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Abstract 
 

 Pathological conditions of the joints are commonplace and incurable, affecting millions 

of living individuals and yet, surprisingly, there is a great deal that is still unknown about them, 

including the role and interactions of a variety of risk factors which underpin their 

development. Much can be learned about joint conditions in the past by marrying clinical and 

palaeopathological research and by examining patterns of prevalence for joint conditions 

amongst the living and the trends of the past, the risk factors can be better understood. This 

thesis aims to utilize palaeopathological evidence of specific joint conditions from past 

populations in an effort to critically evaluate and analyze the potential risk factors as researched 

in the clinical literature.  

This body of research assessed the joint conditions osteoarthritis, ankylosing 

spondylitis, sacroiliitis and degenerative disc disease in a sample of skeletal remains from sites 

across England dating to the 18th-19th centuries. Mature individuals, both male and female, 

(18+ years) were included. This allowed for the determination and insight into how the 

lifestyles of each site category affect the development of the joint conditions.  

A series of palaeopathological assessments were undertaken to generate a novel dataset 

that provided skeletal proxies for clinically identified risk factors of the joint diseases to 

determine whether any relationships/associations existed between the risk factors and joint 

conditions. Osteological assessments were conducted to create demographic profiles using the 

pertinent variables (age at death and biological sex), pathologies and the risk factors. These 

risk factors consisted of body mass (via skeletal height/weight estimation) and activity (via 

non-imaging cross-sectional geography and entheseal changes), which consisted of five 

variables, four of which were produced using a method of non-imaging cross-sectional 

geometry, with the fifth being the scoring of pertinent entheses. 

The prevalence rates of the joint conditions fell within the upper ranges of similar sites 

of post-medieval England and followed sex and age trends also seen in clinical research. These 

trends showed that the rates increased with age, however statistical testing did not display 

significance. Body mass and activity did not correspond with joint conditions in the 

archaeological sample in the same fashion reported in the clinical trials, resulting in a 

discussion that raised questions about the (1) accuracy and efficacy of currently available 

osteological methods used to create proxies for these variables from skeletal data, (2) the extent 
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to which clinical and osteological methods of detecting joint condition offer comparable data 

and (3) the level which would cause changes to joint function cause a joint condition. However, 

the body mass of the samples used within this thesis may simply have been too low to have 

caused sufficient impairment/degradation to the joint, explaining the lack of 

correlation/association found compared to clinical studies. The variables used as proxies for 

activity levels did display a significance association with the joint conditions when tested 

individually. The final binomial logistical regressions found that only a small number of these 

activity variables were significant factors in the prediction of each joint condition, when all the 

variables were used in the test. Ankylosing spondylitis was not found to be present in any of 

the samples used and sacroiliitis was present in only a small percentage of samples and so were 

unable to be further tested. 

Further tests on a larger sample size to test the validity of the results found within this 

thesis, such as the body mass and activity findings, will need to be conducted. This will help 

to check the validity of the current data as well as to expand it further so new 

assumptions/conclusions can be made. The joint conditions conformed to the clinical trends 

concerning age and sex but differed concerning BMI and activity, offering insights into further 

avenues to explore. For the spondyloarthropathies, a greater sample size would help to 

accurately study ankylosing spondylitis and sacroiliitis by increasing the level at which 

inferential analyses can be made. This research, while concluded in its present form, provides 

a list of future directions to continue to explore the questions and limitations that have arisen 

throughout. 
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Chapter 1 Introduction 
 

The research within this thesis will explore the relationships between the skeletal 

manifestations of joint conditions and a series of risk factors implicated in the development of 

these diseases within clinical and palaeopathological literature. While the original data 

generated by this research concerns archaeological human remains, and therefore placed the 

project within the palaeopathological field of study, a significant contribution is made by 

clinical research. Clinical studies play a vital role by providing longitudinal data which offers 

insights into the development of the joint conditions over time, which can in turn help 

palaeopathologists understand the stages of development on the surface of the bone, as well as 

providing information as to the effects the conditions could have had on living individuals. The 

joint conditions that will be covered within this thesis include osteoarthritis, ankylosing 

spondylitis, sacroiliitis and degenerative disc disease and the joint locations of the lumber 

vertebrae and sacroiliac joint (lower back), acetabulum (hip), and tibiofemoral/patellofemoral 

(knee) joints. The risk factors under investigation include both archaeological and clinical: site 

type (urban v rural), age at death, biological sex, activity, and body mass. The skeletal samples 

come from English populations dating to the late post-medieval period, circa 1700-1850 CE 

and only the adult individuals that can have their age at death reasonably and reliably estimated 

to be over the age of 18 years were used for this research. By studying the different site 

categories, as well as site locations, it should become clear which, if any, risk factors impacted 

the prevalence of the joint conditions for each joint. 

 

1.1 Thesis Structure 
 

 This thesis begins with an introduction to the aims and objectives, which leads into the 

literature review, materials, research methods and results, finishing with the discussions on 

how the results pertain to the aims and objectives. Each of the following sections will explain 

the layout while offering detailed, but brief, descriptions for the material, thus this section will 

work as a guide for what can be expected throughout the dissertation. 
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1.1.1 Chapter 2 Aims and Objectives 

 

 The aims and objectives of this research will be explained within this chapter. The aims 

and objectives are the focal point of the thesis and allow the reader to understand the direction 

taken with latter assumptions and assessments.  The research questions, which will be answered 

in the discussion chapter, can be found after the description of the aims and objectives. 

 

1.1.2 Chapter 3 Joint Conditions 

 

 This chapter will introduce the reader to the pathological conditions that can affect the 

joints, to include their clinical definitions and aetiologies, their key osteological markers and 

diagnosing criteria and prevalences in the past and present. The risk factors implicated in the 

formation of the joint conditions are compared with the palaeopathological variants to offer a 

balanced viewpoint on each of the conditions. This chapter provides a critical justification of 

why it is important to study joint conditions in the past to help better understand their effects 

on the living, as well as our ancestors. 

 

1.1.3 Chapter 4 Sample Selection 

 

 This chapter has a dual purpose: (1) to explain the criteria for the selection of viable 

samples and (2 to offer insights into the histories of the populations to enable the reader to gain 

an insight into the people’s lives. The criteria for selection will go into detail what was included, 

as well as reasons for possible exclusion from the data pool. The locations of the sites, curating 

institutions, and number of samples for each population are displayed in a table within this 

chapter. The histories of the sites are brief, emphasizing the pertinent information for the 

purpose of this research from the areas as well as focusing on the specific site/feature where 

the samples were recovered. 

 

1.1.4 Chapter 5 Methodology 

 

 The methodologies used will be explained within this chapter, as well as why a method 

was used and why one may not have been used, in a fashion similar to a literature review. Each 
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stage of the research process will be discussed, to include what methods will be used at each 

stage and what data will be created from those methods and why the data is necessary. The 

chapter has been divided between the physical, laboratory-based palaeopathological 

assessments and the more analytical, computer-based statistical assessments and tests. 

Equations used to produce numerical scale values have been listed and the validity for the 

methods explained. 

 

1.1.5 Chapter 6 Results 

 

 The results of all the analyses completed will be found within this chapter. The structure 

will also follow a logical layout, starting with demographic profiles describing the populations 

by site category, biological sex, and age at death. The prevalences of the joint conditions follow 

and are further divided by the categories listed above and followed by the specific variables of 

the risk factors. Once basic prevalences, counts and ranges of the above-mentioned data is 

explained, inferential statistical data are presented, starting with bivariate assessments 

exploring the relationships between the joint conditions and risk factor variables, as well as 

between the risk factors themselves.  

 

1.1.6 Chapter 7 Discussion 

 

 The discussion section will attempt to answer the three research questions listed in 

Chapter 2. Each of the sections will examine the results of the data as it pertains to each research 

question, as well as make comparisons with data from similar published research. The first 

section will relate to prevalence rates according to site, biological sex, and age at death, the 

second will address the relationships with body mass and activity and the third and final section 

will discuss the spondyloarthropathies. The implications of the research and potential remedies 

for any limitations that arose as a result will be described within this section. 
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1.1.7 Chapter 8 Conclusion 

 

This chapter is relatively straight forward as it will be the conclusion to the body of the 

thesis and the last text-based chapter. The research will be summarized offering any final 

insights and thoughts on the implications. As potential issues and remedies were discussed in 

the discussions, proposed future research, which can attempt to explore the ways to better 

unravel these limitations to allow for future research to be able to create more accurate and 

reliable diagnoses. As a note, this research is not planned by the author but are suggested 

avenues to explore. 

 

 This thesis is the culmination of research regarding joint condition and its risk factors, 

combining palaeopathological and clinical research to reconcile the varying schools of thought 

to provide a better understanding of the diseases and how they affect individuals of the past. 

The idea was meant to step away from standard prevalence-based research and to focus on the 

lives and lifestyles of past English populations. To better understand these diseases, research 

must be opened to include various disciplines.  
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Chapter 2 Aims and Objectives 
 

The aim of this research project was to utilize palaeopathological evidence of joint 

conditions from human skeletal remains from archaeological sites to explore and critically 

evaluate the potential influence of risk factors implicated in clinical evidence in the 

development of osteoarthritis (OA), ankylosing spondylitis (AS), sacroiliitis (SI) and 

degenerative disc disease (DDD) in the past.  

 

2.1 Objectives 
 

I. To critically review current clinical evidence concerning osteoarthritis, ankylosing 

spondylitis, sacroiliitis and degenerative disc disease to establish the key risk factors 

implicated in their formation among modern populations 

 

II. To critically review and identify appropriate palaeopathological methods to generate a 

new, detailed dataset concerning these joint conditions in a sample of human skeletal 

remains from the post-medieval period 

 

III. To collate, and generate where necessary, data concerning age, sex, and site type (rural 

or urban) for this skeletal sample. To make comparisons of joint condition between 

these groups to explore the influence of lifestyle and demographic factors on joint 

condition prevalence 

 

IV. To identify an appropriate range of skeletal proxies for the key risk factors implicated 

in the formation of joint conditions by the clinical literature (body mass and activity 

levels), generate new skeletal evidence for these proxies and explore the influence of 

these factors on joint condition prevalence 
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V. To undertake a multivariate assessment which explores the extent to which multiple 

risk factors acting in concert might better explain the prevalence of joint condition in 

an archaeological population than individual risk factors acting in isolation 

 

VI. To compare the data generated in this thesis with extant studies of joint condition 

prevalence in the clinical literature and archaeological studies of the last millennium in 

general, and the post medieval period specifically, to help explain and understand any 

patterns observed 

 

VII. To critically reflect on the value of comparing clinical and osteological data to the 

advancement of the understanding of joint condition in the past and the extent to which 

we can effectively explore the influence of clinically identified risk factors on joint 

condition prevalences obtained from human skeletal remains.  

 

2.2 Research Questions 
 

1. To what extent does the prevalence of osteoarthritis, ankylosing spondylitis, sacroiliitis 

and degenerative disc disease vary with age and sex, or between urban and rural 

populations? 

 

2. What are the relationships between the skeletal variants of the risk factors implicated 

in clinical studies of joint condition – increased body mass and activity levels – and 

osteoarthritis, ankylosing spondylitis, sacroiliitis and degenerative disc disease? To 

what extent do the clinically identified risk factors explain prevalence of joint condition 

in skeletal populations? 

 
3. Can seronegative spondyloarthropathies be recorded in skeletal remains in a manner 

that enables population-level study of their prevalence and assessment of the role of 

clinically identified risk factors? What problems are implicated in this assessment, and 

how might they be resolved? 
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4. How might archaeological and clinical approaches to the study of osteoarthritis, 

ankylosing spondylitis, sacroiliitis and degenerative disc disease be integrated to the 

benefit of our understanding of joint conditions and the present in human skeletal 

remains, and therefore our understanding of these diseases in the past in general?  

 

This thesis was an attempt to bring clinical knowledge to the palaeopathological field 

to help better understand how peoples of the past would have been affected by joint condition.  

By using the clinical risk factors in a palaeopathological setting, the prevalence rates will gain 

further context as the individuality of the development of the conditions is brought to the fore. 

The joint conditions are often discussed in the population setting, as this thesis will do, but 

when the lifestyles are discussed with a focus on the causes of the conditions, effects on the 

skeleton and the effects on the individual and population. This should, in theory, help to better 

understand these people and allow their stories to continue to live on through this research. The 

following Chapters will demonstrate the value of studying joint condition and the need for 

researchers to understand both the palaeopathological and clinical literature surrounding the 

subject.  
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Chapter 3 Joint Conditions 
 

Joint condition is an overarching term used to classify any disease or injury that affects 

the joint space and corresponding skeletal material (Roberts and Manchester, 2010). The key 

osteological characteristics of joint conditions are the formation of bony protrusions and lesions 

on the joint (see Figure 3.1) (Rogers and Waldron, 1995; Roberts and Manchester, 2010; Burt 

et al., 2013). There are numerous conditions that fall under this category that include, but are 

not limited to, osteoarthritis, rheumatoid arthritis, septic arthritis, and spondyloarthropathies 

(Burt et al., 2013). Each condition has its own unique aetiology, definition, and method for 

diagnosis (Roberts and Manchester, 2010), but the conditions share similar markers. The 

conditions can also be referred to as interrelated, as one may cause or influence another’s 

development. This research will focus on osteoarthritis of the lumbar vertebrae, hip, and knee 

as well as degenerative disc disease, ankylosing spondylitis and sacroiliitis. These joint 

conditions were selected as they all affect the load bearing joints of the lower appendicular 

skeleton, with the addition of the related vertebral elements and can often be found together. 

 

 
Figure 3.1 Femoral head with gross eburnation, macro and microporosity and possible subchondral cyst. Photo is courtesy of 
Andy Brown and the Image Speaks project. 
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3.1 Bio-Mechanical Function of Joints 
 

The joints of the human body are locations where one or more independent skeletal 

elements meet and connected via soft tissue cartilage. There are three types of joints within the 

human body: synarthrosis (immovable), amphiarthrosis (semi-moveable) and diarthrodial 

(moveable). These joints allow for the stability and motion of the musculoskeletal system. For 

the purpose of this research, the lumbar vertebral facets, hip, knee (diarthrodial) and joints 

between the bodies of the lumbar and sacral vertebrae (amphiarthrosis) were examined.  

 

3.1.1 Diarthrodial Joints 

 

 Diarthroidial joints, or synovial joints, allow for specific types of movement (see Figure 

3.2). In mammals, the glenohumoral (shoulder) and acetabulofemoral (hip) joints are ball-and-

socket joints that facilitate locomotion by enabling a wide range of movement about a single 

center point (Tözeren, 2000). The ball-and-socket joints are multiaxial, which allow for the 

skeletal features to move in multiple directions and increases the function and type of activity 

that can be completed (Kapandji, 1970; Tözeren, 2000). In contrast to the hip joint, in humans 

the locomotion feature of the shoulder has been altered over the course of the evolution of 

bipedalism and now has a greater range of motion, but less stability, as an open ball-and-socket 

joint (Kapandji, 1970; White and Folkens, 2005). The acetabulofemoral joint is the most 

proximal joint of the lower limb and has three axes of movement, the transverse, 

anteroposterior and the vertical axes, which then offers three degrees of freedom (Kapandji, 

1970). The articular facets of the lumbar vertebrae differ from the diarthrodial joints of the hip 

and knee, and instead allow for the vertebral movements described in the following section on 

amphiarthrodial joints, while keeping the vertebrae properly aligned (Tözeren, 2000). 
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Figure 3.2 Illustration showing a diarthrodial joint and the component parts (Rogers and Waldron, 1995). 

 

The tibiofemoral and patellofemoral joints, which combine to create the knee, are 

uniaxial hinge joints that act as a lever for flexion and extension for an approximate 180° range 

of motion (Tözeren, 2000, Roberts and Manchester, 2010). The ranges of motion create a 

unique set of abilities and movement types for each joint. Different activity types will require 

the joint and musculo-skeletal system to respond in a typical behavioral pattern. For instance, 

known patterns of movements would include adduction, abduction, flexion, extension, 

pronation, supination, and rotation (Adrian and Cooper, 1995; Tözeren, 2000). While each joint 

has its own limitations, the body working in harmony allows for the varied and complex 

motions that humans experience daily. A simple example of this is sitting to type a document, 

the body of the author is using the hips and spine to sit upright, the legs to stabilize the position 

of the chair and assist in angling the torso, the shoulder to move the arms forward and back, 

the elbow to move the hands to different key levels and the wrists to move the hands so that 

each finger can hit a key. As complex organisms, these motions are done without thought as to 

why and how, the motion is accomplished as a means to complete a task (Adrian and Cooper, 

1995; Tözeren, 2000; Winter, 2009). 

 Within each joint is a non-renewal stabilizer called a synovial capsule, or joint capsule, 

and while the synovial capsule is non-renewable, the fluid inside able to regenerate via the 

introduction of omega-3 fatty acids (Lorenz and Richter, 2006; Henrotin et al., 2012). The 
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synovial joint is not innervated and has no vascular supply and rely on nutrients from the 

enveloping cartilage. Surrounding the joint capsule are the ligaments and tendons that act as 

stabilizers to maintain the structural integrity of the joint and, barring specific pathological 

conditions, these can be repaired, but the fibrous synovial capsule cannot be repaired without 

the external assistance of a physician, and in many cases, surgical replacement as an option 

(Abrahams et al., 2013).  

 

3.1.2 Amphiarthrodial Joints 

 

The amphiarthrodial joints are joints that stabilize two or more skeletal elements but 

allow a minimal degree of mobility. The spinal column is the most common location to find 

such joints as the vertebral column acts as a central stabilizing column for the torso as well as 

the rest of the human body. The vertebral column has its own distinctive qualities of having 

both stability and plasticity (Kapandji, 1974). The vertebral column acts as a stabilizing 

structure, like an architectural column, as well as a protective structure for the neuroaxis, 

demonstrating the need to be flexible and strong.  Each section of the vertebral column has a 

role, with the upper three sections of the vertebral column (cervical, thoracic, and lumbar) 

allowing for flexion, extension, and rotation of their individual regions (Tözeren, 2000). The 

cervical vertebral allow for moving the neck and head, the thoracic vertebrae the torso, the 

lumbar acting as a general support structure for the entire system, and the sacrum acting as both 

general support and connection with the lower appendicular skeleton. These elements together 

form an S-like structure. 

The intervertebral disc is a fibrocartilaginous structure made up of a nucleus pulposus 

(center) and the annulus fibrosis (shell) and cartilaginous endplate (connector) (see Figure 3.3) 

(Karajan, 2012; Newell et al., 2017). The nucleus pulposus takes up roughly 50% of the total 

volume of the disc (Karajan, 2012).  The annulus fibrosus is the outer shell of the vertebral disc 

and is made up of 15 – 25 concentric layers called lamellae (Newell et al., 2017). These 

lamellae, a fibrous structure that alternates alignment at each layer, are approximately 0.05-0.5 

mm in thickness and the thickness decreases from the nucleus pulposus to the outer most layer 

(Karajan, 2012; Newell et al., 2017). The superior and inferior portion of the disc, called the 

cartilaginous endplate, forms a foundation and roof to support and connect the disc to the 
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vertebrae. The intervertebral disc is primary formed of an extracellular matrix and made up of 

collagen and water (Karajan, 2012).  

 

 
Figure 3.3 The anatomy of the vertebral joint space between the vertebral bodies (Cortes and Elliot, 2014). 

 

The lumbar vertebra and sacrum are the lower most elements of the vertebral column, 

both sections each consisting of five vertebrae. The lumbar vertebrae are the largest of the 

vertebra and allow only the slightest flexion, extension, and rotation. The sacral vertebral are 

unique in that they fuse to form a single structure, the sacrum, connected to the pelvic girdle 

and form a distinct shape depending on the biological sex of the individual. The lumbar and 

sacral vertebrae absorb and distribute the stress of body mass down into the lower appendicular 

skeleton (see Figure 3.4). 

 

 
Figure 3.4 Illustration of the direction of weight distribution through the human body. Note that the vertebral column takes all 
of the downward force until distributed along the dual branches of the lower appendicular skeleton.  
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3.2 Appendicular Joint Conditions 
 

Osteoarthritis (OA), a degenerative joint condition, is a general term for a condition 

that affects diarthrodial joints, with different aetiologies, factors, and rates. Osteoarthritis is 

characterized by a decrease in the joint space and breakdown of corresponding skeletal 

structures (see Figure 3.5) (Rogers and Waldron, 1995; Roberts and Manchester, 2010). With 

OA, the joint space typically becomes inflamed, causing fibrillation of the articular cartilage 

as the joint tissues split, soften and fragment (Williams and Spector, 2006). OA is a common 

pathological condition, with approximately 15% of the modern population manifesting 

symptoms (Johnson and Hunter, 2014) and are found at increased rates over the age of 55 years 

(Rogers and Waldron, 1995; Roberts and Manchester, 2010) in Western Europe and North 

America. In individuals over the age of 60, an estimated 10% of males and 18% of females are 

affected by the condition, causing a socioeconomic burden costing 1-2.5% of gross domestic 

products (Glyn-Jones et al., 2015). However, despite the high prevalence of OA observed in 

modern groups, much is still unknown about the condition.  

  

 
Figure 3.5 Osteoarthritis hip joint with the femoral head inserted into the corresponding acetabulum. Note the development of 
lipping along the rim of the acetabulum and the base of the femoral head. Photo is courtesy of Andy Brown and the Image 
Speaks project. 

 

 The articular cartilage is not innervated and has no vascular supply, relying on nutrients 

for the chondrocytes that have been diffused through the synovial fluid, and the cartilage has 

limited repair abilities compared to the synovial capsule (Lorenz and Richter, 2006). The 
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cellular mechanism believed to be the cause of cartilage degradation is “an excessive 

production of matrix metalloproteinases and aggrecanases by the chondrocytes and the 

hypertrophic differentiation of chondrocytes leading to the calcification of the cartilage matrix” 

(Henrotin et al., 2012: S847). This would cause the joint cartilage to, over time and after much 

alteration, be unable to withstand the normal mechanical stress and load for that joint. The 

changes would cause the matrix of the joint to become stiff and affect the brittleness as the 

turnover for type II collagen and cartilage proteoglycan becomes reduced with age (Sacitharan 

and Vincent, 2016). 

There is no consensus as to the proper naming of the condition within 

palaeopathological context – some researchers use osteoarthrosis in place of osteoarthritis.  The 

suffixes -itis and -osis have different meanings, the former being associated with inflammation 

and the latter with non-inflammatory degeneration (Burt et al., 2013). Inflammation is a major 

characteristic of clinical osteoarthritis affecting the synovial capsule and surrounding soft 

tissue; however, inflammation does not manifest in osteological material (Waldron, 2009); 

therefore, in cases of osteological examination, the name can be misleading as it denotes an 

inflammatory response when one is not present. Some researchers argue for the use of the term 

osteoarthrosis because of the apparent non-inflammatory nature of the osteological condition, 

but it is not possible to definitively determine inflammatory response on the osteological 

material (Burt et al., 2013). For the purposes of simplification and consistency for later 

comparisons with osteological and clinical research, the term osteoarthritis, as it is still the 

common palaeopathological term, will be used throughout this body of research. 

 There are two main classifications of osteoarthritis: primary and secondary (Fergusson, 

1987). These terms denote the apparent cause of the condition – whether the condition has 

developed within the joint or was affected by an external condition. The differences are not 

always direct or straightforward, as the body is a biomechanical structure with inter-related 

systems. Primary osteoarthritis is a condition that affects the joint without influence from a 

pathology located elsewhere within the body (Buckwalter and Martin, 2006). Secondary 

osteoarthritis is generally the result of trauma or ailment at a different location to the joint that 

will still affect the joint (Fergusson, 1987; Buckwalter and Martin, 2006; Roberts and 

Manchester, 2010). For instance, a broken or infected leg may cause an individual to have an 

altered gait, which then causes increased stress to the joint. The injury may be to the femur, 

tibia, or fibula, but the altered gait may also affect the acetabulofemoral, patellofemoral or 
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tibiofemoral joint. The change to the joint structure, as a result of injury, will not happen in the 

short term and would result from chronic or sustained injuries over time. 

Osteoarthritis has different prevalence rates for the different joints and can also vary by 

biological sex, age, body mass or activity level (Roberts and Manchester, 2010; Burt et al., 

2013). As such, there are range of risk factors that are implicated in the formation of 

osteoarthritis. Females have an increased likelihood of developing the condition than men, with 

earlier ages of onset due to the effects of menopause (Oliveria et al., 1999). The risk factors do 

not uniformly affect each joint, with some causing increased stress to the joints to a 

lesser/greater degree. For example, obesity and the effect of carrying increased mass on the 

skeletal frame will affect the knee joint more than the shoulder (Oliveria et al., 1999, Ding et 

al., 2005), however, obesity may also affect the joint of the wrist, although researchers do not 

yet understand the relationship (Felson and Chaisson, 1997; Grotle et al., 2008). Due to the 

increase of obese individuals in modern times, the prevalence of tibiofemoral osteoarthritis has 

risen, and osteoarthritis at this location is thought to be a modern condition (Rogers and Dieppe, 

1994). 

Many theories abound about the causes and factors influencing the progression of OA. 

The condition was once thought to be an unavoidable consequence of aging (Burt et al., 2013), 

but research has shown that onset and progression are more complex, with the lifestyle of the 

individuals being an important consideration (Arden and Cooper, 2006). The risk factors for 

osteoarthritis include, but are not limited to, age, biological sex, activity levels, genetics and 

body mass. The risk factors, explained in further detail below, can increase an individual’s 

likelihood of developing the condition to a greater extent. 

 

3.2.1 Clinical Approaches for Identification and Classification of OA 

 

The approaches for diagnosis of OA in clinical contexts are different to those of 

osteologists, with two types of diagnoses depending on the material available: symptomatic 

and radiographic. Clinicians do not have direct access to the bone, without surgical 

intervention, and a symptomatic diagnosis instead focuses on severity of known osteoarthritic 

indicators, or symptoms, from external examinations and survey questions. Symptoms, such as 

pain, swelling and stiffness, can be assessed through direct access to a living patient through 

testimonial or clinical examination (Roemer et al., 2006; Hooper and Moskowitz, 2007). 
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Symptomatic diagnoses deal with subjective testing regimes, such as the pain scales and 

stiffness, that cannot offer reproducible results and must be used only within the bounds of 

context and patient history (Roemer et al., 2006). Symptomatic diagnoses tend to have a lower 

prevalence than radiographic due to the subjective nature of examinations and the reaction of 

an individual to a symptom, whereas radiographic diagnoses rely on objective tests that are 

more sensitive (Johnson and Hunter, 2014). 

As the name implies, radiographic diagnoses rely on imaging techniques such as plain 

film radiography and MRIs. Imaging equipment is the only way for a clinician to view the 

skeletal material and soft tissue surrounding a joint of a living individual without invasive 

surgery. Imaging methods offer objective testing that is reproducible and verifiable (Roemer 

et al. 2006). Magnetic Resonance Imaging (MRI) will show the soft tissue and joint capsule as 

well as the bone and plain film radiography will show the bone without soft tissue (Braun and 

Gold, 2012; Burt et al., 2013). An MRI allows for clinicians to assess the body for subcutaneous 

lesions and inflammation or damage that could otherwise go unnoticed from an external 

examination of a living patient, while traditional radiographs allow for the assessment of joint 

space narrowing, cyst formations and subchondral sclerosis (Fergusson, 1987). A computed 

topography scan (CT) has increased sensitivity, which can help to illustrate changes occurring 

within the joint space to a higher level than radiography. CT scans also have less intra-observer 

variability, which can make them more reliable (Rubin, 1996). However, a CT image is not 

necessary if plain film radiography was effectively able to be used for diagnosis.  

The Kellgren and Lawrence system, colloquially known as the K-L scale, can be used 

to help clinicians classify the severity and progression of the condition via radiographs (Arden 

and Cooper, 2006). The K-L scale consists of categories with established gradients for the 

development of osteological markers. The categories are strict, not allowing for flexibility and 

causing an objective method to require subjective analysis (see Figure 3.6) (Felson et al., 2013).  

This method used a scale of grading that follows (Kellgren and Lawrence, 1957): 

 

Grade 0 – None - No radiographic features of OA present. 

Grade 1 – Doubtful - Doubtful joint space narrowing and osteophytic lipping. 

Grade 2 – Minimal - Definite osteophytes and possible joint space narrowing on 

anteroposterior load-bearing radiograph. 
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Grade 3 – Moderate - Multiple osteophytes, definite joint space narrowing, sclerosis, 

possible bony deformity. 

Grade 4 – Severe - large osteophytes, marked joint space narrowing, severe sclerosis 

and definite bony deformity.  

 

 
Figure 3.6 Radiograph of a hip joint with a narrowing of the joint space (Burgener 2006: 131). 

 

However, in recent years, this method has come under criticism due to the limited scope 

at which it can be used (Felson et al., 2013). The strict, combined scoring does not allow for 

divided scoring, where the differing traits may fall into a range of categories, rather than be 

able to be lumped into just one. The need to update and refine the method for more accurate 

assessments to break apart the grades into the component features has been put forth with the 

suggestion of more flexible criteria (Arden and Cooper, 2006). Rather than group all the 

features into one grade, the markers, such as osteophytic formations or joint space narrowing, 

would be graded individually, allowing for more flexible and accurate diagnoses. 
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 The Kellgren-Lawrence scale is the benchmark scale for assessing osteoarthritis via 

imaging, but it is not the only method. In 2011, Roemer et al. published a method for the 

scoring hip osteoarthritis using an MRI, but the hip joint creates inherent problems when 

viewing using imaging due to the shape and structural format. The method, known as the Hip 

Osteoarthritis MRI Scoring System, or HOAMS, scores the markers individually, but using 

criteria similar to the Kellgren-Lawrence scale.  

 Imaging techniques are not equal, and each offers its own unique benefits and 

drawbacks. Traditional radiographs are excellent for viewing the skeletal material but produce 

levels of harmful radiation and does not offer clear views of the surrounding soft tissues. 

Radiographs are cheaper and faster than CT or MRI scans and do not need a specialized room 

for completion, but only show a limited 2D image (Rubin, 1996). CT scanning allows for cross-

sectional images to be viewed, which can help to differentiate loose osseous pieces from the 

skeletal frame, however, like traditional radiography, produces levels of harmful radiation and 

has difficulty contrasting the soft tissue (Roemer et al., 2006). An MRI can take cross-sectional 

images with layering that allows for the assessment of the soft tissue. CT and MRI scans are 

significantly more expensive and time consuming, but the results can be viewed much more 

swiftly allowing for subsequent tests and imaging to be devised throughout. 

The differences between symptomatic and radiographic methods of diagnosis creates a 

disjunct between the methods that requires careful navigation in order to use clinical data for 

comparison with osteological data. An individual may have radiographic osteoarthritis but not 

develop any outward indicators for a symptomatic diagnosis, while another individual may not 

have a radiographic diagnosis, but have developed the outward indicators for a symptomatic 

diagnosis (Nevitt, 2006; Parsons et al., 2018). This is a conundrum that clinicians face due to 

the fickle nature of the human body and lack of understanding as to the cause of the condition. 

 

3.2.2 Osteological Approaches to Identification and Classification of OA 

 

Diagnosing OA osteologically initially appears to be a straightforward process, as the 

skeletal elements are visible to the researchers for direct examination. OA has many of the 

same osteological markers of other conditions, such as porosity and osteophytes, however, 

there is one marker that is considered to be pathognomic of the condition: eburnation (Ortner, 

2003; Waldron, 2009; Burt et al., 2013). As the markers for osteoarthritis are common 
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pathological markers, also observed in other disease processes, a differential diagnosis ruling 

out other pathological conditions is warranted. OA that has progressed over time can cause 

severe degradation of the joint and resemble septic arthritis. Anaemic conditions can cause 

porous regions across the skeletal frame, as the body shifts from metabolic to catabolic 

reaction, but porosity is also one of the markers for osteoarthritis (Roberts and Manchester, 

2005). Therefore, to determine potential differential diagnoses for OA, it is important for the 

researcher to not focus on the joint alone, but to also examine the surrounding skeletal elements 

to garner as much information about the condition, as well as the individual. 

Juliet Rogers and Tony Waldron (1995) published a set of diagnostic criteria for OA, 

which focuses on the presence of eburnation to conclude a probable diagnosis. In the absence 

of eburnation, three of the markers of osteoarthritis must then be present for a probable 

diagnosis to be made (see Figure 3.7) (Rogers and Waldron, 1995).  This method becomes a 

trade-off between ease and speed of diagnoses and the more comprehensive knowledge and 

potential understanding of the condition.  

 

 
Figure 3.7 A flowchart of the key decisions for diagnosing osteoarthritis using Rogers and Waldron (1995).  
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 Therefore, to diagnose OA, the researcher must accomplish multiple steps. The first 

step is to examine the joint and assess which markers are present. The second step is to assess 

the remaining elements of the skeleton in an attempt to provide a differential diagnosis. If the 

condition may be present, the researcher must then, by examining the evidence, determine the 

level of likelihood that OA is present by either saying the condition is probable or possible. A 

probable diagnosis, as the name suggests, is when the body of evidence shows that OA is most 

likely present and the main cause of the skeletal markers. A possible diagnosis indicates that 

evidence for the presence of the condition, but there is not enough evidence, or potentially 

differential diagnoses are present, to accurately infer a probable diagnosis (Ventades et al., 

2018). A possible diagnosis may be the result of damaged or incomplete remains, where there 

is evidence of OA being present, but there is information missing that would be crucial to the 

diagnosing process. If the evidence suggests the absence of OA, then no diagnosis is made.  

 

3.3 Vertebral Joint Conditions  
 

Vertebral joint conditions describe any number of conditions which can affect the 

different joints of the vertebrae and the axial skeleton. This research will focus on three such 

spinal conditions: ankylosing spondylitis, sacroiliitis, and degenerative disc disease. AS and 

DDD are primary pathological conditions with similar developmental features but different 

aetiologies, while sacroiliitis is a secondary condition (Hughes, 1992; Waldron, 2009; Kadwani 

and Mahmud, 2014). 

 Seronegative spondyloarthropathies (SnSpA) is a general term for inflammatory joint 

conditions that primarily affect the axial skeleton. Unlike some other arthritic conditions, these 

cannot be tested via blood for rheumatoid factor and anti-cyclic citrullinated peptide antibodies 

(Burt et al., 2013; Kadwani and Mahmud, 2014). These related conditions have common 

clinical and radiological features and are associated with the HLA-B27 antigen (Hughes, 1992; 

Waldron, 2009; Burt et al., 2013; Kadwani and Mahmud, 2014). In cases of diagnosable 

ankylosing spondylitis between 60-70% of individuals have the HLA-B27 antigen (Weisman, 

2011), with an estimated 90% of ankylosing spondylitis cases in the UK, an estimated 4-13% 

of the population has the HLA-B27 antigen and that only 1.3% of Europeans with the antigen 

will have ankylosing spondylitis (Sheehan, 2004; Stolwijk et al., 2012). Characterized by 

spinal ankylosis and enthesitis (Waldron 2009), the conditions include, but are not limited to, 
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reactive arthritis, ankylosing spondylitis, sacroiliitis, and psoriatic arthritis (Waldron, 2009; 

Kadwani and Mahmud, 2014).  

 While SnSpA primarily affect the axial skeleton, they can also affect other areas of the 

body through soft tissue pathologies (Samsel et al., 2014), including multiple enthesopathies 

of insertion points. Ankylosing spondylitis and sacroiliitis are spondyloarthropathies that can 

affect the joints of the appendicular skeleton, such as the hip and knee (Weisman, 2011). The 

hip is one such location where osteoarthritis can often be found when AS is also present, 

however, it may not be clear whether this is a concurrent or secondary development (Rogers 

and Waldron, 1995; Weisman, 2011). Locations external to the joints can develop 

enthesopathies or scleroses with additional bone formations and locations for these include the 

deltoid tuberosity, distal phalanx, sternal rib ends and the pubic symphysis.  

 Ankylosing spondylitis (AS) is the most common seronegative spondyloarthropathy 

(Stolwijk et al., 2012) and is a chronic rheumatic condition (Weisman, 2011).  AS is a condition 

that primarily affects the axial skeleton, which can also impact non-axial joints including the 

shoulder, elbow, hip, knee, and feet causing osteoarthritic symptoms. The key feature of AS is 

bilateral fusion, or ankylosis, of the vertebral bodies, in a sequential manner without skipping. 

This fusion is a result of ossified ligaments, or syndesmophytes, and typically commences 

within the sacroiliac joint, where the sacrum meets the auricular surface of the pelvis and 

progresses through the lower lumber spine and upwards (Rogers and Waldron, 1995). The 

condition will then begin to ossify the annulus fibrous of the inter-vertebral discs, eventually 

forming an attachment to the anterior surface of the vertebral body (Burt et al., 2013, Kadwani 

and Mahmud, 2014). In the thoracic vertebrae, the fusion may affect the articulating ribs, 

causing fusion of the costovertebral joint and ossification of the costovertebral ligament. The 

ankylosis will resemble a shaft of bamboo, which has led to the colloquial term: bamboo spine. 

The condition is believed to be more common in males than in females, with the typical age of 

onset occurring between the ages of 17 and 30 (Khan, 2002).  

 The condition can be heredity (Hart, 1980; Khan, 2002). In 82% of individuals with 

ankylosing spondylitis, a fusion of the sacroiliac joint will occur within six years. The condition 

was first described in text by an Irish physician, Bernard Connor, while discussing a curious 

set of skeletal remains found in a French cemetery sometime during the middle to latter half of 

the 17th century, but the condition has been discovered in remains dating as far back in history 

as the pharaohs of ancient Egypt (Feldtkeller et al., 2003; Waldron, 2009).  
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 Ankylosing spondylitis will cause lower back stiffness and pain, particularly upon first 

waking, with an individual either being unable or having great difficulty with spinal forward, 

rotation, and lateral flexion, meaning the person cannot sit up or twist their torso (Hart, 1980). 

The pain may be amplified during periods of inactivity, such as during a sleep period 

(Weisman, 2011). The resulting fusion of the vertebrae and ribs may cause trouble with chest 

expansion, making it difficult for an individual to breathe deeply (Khan, 2009). 

 Fusion, which occurs within the sacroiliac joint, is a condition commonly referred to as 

sacroiliitis (Kettering et al., 1996). Sacroiliitis, when linked to ankylosing will develop 

bilaterally, however, when ankylosing spondylitis is not present, it can occur unilaterally. This 

condition will have similar symptoms and patient complaints to ankylosing spondylitis such as 

chronic lower back pain, as well as additional chronic pain in the buttocks (Agarwal, 1980) 

 Degenerative disc disease is a vertebral joint condition which affects the central portion, 

or nucleus pulposus, of the intervertebral disc and corresponding intervertebral surface (see 

Figure 3.8) (Roemer et al., 2006). This condition is characterized by pitting on the 

intervertebral surface, along with osteophytes forming along the edge of the marginal surface, 

resulting in a lipped appearance. The degenerative nature of this condition is believed to be 

caused by the damage or wear to the intervertebral disc and bony protrusions into the 

intervertebral foramen are not uncommon (Khan, 2002). These protrusions can damage the 

nerve connections and arterial passages, causing further degeneration (Kettering et al., 1996).  

As the condition progresses and the osteophytes continue to form, fusion may occur, but unlike 

ankylosing spondylitis, bilateral and continuous fusion are not requirements. The damage to 

the nerves and growth of the osteophytes can be the cause of the pain and stiffness that an 

individual may feel in their lower back. 
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Figure 3.8 Lumbar vertebrae with a spondyloarthropathy, notably degenerative disc disease, and a combination of osteoarthritis 
and enthesophytes. These phytic formations have evidence for broken fusion and pseudo-joints forming. Photo is courtesy of 
Andy Brown and the Image Speaks project. 

 

3.3.1 Clinical Approaches for Identification and Classification of Vertebral Joint 

Conditions 

  

Much like osteoarthritis, identification of seronegative spondyloarthropathies is 

preliminarily based on the reporting of physical symptoms by a living patient. Lower back pain, 

morning stiffness of the back and neck pain are common complaints for patients with 

seronegative spondyloarthropathies (Kadwani and Mahmud, 2014). Due to the nature of the 

SnSpA, a blood test cannot be used to test directly for the conditions, however, the antigen 

HLA-B27 can be tested for (Kettering et al., 1996; Sheehan, 2004). Individuals with the antigen 

are more likely to have conditions such as ankylosing spondylitis, but presence of HLA-B27 is 

not a diagnostic test for SnSpA. (Sheehan, 2004).  
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 Without an accurate blood test, and as patient symptoms and complaints are generic to 

many other aetiologies, imaging techniques are the only reliable option to determine the 

potential presence of the conditions (Percy and Lentle, 1980). The various techniques can 

determine if there is inflammation within the joint capsule, or the relative location and 

progression of potential ossification or fusion of ligaments or soft tissue (Stolwijk et al., 2012). 

The type of phytic formation can potentially be determined by the shape, location, and 

appearance to determine if it is an osteophyte, enthesophyte or syndesmosphyte, which can 

then be used to determine or exclude the different spondyloarthropathies (see Section 3.4.5). 

 Modern clinical diagnosis of ankylosing spondylitis relies on a combination of clinical 

and radiographic analyses. There are two traditional methodologies for diagnosis called the 

Rome criteria and the New York criteria (Moll, 1980) and are used by groups in Europe such 

as the European Spondyloarthropathy Study Group (ESSG). The diagnoses are similar and 

have been modified and updated through the years, but the Rome criteria favors clinical 

examinations, and the New York criteria relies more heavily on radiographical assessments 

(Akgul and Ozgocmen, 2011). The diagnoses can be split between definite and probable, 

similar to osteological assessments (Weisman, 2011). The modern criteria for diagnosis as used 

by ESSG, an amalgamation of both the Rome and New York criteria, includes chronic lower 

back pain and stiffness for longer than three months that improves with exercise, limitation of 

lumbar mobility in the sagittal and frontal ranges, limited chest expansion in comparison with 

similar age and sex groups (Khan, 2002; Akgul and Ozgocmen, 2011; Weisman, 2011). The 

radiographic components use a scoring method to determine the level of fusion between the 

sacrum and iliac surface. For a definite diagnosis, the radiographic component and one clinical 

component must be present. For a probable diagnosis of AS, three clinical components or the 

radiographic components must be present.  

 As sacroiliitis can be used to diagnose ankylosing spondylitis, the condition needs to 

be diagnosed as well. Similar to ankylosing spondylitis, an individual will exhibit symptoms 

of chronic lower lumbar back pain and stiffness which may or may not include the buttock area 

(Slobodin et al., 2016). However, as the sacroiliac joint is a relatively stationary feature with 

little movement, and the joint is comprised of deep and angular surfaces, this can cause the 

resulting inflammation to be difficult to detect in a clinical diagnoses (Khan, 2002) Sacroiliitis 

can, however, be apparent on a radiograph. In early stages, it is characterized by a widening of 

the joint space and blurry peripheral features (Moll 1980). Bilateral bony sclerosis will soon 
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develop alongside the joint and in latter stages it will exhibit a reduction of the joint space, 

which may be accompanied by fusion (Moll, 1980; Khan, 2002; Weisman, 2011).  

 Degenerative disc disease, as with AS, can produce chronic lower back pain and 

stiffness. The condition is found more often in individuals with increased age and may cause a 

decrease in height as the intervertebral disc space compressed. DDD is most accurately 

diagnosed via radiographic imaging, such as the MRI (Oktay et al., 2014). The clinician will 

evaluate the image for a reduction within the intervertebral space consisting of the 

intervertebral disc. Schmorl’s nodes are a regular feature of DDD, along with annular tears and 

osteophytes (Kanna et al., 2013) (see Section 2.4.7). Planar shape, intensity of change, context 

and texture are radiographic features that are assessed and scored for degradation or irregularity 

and new computer programs are able to accurately diagnose DDD in the lumbar vertebrae using 

MRI scans of the sagittal plane (Oktay et al., 2014). 

 

3.3.2 Osteological Approaches for Identification and Classification of Vertebral Joint 

Conditions 

 

Philip Sager (1969) proposed a method for scoring spondyloarthropathies (SpA) in the 

cervical vertebrae. Sager created detailed stages for each marker of arthritis and 

spondyloarthropathies on each individual element on the vertebra. The method allows for 

researchers to review the recorded stage of the condition and know what markers, and their 

progression, are present. These methodologies are extremely useful when a researcher is not 

able to review the physical skeletal materials or photographs, but still have the ability to provide 

an accurate impression of what is happening to the bone. 

The method combines a complex and detailed written scoring guide with pictures of 

each marker, at each stage, allowing for reproducible and more objective results. The method 

is akin to the K-L scale, but instead of set stages for the entirety of the condition, each stage 

represents a single marker. The method helps to display the extent of degradation of the 

element, as well as provide results that are unique to each individual. For example, unlike the 

K-L scale, a person can have different stages for the different markers. 

A basic approach to diagnose ankylosing spondylitis relies upon recording the presence 

of fused, or ankylosed, syndesmophytes located bilaterally on vertebral bodies (Rogers and 
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Waldron, 1995). This fusion will most commonly begin development in the lower vertebrae 

and may include sacroiliitis or even fusion of that joint (Waldron, 2012). Fusion between the 

vertebrae and the presence of sacroiliitis is characteristic of a relatively advanced stage of the 

condition, making it difficult to diagnose in less advanced stages, prior to such fusion. 

Degenerative disc disease uses many of the same osteological markers for 

osteoarthritis, but the clinical symptoms can be similar to AS. Pitting and/or porosity on the 

surface of the intervertebral plate and marginal osteophytes are the only markers required for 

a diagnosis (Waldron, 2009). However, there can be many more changes to the intervertebral 

plate, such as plaques of new bone, compression, or Schmorl’s nodes that if present, could 

denote the possible presence of DDD (Roberts and Manchester, 2005). The intervertebral 

surfaces will undergo degenerative changes with age; therefore, a researcher must be aware of 

the difference between a vertebra with age related degeneration and a vertebra with 

pathological degenerative change.  

 

3.4 Osteological Markers for Osteoarthritis and Seronegative 

Spondyloarthropathies 
 

 The osteological markers for osteoarthritis and seronegative spondyloarthropathies are 

also associated with a multitude of other pathological conditions. Singularly, they have limited 

diagnostic value, but in combination they can be used to differentiate and diagnose the joint 

conditions. The markers have different forms of manifestation conditional on the joint or 

skeletal element they affect. This requires the researcher to be familiar with the appearance of 

a healthy bone and that of an arthritic bone, as well as that of similar pathological conditions 

that could provide for differentials. 

 

3.4.1 Eburnation 

 

 Eburnation is a result of long-term bone on bone friction (Sager 1969; Rogers and 

Waldron, 1995), caused by a reduction to the joint space (see Figure 3.9) (Burt et al., 2013). 

This feature is uniquely pathognomic of OA and therefore the only marker which can give a 

diagnosis of OA alone (Rogers and Waldon, 1995). Eburnation manifests as an area of the 
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surface of the bone has become smooth and reflective. It may be accompanied by ridging along 

the surface where the corresponding bone planes have ground across each other.  

 Eburnation has three primary characteristics. The surface area of the bone that 

encompasses the eburnation will become sclerotic, or thickened, and will appear on a 

radiograph as sclerosis (see Section 3.4.2) (Roberts and Manchester, 2005). The surface will 

have developed a smooth texture compared to the normal porous or rough texture (Rogers and 

Waldron, 1995). Finally, the resulting structure is a highly reflective area of smoothed bone 

that resembles polished ivory. Taphonomic polishing, caused by the handling of skeletal 

elements and over time, can be confused with eburnation, but does not have the same ivory-

like surface as eburnation. 

 

 
Figure 3.9 Light source on a femoral head highlighting the glossy sheen of developed eburnation. Note that the area of 
eburnation appears to be raised from the normal joint surface which can be indicative of subchondral sclerosis. 

 

3.4.2 Subchondral Sclerosis 

 

 Subchondral sclerosis is a reactive process resulting in the thickening of the 

subchondral bone under the joint surface (Sager, 1969; Rogers and Waldron, 1995). Sclerosis 

often occurs adjacent to eburnation on the surface of the bone (White and Folkens, 2005). The 

thickening of the subchondral bone layer is linked to the reduction of articular cartilage and 
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ossification at the endochondral bone layer across the entire joint (Cox et al., 2013) and at the 

local level, severe degeneration of the cartilage may cause additional sclerosis (Cox et al., 

2012). This increase to the endochondral thickness can see an increase to the trabecular volume 

and can be linked to loading (Cox et al., 2013; Crema et al., 2014). One development that 

should be mentioned is that a bone with osteoarthritis will exhibit an increase to vascular or 

marrow pathways, with this increase being linked to the increase in further creation of 

subchondral bone enhancing sclerosis (Wong et al., 2009; Pan et al., 2012). Subchondral 

sclerosis is typically not visible through standard examination and so without either 

radiographic evidence or the creation of a cross section of the joint via bisection it is difficult 

to assess. On a radiograph, the area of sclerosis appears as white indicating a dense area of 

bone.  

 

3.4.3 Porosity and Pitting 

 

Porosity of the joint surface is characterized by multiple small holes which penetrate 

the subchondral bone to connect with cavities within the trabecular bone (see Figure 3.10). 

Porosity is commonly classified by the size of holes into two categories: micro porosity, less 

than 2mm in diameter, and macro porosity, greater than 2mm in diameter (Sager, 1969; Rogers 

and Waldron, 1995). Porosity can be caused by either the resorption of the bone or by the 

synovial fluid within the joint capsule intruding into the bone (Roemer et al., 2006; Gunn, 

2018). Porosity is similar to and can be confused with deep pitting, which is thought to have 

comparable origins, but perforates rather than penetrates the bone (Roberts and Manchester, 

2005). The differences between porosity and pitting can be helped to differentiate with a light 

source and magnification tool. 
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Figure 3.10 The perforating holes leading into the cortical bone of the patella are an example of porosity. This sample is a mix 
of micro- and macroporosity as well as taphonomic damage. This photo also helps to illustrate the need to be able to 
differentiate pathological porosity from taphonomic damages. For another example of porosity See Figure 3.7. 

 

3.3.4 Subchondral Cysts 

 

Subchondral cysts, also known as synovial cysts, are a sac-like structure that forms 

within the subchondral layer of bone (see Figure 3.11) (Sager, 1969; Rogers and Waldron, 

1995). These cysts can also be associated with rheumatoid arthritis, calcium pyrophosphate 

deposition disease and osteonecrosis, though the relationships and aetiologies concerning the 

formation of the cysts are not known (Chiba et al., 2014). Two leading theories as to the cause 

of the marker in relation to osteoarthritis are (1) traumatic injury (such as a fall with vertical 

landing) to the joint resulting in the resorption of the subchondral bone and (2) synovial fluid 

intruding through the periosteum into the subchondral bone during the collapse of the joint 

space (Roemer et al., 2006). Regardless of the theorized cause, the result is a cystic cavity in 

the subchondral bone that, as with sclerosis, is only visible on a radiograph unless damaged or 

a cross section is completed. 
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Figure 3.11 This large perforating hole may be linked to a subchondral cyst. An external void, such as this one, is the only way 
to be able to potentially determine the presence of a cyst without radiographs or destructive analyses. Note the surrounding 
porosity and the raised area of bone with eburnation. 

 

3.4.5 Phytic Formations 

 

 Osteophytic formations are bony spurs which develop on the surface of the bone around 

synovial joints and can be divided into two categories: marginal and surface (van der Kraan 

and van der Berg, 2007). Osteoarthritis are formations of new bone that develop along the rim 

of a joint (see Figure 3.12). Surface osteophytes develop on the surface of the bone and can 

resemble a pimple in their early formation. Osteophytic formations can often be confused with 

enthesophytes or syndesmophytes, and to differentiate between the type of phytic formations, 

knowing the shape and the origin point is required (see Figure 3.12). 

 Osteophytes are thought to be a joint stabilizing mechanism and may lead to fusion of 

the joint, which will be discussed in the following section (Al-Rawahi et al., 2011). Marginal 

osteophytic formations follow the membrane of the synovial capsule and could be indicative 

of a breakdown of the capsule (van der Kraan and van der Berg, 2007). Recent studies have 

explored and found relationships between osteophytes and mechanically induced stress (Venne 

et al., 2020).  
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Figure 3.12 This claw-like osteophyte is a large representation of the types of phytic formations typically seen on a vertebral 
body. 

