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Curiously enough, the only thing that went through the mind of the bowl of petunias as it fell was Oh 

no, not again. Many people have speculated that if we knew exactly why the bowl of petunias had 

thought that we would know a lot more about the nature of the Universe than we do now. 

 

Douglas Adams, The Hitchhiker's Guide to the Galaxy   
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Summary  
 

Demography aims to understand the changes in population numbers or density arising from individual-

level variation in fertility, mortality, and migration. Understanding and predicting population dynamics 

remains an important keystone for ecologists in order to identify population management strategies and 

explore evolutionary optimisation of timings and energetic allocations of life history strategies. In 

chapter two, I examine how comparative analysis of published plant matrix population models (MPMs) 

from the COMPADRE Plant Matrix Database can be used to determine axes of life history variation 

using principal component analysis. I simulate population models under the assumption that density 

dependence constrains growth rates as a result of a carrying capacity: a non-adaptive constraint. I found 

density dependent constraints explained much of the covariance patterns in life history metrics. In 

chapter three, I use this simulated population model framework to explore the link between life history 

and transient dynamics, quantified as responses to perturbations. Indices of transient response derived 

from population models also exhibited non-adaptively constrained covariance patterns. Transient 

response was characterised on two axes; magnitude of transient response and tendency to attenuated as 

opposed to amplify. In chapter four, I show that how we model the interannual fluctuations in vital rates 

affects our model’s resulting population dynamics, life history metrics and responses to perturbations, 

using data from Soay Sheep population on the island of St Kilda. I show this by modelling vital rates 

with generalised linear mixed-effects models (GLMMs) and hierarchical generalised additive models 

(HGAMs) and comparing the resulting integral projection models. In chapter five, I discuss the need to 

be precise in interpretating results of demographic approaches. How we model populations, and the 

resulting non-adaptive constraints, play an important role in shaping these results. I outline future uses 

of this simulated population model framework for time-varying population models and single species 

study systems. 
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• Old version 

• Demography aims to understand the changes in population numbers or density arising from 

individual-level variation in fertility, mortality, and migration.  

• Understanding and predicting population dynamics remains an important keystone for 

ecologists in order to identify effective population management strategies and explore how 

evolution optimises the timings and energetic allocations of life history strategies.  

• Comparative analyses of metrics derived from demographic models are a proposed approach 

to identify these energetic allocations.  

• in demographic models for hundreds of species from the COMPADRE Plant Matrix Database.  

• We applied our simulated population model framework to explore the link between life history 

and transient dynamics in the context of density dependent constraints. We found that over 50% 

of magnitude for transient response was predicted by a fast-slow continuum, but the tendency 

to amplify or attenuate was poorly linked to life history.  

• The general discussion summarises our key findings in the link between demography and life 

history, reviews how demographic research should be interpreted whilst taking account of non-

adaptive constraints and outlines future uses of the simulated population model approach. 
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Why do we care about demographic variation?  

Demography aims to understand the changes in population numbers or density arising from individual-

level variation in fertility, mortality, and migration. In the hierarchy of ecological complexity, 

demography provides a vital link between the individual and the population. Across time, space and 

phylogeny, populations exhibit a diverse array of dynamics. Understanding and predicting population 

dynamics remains an important keystone for ecologists to identify effective population management 

strategies and explore how evolution optimises the timings and energetic allocations of life history 

strategies. Studying processes at the population level is key to determining why demographic rates, 

such as survival and fecundity, vary (and covary) on spatial and temporal scales (Sutherland et al., 

2013). Features of populations in which ecologists are interested, such as population growth rate, are 

typically not easy to measure; we cannot simply take a cursory look at a population and determine its 

population trajectory. However, we can more easily measure the features of individuals: physical traits, 

fecundity, and mortality. Demographic approaches provide the toolbox to translate from this individual-

level data to the population. Ultimately, demographic approaches provide a framework for studying 

population dynamics in which demographic rates vary over the lifespan of individuals. These 

approaches provide mechanistic insight into the processes that shape population dynamics. 

Within the framework of demography, demographic variation describes among-individual differences 

in survival, growth, maturation, and reproduction. A fundamental challenge in demography is to 

understand the causes and consequences of this variation; why do individuals have different 

demographic rates and what does this mean for the population? There are different dimensions to 

demographic variation: that which occurs between individuals, through the changing environment and 

over the course of an individual’s life. Demographic variation will arise because individuals are not 

identical and exhibit variation in physical traits, which can be summarised as an individual’s phenotype: 

the physical expression of the underlying genotype and its interaction with the environment. Phenotypic 

variation takes many forms such as body mass, size, age, and life stage. Some phenotypes will be better 

suited for a certain environment resulting in higher survival, faster growth, or higher fecundity (Csergő 
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et al., 2017). The environment which individuals experience varies in space and time, driving further 

demographic variation (Crowley et al., 2016). In addition, an individual will be subjected to different 

environmental conditions throughout their life. We must also consider that some individuals are simply 

luckier than others: individual stochasticity plays a role in the distribution of demographic variation 

(Caswell, 2009). Ultimately, demographic rates are a result of a composition of all of these drivers of 

demographic variation. Consequences of demographic variation can be quantified as variation in fitness 

and population dynamics, features that are fundamental to our understanding of evolutionary and 

ecological processes. 

Demographic studies have a long history of adopting both empirical and theoretical approaches. 

Empirical approaches seek to isolate causes of demographic variation using experimental treatments, 

submitting different groups of organisms to alternative environmental conditions and looking for 

variation in response. Experiments have been used in demographic research for insects (Tenhumberg 

et al., 2009) and plants (Bullock et al., 1994) but are not feasible for larger, longer lived, or more widely 

roaming species (e.g. Jackson et al., 2019). Relying on experimental approaches would limit the 

taxonomic breadth of any comparative analysis and make it harder to test the generality of hypotheses. 

Another strand of empirical work uses observational studies to collect longitudinal, individual-level 

demographic data with environmental covariates. This data can be used to infer the dependence of 

demographic rates on an individual’s state, such as age or size, and/or environmental conditions. A 

range of statistical and modelling tools are used to link the individual to the population. This approach 

has been applied to a wide range of taxa but often only focuses on a portion of the life cycle. A subset 

of these studies calculates demographic rates for the entire life cycle and can be used to develop 

population models. Bypassing the need for field data, theoretical approaches use mathematical models 

to understand generic patterns whilst not being tied to a particular system or species. For example, 

theoretical demographic approaches have applied to investigate how life stage structure impacts 

population dynamics (de Roos, 2018) and the role of individual stochasticity in human populations 

(Hartemink et al., 2017). Ultimately, the toolkit needed to apply these approaches have methodological 
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similarities: we build models that can express between-individual differences to examine the 

consequences of demographic variation. 

 

Understanding demography through mathematical 

models 

Modelling has a central role in overcoming one of the greatest challenges in ecology: the incredible 

complexity of ecological systems. Population models are mechanistic models that allow us to capture 

key components of natural populations. Population models typically use variables and relationships 

between those variables to portray a simplified population process. For example, a simple model of a 

self-contained population without migration could look like 

 𝑛𝑡+1 = 𝑠 𝑛𝑡 + 𝑏 𝑛𝑡 (1.1) 

where  𝑛𝑡  is the population size at time 𝑡 and 𝑛𝑡+1is the population size at 𝑡 + 1. In this model, 𝑠 and 

𝑏 are constants that describe the survival rate and birth rate. Early prominent theoretical population 

models were not structured demographically and considered population state simply as a number of 

individuals, assuming the same vital rates for each individual. Considering demography when doing 

ecological, and thus incorporating demographic structure in mathematical models, is widely recognised 

as an important component of ecology and evolution (Metcalf & Pavard, 2007). 

An important step in demographic modelling was the development of the discrete-time, discrete state, 

age-classified matrix model (Leslie, 1945). This type of model is often referred to as a Leslie matrix.  

The Leslie matrix brought the application of matrix calculus to analysing population dynamics (Hansen, 

1989). A Leslie matrix classifies individuals by their age and each age class can have different rates of 

survival and reproduction. The model can be written out in a matrix representation like so 
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[

𝑛0

𝑛1

⋮
𝑛𝑤−1

]

𝑡+1

=  [

𝑓0 𝑓1 ⋯ 𝑓𝑤−1

𝑠0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 𝑠𝑤−2 0

] [

𝑛0

𝑛1

⋮
𝑛𝑤−1

] 

(1.2) 

where w is the maximum attainable age in the population, 𝑓𝑎 is the fecundity rate of each age class, 𝑠𝑎 

is the survival of each age class and 𝑛𝑎 is the abundance of each age class. It can be written as 

 𝑛𝑡+1 = 𝐴𝑛𝑡 (1.3) 

where 𝐴 is the transition matrix and 𝑛𝑡  is now a vector of age class abundances. This transition matrix 

can represent transitions between states other than age. The Lefkovitch model (Lefkovitch, 1965) 

classifies individuals by other factors; factors such as size or life stage can be a more important predictor 

of demographic variation than age. These tools are more broadly recognised as matrix population 

models (MPMs) (Caswell, 2001) or sometimes referred to as population projection matrices (PPMs) 

(e.g. Stott et al., 2011). MPMs are a generic tool for describing the transitions between states, 

constituting a transition matrix A with elements 𝑎𝑖𝑗 representing the rate of transition from stage j to 

stage i. The transition matrix may be separated based on the type of transition. For example, a two-stage 

model could be written out as such: 

 
𝐴 = 𝑃 + 𝐹 = [

𝑎11 𝑎12

𝑎21 𝑎22
] =  [

𝑝11 𝑝12

𝑝21 𝑝22
] + [

𝑓11 𝑓12

𝑓21 𝑓22
] 

(1.4) 

with a survival matrix, P, where class-specific rates 𝑝𝑖𝑗 are constrained to be between zero (0% survival) 

and one (100% survival), and a fecundity matrix, F, in which class-specific transition values 𝑓𝑖𝑗  can 

exceed one. 

Matrix population models have emerged as a popular and important tool for modelling populations of 

plants and animals. In the scientific literature, there are matrix population models for hundreds of 

species (Salguero-Gómez et al., 2015, 2016a). Part of the reason that MPMs received such a successful 

integration into population ecology is that they are intuitive and relatively accessible. MPMs are rarely 

mentioned without reference to their ‘tractability’. Supported by a growing literature base and 

synthesised in the comprehensive book ‘Matrix Population Models’ (Caswell, 2001), the MPM 

established itself as an important part of the ecologist’s tool kit. Another strength was the wide range 
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of analyses and outputs that could be derived from MPMs. Perturbation analyses were used to determine 

the relative importance of different stages in the life cycle (De Kroon et al., 2000): a useful tool for 

population management (e.g. Wisdom & Mills, 1997) and explaining life history evolution (Wilbur & 

Rudolf, 2006). 

In addition to standard population outputs such as growth rates, MPMs have also had many applications 

as a tool for analysing life histories. Matrix population models explicitly describe population-level 

transitions between discrete stages but if we consider individual stochasticity this information can also 

be interpreted as a description of life histories. Individual stochasticity describes how individuals will 

have different trajectories throughout their life. For example, if at the population level the survival rate 

for a specific year for a specific stage is 0.6, at an individual level this means that 60% of individuals 

survived and 40% did not. We can use these percentages as probabilities in a Markov chain which is a 

stochastic model describing a sequence of possible events where the probability of each event depends 

on the state. We can use Markov chain theory to proliferate through all possible life history pathways 

and derive life history metrics. Markov chain theory can be employed to calculate age-specific rates 

from stage-specific models to produce survivorship curves and fecundity curves. The derived age-

specific rates can be used to calculate life history traits such as age at first reproduction, mean life 

expectancy and average lifetime reproduction (Caswell, 2009, 2011; van Daalen & Caswell, 2017). 

These methods can be generalised to variable environments (Caswell, 2009). 

