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Abstract  

Our previous work reported a large-scale copy number (CN) study of primary 

melanoma [1]. Next generation sequencing (NGS) data from 303 formalin fixed paraffin 

embedded (FFPE) samples from the Leeds Melanoma Cohort (LMC) were generated. 

Libraries were generated by random shearing and then sequenced (1.7x coverage). In 

this study, problematic regions and common germline variations in the genome were 

identified and excluded accounting to approximately 13.5 % of the autosomal genome. 

CN was generated by read count accumulated into 10k bp windows, adjusted jointly 

for sequence mappability and GC-content and in comparison, with Caucasian 

genomes (n=312) from the 10k Genome Project [2, 3]. GISTIC 2.0.23 identified 

significantly deleted or amplified regions in the genome [4]. Comparisons with the 

TCGA data showed high similarity between the two datasets in terms of location and 

proportion of samples with CN changes [5, 6]. Minor difference in terms of frequency 

which may be due to the type of samples processed (frozen vs FFPE), platform used 

(NGS vs SNPS Array), or disease stage (primary vs metastatic) offer opportunity for 

discovery of novel CNA in melanoma  

Three measures of overall genome instability namely Fraction of Genome Altered 

(FGA), Aneuploidy Score (AS), and a devised metric I referred as Mean Weighted 

Segment Mean (MWSM) were estimated. MWSM showed strongest association to 

most of the patient clinical characteristics and survival among the three measures. 

Focal analysis was done using each 10k window level copy number data which allowed 

detection of small copy number aberrations that are associated with patient clinical 

characteristics and survival 

In conclusion, this study showed the feasibility of extracting and analysing whole 

genome copy number data from FFPE samples given that satisfactory amount of 

quality control steps to improve data quality is done. While there were interesting 

associations identified between copy number and patient clinical and tumour 

characteristics, validation of these results once similar population-based study cohort 

becomes available.  
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Chapter 1 
Introduction 

In this chapter, I provided the introduction to my study by defining and explaining 

important terms and concepts such as the skin, its parts, melanoma, the epidemiology 

of melanoma, causes and risks of melanoma, melanoma staging using the AJCC 

stage, melanoma survival, cancer development, assessment methods for the detection 

of copy number alterations as well as the test and reference samples in this study as 

supported by various literature. 

1.1 The Human Skin 

The skin is the largest organ in the human body in terms of surface area and weight. 

It measures about 20 squared feet and weighs about 20 pounds. It functions mainly for 

protection, sensation, and regulation [7-9]. The skin provides our body with protection 

against mechanical impacts and pressure, fluctuations in the temperature, microbes, 

and other harmful external factors such as radiation and chemicals. It regulates the 

body temperature through sweat and hair, the variation in peripheral circulation and 

fluid stability via sweat. Additionally, it acts as a venue for the synthesis of Vitamin D. 

In terms of sensation, the skin has enormous networks of nerves that perceives and 

communicate changes in the environment. The skin has distinct receptors for heat, 

cold, touch, and pain [10].  The skin has two major layers namely: epidermis and 

dermis, and a third closely associated layer called hypodermis or subcutaneous fat 

(See Figure 1.1). 

1.1.1 Epidermis 

The epidermis is made up of keratinized, stratified squamous epithelium (See Figure 

1.2). Depending on where it is located in the body, the epidermis consists of four or 

five layers of epithelial cells and no blood vessels can be found in it (avascular). Most 

of the skin has four layers and is called a “thin skin” composed of stratum basale, 

stratum spinosum, stratum granulosum, and stratum corneum. “Thick skin” is located 

only on the soles of the feet and palms of the hands. It has an additional later between 

the stratum corneum and stratum granulosum called the stratum lucidum [11]. 
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Figure 1.1: Major Layers of the Skin 

Taken from National Cancer Institute [12] 

 

The most external layer of the epidermis is the stratum corneum. Its name is derived 

by the increased keratinization or cornification of the cells in this layer and generally 

composed of 15 to 30 layers of cells. It is a dry and dead layer that helps prevent liquid 

loss from underlaying tissues and microbes from entering the skin. It also provides 

shield against mechanical pressure and abrasion for the softer underlying layers [11].  

Stratum lucidum is the epidermal layer next to stratum corneum. It is present only in 

thick skins of the palms, soles, and digits and composed of thin layer of cells. It is made 

of keratinocytes that are dead and compacted containing dense amount of eleidin. 
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Derived from keratohyalin, eleidin is a clear protein rich lipids that gives transparent 

appearance to the cells and provides shield to water [11].  

Stratum granulosom is the third layer of epidermis for thick skin and second layer 

for the thin skin. This is derived from the keratinocytes that undergo further changes 

making it grainy in appearance as they are pushed from the stratum spinosum – a 

deeper layer of the epidermis. It is composed of cells that are 3 to 5 layers that become 

flatter and their cell membranes thicken. This layer produces huge amounts of fibrous 

proteins called keratin and keratohyalin which builds up to form lamellar granules within 

the cells. Keratin and keratohyalin compose the majority of the keratinocyte build up in 

the stratum granulosum and provide the layer its grainy appearance. The nuclei and 

the cell components deplete as the cells die but the keratin, keratohyalin, and cell 

membranes remain and forms the stratum lucidum, and the stratum corneum. The 

external features of hair and nails are produced in this similar process that involves 

producing cells full of keratin [11]. 

Stratum spinosum is the spiny layer of the epidermis because it is formed by 

protruding cell processes that sticks the cells together using a structure called 

desmosome – which interlocks with each other to provide strong bond between the 

cells. The spiny nature of this layer is an indirect product of the staining process and 

the unstained epidermis does not have this feature. It has 8 to 10 layers of 

keratinocytes resulted by the cell division in the stratum basale. A type of Dendritic 

cells called Langerhans cells that functions as macrophage by engulfing foreign 

materials including bacteria and damaged cells are dispersed among the keratinocytes 

of this layer. Keratin production is initiated by the keratinocytes in the Stratum spinosum 

which also releases a water -repelling glycolipid that restrains water loss from the body 

and causes the skin to be somewhat waterproof. The keratinocytes of the stratum 

spinosum are pushed to the stratum granulosum as the new keratinocytes are 

produces on the top of the stratum basale [11]. 

The deepest epidermal layer is called the stratum basale or stratum germinativum 

which attaches the epidermis to the basal lamina, under which the layers of dermis can 

be found. Cells located in the stratum basale attach to the dermis via the basement 

membrane – which are intertwining collagen fibers. Dermal papilla – a finger like fold 

or formation located on the topmost part of the dermis, increase the strength of the 

connection between epidermis and dermis. Greater folding of dermal papilla 

corresponds to greater strength of connections made. The stratum basale is 

characterised by one layer of cells predominantly composed of basal cells. Basal cells 

are cuboidal-shaped stem cells that gives rise to the keratinocytes of the epidermis. 

This epidermal layer also contains other cells like Merkel cells and melanocytes which 
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are distributed together with the basal cells. The Merkel cells functions as receptors 

and plays role in stimulating sensory nerves that is perceived by the brain as touch 

while melanocytes manufactures the melanin – a pigment that supplies colour to hair 

and skin as well as provides protection to the living cells of the epidermal layer from 

being damaged by the exposure to ultraviolet radiation [11]. 

 

 

Figure 1.2. Layers of Epidermis  

Taken from Oregon State University [11] 
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1.1.2 Dermis 

The second major layer of the skin is called Dermis. This layer contains nerves, 

blood, lymph vessels, hair follicles, sweat glands and others structures. Capillaries in 

the dermis supplies oxygen and nutrients to the epidermis. It is made up of two layers 

of connective tissue that makes up interconnected nets of elastin and collagenous 

fibres, manufactured by fibroblasts. The shallowest layer in called papillary layer and 

provides anchorage for the epidermis on its top and is strongly connected to the deeper 

reticular later. 

The papillary layer is composed of loose, areolar, connective tissue. The collagen 

and elastin fibres of this layer form a loose net with huge amount of ground substance 

supporting the hydration of the skin.  This most external layer of the dermis follows into 

the epidermis’ stratum basale to form papillae with the shape of a fingers. Located on 

the papillary layer are plenty of small blood vessels, fibroblasts and few fat cells. 

Additionally, it contains lymphatic capillaries, nerve fibres, touch receptors called 

Meissner corpuscles, and defensive cells called phagocytes that combats microbes 

that have entered the skin [11]. 

The net-like (reticulated) reticular layer is under the papillary layer and consists of 

compact irregular connective tissue that stops forces in many various directions 

allowing the skin to be flexible. It is about 80% of the dermis and has plenty of blood 

vessels and supply of sympathetic and sensory nerves. Elasticity that allows the skin 

movement is enabled by the elastin fibres while structure and tensile strength are 

provided by the collagen fibres [11].  

1.1.3 Subcutaneous Fat 

The layer below the dermis is called hypodermis or subcutaneous layer or superficial 

fascia acts to join the skin to the underlying fibrous tissues (fascia) surrounding the 

muscles. This layer is not strictly part of the skin and the boundary between dermis and 

hypodermis is very difficult to identify. It is composed of well vascularised, loose areolar 

connective tissue and plenty of adipose tissue acting as fat storage and insulator as 

well as providing cushioning for the integument. A thick connective tissue coating 

around skeletal muscles is called fascia [11].   

1.1.4 Cells Present in the Skin 

There are different types of cells found in the skin. Each type of cell plays role in 

helping the skin achieve its functions. There major cells present in the skin are 
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keratinocytes, melanocytes and immune cells. Described below are the different 

characteristics of each cell type and their functions. 

1.1.4.1 Keratinocytes 

Keratinocytes (also called prickle cells or skin cells) are the most common cells and 

make up about 90% of the cells in the epidermis and can be found in each epidermal 

layer. They are highly specialised epithelial cells that specifically functions to separate 

an organism from its surroundings. Cells produces precursors and build them into two 

different structures – the cornified envelope and the keratin intermediate filaments. The 

cornified envelope is built primarily from involucrin – a highly reactive, soluble protein 

while intermediate filaments are built from keratin monomers. Keratinocytes become 

more differentiated and thickens with keratin then eventually wear off [13-15].  

1.1.4.2 Melanocytes 

Melanocytes are pigment producing cells responsible for making melanin and can 

be found not only in the epidermis but also in other parts of the human body like hair 

follicles, mucous membrane, cochlea of the ear, iris of the eye as well as in the 

mesencephalon of the brain. Skin colour is determined by different pigments such as 

haemoglobin (red), hemosiderin (brown), carotene (yellow), bilin (yellow), and melanin. 

Melanin produced by melanocytes can be classified as eumelanin or pheomelanin [16]. 

Eumelanin is responsible for giving dark brown and black pigmentation of the skin while 

pheomelanin is responsible for giving yellow, red, and light brown skin pigmentation 

[17-19]. Melanin pigments are manufactured, stored, and transported through an called 

melanosome, an organelle synthesised by melanocyte [20].  

1.1.4.3 Immune cells 

The immune cells in the skin, famously known as Langerhans cells – discovered by 

a medical doctor Paul Langerhans in 1868,  are irregularly shaped dendritic cells found 

in the stratum spinosum [21, 22] . Langerhans cells embodies the most peripheral basis 

of the immune system [23]. These are antigen presenting cells that play role in enabling 

allergic reactions and do not have keratin filament of melanosomes [13].  

Langerhans cells gains antigens in peripheral tissues, bring them to the regional 

lymph nodes, present to naive T cells and promotes adaptive immune response. These 

cells are strongly immunogenic but may also act as mediators of tolerance as in the 

case for commensal bacteria. Other functions of these cells are involvement with 

antimicrobial immunity, immunosurveillance of the skin, induction phase of the contact 

hypersensitivity as well as in the pathogenesis of chronic inflammatory diseases of the 

mucosa or the skin[24].  
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1.2 Melanoma 

Cutaneous melanoma (henceforth referred to as melanoma) is a cancer of the 

melanocyte - the pigment producing cells in the skin. Melanoma is significantly less 

common than other more harmless forms of skin cancer such as basal cell carcinomas 

or squamous cell carcinomas, but approximately 20% results in spread through the 

body (metastasis).  

Melanomas are usually visually characterized by a dark, mole-like neoplasm in the 

skin that grows progressively in size and is irregular in shape but there are clinically 

described subtypes. The commonest in pale skinned populations is the superficial 

spreading melanoma, the second commonest nodular melanoma: lentigo maligna 

melanoma and acral lentiginous melanoma are the least common form [25]. 

These are categories defined by their appearance to the pathologist examining the 

tumour section under the microscope but have their clinical correlates when still on the 

skin. All but nodular melanomas begin in situ and initially grow laterally in the epidermis 

(the scaly epithelium of the skin, composed of predominantly keratinocytes) and 

sometimes penetrate deeper into the lower layers of the skin. 

The last type - nodular melanoma is invasive but it is more serious as they have 

penetrated deeper into the skin. Superficial spreading melanoma is the most prevalent 

type, starting most commonly on the legs for women and on the chest and back for 

men. This type of melanoma usually initiates growth slowly and spreads out on the 

surface of the skin.  

Figure 1.3 displays the progression of superficial spreading melanoma down the 

microscope, illustrating the progression of a tumour from single malignant cells in the 

epidermis to clusters of melanoma cells in the epidermis then clusters of melanoma 

cells thriving in the dermis [26]. This starts with a benign nevus or a mole that appears 

are acquired at birth, during childhood or adolescence and may be caused by sun 

exposure [27, 28].These moles are benign local proliferation of pigment cells 

(melanocytes) and may be blackish or brownish in colour [29].  Few of these cells 

further develop and give rise to asymmetric dysplastic naevus or atypical naevus. While 

most of this further growth dies, some continues to grow into two growth phases namely 

RGP (radial growth phase) and VGP (vertical growth phase) which are the established 

malignant melanoma. RGP is characterised by the invasion of the cells in the outer 

layer of the dermis without forming a node and is predominantly flat. VGP is 

characterised by a vertical growth of lesion that forms a true tumour and may extend 

deeper into the tissues. These are invasive and may indicate high likelihood of 

metastasis [30-32].  
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The clinical appearance of a superficial spreading melanoma is shown below in 

Figure 1.4. It has usual characteristics of this type of melanoma being asymmetrical, 

irregularly pigmented and a somewhat irregular edge. 

 

 

 

 

 

 

 

 



 

 

Figure 1.3. Progression of superficial spreading melanoma  
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Figure 1.4: A superficial spreading melanoma 

 

Nodular melanoma grows quicker than SSM in that these tumours appear to have 

no precursor phase: the growth appears to be invasive from the beginning. Nodular 

melanomas are usually seen on the back, head, chest or neck [33].  

Lentigo maligna melanoma is usually diagnosed in older people on parts of the skin 

that are more exposed to sun over many years. This type is usually therefore seen on 

the neck and face. It is characterised by a long in situ phase when the lesion looks like 

a dark freckle which slowly increases in size. Over time, the malignant cells proliferate 

within the epidermis and finally those cells acquire genomic changes sufficient to grow 

within the dermis i.e. progression occurs to an invasive tumour (Figure 1.5) [34]. 

Acral melanoma (Figure 1.6) is the rarest type and is usually found on the soles of 

the feet, palms of the hand, under fingernails or toenails and is more common in 

populations with darker complexion [25, 35]. 
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Figure 1.5 . Lentigo melanoma 

 

 

Figure 1.6. Acral Melanoma 
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1.3 Epidemiology of Melanoma  

Melanoma is an increasingly common form of cancer with increasing incidence 

attributed to distinct patterns of sun exposure among the genetically susceptible. In 

2018, melanoma of the skin was listed (19th) as one of the 20 most common cancers 

(excluding non-melanoma skin cancer) in the world with 287,000 new cases accounting 

to 1.7% for all new cancer cases for the year. This ranks as the 15th most common 

cancer for men with 151,000 new cases accounting for 1.7% of all cancers in men and 

also the 15th most common cancer in women with 137,000 new cases accounting for 

1.7 % of all cancers in women worldwide [36] .  

In Europe, a rise in the incidence of melanoma have been observed over the past 

decades [37].  The estimated age-adjusted new cases of melanoma for 2012 were 11.4 

per 100,000 p.a. for males and 11.0 per 100,000 p.a. for females with the lowest 

incidence rates in Central and Eastern Europe and up to 19 cases per 100,000 p.a. for 

Northern Europe.  

In the UK, melanoma is the fifth most common cancer and accounts for 4% of all 

new cancer cases in 2015. Three-year UK statistics (2013-2014) indicated 15,419 new 

melanoma cases (See Table 1.1) with a ratio of 1:1 for both sexes [38]. The incidence 

of melanoma skin cancer is associated with age with the highest incidence rates in 

older people. Around 27% of new cases were in people aged 75 years and above. 

More than 30 % of skin cancer are diagnosed in patients under 50 years. This age at 

diagnosis is uncommonly early in comparison with many other types of common cancer 

and therefore melanoma accounts for a significant proportion of years of life lost to 

cancer. Age specific incidence rates constantly increases from the age 20-24 years 

and the highest rates are in the age of 90 years and above for males and 85 to 89 

years for female (Figure 1.7). 

 

 



 

Table 1.1: Melanoma Skin Cancer Number of New Cases, Crude and European Age-Standardised (ASt) Incidence Rates per 100,000 
Population p.a.  in UK during 2013-2015 

LCL: Lower confidence limit     UCL: Upper confidence Limit   ASt: Age standardised 
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Figure 1.7. Average Number of New Melanoma Skin Cancer Cases per Year and Age-Specific Incidence Rates per 100,000 Population, UK, 
2013-2015 

Figure taken from Cancer Research UK [38]
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1.4 Causes and Risks of Melanoma 

A person’s risk of melanoma is influenced by their inherited genetic variation, their 

phenotype (e.g. skin and hair colour or number of melanocytic naevi) and their patterns 

of UV exposure.  It is essentially a disease of pale skinned people but can occur in 

people of any skin colour. According to the World Health Organization (WHO), the main 

human risk factors for melanoma are the following [39, 40]: 

• Pale skin 

• A large number of atypical naevi (moles) is the strongest risk factor for 

melanoma in pale-skinned populations. 

• Melanoma is more common among people with a pale complexion, blue eyes, 

and red or blond hair.  

• The incidence of malignant melanoma in Caucasian populations generally 

increases with decreasing latitude, with the highest recorded incidence 

occurring in Australia (33.6 per 100,000 Age Adjusted Rate), where the annual 

rates are more than what is observed in Europe (11.6 per 100,000) [41]. 

• High, intermittent exposure to solar UV appears to be a significant risk factor 

for the development of malignant melanoma [42, 43]. 

• Most epidemiological studies support a positive association with history of 

sunburn, particularly sunburn at an early age [44, 45]. 

• The role of cumulative sun exposure in the development of melanoma is 

equivocal. However, melanoma risk is higher in people with a history of non-

melanoma skin cancers and of solar keratoses, both of which are indicators of 

cumulative UV exposure. 

The study of Fargnoli et. al (2004) among Italian population reported that 

among the constitutional and environmental factors analysed using logistic 

regression model, the strongest risk factors are recreational sun exposure (odds 

ratio [OR] 5.010, 95% confidence interval [CI] 2.110-11.891), the presence of 

clinically atypical naevi (OR 4.916, 95% CI 2.496-9.995) and the presence of >50 

common melanocytic naevi (OR 4.684, 95% CI 2.442-9.231).  Additionally, 

occupational sun exposure (OR 2.573, 95% CI 1.399-4.732), light brown hair (OR 

2.336, 95% CI 1.328-4.138), high density of solar lentigos and/or actinic keratoses 

(OR 1.824, 95% CI 1.0-3.510) and type II, fair skin (OR 1.815, 95% CI 1.031-3.193) 

and blue eyes (OR 1.757, 95% CI 1.0-3.477) were each significantly associated 

with cutaneous melanoma risk[46].   
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Although known factors like sun exposure in the development of melanoma has 

been known, its aetiology has not been fully understood. A previous study showed that 

known risk factors of melanoma have different associations by body sites. Patients with 

melanoma on the head or neck have higher frequency of solar keratoses and lower 

frequency of nevi compared with those who have melanoma on the trunk [47]. In a 

prospective study of 152, 949 women and 25, 204 men free from cancer at baseline 

followed up for up to 14 years, males had a higher risk of developing melanoma on the 

head/neck and trunk area compared with women. Melanoma located on the upper 

extremity is most strongly associated with past experience of severe and painful 

sunburn while a melanoma located on the trunk was most strongly associated with a 

greater number of moles in both upper and lower extremities[48]. 

Melanoma may occur in families in which two or more first degree relatives suffer 

from this disease and is referred as familial melanoma. It is a genetic or inherited 

condition meaning that the risk of melanoma can be passed from generation to 

generation within a family. In general, about 8 % of people who are newly diagnosed 

with melanoma have a first-degree relative with melanoma. About 1 to 2 % has two or 

more close relatives with melanoma. At present the two primary genes linked to familial 

melanoma are CDKN2A and CD4 where mutation in these genes increases melanoma 

risk [49]. It was reported that the frequency of CDKN2A mutations in melanoma-prone 

families are around 5% to 40% [50-52]. The study of Helgadottir et. al (2016) reported 

that after adjusting for age, sex, and T classification, CDKN2A mutated familial 

melanoma cases had, compared with CDKN2A wild type cases, worse survival from 

melanoma (HR=2.50, 95% CI: 3.65 to 16.51)[53]. 

 

1.5 AJCC Stage 

The stage of melanoma reflects the severity or the degree of progression of the 

disease and the prognosis. Thus, the least severe melanomas are those in the earliest 

stage called Stage 0 (in situ disease) wherein the malignant melanocytes have 

proliferated only within the epidermis. This can progress to different categories from 

stage IA to stage IV using the American Joint Committee on Cancer (AJCC) TNM 

System (See Table 1.2). T is defined by the characteristics of the tumour in terms of 

thickness - also known as the Breslow thickness, microscopic ulceration status and 

mitoses (in AJCC 7th Edition). N is determined by whether melanoma has spread to its 

nearby or draining lymph nodes. M refers to metastasis of tumours to the other organs 

in the body [54]. 
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The thickness of the tumour in the AJCC staging system is measured using the 

Breslow scale to describe how deep has the melanoma invaded the skin. In the 

Breslow scale, the pathologist uses a micrometre to measure tumour thickness or 

depth in terms of millimetres (mm) [55].  The thickness of the melanoma tumour is 

categorised into five namely Tis, T1, T2, T3, and T4 (See Figure 1.8).  

Tis (signifying in situ disease) indicates that the melanoma cells are located only in 

the epidermis. T1 indicates melanoma thickness that is less than 1mm while T2 is 

characterised by melanoma which thickness of 1mm to 2mm. T3 corresponds to 

melanoma thickness between 2mm and 4mm while melanoma thicker than 4mm is 

denoted by T4 [54, 56].  

Ulceration in a tumour is manifested by non-intact or broken epidermis overlying a 

major area of the melanoma [57]. This is a microscopic phenomenon rather than 

observed by the patient or the dermatologist. Ulceration subdivides T into categories a 

and b. Ta corresponds to non-ulcerated melanoma while Tb corresponds to an 

ulcerated melanoma [56]. The presence of microscopic ulceration indicates a higher 

risk of progression in AJCC. The study of Jewell et al. (2015) reports that ulceration of 

primary melanomas was associated with more proliferative tumours, tumour vessel 

invasion, and increased microvessel density. Presence of greater number of 

macrophages and gene expression pathways associated with wound healing and up-

regulation of pro-inflammatory cytokines in the tumour suggests that ulceration is 

associated with tumour-related inflammation. Modification of signalling pathways 

involved in inflammation may be reflected by the relative benefit from interferon 

reported in in patients with ulcerated tumours [58].  

Mitotic rate refers to the number of cells that are actively dividing in a sample from 

melanoma tissue. More number of dividing cells correspond to a higher mitotic rate. 

This categorises T has to having a mitotic rate of < 1/mm2 or at least 1/mm2. In this 

staging system, T1a refers to non-ulcerated melanomas with mitotic rate of <1/mm2  

while T1b implies that the melanoma is ulcerated and have a mitotic rate of at least 

1/mm2 [56].   

The N score reflects whether there is evidence that cancer cells from the melanoma 

have spread to the neighbouring lymph node. Lymph nodes are tiny round organs that 

are part of the lymphatic system of the human body. The lymphatic system is a 

component of the body’s immune system which consists of network of vessels and 

organs that contains lymphs. These are clear fluids that carries infection-fighting white 

blood cells and fluid and waste products from the cells and tissues of the body including 

cancer cells that have been broken off from the main tumour in case of a person with 

cancer. The first lymph node/s to which cancer cells are most likely to spread from a 
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primary tumour is called a sentinel lymph node. Sentinel lymph node biopsy (SLNB) is 

a procedure used to identify and remove lymph node to examine whether cancer cells 

are present [59].  

The result of SLNB is used to grade the N Score. This can be graded from N0, N1, 

N2, and N3.  N0 implies that the melanoma cells have not spread to the nearby lymph 

nodes. N1 implies that one nearby lymph node contains melanoma cells. N2 means 

that two or three nearby lymph nodes contains melanoma cells while N3 indicates 4 or 

more nearby lymph nodes were contaminated with melanoma cells. Nodes can also 

be subgroup into Na, Nb and Nc. Na implies that the cancer in the lymph node is visible 

only with a use of a microscope (micrometastases).  

Nb is characterised by clinically detected  signs of cancer in the lymph node (macro 

metastases detected as a lump which can be felt or a mass visible on a scan) while Nc 

means that tiny areas of the skin that is very close to the primary melanoma (satellite 

metastases) or in the skin lymphatic channels (in transit metastasis)  have detectable 

melanoma cells [56]. These metastases usually present as a mass or lump in the 

tissues around or between the site of the primary tumour and the draining nodes. 
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Table 1.2. TNM Staging for Cutaneous Melanoma AJCC 7th Edition [54] 

Primary Tumour Characteristics (T) 

T stage 

 Thickness (mm) Ulceration 

T1 
a 

≤ 1.00 
Without ulceration and mitosis < 1/mm2 

b With ulceration or mitoses ≥ 1/mm2 

T2 
a 

1.01-2.00 
Without ulceration 

b With ulceration 

T3 
a 

2.01-4.00 
Without ulceration 

b With ulceration 

T4 
a 

> 4.00 
Without ulceration 

b With ulceration 
Regional Lymph Nodes (N) 

N stage 

  Metastatic Burden Nodal metastatic burden 
N0   0 NA 

N1 
a 

1 
a: Micrometastasis* 

b b: Macrometastasis† 

N2 

a 

2-3 

a: Micrometastasis* 
b b: Macrometastasis† 

c c: In transit metastases/satellites without 
metastatic nodes 

N3   ≥4 
metastatic nodes, or matted nodes, or in 
transit metastases/satellites with 
metastatic nodes 

Distant Metastases (M) 

M 
stage 

  Serum LDH Site 
M0   NA No distant metastases 

M1 

a Normal Distant skin, subcutaneous, or nodal 
metastases 

b Normal Lung metastases 

c 
Normal All other visceral metastases^ 
Elevated Any distant metastasis 

* Micrometastases are diagnosed after sentinel lymph node biopsy 
† Macrometastases are defined as clinically detectable nodal metastases confirmed  
   pathologically 
^ Visceral metastases pertains to metastasis to the soft internal organs of the body, 
    including the lungs, heart, and those organs of the reproductive, excretory, circulatory, 
    and digestive systems. 
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A melanoma that has spread to a different part of the body is called a metastasis 

(M). Metastasis is classified in two categories: M0 and M1. M0 indicates absence of 

metastasis while M1 refers to presence of metastasis. M1 can be further subclassified 

into M1a, M1b and M1c.  M1a is described by metastasis to the skin beyond the body 

part on which the primary tumour was found or lymph nodes that are far away from the 

primary melanoma. So if a patient presented with a primary tumour on the ankle and 

developed metastases in the skin of the abdominal wall or in a lymph node in the neck 

this would be classified as M1a disease. M1b pertains to metastasis in the lung while 

M1c indicates metastasis in other organs , or there is an increased level of lactate 

dehydrogenase (LDH) in the blood – an enzyme secreted by the liver and is used to 

identify the site and severity of tissue damage in the body [56, 60]. 

 

Figure 1.8. Tumour Thickness Categories 

Figure taken from Cancer Research UK website [56] 
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Table 1.3 shows the Clinical Staging for Cutaneous Melanoma based on the work 

of Balch et al., (2009) from the analysis of 30, 946 patients with stages I, II, and III 

melanoma and 7.972 patients with stage IV melanoma which reflects the improved 

understanding of the disease [54].  

Table 1.3. Clinical Staging for Cutaneous Melanoma[54] 

Stage* T N M 

IA T1a N0 M0 

IB 
T1b N0 M0 

T2a N0 M0 

IIA 
T2b N0 M0 

T3a N0 M0 

IIB 
T3b N0 M0 

T4a N0 M0 

IIC T4b N0 M0 

III Any T N > N0 M0 

IV Any T Any N M1 

* Clinical staging includes microstaging of the primary melanoma and  
   clinical/radiologic evaluation for metastases. By convention, it should  
   be used after complete excision of the primary melanoma with clinical  
   assessment for regional and distant metastases. 

 

 

1.6 Melanoma Survival 

From 2013 to 2017, almost all (98.2%) of the melanoma patients in the UK survive 

their disease for at least one year. More than 91 percent (91.3 %) of them survive their 

disease for at least five years. It is estimated that about 9 in 10 melanoma patients 

survive their disease for at least ten years [38].  

In terms of sex, females tend to have better rate of survival than males for both one, 

five, and ten-year survival periods. In terms of age, data from England indicates that 
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95% of the patients diagnosed with melanoma survive their disease for at least five 

years, compared with 80% for those diagnosed aged 80 and older. When diagnosed 

immediately (i.e. as early as Stage I), all (100%) of the patients will survive their disease 

for at least one year as compared to a little more than 1 in 2 (53%) when the disease 

is diagnosed at the latest stage[38].  

In comparison with the European average, the five-year relative survival for men is 

higher in England, Scotland, and Northern Ireland, but lower in Wales.  For women, 

five year relative survival is higher for England, Scotland, and Northern Ireland, while 

it is similar for Wales when compared to the European average [38].   

 

1.7 Cancer Development 

Cancer results from the uncontrolled growth of abnormal cells in the body, generally 

characterized by 3 main steps: initiation, promotion and progression [61]. Many 

cancers initiate by gene mutations, these are single base-pair mutations but can 

involve additional processes including breaking away of pieces of chromosome from 

their normal position and joining with different chromosome (translocation). Typically, 

these changes affect the signalling to genes changing the way they work in the body. 

Cells have the ability to detect these different changes and destroy themselves 

(apoptosis) but when they fail to do so, damage cells begin to proliferate and may lead 

to a malignant tumour that is cancerous. This may be caused or triggered by 

carcinogenic substances like harmful chemicals, smoking or exposure to radiation or 

represent simply random chance. This carcinogen driven change is called initiation.  It 

takes repeated damage to the cells before a cancer develops. There are agents that 

reinforce or further cause damages to the cells called promoters. These can be 

hormones or drugs that do not independently cause cancer but nurture the initiator 

cells to become cancerous or it may simply be that the initial mutations give a growth 

advantage to the cell lineage, again promoting growth. The final step in the cancer 

development is called progression. It is the step that causes the cell to reproduce and 

perform its functions differently and become cancerous. The final step in the cancer 

development is called progression. It is the step that causes the cell to reproduce and 

perform its functions differently and become cancerous. Doubling time refers to the 

period required by the cancer cells to grow twice its number. As these cancer cells 

keep on proliferating, a malignant tumour is formed taking months to years to be felt or 

detected by imaging test. A summary of how cancer develops is described in the 

diagram below [61]. 
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Figure 1.9. Cancer Development.  

A Diagram from Canadian Cancer Society (2017). 

 

In terms of the hallmarks of cancer written by Hanahan and Weinberg (2011), it was 

mentioned that this comprise of six biological capabilities brought by multistep 

development of human tumours. These hallmarks form an organizing principle for 

nationalizing the complexities of neoplastic disease. These are composed of sustaining 

proliferative signalling, evading growth tumour suppressors, resisting cell death, 

enabling replicative immortality, inducing angiogenesis, and activating invasion and 

metastasis. Essential to these hallmarks are genome instability which generates the 

genetic diversity that facilitates speeding up their acquisition, and inflammation, which 

promotes multiple hallmark functions[62]. 

 

1.7.1 Mutation 

Mutation occurs when there is a permanent alteration in the DNA sequence that 

constitute a gene. This can affect a single base pair in the gene or a large segment of 

a chromosome that include more than one gene. This can be generally classified in 

two ways: hereditary or acquired mutations[62]. Hereditary or germline mutations are 

passed on from parents to offspring and are present in almost all every cell of a person 

throughout its life. These are from the parent’s egg or sperm cells (germ cells). 

Acquired or somatic mutations occur at any time in a person’s life and are present only 

is some cells in the body. These can be brought by environmental factors such as 

ultraviolet radiation from the sun or abnormalities that take place in the DNA replication 

during cell division. Unlike hereditary or germline mutations, acquired or somatic ones 

are not passed on to the next generation. Below are the different types of mutation that 

could possibly occur in a cell [63]: 
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• Missense mutation - This type of mutation that occurs when a single DNA base 

pair causes the substitution of one amino acid for another in the protein created 

by a gene.  

• Nonsense mutation - This is also a change in a single DNA base pair but instead 

of causing a substitution of one amino acid for another, it sends an early signal 

to the cell to stop making the target protein resulting to a shortened one that 

may not be enough to perform its function. 

• Insertion – an insertion mutation changes the number of DNA bases in a gene 

by adding a portion of the DNA usually resulting to a protein that does not 

function properly. 

• Deletion – This occurs when the number of DNA bases change due to a 

removal of a portion of DNA which may be small (one or few base pairs of a 

gene) or large (affecting entire genes or several neighbouring genes) and 

missing this portion may change the function of the protein(s) manufactured. 

• Duplication – This takes place when a piece of DNA is abnormally copied at 

least once affecting the function of the resulting protein. 

• Frameshift mutation – This encompasses insertion, deletion and duplication 

and occurs when the addition or loss of DNA bases changes a gene’s reading 

frame. The change in the reading frame regroups the codons and changes the 

codes for the amino acids normally resulting to non-functional protein. 

• Repeat expansion- Nucleotide repeats are short DNA sequences that are 

repeated at least once in a row as exemplified by a trinucleotide (three-base-

pair sequences) and a tetranucleotide (four-base-pair sequences) repeats. 

Repeat expansion occurs when the frequency of repeat of a short DNA 

sequence is increased and may cause the resulting protein not to function 

properly. 

The commonly reported mutated gene in melanoma were NRAS and BRAF [64-69].  

The study of Hodis et al. (2012) analysed large scale melanoma exome data and 

discovered six novel melanoma genes such as PPP6C, RAC1, SNX31, STK19, and 

ARID2 [70]. The Cancer Genome Atlas (TCGA) proposed a genomic classification of 

melanoma that involves four subtypes based on mutational patterns in BRAF, NRAS, 

NF1, and absence of mutation in three of these (triple wild type) [71, 72] 
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1.7.2 Chromothripsis 

Chromothripsis is a term that comes from the Greek words chromo which means 

color (which represents chromosomes as they usually undergo staining using particular 

dyes) and thripsis which means “shattering into pieces” [73]. Chromothripsis is a 

mutational process characterised by up to thousands of clustered chromosomal 

rearrangements that occur in a single event in localised and bounded genomic regions 

in one or a few chromosomes, and is linked in both cancer and congenital diseases. It 

is initiated by one massive genomic rearrangement during a single catastrophic event 

in the cell's life. It is suggested that in order for a cell to withstand such a destructive 

event, its occurrence must be the upper limit of what a cell can tolerate [74]. The 

simplest way to model the occurrence of these rearrangements is through the 

simultaneous fragmentation of distinct chromosomal regions (breakpoints show a non-

random pattern) and then subsequent imperfect reassembly by DNA repair pathways 

or aberrant DNA replication mechanisms. Chromothripsis happens early in the 

development of tumour and leads to cellular transformation by loss of tumour 

suppressors and amplification of oncogenes [75].It has been observed in 2–3% of 

cancers across all subtypes[75].  

Chromothripsis was first reported in a paper in 2011 by Stephens PJ, Greenman 

CD, Fu B, et al. (2011) in a sequenced genome of a chronic lymphocytic leukaemia. 