 

Enthesophytes, a form of enthesopathies or entheseal changes, resemble osteophytes, 

in that they can form long, thin bridges of bone, but form at the points of origin or insertion for 

tendons and ligaments (Foster et al., 2014; Villotte et al., 2016) and result from the ossification 

of the tendons connecting muscle to bone, or ligaments connecting bone to bone (Waldron, 

2009). Enthesophytes are therefore distinguished from osteophytes both by their location, 

appearance and aetiology. Osteophytes will have a curved or claw like feature, forming first 

along the horizontal axis and then curving vertically, while enthesophytes follow the path of 

the soft tissue, which develop in a singular directionality (see Figure 3.13) (Zumwalt, 2005; 

Villotte et al., 2016). Two categories of entheses exist: fibrocartilaginous and fibrous (Foster 

et al., 2014; Jurmain et 

 al. 2016). These terms refer to the anatomical structure of the attachment to the bone 

in which fibrous entheses attach directly at the bone, while fibrocartilaginous entheses have 

four structural zones (Benjamin et al., 2006). Fibrous entheses attach to the bone through dense 

fibrous connective tissue and are commonly found on the metaphyses and diaphyses of long 

bones (e.g., adductor magnus and deltoid attachments), while the fibrocartilaginous entheses 

mediate the transition from soft to hard tissue via fibrocartilage and are commonly found at the 

epiphyses and apophyses (e.g., Achilles’ tendon and rotator cuff) (Apostolakos et al., 2014). 
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Regardless of the attachment medium, the structure is heterogeneous with different mechanical 

properties for the entheses and the bone (Alves-Cardosa and Assis, 2021). 

 While the exact aetiology of enthesophytes are largely unknown. Enthesophytes have 

been associated with increasing age and are largely considered a natural result of the aging 

process (Wilczak, 1998; Villotte and Knüsel, 2013; Nikita et al., 2019). In a young individual, 

micro-stressors of repetitive and excessive mechanized stress can cause the development of 

enthesopathies and, in older individuals, enthesopathies can form due to decreased 

vascularization of the tendon (Jurmain et al., 2012). Therefore, in an older individual, it may 

be difficult to determine the cause of enthesopathies without further examination of the skeletal 

structure and mechanisms. Entheseal changes have also found to be positively correlated and 

associated with increased body mass (Weiss 2004;2007; Weiss et al., 2012). 

Due to the developmental nature of entheses, at this time, it is impossible to accurately 

deduce specific types of activity, however, in combination with other methodologies, it may 

still be possible to infer activity levels (Jurmain et al., 2012; Mazza, 2019). For instance, a 

recent study has shown that living in different types of terrain can impact the frequency of 

entheseal change in the population, and that higher mechanical loading during childhood could, 

in fact, help to protect against entheseal changes (Acosta et al., 2017). This is extremely useful 

information to have to determine potential causes for osteoarthritis in a skeletal population and 

will be discussed further in the following chapter. 
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Figure 3.13 Entheseal growth developing anteriorly from the tibial tuberosity. This bony growth follows the path of the patellar 
ligament. 

Syndesmophytes are a type of enthesophyte and are the result of ossification of the 

annulus fibrosis, the tough outer layer of the intervertebral disc (see Section 3.1.2/ Figure 3.14). 

Syndesmophytes are indicative of ankylosing spondylitis, which one study found in 75% of 

patients, and have a unique development and appearance than other osteophytes or 

enthesophytes (Baraliakos et al., 2007). One such unique development is that these 

syndesmophytes may form bridges of ossified soft tissues between two vertebral bodies (van 

Tubergen et al., 2012) The appearance resulting of the fusion of the vertebral bodies resembles 

that of a shaft of bamboo, leading to the term ‘bamboo spine’ (Rogers and Waldron 1995; van 

Tubergen et al. 2012).  
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Figure 3.14 The different types of phytic formations as seen on the vertebrae and how to differentiate them. Note that 
enthesophytes would fall into the paravertebral and anterior ossification categories (Kormano and Pudas 2006: 259). 

 

3.4.6 Fusion and Ankylosis 

 

The anatomical term for the fusion of two or more skeletal elements via osteophytes 

(see Figure 3.15) or ossification of soft tissue is ankylosis. Ankylosis arising from joint 

conditions most commonly occurs between the vertebrae, such as in the seronegative 

spondyloarthropathy ankylosing spondylitis (Sager, 1969; Rogers and Waldron, 1995; Burt et 

al., 2013). A potential cause of fusion in joint conditions, which arises from the ossification of 

muscle, tendons, and ligaments, could be part of the body’s attempt at stabilizing a weakened 

joint structure (Roberts and Manchester, 2010). As well as stabilization, fusion can also be a 

symptom of traumatic injury or pathology, such as tuberculosis, ossifying the soft tissue and 

so is not a specific trait of vertebral joint conditions (Burt et al., 2013).  Fusion is not always 

the gross or complete joining of elements and can occur at a single location of a joint. Fusion 

can occur on any joint, but is more typical, and often more advanced, in less mobile joints.  
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Figure 3.15 These enthesopathies show the early stages of fusion between two vertebral bodies. While the two elements are 
separate, there is evidence that these two enthesophytes were fused but have broken post-mortem.  

 

3.4.7 Schmorl’s Nodes 

 

Schmorl’s nodes are depressions on the intervertebral surface of the vertebral bodies 

(Burt et al., 2013) and are a common occurrence on the thoracolumbar elements (see Figure 

3.16 and Figure 3.17) (Kyere et al., 2012). These nodes are the only marker listed within this 

section that is solely a characteristic of DDD and not OA or AS. The size of the nodes may 

vary but the shape is roughly oval, often resembling a kidney shape, and generally located 

along the central line of the surface dividing the left and right portions of the vertebral body 

(Sager, 1969; Rogers and Waldron, 1995).  
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Figure 3.16 Schmorl’s node on a lumbar vertebra as appearing on the radiograph of a living individual (Kyere et al., 2012).  

 

There is no consensus as to the pathogenesis of Schmorl’s nodes and currently two 

theories exist as to the origins of such nodes. The first theory is that due childhood 

developmental issues, the nodes develop early in life and the negative space in the bone may 

lead to herniation. Due to the higher levels of stress to the thoracolumbar vertebrae, it is argued 

that this location is more prone to early trauma (Hilton et al. 1976). The second theory is that 

the nodes are believed to be caused by a rupture or herniation of the nucleus pulposus 

penetrating the intervertebral surface (Vernon-Roberts et al., 2007; Kyere et al., 2012). While 

these theories vary, the core argument remains similar in that herniation of the intervertebral 

disc is the cause and may in fact not have a single root cause, but a single effect. 

Schmorl’s nodes are found to be more frequent in males than females and may result in 

pain (Kyere et al., 2012). In a study conducted by Moustarhfir et al., (2016) Schmorl’s nodes 

were found to be more common in Caucasian individuals than Africans and individuals 

working in occupations for more than ten years that revolved about manual labour, than 

individuals working in such an occupation for less than ten years or sedentary workers. That 
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study also found that athletes participating in the activity for more than five hours per week 

had higher rates than those working less than five hours per week (Moustarhfir et al., 2016).  

 

 
Figure 3.17 The right indentation on the intervertebral surface is a Schmorl’s node. Note the rough oval, almost kidney like 
shape and the smoothed edges turning into the indentation. 

 

3.4.8 Reactive Bone Formations 

 

Reactive bone formations, or new bone formations, are a generalized term to describe 

osteoblastic activity on the joint surface (see Figure 3.18) (Sager, 1969; Rogers and Waldron, 

1995; Ortner, 2003). The formations can vary in size and shape, from small pimple-like 

formations no larger than 2mm to larger plateau-like formations larger than 2mm. Due to the 

degredation of the joint, the supposed cause is a stabilizing effect, although there is no 

definitive answer for why the reactive bone formations occur on the joint surface. 
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Figure 3.18 The bony growths, to the left of the fovea capitis, are larger than the typical growths and demonstrate the extent 
to which they can form. Note the irregular shape and overlapping folds along the surface of the femoral head. 

 

3.5 Summation of Joint Conditions 
 

The markers used within for this research are generic osteological markers that can be 

found in a host of pathologies, and while singly they provide no diagnostic value, a group of 

markers can help to diagnose the joint conditions. The diagnostic criteria must not include an 

examination of these markers looking for joint condition, but an objective analysis as 

differential diagnoses are essential for accurate and complete examination. Pathologies can 

have similar aetiologies and/or similar appearance on the bone and so it is important for the 

researcher to be able to accurately distinguish the pathologies and justify diagnoses with clear 

evidence. 

The clinical and osteological methods for identifying and diagnosing are similar, yet 

vastly different. The clinician deals with subjective values of pain and severity of symptoms 

and objective radiographic images, while the osteologists can directly observe the skeletal 

material in an objective manner. However, neither method can truly capture the entire picture 

as they both lack key features. The clinicians lack direct observation of the skeletal material, 

while the osteologist lacks access to the soft tissue and the effects the condition has on the 
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living patient. Therefore, it is important for researchers to understand the principles and have 

a familiarity with the literature and studies of the differing fields. 
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Chapter 4 Risk Factors 
 

 There are numerous risk factors that have been associated with the development of 

osteoarthritis and vertebral joint conditions by both clinicians and palaeopathologists (Oliveria 

et al., 1999; Lohmander and Felson, 2004). The risk factors for arthritic conditions are often 

co-dependent, acting in concert, but also include a level of independent causality. Age has 

traditionally been considered the chief risk factor in OA and is one of the few variables that 

could be considered an independent risk factor (Goldring and Goldring, 2007; Glyn-Jones, 

2015), with biological sex being another. Dependent risk factors can include activity levels, 

diet, high body mass index, and genetic disposition. In SnSpA, the latter factor, genetic 

predisposition, seems to play a much more central role (Khan, 2009). As with the markers, the 

dependent risk factors do not have much significance when considered in a vacuum, but when 

the risk factors are combined, they can create the perfect storm for the development of arthritic 

conditions. The influence of different risk factors is not uniform across different joints and will 

vary, for example, depending on the function of the joint in question (Felson and Chaisson, 

1997). Of the following risk factors discussed, only age and biological sex show relationships 

with ankylosing spondylitis. 

 

4.1 Age 
 

 Age is the most discussed risk factor for arthritic conditions (Nevitt 2006; Burt et al., 

2013). Age has been implicated as the key risk factor in OA due to strong correlations reported 

between its progression and advancing age (Goldring and Goldring, 2007; Glyn-Jones et al., 

2015). Individuals have an increased likelihood for arthritic clinical symptoms and osteological 

markers to develop over the age of 55 (Rogers and Waldron, 1995; Roberts and Manchester, 

2010). As advancing age is accompanied by the gradual breakdown of the biomechanical 

functions of the body’s joints, it seems feasible that age should be considered the chief risk 

factor in joint condition progression.  

 However, more research over the last 20 years has questioned the direct correlation 

between age and the progression of osteoarthritis (Anderson and Loeser, 2010). In the modern 

world, individuals are living to older ages and yet some show no outward symptoms or signs 

of the condition, even into their ninth or tenth decade (Williams and Spector, 2006). That some 



41 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

individuals should progress into later life completely free of osteoarthritis suggests that there 

must be a differential risk associated with the disease that is not purely age dependent. Other 

factors must contribute to the onset and progression of degenerative joint conditions. 

While it has been shown that older individuals have a higher likelihood for developing 

joint condition, this relationship may arise from the accumulation of the other risk factors 

throughout a long life. One example that demonstrates this issue is the difference in rates of 

OA between males and females. Clinical studies have demonstrated that women are more likely 

to develop OA earlier in life than their male counterparts, and this has been explained as a 

result of hormonal changes, especially those associated with the menopause (Burt et al., 2013; 

Mahajan and Patni, 2018; Prieto-Alhambra et al., 2014). Therefore, in this case, it is not age 

that is primarily responsible for the relationship, but rather hormonal changes that have an age-

dependent component.  

Similar arguments can also be made for other risk factors as well, as their effects are 

cumulative and therefore do have an age-related nature (Holliday et al., 2011). An appreciation 

of the coincidence of age and other risk factors would explain why there are individuals that 

live to older ages that show no symptoms of the conditions. An appreciation of the complex 

aetiology of osteoarthritis thus requires a detailed consideration of several risk factors other 

than age (Anderson and Loeser, 2010). For example, an individual becoming obese at a 

younger age, has a higher likelihood for the development and faster progression of the 

condition than individuals of the same age who are not obese (Holliday et al., 2011). The earlier 

the risk factors develop, the higher the chance of becoming symptomatic, however, a lifestyle 

change resulting in healthier living, such as the reduction of mass by 5kg, has an increased 

chance of allowing the body symptoms of the conditions dissipate or become minimalized 

(Felson et al., 1992; Johnson and Hunter, 2014).  

 

4.2 Biological Sex 
 

Biological sex has been found to affect the onset of the joint conditions (Roman-Blas 

et al., 2009; Cross et al., 2014). Ankylosing spondylitis is more frequent in males than females 

(3:1), however, the reason for this variance is largely unknown (Weissman, 2011).  Men have 

higher rates of OA <45 years of age, thought to be due to injury (secondary OA), and women 

having higher rates >55 years of age and at more joint locations (Williams and Spector, 2006). 
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The factors behind the differing onset are multidimensional and thought to be caused by 

differing pathways relating to the basic differences of sex, such as hormones and reproduction 

(Williams and Spector, 2006; Liu et al., 2009, Roman-Blas et al., 2009). These factors affect 

each joint in contrasting ways and to varying degrees and contain much debate as to the 

relationships, with new studies being conducted to try and explain statistical discrepancies 

found. 

Hormonal factors are thought to be a leading cause for the onset of primary joint 

degradation in women at younger ages (<55), however it is still unclear the direct role that 

hormones may play (Liu et al., 2009; Roman-Blas et al., 2009). The Million Women Study 

found that women that underwent a younger age of menarche, or onset of menstruation, (<11) 

experienced higher rates of hip and knee osteoarthritis to a degree needing replacement (Liu et 

al., 2009). Sexual hormone deficiencies cause an imbalance within the skeletal system, which 

can lead to a weakening of the joint space and the surrounding bone, which may cause 

osteoporosis, and ultimately leading to a degradation of the joint, with joint space reduction, 

and potential osteoarthritis (Almeida et al., 2017). One such hormonal deficiency that occurs 

in all women, usually between the ages of 45 – 55, is menopause and post-menopause, although 

reports are conflicted as to the relationship and effect on the joint (Liu et al., 2009; Sacitharan 

and Vincent, 2016; Almeida et al., 2017). Due to the relationship menopause and similar 

hormonal deficiencies have with osteoporosis, but the lack of a solid relationship between such 

deficiencies and OA, it may be reasonable to conclude that OA is then a secondary effect 

related instead to osteoporosis, not the hormones. 

One of the most singular differences between the sexes is the reproduction process. 

Women have the ability to conceive and bear a child, which causes large amounts of strain to 

the body, as well as fluctuating hormone levels. This rapid weight gain and with accompanying 

stress and then return to normalcy, potentially multiple times, can cause a degradation to the 

hip and knee joints faster than males (Jørgensen et al., 2011). The Million Women Study 

collected data on 1.3 million women, average age of 56, through the National Health Service 

of England and Scotland. The study found that the incidence of hip replacement due to 

osteoarthritis was increased by 2% per birth and 8% per birth for the knee (Liu et al., 2009). A 

Dutch study found that the overall risk for OA to the spine and knee was higher for men with 

at least one child than the similar cohort of women (1.22/1.10), however, after adjusting for 

age and sociodemographic factors, women had a slightly higher risk (1.07/1.04) (Jørgensen et 
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al., 2011). The conflicting information demonstrates the complexity of the issue and 

relationships with other factors.  

 

4.3 Activity 
 

 The impact of activity on the progression of joint condition is twofold, as there is reason 

to believe that both activity and the injuries of active individuals may act as a catalyst for the 

condition (Lequesne et al., 1997; Carter et al., 2015). The meniscus of the joint relies on a 

combination of anabolic and catabolic cells, known as fibrochondrocytes, which maintain the 

biomechanical integrity of the structure (McNulty and Guilak, 2015). The menisci are affected 

by genetics, which can mean that certain individuals simply have stronger menisci that can 

withstand more external forces or weaker menisci that can be prone to fail with less external 

strain, and there is a mid-load/intensity range within which the activity level is at its best to 

both maintain joint and muscle strengths (Fergusson, 1987), which would indicate that 

inactivity can be just as damaging to the joint as excess activity levels. To fall below that range 

will shift metabolism to catabolism (Griffin and Guilak, 2005) and to exceed the range will add 

stress to the joint, but both will increase the chance for degeneration of the joint. A balance of 

activity is required in the mid-load/intensity range to maintain joint integrity and decrease the 

chance for joint degeneration and onset of osteoarthritis. Inactivity when combined with 

obesity and osteoarthritis appear to have a cyclical logic: increased weight leads to progression 

of osteoarthritis which limits mobility and leads to further weight gain, as well as having higher 

chances for bilateral development over unilateral (Felson and Chaisson, 1997). However, by 

their very nature, joints will wear down and a common-sense reasoning develops around the 

idea that the more a joint is exploited, the faster the break down. It would appear to be 

inevitable, as the age risk factor seems to support the idea, yet not everyone will develop 

arthritis.  

 One issue, that appears counter-intuitive, is that exercise and regular physical activity 

may be beneficial for the health of the human body but can be harmful to the joint capsule. 

This can be seen in athletes that have developed arthritic symptoms at younger ages, than an 

individual of the same age that has a lower level of activity (Vannini et al., 2016). A study of 

athletes with anterior cruciate ligament (ACL) injuries showed high prevalence rates for the 

symptoms of arthritic conditions developing at younger ages (Lohmander et al., 1999; Vannini 
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et al., 2016), which could then indicate that the activity is not the cause, but the stress injuries 

brought about by the activity. Another explanation could be seen in a study conducted by Calce 

and colleagues (2018), regarding the relationship between cross-sectional skeletal properties 

and the prevalence of osteoarthritis. The authors of the study found a negative correlation 

between femoral robusticity and OA, which would suggest some form of protective property 

as torsional strength increases. 

  There are three essential ranges of activity: low, medium, high. Within the medium 

range, the joints are operating at peak efficiency, maintaining homeostasis within the entire 

joint structure. Within the low range, the body switches from metabolic to catabolic processes 

and can begin to cannibalize the materials utilized within the joint (Griffin and Guilak, 2005). 

When catabolic processes begin to occur, the structural integrity of the joint space and 

surrounding skeletal structures become compromised. Examples of this happening are found 

in amputees, paraplegics, and astronauts, where the decreased load and intensity of use results 

in decrease of muscle and skeletal mass. When the body is pushed to within the higher load 

ranges, there is a higher likelihood of injury to the joint or corresponding limbs. The increased 

loads will intensify the stress to the joint system, thereby increasing the wear.  

 In the palaeopathological world, it was believed that entheseal change was related to 

activity and larger entheses equated to an increase of activity (Palmer et al., 2016; Alves-

Cordosa and Assis, 2021). This has been found to be only partially correct, as entheseal changes 

are strongly related to age, yet broad activity differences are possible to be assessed for 

(pushing/pulling, individuals performing heavy physical tasks, sedentary), but not specific 

types (hammering, punching, kicking, etc.) (Milella et al., 2015). These entheseal changes can 

be linked to OA and the degenerative processes of the femur (r = .425), however, after testing 

different locations, such as the humerus, no such relationship was found (r = .098) (He and de 

Almeida-Prado, 2021). A similar study using remains from an early post-medieval assemblage 

from Poland found entheseal changes to be the strongest predictor for the development of OA 

(p = .041) (Myzka et al., 2020). This study also found that entheseal changes correlated with 

certain joints (wrist of hip) but not others (shoulder, elbow, knee, ankle). Studies like these 

could indicate that while activity plays a part in the degenerative process, the entheseal changes 

form independently or concurrently from the OA. 

 A potential gendered/sex-based division of labour has been theorized in past 

populations and a study of post-medieval Dutch populations found differing levels of entheseal 
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changes and OA (Palmer et al., 2016). This study showed that entheseal changes had developed 

at different attachment sites for males and females, with different activity levels associated with 

those muscle groups (males = lifting/heavy loads; females = pushing/pulling). Palmer and 

colleagues (2016) also found that that EC was not significant in relation to OA. Similar findings 

were reported by Weiss and colleagues (2012), in which the researchers gathered data from a 

pre-Columbian northern California population and found the development of entheseal changes 

varied by sex, as well as body size. While the authors found reverse trends in the pattern of 

entheseal development to older studies concerning potential established activity for each sex, 

the differences between the sexes would still illustrate the potential for a gendered/sex-based 

division of labour. 

 

4.4 Body Mass  
 

 The biomechanical structures that make up the musculoskeletal frame are only capable 

of supporting a given mass, and any increase above the maximum tolerance will stress the load 

bearing joints. Obesity places an increased stress on the mechanical loading of the joint as well 

as having the potential for causing neuroendocrine-metabolic stimulus, which can cause the 

body’s internal systems to fall out of homeostasis (Brahmabhatt et al., 1998). The body mass 

index (BMI) was designed by clinicians to determine a healthy weight for an individual and is 

measured as kg/m². Women have been to have a higher association between obesity and 

osteoarthritis, mainly at the knee, than men (Williams, 2006). However, a study by Holmberg 

and colleagues (2005) found that men displayed significance with knee OA and normal a 

normal BMI (<25 kg/m²) around the age of 30. The Holmberg and colleagues (2005) study 

may suggest that it is not simply the weight, but the location of the addition weight, such as it 

being more common for men around the midsection and for women around the thighs and 

bottom, affecting the condition. 

Using odds ratios shows that the chance of developing knee OA increases as BMI 

increases. A study of normal weight individuals showed that OR increased by a factor of 4 

when comparing males <23 kg/m² and then a group 23-25 kg/m² (Holmberg et al., 2005). In 

obese individuals the OR increases by a factor of 13.6 with a 36 kg/m² or higher BMI compared 

to the 0.1 for individuals that fall within the normal weight BMI spectrum (Coggon et al., 

2001). Individuals that fall into the morbidly obese spectrum present higher rates of joint 
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pathologies with an abundance of clinical data focused on OA in the knee (Shiozaki et al., 

1999; Syed and Davis 2000; DeVita and Hortobágyi, 2003). According to a study of BMI 

compared with knee OA, 18.3% of individuals between 20.0 – 24.9 kg/m² category, 47% of 

individuals between 25.0-29.9 kg/m² and 33.7% over 30.0 kg/m² showed evidence of knee OA 

(Coggon et al., 2001).  Obese individuals are 33% more likely to require a knee replacement 

due to increased stress and deterioration (Mooney et al., 2011), with 24% of surgeries in 

England performed on obese individuals (Coggon et al., 2001).  Women who are obese have 

shown higher rates of developing OA in the knee than obese males (Felson and Chaisson, 1997, 

Coggon et al., 2001). Obesity and increased mass may cause morphological changes to the 

skeleton, increasing skeletal mass as the body seeks to compensate with the increase stress 

(Brahmabhatt et al., 1998, Auerbach and Ruff, 2004). The chance of development of knee OA 

in obese individual increases to 13.6 with a 36 kg/m² or higher BMI compared to the 0.1 for 

individuals that fall within the normal weight BMI spectrum (Coggon et al., 2001).  

The scale for BMI is 0 – 18.4 kg/m² underweight, 18.5 – 24.9 kg/m² normal weight, 25 

– 39.9 kg/m² overweight, and 30 kg/m²+ obese, with different levels of obesity. An individual 

weighing 80kg with a height of 1.82m would have a BMI of 24.2 kg/m²: normal. An individual 

weighing 110kg with a height of 1.82m would have a BMI of 33.2 kg/m²: obese (WHO, 2000). 

Increased weight does not equal obesity creating an inherent flaw with the BMI chart, as 

individuals with increased muscle mass will have increased weight and therefore score higher. 

For instance, in the example above, the individual with the obese BMI score could be a body 

builder with less than 8% body fat, not an individual that would be considered grossly 

overweight or obese. However, for the purposes of examining osteoarthritis, individuals with 

a BMI in the overweight to obese ranges should still, in theory, have increased wear over time 

to load bearing joints (Tözeren, 2000).  

Obesity is itself the result of a suite of additional risk factors which include diet, activity 

levels and genetics. Increased consumption of food or eating foods rich with fats or sugars can 

cause an increase to body mass in the form of fat. A high caloric diet with a lack of activity can 

cause an individual to gain mass and become obese as the body is unable to burn off the excess 

calories (Brahmabhatt et al., 1998). These factors can contribute to increase body mass and 

obesity as single factors or as a combination of factors. 
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4.5 Diet 
 

Dietary factors can be linked to body mass; however, the types of food can be as 

important as the quantity (Williams and Spector, 2006). High fat diets (HFD) and vitamin 

intake have been linked to the onset and progression of the joint conditions; however, the 

relationship may not be completely clear whether the affect promotes primary or secondary 

conditions (Mooney et al., 2011; Chaganti et al., 2014; Sansone et al., 2019). By managing or 

changing the diet, to include weight loss or anti-inflammatory properties, an individual can 

manage the effects and progression of OA (Baures and Ivorres, 2019). 

High fat diets, which can also be linked to the cause of obesity, have been linked to the 

onset of OA, especially in combination of a previous injury (Mooney et al., 2011). Research 

using meta-data from laboratory mice studies found that a HFD will often exacerbate the early 

stages of OA and induce the onset of the conditions (Sansone et al., 2019). A HFD is linked to 

the pro-inflammatory gene IL-1β, which is further linked to the onset of OA (Mooney et al., 

2011), and the laboratory mice studies showed that the HFD can induce an increase of the gene 

(Sansone et al., 2019). Therefore, a HFD not only increases the risk of OA by causing obesity 

and the subsequent stressors of increased mass, but also impacts the joints at the microscopic 

level via these interleukin (IL) proteins.  

The Vitamins C, D and E, which are linked to the development of new bone essential 

for a healthy joint, have been found associated to the onset and progression of OA when found 

to be imbalanced within the body (Williams and Spector, 2006). Vitamins C and D are also 

linked to the anemic disorders, scurvy (Vitamin C) and rickets (Vitamin D), when deficient, 

which can cause a change to the gait of the individual, causing external stress and wear on the 

joint, which may be linked (Roberts and Manchester, 2005). Vitamin C and E are antioxidants, 

once thought to help prevent osteoarthritic conditions, however, high levels have been 

associated with the onset and progression of OA, especially within the knee (Chaganti et al., 

2014). Being deficient or overly saturated with these vitamins can be harmful to the health of 

the joint, and as with activity, the middle ground just may be essential to a healthy joint 

(Williams and Spector; 2006; Chaganti et al., 2014). 

While diet may be linked to OA, for the purpose of this study, it was not able to be 

tested for, as that would require destructive methodologies, namely isotopic analysis. Isotopic 

analysis causes the destruction of the source material, which, over time, decreases the amount 



48 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

of skeletal material that is available for study and can only give carbon and nitrogen values for 

of the food sources. These types of analyses are important but require highly focused research 

questions with many institutions not allowing such practices to preserve the materials. 

 

4.6 Summary 
 

These risk factors, with the exception of diet, have been chosen as they can be assessed 

on the skeleton without destructive methodologies being utilized. The risk factors are complex, 

and while considered singly, are often found in conjunction with one of the other risk factors 

(e.g. lack of activity and increased body mass; sexual dimorphism concerning body size). 

Unfortunately, as the osteoarchaeological samples do not come with this information, best 

estimations via established, accurate and repeatable methodologies will need to be created as 

proxies for the living variants. These techniques will be discussed in Chapter 6. 

The joint conditions being assessed within this body of work (osteoarthritis, ankylosing 

spondylitis, sacroiliitis, and degenerative disc disease) are relatively common and complex 

conditions. The aetiologies of the pathologies share similarities, making assessment of the 

markers and skeletal features quick and simple, but it is the differences between these 

pathologies that can illuminate information on how these individuals lived. While the joint 

conditions can be assessed with ease, the risk factors require more skillful methods for 

assessment and analysis. The relationships between the risk factors and the joint conditions 

display a more complicated relationship and this body of research intends to review and 

evaluate these relationships, as well as examine the prevalence rates for the populations in 

comparison to both modern and past data.  
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Chapter 5 Materials 
 

5.1 Sample Criteria 
 

 Skeletal sample selection was based on two factors: age at death and presence of 

necessary skeletal elements. The first factor required the skeletal material to be that that of a 

biologically mature individual, assessed to be over the age of c. 18 years at the time of death. 

This is because research has shown that age is a major factor of the conditions being researched, 

and juveniles would not provide any data that would be usable due to the rarity of the conditions 

being found so early in life (Waldron and Rogers, 1995). The second factor was the presence 

of the skeletal elements needed for assessments: lumbar vertebrae, pelves, femora, patellae, 

and tibiae (see Figure 5.1 and Figure 5.2). The joints of these bones have been chosen due to 

their relationship with locomotion and load bearing. 

 

 
Figure 5.1 The skeletal elements assessed during this thesis for joint condition. 
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Figure 5.2 The joint locations that were assessed during this thesis for joint condition. 

 

5.2 Sample Collections 
 

A total of 187 individuals, selected from skeletal collections representing English post-

medieval populations (c. 18- 19th centuries CE), were able to be used for this research (see 

Table 5.1 and Figure 5.3). The post-medieval period was chosen to research joint conditions 

due to the massive adjustments in the society as technology and daily life change substantially 

throughout this era. Five of the samples are from urban populations and the sixth, Barton-upon-

Humber, was a small rural village. The maintenance of a distinction between urban and rural 

populations should help to distinguish between the different habitual activity and lifestyle 

patterns of the populations. Moreover, selecting collections from the same country and from a 

similar time periods helps to increase the chance for similar habits, technology, and cultural 

practices across the collections. These similarities will create a more pseudo-homogenous 

population type with decreased chance of an external factor affecting the data or results, 
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allowing for the internal risk factors to be assessed more accurately. The sites have been 

numbered for data analysis with sites 1-5 being urban and site 6 being rural. 

Due to poor preservation of some skeletal remains, not all skeletons were complete or 

well preserved for in-depth assessments. Skeletons may have been initially utilized and been 

part of the skeletal assessments to bolster sample size, but when doing the further prevalence 

and statistical assessments, the increased samples did not also provide an increase to the data. 

Therefore, those samples were not included within the results sections of this research. 

 
Table 5.1 The skeletal collections included in this thesis with location, sample size and curatorial information. 

SITE 
# SITE NAME LOCATION 

SAMPLE 
SIZE 

CURATING 
INSTITUTION 

1 
CHURCH OF ST HILDA, 
CORONATION STREET 

SOUTH SHIELDS, 
NEWCASTLE UPON 

TYNE 46 
UNIVERSITY OF 

SHEFFIELD 

2 
CARVER STREET 

METHODIST CHURCH SHEFFIELD 4 
UNIVERSITY OF 

SHEFFIELD 

3 
ST PETER'S COLLEGIATE 

CHURCH WOLVERHAMPTON 20 
UNIVERSITY OF 

BRADFORD 

4 
QUAKER BURIAL 

GROUND 
KINGSTON UPON 

THAMES 24 
BOURNEMOUTH 

UNIVERSITY 

5 ST AUGUSTINE THE LESS BRISTOL 2 
BOURNEMOUTH 

UNIVERSITY 

6 ST PETER'S CHURCH BARTON UPON HUMBER 91 
ENGLISH 

HERITAGE 
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Figure 5.3 The site locations with the historic counties of England. 
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5.3. Post-Medieval England  
 

The post-medieval period in England covers the span of history from the 16th to the late 

19th or early 20th centuries CE, ending with the start of the early modern period. This period of 

history is broken into two sub periods with the early post-medieval period covering roughly 

the 16th and early 17th centuries CE and the late post-medieval period covering the late 18th 

century CE to the end of the post-medieval period (Jenkins, 2018). This period is significant as 

a result of two major events: the industrial and agricultural revolutions. 

The industrial revolution was a period of unprecedented economic and technological 

expansion, giving rise to the steam engine, railroads, and the factory, enabling mass production 

and availability of goods to locals as well as to international markets (Hey, 2009; Wrigley, 

2016). People of lower socioeconomic status were no longer as confined to the geographical 

areas of their birth and could access greater opportunities to leave to find work or settle down 

for family life (Barker and Hughes, 2020). During the agricultural revolution, new technologies 

and techniques helped turn simple plot farming into an industry unto itself (Bujak, 2007). 

Larger fields were able to be utilized, producing goods for not just the family and locals, but 

that could be sold wholesale to external markets (Allen, 1999). The increase to food production 

would mean greater stores in times of famine or hardship and allow for a greater variety of 

food stuffs to people that may not have had access before. 

These significant events that characterized the post-medieval period in England 

occasioned widespread change in many people’s social and working lives, impacting both 

urban and rural communities. In the following section, some of the major events of the 

Industrial Revolution are introduced in order to offer a historical context for the skeletal 

assemblages studied in this thesis. In light of the opportunity for this study to examine a 

combination of rural and urban individuals, this discussion focuses on revolutions in both 

industry and agriculture.  

 

5.3.1 Industrial Revolution 

 

The steam engine was one of the most famous technological marvels to come out of the 

industrial revolution in 1712 with the Newcomen atmospheric engine (Allen, 2009). This 

engine was revolutionary but inefficient in fuel and power output and over the next 150 years 
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engineers sought to improve on the design. The steam engine used a coal furnace to boil water 

which moved internal components creating power that could be harnessed (Nuvolari et al., 

2011). The steam engine was important not just for the railroad but for altering the effectiveness 

of waterborne vessels and powering industrial machinery, such as water pumps, looms and 

assisting water wheels. Seafaring vessels of the time relied on wind and sail, which worked 

effectively, but was not always reliable if the winds were to die for any length of time. Not 

only could the ships now travel more reliably on the open ocean, but they could also travel 

faster, allowing for more goods and people to be transported over a shorter period of time.  

River travel was growing, as the steam engine allowed for ships to move more smoothly 

upriver, against the current. Canals were dug and extended to allow for the transportation of 

goods from one location to another without clogging the rivers with traffic, such as the 

burgeoning steel industry in Sheffield (Hey, 2009; Wrigley, 2016). The canals had a consistent 

depth and width, making easing navigation through these section with less fear of bottoming 

the ship on a sandbank or rocky outcropping. These canals became the highways of the era and 

the cargo ships were the lorries. 

The steam engine was also used on land and gave us an invention that is very much in 

use today: the railroad. The early iterations of the railroad were slow and clumsy, needing 

constant maintenance, but allowed for the hauling of cargo that would otherwise have needed 

to be carried by multiple horse and donkey drawn carts (Wrigley, 2016). A technological race 

to create a better engine quickly ensued and quickly newer variants were coming into service 

that could haul more tonnage at faster speeds and to further locations (Nuvolari et al., 2011). 

However, the drawback of the railroad was some of the features that make England so beautiful: 

the numerous rolling hills and valleys. The early trains had difficulty travelling uphill while 

towing cargo, which meant that tunnels would need to be dug and bridges built to accommodate 

this issue (Gregory and Hanneberg, 2010). 

Rail lines spread throughout the country acting like veins, starting with travel from a 

coal mine to a factory and by 1876 connected the entire country (Gregory and Henneberg, 

2010), bringing an influx of workers and goods to areas that were lacking and uniting areas of 

England with Great Britain that had may have had little to no contact in previous centuries 

(Joyce, 2007). Now trade goods, such as coal, could be mined/created in one part of the country 

and be available in other parts of the countries within the week, far quicker than at any other 

point in history thus far (Wrigley, 1967). Goods no longer had to be produced locally and goods 
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from Europe and further foreign markets could be found more readily available, when once 

these goods were considered a luxury (Hey, 2009). Port towns grew up to accommodate this 

influx of external trade, such as Bristol and ports on the Humber nearby to Barton-upon-

Humber, which then imported the goods to the rest of the country via these new rail systems. 

As travel by railway became more popular and routine, individuals could use it to travel 

for leisure as well as work. By the 1820s, the travel times between Manchester and London 

would fall from 16 hours for mail and 30 hours for passengers to 5 hours and 40 minutes and 

by 1910 would decrease further to 3 and a half hours (Gregory and Henneberg, 2010). This 

would lead to the expansion of cities as individuals travelled in from the countryside in search 

of work, and more towns began appearing around each new industrial center (Wrigley 2016). 

In the case of Sheffield, an 1851 census shows that 36.3% of individuals living in the city had 

immigrated from other parts other areas (Hey, 2009). Overcrowding in cities and poor sanitary 

conditions would have affected the health of the individuals living there, as evidenced by the 

higher prevalence of cribra orbitalia in a sample population from York and an increase in poor 

health in Wolverhampton (Joyce, 2007; Watts, 2013; Western and Bekvalac, 2020). 

With the importance of the steam engine expanding, coal mines expanded and become 

essential to the management of these new transport systems. Urbanization began as small towns 

and cities began grow and develop industry relating to the railroad, creating a boon to the 

economy, as seen by the coal mining at South Shields (Joyce, 2007; Hey, 2009; Wrigley, 2016). 

This wealth of industry allowed England to grow and prosper and maintain its status as a power 

in the world (Crouzet, 1967). The birth of factories was both a boon and curse on the individuals 

living during this time. Factories allowed for the mass production of goods that had previously 

requires years of mastery as a tradesman to be able to create (Nuvolari et al., 2011). The rich 

and poor alike could share in the goods that had previously belonged in the domains of the elite 

and wealthy. Textile and cutlery factories were two of the many types of factories that arose 

during this time, allowing for fabrics to be created more swiftly using powered looms and new 

styles of clothing to be available to all classes and allow for different forms of cutlery to become 

more common to the average individual (Hey, 2009; Nuvolari et al., 2011). Factories producing 

cutlery from the local steel works helped turn Sheffield from a small semi-industrial town into 

a large, prosperous city that continued into the present. 

However, the factories had a darker side that has given rise to many of the laws and 

procedures in use today. When the children reached adolescence, they could begin to assist 
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with jobs outside the household to help out the family, such as gathering wood for fires, 

working in the fields to help harvest or working in factories, which had long hours and 

miserable conditions (Heaton, 1967; Houlbrooke, 1984; Barker and Hughes, 2020). However, 

it has been noted that children would begin doing any work that could assist their parents while 

still within the household, such as weaving wool (Horrell and Humphries, 1995). Small 

children were often used for the operation of delicate, yet still dangerous, machinery due to 

their small stature and petite hands (Horrell and Humphries, 1995). While this allowed for an 

increase to the family’s income, children were abused in the system as workhouses for the poor 

were developed as a prelude to modern day orphanages and children, as well as women, were 

utilized as little more than slave labour (Orsi, 2017). This may mean that child labour was not 

a new phenomenon but may have simply been a more visible one. These conditions were not 

the sole issue of children, and women and men alike were working in dark, dirty, cramped and 

often dangerous conditions. Any debilitating injury, such as the loss of a limb, meant the loss 

of income and job for the individual, and due to the medical conditions of the time, may also 

have meant a loss of life (Hey, 2009). 

 

5.3.2 The Agricultural Revolution 

 

The timing of the agricultural revolution is contentious, and it is unclear as to which 

revolution came first, if one helped precipitate the other, or if they simply developed 

concurrently (Allen, 1999). Agriculture was largely affected by the industrial revolution as new 

technology was developed and employed which allowed for greater yields using less material 

and land, making farming more efficient and profitable. Farmlands were able to expand as 

larger areas were able to be cultivated, producing more goods, up to 3.5 times that of the 

previous eras, that could be sold at markets outside of the immediate vicinity (Williamson, 

1998).  

At the start of this new agricultural revolution the techniques and processes were labour 

intensive requiring considerable help from hired hands (Mingay, 1991). While these methods 

improved crop output, the physical input required on the fields as also increased. Newer 

technologies were ignored, such as seed drills and new drawn horse hoes/plows were ignored 

or neglected. It was thought that the advantages of using such new tools were too small and 

only helped increase seed output and land arability while increasing labour input. It was not 
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until the late 18th century CE that advances in mechanical technologies, such as the steam 

driven thresher or mechanical reaper, began to be seen in the agricultural world. The newer 

mechanical technology not only increased outputs but also decreased the human labour 

involved in the process. 

Land usage for agriculture had expanded, with newer and larger farms being created 

using the new processes being developed. Advancements in irrigation began to allow for water 

to be circulated among fields more efficiency, thereby increasing yield and productivity. The 

process of floating a field, a process which was not new, but becoming more common place, 

was believed to have become popular sometime in the late 16th century CE (Williamson, 1998). 

Floating was the process irrigation by-which a leat was used to feed water down a series of 

channels down the sides of a hill into a valley. Sluices could be used to allow for the build-up 

and release of water, or to direct the flow of water to a specific area. Marshlands and other 

natural features that were otherwise unsuitable to inhabit were being utilized, via new drainage 

methods, to expand farms, hunt, and fish, and for expansion of grazing enclosures (Barber and 

Pelling, 2019). This expansion of land into otherwise unusable or barely usable lands meant 

for greater areas of cultivation and expansion of rural or semi-urban towns with increased 

housing. In Barton-upon-Humber, these new practices allowed the town to flourish and with 

the additional factories along the Humber brought in fresh workers and goods. 

Crop rotation was improved significantly during this period, starting in the east of 

England, and spreading to the rest of the country. Cereal grains were combined with newly 

introduced crops, such as radishes and artificial grasses (Mingay, 1991). This allowed for the 

artificial grasses to replace the nitrogen in the soil via atmospheric transference with the need 

to only leave the field fallow for a single year, rather than 2 as was the traditional rotation 

practice (Williamson, 1998). 

The revolution in the practices and output of this time did not have the unstoppable 

force that was comparable to the industrial revolution and a period of stagnation occurred in 

the late 18th century CE (Allen, 1999). This stagnation did not last long, but food consumption 

per family dropped and a surge of production began around the start of the 19th century CE. 

While many agricultural revolutions have occurred over the course of human history, the first 

of which allowed humans to settle into villages, this revolution developed many of the 

techniques and technology that, while more refined, is still in used today.   
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5.4 The Sample Sites  
 

The sites chosen for this research represent populations from a group of industrial 

centers spread throughout post-medieval England. England has had a long and continuous 

period of occupation, providing a rich and unique history that has been well documented and 

studied. This would make English populations a valuable resource to study to better understand 

how joint condition affects not just the populations at large, but also create a timeline for the 

conditions across multiple English historical periods when compared with similar studies. 

While the cemeteries may have been in continual use for centuries, this research focuses only 

on the latter burials that fall into the post-medieval period of English history.  

 

5.4.1 Church of St Hilda, Coronation Street, South Shields, Newcastle-upon-Tyne 

 

Named after St. Hilda of Whitby, an important figure who helped to convert England 

to Christianity in the 7th century CE, the Church of St Hilda is a parish located within the town 

of South Shields. The town was located roughly 5 miles east of Newcastle-upon-Tyne, on the 

southern shore of the River Tyne, and by the 19th century CE, the town had reclaimed its 

historic lands along the banks of the Mill Dam, which the early town had grown away from 

(Raynor et al., 2011; Archaeological Services Durham University, 2006). During the 19th 

century CE, South Shields had grown into a city with industries focusing on coal mining and 

salt-panning (English Heritage, 2004; Archaeological Services Durham University, 2006). 

After the medieval period, the landscape around the town changed, with build-up from 

the dumping of ships’ ballast and industrial ash waste and by around 1816 CE Mill Dam was 

infilled. Concurrent with the change in landscape, the population of the town increased, 

however, St Hilda’s remained the sole church for the town and was expanded to adapt in 1753 

and 1786. The booming population left the church yard overcrowded with burials and the threat 

of disease from the unsanitary conditions forced the council to investigate alternative options 

for the burial of the dead (Raynor et al., 2011).  

The church of St Hilda is believed to be on the site of an earlier chapel, potentially 

dating to the 7th century CE, however the cemetery from which the skeletal remains studied in 

this thesis are derived from is post-medieval internments, which was expanded from the earlier 

medieval cemetery sometime after 1631 CE (Raynor et al., 2011). By the early 19th century 
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CE, the church yard had become overcrowded with graves and work began on expanding the 

grounds (Archaeological Services Durham University, 2006). The graveyard was officially 

closed on 1 July 1855 CE, with only exceptional burials allowed until 1860 (Raynor et al., 

2011).  

Excavation of the cemetery took place in 2006 and more than 188 burial plots were 

uncovered containing both articulated skeletons and charnel deposits (Raynor et al., 2011). The 

population consisted of 114 adults, 3 adolescents and 87 sub-adults, with a slightly higher 

percentage of females to males. Overall, the adult skeletons were well preserved and are 

thought to be those of the laboring class. 

 

5.4.2 Carver Street, Methodist Chapel, Sheffield 

 

Sheffield is a city located in South Yorkshire near the confluence of the River Don and 

River Sheaf. It has seen varied occupation with physical evidence dating back as far as the 

Bronze Age (Hey, 2007), however the majority of archaeological evidence for occupation of 

the area dates to the medieval and post-medieval periods. The earliest documented accounts of 

industry in the area, from the Sheffield manorial accounts of the mid 15h century CE, show 

evidence for the production of coal and charcoal, nevertheless there is archaeological evidence 

for charcoal burning much earlier, during the Roman period in nearby Templeborough. 

Following the Norman Conquest, a castle was built on a hill overlooking the town that, 

centuries later, the future Mary, Queen of the Scots, would spend a significant portion of her 

imprisonment (Moreland and Hadley, 2020). 

The first Methodists arrived in Sheffield in 1738 CE. However, Methodists were 

viewed as radical troublemakers and were not welcomed in the area, and so the first church 

was destroyed by rioters during a sermon in 1743 CE (McIntyre and Willmott, 2003; Price 

2008). The Methodist Chapel located at Carver Street was opened in 1805 with an attached 

cemetery open to burials for roughly half a century between 1806 – 1855 CE. W. Jenkins, the 

first minister, designed the chapel for simplicity over beauty and by 1851 CE the chapel had a 

congregation of 766, with roughly 1600 inhumations in the adjoining graveyard (McIntyre and 

Willmott, 2003; Mahoney-Swales et al., 2011). The cemetery was no longer able to be utilized 

at the location within the city after the passage of the Burial Grounds Act of 1857, and burial 

ceased from this point.  
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 The population of Sheffield increased from roughly 10,000 in the mid-18th century CE 

to roughly 45,000 at the turn of the 19th century CE due to an influx of new people to support 

growing and diversifying industries (Sheffield City Council, 2006). By 1820 CE, the canal was 

completed, and the cutlery and steel industries were developing and became key industries that 

would help build Sheffield in a richer city. Sheffield was a heavily industrialized city, and in 

the 17th century CE an estimated 1 in 5 men worked in one of the many cutlery trades and there 

was a smithy to over 2.2 households (Hey, 2007). To assist with the population boom, new 

schools and centers for learning were built, along with public hospitals and parks, such as the 

extant Botanical Gardens. 

An excavation of the burial grounds in 1999 revealed 47 graves with 101 articulated 

skeletons and roughly 30 disarticulated remains (McIntyre and Willmott, 2003). The 

population of the cemetery is believed to be that of skilled laborer’s, consistent with the 

population of Sheffield at the time. During examinations, half of the skeletons were unable to 

be reliably sexed with the remaining half being almost split between males and females. 37 of 

the skeletons were found to be immature, four of which were neonates, and the final 99 were 

determined to be adult. The remains from this collection were of mixed preservation with 

missing elements being common. 

 

5.4.3 St Peter’s Collegiate Church, Wolverhampton 

 

Wolverhampton, formerly Wulfruna and Wulfruna’s Heanton, is a city located in the 

County of West Midlands, formerly the County Staffordshire, founded in the late 10th century 

CE. During the mid-19th century CE, Wolverhampton was heavily influenced by the industrial 

revolution, prospering due to the local industries and new railway system in the area. These 

industries included coal mining, iron, steel, japanning, Bilston enamels, and ceramics, making 

the city of Wolverhampton a hub for industry within the Midlands (Joyce, 2007).  

St Peter’s Collegiate Church, located within the northern portion of the city of 

Wolverhampton, is an active church whose founding date is unknown but believed to be 

towards the end of the Anglo-Saxon period in the 11th century CE. The current structure of the 

church dates to the 15th century CE.  
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Between 2001 and 2002 CE an overflow cemetery was excavated by the Birmingham 

University Field Excavation Unit and 157 individuals dating to the mid-19th century CE were 

excavated (Adams and Colls, 2007). As the remaining individuals left for exhumation by the 

archaeological team were located within the church, it could be assumed then that these 

individuals were well to do within the city. The remains from this collection were typically 

well preserved, however, missing elements was not uncommon. 

 

5.4.4 Quaker Burial Ground, Kingston upon Thames 

 

Kingston-upon-Thames is a town currently located at the south-west extent of Greater 

London. Evidence for the earliest occupation of the area occurred during the Romano-British 

period, however, the earliest known development took place under the Anglo-Saxons. The 

Anglo-Saxons named the town Cyninges tun in 835 CE and turned it into the earliest known 

royal boroughs for the Anglo-Saxon kings. As a royal borough, the industry of the area was 

based around the needs of providing for the members of the royal families and the upper-class 

members of the court (Malden, 1911). The area was originally used for agriculture, as 

evidenced by the orchards used later by the Quakers for burial, as well as for stud farms to 

produce quality mounts for the nobles. As the town grew into a city around the 16th century 

CE, the city had multiple markets and fairs, as well as trading companies. 

The Quaker Burial Ground is located on what was the fringes of the medieval town at 

the foot of the Kingston Hill, later incorporated into the town of Kingston-upon-Thames 

(Bashford and Sibun, 2007). A Society of Friends (Quakers) community has existed in the area 

from the mid-17th century CE with the first burial, that of Ann Stevens, recorded on 26 June 

1664 CE. The Burial Ground was an orchard, in accordance with Quaker traditional of burials 

taking place away from the traditional Christian church yards. By the late 19th century CE, the 

majority of the grounds had been covered over by a Quaker chapel, porch, and glass houses 

with only a third of the land remaining open. While the Quakers recorded the events of the 

community, including births and deaths, it should be noted that the records are incomplete and 

partial, however, due to the records, these burials included named individuals. 

The excavation at the site took place in 1996 and 364 individual burials were identified 

(Bashford and Sibun, 2007). However, despite the individual burials and the coffin materials, 

only 39 were established to be well preserved with many of the remains being fragmentary. 
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Individuals determined to be adult by osteological samples were the majority, with more 

females than males in the burials. The Quakers of this area are believed to have been in the 

middle to upper classes and represented many of the local merchants. 

The Quaker Burial Ground, Kingston upon Thames offered a unique perspective for the 

research as there were cases of named individuals with known age at death and biological sex. 

When assessing for biological sex or age at death there is a degree of error and 

misinterpretation, especially concerning age at death, and so these individuals allowed for more 

accuracy. The names of the individuals were not used within this study. The remains from this 

collection were generally well preserved, however missing elements were not uncommon. 

 

5.4.5 Church of St Augustine the Less, Bristol 

 

Bristol is a city located in south-west England between Somerset and Gloucestershire 

and was established sometime in the 11th century CE (Boore, 1986). The city included a port 

with trade ties to western Europe and was notable as being a key port for the English 

participation in the slave trade (Dresser, 2009). The city had an abbey, now the cathedral and 

an adjacent church, both believed to be named after the Roman missionary St Augustine, the 

Apostle of the English, first archbishop of Canterbury, however as the order was Augustinian 

founded by St Augustine of Hippo, there is a question as to which St Augustine is the actual 

namesake (Higgins, 2012).  

The adjacent church, known as St Augustine the Less, built along the River Frome, was 

thought to have existed before the construction of the abbey and may have been a parochial 

church known to have existed in that area by the late 13th century CE. Another theory is that 

the church was built as a temporary chapel for the religious order as the abbey was under 

construction (Boore, 1986). The church had fallen in disrepair by the 15th century CE, was 

rebuilt in 1480 CE and further extensive repairs had taken place in 18th century CE.  

The earliest burials found on the site date to the 11th century CE. The site had a larger 

than normal number of burials during the first half of the 17th century CE, due to a local 

pestilence (Boore, 1985). During the mid to late 19th century CE, burials within the church yard 

were being exhumed and moved to make way for contemporary urban development, halting 

the use of the cemetery. St Augustine the Less was demolished in 1962 CE and excavated 
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1983-84 CE (Boore, 1986), uncovering a total of 136 stratified burials from within the church 

and surrounding yard. The post-medieval period saw the building of bricked vaults containing 

remains of coffins, 107 of the vaults were found within the church itself. This expenditure 

would not have been cheap, and therefore it would be assumed that the inhabitants would have 

been more affluent.  Many of the burials within the church had been cut through or exhumed 

as later burials were deposited, which lead to the comingling of individuals. 