Classifying individuals into discrete classes is always an approximation when the underlying state 

variable is continuous, such as an individual’s size (Picard & Liang, 2014). MPM outputs are sensitive 

to model parameterisation in terms of how the classes are defined by discretising a continuous variable  

(Salguero-Gómez & Plotkin, 2010; Tenhumberg et al., 2009). Integral projection models (IPMs) have 

emerged as a different way of modelling populations by classifying individuals on a continuous state 

variable which governs variation in vital rates. Instead of a population vector, the state of a population 

at time 𝑡 is described with a continuous state distribution such that individuals with state 𝑧 in the interval 

[𝑎, 𝑏] at time 𝑡 is 
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 ∫ 𝑛(𝑧, 𝑡)𝑑𝑧
𝑏

𝑎
. (1.5) 

 

The IPM equivalents for the MPM survival and fecundity (Equation 1.4) transition matrices are two 

functions 𝑃(𝑧′, 𝑧) representing survival/growth and 𝐹(𝑧′, 𝑧) representing per capita fecundity where 𝑧 

is the state at time 𝑡 and 𝑧′ is the state at time 𝑡 + 1. The full kernel comprising both 𝑃(𝑧′, 𝑧) and 

𝐹(𝑧′, 𝑧) is usually notated as 𝐾(𝑧′, 𝑧) such that 𝐾(𝑧′, 𝑧) =  𝑃(𝑧′, 𝑧) +  𝐹(𝑧′, 𝑧). The population at time 

𝑡 + 1 can be written out as 

 
𝑛(𝑧′, 𝑡 + 1) =  ∫ 𝐾(𝑧′, 𝑧)𝑛(𝑧, 𝑡)𝑑𝑧   

𝑈

𝐿

 
(1.6) 

 

where 𝑈 and 𝐿 are the upper and lower limits of state 𝑧, respectively. The above equation represents a 

single state IPM where individuals are classified by size 𝑧 and no other factor. This simple model 

provides the foundation that all IPMs are based upon. 

All modelling approaches have considerations to make that may affect their robustness and 

effectiveness; IPMs are no exception. Vital rates such as the probability of survival or the probability 

of reproduction are parameterised via regression. The choice of regression model has implications on 

the reliability and flexibility of the model. For example, a very simple regression model like a linear 

model might not capture the intricacies of a vital rate relationship, but an overly complex model may 

introduce excessive parameter uncertainty and/or overfit the relationship. Whilst almost any regression 

framework could be used, most IPMs are parametrised with generalised linear models (GLMs) or 

generalised linear mixed models (GLMMs) (Ellner et al., 2016b, 2016a). Without exploring the use of 

other regression frameworks, we could be missing out on improvements to our models, their analyses, 

and their interpretation. The main issue is that the relationships between state variables and vital rates 

in real populations may not be adequately described by generalised linear models. One area of concern 

is individuals at the extremes of the observed size range: whereas a linear model may be a suitable 

approximation for the intermediate sizes, this may extrapolate poorly to very large or small individuals. 
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Some notable exceptions to the predominant use of GL(M)Ms include the use of generalised additive 

models (GAMs) (Dahlgren et al., 2011; González et al., 2013). GAMs can fit smooth functions using 

splines which may better reflect vital rate relationships and therefore improve demographic models. 

These methodological advances reflect a wider shift in ecology towards data-driven approaches. 

 

The comparative analysis of demographic data 

The comparative analysis of demographic data, or comparative demography, encompasses research that 

compares the demography of different populations or species. Early examples of comparative 

demography carried out fieldwork to compare a handful of species or populations and compared 

demographic traits such as the survivorship of two salamander populations (Tilley, 1980) and 

reproduction in three desert rodents (Christian, 1979). Subsequent comparative research identified that 

published MPMs could be used to compare the demography of species without the need to do additional 

fieldwork. For example, Silvertown et al. (1992) used published MPMs from 18 plant species to look 

at life history trade-offs. The scale of these analyses soon expanded; published MPMs for 83 species 

were used in an examination of the fast-slow continuum (Franco & Silvertown, 1996) and MPMs for 

200 species were used to compare population dynamics of invasive and native plants (Ramula et al., 

2008). These large-scale, comparative analyses can be classed as macroecological studies: 

macroecology encompasses research that spans large spatial, taxonomic, or temporal scales. Ultimately, 

these analyses were made possible because a set of different MPMs from different sources can be used 

to derive the same set of metrics. 

The development of repositories for published MPMs provided the catalyst for a boom in research 

papers using comparative demography as a new approach for a range of ecological questions. The 

COMPADRE Plant Matrix Database (Salguero-Gómez et al., 2015) and COMADRE Animal Matrix 

Database (Salguero-Gómez et al., 2016a) are repositories for published plant and animal MPMs 

respectively, and together contain MPMs for 1174 species. The data for COM(P)ADRE can be 
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downloaded as a data object for the R programming language, reflecting R’s growing popularity as the 

go-to tool for analysis in ecology. There has also been the development of R packages for the 

construction and analysis of MPMs (Stubben et al., 2014) and the analysis of transient dynamics of 

MPMs (Stott et al., 2012). These databases of MPMs facilitated comparative research across hundreds 

of species and have been used to classify plant life history strategies (Salguero-Gómez et al., 2016b), 

compare transient dynamics for different species (Stott et al., 2010) and search for senescence across 

the tree of life (Jones et al., 2014). 

MPMs are well suited for comparative analysis because the same outputs can be derived from different 

MPMs; however, the results of comparative studies may be affected by issues such as fundamental 

methodological errors in MPM construction (Kendall et al., 2019). There are inconsistencies in the 

discrete stage structure from one MPM to the next and the number of stage classes used for an MPM 

has been shown to affect model outputs (Salguero-Gómez & Plotkin, 2010). Furthermore, different 

study systems present issues in making sure that all demographic transitions are accounted for; for 

example, cryptic life stages such as seedbanks or dormancy, cryptic transitions such as shrinkage 

(Salguero-Gómez & Casper, 2010), and conflating migrations with presumed mortality. Whilst the 

challenges mentioned here are known to persist, there are still unknowns in how these factors play out 

when individual demographic studies form part of broader macroecological approaches. In addition, 

there isn’t a standardised way of testing for these effects. 

Asymptotic population growth rate is a common focus of comparative studies because it is an 

established indicator of whether a population is declining or increasing. Growth rate is also important 

for assessing habitat suitability (Csergő et al., 2017) and fitness (Coulson et al., 2006). Population 

growth rate has been shown to vary more in time than space (Buckley et al., 2010) and interpolating 

growth rates is difficult (Coutts et al., 2016). Error is introduced into estimated growth rates because 

studies often do not span a sufficient timeframe to reliably estimate long term growth rate (Clark, 2003). 

A related consideration is that demographic studies, such as those in COM(P)ADRE, are motivated by 

different research interests. One example of this is that a common motivation for building a population 

model is to test potential management strategies (Crone et al., 2011), therefore endangered or invasive 
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species are oversampled. This will introduce further variance into the distribution of growth rates of 

demographic studies. It is unclear what impact this variance in growth rates has on how we can interpret 

the results of comparative analyses. 

 

Life history through the lens of demography 

Demography and life history are fundamentally linked but we do not have a well-developed 

understanding of these connections (Coulson et al., 2010). Life histories describe regimes of survival, 

growth, and reproduction through an organism’s life. Life history strategies describe the timings of life 

events such as birth and maturation and allocation of resources towards survival, growth, and 

reproduction. Life history theory aims to understand the adaptive significance of the timing of life 

history events and patterns of resource allocation. At the core of life history theory is the concept that 

energetic investments into survival, growth, and reproduction constrain the range of life history 

strategies (Stearns, 1976). Investing from a finite resource must lead to trade-offs where the increase in 

allocation towards one process must result in a decrease in others. In the absence of trade-offs, fitness-

correlated traits would be selected until they were only limited by evolutionary history and 

physiological constraints. Life history strategies are complex and multidimensional: there are many 

ways in which an individual of a species could invest energy throughout their life into survival, growth, 

and reproduction. There have been many attempts, theory and data-driven, to classify life history 

strategies (Bielby et al., 2007; Bonser & Aarssen, 1996; Pierce et al., 2013; Salguero-Gómez et al., 

2016b; Southwood, 1988; Stearns, 1983). 

Frameworks for classifying life histories have typically attempted to place species along continuums 

(‘axes’). An important early theory for classifying life histories placed strategies along an axis from r-

selected strategies to K-selected strategies (MacArthur & Wilson, 1967; Pianka, 1970). r-selected 

strategies optimised growth and fecundity for unpredictable environments and K-selected strategies 

optimised survival and parental investment to operate in stable environments at the population’s 
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carrying capacity. Another theory, the CSR strategies (Grime, 1977) placed plant life histories in a 

three-way space between the allocation of resources to growth, reproduction, and maintenance. The 

parallels between the CSR strategies and the demographic process of survival, growth and reproduction 

were not lost on Silvertown et al. (1992). They hypothesised that the importance of survival, growth, 

and reproduction for long term growth rate, as calculated through sensitivity analysis, related to the 

CSR strategies: stress tolerators (S) must optimise survival, competitors (C) must optimise growth, and 

ruderals (R) must optimise reproduction. However, their attempt to match the CSR strategies to the 

species’ demography found limited correlation, ascribed to differences in where and how the data was 

collected for the demographic studies versus the data for CSR studies. 

Another data-driven approach is to look for variance-covariance patterns of life history traits, typically 

at the species level, under the assumption that these life history traits are manifestations of the 

underlying budgetary trade-offs. Early use of this approach by Stearns (1983) used life history traits 

from field observations, such as clutch size and life expectancy, and suggested that a two-axis 

framework absorbed much of the variance and covariance in life history traits in mammals when 

controlled for body size. These axes were derived from a principal component analysis (PCA) on life 

history traits, a multivariate dimensional reduction technique. Following research continued to 

interrogate patterns of life history variation across animals (Heppell et al., 2000; Promislow & Harvey, 

1990) and plants (Eriksson & Jakobsson, 1998; Franco & Silvertown, 2004). MPMs were used in 

comparative approaches looking at native and invasive populations (Ramula et al., 2008) and short-

term dynamics (Stott et al., 2010). Data-driven approaches for classifying life histories became more 

ambitious in terms of taxonomic breadth as data availability increased through databases such as 

COMPADRE (Salguero-Gómez et al., 2015) and COMADRE (Salguero-Gómez et al., 2016a).  

Salguero-Gómez et al (2016) was the first in a series of studies (Capdevila et al., 2019; Healy et al., 

2019; Paniw et al., 2018; Salguero-Gómez, 2017) that used data from COMPADRE to classify life 

history strategies using a PCA of MPM derived life history traits. This analysis found that 55% of 

covariation in nine plant life history traits could be captured in two main axes of variation. These traits 

were: generation time, R0, survivorship curve type, age at sexual maturity, degree of iteroparity, net 
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reproductive rate, mature life expectancy and vital rates for progressive growth, retrogressive growth 

and mean sexual reproduction. The first axis represented the ‘pace of life' from short-lived, high 

turnover life histories to long-lived slow turnover life histories. The second axis captured variation in 

reproductive strategies from reproducing throughout life to reproducing once at the end of life: from 

iteroparity to semelparity. The position of a species in this two-axis space was later shown to correlate 

with population growth rate, conservation status, aridity index and specific leaf area (Salguero-Gómez, 

2017). A similar approach was applied to animal population models using the COMADRE Animal 

Matrix Database and found that two PCA axes accounted for 71% of life history (co)variation using a 

different set of life history metrics (Healy et al., 2019). An extension of this comparative PCA approach 

used multiple transition matrices per species to classify life histories and predicted responses to 

environmentally stochastic environments (Paniw et al., 2018).  

Each of these studies alludes to the existence of life history trade-offs explaining these patterns but these 

studies are purely correlative. These correlative patterns could be generated by a combination of 

different processes which may or may not include trade-offs in the allocation of energy towards 

survival, growth, and reproduction. The correlative patterns may be shaped by adaptive constraints: the 

selection of sets of life history traits through evolution. The correlative patterns could also be driven by 

environmental factors such as different levels of resource availability. However, patterns of covariance 

between life history metrics may also be driven by ecological factors that are unrelated to, or at least 

indirectly related to, species’ life histories, which we refer to as non-adaptive constraints. Density 

dependence is one such factor, for which there is evidence of its effects across a broad range of taxa 

(Brook & Bradshaw, 2006; Sibly et al., 2005). Density dependence’s potential impact on life history 

traits was formalised by Sutherland et al. (1986). Given a population of constant structure, let 𝜋 be the 

probability of surviving to reproduction and 𝜇 be the mean adult mortality per year. L is the expected 

reproductive lifespan and M is the average number of offspring produced by a female chosen at random 

from these reproducing in a given year. Then 

 
𝜋𝐿𝑀 =

𝜋𝑀

𝜇
= 2 

(1.7) 
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Essentially, this says that we should expect to see (co)variances between measures of demography and 

life history. Density dependence limits the possible combinations of these measures. One way to 

determine how important density dependence is in shaping life history trait (co)variance patterns would 

be to develop a null model. A null model could explore the life history trait (co)variance patterns created 

by density-dependent constraints, in the absence of energetic trade-offs, and compare this to the 

empirical findings from COMPADRE. 