Using paired end sequencing, 55 chromosomal rearrangements were recorded in the 

long arm of chromosome 8 and a significant number of rearrangements were observed 

in regions of chromosomes 7, 12, and 15 [73]. Subsequent investigations were done 

using genome-wide paired-end sequencing and SNP array analysis and found similar 

patterns of chromothripsis in various human cancers such as melanomas, sarcomas 

and colorectal, lung and thyroid cancers [76]. In the follow up investigations, about 25% 

of studied bone cancers showed evidence of chromothripsis. Chromothripsis has been 

associated with the generation of oncogenic fusions in supratentorial ependymoma, 

chondromyxoid fibroma, and Ewing sarcoma, the latter two being bone tumours [77, 

78].  

Chromothripsis has also been reported to be curative. There was study in 2015 

about a case of a woman who had WHIM (warts, hypogammaglobulinemia, infections, 

and myelokathexis) syndrome, an extremely rare autosomal dominant combined 

immunodeficiency disease, and lost her symptoms during her 30s after the disease 

allele was deleted by the chromothripsis of chromosome 2 [79]. 
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1.7.3 Kataegis 

Kataegis describes a distribution of localized hypermutation identified in some 

cancer genomes[80]. This term was derived from the Greek word for "thunder", καταιγίς 

(kataigis). Shown to be colocalized with regions of somatic genomic rearrangements, 

the base mutations in these regions were discovered to be almost exclusively C>T 

(cytosine to thymine) in the context of a TpC dinucleotide. The study of Nik-Zainal et.al 

(2012) hypothesized that enzyme of the APOBEC family is responsible for the process 

of Kataegis. A study showed direct link between the APOBEC deaminases and 

kataegic clusters of mutations by expressing hyperactive deaminase in yeast cells[81]. 

Recent evidence has linked the increased expression of the family member 

APOBEC3B with different human cancers emphasizing its potential contribution to 

genomic variability and kataegis [82].  
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1.7.4 Copy Number Variation/Aberration/Alteration 

Genomic copy number variation has been implicated in the study of many diseases 

and is currently one of the promising areas of cancer research. Copy number variation 

(CNV) is defined as a DNA segment of one kilobase (kb) or larger that is present at 

a variable copy number as compared to a reference genome[83]. It provides a major 

contribution to the genomic variation among individuals  brought by deletions and 

duplications of segments in the genome and may have no effect on the phenotype, 

account for adaptive traits or be associated to a disease [84]. There was a previous 

confusion between using copy number variation (CNV) and copy number alteration 

(CNA) or copy number aberrations. As mentioned by Weistra (2016), copy number 

alterations and copy number aberrations are synonymous. For example, the study of 

Shah et al. (2007) uses copy number alterations (CNAs) in their paper and both 

terminologies in the titles of the references while the study of Wu et al. (2014) uses 

copy number aberrations (CNAs) in paper and both terminologies in titles of their 

references. [85, 86]. Copy number alterations/aberrations (CNAs) are changes in the 

copy number of a somatic tissue (i.e. tumour sample) while copy number variations 

(CNVs) are changes in the copy number of the germline cells [87-89]. 

Increase in the genomic copy number is termed as a gain (potentially resulting in 

increased expression of an affected gene) a decrease is termed loss while no change 

in the copy number is termed normal (diploid). Melanoma has been well associated 

with non-random breaks and deletions on chromosome 9p21, a region that contains 

the tumour suppressor gene CDKN2A [90]. Aside from CDKN2A (30.8 % rate of 

deletion, n=367), The Cancer Genome Atlas (TCGA) reports CDKN2B (28.9%), MTAP 

(25.1%) and PTEN (7.1%) as commonly deleted genes in cutaneous melanoma which 

are also found in chromosome 9p23.1. Commonly amplified genes are RECQLA 

(7.1%, located in 8q24.3), CCND1 (6.8%, 11q13.3), BRAF (6.8%, 7q34), MITF (6.8%, 

3p13), NOTCH2 (6.8%, 1p12), AGO2 (6.8%, 8q24.3), and MYC (6.5%, 8q24.21)[5, 6, 

71, 91, 92]. 

 

1.8 Assessment Methods for CNV 

Copy number analysis generally refers to the process of analysing data obtained by 

an experiment for DNA copy number variation in a patient’s sample. This helps identify 

chromosomal copy number states that may be associated with various diseases, its 

subtype and more effective treatment [93]. The primary mechanisms that create CNV’s 

include non-homologous end joining, non-allelic homologous recombination, 
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transposition of transposable elements or pseudogenes, variable numbers of tandem 

repeats, and replication errors bought about by fork stalling or template switching [94]. 

Some well-established methods have been used for validation or replication of targeted 

CNV assessment both for single and multi-locus scale including quantitative PCR 

(qPCR), paralog-ratio testing (PRT) and molecular copy number counting (MCC). In 

qPCR, threshold cycles between the test gene and a reference sequence with 

(assumed) normal copy numbers are compared to derived ratio values that are used 

for copy number calculation.  

A single pair of primers are used by PRT to check for degree of similarity between 

elements of sequence both in the target locus (with CNV) and a reference locus. With 

MCC, the aliquots that are positive for a target sequence are counted and compared 

with those of the other target sequences allowing estimation of the relative copy 

number of different sequences in a test DNA sample. 

For the whole genome CNV profiling, the most commonly used platforms are SNP 

arrays and comparative genome hybridization (CGH).  CGH was initially developed as 

a method for assessing the copy number of differentially labelled test in relation to a 

normal reference DNAs using fluorescence in situ hybridization (FISH) onto metaphase 

spreads from a normal sample [95]. This measures the fluorescence ratio along the 

length of each chromosome specific regions of relative loss and gain in the test sample. 

A major weakness of this method was the low resolution (typically 5-10 Mb) afforded 

by metaphase FISH. To address this drawback, large-insert clone libraries were 

developed and clones assembled to overlapping sequence reads (contigs), as driven 

by availability of resources created for the Human Genome Project [96, 97]. In this 

method, test and reference DNA’s are differentially fluorescently labeled and 

hybridized together to an array. This results to a fluorescence ratio that is measured, 

clone by clone and mapped to the clone’s position in the genome. Today, the next 

generation sequencing transforms biology research [98]. 

The studies of Teo et al. (2012) and Tattini et al.(2015) described four methods for 

CNV detection using NGS data including : a) Depth of coverage (DOC) or Read-

depth(RD) or Read-count(RC), b) Paired end mapping (PEM) or Read-pair (RP), c) 

Split read (SR) and d) Assembly based (AS) as illustrated in Figure 1.10 [99, 100].  

 



 

 

Figure 1.10. Four strategies for the detection of SV signature  

Taken from Tattini et al. (2015). deletion (A), novel sequence insertion (B), inversion (C), and tandem duplication (D) in read count (RC), read-

pair (RP), split-read (SR), and de novo assembly (AS) methods.

29 
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DOC assume a random (Poisson or modified Poisson) distribution in mapping and 

checks departure from this distribution to identify duplications and deletions - observed 

DOC/intensity lower than expected indicates a deletion while observed DOC/intensity 

higher than expected denotes duplication [100, 101]. Tattini et.al. (2012) added that 

RP methods are based on the length and orientation of pair-ends such that it collects 

discordant pairs in which the mapping span and/or orientation of the read pairs are 

inconsistent with the expected insert size. They also mentioned that Split-read methods 

allow for the discovery of structural variants with single base-pair resolution and 

investigates presence of variant breakpoints based on the split sequence-read 

signature breaking the alignment to the reference sequence. This identifies deletion by 

treating a gap in the read as a marker while stretches in the reference is treated as 

insertions. De novo assembly (AS) methods refer to combining and ordering short 

segments of the sequence to reassemble the original sequence from which the short 

segments were sampled [102]. The study of Teo et al. (2012) summarized commonly 

used software for CNV detection as shown in Table 1.4 below [99]. 
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Table 1.4. Commonly used softwares for CNV detection using NGS data 

Taken from Teo et al. (2012) 

 

  

Programme Reference Comments 
DOC / RD / RC

    CNVnator* Abyzov et al., 2011 
Uses mean shift approach on fixed window 
GC-content-adjusted read counts. 

    Rdxplorer* Yoon et al., 2009 
Uses event-wise testing on fixed window GC-
content-adjusted read counts. 

    SeqCBS Shen and Zhang, 2012 
Gives approximate confidence intervals for 
assessing confidence in the segmentation. 

    CNVseq Xie et al., 2009 
Uses ratios between reads from target and 
reference genome. 

              SegSeq Chiang et al., 2009 

Segments genomes of a tumour and 
matched normal sample by a sliding fixed 
size window. Boundary is refined after 

    ExomeCNV Sathirapongsasuti et al., 2011 

For exome sequencing data. Uses read 
count ratio to detect CNVs, and B allele 
frequencies to detect LOH. 

    Control-FREEC Boeva et al., 2012 
Uses total coverage and B allele frequencies 
of SNPs to call CNVs and LOH. 

PEM / RP
            Variation 
Hunter* Hormozdiari et al., 2009 

Based on maximum parsimony. Uses soft 
clustering

    BreakDancer* Chen et al., 2009 

Consist of two complementary algorithms: 
BreakDancerMax predicts insertions, 
deletions, inversions and inter- and intra-
chromosomal translocations; 
BreakDancerMini predicts small indels. 

               PEMer* Korbel et al. 2009 

Clusters long and short events separately. 
Confidence value for each SV. Built in 
database and simulation programme. 

SR 

               Pindel* Ye et al., 2009 

Uses pattern growth algorithm. Identifies 
breakpoints of large deletions and medium 
sized insertions. 

Assembly based 
Cortex* Iqbal et al., 2011 

Capable of assembling multiple genomes 
simultaneously. 

    SOAPdenovo* Li et al., 2010 

Claims faster computation time and longer 
contig size and assembly accuracy when 
compared with earlier methods such as 
ABySS and velvet. 

    Velvet Zerbino et al., 2008 — 
    ABySS Simpson et al., 2009 — 
Combination/others 

    Genome STRiP* Handsaker et al., 2011 

Combines DOC, PEM and distribution of 
evidence across samples and within a 
genomic locus. 

    HYDRA Quinlan et al., 2010 DOC + PEM 
    ABI tools McKernan et al., 2009 CBS 
    Spanner* Mills et al., 2011 Uses PEM and able to find tandem 

              SVDetect Zeitouni et al., 2010 
DOC + PEM.Competible with SoLiD and 
Illumina paired-end reads. 

*used in 1000 Genomes Projects
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In this study, a shotgun sequencing method called CNV-Seq was initially used to 

detect copy number of DNA from the processed primary melanoma samples. This 

generates ratios of read counts between the test (X) and the reference (Y) sequence 

and considers the number of sequence reads and not the length as the key factor in 

determining the resolution of detection and is fit for NGS methods that can quickly 

generate large data of short reads [103]. Shown in Figure 1.11 is a comparison of the 

conceptual steps in aCGH and CNV-Seq followed by the formulas for computing mean 

number of reads ( ), and predicted copy number ratio (r) from the work of Xie et al. 
(2009) [103]. 

 

 

Figure 1.11. Comparison of the conceptual steps in aCGH and CNV-seq methods 

Taken from Xie and Tammi (2009) 
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The mean number of reads for two genomes X and Y in each window determines 

the distribution of ratios. The mean number of reads (!) in a window is approximated 

by Poisson distribution given by: 

                                            Equation 1     " = $%/'                                          

where N is the total number of sequenced reads and G is the size of the genome 

and W is the size of each window in the genome.   

The estimated copy number ratio (r) can be calculated as: 

                                        Equation 2     ( = )($+
$,
)     

where z is the ratio of read counts in the window and  and  are the total number 

of reads in the genomes X and Y. 

 

1.9  The Test and Reference Samples 

The test samples in this study are the tumour samples from the Leeds Melanoma 

Cohort (LMC). There were two reference samples used separately in this study. First 

is the seven composite normal samples from LMC and second is the 312 Caucasian 

samples from the 1000 Genomes Project. In this study, the tumour samples were 

obtained from patients of white British origin and it is important to select similar samples 

as reference (or control) to account for ethnicity related germline variation. Detailed 

information on the test and reference samples are found in Chapter 3 (Methodology). 
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Chapter 2 
Research Aims and Objectives 

This project was conducted to identify copy number alterations/aberrations (CNAs) 

in primary melanoma using NGS data derived from the formalin-fixed primary tumour 

samples taken from participants in the Leeds Melanoma Cohort (LMC) and to test for 

associations with patient clinical characteristics including survival. Specifically, it aims 

to: 

1. Implement a procedure for analysing copy number data based on NGS, 

2. Assess quality control methods by examining the consistency with published 

literature, especially TCGA 

3. Develop and apply additional measures to improve data quality, as required, 

reassessing consistency with the literature, 

4. Identify and characterize novel genomic regions of copy number aberrations, 

5. Provide a measure of genomic instability by estimating overall copy number 

alteration/aberration (CNA) load and investigate the association of these with 

clinical characteristics including melanoma survival. 

6. Associate focal genomic regions with clinical characteristics including 

melanoma outcome. 
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Chapter 3 
 Methods 

In this chapter, I discussed the design and the patient sample used in this study. I 

described how the tumour sampling and replication were done as mentioned in our 

previous studies. Then, I presented how the copy number data were generated and 

gave descriptions of the One Thousand Genomes Project. I discussed the copy 

number windows and factors affecting read counts such as GC content and 

mappability, and explained the normalization method applied to read counts. This was 

followed by elaborating the segmentation of the copy number data and finally a 

discussion on the validation of the CDKN2A copy number deletion using MLPA.   

3.1 Study Design and Patient Sample 

The Leeds Melanoma Cohort (LMC) Study is composed of 2184 population 

ascertained melanoma patients diagnosed between 2000 and 2012 and invited to 

participate typically 3 months after diagnosis of primary melanoma; once recruited 

participants were followed until participant indicated an unwillingness to be contacted 

further, death or the end of the study (median follow up > 8.6 years as of April 2018) 

[104]. The LMC has available extensive phenotypic information, biological samples and 

information describing patterns of UV exposure, the primary risk factor for melanoma 

as well as measures of pigmentation and naevi which are also associated with risk 

[105]. Recruitment was categorized by Breslow thickness, the known major predictor 

of outcome, with under-sampling of lesions thinner than 0.75mm.  

For the copy number assessment, tumours from participants with death from 

melanoma were selected as were tumours from participants who had survived for at 

least 5 years from diagnosis; these were identified as a comparison group. This study 

focuses on the 875 participants whose tumours met the criteria.  

Additionally, whole genome sequence data of samples from the Phase 3 of 1000 

Genomes Project (1KGP) (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/) 

were obtained as normal controls. We selected samples which were similar to the LMC 

samples in terms of sequencing characteristics (Illumina platform, low coverage, paired 

end library layout) and ethnicity (Caucasian population). After applying these filters, a 

total of 312 control samples (British with n=106, Finnish with n=105, and Central 

Europeans in Utah (CEU) with n=101) were included.  These samples were composed 

of mixed males and females [107-109]. Including the X chromosome in the analysis 

affects the LOESS correction applied to the read counts unless the samples are all 
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females [2]. Since the focus of my study is on somatic copy number variations, analysis 

of the sex chromosomes was excluded.  

 

3.2 Tumour Sampling 

There were 875 individuals with primary melanoma selected for this CNV study on 

the basis of Breslow thickness (lesions > 0.75mm) and survival (survived for at least 5 

years from diagnosis at the time of study) as mentioned in Sectioned 3.1. Paraffin 

embedded blocks (FFPE) from primary tumours were obtained from different NHS 

Pathology Departments. Tracing of the FFPE blocks was led by the Human Tissue Act 

manager, Ms. Sandra Tovey. Of the 875 target blocks, 796 samples were available as 

FFPE primary blocks; some of the blocks were not available from the relevant 

Pathology laboratory while others were deemed insufficient for sampling. The tissue 

sampling including sectioning and staining was performed by Dr. Filomena Esteves 

and Dr. Jonathan Laye.  

Staining of the sectioned tissues was done using Mayer’s Haematoxylin and 1% 

Eosin (H&E) to facilitate identification of regions for sampling after examination.  

Both Prof. Julia Newton-Bishop and Dr. Jonathan Laye performed the reviewing of 

the H&E stained slides under a microscope and identified areas to be selected for 

sampling.  A 0.6mm diameter tissue microarray needle was used to obtain tumour 

cores consistently as previously described and horizontally through the deepest part of 

the tumour which has the least contamination of stroma or inflammation to increase 

comparability among tumours [106]. Up to three cores were obtained from a tumour 

whenever possible while a sampling was not done when it was deemed there would 

be insufficient tumour left for the following clinical testing, or if the tissue was necrotic. 

 

3.3 Replicates 

A standard measure of QC is to examine the extent that replicate samples provide 

the same information.  In this study, there are several types of replicates allowing an 

examination of the extent to which the results are influenced by statistical and other 

variations; this a minimal criterion to assess if quality control Is sufficient to allow 

meaningful comparisons between samples. There was a total of 34 samples from 

unique patients which were replicated at least twice. Three of these were replicated 

thrice while the rest are replicated twice resulting to a total of 71 replicated samples. 

Of the 71 samples, only the top 2 samples of the triplicates were selected in terms of 
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highest mapped reads. Shown in Table 3.1 below is the summary of the number of the 

replicates before and after filtering the samples based on mapped read counts (for the 

triplicates), and after excluding samples which are rejected due to very low alignment 

rate. 

 

Table 3.1. Commonly used softwares for CNV detection using NGS data 

 

 

Of the 34 samples, Technical replicates (n=21) that were assessed include: a) 14 

libraries which were directly sequenced (“technical”); b) 10 libraries derived from 5 

patients of which the same DNA samples were prepared  in two ways: manually and 

using the NEB NEBNext® Ultra DNA Library Prep kit; c) 5 libraries generated using 

different DNA input from 2 Leeds Chemotherapy Study (LCS) patients (3 libraries using 

250ng, 100ng and 25ng DNA from patient 1; 2 libraries using 100ng and 25ng DNA 

from patient 2) ("concentration"). The biological replicates include a) 22 libraries 

derived from 11 patients where a second library was prepared using a second core 

from the same primary tumour block ("core") and b) 5 libraries derived from different 

primary tumours from the same patient ("tumour", 3 tumours from one patient, two 

tumours from a second patient).  

Of these 34 samples, 4 rejected samples due to very low alignment rate which all 

belong to the technical replicates were excluded. A total of 30 samples which were 

replicated twice (60 total replicates) were retained for further analysis. 

 

3.4 Data Generation 

Data generation were initially done by Dr. Anastasia Filia and Dr. Alastair Droop, 

prior to my arrival in Leeds. Whole-genome NGS libraries of the DNA samples were 

prepared using either manual library preparation method or using the NEB NEBNext® 

Ultra DNA Library Prep kit for Illumina [107, 108]. Technical replicates were sequenced 

in order to assess the reproducibility of NGS technology using FFPE derived DNA. 

Replicate
Biological (n=13) samples total replicates samples total replicates samples total replicates

Tumour 2 5 (1 triplicate) 2 4 2 4
Core 11 22 11 22 11 22

Technical (n=21) 0 0 0
Concentration 2 5 (1 triplicate) 2 4 2 4
Method 5 10 5 10 5 10
Technical 14 29 (1 triplicate) 10 28 10 20

Total 34 71 34 68 30 60
*triplicates  with the  lowest reads mapped were excluded **rejected due to very low alignment rate

Before QC Third Replicate Excluded* Rejects Excluded**



38 

Sequencing of all NGS libraries on Illumina GAII or HiSeq sequencer were done to 

produce >100bp pair-end reads (either 1 or 5 samples per lane) with a median 

coverage of 1.8x (single) and 9.1x (multiplexed).  

Sequence reads trimming was done using cutadapt version 1.8.3: adapters and low 

quality read tails (quality score<37) were trimmed including reads less than 20 

nucleotides to reduce the chances of sequence contamination and improve the speed 

and quality alignment to the reference [109].  GRCh38 human reference without 

alternate contigs were used in the alignment of the remaining reads using bwa mem 

0.7.10 [109]. Duplicates were marked using Picard version 1.119 [110].  

To minimize artefacts around known common indels, local realignment was 

performed using the GATK pipeline with the default parameters added with 

“filter_bases_not_restored” and “filter_mismatching_base_and_equals” [111]. 

samtools calmd was used to recall BAM file MD tags[112]. Alignments that were 

unmapped, secondary, QC failed, duplicated or supplementary and with mapping 

quality of less than 20 were excluded to derive the final trimmed data.  

 

3.5 The GRCh38 Human Genome Reference Build  

The 1000 Genomes Project was able to produce more than 100 trillion base pairs 

of short read sequence from more than 2600 samples coming from 26 populations 

conducted between 2008 and 2013 [113]. All the processed samples were sequence 

with two methods: low-coverage whole genome sequencing (WGS) and whole exome 

sequencing (WES). It was released and aligned on the human reference genome 

assembly GRCh37 and has more than 85 million genotyped and phased variants [113].  

Since then, it has been broadly used by the researchers in the scientific community for 

studies that commonly involve genotype imputation, mapping expression Quantitative 

Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer 

genome sequencing projects, and genetic analysis of population structure and 

molecular evolution [114].    

In late 2013, The Genome Reference Consortium released the first major update to 

the reference genome assembly named GRCh38. Zheng-Bradley et al. (2017) 

realigned the 1000 Genomes Project samples to the GRCh38 reference and listed the 

following improvements in the human genome assembly as below [114] :  

• Correcting erroneous bases, updating the tiling path in highly variable regions, 

and closing sequence gaps. 
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• Introducing centromere sequence to replace mega-base stretches of Ns in 

earlier assemblies. The centromeres are created from a model of the estimated 

number and order of centromeric repeats. 

• Substantially increasing the number of alternative loci associated with the 

assembly. Following the assembly model introduced with GRCh37 that also 

supported updates and patches, GRCh38 introduced 261 alternative scaffolds 

(ALT) to represent diverse haplotypes in 178 chromosomal regions. 

The locations of the remaining unclosed gaps (including the short chromosome 

arms) in the human genome where obtained from the UCSC browser as described in 

Chapter 5 : Additional Steps to Increase Data Quality. 

 

3.6 CNV Data Windows 

To make direct comparison across samples, identical window sizes and window 

locations were used to bin the data; this has become the standard approach for 

accumulating information across the genome [115]. Studies have shown acceptability 

of this method even at window read count as low as 60 per window [2, 116]. Data were 

binned in different fixed window sizes such as 1M, 100k, 10k, 5k and 1k base-pairs 

across the whole genome data. This was performed using a software developed by Dr. 

Alastair Droop (bamwindow, available on GitHub at https://github.com/alastair-

droop/bamwindow) which divides a reference dataset into fixed size windows, starting 

at the beginning of each chromosome. Read midpoint was assigned as the focus of 

the read to each window so that each read falls exactly in one window. In calculating 

the midpoint, clipped regions are not included. This method allows window to window 

comparison of adjusted read counts across samples. 

 

3.7 GC Content and Mappability 

Despite the great advantages of NGS, genome assembly from its generated data 

poses some challenges including sequencing bias [117, 118]. This section describes 

sequencing bias associated with GC content and mappability. GC content is defined 

as the total number of C and G nucleotides divided by the total number of nucleotides 

(A, C, T, G) in a given region (e.g. window) of the reference genome.  

Several studies have conducted systematic analysis of the influence of GC bias on 

genome assembly [119, 120]. Extensive GC content reduces the completeness of the 

genome assembly especially when the amount of GC base pairs exceeds 40%. 
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Because of this,  strong GC bias fragments the assembly due to low coverage  of reads 

in the GC-poor or GC rich regions of a genome [120]. 

Shotgun and next-generation sequencing (NGS) involve shearing the genome into 

segments, and sequencing either all or part of the resulting segments; these are termed 

as reads. The overlap between reads serves as the basis of de novo assembly [121]. 

The reads are then mapped to the reference genome to create a reference assembly. 

The task of reference assembly is straightforward when the read length is long enough. 

Long enough reads make the success of creating a reference assembly more 

achievable.  

Mappability indicates the uniqueness of an identified sequence in the reference 

genome and depends on the length of the sequence and the number of allowed 

mismatched base pairs. This can be extensively affected by the number of repetitive 

nucleotides in a sequence. It is known that some regions of the human genome can be 

sequenced but remains unassembled due to the extensive amount of repetitive 

sequences present [122].  Unassembled regions can be classified into four types 

namely: a) telomeres; b) centromeres; c) short-arms of acrocentric chromosomes 

(chromosomes 13,14,15,21,22 and Y); and d) large heterochromatic regions (in 

chromosomes 1,9,16 and Y). A specific sequence in the genome is called ‘mappable’ 

if the read length (k-mer) of the reference genome beginning at the defined location is 

not exactly repeated at any other part of the genome [123].   The measure of 

mappability is defined as the proportion of the short-read sequences (typically 24, 36 

or 48 bp reads which are uniquely represented in that window); for this analysis, we 

examined 36 bp reads. 

While this project does not involve genome assembly, the deficit in GC reads with 

shotgun sequencing is an issue for copy number assessment which involves 

comparing the observed number of reads in a window with the expected number 

calculated on the basis of a defined genomic profile.  For copy number analysis, this 

bias needs to be taken into account in the analysis.   

Adjusting for the read counts to account for GC content and mappability bias has 

been addressed in several studies. Earlier use of simpler LOESS (Locally Estimated 

Scatterplot Smoothing) model (which effectively creates local smoothing of the read 

count) [124-127] in terms of GC content adjustment concentrated on the association 

between fragment count and GC composition for specified window (or bin) sizes. For 

a given window, GC content is calculated as the proportion of G and C in that window 

based on the reference genome as described above. Uniqueness of the sequence was 

accounted for by estimating a measure of mappability. A python script using Bowtie 

mapper was used to check whether or not a sequence with a known read length is 
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mappable (i.e. is unique). Then, a GC bias curve is created using a LOESS regression 

model of count by GC on a random sample of 10000 bins with high mappability (greater 

than 0.90). Modelling was done using an R package loess [125-128]. The work of 

Benjamini and Speed [123] using two main samples : one sample from the tumour of 

an ovarian cancer patient and one normal sample from white blood cells, utilized single 

position models that enables comparison of different possible GC windows and 

measure the effects of each and compared them in terms of a parameter called Total 

Variation score (TV score) based on the work of Durrett [129].  Within a library, the 

fragment length was found to influence the shape of the GC curve. Though not 

consistent between samples, interaction between GC and fragment length was 

observe when testing several datasets from different sequencing centres. GC effect 

was shown to be mostly driven by the GC component of the full fragment. Conditional 

modelling on the GC of the fragments which defines the strongest bias allows improved 

correction compared with alternative GC windows [123].  

Initially, adjustment of the LMC copy cumber data was performed using the R 

package loess as was used by Benjamini and Speed [123]. Further quality control 

analysis revealed the need for checking the interaction effects between GC content 

and mappability to read counts especially in the case of FFPE samples without 

matched normal.  

A newer version of the LMC copy number data was then refined based on the 

methodology of Scheinin et al. [2] which provides a way of checking for the interaction 

effects between GC content and mappability using isobar plots as well as to correct for 

this source of bias using a two-dimensional LOESS model.  

In adjusting the read counts, a two-dimensional LOESS model that incorporates the 

interaction between GC content and mappability was fitted to the median read counts 

of each 10kb window. The pipeline was available in an R Package called QDNAseq 

produced by Scheinen et al [2]. The LOESS model in this package takes the interaction 

form of GC content and mappability to predict the median read count in each 10k 

window bin.  

Each median read count per 10kb window was then divided by the LOESS predicted 

read count to obtain the adjusted read count for each window [2]. This methodology is 

further discussed in Chapter 5 : Additional Steps to Increase Data Quality. 
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3.8 Read Count Normalization 

Normalization needs to be done in order to remove technical variation (e.g. GC 

content and sequence mappability) present in the data. GC content for each window 

was generated from the reference genome excluding bases masked as N. Software 

named gem-mappability was used to calculate for mappability allowing 1 mismatch and 

a sequence of length 35 bases based on the work of Derrien et al. [130]. They defined 

mappability as: given some read length of size k, the k-frequency ./(0) of a sequence 

at a given position x is the number of times the k-mer beginning at position x appears 

in the sequence and in its reverse complement, while allowing for some mismatches 

(e.g. 1 nucleotide base mismatch). Below is the formula used to calculate the k-

mappability or k-uniqueness 1/(0):   

 

Equation 3 1/(0) = 1/	./(0) 

 

The median mappability score for each 35-nucleotide sliding window was then 

obtained. At first, individual modelling and correction for GC content then for 

mappability of each chromosome were performed using LOESS before being log 

transformed.  

A separate data set was created that utilized the simultaneous correction for GC 

content and mappability in the form of interaction using the QDNAseq function 

estimateCorrection [2]. This method was found to provide better correction when the 

two factors adjusted for are found to have interacting effects to read counting. While 

the initial copy number data adjusted window read counts were based on the total read 

counts of the chromosome where the window is located, the new data was adjusted 

based on the whole somatic genome median read count.  

Also available for this analysis were seven “normal” samples i.e. paraffin-embedded 

samples of skin, not from the site of melanoma; these normal samples were chosen as 

they had been processed in the same manner as the tumour samples.  The first 

composite normal was created from these seven normal samples; the read count for 

each window was created by taking the median of the adjusted window counts for these 

seven samples. None of these seven normal samples are matched to any of the LMC 

tumour samples.  

A second composite normal was derived from the 312 samples obtained from the 

1000 Genomes Project. Normal samples were adjusted in the same way as the 

individual tumour samples. Finally, all the individual tumour samples were normalized 
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to the median corrected consensus normal to derive the corrected read score by taking 

the log2 of the tumour read counts after being divided by the median read count of the 

normal samples. Three sets of data for evaluation were derived namely: Data1- read 

counts were adjusted sequentially for GC content and mappability and normalized to 

composite normal based on 7 normal skin tissue samples adjusted similarly, Data2 – 

read counts adjusted concurrently of GC content and mappability then normalized to 

composite normal based on 7 normal skin tissue samples adjusted similarly, Data3 - 

read counts adjusted concurrently of GC content and mappability then normalized to 

composite normal based on 312 1000 Genomes Project samples adjusted similarly. 

 

3.9 Blacklist Windows 

Studies have shown that NGS read alignment to specific areas of the genome is 

poor as exemplified by peri-centromeric and low complexity regions [131]. Copy 

number data generated in these regions are deemed unreliable.  This results to the 

need to identify and exclude these regions in the analysis.  

At the time the initial analysis was done, there were not much available resources 

about the blacklisted regions in the genome of the reference build GRCh38. Two filters 

which we utilised in our previous study[1] were initially employed: (1) regions defined 

as “problematic” (at threshold of top 0.01% of the distribution of coverage at each base 

(using 500 Mb of sequence) of the sequence data from 1000 Genomes Project data 

[113] by Pickrell et al. (2011) marking areas in the genome that yield spurious copy 

number peaks [131] and (2) large regions with low coverage as identified by checking 

for 10k windows with zero reads in more than 5% of the samples and subsequently 

excluding any runs of length 150 or less windows between marked windows [1]. The 

first filter identified 446 out of 308,837 (0.14%) windows at 10k base-pair resolution 

while the second filter identified 32,852 out of 308,837 (10.64%) that includes the whole 

of chromosome Y yielding an initial count of 33,096 blacklisted windows (10.72%) at 

10k resolution. 

A list of modelled centromeres and heterochromatins obtained from 

https://www.ncbi.nlm.nih.gov/grc/human (Genome Reference Consortium) and a list of 

gaps in the human genome taken from http://genome.ucsc.edu/cgi-bin/hgTables were 

considered as blacklisted regions denoted as Centrogaps.  The QDNAseq pipeline 

which is based on residual filter calculation after adjusting for GC content and 

mappability was used to identify windows that were highly variable in the genome using 

the 312 control samples from 1000 Genome Project.   
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Considering only the autosomal genomes, Centrogaps identified 17,904 10k 

windows while the residual filter identified 35, 856 10k windows to be included in the 

blacklisted regions. All windows in the Centrogaps list were also found in the list based 

on the residual filter. A total of 38,215 unique 10k windows from our dataset, including 

the 2,359 unique windows from the earlier method were considered as the final blacklist 

accounting for 13 % of the autosomal genome. 

 

3.10  Calculation of Copy Number 

Following the exclusion of blacklisted windows and the creation of an adjusted read 

count for each window, all the adjusted window read counts were normalise to the 

median of their respective genomes using the QDNAseq function normalizeBins [2]. 

Then, the copy number LR in each window is calculated as a log2 transformed copy 

number ratio between a tumour and germline reference as below: 

 

Equation 4   45 = 6789(
:$;<=7<(
:$5>?>(>@A>

) 

 

Where CNTumour = the adjusted read count of a given sample in a given window, and 

       CNReference = the adjusted read count of a given sample in a given window 

of the reference samples which could either be the 7 LMC or the 312 1000 Genomes 

Project samples. Throughout this thesis, the term copy number that pertains to copy 

number data used in my analyses refers to LR, the log2 ratio between tumour copy 

number and the reference (normal tissue) copy number. 

 

3.11 Segmentation of CNA data 

Copy number segmentation refers to the process of splitting the chromosome into 

regions of equal copy number (segments) that accounts for noise by smoothing the 

data. In this study, we used the widely used segmentation algorithm Circular Binary 

Segmentation (CBS) which was originally developed by Olshen et al. [132]. This 

method provides a natural way to assign chromosome segments as contiguous regions 

and bypasses parametric modelling of the data with its use of a permutation reference 

distribution [132].  
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Let W1, ..., Wm, be the adjusted read counts corresponding to the m markers or 

windows for the segment being considered. The test statistic is obtained by the 

maximal t-statistic given by T=max1≤i<j≤m|Tij|, where |Tij| is the two-sample t- statistic to 

compare the mean of the observations with index from i + 1 to j , to the mean of the 

rest of the observations. The formula is given below: 

 

Equation 5    BCD =
EFGHIJFGH

KGHL
M
HNGO

M
(PNHQM)

 ,  

 

Where RFCD = (SCOT +⋯+ SD)/(j-1), W̅CD = (SCOT + ⋯+ SC + SDOT +⋯+ SY)/(m-j+1) , and ZCD[  

is the corresponding mean squared error. Note that if we treat the segment being tested as 
indexed by a circle by connecting its two endpoints then the method tests whether there 

are two complementary arcs that have different means. The change is deemed statistically 

significant if the P-value is smaller than the set significance level  ∝ (typically 0.01) and 

identify the locations of the change-points as the i and j (if j<m) that maximise the test 

statistic [136].  

The above process is followed by the process of recursively identifying the change 

points for two arcs. Once the change points are identified, the location of the change 

point and the average read count (segment mean) between the two consecutive 

change points are obtained [132]. This method segments data by checking for change-

points using a maximal t-test but takes more computational time to evaluate the 

significance of the change-points [133]. A faster version of this algorithm was 

implemented in the DNAcopy package of the R Bioconductor project. The better 

computational speed of this method was obtained by using a hybrid approach to obtain 

the significance of the t-statistic in linear time. Additionally, an early stopping rule  was 

introduced when there is strong evidence for the presence of a significant change [134].  

 

3.12  MLPA analysis  

The analysis presented in this thesis focuses on the statistical analysis of FFPE 

derived melanoma tumours.  This approach was adopted because of the paucity of 

other techniques for examining copy number among such small, formalin fixed 

tumours.  To validate the results is desirable but molecular analysis other than 

examining a focused region of the genome is prohibitive in terms of DNA content.   
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With that in mind, we used a known technique termed Multiple Ligation Probe 

Amplification (MLPA) which uses test and control probes and examines the ratio of test 

to control probes using qPCR.  MRC Holland TM produce a kit targeting the CDKN2A 

region of the genome (“SALSA MLPA Probemix P419 CDKN2A/2B-CDK4”), a region 

of considerable interest for melanoma.  

Tumours with sufficient available DNA which were subject to this analysis used 

samples taken from as close as possible to the core taken for the copy number 

assessment.   The kit was run as per the guidelines by Dr. Joanna Pozniak within our 

laboratory and she also performed the statistical analysis; she provided me with 

estimated copy number at the site of each of the probes. These numbers are 

incorporated into the comparative analysis of MLPA and NGS sequenced-based 

analysis. 
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Chapter 4 
Assessment of CNA Data Quality Phase 1 

The aim in this chapter is to: 

• Provide an initial assessment of CNA data quality and decide whether it merits 

proceeding with further analysis. 