 

5.4.6 St. Peter’s Church, Barton-upon-Humber 

 

St. Peter’s Church is located within the town of Barton-upon-Humber, North 

Lincolnshire, located on the southern banks of the River Humber. There is evidence of human 

activity at the site pre-Roman times, however, there is no evidence for significant occupation 

of the site, such as developed later, prior to the Early Anglo-Saxon period (Waldron 2007). The 

town consisted of a small port with a ferry across the Humber and the town initially prospered 

(Watts, 2013). By the close of the medieval period, economic growth had stagnated, and the 

town was considered to be poor by contemporary standards with children, as young as 10 years 

of age, being sent off to work in the fields for extra income (Houlbrooke, 1986; Clapson, 2005). 

The economic growth of the village experienced a revival when in the 17th century CE factories 

were built along the river, shifting the workforce from the maritime/agriculture into the 

factories (Bryant, 2003). Isotopic analysis found the food sources to be varied from fish, meat, 

vegetables, and other marine resources (Beavan et al., 2011).  

St Peter’s Church was established in the Anglo-Saxon period (Waldron, 2007) as a 

simple square tower. Over the century the church experienced continued expansion, adding 

new structural pieces to enlarge the space.  This expansion lasted until the late 19th century CE 

when the current structure was finished and a newer and larger church, on an adjacent plot of 

land, became the dominant place of worship within the town. The final burial within the church 

was in 1844 and the final burial in the church yard, which had been expanded to the south in 

1850, took place in 1855 (Rodwell and Atkins, 2011). 

Excavations of the church and churchyard took place between 1978 and 1984. Roughly 

2800 articulated burials were excavated from within the church and the churchyard (Waldron, 

2007). A total of 484 burials were in the church, however, many of which were not originally 

intramural but had subsequently had the church extended over them. The contemporary 
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registrars of the church state that the individuals buried exemplified the more affluent members 

of society with the elite upper class and middle class being present. These burials were found 

within 5 phases representing the differing periods of time the church was in use with an 

additional 4 phases covering both adjacent periods (i.e., Phase A/B, B/C) between the time 

periods. 427 burials were found to be in Phase A covering 1700-1855, which was divided 

evenly between males and females. Age is not listed by period but roughly 1800 of the total 

assemblage was considered to be adult. The skeletal samples within this collection were, for 

the most part, well preserved with few elements missing for assessment.  

 

5.5 Summary 
 

The joint locations selected for this research represent joints that are load bearing from 

the lower spine and lower appendicular skeleton. The post-medieval period in England saw 

major upheaval as new technologies and practices changed the lives of the citizenry from the 

highest to the lowest stations. The changes should, therefore, be evident on the skeleton in the 

form of joint conditions and using the sites discussed above, provide a good cross section of 

the individuals from the time over differing occupation types and social strata.  
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Chapter 6 Methodology 
 

The methods used within this body of research have two main components: (1) skeletal 

assessments and (2) statistical analysis. First, skeletal examinations were completed to generate 

an original dataset tailored to the aims of the present project. This required the skeletal samples 

to be present in either a laboratory setting, or as in the case of Barton-upon-Humber, in the 

storage location of the materials. The skeletal assessments included determining the biological 

sex and age at death of the samples, recording measurements for the assessments of height, 

mass, and cross-sectional geometry, assessment of entheses related to the joints, and 

palaeopathological assessments. The palaeopathological assessments included appraisal of the 

joints for the markers of joint disease and the entire skeleton for any potential differential 

diagnoses and to attempt to find any insult to the skeletal material that could cause secondary 

cases of the joint conditions. The statistical testing was completed using IBM SPSS Statistics 

software v.23-26. and included tests for association/correlation, measuring asymmetry, 

binomial logistic regression and determining odds ratios. 

 Initially, osteological methods were used to create a demographic profile of the sample 

populations to determine distribution of biological sex and age at death across the entire 

population, as well as between the individual sites and site categories. With these demographic 

profiles, prevalence of the joint conditions can be assessed to help determine any trends. The 

methods used to create the metric variables for height, skeletal mass, and cross-sectional 

geometry, discussed in detail further in this chapter, will help to assess how activity and body 

mass affect the prevalence of the joint conditions. The combination of these methods should 

create a detailed profile to help identify and further understand the complex relationships 

between skeletally assessable risk factors and joint conditions. 

 

6.1 Skeletal Assessments  
 

 The skeletal assessments took place in a laboratory environment, except for Barton-

upon-Humber which took place within the onsite bone storage in the church. Standard 

assessments of demographic variables were first completed, recording biological sex and age 

at death. Biological sex is important to conduct first, as later assessments are dependent on 

knowing the sex of the individual. A variety of measurements of the long bones from the lower 
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limb of the skeletal samples were recorded to calculate skeletal stature, body mass, body mass 

index and cross-sectional indices. These variables are split between the demographic 

information that is independent (age at death, biological sex and site category) and not 

potentially caused by something else and the dependent variables (BMI, EC, cross-sectional 

indices) that can be influenced and caused by the independent variables. 

The final portion of the assessment entailed analyzing the skeletal material for markers 

and features that would allow for differential diagnosis of the joint conditions, as well as 

identify any other pathological conditions that may be present that could affect the onset of the 

joint conditions or cause secondary cases. These pathological conditions can include, but are 

not limited to, DISH, scurvy, rickets, and trauma. If these pathological conditions were present, 

the sample skeleton was deemed to be unreliable for use within this research and was then 

excluded. 

 

6.1.1 Assessment of Biological Sex and Age at Death 

 

 Data concerning age at death and biological sex of the sample skeletons were necessary 

to characterize the demographic profile of the sample and for the exploration of age and sex-

specific characteristics of joint condition manifestation.  A few of the collections utilized had 

pre-recorded ages and biological sexes produced using up-to-date methods, and therefore did 

not require this analysis to be repeated. These collections included Wolverhampton, Kingston-

upon-Thames, and Barton-upon-Humber. The collections that did not have accurate or up-to-

date age at death or biological sex assessments were reassessed by the author using the various 

methods listed below, with different methods used depending on the presence of the skeletal 

elements necessary.  

 

6.1.1.1 Biological Sex Assessment 

 

Skeletal morphology is an accurate, reliable, and repeatable method for determining the 

biological sex of a skeleton (Ferembach et al., 1980; Buikstra and Ubelaker, 1994; Walker, 

2008; Klales et al., 2012). Assessing biological sex of an individual based on pelvic methods 

has shown to be 90-98% accurate depending on the individual method, however skull-based 

assessments using either the cranium or the mandible very in accuracy (roughly 80% but as 
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high as 92%) and are highly dependent on the skill and experience of the researcher (White 

and Folkiens, 2005; Klales et al., 2012). Methods based on morphological traits use different 

skeletal elements (e.g., cranium, mandible, and pelvis) and established morphological 

differences associated with each element, to provide an estimate of biological sex. These 

methods include: Ferembach and colleagues (1980), shape of the obturator foramen and width 

of lateral ischium; Buikstra and Ubelaker (1994), morphological traits of the skull and pelvis; 

Walker (2008), a variation of Buikstra and Ubelaker’s (1994) method using the scores of the 

skull morphologies to calculate potential biological sex; and Klales and colleagues (2012): 

revision of Phenice (1969) pubic region assessments using scored markers to calculate a 

potential biological sex. Within this body of research, all these methods were utilized, and 

applied to every skeleton where the relevant skeletal elements or features were present and 

observable.  

A single element used for the assessment of biological sex has a margin of error for 

accuracy and reliability, but with multiple methods used for the determination, that margin of 

error is reduced (Meindl et al., 1985). Due to human variation, it is not always possible to 

determine a definitive biological sex, and as can be seen with living individuals, some skeletons 

are more gracile or robust, which can cause a genetic female to have more male traits in their 

skeleton, or vice versa. This leads to five potential biological sex categories: probable female, 

possible female, indeterminate, possible male, probable male. Assessed remains that fell within 

the indeterminate or were unable to be assigned a sex during this research were omitted from 

the sample, as these would not provide any useful information towards the research questions. 

 

6.1.1.2 Age at Death Assessment 

 

Age at death in adult skeletons is primarily estimated by the assessment of degenerative 

changes at key immobile joints throughout the skeleton, however in early adults, which have 

not completed skeletal maturation, stages of growth are assessed. To estimate age at death, 

assessments for biological sex must first be completed due to a difference in the degenerative 

variation that can occur between a male and female for elements such as the pubic symphysis 

(Brooks and Suchey, 1990). Age at death in skeletal remains from mature individuals can be 

assessed through examination of degeneration of the immobile joints of the pelvis, fusion 

stages of the cranial sutures, as well as dental eruption (Meindl and Lovejoy, 1985; Webb and 
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Suchey, 1985; AlQahtani et al., 2010). Although the skeletons assessed in this project 

comprised individuals aged c. 18 years and over, a range of age assessment methods based on 

the last stages of skeletal maturation could still be used. As the skeleton does not fully mature 

until c. 25-30 years of age, in younger adults, fusion of epiphyseal elements to the diaphyseal 

elements can be applied (Webb and Suchey 1985; Scheuer and Black 2000; Scheuer et al., 

2008).  Moreover, teeth will erupt in a predictable pattern, and by noting which teeth have 

erupted, the level of eruption and which teeth have not erupted, it would be possible to predict 

an age range for individuals that are largely under the age of 18 (Ubelaker, 1989; AlQahtani et 

al., 2010). The final 3rd molars should begin to erupt and settle in place between the ages of 

16-23 (AlQahtani et al., 2010, and when used in conjunction with the other age at death 

methodologies, it can help pinpoint a specific early age range. 

  It is impossible with currently available methods of age assessment in adults, to 

accurately narrow down an assessed range to a specific age, and so age ranges are typically 

used (Brooks and Suchey, 1990; Buckberry and Chamberlain, 2002). In this study, ADBOU 

v2.1 software (Milner and Boldsen 2002) was utilized for the age at death assessment. This 

program combines data derived from the methods for assessing cranial sutures, the auricular 

surface and the pubic symphysis into a computer program that calculates age ranges, the lower 

and upper 95% confidence intervals and maximum likelihood age of each feature, as well as 

an age range based on all of the methods combined. The software uses Bayesian statistics and 

transitional analysis to create a more accurate age range those traditional methods of age 

assessment, by creating a probability model based on known individuals. When tested against 

individuals with known ages, a strong correlation index was found (p = .9) between the age 

estimates and the known chronological ages and exhibited an R² value of .82, displaying a high 

level of explanation to the variation of the data (Lopez-Cerquera and Casella, 2018). 

Within this software is the ability to choose the potential biological sex, mortality model 

of the assessment (archaeological or forensic) and simple ancestry (white, black, or unknown). 

For each of the three methods – cranial suture closure, pubic symphyseal wear, and auricular 

surface wear – the user can score the feature using a defined scoring method that includes the 

varying stages of wear or degeneration (see below). The skeletal material may not fit a single 

score and, unlike in the traditional means of interpreting these methods, the software allows 

the input for a range of scores (i.e., instead of just a score 3, the user can put 3-4). When input 

of the data is finished, the software uses Bayesian analysis to provide the user with the potential 
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age ranges for each method, as well as an overreaching range with both corrected (using 

Bayesian equations) and uncorrected (based on raw scores) values using Bayesian statistics. 

The user can also choose the levels of probability for the ranges (99%, 95% or 90%). For this 

research, 95% probability was used. (see Figure 6.1 and Figure 6.2). 

With most methods of age assessment, such as Suchey and Brooks’ pubic symphysis 

method (1990) or Buckberry and Chamberlain’s auricular surface methods (2002), damage to 

the assessed element may cause the methods to become invalid or unusable. Whereas these 

methods may not produce a valid age range if missing even a single score, which is a possibility 

when examining samples that are not well preserved, the ADBOU software will then rely on 

the Bayesian statistics and transition analysis to complete the analysis (Boldsen et al., 2002; 

Milner and Boldsen, 2012). For instance, five scores are necessary to accurately score using 

traditional cranial suture methods, but with this software, it will take in as little as one suture 

score and compute an age range, though, as might be expected, fewer input variables decrease 

the accuracy of the final output. Importantly, any decrease in accuracy resulting from 

substitution is shown in the age ranges calculated, thus precision of the final age generated is 

explicit (Milner and Boldsen, 2012).  

 

 
Figure 6.1 Example of scoring elements using the ADBOU software on South Shields skeleton CS555. Note the different input 
boxes that allow for a range of scores, as well as the ability to record notes for later use. 



70 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

 
Figure 6.2 Example of age estimation using the ADBOU software on South Shields skeleton CS555. Note the list of figures 
along the right-hand side and the bottom giving age ranges and statistical values. 

 

 While the ADBOU software is a great tool for any palaeopathologist, it is but a single 

tool among many. In order to capitalize on the benefits of using the ADBOU software, data 

was gathered for age at death from the pubic symphysis, auricular surface, and cranial sutures. 

The Suchey-Brooks pubic symphysis method (1990) is used widely and has been found to be 

among the most accurate at predicting age at death in mature individuals (Djurić et al., 2007). 

The pubic symphysis degrades throughout life, resulting in a suite of changes to the surface 

morphology, texture, porosity, and rim shape that correlate with advancing age. As the rate of 

degeneration varies by biological sex, the sex of the individual must be determined prior to the 

use of this method. A difficulty of this method is that there is a focus on a total overreaching 

description of the stages. Due to this, a researcher may not find that the pubic symphysis of a 

skeleton fits into one category, but the different elements (dorsal margin, ventral margin, 

superior protuberance, etc.) may fall into the different stages and thereby have a larger 

overreaching age range. To assist with this method and help compensate for the strict phases, 

plastic casts of known samples fitting into each stage, with the extremes of each phase and 
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sorted by biological sex, can be used to provide side-by-side comparisons with the skeletal 

sample being assessed. 

Age at death assessment based on auricular surface morphological changes, (Lovejoy 

et al., 1985; Buckberry and Chamberlain, 2002; Osborne et al., 2004) score different markers 

(porosity, texture, transverse organization, and apical changes) on individual numerical scales, 

the values from which are totaled and allocated into a category that has an accompanying age 

range. The scored categories allow for flexibility that is not offered by other methods, by 

allowing researchers to score based on single characteristics rather than trying to fit into an 

overall category with many characteristics (Buckberry and Chamberlain, 2002). In contrast, 

the Lovejoy and colleagues (1985) method uses detailed descriptions of the overall surface of 

the joint, and so the test surface might fit multiple stage descriptions based upon the different 

features. The Buckberry and Chamberlain (2002) method is not as accurate as the Lovejoy and 

colleages (1985) method in individuals of younger ages, but more accurate with individuals of 

an older age and more inclusive of different ancestry profiles (Mulhern and Jones, 2005). For 

this reason, the Buckberry and Chamberlain method was the method used in this research. 

However, the auricular surface provides a less precise age range that the pubic symphysis 

method but does provide an accurate age range. 

The cranial suture method (Meindl and Lovejoy, 1985) was not used, outside of the 

ADBOU software, due to the variability of suture closure that can create unreliable and 

inaccurate results (Boldsen et al., 2002; Wolff, 2013). The Meindl and Lovejoy Method (1985) 

focuses on 7 ectocranial vault locations and 5 ectocranial lateral-anterior locations. At each 

location, the suture is scored on a scale of 0-3. This scale reflects the level openness (0) to 

obliteration (3) and the scores are added up and the resulting tally will provide an age range. 

The main downfall of this method is the high level of inter-variability between individuals 

affecting the closure of sutures, making the use of sutures unreliable for the estimation of age 

(Boldsen et al., 2002). 

Other methods for assessing adult age assessment are available but were not used in 

this study. In particular, methods based on tooth wear were not used, as teeth may be lost or 

unrecovered, potentially limiting any assessment. Additionally, methods that focus on tooth 

wear are not accurate for any period of history after the Medieval, as the rate of wear changes 

with new food types and dental care (Brothwell, 1981; Alayan et al., 2018). 
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 Once age at death had been assigned to each skeleton using ADBOU, the data were 

grouped for comparison with joint condition patterns. Three categories were used for age 

within this research. The ranges were as follows: early adult – 18-35 years, middle adult – 36-

64 years, late adult – 65+ years. These ranges are reflective of key documented ages of onset 

of osteoarthritis, 65+ years, and ankylosing spondylitis, c. 35 years (Rogers and Waldron, 1995; 

Burt et al., 2013) and so facilitate a targeted investigation of age as a risk factor in the onset 

and progression of these joint conditions in skeletal material. The median ages from the 

ADBOU assessments were used to assign each individual to these categories. 

 

6.1.1.3 Extant Recorded Data 

 

Age at death and biological sex data recorded previously in published and unpublished 

reports of the sample collections was used where possible, provided the initial assessment had 

been undertaken within the past 10 years and standard methods had been used. The reason for 

this was due to time constraints affecting data collection in certain labs; using the extant 

demographic data allowed for more time to assess joint condition and markers related to risk 

factors of joint condition in the level of detail necessary for the aims of the present study. 

Collections with pre-recorded biological sex and age at death data were St Peter’s Collegiate 

Church, Wolverhampton; Quaker Burial Grounds, Kingston-upon-Thames; and St Peter’s 

Church, Barton-upon-Humber, the data for each stored within the archives of the curating 

institutions. 

In each collection for which extant records existed, a preliminary assessment for 

biological sex and age at death were completed to test and confirm the accuracy of the records. 

This step also ensured the comparability of the data to that generated by the author of the 

present study and the pre-recorded data from other sites. If the extant records were found to 

differ from the preliminary assessment, a full examination of all skeletons would have been 

undertaken to generate new data, as explained in the selections above. Where these 

discrepancies existed, the curating institution was provided with the conflicting information to 

be able to further check that the records were correct and up to date. This was a rare discrepancy 

and was discovered in only a handful of skeletal samples. 
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6.1.2 Osteometric Assessment 
 

The osteometric assessments detailed below were completed using sliding calipers and 

an osteometric board. The measurements taken were on femur and tibia and included the 

femoral head diameter, femoral subtrochanteric/midshaft anteroposterior and mediolateral 

diameters, femoral maximum and bicondylar length, tibial nutrient foramen anteroposterior 

and mediolateral diameter, and tibial anatomical length. The raw osteometric data was entered 

into a series of equations for the calculation of body mass and cross-sectional indices. These 

equations were dependent on biological sex, males and females having different equations, and 

while the measurements could be taken prior to that assessment, the equations themselves could 

not be completed until after sex had been assigned. 

 

6.1.2.1 Estimation of Body Mass (BME) and Body Mass Index (BMI) 

 

Data concerning body mass were needed to explore the impact of body size on patterns 

of joint condition. As an osteoarchaeologist typically has access to only the skeletal remains of 

an individual, specific methods have had to be devised to estimate the body mass from the 

skeleton alone. These methods comprise regression-based equations involving skeletal features 

that have the strongest correlations with body size (Ruff et al., 1991; McHenry, 1992; Grine et 

al., 1995; Ruff et al., 1997; Auerbach and Ruff, 2004). The two main methods of BME 

calculations for Western Europeans and Americans include one method based on stature 

combined with bi-iliac breadth measurements (Ruff et al., 1997) and another method based on 

the measurement of the breadth of the femoral head (Auerbach and Ruff, 2004). While the 

stature and bi-iliac breadth method has been tested across broader selection of ancestry profiles 

than the femoral head method and able to be used on collections with a wider ancestral 

demographic profile (Ruff et al., 1997), it requires an intact pelvic girdle to enable accurate 

measurement of the breadth as well as multiple assessors to hold the different skeletal elements 

together and take measurements. Due to these requirements, the bi-iliac breadth method was 

unable to be used. Therefore, focusing on measurement of the anteroposterior breadth of the 

femoral head was preferred and had been tested to find an error rate of 10-16% in living 

individuals (Ruff et al., 1991). This single element preserves much better in many 

archaeological samples than a complete pelvic girdle, and with measurements able to be 

completed by a lone researcher. However, the femoral head has shown that it is has higher 
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correlation was seen to be higher with the living weights that were reported closer to the age 

of 18 than the latter ages. Methods for the estimation of body mass based on the femoral head 

have been tested for use on multiple populations, such as North Americans, Central African 

foragers, and Khoisan (McHenry 1992), Africans, European Americans, and Native Americans 

(Grine et al. 1995), and a population from Baltimore, Maryland in the USA (Ruff et al., 1991), 

and further tested on remains from across European populations and time periods (Auerbach 

and Ruff, 2004).  

The anteroposterior (AP) diameter of the femoral head (FH) was measured in 

millimeters and the following equations applied for body mass estimation: 

Male Body Mass = (2.741 ∗  Femoral head anteroposterior diameter − 54.9) ∗  .90 

Female Body Mass = (2.426 ∗  Femoral head anteroposterior diameter − 35.1) ∗  .90 

Separate calculations are provided for males and females, which result in a more accurate 

estimation of body mass when applied to individuals of the specified sex (Auerbach and Ruff 

2004).  

 Body mass index is a way to examine if an individual is of a healthy weight, which can 

determine if something is of a ‘normal’ weight or considered under/overweight (WHO, 2000) 

(see Literature Review Section 4.4). The combination of body mass estimation and stature can 

help to create an estimated body mass index value of an individual. A body mass index value 

does not account for the reasons why an individual might be overweight – this can be due to 

having increased muscle mass or increased body fat as increased mass is increased mass, no 

matter the form. Body mass index is primarily used to determine a healthy weight in living 

individuals, however, as the sample populations are not alive and therefore the soft tissue builds 

are unable to be assessed to determine if an overweight individual was fatty or muscular, the 

terms were altered to reflect this (see Table 6.1). These new categories signify whether the 

skeletal frame was under reduced or increased stress due to lack of or excess mass, rather than 

focusing on determining whether an individual was a healthy weight. 

 

𝐵𝐵𝐵𝐵𝐵𝐵 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) =
𝑊𝑊𝑊𝑊𝑇𝑇𝑊𝑊ℎ𝑇𝑇
𝐻𝐻𝑊𝑊𝑇𝑇𝑊𝑊ℎ𝑇𝑇2

                      𝐵𝐵𝐵𝐵𝐵𝐵 (𝑆𝑆𝑆𝑆𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇) =
𝐵𝐵𝐵𝐵𝐵𝐵

𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝑊𝑊²
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Table 6.1 Body mass index ranges with traditional and proposed skeletal categories. 
Range Category – Traditional Category - Skeletal 

0 – 18.4 Underweight Under massed 
18.5 – 24.9 Healthy/Normal weight Normal massed 

25 – 30 Overweight Over massed 
30.1 + Obese Extremely over massed 

 

Calculation of skeletal BMI required a value for BME, calculated as described above, 

and a value for living stature. Osteometric assessment was used to ascertain a potential living 

stature from long bone lengths (Trotter, 1970). The method devised by Trotter and Gleser 

(1952) and refined by Trotter (1970) was used. This method includes equations developed on 

European samples, which should be consistent with the expected population of England circa 

1700-1850 CE. The calculations provide an approximate estimation of stature, with a 

prescribed amount of error (see Table 6.2). The calculations combining the femur and tibia 

were preferred, as these are the most accurate, but the calculations using the singular femur or 

tibia were also utilized when one or the other was too fragmented to be measured accurately. 

The measurements for each anatomical (femur) or physiological (tibia) length, were taken in 

millimeters on an osteometric board, were converted to centimeters and inserted into the 

equations. 

 
Table 6.2 Calculations for stature by element and biological sex (Trotter 1970). 
Element Males Females 

Femur (F) (anatomical length) = 61.41 + 2.38 (F) ± 3.27 = 54.10 + 2.47 (F) ± 3.72 

Tibia (T) (physiological length) = 78.62 + 2.52 (T) ± 3.37 = 61.53 + 2.90 (T) ± 3.66 

Femur + Tibia (FT) = 63.29 + 1.30 (FT) ± 2.99 = 53.20 + 1.39 (FT) ± 3.55 

 

 

6.1.2.2 Measurements for the Estimation of Non-Imaging Cross-Sectional Geometry 

 

 Skeletal robusticity is a determination of the tensile strengths of the bone under different 

conditions such as torsion, bending, or fracturing. Robusticity can be assessed via cross-

sectional geometry (O’Neill and Ruff, 2004; Hind et al., 2011). Cross-sectional geometry 

(CSG) has traditionally relied upon destructive methods for sectioning the bone to allow for 

physical measurement of the cross-sectional structure and shape, however more modern 

methods apply non-invasive methods using radiographic imaging techniques, such as 
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computed topography and magnetic resonance imaging. This project was designed to be non-

destructive as permission for destructive sampling was not able to be obtained for the 

collections at Bournemouth University and permissions strictly limited at the collection from 

Barton-upon-Humber. Access to radiographic or imaging equipment was limited, especially 

for collections that the author had to travel away from the University of Sheffield to access, 

and thus a radiographic imaging-based method was not suitable. Wescott and Zephro (2016) 

have designed a non-destructive method that can be used to gather cross-sectional geometric 

data by using external measurements on the femur, and this was deemed the most appropriate 

method to use in the present study.  

 Cross-sectional geometry can allow researchers to understand the levels of skeletal 

stress that the individual bones, in this case the femora, can withstand. Bio-mechanical loading 

has similar properties and characteristics of mechanical engineering load and the effects of 

torsion to a mechanical joint or brace (Adrian and Cooper, 1995). The Westcott and Zephro 

method (2016) was used in the present study to calculate the cross-sectional geometric 

properties from femora in the sample populations. Set points on the femora (femoral max 

length, head diameter and subtrochanteric/midshaft anteroposterior and mediolateral 

diameters) were measured to that could then be inserted into the associated equations to 

determine the values for the different cross-sectional variables. The measurements taken are 

not exclusive to this method and many are the same used for the meric indices of Bass (2005) 

or for Trotter’s (1970) stature method (see Table 6.3).  

The cross-sectional variables calculated from the measurements are shape, robusticity, 

polar second moment of area (SMA), and area. Shape describes the direction of the femoral 

head in relation to the diaphyses, the angle of which, when combined with the femur, can affect 

gait and angle of movement of the femora in relation to the tibiae. Robusticity is the measure 

of the strength of the bone withstanding torsional effects and polar SMA is a measure of the 

reflection to the torsional effects. The area calculated from these equations relates to the total 

size of a 2-dimensional plane within the shell of periosteal bone of the femur. For these 

measurements, area is an estimated measurement of the combined cortical and medullary cross 

section. 
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Table 6.3 The terminology, abbreviations, and equations for determining robusticity (Wescott and Zephro, 2016). 
Measurement Abbreviation (ABB) 

Femoral maximum length FML 

Femoral head diameter FHD 

Anteroposterior diameter at Subtrochanteric APS 

Mediolateral diameter at Subtrochanteric MLS 

Anteroposterior diameter at Midshaft APM 

Mediolateral diameter at Midshaft APM 

Body Mass [Estimation] BM 

Property ABB Equation 

Subtrochanteric shape FSS APS/MLS 

Subtrochanteric robusticity FSR 100 * √ (APS x MLS) / FHD 

Subtrochanteric polar 

second moment of area  

FSJ 100 * (-124812 + 2925 * APS + 3360 * MLS) / (BM * 

FML) 

Subtrochanteric area FSA 100 * (π * (APS / 2) * (MLS / 2) / BM) 

Midshaft shape FMS APM / MLM 

Midshaft robusticity FMR 100 * √ (APM * MLM) / FHD 

Midshaft polar second 

moment of area  

FMJ 100 * (-102286 + 2721 * APM + 2697 *MLM) / (BM * 

FML) 

Midshaft area FMA 100 * (π * (APM / 2) * (MLM / 2) / BM) 

 

 

6.1.3 Palaeopathological Assessment of Osteoarthritis and Spondyloarthropathies 

 

This research focuses on the assessment of pathological changes to the following joints: 

acetabulofemoral (hip), sacroiliac, tibiofemoral/ patellofemoral (knee), and the zygapophysial 

(vertebral facets) and intervertebral joints. There are two main approaches comprising the 

methodology for diagnosing osteoarthritis in skeletal materials (Rogers and Waldron, 1995). 

The first approach is stricter and requires a single pathognomic marker, eburnation, to be 

present. With the pathognomic marker being present, a probable diagnosis is able to be given 

without the need for further analysis of the joint. Eburnation tends to develop when 

osteoarthritis is in its latter stages or the joint is well worn, which means that less developed 

osteoarthritis will not be recorded, creating a lower prevalence of the condition than may exist. 

Moreover, this approach ignores any nuance in the way in which the skeleton responds to joint 
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condition, something that is especially important when exploring the associations between 

skeletal manifestations of joint conditions and their clinical risk factors. The second approach 

is used when the pathognomic feature is not evident and relies on the presence of a minimum 

of three other osteological markers.  

To assess for osteoarthritis, each element consisting of the joints of the lumbar 

intervertebral facets, hip and knee were assessed. At each joint location, the markers of OA, 

discussed in Section 3.4, were assessed for. These markers included eburnation, subchondral 

sclerosis, porosity/pitting, subchondral cysts, phytic formations and fusion, and were recorded 

as present or absent with the locations and size of each marker. The size of the markers was 

irrelevant for a diagnosis but was included for record keeping. Once all of the markers were 

assessed for, a diagnosis could be attempted. If eburnation was present, then the diagnosis was 

probable and if not present, then the presence of three of the subsequent markers would provide 

a probable diagnosis.  

To diagnose the vertebral joint conditions, ankylosing spondylitis, sacroiliitis and 

degenerative disc disease, the methodology presented by Philip Sager (1969) in his thesis was 

used. The first element assessed would be the sacroiliac joint, as this section would have been 

examined previously for age at death. If fusion of the sacrum to the iliac surface was present, 

then sacroiliitis was probable. As DDD and AS may present with similar features, the next 

assessment was to check for bilateral fusion of the syndesmophytes along the posterolateral 

portion of the vertebral bodies without skip and starting with the L5 vertebrae. If such fusion 

was present, then AS was probable, however, if fusion was evident, but skipped and/or not 

bilateral, then DDD was possible (Rogers and Waldron, 1995). Without fusion, the surface of 

the vertebral plate and was assessed for morphological changes, such as depression, Schmorl’s 

nodes or osteoporosis and if present, then DDD was probable. The exterior surface, particularly 

the rim of the vertebral plate was assessed for phytic activity and type of phytic lesion. As with 

osteoarthritis, these markers were first assessed for and recorded for location and extent with 

potential differential diagnoses taken into account. 

The outcome of diagnosis was represented on three levels: 0- Absence, 1- Possible 

diagnosis, 2- Probable diagnosis. Absence indicates that there is no evidence of the condition 

on the skeleton. Possible diagnoses indicate that markers of the different joint conditions were 

present, but either did not meet diagnosing criteria, or other possible differential diagnoses 

were found during skeletal assessment. Probable diagnosis indicates that the diagnosing criteria 
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were met, and no other probable differential diagnoses were available or as plausible during 

skeletal assessment. 

 Subchondral sclerosis and cysts are generally not able to be assessed without 

radiographic imaging, though clear exceptions would be damage or cross sectioning (Rogers 

and Waldron 1995).  Without using destructive methods, radiographs or digital imaging are 

generally used to view the inner mechanisms of the skeletal elements. However, due to a lack 

of access to a radiograph device, this was unable to be completed for this body of work, but in 

the case of radiographs already in existence (Wolverhampton), those were used to help define 

the makers for the researcher. 

 Not all markers are directly visible to the naked eye without proper light and viewing 

instrumentation. For this, the Dino-Lite Pro Digital Microscope and DinoCapture 2.0 software 

were used.  This imagining device, along with different light sources, allowed for the viewing 

of more subtle features that are not directly visible and the software could take calibrated 

measurements on the image. For instance, subtle ridges and grooves forming on the joint 

surface may be felt with fingers rubbing the bone, while not seen with the naked eye (see Figure 

6.3). While using this device, different light sources helped to highlight and contrast features, 

providing a more dynamic visual of the element. To maintain accuracy, the camera was 

calibrated to provide accurate measurements for each different skeletal element (e.g., femoral 

head, patella, intervertebral surface, etc.). This allowed for more accurate measurements to be 

used within the software, as well as allowing for the camera to be used at different heights and 

angles. 
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Figure 6.3 The vertebral surface of a lumbar vertebrae. By alternating the light source between direct and indirect the 
topography of bone becomes more evident. Note that on the left, the surface appears to be more pitted, while on the right it 
appears more porous. On the vertebral body, heavy porosity could be evidence of osteoporosis. Left: Direct. Right: Indirect. 

 

6.1.4 Assessment of Entheses 

 

Recording of entheses was used for a measurement of activity. Entheses are the 

attachment sites for tendons and ligaments on the bone. There are two types of entheses: fibrous 

and fibrocartilaginous. Osteoblastic activity at these sites occurs naturally and so soft tissues 

may ossify over time meaning development of entheseal changes should be more common in 

older individuals (Listi, 2016). The surface morphology can vary with each entheseal change 

leaving much to be recorded, such as porosity, extent of cavitation, curvature, and other 

features, which are highly dependent on the location of the enthesis (Zumwalt, 2005; 2006; 

Weiss, 2015). The features, along with the differing proposed aetiologies behind the changes 

to the two types of enthesis, create a complicated array of markers for assessment (Villotte and 

Knüssel, 2013).  

Methods for recording entheses are not entirely reliable, and interobserver error can 

make reproducibility low (Davies et al., 2013). The Coimbra Method (Henderson et al., 2013b; 

2016; 2017) has sought to create a standardized recording that is both reliable and reproducible 

by researchers. However, while the Coimbra method is reliable, it is only effective when 

assessing for fibrocartilaginous entheses and has not been tested on the lower limb (Palmer et 

al., 2019). As the enthesis assessed within this study are a mix of fibrous and fibrocartilaginous 

and locations include the lower appendicular skeleton and vertebrae, this method was not able 

to be used for this research.   
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 The entheses assessed for this study were located on the lumbar and sacral vertebra, 

pelvis, femur, patella and proximal tibia (see Table 6.4). The changes were scored for each 

location as: 1- gracile, 2- moderate 3- robust (see Figure 6.4) and are based on the method 

devised by Mariotti and colleagues (2004; 2007) for use on the lower appendicular skeleton 

and pelvic girdle and the methodology of Philip Sager (1969) for the vertebral enthesophytes. 

Mariotti and colleagues (2004; 2007) developed a method for recording entheses both 

fibrocartilaginous and fibrous entheses (Palmer et al., 2019). The method has a description for 

the recording of the entheses at each location however instead of scoring each marker, the score 

describes the entheses as a whole. The following is an example of the description for scoring 

an enthesis on the femur: 

M. vastus medialis (superior part) 

 1. a – slight impression: the surface is practically smooth, even though an oblique line 

is perceptible to the touch; b – low development: the insertion is marked by a rugose, 

oblique line; c – medium development: the line of insertion forms a continuous or 

discontinuous ridge, not very raised.  

2. high development: the line of insertion forms a raised and/or rugose crest.  

3. very high development: very raised and/or rugose crest (Mariotti et al., 2007: 309). 

The lumbar vertebrae had the enthesophytes measured with 1 - >1mm, 2 – 1-5mm, and 3 - 

<5mm and is based on the work by Sager (1969). As the individual entheses were scored on 

the skeletal, an average was created to allow for an overall assessment of the entheseal 

development to be made on the skeleton. 

Table 6.4 Location of entheses assessed within this research. 
BONE ENTHESES ATTACHMENT LOCATION 

PELVIS ILIACUS ORIGIN ILIAC FOSSA 
PELVIS ALL ATTACHMENTS ORIGIN ILIAC CREST  
FEMUR GLUTEUS MEDIUS INSERTION GREATER TROCHANTER 
FEMUR GLUTEUS MINIMUS INSERTION GREATER TROCHANTER 
FEMUR PSOAS MAJOR INSERTION LESSER TROCHANTER 
FEMUR ALL ATTACHMENTS INSERTION LINEA ASPERA 

PATELLA QUADRICEPS TENDON INSERTION SUPERIOR ASPECT 
TIBIA SEMIMEMBRANOSUS INSERTION POSTERIOR PORTION OF MEDIAL CONDYLE 
TIBIA PATELLAR LIGAMENT INSERTION TIBIAL TUBEROSITY 
TIBIA SOLEUS ORIGIN SOLEAL LINE 
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Figure 6.4 The image demonstrates the degree of change used for recording the entheses. The left image of a femur (female, 
CS300) displays slight changes, the middle (male, CS208) displays moderate changes, and the right (male, CS268) displays 
robust changes. 

 

6.1.5 Exclusion of Samples 

 

As well as performing in-depth assessments for joint conditions, secondary conditions 

that may impact or affect the development of the joint conditions were, by necessity, needed to 

determine inclusion/exclusion of the individual sample skeletons. The conditions were 

assessed using Roberts and Manchester’s (2005) The Archaeology of Disease and Tony 

Waldron’s (2009) Palaeopathology as guides. Skeletons found to have any conditions that 

could cause secondary joint conditions were noted and removed from the raw sample. The 

reason for this is that it would bias the subsequent statistical testing, as the periphery conditions 

would be the cause of the secondary joint conditions, not the risk factors. 
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6.2 Statistical Testing 
 

 Statistical testing was essential to investigate the relationships between demographic 

variables, joint condition prevalence and the various variables representing potential risk 

factors. Biological sex, age at death, entheseal changes and joint conditions were able to utilize 

the scale or categorical groupings previously listed (see Table 6.5). Body mass index and the 

cross-sectional indices utilized the methods for assessment previously listed in the above 

section, which created scale data. Assessments of correlation, association, and regression 

testing were performed on these data. 

 
Table 6.5 List of the type of variables with the type of data categorization used to represent the data for statistical analyses.  

VARIABLE DATA CATEGORIZATION 
  ORDINAL NOMINAL SCALE 

SITE CATEGORY   X   
AGE AT DEATH X   X 

BIOLOGICAL SEX   X   
ENTHESEAL CHANGES X    

JOINT CONDITIONS   X   
RAW SKELETAL MEASUREMENTS     X 

SKELETAL HEIGHT     X 
SKELETAL WEIGHT     X 

SKELETAL BMI X   X 
CSG INDICES X   X 

 

 

6.2.1 Asymmetry 

 

 The left side of paired skeletal elements were recorded in this study, but to confirm this 

decision did not introduce bias into the dataset, asymmetry tests were conducted comparing 

right and left values. By its very definition, asymmetry denotes a disparity between two similar 

features (i.e., left and right-side long bones). When taking a measurement a few millimeters 

might not seem like a large discrepancy, but that discrepancy can be amplified when placed 

into an equation to determine a variable like stature or body mass. If asymmetry existed and 

was variable between individuals within the database, this could skew or bias the data in a way 

that would have problematic effects during subsequent analyses. Therefore, it is important to 

deduce if any asymmetry exists, and if so, its extent and directionality. 
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Percentage directional asymmetry (%DA) and percentage absolute asymmetry (%AA) 

were checked for each individual using the equations (Steele and Mays, 1995): 

%DA = (right – left values) / (average of left + right values) * 100 

%AA = (maximum – minimum value) / (average of maximum + minimum values) * 100 

The variables that were checked included all basic measurements of the femora and tibiae as 

well as the calculated measurements for skeletal height, mass, BMI, and the cross-sectional 

indices. Once the asymmetry values were created, paired t-tests were used to assess whether 

significant difference existed between sides (Gonzalez-Chica et al., 2015). 

 

6.2.2 Correlation and Association Testing 

 

The data is a mix of categorical and scale data, which meant that the variables with a 

scale data set would need to be placed into categories to allow for a uniform testing system for 

correlation and association tests. Association was tested using Chi-squared with the Bonferroni 

z-test. Levels of significance were tested primarily using Kendall’s tau-b criteria because the 

data sets within this research were discordant and non-parametric, however, the phi and 

Pearson correlation coefficients were also used were applicable. To determine the relationship 

between the individual variables, as well as the relationships between the risk factor variables 

and the joint conditions, bivariate correlation testing was conducted (Field, 2013).  

6.2.3 Risk Ratios 

 

 Risk ratios help to determine levels of risk for a given factor as the factor increases or 

decreases compared to the studied conditions (Holmberg and Andersen, 2020). Levels of risk 

can also be calculated within a single category, or, in the case of the Table 6.6, a single row.  

Biological sex is a binary variable and so an exception, as the categories do not increase or 

decrease. The variables, in categorical form, were completed using the following equation (see 

Table 6.6): 

Prevalence Ratio (for Ratio 1) = Count of present diagnoses [A₂] / (count of absent 

diagnoses [A₁] + count of present diagnoses [A₂]) 
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Risk ratio = (count of present diagnoses [A₂] / (count of present diagnoses [A₂] + count 

of absent diagnoses[A₁])) / (count of present diagnoses / (count of present diagnoses 

[B₂] + count of absent diagnoses [B₁])) 

 
Table 6.6 Example of a risk ratio computed in table form. 

  
COUNT PREVALENCE RATIO 

A P A P 
1 A₁ A₂ = A₁ / (A₁ + A₂) = A₂ / (A₁ + A₂) 
2 B₁ B₂ = B₁ / (B₁ + B₂) = B₂ / (B₁ + B₂) 
  RISK RATIO   

  2/1 = (B₂ / (B₁ + B₂)) / ((A₂ / (A₁ + A₂)) 

 

For the purposes of this study, the resulting figure of the incidence rate was equivalent 

to the prevalence rate – the number of individuals with a joint condition as a proportion of the 

total number of individuals for whom the joint location was observable. The value of the risk 

ratio is the ability to determine to determine potential likelihood for risk of one category of the 

variable over another. For example, using the variables biological sex and osteoarthritis, an 

incidence rate of .369 for males with a present diagnosis means that 36.9% have the condition. 

A risk ratio of 1.21 when comparing males to females with a present diagnosis would imply 

that males experience the condition 1.21 times more often than females. 

 

 

6.2.4 Regression Based Testing 

 

 Bivariate statistical testing will display the strength, direction, and significance of 

association or correlation between two variables. However, the clinical understanding of joint 

conditions suggests it is unlikely that a single risk factor will sufficiently explain its occurrence. 

Therefore, a means of exploring the relationship between all of the risk factor variables and the 

joint conditions is required. The risk factors are a determinate of the different joint conditions 

researched within this body of work and as such, their potential predictive value for a binary 

outcome, presence/absence of a joint condition, can be explored using binary logistic 

regression models (Sheather, 2009; Field, 2013). By using this form of regression, it was 

possible to determine which variables were significant contributors to the outcome of joint 
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condition presence/absence and to what extent they played a part in predicting the presence of 

the joint conditions.  

 The joint conditions (dependent variable) were measured against every risk factor 

variable (covariates) in a backwards, stepwise manner. By using backward steps, SPSS will 

start the tests with all risk factor variables included and each subsequent step will produce 

another model until the variables are significant, unless specified otherwise. A series of tables 

were produced with information that helps to understand predictability, variance, and 

relationship of the risk factor variables with the joint conditions. The Omnibus Tests of Model 

coefficients provides the chi-square values and significance for each step and a Model 

Summary will display the level of variation (-2 log likelihood) as well as the percentage 

explained in the variation (an R² value). The Hosmer-Lemeshow tests explains how well the 

model fits the data, if the p value > .05. A classification table will be produced indicating the 

percentage that the model is able to predict the outcome, in this case absence, probable 

diagnoses and overall predictability. The final table of import describes the risk factor variables 

in each step, providing a regression coefficient value (B and expected B with confidence level), 

a Wald statistic and p value. This testing helped to determine the contribution of the variables 

and predictive value when all the variables were included, as well as when the best fitting 

variable determined from the stepwise statistical procedures.  

 

6.3 Summation of Methodologies 
 

The methodologies used within this thesis allow for the development of an in-depth 

demographic profile of the skeletal samples that could be analyzed in detail at multiple layers. 

These layers could have variables added and removed to assess the efficacy of each variable 

and the role and strength they have in the development of joint conditions in the sample 

populations. The profiles offer insights into the lives of the individuals and the populations as 

a whole.   

On the face of the analyses, graphs and tables may display patterns that appear to be 

significant but are not. That is the reason the statistical methodologies are vital. The basic 

statistical tests (asymmetry and correlation/association) can determine if there is a bias between 

the sides and show the strength of relationships between the variables representing the risk 

factors and the joint conditions. The regression testing provides a check, using objective testing 
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to determine the relationships/associations, strength, direction, and the level of variation found 

using multiple variables, which helps to display and explain the true complexity of the risk 

factors and the joint conditions. 
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Chapter 7 Results 
 

7.1 Sample Demographics 
 

 The six sites assessed in this study comprised a population of 187 adult skeletons, which 

was reduced to 175 individuals suitably preserved to allow for full data analysis (Table 7.1/ 

Figure 7.1). This information is descriptive in nature, and the statistical analyses will come 

below. The sites from which this sample of individuals derived were divided into two 

categories: urban and rural. The two site categories comprised roughly equal numbers of 

individuals: 90 individuals (51.4%) were assessed from urban sites and 85 (48.6%) individuals 

were assessed from the rural site.  

 
Table 7.1 The sites used within this research with information regarding site name, location, category, and sample size. 

SITE # SITE NAME ORIGINAL LOCATION URBAN/
RURAL 

SAMPLE 
SIZE 

1 CHURCH OF ST HILDA, 
CORONATION STREET 

SOUTH SHIELDS, 
NEWCASTLE-UPON-TYNE URBAN 46 (26.3%) 

2 CARVER STREET 
METHODIST CHURCH SHEFFIELD URBAN 4 (2.3%) 

3 ST PETER'S COLLEGIATE 
CHURCH WOLVERHAMPTON URBAN 20 (11.4%) 

4 QUAKER BURIAL 
GROUND KINGSTON-UPON-THAMES URBAN 18 (10.3%) 

 

5 ST AUGUSTINE-THE-LESS BRISTOL URBAN 2 (1.1%) 
 

 

6 ST PETER'S CHURCH BARTON-UPON-HUMBER RURAL 85 (48.6%) 
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Figure 7.1 Proportional distribution of individuals analyzed in this study by site. Count is indicated within the bars. 

 

7.1.1 Biological Sex 

 

The study sample comprised 58.9% males (n = 103) and 41.1% females (n = 72) (see 

Table 7.2/ Figure 7.2). For the urban samples, 62.2% (n = 56) were male and 37.8% (n = 34) 

were female (see Table 7.3). For the rural samples, 55.3% (n = 47) were male and 44.7% (n = 

38) were female. Of the male individuals, the rural site represented 54.4% (n=56) and the urban 

sites represented 45.6% (n = 47). Of the female individuals, the rural site represented 47.2% (n 

= 34) and the urban sites represented 52.8% (n = 38).  

While the overall male to female ratio is close to equal, females are still slightly 

underrepresented, especially so among the urban group. Males were also slightly over-

represented at every site and the two sites with the smallest sample sizes were only males.  
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Table 7.2 Distribution of the sample population with count and proportion by site category and biological sex. 

  SAMPLE SIZES  

  

PERCENTAGES 

SITE MALE FEMALE  TOTAL 
SITE MALE FEMALE 

South Shields 27 19 46 58.7 41.3 

Sheffield 4 0 4 100.0 0.0 

Wolverhampton 12 8 20 60.0 40.0 
Kingston-upon-

-Thames 11 7 18 61.1 38.9 

Bristol 2 0 2 100.0 0.0 
Barton-upon-

Humber 47 38 85 55.3 44.7 

TOTAL SEX 103 72 175 58.9 41.1 
 

 

 
Figure 7.2 Proportional distribution of the sample population by site and biological sex. Count is indicated within the bars. 
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Table 7.3 Distribution of the sample population by site category and biological sex with count and percentage. 

  
  

SAMPLE SIZE 

  
  
  
  

PERCENTAGE 

MALES FEMALES MALES FEMALES 

URBAN 56 34 62.2 37.8 

RURAL 47 38 55.3 44.7 

PROPORTION BY SITE CATEGORY 

  
  

SAMPLE SIZE 

  
  
  
  

PERCENTAGE 

RURAL URBAN RURAL URBAN 

MALES 56 47 54.4 45.6 

FEMALES 34 38 47.2 52.8 
The percentages total by row. 
 

7.1.2 Age at Death 

 

The age at death of the individuals was recorded in two ways, creating two different 

variables. The first was based on either the maximum likely age at death from the ADBOU 

data or the documented age at death, when available. This category is continuous data, with a 

single data point representing a single estimated age for each skeleton. The second was the age 

range was determined by the age of onset for the conditions, with each point value age placed 

into one of the range groupings. This variable grouped multiple individuals into one of three 

broad categories based on a combination of methods: early adults 18-35, middle adults 35.1 – 

65, late adults 65.1+. 

Of the entire sample population, 32.0% (n = 56) were early adults, 22.9% (n = 40) were 

middle adults, and 45.1% (n = 79) were late adults (see Table 7.4). Of the males (see Figure 

7.3 - Figure 7.5), 27.2% (n = 28) were early adult, 21.4% (n = 22) were middle adult, and 51.5 

(n = 53) were late adult. Of the females, 38.9 (n=28) were early adults, 25.0% (n = 18) were 

middle adults, and 36.1% (n = 26) were late adults. The distribution of the sample population 

favored the late adult age category, which was only slightly below half of the total population 

size. The males were an older population overall, with the females having a more equal 

distribution between the three age categories, though middle adults were still the least 

represented.  
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Table 7.4 Distribution of the sample population by biological and age at death with count and percentage. 

 BIOLOGICAL SEX AGE AT DEATH 
CATEGORY N % 

MALE 

EARLY 28 27.2 

MIDDLE 22 21.4 

LATE 53 51.5 

  

FEMALE 

EARLY 28 38.9 

MIDDLE 18 25.0 

LATE 26 36.1 

  

TOTAL 

EARLY 56 32.0 

MIDDLE 40 22.9 

LATE 79 45.1 

 

 

 
Figure 7.3 Frequency of all samples for the estimated age at death data. N = 175. 
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Figure 7.4 Proportional distribution of the sample population by biological sex and age at death. Count is indicated within the 
bars. 

 

 
Figure 7.5 Frequency of all samples by estimated age at death data, divided by biological sex.  
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From the breakdown of age at death categories by site category (see Table 7.5), it was 

observed that the urban population had a higher proportion of early adults (37.8%, n = 34) than 

the rural population (28.2%, n = 24). Middle adults had a similar proportion with the urban 

population (21.1%, n = 19) and the rural population (21.2%, n = 18) (see Figure 7.6 and Figure 

7.7). The rural population had the higher proportion of late adults (50.6%, n = 43) than the 

urban population (41.1%, n = 37).  

Urban sites had higher proportion of early adult males (30.4%, n = 17) than rural 

(21.3%, n = 10). The rural site type had higher proportions of males within the middle (23.4%, 

n = 11) and late (53.3%, n = 26) adult categories than the urban populations (19.6%, n = 11 

and 50.0%, n = 28). Urban females had a higher proportion of individuals within the early 

(50.0%, n = 17) and middle (23.5%, n = 8) adult categories than the rural females (38.8%, n = 

14 and 18.4%, n = 7). Rural females had the higher proportion within the late adult categories 

(44.7%, n = 17) than the urban females (26.5%, n = 9). 

Overall, the rural population was older than the urban population. The slight bias 

towards older individuals within the male cohort seen in the grouped data above was 

maintained in the urban and rural populations when divided, but it is notable that there is a 

disparity between the demographic profile of males and females at urban sites – the former 

being overrepresented among the late adults and the latter among the early adults.  
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Table 7.5 Distribution of sample population by site category, biological sex, and age at death with count and percentage. 

URBAN SITE TYPE RURAL SITE TYPE 
 BIOLOGICAL 

SEX 

AGE AT 
DEATH 

CATEGORY 
N %  BIOLOGICAL 

SEX 

AGE AT 
DEATH 

CATEGORY 
N % 

MALE 

EARLY 17 30.4 

MALE 

EARLY 10 21.3 

MIDDLE 11 19.6 MIDDLE 11 23.4 

LATE 28 50.0 LATE 26 55.3 

  

FEMALE 

EARLY 17 50.0 

FEMALE 

EARLY 14 36.8 

MIDDLE 8 23.5 MIDDLE 7 18.4 

LATE 9 26.5 LATE 17 44.7 

  

TOTAL 

EARLY 34 37.8 

TOTAL 

EARLY 24 28.2 

MIDDLE 19 21.1 MIDDLE 18 21.2 

LATE 37 41.1 LATE 43 50.6 

Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.6 Proportional distribution of the sample population by site category, biological sex, and age at death. Count is 
indicated within the bars. 