 

Using null models to explore the effects of non-

adaptive constraints 

A null model is a general tool used across scientific disciplines: it is a pattern-generating routine that 

aims to hold some features of a dataset constant while allowing others to vary that can then be compared 

to an empirical dataset (Gotelli & Graves, 1997). The goal is to generate patterns expected in the absence 

of some process or mechanism. Typically, the null model’s routine is designed to not explicitly include 

the mechanism that is presumed to be causing the pattern in question. The key purpose of a null model 

is to provide a baseline from which to compare any trend or finding; this gives insight as to whether the 

trend is a result of factors of interest or simply an emergent property of the system. Null models have 

an increasingly prominent role in community ecology which may be partly due to the innate complexity 

of ecological systems: high-dimensionality, non-linearity and stochasticity operating at different spatial 

and temporal scales. As a result of this complexity, interesting patterns will undoubtedly emerge, but 

because of this complexity, it can be hard to determine the underlying factors causing these patterns. 

Null models have not been formally applied to the comparative analyses of demographic data but here 

we outline why they might be a useful tool. 
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Inherent properties of MPMs have been shown to produce non-random patterns in comparative 

analyses. For example, 𝑅0, the per generation growth rate, is mathematically constrained with 

asymptotic growth rate (𝜆) and generation time, 𝑇, such that  

 
𝑇 =  

log (𝑅0)

log (𝜆)
 

(1.8) 

and since generation time, 𝑇, must be positive, log (𝑅0) and log (𝜆) must have the same sign. 

Researchers have found the best way to assess how comparative analyses are being impacted by these 

sorts of properties is to simulate MPMs. McDonald et al. (2017) used simulated MPMs with temporal 

replicates to examine the demographic buffering hypothesis (DBH). Generated in the absence of natural 

selection, 96% of simulated population models showed a negative correlation between the importance 

and variability of demographic vital rates: evidence of the DBH. They used this finding to apply a link 

scaling to stabilise the relationship between importance and variability before carrying out the analysis 

on empirical data. Takada et al. (2018) simulated 24,000 MPMs with 4 life stages, calculated elasticities 

for survival, growth, and reproduction on population growth rate.  Takada et al. (2018) found the 

combinations of elasticities were mathematically constrained and that the slope of a relationship in a 

ternary plot of elasticities was mathematically tied to the dimension of the MPM. These examples are 

not formally null models because they are not explicit in their constraints or they don’t sample from a 

distribution, but they are motivated by a similar requirement. These studies have shown that these sorts 

of tools are useful when interpreting results of comparative demography because it allows us to 

interrogate whether a pattern is a result of a statistical artefact and allows us to correct for this when 

designing analyses or interpreting results. 
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Outline of my research 

This body of work aims to contribute to our understanding of the causes and consequences of 

demographic variation. Using two approaches, comparative and single system, we show how we can 

better use demographic data to understand the complex relationships between vital rates, life history 

traits and population performance. The thesis is a compilation of three manuscripts written as part of 

my PhD where each piece of research is distinct but cohesive with parallel themes of demography and 

life history. In this work, we use macroecological and comparative approaches using aggregated 

demographic data that has been compiled from many sources but have been distilled to a single 

transition matrix that is representative of the demography of a whole species. We also use highly 

detailed, study system-specific, individual-based, long-term demographic data for a single population. 

In chapter two, Density dependence limits the comparative analysis of demographic data, we show that 

demographic data simulated under the non-adaptive constraint of density dependence, as a result of a 

population fluctuating around a carrying capacity, produced similar patterns of life history trait 

covariance when compared to life history trait covariance of empirical data from the COMPADRE Plant 

Matrix Database. We simulate population models to express plausible plant life history dynamics using 

an IPM framework. These IPMs were discretised to MPMs to facilitate reasonable comparisons between 

simulated and empirical demographic data. Our main conclusion is that demography-derived patterns 

of life history traits, previously described as a fast-slow continuum and possibly a symptom of 

underlying energetic budgetary trade-offs, are primarily shaped by density dependence, a non-adaptive 

constraint. 

In chapter three, Linking life history to transient dynamics via population models, we investigate the 

link between life history and short-term, transient dynamics in the context of non-adaptive constraints. 

In this chapter, we use our novel simulated population model framework to derive both life history traits 

and measures of transient dynamics, under the assumption that density dependence constrains growth 

rates. With this dataset, we explore the patterns of covariance between each set of metrics using partial 
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least squares regression, also known as projection to latent space (PLS), and find a link between life 

history and transient dynamics. We show that 50% of the variance in the magnitude of transient response 

is explained by a fast-slow continuum, but there is substantial unexplained variance, despite working 

with purely simulated demographic models. Furthermore, by discretising demographic data to matrix 

population models, we show that the link between life history and transient dynamics can be obscured 

by discretisation artefacts. 

In chapter four, Time-varying vital rates for population modelling: how flexible do we need to be?, we 

retain the key themes of life history and optimisation from chapter two and three but step away from 

the comparative analyses to focus on the demography of a single population; the long-studied 

population of Soay sheep (Ovis aries) on the island of St Kilda. We investigate how capturing the vital 

rates, the fundamental link between individual traits and demographic rates, in time-varying 

environments is affected by how much flexibility we afford in our modelling approach. We compare 

IPM constructed from vital rates fitted with generalised linear mixed-effects models (GLMMs) or more 

flexible hierarchical generalised additive model (HGAMs). We find that how we model time-varying 

vital rates does affect outputs, and that the more flexible HGAMs might be an ideal choice for modelling 

study systems with hidden state variables. 

In chapter 5, the general discussion, I review the key findings of this body of work in terms of our 

understanding of demography, life history and transient dynamics. I use our findings to outline how we 

need to consider the implications of a demographic perspective of life history and how non-adaptive 

constraints should be considered when interpreting comparative analyses. Finally, I outline future 

directions for research using the simulated population model framework we pioneer in this research. 
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Summary 

1. Life history trade-offs predict that life history strategies are fundamentally constrained and that 

patterns of covariance between life history traits should provide a basis to classify life histories. 

Demographic data provide a potentially valuable resource to explore these covariance patterns. 

For example, matrix population models (MPMs) are versatile population modelling tools 

describing transitions between discrete states and published MPMs have been compiled into 

the COMPADRE Plant Matrix Database. However, patterns of covariance between life history 

traits may be driven by density dependence. This work aims to determine whether density-

dependent constraints and parameter uncertainty from sampling variation influence the patterns 

of covariance between life history metrics, and thus, does density dependence limit the 

comparative analysis of demographic data. 

2. A previous study carried out a principal component analysis (PCA) of key life history metrics 

derived from plant MPMs and found two important axes of life history variation: fast-slow 

continuum and reproductive strategies. Our approach is to simulate sets of density-independent, 

size-structured integral projection models (IPMs) under the constraint that log(λ) (log long-

term growth rate) is close to 0. The variance in the log(λ) distribution acts as a surrogate for 

sampling variation. These IPMs are discretised to MPMs to mimic the discrete stage structures 

found in a COMPADRE subset. We used PCA to identify whether the composition of the 

principal components is affected by sampling variation and MPM discretisation. 

3. When sampling to a similar log(λ) distribution as observed in COMPADRE, our simulated 

demographic data produced strikingly similar patterns of life history trait covariance as 

observed in COMPADRE. Population performance was predicted primarily by R0. Altering the 

mean and standard deviation of the target log(λ) affected the results of comparative analyses 

by altering patterns of covariance. Confidence intervals for the COMPADRE PCA highlighted 

uncertainty in the rotations and weightings of MPM-derived life history metrics. 

4. Synthesis: Comparative analysis of matrix population models does not identify fundamental 

budgetary life history trade-offs. A significant component of the covariance among MPM-
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derived life histories is consistent with non-adaptive constraints on these patterns, arising from 

density dependence. When projecting performance metrics onto the life history PCA space, the 

resulting associations should be interpreted with care. 

 

Keywords: Density-dependence, comparative demography, life history strategies, matrix population 

model, integral projection model.  



 Chapter 2: Density-dependence limits the comparative analysis of demographic data 

 

27 

 

Introduction 

Life history strategies are descriptions of an organism's investment in growth, reproduction, and 

survival over its lifetime. Life histories underpin organismal fitness and are fundamental to our 

understanding of population dynamics and evolution (Metcalf & Pavard, 2007). Across the tree of life, 

we observe a fascinating diversity of forms, traits and strategies inhabiting a diverse array of 

environments (Kreft & Jetz, 2007). Nevertheless, a central tenet of life history theory is that budgetary 

trade-offs between investment in survival, growth and reproduction ultimately limit the diversity of 

strategies we observe (Stearns, 1992). This leads to the prediction that life histories are fundamentally 

constrained and that patterns of covariance between traits should provide a basis to classify life histories. 

For example, early work by MacArthur and Wilson (1967; reviewed in Parry, 1981) identified K-

selected and r-selected strategies: r-selected, ‘fast’ strategies exhibit rapid growth, early maturity, short 

lifespan and high reproduction but low survival, especially in early life stages, whereas K-selected, 

‘slow’ life histories exhibit the opposite. Universal adaptive strategy theory (UAST) developed by 

Grime et al. (1977) positioned plant life histories in a three-way trade-off space according to how an 

organism’s resources are allocated to growth, maintenance or regeneration. Stearns (1983) identified 

two key axes of life history variation in mammals; the slow-fast continuum accounted for 68-75% of 

covariation, with a secondary axis describing reproductive strategies.  

Comparative analysis of matrix projection models (MPMs) is increasingly used to classify life history 

strategies. MPMs are data-driven models parametrised from individual-level schedules of reproduction 

and mortality, from which population-level processes such long term asymptotic growth rates, transient 

dynamics and responses to perturbation can be calculated, as well as key life history traits such as mean 

life expectancy and age at maturity. Silvertown et al. (1992) were the first to use stage-based MPMs to 

investigate life history correlates, by linking UAST to the demographic processes of fecundity, growth 

and survival. MPMs have since been produced for hundreds of plant and animal species, providing the 

opportunity to use stage-based demographic models for large-scale comparative research (e.g. 

Salguero-Gómez et al., 2015, 2016a; Sibly et al., 2005). Salguero-Gómez et al. (2016b) used principal 
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component analysis (PCA) to classify plant life history strategies from life history traits derived from 

the density-independent, mean-matrices of 418 species. This PCA framework suggests that 55% of life 

history variation can be positioned on two axes: a fast-slow continuum and a ‘reproductive strategies’ 

axis. This two-axis framework has subsequently been used to correlate life history strategies with 

population growth rate, functional traits, conservation status (Salguero-Gómez, 2017), response to 

temporal autocorrelation (Paniw et al., 2018), and applied to animals (Healy et al., 2019). 

Such broad-scale patterns are compelling, but their interpretation is hampered by several factors. An 

MPM can be structured with any number of discrete classes, typically defined by combinations of age, 

size and reproductive status. Although comparable sets of demographic and life history metrics can be 

calculated for any set of MPMs, some variation will inevitably reflect differences in the structural 

assumptions of different models. For example, demographic processes such as shrinkage, clonality and 

seedbanks are often ignored in plant populations (Janovský et al., 2017; Salguero-Gómez & Casper, 

2010). MPMs also require continuous state variables such as body size to be divided into a discrete set 

of classes. Artefacts due to discretisation have been shown to affect predicted population performance 

(McDonald et al., 2017; Picard & Liang, 2014; Salguero-Gómez & Plotkin, 2010) though reducing 

MPMs to a consistent number of discrete classes can partially ameliorate this issue providing a 

consistent model structure for comparative purposes (Salguero-Gómez & Plotkin, 2010). 

Patterns of covariance between life history metrics may also be driven by ecological factors that are 

unrelated to, or at least indirectly related to, species’ life histories. Density dependence is one such 

factor, for which there is evidence of its effects across a broad range of taxa (Brook & Bradshaw, 2006; 

Sibly et al., 2005). Density dependence describes an inverse relationship between population growth 

rate and population density therefore resulting in fluctuations around a population’s carrying capacity. 

