only

� A few times a month

� Rarely

� Never

11. How often do you use a bike between November and February?

� Everyday

� Multiple times a week

� On weekends only

� A few times a month

� Rarely

� Never

12. What was the most serious accident you had as a cyclist?

� No accident

� Only material damage

� Injuries to me/others
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2. Socio-demographic questionnaire used in the experiment

� Fatal injuries to others

13. On a scale 1-10, how risky do you consider cycling as an activity?random
text to have the below table in a

Not risky 1 2 3 4 5 6 7 8 9 10 Very risky

14. How frequently do you engage in these activities?

Using your mobile while cycling Always Often Sometimes Rarely Never
Listening to music while cycling Always Often Sometimes Rarely Never
Cycling after drinking alcohol Always Often Sometimes Rarely Never
Cycling after taking drugs Always Often Sometimes Rarely Never
Wearing a helmet and high visi-
bility elements

Always Often Sometimes Rarely Never

Turning rear lights on while cy-
cling at night

Always Often Sometimes Rarely Never

Turning front lights on while cy-
cling at night

Always Often Sometimes Rarely Never

Watching speed limits while cy-
cling

Always Often Sometimes Rarely Never

Ignoring red light Always Often Sometimes Rarely Never

157



Appendix A. Appendix to Chapter 2

3 Additional sample characteristics

1. Origin:

� Europe: 62%

� Asia: 23%

� South America: 10%

� Others (Inc. North America, Australia and Africa): 5%

2. Education:

� A-level: 25%

� Undergraduate: 30%

� Masters: 35%

� PhD: 10%

3. Marital status:

� Single: 62%

� Married/Cohabiting: 37%

� Divorced: 1%

4. Proportion of cyclists in the sample (de�ned as those who cycle

more than few times a month): 45%
5. Proportion of drivers in the sample: 44%
6. Most serious accident while cycling:

� No accident: 46%

� Injuries to me or others: 35%

� Only material damage: 19%

7. Mean score of cycling riskiness (answer to question 13 in the

survey): 6.18

4 Graph illustrating impact of distance to cars

As described in section 5 of Chapter 2, we present the additional graphs
illustrating the impact of distance to cars on the choice of the next action.
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4. Graph illustrating impact of distance to cars

Fig. A.1: The impact of distance to cars on the choice of the next action.
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1 Participant task instructions

You will be presented with immersive road simulations in virtual reality envi-
ronment (in HTC Vive headset) while being seated on the stationary bicycle.
Your task is to cycle through the scenarios on the bike until reaching a �nish
line. You should strictly avoid collisions with other road users. If you crush,
you will have to start again. On my sign, you can start cycling through
scenario. You can perform two actions: accelerate and brake. To accel-
erate start pedalling and to brake press hand break on the bike. You are
free to move your head around while interacting with the virtual reality but
please remain seated on the bicycle. Whilst performing the task you will be
wearing an electroencephalogram (EEG) scanner that will record your brain
activity and a wristband to measure your heart rate. Within the duration of
the experiment, please refrain yourself from touching your head, face or the
equipment that you are wearing.

2 Socio-demographic questionnaire used in the

experiment with instrumented bicycle.

1. Please state your age group:

� 18-24

� 25-29

� 30-39

� 40-49

� 50-59
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� 60-65

� 66-75

� 76 or above

2. Please state your gender:

� Male

� Female

3. What is your country of origin?

4. What is the highest level of education you have obtained? (If currently
enrolled, highest degree received.)

� O level/Secondary Education/General Certi�cate of Education

� A-Level/Baccalaureate/Pre-University Education

� Vocational quali�cation

� Undergraduate degree

� Masters

� Ph.D

5. Please state your marital status:

� Single

� Married

� Cohabiting

� Divorced

� Widowed

6. How many children in the following age categories, do you have? (Please

tick the box that applies to you)

• 0-3 years: 0 � 1 � 2+ �

• 4-7 years: 0 � 1 � 2+ �

• 8-11 years: 0 � 1 � 2+ �

• 12-15 years: 0 � 1 � 2+ �
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2. Socio-demographic questionnaire used in the experiment with instrumented

bicycle.

• 15+ years: 0 � 1 � 2+ �

7. Please state your personal annual income (before tax):

� Below S$10,000

� S$10,000 - S$20,000

� S$30,000 - S$40,000

� S$40,000 - S$50,000

� S$50,000 - S$75,000

� S$75,000 - S$100,000

� S$100,000 - S$125,000

� S$125,000 - S$150,000

� Above S$150,000

� Do not know

� Prefer not to say

8. Please state your household annual income (before tax):

� Below S$10,000

� S$10,000 - S$20,000

� S$30,000 - S$40,000

� S$40,000 - S$50,000

� S$50,000 - S$75,000

� S$75,000 - S$100,000

� S$100,000 - S$125,000

� S$125,000 - S$150,000

� Above $150,000

� Do not know

� Prefer not to say

9. Are you an active car driver?
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� Yes

� No

10. How often do you use a bike between March and October?

� Everyday

� Multiple times a week

� On weekends only

� A few times a month

� Rarely

� Never

11. How often do you use a bike between November and February?

� Everyday

� Multiple times a week

� On weekends only

� A few times a month

� Rarely

� Never

12. What was the most serious accident you had as a cyclist?

� No accident

� Only material damage

� Injuries to me/others

� Fatal injuries to others

13. On a scale 1-10, how risky do you consider cycling as an activity?

Not risky 1 2 3 4 5 6 7 8 9 10 Very risky

14. How frequently do you engage in these activities?
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3. Additional sample characteristics