 

 
Figure 7.7 Frequency of samples by estimated age at death by site category. 

 

7.1.3 Demographic Summary 

 

The sample population was spread relatively evenly throughout the demographic 

categories, which should assist with the reduction of bias caused by uneven distributions and 

aid the forthcoming analysis of risk factors by providing a reasonable sample of individuals in 

each category. These risk factors are not caused by any other factor and are the only 

independent variables used within this research. The spread of the samples should help to create 

an accurate and viable sample population that is similar to clinical studies and will help us to 

understand living populations. Therefore, they must be understood in order to help assist with 

the testing and analyses with the dependent risk factor variables (body mass, entheseal changes 

and cross-sectional indices) which will be discussed later in the chapter. 
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7.2 Asymmetry 
 

 To ensure no bias in the forthcoming analysis arising from bilateral asymmetry relating 

to skeletal measurements, percent absolute (%AA) and percent directional (%DA) asymmetry 

was measured, and paired t-tests were conducted. Asymmetry was measured against variables 

of both (1) raw data from skeletal long bone measurements that was used within the equations 

for the more complex variables (e.g., femoral max length and femoral head diameter) and (2) 

the complex variables that were created using said equations (e.g., body mass estimation and 

the cross-sectional variables).  

There was a measurable level of bilateral asymmetry when the left and right-side 

measurements were compared, which alternated by robusticity variable. By calculating 

percentage absolute asymmetry and directional asymmetry it became evident that individual 

values may be high with significant asymmetry variations, but the mean values are low. This 

can be explained by the fact that directional variation fluctuates between the left and right side 

with no side being dominant in all individuals (see Table 7.6 - Table 7.10. The range for percent 

absolute asymmetry was .43 – 10.68 and for percent directional asymmetry was -1.92 – 1.45. 

However, only six of the 26 (23.08%) variables exhibited significant difference, with p ≥ .02, 

between the mean values for left and right sides. Femoral head diameter measurements (%DA 

.69/ %AA 2.16), femoral head body mass estimation (%DA 1.12/ %AA 3.47) and femoral 

midshaft shape (%DA 1.45/ %AA 4.94) displayed significant differences between the left and 

right sides with the right side being larger. Femoral midshaft mediolateral measurements (%DA 

-1.17/ %AA 4.08), and femoral midshaft robusticity (%DA -1.12/ %AA 3.23) and area (%DA 

-1.92/ %AA 5.93) displayed significance between the left and right side with the left side being 

larger. To standardize the measurements and calculations used, only the left-hand side was 

used. 

 The equations selected to determine the variables representing body mass index and the 

cross-sectional indices created values for both the left- and right-hand side of both. The 

differences between the sides did not exhibit a significant asymmetrical difference for body 

mass index. The robusticity values had three variables that displayed significance between the 

sides, all midshaft values: femoral midshaft shape (right), robusticity (left) and area (left).  
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Table 7.6 Abbreviations and the meanings used within Table 7.7 - Table 7.10. 
ABBR MEANING ABBR MEANING 
FHD FEMORAL HEAD DIAMETER AP ANTEROPOSTERIOR 
FML FEMORAL MAX LENGTH ML MEDIOLATERAL 
FBL FEMORAL BICONDYLAR LENGTH NUT FOR NUTRIENT FORAMEN 
TAL TIBIAL ANATOMICAL LENGTH ST STATURE 
FEM FEMUR/FEMORAL TIB TIBIA/TIBIAL 
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Table 7.7 Asymmetry data for raw skeletal data using paired t-tests. 

MEASUREMENT %DA %AA MEAN STD DEV. 
STD ERROR 

MEAN 

95% CONFIDENCE 
INTERVAL OF THE 

DIFFERENCE 

t DF 
SIG. (2-

TAILED) LOWER  UPPER 
FHD 0.6903 2.1610 -0.3161 1.3357 0.1141 -0.5418 -0.0905 -2.77 136 0.006 
FML -0.0180 0.7859 0.0690 5.5820 0.5180 -0.9580 1.0960 0.133 115 0.894 
FBL -0.1679 0.7670 0.7500 4.9600 0.4610 -0.1620 1.6620 1.662 115 0.106 
TAL -0.1241 0.9119 0.4730 6.5740 0.5770 -0.6670 1.6140 0.821 129 0.413 

TIB NUT FOR ML -0.0093 4.5934 0.0264 1.6976 0.1395 -0.2494 0.3021 0.189 147 0.850 
TIB NUT FOR AP -0.8317 5.3283 0.2487 2.3233 0.1910 -0.1288 0.6261 0.1302 147 0.195 

FEM SUBTROCH AP 0.8660 4.8162 -0.2407 1.9562 0.1659 -0.5687 0.0874 -1.45 138 0.149 
FEM SUBTROCH ML 0.1920 4.4580 -0.0551 2.0369 0.1728 -0.3967 0.2865 -0.319 138 0.750 
FEM MIDSHAFT AP 0.2365 3.8370 -0.0615 1.4765 0.1310 -0.3208 0.1978 -0.469 126 0.640 
FEM MIDSHAFT ML -1.1661 4.0825 0.3431 1.4924 0.1324 0.0810 0.6051 2.591 126 0.011 

AP = anteroposterior. ML = mediolateral. Mean and standard deviation represent the individual of %DA across the sample population. Negative %DA values represent left > right and positive 
values represent right > left. Green = significant left leaning asymmetry. Orange = significant right leaning asymmetry. 

 

Table 7.8 Asymmetry data for the cnemic/meric data using paired t-tests. 

MEASUREMENT %DA %AA MEAN STD DEV. 

STD 
ERROR 
MEAN 

95% CONFIDENCE INTERVAL OF 
THE DIFFERENCE 

t DF 
SIG. (2-

TAILED) LOWER  UPPER 
CNEMIC 0.8244 5.7197 -0.5287 6.2261 0.5118 -1.5401 0.4828 -1.033 147 0.303 
MERIC 0.6710 5.7786 -0.6527 7.1300 0.6048 -1.8485 0.5431 -1.079 138 0.282 

Mean and standard deviation represent the changes of %DA across the sample population. Negative %DA values represent left > right and positive values represent right > left. Green = significant 
left leaning asymmetry. Orange = significant right leaning asymmetry. 
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Table 7.9 Asymmetry data for the stature and body mass data using paired t-tests. 

MEASUREMENT %DA %AA MEAN 
STD 
DEV. 

STD ERROR 
MEAN 

95% CONFIDENCE INTERVAL OF THE 
DIFFERENCE 

t DF 
SIG. (2-

TAILED) LOWER  UPPER 
ST FEM -0.1087 0.5185 0.1810 1.1913 0.1106 -0.0381 0.4001 1.637 115 0.104 
ST TIB -0.0545 0.6467 0.0913 1.8410 0.1634 -0.2320 0.4145 0.559 126 0.577 

ST FEM/TIB -0.0451 0.4347 -0.4946 5.8253 0.5855 -1.6564 0.6673 -0.845 98 0.400 
ST (AVE) -0.0926 0.7286 0.2320 18.6818 1.5305 -2.7925 3.2563 0.152 148 0.880 
FH BME 1.1187 3.4692 -0.7349 3.0456 0.2602 -1.2495 -0.2203 -2.824 136 0.005 

BMI 1.2637 4.0161 -0.1407 2.4339 0.2151 -0.5664 0.2850 -0.654 127 0.514 
Mean and standard deviation represent the changes of %DA across the sample population. The rows in bold are the significant results. Negative %DA values represent left > right and positive 
values represent right > left.  

 
Table 7.10 Asymmetry data for the robusticity data using paired t-tests. 

MEASUREMENT %DA %AA MEAN 
STD 
DEV. 

STD ERROR 
MEAN 

95% CONFIDENCE INTERVAL OF 
THE DIFFERENCE 

t DF 
SIG. (2-

TAILED) LOWER  UPPER 
FSS 1.4466 4.9364 -0.0064 0.0706 0.0060 -0.0183 0.0054 -1.069 138 0.287 
FSR 0.1378 3.8464 -0.1048 3.6706 0.3270 -0.7520 0.5423 -0.321 125 0.749 
FSJ 1.2985 10.6770 -1.8906 35.7169 3.4856 -8.8027 5.0215 -0.542 104 0.589 
FSA 0.5692 7.4001 -6.5312 115.6670 10.3044 -26.9250 13.8626 -0.634 125 0.527 
FMS 1.4466 4.9354 -0.0157 0.0639 0.0057 -0.0269 -0.0045 -2.764 126 0.007 
FMR -1.1177 3.2268 0.7007 2.8777 0.2672 0.1714 1.2299 2.622 115 0.010 
FMJ -1.1643 10.1882 3.1839 24.5709 2.3535 -1.4811 7.8488 1.353 108 0.179 
FMA -1.9201 5.9286 18.5683 84.5686 7.8520 3.0150 34.1216 2.365 115 0.020 

Mean and standard deviation represent the changes of %DA across the sample population. Negative %DA values represent left > right and positive values represent right > left.   Green = significant 
left leaning asymmetry. Orange = significant right leaning asymmetry. 
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7.3 The Joint Conditions (JC) 
 

To be recorded as having a joint condition for the purpose of this research, an individual 

must have at least one of the joint conditions being researched: general OA, OA of the spine, 

hip, and knee, AS, SI and DDD. Following full osteological assessment which recorded skeletal 

changes at the joints in detail and included differential diagnosis, if any, individuals were 

placed into one of three categories reflecting the extent of palaeopathological evidence for joint 

condition: no joint condition, possible diagnosis of joint condition, probable diagnosis of joint 

condition. The categories for diagnosis are further explained below: 

Absent: No evidence for the joint conditions is present on the joint. 

Possible diagnosis: An individual displayed evidence of skeletal change related to a 

joint condition, but not enough criteria were present for a definitive diagnosis.  

Differential diagnosis may have indicated two or more aetiologies that could be equally 

as likely. This category was used for the purposes of initial skeletal assessments. For 

statistical purposes and reporting, this category was merged into the absent category, as 

a possible diagnosis would have no bearing on the statistical testing. The exception to 

this rule is for ankylosing spondylitis, which will be further explained later in this 

section.  

Probable diagnosis: An individual with enough criteria to conclude that a joint 

condition is present, with a single aetiology implicated by differential diagnosis. 

 The descriptions of these diagnoses are discussed as prevalence rates. The individual 

joint condition examined have an assumed 95% confidence interval and are point prevalence 

for the true count of the sample population as counted and diagnosed. The combined joint 

condition and osteoarthritis prevalences display an overall crude point prevalence and the 

individual joint conditions display prevalences that are more true point prevalences. However, 

as these samples are from assemblages that may have missing elements, not all skeletons may 

be counted for each condition, and so the prevalences describe non-paired extant elements 

present during the examinations. 

In total, 49.7% of the individuals (n = 85) presented with evidence for a probable 

diagnosis for at least one of the joint conditions studied during this research (see Table 7.11) 

and 50.3% of individuals (n = 88) fell into the category of absent. Between the site categories 
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(see Figure 7.8), the rural population displayed the higher proportion of individuals with a 

probable diagnosis (50.6%, n = 43) than the urban population (48.9%, n = 44), however the 

difference was small. Males, overall, presented a higher prevalence of joint condition with 

53.4% (n = 55) displaying enough criteria for a probable diagnosis in comparison to a total of 

44.4% of female individuals (n = 32) (see Table 7.12/ Figure 7.9). 

 
Table 7.11 Distribution of the diagnoses for all the joint conditions studied within this sample population by site category. 

SITE CATEGORY DIAGNOSIS  N % 

URBAN 
ABSENT 46 51.1 

PROBABLE 44 48.9 
 

RURAL 
ABSENT 42 49.41 

PROBABLE 43 50.6 
 

TOTAL 
ABSENT 88 50.3 

PROBABLE 87 49.7 
The possible diagnoses category has been reduced into the absent category.  

 

 
Figure 7.8 Distribution of the diagnoses for all the joint conditions studied within this sample population by site category. The 
possible diagnoses category has been reduced into the absent category. Count is indicated within the bars. 
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Table 7.12 Distribution of the diagnoses for all the joint conditions studied within this sample population by biological sex. 
 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 48 46.6 

PROBABLE 55 53.4 
 

FEMALE 
ABSENT 40 55.6 

PROBABLE 32 44.4 
 

 
Figure 7.9 Distribution of all the joint conditions by biological sex. Count is indicated within the boxes. 

 

 Further break down of joint condition by age at death showed that early adults displayed 

a prevalence of 35.7% (n = 20) (see Table 7.13 and Table 7.14/ Figure 7.10 and Figure 7.11), 

32.5% (n = 13) for middle adults and 68.4% (n = 54) were late adults. For the males, 39.3% (n 

= 11) of the early adults displayed a probable prevalence, 31.8% (n = 7) for middle adults and 

69.8% (n = 37) for late adults. For the females, 32.1% (n = 9) early adults displayed a probable 

prevalence, 33.3% (n = 6) for middle adults, and late adults were 65.4% (n = 17).  

Thus overall, while the distribution of probable diagnoses across site category and 

biological sex is relatively equal, cases are over-represented in the late adult category compared 

to both early and middle adult categories. Early adults tend to have slightly higher proportions 
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of probably cases than middle adults, and while the distinction is small compared to that 

between both these younger groups and the late adults, it is consistent between both males and 

females, and urban and rural groups. The exception to this is rural females, which have a more 

uniform prevalence for the early and middle age categories. 

 

Table 7.13 Distribution of the diagnoses for all the joint conditions studied within this sample population by biological sex 
and age at death. 

BIOLOGICAL SEX AGE AT DEATH CATEGORY 
ABSENT PROBABLE 

N % N % 

MALE 

EARLY 17 60.7 11 39.3 

MIDDLE 15 68.2 7 31.8 

LATE 16 30.2 37 69.8 

  

FEMALE 

EARLY 19 67.9 9 32.1 

MIDDLE 12 66.7 6 33.3 

LATE 9 34.6 17 65.4 

  

TOTAL 

EARLY 36 64.3 20 35.7 

MIDDLE 27 67.5 13 32.5 

LATE 25 31.6 54 68.4 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.10 Proportional distribution of the diagnoses for all the joint conditions studied within this sample population by 
biological sex and age at death. Count is indicated in the bars. 

 
Table 7.14 Distribution of the diagnoses for all the joint conditions studied within this sample population by site category and 
age at death. 

BIOLOGICAL SEX AGE AT DEATH CATEGORY 
ABSENT PROBABLE 

N % N % 

URBAN 

EARLY 22 68.8 10 31.3 

MIDDLE 13 61.9 8 38.1 

LATE 11 29.7 26 70.3 

  

RURAL 

EARLY 14 58.3 10 41.7 

MIDDLE 14 73.7 5 26.3 

LATE 14 33.3 28 66.7 

  

TOTAL 

EARLY 36 64.3 20 35.7 

MIDDLE 27 67.5 13 32.5 

LATE 25 31.6 54 68.4 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.11 Distribution of the diagnoses for all the joint conditions studied within this sample population by site category, 
biological sex, and age at death. Count is indicated within the bars. 

 

 The diagnoses will for each joint condition will be explained in more detail in the 

following sections. Table 7.15 displays all of the joint conditions with the expanded diagnoses 

before reduction of possible into the absent category. The possible diagnoses may be cases of 

joint condition, however, due to either lack of definitive evidence or the presence of differential 

diagnoses, these possible diagnoses cannot offer any substantive value to the following 

evaluations. 

 
Table 7.15 Diagnoses of the joint conditions researched within this study with possible diagnoses included. 

  
ABSENT POSSIBLE PROBABLE 

N % N % N % 

JO
IN

T 
C

O
N

D
IT

IO
N

S OA 100 57.1 15 8.6 60 34.3 
SOA 120 71.4 7 4.2 41 24.4 
HOA 136 77.7 17 9.7 22 12.6 
KOA 148 86.0 7 4.1 17 9.9 
AS 149 90.9 15 9.1 0 0.0 
SI 152 93.3 0 0.0 11 6.7 

DDD 107 63.7 32 19.0 29 17.3 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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 In summation, all cases of the joint conditions studied accounted for roughly half of the 

sample population. Both site categories, urban and rural, had a near even split of roughly 50% 

between absent and probable diagnoses. The distribution between males and females was also 

remarkably similar, with males presenting a slightly higher prevalence. Joint condition was 

found to be substantially more common in the late adult age category for the population as a 

whole and all sub-groups, with one exception. Urban females had a uniform distribution across 

the age categories, with the proportion of individuals with joint condition in the late adult 

category being only slightly larger than those in the younger age categories. 

 

7.3.1 Osteoarthritis (OA) 

 

Probable cases of osteoarthritis were observed in 34.3% (n = 60) of the total sample 

population (see Table 7.16/ Figure 7.12). These cases were spread throughout the joints 

assessed within this research: the spine, hip, knee. The patterns of OA in these joints are 

discussed separately below (see Section 7.3.2-4), but the following section combines them to 

reflect an overall prevalence of OA. Within the site categories, 30.0% (n = 27) of the urban 

population and 38.8% (n = 33) of the rural population were diagnosed as probable cases of OA. 

A total of 36.9% (n = 38) of the male sample population and 30.6% (n = 22) of the female 

sample population were diagnosed as probable cases of OA (see Table 7.17/ Figure 7.13). 

 
Table 7.16 Distribution of the diagnoses for osteoarthritis within this sample population by site category. 

SITE CATEGORY DIAGNOSIS  N % 

URBAN 
ABSENT 63 70.0 

PROBABLE 27 30.0 

  

RURAL 
ABSENT 52 61.2 

PROBABLE 33 38.8 
 

TOTAL 
ABSENT 115 65.7 

PROBABLE 60 34.3 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.12 Distribution of the diagnoses for general osteoarthritis studied within this sample population by site category. 
Count is indicated within the bars. 

 
Table 7.17 Distribution of the diagnoses for osteoarthritis within this sample population by biological sex. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 65 63.1 

PROBABLE 38 36.9 
 

FEMALE 
ABSENT 50 69.4 

PROBABLE 22 30.6 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.13 Distribution of the diagnoses for general osteoarthritis studied within this sample population by biological sex. 
Count is indicated within the bars. 

 

Rural males and females had the higher proportion of osteoarthritis than their urban 

counterparts with prevalences of 42.6% (n = 20) and 34.2% (n = 13) respectively (see Table 

7.17/ Figure 7.14). The urban males had a prevalence of 32.1% (n = 18) and urban females 

26.5% (n = 9). Both males and females had the higher proportions of osteoarthritis in the late 

adult category (see Table 7.19/ Figure 7.15). Of the female individuals with a diagnosis of OA, 

a total of 22.7% (n = 5) fell within the early adult category, 18.18% (n = 4) fell within the 

middle adult category, and 59.1% (n = 13) fell within the late adult categories. Of the male 

individuals, 15.8% (n = 6) fell within the early adult category, 13.2% (n = 5) fell within the 

middle adult category, and 71.1% (n = 27) fell within the late adult category. 
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Table 7.18 Distribution of the diagnoses for osteoarthritis within this sample population by site category and biological sex. 

FEMALE 
  

URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 25 73.5 25 65.8 

PRESENT 9 26.5 13 34.2 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 38 67.9 27 57.5 

PRESENT 18 32.1 20 42.6 
Percentages are by subcategory (urban male, urban female, rural male, rural female). Note that values may not ≠ 100 as decimal 
point placement is rounded. 
 

 
Figure 7.14 Distribution of the diagnoses for general osteoarthritis studied within this sample population by site category and 
biological sex. Count is indicated within the bars. 
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Table 7.19 Distribution of the diagnoses for osteoarthritis within this sample population by biological sex and age at death. 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 23 82.1 5 17.9 

DEATH MIDDLE 14 77.8 4 22.2 

CATEGORIES LATE 13 50.0 13 50.0 

   

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 22 78.6 6 21.4 

DEATH MIDDLE 17 77.3 5 22.7 

CATEGORIES LATE 26 49.1% 27 50.9 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.15 Proportional distribution of the diagnoses for osteoarthritis within this sample population by biological sex and 
age at death. Count is indicated within the bars. 

 

 Urban males displayed probable prevalences for OA at 11.8% (n = 2) within the early 

adults, 18.2% (n = 2) and the late category was 50.0% (n = 14) (see Table 7.19/ Figure 7.16). 

In stark contrast, the urban females displayed a more uniform distribution of probable 

diagnoses with early adults having a prevalence of 26.7% (n = 4), middle adults 30.0% (n = 3) 

and late adults 22.2% (n = 2). Early adult rural males displayed a prevalence of 36.4% (n = 4) 
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and middle adults at 27.3% (n = 3) and late adults at 52.0% (n = 13). Early adult rural females 

displayed a prevalence of 7.7% (n = 1), middle adults at 12.5% (n = 1), and late adults at 64.7% 

(n = 11). The overall distribution of probable diagnoses favors the late adults; however, the 

urban females did not follow that trend and instead had the lowest prevalence for late adults. 

 
Table 7.20 Distribution of the diagnoses for osteoarthritis within this sample population by site category, biological sex, and 
age at death. 

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 11 73.3 4 26.7 

DEATH MIDDLE 7 70.0 3 30.0 

CATEGORIES LATE 7 77.8 2 22.2 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 15 88.2 2 11.8 

DEATH MIDDLE 9 81.8 2 18.2 

CATEGORIES LATE 14 50.0 14 50.0 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 12 92.3 1 7.7 

DEATH MIDDLE 7 87.5 1 12.5 

CATEGORIES LATE 6 35.3 11 64.7 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 7 63.6 4 36.4 

DEATH MIDDLE 8 72.7 3 27.3 

CATEGORIES LATE 12 48.0 13 52.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 
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Figure 7.16 Proportional distribution of the diagnoses for osteoarthritis within this sample population by site category, 
biological sex, and age at death. Count is indicated within the bars. 

 

In summation, osteoarthritis was present in one third of the sample population. 

Distribution between populations, was slightly higher among the rural group, and between the 

sexes was slightly higher among males. Late adults had the higher proportion of osteoarthritis, 

however, once more, urban females displayed a distinct distribution across the age at death 

categories. In this case, probable cases of OA decreased with advancing age and among late 

adult urban females alone, substantially more individuals did not show OA than did. 

 

7.3.2 Spinal Osteoarthritis (SOA) 

 

Overall, 24.4% (n = 41) of the total sample population displayed enough criteria for a 

probable diagnosis of spinal OA (see Table 7.21/ Figure 7.17). Individuals with a probable 

diagnosis constituted 19.3% (n=16) of the urban population and 29.4% (n=25) of the rural 

population. Males (25.5%, n = 25) displayed a higher proportion of probable diagnoses than 

females (22.9%, n = 16)  within the population; however, the margin between the sexes is 

smaller than the other OA categories (see Table 7.22/ Figure 7.18).  
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Table 7.21 Distribution of the diagnoses for spinal osteoarthritis within this sample population by site category. 
SITE CATEGORY DIAGNOSIS  N % 

URBAN 
ABSENT 67 80.7 

PROBABLE 16 19.3 

  

RURAL 
ABSENT 60 70.6 

PROBABLE 25 29.4 
 

TOTAL 
ABSENT 127 75.6 

PROBABLE 41 24.4 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.17 Distribution of the diagnoses for spinal osteoarthritis studied within this sample population by site category Count 
is indicated within the bars. 

 
Table 7.22 Distribution of the diagnoses for spinal osteoarthritis within this sample population by biological sex. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 73 74.5 

PROBABLE 25 25.5 
 

FEMALE 
ABSENT 54 77.1 

PROBABLE 16 22.9 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.18 Distribution of the diagnoses for spinal osteoarthritis studied within this sample population by biological sex. 
Count is indicated within the bars. 

 

Rural females and males had higher proportions of probable diagnoses of spinal 

osteoarthritis than urban female and male populations (see Table 7.23/ Figure 7.19): 29.0% (n 

= 11) of rural females and 29.8% (n = 14) of rural males, compared with 15.6% (n = 5) of urban 

females and 21.6% (n = 11) of urban males presented with probable diagnoses of spinal 

osteoarthritis. Both the males and females showed a gradual increase of SOA as age increased 

(see Table 7.24/ Figure 7.20). Of the female population with a probable diagnosis of spinal 

osteoarthritis, 10.7% (n = 3) fell within the early adult category, 15.8% (n = 3) fell within the 

middle adult category, and 23.8.0% (n = 10) fell within the late adult category. Of the total 

male population with a probable diagnosis of spinal osteoarthritis, 10.7% (n = 3) fell within the 

early adult category, 20.0% (n = 4) fell within the middle adult category, and 36.0% (n = 18) 

fell within the early adult category. 
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Table 7.23 Distribution of the diagnoses for spinal osteoarthritis within this sample population by site category and biological 
sex. 

FEMALE 
  

URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 27 84.4 27 71.1 

PRESENT 5 15.6 11 29.0 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 40 85.7 27 80.9 

PRESENT 14 14.3 11 19.2 
Percentages are by subcategory (urban male, urban female, rural male, rural female). Note that values may not ≠ 100 as decimal 
point placement is rounded. 

 

 
Figure 7.19 Distribution of the diagnoses for spinal osteoarthritis studied within this sample population by site type and 
biological sex. Count is indicated within the bars. 
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Table 7.24 Distribution of the diagnoses for spinal osteoarthritis within this sample population by biological sex and age at 
death category. 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 25 89.3 3 10.7 

DEATH MIDDLE 16 84.2 3 15.8 

CATEGORIES LATE 32 76.2 10 23.8 

  

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 25 89.3 3 10.7 

DEATH MIDDLE 16 80.0 4 20.0 

CATEGORIES LATE 32 64.0 18 36.0 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.20 Proportional distribution of the diagnoses for spinal osteoarthritis within this sample population by biological sex 
and age at death. Count is indicated within the box. 

 

  Urban males displayed a prevalence of 5.9% (n = 1) for early adults, 11.1% (n = 1) for 

middle adults and 36.0% (n = 9) for late adults (see Table 7.25/ Figure 7.21). Rural males 

displayed a prevalence of 18.2% (n = 2) for early adults, 27.3% (n = 3) for middle adults and 

36.0% (n = 9) for late adults. Urban females displayed a prevalence of 13.3% (n = 2) for early 

adults, 22.2% (n = 2) middle adults and 12.5% (n = 1) for late adults. Rural females displayed 
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similar proportions to urban males with 7.7% (n = 1) for early adults, 12.5% (n = 1) middle 

adults and 52.9% (n = 9) for late adults. The urban females have continued their unique trend 

with a uniform distribution across the age categories and late adults having a lower proportion 

of spinal OA than younger adults. 

 
Table 7.25 Distribution of the diagnoses for spinal osteoarthritis within this sample population by site category, biological sex, 
and age at death. 

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 13 86.7 2 13.3 

DEATH MIDDLE 7 77.8 2 22.2 

CATEGORIES LATE 7 87.5 1 12.5 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 16 94.1 1 5.9 

DEATH MIDDLE 8 88.9 1 11.1 

CATEGORIES LATE 16 64.0 9 36.0 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 12 92.3 1 7.7 

DEATH MIDDLE 7 87.5 1 12.5 

CATEGORIES LATE 8 47.1 9 52.9 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 9 81.8 2 18.2 

DEATH MIDDLE 8 72.7 3 27.3 

CATEGORIES LATE 16 64.0 9 36.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 
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Figure 7.21 Distribution of the diagnoses for spinal osteoarthritis within this sample population by site category, biological 

sex, and age at death. Count is indicated within the bars. 

 

In summation, spinal osteoarthritis was present in roughly one quarter of the sample 

population. The condition was found in one fifth of the urban population and almost one third 

of the rural population, therefore substantially more common in the latter overall. Males and 

females had a similar distribution and roughly one quarter of each group had spinal 

osteoarthritis. Rural males had a higher proportion of individuals with the condition than the 

urban cohort and the females were similar between both groups. Spinal osteoarthritis was found 

to be more common in late adults, however, urban females once again presented a different 

distribution across the age categories. 

 

7.3.3 Hip Osteoarthritis (HOA) 

 

Probable cases of hip osteoarthritis were observed in 12.6% (n = 22) of the sample 

population (see Table 7.26/ Figure 7.22). The prevalence of hip OA was found to be similar 

for both the urban and rural populations with 12.2%/12.9% (n = 11 each). Males (n =19, 17.9%) 

had a larger proportion of probable diagnoses for hip osteoarthritis than females (n = 5, 6.2%). 

Of the male sample population, 16.5% (n = 19) were diagnosed with probable hip OA and 
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83.5% (n = 85) did not meet the criteria for diagnosis (see Table 7.27/ Figure 7.23). Of the 

female sample population, 6.9% (n = 5) were diagnosed with probable hip OA and the final 

93.1% (n = 67) did not meet the criteria for a diagnosis. 

 
Table 7.26 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category. 

SITE CATEGORY DIAGNOSIS  N % 

URBAN 
ABSENT 79 87.8 

PROBABLE 11 12.2 
 

RURAL 
ABSENT 74 87.1 

PROBABLE 11 12.9 
 

TOTAL 
ABSENT 153 87.4 

PROBABLE 22 12.6 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.22 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category and biological 
sex. Count is indicated within the bars. 
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Table 7.27 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category. 
 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 86 83.5 

PROBABLE 17 16.5 
 

FEMALE 
ABSENT 67 93.1 

PROBABLE 5 6.9 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.23 Distribution of the diagnoses for hip osteoarthritis studied within this sample population by biological sex. The 
possible diagnoses category has been reduced into the absent category. Count is indicated within the bars. 

 

 The distribution of probable diagnoses by biological sex across the site categories 

display similar prevalence rates (see Table 7.28/ Figure 7.24), however, the males displayed 

higher prevalence rates across the site categories. The urban males displayed a prevalence 

14.3% (n = 8) and the females displayed a lower rate of 8.8% (n = 3). The rural males displayed 

a prevalence of 19.2% (n = 9) and the females displayed a lower rate of 5.3% (n = 2). Of the 

female population with a probable diagnosis of hip osteoarthritis, 3.6% (n = 1) fell within the 

early adult category, 5.6% (n = 1) fell within the middle adult category, and 11.5% (n = 3) fell 

within the late adult category (see Table 7.29/ Figure 7.25). Of the male population with a 

probable diagnosis of hip osteoarthritis, 10.7% (n = 3) fell within the early adult category, 4.5% 

(n = 1) fell within the middle adult category, 24.5% (n = 13) fell within the late adult category. 
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Table 7.28 Distribution of the diagnoses for hip osteoarthritis within this sample population by biological sex. 

FEMALE 
  

URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 31 91.2 36 94.7 

PRESENT 3 8.8 2 5.3 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 48 85.7 38 80.9 

PRESENT 8 14.3 9 19.2 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.24 Distribution of the diagnoses for hip osteoarthritis studied within this sample population by site category. The 
possible diagnoses category has been reduced into the absent category. Count is indicated within the bars. 
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Table 7.29 Distribution of the diagnoses for hip osteoarthritis within this sample population by biological sex and age at death. 

FEMALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 27 96.4 1 3.6 
DEATH MIDDLE 17 94.4 1 5.6 

CATEGORIES LATE 23 88.5 3 11.5 
  

MALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 25 89.3 3 10.7 
DEATH MIDDLE 21 95.5 1 4.5 

CATEGORIES LATE 40 75.5 13 24.5 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.25 Distribution of the diagnoses for hip osteoarthritis within this sample population by biological sex and age at death. 
Count is indicated within the bars. 

 

 Urban males exhibited a prevalence of 5.7% (n = 1) in early adults and 25% (n = 7) in 

late adults (see Table 7.30/ Figure 7.26). The urban females displayed similar prevalences 

across all age categories with 6.7% (n = 1) for early adults, 10.0% (n = 1) for middle adults, 

and 11.1% (n = 1) for late adults. The rural males displayed prevalences of18.2^% (n = 2) in 

early adults, 9.1% (n = 1) in middle adults, and 24.0% (n = 6) in late adults. Rural females did 

not display prevalences in the early or middle adult categories and 11.8% (n = 2) in the late 

adult category. 
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Table 7.30 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category, biological sex, 
and age at death. 

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 14 93.3 1 6.7 
DEATH MIDDLE 9 90.0 1 10.0 

CATEGORIES LATE 8 88.9 1 11.1 

MALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 16 94.1 1 5.9 
DEATH MIDDLE 11 100.0 0 0.0 

CATEGORIES LATE 21 75.0 7 25.0 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 13 100.0 0 0.0 
DEATH MIDDLE 8 100.0 0 0.0 

CATEGORIES LATE 15 88.2 2 11.8 

MALE 

  
ABSENT PROBABLE 

N % N % 
AGE AT EARLY 9 81.8 2 18.2 
DEATH MIDDLE 10 90.9 1 9.1 

CATEGORIES LATE 19 76.0 6 24.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 

 

 
Figure 7.26 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category, biological sex, 
and age at death. Count is indicated within the bars. 
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Hip osteoarthritis had a lower prevalence than the previous conditions at just over one 

tenth of the sample population. The site categories had similar proportions to the total sample. 

Males presented a higher proportion than females of probable diagnoses and late adults had the 

larger proportion that younger age categories. The exception to the latter, once again, was urban 

females however, the number of probable cases was too small to make any conclusive 

judgements about the reliability of this pattern. 

 

7.3.4 Knee Osteoarthritis (KOA) 

 

Probable cases of knee OA were observed in 9.9% (n = 17) of the total sample 

population (see Table 7.31/ Figure 7.27). The urban and rural populations displayed similar 

prevalences with 10.3%/9.4% (n = 9/ n = 8). Females had a slightly higher prevalence rate of 

hip OA at 12.7% (n = 9) than the males 7.9% (n =8) (see Table 7.32/ Figure 7.28). 

 
Table 7.31 Distribution of the diagnoses for knee osteoarthritis within this sample population by site category. 

SITE CATEGORY DIAGNOSIS  N % 

URBAN 
ABSENT 78 89.7 

PROBABLE 9 10.3 
 

RURAL 
ABSENT 77 90.6 

PROBABLE 8 9.4 
 

TOTAL 
ABSENT 155 90.1 

PROBABLE 17 9.9 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.27 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category. Count is 
indicated in the box. 

 

Table 7.32 Distribution of the diagnoses for knee osteoarthritis within this sample population by biological sex. 
 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 93 92.1 

PROBABLE 8 7.9 

 

FEMALE 
ABSENT 62 87.3 

PROBABLE 9 12.7 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Figure 7.28 Distribution of the diagnoses for knee osteoarthritis within this sample population by biological sex. Count is 
indicated within the bars. 

 

 The female population had a similar prevalence, but the urban male population had a 

slightly higher prevalence than the rural male population (see Table 7.33/ Figure 7.29). Urban 

females displayed a prevalence of 12.1% (n = 4) and the males displayed a prevalence of 9.3% 

(n = 5). The rural female population displayed a prevalence two times larger (13.2%, n = 5) 

than the rural male population (6.4%, n = 3). Female individuals had a higher prevalence of 

knee arthritis in the early adult category, while male individuals had a higher prevalence in the 

late adult category, with the prevalence among the middle adult categories being roughly 

similar between the sexes (see Table 7.34/ Figure 7.30). Of the female population with a 

probable diagnosis of knee osteoarthritis 7.4% (n = 2) fell within the early adult category, 

11.1% (n = 2) fell within the middle adult category, and 19.2% (n = 5) fell within the late adult 

category. Of the male population with a probable diagnosis of knee osteoarthritis, 3.6% (n = 1) 

fell within the early adult category, 4.5% (n = 1) fell within the middle adult category, and 

27.3% (n = 6) fell within the late adult category. 
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Table 7.33 Distribution of the diagnoses for knee osteoarthritis within this sample population by biological sex. 

  
  

FEMALE 
  

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 29 87.9 33 86.8 

PRESENT 4 12.1 5 13.2 

  

  
  

MALE 
  

  
URBAN RURAL 

N % N % 

DIAGNOSIS  
ABSENT 49 90.7 44 93.6 

PRESENT 5 9.3 3 6.4 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.29 Distribution of the diagnoses for knee osteoarthritis studied within this sample population by site category. The 
possible diagnoses category has been reduced into the absent category. Count is indicated within the bars. 
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Table 7.34 Distribution of the diagnoses for hip osteoarthritis within this sample population by biological sex and age at death 
category. 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 25 92.6 2 7.4 

DEATH MIDDLE 16 88.9 2 11.1 

CATEGORIES LATE 21 80.8 5 19.2 

  

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 27 96.4 1 3.6 

DEATH MIDDLE 21 95.5 1 4.5 

CATEGORIES LATE 16 72.7 6 27.3 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.30 Distribution of the diagnoses for hip osteoarthritis within this sample population by biological sex and age at death. 
Count is indicated within the bars. 

 

 Urban males presented no cases of knee OA within early adults but had a prevalence of 

9.1% (n = 1) in middle adults and 15.4% (n = 4) in late adults (see Table 7.34/ Figure 7.31). 

Rural males had no cases among middle adults and the remaining age at death categories 

displayed a prevalence of 9.1% (n = 1) for early adults and 8.0% (n = 2) for late adults. Urban 

females had a prevalence of 14.3% (n= 2) for early adults and 10.0% (n = 1) for middle and 
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11.1% (n = 1) for late adults. Rural females had no probable diagnoses for the early adult age 

category and the remaining age at death categories displayed a prevalence of 12.5% (n = 1) for 

middle adults and 23.5% (n = 4) for late adults. The trend seen among the other joint locations 

and disease categories for urban females to present a distinctive distribution was also evidenced 

in the knee OA data, with a slightly higher proportion in the early adults than middle or older 

adults. 

 
Table 7.35 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category, biological sex, 
and age at death. 

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 12 85.7 2 14.3 

DEATH MIDDLE 9 90.0 1 10.0 

CATEGORIES LATE 8 88.9 1 11.1 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 17 100.0 0 0.0 

DEATH MIDDLE 10 90.9 1 9.1 

CATEGORIES LATE 22 84.6 4 15.4 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 13 100.0 0 0.0 

DEATH MIDDLE 7 87.5 1 12.5 

CATEGORIES LATE 13 76.5 4 23.5 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 10 90.9 1 9.1 

DEATH MIDDLE 11 100.0 0 0.0 

CATEGORIES LATE 23 92.0 2 8.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 
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Figure 7.31 Distribution of the diagnoses for hip osteoarthritis within this sample population by site category, biological sex, 
and age at death. Count is indicated within the bars. 

 

In summation, knee osteoarthritis was present in nearly one tenth of the population and 

the female population displayed a higher prevalence than the male population. Site category 

did not display differences for the females but did exhibit a difference between the males. 

Moreover, the difference between the rural females and males was larger (2:1) than with the 

urban females and males (4:3). Late adults had the highest prevalence rates of knee OA except 

for urban females which had a more uniform spread with early adults having a higher 

prevalence. 

 

7.3.5 Ankylosing Spondylitis (AS) 

 

 No individuals were assessed having a probable diagnosis for ankylosing spondylitis 

(see Table 7.36/ Figure 7.31). However, 8.02% (n = 15) of the sample population were given 

a possible diagnosis due to having skeletal markers and evidence for the condition, but due to 

poor preservation of the remains and presence of possible alternative differential diagnoses, 

these were unable to be definitively diagnosed as present. A total of 12.3% (n = 13) of the male 

and 2.5% (n = 2) of the female individuals were afforded possible diagnoses (see Table 7.37/ 
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Figure 7.32). Due to the lack of any probable diagnoses, following this section presenting the 

basic prevalence rates ankylosing spondylitis was not used for further analyses and testing. 

 
Table 7.36 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

URBAN 
ABSENT 66 83.5 

POSSIBLE 13 16.5 
 

RURAL 
ABSENT 83 97.7 

POSSIBLE 2 2.4 
 

TOTAL 
ABSENT 149 90.9 

PROBABLE 15 9.2 
Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Note that values may not 
≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.32 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category. Count is 
indicated within the bars. 
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Table 7.37 Distribution of the diagnoses for ankylosing spondylitis within this sample population by biological sex. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 83 86.5 

POSSIBLE 13 13.5 

 

FEMALE 
ABSENT 66 97.1 

POSSIBLE 2 2.9 
Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Note that values may not 
≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.33 Distribution of the diagnoses for ankylosing spondylitis within this sample population by biological sex. Count is 
indicated within the bars. 

 

 The urban population for both females and males had a higher prevalence for possible 

cases of ankylosing spondylitis than the rural site category (see Table 7.38/ Figure 7.33). No 

females were found to have evidence of the condition within the rural site category and 6.67% 

(n = 2) of the female urban population was afforded a possible diagnosis. Of the male 

population with a possible diagnosis, 22.45% (n = 11) fell within the urban site category and 

4.26% (n = 2) fell within the rural site category. 
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Table 7.38 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category and 
biological sex. 

FEMALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 28 93.3 38 100.0 

POSSIBLE 2 6.7 0 0.0 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 38 77.6 45 95.7 

POSSIBLE 11 22.5 2 4.3 
Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Note that values may not 
≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.34 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category and 
biological sex. Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Count is 
indicated within the bars. 

 

 Prevalence of possible ankylosing spondylitis within the age categories was skewed 

due to the low numbers and lack of probable cases (see Table 7.39/ Figure 7.35). Of the female 

population with a possible diagnosis of ankylosing spondylitis, 50.0% (n = 1) fell within the 

middle adult category and 50.0% (n = 1) fell within the late adult category. Of the male 

population with a possible diagnosis of ankylosing spondylitis, 23.1% (n = 3) fell within the 



135 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

early adult category, 7.7% (n = 1) fell within the middle adult category, and 69.2% (n = 9) fell 

within the late adult category. 

 
Table 7.39 Distribution of the diagnoses for ankylosing spondylitis within this sample population by biological sex and age at 
death. 

FEMALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 27 100.0 0 0.0 

DEATH MIDDLE 15 93.8 1 6.3 

CATEGORIES LATE 24 96.0 1 4.0 

  

MALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 24 88.9 3 11.1 

DEATH MIDDLE 19 95.0 1 5.0 

CATEGORIES LATE 40 81.6 9 18.4 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.35 Distribution of the diagnoses for ankylosing spondylitis within this sample population by biological sex and age 
at death. Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Count is indicated 
within the bars. 
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 Urban males displayed a possible prevalence of 18.8% (n = 3) for early adults, 11.1% 

(n = 1) for middle adults and 12.5% (n = 7) for late adults (see Table 7.40/ Figure 7.36). Rural 

males only displayed a possible prevalence for late adults (8.0%; n = 2). Urban females had no 

possible diagnoses within early adults and the remaining possible prevalence was 12.5% (n = 

1) for both middle and late adults. No possible diagnoses were found within the rural females. 

 
Table 7.40 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category, biological 
sex, and age at death. 

U
R

B
A

N
 

FEMALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 14 100.0 0 0.0 

DEATH MIDDLE 7 87.5 1 12.5 

CATEGORIES LATE 7 87.5 1 12.5 

MALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 13 81.3 3 18.8 

DEATH MIDDLE 8 88.9 1 11.1 

CATEGORIES LATE 17 70.8 7 29.2 

R
U

R
A

L 

FEMALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 13 100.0 0 0.0 

DEATH MIDDLE 8 100.0 0 0.0 

CATEGORIES LATE 17 100.0 0 0.0 

MALE 

  
ABSENT POSSIBLE 

N % N % 

AGE AT EARLY 11 100.0 0 0.0 

DEATH MIDDLE 11 100.0 0 0.0 

CATEGORIES LATE 23 92.0 2 8.0 
Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Percentages are within each 
subcategory of age. 
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Figure 7.36 Distribution of the diagnoses for ankylosing spondylitis within this sample population by site category, biological 
sex, and age at death. Note that unlike the previous joint conditions, probable has been replaced with possible diagnoses. Count 
is indicated within the bars. 

 

Ankylosing spondylitis was unable to be completely or accurately assessed, as there 

were no probable diagnoses. The possible diagnoses are not conclusive as they do not represent 

definitive cases of the condition. Males had more possible diagnoses than the females and the 

urban sites also contained the higher proportion of numbers.  

 

7.3.6 Sacroiliitis (SI) 

 

 Overall, 6.8% (n = 11) of the sample population were given a probable diagnosis of 

sacroiliitis (see Table 7.41/ Figure 7.37). The urban and rural population had a uniform 

distribution of probable diagnoses (6.4%, n = 5 and 7.1%, n = 6). A total of 9.4% (n = 9) of the 

male individuals were afforded a probable diagnosis and of the female population, only 3.0% 

(n = 2) were afforded a probable diagnosis (see Table 7.42/ Figure 7.38). 
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Table 7.41 Distribution of the diagnoses for sacroiliitis within this sample population by site category. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

URBAN 
ABSENT 73 93.6 

PROBABLE 5 6.4 
 

RURAL 
ABSENT 79 92.9 

PROBABLE 6 7.1 
 

TOTAL 
ABSENT 152 93.3 

PROBABLE 11 6.8 
Note that values may add up to >100 as decimal point placement is rounded. Note that values may not ≠ 100 as decimal point 
placement is rounded. 

 

 
Figure 7.37 Distribution of the diagnoses for sacroiliitis within this sample population by site category, biological sex, and age 
at death. Count is indicated within the bars. 
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Table 7.42 Distribution of the diagnoses for sacroiliitis within this sample population by biological sex. 
 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 87 90.6 

PROBABLE 9 9.4 

 

FEMALE 
ABSENT 65 97.01 

PROBABLE 2 3.0 
Note that values may add up to >100 as decimal point placement is rounded. Note that values may not ≠ 100 as decimal point 
placement is rounded. 

 

 
Figure 7.38 Distribution of the diagnoses for sacroiliitis within this sample population by biological sex. Count is indicated 
within the bars. 

 

 No females from the urban site category were diagnosed with sacroiliitis, whereas 5.3% 

(n = 2) of the female rural population were given a probable diagnosis (see Table 7.42/ Figure 

7.39). Of the male population with probable diagnoses, 10.2% (n=5) fell within the urban 

population and 8.5% (n = 4) fell within the rural population. 
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Table 7.43 Distribution of the diagnoses for sacroiliitis within this sample population by site category and biological sex. 

FEMALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 29 100.0 36 94.7 

PRESENT 0 0.0 2 5.3 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 44 89.8 43 91.5 

PRESENT 5 10.2 4 8.5 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.39 Distribution of the diagnoses for sacroiliitis within this sample population by site category and biological sex. 
Count is indicated within the bars. 

 

 No cases of sacroiliitis fell within the early adult age category for females (see Table 

7.44/ Figure 7.40). Of the female population with a probable diagnosis of sacroiliitis, 6.7% (n 

= 1) fell within the middle adult category and 4.0% (n = 1) were within the late adult category. 

Of the male population with a probable diagnosis of sacroiliitis, 3.7% (n=1) fell within the 

early adult category, 5.6% (n = 1) fell within the middle adult category and 13.7% (n = 7) fell 

within the late adult category. 
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Table 7.44 Distribution of the diagnoses for sacroiliitis within this sample population by biological sex and age at death.  

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 27 100.0 0 0.0 

DEATH MIDDLE 14 93.3 1 6.7 

CATEGORIES LATE 24 96.0 1 4.0 

  

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 26 96.3 1 3.7 

DEATH MIDDLE 17 94.4 1 5.6 

CATEGORIES LATE 44 86.3 7 13.7 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.40 Distribution of the diagnoses for sacroiliitis within this sample population by biological sex and age at death. 
Count is indicated in the bars. 

 

 Urban males had no probable diagnoses for early adults and the remaining prevalence 

rates between the age categories displayed 25.0% (n = 1) for middle adults and 75.0% (n = 3) 

for late adults (see Table 7.45/ Figure 7.41). Rural males had no probable diagnoses for early 

adults also, and the remaining prevalence rates between the age categories were split at 50.0% 

(n = 1) for middle and late adults. Urban females had no probable diagnoses within middle 



142 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

adults and the remaining prevalence rates for probable diagnoses displayed 20.0% (n = 1) for 

early adults and 80.0% (n = 4) for late adults. 

 
Table 7.45 Distribution of the diagnoses for sacroiliitis within this sample population by site category, biological sex, and age 
at death.  

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 14 100.0 0 0.0 

DEATH MIDDLE 7 100.0 0 0.0 

CATEGORIES LATE 8 100.0 0 0.0 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 15 93.8 1 6.3 

DEATH MIDDLE 7 100.0 0 0.0 

CATEGORIES LATE 22 84.6 4 15.4 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 13 100.0 0 0.0 

DEATH MIDDLE 7 87.5 1 12.5 

CATEGORIES LATE 16 94.1 1 5.9 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 11 100.0 0 0.0 

DEATH MIDDLE 10 90.9 1 9.1 

CATEGORIES LATE 22 88.0 3 12.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 
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Figure 7.41 Distribution of the diagnoses for sacroiliitis within this sample population by site category, biological sex, and age 
at death. Count is indicated within the bars. 

 

Sacroiliitis was rare in the sample, resulting in an exceptionally low proportion of 

probable diagnoses. Males had a larger proportion of probable diagnoses, and between site 

categories the distribution is similar. Late adults had the higher proportion of cases. The low 

number of probable cases makes any further assessment unreliable. 

 

7.3.7 Degenerative Disc Disease (DDD) 

 

Probable cases of degenerative disc disease were observed in 17.3% (n = 29) of the 

sample population (see Table 7.46/ Figure 7.42). The urban site category (22.9%, n = 19) had 

almost twice the overall prevalence of DDD than the rural site category (11.8%, n = 10). Males 

(19.4%, n = 19) had a slightly higher proportion of degenerative disc disease than females 

(14.3%, n = 10) within the sample population (see Table 7.47/ Figure 7.43).  
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Table 7.46 Distribution of the diagnoses for degenerative disc disease within this sample population by site category. 

BIOLOGICAL SEX DIAGNOSIS  N % 

URBAN 
ABSENT 64 77.1 

PROBABLE 19 22.9 
 

RURAL 
ABSENT 75 88.2 

PROBABLE 10 11.8 
 

TOTAL 
ABSENT 139 82.7 

PROBABLE 29 17.3 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.42 Distribution of the diagnoses for degenerative disc disease within this sample population by site category. Count 
is indicated within the bars. 
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Table 7.47 Distribution of the diagnoses for degenerative disc disease within this sample population by biological sex. 

 BIOLOGICAL SEX DIAGNOSIS  N % 

MALE 
ABSENT 79 80.6 

PROBABLE 19 19.4 

 

FEMALE 
ABSENT 60 85. 

PROBABLE 10 14.3 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.43 Distribution of the diagnoses for degenerative disc disease studied within this sample population by biological 
sex. The possible diagnoses category has been reduced into the absent category. Count is indicated within the bars. 

 

 The female population had a similar distribution of prevalence for DDD, while the 

males had an almost 3:1 difference between the site categories (see Table 7.48/ Figure 7.44). 

Probable cases of DDD were found to be 15.6% (n = 5) of the urban females and 13.2% (n = 

5) of the rural females. Probable cases of DDD were found to be 27.5% (n = 14) in urban males 

and 10.6% (n = 5) in the rural males. 
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Table 7.48 Distribution of the diagnoses for degenerative disc disease within this sample population by site category and 
biological sex. 

FEMALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 27 84.4 33 86.8 

PRESENT 5 15.6 5 13.2 

  

MALE 

  
URBAN RURAL 

N % N % 

DIAGNOSIS 
ABSENT 37 72.6 42 89.4 

PRESENT 14 27.5 5 10.6 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.44 Distribution of the diagnoses for degenerative disc disease within this sample population by site category and 
biological sex. 

 

 Females had a higher prevalence of degenerative disc disease at the early adult category 

and males had a higher prevalence at the middle and late adult categories (see Table 7.47/ 

Figure 7.44). Of the female population with a probable diagnosis of degenerative disc disease, 

40.0% (n = 4) fell within the early adult category, 10.0% (n = 1) fell within the middle adult 

category and 50.0% (n = 5) fell within the late adult category. Of the male population with a 

probable diagnosis of degenerative disc disease, 15.8% (n = 3) fell within the early adult 
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category, 21.0% (n = 4) fell within the middle adult category, and the remaining 63.2% (n =12) 

fell within the late adult category.  

 
Table 7.49 Distribution of the diagnoses for degenerative disc disease within this sample population by biological sex and age 
at death.  