As a result, the mean predicted asymptotic growth rate, log(λ), despite being calculated from density 

independent population models is constrained by density dependence through the mechanism of a 

carrying capacity. We see this in empirical data, the log(λ) of populations in the COMPADRE plant 

MPM database is approximately 0 (Fig. 2.1). This implies that schedules of growth, reproduction and 

mortality are constrained by density-dependent feedbacks, which in turn, may impose negative, species-
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level correlations between life history metrics (Lande et al., 2002; Sutherland et al., 1986). For example, 

species with long generation times must exhibit reduced annual recruitment rates relative to short-lived 

species when log(λ) is constrained to ~ 0. Nonetheless, considerable variation in log(λ) exists in 

COMPADRE. Much of this variation is likely to be environmental in origin (Sibly et al., 2007). Many 

plant populations exhibit large variance in annual fecundity and recruitment (Kalisz & McPeek, 1992; 

Meyer et al., 1986) yet demographic data sets are typically short (<5 years) (Menges, 2000). Obtaining 

precise estimates of mean demographic parameters is not possible under these circumstances. For 

example, it has been shown that the temporal replication required to reliably estimate stochastic 

population growth rate far exceeds the length of most demographic studies (Metcalf et al., 2015). 

Finally, even the most temporally extensive demographic studies derive from annual censuses of a few 

hundred individuals at most, meaning that individual vital rate parameters must be estimated from a 

limited number of demographic events (Crone et al., 2011). 

This raises the following question: do density-dependent constraints and parameter uncertainty 

influence the observed patterns of covariance between life history metrics? And thus, how should we 

interpret these patterns of covariation? This study aims to address these questions. We use Markov 

chain Monte Carlo (MCMC) to simulate a set of density-independent, size-structured integral projection 

models (IPMs) under the constraint that log(λ) is close to 0. The IPMs are discretised to MPMs to mimic 

the stage-based structure of comparable models in the COMPADRE database. We then use PCA to 

investigate how the composition of principal components is sensitive to the between-population 

variance of λ and chosen MPM dimension. Because these simulated population models do not 

incorporate budgetary trade-offs, the resulting set of models represent a ‘neutral model’ for plant 

demography, where the variance in the λ distribution acts as a surrogate for sampling variation.  
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Methods 

Modelling life history strategies 

To simulate a range of plausible plant life history strategies we defined a size-structured, post-

reproductive census IPM with a time interval of one year. We chose an IPM as the underlying model 

because it allowed us to assess the effects of discretising a continuous trait. The full IPM kernel 

describes the transitions between two size distributions, immature, 𝑛𝐼(𝑧, 𝑡), and mature, 𝑛𝑀(𝑧, 𝑡), and from 

size 𝑧 to size 𝑧′ over a discrete-time interval. The transitions for the immature plants take the form 

 
𝑛𝐼(𝑧′, 𝑡 + 1) = ∫ 𝑠(𝑧)(1 − 𝑚(𝑧))𝐺(𝑧′, 𝑧)𝑛𝐼(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

+  ∫  𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟(1 − 𝑚(𝑧′))𝑐0(𝑧′)  𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

(2.1) 

and the transitions for the mature plants take the form 

 
𝑛𝑀(𝑧′, 𝑡 + 1)  =  ∫ 𝑠(𝑧)𝐺(𝑧′, 𝑧)𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 + ∫ 𝑠(𝑧)𝑚(𝑧)𝐺(𝑧′, 𝑧)𝑛I(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

+  ∫ 𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟𝑚(𝑧′)𝑐0(𝑧′)𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

(2.2) 

where 𝑛𝑀(𝑧, 𝑡) is the size distribution of mature individuals at time t, 𝑛𝐼(𝑧, 𝑡) is the size distribution of 

immature individuals at time t, 𝑠(𝑧) is the size-dependent survival function, 𝐺(𝑧′, 𝑧) is the size-

dependent growth kernel, 𝑚(𝑧) is size-dependent maturity, 𝑝𝑏(𝑧) is size-dependent flowering 

probability, 𝑏(𝑧) is size-dependent number of offspring, 𝑐0(𝑧′) is the size at birth and 𝑝𝑟 is the 

probability of survival and recruitment from seed to seedling. U is the upper size limit of the kernel and 

L is the lower size limit of the kernel. The IPM can be represented schematically in “mega-matrix” 

notation to combine the size distributions (Ellner et al., 2016), where the survival/growth kernel, P, can 

be written as 

 [
𝑛𝐼(𝑧′, 𝑡 + 1)

𝑛𝑀(𝑧′, 𝑡 + 1)
]  =  [

𝑠(𝑧)(1 − 𝑚(𝑧))𝐺(𝑧′, 𝑧) 0

𝑠(𝑧)𝑚(𝑧)𝐺(𝑧′, 𝑧) 𝑠(𝑧)𝐺(𝑧′, 𝑧)
] [

𝑛𝐼(𝑧, 𝑡)

𝑛𝑀(𝑧, 𝑡)
]  (2.3) 

and the fecundity kernel, F, can be written as 
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[

𝑛𝐼(𝑧′, 𝑡 + 1)

𝑛𝑀(𝑧′, 𝑡 + 1)
]  =  [

0  𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟(1 − 𝑚(𝑧′))𝑐0(𝑧′)

0 (𝑧)𝑏(𝑧)𝑝𝑟𝑚(𝑧′)𝑐0(𝑧′)
] [

𝑛𝐼(𝑧, 𝑡)

𝑛𝑀(𝑧, 𝑡)
].  

(2.4) 

The underlying demographic functions for all IPM components are given in Table 2.1 and IPM 

parameters are given in Table 2.2. The survival function, 𝑠(𝑧), is a logistic function with parameters 

for the slope, 𝜏𝑧, and intercept at 𝑧 = 0.5, 𝜏𝑖𝑛𝑡, of a linear function that undergoes the logistic 

transformation to probability from 0 to 1. The growth function, 𝐺(𝑧′, 𝑧), is a probability density function 

for size at next census, 𝑧′, conditional on current size 𝑧. The growth function has two parameters; the 

‘pace of growth’ parameter, 𝛾𝑝, (described in more detail in the following paragraph) and standard 

deviation, 𝛾𝜎. The following vital rates are logistic functions with parameters for slope and intercept; 

probability of flowering function, 𝑝𝑏(𝑧) with parameters 𝛽𝑧 and 𝛽𝑎, and probability of maturation 

function, 𝑚(𝑧) with parameters 𝜑𝑧 and 𝜑𝑎. The seed production function, 𝑏(𝑧), is the exponential of a 

linear function with two parameters: slope, 𝜔𝑧, and intercept at  𝑧 = 0.5, 𝜔𝑎. Size at birth, 𝑐0(𝑧′), is a 

normal distribution with a mean of zero and standard deviation 𝜗𝜎. First-year survival/recruitment is a 

one parameter constant, 𝜀, constrained from zero, no seeds survive/recruit, to one, where all seeds 

survive/recruit. The resulting IPM could capture a wide range of life histories and incorporated key 

demographic processes typical of published IPMs of plant systems (e.g. Kuss et al., 2008; Ramula et 

al., 2009; Rees & Rose, 2002). 

We placed constraints on the IPM parameters to prevent them from describing unrealistic life history 

strategies (Table 2.2). ‘Size’ in our model represented a dimensionless measure of development. The 

probability of survival, probability of flowering and number of offspring produced all increased with 

size. To prevent plants from having an unrealistic 0% probability of mortality we did not allow the 

survival probability at any size to exceed 0.99.  We defined 𝑧 = 0 as a standardised mean size at birth 

and 𝑧 = 1 as a standardised size that a surviving plant will converge towards. We implemented this by 

fixing the linear 𝑧′ ~ 𝑧 component of the probability density function to pass through 𝑧 = 1, 𝑧′ = 1. 

The slope and intercept parameters are constrained resulting in a single ‘pace of growth’ parameter, 𝛾𝑝. 

Under this constraint, the pace of growth (or development) is determined by the slope of the expected 

size function. 
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Sampling life history strategies 

We sampled IPM parameters that result in an asymptotic growth rate log(λ) ~ 0 using an adaptive 

Metropolis (AM) algorithm with delayed rejection (Haario et al., 2001) where the target distribution 

was 

 
𝑃(log (𝜆)) =   ∏ 𝒩(𝜇, 𝜎2)𝑓𝑖

𝑛

𝑖=1

 
(2.5) 

where 𝑛 is the number of steps in the AM algorithm, 𝒩 is a Gaussian distribution with mean 𝜇 and 

variance 𝜎2, and 𝑓𝑖 are the constraint distributions. Metropolis algorithms are a Markov chain Monte 

Carlo (MCMC) method for generating random samples from a probability distribution for which direct 

sampling is difficult. At each iteration, a candidate parameter set was proposed from the adaptively 

updated proposal distribution, the corresponding IPM kernel was constructed, and 𝑙𝑜𝑔(λ) was 

calculated from the dominant eigenvalue of the kernel. The acceptance ratio for the accept-reject step 

was calculated from a target Gaussian density function with a mean of zero, and pseudo-priors (Table 

2.2) defined to steer the sampler towards more realistic life histories. 

The AM algorithm required informative constraints, 𝑓𝑖, to prevent the oversampling of ‘immortal’ 

strategies with very high survival and negligible fecundity, and annual monocarpic strategies with very 

low survival but for high fecundity. These strategies lie at the boundaries of parameter space where the 

acceptance ratio is essentially constant. Once attained, these strategies lead to very poor mixing of the 

MCMC chain, preventing the sampler from exploring the whole parameter space. Gaussian priors were 

fitted on the slope and intercept of the survival function and the slope and intercept of the seed 

production function (Table 2.2). The AM algorithm was implemented in R using the modMCMC 

function from R package FME (Soetaert & Petzoldt, 2010). The parameter covariance matrix was re-

evaluated every 500 iterations to improve the acceptance rate of proposed parameter sets. The first 

25,000 parameter sets were discarded as burn-in to allow the adaptation of the covariance matrix to 

occur. The remaining parameter sets were thinned to 1000 parameter sets to remove autocorrelation. 
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Derived matrix population models 

We constructed stage-structured MPMs from each IPM to ensure that we were making a fair comparison 

between the simulated population model and empirical data from the COMPADRE Plant Matrix 

Database (Fig. 2.2) It also provided an exploration of the consequences of imposing discrete stage 

structure on continuously structured populations. The discretisation of the state distribution preserved 

log(λ) but induced biases in the derived life history metrics. To construct an MPM, the continuous size 

domain was first divided into contiguous discrete intervals. The mean rate of growth-survival and 

reproduction were then derived by calculating an expectation with respect to the normalised stable size 

distribution over each interval. 