 

4.1 Introduction 

The standard quality measures applied in the generation of the copy number data 

are detailed in Chapter 3 : Methodology. This chapter aims to assess the quality of the 

data by, firstly, identifying the appropriate window size to be employed in further 

analyses. To do this, the replicates are explored in terms of the cases’ copy number 

profiles such as average number of segments, average segmented length, raw counts, 

and adjusted/corrected read counts. A description of the mcnv R package is also 

provided which is the main tool used in visualising and manipulating the copy number 

data [135]. Finally, a comparison of LMC CNA data with published TCGA dataset on 

copy number variation of melanoma was performed. 

 

4.2 Methods 

4.2.1 The mcnv R Package 

The mcnv version 1.5-22 R package created by Dr. Alastair Droop was used in 

majority of the copy number profile visualization. This package was primarily designed 

for the analysis and manipulation of the Melanoma CNV Project data. A basic tutorial 

including installation instruction of this package is available at http://alastair-

droop.github.io/MCNV-tutorial/. Visualisation of copy number profiles provided better 

overview in manually assessing the quality of data, as well as copy number patterns 

across samples. 
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4.2.2 Selection of Window Size 

To focus the analysis of copy number, the changes generated with different window 

sizes (1kb, 5kb, 10kb, 100kb, and 1mb) for the CDKN2A regions were assessed and 

compared. Segmented copy number profiles were generated in all the provided data 

window sizes and the resolution that provided the reasonable compromise between 

information content and amount of noise was chosen for further analysis. This is done 

by analysing a focused region in the genome covering the CDKN2A region where with 

the most common form of deletion in melanoma and most cancers is located [71]. I 

then checked how the known CDKN2A deletion (validated using MLPA as discussed 

in Section 3.12)  in this region was clearly identified in different window resolution/sizes. 

The window size or resolution that gives the clearest depiction of the variation in this 

region was selected for further analysis. The whole genome copy number profiles 

where then assessed and showed that the 10k window resolution has the clearest 

depiction of overall known aberrations in the melanoma genome. Both the creation of 

copy number windows (or bins), and segmentation of the whole genome copy number 

data are described in Chapter 3 (Section 3.6 CNV Data Windows, and Section 3.11  

Segmentation of the CNA Data).  

4.2.3 Assessing similarity of replicates 

As previously stated in Chapter 3 (Section 3.3) a total of 60 samples (30 patients) 

were used in the first set of replicate analysis. Descriptions of these replicates are also 

in Chapter 3. Randomly selected pairs of replicates were plotted and compared in 

terms of whole genome copy number profile. Then, a visualisation of the level of 

similarity among the different types of replicates was done by plotting the mean number 

of fragments per chromosome for each pair of samples such as core, tumour, 

concentration, method, and technical. Pearson’s r was calculated for samples group 

as to cores or technical replicates, then for all the replicates. A more linear pattern 

between the mean number of fragments per chromosome for each pair of replicates 

indicates better consistency of the data.  

A window level analysis of the adjusted read counts for each pair of replicates was 

also performed using Pearson’s r to assess similarity as previously done our initial copy 

number paper [1]. 

4.2.4 Calculation of Number of Segments and Segmented Length 

Ten out of 355 samples were rejected due to very low alignment rates (3.1 x 106 – 

34.3 x 106 aligned reads retained) after filtering, leaving 345 samples which were 

retained for further quality control steps. For these samples, segments derived from 
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circular binary segmentation (CBS) reflect information available for each sample. The 

appropriate metrics for segmented copy number data are: the number of segments for 

each sample, the segment length and the alignment with existing literature. These 

metrics represent the copy number profile with lesser noise and facilitates assessment 

of data quality and copy number patterns. To calculate the average number of 

segments per chromosome, all segments per chromosome of each sample were 

counted and divided by the total number of samples analysed (n=345). Similarly, 

average segmented length was calculated by taking all base pairs aligning to the 

segments per chromosome and dividing by the number of samples analysed (n=345).  

4.2.5 Linearity of Chromosome Segments and Segmented Length 

For normal samples, it is expected that the somatic chromosome segment changes 

uniformly with its size. The expectation is different for cancer samples where segment 

breaks were observed across the genome. Under the assumption that the majority of 

chromosomes do not harbour specific genetic changes associated with melanoma 

development and that the chromosomes generally varies directly with its size (which 

the exemption of chromosome 21 and 22 where the latter is longer), we would expect 

there to be a linear relationship between the length of the chromosome and number of 

fragments (or breaks or segments).  Exceptions will apply of course if particular 

chromosomes contain regions where copy number changes are required for melanoma 

development.  This analysis explores the linearity of the relationship between the 

average number of segments across all samples (plotted on the Y-axis) and the 

average total segmented length (plotted on the X-axis) for each chromosome. Simple 

linear regression was applied to examine goodness of fit. 

4.2.6 Examination of the esv3620012 

Visual inspection of the copy number traces identified common variation in copy 

number was identified within the region 9p21 which is very close to the location of the 

CDKN2A region (9p21.3).  Review of genomic databases suggested that this variation 

represented a previously documented germline copy number variation (esv3620012; 

chr9: 23,362,412–23,378,071) which is about 1.4 Mb from CDKN2A.  This variation 

consists of the presence or absence of a 16kb region [136] 

(www.ensembl.org/Homo_sapiens/StructuralVariation/Explore?r=9:23362314-

23378180;sv=esv3620012;svf=114158056;vdb=variation). This variation is 

documented in 1000 Genomes Project dataset. Based on genome-wide genotyping of 

germline samples from the Leeds Melanoma Cohort, followed by imputation of the 

presence based on the 1000 Genomes Project panel (conducted by Dr. Mark Iles) 

identified persons within the Cohort who carried the mutation (the copy number variant 
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was in complete LD with several SNPs including rs4977836).  Initial analysis on 

esv3620012 within the NGS dataset within the two 10kb windows which covered the 

sites of the deletion were examined and compared to the number of reads in those two 

windows with the average adjusted read count from the 10 adjacent windows each side 

of this copy number variation. This was visualised using histogram grouped by 

genotype to check for difference in distribution and confirm the linkage disequilibrium 

with rs4977836. 

4.2.7 Comparison of NGS versus MLPA data 

A more detailed description of the MLPA analysis conducted by Dr. Joanna Pozniak 

was stated in Chapter 3 (Section 3.12 MLPA Analysis). Results from this experiment 

were visually compared with the NGS data which are the main data of this project. Two 

sets of copy number data from these two sources were compared focusing on the 

CDKN2A region. The copy number plot was created using the mncvplot function from 

the mcnv package [135]. This is aided with the function geom_segment from the 

ggplot2 package [137] to draw the MLPA data points annotated with vertical lines 

where the endpoints represent the boundaries of the 95% confidence interval about 

the mean. The plotting code created by Dr. Alastair Droop was used as a guide in this 

analysis.  

4.2.8 Comparison between LMC and TCGA CNA Data 

The cBioPortal for Cancer Genomics has published a list of regions that are deleted 

or amplified in metastatic skin cutaneous melanoma based on the work of the TCGA 

Research Network (http://cancergenome.nih.gov/) [5, 6, 138]. Three genomic 

characteristics were specified in the TCGA file namely:  

• region start and region end,  

• peak start and peak end, and  

• enlarged peak start and enlarged peak end. 

Gene level copy number data available for 367 samples were downloaded from 

http://www.cbioportal.org/study?id=skcm_tcga#summary.  

For the initial analysis, the region described by “peak start” and “peak end” and 

genes covered by these were identified in LMC data.   For each gene in each region, 

the locus was obtained using the R package bioMart [139, 140]. The adjusted read 

count was average across the LMC copy number data windows covered by each given 

locus. The proportion of samples with deletion or amplification in TCGA and LMC were 

calculated and their distributions were compared using two-sided bar plots 
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representing TCGA proportion of samples with aberrations on one side and LMC on 

the other. 

 

4.3 Results 

4.3.1 Selection of Window Size 

The copy number profile for the CDKN2A region in different window sizes is shown 

below in Figure 4.1. The x-axis represents the genomic region around the CDKN2A 

region while the y-axis represents the log2 adjusted copy number for the selected 

sample. The top plot presents the copy number profile of the CDKN2A region, known 

to be commonly deleted in melanoma and most cancers with 1 megabase resolution 

(1mb window) while the plot at the bottom represents the 1 kilobase (1kb window) 

resolution. Each dot on the plot represents the log2 copy number of the selected 

sample in a given window. The colour represents segments; adjacent dots similarly 

coloured belongs to the same implied segment while dots that have different colours 

have different copy number and belong to separate segments. It can be seen that copy 

number plot for 1mb resolution does not identify the CDKN2A loss in the sample while 

a moderate loss was detected in 100kb window. Significant deletion was detected by 

the segmentation algorithm in 10kb, 5kb, and 1kb windows resolution. To select the 

resolution for further analysis, a compromise between information content and amount 

of noise was considered. This suggests that the 10kb resolution should be chosen as 

the appropriate window size for further analysis of the copy number data as it is able 

to detect the CDKN2A region with limited noise. Additionally, a known common 

germline variation (dots between the green and pink dots on the 10kb window) called 

esv3620012 was observed only in this resolution. A further analysis on this ESV is 

discussed on this chapter.  Results for other samples mimicked Figure 4.1. This is in 

line with the previous study of Gusnanto et al. (2014) which looked at estimating the 

optimal window size for the analysis of low-coverage next-generation sequence data 

based on Akaike's information criterion (AIC) and cross-validation (CV) log-likelihood 

by plotting the AIC and CV log-likelihood curve as a function of window size. They 

concluded that in their 2 datasets (LS041, and LS010), the optimal window size is the 

one which has at least 60 reads per window [119]. 

 

 



 

 

Figure 4.1. The CDKN2A Region. Copy number profile shown in different window sizes (from bottom to top: 1kb, 5kb, 10kb, 100kb, and 1mb) 
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4.3.2 Whole Genome Copy Number Visualisation 

A visualisation of the whole genome copy number profile in each sample was 

generated to assess the distribution of the log2 adjusted read counts for each sample. 

Below is a whole genome copy number plot based on the 10kb window. The whole 

genome is divided into segments which are regions with equal copy number. A clear 

separation between 1p segment and 1q segment can be observed for this sample 

(Figure 4.13). Using zero as the baseline normal copy number, chromosome 1p has 

lower copy number than expected while chromosome 1q has higher copy number than 

expected at this resolution.  

4.3.3 Assessing similarity of replicates 

Each pair of technical replicates (technic, method, and concentration) and biological 

replicates (tumour, core) were plotted in Figure 4.2 to Figure 4.11. The tumour 

replicates showed differences in the segmented genome particularly in chromosomes 

6p and 9p regions and could more likely be due to the inherent biological variability of 

the tumours (Figure 4.2). Comparison between these two tumour replicates using 

scatterplot (Figure 4.3) shows moderate correlation (Pearson’s r=0.33, P<2.2x10-16) of 

their respective 10k window copy number ratios. The comparison of paired core 

replicates as depicted in Figure 4.4 shows overall similarity of the genome with some 

differences in segmentation patterns that can be noticed in the regions of 2p and 6q. 

Comparison between these two core replicates using scatterplot (Figure 4.5) shows 

strong correlation (Pearson’s r=0.67, P<2.2x10-16) of their respective 10k window copy 

number ratios. The pair of technical replicates showed highly similar genomic profiles 

(Figure 4.6). Comparison between these two technical replicates using scatterplot 

(Figure 4.7) shows very strong correlation (Pearson’s r=0.81, P<2.2x10-16) of their 

respective 10k window copy number ratios. The plot for a pair of samples processed 

using the different laboratory methods for library construction is shown in Figure 4.8. 

The two samples show highly similar patterns of aberrations across the genomes. 

Comparison between these two method replicates using scatterplot (Figure 4.9) shows 

strong correlation (Pearson’s r=0.76, P<2.2x10-16) of their respective 10k window copy 

number ratios.  Finally, Figure 4.10 shows the plot of paired samples processed using 

different concentrations. The pair of samples displays highly similar genome plots 

indicating good consistency and quality of the data. Comparison between these two 

concentration replicates using scatterplot (Figure 4.11) shows strong correlation 

(Pearson’s r=0.77, P<2.2x10-16) of their respective 10k window copy number ratios. 

It is visually evident that the genome profiles tend to be heavily affected by noise. 

Analysis of the replicates was reperformed in Chapter 6, after further data quality 
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control steps were implemented.  An overall visualisation of the level of similarity 

among the different types of replicates used is displayed in Figure 4.12. This shows 

the number of fragments of one replicate plotted against of that of another replicate. 

An overall correlation of 0.74 (P=3x10-6 for assessing deviation from randomness) 

indicate a high level of similarity among the replicates. This measure was heavily 

affected by the other observations taken from the biological replicates (tumour, core) 

which were observed to be more variable or heterogenous and less “consistent”. 

Analysis of replicates including only the technical replicates (technic, method, and 

concentration) show very high correlations (Pearson’s r=0.78) of the two replicates 

(P=7.8x10-5) as expected because these are more controlled and homogenous in 

comparison with the biological replicates.   
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Figure 4.2. Comparison of Analysis of 2 tumours from same case, showing 

notable differences including the 6p and 9p regions 
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Figure 4.3. Scatterplot of 2 tumours showing moderate correlation of copy 

number ratios at 10k window resolution 
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Figure 4.4. Analysis of 2 cores from the same tumour showing overall similarity 

but with some differences in segmentation pattern (e.g. chromosomes 2p 

& 6q) 
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Figure 4.5. Scatterplot of 2 cores from the same tumour showing strong 

correlation of copy number ratio at 10k window resolution 
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Figure 4.6. Analysis of the same library sequenced twice in this comparatively 

silent (in copy number terms) tumour showing consistency. 
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Figure 4.7. Scatterplot of 2 tumours as technical replicates showing very strong 

correlation of copy number ratios at 10k window resolution 
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Figure 4.8. Analysis of the same core with libraries prepared by different 

laboratory methods showing overall similarity in this tumour but some 

modest differences (e.g. size of segmented regions). 
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Figure 4.9. Scatterplot of 2 tumours as method replicates showing strong 

correlation of copy number ratios at 10k window resolution 
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Figure 4.10. Analysis of the same library analysed at two different concentrations 

showing overall consistency. 
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Figure 4.11. Scatterplot of 2 tumours as concentration replicates showing strong 

correlation of copy number ratios at 10k window resolution 

 

 

 

 



 

 

Figure 4.12. Plot of different replicates.  

There was a total of 34 samples which were replicated at least twice. Three of these were replicated thrice while the rest are replicated twice 

resulting to a total of 71 replicated samples. Of the 71 samples, only the top 2 samples of the triplicates were selected in terms of highest mapped 

reads. Of the remaining 68 samples, 8 samples (from 4 patients) were rejected due to very low coverage. A total of 60 samples (30 patients) 

were used in the first set of replicate analysis. Of these, 34 were “technical” replicates (technical=20, method=10, concentration=4) and 26 were 

biological replicates (core= 22, tumour=4) 

6
5 
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4.3.4 Chromosome Level Copy Number Visualisation 

The whole genome profile consistently presents peaks that are potentially noise 

based on the fact that most other samples do not have such changes; of course, by 

the nature of random variation, rare changes of copy number may reflect causal 

changes but this will not be feasible to disentangle with modest numbers of samples. 

To better understand this, I checked for the chromosome specific plots of this sample. 

Below are the plots for chromosomes 1 and 2 (Figure 4.14). This allowed me to inspect 

the copy number profile in more detail as to the amount of noise present and the 

location of the noisy regions in the genome. The plots clearly showed the observe 

peaks of noise are located on or near the telomeric and centromeric regions of each 

chromosome whose mapped sequence reads are known to be difficult to assemble in 

the genome. These regions were identified and needs to be masked in the genome as 

part of the blacklisted regions as done in Chapter 5.  

 



 

 

Figure 4.13. Whole genome copy number profile for Sample S1.  

The X-axis represents the chromosomal regions while the Y axis represents the log2(adjusted read counts).  Hence, 0 on the Y-axis represents 

no copy number change.  
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Figure 4.14. Chromosomes 1 and 2 copy number profile for Sample S1.  

X axis represents the chromosomal regions while Y axis represents the log2(adjusted read count). Chromosome level copy number profile for 

Sample S1. X axis represents the chromosomal region while Y axis represents the log2(adjusted read count). Chromosome 1 is plotted on top 

while in the bottom is chromosome 2. 
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4.3.5 Calculation of Number of Segments and Segmented Length 

The mean segmented length and number of fragments (or segments) per 

chromosome is summarised in Table 4.1 below across all samples. A higher variability 

in number of fragments as measured by standard deviation in relation to chromosome 

size is observed in chromosomes 6, 7, 11, and 16 with a standard deviation of 16.8, 

19.5, 15.3 and 13.5 fragments ranging between 1 and 167 fragments. While these 

chromosomes are known to be associated with melanoma (i.e. chromosome 6 where 

G9a which was shown to drive oncogenesis is located[141] ;chromosome 7 is where 

the BRAF gene is located, a commonly mutated gene in melanoma [67, 69, 93, 142]; 

chromosome 11 where CCND1 which is associated with melanoma progression is 

located [93, 143-146] ; and a locus in chromosome 16 was shown to be associated 

with melanoma risk[147]), the amount of variability observed in the genome in general 

merits further investigation.  

Table 4.1. Segmented length and Number of Segments/Fragments across all 
samples. 

s 

Mean Segmented
Length(Base pairs) Mean Median SD* Min Max

1 248,555,941            40.2 37 20.7 1 240
2 241,827,330            36.9 36 19.2 1 190
3 198,132,450            16.5 14 11.1 1 70
4 190,068,547            14.9 13 11.6 1 99
5 181,287,637            25.2 22 12.6 1 95
6 170,600,585            20.7 17 16.8 1 167
7 158,902,091            44.6 43 19.5 9 165
8 144,951,119            18.8 17 10.5 1 86
9 138,210,480            18.7 17 11.6 1 92
10 133,587,544            21.1 20 10.2 1 88
11 134,867,112            22.1 19 15.3 1 135
12 133,146,051            13.2 11 11.4 1 120
13 114,237,078            13.0 13 7.4 1 92
14 106,959,904            8.7 7 6.1 1 37
15 101,731,892            26.4 26 10.4 7 98
16 89,965,778               37.3 37 13.5 1 79
17 83,007,195               25.2 24 11.7 1 95
18 80,299,720               7.7 7 4.8 1 31
19 58,502,186               11.7 11 6.4 1 49
20 64,385,737               6.1 5 4.8 1 39
21 46,662,901               4.7 4 3.9 1 46
22 50,676,377               14.3 14 8.5 1 111
X 155,711,898            15.5 15 7.6 1 64
Y 57,070,111               1.0 0 0.0 1 1

Chromomsome No. of Fragments

*SD: Standard Deviation
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4.3.6 Testing for linear relationship of replicates 

Aside from the linear relationship between average number of segments and 

average segmented length per chromosome, this section allowed me to assess the 

influence of different factors (blacklisting, exclusion of rejected samples) in the overall 

copy number profile of the patients. Figure 4.15A shows the plot without excluding the 

blacklisted regions and the rejected samples. Figure 4.15B shows the plot excluding 

the 10 rejected samples. Figure 4.15C and Figure 4.15D show plots excluding the 10 

blacklisted regions only, and excluding both the blacklist regions and 10 rejected 

samples respectively.  While removal of the ten poor samples has minimal effects of 

the overall presentation of the results, the removal of the blacklisted regions has a 

noticeably more substantial impact.  Simple observation of the y-axis scale shows that 

removal of these regions reduces the range of number of fragments. 

In Figure 4.15A and Figure 4.15B a borderline significance of the relationship 

between the average number of chromosome segments and average segmented 

chromosome length was observed both for the analysis without excluding the 

blacklisted region and rejected samples (P=0.0644) and the one with rejected samples 

only excluded (P=0.0633). In Figure 4.15C, a highly significant linear relationship was 

observed after excluding the blacklist region (P=0.005282) from the analysis as well 

as with Figure 4.15D with slight improvement in linearity after excluding both blacklist 

regions and rejected samples (P=0.005189). The percentages of variance explained 

by the linear models are 16 %, 16 %, 33 % and 33 % (Figure 4.15A-D respectively). It 

can also be observed that chromosomes with the most excessive aberrations were 

chromosomes 3, 4, 7, 15, 16, 17 and 22 which are known to contain melanoma CNA 

regions [71, 148-152].   

Our initial paper on copy number analysis [1] examined different types of paired 

samples consisting of cores from two separate tumours from the same patient, two 

cores from the same tumour and repeat analysis of the sample from the same core. A 

correlation analysis using Pearson’s r was performed on each replicate pair in terms of 

adjusted read count per window to assess the similarity of the replicates. Similar 

analysis was performed and summarised in Table 4.2 showing that majority (27 out of 

30) of the paired technical replicates are significantly correlated (P <0.05 for one pair, 

P <0.01 for the rest) except for one “core” replicate, one “methods” replicate, and one 

“technical” replicate. For biological replicates, all four “concentration” replicates are 

significantly correlated (P<0.0001). Three out of four of the “tumour” replicates are not 

significantly correlated as represented by the Pair ID D17. D17 corresponds to 

triplicates of a tumour sample. The lower correlations observed were more likely due 

to the inherent variability of the tumour. In our analysis of samples with triplicates, aside 
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from the initial quality assessment performed, we chose the sample with highest reads 

for our further analysis. Inter tumour variability was only assessed based on correlation 

analysis using different pairs of tumours. Overall, the average of the correlation of the 

paired replicates is 0.60. 



 

             

             

Figure 4.15. Linear plots of average number of segments and average segmented length per chromosome 

A, all samples with all regions; B, excluding the blacklisted regions but retaining the rejected regions; C, all regions but excluding the 11 rejected 

samples; D excluding the rejected samples and the blacklisted regions. 

A B 

C D 
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Table 4.2. Correlation of replicates using adjusted read counts 

 

Pair ID Replicate Type Pearson's r Significance
D17 0.22 .
D17 0.26 .
D03 0.26 .
D17 0.65 ****
D33 0.68 ****
D34 0.72 ****
D34 0.73 ****
D34 0.75 ****
D26 0.40 *
D01 0.51 **
D02 0.53 **
D11 0.65 ****
D18 0.70 ****
D29 0.72 ****
D05 0.19 .
D07 0.53 **
D13 0.55 **
D14 0.63 ****
D08 0.80 ****
D16 0.36 .
D23 0.50 **
D31 0.64 ****
D04 0.69 ****
D12 0.78 ****
D06 0.29 .
D21 0.48 **
D24 0.56 ***
D25 0.59 ***
D22 0.61 ***
D09 0.63 ****
D15 0.65 ****
D27 0.69 ****
D28 0.74 ****
D20 0.76 ****
D10 0.78 ****
D19 0.81 ****
D32 0.82 ****
D30 0.93 ****

0.60
   . not significant at 5% level * 5 % level
    ** 1 % level       *** 0.1 % level **** 0.1 % level

Core

Average Correlation

Tumour

Concentration

Method

Technical
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4.3.7 Examination of the ESV Region: esv3620012 

The difference between the adjusted read counts in the windows corresponding to 

esv3620012 with the adjacent windows showed a 3 peaked distribution (Figure 4.16). 

This is explained by the 3 genotypes of the SNP rs4977836 (depicted by distinct 

colours of each genotype – see figure legend) implying that this location is indeed the 

proposed ESV but also the methodology sufficed to identify and quantify this variation. 

 

Figure 4.16. Examination of identified common variation in 9p21 by 3 genotypes 

of the SNP rs4977836 postulated to be esv3620012. 

The distribution of the read count aligned to the germline esv with the adjacent 

windows varies with the predicted genotype at the esv.  Distributions are plotted 

by genotype at rs4977836. 
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4.3.8 Comparison of NGS Data versus MLPA results 

Our lab’s first paper on this data also includes comparison of NGS and MLPA copy 

number analysis focusing on the CDKN2A region. Of the 26 samples tested in both 

methods, 11 samples were deemed incomparable because of not-interpretable MLPA 

results. Of the 15 comparable samples, 13 have matching results for both methods 

while the remaining two samples did not match [1]. Shown in Figure 4.17 below is the 

plot of copy number profile of one sample displaying the copy number profile in the 

CDKN2A region with the light green region covering MTAP, light blue covering 

CDKN2A, and dark blue covering CDKN2B. Both ends of the plot shows normal copy 

number profile around zero and in the middle shows deletions of different regions. A 

total of 11 probes (blue dots) from MLPA analysis was plotted against the copy number 

segments with 95% confidence limits represented by red vertical lines. In this sample, 

copy number results in all the MLPA probes matches those of the NGS data as they 

are consistently close if not coinciding with the NGS copy number segment (black 

horizontal lines surrounded by yellow green and skyblue dots representing copy 

number windows) in each region. 

 

 

Figure 4.17. MLPA versus NGS CNA data 

 

4.3.9 Comparison with TCGA List of Genes with Aberrations 

The adjusted read counts were averaged across the LMC CNV data windows 

covered for each locus identified within TCGA. Figure 4.18 shows the list of genes with 

deletions in skin cutaneous melanoma by TCGA. Copy numbers of these genes were 

checked in LMC data (n=346) and compared with TCGA results (n=367). For LMC 
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data, an average adjusted (or corrected) read count > -0.3 was set to define a copy 

number loss. Percentage of samples with deletions were computed for the two sets of 

samples.  

Results from LMC data do not fully resemble the figures from TCGA but there were 

also clear similarities. The difference might be due to technical variation, nature of the 

samples as TCGA data predominantly contain metastatic samples while LMC data 

contains purely primary tumour. On the other hand, the two data show similarly high 

percentage (< 20%) of samples with deletions in UTF1, FAM157C, CDKN2A, 

C9ORF53, FYN, SNORA66, SNORD2, B2M, BHLHA9, PARK2, RPL5, SNORD21, 

MC1R, DBIL5P and DPEP1.  

The TCGA list of genes with amplifications in skin cutaneous melanoma are shown 

in Figure 4.19. For LMC data, an average adjusted read count >0.3 was set to define 

an amplification in copy number. Similarly, percentage of samples with amplification 

was computed and compared with those of TCGA. Results show that as for deletions, 

LMC samples with do entirely resemble the TCGA distribution. Genes that similarly 

show high percentage of samples with amplifications were HULC, CCND1 (>20%), 

KCNN3, MYC, RPTOR, PTP4A1, ABHD16B, PVT1, TERT, SMYD3, PCMTD2, CYTH3 

(>10%). A previous study compared CCND1 amplification in primary and metastasis 

melanoma and found higher frequency of amplifications of this gene in primaries [153]. 

This supports what is observed in LMC (24.3%) data in comparison with TCGA (18.8%) 

data. 

 

 

 

 

 

 

 

 



 

 

Figure 4.18. Copy Number Status of LMC and TCGA Samples (Deletions) based on TCGA identified regions 

777 



 

 

Figure 4.19. Copy Number Status of LMC and TCGA Samples (Amplifications) based on TCGA identified regions
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4.4 Discussion  

This chapter started with the discussion on the selection of the window size to be 

used for the analysis based on the ability to capture the CDKN2A region which is the 

main focus in melanoma. Visualisation of the copy number profiles of the samples in 

this region showed that 10k window provides the optimal compromise between 

information content and noise as also supported by the analysis of the esv3620012 

which is an identified common germline variation in copy number within the 9p21 

region, and is very close to the location of the CDKN2A region (9p21.3). Other 

approach to window selection includes the method proposed by Gusnanto et al. (2014) 

which looked at estimating the optimal window size for the analysis of low-coverage 

next-generation sequence data based on Akaike's information criterion (AIC) and 

cross-validation (CV) log-likelihood by plotting the AIC and CV log-likelihood curve as 

a function of window size[119]. 

In the absence of a “gold standard” to assess how well our analysis has performed, 

we must ensure that all quality control is conducted and investigate the consistency of 

the resulting data, that is both internally (e.g. by looking at replicates) and externally by 

showing comparability with external data such as TCGA.  One of the few approaches 

to validity is to compare the copy number estimate from NGS with that derived from 

MLPA applied to as close a DNA sample as is feasible.  Because MLPA requires 

significant quantities of DNA, this means of comparison is restricted, in this instance to 

the CDKN2A region, a region with a commercially available MLPA kit.  

Initial quality control procedures were done on the CNV data, starting with read 

quality etc. Analysis of replicates were done by plotting replicate samples with one 

another on the basis of number of chromosome fragments, estimated segmented 

chromosome length, raw read counts and corrected read counts. Significant correlation 

between the samples (excluding the biological ones) over and above that is for random 

pairs of samples provided evidence of high reproducibility of the data and indicates 

quality control measures produce consistent data.  

Plot of chromosome fragments on the chromosome length reveals linearity as would 

be expected both for data including rejected samples and blacklisted regions. 

Excluding rejected samples and blacklisted region in the analysis significantly 

improved linear relationship between chromosome fragments and chromosome length. 

Excessive copy number aberrations were observed in chromosomes 3, 4, 7, 10, 11, 

15, 16, 17 and 22 making these as potential targets for evaluation in subsequent 

analyses. 
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Another examination done on the data was checking for known structural variants 

esv3620012 (ESVs are structural variants named by EBI). Analysis of the read counts 

on its location across SNP genotypes within the NGS dataset was performed. The two 

10kb windows covering the sites of the deletion were considered and compared based 

on the number of reads in those two windows with the average adjusted read count 

from the 10 adjacent windows each side of this copy number variation. The difference 

between the read counts in the putative esv windows with the adjacent windows 

showed a 3 peaked distribution which was explained by the 3 genotypes of the SNP 

implying that this location is indeed the proposed esv but also the methodology sufficed 

to identify and quantify this variation. 

LMC samples were compared with TCGA samples in terms of their published list of 

genes with deletions and amplifications in skin cutaneous melanoma. Though LMC 

samples did not appear to fully resemble the distribution of deletions and amplifications 

in TCGA samples, a similar high percentage of samples with deletions and 

amplifications in some genes were observed. Major difference in the two samples might 

be due to technical variation and or the nature of the samples used as TCGA is 

composed of predominantly metastatic melanoma was LMC is composed purely of 

primary melanomas. 

 

4.5 Conclusion 

Results of the initial copy number data assessment showed variability of the across 

different regions of the genome especially at chromosome 7. While the methodology 

performed was able to identify and quantify the know common germline variation: 

esv3620012 in human, comparison of the frequency of somatic gains and deletions of 

the LMC copy number data with those of TCGA showed patterns of similarity but still 

requires to be improved and suggests that further steps can be done to increase CNA 

data quality. It has been found out that frequent occurrence of noisy peaks in the copy 

number profile lies in the centromeric and telomeric region of the genome. This should 

further be investigated and accounted before proceeding with the further analysis of 

the data. 
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Chapter 5 
Additional Steps to Improve Data Quality 

This chapter discusses the additional steps explored in attempt to improve the 

quality of the LMC copy number data. It includes new methodologies applied as well 

as updated information from the online genomic research resources such as UCSC 

Browser and Genomic Reference Consortium website. 

 

5.1 Introduction 

Subsequent to the initial LMC CN data acquisition and QC (conducted by Dr. 

Alistair Droop and Dr. Anastasia Filia), there have been publications describing 

studies of relevance which added or updated genomic information.   

• The QDNAseq (Quantitative DNA sequencing for chromosomal aberrations) 

pipeline was developed and became available as an R package[2]. This 

pipeline performs GC content and mappability correction using a two-

dimensional LOESS model with an interaction term. It empirically identifies 

highly variable regions (blacklist) in the genome of a given set of samples.  

• Updated published list of gaps including centromeres, telomeres, and regions 

of heterochromatin were obtained from the UCSC Browser and Genome 

Reference Consortium Website [154, 155].  

• The 1000 Genomes Project read realigned to reference assembly GRCh38 

provided more capability to identify common germline variations in normal 

samples matching the LMC characteristics as mentioned in Chapter 1.1 [114]. 

This helped identify more highly variable regions on the genome that were 

not identified in our previous work. 

In this Chapter, I describe how these developments were incorporated into my 

analysis and the impact on the results. Utilisation of the 1000 Genomes Project 

samples as normal control was initially suggested by Dr. Arief Gusnanto who acted 

as my examiner during my first-year transfer. The study of Scheinin et al. (2014) in 

estimating shallow sequencing derived somatic copy number data from FFPE 

samples was made known to me by Dr. Daniela Robles-Espinoza as part of her 

feedback in my presentation in Genomel 2017 in Genoa, Italy. 
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5.2 Methods 

5.2.1 The QDNAseq Pipeline 

The QDNAseq (Quantitative DNA sequencing for chromosomal aberrations) 

pipeline was developed to implement novel copy number profile correction and 

blacklisting approaches described in the work of Scheinin et al. (2014) [2]; it was 

developed specifically for low coverage copy number analysis from formalin fixed 

material. This was implemented in R or RStudio and uses bam files as input[156, 

157]. This can be downloaded in Bioconductor with an available user manual that 

details how to use the package [158]. This package has several functions which 

includes simultaneously correcting for GC content and mappability using a two-

dimensional LOESS model, identification of highly variable regions in the genome 

including the common germline variations, copy number segmentation and copy 

number calling. The application of the package was limited to the first two functions 

as these were the novelties of this package. The last two functions were done 

separately in different R packages which will be discussed further in the later 

sections. 

5.2.2 Generation of Additional Blacklist 

The phase 1 of blacklist identification done by Dr. Alastair Droop was based on an 

earlier study that identified spurious copy number peaks in the genome using 

GRCh37 genome build [131] whose information was derived from the 1000 Genomes 

Project. This consisted of 33,096 10kb windows which are described in Chapter 3. 

This set of blacklists successfully reduced noise from the LMC CNA data but was 

deemed insufficient due to many regions in the genome that still shows high level of 

noise (a point that was also recognised by Scheinin et al. (2014) [2]). This reflects 

the need to consider further analytical steps to increase data quality and adjust for 

other technical variations that may have taken place from sampling to sequencing. 

This variation may also be due to the normal samples used and its size (7 normal 

samples from the skin combined to one summary dataset), and difference in the 

genome builds used in generating the blacklist (GRCh37 vs GRCh38). Though there 

are existing tools like LiftOver (https://genome.sph.umich.edu/wiki/LiftOver, 

https://genome.ucsc.edu/cgi-bin/hgLiftOver), hgLiftOver 

(http://rohsdb.cmb.usc.edu/GBshape/cgi-bin/hgLiftOver), and liftOver 

(https://rdrr.io/bioc/rtracklayer/man/liftOver.html), that “lifts over” one genome build to 

another, they fail to account for the updates in the newer version specifically for the 

nonrepetitive regions in the genome. Lifting over is most appropriately only for non-



83 

repetitive sites of the genome where significant change between two genome builds 

was not seen. It also compromises accuracy in regions with updated information such 

as identification of variants in any region that was newly added to the newer genome 

build [114].  

For genome builds as updated as GRCh38, the UCSC Browser has a GAPS track 

that indicates gaps in the human genome. This includes centromeres, telomeres, 

contigs, heterochromatins, and short arms. Gaps pertain to the “unfinished” genome 

sequences that could either be heterochromatic (~200 mb) or euchromatic (~24.4 

mb) regions [159]. Heterochromatic regions are defined as large regions of the 

genome that are almost exclusively composed of  tandem repeats; this includes 

centromeric satellite DNA and acrocentric portions of the human chromosomes while 

euchromatic regions contain genes [159]. The information on the location of UCSC 

gaps is located on http://rohsdb.cmb.usc.edu/GBshape/cgi-

bin/hgTables?hgsid=6186842_AYlQa1OGEnUoRkQEj02VSdI1vjsw . This can be 

manually selected by assigning the following values in the search fields: 

Clade: Mammal 

Genome: Human 

assembly: Dec. 2013 (GRCh38/hg38) 

group: Mapping and Sequencing 

track: Gap 

region: genome 

 

A screenshot showing how this step was done is shown in Figure 5.1. The 

definition of the different types of genome gaps below were mostly derived from the 

UCSC Browser and the work of Eichler et al. (2004): 

Centromere: the modelled location of the centromeric regions in the human 

genome. There were only 22 autosomal centromeric regions considered in this study. 

Telomere: the location of the telomeric regions and spans to a fixed size of 10kb 

on each side of the chromosomes. There were 44 telomeric regions considered in 

this study. 

Heterochromatin: these consists of large regions that are almost exclusively 

composed of tandem repeats. There were 11 heterochromatic regions obtained from 

the UCSC browser and spans from 20kb to 3000kb in length. 
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Short arms: the location of the short arms of the five chromosomes 13, 14, 15, 

21 and 22 were not targeted as part of the Human Genome Project. These contains 

DNA that are highly repetitive and generally regarded as heterochromatic region. The 

region length ranges from 500kb to 1699 kb. 