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 24 85.7 4 14.3 

DEATH MIDDLE 16 94.1 1 5.9 

CATEGORIES LATE 20 80.0 5 20.0 

  

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 26 89.7 3 10.3 

DEATH MIDDLE 16 80.0 4 20.0 

CATEGORIES LATE 38 76.0 12 24.0 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

 
Figure 7.45 Distribution of the diagnoses for degenerative disc disease within this sample population by biological sex and 
age at death. Count is indicated within the bars. 
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 Urban males with a probable diagnosis displayed a prevalence of 14.3% (n = 2) for 

early adults, 21.4% (n = 3) for middle adults and 64.3% (n = 9) for late adults (see Table 7.49/ 

Figure 7.45). Rural males with a probable diagnosis displayed prevalence of 20.0% (n = 1) for 

early and middle adults and 60.0% (n = 3) for late adults. Urban females had no probable 

diagnoses within early adults and the remaining probable diagnoses for the age at death 

categories displayed 20.0% (n = 1) for middle adults and 80.0% (n = 4) for late adults.  Rurals 

had no probable diagnoses for early adults and the remaining probable diagnoses for age at 

death categories showed the inverse of the urban prevalence with 80.0% (n= 4) for early adults 

and 20.0% (n = 1) for late adults.  

 
Table 7.50 Distribution of the diagnoses for degenerative disc disease within this sample population by site category, biological 
sex, and age at death.  

U
R

B
A

N
 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 15 100.0 0 0.0 

DEATH MIDDLE 8 88.9 1 11.1 

CATEGORIES LATE 4 50.0 4 50.0 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 15 88.2 2 11.8 

DEATH MIDDLE 6 66.7 3 33.3 

CATEGORIES LATE 16 64.0 9 36.0 

R
U

R
A

L 

FEMALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 9 69.2 4 30.8 

DEATH MIDDLE 8 100.0 0 0.0 

CATEGORIES LATE 16 94.1 1 5.9 

MALE 

  
ABSENT PROBABLE 

N % N % 

AGE AT EARLY 10 90.9 1 9.1 

DEATH MIDDLE 10 90.9 1 9.1 

CATEGORIES LATE 22 88.0 3 12.0 
Note that values may not ≠ 100 as decimal point placement is rounded. Percentages are within each subcategory of age. 
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Figure 7.46 Distribution of the diagnoses for degenerative disc disease within this sample population by site category, 
biological sex, and age at death. Count is indicated within the bars. 

 

In summation, degenerative disc disease was present in almost two fifths of the 

population and the proportions were higher in the urban population than the rural. Males had a 

high proportion, although the difference was not large. Urban males had 2.6 times the number 

of probable diagnoses than the rural males, while females were evenly divided. Degenerative 

disc disease had larger proportions within the late adult category, with exception of the rural 

females, which had the larger proportion in the middle adult category. 

 

7.3.8 Summary 

 

Four of the sample collections had enough of a sample size to be viable for further 

comparisons with data from the literature in the following discussion chapter (see Table 7.51). 

These four sites represent individuals from both rural (Barton-upon-Humber) and urban sites 

(South Shields, Wolverhampton, and Kingston-upon-Thames). The ratios for each joint 

condition (urban: rural) will be used for the discussions as well. One or more joint conditions 

was present in roughly half of the sample population and osteoarthritis the most common. 

Spinal osteoarthritis was the most common joint condition present within this sample. The 
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prevalence of joint conditions was distributed roughly equally between the site categories 

displayed, apart from spinal osteoarthritis and degenerative disc diseases (see Table 7.52). 

Spinal osteoarthritis was more prevalent in the rural population, while degenerative disc disease 

was more prevalent in the urban population. Late adults had the larger proportions of all the 

joint conditions; however, urban females exhibited a trend towards a more even distribution of 

probable diagnoses across the age at death categories which, in some cases, resulted in more 

young and middle adults presenting joint condition than late adults. For OA, SOA and HOA, 

rural males displayed a trend of having larger prevalences at younger ages. AS and SI were 

present in much smaller proportions that the other joint conditions, which results in too small 

a sample to draw any conclusions about their distribution with site category, sex, or age. 

 
Table 7.51 The prevalences of the joint conditions by individual site. 

  
OA SOA HOA KOA DDD 

N % N % N % N % N % 
SOUTH SHIELDS 16 34.8 9 20.0 7 15.2 7 15.2 10 22.7 

WOLVERHAMPTON 2 10.0 2 11.8 1 5.0 0 0.0 4 25.0 
KINGSTON-UPON-THAMES 7 38.9 4 26.7 2 11.1 1 6.3 2 11.8 
BARTON-UPON-HUMBER 33 38.8 25 29.4 11 12.9 8 9.4 10 11.8 

These are the sites with the most viable individual sample sizes. Note how Wolverhampton had the lowest prevalence rates 
across the board except for degenerative disc disease which was the highest.  

 
Table 7.52 The prevalences of the joint conditions by site category from within this study. 

  OA SOA HOA KOA DDD 
URBAN 30.0 19.3 12.2 10.3 22.9 
RURAL 38.8 29.4 12.9 9.4 11.8 
RATIO 0.8 0.7 0.9 1.1 1.9 

Note that DDD is higher for urban, HOA and KOA are more neutral, and OA and SOA are higher for rural. Ratio is urban/ 
rural. 

 

7.4 Aetiological Factors 
 

 Site category, biological sex and age at death are only three of a wider range of variables 

that were assessed in this project to explore the risk factors underpinning joint condition in the 

past. The remaining variables include factors related to body mass and activity patterns that are 

thought to directly affect the onset and progression of the joint conditions discussed within this 

body of work. These variables were body mass index, entheseal changes and a grouping of 

eight separate but related cross-sectional indices.  
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7.4.1 Body Mass Index (BMI) 

 

 The data for BMI were reported in three formats: point values on a continuous scale, 

categorization based on interquartile range and binary categorization (‘normal’ and ‘over’ 

mass). The reason for the different scales for reporting the BMI data relates directly to the 

different type of analysis. The binary categorization helps to display the data in basic 

percentages and proportions in a way similar to the clinical categorizations. The binary 

categorization originally had 4 categories, however, there were no under mass individuals and 

only a very small number of extremely over mass which were then merged into the over mass 

category. The point-based data allowed for a better analysis of ranges and distribution within 

the population and with variables added. The interquartile range categorization was better 

suited to the statistical tests to determine association and correlation, as it provided a more 

nuanced distinction between mass levels than the binary categorization that would help to 

investigate the relationship between body mass and joint condition prevalence.  

 Overall, 65.3% (n = 98) of the sample population were found to be normal mass and 

34.7% were found to be over massed (see Table 7.53). No individuals had a BMI that fell 

within the under-mass range. The urban site category displayed 63.5% (n = 47) with a normal 

mass BMI and 36.5% (n = 27) with an over mass BMI. The rural site category displayed 67.1% 

(n = 51) with a normal mass BMI and 32.9% (n = 25) with an over mass BMI. Of the males 

(see Table 7.54), 62.5% (n = 55) were normal mass and 37.5% (n = 33) were over mass. Of the 

females, 69.4% (n = 43) were normal mass and 30.7% (n = 19) were over mass. Thus, in general 

there was no difference in BMI between the site types, but a slightly higher proportion of males 

were over mass compared to females.  

 
Table 7.53 Distribution of body mass by site category. 

SITE CATEGORY BMI CATEGORY N % 

URBAN 
NORMAL 47 63.5 

OVER 27 36.5 

 

RURAL 
NORMAL 51 67.1 

OVER 25 32.9 

 

TOTAL 
NORMAL 98 65.3 

OVER 52 34.7 
Note that values may not ≠ 100 as decimal point placement is rounded. 
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Table 7.54 Distribution of body mass by biological sex. 

 BIOLOGICAL SEX BMI CATEGORY N % 

MALE 
NORMAL 55 62.5 

OVER 33 37.5 

 

FEMALE 
NORMAL 43 69.4 

OVER 19 30.7 
Note that values may not ≠ 100 as decimal point placement is rounded. 

 

Body mass was further subdivided between age at death and biological sex (see Table 

7.55/ Figure 7.47). The larger proportion of males were normal mass with 31.8% (n = 28) being 

late adults, 14.8% (n = 13) middle adults and 15.9% (n = 14) early adults. The over mass males 

represented 20.5% (n = 19) late adults, 9.1% (n = 8) middle adults and 8.0% (n = 7) early 

adults. The larger proportion of females were also normal mass with 25.8% (n = 16) late adults, 

17.7% (n = 11) middle adults and 25.8% (n = 16) early adults. The over mass females 

represented 11.3% (n =7) late adults, 4.8% (n = 3) middle adults and 14.5% (n = 9) young 

adults. 

 
Table 7.55 Distribution of body mass by biological sex and age at death. 

FEMALE  

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 16 25.8 9 14.5 

DEATH MIDDLE 11 17.7 3 4.8 

CATEGORIES LATE 16 25.8 7 11.3 

  

MALE 

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 14 15.9 7 8.0 

DEATH MIDDLE 13 14.8 8 9.1 

CATEGORIES LATE 28 31.8 18 20.5 
Percentages are within the biological sex categories. 
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Figure 7.47 Proportional distribution of body mass by biological sex and age at death. Count is indicated within the bars.  

 

Mean body mass is similar for males (24.25) and females (23.92) and between male 

and females age at death categories, however, the range of body masses among the males is 

greater at all ages than the females. This distinction between the sexes in most apparent among 

young individuals. While females have a comparatively restricted range of BMI in the young 

adult group, which increases with age, the males present greater variation at all ages. Indeed, 

both the maximum and minimum BMI in the population belong to young males (see Figure 

7.48).  
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Figure 7.48 Boxplot of the sample population’s body mass index, sorted by biological sex and age at death categories, which 
presents the mean and interquartile ranges.  

  

 Within the urban male population, normal massed individuals displayed percentages of 

31.8% (n = 14) for late adults, 9.1% (n = 4) for middle adults, and 20.5% (n = 9) for early adults 

(see Table 7.56/ Figure 7.49). The over massed urban males displayed percentages of 18.2% 

(n = 8) for late adults, 11.4% (n = 5) for middle adults, and 9.1% (n = 4) for early adults. Within 

the urban female population, normal massed individuals displayed percentages of 20.7% (n = 

6) for late adults, 20.7% (n = 6) for middle adults, and 24.1% (n = 7) for early adults. The over 

massed urban females displayed percentages of 10.3% (n = 3) for late adults, 6.9% (n = 2) for 

middle adults, and 17.2% (n = 5) for early adults. 

Within the rural male population, normal massed individuals displayed percentages of 

32.6% (n = 14) for late adults, 18.6% (n = 8) for middle adults, and 11.6% (n = 5) for early 

adults. The over massed rural males displayed percentages of 23.3% (n = 10) for late adults, 

7.0% (n = 3) for middle adults, and 7.0% (n = 3) for early adults. Within the rural female 

population, normal massed individuals displayed percentages of 30.3% (n = 10) for late adults, 

15.2% (n = 5) for middle adults, and 27.3% (n = 9) for early adults. The over massed rural 
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females displayed percentages of 12.1% (n = 4) for late adults,3.0% (n = 1) for middle adults, 

and 12.1% (n = 4) for early adults. 

 
Table 7.56 Distribution of body mass by site category, biological sex, and age at death.  

U
R

B
A

N
 

MALE 

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 9 20.5% 4 9.1% 
DEATH MIDDLE 4 9.1% 5 11.4% 

CATEGORIES LATE 14 31.8% 8 18.2% 

FEMALE 

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 7 24.1% 5 17.2% 
DEATH MIDDLE 6 20.7% 2 6.9% 

CATEGORIES LATE 6 20.7% 3 10.3% 

R
U

R
A

L 

MALE 

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 5 11.6% 3 7.0% 
DEATH MIDDLE 8 18.6% 3 7.0% 

CATEGORIES LATE 14 32.6% 10 23.3% 

FEMALE 

  
NORMAL MASS OVER MASS 

N % N % 

AGE AT EARLY 9 27.3% 4 12.1% 
DEATH MIDDLE 5 15.2% 1 3.0% 

CATEGORIES LATE 10 30.3% 4 12.1% 
Percentages are by subcategory (urban males, urban females, rural males, rural females). 
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Figure 7.49 Distribution of body mass by site category, biological sex, and age at death. Actual count is in the box. 

 

 In total, 39.8% of normal mass and 30.8% of over mass individuals were diagnosed 

with probable general osteoarthritis (see Table 7.57/ Figure 7.50 - Figure 7.54). In the majority 

of cases, the difference between prevalence of joint condition in normal and over massed 

individuals is small, with exception of SOA which has a much greater difference. With the 

exception of DDD, the joint conditions display higher prevalences within the normal mass 

category. 
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Table 7.57 Distribution of diagnoses for the researched joint conditions by body mass category. 

  
DIAGNOSES 

ABSENT PROBABLE 
N % N % 

JO
IN

T 
C

O
N

D
IT

IO
N

S 

OA 
NORMAL 59 60.2 39 39.8 

OVER 36 69.2 16 30.8 
  

SOA 
NORMAL 66 68.8 30 31.3 

OVER 40 81.6 9 18.4 
  

HOA 
NORMAL 83 84.7 15 15.3 

OVER 48 92.3 4 7.7 
  

KOA 
NORMAL 86 88.7 11 11.3 

OVER 47 90.4 5 9.6 
  

DDD 
NORMAL 80 83.3 16 16.7 

OVER 38 80.9 9 19.1 
Percentages based on body mass category. 

 

 
Figure 7.50 Distribution of diagnoses for osteoarthritis by BMI category. Count is indicated within the box. 
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Figure 7.51 Distribution of diagnoses for spinal osteoarthritis by BMI category. Count is indicated within the box. 

 

 
Figure 7.52 Distribution of diagnoses for hip osteoarthritis by BMI category. Count is indicated within the box. 
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Figure 7.53 Distribution of diagnoses for knee osteoarthritis by BMI category. Count is indicated within the box. 

 

 
Figure 7.54 Distribution of diagnoses for degenerative disc disease by BMI category. Count is indicated within the box. 
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 The distribution of the joint conditions by body mass category can be seen in Table 

7.58. These percentages were equated using the diagnoses at each categorical level (ex. Early 

normal mass urban males) and used the total number of individuals that fell within said 

category from Table 7.56.  For the urban males, the early adults showed no prevalence higher 

than 22.2% (OA: n = 2) for normal mass and 0.0% for over mass. The middle adults displayed 

the highest prevalence being 50.0% (DDD: n =2) for normal mass and 20.0% (n = 1) for all 

conditions, except for SOA, for over mass. The late adults had a range of prevalences from 

50.0% (OA: n = 7) – 14.3% (KOA: n = 2) for normal mass and 50.0% (OA/HOA: n = 4) -

12.5% (SOA/KOA: n = 1) for over mass. For the urban females, the early adults displayed a 

high of 42.9% (OA: n = 3) for normal mass and 20.0% (OA/SOA/HOA: n = 1) for over mass. 

The middle adults all displayed a prevalence for 16.7 (n = 1) for normal mass, except for HOA, 

and a high of 50.0% (OA/SOA/HOA: n = 1) for over mass. The late adults displayed a range 

of 33.3% (OA/DDD: n = 2) – 16.7% (SOA/HOA/KOA: n = 1) for normal mass and only DDD 

had a prevalence (66.7%, n = 2) for over mass. 

 The early adult rural males had high of 60.0% (OA: n = 3) for normal mass and only 

DDD had a prevalence (33.3%, n = 1) for over mass. The middle adults had a high of 25.0% 

(OA/SOA: n = 2) for normal mass and all conditions, with the exception of KOA, had a 

prevalence of 33.3% (n = 1) for over mass. The late adults displayed a large range of 71.4% 

(OA: n = 10) – 7.1% (KOA: n = 1) for normal mass and 100.0% (OA/HOA: n = 4) – 25.0% 

(KOA: n = 1), with DDD having 0.0%. For rural females, the early adults had a high of 33.3% 

(DDD: n = 3) for normal mass and only DDD had a prevalence (25.0%, n = 1) for over mass. 

No middle adults had a prevalence within the normal mass category and all conditions, except 

for DDD, had 100.0% (n = 1) for over mass.  The late adults had a range of 70.0% (OA: n = 7) 

- 10.0% (HOA/DDD: n = 1) for normal mass and 100.0% (OA/HOA: n = 4) – 25.0% (KOA: n 

= 1), with DDD having no prevalences.
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Table 7.58 Multivariate distribution of probable diagnoses and body mass with inclusion of the site category, biological sex, and age at death variables.  
  OSTEOARTHRITIS SPINAL OSTEOARTHRITIS HIP OSTEOARTHRITIS KNEE OSTEOARTHRITIS DEG.DISC DISEASE 

U
R

B
A

N
 

M
A

LE
 

  
NORMAL OVER NORMAL  OVER NORMAL OVER NORMAL OVER NORMAL OVER 

N % N % N % N % N % N % N % N % N % N % 
A

G
E 

A
T 

D
EA

TH
  EARLY 2 22.2 0 0.0 1 11.1 0 0.0 1 11.1 0 0.0 0 0.0 0 0.0 1 11.1 0 0.0 

MID 1 25.0 1 20.0 1 25.0 0 0.0 0 0.0 1 20.0 0 0.0 1 20.0 2 50.0 1 20.0 
LATE 7 50.0 4 50.0 6 42.9 1 12.5 4 28.6 4 50.0 2 14.3 1 12.5 4 28.6 2 25.0 

  

FE
M

A
LE

   N % N % N % N % N % N % N % N % N % N % 

A
G

E 
A

T 
D

EA
TH

  EARLY 3 42.9 1 20.0 1 14.3% 1 20.0 1 14.3 1 20.0 2 28.6 0 0.0 0 0.0 0 0.0 
MID 1 16.7 1 50.0 1 16.7% 1 50.0 0 0.0 1 50.0 1 16.7 0 0.0 1 16.7 0 0.0 

LATE 2 33.3 0 0.0 1 16.7% 0 0.0 1 16.7 0 0.0 1 16.7 0 0.0 2 33.3 2 66.7 
    

R
U

R
A

L 

M
A

LE
 

  N % N % N % N % N % N % N % N % N % N % 

A
G

E 
A

T 
D

EA
TH

  EARLY 3 60.0 0 0.0 2 40.0% 0 0.0 1 20.0 0 0.0 1 20.0 0 0.0 0 0.0 1 33.3 
MID 2 25.0 1 33.3 2 25.0% 1 33.3 1 12.5 1 33.3 0 0.0 0 0.0 0 0.0 1 33.3 

LATE 10 71.4 3 30.0 8 57.1% 1 10.0 5 35.7 3 30.0 1 7.1 1 10.0 3 21.4 1 10.0 
  

FE
M

A
LE

   N % N % N % N % N % N % N % N % N % N % 

A
G

E 
A

T 
D

EA
TH

  EARLY 1 11.1 0 0.0 1 11.1% 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 3 33.3 1 25.0 
MID 0 0.0 1 100.0 0 0.0% 1 100.0 0 0.0 1 100.0 0 0.0 1 100.0 0 0.0 0 0.0 

LATE 7 70.0 4 100.0 6 60.0% 3 75.0 1 10.0 4 100.0 3 30.0 1 25.0 1 10.0 0 0.0 
Percentages are based on the age at death categories within the site category and biological sex groupings of each condition (ex. osteoarthritis: early adult urban male). These figures are based on 
the normal and over mass figures listed in Table 7.56.
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In addition to the assignment of individuals to pre-determined body mass categories 

based on modern data, all individuals were also assigned to one of four categories created using 

interquartile range figures (see Table 7.59). These groupings reflected the relative mass of each 

individual with respect to the archaeological sample as a whole. Note that the values represent 

point data from the skeletal samples. Therefore, some samples may have the same value, but 

are split evenly between two quartiles. These IQR values have been used for the statistical 

testing. 

 
Table 7.59 The point value ranges within each quartile. 

  Q1 <25% Q2 25-50% Q3 50-75% Q4 >75% 
BMI 19.76-22.95 22.97-24.04 24.1-25.51 25.51-31.08 

The duplicate 25.51 represents different individuals that have by been sorted into the different categories to ensure the quartiles 
have been evenly distributed. Q = quartile 

 

In summation, distribution of body mass index categories was uniform between the 

urban and rural population with roughly one third of the entire sample population being over 

mass. Biological sex displayed a similar uniformity to the site category, with males having a 

slightly larger over mass population. Normal mass individuals had a similar age distribution, 

with middle adult having the lowest percentages amongst the females and late adult having the 

larger numbers within the males. Male over massed individuals largely fell within the late adult 

category, while females fell into the early adult category. Probable diagnoses were roughly 

similar between body mass index categories for osteoarthritis, knee osteoarthritis and 

degenerative disc disease, while spinal and knee osteoarthritis had a differently of roughly 10% 

between the body mass index categories.  

 

7.4.2 Entheseal Changes (EC) 

 

 Entheseal changes were scored and allocated into one of three categories based on the 

criteria set forth in the methods section (see Section 6.1.4). Individuals with overall moderate 

entheseal change were the largest proportion at 50.9% (n = 89) (see Table 7.60/ Figure 7.55), 

with gracile changes being present in 40.0% (n = 70) and robust changes present in 9.14% (n 

= 16). The rural population follows a similar trend to the sample as a whole with individuals 

with moderate entheseal change representing the larger proportion (60.0%, n = 51), followed 

by gracile changes (28.2%, n = 24) and robust changes (11.8%, n = 10). The urban population 
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displayed a different trend with individuals with gracile entheseal changes representing the 

larger proportion (51.1%, n = 46), followed by those with moderate changes (42.2%, n = 38) 

and the robust changes (6.7%, n = 6). Thus, the urban population were more gracile overall 

than rural population.  

 
Table 7.60 Distribution of entheseal change grades by site category. 

  

URBAN RURAL TOTAL 
N % N % N % 

ENTHESEAL 
CHANGES 

GRACILE 46 51.1% 24 28.2% 70 40.0% 

MODERATE 38 42.2% 51 60.0% 89 50.9% 

ROBUST 6 6.7% 10 11.8% 16 9.1% 
 

 

  
Figure 7.55 Distribution of entheseal change grades by site category. Count is displayed in the box of contained within each 
grouping. 

 

Moderate entheseal changes continued to have the higher proportion when divided 

between males and females with 52.4% (n = 54) and 48.6% (n = 35) respectively (see Table 

7.61/ Figure 7.56). For males, gracile changes were observed in 35.9% (n = 37) and robust 
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changes in 11.7% (n = 12). A greater proportion of females also had gracile changes (45.8%, 

n = 33) than robust changes (5.6%, n = 4), but females were also, overall, more gracile than 

males.  

 
Table 7.61 Distribution of entheseal change grades by biological sex.  

  

MALE FEMALE 
N % N % 

ENTHESEAL 
CHANGES 

GRACILE 37 35.9% 33 45.8% 

MODERATE 54 52.4% 35 48.6% 

ROBUST 12 11.7% 4 5.6% 
 

 

  
Figure 7.56 Proportional distribution of entheseal grades by biological sex and age at death. Count is indicated within the bars. 

 

 Further dividing the categories and comparing entheseal changes with age at death 

categories within the site categories displayed the same trend towards the majority of 

individuals presenting moderate EC, however, the urban site category displayed some deviation 

from this pattern (see Table 7.62/ Figure 7.57). The urban male percentages show a trend of 

increasing robusticity to the EC as the age category increases. The urban early adult population 
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displayed the largest percentage of gracile EC with this population at 59.4% (n = 19), and then 

had 37.5% (n = 12) moderate EC and 3.1% (n = 2) robust EC. The urban middle adult 

population had a percentage of 42.9% (n = 9) gracile EC, the largest percentage of moderate 

EC within this population at 52.4% (n = 11) and 4.8% (n = 1) robust EC. The urban late adult 

population had a percentage of 48.6% (n = 18) gracile EC, 40.5% (n = 15) moderate EC, and 

the displayed the largest percentage of robust EC within this population at 10.8% (n = 4). The 

rural males show an increasing robusticity of EC as the ages increase, however the early adults 

did show a higher level of individuals with moderate changes than the urban population. The 

early adult rural population displayed the largest percentage of gracile EC within this 

population at 33.3% (n = 8), then 58.3% (n = 14) moderate EC and 8.3% (n = 2) robust EC. 

The rural middle adult population had a percentage of 31.6% (n = 6) gracile entheseal changes, 

then displayed the largest percentage of moderate EC within this population at 63.2% (n = 12), 

and 5.3% (n = 1) of robust EC. The rural late adult population had a percentage of 23.8% (n = 

10), then 59.5% (n = 25), and displayed the highest percentage of robust EC within this 

population at 16.7% (n = 7). 

 
Table 7.62 Distribution of entheseal change grades by age at death category and site category.  

  
AGE AT DEATH CATEGORIES 

EARLY MIDDLE LATE 
N % N % N % 

URBAN 
GRACILE 19 59.4 9 42.9 18 48.6 

MODERATE 12 37.5 11 52.4 15 40.5 
ROBUST 1 3.1 1 4.8 4 10.8 

  

RURAL 
GRACILE 8 33.3 6 31. 10 23.8 

MODERATE 14 58.3 12 63.2 25 59.5 
ROBUST 2 8.3 1 5.3 7 16.7 

Percentages are by age at death and site categories. 
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Figure 7.57 Proportional distribution of entheseal change grades by site category and age at death. Count is indicated within 
the bars. 

 

Further breakdown shows that females are overrepresented with gracile EC in the early 

adult category and males are overrepresented with robust EC in the late adult category. A trend 

has emerged and continued to show that EC increases as age increases (see Table 7.63/ Figure 

7.58 and Figure 7.59). Early adult males had percentages of 39.3% (n = 11) gracile EC, 53.6% 

(n = 15) moderate EC and 7.1% (n = 2) robust EC. Middle adult males had percentages of 

36.4% (n = 8) gracile EC, 59.1% (n = 13) moderate EC and 4.5% (n = 1) robust EC. Late adult 

males had percentages of 34.0% (n = 18) gracile EC, 49.1% (n = 26) moderate EC and 17.0% 

(n = 9) robust EC. Early adult females had percentages of 57.1% (n = 16) gracile EC, 39.3% 

(n = 11) moderate EC and 3.6% (n = 1) robust EC. Middle adult females had percentages of 

38.9% (n = 7) gracile EC, 55.6% (n = 10) moderate EC and 5.6% (n = 1) robust EC. Late adult 

females had percentages of 38.5% (n = 10) gracile EC, 53.8% (n = 14) moderate EC and 7.7% 

(n = 2) robust changes. 
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Table 7.63 Distribution of entheseal change grades by age category and biological sex.  

  
AGE AT DEATH CATEGORIES 

EARLY MIDDLE LATE 
N % N % N % 

MALES 
GRACILE 11 39.3 8 36.4 18 34.0 

MODERATE 15 53.6 13 59.1 26 49.1 
ROBUST 2 7.1 1 4.5 9 17.0 

  

FEMALES 
GRACILE 16 57.1 7 38.9 10 38.5 

MODERATE 11 39.3 10 55.6 14 53.8 
ROBUST 1 3.6 1 5.6 2 7.7 

Percentages are by biological sex and age at death. 

 

  
Figure 7.58 Proportional distribution of entheseal change grades by biological sex and age at death. Count is indicated within 
the bars. 
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Figure 7.59 Proportional distribution of entheseal change grades by site category, biological sex, and age at death. Count is 
indicated within the bars. 

 

 A comparison of data concerning entheseal changes with prevalence of joint condition 

suggests that, in all cases, individuals with each form of joint condition tend to have moderate 

entheseal changes and those with robust changes the lowest prevalence (see Table 7.63/ Figure 

7.60). The individuals with probable diagnoses for the joint conditions, with the exception of 

degenerative disc disease, had more robust changes in general, and a higher proportion of 

robust changes in particular, than the absent diagnoses. Cases of hip osteoarthritis had the 

higher proportion of individuals with robust entheseal changes at 22.73% (n = 5) and knee 

osteoarthritis had the highest proportion of individuals with gracile entheseal changes at 

35.29% (n = 6). 

 
Table 7.64 Distribution of entheseal change grades by joint conditions. 

  
OA SOA HOA KOA DDD 

N % N % N % N % N % 

ENTHESEAL 
CHANGES 

GRACILE 16 26.67 10 24.39 6 27.27 6 35.29 10 34.48 

MODERATE 34 56.67 24 58.54 11 50.00 9 52.94 18 62.07 

ROBUST 10 16.67 7 17.07 5 22.73 2 11.76 1 3.45 
Percentages are by joint condition. 
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Figure 7.60 Proportional distribution of entheseal change grades by joint conditions. The bars represent only the probable diagnoses and count is indicated within the bar.
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In summation, moderate entheseal changes were the most common grade found within 

this sample population. The urban population had the higher percentage of EC as moderate, 

while the rural population had the higher percentage of EC as gracile. Males had a higher 

percentage of EC as moderate, but the females displayed a more uniform percentage between 

gracile and moderate EC. While still rare, robust EC displayed a trend of increasing with age. 

Gracile changes also increased in the late adult category within both site categories, but the 

urban saw a larger proportion of gracile changes. Males and females displayed uniform 

distribution patterns, with exception of early adult females, who had a greater proportion of 

gracile changes and late adult males, who presented more robust changes. Individuals with 

joint condition were, overall, more robust than those without. The group with probable cases 

of hip osteoarthritis had the largest proportion of robust changes. In contrast, across the joint 

conditions the proportional distribution between gracile and moderate changes remained 

relatively similar. 

 

7.4.3 Cross-sectional Indices (CSG) 

 

The cross-sectional indices focus on two skeletal locations, femoral subtrochanteric and 

midshaft regions, and comprise of four variables: shape, area, robusticity and polar second 

moment of area. Comparison of the cross-sectional indices was completed using point 

estimates, as well as the same data placed into groups based on interquartile ranges. Note that, 

as with the body mass index interquartile ranges, the values represent point data from the 

skeletal samples.  

 The cross-sectional indices showed little deviation between the urban and rural site 

categories for the femoral subtrochanteric variables (see Table 7.64). The femoral midshaft 

variables showed greater variation between the site categories with the urban population 

typically have a larger mean, but smaller range. 
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Table 7.65 Mean, range and standard deviations for the cross-sectional variables by site category. 

  MEAN 
RANGE 

STD DEV MIN MAX 
U

R
B

A
N

 

FSS .87 .70 1.08 .07 
FSR 67.73 57.74 80.40 4.34 
FSJ 241.92 126.20 345.94 42.99 
FSA 1146.25 859.16 1574.37 143.14 
FMS 1.03 .86 1.35 .09 
FMR 61.01 52.69 76.53 3.92 
FMJ 163.65 71.54 296.95 32.46 
FMA 932.18 704.86 1533.77 123.03 

R
U

R
A

L 

FSS .87 .68 1.06 .08 
FSR 67.73 56.76 76.36 3.80 
FSJ 238.13 88.61 317.08 41.77 
FSA 1143.52 728.29 1468.46 136.18 
FMS 1.02 .76 1.29 .09 
FMR 62.06 52.63 79.11 4.37 
FMJ 173.49 84.95 281.98 37.42 
FMA 963.14 602.24 1368.47 144.61 

 
Table 7.66 Mean, range and standard deviation for the cross-sectional variables by biological sex. 

  MEAN 
RANGE 

STD DEV MIN MAX 

M
A

LE
S 

FSS .88 .71 1.08 .37 
FSR 67.01 57.74 77.54 3.61 
FSJ 248.21 153.66 341.11 32.81 
FSA 1181.27 865.98 1574.37 127.39 
FMS 1.04 .85 1.35 .09 
FMR 61.12 52.69 76.53 3.72 
FMJ 178.33 104.78 296.95 29.37 
FMA 984.24 721.30 1533.77 120.99 

FE
M

A
LE

S 

FSS .86 .71 1.08 .37 
FSR 68.73 56.76 80.4 4.49 
FSJ 228.91 88.61 345.94 50.83 
FSA 1094.55 728.29 1457.51 140.57 
FMS 1.01 .76 1.20 .09 
FMR 62.03 52.63 79.11 4.69 
FMJ 153.92 71.54 281.98 39.05 
FMA 893.17 602.24 1368.24 134.65 

 

There is no apparent variation in cross-sectional indices between the biological sex or 

age at death categories (see Figure 7.61 and Figure 7.62). Males and females have similar 

means for the individual cross-sectional variable, with only minor variations in skew, range, 

and outliers. For instance, femoral midshaft polar SMA illustrates how the female data range 

grows with the increasing age, while the males have relatively smaller and more similar ranges.  
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The following two example scatterplots demonstrate how the indices are spread by 

biological sex across the age at death spectrum (see Figure 7.61 and Figure 7.62). Across the 

cross-sectional indices, the R² linear values deviate and display differing strength relationships. 

The correlations and relationships between these variables will be explored in more depth in 

the following section. The scatterplots display parallel groupings of individuals of both sexes 

consistently throughout the indices, with no relationship between the comparisons. For the 

further comprehensive break down of the cross-sectional variables by biological sex and age 

at death see the appendix Section Cross-Sectional Indices. 

 

 
Figure 7.61 Distribution of the sample population by age at death and femoral subtrochanteric shape. The samples have further 
been identified by biological sex with R² values. 
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Figure 7.62 Distribution of the sample population by age at death and femoral subtrochanteric robusticity. The samples have 
further been identified by biological sex with R² values. 

 

A comparison of the cross-sectional variables and the joint conditions demonstrates that 

the means and ranges are similar between individuals with and without the joint conditions, 

with the probable cases falling within the ranges of the absent categories (see Table 7.67 - 

Table 7.71/ Figure 7.63 - Figure 7.70). The whiskers representing Q1/Q4 are stay uniform 

within each variable graph for absent diagnoses, however regarding the probable diagnoses 

these whiskers fluctuate in size and direction by joint condition. The outliers within the absent 

diagnoses remain consistent, and the outliers for the probable diagnoses are more variable with 

only a few individuals appearing in multiple comparisons. The initial examination of the data 

comparing the diagnoses with the cross-sectional indices does not indicate any significant 

differences between them. This can be further explored in the following sections (see Section 

7.4.4.2), in which statistical testing is used to compare the variables with the joint conditions. 
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Table 7.67 Mean, range and standard deviation of the cross-sectional indices by osteoarthritis diagnosis. 

  
MEAN 

RANGE 
STD DEV 

MIN MAX 
O

ST
EO

A
R

TH
R

IT
IS

 A
B

SE
N

T 
FSS .89 .73 1.08 .09 
FSR 67.33 56.76 80.40 4.23 
FSJ 236.18 88.61 345.94 47.04 
FSA 1129.55 728.29 1574.37 148.59 
FMS 1.02 .76 1.35 .10 
FMR 61.19 52.63 79.11 4.12 
FMJ 165.85 71.54 296.95 35.02 
FMA 935.78 602.24 1533.77 135.29 

PR
O

B
A

B
LE

 

FSS .86 .68 .99 .06 
FSR 68.48 60.62 76.36 3.71 
FSJ 246.67 155.60 317.08 32.08 
FSA 1173.36 857.82 1420.13 116.60 
FMS 1.03 .86 1.27 .09 
FMR 62.08 53.03 75.43 4.20 
FMJ 172.70 91.51 281.98 35.27 
FMA 966.77 721.24 1356.25 130.82 

 
 

 
Table 7.68 Mean, range and standard deviation of the cross-sectional indices by spinal osteoarthritis diagnosis. 

  
MEAN 

RANGE 
STD DEV 

MIN MAX 

SP
IN

A
L 

O
ST

EO
A

R
TH

R
IT

IS
 

A
B

SE
N

T 

FSS .86 0.68 .99 .06 
FSR 67.55 56.76 80.40 4.16 
FSJ 237.91 88.61 345.94 44.70 
FSA 1137.43 728.29 1574.37 146.13 
FMS 1.02 .76 1.35 .10 
FMR 61,39 52.63 79.11 4.29 
FMJ 166.90 71.54 296.95 34.77 
FMA 942.24 602.24 1533.77 137.10 

PR
O

B
A

B
LE

 

FSS .91 .73 1.08 .09 
FSR 68.59 60.62 76.36 3.74 
FSJ 247.91 155.60 317.08 33.62 
FSA 1172.69 857.82 1389.80 113.23 
FMS 1.03 .89 1.27 .09 
FMR 62.01 54.44 75.43 4.03 
FMJ 172.17 91.51 281.98 37.87 
FMA 962.02 721.24 1356.25 133.71 
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Table 7.69 Mean, range and standard deviation of the cross-sectional indices by hip osteoarthritis diagnosis. 

  
MEAN 

RANGE 
STD DEV 

MIN MAX 

H
IP

 O
ST

EO
A

R
TH

R
IT

IS
 

A
B

SE
N

T 
FSS .87 .68 1.08 .07 
FSR 67.68 56.76 80.40 4.17 
FSJ 238.92 88.61 345.94 43.69 
FSA 1138.77 728.29 1574.27 140.87 
FMS 1.02 .76 1.35 .09 
FMR 61.43 52.63 79.11 4.21 
FMJ 167.24 71.54 296.95 36.32 
FMA 941.17 602.24 1533.77 136.27 

PR
O

B
A

B
LE

 

FSS .85 .76 .97 .06 
FSR 68.15 62.28 73.50 3.36 
FSJ 248.48 193.11 298.85 29.98 
FSA 1192.50 10002.38 1420.13 120.54 
FMS 1.03 .86 1.21 .10 
FMR 62.09 54.31 68.69 3.77 
FMJ 176.61 140.57 226.91 24.03 
FMA 989.66 800.29 1233.58 110.41 

 
 
 
Table 7.70 Mean, range and standard deviation of the cross-sectional indices by knee osteoarthritis diagnosis. 

  
MEAN 

RANGE 
STD DEV 

MIN MAX 

K
N

EE
 O

ST
EO

A
R

TH
R

IT
IS

 

A
B

SE
N

T 

FSS .87 .68 1.08 .07 
FSR 67.11 56.76 80.40 4.14 
FSJ 240.32 88.61 345.95 43.42 
FSA 1146.01 728.29 1574.37 142.63 
FMS 1.02 .76 1.35 .09 
FMR 61.39 52.63 79.11 4.07 
FMJ 168.49 71.54 296.95 35.33 
FMA 945.77 602.24 1533.77 135.88 

PR
O

B
A

B
LE

 

FSS .88 .80 .99 .06 
FSR 68.11 60.62 72.82 4.02 
FSJ 237.17 155.60 292.74 34.25 
FSA 1138.86 857.82 1333.25 122.56 
FMS 1.06 .91 1.27 .09 
FMR 61.88 53.03 69.30 4.83 
FMJ 167.43 109.73 248.21 35.94 
FMA 940.72 721.73 1232.80 129.61 
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Table 7.71 Mean, range and standard deviation of the cross-sectional indices by degenerative disc disease diagnosis. 

  
MEAN 

RANGE 
STD DEV 

MIN MAX 
D

EG
EN

ER
A

TI
V

E 
D

IS
C

 D
IS

EA
SE

 

A
B

SE
N

T 
FSS .87 .68 1.08 .07 
FSR 68.07 57.74 80.40 3.99 
FSJ 240.83 10.388 345.94 42.70 
FSA 1154.24 857.82 1574.37 140.21 
FMS 1.02 .76 1.35 .09 
FMR 61.75 52.63 79.11 4.24 
FMJ 166.90 71.54 296.95 34.77 
FMA 952.86 602.24 1533.77 141.51 

PR
O

B
A

B
LE

 

FSS .87 .72 1.07 .08 
FSR 66.87 56.76 72.90 4.39 
FSJ 240.25 88.61 294.16 41.38 
FSA 1114.56 728.29 1388.27 134.60 
FMS 1.03 .88 1.29 .10 
FMR 60.79 52.94 68.11 4.22 
FMJ 172.17 91.51 281.98 37.87 
FMA 923.64 729.03 1126.52 111.71 
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Figure 7.63 Boxplot of femoral subtrochanteric shape across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.64 Boxplot of femoral subtrochanteric robusticity across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.65 Boxplot of femoral subtrochanteric polar SMA across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.66 Boxplot of femoral subtrochanteric area across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.67 Boxplot of femoral midshaft shape across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.68 Boxplot of femoral midshaft robusticity across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.69 Boxplot of femoral midshaft polar SMA across the joint conditions. Note the relatively standard mean and uniform skew. 
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Figure 7.70 Boxplot of femoral midshaft area across the joint conditions. Note the relatively standard mean and uniform skew.
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 The interquartile ranges were used for testing concerning categorical data primarily for 

using chi-squared (see Table 7.72). This type of categorization allowed for the testing within 

the regression analyses to show the spread of data.   

 
Table 7.72 Interquartile ranges for the cross-sectional variables. 

  Q1 <25% Q2 25-50% Q3 50-75% Q4 >75% 
FSS 0.68-0.82 0.82-0.86 0.87-0.91 0.92-1.08 
FSR 56.76-64.49 64.60-67.58 67.68-71.75 71.85-80.40 
FSJ 103.88-216.60 217.59-240.00 240.26-263.12 264.84-345.94 
FSA 800.93-1059.15 1060.35-1142.33 1144.76-1227.61 1229.23-1574.37 
FMS 0.72-0.92 0.93-1.02 1.02-1.09 1.09-1.35 
FMR 52.30-59.15 59.21-60.83 60.86-63.88 64.09-79.11 
FMJ 71.54-144.86 145.54-168.48 168.82-186.52 187.08-298.55 
FMA 602.24-851.03 855.90-939.39 941.44-1010.01 1011.45-1533.77 

The ranges listed represent actual point data of skeletal samples. Q = quartile. 

 

7.4.4 Inter-variable Correlations/Associations 

 

The initial examinations of the data displayed surface patterns and basic demographic 

profiles but is insufficient for the purposes of determining the significance of the relationships 

between the variables and the joint conditions. The following sections are separated to 

contextualize the patterns between the variables themselves and then between the variables and 

the joint conditions. Correlation and chi-squared tests were used to show the relationships 

between the categorical data and then ANOVA and T-Tests were used to show the relationships 

and directionality amongst the continuous data. The data is a mix of different types of data 

(ordinal, nominal, and scale), and for tests of correlations, the final figures produced by 

differing tests were similar, and the choice was made to use a standardized test for the mixed 

data analyses. Testing for correlation and association help to determine if a potential 

relationship between variables exists and the directionality of the relationship. For instance, the 

theory that increased body mass should relate to higher numbers of joint conditions. However, 

correlation/association does not even equal causation and so these values should not be 

considered singly, but within the greater context of the analyses. 
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7.4.4.1 Statistical Testing of Variables 

 

Entheseal changes displayed a significant, weak positive correlation and significant 

association with the site category. When compared with the early data in the previous sections, 

the rural population then has significantly higher levels of EC than the urban population. FMA 

also displayed a significant association with site category, however, the correlation was not 

significant. Biological sex displayed multiple significant, weak positive correlations as well as 

significant associations. FSR, FSJ, FSA, FMJ and FMA displayed significant correlations and 

FSR, FSA, FSJ and FMA displayed significant associations. Age at death showed no 

significant correlations or associations with the dependent variables. 

 
Table 7.73 Correlations of independent risk factor variables and dependent risk factor variables using Kendall’s tau-b test. 

  BMI EC FSS FSR FSJ FSA FMS FMR FMJ FMA 

SITE 
CATEGORY 

r -0.017 0.223 0.025 0.026 -0.035 -0.017 -0.034 0.116 0.134 0.088 

Sig. 0.822 0.002 0.731 0.732 0.647 0.817 0.650 0.119 0.077 0.247 

  

BIOLOGICAL 
SEX 

r -0.084 -0.116 -0.124 0.228 -0.197 -0.281 -0.108 0.051 -0.332 -0.350 

SIG 0.261 0.112 0.094 0.002 0.011 0.000 0.148 0.502 0.000 0.000 

  

AGE AT 
DEATH 

r 0.045 0.128 0.101 0.034 0.082 0.138 0.114 0.106 0.148 0.178 

SIG 0.526 0.064 0.150 0.633 0.265 0.053 0.104 0.140 0.042 0.013 
Green boxes indicate a significant relationship. No significant relationships higher than weak were found. Bonferroni 
correction: α altered = .05/10 = .005. 

 
Table 7.74 Associations of independent risk factor variables and dependent risk factor variables using Chi-square test. 

  BMI EC FSS FSR FSJ FSA FMS FMR FMJ FMA 

SITE 
CATEGORY 

X² 1.367 9.678 0.510 6.180 1.050 2.360 0.874 2.701 8.703 18.189 

p 0.713 0.008 0.917 0.103 0.789 0.501 0.832 0.440 0.034 0.000 

  

BIOLOGICAL 
SEX 

X² 0.755 2.884 3.627 13.086 7.808 16.069 4.210 3.379 20.265 23.791 
p 0.385 0.236 0.305 0.004 0.050 0.001 0.240 0.337 0.000 0.000 

  

AGE AT 
DEATH 

X² 0.237 5.585 4.052 7.678 7.890 11.200 15.025 3.776 0.265 14.840 
p 0.888 0.232 0.670 0.263 0.246 0.082 0.020 0.707 0.124 0.022 

Green boxes indicated a significant association. Bonferroni correction: α altered = .05/10 = .005. 

 

 Testing of the dependent variables with continuous data was conducted using 

Independent Samples T-Tests and One-way ANOVA tests (see Table 7.75 and Table 7.76). 

After correction, only three variables compared against biological sex were found to be 

significant using the T-Tests (FSA, FMJ and FMA) and those variables indicated that the males 
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have the larger values. The One-way ANOVA Tests only had two significant tests found (FMJ: 

E/L and FMA: E/L) and in both cases indicated the values were higher as age increased. 

 
Table 7.75 Independent T-Tests for the dependent variables with continuous data and the independent variables with binary 
categories. 

  

LEVENE'S 
TEST T-TEST 

F SIG. t df 
SIG. (2-

TAILED) 
MEAN 
DIFF. 

STD. ERR. 
DIFF. 

95% CONFIDENCE 
LOWER UPPER 

SI
TE

 C
A

TE
G

O
R

Y
 

BMI 2.063 .153 .391 148 .697 0.124 0.319 -0.505 0.754 

FSS .434 .511 -.531 151 .596 -0.006 0.012 -0.030 0.017 

FSR .560 .456 .011 146 .991 0.007 0.673 -1.323 1.337 

FSJ .235 .629 .529 138 .598 3.792 7.171 -10.386 17.971 

FSA .070 .791 .119 146 .905 2.738 23.010 -42.737 48.213 

FMS .073 .788 .210 150 .834 0.003 0.015 -0.027 0.033 

FMR .265 .607 -1.531 144 .128 -1.050 0.686 -2.406 0.306 

FMJ .589 .444 -1.677 140 .096 -9.836 5.866 -21.433 1.762 

FMA 2.109 .149 -1.397 144 .164 -30.960 22.156 -74.754 12.833 

B
IO

LO
G

IC
A

L 
SE

X
 

BMI 1.225 .270 1.207 148 .306 0.331 0.323 -0.306 0.969 
FSS .169 .682 2.206 151 .029 0.026 0.012 0.003 0.049 
FSR 2.131 .147 -2.572 146 .011 -1.714 0.667 -3.032 -0.397 
FSJ 6.228 .014* 2.55 92.375 .012 19.300 7.555 4.297 34.303 
FSA .251 .617 3.912 146 .000 86.711 22.168 42.901 130.522 
FMS .002 .965 1.802 150 .074 0.027 0.015 -0.003 0.058 
FMR 2.889 .091 -1.280 144 .203 -0.893 0.698 -2.272 0.486 
FMJ 5.000 .027* 4.074 97.240 .000 24.403 5.989 12.516 36.290 
FMA .325 .569 4.271 144 .000 21.324 21.324 48.927 133.223 

* - indicates assumption of unknown variances. 
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Table 7.76 One way ANOVA test using Bonferroni’s test for the dependent variables with continuous data and age at death categories. 

VAR 
AGE 

CATEGORY 
MEAN 

DIFFERENCE 
(I - J) 

STD. 
ERR. SIG. 

95% CONFIDENCE 
INTERVAL VAR 

AGE 
CATEGORY 

MEAN 
DIFFERENCE 

(I - J) 

STD. 
ERR SIG. 

95% CONFIDENCE 
INTERVAL 

 
I J LOWER UPPER I J LOWER UPPER  

B
M

I 

E 
M -0.267 0.438 1.000 -1.329 0.794 

FM
S 

E 
M 0.014 0.021 1.000 -0.037 0.065  

L -0.29 0.372 1.000 -1.191 0.611 L -0.011 0.017 1.000 -0.053 0.031  

M 
E 0.267 0.438 1.000 -0.794 1.329 

M 
E -0.014 0.021 1.000 -0.065 0.037  

L -0.023 0.406 1.000 -1.005 0.959 L -0.025 0.02 .591 -0.073 0.022  

L 
E 0.29 0.372 1.000 -0.611 1.191 

L 
E 0.011 0.017 1.000 -0.031 0.053  

M 0.023 0.406 1.000 -0.959 1.005 M 0.025 0.02 .591 -0.022 0.073  

FS
S 

E 
M -0.008 0.016 1.000 -0.047 0.032 

FM
R 

E 
M -0.044 0.95 1.000 -2.346 2.259  

L -0.019 0.014 .476 -0.052 0.014 L -1.382 0.788 .245 -3.291 0.528  

M 
E 0.008 0.016 1.000 -0.032 0.047 

M 
E 0.044 0.95 1.000 -2.259 2.346  

L -0.012 0.015 1.000 -0.048 0.025 L -1.338 0.885 .399 -3.482 0.806  

L 
E 0.019 0.014 .476 -0.014 0.052 

L 
E 1.382 0.788 .245 -0.528 3.291  

M 0.012 0.015 1.000 -0.025 0.048 M 1.338 0.885 .399 -0.806 3.482  

FS
R 

E 
M -0.179 0.923 1.000 -2.415 2.057 

FM
J 

E 
M -9.115 8.043 .777 -28.606 10.376  

L -0.911 0.779 .733 -2.798 0.977 L -19.802 6.656 .010 -35.931 -3.673  

M 
E 0.179 0.923 1.000 -2.057 2.415 

M 
E 9.115 8.043 .777 -10.376 28.606  

L -0.732 0.857 1.000 -2.809 1.345 L -10.687 7.451 .461 -28.742 7.369  

L 
E 0.911 0.779 .733 -0.977 2.798 

L 
E 19.802 6.656 .010 3.673 35.931  

M 0.732 0.857 1.000 -1.345 2.809 M 10.687 7.451 .461 -7.369 28.742  
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Table 7.76 Continued 

VAR 
AGE 

CATEGORY 
MEAN 

DIFFERENCE (I 
- J) 

STD. 
ERR. SIG. 

95% 
CONFIDENCE 

INTERVAL VAR 
AGE 

CATEGORY 
MEAN 

DIFFERENCE (I 
- J) 

STD. 
ERR SIG. 

95% 
CONFIDENCE 

INTERVAL 
 

I J LOWER UPPER I J LOWER UPPER  

FS
J 

E 
M -3.349 9.831 1.000 -27.178 20.479 

FM
A

 

E 
M -21.214 30.238 1.000 -94.466 52.037  

L -16.542 8.270 .142 -36.586 3.503 L -68.809 25.078 .021 -129.559 -8.060  

M 
E 3.349 9.831 1.000 -20.479 27.178 

M 
E 21.214 30.238 1.000 -52.037 94.466  

L -13.193 9.025 .438 -35.067 8.682 L -47.595 28.160 .280 -115.812 20.622  

L 
E 16.542 8.270 .142 -3.503 36.586 

L 
E 68.809 25.078 .021 8.060 129.559  

M 13.193 9.025 .438 -8.682 35.067 M 47.595 28.160 .280 -20.622 115.812  

FS
A

 

E 
M -30.545 31.089 .982 -105.846 44.756    

L -64.473 26.243 .046 -128.035 -0.912 VAR- VARIABLE; E- EARLY ADULT; M- MIDDLE ADULT; L- LATE ADULT  

M 
E 30.545 31.089 .982 -44.756 105.846    

L -33.928 28.873 .726 -103.861 36.005    

L 
E 64.473 26.243 .046 0.912 128.035    

M 33.928 28.873 .726 -36.005 103.861    
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Next, the scale data for the cross-sectional indices were correlated with each other using 

the Pearson correlation coefficient, to explore any interrelationships. The Bonferroni corrected 

p-value for the following tests was α altered = .007. The strongest correlation was FMJ/FMA, 

with a positive relationship r >.800 (see Table 7.77). Strong correlations existed between 

FSR/FSJ, FSR/FSA, FMR/FMJ and FMR/FMA, which had positive relationships r>.600. 