The discretisation of the growth-survival kernel 𝑃(𝑧′, 𝑧) to the growth-survival matrix P with elements 

𝑝𝐼𝐼𝑖𝑗 was calculated for transitions from immature individuals to immature individuals as 

 𝑝𝐼𝐼𝑖𝑗 =   𝑠 (𝑧[𝐿𝑗,𝑈𝑗]) (1 − 𝑚(𝑧[𝐿𝑖,𝑈𝑖])) 𝐺 (𝑧′
[𝐿𝑖,𝑈𝑖], 𝑧[𝐿𝑗,𝑈𝑗])

=  
∫ ∫ 𝑛𝐼(𝑧)𝑠(𝑧)(1 − 𝑚(𝑧′))𝐺(𝑧′, 𝑧)𝑑𝑧𝑑𝑧′𝑈𝑗

𝐿𝑗

𝑈𝑖

𝐿𝑖

∫ 𝑛𝐼(𝑧)𝑑𝑧
𝑈𝑗

𝐿𝑗

 

(2.6) 

and transitions from immature individuals to mature individuals 𝑝𝑀𝐼𝑖𝑗 was calculated as  

 
𝑝𝑀𝐼𝑖𝑗 =  𝑠 (𝑧[𝐿𝑗,𝑈𝑗]) 𝑚(𝑧[𝐿𝑖,𝑈𝑖])𝐺 (𝑧′

[𝐿𝑖,𝑈𝑖], 𝑧[𝐿𝑗,𝑈𝑗])  =
∫ ∫ 𝑛𝐼(𝑧)𝑠(𝑧)𝑚(𝑧)𝐺(𝑧′, 𝑧)𝑑𝑧𝑑𝑧′𝑈𝑖

𝐿𝑖

𝑈𝑗

𝐿𝑗

∫ 𝑛𝐼(𝑧)𝑑𝑧
𝑈𝑗

𝐿𝑗

 

(2.7) 

and transitions from mature individuals to mature individuals 𝑝𝑀𝑀𝑖𝑗  was calculated as  

 
𝑝𝑀𝑀𝑖𝑗 =  𝑠 (𝑧[𝐿𝑗,𝑈𝑗]) 𝐺 (𝑧′

[𝐿𝑖,𝑈𝑖], 𝑧[𝐿𝑗,𝑈𝑗])  =
∫ ∫ 𝑛𝑀(𝑧)𝑠(𝑧)𝐺(𝑧′, 𝑧)𝑑𝑧𝑑𝑧′𝑈𝑖

𝐿𝑖

𝑈𝑗

𝐿𝑗

∫ 𝑛𝑀(𝑧)𝑑𝑧
𝑈𝑗

𝐿𝑗

 

(2.8) 

where 𝑈𝑖 and 𝐿𝑖 were the upper and lower size limits of size class 𝑖, 𝑈𝑗 and 𝐿𝑗  were the upper and lower 

size limits of size class 𝑗 and 𝑛(𝑧) was the stable size distribution of the full IPM kernel 𝐾(𝑧′, 𝑧) 

calculated as the dominant eigenvector. U and L were determined by computing the cumulative stable 

state distribution of the IPM and calculating size limits that split this distribution into predetermined 

percentiles.  
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Similarly, the discretization of the fecundity kernel 𝐹(𝑧′, 𝑧) to fecundity matrix 𝐅 with elements 𝑓𝐼𝑀𝑖𝑗  

was calculated for transitions from mature individuals to immature individuals as 

 𝑓𝐼𝑀𝑖𝑗 =  𝑝𝑏 (𝑧[𝐿𝑗,𝑈𝑗]) 𝑏 (𝑧[𝐿𝑗,𝑈𝑗]) 𝑝𝑟  𝑐0(𝑧′
[𝐿𝑖,𝑈𝑖]) (1 − 𝑚(𝑧′

[𝐿𝑖,𝑈𝑖]))

=  
∫ ∫ 𝑛𝑀(𝑧)𝑝𝑏(𝑧)𝑏(𝑧)𝑐0(𝑧′)(1 − 𝑚(𝑧′))𝑑𝑧𝑑𝑧′𝑈𝑗

𝐿𝑗

𝑈𝑖

𝐿𝑖

∫ 𝑛𝑀(𝑧)𝑑𝑧
𝑈𝑗

𝐿𝑗

   

(2.9) 

and calculated for transitions from mature individuals to mature individuals as 

 𝑓𝑀𝑀𝑖𝑗 =  𝑝𝑏 (𝑧[𝐿𝑗,𝑈𝑗]) 𝑏 (𝑧[𝐿𝑗,𝑈𝑗]) 𝑝𝑟 𝑐0(𝑧′
[𝐿𝑖,𝑈𝑖])𝑚(𝑧′

[𝐿𝑖,𝑈𝑖])  

=  
∫ ∫ 𝑛𝑀(𝑧)𝑝𝑏(𝑧)𝑏(𝑧)𝑐0(𝑧′)𝑚(𝑧′)𝑑𝑧𝑑𝑧′𝑈𝑗

𝐿𝑗

𝑈𝑖

𝐿𝑖

∫ 𝑛𝑀(𝑧)𝑑𝑧
𝑈𝑗

𝐿𝑗

. 

(2.10) 

The full matrix, 𝐀, describing all growth, survival and reproductive transitions was calculated as         

𝐀 =  𝐏 + 𝐅.  

Life history metrics 

For each simulated population model and population model from COMPADRE, we calculated nine life 

history metrics commonly used in comparative analyses and used in Salguero-Gómez et al. (2016b) 

(Table 2.3). To apply these calculations to our simulated MPMs we made some alterations to the 

original calculations outlined here. Three of the following life history metrics are derived from the age-

specific survivorship curve 𝑙𝑎, and the age-specific fertility trajectory 𝑓𝑎. In Salguero-Gómez et al. 

(2016b), 𝑙𝑎  and 𝑓𝑎 were calculated from the P matrix and the F matrix according to Caswell (2001, pp. 

118–121) conditional on starting in a single life stage. This was not appropriate for our simulated 

population models because offspring were born from a size distribution and therefore a single life stage 

of the discretised MPM could not accurately represent size at birth. In this analysis we calculated 𝑙𝑎 and 

𝑓𝑎 for a cohort of individuals from an initial discrete state distribution 𝑐𝑗 , notated as 𝑙𝑎̃ and 𝑓𝑎̃. 𝑐𝑗 was 

calculated by the stable stage distribution matrix multiplied by the F matrix resulting in the size class 

distribution of a new cohort of a population operating at its asymptotic stable stage distribution and can 

be represented as 
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𝑐𝑗 =  ∑ 𝐹𝑗

𝑚

1

 𝑤𝑗 
(2.11) 

Where 𝑤𝑗 is the stable stage distribution, dominant eigenvector, of A and m is the number of discrete 

stages.  

The survivorship curve type describes the shape of decay of survivorship over the lifespan of an 

individual. The shape of the age-specific survivorship curve is calculated from the age-specific survival 

𝑙𝑎̃ as quantified by Keyfitz’ entropy (H) calculated as 

 
𝐻 =  

−log(𝑙𝑎̃)𝑙𝑎̃

∑ 𝑙𝑎̃

. 

 

(2.12) 

Survivorship curves types I, II, and III correspond to 𝐻 >1, = 1, <1, respectively. The degree of 

iteroparity describes a life history strategy’s position between two extremes of reproductive strategy; 

semelparity is characterised by a single reproductive event before mortality whereas iteroparity is 

characterised by many reproductive events before mortality. This was calculated in MPMs as the spread 

of reproduction throughout the lifespan of the individual as quantified by Demetrius’ entropy (S) 

calculated as 

 𝑆 =  −𝑒−log (λ) 𝑙𝑎̃𝑓𝑎̃ log(𝑒−log(𝜆) 𝑙𝑎̃𝑓𝑎̃) (2.13) 

where λ was the dominant eigenvalue of the full matrix 𝐴. High S values correspond to iteroparous 

strategies whereas low S values correspond to semelparous strategies. 

Demographic vital rates summarise population-level transitions between life stages whilst a population 

has reached a stable stage distribution. The progressive growth vital rate, 𝛾, describes the mean 

probability of an individual transitioning to a more developed stage once the population has converged 

to the stable stage distribution. 𝛾 is calculated from an MPM as 

 
𝛾 =  ∑ 𝑃′𝑖,𝑗

𝑚

1

 𝑤𝑗|𝑖<𝑗  
(2.14) 
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where 𝑃′ =  𝑃 𝑠𝑗⁄ , 𝑠𝑗  is the stage-specific survival, 𝑤𝑗 is the stable stage distribution and m is the number 

of classes in the MPM. The retrogressive growth vital rate, 𝜌, describes the mean probability of 

transitioning to a less developed stage once the population has converged to the stable stage distribution. 

The retrogressive growth rate is calculated from an MPM as 

 
𝜌 =  ∑ 𝑃′𝑖,𝑗

𝑚

1

 𝑤̅𝑗|𝑖>𝑗 
(2.15) 

   

where 𝑃′ =  𝑃 𝑠𝑗⁄ , 𝑠𝑗  is the stage-specific survival and 𝑤𝑗 is the stable stage distribution. Mean sexual 

reproduction, Φ, describes the mean year to year per-capita number of sexual reproductive events once 

the population has converged the stable stage distribution and is calculated as 

 
∅ =  ∑ 𝐹𝑗

𝑚

1

 𝑤𝑗 . 

 

(2.16) 

Net reproductive rate, 𝑅0, describes the mean number of recruits produced during the mean life 

expectancy of an individual in the population 

 
𝑅0 =  ∫ 𝑙𝑎̃𝑓𝑎̃𝑑𝑥

∞

0

 . 
(2.17) 

Generation time, T, is a measure of population turn-over; the number of years necessary for the 

individuals of a population to be fully replaced by new ones. Generation time (T) is calculated as 

 
𝑇 =

log(𝑅0)

log (𝜆)
. 

(2.18) 

Age at maturity, Lα, is the number of years that it takes an average individual in the population to enter 

a mature life stage, defined as one in which an individual can potentially reproduce. Mature life 

expectancy, Lw, is the log ratio of mean age at sexual maturity (Lα) and the mean life expectancy (ηe) of 

an individual in the population and is calculated as 𝐿𝑤 = log(𝜂𝑒) − log(𝐿𝛼). 
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Demographic data 

Demographic data were used to characterise the MPM intervals used to discretise the simulated IPMs 

to MPMs. This ensured that they exhibited realistic MPM dimensions and stable stage distributions 

(Fig. 2.2). We used the COMPADRE Plant Matrix Database (version 4.0.1) for this purpose; however, 

to ensure we were making reasonable comparisons to our simulated population models, only a subset 

of COMPADRE was used. Only MPMs with size-classified discrete stages were included and all woody 

species were excluded because they generally exhibit low variation in growth trajectories (Zuidema et 

al., 2010). MPMs that used secondary state variables, such as flowering, were excluded because size 

was the only state variable in our model. Only MPMs with a matrix projection interval of one year were 

used to be consistent with the time interval of our IPM. MPMs with clonal reproduction were not 

included because the only form of reproduction in the IPM was sexual reproduction. MPMs that were 

subject to an experimental treatment were not used. A by-product of this selection process was the 

deselection of annual monocarpic plants. One MPM was calculated per species capturing the average 

population dynamics; the spatial and temporal element-wise arithmetic mean average of all 

unmanipulated years and sites available in COMPADRE. This produced a sample of 95 MPMs, which 

we hereafter refer to as our COMPADRE subset. 

Dimension reduction via PCA 

Principal component analysis (PCA) was carried out on life history metrics calculated for each set of 

MPMs to determine the key axes of (co)variation. Due to the irreducibility and ergodicity of some 

MPMs in COMPADRE (Stott et al., 2010b), the calculation of a demographic metric may result in an 

NA or infinite value. These values were imputed using the ‘regularised’ method in the imputePCA 

function of R package missMDA (Josse & Husson, 2016) to maximise sample size. Generation time 

(T), mean sexual reproduction (Φ), survivorship curve type (H), age at sexual maturity 𝐿𝛼 and R0 were 

log-transformed, then all life history metrics were scaled to unit variance and mean-centred. The sign 

of scores and loadings in PCA are arbitrary; however, to allow comparison we inverted scores and 

loadings to ensure consistency, if required. When PCAs were carried out on multiple simulates, 
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rotations and weightings were inverted, if needed, so that the life history metrics associated with each 

principal component fit with recognised patterns; mean sexual reproduction was always negatively 

loaded on PC1, mature life expectancy was always negatively loaded on PC2. 

Investigating the effects of sampling variation and density-dependent 

constraints 

To investigate how the amount of sampling variation affects the composition of PC1+2 we compared 

simulated population models sampled from Gaussian log(λ) distributions with a range of standard 

deviations but a constant mean and distributions with a range of means but a constant SD. The first set, 

the standard deviations of the target log(λ) distributions, log(λ)𝜎, ranged from 0.01 to 0.1 and the mean 

of the target log(λ) distributions, log(λ)𝜇, was 0. For the second set the standard deviation, log(λ)𝜎, 

was 0.1 and the values for the mean log(λ)𝜇 were between -0.5 and 0.5. For reference, the COMPADRE 

subset had log(λ)𝜎  =  0.134 and  log(λ)𝜇  =  0.01. 

Each resulting set of IPM parameters were thinned to 1000 parameter sets and discretised to MPMs 

with the same ratio of matrix dimensions and stable stage distributions as observed in the COMPADRE 

subset. PCAs were carried out on each set of MPMs, including the COMPADRE subset. The 

COMPADRE subset was bootstrapped 1000 times to observe intervals. To visualise the composition of 

the first two principal components we produced a biplot of each of the resulting PCAs. For each PCA 

we calculated the weighted rotation of each life history metric; the weighted rotation is the rotation of 

a life history metric towards a PC, weighted by the proportion of variance explained by the respective 

PC. 
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Results 

In our PCA of a COMPADRE subset, 60% of variation in the nine life history metrics were captured 

by the first two principal components (Fig. 2.4). Positive values on the first principal component (40% 

variance explained) represent less reproductive, slower growing and later maturing, semelparous 

strategies. Positive values on the second principal component (20% of variance explained) represent 

greater mature life expectancy and less retrogressive growth. The life history metrics most strongly 

weighted towards PC1 were degree of iteroparity (0.50), mean sexual reproduction (-0.45), progressive 

growth (-0.39) and R0 (-0.38). The life history metrics most strongly weighted towards PC2 were mean 

age at maturity (0.67), R0 (0.37), progressive growth (-0.35) and retrogressive growth (-0.37). 