Scaffold: these are sections of the genome sequence that are derived from end 

sequenced whole genome shotgun clones and spans from 10bp to 624 kb in length 

and may compose of clone gaps or contig gaps as described below:  

Clones: these are gaps that were classified as unable to subclone from those that 

were covered by clones but were difficult to finish/complete thus not bridging the gap. 

Most clone gaps contain high amount of segmental duplications. There were 98 clone 

gaps identified in this list. 

Contigs: there are sets of contiguous overlapping clones and aggregated in the 

genome. This is a subset of a scaffold and accounts to 135 regions included in the 

list spanning from 100bp to 400 kb. 

 

 



 

 

Figure 5.1. Manually selecting the gaps in the UCSC Genome Browser 
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The information about the location of modelled centromeres and heterochromatins 

were located in the Genome Reference Consortium website at 

https://www.ncbi.nlm.nih.gov/grc/human [155]. A. Kundaje (2016) published a list of 

new blacklists in the hg38 genome build. This was done by redoing their previous 

work on the hg37 genome build on the hg38 mapped samples. His list identified 

regions that have anomalous, unstructured, and high peaked in the NGS experiments 

independent of cell line and experiment type. This list of blacklist is downloadable 

online in http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/ 

[160, 161]. 

All these regions were identified in the LMC 10kb window CNA and 1000 

Genomes Project data and were masked before empirically identifying a new set of 

blacklists based on common variation in the genome of normal samples from 1000 

Genomes Project using QDNAseq pipeline. 

5.2.3 Obtaining 1000 Genomes Project (1KGP) Samples 

Data from the 1000 Genomes Project (1KGP, 

http://www.internationalgenome.org/about/) were obtained as normal controls. The 

final version of 1KGP consists of 2504 germline samples from 26 populations from 

different parts of the world categorised as South Asian (SAS, 20%), European (EUR, 

20%), East Asian (EAS, 20%), American (AMR, 14%), African (AFR, 26%)  [113]. 

These samples were sequenced originally in GRCh37 format and were later on 

realigned to GRCh38 with alternative scaffold-aware BWA-MEM and available as  

CRAM, a sequence compression format based on a reference [114]. 

The following criteria were used to select the samples which are processed 

similarly to the LMC samples: sequencing done with paired-end Illumina equipment, 

short read length sequencing, low coverage, and those sampled were of Caucasian 

ancestry.  In total, 312 1KGP samples (British with n=106, Finnish with n=105, and 

Central Europeans living in Utah with n=101) meeting these criteria were included as 

normal controls. Corresponding sequences for the 312 selected normal samples 

were downloaded from ftp.sra.ebi.ac.uk/vol1/ and securely stored on the university 

server.  

CRAM files were converted to bam format using samtools as required for the 

windowing package: bamwindow (bamwindow available on GitHub at 

https://github.com/alastair-droop/bamwindow) [112]. The resulting windowed 

sequences were read into R using QDNAseq package and were used to estimate 
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highly variable copy number regions in the genome of Caucasian population as well 

as the germline copy number. 

5.2.4 Highly Variable Regions in Caucasian Populations 

A previous study has shown the presence of highly variable windows in the 

genome [2]; these windows which are typically isolated are recurrent in terms of 

differing rates among samples (even germline samples) and still remain after 

accounting for previously published blacklists in the genome. These were initially 

hypothesised to be common germline variations and hence detailed analysis of 

germline samples was conducted.  

Similar methodology was applied in this study analysing a significantly increased 

number of normal samples (38 in the previous study (Scheinin, Sie et al. 2014) versus 

312 in this study). Another improvement of this study is a more specific ethnic group 

alignment to the case samples which addressed the recommendation of the previous 

study to provide more power in adding more population specificity to detecting 

common germline variations. The normal samples were processed similarly as the 

case samples using the QDNAseq pipeline. The new set of blacklists were compared 

with previous sets  generated and visualised using the Venn diagram venn function 

of gplots package in R [162].  The various sources were then combined to make a 

broader set of blacklists to reduce the rate of false copy number peak detection 

reducing the noise in the genomic profiles of samples.  

5.2.5 Read Counts Adjustment Phase 2 

GC content and mappability of the sequence reads affect the raw read counts 

[123, 130, 163]. In the initial correction made for these data, adjustments were made 

for these two factors separately. Although independent correction is effective for 

many samples, some samples contain artifactual variations and this is likely 

especially true for formalin fixed samples. Independent or sequential correction of 

GC content and mappability provides benefit if these two factors do not have an 

interaction effect on the raw read counts.  However, an interactive effect would mean 

that the separate adjustment is likely non-optimal. I, therefore, checked for the 

evidence of an interaction by plotting the median read counts at each bin as a function 

of GC and mappability. With evidence of interaction between GC content and 

mappability, simultaneous correction was performed as recommended by Scheinin 

et al. [2]. This involved first fitting a LOESS surface through the medians of the 

windows with the same combinations of GC and mappability. The raw read count for 
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each bin is corrected by dividing the raw read count by the LOESS value of its 

combination of GC and mappability as shown in the equation below. 

 

Equation 6 !"##$%&$'!"()& = +,-!"()&//"$0012& 

 

where  

CorrectedCount is the corrected counts for windows with a combination of the GC 

content and mappability 

RawCount is the  raw read counts for windows with a combination of the GC 

content and mappability 

LoessFit is the fitted read count using a loess curve for windows with a 

combination of the GC content and mappability 

 

This is implemented using the estimateCorrection function under QDNAseq R 

package [2]. After correction/adjustment, the adjusted read counts were then 

normalised around the corresponding genome median read count using the function 

normalizeBins which is also under QDNAseq R package [2]. 

5.2.6 Comparison with Germline Copy Number 

Ideally, in copy number analysis, a tumour copy number profile is compared with 

a germline copy number from a matched normal tissue. Lack of matched normal 

sample is a frequent occurrence for formalin fixed samples, either because of lack of 

normal samples or because of the expense of generating information from normal 

samples. In this study seven composite normal samples were available (not all from 

patients in this study) and used as a reference having been formalin fixed similarly to 

the tumour samples; these samples were taken from wide local excisions removed 

during melanoma removal but were so distant from the primary as to be tumour free. 

In comparison, germline copy number profiles from the available 312 1KGP samples 

were also included. For a given sample, a log transformed copy number ratio 

between a tumour and germline reference as described in Chapter 3 (Section 3.10 

Calculation of Copy Number).  
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5.3 Results  

5.3.1 Additional Blacklist from Published Resources 

A total of 315 autosomal gap regions were extracted from the UCSC browser 

website (Table 5.1) corresponding to 22 centromeres (6600 kb), 98 clone regions 

(568 kb), 135 contigs (1472 kb), 11 heterochromatins (4248 kb), 5 short arms (6716 

kb) and 44 telomeres (44 kb) accounting for a total of 19648 kb region of the genome 

(~1% of the genome). 

 

Table 5.1.Distribution of genome gaps by type as obtained using UCSC 
Browser 

(Accessed on December 15, 2018). Includes only autosomal regions 

 

 

Shown below in Table 5.2 is the list of modelled centromeres and heterochromatin 

published in the GRC website. Centromeric regions measured from 128 kb 

(chromosome 6) to 580 kb (chromosome 18). Additionally, a heterochromatin region 

found on chromosome 7 was identified and spans up to 15 kb in size. Another set of 

blacklists included in this study was identified from the works of Kundaje (2016) that 

accounts for almost 2 kb of the genome (Table 5.3). According to Kundaje, a 

considerable proportion of blacklisted regions vanished when the new genome build 

was released. Despite the small size, inclusion of this known blacklist remains 

important in the attempt to reduce false positives in identifying regions of copy 

number alterations. There were only 9 10k window blacklist identified in the study of 

Kundaje (2016) which are also found in all other sources of blacklist providing more 

confidence in the inclusion of this list to the final blacklisted regions. 

 

Gap type No. of regions Size(kb)
centromere 22 6600.0
clone 98 567.7
contig 135 1472.0
heterochromatin 11 4247.7
short_arm 5 6716.1
telomere 44 44.0
Total 315 19647.5
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Table 5.2. List Modelled Centromeres and Heterochromatin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region name Location Start Stop Size(kb)
CEN1 chr1 122026460 125184587 315.8
CEN2 chr2 92188146 94090557 190.2
CEN3 chr3 90772459 93655574 288.3
CEN4 chr4 49708101 51743951 203.6
CEN5 chr5 46485901 50059807 357.4
CEN6 chr6 58553889 59829934 127.6
CEN7 chr7 58169654 60828234 265.9
HET7 chr7 61377789 61528020 15.0
CEN8 chr8 44033745 45877265 184.4
CEN9 chr9 43236168 45518558 228.2
CEN10 chr10 39686683 41593521 190.7
CEN11 chr11 51078349 54425074 334.7
CEN12 chr12 34769408 37185252 241.6
CEN13 chr13 16000001 18051248 205.1
CEN14 chr14 16000001 18173523 217.4
CEN15 chr15 17000001 19725254 272.5
CEN16 chr16 36311159 38280682 197.0
CEN17 chr17 22813680 26885980 407.2
CEN18 chr18 15460900 20861206 540.0
CEN19 chr19 24498981 27190874 269.2
CEN20 chr20 26436233 30038348 360.2
CEN21 chr21 10864561 12915808 205.1
CEN22 chr22 12954789 15054318 210.0

Total 5827.1
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Table 5.3. Kundaje's list of blacklisted regions in hg38 

 

 

Inclusion of these blacklisted effectively reduced the amount of recurrent noise in 

the LMC data. Examining the different blacklists after being applied in the LMC data, 

a significant overlap was noticed among the blacklists used by Droop, Kundaje and 

Location Start End Size(kb)
chr1 124450730 124450960 0.02
chr2 90397520 90397900 0.04
chr2 90398120 90398760 0.06
chr3 93470260 93470870 0.06
chr4 49118760 49119010 0.03
chr4 49120790 49121130 0.03
chr5 49601430 49602300 0.09
chr5 49657080 49657690 0.06
chr5 49661330 49661570 0.02
chr10 38528030 38529790 0.18
chr10 42070420 42070660 0.02
chr16 34571420 34571640 0.02
chr16 34572700 34572930 0.02
chr16 34584530 34584840 0.03
chr16 34585000 34585220 0.02
chr16 34585700 34586380 0.07
chr16 34586660 34587100 0.04
chr16 34587060 34587660 0.06
chr16 34587900 34588170 0.03
chr16 34593000 34593590 0.06
chr16 34594490 34594720 0.02
chr16 34594900 34595150 0.03
chr16 34595320 34595570 0.03
chr16 46380910 46381140 0.02
chr16 46386270 46386530 0.03
chr16 46390180 46390930 0.08
chr16 46394370 46395100 0.07
chr16 46395670 46395910 0.02
chr16 46398780 46399020 0.02
chr16 46400700 46400970 0.03
chr20 28513520 28513770 0.03
chr20 31060210 31060770 0.06
chr20 31061050 31061560 0.05
chr20 31063990 31064490 0.05
chr20 31067930 31069060 0.11
chr20 31069000 31069280 0.03
chr21 8219780 8220120 0.03
chr21 8234330 8234620 0.03

Total 1.70
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Centrogaps (Figure 5.2). A total of 17,393 windows from CentroGaps were also 

located in either the Kundaje or the Droop list while only 511 windows were unique. 

The Kundaje list showed high rate of overlap with Centrogaps and Droop with 20/21 

(95%) windows in common and only 1 unique window. Of the 25,310 autosomal 

windows from Droop’s list, 17,402 (70%) windows were also found in Centrogaps 

and the Kundaje list with 7,908 unique windows. After accounting for the initial set of 

blacklists from Centrogaps, Kundaje and Droop, my QDNAseq pipeline derived 

blacklists that were inherent in the normal control based on the 312 1KGP samples 

from Caucasian population. These regions consist of unique 12,392 (32% of the 

overall blacklists) 10k windows; this has improved the quality of the LMC data by 

empirically identifying the location of highly variable regions in the genome that were 

not identified in the previous works and published references. In totality, 38,215 10k 

windows accounting to more than 13% of the autosomal genome (287, 509 10k 

windows) were included in the final blacklist. A visualization of the location of these 

regions in the genome is depicted in Figure 5.3. 

 

 

Figure 5.2. Relationship among the different blacklist used 

 

The Droop list is represented by the vertical bars/lines in maroon, Kundaje in 

black, CentroGaps in green, and the non-highlighted peaks were the new set of 

blacklists derived based on the noise filter applied to the 312 1KGP samples. The y-

axis represents the median read count of the samples for each 10k window in the 
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genome while x-axis shows the 10k window index from chromosomes 1-22. The 

upper shows the median adjusted copy number profile of the 7 LMC control samples 

with the different blacklists and when the read counts covered by these regions were 

not removed. It is very noticeable that a significant number of regions in the genome 

that show highly variable copy number profile where located in the blacklisted 

regions. The lower plot shows the same data after removing the copy number profile 

located in the blacklisted regions. A significantly cleaner copy number profile was 

observed showing the importance of accounting for blacklisted regions in somatic 

copy number analysis and the usefulness of using 1KGP normal samples in 

identifying highly variable regions in the human genome using the same genome 

build GRCh38. 

 

 



 

 

 

Figure 5.3. Location of blacklists in the genome.  

The upper plot displays the initial blacklist used from the work of Dr. Alastair Droop. The lower plot presents the initial blacklist, including the 

additional ones from the UCSC browser gaps, GRC list of centromeric and telomeric regions, and QDNAseq identified list of highly variable 

regions in the genome 
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5.3.2 Adjusting for the interaction effect of GC content and 
mappability  

An essential consideration in correcting for GC content and mappability bias is 

checking for their interaction effect on the read counts. This was done by creating an 

isobar plot which plots the median read counts for each window as a function of GC 

and mappability for a given sample.  

The isobar plot below in 

 

Figure 5.4 shows the median read counts per bin as a function of GC content and 

mappability showing the interaction between GC content and mappability as generated 

using QDNAseq package in R. The black lines represent each combination of GC 

content and mappability. The colour intensity represents the median read count for a 

given combination of GC content and mappability. It can be observed that both low and 

high median read counts are observed in a varying GC content at a given fixed value 

of mappability implying an interaction [2]. The adjusted read counts for each window 

were calculated by first fitting a LOESS surface through the medians of the windows 
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with the same combinations of GC and mappability. The corresponding loess fit for the 

given sample in Figure 5.4 is displayed in Figure 5.5. The raw read count for each bin 

is corrected by dividing the raw read count by the loess value of its combination of GC 

and mappability as described in Section 5.2.5 Equation 6. 

 

 

Figure 5.4. Median read counts per bin as a function of GC content and 
mappability.   

Varying median read counts are observed in a varying GC content at a given fixed 

value of mappability implies an interaction between GC content and mappability 
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Figure 5.5. Loess fit for a given combination of GC content and mappability.  

A loess model is used to estimate a loess fit through the median read count in the 

windows for each combination of GC content and mappability. The raw read count is 

divided by the loess fitted value for each combination of GC content and mappability 

to estimate the corrected counts in each window. 
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To assess the impact of adjusting for the interaction effect of GC content and 

mappability to LMC copy number profile, a comparison of the copy number profiles 

using the different GC content and mappability adjustment methods (sequential versus 

simultaneous/interaction) is shown in Figure 5.6 below. 

The upper plot shows the median copy number profile of the 7 LMC control samples 

adjusted sequentially for GC content and mappability. It can be seen that the median 

sample profile is very close to zero reflecting that expected copy number profile for 

normal samples. Plot of the samples using the mean and median read counts as well 

as examples of individual sample plot for two samples to show variation of read counts 

are shown in Appendix F. It can also be noticed that some noise remains visible after 

removing the copy number profiles that fall within the blacklisted regions. This noise 

was significantly reduced when a simultaneous correction of sample read counts for 

GC content and mappability was done (lower plot). The same impact on the copy 

number profiles was observed in a previous study using FFPE samples [2]. 

 

Figure 5.6. Average LMC copy number profile using sequential and simultaneous 
correction for GC content and mappability 
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5.3.3 Reference copy number from normal samples 

Germline copy number profiles from 7 normal skin LMC samples and 312 1KGP 

were estimated and presented different strengths and weaknesses. LMC samples 

were derived from the skin and expected to reflect a more representation of the skin 

germline but is present only in a very few numbers. Samples from 1KGP were much 

larger and were derived from blood samples. Figure 5.7 shows the comparison of the 

two samples after similarly being simultaneously adjusted for GC content and 

mappability. 

Although both samples showed germline copy number profile around zero in the 

autosomal regions, it is highly noticeable that the 1KGP samples provides a cleaner 

profile. On the basis of general uniformity across the genome that depicts more a 

normal population, I decided to use the median read count per window of the 312 1KGP 

samples as the reference germline copy number for the 303 LMC tumours. 

 

Figure 5.7. Median adjusted read counts per 10K window of LMC samples 
compared with 312 1KGP samples. 
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5.4 Discussion 

A critical consideration in whole genome copy number analysis of FFPE tumours is 

quality control during the estimation of the copy number profile.  This is likely 

particularly an issue in dealing with suboptimal DNA quality and low DNA yield and 

tends to produce noisy copy number profile of the sample [164]. For degradation prone 

DNA from FFPE, it was recommended to check for the interaction effect of GC content 

and mappability to the read counts obtained. This can be done by plotting the median 

read counts at each bin as a function of GC and mappability represented by isobar plot 

created using available R package QDNAseq[2]. After demonstrating the GC content 

and mappability interaction effect to read counts, adjustment using a two-dimensional 

(GC and mappability) LOESS model with interaction term was performed.  Various 

authors have investigated the presence of windows which give highly variable results 

reflecting sequences which are complicated or not unique; the blacklisted windows 

identified by the various authors have a lot in common reflecting genomic complications 

rather than technical issues with particular experiments.  The combined list that I 

generated included all previously identified windows from blacklisted regions 

mentioned in this study and contributed to improve QC even further. 

Identifying and masking the additional blacklisted regions in the genome 

significantly reduced the amount of noise in the data. This study took advantage of the 

publicly available whole genome sequence data from the 1000 Genomes Project to 

identify common germline variations and other technical artefacts inherent in the 

germline using the GRCh38 genome build. These “normal” samples were selected 

based on Caucasian origin to match the ethnicity of LMC tumour samples making it 

more able to identify ethnicity specific germline variations.  

In May, 2020, Kundaje et al. (2020) published in the ENCODE portal 

(https://www.encodeproject.org/files/ENCFF356LFX/) a file (identifier:ENCFF356LFX) 

containing new list of blacklisted regions containing 852 regions (See Appendix E) that 

maps to 7,182 10K windows in the genome[160, 165]. I cross checked this list with the 

updated LMC blacklist and found that 6,628 (92.3%) of these windows were common 

to both lists. The remaining mismatch (554 10k windows) may either be due to overlap 

to either end of a region (i.e. last few bases at the start or end of a blacklisted region 

that maps to a window with bigger part outside the blacklisted region but still led to the 

blacklisting of the entire 10K window) or maybe due to shorter primers used in our 

methodology making some regions less characterised to be identified as part of a 

blacklist.  



101 

All these mismatches were considered and added in identifying significantly 

associated regions in the window level analysis yielding to a total of 38,769 blacklisted 

10k windows that accounts to 13.5% of the autosomal genome. Matched normal 

samples were not available for the LMC tumours, a decision having been made to 

maximise the number of tumours analysed while recognising the implied difficulties of 

exploring infrequent changes in specific tumours. To provide a germline reference in 

identifying somatic copy number profile in LMC tumours, two sets of normal samples 

namely the 7 LMC and the 312 1KGP samples were compared. The 1KGP showed 

cleaner germline copy number profiles compared with that of 7 LMC normal samples 

from the skin and was used as the reference of comparison for LMC tumours to identify 

somatic copy number alterations in subsequent analyses. 
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Chapter 6 
Final Data Quality Assessment 

This chapter discusses the assessment of the overall LMC dataset after the 

additional quality control steps described in previous chapters were performed. It 

includes replicating analyses from Chapter 4 and incorporating the algorithm GISTIC 

(version 2.023) to identify significant copy number peaks in the genome and identify 

gene level copy number calls to facilitate the comparison between the LMC and TCGA 

[4].  

6.1 Introduction 

Additional quality control steps have shown significant improvement in the data 

quality as demonstrated in the normal samples. Similar processing was also applied in 

the copy number data derived from the tumours. This section discusses the analysis 

repeated mostly from Chapter 4 and compares the results to obtain an objective 

evidence of data improvement after performing further data quality steps. Replicate 

analyses were plotted to assess consistency of copy number profiles.  The overall 

genome plots were produced to see the distribution of copy number aberrations across 

the genome. Similarly, chromosome level plots were generated to provide a higher 

resolution visualisation of the copy number data. The segments or the number of 

fragments in the genome were calculated to assess the extent of genomic variation. 

“Segmented length” defined as the total sum of all identified segments was calculated 

as a proxy for mappable chromosome size. Consequently, the average number of 

segments in each chromosome across all the samples were plotted as a function of 

the segmented length. This has been shown to follow a linear trend in our previous 

analysis and further quality control steps was expected to enhance this trend.  

Deviations from linearity could be due to common genetic changes for melanoma. 

Further validation included checking for the deletions in the CDKN2A region which 

is the most common form of deletion in most cancers and particularly melanoma. We 

have previously shown in Chapter 4 the ability of the previous (version prior to 

additional QC steps) copy number data to detect the known common germline variation 

esv3620012 (chr9: 23,362,412 - 23,378,071). Following these further QC steps, all 

identified common germlines variations, including noise due to FFPE processing were 

masked as I focus on the analysis of the somatic regions.  

I also repeated the comparison of TCGA and LMC copy number datasets in terms 

of TCGA list of genes with deletions or amplifications. This time, a new step to identify 
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copy number peaks which was included by incorporating GISTIC (version 2.023) was 

employed; this is in keeping with the approach taken within the TCGA analysis. 

Although there were major differences between the starting material and processes 

underlying LMC and TCGA copy number data (e.g. FFPE vs fresh samples, NGS vs 

SNPs Array, primary vs. metastatic), broad similarity between the two datasets was 

observed as would be expected but is nevertheless reassuring. Finally, I also 

considered graphically exploring potential influence of normal cells contamination in 

the copy number profile of the samples. Since normal cells which are mainly composed 

of stromal cells are mainly diploid, they have the tendency to cause the copy number 

aberration signal to shrink to diploid state depending on the level of contamination 

[166].  

 

6.2 Methods 

6.2.1 Repeated analyses 

For replicate analysis, I generated the plot of the whole genome copy number 

profile, calculated the number of segments per chromosome and average segmented 

length, linear plot, window level and segment level correlation analyses using 

Pearson’s r, and assessment of the CDKN2A region; these methods are described in 

Chapter 4. The only difference is the use of the newly adjusted call rate data. The 

comparison of LMC and TCGA datasets in terms of TCGA list of genes with deletions 

or amplifications was done by firstly applying GISTIC (version 2.023) (described below) 

analysis to LMC data making it more comparable with TCGA data.  

6.2.2 Identification of Significant Copy Number Peaks Using GISTIC 
2.023 

I used GISTIC2.023 (Genomic Identification of Significant Targets in Cancer) to 

identify regions of significant copy number aberrations in the LMC [4]. This method 

uses segmented copy number data as an input which are then deconstructed into 

underlying somatic copy number alterations (SCNAs). It has the ability to identify both 

focal and arm level aberrations in the genome based on the length of aberrant copy 

number.  

GISTIC2.023 scores each region in the genome according to the probability with 

which a given list of SCNAs would occur by chance. Regions that yield higher scores 

are more likely to contain true SCNAs and more likely that they were positively 

selected. GISTIC2.023 then identifies independently significant regions as aberrated 
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regions of the genome.  These regions may extend over more than one gene or may 

contain no gene at all but achieve significance because of its close distance to a target 

gene. Lastly, GISTIC2.023 indicates which part of the identified region with aberration 

is most likely to contain a gene/s being targeted. These regions are called markers. 

The p-values for each marker is obtained by comparing the score at each locus to a 

background distribution simulated by random permutation of the marker locations in 

each sample. This step controls for the sample specific variability in the rate of copy 

number alteration. The resulting p-values for multiple testing were corrected using 

Benjamini-Hochberg false discovery rate method and is denoted as q-value [170] 

 

6.2.3 GISTIC Input: Segmented copy number data 

The LMC CNV data were segmented using circular binary segmentation (CBS) 

[134]. An example of one sample segmented using CBS in R mcnv package is shown 

in Figure 6.1 below. Segments are represented by the black straight lines and the 

number of its occurrence in each sample is counted. Theoretically, a normal sample 

compared with a diploid reference would show a somatic copy number profile that is 

very close to zero measured on the log scale with no breakpoints in the genome, except 

for the identified blacklisted regions. The more segments or breakpoints a somatic copy 

number profile has corresponds to more aberration in the genome. As an example, 

there are at least five segments visible in chromosome 1 below. 

 

 

 

 



 

 

Figure 6.1. Visualization of segments for 1 sample.  

Whole of chromosomes Y and X were blacklisted. The y-axis indicates the genomic locations labelled by autosomal chromosomes while the x 

axis indicates the adjusted read count: log2(LMC/1KGP).
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6.3 Results 

6.3.1 Whole Genome Plots 

Whole genome plots showing copy number profile for all the patients were 

generated with Figure 6.1 as an example. The plots were manually assessed for 

quality. Samples showing poor quality copy number profiles were excluded in the 

further analysis. There were 11 samples removed due to poor quality and are 

identical to those samples which were previously identified in the old CNA data as 

having poor quality. Two examples are shown in  
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Figure 6.2 and Figure 6.3 (See Appendix A for the rest of the rejected samples) 

showing highly noisy copy number profiles. The 11 rejected samples have very low 

alignment rate and were excluded from further analyses. For samples which passed 

the initial quality assessment, it would be noticed that some segments in the copy 

number profiles depart from the expected log2 copy number values of around 0, 0.5, 

1, or 1.5. This could be due but not limited to several factors such as: a.) the level of 

degradation of the DNA sample used in the sequencing as would be expected from 

FFPE samples, b.) common germline variations, and c.) highly repeated somatic 

variations. The first two factors considered were addressed in Chapter 5 by 

accounting for the GC content and mappability interaction in the correction of read 

counts and utilising publicly available information to remove the highly variable 

regions in the genome, as well as the common germline variations while the third 

factor was checked with the literature. 

6.3.2 Assessing similarity of replicates 

As previously discussed in Chapter 4, the analysis of replicates allows an 

examination of the extent to which the results are influenced by statistical variation; 

this analysis of consistency contributes to the determination as to whether quality 

control is sufficient to allow meaningful comparisons between samples. Each pair of 

technical replicates (technic, method, and concentration) and biological replicates 

(tumour, core) were plotted in Figure 6.4 to Figure 6.5. The tumour replicates showed 

differences in terms of the segmented genome and these are more likely due to the 

inherent biological variability of the tumour (Figure 6.4). Figure 6.5 shows the genome 

plot for a pair of core replicates showing high level of similarity with some differences 

in terms of data quality where the first sample tend to have noisier data. Ten more 

pairs of core replicates were plotted in Appendix B.2 to B.11 and showed generally 

similar genomes.  

For technical replicates, comparison of paired samples is displayed in Figure 4.6 

showing highly similar genomes. Nine more paired samples are plotted in Appendix 

B and showed highly similar genomes. Figure 4.8 shows the plot for a pair of samples 

processed using the different laboratory methods for library construction. The two 

samples show highly similar patterns of aberrations across the genomes. Same level 

of similarity was observed for the other pairs of samples processed using different 

methods as plotted in Appendices B.12 to B.20. In Figure 4.10, shows the plot of 

paired samples processed using different concentrations. The pair of samples 

displays highly similar genome plots indicating good quality of the data. Same 
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observation was noticed for the other pair of samples processed in different 

concentration as plotted in Appendix B.24. 

To provide a visualisation of the level of similarity among the different types of 

replicates used;  Figure 6.9 shows the number of fragments of one replicate plotted 

against of that of another replicate. An overall correlation of 0.50 (P=4.7x10-3 for 

assessing deviation from randomness) indicate a substantial similarity among the 

replicates. This measure was heavily affected by the other observations taken from 

the biological replicates (tumour, core) which were observed to be more variable and 

less “consistent”. Analysis of replicates including only the technical replicates 

(technic, method, and concentration) show very high correlations (Pearson’s r=0.91) 

of the two replicates (P=4.4x10-8).  

As previously done in Chapter 4 based on our initial copy number paper [1] , 

examination of different types of paired samples consisting of cores from two 

separate tumours from the same patient, two cores from the same tumour and repeat 

analysis of the sample from the same core was performed as summarised in Table 

6.1. This shows that showing that majority (27 out of 30) of the paired technical 

replicates are significantly correlated (P <0.05 for 2 pairs, P <0.01 for the rest) except 

for one “core” replicate, and two “technical” replicates. For biological replicates, all 

four “concentration” replicates are significantly correlated (P<0.0001). Three out of 

four of the “tumour” replicates are not significantly correlated reflecting inherent 

variability among tumours. These results were highly similar with what was observed 

in Chapter 4. 
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Figure 6.2. Rejected Sample 1. This sample was excluded due to very low 
alignment rate. 
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Figure 6.3. Rejected Sample 2. This sample was excluded due to very low 
alignment rate.  
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Figure 6.4. Comparison of analyses of 2 tumours from same case, showing 
notable differences including the 9p region. 
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Figure 6.5. Analysis of 2 cores from the same tumour showing overall similarity 
but with some differences in segmentation pattern (e.g. chromosomes 4p 
& 6p) 
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Figure 6.6. Analysis of the same library sequenced twice in this comparatively 
silent (in copy number terms) tumour showing consistency. 
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Figure 6.7. Analysis of the same core with libraries prepared by different 
laboratory methods showing overall similarity in this tumour but some 
modest differences (e.g. size of segmented regions). 
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Figure 6.8. Analysis of the same library analysed at two different 
concentrations showing overall consistency. 
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Figure 6.9. Plot of different replicates.  

There was a total of 34 samples which were replicated at least twice. Three of 

these were replicated thrice while the rest are replicated twice resulting to a 

total of 71 replicated samples. Of the 71 samples, only the top 2 samples of the 

triplicates were selected in terms of highest mapped reads. Of the remaining 

68 samples, 8 samples (from 4 patients) were rejected due to very low 

coverage. A total of 60 samples (30 patients) were used in the first set of 

replicate analysis. Of these, 34 were “technical” replicates (technical=20, 

method=10, concentration=4) and 26 were biological replicates (core= 22, 

tumour=4) 

 

 

 

10 20 30

5
10

15
20

core
tumour
concentration
method
technical

Re
pl

ica
te

1

Replicate2

Mean Fragments per Chromosome (blacklist and rejects excluded)

Pearson's r (cores) = 0.21, P= 0.533487
Overall Pearson's r = 0.5, P= 0.004463

Pearson's r (technical) = 0.91,  P= 5.6e−08
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Table 6.1. Correlation of replications using adjusted read counts 

 

Pair ID Replicate Type Pearson's r Significance
D03 0.32 .
D17 0.37 .
D17 0.47 .
D17 0.67 ***
D33 0.80 ****
D34 0.84 ****
D34 0.85 ****
D34 0.85 ****
D26 0.58 *
D02 0.64 **
D11 0.80 ****
D01 0.81 ****
D18 0.81 ****
D29 0.86 ****
D05 0.26 .
D07 0.70 ***
D13 0.74 ****
D08 0.80 ****
D14 0.85 ****
D16 0.51 *
D23 0.68 ***
D31 0.76 ****
D04 0.82 ****
D12 0.87 ****
D06 0.39 .
D21 0.41 .
D22 0.65 **
D27 0.69 ***
D28 0.75 ****
D09 0.79 ****
D10 0.81 ****
D24 0.82 ****
D25 0.82 ****
D15 0.83 ****
D32 0.85 ****
D19 0.86 ****
D20 0.89 ****
D30 0.96 ****

0.71
   . not significant at 5% level * 5 % level
    ** 1 % level       *** 0.1 % level **** 0.1 % level

Core

Concentration

Method

Technical

Average Correlation

Tumour
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6.3.3 Calculation of the Average number of Segments and Average 
Segmented Length per Chromosome 

The summary for number of fragments and average segmented length in each 

chromosome in the genome is presented in Table 6.2 below. The segmented length 

is from 46.68 mb to 248.77 mb with chromosome 1 as longest and chromosome 21 

as the shortest. The number of segments per chromosome in each sample is from 1 

to 189 segments. The mean number of segments is from 2.8 to 23.4 with 

chromosome 21 having the smallest and chromosome 1 having the highest. It is 

worth noting that after the largest of the chromosomes in terms of size (chromosome 

1), chromosome 7 showed most variability in relation to its size, as compared with 

the other chromosomes. 

Table 6.2. Summary of fragments and segmented length in each chromosome 

The sex chromosomes X and Y are blacklisted. 

 

  

Mean SD Min Max
1 248,766,514          19.2 23.4 1 189
2 242,079,186          11.8 16.6 1 158
3 198,164,493          13.3 12.2 1 72
4 190,121,512          9.6 11.9 1 100
5 181,395,844          14.3 16.0 1 107
6 170,657,609          15.0 12.6 1 64
7 159,177,311          17.1 22.5 1 109
8 145,029,263          11.0 10.4 1 64
9 138,258,858          13.9 13.8 1 70

10 133,670,968          12.8 15.0 1 92
11 134,953,539          13.5 19.9 1 180
12 133,157,931          12.0 13.2 1 115
13 114,287,205          8.0 9.1 1 78
14 106,979,869          6.7 6.5 1 40
15 101,895,836          10.0 13.4 1 86
16 90,260,006            7.9 7.7 1 47
17 83,154,837            10.4 11.7 1 89
18 80,333,413            4.3 5.1 1 30
19 58,534,790            8.4 6.8 1 48
20 64,406,593            4.0 5.9 1 58
21 46,681,975            2.8 3.9 1 36
22 50,750,957            6.8 13.2 1 117

*SD: standard deviation

Chromosome  Mean Segmented 
Length (base pairs) 

No. of Fragments
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To better understand this high variability of segments in chromosome 7, it was 

compared to a similarly sized chromosome (chromosome 6). Figure 6.10 shows 

comparison of chromosomes 6 and 7 in terms of the number of segments across the 

303 patients. It can be seen that both the two chromosomes have very high number 

of segments in some patients. A higher frequency of aberration in chromosome 7 is 

observed as compared to the frequency of aberration in chromosome 6, as well as 

in terms of amount of variability. 

The number of segments from Table 4.1 in  Chapter 4 Section 4.3.5 was compared 

in the number of segments in this chapter in Table 6.2 in terms of mean ranks of the 

segments using Wilcoxon test. Table 6.3 summarises the results of the comparison 

showing that the number of segments in the new data significantly decreased in 

comparison with the old data. The old data have 1.2 (chromosome 12, P=0.008) to 

7.4 times (P=4.12 x 10-88) more number of segments on the average than the new 

data. This is primarily attributed to the improvement in the quality of the data after the 

additional quality control steps were done as discussed in Chapter 5. 

 

 

 



 

 

Figure 6.10. Comparison of number of segments of chromosomes 6 and 7 across samples showing similarity across many samples but 
with notably more segments on chromosome 7

119 
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Table 6.3. Summary of comparison of fragments each chromosome between 
the old and new data. 

The sex chromosomes X and Y are blacklisted. 

 

 

6.3.4 Linearity of number of segments with segmented length 

An initial assessment to check the quality of segmented data is done using linear 

regression where linearity of number of segments in a chromosome and segmented 

length (approximate for chromosome length) is shown in Figure 6.12 . A significant 

linear relationship between number of segments in a chromosome and segmented 

length is detected (P=1.9 x 10-5). This shows improvement based on the same 

analysis applied to the old data (P=5.2 x 10-3). A separate plot excluding replicates is 

shown in Figure 6.12 showing the same trend with very slight decrease (P=2.2 x 10-

5) in the significance of the linear regression. A high mean number of segments was 

observed in chromosome 7 as shown previously. 