Moderate correlations existed between FSR/FMR, FSJ/FMJ, FSJ/FMA, FSA/FMR, FSA/FMJ 

and FSA/FMA, which displayed a positive relationship r>.400. Weak correlations existed 

between FSR/FMJ and FSR/FMA, which displayed a positive relationship r>.200. A very weak 

correlation existed between FSS/FMS, which displayed a positive relationship r>.200. Femoral 

subtrochanteric shape or midshaft shape did not exhibit any significant correlations with any 

of other cross-sectional variables. This illustrates the interrelations within the cross-sectional 

indices, with obvious exception to shape. Figure 7.71 and Figure 7.72 display examples of the 

relationships between the individual variables of the cross-sectional indices, with individuals 

marked by biological sex. The remaining scatterplots between all of the variables can be found 

within the appendix Section Cross-Sectional Indices.  

 
Table 7.77 Correlations between the cross-sectional variables using Pearson correlation coefficient. 

  FSS FSR FSJ FSA FMS FMR FMJ FMA 

FSS 
r 

  

-0.079 -0.087 -0.014 0.145 -0.172 -0.073 -0.154 

SIG 0.250 0.216 0.837 0.035 0.014 0.302 0.027 

FSR 
r 

  

0.618 0.600 -0.042 0.421 0.272 0.292 

SIG 0.000 0.000 0.546 0.000 0.000 0.000 

FSJ 
r 

  

0.799 -0.081 0.382 0.468 0.433 

SIG 0.000 0.251 0.000 0.000 0.000 

FSA 
r 

  

-0.011 0.449 0.528 0.536 

SIG 0.875 0.000 0.000 0.000 

FMS 
r 

  

0.034 0.054 0.082 

SIG 0.628 0.444 0.234 

FMR 
r 

  

0.632 0.663 

SIG 0.000 0.000 

FMJ 
r 

  
0.814 

SIG 0.000 
Color coded relationships: Blue - Weak. Green - Moderate. Orange - Strong. Red - Very strong. Black area is shade to prevent 
overlapping figures. Bonferroni correction: α altered = .05/7 = .007. 
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Figure 7.71 Distribution of the sample population by femoral subtrochanteric shape and femoral subtrochanteric robusticity. 
The samples have further been identified by biological sex with R² values for each.  

 

 
Figure 7.72 Distribution of the sample population by femoral midshaft polar SMA and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
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7.4.4.2 Statistical Testing of the Joint conditions 

 

The joint conditions can now be compared with the risk factors to identify any 

significant bivariate correlations or associations. The Bonferroni corrected p-value for the 

following tests was α altered = .004. Only two significant bivariate correlations were found 

between the joint conditions and risk factor variables r >.300 (Age/OA: r = .313; FSS/SOA: r 

= .342) (see Table 7.78). Age at death and entheseal changes were the only risk factor variables 

to display a significant relationship with joint conditions, which were positive relationships. 

General and spinal osteoarthritis were the only joint conditions to display a significant 

relationship with the risk factor variables, which were positive relationships. Age at death 

displayed the highest number of significant associations (OA/ SOA) with the joint conditions 

(see Table 7.79). Femoral subtrochanteric shape was the only other variable to display 

significant associations with any of the joint conditions. 

  
Table 7.78 Correlations between the joint conditions and risk factor variables using phi correlation coefficient.  

  OA SOA HOA KOA DDD 

SITE CATEGORY 
r .093 .118 .011 -.016 -.147 

SIG .219 .126 .886 .838 .056 

BIOLOGICAL SEX 
r -.066 -.030 -.142 .078 -.067 

SIG .385 .693 .060 .304 .388 
AGE AT DEATH 

CATEGORY 
r .313 .216 .212 .135 .129 

SIG .000 .020 .020 .208 .248 

BODY MASS INDEX IQR 
r .129 .171 .165 .089 .107 

SIG .479 .236 .254 .036 .116 

ENTHESEAL CHANGES 
r .243 .216 .187 .896 .325 

SIG .006 .020 .047 .896 .325 
FEM SUBTROCH SHAPE 

IQR 
r .208 .342 .123 .160 .076 

SIG .084 .001 .509 .280 .841 
FEM SUBTROCH 

ROBUSTICITY IQR 
r .236 .210 .119 .245 .095 

SIG .042 .099 .552 .033 .736 
FEM SUBTROCH POLAR 

SMA IQR 
r .225 .244 .092 .184 .147 

SIG .069 .045 .756 .196 .410 

FEM SUBTROCH AREA IQR 
r .200 .153 .130 .085 .164 

SIG .117 .343 .478 .788 .283 

FEM MIDSHAFT SHAPE IQR 
r .085 .103 .166 .211 .096 

SIG .776 .668 .240 .083 .719 
FEM MIDSHAFT 

ROBUSTICITY IQR 
r .192 .149 .099 .043 .179 

SIG .147 .373 .699 .966 .215 
FEM MIDSHAFT POLAR 

SMA IQR 
r .149 .217 .122 .076 .030 

SIG .368 .092 .552 .845 .989 

FEM MIDSHAFTAREA IQR 
r .142 .134 .144 .032 .087 

SIG .399 .467 .385 .985 .790 
Green shows significant correlations. Bonferroni correction: α adjusted = .05/13 = .004. 



193 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

Table 7.79 Associations between the joint conditions and risk factor variables using Chi-square. 
  OA SOA HOA KOA DDD 

SITE CATEGORY 
X² 1.511 2.338 0.021 0.042 3.640 

P VALUE 0.219 0.126 0.886 0.838 0.056 

BIOLOGICAL SEX 
X² 0.755 -0.156 3.524 0.078 0.744 

P VALUE 0.385 0.693 0.060 0.304 0.388 

AGE AT DEATH CATEGORY 
X² 17.17 13.09 7.829 3.142 2.787 

P VALUE 0.000 0.001 0.020 0.208 0.248 

BODY MASS INDEX IQR 
X² 10.320 7.865 6.102 0.220 2.245 

P VALUE 0.006 0.020 0.047 0.896 0.325 

ENTHESEAL CHANGES 
X² 2.478 4.246 4.073 1.182 1.642 

P VALUE 0.479 0.236 0.254 0.757 0.65 

FEM SUBTROCH SHAPE IQR 
X² 6.645 17.260 2.316 3.830 0.835 

P VALUE 0.084 0.001 0.509 0.280 0.841 

FEM SUBTROCH ROBUSTICITY IQR 
X² 8.216 6.284 2.101 8.706 1.271 

P VALUE 0.042 0.099 0.552 0.033 0.736 

FEM SUBTROCH POLAR SMA IQR 
X² 7.101 8.045 1.189 4.690 2.885 

P VALUE 0.069 0.045 0.756 0.196 0.410 

FEM SUBTROCH AREA IQR 
X² 5.897 3.334 2.488 1.055 3.806 

P VALUE 0.117 0.343 0.478 0.788 0.283 

FEM MIDSHAFT SHAPE IQR 
X² 1.104 1.561 4.207 6.665 1.341 

P VALUE 0.776 0.668 0.240 0.083 0.719 

FEM MIDSHAFT ROBUSTICITY IQR 
X² 5.365 3.122 1.429 0.270 4.473 

P VALUE 0.147 0.373 0.699 0.966 0.215 

FEM MIDSHAFT POLAR SMA IQR 
X² 3.155 6.444 2.100 0.817 0.123 

P VALUE 0.368 0.092 0.552 0.845 0.989 

FEM MIDSHAFTAREA IQR 
X² 2.952 2.547 3.042 0.148 1.048 

P VALUE 0.399 0.467 0.385 0.985 0.790 
Green shows significant associations. Bonferroni correction: α adjusted = .05/13 = .004. 

 

 Independent Sample T-Tests of the joint conditions against the variables with 

continuous data sets were completed to test the differences in the data between absent and 

probable diagnoses (see Table 7.80 - Table 7.84). KOA and DDD displayed no significant tests 

with the variables. OA, SOA and HOA displayed significance with age at death with increased 

age appearing to affect absent diagnoses over probable diagnoses. SOA also displayed 

significance with FSS, whereas increased FSS values appear to affect probable diagnoses over 

absent diagnoses.
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Table 7.80 Independent Samples T-Tests for osteoarthritis against the variables with continuous data sets. 

  

LEVENE'S TEST T-TEST 

F SIG. t df 
SIG. (2-

TAILED) 
MEAN 

DIFFERENCE 
STD. ERR. 

DIFFERENCE 
95% CONFIDENCE 

LOWER UPPER 

OA 

AGE 1.127 .290 -4.304 173 .000 -14.831 3.446 -21.632 -8.030 
BMI 0.369 .544 1.295 148 .197 0.426 0.329 -0.224 1.076 
FSS 10.732 .001* -2.101 87.076 .039 -0.028 0.013 -0.054 -0.001 
FSR 0.193 .661 -1.648 146 .101 -1.150 0.698 -2.529 0.229 
FSJ 3.953 .049* -1.565 135.088 .120 -10.493 6.704 -23.752 2.765 
FSA 2.602 .109 -1.841 146 .068 -43.819 23.806 -90.868 3.230 
FMS 0.308 .580 -0.094 150 .925 -0.001 0.016 -0.033 0.030 
FMR 0.709 .401 -1.245 144 .215 -0.893 0.717 -2.310 0.525 
FMJ 0.107 .744 -1.121 140 .264 -6.854 6.116 -18.946 5.238 
FMA 0.215 .644 -1.341 144 .182 -30.990 23.112 -76.671 14.692 

 * - indicates assumption of unknown variances. Green = significant values. Bonferroni correction: α adjusted = .05/10 = .005. 

 
Table 7.81 Independent Samples T-Tests for spinal osteoarthritis against the variables with continuous data sets. 

  

LEVENE'S TEST T-TEST 

F SIG. t df 
SIG. (2-

TAILED) MEAN DIFFERENCE 
STD. ERR. 

DIFFERENCE 
95% CONFIDENCE 

LOWER UPPER 

SOA 

AGE 4.100 .044* -3.767 73.956 .000 -14.194 3.768 -21.702 -6.686 
BMI 0.609 .436 1.047 143 .297 0.380 0.363 -0.337 1.096 
FSS 16.370 .000* -3.087 50.225 .003 -0.049 0.016 -0.081 -0.017 
FSR 0.275 .601 -1.332 141 .185 -1.032 0.775 -2.564 0.500 
FSJ 1.371 .244 -1.257 133 .211 -10.184 8.102 -26.210 5.842 
FSA 2.256 .135 -1.333 141 .185 -35.250 26.441 -87.523 17.023 
FMS 0.026 .872 -0.188 145 .852 -0.003 0.018 -0.038 0.032 
FMR 0.021 .885 -0.770 139 .443 -0.622 0.808 -2.220 0.976 
FMJ 0.476 .492 -0.769 135 .443 -5.272 6.855 -18.829 8.285 
FMA 0.014 0.905 -0.759 139 .449 -19.783 26.077 -71.343 31.776 

 * - indicates assumption of unknown variances. Green = significant values. Bonferroni correction: α adjusted = .05/10 = .005. 
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Table 7.82 Independent Samples T-Tests for hip osteoarthritis against the variables with continuous data sets.  

  

LEVENE'S TEST T-TEST 

F SIG. t df 
SIG. (2-

TAILED) MEAN DIFFERENCE 
STD. ERR. 

DIFFERENCE 
95% CONFIDENCE 

LOWER UPPER 

HOA 

AGE 6.227 .014* -3.097 29.380 .004 -14.283 4.612 -23.710 -4.857 
BMI 0.001 .978 1.882 148 .062 0.891 0.474 -0.045 1.827 
FSS 0.847 .359 1.229 151 .221 0.022 0.018 -0.014 0.058 
FSR 0.580 .448 -0.453 146 .652 -0.477 1.054 -2.559 1.606 
FSJ 1.255 .265 -0.874 138 .384 -9.569 10.953 -31.226 12.089 
FSA 0.361 .549 -1.502 146 .135 -53.727 35.778 -124.437 16.983 
FMS 0.026 .872 -0.311 150 .756 -0.007 0.023 -0.053 0.039 
FMR 0.000 .997 -0.617 144 .538 -0.663 1.075 -2.788 1.461 
FMJ 1.649 .201 -1.032 140 .304 -9.375 9.083 -27.332 8.582 
FMA 0.149 .700 -1.406 144 .162 -48.489 34.483 -116.648 19.670 

* - indicates assumption of unknown variances. Green = significant values. Bonferroni correction: α adjusted = .05/10 = .005. 

 
Table 7.83 Independent Samples T-Tests for knee osteoarthritis against the variables with continuous data sets. 

  

LEVENE'S TEST T-TEST 

F SIG. t df SIG. (2-TAILED) MEAN DIFFERENCE 
STD. ERR. 

DIFFERENCE 
95% CONFIDENCE 

LOWER UPPER 

KOA 

AGE 1.112 .293 -1.898 170 .059 -10.888 5.738 -22.214 0.439 
BMI 0.149 .700 0.519 147 .604 0.268 0.517 -0.753 1.290 
FSS 2.119 .148 -0.584 148 .560 -0.012 0.020 -0.051 0.028 
FSR 0.113 .737 -0.370 143 .712 -0.416 1.125 -2.640 1.808 
FSJ 1.158 .284 0.270 137 .787 3.146 11.639 -19.869 26.161 
FSA 0.584 .446 0.186 143 .853 7.150 38.393 -68.741 83.041 
FMS 0.476 .491 -1.790 147 .076 -0.045 0.025 -0.095 0.005 
FMR 1.267 .262 -0.426 141 .671 -0.482 1.133 -2.723 1.758 
FMJ 0.048 .827 0.110 139 .913 1.060 9.667 -18.054 20.173 
FMA 0.004 .950 0.137 141 .891 5.053 36.917 -67.929 78.035 

 Bonferroni correction: α adjusted = .05/10 = .005. 
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Table 7.84 Independent Samples T-Tests for degenerative disc disease against the variables with continuous data sets.  

  

LEVENE'S TEST T-TEST 

F SIG. t df 
SIG. (2-

TAILED) MEAN DIFFERENCE 
STD. ERR. 

DIFFERENCE 
95% CONFIDENCE 

LOWER UPPER 

DDD 

AGE 0.008 .928 -1.485 166 .139 -6.8919 4.6398 -16.0526 2.2688 
BMI 0.245 .622 -1.373 141 .172 -0.58389 0.42516 -1.42440 0.25661 
FSS 0.073 .787 0.112 144 .911 0.00177 0.01574 -0.02935 0.03289 
FSR 0.678 .412 1.338 139 .183 1.19904 0.89621 -0.57293 2.97101 
FSJ 0.894 .346 0.060 131 .952 0.58194 9.74070 -18.68749 19.85137 
FSA 0.553 .458 1.292 139 .198 39.67468 30.70603 -21.03659 100.38595 
FMS 0.013 .908 -0.385 143 .701 -0.00786 0.02043 -0.04825 0.03252 
FMR 0.467 .496 1.008 137 .315 0.95868 0.95114 -0.92212 2.83949 
FMJ 0.333 .565 0.141 133 .888 1.16370 8.23026 -15.11543 17.44283 
FMA 0.577 0.449 0.951 137 .344 29.21638 30.73672 -31.56337 89.99614 

Bonferroni correction: α adjusted = .05/10 = .005.
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7.4.4.3 Summary of Bivariate Testing 

 

The independent variables (site category, biological sex, and age at death) were 

compared against the dependent variables (body mass index, entheseal changes, and cross-

sectional indices using a 2-tailed Kendall’s tau-b test. For the testing, all of the variables were 

converted into their categorical form. Using Bonferroni correction (α altered = .05/10), resulted 

in a significance threshold for these tests of α altered = .005. A significant, positive correlation 

was obtained for 6 of the 30 comparisons (2 positive and 4 negative), but all were weak (r ≤ 

0.350). Significant associations were obtained in 5 of the 30 variables, with half of these 

associations relating to biological sex. 

In summation, the bivariate assessments of the risk factors assisted with determining 

the relationships, if any, amongst the risk factors, and then between the risk factors and the 

joint conditions displayed few relationships. Biological sex was the independent risk factor that 

displayed the most significant relationships between the dependent variables, however, the 

relationships were weak, and except for one, were all negative correlations. Age at death was 

the only risk factor that displayed both positive significant correlations and associations with 

the joint conditions and entheseal change presented significant correlations with the joint 

conditions. However, these relationships do not denote whether the relationships indicate a 

direct connection or causality. Further testing using multi-variate analyses will help to indicate 

how these relationships change when additional factors are present. 

   

7.5 Risk Ratios 
 

Risk ratios display possible rates at which an individual is likely to exhibit a condition 

based on a certain risk factor, with a risk ratio of 1 indicating no change in risk between the 

two categories. A risk ratio that is <1 or >1 but close to 1 indicates minimal risk. A risk ratio 

of >1 indicates that the risk increases as the risk factor variable increases (i.e., chance of 

presenting joint condition increases with increasing age or robusticity) and a risk ratio of <1 

indicates that the risk is increased as the variable decreases. Analyzing the risk ratios displays 

how the differing variables are associated with prevalence of the joint conditions and is directly 

complementary to the multivariate analysis above which has indicated the power of the risk 

factors for predicting joint condition. 
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 Risk ratios for the joint condition and risk factors studies in this study are presented in 

Table 7.84. For the comprehensive tables of each variable with the risk ratios for each sub-

grouping, see the appendix Section Risk Ratios.  Age at death (OA, SOA, HOA and KOA) and 

EC (OA, SOA, HOA, DDD) made the most contributions to risk of joint conditions. For EC, 

as the variable increases the risk increased for SOA and HOA by more than 3 times. Age at 

death displayed an increased risk of SOA, by 3.48 times, as age increased. Body mass displayed 

low risk, however, the risk appeared to be greater when mass decreases, with the exceptions of 

DDD which increases and KOA that has no risk. 

Hip OA was the only joint condition to display a noticeable change in risk for biological 

sex, which showed an increase to risk for males. SOA displayed no change in risk for any of 

the cross-sectional indices. KOA displayed the most risk with the cross-sectional variables, 

with greater risk for the variables at the midshaft, as the variables decreased. The greatest risk 

found was with FMA and KOA, whereas a greater risk was present (4.76 times) as the area 

decreases. DDD is distinct from the OAs in that less EC resulted in higher risk and lower FSS 

values results in increased risk. FSS was found to affect the risk of no other joint condition in 

this study. 

 
Table 7.85 The risk ratios for the joint conditions by risk factor variables. 

 

JOINT CONDITIONS 

OA SOA HOA KOA DDD 

R
IS

K
 F

A
C

TO
R

 V
A

R
IA

B
LE

 

BIOLOGICAL SEX 1.21 1.12 2.38* 0.62 1.36 

AGE AT DEATH 2.58* 3.48** 2.84* 2.62* 1.81 

ENTHESEAL CHANGE 2.73* 3.13** 3.65** 1.42 0.45* 

BODY MASS INDEX 0.68 0.48* 0.40* 1.00 1.49 

FS SHAPE 1.08 0.91 1.00 1.62 0.35* 

FS ROBUSTICITY 1.21 1.25 1.35 0.46* 0.94 

FS POLAR SMA 0.81 0.69 0.69 1.09 1.29 

FS AREA 0.69 0.69 0.69 0.36* 1.29 

FM SHAPE 0.86 1.14 0.38* 0.24** 1.87 

FM ROBUSTICITY 0.96 1.29 1.03 0.43* 0.82 

FM POLAR SMA 0.49* 1.04 0.43* 0.41* 1.27 

FM AREA 0.49* 0.71 0.63 0.21*** 1.44 
Biological sex is a binary variable and >1 indicates a greater risk for males and <1 for females. Light blue – Risk increases as 
the variable decreases. Light orange – ratios with no relationship. Unshaded – risk increases as the variables increases. FS – 
femoral subtrochanteric. FM – femoral midshaft. An * denotes a difference by scale of 2,3,4. * - 2x. ** - 3x. ***- 4x. 
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7.6 Multi-variate Analysis 
 

 The previous sections dealt with prevalence relating to proportional data, which offers 

valid descriptive information, enabling the identification of surface trends and bivariate 

statistical relationship. However, the clinical evidence presented earlier in this thesis suggests 

a potentially more complex interaction between multiple risk factors in the formation of joint 

conditions. The analysis thus far will not help to identify more complex relationships or trends 

in a manner that is statistically reliable. Bivariate assessments display direct relationships 

between two variables, while multivariate statistical testing enables the interactions of three or 

more variables to be assessed via statistical modelling. The latter can also help to establish 

whether a relationship is affected as one more new variable is added to the model. In this way, 

a variable that was not statistically significant on its own, may display evidence of significance 

when combined with other variables. The main method of multivariate analysis used for this 

research was binary logistic regression. 

 Binary logistic regression facilitates the prediction of a binary outcome from multiple 

input variables and was used here to explore the contribution of all the variables discussed 

above to the prediction of whether joint condition was present or absent (Campbell et al., 2007; 

Field, 2013; Wagner, 2015). This form of regression analysis is also flexible regarding the 

types of data included in the model; thus, the regression equations were able to include all the 

variables, in the following categorical formats: 

 Nominal: joint conditions, biological sex 

 Ordinal: age at death, body mass index interquartile values, entheseal changes, and 

cross-sectional index interquartile values  

For the data that is categorical, the entire variable may not be found to be significant, but a 

single sub-category may be significant (e.g., age at death: early, middle or adult) and can show 

up in the final stage (i.e., Age at Death (1) indicating middle adults). The IQR values were used 

to help determine any significant changes that may occur between each sub-grouping that might 

indicate any patterns for further analyses. Site category was dropped from the regression 

variables as it features as a descriptive or sorting variable, and while independent, the factors 

of mass and activity that may occur at each site were decided to be the more important variables 

for determining the likelihood of joint conditions.  
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The equations used a backwards, stepwise method to decrease the number of variables 

until only those that made a significant contribution (α < .05) or those that approached 

significance (α < .07) remained within the model. Each additional step means that a variable 

was removed from the equation and its predictive power once more tested, until the conditions 

mentioned above are met. With a backwards step regression model, the final variables should 

all display a significant contribution to the model.  

With each successive step, the significance of the tests improved with the p values of 

all joint conditions steadily approaching <.001 (see Table 7.86). Osteoarthritis and spinal 

osteoarthritis tests had a final significance of <.001, hip osteoarthritis had a significance of 

.009, and knee osteoarthritis had a significance of .002. Degenerative disc disease is the only 

remaining joint condition that approaches significance (p = .053) in the final but is not 

significant (α<.05). This predictive model shows that for each joint condition, the predictive 

factors are better than the null model, even if the variables are not significant. The level of 

explanation at the final step is low for all the joint conditions with DDD having the lowest at 

15.0% explained and KOA and HOA having the highest (40.3%/ 38.1). 

 The Hosmer and Lemeshow Goodness-of-Fit assesses whether the observed rates 

match the predicted rates through the changes of the chi-square values and significance, which 

in turn demonstrates the fitness of the data in each step. In other statistical tests, p < 0.05 

denotes significance, but with this test p > 0.05 indicates that the data fits the model. Each of 

the joint conditions was found to be significant (p > .05) demonstrating that the variables in 

each step fit the model, even if the variables are not significant in the step.  
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Table 7.86 The values for each successive test of the binary logit regression for each joint condition. 

  
JOINT CONDITIONS 

OA SOA HOA KOA DDD 

O
M

N
IB

U
S 

STEP 

CHI² -5.028 -4.364 -4.359 -2.481 -4.005 
DF 3 2 3 2 2 
SIG .170 .113 .225 .289 .135 

MODEL 

CHI² 26.515 28.654 30.791 30.647 12.429 
DF 7 8 15 12 6 
SIG .000 .000 .009 .002 .053 

MODEL SUMMARY 

-2 LL 155.379 127.961 71.957 63.772 108.911 
C&S R² 0.176 0.195 0.201 0.202 0.091 

N R² 0.239 0.251 0.381 0.403 0.150 

H&L GOODNESS OF FIT 

CHI² 9.697 8.737 9.238 3.558 2.622 
DF 7 8 8 7 8 
SIG .206 .365 .323 .829 .956 

The complete tables with each step can be found in the appendix Section Multivariate Analyses. 

 

 The classification tables offer the predictive percentages for each joint disease. The cut 

value for each joint condition was .500, meaning that if case fell above that line, it was 

classified as probable and if it fell below, it was absent. The overall percentage classification 

displays the percentage of cases correctly classed between the observed and predicted 

characteristics. The probable classification displays the sensitivity for the percentage 

accurately classing cases compared between the observed and predicted characteristics. Absent 

classification displays the specificity for the percentage of having a true negative between the 

observed and predicted characteristics. 

 The final step variable tables display the changes of significance between the individual 

variables, as they are sorted by their category groupings. As the variables are in their ordinal 

format, as opposed to the category the test has included values for each step. A variable might 

not have significance, but one of the categories within may be significant. The variables listed 

within the tables are not duplicates but represent each category within that variable. For 

instance, age at death has three rows of values, with the first row representing early adults, the 

second is middle adults and the final is late adults.  

 The final step for the regression testing concerning OA had an accuracy of 50.0% for 

probable and 73.7% overall and displayed three variables as significant: age at death, entheseal 

change and femoral subtrochanteric robusticity (see Table 7.87 and Table 7.88). Age at death 

was significant overall (p = .036) and demonstrated that increased age was a factor (Age at 

Death [3]: p = .036; Exp[B] = 2.676). EC was significant overall (p = .020) and demonstrated 
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that increased EC of OA (EC [2]: p = .008; Exp[B] = 7.573). FSR was significant overall (p = 

.031) and increased FSR values were a factor in the development of OA (FSS [3]: p = .038; 

Exp[B] = 3.053).  

 
Table 7.87 The classification table showing the predictive power of the final stage regression test for OA. 

CLASSIFICATION 

ABSENT 88.2% 
PROBABLE 50.0% 
OVERALL 73.7% 
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Table 7.88 The final variables of the binomial logistic regression for general osteoarthritis with B and expected B values, as well as Wald scores and significance.  

 

VARIABLES IN THE EQUATION 

B S.E. WALD DF SIG EXP(B) 
95% CI FOR EXP(B) 

LOWER UPPER 
ST

EP
 1

1 

AGE AT DEATH     6.648 2 0.036       
AGE AT DEATH (1) -0.075 0.580 0.017 1 0.898 0.298 0.298 2.891 
AGE AT DEATH (2) 0.984 0.470 4.387 1 0.036 2.676 1.065 6.721 

ENTHESEAL CHANGE     7.777 2 0.020       
ENTHESEAL CHANGE (1) 0.770 0.428 3.228 1 0.072 2.159 0.932 4.998 
ENTHESEAL CHANGE (2) 2.025 0.764 7.016 1 0.008 7.573 1.693 33.871 

FS ROBUSTICITY     8.857 3 0.031       
FS ROBUSTICITY (1) 0.775 0.561 1.906 1 0.167 2.170 0.722 6.520 
FS ROBUSTICITY (2) -0.427 0.603 0.502 1 0.479 0.652 2.000 2.126 
FS ROBUSTICITY (3) 1.116 0.539 4.297 1 0.038 3.053 1.063 8.773 

CONSTANT -2.007 0.611 10.778 1 0.001 0.134     
Green = Overall significance of the variable. Yellow = Significance between levels within a variable’s sub-categories. 
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The final step for the regression testing concerning SOA had a predictive value of 

35.1% for probable diagnoses and 75.8% overall and showed that three variables were 

significant: entheseal change, femoral subtrochanteric shape and femoral subtrochanteric polar 

SMA (see Table 7.89 and Table 7.90). EC was significant overall (p = .039) and increased EC 

was found to be a factor in the development of SOA (EC [2]: p = .012; Exp[B] = 7.581). FSS 

was significant overall (p = .008), however as FSS increased the significance increased but 

remained p > .05. Therefore, definitive significant concerning directionality was not found. FSJ 

was significant overall (p = .026) and while the lower FSJ values were found to be a factor for 

the development of SOA it was not significant in a decreasing order. This suggests while the 

lower values of FSJ are significant IQR 2 was more significant than IQR 1 (FSJ [1]: p = 011; 

Exp[B] = 5.789).  

 
Table 7.89 The classification table showing the predictive power of the final stage regression test for SOA. 

CLASSIFICATION 

ABSENT 91.6% 
PROBABLE 35.1% 
OVERALL 75.8% 
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Table 7.90 The final variables of the binomial logistic regression for spinal osteoarthritis with B and expected B values, as well as Wald scores and significance. 

 

VARIABLES IN THE EQUATION 

B S.E. WALD DF SIG EXP(B) 
95% CI FOR EXP(B) 

LOWER UPPER 

ST
EP

 1
1 

ENTHESEAL CHANGE     6.512 2 0.039       
ENTHESEAL CHANGE (1) 0.771 0.523 2.173 1 0.140 2.163 0.775 6.034 
ENTHESEAL CHANGE (2) 2.026 0.805 6.337 1 0.012 7.581 1.566 36.702 

FS SHAPE     11.965 3 0.008       
FS SHAPE (1) -0.533 0.668 0.637 1 0.425 0.587 0.158 2.173 
FS SHAPE (2) -1.015 0.677 2.245 1 0.134 0.363 0.096 1.367 
FS SHAPE (3) 1.033 0.602 2.945 1 0.086 2.810 0.863 9.147 

FS POLAR SMA     9.241 3 0.026       
FS POLAR SMA (1) 1.756 0.687 6.533 1 0.011 5.789 1.506 22.255 
FS POLAR SMA (2) 0.150 0.732 0.042 1 0.837 1.162 0.277 4.881 
FS POLAR SMA (3) 1.184 0.683 3.011 1 0.083 3.269 0.858 12.458 

CONSTANT -2.384 0.762 9.801 1 0.002 0.092     
Green = Overall significance of the variable. Yellow = Significance between levels within a variable’s sub-categories. 
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The final step of the regression testing concerning HOA had a predictive value of 23.5% 

for probable diagnoses and 89.8% overall and displayed two variables as significant: age at 

death, biological sex (see Table 7.91 and Table 7.92). Age at death was significant overall (p 

= .013) and increased age was found to be a factor in the development of HOA (Age at Death 

[2]: p = .010; Exp[B]: 15.803). Biological sex was found to be a significant factor (p = .010) 

and females had the higher risk (Exp[B] = .080). Four additional variables remained in the 

equation, and while not significant overall, each displayed significance when compared to a 

differing category level. BMI, FSS, FMJ and FMA were not found to be significant overall, 

but each variable was found to display significance when compared against a different category 

level of the same variable (e.g., FMJ IQR 1 and IQR 2). Except for FSJ, the variables displayed 

significance as the values decreased. 

 
Table 7.91 The classification table showing the predictive power of the final stage regression test for HOA. 

CLASSIFICATION 

ABSENT 99.2% 
PROBABLE 23.5% 
OVERALL 89.8% 
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Table 7.92 The final variables of the binomial logistic regression for hip osteoarthritis with B and expected B values, as well as Wald scores and significance. 

 

VARIABLES IN THE EQUATION 

B S.E. WALD DF SIG EXP(B) 
95% CI FOR EXP(B) 

LOWER UPPER 

ST
EP

 8
 

AGE AT DEATH     8.636 2 0.013       
AGE AT DEATH (1) -0.103 1.352 0.006 1 0.939 0.902 0.054 12.765 
AGE AT DEATH (2) 2.760 1.073 6.619 1 0.010 15.803 1.930 129.408 

BIOLOGICAL SEX (1) -2.525 0.974 6.725 1 0.010 0.080 0.012 0.540 
BODY MASS INDEX     7.014 3 0.071       

BODY MASS INDEX (1) -1.882 1.066 3.119 1 0.077 0.152 0.019 1.229 
BODY MASS INDEX (2) -2.416 1.090 4.907 1 0.027 0.089 0.011 0.757 
BODY MASS INDEX (3) -3.448 1.403 6.042 1 0.014 0.032 0.002 0.497 

FS SHAPE     5.352 3 0.148       
FS SHAPE (1) -1.010 0.977 1.070 1 0.301 0.364 0.054 2.469 
FS SHAPE (2) -0.733 0.863 0.722 1 0.396 0.481 0.089 2.606 
FS SHAPE (3) -2.637 1.143 5.319 1 0.021 0.072 0.008 0.673 

FM POLAR SMA     6.028 3 0.110       
FM POLAR SMA (1) 4.687 1.918 5.974 1 0.015 108.514 2.531 4652.670 
FM POLAR SMA (2) 5.312 2.398 4.904 1 0.027 202.688 1.842 22306.401 
FM POLAR SMA (3) 5.493 2.591 4.498 1 0.034 243.105 1.514 39023.603 

FM AREA     7.756 3 0.051       
FM AREA (1) -5.155 2.065 6.234 1 0.013 0.006 0.000 0.330 
FM AREA (2) -6.869 2.535 7.344 1 0.007 0.001 0.000 0.149 
FM AREA (3) -6.469 2.798 5.347 1 0.021 0.002 0.000 0.373 
CONSTANT 0.313 1.303 0.058 1 0.810 1.368     

Green = Overall significance of the variable. Yellow = Significance between levels within a variable’s sub-categories. 
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The final step of the regression testing concerning KOA had a predictive value of 20.0% 

for probable diagnoses and 89.7% overall and displayed no variables with an overall 

significance (see Table 7.93 and Table 7.94), however, BMI and FMS displayed significance 

between its categories. BMI reached significance as mass increased (BMI [3]: p = .035; Exp[B] 

= 19.511). FMS was found in the final step and the overall variable was not significant but was 

found to be significant at the category level displaying significance as the values increased 

(FMS [3]: p = .044; Exp[B] = 9.484).  

 
Table 7.93 The classification table showing the predictive power of the final stage regression test for KOA. 

CLASSIFICATION 

ABSENT 98.3% 
PROBABLE 20.0% 
OVERALL 89.7% 
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Table 7.94 The final variables of the binomial logistic regression for knee osteoarthritis with B and expected B values, as well as Wald scores and significance. 

  

VARIABLES IN THE EQUATION 

B S.E. WALD DF SIG EXP(B) 

95% CI FOR EXP(B) 

LOWER UPPER 

ST
EP

 1
0 

BODY MASS INDEX     6.126 3 0.106       
BODY MASS INDEX (1) 0.663 1.172 0.320 1 0.572 1.940 0.198 19.289 
BODY MASS INDEX (2) 1.327 1.243 1.400 1 0.286 3.770 0.330 43.090 
BODY MASS INDEX (3) 2.971 1.409 4.445 1 0.035 19.511 1.233 308.844 

FS ROBUSTICITY     5.775 3 0.123       
FS ROBUSTICITY (1) -0.102 1.053 0.009 1 0.923 0.903 0.115 7.112 
FS ROBUSTICITY (2) -17.872 6143.036 0.000 1 0.998 0.000 0.000   
FS ROBUSTICITY (3) 2.899 1.498 3.746 1 0.053 18.151 0.964 341.814 

FS POLAR SMA     7.601 3 0.055       
FS POLAR SMA (1) 1.952 1.179 2.742 1 0.098 7.043 0.699 71.002 
FS POLAR SMA (2) -0.576 1.539 0.140 1 0.708 0.562 0.028 11.471 
FS POLAR SMA (3) -1.201 1.539 0.569 1 0.451 0.301 0.013 6.826 

FM SHAPE     6.856 3 0.077       
FM SHAPE (1) -0.979 1.384 0.501 1 0.479 0.376 0.025 5.659 
FM SHAPE (2) 1.431 1.043 1.882 1 0.170 4.181 0.542 32.285 
FM SHAPE (3) 2.250 1.116 4.062 1 0.044 9.484 1.064 84.540 
CONSTANT -5.751 1.870 9.460 1 0.002 0.003     

 Green = Overall significance of the variable. Yellow = Significance between levels within a variable’s sub-categories. 

 



210 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

The final step of the regression testing concerning DDD had a predictive value of 0.0% 

for probable diagnoses and 82.3% overall and displayed no variables with any level of 

significance for DDD (see Table 7.95 and Table 7.96). FSA and FMR, while not significant, 

were in the final step of the testing. This indicates that these two variables are better predictors 

of DDD than the null model.  

 
Table 7.95 The classification table showing the predictive power of the final stage regression test for DDD. 

CLASSIFICATION 

ABSENT 100.0% 
PROBABLE 0.0% 
OVERALL 82.3% 
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Table 7.96 The final variables of the binomial logistic regression for degenerative disc disease with B and expected B values, as well as Wald scores and significance. 

  

VARIABLES IN THE EQUATION 

B S.E. WALD DF SIG EXP(B) 

95% CI FOR EXP(B) 

LOWER UPPER 

ST
EP

 1
2 

FS AREA     6.504 3 0.089       
FS AREA (1) 0.724 0.723 1.002 1 0.317 2.062 0.500 8.503 
FS AREA (2) 1.090 0.757 2.073 1 0.150 2.974 0.675 13.114 
FS AREA (3) -0.758 0.943 0.645 1 0.422 0.469 0.074 2.979 

FM ROBUSTICITY     6.042 3 0.110       
FM ROBUSTICITY (1) -0.559 0.678 0.680 1 0.409 0.572 0.152 2.158 
FM ROBUSTICITY (2) -1.768 0.901 3.847 1 0.505 0.171 0.029 0.999 
FM ROBUSTICITY (3) 0.295 0.741 0.159 1 0.690 1.344 0.315 5.739 

CONSTANT -1.552 0.587 6.989 1 0.008 0.212     
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The omnibus tests of model coefficients appear satisfactory because each successive 

step the p value approaches =.000, making each successive test more significant than the prior 

one. However, the model summary shows that even though the successive steps remove 

insignificant variables, thereby reducing statistical noise, and the model becomes more 

significant, less is being explained as the R² values decrease and the -2-log likelihood increases 

with each step. The Hosmer and Lemeshow Goodness-of-Fit tests would seem to verify that 

each step is explaining something, though the low Chi-square values can be explained by low 

sample sizes. The classification table was too indiscriminate to offer any explanation or 

assurance of a truly predictive model. Therefore, as each successive step model becomes more 

significant, reducing the noise in the data, less variance at each step is being explained.   

 DDD was the only joint disease to not have a single significant correlation with the 

variables used. General osteoarthritis showed significant relationships with age at death, EC 

and FSR as the variables increased in value. SOA showed significant relationships with EC as 

the categories increased, FSJ only as the lower values were increased as well as a general 

relationship with FSS. HOA showed significant relationships with age at death as it increases 

and biological sex with a lean towards the females. BMI and FMJ showed significant 

relationships across the categories as the values increase and FMA was significant with the 

values increasing but was slighter than the others. KOA showed significant relationships with 

BMI and FMS as the values increased. 

 

7.6 Summary 
 

Key Findings: 

 

Demographics: 

- Rural v urban split evenly 

- Males had a slightly higher presence than females (3:2) 

-  Percentage for age at death showed higher late and early than middle adults 

 

Joint Conditions: 

- OA and SOA had largest prevalences 
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- OA, SOA and DDD only JC to display large difference between site categories 

- Late adults tended to have larger prevalences for the JC 

- AS and SI had too low of a sample size for viable analyses 

 

Aetiological Factors: 

- Age at death did not display significance with the dependent variables 

- Biological sex displayed weak positive significance with 

- The CSG were positively and strongly intercorrelated (exception of shape) 

- Age at death (OA) and FSS (SOA) were only non-weak significant variables  

 

Statistical Analyses: 

- Biological sex, age at death and EC displayed risk for OA as they increased 

- Regression testing displayed DDD to be only JC that did not show significance with 

variables 

- Final variables in testing 

o OA: age at death, EC, FSR 

o SOA: EC, FSS, FSJ 

o HOA: age at death, BMI, FSS, FMJ, FMA 

o KOA: BMI, FSR, FSJ, FMJ 

o Biological sex not found in final step for any JC 

 

 The final variables were not uniform, and each joint condition had different variables 

and a different number of them remaining. While age at death was significant during the 

bivariate testing of the joint conditions, it was only found in the final step of two: general and 

hip osteoarthritis. Therefore, no single variable proved to be found more commonly to be a 

stronger predictor of the conditions than any other, which could implicate underlying factors 

that were not visible during the testing and analysis of the data within this body of research. 

While the statistical assessment helps to show some of the deeper meaning and relationships, 

it is still important to understand and evaluate the surface patterns and trends which will be 

discussed in the following chapter.  
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Chapter 8 Discussion 
 

In the following discussion, the key patterns illumined in the preceding results section 

are identified, elaborated, and explored, with a view to explaining their contribution to 

understanding the relationship between skeletal manifestation of joint conditions and the key 

risk factors implicated for these diseases in the clinical literature, assessed here through their 

skeletal proxies. To contextualize the data gathered in the previous chapter, they are compared 

to two bodies of collated comparative data. The first concerns post-medieval cemetery 

populations from England, thereby enabling the data from this study to be compared with other 

populations of similar time period and broadly comparable lifestyle. The second concerns 

clinical data from modern populations, which benefits from levels of scope and detail not 

possible for the archaeological data.  

The discussion begins by exploring the relationship between the joint conditions with 

respect to site category, and the demographic risk factors biological sex and age at death, 

concluding with a comparison of prevalence rates for the joint conditions between 

archaeological sites in England spanning the last millennium. The second section goes on to 

focus on BMI, entheseal change and femoral cross-sectional geometry as potential risk factors 

in joint condition. The section ends with a reflection on the study’s approach to the study of 

ankylosing spondylitis and sacroiliitis, whose prevalence was too low to be able to pursue the 

desired course of research.  

 

8.1 Joint Conditions: Prevalence by Site Type, Sex and Age 
 

In the preceding results section, prevalence of osteoarthritis of the spine, hip and knee 

and degenerative disc disease, was compared with site category and demographic factors. The 

conditions were measured against each factor individually and then further measured by adding 

an additional independent factor. In the following section, the findings of these analyses are 

interpreted, discussed, and contextualized by comparing the results of this study against similar 

research. These comparisons of prevalence rates of spinal, hip, and knee osteoarthritis will 

occur using clinical data and, where possible, of the archaeological data of the English sites of 

the early medieval, medieval, post-medieval and modern periods. 
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8.1.1 Urban vs Rural Sites 

 

 The samples were split between urban and rural population types, which facilitated the 

exploration of differences in joint condition prevalence based on geographical and occupational 

factors (See Materials Section 5.4) (Croft et al., 1992; Baetsen et al., 1997; Meinzer et al., 

2019). Hip and knee osteoarthritis displayed a prevalence similarly distributed between the 

urban and rural populations (12.2%/ 12.9% and 10.3%/ 9.4% respectively), although with 

HOA, there was a trend of higher prevalence at younger ages within the rural male population 

(see Section 7.3.8). General osteoarthritis and spinal osteoarthritis were more prevalent among 

the rural population (38.8%/ 30.0% and 29.4%/ 19.3%) and degenerative disc disease was more 

common in the urban population (22.9%/ 11.8%). Although these differences did not attain 

statistical significance, the trends in prevalence between site types would suggest that 

differences between the population types do influence both the extent of joint condition and 

the development of different kinds of joint condition and, with a larger sample size, this could 

be further tested (Van Saase et al., 1989; Meinzer et al., 2019; Williams et al., 2019).  

 Prevalence of the joint conditions at four of the seven geographical site locations used 

within this research were compared (South Shields, Wolverhampton, Kingston-upon-Thames, 

and Barton-upon-Humber). The remaining two (Sheffield and Bristol) had sample sizes too 

low to be compared on their own. General and spinal osteoarthritis was found to have the lowest 

prevalence rates in Wolverhampton; however, this could be confounded by the relatively low 

sample size of the site. Wolverhampton, Kingston, and Barton followed the historical trend of 

hip osteoarthritis having higher prevalence rates than knee osteoarthritis (5.0%/ 0.0%, 11.1%/ 

6.3% and 12.9%/ 9.4%). Therefore, while the urban and rural split displays a higher degree 

variation between the two categories for general and spinal osteoarthritis, the variation appears 

less pronounced for knee osteoarthritis and degenerative disc disease, and non-existent for hip 

osteoarthritis. For more information on potential explanations for the differences between the 

sites or site categories, see the following Discussion Section 8.2 Risk Factors. South Shields 

did not fall into the traditional trend of hip osteoarthritis having a larger prevalence than knee 

osteoarthritis, as the prevalence rates were similar (Rogers and Dieppe, 1994). A 1998 

national survey conducted by the French National Survey on Health Impairment and Disability 

(Rossignol et al., 2002), sorted the prevalence of osteoarthritis symptoms for 10,412 patients 
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by site category (urban/rural), age, biological sex, and overarching occupation type (white 

collar, blue collar, agriculture, commercial and mixed). The mean age of the individuals in the 

survey was 66.2 with a mean duration of osteoarthritis being 9.3 years and the average age of 

onset being 57.0 years of age. The diagnoses were mixed with 91.2% being radiographic. 

Prevalence of hip osteoarthritis was 15.7%, knee osteoarthritis was 35.6%, and 37.1% of the 

individuals surveyed was diagnosed with osteoarthritis at multiple locations. While the survey 

found different ratios between the occupation groups of the males and females, the interesting 

observation made was when the individuals began to develop signs and symptoms of the 

conditions. More than 80% of the population developed the conditions after or around the time 

they ceased the activities or retired. However, the agricultural grouping developed signs before 

the other groups, indicating that the physical stressors of performing this type of activities with 

exposure to the activity for a long length of time, might be the cause. This could explain why 

there was no significant difference between urban and rural populations for the data within this 

research as the profession or activity was not the risk factor, but the length of time the activity 

was performed was. For further assessment with age, see Section 8.1.3. 

 Combining archaeological data from multiple sites across England dating to the post-

medieval period shows the rural category to have the higher prevalence of osteoarthritis by 

joint location (see Table 8.1). The rations shows that hip has the highest disparity between the 

2 population types by a factor of 2.2, with general osteoarthritis having 1.9, knee osteoarthritis 

having 1.7 and spinal osteoarthritis having 1.5. This difference bears further assessment and 

will be explored further in the following section with emphasis on including biological sex as 

a factor.  

 
Table 8.1 Prevalence of osteoarthritis by skeletal location and site category for data from the post-medieval period. 

  
SITE CATEGORY 

RATIO (R:U)) URBAN RURAL 

JO
IN

T 
LO

C
A

TI
O

N
 

GENERAL 20.6 38.8 1.9 
SPINAL 19.6 29.4 1.5 

HIP 5.8 12.9 2.2 
KNEE 5.4 9.4 1.7 

 Further breakdown of the individual sites can be seen in Table 8.2 (Baetsen et al., 1997; WORD database, 2019). 
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8.1.2 Biological Sex 

 

Variation of the prevalence of the joint conditions varied in a more clearly defined 

manner with biological sex than site category. There was a trend towards males having a higher 

prevalence. The ratio of males to females with joint conditions was as follows: general 

osteoarthritis (1.72), spinal osteoarthritis (1.56), hip osteoarthritis (3.4), and degenerative disc 

disease (1.9). Knee osteoarthritis was the only condition to be more common among females 

(1.23).  

 A higher prevalence rate in females for knee osteoarthritis is comparable with modern 

clinical studies of individuals in Western Europe (females: 4.5%/ males: 2.5%) (see Figure 8.1 

and Figure 8.2) (Cross et al., 2014), however both the rates, and the difference between males 

and females, were greater within this research (females: 12.7%/ males: 7.9%). The prevalence 

of hip osteoarthritis between the sexes is ambiguous in modern studies as women tend to have 

a higher symptomatic prevalence, while men have a higher radiographic prevalence (Cross et 

al., 2014; Allen and Golightly, 2015). It might be inferred that the skeletal evidence would 

mirror the higher rate seen in males when assessed radiographically, as in this case the physical 

changes to the skeleton are being assessed, but there is a wider interpretive issue with the 

clinical literature raised here. This discrepancy between symptomatic and radiographic 

prevalence rates, and their implications for the integration of clinical and osteological data in 

studies of joint conditions are discussed further in section 8.1.3. 
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Figure 8.1 Prevalence rates of hip osteoarthritis of the modern clinical studies, sorted by study and biological sex, with the 
post-medieval data from this study included. The data have been taken from Table 8.4 and where multiple age groups existed, 
a mean rate was created for comparison. Percentage is in the box. 

 

 

 
Figure 8.2 Prevalence rates of knee osteoarthritis of the modern studies, sorted by study and biological sex, with the post-
medieval data from this study included. The data has been taken from Table 8.4 and where multiple age groups existed, a mean 
rate was created for comparison. Percentage is in the box. 
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The post-medieval data sets demonstrate that the prevalence rates of the different joint 

conditions between the sexes varied by site location (see Table 8.2 and Figure 8.3- Figure 8.5). 

This data was created from differing sites and is currently held within the Wellcome 

Osteological Research Database. St Benet Sherehog and St Bride’s Lower have similar general 

osteoarthritis prevalence rates and are far lower than Barton-upon-Humber, but the spinal 

osteoarthritis rates display no similarity between the former two sites. Instead, Barton-upon-

Humber and St Bride’s Lower have more similar prevalence rates than the St Benet Sherehog 

population. The sex with the higher prevalence rate for general osteoarthritis varied by site. 

There were higher prevalence rates of osteoarthritis in the spine than the hip or knee across all 

geographical sites, however, as with general osteoarthritis, no single biological sex had a 

consistently higher prevalence with a total ratio of 1.1 (male: female). Hip osteoarthritis was 

more prevalent among the males with an overall ratio 1.8, with the exception of individual 

cases such as Kingston-upon-Thames and St Marylebone. Females had a higher prevalence of 

knee arthritis than the males at all sites by a factor of 2.2, once more mirroring the clinical 

study trends. The trend observed earlier for an overall lower prevalence for knee osteoarthritis 

than hip osteoarthritis did not clearly manifest within the eight sites with comparable data. The 

rates were narrowly divided with four having a higher prevalence in the knee, three having a 

higher prevalence in the hip and a single site having similar rates. Therefore, while sites may 

have common prevalence rates for one joint location, there is no standard set of prevalence 

rates found across England during the post-medieval period. This would suggest that each site 

had a unique set of underlying risk factors, that would have impacted on the onset and 

development of joint conditions for different joint location. 
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Table 8.2 Distribution of prevalence rates for each joint condition by site location and biological sex.  

  

POST-MEDIEVAL SITES WITH PERCENTAGE OF OSTEOARTHRITIS 

SOUTH SHIELDS³ WOLVERHAMPTON³ KINGSTON-UPON-THAMES³ BARTON-UPON-HUMBER³ 

TOTAL MALE FEMALE TOTAL MALE FEMALE TOTAL MALE FEMALE TOTAL MALE FEMALE 

JO
IN

T
 

L
O

C
A

T
IO

N
 GENERAL 34.8 40.7 26.3 10.0 8.3 12.5 38.9 36.4 42.9 38.8 42.6 34.2 

SPINAL 20.0 23.1 15.8 11.8 10.0 14.3 26.7 33.3 16.7 29.4 29.8 28.9 

HIP 15.2 18.5 10.5 5.0 8.3 - 11.1 9.1 14.3 12.9 19.1 5.3 

KNEE 15.2 14.8 18.8 - - - 6.3 - 16.7 9.4 6.4 13.2 

  
CHURCH OF ST LAWRENCE*¹ ST BENET SHEREHOG² ST BRIDE'S LOWER² BROADGATE² 

TOTAL MALE FEMALE TOTAL MALE FEMALE TOTAL MALE FEMALE TOTAL MALE FEMALE 

JO
IN

T
 

L
O

C
A

T
IO

N
 GENERAL - - - 17.6 24.1 27.8 17.5 24.2 28.0  - - -  

SPINAL - - - 16.9 15.1 22.2 31.7 34.0 32.8 12.0 15.0 10.0 

HIP 9.2 - - 4.7 6.2 2.2 2.8 3.2 2.6 - - - 

KNEE 6.4 - - 2.4 1.2 4.3 3.8 3.6 4.0 - - - 

  
CHELSEA OLD CHURCH² ST MARYLEBONE² ST THOMAS' HOSPITAL² ¹- Baetsen et al., 1997 

TOTAL MALE FEMALE TOTAL MALE FEMALE TOTAL MALE FEMALE ²- WORD database, 2019 

JO
IN

T
 

L
O

C
A

T
IO

N
 GENERAL 23.2 28.2 25.7 18.4 19.8 20.9 4.1 5.2 3.4 ³- Data from McAfee research 

SPINAL 28.8 31.4 22.4 24.6 23.4 28.0 4.3 4.2 6.5   
  
  

HIP 2.0 2.6 1.4 0.9 0.6 1.3 1.1 1.7 - 
KNEE 6.6 5.1 8.1 1.6 - 0.7 1.1 - 3.4 

* - Location is outside of England at Alkmaar, Netherlands.  
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Figure 8.3 Prevalence rates of general osteoarthritis by post-medieval site location and sorted by biological sex. Percentage is 
in the box. 