Bootstrapped confidence intervals highlighted the uncertainty in the weighted rotations of derived life 

history metrics in the COMPADRE PCA, with considerable overlap for PC2 (Fig. 2.5). For PC1, degree 

of iteroparity and generation time, mean sexual reproduction, R0 and progressive growth had the most 

robust weighted rotations with the smallest bootstrapped intervals. 

The distributions of life history metrics (Fig. 2.3) and the resulting PCA axes (Fig. 2.4 B) from the 

simulated populations resembled those associated with the population models from our COMPADRE 

subset. Simulated population models sampled from a target log(λ) distribution with a standard deviation 

of 0.2 and a mean of 0 produced a similar log(λ)distribution to our COMPADRE subset and represented 

our best simulated analogue to the COMPADRE subset. Simulated population models showed, on 

average, more retrogressive growth, and more progressive growth, and thus reduced stasis than the 

population models in COMPADRE. Simulated population models also showed less variance in R0, 

despite similar variance in log(λ). Our COMPADRE subset and simulated population models exhibit 

clear non-linear constraints between life history metrics (Fig. 2.3). Projecting log(λ) onto the PCA 

space shows a clear trend of log(λ) across the PCA space which is positively associated with R0. 

Increasing the standard deviation of the target log(λ) distribution altered the relative contributions of 

some life history metrics to the first two principal components in simulated population models (Fig. 

2.5). As the standard deviation of the target log(λ)  increased, R0 became more important on PC1, 
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survivorship curve type and mean age at maturity became less important. The importance of other life 

history metrics did not change for PC1. As for PC2, as the standard deviation of the target log(λ)  

increased, mean age at maturity and progressive growth became more important towards PC2. Changes 

in log(λ)𝜎 did not consistently affect the weighting towards either PC1 or PC2 of mean sexual 

reproduction, degree of iteroparity, generation time and retrogressive growth.  

Sampling simulated MPMs using target log(λ) distribution with a non-zero mean produced principal 

components with life history metrics weighted differently on each axis (Fig. 2.5). The most observable 

difference is in R0; at log(λ)𝜇 = -1 R0 is strongly negatively weighted on PC1 whereas at log(λ)𝜇 = 1 

R0 is strongly positively weighted on PC1. Progressive growth and retrogressive growth saw some 

change for different values of log(λ)𝜇. Generation time and survivorship curve type and mean age at 

maturity did not show much change across different values of log(λ)𝜇 for PC1 or PC2. 
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Discussion 

At the core of life history theory is the idea that an organism’s finite energy budget constrains the 

allocation of effort toward the processes of growth, survival and reproduction (Stearns, 1992). Because 

quantifying such trade-offs is extremely challenging under natural conditions (Reich, 2014; Wenk & 

Falster, 2015), comparative approaches are often used to explore patterns of life history (co)variation 

between species (Jervis et al., 2001; Rochet, 2000; Sæther & Bakke, 2007; Stearns, 1983). Comparative 

analysis of stage-based MPMs has the potential to reveal these key axes of life history variation (Franco 

& Silvertown, 1996; Salguero-Gómez et al., 2016b). A robust life history classification framework 

should reflect the underlying budgetary trade-offs rather than non-adaptive constraints. We simulated 

MPM-derived life history strategies in the absence of budgetary constraints but mimicked the 

consequences of density dependence by restricting the log asymptotic population growth rate, log (λ), 

to have a mean of 0. This constraint on log (λ) was representative of population densities fluctuating 

around a carrying capacity. When we decomposed the resulting life history ‘strategies’ using PCA, we 

found that the composition of the first two principal components is broadly similar to PCA results for 

the COMPADRE database (Salguero-Gómez et al., 2016b). This indicates that a significant component 

of the covariance among MPM-derived life histories is consistent with non-adaptive constraints on these 

patterns. 

If the principal components do not capture pure budgetary trade-offs, how should they be interpreted? 

The interpretation by (Salguero-Gómez et al., 2016b) implies that the emerging fast-slow axis in a PCA 

of MPM-derived life history traits is further evidence for a fast-slow continuum that describes life 

histories along an axis of allocation towards reproduction to high allocation to survival. We show in 

this work that this form of analysis cannot be used as evidence for the presence/absence of a life history 

axis based on energetic allocation. Instead, these axes, and the axes of similar studies (Capdevila et al., 

2019; Healy et al., 2019; Paniw et al., 2018), must be interpreted with an appreciation that patterns of 

life history covariance may arise from a range of factors: fundamental budgetary trade-offs, non-

adaptive constraints, or environmental effects. Interpretation of the principal components is speculative 
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at best when using only demographic data from published population models because these data cannot 

differentiate the different underlying factors of these patterns of life history covariance. Fundamentally, 

some degree of correlation between life history metrics is expected, given that the assumption of density 

dependence requires demographic trade-offs between survival and reproduction to support a persistent 

population (Sutherland et al., 1986). As such, dimension reduction tools like PCA will always find axes 

of variation and we should be careful not to prescribe our preferred interpretation onto those axes. 

Therefore, interpretation of these analyses cannot simply highlight the presence of correlations as an 

interesting result, they must go further to interrogate these correlations to understand their underlying 

drivers.  

This research has implications on how we link the covariance patterns of life history metrics to other 

data. Salguero-Gómez (2017) showed that the position of a population on the first two axes predicted 

its asymptotic growth rate but we observe similar patterns using the simulated strategies. When 

projecting metrics of population performance (e.g. λ or measures of transient growth) onto the life 

history PCA space, the resulting associations should be interpreted with care. Our work shows that the 

PCA axes are a composite of life history strategy and population performance because the MPM derived 

life history metrics are not independent of MPM derived population performance. Given our findings, 

we can say that this correlation between life history and population performance is an innate feature 

arising from a combination of non-adaptive constraints, environmental variation, and sampling 

variation in λ, rather than an indication that some life histories are of greater fitness than others. In 

another example, Adler et al. (2014) found that functional traits directly affected only a limited set of 

physiological processes and demographic rates but still explained considerable variation in overall life 

history. In addition to the mechanistic explanations offered, an alternative explanation for the strength 

of this link may be that there is less possible (co)variation in life history under non-adaptive constraints. 

As such, a functional trait only requires a correlation with one life history metric for it to subsequently 

account for a large proportion of (co)variation in life history. 

The consequences of imperfect sampling of environments, parameter uncertainty and model structure 

are difficult to assess directly (Knape & de Valpine, 2012) because published population models are 
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not perfect representations of real systems. However, our simulated population model framework 

provides a novel approach to testing these assumptions. Sampling variation is especially a concern in 

demographic data because of the extensive temporal replication required  for reliable long-term 

performance estimates (Metcalf et al., 2015). When the majority of demographic data sets are <5 years 

(Menges, 2000) it is imperative to understand the role of sampling error in shaping the patterns of life 

history covariance. By assuming that persistent populations are constrained such that log(λ) ≈ 0  and 

sampling sets of models with different magnitudes of between-model variance in log(λ) we emulated 

the consequences of varying the level of sampling variation. Our results showed that the magnitude of 

sampling error did not substantially affect the composition of the life history PC1 and PC2. Therefore, 

within the variance range, we explored our work indicates that the presence of this variance not a key 

factor in shaping covariance patterns in MPM-derived metrics. However, we do see that the mean value 

of lambda severely impacts the covariance patterns of MPM derived metrics. One of the reasons the 

variance in log(λ) has a negligible impact may be the predominant influence of the log(λ) ≈ 0 

constraint limiting how life history metrics can co-vary. However, an important assumption here is that 

in our simulated population models the distribution of growth rates is independent of any factors of life 

history or environment. Populations are disproportionately modelled when they are invasive or 

endangered because of the need to produce models to inform management (Crone et al., 2011; Jelbert 

et al., 2015). These sorts of biases will need to be considered when interpreting comparative analyses. 

Going forward, we can use the simulated population model as a null model in comparative work and 

more constrained setting such as multiple populations of a single species. A null model is a general tool 

used across scientific disciplines: it is a pattern-generating routine that aims to hold some features of a 

dataset constant while allowing others to vary that can then be compared to an empirical dataset (Gotelli 

& Graves, 1997). We could also use the null model to explore links between different population-level 

metrics. For example, further investigating the links between life history and transient dynamics (Stott 

et al., 2010a). An advantage of using a simulated population model approach would be that some of the 

issues of MPM, such as construction errors (Kendall et al., 2019) and spatial/taxonomic sampling biases 

(Salguero-Gómez et al., 2015, 2016a), could be dismissed as explanatory factors, whilst being able to 
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interrogate many of the same research questions. This approach could also be applied to research on a 

single species, such as PlantPopNet (Buckley et al., 2014) a globally distributed population study of 

Plantago lanceolata. Adapting the approach to a single species setting would involve constraining the 

underlying IPM to reflect a more limited range of life histories plausible for the target species, but with 

added realism through time-variant vital rates. This would provide a baseline from which we could 

identify areas in the possible life history space that are not occupied by real populations. With this 

approach, we could investigate how evolution and/or environmental effects are constraining the range 

of possible life histories, against the background of non-adaptive constraints. 

Ultimately, how we use comparative analysis of demographic data to explore patterns of life histories 

depends on our definition of ‘life histories’. Sutherland et al., (1986) suggested over three decades ago 

that life histories “may be more profitably viewed as consequences of [organisms’] actions (which may 

be evolved strategies), environmental effects and demographic constraints”. Given this view, 

demographic data should remain as a useful resource to describe life histories, on the condition that 

environmental factors and demographic constraints are incorporated into the interpretation. Here we 

have provided a framework for exploring how demographic non-adaptive constraints affect patterns of 

life history covariance and showed that comparative work determining differences across species and 

populations will be subject to the effects of non-adaptive constraints. Comparative approaches using 

demographic data may hold valuable insights into ecology, population biology and demography, but 

we have shown that an understanding of non-adaptive constraints will be vitally important for gaining 

those insights. 
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Figures  

 

Figure 2.1: Evidence to suggest that matrix populations constructed from demographic data with 

a longer study period have a log(λ) closer to zero. The COMPADRE Plant Matrix Database is a 

repository for published matrix population models (MPMs) for plants. MPMs are constructed from a 

number of annual transitions. The longer the study duration, the more annual transitions can be used to 

construct a temporal mean. Each point represents the temporal mean MPM calculated from the element-

wise mean of all MPMs constructed for all years. λ is calculated from the temporal mean MPM as the 

dominant eigenvalue and represents the predicted asymptotic growth rate. 
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Figure 2.2: Overview of methods for simulating plausible plant life history strategies with integral 

projection models (IPMs) discretised to matrix population models (MPMs). Shared coloured boxes 

indicate when information from a subset of the COMPADRE plant matrix database (A) and IPM 

methods (B) are used in the sampling of IPM parameter sets (C) and discretization to MPMs (D). The 

distribution of long-term growth rate values log(λ) (pink box), the frequencies of dimensions of MPMs 

(green box) and the stable stage distributions (SSDs) (yellow box) are extracted from the COMPADRE 

subset. A size-based integral projection model (IPM) is defined (B) with demographic functions of size 

z; growth (i), survival (ii), flowering probability (iii), seed production (iv), size at birth (v) and 

recruitment probability (vi). These functions are used to construct a survival kernel P(z′,z) and a 

fecundity kernel F(z′,z) which can be used to calculate log(λ) (pink box). An adaptive Metropolis (AM) 
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algorithm with delayed rejection was used to sample IPM parameter sets to match a Gaussian 

distribution fitted to the log(λ) distribution of the COMPADRE subset (C). Set 1 is the COMPADRE 

MPM subset. Set 2a is the sampled IPM parameter sets, set 2b is the IPMs from set 2a discretized to 

MPMs with survival matrix (P) and fecundity matrix (F) with states s where frequencies of matrix 

dimension and SSD match set 1. 
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Figure 2.3: overlap in (co)variance patterns of MPM-derived life history metrics from a subset of 

size-classified MPMs from the COMPADRE Plant Matrix Database compared to simulated 

MPMs. Diagonal plots show the distribution of each metric and sub diagonal plots show the correlation 

between metrics. The final row shows the relationship between each life history metric and the long-

term growth rate, lambda (𝜆). Life history metrics with a * next to their name (R0, survivorship curve 

type, mean age a maturity, mature life expectancy) have been log10 transformed.  
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Figure 2.4: Principal component axes from a PCA of life history traits derived from simulated 

population models compared to a PCA of COMPADRE Plant Matrix Database. This PCA was 

carried out on nine life history metrics derived from two sets of matrix population models (MPMs). 