 

 

 

Chromosome Median(Old) Median(New) Fold change(median) Wilcoxon P-value
1 37 11 3.4 5.05E-47
2 36 9 4.0 3.92E-68
3 14 9 1.6 1.49E-06
4 13 7 1.9 3.90E-18
5 22 9 2.4 1.53E-43
6 17 11 1.5 3.14E-10
7 43 9 4.8 2.90E-55
8 17 7 2.4 4.82E-27
9 17 9 1.9 3.18E-16
10 20 7 2.9 5.38E-29
11 19 7 2.7 3.78E-29
12 11 9 1.2 8.44E-03
13 13 5 2.6 2.42E-33
14 7 5 1.4 3.31E-09
15 26 6 4.3 8.13E-66
16 37 5 7.4 4.12E-88
17 24 7 3.4 4.61E-58
18 7 3 2.3 8.66E-32
19 11 7 1.6 2.43E-13
20 5 3 1.7 5.29E-17
21 4 1 4.0 1.00E-26
22 14 3 4.7 1.02E-49
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Figure 6.11. Plot of mean segment by mean segmented length by chromosome 
including replicates 

X axis represents the mean number of segmented lengths of in each 

chromosome while Y axis represents the mean number of segments in each 

chromosome. The blue lines represent 95% confidence interval around the 

regression line while the orange line represents the 95% confidence interval 

around the prediction. 
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Figure 6.12. Plot of mean segment by mean segmented length by chromosome 
excluding replicates. 

X axis represents the mean number of segmented lengths of in each 

chromosome while Y axis represents the mean number of segments in each 

chromosome. The blue lines represent 95% confidence interval around the 

regression line while the orange line represents the 95% confidence interval 

around the prediction. 

 

6.3.5 The CDKN2A Region 

A focused examination of the copy number profile in the CDKN2A region was done 

being the most common copy number alteration in melanoma and indeed in many 

forms of cancer [71]. The new data has successfully detected the deletions in the 

samples with known deletion of the CDKN2A region. Comparing the plots of CDKN2A 

region from the old data and the new data reveals that the patterns of loss identified 

by the old data were also identified using the new data with some differences. A 
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careful comparison and interpretation of the new findings in the data was guided by 

Dr. Mark Harland, a biologist with particular expertise about this region.   

Figure 6.13 to Figure 6.16 show four samples (T27, T46, T52, T192) where the 

new data was able to identify (via segmentation using CBS) CDKN2A deletion which 

were not previously identified by the previous data. Figure 6.17 shows one sample 

(T129) where the noise in the copy number data produced was reduced and has led 

to the interpretation of a single window deletion as compared to a three-window 

segment deletion in the previous data.  Figure 6.18 , Figure 6.19, and Figure 6.20 

highlight the important impact of the new data where more complicated patterns of 

loss or deletion in the CDKN2A region were identified and has provided a tidier and 

better resolution of the aberration in three samples (T152, T180, and T242). Figure 

6.21 and Figure 6.22 show two samples (T132 and T215) whose noise was reduced 

enabling the detection of a larger region of loss or deletion while Figure 6.23 shows 

reduction in the noise of the copy number data which has led to identification of a 

more focused region of loss in one sample (T213) as compared to the old data. For 

Figure 6.24, the sample (T4) presents a classic example of a copy number loss which 

starts and ends approximately halfway along a window at each end resulting to copy 

number segments at each end that has copy number value between loss and normal 

and has been classified by the new data as a separate segment.  Figure 6.25 shows 

a sample (T91) where the resolution of two separate regions of loss was reduced and 

led to a single region of loss in the new data.  

Furthermore, 6 samples (T12, T54, T139, T186, T197, T285) have regions which 

show loss but were not detected by the segmentation in both old and new data (See 

Appendix C.1 to C.6). 

Although the new data showed some difference with the detection of the CDKN2A 

region as compared with that of the old data, it showed generally more beneficial 

impact in terms of recognising the CDKN2A deletions that were not previously 

identified as well as revealing more complicated patterns of loss. Overall, the average 

of the correlation of the paired replicates is 0.71. 
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Figure 6.13. The CDKN2A region for Sample 27 showing improved resolution 
of CDKN2A region. 

The top figure reflects the original analysis and the lower figure following more 

extensive QC. 
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Figure 6.14. The CDKN2A region for Sample 46 showing improved resolution 
of CDKN2A region. 

The top figure reflects the original analysis and the lower figure following more 

extensive QC. 
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Figure 6.15. The CDKN2A region for Sample 52 showing improved resolution 
of CDKN2A region. 

The top figure reflects the original analysis and the lower figure following more 

extensive QC. 
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Figure 6.16. The CDKN2A region for Sample 192 showing improved resolution 
of CDKN2A region. 

The top figure reflects the original analysis and the lower figure following more 

extensive QC. 
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Figure 6.17. The CDKN2A region for Sample 129 showing improved resolution 
of CDKN2A region. 

The top figure reflects the original analysis and the lower figure following more 

extensive QC. 
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Figure 6.18. The CDKN2A region for Sample 152 
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Figure 6.19. The CDKN2A region for Sample 180 
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Figure 6.20. The CDKN2A region for Sample 242 
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Figure 6.21. The CDKN2A region for Sample 132 
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Figure 6.22. The CDKN2A region for Sample 215 
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Figure 6.23. The CDKN2A region for Sample 213 
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Figure 6.24. The CDKN2A region for Sample 4 
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Figure 6.25. The CDKN2A region for Sample 91 
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6.3.6 The ESV Region 

The analysis of the esv3620012 was previously performed in Chapter 4 [136]. This 

region is a direct example of common germline variation that could be potentially 

included in the blacklisted region identified in Chapter 5. Figure 6.26 and Figure 6.27 

show the plot of two samples (T3 and T5) for the CDKN2A region with the ESV region 

next to it as highlighted by the second blue vertical line. For samples where deletion 

of this region was previously detected in the old data (shown by the drop of 3 windows 

in the second blue vertical line in the Figure), it can be seen that the data in this region 

has been successfully masked in the new data as resulted by additional data quality 

steps (blacklisting) that identifies poorly mappable regions, and common germline 

variations in the genome. 
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Figure 6.26. The ESV region for T3 
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Figure 6.27. The ESV region for T5 
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6.3.7 Comparison of NGS Data versus MLPA results 

As done in Chapter 4, I replotted the sample previously used to visually 

demonstrate the comparison of copy number analysis between MLPA and NGS 

focusing on the CDKN2A region. Figure 6.28 below displays the plot of copy number 

profile of one sample displaying the copy number profile in the CDKN2A region with 

the light green region covering MTAP, light blue covering CDKN2A, and dark blue 

covering CDKN2B. The ends of the plot show normal copy number profile around 

zero and in the middle shows deletions of different regions. The 11 probes (blue dots) 

from MLPA analysis was plotted against the copy number segments with 95% 

confidence limits represented by red vertical lines. It can be observed that copy 

number results in all the MLPA probes matches those of the NGS data. 

 

Figure 6.28. MLPA versus NGS CNA data 

 

6.3.8 GISTIC Identified Significant Copy Number Peaks 

Employing GISTIC2.023 in the segmented LMC dataset identified regions of 

significant aberrations using the default cut-off of 0.25 residual q-value. For deletions, 

44 autosomal regions were identified including with 9p21.3 (8.3x10-107), 12q21.2 

(7.4x10-86), 7q34 (1.5x10-36), 19q13.41 (1.5x10-25), 15q11.2 (1.7x10-25) as the top 5 

most significant (Figure 6.29). The chromosome 9p21.3 or the CDKN2A region is 

known to be the most common form of deletion in melanoma and most cancers and 

consistently found to be most deleted in both LMC and TCGA. Aside from CDKN2A, 

other examples of genes that are commonly deleted in LMC are CDKN2B, CDKN2B-

AS1 (9p21.3), SYT1(12q21.2), MGAM (7q34), SIGLEC5, SIGLEC14 (19q13.41), 

PWRN3(15q11.2), UGT2B28(4q13.2), VPS53(17p13.3), ETS1 (11q24.3), MIR3169 
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(13q21.2), MIR3668 (6q24.1), ROPN1 (3q21.1), HCG4B, HCG4B (6p22.1), GBP6 

(1p22.2), GOLGA8A (15q14), and PTEN (10q23.31) 

Figure 6.30 shows the significant peaks of amplification in the LMC. There were 

36 autosomal regions identified as significantly amplified with chromosomes 3p11.1 

(residual q-value=1.6x10-115), 17q12(6.4x10-82), 15q31.1(1.3x10-40), 6p24.3(2.0x10-

23), and 22q13.2 (1.0x10-18) as the top 5 most significant.  

There is no gene that exactly mapped to the most amplified region (3p11.1) 

identified but the closest gene to it is EPHA3. Other examples of genes identified to 

be highly amplified in LMC are ARHGAP23 (17q12), HERC2, GOLGA8G, GOLGA8F, 

MIR1268A, MIR4509-1, MIR4509-2 (15q13.1), TFAP2A, TFAP2A-AS1 (6p24.3), 

RRP7A, SERHL (22q13.2), ANKRD20A9P (13q11), ADSS, HNRNPU, CEP170, 

AKT3, ZBTB1, SDCCAG8, DESI2, EFCAB2, COX20, C1orf100, C1orf101, 

LOC339529, LINC01347, MIR4677, LOC101928068, SNORA100 (1q43), and TPPP 

(5p15.33). Comparison of the LMC and TCGA copy number data in terms of 

proportion of sample with amplification or deletion is shown later in this chapter. 
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Figure 6.29. Visualisation of significantly deleted regions in LMC using 
GISTIC2.023. 

Top X axis represents G-score where G = -log (Probability|Background) scores 

computed on markers or genes, p values computed by random permutation of 

markers or bins across genome. Lower X-axis represents the q-value where a 

green vertical is drawn to represent the default cutoff of 0.25.  
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Figure 6.30. Visualisation of significantly amplified regions in LMC using 
GISTIC2.023.  

Top X axis represents G-score where G = -log (Probability|Background) scores 

computed on markers or genes, p values computed by random permutation of 

markers or bins across genome. Lower X-axis represents the q-value where a 

green vertical is drawn to represent the default cutoff of 0.25.   

6.3.9 Comparison with TCGA List of Genes with Deletion 

The list of genes with significant rates of deletion in TCGA were obtained as in 

Chapter 4. The proportion of samples with deletion was plotted on the y axis while 

the gene labels and genomic band labels were located on the x axis as shown in 

Figure 6.31. For both datasets, CDKN2A gene had the most proportion of deletion 
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(73 % in LMC vs 76% in TCGA). Comparing the old and the new LMC CNA dataset, 

the new LMC dataset showed more similarity with the TCGA data in terms of 

distribution of samples with deletion in the given list of genes. An interesting 

observation is an obvious difference of proportion of samples with deletion in some 

genes in the list such as in the region of 17p13.3 (ABR, DBIL5P, FAM57A, GEMIN4, 

GLOD4, MIR3183, NXN, TIMM22, VPS53, and BHLHA9  at 18% vs 36% in TCGA) , 

also in 17p13.3 (C17orf97, DOC2B, and RPH3AL at 10% vs 36% in TCGA), 16q24.3 

( FAM157C at 14% vs 36% in TCGA), and 19p13.3 (SBNO2 at 4% vs 26% in TCGA).  

This difference could potentially suggest markers of disease progression. Further 

analysis on this observation is discussed in the Chapter 7. For reference, a whole 

genome comparison of rates of deletion among the genes common to both TCGA 

and LMC lists are found in Appendix D.2.  

 

 



 

 

Figure 6.31. Proportion of Samples with Deletion in LMC and TCGA. 

Proportion of samples in LMC and TCGA was calculated by using the GISTIC estimated copy number values and assigning values less than -

0.1 as deletion. 
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6.3.10 Comparison with TCGA List of Genes with 
Amplification 

Similarly, for amplification, the TCGA list of genes with amplifications was obtained 

and the same locations examined in LMC. The proportion of samples with 

amplification were estimated for both LMC and TCGA datasets and plotted in an 

upside-down bar plot. The proportion of samples with amplification was plotted on 

the y axis while the gene labels and genomic band labels were located on the x axis 

as shown in Figure 6.32. There is broadly similar distribution of proportion of samples 

with amplification between the new LMC and TCGA datasets. Differences in the 

proportion can be attributed to the fact the LMC dataset was derived from primary 

melanoma samples and TCGA datasets was derived from metastatic samples. A very 

similar proportion of amplification can be observed in the region 7p22.1 (CYTH3 at 

56% vs 58% in TCGA) and may indicate that the rate of amplification in this region 

does not change directly with disease progression. The region of 1p12 (NOTCH2 at 

20% vs 54% in TCGA) appeared to have twice the proportion of LMC in TCGA which 

may either be biologically relevant or due to the fact this region is close to the 

centromere which is blacklisted. Additionally, part of NOTCH2 is included in the 

blacklisted region. For reference, a whole genome comparison of rates of 

amplification among the genes common to both TCGA and LMC lists are found in 

Appendix D.1.  

 

 



 

 

Figure 6.32. Proportion of Samples with Amplification in LMC and TCGA.  

Proportion of samples in LMC and TCGA was calculated by using the GISTIC estimated copy number values and assigning values greater than 

0.1 as amplification  
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6.4 Discussion 

The success of the initial generation of the high-resolution copy number data from 

LMC samples was previously described by our team with analyses concentrating in the 

known melanoma genes especially the CDKN2A region [1, 168]. Extending the 

analysis of this data in the whole genome basis requires quality control assessment on 

the basis of the whole genome, particularly the autosomal genome. 

This Chapter discussed the final assessment conducted on the new copy number 

data which had undergone further quality control measure as discussed in Chapter 5. 

To compare the old and the new data, several analyses in Chapter 4 were repeated 

starting with the analyses of 30 paired samples consisting of technical and biological 

replicates. For the biological replicates that consist of samples from different tumours, 

and samples from cores obtained from the same tumours, correlations are modest. 

This likely reflects the inherent heterogeneity of tumours [169] plus the limited sample 

size for this comparison. Technical replication was done by direct resequencing of the 

library and composed of processing the DNA in different methods of library preparation, 

or using different DNA concentration for library preparation. Correlation analysis using 

Pearson’s r reveal a very high association (r=0.91) between the number of the genome 

fragments for the paired samples which are technically replicated. Copy number 

estimates from the LMC samples were generated in the whole genome basis as well 

as in terms of the CDKN2A region showing informative copy number profiles. These 

plots were used to validate computationally observed variable regions in the genome.   

Another helpful way of identifying highly variable regions in the genome is by plotting 

the number of segments by segmented length. In this plot, we expect a longer 

chromosome to have more segments. Comparing the old and the new CNA data, both 

datasets revealed a linear relationship between number of segments per chromosome 

and the segmented length of the chromosome. The new CNA data exhibited better 

linear fit than the old data indicating improvement in the quality of the data (P=1.9 x 10-

5 for new data, P=5.2 x 10-3 for old data). Similar trend with very slight decrease (P=2.2 

x 10-5) in the significance of linear regression was observed when replicates were 

excluded in the analysis. 

This improvement in the copy number data as measured on the segment level 

provides more confidence in proceeding with the next step of copy number analysis 

which is identification of significant copy number peaks in the genome which uses 

segmented copy number data as input to the R package GISTIC2.023. External 

comparison of the LMC copy number data with the published TCGA copy number data 

was repeated using the new data.   
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Broad similarity between the old LMC data and TCGA data was observed when 

checking for proportion of samples with deletion highlighting CDKN2A which is known 

to be of comparable proportion between metastatic and primary melanoma. The same 

trend with improved similarity on the pattern was observed when comparing the LMC 

data with the TCGA proportion of samples with deletions. On the other hand, a poor 

resemblance of the old LMC CNA proportion of samples with amplification was 

observed when comparing with the TCGA proportions. Using the new LMC data, a 

closer resemblance of the proportion of samples with amplification was observed when 

comparing with the TCGA data. This Chapter justifies the importance of the additional 

quality control steps performed in the LMC CNA data to improved quality on the whole 

genome level. On the focal sense, one of my colleague Dr. Joanna Pozniak on her 

PhD project on classifying primary melanoma patients based on immune groups using 

gene expression data found that increased expression of MYC and decreased 

expression of NFKB is associated with poor survival [170]. Partially explaining the 

variation in gene expression of the patients from different immune groups using copy 

number alteration was explored. Using the old CNA data, the association between copy 

number and gene expression of MYC was not captured whereas association was 

detected after performing additional quality control steps with the data. Similar 

association of 8q24 region copy number  (where MYC is located) and MYC gene 

expression was reported in the study of Pouryazdanparast, Brenner (2012) which 

looked at the role of this association in amelanotic cutaneous melanoma [171]. 

This analysis also showed the high number of copy number changes on 

chromosome 7 in melanoma. At this time, the interpretation is unclear as the changes 

are not focal. Chromosome 7 has been shown to contain the highest content of 

segmental duplications in the human genome [172] indicating complex genomic 

sequence.  This may indicate regions which are less stable and hence liable to copy 

number alterations.  A number of interesting genes and diseases maps to this 

chromosome as summarized by Tsui (1988) and Scherer et al. (2003) [173] [151]. 

The overall conclusion of this chapter is that the QC steps have produced data which 

are consistent both internally and externally with the TCGA so in the next Chapter, I 

will focus on changes associated with the clinical characteristics of the tumours. 
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Chapter 7 

Copy Number Alterations and Patient Clinical 

Characteristics Including Survival 

This chapter discusses my work on estimating the overall measure of genome 

instability using current and proposed methods, followed with testing for association 

with clinical and tumour characteristics. Window level analysis and testing for 

association with clinical and tumour characteristics was also performed. This included 

estimation of study specific genome wide significance to address the concern on 

correlated neighbouring windows in the genome. 

7.1 Introduction 

Genomic instability is a hallmark of cancer that leads to an increase in genetic 

alterations that facilitates the acquisition of additional mechanisms required for the 

development and progression of a tumour [174]. After establishing the quality of the 

CNA data, I proceeded with the next steps of my project which generally aims to test 

for association of copy number alteration with patient and tumour characteristics and 

survival. This chapter discusses the methodologies performed to check and identify the 

magnitude and significance of association of copy number alterations in melanoma 

with the aforementioned attributes. An initial approach to checking for this is by 

identifying to what extent an overall measure of aberration varies with patient clinical 

and tumour characteristics and survival. I estimated several parameters calculated 

from the different measures of the genome profile and tested for association, initially 

with survival. I chose the parameter that varies most with survival and proceeded 

testing its association to the different patient clinical characteristics. A focal analysis 

using 10kb window CNA data was done in recognition that a focal aberration driving 

progression would be of major interest to melanoma biologists. 

For precision, in this and the other chapters, I use the term survival to indicate 

“melanoma specific survival (MSS)” censored at 12 years past diagnosis chosen 

because the majority of participants are followed up at least 12 years from recruitment.  

The desire to impose a censoring date reflects that as described before the decision to 

conclude a death to be a “melanoma specific death” was made on careful assessment 

of clinical records but it is clear it is more likely to be accurate closer to the time of 

recruitment given that patients are more likely to be under regular medical surveillance 

earlier in the disease course. The patient clinical and tumour data were part of the 
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Leeds Melanoma Cohort as previously described in Section 3.1 [105, 106]. The 

information on deaths were obtained from the National Health Service (NHS) GP 

records linked to Office for National Statistics (ONS). 

 

7.2 Methodology 

7.2.1 Measuring the instability in the genome of cutaneous 
melanoma samples 

Overall copy number aberration measures the amount of damage in the genome. 

Various measures are calculated to identify the parameter that best associates with 

patient clinical characteristics - initially examining survival. These are described in the 

subsections below. Other measures of genomic aberration such as the z-score based 

measures were examined in the study of Heitzer et al. (2013) but where not tested in 

this study as they were focused on plasma sample derived copy number 

estimates[175]. Calculations were done specifically for the 277 cutaneous melanoma 

samples after excluding the 26 melanoma samples which were acral tumours, 

subungual, genital and mucosal tumours.    

7.2.1.1 Aneuploidy Score 

A measure called aneuploidy score was adapted from the work of Taylor et al. 

(2018) which calculated the number of autosomal chromosome arms that have 

aberrations in the genome excluding the short arms of 13, 14, 15, 21, and 22; these 

regions were previously mentioned in Chapter 5 as part of the blacklisted regions [176]. 

This score ranges from 0 to 39 with zero indicating a genome without an arm level 

aberration and 39 indicating at least one aberration on all chromosome arms. Arm level 

copy number data were directly obtained from the GISTIC2.023 output. A detailed 

guide on identifying output from the GISTIC results folder can be found at  

ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTICDocumentation_standalone.htm  as 

previously mentioned in Chapter 6. 

7.2.1.2 Fraction of Genome Altered 

The study of Taylor et al. (2018) described the calculation of the Fraction of Genome 

Altered (FGA) as a measure related to aneuploidy score. This was obtained by taking 

the product of each arm level copy number aberration to its length then divided by the 

length of the genome [176]. In this study, we followed the FGA calculation similar to 

Domcke et al. (2013) in evaluating cell lines as tumour models by comparison of 
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genomic profiles [177] and of Luebker (2017) which compared genomes of cutaneous 

melanoma tumours to commercially available cell lines [178]. The formula for FGA is: 

Equation 7  !"# = ∑ &[|)*+| > -]/+0
+12  / ∑ /+0

+12  

where i is a counter over segments, Li denotes the length of each segment i and CNi 

denotes the segment copy number mean for each segment i that exceeds a chosen 

cutoff. The value of T is usually estimated based on the variation of the data. In this 

study , I adapted T= 0.1 from the study of the TCGA network [71], for n total segments 

[177].I also tried several values for T such as 0.1, 0.25, and 0.30 and observed that 0.1 

best captures the aberration in the data. In summary, FGA is the sum of all segment 

lengths of segments with absolute segment mean greater than 0.1 divided by the sum 

of all segments lengths in the autosomal genome.  

7.2.1.3 Mean Weighted Segment Mean 

This is a genomic instability measure that I devised based on previous studies that 

utilized and segment lengths but I incorporated the segment means. The study of 

Knijnenburg et al. (2018) used total number of segments which was obtained by 

counting all the segments present in a sample [179]. While FGA in the study of Taylor 

et al. (2018) used purely the segment lengths in its calculation, I added segment mean 

as a weighting factor bearing in mind that both length and the magnitude of aberration 

contributes in the genomic instability. Figure 7.1 below shows how each given region 

in the genome is given a height and length by drawing squares dictated by the length 

and the magnitude of the aberration. 
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Figure 7.1. Calculating the mean weighted segment mean (MWSM) 

 

The formula below is used to calculate mean weighted segment mean (MWSM): 

3453 = ∑ 67478
9  / 22 

Where Li is the length (alternatively labelled as w width in Figure 7.1) of a segment with 

absolute segment mean (alternatively labelled as h height in Figure 7.1) > 0.1 for 

segment i. Wi is the segment mean segment i with an absolute value greater than 0.1. 

The sum product of Li and Wi from i to n was taken and then divided by 22 to produce 

an autosomal chromosome average.   

7.2.2 The Patient Clinical Characteristics 

A description of patient clinical characteristics was provided in Chapter 3 

(Methodology). In this chapter, the following measures are used and tested for 

association with the selected measure of overall genomic aberration: age at diagnosis 

(years), sex (male or female), stage (I, II, III), site of melanoma (Limb, Head and Neck, 

Trunk), mutation type (NRAS mutated, BRAF mutated, double wild type for BRAF and 

NRAS), ulceration status (ulcerated vs. non-ulcerated), mitotic rate (<1 mm2, 1-2 mm2, 

and >2 mm2), tumour infiltrating lymphocytes or TILs (absent, brisk, non-brisk), Breslow 

thickness (<=2mm, 2-4 mm, >4 mm), and percentage of stroma (%) . Survival time for 

melanoma specific was censored at 12 years. Any survival time greater that 12 years 

was reset at 12 years and had the survival status set to “alive” if the survival status 

after 12 years was “died”. These data were part of the Leeds Melanoma Cohort as 
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previously described in Section 3.1 [105, 106]. The death data was obtained from the 

National Health Service (NHS) GP records linked to Office for National Statistics 

(ONS). Since these characteristics are commonly investigated in melanoma, their 

associations with copy number were tested[58, 67, 183-185]. 

 

7.2.3 Plot of Copy Number Profile by Patient Characteristics 

To visually inspect whether there is an inherent pattern of the copy number 

aberration across the samples when categorised according to different patient 

characteristics, whole genome copy number plots were generated. Copy number 

information where presented in 10kb window level. There was a total of 248, 736 

windows left for the whole genome analysis after blacklisting. 

7.2.4 Testing for Association with Patient Characteristics 

Testing for association of overall CNA load and 10k windows with clinical features 

was conducted using Spearman rank correlation for pairs of variables which are both 

continuous, Wilcoxon rank sum test for comparing two groups in terms of quantitative 

copy number, and Kruskal-Wallis test for comparing three or more groups in terms of 

quantitative copy number. Manhattan plot was used to visualise the significance of 

each region in the genome. This plots the -log10 of the P-value of the test on each10k 

window on the y-axis and the 10k window location on the x-axis. 

7.2.5 Permutation Analysis on Clinical Characteristics 

One challenge in statistical testing of copy number data is that neighbouring 

windows tend to be highly correlated. To address this, I carried out a permutation 

analyses on the selected clinical information (site and Breslow thickness) and survival 

(using quantitative copy number data). For each characteristic tested, the characteristic 

is randomly assigned to each tumour genome. Then, a 10k window level analysis was 

done obtaining the significance of the test employed. Each simulation yielded test 

results for 262, 827 windows. This underwent filtering to ensure excluding unaccounted 

blacklisted regions yielding the 248,736 windows. For each genome divided into 10k 

windows, the windows were ranked by calculated P-value. The 95th percentile of this 

list was obtained and identified as basis as the critical study-specific genome-wide 

significance threshold. Each iteration analysing the whole autosomal genome lasted 

from 5 to 9 hours. The number of iterations submitted is at least 500 for the site of 

tumour and Breslow thickness, and 1,500 for survival analysis using the quantitative 

copy number profile.  However, for logistical reasons, not all permutations produced 
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output (e.g. elapse time on high performance computer exceeds allowance or memory 

restrictions inhibit completion); 297 simulations were completed for the analysis on the 

site of the tumour, 138 for Breslow thickness, and 930 for survival analysis. Due to lack 

of time, permutation analysis on other tumour and clinical factors were not conducted. 

Identification of interesting regions for these factors were done by ranking the results 

by test significance. 

7.2.6 Level of stroma and copy number profile 

The data on proportion of stroma was based on the work of Dr. Sally O’Shea. Sally 

scored stroma using RandomSpot© to derive a measure called percentage of stroma 

(POS) [180] by examining whether randomly chosen “spots” on the H & E slide image 

were “stroma” or “non-stroma”. The stromal levels are defined using tertiles created by 

the function quant_groups under the R package dvmisc [181]. The tertiles based on 

the three intervals that cover the proportion of stroma are presented in Table 7.1 below: 

Table 7.1. Categorisation of percentage of stroma (POS) 

 

 

The derived data on level of stroma were then merged with the whole genome copy 

number data. A total of 206 tumours have matching data on level of stroma as 

categorised above. Whole genome profiles are then plotted by each level of stroma to 

produce three plots for comparison. 

7.2.7 Survival analysis 

The majority of the analysis started with Cox proportional hazard models predicting 

MSS using one window at a time adjusting for age, sex, and stage as these are the 

commonly known confounders of melanoma survival [182]. A Kaplan-Meier curve was 

used to plot and compare survival curves among sample groups. Log-rank test was 

used to test significant difference between or among survival curves of two or more 

groups of samples. 

7.2.7.1 The Kaplan-Meier Curve 

The Kaplan – Meier curve was devised by Edward L. Kaplan and Paul Meier to 

address the problem of dealing with survival data with incomplete observations [183-

Level of stroma POS Interval n=206
Low POS [1.9%, 23.3%] 69

Medium POS (23.3%, 42.5%] 68
High POS (42.5%, 93.3%] 69
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185]. It is a nonparametric method used to estimate the survival function from lifetime 

data. The survival function 5(<) is estimated by the formula below: 

 

Equation 8    >?(@) = ∏ (2 −
C+
0+
)+:@+E@  

 

Where 5(<) the probability that life is longer than time t (years) 

<9 is a time when at least one event (e.g. death) happened  

F9 is the number of events (deaths) that happened at time <9 

G9 is the number of individuals who survived (did not have the event or die or have not 

been censored) up to time <9 

This method is primary useful for visually comparing survival curves between or 

among groups of subjects in a study. It requires three pieces of information to perform 

the analysis namely the survival time, the status at the end of the survival period and 

the study group of origin. Analysis using Kaplan-Meier estimator has three 

assumptions. Firstly, it is assumed that the survival prospects between individuals who 

are censored and those who continue to be followed up are the same. Secondly, it is 

assumed that survival probabilities of individuals are the same regardless if they are 

recruited earlier or later in the study. Thirdly, it is assumed that the event (e.g. death) 

happened at the time indicated. In some cases a maximum discrepancy in recording 

the actual time of event is defined (e.g. maximum of 1 day)[186] 

7.2.7.2 Log-rank test 

Log-rank or logrank test is used to test the hypothesis that at least one of the survival 

curves of one or more samples (e.g. a group with a specific copy number amplification 

or deletion) are significantly different from that of a reference group (e.g. normal copy 

number). It is a nonparametric test that is appropriate to use when the data are skewed 

to the right and censored. This is also known as the Mantel-Cox test named after 

Nathan Mantel and David Cox. It was initially proposed by Nathan Mantel and was 

termed the logrank test by Richard Peto and Julian Peto [187-189].  Log-rank test 

statistic compares estimates of the hazard functions of the two groups being compared 

(one group versus the reference at a time) at each observed event time. This is 

constructed by calculating the observed and expected number of events in one of the 

groups at each event time and taking the sum of these resulting to a single value (HI) 

that summarises all time points where an event occurred. This is showed in the formula 

below:  
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Equation 9   JK = ∑ 	M
+12 ∑

(N+OPQ+O)K

Q+O

R
O12  

 

Where k is the number of groups compared 

S9 is the number of death/s in the kth group when at least one death was observed 

T9 is the expected number of deaths in the kth group when at least one death was 

observed 

 

For each year when death occurred,  T9 is calculated by the formula below: 

T9 = U9 * V9/W9 

Where U9 is the number of samples at risk at year i 

V9 is the number of deaths observed at year i for a given group 

U9 is the total number of samples at year i 

For the case where the survival time is censored, that individual is considered to be 

at risk of dying in the year of the censoring but not in subsequent years. This way of 

handling censored observations is similar for calculating the Kaplan-Meier survival 

curve[190]. The significance of this test is approximated from a HI distribution with k-1 

degrees of freedom. Note that this test only identifies the significant difference of the 

survival curves between groups and does not provide a measure of effect size. In this 

case, providing the hazard ratios calculated using the Cox proportional hazard model 

is useful.  

7.2.7.3 Survival analysis using Cox Proportional Hazard Model 

Survival analysis was performed on one window at a time using Cox proportional 

hazard model[183] . This model addresses the weakness of the logrank test which 

does not provide a measure of the effect size, by providing hazard ratio estimates. The 

key assumption for this model is the proportional hazards function assumption which 

means that the model assumes that each covariate has a multiplicative effect in the 

hazard function that is constant over time [188, 196].  In this step, the model takes the 

general form: 

 

Equation 10  X(@) = XY(@) ∗ [\2]2^\K]K^...^\`]` 

 

where t represents the survival time 
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h(t) is the hazard function determined by a set of covariates (x1, x2...xp) 

b1, b2,…bp represents the effect size of the covariates in the model 

h0 is the baseline hazard (the value of the hazard all x’s is zero) 

The hazard ratio (HR) for a specific covariate is calculated by exponentiating the 

corresponding effect size and is generally interpreted as a good prognostic factor when 

HR is less than 1, no effect when HR =1 and a bad prognostic factor when HR is greater 

than 1 (because here MSS (event) = 1,  means the patient died or did not survive).  

7.2.8 Mapping the Window to the Gene 

To understand better the results of tests for associations that identified genomic 

windows that are associated with tumour and clinical characteristics including survival, 

each window was assigned a numerical index corresponding to the numerical value 

attached at the end of its window label. As an example, the index for the window 

10k000000079 is 79. This index was applied similarly to the list of all 10k windows 

mapping to the genome derived using both the biomaRt [140] and mcnv [135] 

packages. biomaRt was used to identify the genes in the human genome excluding 

those from the sex chromosomes[140]. This uses different search characteristics to 

find information from the genome. For the purpose of identifying genes from the 

somatic genome, search based on a list of chromosomes (1-22) were used. This then 

resulted to a list of chromosomes together with the genes and their genomic locations 

obtained from Ensembl [140, 191]. Each gene maps to at least one or more 10k 

windows depending on its size. In case a window of interest did not map to any gene, 

the nearest gene name before or after that window is taken as a proxy. If two genes 

are equidistant to the window of interest, both are taken as proxies as long as they are 

located in the same cytoband as that of the window of interest.  

 

7.3 Results  

7.3.1 Distribution of melanoma tumours by site and location 

The distribution of the primary melanoma tumours by site and location is presented 

in Table 7.2 below. It can be observed that tumours are most commonly found on the 

limbs region such as those in the lower leg (n=48), upper arm (n=39), and thigh (n=26). 

Overall, a total of 139 out of 303 samples were found in the limbs comprising about 

half of the samples (46%). This is followed by the tumours in the trunk region such as 

those in the back (n=59), chest (n=17), and abdomen (n=13). A total of 92 samples 
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were located on the trunk comprising 30% of the samples. There was a total of 46 

samples located on the Head comprising 15% of the samples. The least common 

location of samples is found in mostly hidden parts of the body as shown below with a 

total of 26 samples or 9% of all the samples in this study.  

These 26 samples were excluded in the further analysis being classified as mucosal 

or non-cutaneous melanoma leaving a total of 277 cutaneous melanoma samples. 

 

Table 7.2. Tumours by site and location 

All the 26 samples located in mostly hidden parts of the body (classified as ‘Other’ 

in the table below) were excluded in all analyses.   

 

 

Location Head Limbs Trunk
Other 

(Excluded)
abdomen 0 0 13 0
acral 0 0 0 7
anal 0 0 0 1
back 0 0 59 0
buttock 0 0 3 0
chest 0 0 17 0
elbow 0 1 0 0
ENT 0 0 0 3
foot 0 8 0 0
hand 0 1 0 0
head/neck 46 0 0 0
knee 0 3 0 0
lower arm 0 16 0 0
lower leg 0 45 0 0
penis 0 0 0 1
subungual 0 0 0 5
thigh 0 26 0 0
upper arm 0 39 0 0
vaginal 0 0 0 1
vulval 0 0 0 8
Total 46 139 92 26
% 15% 46% 30% 9%

Site
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7.3.2 Measures of Genomic Instability 

While defining whether a genomic instability observed in all the sample is specific 

to or combination of changes in the nucleic acid sequences, chromosomal 

rearrangement, or aneuploidy was not part of this section, I have identified samples 

that exhibits known characteristic of chromothripsis. Figure 7.2 and Figure 7.3 show 

patterns of copy number alternation in at least two states - a characteristic of 

chromothripsis mentioned by Maher CA, Wilson RK (2012), Forment JV, Kaidi A, 

Jackson SP (2012), and Korbel JO, Campbell PJ (2013) [74, 75, 192]. The following 

sections discusses the three measures of genomic instability calculated for all the 

samples in this study. 



162 

 

Figure 7.2. Sample 1 exhibiting chromothripsis 

 

 

Figure 7.3. Sample 2 exhibiting chromothripsis 
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7.3.2.1 Aneuploidy Score 

The aneuploidy score was calculated for all the patients showing a minimum value 

of 0 and maximum value of 35. The mean aneuploidy score is 10.3 arms with a 

standard deviation of 8.0 (Figure 6.9). This is similar to the study of Taylor et al. (2018) 

where the mean aneuploidy score of 88% of cancer samples examined had a mean of 

10.0 [176]. 

To understand more the distribution of the aneuploidy score, a table containing the 

frequency and rate of deletion, amplification and the combination of both in each 

chromosome arm (overall arm level aberration) was calculated and is shown in Table 

7.3. The most aberrated chromosome arm is 9p (52%) which is expected as it is the 

most common site of deletion in melanoma and, indeed, most cancers [193]. A 

mapping of different disease associated to chromosome 9 was done by Gilbert and 

Kauff (2001) [194]. This is followed by aberration of 7p (42%) and 7q (41%) which 

suggests a whole chromosome amplification of the chromosome 7. This chromosome 

was also previously observed to be the most variable chromosome when checking for 

the number of segments in the genome. Similar aberrations in chromosome 7 were 

reported by the studies of Tsui (1988), Stagni et al. (2018), Sherer et al. (2004), and 

Hellman et al. (2002) [151, 172, 195, 196]. As previously mentioned in Chapter 6, 

mapping of diseases associated with chromosome 7 was summarised by summarized 

by Tsui (1988) and Scherer et al. (2003) [173] [151]. The fourth and fifth most aberrated 

regions are chromosomes 10q (39%) and 10p (38%), also suggesting whole 

chromosome aberration. These chromosomes have already been associated with 

melanoma in the literature [197, 198]. 
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Figure 7.4. Distribution of aneuploidy score (n=277) 
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Table 7.3. Frequency of aberration by type of change 

(n=277). The short arms of chromosomes 13,14,15, 21 and 22 are blacklisted. 