 

 
Figure 8.4 Prevalence rates of spinal osteoarthritis by post-medieval site location and sorted by biological sex. Percentage is 
in the box. 
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Figure 8.5 Prevalence rates of hip osteoarthritis by post-medieval site location and sorted by biological sex. Percentage is in 
the box. 

 

 
Figure 8.6 Prevalence rates of knee osteoarthritis by post-medieval site location and sorted by biological sex. Percentage is in 
the box. 
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Table 8.3 Ratios of osteoarthritis by joint location and site.  

  
SOUTH SHIELDS³ WOLVERHAMPTON³ KINGSTON-UPON-THAMES³ BARTON-UPON-HUMBER³ 

RATIO RATIO RATIO RATIO 

JO
IN

T
 

L
O

C
A

T
IO

N
 

GENERAL 1.5 0.8 0.8 1.2 
SPINAL 1.5 2.0 2.0 1.0 

HIP 1.8 0.6 0.6 3.6 
KNEE 0.8 - - 0.5 

  
CHURCH OF ST LAWRENCE¹ ST BENET SHEREHOG² ST BRIDE'S LOWER² BROADGATE² 

RATIO RATIO RATIO RATIO 

JO
IN

T
 

L
O

C
A

T
IO

N
 

GENERAL - 0.9 0.9 - 
SPINAL - 1 1 1.5 

HIP - 1.2 1.2 - 
KNEE - 0.9 0.9 - 

  
CHELSEA OLD CHURCH² ST MARYLEBONE² ST THOMAS' HOSPITAL² TOTAL 

RATIO RATIO RATIO RATIO 

JO
IN

T
 

L
O

C
A

T
IO

N
 

GENERAL 1.1 1.5 1.5 1.0 
SPINAL 1.4 0.6 0.6 1.1 

HIP 1.9 - - 1.8 
KNEE 0.6 - - 0.4 

Ratios are Male: Female. Values based on Table 8.2. ¹- Baetsen et al., 1997. ²- WORD database, 2019. ³- Data from McAfee research. 
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8.1.3 Age 

 

Prevalence of joint condition increased with age at death, with the early adult category 

typically having the lowest prevalence and late adults having the highest prevalence. The 

exception was hip osteoarthritis, which had a slightly higher prevalence within early adults 

than in middle adults resulting in a decline between the first two age categories. However, age 

at death presented the most defined relationship with prevalence rates compared the previous 

two factors, site, and sex. This would fit with most established research regarding joint 

conditions, especially for variants of OA, that the prevalence increases as age increases (Rogers 

and Waldron, 1995; Weiss, 2006). This appears to be a constant, at least within humans and 

can be seen in a prehistoric Californian Amerind population, in which the variants of OA were 

found to be positively correlated with increased age (SOA: r = .507, HOA: r = .507, KOA: r = 

.528) (Weiss, 2006). 

The prevalence of joint conditions with age at death does appear to fit with clinical 

studies (see Table 8.4), with the higher rates of the condition appearing among individuals in 

older age categories, and prevalence increasing with age. However, while age may be a risk 

factor for joint conditions in and of itself, the researcher must take into account that increased 

age also increases the chance for an individual to be affected by other risk factors (Felson et 

al., 1989). 
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Table 8.4 Prevalence rates of osteoarthritis by joint location for modern clinical studies conducted over the last 60 years and 
sorted by the age categories used in study. 

HIP PREVALENCE KNEE PREVALENCE 

STUDY 
AGE 

GROUPING MALE FEMALE STUDY 
AGE 

GROUPING MALE FEMALE 
LAWRENCE 
et al., 1966¹ <55 16.5 6.2 

LAWRENCE 
et al., 1966¹ 

35-44 5.6 4.0 
MAURER, 

1979¹ 55-74 3.5 2.8 45-54 8.2 13.1 

DANIELSSON 
et al., 1984¹ 

40-44 - 0.4 55-64 28.2 40.0 
45-49 0.4 0.4 65+ 26.4 49.1 
50-54 0.8 0.4 

FELSON, 
1987¹ 

<70 30.4 25.1 
55-59 1.2 1.2 70-79 30.7 36.2 
60-64 1.6 1.6 ≥80 32.6 52.6 
65-69 2.8 0.8 

ANDERSON 
& FELTON, 

1988¹ 

35-44 1.2 1.2 
70-74 2.4 5.2 45-54 2.2 3.6 
75-79 6.4 4.7 55-54 5.1 7.5 
80-84 11.5 5.0 65-74 9.0 20.3 
85-89 5.6 10.0 

VAN SAASE, 
1989¹ 

45-49 7.7 12.7 

VAN SAASE, 
1989¹ 

45-49 2.8 2.6 50-54 11.2 16.1 
50-54 2.2 2.0 55-59 11.8 14.0 
55-59 5.9 2.6 60-64 23.0 24.2 
60-64 10.1 3.8 65-69 13.1 33.3 
65-69 11.2 10.9 70-74 24.7 40.2 
70-74 4.7 14.8 75-79 22.0 40.2 
75-79 10.2 14.5 ≥80 22.2 54.6 

≥80 11.1 26.0 
CROSS et al., 

2014 - 2.7 4.5 
CROSS et al., 

2014 - 0.9 1.2 

THIS THESIS 

<45 4.9 8.1 

THIS THESIS 

<45 7.3 2.6 45-55 0.0 14.3 
45-55 20.0 0.0 56-65 0.0 0.0 
56-65 0.0 100.0 >66 11.8 19.2 
>66 24.5 11.5   

The data from this study has been modified to fit similar age categories to show a comparison. ¹- Radiographic diagnoses. ²- 
Symptomatic and radiographic diagnoses. 

 

 There is an inherent limitation when assessing the association of skeletal evidence for 

joint conditions and age. The researcher does not know the age of onset for the condition or, if 

the individual died at an older age, how long the condition with skeletal manifestations was 

present. Severity of the skeletal manifestations could lead to assumptions for how long an 

individual had the condition, however, there are many factors that could influence the speed of 

progression that would be unknown, therefore, the assumption may not be reliable or accurate. 

As age at death did not appear to have a statistically significant relationship with the conditions, 

at any joint location, the explanation above could justify this statistical irregularity when 
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comparing archaeological with modern populations at younger ages. This flaw demonstrates 

the need for further research into the skeletal development of the conditions to help determine 

if it is possible to assess how long an individual could have been affected. The issue becomes 

determining and tracing the varying facets that can affect the development and onset of the 

skeletal manifestations of osteoarthritis such as: (1) How long was the cartilage and joint 

capsule degraded or destroyed? (2) How long was the individual utilizing the joint before and 

after the degraded or destroyed cartilage/joint capsule? (3) What was the intensity of the 

activity on the affected joint before and after the cartilage/joint capsule degraded or destroyed? 

Therefore, while the onset would not be ‘fast’ it may be relatively quicker in others due to those 

factors (see Chapter 3.1) (Fergusson, 1987; Guilak, 2011). 

In modern England, 10.9% of individuals over the age of 45 have reported symptoms 

of hip osteoarthritis (Versus Arthritis, 2012), while this study showed that 14.3% of individuals 

over the age of 45 display signs of skeletal hip osteoarthritis (see Table 8.5). While these values 

are relatively similar, the modern grouping is based on symptoms and does not include 

radiographic evidence that could cause the prevalence to be higher. Underreporting of 

symptoms is believed to be common as individuals experiencing pain have easy access to 

analgesics and may have little access to medical facilities (Versus Arthritis, 2012; Cross et al., 

2014). Another study showed that 50.0% of modern American individuals over the age of 65 

had radiographical evidence of knee osteoarthritis (Anderson and Loeser, 2010), while the 

present study showed only 14.1% of the individuals over the age of 65 displaying skeletal 

evidence of knee osteoarthritis (see Table 8.6). This finding would support the theory that 

tibiofemoral osteoarthritis is a more modern condition, increasing the overall prevalence of 

knee osteoarthritis in modern populations (Rogers and Dieppe, 1994). The potential role of 

obesity in this argument will be discussed in the following section. 
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Table 8.5 Distribution of prevalence rates from this study by biological sex using an age cut-off of 45 years. 

 GENERAL OA SPINAL OA HIP OA KNEE OA 
N % N % N % N % 

TOTAL 
<45 17 21.5 11 14.3 4 5.1 5 6.4 
>45 43 44.8 30 33.0 18 18.8 12 12.8 

  

MALE 
<45 9 22.0 5 12.8 3 7.3 2 4.9 
>45 29 46.8 20 33.9 14 22.6 6 10.0 

  

FEMALE 
<45 8 21.1 6 15.8 1 2.6 3 8.1 
>45 14 41.2 10 31.3 4 11.8 6 17.6 

Note that degenerative disk disease has been removed, as the comparative studies do not include this condition. 

 
Table 8.6 Distribution of prevalence rates between refined age groups for comparison with different studies.  

  
GENERAL OA SPINAL OA HIP OA KNEE OA 

N % N % N % N % 

TOTAL 

<45 17 21.5 11 14.3 4 5.1 5 6.4 
45-55 1 8.3 1 8.3 1 8.3 1 8.3 
56-65 2 40.0 1 25.0 1 20.0 0 0.0 
>66 40 50.6 28 37.3 16 20.3 11 14.3 

  

MALE 

<45 9 22.0 5 12.8 3 7.3 2 4.9 
45-55 1 20.0 1 20.0 1 20.0 0 0.0 
56-65 1 25.0 1 25.0 0 0.0 0 0.0 
>66 27 50.9 18 36.0 13 24.5 6 11.8 

  

FEMALE 

<45 8 21.1 6 15.8 1 2.6 3 8.1 
45-55 0 0.0 0 0.0 0 0.0 1 14.3 
56-65 1 100.0 0 0.0 1 100.0 0 0.0 
>66 13 50.0 10 40.0 3 11.5 5 19.2% 

The percentages are by the individual refined age grouping within each joint condition. 

 

The differences stated above highlight two discrepancies when making comparisons 

with modern clinical data: (1) the age groupings used change by study/researcher and (2) the 

criteria for diagnoses (strict v. broad) and type of diagnoses (symptomatic v. radiographic) 

changes by study/researcher. The age categories for this study were used based on clinical ages 

of onset for the highest occurrence of the conditions (65+ for osteoarthritic conditions) (Sharma 

and Kapoor, 2007), with other studies using their own justifications for age groupings. While 

the data within this research can be modified to match the age groupings, cross-comparisons 

with similar clinical research may not be as easily altered to match 
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When the prevalence of joint condition by age is also broken down by sex, an additional 

range of patterns emerge (see Table 8.5 and Table 8.6). Under the age of 45, females had the 

higher prevalence of spinal and knee osteoarthritis, while males had the higher prevalence of 

general and hip osteoarthritis. In total, knee osteoarthritis was more prevalent under the age of 

45 than hip, but over the age of 45 hip became more prevalent. However, the trend does not 

hold true for both males and females. Males had a higher prevalence of hip osteoarthritis across 

all ages, while females had a higher prevalence of knee osteoarthritis across all age categories. 

As the joints have different biomechanical functions and tolerances (Radin and Paul, 1977; 

Radin et al. 1991; Meinzer et al., 2019), this would suggest that the different activity types 

caused by a division of labour between the sexes could be responsible.   

Due to the effects menopause and a deficiency of the hormone estrogen causing a 

destabilization of the homeostasis within the joint capsule (Roman-Blas et al. 2009), females 

should have the higher prevalence rates of joint condition in the earlier age groups (Nevitt, 

2006; Stevens-Lapsley and Kohrt, 2010). The prevalence rates found within this study are 

higher for general osteoarthritis, spinal osteoarthritis, and knee osteoarthritis, but not hip 

osteoarthritis (See Table 7.7). Over the age of 50, the rates should sharply increase in females 

due to menopause (Felson, 1990; Kohrt, 2010; Mahajan and Patni, 2018). While there are 

anomalies due to low sample sizes between the refined age groups, the prevalence rates more 

than double for all locations when comparing the <45 and the >65 age groups. This would 

suggest, that while the prevalence rates differ to clinical models, the change in rates for females 

as age increases has remained consistent with the clinical literature. However, there is no way 

to check for potential hormone levels with any certainty for the skeletal remains utilized within 

for this study to determine if this was the cause. 

 

8.1.4 Historical Trends in Joint condition Prevalence 

 

Comparing the means and ranges of the prevalence rates of osteoarthritis of the post-

medieval sites helps to display the historical trends of that time period. However, as all of the 

sites shown in Table 8.2 are urban sites, with the sole exception of Barton-upon-Humber, the 

differences between urban and rural populations are not as clear as it could be. The overall 

urban data from this research displayed prevalence rates higher than the post-medieval means 

(see Table 8.7). The higher rates of general osteoarthritis can be explained as a comparison 
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issue, with only three joint locations being used within this study and all available joints being 

used for the Wellcome Osteological Research Database. For the majority, the mean data from 

the current study was higher than the mean data from all the post-medieval sites. The exceptions 

are the total and female mean for spinal osteoarthritis, which were lower. The sites differed in 

their prevalence, but the mean percentages show that males had a higher prevalence during the 

post-medieval period of general, spinal, and hip osteoarthritis than the females and the mean 

percentages of this body of research shared this trend. 

 
Table 8.7 Prevalence rates of the joint conditions with the urban post-Medieval sites include the data from this study as well 
as the data from Table 8.2.  

  

POST-MEDIEVAL SITE PREVALENCE RATES 
TOTAL MALE FEMALE 

MEAN RANGE MEAN RANGE MEAN RANGE 
  MIN MAX   MIN MAX   MIN MAX 

JO
IN

T
 

L
O

C
A

T
IO

N
 

GENERAL 22.6 4.1 38.9 25.5 5.2 40.7 24.6 3.4 42.9 
SPINAL 20.6 4.3 31.7 21.9 4.2 34.0 19.8 6.5 32.8 

HIP 6.5 1.1 14.9 7.7 1.7 18.5 5.4 1.4 14.3 
KNEE 5.8 1.1 15.2 6.2 1.2 14.8 8.7 0.7 18.8 

  

URBAN SITE PREVALENCE RATES FROM THIS STUDY 
TOTAL MALE FEMALE 

MEAN RANGE MEAN RANGE MEAN RANGE 
  MIN MAX   MIN MAX   MIN MAX 

JO
IN

T
 

L
O

C
A

T
IO

N
 

GENERAL 27.9 10.0 38.9 28.5 8.3 42.6 38.6 12.5 42.9 
SPINAL 19.5 11.8 29.4 24.1 10.0 33.3 11.7 14.3 16.7 

HIP 10.3 5.0 14.9 13.8 8.3 19.1 10.0 5.3 14.3 
KNEE 10.8 6.3 15.2 10.6 6.3 14.8 16.2 13.2 18.8 

The prevalence rates of the sites listed in Table 8.2 have been merged to create a mean of the percentages as well as displaying 
the minimum and maximum range limits. 

 

 Different diagnosing criteria can explain the higher prevalence rates for the specific site 

locations. For St Marylebone Church, strict criterion, namely the presence of eburnation, was 

used by Miles and colleagues to diagnose osteoarthritis (Miles et al., 2008). This is not 

inherently a problem and is perfectly acceptable when justified, however, when using the strict 

criterion, the prevalence rate is lowered as it excludes potential arthritic samples that never 

developed the marker, which can skew the comparison of data. The Waldron and Rogers (1995) 

criterion was also used for diagnosis within this study; however, the strict criterion was used 

in conjunction with the diagnosing criteria where in the absence of eburnation, three alternative 

markers must be present. Eburnation is pathognomic of osteoarthritis, and it creates a 
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conclusive diagnosis, but eburnation is a late-stage marker that does not always manifest on 

individuals with osteoarthritis (Waldron, 2009; Burt et al., 2013). Another issue was the 

manner of recording to be used by other researchers, in that information may not have been as 

detailed as it could have been (e.g., simply recording the presence of OA but not the markers 

present). This makes it difficult to check diagnoses and allows for no comparison further than 

with the final diagnoses. For the purposes of this study, a comparison was able to be made, but 

the difference in reporting and diagnosing exemplifies the need for a standard to be utilized. 

The comparison of osteoarthritis over time shows interesting shifts between prevalence 

rates (see Table 8.8/ Figure 8.7 - Figure 8.9). Spinal OA prevalence rates have steadily 

decreased from pre-medieval sites through to modern times, while knee OA has largely 

increased. Hip OA shows a different trend than the steady increase/decrease, but rather 

fluctuates over time. The data from this research does give the impression of fitting within the 

general trends, however the spinal OA is somewhat higher than the other sites of the post-

medieval period. There is an observed difference between the general post-medieval period 

and the research from this study which was post-medieval but specific to a roughly 150-year 

range within the 18th and 19th centuries CE. However, there is no true consensus as to the 

appropriate range of the post-medieval time categories, as some authors divide the latter post-

medieval period into a separate and distinctive industrial era (1760 – 1840 CE), which ends 

roughly half a century prior to the end of the post-medieval period. Another difference in 

terminology lies in the difference between the post-medieval and early modern periods. These 

periods are considered to start at roughly the same point in time within British history, the 

dissolution of the monasteries, although the end of the periods differ with the post-medieval 

ending with the close of the 18th century CE and the early modern ending with the close of the 

17th century CE with the union of Great Britain and Ireland being the start of the late modern 

period (Lang, 2011; Barber et al., 2019). Therefore, one researcher or study may exclude 

samples that they feel fall into a different historical period, while another may include them as 

their period definition is different. For the purposes of this study, the author was forced to be 

selective of the comparative data used to avoid creating a bias in the interpretation and choose 

selections that fit the range of years as closely as possible.  
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Table 8.8 Prevalence of osteoarthritis by skeletal location and historical period gathered from English archaeological sites. 

  
PRE-

MEDIEVAL 
 SAXON/ 

MEDIEVAL MEDIEVAL POST-
MEDIEVAL 18-19TH C MODERN 

SPINAL 31.9³   31.7³ 24.0³ 24.4* 16.9² 
HIP 12.8³ 3.7¹ 5.7³ 3.3¹/2.9³ 12.6* 10.9² 

KNEE 2.1³ 1.8¹ 5.0³ 5.5¹ /4.4³ 9.9* 18.2² 
The figures represent percentages. The modern data only represents individuals over the age of 45 and is a mix of symptomatic 
and radiographic diagnoses. ¹ - Rogers and Dieppe, 1994; ² - Versus Arthritis, 2012; ³ - Waldron, 1995; * - this research 

 

 
Figure 8.7 Prevalence rates of spinal osteoarthritis from English populations across historical time periods. Note the downward 
trend. Percentage is in the box. 
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Figure 8.8 Prevalence rates of hip osteoarthritis from English populations across historical time periods. Percentage is in the 
box. 

 

 
Figure 8.9 Prevalence rates of knee osteoarthritis from English populations across historical time periods. Note the increasing 
trend leading up to the modern age. This could be explained from the additional tibiofemoral osteoarthritis reported in clinical 
studies. Percentage is in the box. 

   

 There is also a noticeable difference between knee and hip prevalence of the modern 

population and that of the 18-19th C CE population. Modern clinical literature shows that knee 
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OA prevalence is almost double that of hip OA (Versus Arthritis, 2012; Williams et al., 2019), 

however the 18-19th C CE population displayed the hip prevalence being 1.28 times higher 

than the knee OA rates.  The gradual increase of knee osteoarthritis over time could support 

the theory that before the modern period, the tibiofemoral joint, one of two separate joints of 

the knee, was not as affected by osteoarthritis as the patellofemoral joint (Rogers and Dieppe, 

1994). This would cause an overall rise in prevalence knee osteoarthritis as both joints that 

comprise the knee joint are being affected, rather than just the one, giving a greater chance that 

KOA will develop. A second explanation could be the different diagnostic criteria between 

skeletal and modern medical assessments, however, as the radiographic analysis and skeletal 

assessments used look at similar objective criteria, the differences should be minimal. Without 

contemporary records, it is impossible to know whether the individuals of the 18-19th C CE 

population were outwardly affected by their joint conditions, whereas a clinical assessment 

takes place after a patient has sought treatment or clinical assistance for the symptoms. 

Comparisons with modern data, which due to the different diagnosing criteria may displayed 

differing prevalence rates and trends, may not be the most accurate. Radiographic diagnoses in 

a clinical setting are comparable to osteological diagnoses, the problem lies in that not all 

patients will receive that treatment until well after arthritic symptoms have set in. Therefore, a 

more probable answer could be the shift in lifestyle trends causing increased stress to one joint 

location, while decreasing the stress to another. 

Another explanation for a disparity between the prevalence rates could be a shift in 

lifestyle pattern, diet and medical treatment brought about during the industrial revolution (Van 

Saase et al., 1989). Osteoarthritis has been found to shift prevalence rates by joint location 

dependent on the change of activity patterns of the test group (Williams et al., 2019) and the 

industrial revolution would have changed the activity patterns and lifestyles of people as new 

technologies emerged and would explain the difference in prevalence between this specific 

period population and the general post-medieval population. This would also explain the 

differences, however small they may have been, between the urban population with a mobile 

workforce and new industrial jobs, such as at a factory, and the rural population with new 

innovating farming practices and equipment (Meinzer et al., 2019). 
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8.1.5 Summary 

 

With the prevalence rates examined in more detail, it was possible to attempt to 

determine the cause of the trends. The higher prevalence of joint conditions at older ages 

conforms to the clinical evidence that the conditions are age related and that archaeologically 

visible cases follow the standard trend pattern seen in clinical research of increased prevalence 

as the age groups increase (Cross et al. 2014). However, the conditions were present in younger 

individuals and age at death showed significant correlations with only three of the conditions 

and associations with only two, which would also appear to confirm that underlying issues are 

influencing the onset of the conditions.  

 Finally, the prevalence rates were assessed to consider the influence of site category 

and the demographic profiles on each joint condition. By combining the factors in such a way, 

it was then possible to assess the entire sample population in a way that would increase 

specificity of the prevalence rates and would be more representational of the living population. 

In general, the trends show an increase of joint condition as an individual’s age increases for 

males and females when further divided by each location and the site category, with few 

exceptions showing a spike in prevalence in either the early or middle adult category. 

Prevalence of joint condition by biological sex is not consistent among urban or rural 

sites or across all the joint conditions. General osteoarthritis prevalence was higher in males 

than females, but the prevalence among rural males and females shows that the female 

population had the higher rate, and the males had a spike in the prevalence within early adults. 

A similar occurrence happens with degenerative disc disease, whereas urban males had a steady 

prevalence increasing with age, with urban females having the higher prevalence at older ages, 

but rural females have a spike in prevalence within the early adult age category. As joint 

condition is regarded as being highly related to age of the individual, these differences would 

indicate that there are additional factors affecting the development and progression of the joint 

conditions. The difference between site categories will be explored further within the 

discussion section concerning risk factors (see Section 8.2), where the different variables for 

mass and activity will be assessed. The statistical testing showed countertrends to the 

traditional clinical and palaeopathological literature that bear further examination, such as the 

lack of signification correlation or association with age at death and biological sex, which 

would appear to contradict current clinical and palaeopathological research. Biological sex was 
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not found in the final stages of the regression testing of any joint condition except for HOA, 

and age at death was found in the final stages for general and hip osteoarthritis. The data from 

this research has shown interesting and curious findings that bear further testing and 

interpretation. 

 The prevalence rates of joint conditions fluctuate not only by site location and 

biological sex, but by time as seen in current palaeopathological literature. SOA has seen a 

gradual decline in prevalence, HOA has seen a constant rise and fall, and KOA has seen a 

steady rise over the last 1500 years. These trends will be explored further in the following 

section (8.2) to assess with the remaining risk factors used within this thesis. 

 

8.2 Joint Conditions and the Risk Factors 
 

There is a gulf between clinical and palaeopathological approaches to diagnosing and 

studying joint conditions (see Chapter 3.1). Clinicians can directly observe the symptoms in a 

living patient and use longitudinal studies to follow individual patients and see how risk factors 

impact the ecology of the living body and assess how a change to one factor affects the others. 

Palaeopathologists, on the other hand, examine the individual without that same living 

variation and will only get to see the effects of conditions as they were at the time of death. To 

compensate, skeletal approximations, or proxies, of the clinical risk factors that are studied in 

clinical literature must be used to allow for accurate comparisons of the data. Creating a 

variable for biological sex or age at death can be relatively easy, as the methods to do so are 

well documented and are a backbone of palaeopathological assessments, yet there is no 

consensus on how to measure the risk factors such as activity level or activity type using 

skeletal material. BMI can easily be assessed by clinicians by taking a standard measurement 

for height and weight and when assessing activity in a living person, survey questions and an 

assessment of musculature could help to determine if an individual is over mass due to heavy 

musculature or obesity. However, palaeopathologists must use multiple methods and variables 

that rely purely on skeletal material to piece together an estimate of the potential measurements 

for height or weight, as well as the activity level of an individual. For this study, nine variables 

were used, each being a single puzzle piece that it was hypothesized would reveal the most 

meaningful data only when they were assessed together. 

 



236 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

8.2.1 Body Mass Index 

 

The skeletal variants of clinical risk factors, body mass index and activity levels, were 

tested for any level of relationship with the joint conditions assessed during this research. 

Statistical testing revealed that BMI had no significant correlation or association with any of 

the studied joint conditions on its own, thus it would suggest that being overweight is not a 

significant factor for the development of the conditions. Body mass was found in the final 

predictive steps of regression testing for hip and knee osteoarthritis. However, clinical studies 

have shown that a positive relationship should exist between increased relative mass and 

prevalence of osteoarthritis on the weight beating joints, especially the knee (Felson and 

Chaisson, 1997; Stürmer et al., 2000). Therefore, the lack of significant correlation or 

association found within the data of this research runs contrary to the clinical trends of the field.  

 One potential explanation for the lack of statistical correlation or association between 

the joint conditions and BMI could be the narrow range of BMI scores observed in the 

archaeological populations. The mean BMI found within this body of research was 24.1 kg/m² 

(normal mass) with the full range between 19.73 (normal mass) and 29.03 (over-mass) kg/m². 

Therefore, the range did not reach the obese BMI range (30.00-40.00 kg/m²). A clinical study 

conducted by Stürmer and colleagues (2000) had a higher mean BMI with knee osteoarthritis 

patients (29.4 kg/m²) with an OR of 5.92 for overweight and 8.13 for obese individuals and hip 

osteoarthritis patients (27.3 kg/m²) with an OR of 0.72 for both overweight and obese 

individuals, illustrating an increased risk for KOA to individuals in a higher BMI category than 

was found within this research. In a similar study conducted by Anandacoomarasamy and 

colleagues (2012), the average BMI was 39.6 kg/m², over 10 kg/m² higher than the largest BMI 

found within this body of research, with a range of ±5.2 kg/m², and at these BMI ranges a 

prevalence rate of 26% for knee osteoarthritis was evident as opposed to the 9.9% found within 

this body of research. The study by Anandacoomarasamy and colleagues (2012) also indicated 

that within the obesity BMI range the thickness of cartilage was decreased and by losing an 

average of 43kg each, effectively shifting to a lower BMI category, the participants of the study 

were able to reduce the impact that mass had on cartilage thickness. The lower mean and 

maximum BMI found within this study suggest that there were individuals who may have been 

overweight, but their mass did not reach a critical point to impact biomechanical load, leaving 

the risk of developing an arthritic condition lower than the clinical studies. This is consistent 

with the theory that it is not simply an increase of mass that caused increased risk, but the 
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increase of mass passing a critical threshold falling into the obese BMI range (Felson et al., 

1988; Lee and Kean, 2012). However, this does not appear to then be in line with the results 

found within the study of Holmberg and colleagues (2005) in which it was found that males 

displayed significance with the presence of OA at the lower BMI scores (<25 kg/m²). 

According to research conducted by Stürmer and colleagues (2000) the odds ratio 

should increase or be positively associated for knee osteoarthritis (Adjusted OR = 2.63) as the 

BMI score increases by 5, but that HOA was not strongly associated with increased mass 

(Adjusted OR = 0.78). However, the odds found for hip and knee osteoarthritis differed within 

this body of research (OR = .74/ 1.24 respectively), almost reversing the ratios found by 

Stürmer and colleagues (2000). This could be due to differing levels of comparison, as the odds 

ratios found by Stürmer and colleagues (2000) were based on a larger range of BMI values that 

than was found within this body of research. The decrease of OR for hip osteoarthritis would 

further indicate that BMI does not affect the joint until a much higher score (30+) and the range 

found within this study was too small to have created an increase of risk. However, that would 

not explain the apparent reversal of ratios or explain why knee osteoarthritis would show a 

positive association for the data of this study using OR but not standard association testing.  

A different explanation could be due to the difference of a live patient and a skeletal 

sample; with a skeletal sample there is no true control group with a manageable independent 

variable, just a comparison of groups differing by the few known variables. A final explanation 

could be due to the limitation of the method for calculating skeletal BME. Using a skeletal 

population, it is impossible, without the proper documentation, to know the mass of individual 

over the course of their life. An individual may gain or lose weight at will, either through 

dieting and exercise, or because of an illness and it would be unknown to the researcher if the 

weight shifted. Therefore, the method, as stated in Section 6.1.2.1, displayed high correlations 

with living weights of individuals as documented around the age of 18 and lower correlation 

with individuals of increased age (Ruff et al., 1991) and would not be able to accurately portray 

the ‘living mass’ of an individual. This then could have skewed the results towards the lower 

BMI ranges and future research on this data will need to be reworked with the methods of Ruff 

and colleagues (2012) that was developed on European Holocene samples and has been further 

tested and found to be more accurate and reliable (Elliot et al., 2016a; Elliot et al., 2016b; 

Jeansen et al., 2017). Weiss (2006) noted this on her study of a prehistoric Californian Amerind 

people, in which mass was correlated with age or sex, but not OA and proposed that it would 
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be difficult for anthropologists to accurately study this phenomenon without knowing the mass 

change over time. 

 

8.2.2 Activity 

 

Activity and mass can be inextricably linked when it comes to physical activities. 

Muscle force is directly linked to mass, as it can take 2kg of force to move a kg of mass (Frost, 

1997), creating a new relative mass with greater force while in motion. The binomial logistic 

regression testing showed that, while not significant on its own, body mass index was a 

significant variable for the final step of the predictive equations for presence of hip and knee 

osteoarthritis. In both cases, three additional robusticity variables were included, though not 

the same ones between the conditions. This would indicate that the increased mass was related 

with said variables. Though the explanation of such a relationship may be that as mass is 

increased, the skeletal frame is forced to compensate, with only one of the variables being an 

actual cause of arthritic conditions. However, when further tested, the association was weak/ 

negative and after corrections, the associations were no longer significant, indicating that the 

combination of variables are the key to increasing significance. 

 
8.2.1.1 Entheseal Changes 

 

Entheseal changes displayed significant relationships with general and spinal OA and 

made a significant contribution to the binomial logistic regression equations of the same 

condition. However, in isolation, entheseal change can be a poor predictor of activity level or 

type, as it is strongly related to age (Villotte et al., 2016; Henderson et al., 2017; Palmer and 

Rist, 2019). It is not accurate to simply say that increased activity is a major factor of joint 

conditions, as levels of activity are relative and increased activity may only last for a limited 

period of time; however, a regular, prolonged high activity level may impact the development 

of joint conditions (Lequesne et al., 1997). Also, the ground surface on which the activity takes 

place (i.e., soft ground v hard ground), may play a part and cause varying ground force reaction 

(Benjamin et al., 2006). For example, a casual runner may not be at increased risk, while a 

competitive runner could be, with a further increase to the risk if the runner is on a hard surface 

or other surfaces with minimal elasticity. Therefore, it may be possible to conclude that 

individuals taking part in high-risk activities, and who do not yet show signs of arthritic 
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conditions, may not have participated in the activity long enough to reach the point of critical 

wear on the joint (Johnsen et al., 2016). The length of time an individual participated in habitual 

activities is difficult to determine in skeletal remains and not accurate beyond a short/long term 

period. However, there are many variables that would need to be considered and the activity 

itself may not be a cause but another underlying issue (Callahan and Ambrose, 2014; Peeters 

et al., 2015). It is also important to note that those individuals that do present with symptoms 

of arthritic conditions and partake in high-risk activities, could be due to the result of an activity 

induced stress injury.  

Historically it has been believed that there should be a marked difference between 

geographical regions (mountains v. flat land, forest v. cleared land, etc.) (Bjelle, 1981; 

Carballo-Pérez et al., 2021) and by occupation types (Louyot and Savin, 1966; Craft et al., 

1992; Meinzer et al., 2019). The data from this body of research did not strongly conform with 

this theory, however there was a noted difference between the urban and rural groupings and a 

weak correlation/association, with the rural population showing increased entheseal changes. 

While further testing is warranted to extend the sample size and test parameters, the preliminary 

assessment would lend credence to the more modern and believed theory that these changes 

would more likely be due to the difference of the regular activities between the sites (Palmer 

and Waters-Rist, 2019; Refai, 2019; Lafranchi et al., 2020), similar to the differences found by 

Carballo-Pérez and colleagues (2021). Carballo-Pérez and colleagues (2021) studied an 

isolated populated on the Canary Islands (200 – 1500 CE) and found differences regarding the 

development of entheses and CSG properties between the groups of the east and west, most 

likely caused by the differing daily activities. Each group showed distinctive differences around 

the muscle groupings that were primarily for heavy load (vastus medialis and adductor 

muscles) and sedentary lifestyles associated with sustained squatting (gluteus maximus) 

(Carballo-Pérez et al., 2021). These findings were also noticed by Palmer and colleagues 

(2016), however, they also observed low correlations between OA and EC in their population 

sample, similar to what was found within this thesis. This illustrates a potential future avenue 

for research focusing on specific muscles and the urban and rural groups. 

The answer as to the lack of correlations between OA and EC may be found in a recently 

published article by Alves-Cardosa and Assis (2021), in which they argue that by focusing on 

the population with the overarching patterns, much the way the research within this thesis does, 

may instead conceal occupation specific joint use. While this concept may not be entirely 
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possible on an archaeological sample, the concept and theory would be worth exploring within 

future research. However, the problem with this is that it requires a known occupation and 

activity record of the individual, which is simply may not be possible, or reliable, in 

archaeological populations (Henderson et al., 2013a).  

 

8.2.1.2 Cross-Sectional Indices 

 

Femoral subtrochanteric/midshaft robusticity and area did not show significant 

relationships with BMI, but according to the study of young women, aged 18 to 40, by Pomeroy 

and colleagues (2017) body size should show a positive correlation with the cross-sectional 

properties of the long bones. Figure 8.10 - Figure 8.13 demonstrate the unpredictability found 

within this body of research when body mass and FSR/A and FMR/A are compared. The R² 

values have been determined and separated by biological sex and are low, demonstrating how 

extremely little variance is being explained. These discrepancies could be created by an 

inherent variation when using the calculations to estimate mass and robusticity/area, as opposed 

to taking measurable figures from living individuals.  

 

 
Figure 8.10 Distribution of the sample population by body mass and femoral subtrochanteric robusticity. The samples have 
further been identified by biological sex with R² values. 
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Figure 8.11 Distribution of the sample population by body mass and femoral subtrochanteric area. The samples have further 
been identified by biological sex with R² values. 

 

 
Figure 8.12 Distribution of the sample population by body mass and femoral midshaft robusticity. The samples have further 
been identified by biological sex with R² values. 
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Figure 8.13 Distribution of the sample population by body mass and femoral midshaft area. The samples have further been 
identified by biological sex with R² values. 

 Attempting to determine activity levels via skeletal markers required the use of nine 

separate, but interrelated variables, rather than a single variable, making this exploration of this 

risk factor extraordinarily complex. Compared individually, only a few factors displayed 

significant correlations or associations with joint condition, suggesting that the individual 

variables would not support the ability to accurately predict or explain the presence of joint 

conditions. The activity variables themselves did not appear to correlate or associate with the 

other variables on a consistently, with all cross-sectional indices displaying strong inter-

relationships, except for shape.  

The cross-sectional indices do not, in themselves, denote activity. However, the 

combination of the variables can give an indication as to how the body can react and cope with 

habitual activity levels. Shape determines the directionality of the torsional forces with >1.0 

indicating an antero-posterior direction and <1.0 indicating a medio-lateral direction (Westcott 

and Zephro, 2016). This would explain why shape displayed no significant relationships with 

the other variables of the cross-sectional indices, as torsional directionality does not correspond 

with power or strength. The cross-sectional area and robusticity deal with the relation of overall 

body size with size of the diaphysis. Robusticity deals with the strength of the bone and its 
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ability to react to torsional effects. Polar second moment of area is similar to robusticity but 

deals instead with the level of deflection of the torsional effects. Therefore, the relationships 

found between the non-shape variables are more understandable, as the different factors can 

directly affect one another. 

Males and females showed significant differences for half of the indices (FSR, FMA, 

FSJ and FSA), potentially indicating a degree of activity based sexual dimorphism however, 

this theory would need further testing to validate or refute. As will be displayed in the 

forthcoming sections, sexual dimorphism concerning historical lifestyles has been studied and 

with clinical trials has been explored in more depth regarding sport. More common 

occupational activities that could help to simulate historical activities would be a useful tool 

for further studies in this area. Moreover, this is not distinctive of the post-medieval period and 

has been noted in populations across the globe and throughout history (Cameron and Pfeiffer, 

2014; Saers et al., 2017; Miller et al., 2018). The lack of significant difference between site 

categories would indicate that the activities between rural and urban sites causing the same 

overall levels of stress to the femur.  

Comparing cross-sectional values between studies can be difficult if the values are not 

produced and presented in similar fashions. This limitation was a primary factor in the selection 

of comparative sites and resulted in a more varied range of comparators than would be ideal. 

Nevertheless, the use of methodologically comparable data from diverse locations and periods 

offers the most useful means of contextualizing the data generated here. In the present study, 

males, overall, had the larger total area (TA) at the midshaft and the greater polar SMA (J) 

indicating an increased size and ability to deflect torsional forces. This then differs between 

the site categories, with males displaying higher values in the rural categories and females the 

urban categories. These differences are also reflected in two other populations in both South 

Africa and Tibanica, Columbia (see Table 8.9). This demonstrates how the differing lifestyles 

and occupational types affected the people and the skeletal structures. These populations were 

chosen due to the availability of data for the TA within the literature, whereas other studies 

may discuss cortical or medullary area and this issue will be further discussed below. The South 

African population represents late stone populations of varying subsistence types from 

differing geographical regions (Fynbos, forested and inland) (Cameron and Pfeiffer, 2014) and 

the Columbian population represents a native pre-Columbian population dating to around c. 

1000-1400 CE (Miller et al., 2018). While these populations may vastly differ in terms of 
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social, genetic, geographical, and historical profiles, the differing values help to illustrate the 

variability of these values between populations and by sex.  

 
Table 8.9 Comparison of the cross-sectional geometric values at the femoral midshaft (50%) with sample size, mean value and 
standard deviation. 

  
MALES FEMALES 

n MEAN S.D. n MEAN S.D. 

TOTAL* 
TA 86 984.24 120.99 60 893.17 134.65 
J 84 178.33 28.37 58 153.92 39.05 

URBAN* 
TA 47 960.71 128.92 31 1103.79 146.65 
J 45 172.61 30.54 29 232.58 52.56 

RURAL* 
TA 39 1012.61 105.44 30 898.84 164.02 
J 39 184.92 24.37 29 158.10 46.01 

FYNBOS¹ 
TA 18 922.90 119.40 9 872.80 95.40 
J 18 176.00 35.80 9 147.90 24.30 

FOREST¹ 
TA 12 922.90 46.80 8 920.70 117.10 
J 12 181.00 23.50 8 163.80 29.10 

INLAND¹ 
TA 3 947.70 57.40 12 887.10 81.00 
J 3 167.70 21.00 12 139.50 25.80 

TIBANICA, 
COLUMBIA² 

TA 31 883.90 94.30 32 825.60 64.20 
J 31 398.10 76.30 32 256.30 56.50 

TA = total area (FMA). J = polar second moment of area (FMJ). * - McAfee Thesis. ¹ - Cameron and Pfeiffer, 2014. ² - Miller 
et al., 2018. 

 

A study conducted by Saers and colleagues (2017) of pre-industrial Dutch populations, 

not included in Table 8.9 as the data was not presented in a comparable format, found there to 

be no significant difference in cross-sectional geometric changes in the femur or tibia between 

various Dutch sites, however, the shape of the tibia differed, indicating a change in habitual 

mobility patterns. The lack of variation between the femora of the different site categories is 

similar to what was found within this body of research and was explained as the result of omni-

directional loading affecting the femora in a much more complex pattern than previously 

expected. A different study conducted by Calce and colleagues (2018) studying a modern 

human population from Lisbon and Sassari (urban populations) found that the forces causing 

both CSG and OA do not function in the same way, with CSG properties being influenced by 

factors during childhood and young adulthood with the morphology not changing after, that 

would be well before the changes to the joint space of OA. These early developments of CSG 

factors found by Calce and colleagues, could then have formed a sort of insulation or protective 

barrier, which could then explain the lack of statistical correlation with the joint conditions. 
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 There is a problem with using the calculations to create an approximation for the area 

of the diaphysis. When using traditional forms of cross-sectional geometry, researchers will be 

able to differentiate and use three different area variables: total (TA), cortical (CA) and 

medullary (MA) (Maggiano et al., 2008; Pomeroy et al., 2017). The method of Westcott and 

Zephro (2016) can only provide a total area, and to measure cortical or medullary area a 

researcher would either need to have access to MRI or CT technology or conduct an invasive 

and damaging cross section of the relevant bone (Pomeroy et al., 2017; Saers et al., 2017; 

Miller et al., 2018). These missing data sets are a limitation of this thesis, particularly for 

comparing this study to other studies, however, the data do provide a good indication of bone 

properties. 

 Femoral subtrochanteric shape had a significant, positive relationship with spinal 

osteoarthritis, but no other significant relationships were found between the cross-sectional 

indices and joint conditions singly. However, the cross-sectional indices were found to be 

significant for the final step of the binomial logistic regression equations, further indicating 

that the cross-sectional indices should be considered together, rather than separately. With the 

exception of general osteoarthritis, the joint conditions had at least two of the variables of the 

cross-sectional indices in the final step of the regression equations. General osteoarthritis 

included just one of the variables but was paired with entheseal changes. The binomial logistic 

regression further demonstrated that the cross-sectional indices would have affected the joint 

conditions individually or in small groupings, rather than the eight variables working in 

concert. The exception being that the midshaft variables were only significant for hip and knee 

osteoarthritis. The different variables of the cross-sectional indices have been shown to be 

related to different levels and types of activity with the different levels and types causing more 

risk for osteoarthritis to certain joints than others (Hind et al., 2012), however entheseal 

changes are still complicated and clouded requiring further testing (Henderson et al., 2017; 

Palmer and Rist, 2019). Further testing with both living patients and skeletal remains of known 

individuals to create a database for comparison, will help to further the understanding of how 

these variables affect OA. 
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8.2.3 Conclusions 

 

Age and the variables found to be related to age, displayed patterns explaining how 

each related the joint conditions to varying extents. Body mass may indeed play a role in the 

development of the conditions, but the samples used within this study did not have any 

individuals falling into the obese range to be able to conclusively make a determination on the 

matter. Further testing will be needed to be able to test this theory using individuals over 

30kg/m², as well as using the latter method by Ruff and colleagues (2012) which may show 

different results. 

Entheseal changes contributed to the prediction of both general and spinal osteoarthritis 

in the binomial regression. This would suggest that of the osteoarthritic conditions researched, 

general and spinal osteoarthritis, may be linked with the entheseal changes of the lower limb, 

although the development of entheseal changes might not be a direct result of the osteoarthritis 

itself, but a parallel development. Correlation does not equate to causation, and it is an 

interesting fact that osteoarthritis presenting in the spine showed a higher level of relationship 

with entheseal changes of the lower limb than osteoarthritis of the hip or knee. A possible 

explanation is that as both entheseal changes and the joint conditions are considered age related 

(Mazza, 2019) there is no cause-and-effect relationship, but the development was concurrent 

and independent, which supports the research of He and Almeida-Prado (2021). Spinal 

osteoarthritis on the lumbar vertebrae is known to be affected by load on the vertebral column 

and the increased activity that may have been responsible for the increased wear to the joint, 

causing the development of osteoarthritis may have also caused an increase in muscle 

development as the body compensated to the increased habitual workloads. An example of this 

can be seen with athletes who develop their muscles through an increase to load and habitual 

activity, which will cause a faster break down of the joint and an increase to the risk of 

developing osteoarthritis (Lequesne et al., 1997). As a preventative and management treatment 

for knee osteoarthritis, Griffin and Guilak (2005) have suggested that moderate activity will 

reduce the effects that the increased mass has on osteoarthritis, which could further explain the 

lack of relationships the joint conditions and BMI as well as the cross-sectional indices. While 

this would fit with patterns described in the literature, it does not explain the lack of relationship 

within this data between age at death and entheseal changes. 
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There are three potential explanations as to why several of the clinically-identified risk 

factors for joint condition recorded in skeletal remains did not appear to present the expected 

relationships to skeletally-observed evidence of joint condition : (1) the skeletal variables used 

were not accurate or appropriate proxies for the clinical variants of the risk factors, (2) that the 

small sample size has caused a bias in the data, and/or (3) that, as seen with the examples of 

BMI in the beginning of this section, the risk factors did not fall far enough above or below the 

‘normal’ range for osteoarthritic change to have occurred. If explanation (1) is true, then further 

research must be conducted to determine the appropriate variable or combination of variables 

that would be analogous to the clinical variations, with a larger sample size and potentially 

using more samples of individuals with known personal histories. If explanation (2) is true, 

then this research will need to be broadened to include more samples to test. Although 

seemingly straightforward, archaeological samples are limited in number and restricted by 

preservation. To increase the sample size substantially, the objectives of a follow-up study 

would need to be altered to include samples from different historical periods. If explanation (3) 

is true, then this would further indicate that a critical threshold would need to be met before the 

risk begins to take effect. In this scenario, clear ranges will need to be understood and set forth 

for each of the risk factors to include the ideal range with the lower and upper ranges 

established. Of these three scenarios, (3) seems like the most plausible explanation as the 

current literature states similar findings, however, it may be that it is a case of all three scenarios 

being correct. In any eventuality, the lack of correlation/association of the risk factors when 

assessed individually yet displaying significance when assessed as a group within the 

regression model, lends credence to the theory that the variables can only help to explain the 

joint conditions when discussed together, rather than in isolation.  

 

8.3 Ankylosing Spondylitis and Sacroiliitis 
 

Ankylosing spondylitis and sacroiliitis are spondyloarthropathies that can affect the 

joints of the appendicular skeleton, such as the hip and knee (Weisman, 2011). This link to the 

appendicular skeleton signifies that knowledge would be increased by combining research on 

osteoarthritis to the hip and knee with studies of ankylosing spondylitis. Progression of 

ankylosing spondylitis has been found to reduce quality of life causing a progressive functional 

impairment overtime affecting physical activities. This causes individuals to be incapable of 

sustaining the same levels of activity post-onset and may force individuals working in labour 
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intensive jobs to quit (Khan, 2009). Understanding how the effects that the condition has on 

the skeletal frame once onset occurs, as well as studying the joint conditions that affect similar 

joints will create better understanding as to the lifestyles of the individuals of the past. 

Analysis of the data found with this research found only an extremely limited number 

of cases of ankylosing spondylitis and sacroiliitis. It has been noted that it can be difficult to 

accurately assess and draw further conclusions on small datasets, especially if the testing 

includes statistical analyses (Waldron, 2011). This makes finding appropriate sample sources 

difficult, as the researcher needs to consider preservation and completeness of remains, as well 

as well as the proportion of adult skeletons, when considering a skeletal collection. Without a 

sufficient sample size, the confidence interval increases, which makes inferential data analysis 

less reliable or accurate and potentially unable to support any reasonable conclusion or 

assumption made (Blaikie, 2018). Therefore, the study of seronegative spondyloarthropathies 

for a population-based study is possible only if the collection has a sufficiently large sample 

size, or an acceptable sample size can be achieved across multiple collections. This would make 

assessment of certain collections, where preservation of remains is too low to be able to develop 

any significant data based on useful numbers, unusable. In terms of the research within this 

body of work, the sample size was too small to create any useful assumptions or conclusions 

based on the data gathered. 

 Sample size is not the only challenge facing researchers of seronegative 

spondyloarthropathies and sacroiliitis. A second barrier encountered during this body of 

research was the inability to differentially diagnose ankylosing spondylitis during its early 

stages of development. This indicates further research is needed concerning the diagnosis of 

ankylosing spondylitis before the pathognomic or more prominent characteristics appear. At 

present, a probable diagnosis is the most definitive during latter stages of the condition, owing 

to the presence of the pathognomonic feature of the bilaterally fused spine. This leads to 

conflict with other conditions that may look similar and cause phytic activity and fusion 

(Martin-Dupont et al., 2006). Reactive arthritis is remarkably similar to ankylosing spondylitis, 

except that the ankylosis is asymmetrical in the sacroiliac joint and intermittent in the vertebrae, 

which may not be noticeable if the skeletal elements are missing or damaged. However, before 

fusion occurs in ankylosing spondylitis, it would be safe to assume that there would also be 

reaching phytic formations during the early stages of the condition. This would mean that 
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misdiagnosis is not only possible, but probable given the diagnosing criteria and generally 

variable preservation in archaeological skeletal remains. 

 The difficulty in diagnosing is not an issue solely for palaeopathologists. Clinically 

there is no effective blood test for these conditions, hence the seronegative nomenclature, and 

this makes it difficult for clinicians to diagnose as well. MRI has become a key tool in 

diagnosing of ankylosing spondylitis (Weisman, 2011) and has been used to view the 

inflammation of soft tissue in a living individual. Unfortunately for palaeopathologists, the soft 

tissue may not be available during examination, making this method unusable, however, if the 

inflammation is severe enough, it may leave traces on the skeletal material in the form of 

ossified entheses (Ranganathan et al., 2017). Therefore, further study concerning the impact of 

SnSpA on the entheses could be conducted to test whether or not this would be valid for use in 

the future. 

The challenges with differentially diagnosing SnSpA and SI have also been 

documented in mummies. Amenhotep II, pharaoh of the 18th dynasty, Ramses II, and his son 

Merenptah, both pharaohs of the 19th Dynasty, all pharaohs of the New Kingdom 

(approximately 1550 – 1070 BCE), and are believed to have had ankylosing spondylitis based 

on palaeopathological radiographic assessment (Feldtkeller et al., 2003). Yet, it is still debated 

whether Ramses II had ankylosing spondylitis or another of three possible diagnoses, the other 

two being diffuse idiopathic skeletal hyperostosis and spondylosis deformans. These 

conditions are decidedly different in aetiology, yet also similar in development and appearance 

and illustrate how the conditions can be misdiagnosed and confused. 

 To combat this issue, a joint effort needs to be undertaken between clinicians and 

palaeopathologists to track the change in the body over time. While diagnosis is difficult, 

studies have been conducted clinically to allow clinicians to help diagnose at early stages, but 

this does not necessarily include the study of the changes to the skeletal structures (Song et al., 

2007). By trying to ascertain patterns and rates at which the syndesmophytes ossify, it may be 

possible to better diagnose skeletal ankylosing spondylitis. The progression of the conditions 

is slow and may be difficult to note via radiographs in a single patient (Wendling et al., 2018), 

but by tracking the development of the conditions in a longitudinal study using multiple 

patients, it may be possible to fill gaps in our current knowledge. It would then also be useful 

to study the conditions that display similar skeletal changes and aetiology to be able to create 

more accurate differential diagnoses. If this succeeds, it will open up an entire avenue of 
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research within palaeopathology as the conditions would be more discoverable than ever 

before. This understanding of the effects on the past individuals will allow their stories to live 

on through research. 