The first set of MPMs (A) is a subset of 95 MPMs from the COMPADRE Plant Matrix Database. The 

second set of MPMs (B) is simulated population models sampled from a log(λ) distribution that 

closely resembles the log(λ) distribution of the COMPADRE subset in A. Arrow length and direction 

indicates the loading of each life history metric onto the PCA axes. Points represent the position of 

individual MPMs along the first and second principal components. Colour represents the log(λ) value 

of each MPM. 
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Figure 2.5: The variance and mean of the log(λ) distribution of simulated population models 

affects the composition of principal components resulting from a principal component analysis 

(PCA) of 9 derived life history metrics. A PCA was carried out on nine life history metrics derived 

from multiple sets of simulated population models in the form of matrix population models (MPMs). 

The first set of simulated MPMs (first row) was sampled from Gaussian log(λ) distributions with a mean 

of one and standard deviations from 0.01 to 0.1.  The second set of simulated MPMs (second row) was 

sampled from Gaussian log(λ) distributions with a standard deviation of 0.1 and means from -0.5 to 0.5.  
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From each PCA result, we extracted the weighted rotation of each life history metric: the rotation 

towards a principal component (values ranging from -1 to 1) multiplied by the proportion of variance 

explained by the corresponding principal component (values ranging from 0 to 1). To the right hand of 

each plot we have included the full-sample bootstrapped (n=1000) weighted rotations from a PCA of 

life history metrics derived from a subset of the COMPADRE Plant Matrix Database. 
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Tables 

Table 2.1: Functional forms of the demographic processes in the integral projection model (IPM) used 

to simulate plausible plant life history strategies. The growth function is a probability density function 

with a linear function with normal densities. Survival probability and flowering probability are logistic 

functions, seed production is the exponential of a linear function, size at birth is a normal distribution 

with a mean of zero and recruitment probability is a constant. The parameter constraints are described 

in Table 2.2. 

Demographic function Functional form 

Growth 𝐺(𝑧′, 𝑧) =  
1

𝛾𝜎√2𝜋
 exp (−

(𝑧′ − (−𝛾𝑝 𝑧 + (1 − 𝛾𝑝)))2

2𝛾𝜎
2 ) 

Survival probability 𝑠(𝑧) =  
1

1 + exp (𝜏𝑎 + 𝜏𝑧(𝑧 − 0.5))
 

Maturity probability 𝑚(𝑧) =  
1

1 + exp (𝜑𝑎 + 𝜑𝑧(𝑧 − 0.5))
 

Flowering probability 

 

𝑝𝑏(𝑧) =  
1

1 + exp (𝛽𝑎 + 𝛽𝑧(𝑧 − 0.5))
 

Seed production 𝑏(𝑧) = exp (𝜔𝑎 + 𝜔𝑧(𝑧 − 0.5)) 

Size at birth 𝑐0(𝑧′) =  
1

𝜗𝜎√2𝜋
 exp (−

𝑧′2

2𝜗𝜎
2) 

Recruitment probability 𝑝𝑟 =  𝜀 
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Table 2.2: List of parameters used to parameterise an integral projection model (IPM), defined in Table 

2.1, that can represent a range of plausible plant life history strategies. Parameters were constrained 

with an upper and/or lower limit to prevent the IPM from describing implausible plant life history 

strategies. When sampling life history strategies with an adaptive Metropolis (AM) algorithm, Gaussian 

(normally distributed) priors were placed on certain parameters to prevent the sampler from 

oversampling certain life history strategies. All other parameters were sampled from a uniform prior. 

Parameter Symbol and constraint Sampling prior distribution 

Pace of growth 0 <  𝛾𝑝 < 1 Uniform prior 

Growth standard deviation 0.01 <  𝛾𝜎 < 0.5 Uniform prior 

Survival function slope 0 <  𝜏𝑧 < 10 𝜎𝑎  ~ 𝑁(2, 22) 

Survival function intercept at  

z = 0.5 
−10 <  𝜏𝑎 < 5 𝜎𝑏 ~ 𝑁(0, 22) 

Probability of maturation slope 0 <  𝜑𝑧 < 10 Uniform prior 

Probability of maturity size of p 

= 0.5 
−10 <  𝜑𝑎 < 5 Uniform prior 

Probability of flowering 

function slope 
0 <  𝛽𝑧 < 10 Uniform prior 

Probability of flowering 

function intercept at z = 0.5 
−10 <  𝛽𝑎 < 5 Uniform prior 

Seed production slope 0 <  𝜔𝑧 𝜔𝑎 ~ 𝑁(2, 22) 

Seed production function 

intercept at z = 0.5 
0 <  𝜔𝑎 𝜔𝑏 ~ 𝑁(2, 22) 

Size at birth standard deviation 0.01 <  𝜗𝜎 < 0.5 Uniform prior 

Recruitment probability 0 <  𝜀 < 1 Uniform prior 
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Table 2.3: Nine life history metrics that can be derived from matrix population models (MPMs), as 

used in Salguero-Gómez et al. (2016b) for classifying life history strategies using the COMPADRE 

Plant Matrix Database.  

Life history 

metric 

Symbol Definition from Salguero-Gómez et al. (2016b) 

Generation time T 

Number of years necessary for the individuals of a population to be 

fully replaced by new ones 

Survivorship 

curve type 

H 

Shape of the age-specific survivorship curve lx as quantified by 

Keyfitz’ entropy (H). H >1, = 1, <1 correspond to survivorship curves 

types I, II, and III, respectively 

Progressive 

growth 

γ 

Mean probability of transitioning to a larger/more developed stage in 

the life cycle of the species, weighted by the stable stage distribution 

(SSD) 

Retrogressive 

growth 

ρ 

Mean probability of transitioning to a smaller/less developed stage in 

the life cycle of the species, SSD-weighted. 

Mean sexual 

reproduction 

Φ 

Mean per-capita number of sexual recruits across stages in the life 

cycle of the species, SSD-weighted 

Degree of 

iteroparity 

S 

Spread of reproduction throughout the lifespan of the individual as 

quantified by Demetrius’ entropy (S). High/low S values correspond 

to iteroparous/semelparous populations 

Net reproductive 

rate 

R0 

Mean number of recruits produced during the mean life expectancy of 

an individual in the population 
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Age at maturity Lα 

Number of years that it takes an average individual in the population 

to become sexually reproductive 

Mature life 

expectancy 

Lw 

Log ratio of mean age at sexual maturity (Lα) until the mean life 

expectancy (ηe) of an individual in the population 
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Summary 

1. Transient dynamics describe short-term dynamics that can behave distinctly from asymptotic 

dynamics and constitute an important, and historically underexamined, component of popula-

tion dynamics. Reliable estimates of transient dynamics typically require constructing data-

intensive population models. 

2. A general understanding of transient dynamics would enable us to use more-easily measured 

traits, such as life history traits, to predict transient dynamics. Population models provide a tool 

to link life history to transients because they can be used to calculate both life history traits and 

indices of the transient potential. These indices quantify the upper and lower bounds of potential 

transient responses. 

3. We used an integral projection model (IPM) framework to simulate demographic population 

models under the assumption that density dependence constrains growth rates. We used these 

simulated population models to derive life history traits and indices of transient dynamics. We 

used partial least squares, or projection to latent structures, (PLS) regression, a linear multivar-

iate approach, to analyse links between life history traits and indices of transient dynamics. We 

compared our results to comparative studies that used published matrix population models 

(MPMs). 

4. Variance and covariance patterns within transient indices showed two main axes: magnitude of 

response and tendency towards amplification as opposed to attenuation. The most important 

axis of variation in life history traits and transient indices emerged as a prototypical fast-slow 

continuum from short-lived, highly reproductive populations to long-lived, less reproductive 

populations. This axis explained 50% of the magnitude of transient potential but subsequent 

latent variables were needed to improve predictions. 

5. Non-adaptive constraints, such as density dependence, explained much of the (co)variance pat-

terns in life history and transients which improved predictions of transient potential. Non-linear 

patterns in life history traits suggest that statistical approaches with assumptions of linearity 
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such as PLS and PCA might not perform optimally. This work shows that using simulated 

population models can be used to ask the same questions as published MPMs.  

 

Keywords: Transient dynamics, life history, comparative demography, density-dependence, matrix 

population model, integral projection model.  
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Introduction 

By studying transient dynamics, defined as dynamics that are distinct from a system’s asymptotic be-

haviour, we can build a more complete understanding of population dynamics (Hastings, 2001). Theo-

retical and empirical research aims to determine what proportion of observed population dynamics can 

be attributed to ongoing transient processes (Hastings, 2004; Hastings et al., 2018). Transient processes 

mediate species’ responses to variable environments and may impact species co-existence (Noonburg 

& Abrams, 2005) and life history evolution (Gamelon et al., 2014). A first step towards understanding 

transients in varying environments examines population-level responses to discrete disturbances or per-

turbations (Stott, 2016). Transient responses to discrete perturbations from extreme climatic events or 

anthropogenic impacts may also be important in a management setting (Ezard et al., 2010).  

Unfortunately, modelling complex transient dynamics is difficult. Developing a detailed and robust 

demographic model from which to predict transient population dynamics, even for a single population, 

requires data for multiple years over hundreds of individuals (Crone et al., 2011; Kendall et al., 2019). 

Moreover, transient responses to novel and/or extreme perturbations may be outside of the realised 

transient responses we have observed in an established population. Therefore, it would be useful to 

identify traits that correlate with transient behaviour. One way to quantify this would be to calculate 

estimates of the upper and lower bound of the potential transient response. We would expect life history 

traits to correlate with transients because transient dynamics are a result of the population-level pro-

cesses of survival, growth, and reproduction, which are shaped by individual-level life history traits. 

Potential transient responses to perturbation have shown to be linked to a species’ life history (Gamelon 

et al., 2014; Iles et al., 2016; Koons et al., 2005; Stott et al., 2010). Life history traits such as the number 

of offspring and life expectancy are more easily measured than transient dynamics and are available in 

open-access trait databases with much greater species coverage than demographic databases (e.g. Jones 

et al., 2009; Kleyer et al., 2008). By linking transient responses to life history traits, we could reveal 

generalities and be able to predict transient responses from life history traits.  
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The ability to derive measures of both life history and transient bounds makes structured population 

models an ideal sandbox to examine links between these measures. Structured population modelling 

tools such as matrix population models (MPMs) and integral projection models (IPMs) describe transi-

tions between discrete stages or continuous domains over a discrete time interval.  Indices of life history 

(Cochran & Ellner, 1992; Salguero-Gómez et al., 2016b) and transient population dynamics (Stott, 

2016) can readily be derived from these transition rates. Age-specific trajectories can be calculated from 

MPMs and IPMs, even if the model does not explicitly incorporate age structure. From these trajecto-

ries, we can calculate averages and variances of the timing of key life history events such as age at 

maturity and life expectancy (Caswell, 2001). There are diverse methods for analysing transient dy-

namics (reviewed in Stott, 2016) including stochastic simulations (Haridas et al., 2009), transfer func-

tion analysis (Stott et al., 2012) and differentiation (Yearsley, 2004).  

The versatility and ubiquity of the MPM in population biology has led to over 2000 MPMs published 

in the scientific literature, presenting an opportunity for comparative work. The COMPADRE Plant 

Matrix Database (Salguero-Gómez et al., 2015) and COMADRE Animal Matrix Database (Salguero-

Gómez et al., 2016a) are repositories for published MPMs. The comparative analysis of life history 

traits derived from MPMs has been used to classify life histories at the species level. Previous research 

has classified life histories via a framework that identified major axes of covariation within MPM-

derived life history traits via principal component analysis (PCA) using demographic models from 

COMPADRE and COMADRE (Healy et al., 2019; Paniw et al., 2018; Salguero-Gómez, 2017; 

Salguero-Gómez et al., 2016b). This work has shown that 50-60% of covariation within life history 

traits could be captured with two main principal component axes, although each study used a different 

set of MPM-derived life history traits. The first axis was interpreted as ‘pace-of-life’, while the second 

axis correlated with reproductive strategy from iteroparity to semelparity. These two axes have been 

shown to be associated with variation in population growth rate (Salguero-Gómez, 2017), conservation 

status (Salguero-Gómez, 2017) and sensitivity to environmental temporal autocorrelation (Paniw et al., 

2018). However, these analyses are exploratory rather than hypothesis oriented so it can difficult be to 

determine the mechanisms that underpin these axes. Suggested drivers included environmental variation 
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and trade-offs in the investment of energy into survival/growth/reproduction (Salguero-Gómez et al., 

2016b). 