 

 

7.3.2.2 Fraction of Genome Altered (%) 

The distribution of fraction of genome altered (FGA) is shown in Figure 7.5 below. 

The minimum FGA is almost zero at 0.01% and the maximum is 97.35%. The mean 

FGA is 28.29 % with a standard deviation of 20.32%. These figures are close to the 

study of Luebker et al. (2017) where the mean FGA for primary melanoma samples 

(n=101) is 33% with an standard deviation of 19% [178].  

Arm Deletion Normal Amplification % Deletion % Amplification % Aberration
1p 27 199 51 10% 18% 28%
1q 10 192 75 4% 27% 31%
2p 26 226 25 9% 9% 18%
2q 22 229 26 8% 9% 17%
3p 38 223 16 14% 6% 19%
3q 39 222 16 14% 6% 20%
4p 22 233 22 8% 8% 16%
4q 22 231 24 8% 9% 17%
5p 35 206 36 13% 13% 26%
5q 47 206 24 17% 9% 26%
6p 17 186 74 6% 27% 33%
6q 65 184 28 23% 10% 34%
7p 4 164 109 1% 39% 41%
7q 4 160 113 1% 41% 42%
8p 15 203 59 5% 21% 27%
8q 8 185 84 3% 30% 33%
9p 139 133 5 50% 2% 52%
9q 95 175 7 34% 3% 37%
10p 99 173 5 36% 2% 38%
10q 104 169 4 38% 1% 39%
11p 49 219 9 18% 3% 21%
11q 49 221 7 18% 3% 20%
12p 28 226 23 10% 8% 18%
12q 36 228 13 13% 5% 18%
13q 25 214 38 9% 14% 23%
14q 44 221 12 16% 4% 20%
15q 16 222 39 6% 14% 20%
16p 21 233 23 8% 8% 16%
16q 26 231 20 9% 7% 17%
17p 31 221 25 11% 9% 20%
17q 18 217 42 6% 15% 22%
18p 23 226 28 8% 10% 18%
18q 26 223 28 9% 10% 19%
19p 9 190 78 3% 28% 31%
19q 10 194 73 4% 26% 30%
20p 9 202 66 3% 24% 27%
20q 4 199 74 1% 27% 28%
21q 17 231 29 6% 10% 17%
22q 20 215 42 7% 15% 22%
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Figure 7.5. Distribution of Fraction of Genome Altered 

 

7.3.2.3 Mean Weighted Segment Means (MWSM) 

The distribution of mean weighted segment means (MWSM) is presented in Figure 

7.6 below. The mean weighted segment mean for the samples has a lowest value of 

1.12 and a highest value of 9.47. This has a mean of 3.91 and a standard deviation of 

1.47. Of the three measures of genomic instability considered in this study, MWSM 

appears to have a distribution that is closest to the statistical normal distribution. 
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Figure 7.6. Mean Weighted Segment Mean 

 

7.3.3 Association of Three Measures of Genomic Instability with 
Clinical Characteristics 

A summary of test for association of different patient clinical characteristics with 

three different measures of genomic instability such as aneuploidy score, fraction of 

genome altered (FGA), and mean weighted segment mean (MWSM) is presented in 

Table 7.4 below. The p-values in these results were not adjusted for multiplicity. 

Overall, the measures showed the same patterns with each other, with some modest 

differences comparisons e.g. by sex, although formal significance differences varied 

by measure.  For each measure, expected patterns were seen with increasing tumour 

severity e.g. for Breslow thickness. 

Almost all clinical characteristics except mutation status (P=3.8 x 10-3) showed   no 

significant association with aneuploidy score which was the least informative of the 

measures. Figure 7.7A shows a boxplot of aneuploidy score by mutation status. BRAF 
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mutant tumours tend to have higher aneuploidy score than both NRAS mutant tumours 

and double wild type (non-mutant for both BRAF and NRAS) tumours. There was not 

a significant difference in the aneuploidy score between NRAS mutant tumours and 

Double wild type tumours. 

Fraction of genome altered (FGA) showed significant associations with Breslow 

thickness (P= 2.2 x 10-4), AJCC stage (P=4.3 x 10-3), ulceration (P= 3.8 x 10-3), mitotic 

rate (P=0.03), mutation status (P=7.5 x 10-3), and percentage of stroma (P=0.02). 

Ulcerated tumours tend to have higher fraction of genome altered (FGA %) as 

compared to those which are non-ulcerated (Figure 7.7B). Fraction of genome of 

altered (FGA %) tend to increase with the increase in mitotic rate (Figure 7.7C). 

Among the three measures of genomic instability used in this study, only mean 

weighted segment mean (MWSM) showed statistical evidence of significant correlation 

with patient age at diagnosis (P=0.03). It is also the measure that is most associated 

with Breslow thickness (P=2.8 x10-5), AJCC stage (P=1.3 x 10-3), and percentage of 

stroma (POS) (P=4.4 x 10-4). Similarly, to FGA, MWSM is also associated with 

ulceration (P=4.7 x 10-3), and mitotic rate (P=0.05) but of lesser significance.  Figure 

7.7D shows that mean weighted segment mean (MWSM) increases with the increase 

in the Breslow thickness. This also increase with the melanoma progression (Figure 

7.7E). For tumour purity, a purer tumour is associated with lower mean weighted 

segment mean (MWSM) as shown in Figure 7.7F 



 

Table 7.4.Testing for association of clinical characteristics with three measures of genomic instability 

Aneuploidy Score P Fraction of Genome Altered (FGA %) P Mean Weighted Segment Mean (MWSM) P
Sex m(r)                      Male (n=132) 7 (0,31) 23.8 (0.02, 91.5) 4.08 (1.31, 9.47)
                                     Female (n=145) 8 (0,35) 22.1 (0.01,97.4) 3.77 (1.12, 8.01)
Site  n=277 m(r)        Head (n=46) 7.5 (0,30 ) 23.0 (0.02,91.5) 3.87 (1.1,1.5)
                                      Limbs (n=139) 9.0 (0,35) 25.4 (0.01,97.4) 4.12 (1.4,8.0)
                                      Trunk (n=92) 7.0 (0,33) 21.4 (0.02, 95.2) 3.8 (1.3,7.7)
Age at diagnosis, rho  (median=57.09 years) 0.07 0.26 0.11 0.07 0.13 0.03
Breslow thickness , rho (median=2.4 mm)  0.11 0.08 0.22 2.2E-04 0.25 2.8E-05
Breslow thickness  m(r)   <= 2mm (n=109) 7 (0,34) 21.1 (0.01,97.4) 3.74 (1.1,8)
                                                2 - 4 mm (n=100) 8 (1,33) 23.7 (3.8,95.2) 3.9 (1.5,7.7)
                                                > 4 mm (n=65) 10 (0,35) 27.4 (0.02,92.8) 4.45 (1.3,9.5)
AJCC Stage n=275 m(r)      I (n=88) 7 (0,34) 20.4 (0.13, 97.4) 3.6 (1.1,8)
                                                 II (n=147) 8 (0,35) 23.9 (0.17, 95.2) 4.1 (1.3,9.5)
                                                  III (n=40) 10.5 (0,31) 32.6 (0.64,69.64) 4.4 (1.8,7.7)
Ulceration, m(r)      Ulcerated (n=92) 9 (0,35) 27.5 (0.02,92.8) 4.2 (1.3,9.5)
                                    Non ulcerated (n=185) 8 (0,34) 21.8 (0.01,97.4) 3.8 (1.1,8.0)
Mitotic rate, m(r)    >1 (n=39) 6 (0,31) 20.3 (0.6,75.6) 3.6 (1.6,7.4)
                                    1-2 (n=29) 8 (0,34) 21.5 (0.02,73.1) 3.9 (1.6,6.5)
                                    >2 (n=163) 9 (0,35) 25.2 (0.01,97.4) 4.2 (1.1,9.5)
TILs, m(r)               Absent (n=33) 6 (1,33) 23.7 (4.6,95.2) 3.9 (2.3,9.5)
                                 Brisk (n=18) 7.5 (0,21) 20.7 (0.02,49.7) 3.5 (1.6,6.2)
                                 Non-Brisk (n=126) 9 (0,34) 25.1 (0.01,97.4) 4.1 (1.1,8.0)
Mutation, m(r)     BRAF (n=126) 10 (0,35) 25.2 (0.02,97.4) 3.87 (1.1,8)
                                 NRAS (n=62) 6.5 (0,34) 20.9 (2.3,73.1) 3.88 (1.5,7.7)
                                 Double wild type (n=89) 7 (0,30) 21.9 (0.01,91.5) 4.17 (1.4,9.5)
Percentage of Stroma (POS), rho (n=206) -0.09 0.22 -0.17 0.02 -0.24 4.4E-04
* Where n is the number of samples, m is the median , r is the range, rho is spearman rank correlation coefficient, and P is the test significance

Measure of Overall Genome Instability

3.8E-03 7.5E-03 0.95

0.19 0.03 0.05

0.16 0.21 0.13

0.39 3.8E-03 4.7E-03

0.25 0.01 2.3E-03

0.12 4.3E-03 1.3E-03

Clinical characteristics

0.52 0.58 0.26

0.13 0.23 0.32
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Figure 7.7. Clinical Characteristics Associated with Genome Instability for the 
most significant comparisons 
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7.3.4 Prognostic Value of Genomic Instability 

7.3.4.1 Prognostic Value of Aneuploidy Score 

Survival analysis shows that aneuploidy score predicts melanoma-specific survival 

(MSS) in univariable testing (HR=1.02, P=0.042) but not in multivariable (HR=1.01, 

P=0.22) testing using continuous measure after adjusting for age, sex, and stage 

(Table 7.5). When using the two-quantile measure, both univariable and multivariable 

analysis did not show significant association of aneuploidy score with MSS (Table 7.6) 

but showed hazard ratios that are indicative of a trend that increases with the quantile 

corresponding to higher aneuploidy score. This is graphically depicted by the Kaplan-

Meier curve presented in Figure 7.8 below. The proportion of MSS deaths for the first 

quantile is 36% while it is 43 % for the second quantile. 

 

Figure 7.8. Kaplan Meier Curves for Aneuploidy Score 

 



 

Table 7.5. Cox Hazard Model for Aneuploidy Score as a Continuous Variable 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test.  

 

 

  

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P

Aneuploidy Score 
(n=276,deaths=109)

- 1.02 1.00-1.04 0.042 Aneuploidy Score - 1.01 0.99-1.04 0.22

Age                         
(n=276,deaths=109)    

- 1.03 1.01-1.04 0.002 Age - 1.03 1.01-1.04 0.005

Sex                         
(n=276,deaths=109)    

F (144) 1.00 - - F (143) 1.00 - -

M (132) 1.39 0.96-2.02 0.085 M (131) 1.32 0.90-1.93 0.16

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.27 0.79-2.04 0.32

III (40) 3.81 2.22-6.54 1.26E-06 III (40) 3.55 2.05-6.14 6.23E-06

Stage                      
(n=274, deaths=107)

Stage

Univariable Multivariable (n=274, deaths =107)

Sex
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Table 7.6. Cox Hazard Model for Aneuploidy Score in Two-Quantile 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test. 

 

 

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P

q(0,8] (146) 1.00 - - q(0,8] (146) 1.00 - -

q(8,35]  (130) 1.23 0.84-1.79 0.28 q(8,35]  (130) 1.07 0.73-1.58 0.72

Age                         
(n=276,deaths=109)    

- 1.03 1.01-1.04 0.002 Age - 1.03 1.01-1.04 0.005

F (144) 1.00 - - Sex F (143) 1.00 - -

M (132) 1.39 0.96-2.02 0.08 M (131) 1.31 0.90-1.93 0.16

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.30 0.81-2.08 0.28

III (40) 3.81 2.22-6.53 1.26E-06 III (40) 3.71 2.15-6.40 2.62E-06

Aneuploidy Score 
(n=276,deaths=109)

Aneuploidy Score

           Stage                                                                       
(n=274, deaths=107)

Stage

Sex                         
(n=276,deaths=109)    

Univariable Multivariable (n=274, deaths =107)
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7.3.4.2 Prognostic Value of Fraction of Genome Altered (FGA%) 

Fraction of genome altered (FGA, %) predicts MSS in univariable testing (HR=1.02, 

P=1.95 x 10-4) in continuous measure and in multivariable testing (HR=1.02, P=0.001) 

after adjusting for age, sex, and stage (Table 7.7). When using the two-quantile 

measure, the univariable analysis significantly predicts MSS (HR= 1.72 compared with 

the first quantile, P=0.006) and show borderline significance (HR=1.47,  P=0.056) in 

the multivariable analysis after adjusting for age, sex, and stage (Table 7.8) The 

difference in survival distribution between the first quantile (FGA= 0 - 23.3%) and 

second quantile (FGA = 23.3 - 97.4%) is graphically depicted by the Kaplan-Meier 

curve presented in Figure 7.9 below. Nonparametric test using log-rank test reveals 

that there is a significant difference between the survival curves of the two groups 

(P=0.005). The proportion of MSS deaths for the first quantile is 31% while it is 48 % 

for the second quantile. 

 

Figure 7.9. Kaplan Meier Curves for Fraction of Genome Altered (FGA %) 

 



 

Table 7.7. Cox Hazard Model for Fraction of Genome Altered (FGA %) as a Continuous Variable 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test.  

 

 

  

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P

Fraction of Genome 

Altered (FGA %) 

(n=276,deaths=109)

- 1.02 1.01-1.02 1.95E-04 Fraction of Genome 

Altered (FGA %) 
- 1.02 1.01-1.02 0.001

Age                         

(n=276,deaths=109)    
- 1.03 1.01-1.04 0.002 Age - 1.02 1.01-1.04 0.008

Sex                         

(n=276,deaths=109)    
F (144) 1.00 - - Sex F (143) 1.00 - -

M (132) 1.39 0.96-2.02 0.085 M (131) 1.36 0.93-2.00 0.11

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.20 0.75-1.93 0.44

III (40) 3.81 2.22-6.53 1.26E-06 III (40) 3.41 1.98-5.87 1.00E-05

Univariable Multivariable (n=274, deaths =107)

Stage                      

(n=274, deaths=107)
Stage
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Table 7.8. Cox Hazard Model for Fraction of Genome Altered (FGA %) in Two-Quantile 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test.  

 

 

 

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P
q(0,23.3] (138) 1.00 - - q(0,23.3] (138) 1.00 - -

q(23.3,97.4]  (138) 1.72 1.17-2.52 0.006 q(23.3,97.4]  (138) 1.47 0.99-2.18 0.056

Age                         
(n=276,deaths=109)    - 1.03 1.01-1.04 0.002 Age - 1.02 1.01-1.04 0.011

F (144) 1.00 - - Sex F (143) 1.00 - -

M (132) 1.39 0.96-2.02 0.085 M (131) 1.30 0.89-1.91 0.17

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.25 0.78-2.01 0.35

III (40) 3.81 2.22-6.53 1.26E-06 III (40) 3.52 2.04-6.07 6.12E-06

Sex                         
(n=276,deaths=109)    

Fraction of Genome 
Altered (FGA %) 

(n=276,deaths=109)

Fraction of Genome 
Altered (FGA %) 

           Stage                                                                       
(n=274, deaths=107)

Stage

Univariable Multivariable (n=274, deaths =107)
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7.3.4.3 Prognostic Value of Mean Weighted Segment Mean (MWSM) 

Table 7.9 summarises the survival analysis performed on mean weighted segment 

mean in the continuous scale. In univariable testing, MWSM predicts MSS (HR=1.29, 

P=4.89 x 10-5). Multivariable testing reveals that MWSM remains significant (HR=1.23, 

P=0.002) after adjusting for age, sex, and stage. When using the two-quantile MWSM, 

MWSM predicts MSS (HR=2.21, P=8.38 x 10-5) in the univariate testing. This remained 

statistically significant (HR=1.80, P=0.005) after adjusting for age, sex, and stage 

(Table 7.10). The proportion of MSS deaths for the first quantile is 28 % while it is 51 

% for the second quantile. 

 

Figure 7.10. Kaplan Meier Curves for Mean Weighted Segment Mean (MWSM) 

 



 

Table 7.9. Cox Hazard Model for Mean Weighted Segment Mean (MWSM) as a Continuous Variable 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test. 

 

 

  

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P
Mean Weighted Segment 

Mean(MWSM) 
(n=276,deaths=109)

- 1.29 1.14-1.46 4.89E-05 Mean Weighted Segment 
Mean(MWSM)

- 1.23 1.08-1.39 0.002

Age                         
(n=276,deaths=109)    

- 1.03 1.01-1.04 0.002 Age - 1.02 1.00-1.04 0.015

Sex                         
(n=276,deaths=109)    

F (144) 1.00 - - Sex F (143) 1.00 - -

M (132) 1.39 0.96-2.03 0.085 M (131) 1.30 0.89-1.90 0.18

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.21 0.75-1.94 0.43

III (40) 3.81 2.22-6.54 1.26E-06 III (40) 3.27 1.89-5.66 2.29E-05

Multivariable (n=274, deaths =107)

Stage                      (n=274, 
deaths=107)

Stage

Univariable
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Table 7.10. Cox Hazard Model for Mean Weighted Segment Mean (MWSM) in Two-Quantile 

The variable n is the total number of samples, deaths are the number of melanoma specific (MSS) deaths, CI is the confidence interval, HR is 

the hazard ratio, and P is the significance of the test. 

 

 

 

Covariate(n) HR 95% CI P Covariate(n) HR 95% CI P
q(0,3.9] (138) 1.00 - - q(0,3.9] (138) 1.00 - -

q(3.9,9.47]  (138) 2.21 1.49-3.27 8.38E-05 q(3.9,9.47]  (138) 1.80 1.19-2.72 0.005

Age                         
(n=276,deaths=109)    - 1.03 1.01-1.04 0.002 Age - 1.02 1.00-1.04 0.014

F (144) 1.00 - - Sex F (143) 1.00 - -

M (132) 1.39 0.96-2.03 0.085 M (131) 1.23 0.83-1.80 0.30

I (88) 1.00 - - I (88) 1.00 - -

II (146) 1.36 0.85-2.17 0.20 II (146) 1.22 0.76-1.96 0.41

III (40) 3.81 2.22-6.54 1.26E-06 III (40) 3.21 1.85-5.57 3.44E-05

Sex                         
(n=276,deaths=109)    

Mean Weighted Segment 
Mean(MWSM) 

(n=276,deaths=109)

Mean Weighted Segment 
Mean(MWSM)

           Stage                                                                       
(n=274, deaths=107)

Stage

Univariable Multivariable (n=274, deaths =107)
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7.3.5 Permutation Analysis on Clinical Characteristics 

7.3.5.1 Site of tumour 

For the permutation analysis on the site of tumour based on a Kruskal-Wallis test, a 

total of 297 simulations were retrieved. The distribution of minimum P-values per 

genome were shown in Figure 7.11 below. The smallest P-value from the permutations 

is 2.4 x 10-8 while the highest is 1.5 x 10-4 with a median P-value of 1.03 x 10-5. The 95th 

percentile of the distribution of the obtained P-values is 2.9 x10-7 (~0.00000029153414) 

and is marked as a red bar in the figure below. 

 

Figure 7.11. Distribution of P-values from Permutation Analysis for Site  

7.3.5.2 Breslow thickness 

Shown below in Figure 7.12 is the distribution of minimum P-values per genome 

resulting from the permutation analysis on the Breslow thickness of the primary 

melanoma using Kruskal-Wallis test. There were 138 iterations retrieved with the 

smallest P-value of 3.7 x 10-7, a highest P-value of 2.6 x 10-4 and a median P-value of 
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1.8 x 10-5. The 95th percentile of the distribution of the obtained P-values is 1.1 x10-6 

(~0.00000107880738) and is marked as a red bar in the figure below. 

 

Figure 7.12. Distribution of P-values from Permutation Analysis for Breslow 
Thickness  

7.3.5.3 Quantitative 10k windows 

Figure 7.13 summarises the distribution of the most significant P-values for each 

of the 930 iterations retrieved from the permutation analysis. The minimum P-value is 

6.3 x 10-10 while the highest is 2.6 x 10-4 with a median P-value of 4.8 x 10-6. The 95th 

percentile of the distribution of the obtained P-values is 1.4 x10-7 (~0.00000014438647) 

and is marked as a red bar in the figure below. 
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Figure 7.13. Distribution of P-values from Permutation Analysis for Survival 

 

7.3.6 Association of 10K windows with Clinical Characteristics 

7.3.6.1 Sex and 10k window copy number 

Figure 7.18 shows the whole autosomal genome copy number profile for cutaneous 

melanoma categorised by sex: Male (n=132) and Female (n=145). Visual inspection of 

chromosome arm by chromosome arm comparison of two groups suggest higher rate 

of copy number gain on the regions of chromosomes 1p, 6p, 7p, 7q, 8p, 8q and a higher 

rate of copy number loss for male group as compared to female group. A Manhattan 

plot of Wilcoxon rank sum test p-values testing for significant difference between copy 

number of male and female groups in each 10k window is presented in Figure 7.28. 

While a generally flat pattern is observed, eight 10k windows show statistical 

significance at 0.0001 level of significance, noting that a permutation-based study-
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specific genome-wide significance threshold was not performed for the analysis of sex. 

Table 7.11 below shows the table describing each window with the corresponding 

mapping genes which are predominantly broadly expressed in the testis (LINC01917 

[199], LINC01919 [200], MDC1-AS1 [201]), highly expressed in the prostate 

(LINC01090 [202], MIR99AHG [203]) or associated with prostate cancer (MIR5692B 

[204], ANK3 [205]). One window also maps with MDC1 which is known to be associated 

with the regulation of p53 [206, 207], and controls the formation of  damage-induced 

53BP1, BRCA1 and MRN foci partly by promoting efficient H2AX phosphorylation 

[208]. 

The distribution of copy number of the most significant window (LINC01917/ 

LINC01919) is displayed in Figure 7.14 showing that female copy number for this 

window falls around normal (approximately zero) while male presents higher copy 

number. 

Table 7.11. 10k copy number windows that are most significantly different 
between male and female 

 

 

  

             10k Window P FC Mean (F) Mean (M) Location Gene/s Note
10k000262770 1.8E-44 0.17 0.004 1.76 18q21.2 LINC01917,

LINC01919

10k000109193 1.5E-06 0.85 0.16 0.32 6p21.33 MDC1,
Associated with regulation of 
p53, and formation of 
damage-induced 53BP1, 
BRCA1 and MRN foci

MDC1-AS1 Broadly  Expressed in Testis

10k000282052 4.2E-06 0.86 -0.22 -0.07 21q22.3 MIR5692B Associated with Metastatic 
Prostate Cancer

10k000173511 5.2E-06 0.84 -0.15 0.03 10q21.2 ANK3 Associated with poorer 
survival in Prostate Cancer

10k000279386 1.6E-05 1.13 0.09 -0.02 21q21.1 MIR99AHG Highly Expressed in Prostate

10k000041643 5.5E-05 0.87 0.10 0.25 2q24.3 - -
10k000063833 7.1E-05 0.89 0.02 0.13 3q24 - -
10k000043720 7.3E-05 1.11 0.03 -0.07 2q32.1 LINC01090 Highly Expressed in Prostate

* FC = Fold Change ,exp(Mean_F)/exp(Mean_M) , F= Female , M=Male

Broadly  Expressed in Testis
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Figure 7.14. Distribution of LINC01917/LINC01919 10k window copy number by 
sex 

 

7.3.6.2 Site and 10k window copy number 

The 10k window copy number profile categorised by the site of primary as to Head 

(n=46), Limbs (n=139), and Trunk (92) did not present any clear pattern of difference. 

It suggests slightly higher rate of increased copy number in the chromosome 1q region 

for the Limbs group as compared with Head and Trunk groups and for chromosome 6p 

in the Head group as compared with Limbs and Trunk groups (Figure 7.19).  Based on 

permutation analysis, any window with P-value less than 2.9 x10-7 is deemed study-

specific genome-wide significant. The Manhattan plot presenting the P-values testing 

for difference of copy number among sites of primary is presented in Figure 7.29. 

Checking the summaries of ranked windows according to test significance, only one 

window is lower than this cutoff. This window maps to LINC01917 and LINC01919 

(Table 7.12). This is the same window that is found to be most significantly different in 

terms of copy number when comparing male and female groups. As previously 

mentioned, this gene  is known to be broadly expressed in testis [199, 200]. Figure 

7.15 shows the distribution of this 10k window in terms of site of primary melanoma. 
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This clearly shows that Limbs copy number tend be close to normal (approximately 

zero) while the copy number for Head and Trunk tend to be higher than zero. 

Table 7.12. 10k copy number windows that are most significantly different among 
sites of primary melanoma 

 

 

Figure 7.15. Distribution of LINC01917/LINC01919 10k window copy number by 
site 

10k Window P Median (Head) Median (Limbs) Median (Trunk) Location Gene/s Note
10k000262770 3.82E-10 1.55 0.10 1.52 18q21.2 LINC01917,

LINC01919
10k000019159 6.00E-06 -0.05 0.12 -0.02 1q31.2 LINC01680 

10k000024793 8.47E-06 -0.07 0.11 -0.05 1q44 OR2AJ1,
OR2T8

10k000016763 1.62E-05 0.07 0.23 0.11 1q24.2 RCSD1
Higher expression in lymph 
node, spleen, appendix, and  
bone marrow

1q24.2 CREG1
both activates and represses 
gene expression to promote 
cellular proliferation and inhibit 
differentiation

10k000006594 1.86E-05 -0.12 -0.11 -0.24 1p31.3 PDE4B Higher expression in Bone 
marrow, brain, and appendix

10k000016887 2.11E-05 -0.13 0.03 -0.16 1q24.2 LINC00626
Associated with Head and 
neck squamous cell carcinoma 
tumors harboring human 
papillomavirus

10k000236545 2.32E-05 -0.09 0.02 -0.01 15q22.32 LINC02206
Higher expression in 
prostate, splee, fat, kidney, 
lymph node, and skin

10k000041345 2.71E-05 -0.10 0.04 0.05 2q24.3 GRB14
Higher expression in Kidney, 
liver, testis, ovary, and 
adrenal

10k000166290 3.55E-05 0.07 -0.12 0.11 9q33.3 MVB12B Higher expression in brain, 
lung, spleen , and placenta

10k000017118 3.71E-05 0.09 0.19 0.04 1q24.3 FMO6P Higher expression in salivary 
gland, stomach, and lung

      *Row/s in blue are study-specific genome-wide significant. Genes in red are nearest approximate when no gene maps to the window

Broadly  Expressed in 
Testis

Higher Expression in 
Testis

Expressed in spleen, bone 
marrow, and Thyroid 
gland
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Other genes that show some evidence of copy number difference but did not 

reached the permutation based significance in terms of site of primary melanoma are: 

LINC01680 which is also known to present higher expression in the testis [209], 

LINC00626 which is known to be associated with head and neck squamous cell 

carcinoma tumours harbouring human papillomavirus  [210, 211], OR2AJ1, OR2T8 , 

RCSD1,PDE4B, LINC02206, GRB14, MVB12B , FMO6P,which are known to be 

expressed in one or some of the following organs/tissues: spleen, bone marrow, lymph 

nodes, appendix, brain, prostate, kidney, fat, skin, liver, ovary, adrenal, lung, placenta, 

salivary gland, stomach,  and thyroid gland [40, 212-218], and CREG1 which is known 

to be play a role in both activation and repression of gene expression to promote 

cellular proliferation and inhibit differentiation [219]. 

A further investigation on the LINC01917 / LINC01919 copy number was done 

visually by plotting this region using both 10k window data and segment level data. 

Since the segment mean values and are affected by the values of the neighbouring 

windows with which it was segmented with, other samples that contributed to the copy 

number difference in Table 7.12 and Figure 7.15 and were segmented together with 

the neighbouring windows and reduced their magnitudes i.e. absolute segment means 

less than 0.10 were not included. The segment level plot is shown in Figure 7.16 below 

showing 24 samples with absolute segment means > 0.1. Two of these samples have 

segment means focused on the LINC01919 and LINC01917 specific regions. Checking 

for these two samples, both are Males and the tumour are both from the Head area. 

The remaining 22 samples have segments that are longer. These 22 samples are 

located in the regions (Head and Trunk) known to have higher copies of this 

LINC01917/ LINC01919 10k window are from Male samples.  This is tested in the 277 

samples and revealed significant association between site of the primary tumour and 

patient sex (P=9.078 x 10-10) as expected (Table 7.13). 

Secondly, the window level plots are checked for window 10k000262770 to see how 

it compares around the neighbouring windows. Sample plots of clear copy number 

difference of this window over around the neighbouring windows is shown in Figure 

7.17. This was observed in 128/277 (46%) of the samples. 
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Figure 7.16. Plot of copy number segments around LINC01917 and LINC01919 
genes 

 

Table 7.13. Test for association between patient sex and site of primary 
melanoma 

 

  

Female Male
Head 18(39%) 28(61%)
Limbs 99(71%) 40(29%)
Trunk 28(30%) 64(30%)
Total 145(52%) 132(48%)

9.08E-10

Sex

Fisher test P-value:

Site
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Figure 7.17. Plot of two samples which have extreme amplification for window 
10k000262770 
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7.3.6.3 Age and 10k window copy number 

In terms of age, Figure 7.20 shows the whole copy genome copy number plot of the 

samples grouped by two age categories with reference to the median age: 57.09 years 

and below (n= 139), and higher than 57.09 years (n=138). Visual comparison suggests 

that except for chromosome 6p where older patients tend to have higher rate of copy 

number aberrations, there does not seem to be clear visual difference between the 

copy number profiles of the two age groups. Association between copy number and 

age was tested using Spearman correlation as displayed in Figure 7.30. High 

correlation can be visually observed in the regions of chromosome 1, chromosome 4, 

chromosome 6, chromosome 8, chromosome 15, and chromosome 17.  Table 7.14 

below shows the 10k windows that tops the list of those which are most associated 

with age when ranked according to increasing test significance. First in the list is 

MAPK10 which is known to be involved in cell proliferation, differentiation, transcription, 

regulation, and development [220]. This is followed by genes such as FAM50B which 

is related to a plant protein that plays role in the circadian clock [221], ZNF184 

(associated with higher expression in testis, brain, and endometrium [222]), KRBA2 

(which has higher expression in heart, kidney, and thyroid[223]), NOTCH4 (which 

regulates interaction between physically adjacent cells [224]), LNC-LBCS (long-coding 

RNA bladder and prostate cancer suppressor), RPP40 (mentioned as prognostic 

marker in renal cancer, endometrial cancer, and liver cancer [225]), PPP1R3G (higher 

expression in liver cancer), RN7SKP293 (which regulates the activity of positive 

transcription elongation factor b [226]) , RIPK1 (plays a role in inflammation and cell 

death in response to tissue damage, pathogen recognition, and as part of 

developmental regulation [227]), and PSMG4 (influence the age at onset of clinical 

symptoms of multiple sclerosis [228]). 
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Table 7.14. 10k copy number windows that are most significantly associated with 
age 

 

 

7.3.6.4 Breslow thickness and 10k window copy number 

For Breslow thickness, the 10k window whole genome copy number profile samples 

grouped according to three Breslow thickness categories: Breslow thickness <= 2mm 

(n=109), Breslow thickness 2-4 mm (n=100), and Breslow thickness >4mm (n=65) are 

shown in Figure 7.22. Similar to previous observation about patient age and copy 

number, there seems to be no clear pattern of difference among the three groups of 

samples according to Breslow thickness in terms of copy number except for 

chromosome 6 and chromosome 7. Figure 7.31 displays the P-values of the Kruskal-

Wallis test performed between each 10k window of the genome and Breslow thickness. 

Notable differences can be observed in the regions of chromosomes 1q, 2, 3p, 6p, 7, 

and 20. A list of top windows and their corresponding mapping gene is presented in 

Table 7.15 below. Recalling the significance threshold identified in the permutation 

analysis for Breslow thickness which is 1.1 x10-6 (~0.00000107880738), there were 

three windows which are considered genome-wide significant which map to CXCR4 

which is associated with cancer progression and cell survival [229-231],  SDK1 for 

which its silencing leads to cell rounding and blunted CaP cell migration [232], and 

ITGA4 which was reported to be upregulated in melanoma[233]. 

Notable genes but did not reached study-specific genome-wide significance  include 

DDX1 which is known to be involved in transcription, viral replication, mRNA/miRNA 

processing, and transfer ribonucleic acid (tRNA) splicing and plays  important role in 

the regulation of gene alternative splicing and insulin secretion in pancreatic β cells 

10k Window P Spearman Location Gene/s Note

10k000077553 1.57E-07 -0.31 4q21.3 MAPK10
involved in cell proliferation, differentiation, 
transcription regulation and development

10k000106504 4.09E-07 0.30 6p25.2 FAM50B 
related to a plant protein that plays a role in the 
circadian clock

10k000108866 1.62E-06 0.28 6p22.1 ZNF184  
higher expression in testis, brain, and 
endometrium

10k000249922 1.63E-06 -0.28 17p13.1 KRBA2 higher expression in heart, kidney, and thyroid

10k000109343 2.04E-06 0.28 6p21.32 NOTCH4
regulates interactions between physically adjacent 
cells

10k000108102 2.44E-06 0.28 6p22.3 LNC-LBCS lncRNA bladder and prostate cancer suppressor,

10k000106624 2.88E-06 0.28 6p25.1 RPP40  
prognostic marker (unfavourable) in renal cancer, 
endometrial cancer, and liver cancer

PPP1R3G   higher expression in liver cancer

10k000107356 3.26E-06 0.28 6p24.1 RN7SKP293 
regulates the activity of positive transcription 
elongation factor b (P-TEFb) 

10k000106433 3.36E-06 0.28 6p25.2 RIPK1

plays a role in inflammation and cell death in 
response to tissue damage, pathogen recognition, 
and as part of developmental regulation

10k000106449 3.65E-06 0.27 6p25.2 PSMG4
influence the age at onset of clinical symptoms of 
multiple sclerosis

*Genes in red are nearest approximate when no gene maps to the window
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[234] ; CHST12 which is associated with tumour regrowth in non�functioning pituitary 

adenoma (NFPA) [235]; GPR39 for which its overexpression contributes to malignant 

development of human oesophageal squamous cell carcinoma[236]; SUN1 for which 

silencing of this gene inhibits cell growth through G0/G1 phase arrest in lung 

adenocarcinoma [237]; and VEGFA which activates an epigenetic pathway 

upregulating ovarian cancer-initiating cells [238] 

Table 7.15. Top 10k copy number windows that are most significantly associated 
with Breslow thickness 

 

 

7.3.6.5 AJCC stage and 10k window copy number 

In terms of AJCC stage, Figure 7.23 shows the 10k whole genome copy number 

grouped by AJCC stage. The chromosomes 6p and 7 resembles regions are clearly 

associated with higher rate of copy number amplifications for more advanced stage of 

melanoma. Difference among the three AJCC stages was tested and the resulting 

significance of the tests were plotted on the Manhattan plot in Figure 7.32. It suggests 

significant copy number differences in the regions of chromosomes 2, 7, and 11. In 

terms of the top 10k windows that have highest significance when testing for copy 

number difference in terms  of stage (Table 7.16), genes associated with at least one 

form of cancer (e.g. liver, colorectal, prostate, pancreatic, thyroid, renal cell carcinoma, 

biliary tract, non-functioning pituitary adenoma, gastric carcinoma, acute myeloid 

leukemia, intrahepatic (ICC) , extrahepatic (ECC) cholangiocarcinoma, lung cancer 

and B-Cell Acute Lymphoblastic Leukemia) or its progression and cell survival are 

observed such as CXCR4 which was previously identified in this study as genome-

wide significant in terms of association with Breslow thickness [229-231], UVRAG [239, 

10k Window P Spearman Spearman Spearman Location Gene/s Note

10k000038511 5.32E-08 -0.14 -0.23 -0.29 2q22.1 CXCR4

the binding of CXCL12 to CXCR4 induces 
intracellular signaling through several divergent 
pathways initiating signals related to chemotaxis, 
cell survival and/or proliferation, increase in 
intracellular calcium, and gene transcription

10k000123539 6.22E-07 0.20 0.34 0.50 7p22.2 SDK1 silencing leads to cell rounding and blunted CaP cell 
migration

10k000043040 7.51E-07 -0.11 -0.19 -0.33 2q31.3 ITGA4 reported to be upregulted in melanoma

10k000123448 1.34E-06 0.07 0.17 0.29 7p22.3 CHST12 associated with tumor regrowth in non-functioning 
pituitary adenoma (NFPA)

10k000026455 1.59E-06 -0.03 -0.07 -0.18 2p24.3 DDX1
involved in transcription, viral replication, 
mRNA/miRNA processing, and tRNA splicing; 
important role in the regulation of gene alternative 
splicing and insulin secretion in pancreatic β cells

10k000111014 1.69E-06 0.09 0.17 0.39  6p12.3 RNU7-65P  RNA, U7 Small Nuclear 65 Pseudogene

10k000038151 1.91E-06 0.03 -0.04 -0.10 2q21.2 GPR39 overexpression contributes to malignant 
development of human esophageal squamous cell 

10k000025748 2.53E-06 0.03 -0.02 -0.14 2p25.1 LINC01814 Long Intergenic Non-Protein Coding RNA 1814

10k000123284 3.31E-06 0.39 0.52 0.62 7p22.3 SUN1 silencing of this gene inhibits cell growth through 
G0/G1 phase arrest in lung adenocarcinoma

10k000110498 5.34E-06 0.12 0.15 0.32 6p21.1 VEGFA activates an epigenetic pathway upregulating ovarian 
cancer-initiating cells

  *Row/s in blue are study-specific genome-wide significant. Genes in red are nearest approximate when no gene maps to the window



192 

240], CYP3A54P [241] ,ACER3 [242], ELFN1 [243], ANO5 [244-246], PRKAR1B [247, 

248], CHST12 [235], C7orf26 [249], FAM20C [250],  and PPME1 [251]. 