Using your mobile while cycling Always Often Sometimes Rarely Never
Listening to music while cycling Always Often Sometimes Rarely Never
Cycling after drinking alcohol Always Often Sometimes Rarely Never
Cycling after taking drugs Always Often Sometimes Rarely Never
Wearing a helmet and high visi-
bility elements

Always Often Sometimes Rarely Never

Turning rear lights on while cy-
cling at night

Always Often Sometimes Rarely Never

Turning front lights on while cy-
cling at night

Always Often Sometimes Rarely Never

Watching speed limits while cy-
cling

Always Often Sometimes Rarely Never

Ignoring red light Always Often Sometimes Rarely Never

3 Additional sample characteristics

1. Origin:

� Asia: 92%

� Europe: 6%

� South America: 2%

2. Education:

� A-level: 22%

� Undergraduate: 38%

� Masters: 30%

� PhD: 10%

3. Marital status:

� Single: 90%

� Married: 10%

4. Proportion of cyclists in the sample (de�ned as those who cycle

more than few times a month): 41%
5. Proportion of drivers in the sample: 8%
6. Most serious accident while cycling:
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� No accident: 54%

� Only material damage: 26%

� Injuries to me or others: 20%

7. Mean score of cycling riskiness (answer to question 13 in the

survey): 3.85
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Appendix to Chapter 4

1 Full output of the reduced discrete-continuous

model

In this appendix, we present the full output of the reduced discrete-continuous
model, as described in section 6.4 of Chapter 4.
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Table C.1: A reduced discrete-continuous model (robust standard errors and t-ratios in
brackets).

LL(start): -76846.10
LL(�nal, whole model): -74840.15
AIC: 149762.3
BIC: 150126.2
LL(�nal, choice component): -45088.89
LL(�nal, acceleration when static): 464.95
LL(�nal, acceleration when moving): -14384.50
LL(�nal, deceleration): -7492.83
LL(�nal, braking deceleration): -8338.87

Action Estimate (rob. std.err.; rob.t-ratios)

ASC (δ)

Maintain -0.2479 (0.0734; -3.38)
Brake -2.1230 (0.0988; -21.49)

Decelerate -2.8950 (0.1129; -25.65)
Wait 4.1069 (0.1869; 21.98)

Accelerate 0

Individual's heterogeneity (σ)
Maintain 0.2650 (0.0301; 8.80)
Decelerate 0.1763 (0.0274; 6.42)

Collision (βcollision)

Maintain 0.2007 (0.0389; 5.16)
Brake 0.7376 (0.1529; 4.82)

Decelerate 0.4067 (0.1249; 3.26)
Wait 0.6291 (0.1758; 3.58)

Time to collision (λtime−collision)
Brake -0.5257 (0.0916; -5.74)

Decelerate -0.2144 (0.1459; -1.47)

Distance to junction (βdist−to−junction)

1st order Maintain 0.0458 (0.0624; -4.70)
2nd order Maintain -0.0835 (0.0079; 2.73)
1st order Brake 0.1410 (0.0184; 7.66)
2nd order Brake -0.2661 (0.0683; -3.90)
3rd order Brake 0.0187 (0.0089; 2.10)
1st order Decelerate 0.0967 (0.0124; 7.82)
2nd order Decelerate -0.2931 (0.0624; -4.70)
3rd order Decelerate 0.0216 (0.0079; 2.73)

Speed (βSpeed)

1st order Maintain 0.0606 (0.0062; 9.71)
2nd order Maintain -0.0025 (0.0005; -5.61)
1st order Brake 0.0481 (0.0137; 3.51)
2nd order Brake 0.0013 (0.0006; 2.22)
1st order Decelerate 0.1265 (0.0151; 8.40)
2nd order Decelerate -0.0031 (0.0044; -0.70)
3rd order Decelerate 0.0028 (0.0050; 0.56)

Continuous acceleration when stopped
µ -3.0631 (0.1386; -22.10)
σ 2.2931 (0.0795; 28.84)

Continuous acceleration when in motion
µ -0.3722 (0.0336; -11.09)
σ 1.0912 (0.0144; 75.58)

Speed 0.0518 (0.0022; 23.90)

Continuous deceleration
µ -0.2864 (0.0435; -6.59)
σ 1.1047 (0.0196; 56.38)

Speed 0.0394 (0.0026; 15.15)

Continuous braking deceleration
µ -0.4394 (0.0639; -6.87)
σ 1.1958 (0.0253; 47.32)

Speed 0.0602 (0.0038; 15.97)

Latent risk (θ)

Brake (βriskBr
) 0.1159 (0.0176; 6.58)

Distance to the junction (γdist−to−junction) -0.0524 (0.0305; -1.72)
Presence of the car at the junction (γcar−present) 0.0047 (0.0021; 2.27)

ζα -
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