 Diagnosing ankylosing spondylitis and sacroiliitis are not simply important for the 

understanding of the pathological conditions, but also for the study of how people with 

potentially disabling ailments were treated within the community. Ankylosing spondylitis and 

SI are conditions that are not exclusive, found in pharaohs and common individuals alike, 

which illustrates that the knowledge of the condition was available but not that of the level of 

care (Feldtkeller et al., 2003; Martin-Dupont et al., 2006). Did the ancients know what the 

conditions actually were, and did they know what symptoms would development in an 

individual if left unchecked? We have evidence of the upper class and royalty through the 

pharaohs, but what of the burden that was left on the lower classes or individuals that did not 

have the power or support of an entire nation/community? The limitation, if any, of work or a 

drop in lifestyle by individuals with AS and SI is an avenue that should be explored to offer a 

wider interpretation on individuals of the past. 

 Due to the lack of cases observed in the present study, there was no consistent way to 

establish potential relationships between ankylosing spondylitis and sacroiliitis and the risk 

factors examined. Nevertheless, as ankylosing spondylitis and hip osteoarthritis are said to have 

a relationship, testing for this one relationship may have proved informative (Khan, 2002; 

Weisman, 2011). Overall, ankylosing spondylitis and sacroiliitis require research in the future 

regarding the early stages of their skeletal progression. Due to a lack of knowledge regarding 

these preliminary stages, the diagnoses are misrepresented in palaeopathological samples. The 

future of research concerning these conditions will depend on the collaboration between 

palaeopathologists and clinicians. 
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Chapter 9 Conclusion 
 

The data produced by this research has delivered results that both contradicted and 

supported current literature of the clinical and palaeopathological fields. These results have 

been explained as thoroughly as possible, but the study has also revealed several key areas in 

which further research will be required to better understand and explain the evidence. To 

continue forward, the individual branches of palaeopathological and clinical research will need 

to meld their practices and research data in order to be most effective for all parties.  

 

9.1 Summary of Research Findings 
 

The data within this study has shown that prevalence of joint condition did not appeared 

to be affected when the factor of site category was introduced; however, surface trends did 

appear regarding biological sex and age at death. Males had the higher ratios for the prevalence 

of osteoarthritis at the spine (1.56) and hip (3.4), as well as general osteoarthritis (1.73), and 

females had the higher prevalence for osteoarthritis at the knee (1.13). however, biological sex 

was not found to have any significant correlations/associations with osteoarthritis at any joint 

location. The prevalence rates of joint condition increased as age increased, and there were 

significant correlations/associations between general and spinal osteoarthritis and age at death. 

In general, these results fell within the norms for the clinical and palaeopathological research 

(Waldron, 2009; Allen and Golightly, 2015), although the lack of significant relationships in 

some cases is most likely explained as an artifact of low sample size. 

The analyses of body mass and joint condition did not display the results that were 

expected as seen in palaeopathological literature, yet the results did bolster current clinical 

research. The data of this research found that the range of body mass (19.73-29.03 kg/m²) may 

have been too small to affect the prevalence of joint condition with the upper values being far 

lower than found in clinical studies. However, the data may help to validate the theory that 

simply being over mass (25.0-29.9 kg/m²) does not cause joint degredation and the onset of 

arthritic conditions but being critically over mass in the obese range (30.0-40.0 kg/m²) will 

need further testing with samples that fall into this range (Stürmer et al., 2000; 

Anandacoomarasamy et al., 2012).  
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Looking at the cross-sectional indices, no significant differences existed between the 

site categories for diagnoses of joint conditions, even when assessed by homogenous biological 

sex groups. However, a sexual dimorphism which could be related to activity, or could simply 

be standard biological dimorphism, was found between males and females. While these 

differences were discovered, the individual variables of the cross-sectional indices appear to 

have significantly contributed to the diagnoses of osteoarthritis at each joint location 

differently. This suggests that the muscles used in the activities that help the skeleton to develop 

the properties illustrated within the cross-sectional indices are related to the development of 

the joint conditions. As entheseal changes only displayed significant relationships with general 

and spinal osteoarthritis, this could further indicate that the entheseal changes on these skeletal 

elements are an effect of the osteoarthritis rather than a cause. 

The work on seronegative spondyloarthropathies will need to be considered ongoing, 

as it was unable to be completed properly due to a very small sample size, however, important 

issues have been highlighted that must be addressed within the field. With the relationships 

between ankylosing spondylitis and sacroiliitis and osteoarthritis of the hip and knee, as well 

as joints of the upper appendicular skeleton, illustrate the need for these conditions to be 

assessed and studied together, rather than focused on separately (Khan, 2009; Weisman 2011). 

The importance of such research has been emphasized as well as proposed ideas on how to 

rectify this issue. 

 

9.2 Proposed Future Research 
 

While the research questions for this research were answered, the research also 

indicated new avenues of investigation that must be explored. As has been stated throughout 

this thesis, palaeopathologists and clinicians must marry their knowledge to the benefit of both 

schools of thought. Further longitudinal clinical studies exploring the onset and progression of 

the conditions researched as well as taking detailed physical examinations of the 

musculoskeletal structure and follow up survey information, both fields would greatly benefit 

by the addition of data that could not be otherwise obtained. A longitudinal study using imaging 

technology would provide a clinical ‘flip book’ of images showing the gradual progression of 

the conditions over time and using CT and MRI techniques would allow for metric 

measurements of the skeletal material to be recorded. Research of this type could create data 
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that would also help to understand the effects on living patients as well as focus on the 

individual and track changes in activity, lifestyle, diet, and all other aspects that could affect 

the progression of joint conditions. Longitudinal studies are not new to this field, but with each 

new level of understanding, the older studies are simply outdated, and new data is required. 

This type of research would be an invaluable asset for both communities and allow for many 

assumptions to be made regarding palaeopathological materials that are not possible at the 

moment. 

This longitudinal approach would be extremely useful also for the 

spondyloarthropathies, as little is known about the progression of the conditions. Without full 

fusion or late-stage features, it is difficult to diagnose clinically and even harder to diagnose 

paleopathologically. Understanding the development of the ossification of the syndesmophytes 

and associates enthesophytes would be a huge advancement towards providing diagnoses in 

skeletal material without full ankylosis. As seen within this thesis, specific 

spondyloarthropathies are being underreported and redesignated simply as undifferentiated 

spondyloarthropathies when the late-stage skeletal evidence is not present, making this 

research not only incredibly helpful to the field, but necessary. 

At the start of this research, a standardized scoring and recording guide for joint 

condition was proposed as a continuation of a method devised for a completed MSc 

dissertation. However, due to a lack of inter-observer testing, this was a facet of the research 

that was unable to be completed. A standardized system would simplify the process of sharing 

data between researchers as well as potentially eliminate confusion from matching or 

understanding different systems. Combined with a database that could be accessed by 

researchers across the globe, shared knowledge, and the progression of understanding of joint 

conditions would never be easier. This database could be accessed via professional or academic 

channels, such as with Digitized Diseases, IsoArchH or the Global History of Health Project, 

and curated by a group of individuals which would restrict and inhibit the ability for individuals 

to tamper with databased information at will. After global episodes of pandemic, such as the 

Covid-19 outbreak of 2020, a database like this would make it possible to continue research 

while in isolation or in lockdown and from anywhere in the world. 
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9.3 Final Thoughts 
 

Joint conditions are ubiquitous and due to the relatively high prevalence found amongst 

humans, it is necessary to understand how they affect humanity, past and present. The high 

likelihood that many readers of this thesis will be affected by one or more of these conditions 

is reason enough for the need to study such conditions – unlike many pathological conditions, 

the experience of living with joint condition is something that is shared by the majority of any 

human population. Insight into how the conditions have shifted prevalence by joint, between 

sexes and by age groups through the ages as the trends in lifestyles and technology have 

changed may help us to understand and prevent the conditions in people living today. Studies 

and research, such as this one, provide insights into the cause of the conditions which, in theory, 

can help living patients make changes to help reduce the impact and progression of joint 

conditions. 

It is important to remember that the people of the past are more than just values in a 

statistic and to acknowledge what each may have undergone while these conditions developed. 

Awareness of the impact that joint condition had on our ancestors will help researchers in 

understanding the conditions in living individuals. While it may be easy to forget the humanity 

of each skeleton, it is the duty of every osteoarcheologist to be able to accurately tell the stories 

of these people, and in a way, it keeps these individuals alive. 

Research into joint conditions continues to advance as new palaeopathological methods 

are established allowing for avenues of research, otherwise thought to be dead ends, or limited 

by current methodologies. This field is ever growing and evolving allowing for new research 

possibilities to be undertaken and objectives to be expanded. The study for this research project 

may now be concluded, but the research to resolve the many new questions and to continue to 

learn more about joint conditions will ever remain ongoing. 
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Appendix 

 

Cross-Sectional Indices 
 

 
Figure 0.1 Boxplot of femoral subtrochanteric shape by biological sex and age at death, presenting the mean and interquartile 
ranges. 
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Figure 0.2 Boxplot of femoral subtrochanteric robusticity by biological sex and age at death. 
 

 
Figure 0.3 Boxplot of femoral subtrochanteric polar SMA by biological sex and age at death. 
 



284 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

 
Figure 0.4 Boxplot of femoral subtrochanteric area by biological sex and age at death. 
 

 
Figure 0.5 Boxplot of femoral midshaft shape by biological sex and age at death. 
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Figure 0.6 Boxplot of femoral midshaft robusticity by biological sex and age at death. 
 

 
Figure 0.7 Boxplot of femoral midshaft polar SMA by biological sex and age at death. 
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Figure 0.8 Boxplot of femoral midshaft area by biological sex and age at death. 
 

 
Figure 0.9 Distribution of the sample population by age at death and femoral subtrochanteric polar SMA. The samples have 
further been identified by biological sex with R² values. 
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Figure 0.10 Distribution of the sample population by age at death and femoral subtrochanteric area. The samples have further 
been identified by biological sex with R² values. 
 

 
Figure 0.11 Distribution of the sample population by age at death and femoral midshaft shape. The samples have further been 
identified by biological sex with R² values. 
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Figure 0.12 Distribution of the sample population by age at death and femoral midshaft robusticity. The samples have further 
been identified by biological sex with R² values. 
 

 
Figure 0.13 Distribution of the sample population by age at death and femoral midshaft polar SMA. The samples have further 
been identified by biological sex with R² values. 
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Figure 0.14 Distribution of the sample population by age at death and femoral midshaft area. The samples have further been 
identified by biological sex with R² values. 
 

 
Figure 0.15 Distribution of the sample population by femoral subtrochanteric shape and femoral subtrochanteric area. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.16 Distribution of the sample population by femoral subtrochanteric shape and femoral subtrochanteric polar SMA. 
The samples have further been identified by biological sex with R² values. 
 
 

 
Figure 0.17 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft shape. The samples 
have further been identified by biological sex with R² values. 
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Figure 0.18 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft robusticity. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.19 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft polar SMA. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.20 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
 

 
Figure 0.21 Distribution of the sample population by femoral subtrochanteric robusticity and femoral subtrochanteric polar 
SMA. The samples have further been identified by biological sex with R² values. 
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Figure 0.22 Distribution of the sample population by femoral subtrochanteric robusticity and femoral subtrochanteric area. 
The samples have further been identified by biological sex with R² values. 
 

 
Figure 0.23 Distribution of the sample population by femoral subtrochanteric robusticity and femoral midshaft shape. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.24 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft robusticity. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.25 Distribution of the sample population by femoral subtrochanteric robusticity and femoral midshaft polar SMA. 
The samples have further been identified by biological sex with R² values. 
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Figure 0.26 Distribution of the sample population by femoral subtrochanteric robusticity and femoral midshaft area. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.27 Distribution of the sample population by femoral subtrochanteric polar SMA and femoral subtrochanteric area. 
The samples have further been identified by biological sex with R² values. 
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Figure 0.28 Distribution of the sample population by femoral subtrochanteric polar SMA and femoral midshaft shape. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.29 Distribution of the sample population by femoral subtrochanteric polar SMA and femoral midshaft robusticity. 
The samples have further been identified by biological sex with R² values. 
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Figure 0.30 Distribution of the sample population by femoral subtrochanteric polar SMA and femoral midshaft polar SMA. 
The samples have further been identified by biological sex with R² values. 
 

 
Figure 0.31 Distribution of the sample population by femoral subtrochanteric polar SMA and femoral midshaft area. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.32 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft robusticity. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.33 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft polar SMA. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.34 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
 

 
Figure 0.35 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft robusticity. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.36 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft polar SMA. The 
samples have further been identified by biological sex with R² values. 
 

 
Figure 0.37 Distribution of the sample population by femoral subtrochanteric area and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
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Figure 0.38 Distribution of the sample population by femoral midshaft shape and femoral midshaft robusticity. The samples 
have further been identified by biological sex with R² values. 
 

 
Figure 0.39 Distribution of the sample population by femoral midshaft shape and femoral midshaft polar SMA. The samples 
have further been identified by biological sex with R² values. 
 



302 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

 
Figure 0.40 Distribution of the sample population by femoral subtrochanteric shape and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
 

 
Figure 0.41 Distribution of the sample population by femoral midshaft robusticity and femoral midshaft polar SMA. The 
samples have further been identified by biological sex with R² values. 
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Figure 0.42 Distribution of the sample population by femoral midshaft robusticity and femoral midshaft area. The samples 
have further been identified by biological sex with R² values. 
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Risk Ratios 
Table 0.1 Risk ratio for osteoarthritis with a biological sex control. 

  
  

COUNT PREVALENCE RATE 
OA A P A P 

 BIOLOGICAL MALE 65 38 63.1% 36.9% 
SEX FEMALE 50 22 69.4% 30.6% 

    RISK RATIO 
    MALE/FEMALE 1.21 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.2 Risk ratio for osteoarthritis with an age at death control. 

  
  

COUNT PREVALENCE RATE 
  A P A P 

OA EARLY 45 11 80.4% 19.6% 
AGE AT  MIDDLE 31 9 77.5% 22.5% 
DEATH LATE 39 40 49.4% 50.6% 

 CATEGORY   RISK RATIO 

  

  MIDDLE/EARLY 1.15 

  LATE/MIDDLE 2.25 

  LATE/EARLY 2.58 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.3 Risk ratio for osteoarthritis with a body mass index control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  1: <25% 20 17 54.1% 45.9% 

OA 2: 25-50% 25 13 65.8% 34.2% 
BODY MASS  3: 50-75% 26 14 65.0% 35.0% 

INDEX 4: >75% 24 11 68.6% 31.4% 
 INTERQUARTILE   RISK RATIO 

  

  2/1 0.74 

  3/2 1.02 

  4/3 0.90 

  4/1 0.68 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.4 Risk ratio for osteoarthritis with an entheseal change control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  SLIGHT 54 16 77.1% 22.9% 

OA MODERATE 55 34 61.8% 38.2% 
 ENTHESEAL SEVERE 6 10 37.5% 62.5% 

CHANGE   RISK RATIO 

  

  MODERATE/SLIGHT 1.67 

  SEVERE/MODERATE 1.64 

  SEVERE/SLIGHT 2.73 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.5 Risk ratio for osteoarthritis with a femoral subtrochanteric shape control. 
  

  

COUNT   PREVALENCE RATE 

  A P A P 
OA 1: <25% 25 13 65.8% 34.2% 

FEMORAL 2: 25-50% 26 13 66.7% 33.3% 
SUBTROCHANTERIC 3: 50-75% 25 13 65.8% 34.2% 

SHAPE 4: >75% 24 14 63.2% 36.8% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.97 

  3/2 1.03 

  4/3 1.08 

  4/1 1.08 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.6 Risk ratio for osteoarthritis with a femoral subtrochanteric robusticity control. 

  

  

COUNT INCINDENCE RATE 

  A P A P 
OA 1: <25% 25 12 67.6% 32.4% 

FEMORAL 2: 25-50% 19 18 51.4% 48.6% 
SUBTROCHANTERIC 3: 50-75% 33 8 80.5% 19.5% 

ROBUSITICITY 4: >75% 20 13 60.6% 39.4% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.50 

  3/2 0.40 

  4/3 2.02 

  4/1 1.21 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.7 Risk ratio for osteoarthritis with a femoral subtrochanteric polar SMA control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
OA 1: <25% 21 14 60.0% 40.0% 

FEMORAL 2: 25-50% 27 9 75.0% 25.0% 
SUBTROCHANTERIC 3: 50-75% 23 12 65.7% 34.3% 

POLAR SMA 4: >75% 23 11 67.6% 32.4% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.63 

  3/2 1.37 

  4/3 0.94 

  4/1 0.81 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.8 Risk ratio for osteoarthritis with a femoral subtrochanteric area control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
OA 1: <25% 22 15 59.5% 40.5% 

FEMORAL 2: 25-50% 27 9 75.0% 25.0% 
SUBTROCHANTERIC 3: 50-75% 22 17 56.4% 43.6% 

AREA 4: >75% 26 10 72.2% 27.8% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.62 

  3/2 1.74 

  4/3 0.64 

  4/1 0.69 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.9 Risk ratio for osteoarthritis with a femoral midshaft shape control. 

 
  

COUNT PREVALENCE RATE 

  A P A P 
OA 1: <25% 24 14 63.2% 36.8% 

FEMORAL 2: 25-50% 24 14 63.2% 36.8% 
MIDSHAFT 3: 50-75% 24 14 63.2% 36.8% 

SHAPE 4: >75% 26 12 68.4% 31.6% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.00 

  3/2 1.00 

  4/3 0.86 

  4/1 0.86 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.10 Risk ratio for osteoarthritis with a femoral midshaft robusticity control. 

    RISK RATIO PREVALENCE RATE 
    A P A P 

OA 1: <25% 20 15 57.1% 42.9% 
FEMORAL 2: 25-50% 27 11 71.1% 28.9% 
MIDSHAFT 3: 50-75% 28 11 71.8% 28.2% 

ROBUSTICITY 4: >75% 20 14 58.8% 41.2% 
 INTERQUARTILE   RISK RATIO   

  
  
  
  
  

 RANGE 2/1 0.68 
  3/2 0.97 
  4/3 1.46 
  4/1 0.96 

Table includes the prevalence rates and risk ratios by category. 
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Table 0.11 Risk ratio for osteoarthritis with a femoral midshaft polar SMA control. 

    COUNT PREVALENCE RATE 
    A P A P 

OA 1: <25% 20 14 58.8% 41.2% 
FEMORAL 2: 25-50% 23 12 65.7% 34.3% 
MIDSHAFT 3: 50-75% 20 14 58.8% 41.2% 

POLAR SMA 4: >75% 32 8 80.0% 20.0% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.83 
  3/2 1.20 
  4/3 0.49 
  4/1 0.49 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.12 Risk ratio for osteoarthritis with a femoral midshaft area control. 

    COUNT INCINDENCE RATE 
    A P A P 

OA 1: <25% 22 15 59.5% 40.5% 
FEMORAL 2: 25-50% 27 10 73.0% 27.0% 
MIDSHAFT 3: 50-75% 18 19 48.6% 51.4% 

AREA 4: >75% 28 7 80.0% 20.0% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.67 
  3/2 1.90 
  4/3 0.39 
  4/1 0.49 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.13 Risk ratio for spinal osteoarthritis with a biological sex control. 

  
  

COUNT PREVALENCE RATE 
SOA A P A P 

 BIOLOGICAL MALE 73 25 74.5% 25.5% 
SEX FEMALE 54 16 77.1% 22.9% 

    RISK RATIO 
    MALE/FEMALE 1.12 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.14 Risk ratio for spinal osteoarthritis with an age at death control. 

  
  

COUNT PREVALENCE RATE 
  A P A P 

SOA EARLY 50 6 89.3% 10.7% 
AGE AT  MIDDLE 30 7 81.1% 18.9% 
DEATH LATE 47 28 62.7% 37.3% 

 CATEGORY   RISK RATIO 

  

  MIDDLE/EARLY 1.77 

  LATE/MIDDLE 1.97 

  LATE/EARLY 3.48 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.15 Risk ratio for spinal osteoarthritis with a body mass index control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
  1: <25% 25 12 67.6% 32.4% 

SOA 2: 25-50% 25 12 67.6% 32.4% 
BODY MASS  3: 50-75% 29 10 74.4% 25.6% 

INDEX 4: >75% 27 5 84.4% 15.6% 
 INTERQUARTILE   RISK RATIO 

  

  2/1 1.00 

  3/2 0.79 

  4/3 0.61 

  4/1 0.48 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.16 Risk ratio for spinal osteoarthritis with an entheseal change control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  SLIGHT 57 10 85.1% 14.9% 

SOA MODERATE 62 24 72.1% 27.9% 
 ENTHESEAL SEVERE 8 7 53.3% 46.7% 

CHANGE   RISK RATIO 

  

  MODERATE/SLIGHT 1.87 

  SEVERE/MODERATE 1.67 

  SEVERE/SLIGHT 3.13 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.17 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric shape control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
SOA 1: <25% 28 9 75.7% 24.3% 

FEMORAL 2: 25-50% 27 10 73.0% 27.0% 
SUBTROCHANTERIC 3: 50-75% 28 9 75.7% 24.3% 

SHAPE 4: >75% 28 8 77.8% 22.2% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.11 

  3/2 0.90 

  4/3 0.91 

  4/1 0.91 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.18 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric robusticity control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
SOA 1: <25% 28 7 80.0% 20.0% 

FEMORAL 2: 25-50% 22 13 62.9% 37.1% 
SUBTROCHANTERIC 3: 50-75% 34 6 85.0% 15.0% 

ROBUSITICITY 4: >75% 24 8 75.0% 25.0% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.86 

  3/2 0.40 

  4/3 1.67 

  4/1 1.25 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.19 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric polar SMA control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
SOA 1: <25% 25 9 73.5% 26.5% 

FEMORAL 2: 25-50% 29 5 85.3% 14.7% 
SUBTROCHANTERIC 3: 50-75% 23 10 69.7% 30.3% 

POLAR SMA 4: >75% 27 6 81.8% 18.2% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.56 

  3/2 2.06 

  4/3 0.60 

  4/1 0.69 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.20 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric area control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
SOA 1: <25% 27 9 75.0% 25.0% 

FEMORAL 2: 25-50% 27 8 77.1% 22.9% 
SUBTROCHANTERIC 3: 50-75% 35 11 76.1% 23.9% 

AREA 4: >75% 29 6 82.9% 17.1% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.91 

  3/2 1.05 

  4/3 0.72 

  4/1 0.69 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.21 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric robusticity control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
SOA 1: <25% 28 9 75.7% 24.3% 

FEMORAL 2: 25-50% 28 8 77.8% 22.2% 
MIDSHAFT 3: 50-75% 28 9 75.7% 24.3% 

SHAPE 4: >75% 26 10 72.2% 27.8% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.91 

  3/2 1.09 

  4/3 1.14 

  4/1 1.14 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.22 Risk ratio for spinal osteoarthritis with a femoral subtrochanteric robusticity control. 

    COUNT PREVALENCE RATE 
    A P A P 

SOA 1: <25% 26 8 76.5% 23.5% 
FEMORAL 2: 25-50% 28 8 77.8% 22.2% 
MIDSHAFT 3: 50-75% 30 7 81.1% 18.9% 

ROBUSTICITY 4: >75% 23 10 69.7% 30.3% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.94 
  3/2 0.85 
  4/3 1.60 
  4/1 1.29 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.23 Risk ratio for spinal osteoarthritis with a femoral midshaft polar SMA control. 

    COUNT PREVALENCE RATE 
    A P A P 

SOA 1: <25% 23 4 85.2% 14.8% 
FEMORAL 2: 25-50% 27 5 84.4% 15.6% 
MIDSHAFT 3: 50-75% 23 5 82.1% 17.9% 

POLAR SMA 4: >75% 33 6 84.6% 15.4% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 1.05 
  3/2 1.14 
  4/3 0.86 
  4/1 1.04 

Table includes the prevalence rates and risk ratios by category. 
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Table 0.24 Risk ratio for spinal osteoarthritis with a femoral midshaft area control. 

    COUNT PREVALENCE RATE 
    A P A P 

SOA 1: <25% 27 9 75.0% 25.0% 
FEMORAL 2: 25-50% 29 8 78.4% 21.6% 
MIDSHAFT 3: 50-75% 23 10 69.7% 30.3% 

AREA 4: >75% 28 6 82.4% 17.6% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.86 
  3/2 1.40 
  4/3 0.58 
  4/1 0.71 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.25 Risk ratio for hip osteoarthritis with a biological sex control. 

  
  

COUNT PREVALENCE RATE 
HOA A P A P 

 BIOLOGICAL MALE 86 17 83.5% 16.5% 
SEX FEMALE 67 5 93.1% 6.9% 

    RISK RATIO 
    MALE/FEMALE 2.38 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.26 Risk ratio for hip osteoarthritis with an age at death control. 

  
  

COUNT PREVALENCE RATE 
  A P A P 

HOA EARLY 52 4 92.9% 7.1% 
AGE AT  MIDDLE 38 2 95.0% 5.0% 
DEATH LATE 63 16 79.7% 20.3% 

 CATEGORY   RISK RATIO 

  

  MIDDLE/EARLY 0.70 

  LATE/MIDDLE 4.05 

  LATE/EARLY 2.84 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.27 Risk ratio for hip osteoarthritis with a body mass index control. 

  

  

COUNT INCINDENCE RATE 

  A P A P 
  1: <25% 29 8 78.4% 21.6% 

HOA 2: 25-50% 34 4 89.5% 10.5% 
BODY MASS  3: 50-75% 36 4 90.0% 10.0% 

INDEX 4: >75% 32 3 91.4% 8.6% 
 INTERQUARTILE   RISK RATIO 

  

  2/1 0.49 

  3/2 0.95 

  4/3 0.86 

  4/1 0.40 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.28 Risk ratio for hip osteoarthritis with an entheseal change control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
  SLIGHT 64 6 91.4% 8.6% 

HOA MODERATE 78 11 87.6% 12.4% 
 ENTHESEAL SEVERE 11 5 68.8% 31.3% 

CHANGE   RISK RATIO 

  

  MODERATE/SLIGHT 1.44 

  SEVERE/MODERATE 2.53 

  SEVERE/SLIGHT 3.65 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.29 Risk ratio for hip osteoarthritis with a femoral subtrochanteric shape control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
HOA 1: <25% 32 6 84.2% 15.8% 

FEMORAL 2: 25-50% 35 4 89.7% 10.3% 
SUBTROCHANTERIC 3: 50-75% 33 5 86.8% 13.2% 

SHAPE 4: >75% 32 6 84.2% 15.8% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.65 

  3/2 1.28 

  4/3 1.20 

  4/1 1.00 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.30 Risk ratio for hip osteoarthritis with a femoral subtrochanteric robusticity control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
HOA 1: <25% 32 5 86.5% 13.5% 

FEMORAL 2: 25-50% 28 9 75.7% 24.3% 
SUBTROCHANTERIC 3: 50-75% 40 1 97.6% 2.4% 

ROBUSITICITY 4: >75% 27 6 81.8% 18.2% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.80 

  3/2 0.10 

  4/3 7.45 

  4/1 1.35 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.31 Risk ratio for hip osteoarthritis with a femoral subtrochanteric polar SMA control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
HOA 1: <25% 29 6 82.9% 17.1% 

FEMORAL 2: 25-50% 32 4 88.9% 11.1% 
SUBTROCHANTERIC 3: 50-75% 30 5 85.7% 14.3% 

POLAR SMA 4: >75% 30 4 88.2% 11.8% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.65 

  3/2 1.29 

  4/3 0.82 

  4/1 0.69 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.32 Risk ratio for hip osteoarthritis with a femoral subtrochanteric area control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
HOA 1: <25% 31 6 83.8% 16.2% 

FEMORAL 2: 25-50% 32 4 88.9% 11.1% 
SUBTROCHANTERIC 3: 50-75% 32 7 82.1% 17.9% 

AREA 4: >75% 32 4 88.9% 11.1% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.69 

  3/2 1.62 

  4/3 0.62 

  4/1 0.69 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.33 Risk ratio for hip osteoarthritis with a femoral midshaft shape control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
HOA 1: <25% 31 7 81.6% 18.4% 

FEMORAL 2: 25-50% 35 3 92.1% 7.9% 
MIDSHAFT 3: 50-75% 30 8 78.9% 21.1% 

SHAPE 4: >75% 35 3 92.1% 7.9% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.43 

  3/2 2.67 

  4/3 0.38 

  4/1 0.43 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.34 Risk ratio for hip osteoarthritis with a femoral midshaft robusticity control. 

    COUNT PREVALENCE RATE 
    A P A P 

HOA 1: <25% 30 5 85.7% 14.3% 
FEMORAL 2: 25-50% 33 5 86.8% 13.2% 
MIDSHAFT 3: 50-75% 33 6 84.6% 15.4% 

ROBUSTICITY 4: >75% 29 5 85.3% 14.7% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.92 
  3/2 1.17 
  4/3 0.96 
  4/1 1.03 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.35 Risk ratio for hip osteoarthritis with a femoral midshaft polar SMA control. 

    COUNT PREVALENCE RATE 
    A P A P 

HOA 1: <25% 30 4 88.2% 11.8% 
FEMORAL 2: 25-50% 30 5 85.7% 14.3% 
MIDSHAFT 3: 50-75% 25 9 73.5% 26.5% 

POLAR SMA 4: >75% 38 2 95.0% 5.0% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 1.21 
  3/2 1.85 
  4/3 0.19 
  4/1 0.43 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.36 Risk ratio for hip osteoarthritis with a femoral midshaft area control. 

    COUNT PREVALENCE RATE 
    A P A P 

HOA 1: <25% 32 5 86.5% 13.5% 
FEMORAL 2: 25-50% 33 4 89.2% 10.8% 
MIDSHAFT 3: 50-75% 28 9 75.7% 24.3% 

AREA 4: >75% 32 3 91.4% 8.6% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.80 

  3/2 2.25 

  4/3 0.35 

  4/1 0.63 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.37 Risk ratio for knee osteoarthritis with a biological sex control. 

  
  

COUNT PREVALENCE RATE 
KOA A P A P 

 BIOLOGICAL MALE 93 8 92.1% 7.9% 
SEX FEMALE 62 9 87.3% 12.7% 

    RISK RATIO 
    MALE/FEMALE 0.62 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.38 Risk ratio for knee osteoarthritis with an age at death control. 

  
  

COUNT PREVALENCE RATE 
  A P A P 

KOA EARLY 52 3 94.5% 5.5% 
AGE AT  MIDDLE 37 3 92.5% 7.5% 
DEATH LATE 66 11 85.7% 14.3% 

 CATEGORY   RISK RATIO 

  

  MIDDLE/EARLY 1.38 

  LATE/MIDDLE 1.90 

  LATE/EARLY 2.62 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.39 Risk ratio for knee osteoarthritis with a body mass index control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  1: <25% 32 5 86.5% 13.5% 

KOA 2: 25-50% 35 2 94.6% 5.4% 
BODY MASS  3: 50-75% 36 4 90.0% 10.0% 

INDEX 4: >75% 32 5 86.5% 13.5% 
 INTERQUARTILE   RISK RATIO 

  

  2/1 0.40 

  3/2 1.85 

  4/3 1.35 

  4/1 1.00 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.40 Risk ratio for knee osteoarthritis with an entheseal change control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  SLIGHT 62 6 91.2% 8.8% 

KOA MODERATE 79 9 89.8% 10.2% 
 ENTHESEAL SEVERE 14 2 87.5% 12.5% 

CHANGE   RISK RATIO 

  

  MODERATE/SLIGHT 1.16 

  SEVERE/MODERATE 1.22 

  SEVERE/SLIGHT 1.42 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.41 Risk ratio for knee osteoarthritis with a femoral subtrochanteric shape control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
KOA 1: <25% 33 3 91.7% 8.3% 

FEMORAL 2: 25-50% 35 4 89.7% 10.3% 
SUBTROCHANTERIC 3: 50-75% 35 3 92.1% 7.9% 

SHAPE 4: >75% 32 5 86.5% 13.5% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.23 

  3/2 0.77 

  4/3 1.71 

  4/1 1.62 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.42 Risk ratio for knee osteoarthritis with a femoral subtrochanteric robusticity control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
KOA 1: <25% 32 5 86.5% 13.5% 

FEMORAL 2: 25-50% 32 4 88.9% 11.1% 
SUBTROCHANTERIC 3: 50-75% 36 4 90.0% 10.0% 

ROBUSITICITY 4: >75% 30 2 93.8% 6.3% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.82 

  3/2 0.90 

  4/3 0.63 

  4/1 0.46 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.43 Risk ratio for knee osteoarthritis with a femoral subtrochanteric polar SMA control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
KOA 1: <25% 31 4 88.6% 11.4% 

FEMORAL 2: 25-50% 33 2 94.3% 5.7% 
SUBTROCHANTERIC 3: 50-75% 31 4 88.6% 11.4% 

POLAR SMA 4: >75% 28 4 87.5% 12.5% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.50 

  3/2 2.00 

  4/3 1.09 

  4/1 1.09 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.44 Risk ratio for knee osteoarthritis with a femoral subtrochanteric area control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
KOA 1: <25% 31 6 83.8% 16.2% 

FEMORAL 2: 25-50% 35 0 100.0% 0.0% 
SUBTROCHANTERIC 3: 50-75% 32 7 82.1% 17.9% 

AREA 4: >75% 32 2 94.1% 5.9% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.00 
  3/2 - 
  4/3 0.33 
  4/1 0.36 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.45 Risk ratio for knee osteoarthritis with a femoral midshaft shape control. 

    COUNT PREVALENCE RATE 
    A P A P 

KOA 1: <25% 29 7 80.6% 19.4% 
FEMORAL 2: 25-50% 32 6 84.2% 15.8% 
MIDSHAFT 3: 50-75% 37 1 97.4% 2.6% 

SHAPE 4: >75% 35 2 94.6% 5.4% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.81 
  3/2 0.17 
  4/3 2.05 
  4/1 0.28 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.46 Risk ratio for knee osteoarthritis with a femoral midshaft robusticity control. 

    COUNT PREVALENCE RATE 
    A P A P 

KOA 1: <25% 27 7 79.4% 20.6% 
FEMORAL 2: 25-50% 33 4 89.2% 10.8% 
MIDSHAFT 3: 50-75% 36 2 94.7% 5.3% 

ROBUSTICITY 4: >75% 31 3 91.2% 8.8% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.53 
  3/2 0.49 
  4/3 1.68 
  4/1 0.43 

Table includes the prevalence rates and risk ratios by category. 
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Table 0.47 Risk ratio for knee osteoarthritis with a femoral midshaft polar SMA control. 

    COUNT PREVALENCE RATE 
    A P A P 

KOA 1: <25% 29 4 87.9% 12.1% 
FEMORAL 2: 25-50% 28 6 82.4% 17.6% 
MIDSHAFT 3: 50-75% 30 3 90.9% 9.1% 

POLAR SMA 4: >75% 38 2 95.0% 5.0% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 1.46 
  3/2 0.52 
  4/3 0.55 
  4/1 0.41 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.48 Risk ratio for knee osteoarthritis with a femoral midshaft area control. 

    COUNT PREVALENCE RATE 
    A P A P 

KOA 1: <25% 31 5 86.1% 13.9% 
FEMORAL 2: 25-50% 33 3 91.7% 8.3% 
MIDSHAFT 3: 50-75% 30 7 81.1% 18.9% 

AREA 4: >75% 33 1 97.1% 2.9% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.60 
  3/2 2.27 
  4/3 0.16 
  4/1 0.21 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.49 Risk ratio for degenerative disc disease with a biological sex control. 

  
  

COUNT PREVALENCE RATE 
DDD A P A P 

 BIOLOGICAL MALE 79 19 80.6% 19.4% 
SEX FEMALE 60 10 85.7% 14.3% 

    RISK RATIO 
    MALE/FEMALE 1.36 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.50 Risk ratio for degenerative disc disease with an age at death control. 

  
  

COUNT PREVALENCE RATE 
  A P A P 

DDD EARLY 49 7 87.5% 12.5% 
AGE AT  MIDDLE 32 5 86.5% 13.5% 
DEATH LATE 58 17 77.3% 22.7% 

 CATEGORY   RISK RATIO 

  

  MIDDLE/EARLY 1.08 

  LATE/MIDDLE 1.68 

  LATE/EARLY 1.81 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.51 Risk ratio for degenerative disc disease with a body mass index control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
  1: <25% 33 4 89.2% 10.8% 

DDD 2: 25-50% 29 8 78.4% 21.6% 
BODY MASS  3: 50-75% 30 8 78.9% 21.1% 

INDEX 4: >75% 26 5 83.9% 16.1% 
 INTERQUARTILE   RISK RATIO 

  

  2/1 2.00 

  3/2 0.97 

  4/3 0.77 

  4/1 1.49 
Table includes the incidence rates and risk ratios by category. 
 
Table 0.52 Risk ratio for degenerative disc disease with an entheseal change control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
  SLIGHT 57 10 85.1% 14.9% 

DDD MODERATE 68 18 79.1% 20.9% 
 ENTHESEAL SEVERE 14 1 93.3% 6.7% 

CHANGE   RISK RATIO 

  

  MODERATE/SLIGHT 1.40 

  SEVERE/MODERATE 0.32 

  SEVERE/SLIGHT 0.45 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.53 Risk ratio for degenerative disc disease with a femoral subtrochanteric shape control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
DDD 1: <25% 31 6 83.8% 16.2% 

FEMORAL 2: 25-50% 31 7 81.6% 18.4% 
SUBTROCHANTERIC 3: 50-75% 3 7 30.0% 70.0% 

SHAPE 4: >75% 33 2 94.3% 5.7% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.14 

  3/2 3.80 

  4/3 0.08 

  4/1 0.35 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.54 Risk ratio for degenerative disc disease with a femoral subtrochanteric robusticity control. 
  

  

COUNT PREVALENCE RATE 

  A P A P 
DDD 1: <25% 30 6 83.3% 16.7% 

FEMORAL 2: 25-50% 31 5 86.1% 13.9% 
SUBTROCHANTERIC 3: 50-75% 35 4 89.7% 10.3% 

ROBUSITICITY 4: >75% 27 5 84.4% 15.6% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 0.83 

  3/2 0.74 

  4/3 1.52 

  4/1 0.94 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.55 Risk ratio for degenerative disc disease with a femoral subtrochanteric polar SMA control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
DDD 1: <25% 30 4 88.2% 11.8% 

FEMORAL 2: 25-50% 30 5 85.7% 14.3% 
SUBTROCHANTERIC 3: 50-75% 28 5 84.8% 15.2% 

POLAR SMA 4: >75% 28 5 84.8% 15.2% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.21 

  3/2 1.06 

  4/3 1.00 

  4/1 1.29 
Table includes the prevalence rates and risk ratios by category. 
 
Table 0.56 Risk ratio for degenerative disc disease with a femoral subtrochanteric area control. 

  

  

COUNT PREVALENCE RATE 

  A P A P 
DDD 1: <25% 32 4 88.9% 11.1% 

FEMORAL 2: 25-50% 31 4 88.6% 11.4% 
SUBTROCHANTERIC 3: 50-75% 30 7 81.1% 18.9% 

AREA 4: >75% 30 5 85.7% 14.3% 
 INTERQUARTILE   RISK RATIO 

  

 RANGE 2/1 1.03 

  3/2 1.66 

  4/3 0.76 

  4/1 1.29 
Table includes the prevalence rates and risk ratios by category. 
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Table 0.57 Risk ratio for degenerative disc disease with a femoral midshaft area control. 
    COUNT PREVALENCE RATE 
    A P A P 

DDD 1: <25% 30 7 81.1% 18.9% 
FEMORAL 2: 25-50% 28 7 80.0% 20.0% 
MIDSHAFT 3: 50-75% 33 5 86.8% 13.2% 

SHAPE 4: >75% 32 4 88.9% 11.1% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 1.06 
  3/2 0.66 
  4/3 0.84 
  4/1 0.59 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.58 Risk ratio for degenerative disc disease with a femoral midshaft robusticity control. 

    COUNT PREVALENCE RATE 
    A P A P 

DDD 1: <25% 29 5 85.3% 14.7% 
FEMORAL 2: 25-50% 31 5 86.1% 13.9% 
MIDSHAFT 3: 50-75% 32 6 84.2% 15.8% 

ROBUSTICITY 4: >75% 29 4 87.9% 12.1% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.94 
  3/2 1.14 
  4/3 0.77 
  4/1 0.82 

Table includes the prevalence rates and risk ratios by category. 
 
Table 0.59 Risk ratio for degenerative disc disease with a femoral midshaft polar SMA. 

    COUNT PREVALENCE RATE 
    A P A P 

DDD 1: <25% 29 4 87.9% 12.1% 
FEMORAL 2: 25-50% 28 5 84.8% 15.2% 
MIDSHAFT 3: 50-75% 28 5 84.8% 15.2% 

POLAR SMA 4: >75% 33 6 84.6% 15.4% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 1.25 
  3/2 1.00 
  4/3 1.02 
  4/1 1.27 

Table includes the prevalence rates and risk ratios by category. 
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Table 0.60 Risk ratio for degenerative disc disease with a femoral midshaft area control. 
    COUNT INCINDENCE RATE 
    A P A P 

DDD 1: <25% 30 5 85.7% 14.3% 
FEMORAL 2: 25-50% 32 5 86.5% 13.5% 
MIDSHAFT 3: 50-75% 32 3 91.4% 8.6% 

AREA 4: >75% 27 7 79.4% 20.6% 
 INTERQUARTILE   RISK RATIO 

 

 RANGE 2/1 0.95 
  3/2 0.63 
  4/3 2.40 
  4/1 1.44 

Table includes the prevalence rates and risk ratios by category. 
 
 
Multivariate Analyses 
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Table 0.61 Omnibus tests of model coefficients displaying the chi-square values, degrees of freedom and significances of each step as a variable is remvoed from the equation. 

  

JOINT CONDITIONS 
OA SOA HOA KOA DDD 

CHI² DF SIG CHI² DF SIG CHI² DF SIG CHI² DF SIG CHI² DF SIG 

B
A

C
K

W
A

R
D

S 
ST

EP
S 

STEP 1 

STEP 58.271 33 0.004 55.157 33 0.009 42.906 33 0.116 53.478 33 0.014 35.483 33 0.352 

MODEL 58.271 33 0.004 55.157 33 0.009 42.906 33 0.116 53.478 33 0.014 35.483 33 0.352 

STEP 2 

STEP -0.115 1 0.735 -0.001 1 0.977 -0.509 3 0.917 -0.794 3 0.851 -0.176 3 0.981 

MODEL 58.157 32 0.003 55.157 32 0.007 42.398 30 0.066 52.684 30 0.006 35.307 30 0.232 

STEP 3 

STEP -0.178 3 0.620 -0.070 1 0.792 -1.038 3 0.792 -0.694 2 0.707 -1.259 3 0.739 

MODEL 56.381 29 0.002 55.087 31 0.005 41.359 27 0.038 51.990 28 0.004 34.048 27 0.165 

STEP 4 

STEP -2.390 3 0.495 -1.447 3 0.695 -0.194 1 0.659 -0.322 1 0.570 -1.587 3 0.662 

MODEL 53.990 23 0.001 53.641 28 0.002 41.165 26 0.030 51.668 27 0.003 32.461 24 0.116 

STEP 5 

STEP -2.697 3 0.292 -2.224 3 0.527 -0.708 2 0.702 -4.652 3 0.199 -0.518 1 0.472 

MODEL 51.294 23 0.001 51.416 25 0.001 40.457 24 0.019 47.016 24 0.003 31.943 23 0.101 

STEP 6 

STEP -3.730 3 0.292 -2.711 3 0.438 -2.675 3 0.444 -2.224 1 0.136 -2.403 3 0.493 

MODEL 47.563 20 0.000 48.705 22 0.001 37.782 21 0.014 44.793 23 0.004 29.540 20 0.078 

STEP 7 

STEP -1.162 1 0.281 -2.600 3 0.458 -2.633 3 0.452 -3.673 3 0.299 -2.505 3 0.474 

MODEL 46.402 19 0.000 46.106 19 0.000 35.150 18 0.009 41.120 20 0.004 27.036 17 0.058 

STEP 8 

STEP -3.675 3 0.299 -4.188 3 0.242 -4.359 3 0.225 -4.675 3 0.197 -2.326 3 0.508 

MODEL 42.727 16 0.000 41.917 16 0.000 30.791 15 0.009 36.445 17 0.004 24.710 14 0.038 

STEP 9 

STEP -5.659 3 0.129 -4.619 3 0.202 

  

-3.316 3 0.345 -2.479 2 0.290 

MODEL 37.068 13 0.000 37.299 13 0.000 33.129 14 0.003 22.231 12 0.035 

STEP 10 

STEP -5.524 3 0.137 -4.281 3 0.233 -2.481 2 0.289 -4.488 3 0.213 

MODEL 31.544 10 0.000 33.018 10 0.000 30.647 12 0.002 17.743 9 0.038 

STEP 11 

STEP -5.028 3 0.170 -4.364 2 0.113 

  

-1.308 1 0.253 

MODEL 26.515 7 0.000 28.654 8 0.000 16.435 8 0.037 

STEP 12 

STEP 

    

-4.005 2 0.135 

MODEL 12.429 6 0.053 
Block and model for each step was the same and so were reduced into a single category for this table. 
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Table 0.62 Model summary with -2 log likelihood, Cox and Schnell R² and Nagelkerke R². 

 

JOINT CONDITIONS 
OSTEOARTHRITIS SPINAL OSTEOARTHRITIS HIP OSTEOARTHRITIS  KNEE OSTEOARTHRITIS DEG. DISC DISEASE 

-2 LL C&S R² N R² -2 LL C&S R² N R² -2 LL C&S R² N R² -2 LL C&S R² N R² -2 LL C&S R² N R² 

ST
EP

 

1 123.623 0.346 0.471 101.458 0.342 0.492 59.581 0.269 0.510 40.941 0.325 0.650 85.858 0.239 0.394 
2 123.738 0.346 0.471 101.459 0.342 0.492 60.350 0.266 0.504 41.735 0.321 0.642 86.034 0.238 0.392 
3 125.514 0.337 0.459 101.528 0.341 0.491 61.388 0.261 0.494 42.429 0.318 0.635 87.293 0.230 0.380 
4 127.905 0.326 0.443 103.975 0.334 0.481 61.583 0.260 0.492 42.751 0.316 0.631 88.879 0.221 0.364 
5 130.601 0.312 0.425 105.199 0.323 0.464 62.290 0.256 0.485 47.403 0.292 0.584 89.398 0.218 0.359 
6 134.331 0.293 0.399 107.910 0.309 0.444 64.965 0.241 0.457 49.627 0.281 0.561 91.800 0.203 0.335 
7 135.493 0.287 0.391 110.509 0.295 0.424 67.598 0.226 0.429 53.299 0.261 0.521 94.305 0.188 0.309 

8 139.168 0.268 0.365 114.698 0.272 0.392 71.957 0.201 0.381 57.974 0.235 0.470 96.631 0.173 0.285 
9 144.827 0.237 0.323 119.316 0.246 0.354 

  

61.291 0.216 0.432 99.110 0.157 0.259 

10 150.351 0.206 0.280 123.597 0.221 0.319 63.772 0.202 0.403 103.598 0.128 0.210 

11 155.379 0.176 0.239 127.961 0.195 0.281 

  

104.906 0.119 0.196 
12     108.911 0.091 0.150 

Note that while N R² decreases -2LL increases. 
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Table 0.63 Hosmer and Lemeshow Goodness-of-Fit test displayed by step for each joint condition during the regression tests. 

 

JOINT CONDITIONS 
OSTEOARTHRITIS SPINAL OSTEOARTHRITIS HIP OSTEOARTHRITIS  KNEE OSTEOARTHRITIS DEG. DISC DISEASE 
CHI² DF SIG CHI² DF SIG CHI² DF SIG CHI² DF SIG CHI² DF SIG 

ST
EP

 
1 2.918 8 0.939 8.565 8 0.380 6.183 8 0.627 8.141 8 0.420 7.017 8 0.535 
2 7.685 8 0.465 8.589 8 0.378 5.959 8 0.652 9.660 8 0.294 6.470 8 0.595 
3 6.905 8 0.547 3.933 8 0.863 3.072 8 0.930 5.365 8 0.718 6.277 8 0.616 
4 10.680 8 0.220 8.393 8 3.960 12.349 8 0.136 11.576 8 0.171 4.217 8 0.837 
5 9.948 8 0.269 9.185 8 0.327 14.469 8 0.070 5.799 8 0.670 10.458 8 0.234 
6 5.621 8 0.690 7.762 8 0.457 9.754 8 0.283 14.636 8 0.067 7.103 8 0.526 
7 6.707 8 0.569 10.129 8 0.256 3.252 8 0.918 12.261 8 0.140 14.832 8 0.063 
8 11.919 8 0.155 3.523 8 0.897 9.238 8 0.323 5.921 8 0.656 8.518 8 0.385 
9 8.785 8 0.361 5.065 8 0.751 

  

4.705 8 0.789 7.268 8 0.508 
10 5.999 8 0.647 12.635 8 0.125 3.558 7 0.829 3.690 8 0.884 
11 9.697 7 0.206 8.737 8 0.365 

  
3.056 8 0.931 

12  2.622 8 0.956 



326 | M c A f e e  I M :   J o i n t  C o n d i t i o n s  i n  P o s t - M e d i e v a l  E n g l a n d  

Table 0.64 Classification table displaying the predictability of the regression equations by step. 

  
JOINT CONDITIONS 

OA SOA HOA KOA DDD 
PR

ED
IC

TA
B

LY
 B

Y
 B

A
C

K
W

A
R

D
S 

ST
EP

S 

STEP 1 

ABSENT 85.9% 90.5% 99.2% 100.0% 93.5% 
PROBABLE 65.4% 62.2% 47.1% 60.0% 26.1% 

OVERALL 78.1% 82.6% 92.7% 95.6% 81.5% 

STEP 2 

ABSENT 85.9% 90.5% 99.2% 100.0% 96.3% 
PROBABLE 65.4% 62.2% 41.2% 60.0% 26.1% 

OVERALL 78.1% 82.6% 92.0% 95.6% 83.8% 

STEP 3 

ABSENT 85.9% 91.6% 98.3% 100.0% 94.4% 
PROBABLE 65.4% 62.2% 47.1% 60.0% 26.1% 

OVERALL 78.1% 83.3% 92.0% 95.6% 82.3% 

STEP 4 

ABSENT 82.4% 92.6% 98.3% 99.2% 95.3% 
PROBABLE 61.5% 59.5% 47.1% 53.3% 21.7% 

OVERALL 74.5% 83.3% 92.0% 94.1% 82.3% 

STEP 5 

ABSENT 82.4% 93.7% 98.3% 99.2% 96.3% 
PROBABLE 61.5% 59.5% 47.1% 73.3% 17.4% 

OVERALL 74.5% 84.1% 92.0% 96.3% 82.3% 

STEP 6 

ABSENT 84.7% 91.6% 99.2% 99.2% 98.1% 
PROBABLE 55.8% 59.5% 41.2% 66.7% 32.1% 

OVERALL 73.7% 82.6% 92.0% 95.6% 84.6% 

STEP 7 

ABSENT 81.2% 91.6% 99.2% 99.2% 97.2% 
PROBABLE 57.7% 48.6% 35.3% 46.7% 21.7% 

OVERALL 72.3% 79.6% 91.2% 93.4% 83.8% 

STEP 8 

ABSENT 85.9% 90.5% 99.2% 98.3% 96.3% 
PROBABLE 55.9% 51.4% 23.5% 26.7% 17.4% 

OVERALL 74.5% 79.5% 89.8% 90.4% 82.3% 

STEP 9 

ABSENT 87.1% 90.5% 

  

98.3% 97.2% 
PROBABLE 46.2% 40.5% 26.7% 17.4% 

OVERALL 71.5% 76.5% 90.4% 83.1% 

STEP 10 

ABSENT 82.4% 90.5% 98.3% 98.1% 
PROBABLE 50.0% 35.1% 20.0% 13.0% 

OVERALL 70.1% 75.0% 89.7% 83.1% 

STEP 11 

ABSENT 88.2% 91.6% 

  

99.1% 
PROBABLE 50.0% 35.1% 13.0% 

OVERALL 73.7% 75.8% 83.8% 

STEP 12 

ABSENT 

    

100.0% 
PROBABLE 0.0% 

OVERALL 82.3% 
 Note that the highest predictability factor for the absence, probable, and overall categories occurs only during Step 1 for hip 
OA. Green = highest absent prediction. Yellow = highest probable prediction. Blue = highest overall prediction. 
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Thank you for reading! 
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