Table 7.16. Top 10k copy number windows that are most significantly associated 
with AJCC stage 

 

 

7.3.6.6 Ulceration and 10k window copy number 

Ulcerated tumours tend to have higher rate of aberration in the regions of 

chromosomes 6p and 9p (Figure 7.21). Testing this formally reveals that aside from 

these two regions, differences in copy number can also be observed in the regions of 

chromosomes 1p, 3p, 10p, 11q, 12q, 14p, and 14q as shown in Figure 7.33. The top 

10 windows in terms of test significance for copy number by ulceration status are shown 

in Table 7.17 below. This list comprises NEBL which is enriched in the heart muscle 

and reported to be a favourable prognostic marker in renal cancer and unfavourable 

prognostic marker in urothelial cancer [252], LINC01623 (long intergenic non-protein 

coding RNA 1623), GGNBP1 which is expressed higher in testis [253] , RN7SL26P 

(RNA, 7SL, Cytoplasmic 26, Pseudogene), RNF182 which has higher expression in 

brain, bone marrow, testis, and lung [254], ADAMTSL1 which was reported to be 

differentially methylated between paired tumour and normal tissues from breast cancer 

patients [255], ELOCP20 (Elongin C Pseudogene 20), ITPR3 which encodes a 

receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the 

release of intracellular calcium, RNMTL1P1 (RNA methyltransferase like 1 

10k Window P Stage 1* Stage 2* Stage 3* Location Gene/s Note

10k000038511 2.45E-06 -0.13 -0.24 -0.30 2q22.1 CXCR4

multiple essential functions include homing of 
stem cells and metastasis of cancer cells; 
trafficking and homeostasis of immune cells such 
as T lymphocytes and plays important role in 
cancer progression

10k000188464 1.17E-05 0.09 0.04 0.21 11q13.5 UVRAG
frameshift mutation of UVRAG is associated with 
switching a tumor suppressor to an oncogene in 
colorectal cancer, and in gastric carcinomas with 
microsatellite instability

10k000123648 1.71E-05 -0.05 0.15 0.16 7p22.1 CYP3A54P 
pseudogene of CYP3A - which catalyze many 
reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids

10k000188571 2.25E-05 0.13 0.01 0.20 11q13.5 ACER3 supports development of acute myeloid leukemia

10k000123372 2.29E-05 0.14 0.31 0.46 7p22.3 ELFN1
location intersects with ELFN1-AS1 which 
accelerates the proliferation and migration of 
colorectal cancer 

10k000183047 3.65E-05 -0.01 -0.03 0.17 11p15.1 ANO5 
associated in in prostate cancer progression ; 
regulates cell proliferation and migration in 
pancreatic cancer; regulates cell migration and 
invasion in thyroid cancer

10k000123274 3.77E-05 0.24 0.38 0.52 7p22.3 PRKAR1B
associated with poorer survival in renal cell 
carcinoma; significantly altered in intrahepatic 
(ICC) and extrahepatic (ECC) cholangiocarcinoma

10k000123448 4.43E-05 0.06 0.19 0.18 7p22.3 CHST12 associated with tumor regrowth in 
non-functioning pituitary adenoma (NFPA)

10k000123864 4.56E-05 0.20 0.30 0.38 7p22.1 C7orf26 higher expression in  in B-Cell Acute Lymphoblastic 
Leukemia

10k000123222 4.61E-05 0.13 0.27 0.35 7p22.3 FAM20C
 part of hypoxia-related key genes in Lung 
adenocarcinoma progression, which were 
regulated by DNA methylation

10k000188291 5.46E-05 0.05 0.04 0.24 11q13.4 PPME1
amplification is associated with gastric and lung 
cancer and its potential as a novel therapeutic 
target

**Genes in red are nearest approximate when no gene maps to the window* Median copy number
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pseudogene 1), SLC22A23 which has high expression in stomach, colon, small 

intestine, duodenum, prostate, and oesophagus, ATP6V1G1P4 (ATPase H+ 

Transporting V1 Subunit G1 Pseudogene 4), and CREM which was reported to be 

progressively and significantly upregulated from controls to nondysplastic UC 

(ulcerative colitis)  to UC with neoplasia. 

Table 7.17. Top 10k copy number windows that are most significantly associated 
with ulceration status 

 

 

7.3.6.7 Mitotic rate and 10k window copy number 

Tumours with higher mitotic rate tend to be more aberrated in terms of 

chromosomes 6p (amplification), 9p (deletion), 10q (deletion), and 11q (deletion) as 

shown in Figure 7.24. Checking the Manhattan plot in Figure 7.34, it can be observed 

that the regions with significant differences across the three groups in terms of mitotic 

rate (>1 , 1-2 , >2) are in the regions of chromosome 6p, 7p, 7q, 10p, 10q, 11q, 15q, 

18q, and 20q. Table 7.18 below summarizes the top 10 windows when testing for copy 

number difference by with mitosis which include MIR100HG that promotes colorectal 

cancer metastasis and is associated with poor prognosis [256], NRSN1 which is 

reported to be significantly related to grade and prognosis of Glioma [257], ST3GAL4 

which is associated with Hyperglycemia and Inflammatory Breast Carcinoma and 

biological pathways such as Metabolism of proteins and Pre-NOTCH Expression and 

sex
10k Window P FC Non-ulcerated* Ulcerated* Location Gene/s Note

10k000169597 5.5E-06 1.19 -0.154 -0.33 10p12.31 NEBL

Tissue enriched (heart muscle), 
prognostic marker in renal cancer 
(favourable) and urothelial cancer 
(unfavourable)

10k000109008 6.1E-06 0.85 0.44 0.61 6p22.1 LINC01623
long intergenic non-protein coding 
RNA 1623

10k000109477 6.4E-06 0.87 0.15 0.29 6p21.31 GGNBP1 higher expression in testis

RN7SL26P
RNA, 7SL, Cytoplasmic 26, 
Pseudogene

10k000107512 6.9E-06 0.86 0.09 0.24 6p23 RNF182  
higher expression in brain, bone 
marrow, testis, and lung

10k000155490 7.3E-06 1.25 -0.24 -0.46 9p22.2 ADAMTSL1
differentially methylated between 
paired tumor and normal tissues 
from breast cancer patients

10k000011549 9.0E-06 0.84 0.00 0.17 1p13.2 ELOCP20 Elongin C Pseudogene 20

10k000109491 9.7E-06 0.86 0.23 0.38 6p21.31 ITPR3

encodes a receptor for inositol 
1,4,5-trisphosphate, a second 
messenger that mediates the 
release of intracellular calcium

10k000169633 1.1E-05 1.20 -0.16 -0.34 10p12.31 RNMTL1P1
RNA methyltransferase like 1 
pseudogene 1

10k000106471 1.1E-05 0.85 0.12 0.29 6p25.2 SLC22A23
high expression in stomach, colon, 
small intestine, duodenum, 
prostate, and esophagus

10k000171008 1.1E-05 1.24 0.02 -0.19 10p11.21 ATP6V1G1P4
ATPase H+ Transporting V1 
Subunit G1 Pseudogene 4

1.1E-05 1.24 0.02 -0.19 10p11.21 CREM

progressively and significantly 
upregulated from controls to 
nondysplastic UC (ulcerative 
colitis)  to UC with neoplasia

**Genes in red are nearest approximate when no gene maps to the window* Mean copy number
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Processing [258], GSEC which is associated with Colorectal Cancer and Al-Raqad 

Syndrome[259], LINCMD1 [260], MIR133B [261], MIR206 [262], SLC25A20P1 (Solute 

Carrier Family 25 Member 20 Pseudogene 1),  IL17F which is expressed by activated 

T cells, and has been shown to stimulate the production of several other cytokines, 

including IL6, IL8, and CSF2/GM_CSF [263], ARHGEF12 [264], DCPS [265], 

ALDH5A1 [266], KIAA0319 [267], and F13A1 which is reported as a new biomarker for 

the screening of colorectal cancer [268]. 

Table 7.18. Top 10k copy number windows that are most significantly associated 
with mitosis 

 

 

10k Window P < 1* 1 to 2* > 2* Location Gene/s Note

10k000193092 3.53E-07 -0.16 -0.24 -0.41 11q24.1 MIR100HG
promotes colorectal cancer metastasis and is 
associated with poor prognosis

10k000108537 5.44E-07 0.11 0.29 0.40 6p22.3 NRSN1
significantly related to grade and prognosis of 
Glioma

10k000106734 5.52E-07 0.01 -0.01 0.23 6p25.1 F13A1
reported as a new biomarker for the screening of 
colorectal cancer

10k000111337 5.75E-07 -0.12 -0.01 0.08 6p12.2 LINCMD1
associated with Increased Risk to Hip and Knee 
Osteoarthritis

5.75E-07
-0.12 -0.01 0.08

6p12.2 MIR133B
related pathways are MicroRNAs in cardiomyocyte 
hypertrophy and Cell Differentiation - Index

5.75E-07 -0.12 -0.01 0.08 6p12.2 MIR206
related pathways are miRs in Muscle Cell 
Differentiation and Glial Cell Differentiation

5.89E-07 -0.21 -0.01 0.01 6p12.2 SLC25A20P1 Solute Carrier Family 25 Member 20 Pseudogene 1

5.89E-07 -0.21 -0.01 0.01 6p12.2 IL17F

expressed by activated T cells, and has been shown 
to stimulate the production of several other 
cytokines, including IL6, IL8, and CSF2/GM_CSF; 
also found to inhibit the angiogenesis of 
endothelial cells and induce endothelial cells to 
produce IL2, TGFB1/TGFB, and monocyte 
chemoattractant protein-1

10k000193513 6.32E-07 0.10 0.03 -0.08 11q24.2 ST3GAL4
 associated with Hyperglycemia and Inflammatory 
Breast Carcinoma; related pathways are 
Metabolism of proteins and Pre-NOTCH 
Expression and Processing

10k000192918 6.37E-07 0.11 0.09 -0.06 11q23.3 ARHGEF12
encodes a protein that may form a complex with G 
proteins and stimulate Rho-dependent signals and 
has been observed to form a myeloid/lymphoid 
fusion partner in acute myeloid leukemia

10k000109880 6.78E-07 0.04 0.14 0.25 6p21.2 MIR4462    MicroRNA 4462

10k000193508 8.42E-07 0.04 -0.03 -0.15 11q24.2 GSEC associated with  Colorectal Cancer and Al-Raqad 
Syndrome

8.42E-07 0.04 -0.03 -0.15 11q24.2 DCPS

associated with DCPS include Al-Raqad Syndrome 
and Autosomal Recessive Non-Syndromic 
Intellectual Disability; related pathways are Gene 
Expression and Deadenylation-dependent mRNA 
decay

10k000108575 1.01E-06 0.18 0.24 0.42 6p22.3 ALDH5A1

associated with ALDH5A1 include Succinic 
Semialdehyde Dehydrogenase Deficiency and 
Gamma-Amino Butyric Acid Metabolism Disorder; 
s related pathways are Valproic Acid Pathway, 
Pharmacodynamics and Neurotransmitter Release 
Cycle.

10k000108583 1.02E-06 0.11 0.18 0.37 6p22.3 KIAA0319

Involved in neuronal migration during 
development of the cerebral neocortex; may 
function in a cell autonomous and a non-cell 
autonomous manner and play a role in appropriate 
adhesion between migrating neurons and radial 
glial fibers; may also regulate growth and 
differentiation of dendrites.

**Genes in red are nearest approximate when no gene maps to the window* Mean copy number
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7.3.6.8 Tumour Infiltrating Lymphocytes (TILs) and 10k window copy 
number 

Higher rate of aberration for tumours with no TILs and tumours with Brisk TILs as 

compared with tumours with non-brisk TILs is observed in the regions of chromosome 

6p (amplification) as depicted in  Figure 7.25. When checking for significant difference 

of copy number among the three groups based on TILs, the window that shows the 

highest significance is in chromosome 4, followed by chromosome 11 and 

chromosome 3 (Figure 7.35). Table 7.19 summarises the top 10k windows which show 

copy number difference by TILs including the description of the genes mapping to 

them. An interesting gene on the list is LRRIQ3 which was previously reported to be 

associated with response to chemotherapy in rectal cancer [269]. Other genes on the 

list are ZSWIM5P3 (Zinc Finger SWIM-Type Containing 5 Pseudogene 3), LRRC4C 

which is a specific binding partner for netrin G1 [270], LINC02053 which  has higher 

expression in testis [271], and RNU1-89P which was reported to have differential 

expression of small nuclear RNA (snRNA) in oesophageal adenocarcinoma[272].  

Table 7.19. Top 10k copy number windows that are most significantly associated 
with TILS 

 

7.3.6.9 Mutation status and 10k window copy number 

In terms of mutation status, NRAS group tend to have higher rate of copy number 

amplification in chromosomes 1q (NRAS is located in chromosome 1p) and 6p as 

compared to BRAF group and double wild type group. BRAF group has higher rate of 

copy number amplification in chromosome 7 (where BRAF is located) as compared to 

NRAS group and double wild type group (Figure 7.26).  Checking the manhattan plot 

for mutation status in Figure 7.36, it can be seen that the NRAS (chromosome 1p near 

centromere) and BRAF (chromosome 7q) regions shows highly significant copy 

number difference across the sample groups in terms of mutation status. Similar 

observation is found in chromosomes 10q - a region which is reported to be aberrated 

in melanoma [146]. The summary of the top significant 10k windows is presented in 

Table 7.20 below. The list is topped by ADAM12 which has been reported to contribute 

to increased tumour proliferation, metastasis and endocrine resistance[273]. Other 

10k Window P Absent* Brisk* Non-brisk* Location Gene/s Note

10k000081873 1.29E-05 -0.34 -0.10 -0.08 4q28.2 ZSWIM5P3 Zinc Finger SWIM-Type Containing 5 Pseudogene 3

10k000184907 2.43E-05 -0.29 0.01 -0.03 11p12 LRRC4C a specific binding partner for netrin G1 

10k000067167 5.54E-05 -0.22 0.03 -0.13 3 q26.33 LINC02053 higher expression in testis

10k000082560 6.08E-05 -0.29 0.03 -0.05 4q28.3 RNU1-89P  
differential expression of snRNA in esophageal 
adenocarcinoma

10k000007403 9.87E-05 -0.28 0.04 -0.09 1p31.1 LRRIQ3
associated with response to responses to 
chemoradiotherapy in rectal cancer

**Genes in red are nearest approximate when no gene maps to the window* Median copy number
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cancer related genes on the list are ALDH18A1 which is associated with associated 

with luminal B breast cancer [274], VTI1A which is associated with susceptibility to 

colorectal and lung cancers [275], SORBS1 which has been reported to suppress 

tumour metastasis and improves the sensitivity of cancer to chemotherapy drug [276], 

LGI1 which has been reported to be differentially expressed in early and late-stage oral 

squamous cell carcinoma [277], and ZNF777 which inhibits proliferation at low cell 

density through down-regulation of FAM129A [278].    

Table 7.20. Top 10k copy number windows that are most significantly associated 
with mutation status 

 

7.3.6.10 Percentage of stroma and 10k window copy number 

The rate of copy number amplification in chromosome 6 tend to increase with the 

decrease in percentage of stroma while the rate of copy number deletion in 

chromosome 9p tend to decrease with the decrease in percentage of stroma as shown 

in Figure 7.27. Test for correlation using Spearman’s rho identifies the region of 

10k Window P BRAF* NRAS* DWT* Location Gene/s Note

10k000180124 2.68E-13 -0.35 -0.07 -0.05 10q26.2 ADAM12

contributes to increased tumor 

proliferation, metastasis and 

endocrine resistance

10k000176807 5.45E-13 -0.47 -0.15 -0.11 10q23.33 XRCC6P1 
associated with Open-angle 

glaucoma risk

10k000137098 5.47E-13 0.32 0.03 0.11 7q34 KIAA1549
associated with pilocytic 

astrocytoma (PA) 

10k000177057 7.88E-13 -0.40 -0.06 -0.10 10q24.1 ALDH18A1
associated with luminal B breast 

cancer

10k000137887 7.96E-13 0.45 0.21 0.21 7q35 CNTNAP2

prominent susceptibility gene 

implicated in multiple complex 

neurodevelopmental disorders, 

including autism spectrum 

disorders , intellectual disability , 

and schizophrenia

10k000178743 8.39E-13 -0.34 0.04 0.02 10q25.2 VTI1A

Polymorphisms in this gene have 

been associated with binocular 

function, and also with 

susceptibility to colorectal and 

lung cancers

10k000176582 9.32E-13 -0.49 -0.11 -0.17 10q23.31 RPP30
higher expression in testis, ad 

lymph node

10k000177037 9.39E-13 -0.46 -0.04 -0.15 10q24.1 SORBS1

suppresses tumor metastasis and 

improves the sensitivity of cancer 

to chemotherapy drug

10k000176877 9.40E-13 -0.50 -0.15 -0.15 10q23.33  LGI1 

differentially expressed in early- 

and late-stage oral squamous 

cell carcinoma

10k000138144 1.16E-12 0.31 0.04 0.10 7q36.1 ZNF777   

inhibits proliferation at low cell 

density through down-regulation 

of FAM129A

**Genes in red are nearest approximate when no gene maps to the window
DWT = Double wild type 

        * Median copy number
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chromosome 1q as the most correlated with percentage of stroma as shown in Figure 

7.37. 

Table 7.21 summarizes the list of top 10k windows that shows top correlation 

significance with percentage of stroma and shows KCNT2 as top on the list. The 

expression of this gene is correlated with the prognosis of skin cutaneous melanoma 

(SCM) and significantly different between normal skin and SCM [279]. This followed by 

OR2G6 which is associated in breast cancer [280]. Other genes in the list include 

FAM163A which is reported to be positive regulator of ERK signalling pathway, 

interacts with 14-3-3β and promotes cell proliferation in squamous cell lung carcinoma 

[281], AXDND1 which is reported to be downregulated in gastric cancer [282], INTS7 

which is associated with Gastric Cancer and Ivic Syndrome, and its increased levels is 

associated with the aggressiveness of prostate cancer [283, 284], RALGPS2 which is 

reported to be essential for survival and cell cycle progression of lung cancer cells 

[285], PLD5 which is associated with survival of thyroid cancer patients [286], LELP1 

which is significantly increased in atopic dermatitis skin [287], RSL24D1P4 (Ribosomal 

L24 Domain Containing 1 Pseudogene 4), EFCAB2 which is considered as one of the 

most potential targets for four breast cancer subtypes, a specific therapeutic targets for 

luminal A, and  identified as a susceptibility gene for Colorectal Cancer in East Asian 

populations [288, 289], and PKP1 where its phosphorylation by RIPK4 regulates 

epidermal differentiation and skin tumorigenesis [290].  
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Table 7.21. Top 10k copy number windows that are most significantly associated 
with percentage of stroma 

 

10k Window P Rho Location Gene/s Note

10k000019628 3.43E-09 -0.40 1q31.3 KCNT2
expression was correlated with the 
prognosis of SCM and significantly 
different between normal skin and SCM

10k000024853 5.96E-09 -0.39 1q44 OR2G6 associated in human breast cancer

10k000017980 7.13E-08 -0.36 1q25.2 FAM163A

positive regulator of ERK signaling 
pathway, interacts with 14-3-3β and 
promotes cell proliferation in squamous 
cell lung carcinoma

10k000017940 7.23E-08 -0.36 1q25.2 AXDND1 downregulated in gastric cancer

10k000021188 7.85E-08 -0.36 1q32.3 INTS7   

 associated with Gastric Cancer and Ivic 
Syndrome; increased levels is associated 
with the aggressiveness of prostate 
cancer

10k000017896 8.70E-08 -0.36 1q25.2 RALGPS2
essential for survival and cell cycle 
progression of lung cancer cells 

9.52E-08 -0.36 1q43 PLD5
associated with survival of thyroid cancer 
patients

10k000015321 9.85E-08 -0.36 1q21.3 LELP1
significantly increased in atopic 
dermatitis skin

10k000024288 1.08E-07 -0.36 1q43 RSL24D1P4
Ribosomal L24 Domain Containing 1 
Pseudogene 4

10k000024513 1.29E-07 -0.36 1q44 EFCAB2

considered one of the most potential 
targets for four breast cancer subtypes ; 
specific therapeutic targets for luminal A; 
identified as a susceptibility gene for 
Colorectal Cancer in east asian 
populations

10k000020133 1.53E-07 -0.36 1q32.1 PKP1
Phosphorylation  by RIPK4 regulates 
epidermal differentiation and skin 
tumorigenesis

**Genes in red are nearest approximate when no gene maps to the window



 

 

Figure 7.18. 10k Window copy number profile by sex 
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Figure 7.19. 10k Window copy number profile by site of primary melanoma 
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Figure 7.20. 10k Window copy number profile by age at diagnosis 

Median age at diagnosis = 57.09 years 

200 



 

 

Figure 7.21. 10k Window copy number profile by ulceration status 
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Figure 7.22. 10k Window copy number profile by Breslow thickness 
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Figure 7.23. 10k Window   copy number profile by AJCC stage 
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Figure 7.24. 10k Window copy number profile by mitosis 
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Figure 7.25. 10k Window copy number profile by tumour infiltrating lymphocytes (TILs) 
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Figure 7.26. 10k Window copy number profile by mutation status 
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Figure 7.27. 10k Window copy number profile by level of stroma.  
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Figure 7.28. Manhattan plot for sex 

 

 

Figure 7.29. Manhattan plot for site 
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Figure 7.30. Manhattan plot for age 

 

 

Figure 7.31. Manhattan plot for Breslow thickness 

209 



 

 

Figure 7.32. Manhattan plot for AJCC stage 

 

Figure 7.33. Manhattan plot for ulceration status 
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Figure 7.34. Manhattan plot for mitotic rate 

 

Figure 7.35. Manhattan plot for TILs 
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Figure 7.36. Manhattan plot for mutation status 

 

 

Figure 7.37. Manhattan plot for percentage of stroma
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7.3.7 Association of 10K windows with Survival 

Survival analysis of the 10k windows across the genome was performed in two 

ways. Firstly, using the quantitative copy number data which uses the adjusted read 

count on each window; and secondly, using the qualitative copy number which assigns 

a label to a copy number value as to normal [-0.10, 0.10], deletion (< -0.10), and 

amplification or gain (>0.10). The cutoff used is consistent with what was used by the 

TCGA study in assigning a qualitative value to a given quantitative copy number. 

7.3.7.1 Survival analysis on quantitative copy number data 

The results for whole autosomal genome window level copy number (continuous 

scale) survival analysis is presented in Figure 7.40. It can be observed that the region 

of chromosome 10 has the highest significance in terms of survival. This is closely 

followed by chromosome 13, chromosome 2, chromosome 18, chromosome 8, 

chromosome 9, chromosome 4, chromosome 6, and chromosome 3 which were 

previously reported to contain melanoma genes.   

 Table 7.22 displays the top 10k windows in terms of association with survival. The 

observed highest significance is 1.8 x10-7 and is greater than the study-specific 

genome-wide significance threshold for this analysis which is 1.4 x10-7 

(~0.00000014438647). This window corresponds to BMPR1A which inhibit the 

tumorigenic potential of human brain tumour-initiating cells [291]. Based on the 

simulation results, the observed significance for this window translates to an actual 

study-specific significance of 0.05698925 which is close to the 5% level of significance. 

The Kaplan-Meier plot in Figure 7.38 shows survival curves for BMPR1A using the 

median cutoff. This indicates that above median copy number of this window 

corresponds to better survival (HR=0.46, logrank P=7.3 x 10-5). 
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Table 7.22. Top 10k quantitative copy number windows that are significantly 
associated with survival 

 

 

  

10k Window P HR* Location Gene/s Note

10k000176179 1.80E-07 0.23 10q23.2 BMPR1A
inhibit the tumorigenic potential of 
human brain tumour-initiating cells

10k000170306 6.40E-07 0.24 10p12.1 MPP7

activates YAP1 (a transcriptional 
coactivator in the Hippo pathway), which 
in turn promoted autophagy in in 
Pancreatic Ductal Adenocarcinoma

10k000179025 9.69E-07 0.26 10q25.3 ATRNL1
enhances radiosensitivity of oral 
squamous cell carcinoma cells

10k000169476 1.59E-06 0.29 10p12.31 PLXDC2

identified as cell-surface receptors for 
Pigment Epithelium Derived Factor 
(PEDF). PEDF is known for promoting cell 
survival and proliferation, as well as its 
antiangiogenic, antitumor, and anti-
metastatic properties

10k000177164 1.66E-06 0.23 10q24.1 PIK3AP1
essential to miR-567-mediated 
suppression of gastric cancer cell 
behaviour and oncogenic signalling

10k000175114 1.69E-06 0.26 10q22.2 LRMDA
mutation in this gene might lead to poor 
prognosis for pancreatic ductal 
adenocarcinoma patients

10k000211174 1.93E-06 4.88 13q13.2 LINC00457 associated with Thyroid Cancer
10k000167754 2.52E-06 0.26 10p15.3 LINC02645  Restricted expression toward testis

10k000175726 2.54E-06 0.25 10q23.1 NRG3

potential regulator of normal and 
malignant breast epithelial cells in vivo; 
associated with significantly longer 
overall survival in an ovarian cancer IV 
stage subgroup.

10k000176866 3.24E-06 0.32 10q23.33 LGI1 
differentially expressed in early- and late-
stage oral squamous cell carcinoma

**Genes in red are nearest approximate when no gene maps to the window
                  * adjusted for age, sex, and stage

           *HR=Hazard ratio
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Figure 7.38. Kaplan-Meier curve for BMPR1A using median cutoff   

 

Next on the list were MPP7 which activates YAP1 (a transcriptional coactivator in 

the Hippo pathway), which in turn promoted autophagy in in Pancreatic Ductal 

Adenocarcinoma [292, 293], ATRNL1 which enhances the radiosensitivity of oral 

squamous cell carcinoma cells [294], PLXDC2  which is identified as cell-surface 

receptors for Pigment Epithelium Derived Factor (PEDF) [295], PIK3AP1 which is 

essential to miR-567-mediated suppression of gastric cancer cell behaviour and 

oncogenic signalling [296], LRMDA in which mutation in this gene might lead to poor 

prognosis for pancreatic ductal adenocarcinoma patients [297], LINC00457 which is 

associated with Thyroid Cancer [298], LINC02645 (restricted expression toward testis) 

[299], NRG3 which is reported to be potential regulator of normal and malignant breast 

epithelial cells in vivo, and associated with significantly longer overall survival in an 

ovarian cancer stage IV subgroup [300, 301], and LGI1 which is differentially expressed 

in early and late-stage oral squamous cell carcinoma [277].  

7.3.7.2 Survival analysis on qualitative copy number data (cutoff=0.1) 

Figure 7.41 (qualitative copy number) captures significant 10k windows that are 

mostly not captured in the analysis using the quantitative copy number data in Figure 

7.40 using Cox proportional model which used the parametric method. While the 
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previous figure shows copy number windows that are associated with survival and 

primarily concentrated in chromosome 10q, analysis of qualitative data using logrank 

test shows regions that have top significance level when testing for association with 

survival from different chromosomes in the genome is located in chromosome 7 and 

reaches a conventional genome wide significance level (> 1 x10-8), noting that 

permutation based study-specific genome wide significance threshold was not 

identified for this analysis. 

Table 7.23 displays the top qualitative 10k windows when testing for associated 

withsurvival. The hazard ratios are estimated using Cox proportional hazard model 

while the significance was tested using logrank test. The top window in the list reaches 

a genome wide significance (P=6.5 x10-9) and maps to BRAF. BRAF is an oncogene 

linked to melanoma and some carcinomas, and functions to upregulate the 

RAS/RAR/MEK pathway and a common target in melanoma therapy [302, 303]. 

Checking for mutation status as shown in Figure 7.39, there is no significant difference 

between the survival curves of BRAF mutated and non - BRAF mutated tumours 

(HR=1.01, logrank P=0.9). Other genes in the list are LINC01339 which has restricted 

expression toward testis[304], SDCCAG8 which is reported to be regulated by SOX11 

to promote head and neck cancer progression[305]; SNRPD1 which for mutation of 

this gene is associated with response of autologous T cells to a human melanoma 

[306], MPP7 (also appeared in the analysis of quantitative copy number data in Table 

7.22) which activates YAP1 (a transcriptional coactivator in the Hippo pathway), which 

in turn promoted autophagy in in Pancreatic Ductal Adenocarcinoma [292, 293]; 

RBMS3 where its low expression is associated with poor prognosis in patients with 

gastric cancer [307]; ARL2BPP4 (ADP ribosylation factor like GTPase 2 binding protein 

pseudogene 4) was identified as novel loci for non-high-density lipoprotein cholesterol 

and its postprandial lipemic response [308]; and KRT19P6 (Keratin 19 Pseudogene 6). 
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Table 7.23. Top 10k qualitative copy number windows that are significantly 
associated with survival 

HR compares normal with deletion,  and gain with deletion.  

 

 

  

10k Window HR*(normal) P HR*(gain) P logrank.P Location Gene Note

10k000137277 0.26 1.21E-03 0.26 5.99E-05 6.50E-09 7q34 BRAF
a common target for 
melanoma therapy

10k000096993 0.89 6.34E-01 2.85 1.85E-05 1.42E-08 5q14.3 LINC01339
Restricted expression 
toward testis

10k000024336 0.24 9.20E-05 0.25 1.07E-05 1.26E-07 1q43 SDCCAG8
regulation of SDCCAG8 by 
Sox11 promotes head and 
neck cancer progression

10k000259574 0.43 4.09E-02 0.18 3.70E-06 1.57E-07 18q11.2 SNRPD1

mutation of this gene is 
associated with response 
of autologous T cells to a 
human melanoma

10k000170325 0.31 6.52E-06 0.40 1.54E-04 3.04E-07 10p12.1 MPP7

activates YAP1 (a 
transcriptional 
coactivator in the Hippo 
pathway), which in turn 
promoted autophagy in in 
Pancreatic Ductal 
Adenocarcinoma

10k000052065 0.21 3.25E-07 0.50 9.77E-04 6.59E-07 3p24.1 RBMS3

Low expression ois 
associated with poor 
prognosis in patients with 
gastric cancer

10k000101035 2.59 1.17E-05 1.38 2.60E-01 6.62E-07 5q23.3 ARL2BPP4
ADP ribosylation factor 
like GTPase 2 binding 
protein pseudogene 4

10k000165382 0.63 1.03E-01 2.10 7.06E-04 8.12E-07 9q33.1 ASTN2
associated with breast 
cancer

10k000044301 0.73 2.08E-01 2.60 2.31E-04 8.73E-07 2q32.3 GLULP6

identified as novel loci for 
non-high-density 
lipoprotein cholesterol 
and its postprandial 
lipemic response

10k000078128 0.34 2.78E-05 0.53 5.69E-03 1.00E-06 4q22.1 KRT19P6 Keratin 19 Pseudogene 6
**Genes in red are nearest approximate when no gene maps to the window

                       * adjusted for age, sex, and stage
           *HR=Hazard ratio
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Figure 7.39. Kaplan-Meier curve for BRAF mutation status 

 

 



 

 

Figure 7.40. Manhattan plot for survival analysis 

 

 

Figure 7.41. Manhattan plot for survival analysis (cutoff= 0.10)
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7.3.8 Identification and analysis based on FAM190A window  

I previously conducted an analysis that includes all the 303 samples (i.e. includes 

mucosal and non-cutaneous lesions) and without limiting the survival time to 12 years. 

The summary of the top significant 10k window is shown in Table 7.24 below. The most 

significant window maps to FAM190A (or CCSER1) which will be the focus of this 

section. This window did not crop up in the analysis of 277 samples because the 26 

samples excluded had both poor prognosis and were commonly deleted for that 

FAM190A 10k window. Deficiency of FAM190A gene was reported to create a cell 

division effect [309] and was demonstrated in vivo to have oncogenic properties by in-

frame deletions within the region of this gene. There was also an indication that these 

transcript variants are potential therapeutic targets in patients with cancer [310]. 

Further investigation on this window is shown in Figure 7.42 below. The upper portion 

of the figure (Figure A) shows that samples with deletion (n=37, cutoff= -0.10) on this 

window tend to have higher overall copy number aberration load as measured using 

mean weighted segment mean (MWSM) compared with samples having normal copy 

number in this window (Fold change=1.23, P=0.002). The lower part of the figure 

(Figure B) plots the survival curve comparison between the two samples groups. 

Samples with deletion (n=37) on the window being investigated tend to have poorer 

survival when compared with samples with normal copy number in this window 

(HR=0.40, P=3 x10-10).  

Table 7.24. Top 10k qualitative copy number windows that are significantly 

associated with survival using the 303 samples 

  

10k Window HR P Location Gene
10k000077981 0.08 2.10E-07 4q22.1 CCSER1 / FAM190A

10k000021294 2.90 3.15E-07 1 q32.3 VASH2 

10k000211585 6.31 3.37E-07 13q13.3 FREM2

10k000022031 2.82 5.01E-07  1q41 XRCC6P3

10k000176179 0.09 6.06E-07 10q23.2 BMPR1A

10k000022022 2.79 6.97E-07 1q41 RAB3GAP2

10k000022024 2.42 7.75E-07 1q41 RAB3GAP2

10k000211127 4.95 8.59E-07 13q13.2 VDAC1P12

10k000021311 2.11 8.72E-07 1q32.3 RPS6KC1

10k000211338 4.94 9.16E-07 13q13.3 CCDC169-SOHLH2

10k000211338 4.94 9.16E-07 13q13.3 CCDC169

10k000211376 5.09 9.28E-07 13q13.3 C13orf36/SERTM1

           *HR=Hazard ratio
         maps to the window

                                            * adjusted for age, sex, and stage

     **Genes in red are nearest approximate when no gene 
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Figure 7.42. FAM190A deletion in LMC.  

A, compares the distribution of 37 samples with deletion on FAM190A (window 

10K000077981) and the rest of the LMC samples having normal copy number on 

this window in terms of the estimated overall CNA load using Mean Weighted 

Segment Mean (MWSM). B, shows the survival curves of samples with FAM190A 

(window 10K000077981) deletion (black curve) compared with the rest of the 

samples having normal copy number (red curve) in this window. 
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In Figure 7.43, the whole genome profile of LMC samples categorised as having 

deletion or not in the window under investigation is plotted. A more conservative cutoff 

of -0.30 was used this time to clearly capture the comparison between the two sample 

groups trimming the samples with deletion to 19. Obvious difference between the copy 

number profiles of the two sample groups is observed featuring more aberrations for 

the group with deletion while samples with no deletion can be generally seen as normal 

except in the regions chromosome 6, 7, 8, 9, and 10. 

 



 

 

Figure 7.43. Whole genome profile by FAM190A (window 10K000077981) deletion in LMC 
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7.4 Discussion 

This chapter tested for association of copy number with clinical and tumour 

characteristics and survival. This is done in two ways: (1) By using three different 

measures of overall CNA load as measures of genomic instability such as (FGA: 

fraction of genome altered, MWSM: mean weighted segment, and AS: aneuploidy 

score) and (2) by using 10k window level copy number data. The three measures of 

overall CNA load were assessed in terms of distribution and test for association with 

tumour and clinical characteristics and survival. While these all correlate with most of 

the tumour and clinical characteristics including survival, MWSM shows higher level of 

association as compared with FGA and AS indicating that MWSM retains most 

information and thus is more likely to produce more reliable results.  

Checking for the association of MWSM with the patient tumour and clinical 

characteristics, sex, site, tumour infiltrating lymphocytes (TILs), and mutation status 

did not show statistically significant results. A follow up is recommended to verify these 

results. In terms of sex, the study of Lopes-Ramos et al. (2020) discussed the genome-

wide sex and gender differences in cancer which may be attributed to a combination 

of environmental, genetic, and epigenetic factors, as well as differences in gene 

regulation, and expression [311]. The study of Li et al. (2018) provides a 

comprehensive catalogue of sex differences in somatic alterations which includes in 

cancer driver genes influencing prognostic biomarkers that predict patient outcome 

after therapy [312].  

I went forward with analysing the 10k window data recognising that a focal 

aberration driving progression would be of major interest to melanoma biologists. One 

obvious challenge is identifying the threshold for significance when testing for 

associations across the whole genome since neighbouring windows are correlated as 

well as there is an inherent multiple testing problem as I analysed the 248,736 10k 

windows. Permutation tests were conducted to provide a guide in identifying 

significance threshold. Because this experiment requires significant computational time 

and memory (5-9 hours per iteration), this was only done for selected clinical 

characteristics such as site of tumour, Breslow thickness, and survival.  

7.4.1 Overall CNA load 

Aneuploidy score is not associated with survival when categorised into two levels 

by median cutoff. It is significant in the univariable analysis when using the continuous 

data, but loses significance when adjusting for age, sex, and stage (multivariable 

analysis). FGA is associated with survival when categorised into two levels by median 
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cutoff. It is significant in the univariable analysis when using the continuous data, but 

unlike Aneuploidy score, it remained significantly associated with survival after 

adjusting for age, sex, and stage.  

Of the three measured of overall CNA load, MWSM provides the highest 

significance when testing for association with survival using the data categorised into 

two levels by median cutoff. It is also significantly associated with survival in the 

univariable analysis and even after adjusting for age, sex, and stage. The significance 

of MWSM in univariable analysis is higher than that of FGA but slightly lower (P=0.001 

for FGA versus P=0.002 for MWSM, using Cox proportional hazard model) in the 

multivariable analysis. In terms of effect size, though FGA is more statistically 

significant, MWSW has higher effect size (HR = 1.23 for MWSG versus HR = 1.02 for 

FGA) thus capturing more information in terms of representing the overall aberration 

in the genome. While both FGA and MWSM both provide additional information over 

and above the standard clinical variables (i.e. age, sex, stage), MWSM provides better 

distribution of estimate for overall genomic aberration and is therefore easier to use for 

potential clinical decisioning. 

7.4.2 Window level analysis for clinical characteristics 

In terms of clinical features, sex is most significantly associated with a 10k window 

that maps to a genes (LINC01919 [200] and LINC01917 [199]) that is broadly 

expressed in testis. This is the same window that is most associated with site of tumour 

and is study-specific genome-wide significant. Further investigation showed that sex 

and site of tumour is significantly associated in the sample (n=277) of this study as 

indeed within the population. While some literatures mention about the sex differences 

in cancer and is more likely to drive the observed association than site, this results still 

require follow up [311, 312]. In terms of age, the most significantly associated window 

maps to MAPK10 which is involved in cell proliferation, differentiation, transcription, 

regulation and development[220] while it is RNU7-65P  (eukaryotic translation 

elongation factor 1 alpha 1 pseudogene 42) for Breslow thickness. Analysis of 

melanoma stage reveals that the window mapping to CXCR4 is the most associated 

to it. This gene has multiple essential functions include homing of stem cells and 

metastasis of cancer cells; trafficking and homeostasis of immune cells such as T 

lymphocytes and plays important role in cancer progression[229, 230]. For ulceration, 

the window mapping to NEBL was shown to have the highest level of significance. This 

is enriched in the heart muscle tissue and reported to be a prognostic marker in renal 

cancer (favourable) and urothelial cancer (unfavourable) [252]. The window with 

highest level of association to mitotic rate maps to MIR100HG which was reported to 
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promote colorectal cancer metastasis and is associated with poor prognosis [256]. For 

tumour infiltrating lymphocytes (TILs), the top significantly associated windows map to 

ZSWIM5P3 (Zinc Finger SWIM-Type Containing 5 Pseudogene 3) and LRRC4C. 

LRRC4C is a specific binding partner for netrin G1[270]. High level of associations of 

window level copy number are found when correlated with mutation status. The top 

window on the list maps to ADAM12 which contributes to increased tumour 

proliferation, metastasis and endocrine resistance [273]. For percentage of stroma, the 

top on the list is KCNT2 in which its expression was correlated with the prognosis of 

skin cutaneous melanoma (SCM) and significantly different between normal skin and 

SCM. 

While several recent studies have mentioned the association of these clinical 

characteristics with melanoma and other clinical characteristics such as that of Li et.al 

(2018) and Ramos-Lopes et al. (2020) for sex differences,  Enninga et.al (2017) for 

age, sex, and stage, and  Jewel et al (2015) for ulceration , age, site of tumour, survival, 

sex, tumour infiltrating lymphocytes (TILs), mitotic rate, and Breslow thickness , these 

results on copy number association still require follow up [58, 311, 313]. 

7.4.3 Window level analysis for survival 

Each valid 10k window of the LMC genome was then tested for association with 

survival. This was done in two ways: method 1. Using quantitative copy number data, 

and method 2. Using the qualitative copy number data (deletion, normal, amplification). 

The top hit for the first method is BMPR1A which inhibits the tumorigenic potential of 

human brain tumour-initiating cells [291] while it is BRAF for method 2. It is known that 

BRAF mutation is a common target for melanoma therapy [302, 303]. While the lists 

from the results of these two methods differ, MPP7 is consistent on both. This activates 

YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted 

autophagy in in Pancreatic Ductal Adenocarcinoma [292, 293].  

7.4.4 Analysis of FAM190A 

Previous analysis using the 303 (277 cutaneous melanoma samples plus 26 

samples from other sites) samples identified a window mapping to FAM190A (or 

CCSER1) gene as the most associated with survival. It was previously reported that 

deficiency of this gene was reported to create a cell division effect and was 

demonstrated in vivo to have oncogenic properties by in-frame deletions within the 

region of this gene [309]. There was also an indication that these transcript variants 

are potential therapeutic targets in patients with cancer [310]. Deletion in this window 

is associated with poorer survival and high CNA load as measured by mean weighted 
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segment mean (MWSM). A further graphical analysis using a stricter cutoff to define 

deletion i.e. -0.30 instead of -0.10 grouping the samples into whether having the 

deletion in this window or not shows difference in genomic profiles. Sample groups with 

deletion in this window shows generally more aberration compared with that of the 

group without the deletion. 

This window did not crop up in the analysis of 277 samples because the 26 samples 

excluded had both poor prognosis and were commonly deleted for that FAM190A 10k 

window. Because of the limited size, I could not do more detailed analysis of these 

samples. 
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Chapter 8 
Discussion and Conclusion 

8.1 Summary of the aims of this study 

This study was conducted to identify copy number alterations/aberrations (CNAs) in 

primary melanoma using NGS data derived from the formalin-fixed paraffin embedded 

(FFPE) primary tumour samples taken from participants in the Leeds Melanoma Cohort 

(LMC) and to test for associations with patient tumour and clinical characteristics 

including survival. This was divided into two main aims: the first one is providing data 

quality control measures and performing additional steps to increase data quality 

(Chapters 4, 5, and 6), and the second one is to test for association of the copy number 

data with patient clinical characteristics including survival (Chapter 7). 

The first aim was achieved by firstly identifying the 10k window as the data 

resolution to be used consistently across all the analysis. Replicates were analysed in 

terms of visual comparison of the whole genome profile plots and showed that 

biological replicates were more variable and the technical replicates were more 

homogenous as expected; importantly, technical replicates showed consistency 

implying the approach provided reproducible data.  Parameters such as mean number 

of segments and segmented lengths were defined and calculated and compared 

across replicates and showed similar findings with that of the graphical analysis. 

Methods of validating data quality includes comparison with MLPA copy number 

analysis and with the publicly available TCGA copy number data. Results led me to 

decide to perform additional steps to improve data quality. At that time, new resources 

were known which includes expanding the blacklisted regions in the genome based on 

ENCODE [159, 165] , Genome Reference Consortium [155], and computationally 

derived list of regions of common germline variation in Caucasian population using 

healthy Caucasian control samples (n=312) from the 1000 Genomes Project [2, 114]. 

A method of simultaneously adjusting for GC and mappability was applied instead of 

the previously used method which is sequential adjustment. Instead of using the 7 

control samples in the LMC, I learned that using the 312 normal Caucasian samples 

from the 1000 Genomes Project was able to account for more germline variability in 

the genome and used it as the new reference control sample. This new resources led 

to a higher quality of the data as evidenced by visual comparison of copy number 

profiles from old and new copy number data, improvements in the previously done data 

quality control assessments,  and the ability to uncover associations which were 

previously undetected in the old data as in the case of the study of a previous PhD 
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student in our lab Dr. Joanna Pozniak who, using the new data,  identified MYC 

(8q24.21) copy number gain to be associated with increased expression of this 

gene[170].  

The second and final aim of this study was to associate the copy number data with 

patient clinical features (sex, site of the tumour, age at diagnosis, Breslow thickness, 

AJCC stage, ulceration status, mitotic rate, tumour infiltrating lymphocytes, mutation 

status, and percentage of stroma) and survival. It started with identifying measures to 

estimate the overall genome stability which identified a new metric called mean 

weighted segment mean (MWSM) to have stronger association with most of the tumour 

and clinical characteristics including survival over the known fraction of genome altered 

(FGA) [176-178] and aneuploidy score (AS)[176]. Recognising that biologically 

interesting copy number aberrations may occur in smaller sizes (focal aberrations), 

association analyses with clinical characteristics and survival were repeated using the 

10k window copy number data. With the challenge of computational complexity and 

time constraints, permutation experiments to identify study-specific genome-wide 

significance were prioritised for site of the tumour, Breslow thickness, and quantitative 

10k window copy number. Study-specific genome-wide significance levels for the rest 

of the tumour and clinical factors were not calculated but the analyses conducted 

indicate that genome-wide significance of 0.05 is likely around 10-6 to 10-7. Instead, 

they are ranked based on the decreasing level of calculated significance (ignoring 

multiple testing) to identify potential copy number windows of biological interest. 

 

8.2 Establishing data quality 

Our previous work showed the quality of the data focused on the CDKN2A region 

[1]. Analysing the whole genome requires data quality assessment on the basis of the 

whole genome which after being performed, led me to conclude the need of further 

steps to improve data quality. Several steps were applied to the LMC data based on 

additional new and updated information about the blacklisted regions including those 

which are highly variable regions in the human genome and methods used in 

estimating somatic copy number from FFPE samples without matched normal control. 

Reassessment of the new data derived from these steps revealed significant 

improvement of data quality and allowed detection of association (i.e. MYC copy 

number and gene expression in the study of Joanna Pozniak [170]) which was not 

previously detected in the older version of the data. The association of 8q24 region 

copy number  (where MYC is located) and MYC gene expression had been previously 
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reported in the study of Pouryazdanparast, Brenner (2012) which looked at the role of 

this association in amelanotic cutaneous melanoma [171]. 

8.2.5 Assessment of data quality 

Initial assessment of the whole genome data involved several steps such as:  (1) 

Visually checking the whole genome profiles of all the samples in the study (2) Analysis 

of the replicates (3) Testing for the association of the mean number of segments per 

chromosome and the mean segmented length (4) Examination of the ESV region 

(esv3620012 [136] ) which is a known common germline variation in the human 

genome, and is located very close to the CDKN2A region (5) comparison of NGS 

derived copy number to results from MLPA experiments (6) and validating the LMC 

data against the published TCGA data. These steps showed the need for improving 

the data quality to improve interpretability as conclusions are restricted by the presence 

of extensive noise as shown in the plots of genome profiles. The steps performed were 

discussed in Chapter 5 and resulted to a new version of the LMC copy number data. 

Reassessment of this data using the initial steps performed revealed significant 

improvement in terms of data quality. Firstly, the copy number profiles were cleaner 

because significant amount of noise had been removed. Secondly, analysis of paired 

samples used as technical replicates showed increased correlation for the new data 

(Pearson’s r=0.91, P=4.4x10-8) when compared with the old one (Pearson’s r=0.78, 

P=7.8x10-5). Although the correlation for tumour cores from the old data is higher 

(Pearson’s r =0.68, P=0.021) than that of the new data (Pearson’s r =0.21, P=0.533), 

I strongly suspect that the correlations detected in the old data is primarily contributed 

by noise (spurious correlation in regions of poor sequence quality) as shown by the 

whole genome profile plots of these replicates. Thirdly, linear relationship between the 

average number of segments per chromosome and the segmented length for the new 

data is higher (P=2.2 x 10-5) than that of the old data (P=0.0052). Fourthly, presence 

of common germline variations present in the old data were mostly removed in the new 

data. This is evident when checking for the presence of the ESV region (esv3620012 

[136] ) which was no longer detected in the new data indicating that the additional steps 

done to remove the highly variable regions including common germline variations in 

the genome was successful.  Sixthly, comparison of the CDKN2A region from NGS 

derived copy in the new LMC data showed similar results with that MLPA, as was 

previously shown in the old LMC data. Finally, validation of the new LMC data with the 

TCGA data showed more similar distribution of samples with deletion or amplification 

between the two datasets as compared with that of the older LMC data 
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8.2.6 Additional steps to increase data quality 

The need to perform additional steps to improve the quality of the LMC copy number 

data was emphasised after the initial data quality assessment. Additional steps such 

as: (1) incorporating updated and additional blacklisted regions (2) utilising information 

derived from the sequence data from the 1000 Genomes Projects (1KGP) to identify 

highly variable regions in the human genome such as regions of common germline 

variations and (3) accounting for the interaction effect between GC count and 

mappability in adjusting for their effects on the read counts were performed. This step 

also utilised the median of the whole genome read counts in contrary to the old data 

which used chromosome level read counts to adjust each 10k window read counts in 

the genome.   

For the first step, I gathered different new and updated sources of blacklisted 

regions in the genome and added to the list generated by Dr. Alistair Droop. This 

includes list of gaps including centromeres, telomeres, and heterochromatins obtained 

from the UCSC Browser and Genome Reference Consortium Website [154, 155]. 

Secondly, I learned about the QDNAseq (Quantitative DNA sequencing for 

chromosomal aberrations) pipeline which is available as an R package[2]. It was used 

to  simultaneously correct for GC content and mappability bias using a two-dimensional 

LOESS model and empirically identified highly variable regions (blacklist) in the 

genome of a given set of samples, in this case, the 312 Caucasian samples from the 

1000 Genomes Project [114]. These steps facilitated the identification of more highly 

variable regions in the genome that were not accounted for in our previous work 

 

8.3 Association of genomic instability with clinical 
characteristics and survival  

The three measures of overall CNA load were assessed in terms of distribution and 

tested for associated with tumour and clinical characteristics including survival. These 

were Aneuploidy Score (AS), Fraction of genome altered (FGA), and Mean weighted 

segment mean (MWSM).  

AS is not associated with survival when categorised into two levels by median cutoff 

but it is significant in the univariable analysis when using the continuous data. AS loses 

significance when adjusting for age, sex, and stage (multivariable analysis). FGA is 

associated with survival when categorised into two levels by median cutoff and is 

significant in the univariable analysis when using the continuous data. Unlike AS, FGA 

remained significantly associated with survival after adjusting for age, sex, and stage.  
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Of the three measured of overall CNA load, MWSM provides the highest 

significance when testing for association with survival using the data categorised into 

two levels by median cutoff. It is also significantly associated with survival in the 

univariable analysis and even after adjusting for age, sex, and stage. The significance 

of MWSM in both univariable and multivariable analysis is higher than that of FGA, 

indicating that MWSM captures more information in terms of representing the overall 

aberration in the genome 

 

8.4 Association of 10k window copy number with clinical 
characteristics  

In recognition that a focal aberration driving progression would be of major interest 

to melanoma biologists, I performed association analysis of the 10k windows in 

genome with the patient tumour and clinical characteristics including survival. Due to 

time and memory requirements of the calculation using high performance computing, 

permutation analysis to identify study-specific genome wide significance of a test was 

prioritised for site of melanoma, Breslow thickness, and survival. For other clinical and 

tumour characteristics, genes were ranked according to decreasing significance and 

those in the top of the list were reported and checked for the corresponding gene/s.    

For the analyses of both sex and site, a 10k window mapping to LINC01917 [199], 

and  LINC01919 [200] was the most significant. It is lower than the study-specific 

genome wide significance threshold for site. These genes are predominantly broadly 

expressed in the testis. Analysis of this window was repeated in 1000 Genomes Project 

(1KGP) samples (n=289) and showed significant overlap between the histograms of 

male and female groups which supports that that the difference observed in the LMC 

data is indeed a somatic variation. For age, it is the window mapping to MAPK10 which 

is known to be involved in cell proliferation, differentiation, transcription, regulation, and 

development [220] that topped the list. Another interesting genes that popped up in this 

analysis are RPP40  ( a prognostic marker (unfavourable) in renal cancer, endometrial 

cancer, and liver cancer [225]) and RIPK1 (plays a role in inflammation and cell death 

in response to tissue damage, pathogen recognition, and as part of developmental 

regulation [227]).  Three windows were considered genome-wide significant when 

testing for association with Breslow thickness in this study. This maps to CXCR4 which 

is associated with cancer progression and cell survival [229-231], SDK1 for which its 

silencing leads to cell rounding and blunted CaP cell migration [232], and ITGA4 which 

was reported to be upregulated in melanoma[233]. Notable genes but did not reached 
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study-specific genome-wide significance  include DDX1 which is known to be involved 

in transcription, viral replication, mRNA/miRNA processing, and transfer ribonucleic 

acid (tRNA) splicing and plays  important role in the regulation of gene alternative 

splicing and insulin secretion in pancreatic β cells [234] ; CHST12 which is associated 

with tumour regrowth in non�functioning pituitary adenoma (NFPA) [235]; GPR39 for 

which its overexpression contributes to malignant development of human oesophageal 

squamous cell carcinoma[236]; SUN1 for which silencing of this gene inhibits cell 

growth through G0/G1 phase arrest in lung adenocarcinoma [237]; and VEGFA which 

activates an epigenetic pathway upregulating ovarian cancer-initiating cells [238] 

 CXCR4 also popped up as the most associated with AJCC stage. Other genes 

associated with at least one forms of cancer (e.g. liver, colorectal, prostate, pancreatic, 

thyroid, renal cell carcinoma, biliary tract, non-functioning pituitary adenoma, gastric 

carcinoma, acute myeloid leukemia, intrahepatic (ICC) , extrahepatic (ECC) 

cholangiocarcinoma, lung cancer and B-Cell Acute Lymphoblastic Leukemia) are 

UVRAG [239, 240], CYP3A54P [241] ,ACER3 [242], ELFN1 [243], ANO5 [244-246], 

PRKAR1B [247, 248], CHST12 [235], C7orf26 [249], FAM20C [250],  and PPME1 

[251]. 

For ulceration, the top window in the list is NEBL which is enriched in the heart 

muscle and reported to be a favourable prognostic marker in renal cancer and 

unfavourable prognostic marker in urothelial cancer [252]. For mitotic rate, the top 

window maps to MIR100HG which promotes colorectal cancer metastasis and is 

associated with poor prognosis [256]. Another interesting gene in this analysis is 

ADAMTSL1 which was reported to be differentially methylated between paired tumour 

and normal tissues from breast cancer patients [255]. Analysis of TILs did not show 

very high level of association with copy number. Interesting gene on the list is LRRIQ3 

which was previously reported to be associated with response to chemotherapy in 

rectal cancer [269]. Other genes on the list are ZSWIM5P3 (Zinc Finger SWIM-Type 

Containing 5 Pseudogene 3), LRRC4C which is a specific binding partner for netrin G1 

[270], LINC02053 which  has higher expression in testis [271], and RNU1-89P which 

was reported to have differential expression of small nuclear RNA (snRNA) in 

oesophageal adenocarcinoma[272]. In terms of mutation status, the top window maps 

to ADAM12 which has been reported to contribute to increased tumour proliferation, 

metastasis and endocrine resistance[273]. Other cancer related genes on the list are 

ALDH18A1 which is associated with associated with luminal B breast cancer [274], 

VTI1A which is associated with susceptibility to colorectal and lung cancers [275], 

SORBS1 which has been reported to suppress tumour metastasis and improves the 

sensitivity of cancer to chemotherapy drug [276], LGI1 which has been reported to be 
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differentially expressed in early- and late-stage oral squamous cell carcinoma [277], 

and ZNF777 which inhibits proliferation at low cell density through down-regulation of 

FAM129A [278].    

Finally, for the analysis of percentage of stroma , the top window maps to KCNT2. 

The expression of this gene is correlated with the prognosis of skin cutaneous 

melanoma (SCM) and significantly different between normal skin and SCM [279]. This 

followed by OR2G6 which is associated in breast cancer [280]. Other genes in the list 

include FAM163A which is reported to be positive regulator of ERK signalling pathway, 

interacts with 14-3-3β and promotes cell proliferation in squamous cell lung 

carcinoma[281], AXDND1 which is reported to be downregulated in gastric cancer 

[282], INTS7 which is associated with Gastric Cancer and Ivic Syndrome, and its 

increased levels is associated with the aggressiveness of prostate cancer [283, 284], 

RALGPS2 which is reported to be essential for survival and cell cycle progression of 

lung cancer cells [285], PLD5 which is associated with survival of thyroid cancer 

patients [286], LELP1 which is significantly increased in atopic dermatitis skin [287], 

RSL24D1P4 (Ribosomal L24 Domain Containing 1 Pseudogene 4), EFCAB2 which is 

considered as one of the most potential targets for four breast cancer subtypes, a 

specific therapeutic targets for luminal A, and  identified as a susceptibility gene for 

Colorectal Cancer in east asian populations [288, 289], and PKP1 where its 

phosphorylation  by RIPK4 regulates epidermal differentiation and skin 

tumorigenesis[290].  

In terms of survival analysis using the quantitative 10k window copy number, no test 

yielded a study-specific genome-wide significance. The first in the list of results with 

highest significance has an equivalent study-specific significance of 0.05698925 which 

is close to the 5% level of significance. This window maps to BMPR1A which inhibit 

the tumorigenic potential of human brain tumour-initiating cells [291]. Above median 

copy number of in window corresponds to better survival (HR=0.46, logrank P=7.3 x 

10-5). 

Each 10k window copy number was categorised as to normal, deletion, or 

amplification. In this analysis, the window that reached the highest significance 

corresponds to BRAF which is an oncogene linked to melanoma and some 

carcinomas, and functions to upregulate the RAS/RAR/MEK pathway and a common 

target in melanoma therapy [302, 303]. Lower (possibly deletion and normal, as 

compared to copy number gain) copy number of this gene corresponds to poorer 

survival (P=6.5 x 10-9). This is coherent to the study of Stagni et.al (2018) which found 

out that a significantly higher risk of progression was observed in patients with normal 

(diploid) BRAF status versus those with BRAF gains (HR= 2.86; 95% confidence 
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interval (CI): 1.29 - 6.35, P=0.01) [201]. Checking the survival of patients for BRAF 

mutation status, there is no significant difference between the survival curves of BRAF 

mutated and non - BRAF mutated tumours (HR=1.01, logrank P=0.9). The study of 

Stagni et.al (2018) observed that patients with low percentage versus those with 

balanced BRAF mutant allele percentage have a significantly higher risk of progression 

(HR, 4.54; 95% CI, 1.33-15.53; P = 0.016) while the study of Carlino et. Al (2014) 

concluded that BRAF mutation status does not influence survival in metastatic 

melanoma [201, 318]. 

Analysis using the 303 (277 cutaneous melanoma samples plus 26 samples from 

other sites) samples identified a window mapping to FAM190A (or CCSER1) gene as 

the most associated with survival. Deletion in this window is associated with poorer 

survival and high CNA load as measured by mean weighted segment mean (MWSM). 

The study of Patel et al. (2013) reported that deficiency of this gene was reported to 

create a cell division effect and was demonstrated in vivo to have oncogenic properties 

by in-frame deletions within the region of this gene [309]. There was also an indication 

that these transcript variants are potential therapeutic targets in patients with cancer 

based on the study of Kang et al. (2019) [310]. This window did not crop up in the 

analysis of 277 samples because the 26 samples excluded had both poor prognosis 

and were commonly deleted for that FAM190A 10k window. Because of the limited 

size, I could not do more detailed analysis of these samples. 

 

8.5 Strength and limitations 

8.5.1 Strengths of this study 

The following are the strengths of this study:  

1.) This study is currently the biggest population-based somatic copy number study 

in primary melanoma. There maybe a few similar studies about primary 

melanoma but they are significantly smaller and are not population based (e.g. 

~100 samples for the TCGA primary melanoma copy number data). This also 

was sequenced with median coverage where most FFPE studies used shallow 

sequencing, providing us more potential to uncover biologically and clinically 

relevant somatic aberrations. 

2.) Our copy number study includes information on careful follow up and detailed 

clinical and tumour information (extensive phenotypic information, biological 

samples and information describing patterns of UV exposure, the primary risk 
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factor for melanoma as well as measures of pigmentation and naevi which are 

also associated with risk) which are very useful in association studies. 

3.) The version of the data in this study was given careful consideration in terms of 

data quality and utilised newly published information such blacklisted regions, 

sequence data from normal control samples of the 1000 Genomes Projects 

which are realigned to GRCh 38 genome build and readily available for analysis 

in identifying regions of common germline variation in the human genome. Some 

of which are potentially specific to Caucasian population which is an important 

consideration as our samples are from British Caucasian populations. 

4.) Utilising normal control samples from the 1000 Genomes Projects (1KGP) also 

addressed the challenge of absence of matched normal samples for each 

tumour in this study by using the median for each 10k window of the genome 

profiles of the 312 1KGP normal control sample. We have available 7 normal 

samples from our study but by visual comparison of copy number profiles, we 

identified that using the 312 1KGP sample provides better adjustment of tumour 

copy number than our 7 normal sample. This could be due to the fact that 

because the 1KGP normal control sample is significantly larger, it was able to 

capture more germline variations (potentially including those which are specific 

to the ethnicity of the samples used i.e. Caucasian samples) and provided better 

adjustment to estimate a somatic copy number.  

8.5.2 Limitations of this study 

The following are the limitations of this study: 

1.) Matched normal DNA was not available for this study.  

2.) Although this study is currently the biggest population-based somatic copy 

number study in primary melanoma, the statistical power may still be not enough 

when testing for differences that normally exist in smaller quantity.  

3.) Although there are publicly available data for validation like that of the TCGA, 

lack of datasets derived from similarly systematic population-based study for 

validation of the interesting my findings, especially for the measures of overall 

copy number aberration and focal changes (10k window). Our lab tried to 

addressed this by performing MLPA experiments but this is limited to the 

CDKN2A region as this experiment requires significant amount of DNA. 
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8.6 Conclusions and Recommendations of the study 

This study showed the success of generating high quality somatic copy number data 

from FFPE tissue. It also demonstrated the success of the implementation of additional 

steps and a different read count adjustment method (using interaction of GC and 

mappability) in addressing the variations inherent in the human genome, degradation-

prone FFPE samples, and sequencing methods to increase the data quality. This is 

shown by the improvement in both the qualitative and quantitative measures used in 

the data quality assessment as well as in terms of comparison with the TCGA copy 

number data.  

In terms of the analysis of the copy number data, mean weighted segment mean 

(MWSM) showed the highest association with patient tumour and clinical 

characteristics as compared with fraction of genome altered (FGA) and Aneuploidy 

Score (AS).  

8.7 Future work 

Lack of matched normal samples was a primary challenge in the estimation and 

analysis of copy number data in this study. If funding and DNA samples are not a 

restriction, extending this study to include matched normal samples provide direct 

comparison of copy number data derived with and without matched normal samples. 

Analysis of the 10k window copy number data revealed copy number windows that are 

most associated to patient tumour and clinical characteristics. Validation of these 

results once similar population-based study cohort becomes available.These results 

also serve as target for future studies. Computational time required to estimate study 

specific genome wide significance also posed difficulty as one iteration takes about 4 

to 8 hours. Future study increasing the number of iterations to further assess how the 

assigned genome-wide threshold behaves is recommended. 
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Appendix A 

A.1 Rejected Samples 

 

Figure A.1. Rejected Sample 3 

 

 

 

Figure A.2. Rejected Sample 4 
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Figure A.3. Rejected Sample 5 

 

 

 

Figure A.4. Rejected Sample 6 
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Figure A.5. Rejected Sample 7 

 

 

 

Figure A.6. Rejected Sample 8 
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Figure A.7. Rejected Sample 9 

 

 

 

Figure A.8. Rejected Sample 10 
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Figure A.9. Rejected Sample 11 
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Appendix B 

B.1 Replicates 

 

 

Figure B.1. Replicates for Tumour: Pair 2 
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Figure B.2. Replicates for Core: Pair 2 
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Figure B.3. Replicates for Core: Pair 3 
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Figure B.4. Replicates for Core: Pair 4 
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Figure B.5. Replicates for Core: Pair 5 
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Figure B.6. Replicates for Core: Pair 6 
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Figure B.7. Replicates for Core: Pair 7 
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Figure B.8. Replicates for Core: Pair 8 
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Figure B.9. Replicates for Core: Pair 9 
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Figure B.10. Replicates for Core: Pair 10 
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Figure B.11. Replicates for Core: Pair 11 
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Figure B.12. Replicates for Technical: Pair 2 
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Figure B.13. Replicates for Technical: Pair 3 
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Figure B.14. Replicates for Technical: Pair 4 
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Figure B.15. Replicates for Technical: Pair 5 
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Figure B.16. Replicates for Technical: Pair 6 
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Figure B.17. Replicates for Technical: Pair 7 
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Figure B.18. Replicates for Technical: Pair 8 
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Figure B.19. Replicates for Technical: Pair 9 
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Figure B.20. Replicates for Technical: Pair 10 
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Figure B.21. Replicates for Method: Pair 2 
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Figure B.22. Replicates for Method: Pair 3 
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Figure B.23. Replicates for Method: Pair 4 
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Figure B.24. Replicates for Method: Pair 5 
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Figure B.25. Replicates for Concentration: Pair 2 
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Appendix C 

C.1 Deletion in the CDKN2A region not identified in both the old 
and new LMC CNA data  

 

Figure C.1. The CDKN2A region for Sample 12 

 

Figure C.2. The CDKN2A region for Sample 54 
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Figure C.3. The CDKN2A region for Sample 139 

 

 

Figure C.4. The CDKN2A region for Sample 186 
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Figure C.5. The CDKN2A region for Sample 197 

 

 

Figure C.6. The CDKN2A region for Sample 285 
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Appendix D 

D.1 Whole Genome Comparison of LMC and TCGA Data 

 

Figure D.1. Whole genome comparison of rates of amplification among the 
genes common to both TCGA and LMC lists 

 

 

Figure D.2. Whole genome comparison of rates of deletion among the genes 
common to both TCGA and LMC lists 
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Appendix E 

E.1 New Kundaje et.al. GRCh38 Blacklist 

 Table E.1. New GRCh38 Blacklist by Kundaje et al. (2020) 

 

Location Start End Size(kb)
chr1 237945285 237946507 1.22
chr1 237948983 237949365 0.38
chr1 237951294 237951802 0.51
chr2 638427 638808 0.38
chr2 1087103 1087484 0.38
chr2 16271753 16272134 0.38
chr2 22316878 22317258 0.38
chr2 24644617 24644997 0.38
chr2 32916201 32916632 0.43
chr2 33767290 33767703 0.41
chr2 33964664 33965045 0.38
chr2 36276769 36277149 0.38
chr2 40784787 40785278 0.49
chr2 49229452 49230058 0.61
chr2 50588765 50589566 0.80
chr2 54451654 54452034 0.38
chr2 57648677 57649057 0.38
chr2 67953669 67954049 0.38
chr2 75063567 75063994 0.43
chr2 81666317 81666849 0.53
chr2 82814941 82815321 0.38
chr2 82815451 82816236 0.79
chr2 82816261 82816647 0.39
chr2 82818378 82818748 0.37
chr2 82820800 82821005 0.21
chr2 85068666 85069046 0.38
chr2 87824709 87825530 0.82
chr2 89272789 89273133 0.34
chr2 89827607 89827706 0.10
chr2 89828636 89828710 0.07
chr2 89828842 89828942 0.10
chr2 89833685 89833793 0.11
chr2 89839592 89839709 0.12
chr2 89909317 89909789 0.47
chr2 90379778 90402456 22.68
chr2 92081223 92081398 0.18
chr2 92188125 94293463 2105.34
chr2 94499181 94570956 71.78
chr2 94898976 94899645 0.67
chr2 94900639 94900840 0.20
chr2 94901421 94901808 0.39
chr2 97189431 97189813 0.38
chr2 102482582 102482962 0.38
chr2 102505606 102505987 0.38
chr2 110072034 110072434 0.40
chr2 110299106 110299346 0.24
chr2 116751234 116751614 0.38
chr2 116752004 116752448 0.44
chr2 116752517 116752897 0.38
chr2 117020171 117020552 0.38
chr2 117021107 117022152 1.05

Location Start End Size(kb)
chr1 628903 635104 6.20
chr1 5850087 5850571 0.48
chr1 8909610 8910014 0.40
chr1 9574580 9574997 0.42
chr1 32043823 32044203 0.38
chr1 33818964 33819344 0.38
chr1 38674335 38674715 0.38
chr1 50017081 50017546 0.47
chr1 52996949 52997329 0.38
chr1 55372488 55372869 0.38
chr1 67971776 67972156 0.38
chr1 73258720 73259100 0.38
chr1 76971068 76971595 0.53
chr1 93936365 93936747 0.38
chr1 93937447 93937827 0.38
chr1 102160407 102160787 0.38
chr1 103620975 103621378 0.40
chr1 106803432 106803816 0.38
chr1 106804021 106804224 0.20
chr1 106804753 106805343 0.59
chr1 121609948 125063427 3453.48
chr1 125166231 125184683 18.45
chr1 143184599 143276861 92.26
chr1 146992422 146992802 0.38
chr1 158449073 158449453 0.38
chr1 158872114 158872494 0.38
chr1 159295111 159295493 0.38
chr1 169473895 169474338 0.44
chr1 170006204 170006584 0.38
chr1 172710350 172710732 0.38
chr1 181422611 181423158 0.55
chr1 191961694 191962163 0.47
chr1 195288048 195288429 0.38
chr1 199487949 199488149 0.20
chr1 214709795 214710175 0.38
chr1 215499615 215500014 0.40
chr1 226652017 226652398 0.38
chr1 227699752 227700133 0.38
chr1 229019365 229019745 0.38
chr1 233139985 233140365 0.38
chr1 235520204 235520404 0.20
chr1 235537405 235537785 0.38
chr1 235538899 235540112 1.21
chr1 235540243 235540623 0.38
chr1 235540886 235541649 0.76
chr1 235870625 235871005 0.38
chr1 237940595 237940979 0.38
chr1 237941045 237941514 0.47
chr1 237941893 237942746 0.85
chr1 237943028 237943416 0.39
chr1 237943490 237945232 1.74
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Appendix F 

F.1 Plots of the normal samples 

 

Figure F.1. Mean (top) and median (bottom) read counts per window of the 7 
normal samples 

 

 

 



275 

 

Figure F.2. Individual copy number profile for 2 normal samples. 
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