The comparative analysis of demographic data has also been used to investigate patterns in transient 

dynamics across species. Out of the methods for quantifying transient behaviours in populations, one 

of the most widely adopted (e.g. Ellis & Crone, 2013; Gamelon et al., 2014; Mcdonald et al., 2016; 

Nicol-Harper et al., 2018; Stott et al., 2010) is a set of six transient indices (Stott et al., 2011). These 

indices are calculated by projecting from a perturbed population structure and observing how this di-

verges from a projection initialised at the asymptotic population structure. In a density-independent 

population model, a perturbed population will asymptotically return to the stable population structure. 

Within this transient period, we can calculate three indices of transient amplification and three indices 

of transient attenuation. Applying a PCA approach to the six indices of transient potential of plant pop-

ulations, Stott et al. (2010) found that >90% of covariation could be captured by two principal compo-

nents. The first represented the magnitude of transient potential, while the second axis represented a 

tendency to have greater potential to amplify relative to attenuate and vice versa.  

Several studies have linked life history to transient dynamics. Position within the two-axis life history 

framework correlates with damping ratio (Salguero-Gómez, 2017), a transient measure of how quickly 

a density-independent population projection returns to stability after a disturbance. Stott et al. (2010) 

found that short-lived, semelparous plants and long-lived plants, representing life history extremes, ex-

hibited the greatest transient potential, whereas intermediate life histories such as herbaceous perennials 

exhibited the least transient potential. Research using mammalian MPMs by Gamelon et al. (2014) 

suggested that the ‘speed’ of the life cycle, quantified by generation time, correlated with the tendency 

to amplify or attenuate. Whilst it has been ascertained that there is a link between life history and tran-

sient dynamics we do not know if these associations are general, and if so, whether using life history is 

a viable shortcut for predicting transient behaviours in populations. Furthermore, it is not known which 

life history traits are associated with which aspects of transient behaviours and the mechanism behind 

any associations. 
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It is important to interpret comparative analyses of demographic data in the context of different con-

straints. Given a set of variables, such as life history traits, a constraint is a mechanism that excludes 

some combinations of those variables and may be classed as adaptive or non-adaptive. An example of 

an adaptive constraint is a budgetary trade-off: an organism’s finite energy budget induces a trade-off 

between the investment into survival, growth, or reproduction. Budgetary trade-offs are predicted to 

induce negative correlations among life history traits. A non-adaptive constraint is a constraint that is 

not under selection and is unrelated to the biology of the species. Density dependence is one such con-

straint. Negative density dependence ultimately limits population growth rate via its impact on survival 

and reproductive rates, causing population density to fluctuate around a carrying capacity and constrain-

ing long term growth rate. I showed that when population models without any form of energy budget 

were simulated under the simple constraint that population growth rate (λ) ≈ 1, the emergent life history 

trait (co)variance patterns were consistent with patterns seen in a PCA of published MPMs (Rolph et 

al., 2021). Thus, the patterns previously attributed to budgetary life history trade-offs or environmental 

effects were also consistent with non-adaptive constraints imposed by density dependence. Prior work 

(Stott et al., 2010) has shown that transient indices are highly correlated, yet we do not know the sig-

nificance of these correlations. It is not known whether these correlations are due to adaptive constraints 

such as environmental pressures selecting for combinations of life history traits that produce constrained 

transient dynamics, or non-adaptive constraints such as density dependence. 

Another consideration when interpreting results of comparative analysis of MPMs is how factors relat-

ing to model construction, unrelated to the population’s biology, affect MPM-derived outputs. It has 

been shown that outputs from MPMs, including indices of transient amplification and attenuation, are 

influenced by the discrete class structure of MPMs (Salguero-Gómez & Plotkin, 2010; Stott et al., 

2010). Very few MPMs are constructed with the same class structure; the number of classes and how 

the classes are defined (by age, function, size etc.) differs among studies. The number of classes chosen 

is influenced by a range of factors such as lifecycle complexity, chosen modelling framework, data 

availability and author preference. This variation in class structure has been recognised as likely to 

affect the results of comparative analyses (Kendall et al., 2019; Ramula & Lehtilä, 2005; Salguero-
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Gómez & Plotkin, 2010; Stott et al., 2010), but the effect of biases in a comparative setting is still 

uncertain. A proposed solution is the standardisation to a fixed four-class MPM, as utilised by Gamelon 

et al. (2014), which may ameliorate this issue; however, use of smaller MPMs has already been shown 

to dampen transient dynamics (Tenhumberg et al., 2009). It would be desirable to understand how dis-

cretisation and inconsistency in class structure affects the results of comparative analysis. 

Here, we use the simulated population model framework outlined in Rolph et al. (2021) to simulate 

continuous state population models under the assumption that density dependence creates asymptoti-

cally stable populations. Using simulated demographic data allows us to treat the underlying IPM as 

‘reality’ and the derived MPMs as discretised models such as those found in COMPADRE. We discre-

tise these population models to MPMs with different configurations of discrete classes. For each derived 

MPM, we calculate an IPM-compatible version of the transient indices described in Stott et al. (2011) 

and we also calculate life history metrics used in (Healy et al., 2019). We refer to these measures of life 

history as life history metrics as opposed to life history traits. Traits are traditionally interpreted as being 

genetically determined; however, these life history metrics are derived from population models which 

are a composite of life history and population-level processes therefore inheritance cannot be assumed. 

Building upon the previous methods used to examine links between life history and transient potential 

using MPMs, our approach is to use partial least squares regression, or projection to latent structures 

(PLS), to derive a common latent space that simultaneously maximises covariance between life history 

traits and transient indices. We have three key aims in the use of this framework. Firstly, to determine 

whether the demographic constraint found in Rolph et al. (2021) explains previously published associ-

ations between transient indices. Secondly, to investigate the strength and direction of any associations 

between life history and transient indices. Finally, to determine how matrix discretisation biases this 

association between transient potential and life history. 
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Methods 

Simulating population models 

To explore the linkage between life history and transient dynamics, we used simulated population mod-

els under the assumption that density dependence constrains asymptotic growth rate. We defined a flex-

ible IPM that could express a diversity of plant-like life histories. To ensure that these life histories were 

plausible we incorporated the key processes of survival, growth, maturity, flowering probability, num-

ber of offspring and the first-year survival of offspring. We sampled parameter sets for this IPM with a 

log long term growth rate, 𝑙𝑜𝑔(λ), of 0, under the assumption that density dependence constrains growth 

rates to approximately 1. The underlying IPM was a size-structured, post-reproductive census model 

with a projection interval of one year. This IPM had two stages: immature non-reproductive class and 

mature reproductive class. The full IPM kernel, 𝐾, describes the transitions between two size distribu-

tions, immature, 𝑛𝐼(𝑧, 𝑡), and mature, 𝑛𝑀(𝑧, 𝑡), and from size 𝑧 to size 𝑧′ over a discrete time interval. The 

transitions for the immature plants take the form 

 
𝑛𝐼(𝑧′, 𝑡 + 1) = ∫ 𝑠(𝑧)(1 − 𝑚(𝑧))𝐺(𝑧′, 𝑧)𝑛𝐼(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

+  ∫  𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟(1 − 𝑚(𝑧′))𝑐0(𝑧′)  𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

(3.1) 

and the transitions for the mature plants take the form 

 
𝑛𝑀(𝑧′, 𝑡 + 1)  =  ∫ 𝑠(𝑧)𝐺(𝑧′, 𝑧)𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 + ∫ 𝑠(𝑧)𝑚(𝑧)𝐺(𝑧′, 𝑧)𝑛I(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

+  ∫ 𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟𝑚(𝑧′)𝑐0(𝑧′)𝑛𝑀(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 

(3.2) 

 

where 𝑛𝑀(𝑧, 𝑡) is the size distribution of mature individuals at time 𝑡, 𝑛𝐼(𝑧, 𝑡) is the size distribution of 

immature individuals at time t, 𝑠(𝑧) is the size-dependent survival function, 𝐺(𝑧′, 𝑧) is the size-depend-

ent growth kernel, 𝑚(𝑧) is size-dependent maturity, 𝑝𝑏(𝑧) is size-dependent flowering probability, 𝑏(𝑧) 
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is size-dependent number of offspring, 𝑝𝑟  is first year survival rate, 𝑐0(𝑧′) is size at birth and 𝑝𝑟 is 

probability of survival and recruitment from seed to seedling. 𝑈 and L denote the upper and lower size 

limits of the kernel, respectively. 

We used an adaptive Metropolis (AM) algorithm (Haario et al., 2001) with delayed rejection to sampled 

IPM parameters that result in an asymptotic growth rate 𝑙𝑜𝑔(𝜆) ~ 0. Metropolis algorithms are a Markov 

chain Monte Carlo (MCMC) method for generating random samples from a probability distribution for 

which direct sampling is difficult. The algorithm involves updating a proposal distribution which is 

used to generate candidate parameter sets. At each iteration, the corresponding IPM kernel was con-

structed from the candidate parameter set, and 𝑙𝑜𝑔(λ) was calculated from the dominant eigenvalue of 

the kernel. The parameter set was accepted or rejected based on the 𝑙𝑜𝑔(λ) value. We used the ‘mod-

MCMC’ function from R package ‘FME’ (Soetaert & Petzoldt, 2010) to implement the AM algorithm 

in the R programming language (Core R Team, 2019). The parameter covariance matrix was re-evalu-

ated every 500 iterations to improve the acceptance rate of proposed parameter sets. The chain ran for 

200,000 iterations. The first 25,000 parameter sets were discarded as burn-in to allow the adaptation of 

the covariance matrix to occur. The remaining parameter sets were thinned to 1000 parameter sets to 

remove autocorrelation. 

We constructed size and maturity structured MPMs from each IPM to explore the consequences of 

imposing a discrete stage structure on continuously structured populations. Discretisation of the state 

distribution preserved log(λ). To construct an MPM, the continuous size domain was divided into con-

tiguous discrete intervals. The intervals were chosen by first calculating the stable state distribution of 

the IPM then splitting the stable state distribution into equal quantiles based on the number of size 

classes in the target MPM. The mean rates of growth-survival and reproduction for each interval were 

then derived by calculating the expectation with respect to the normalised stable size distribution over 

each interval. The derived MPM comprised of two matrices, 𝐹𝑚𝑎𝑡 and 𝑃𝑚𝑎𝑡 , which describe fecundity 

and survival/growth transitions, respectively. The derived MPMs include the demographic process of 

stasis which is not present in continuously structured populations because there is no probability of 

remaining in the same life stage when there are no discrete life stages. 
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Calculating life history metrics 

For each simulated population, we calculated a set of six life history metrics selected to capture different 

facets of life history (Healy et al., 2019). These metrics represent the spread of reproduction, age at first 

reproduction, distribution of mortality, reproductive rate, mature life expectancy and generation time. 

The methods for calculating these metrics were originally intended for MPMs in which a single life 

stage, such as a seedling, represented the start of the life cycle. These methods could not be applied to 

our simulated IPMs because the start of the lifecycle was represented as a size distribution, rather than 

a discrete stage, meaning that the first life stage of our discretised simulated population models did not 

uniquely represent the start of the lifecycle. To overcome this difference, we adapted the calculations 

to accommodate an initial state distribution, 𝑐(𝑧), which represents the size class distribution of a new 

cohort of a population at its asymptotic stable stage distribution. 𝑐(𝑧) is defined as 

 𝑐(𝑧) =  F(z′, z)ω (3.3) 

where ω is the stable state distribution, calculated as the dominant right eigenvector of 𝐾. For the MPMs 

that we derived from IPMs, the calculation is notated as 

 𝑐 = 𝐹𝑚𝑎𝑡 ω (3.4) 

 

Some of the following life history metrics are derived from the age-specific survivorship curve 𝑙𝑎 and 

the age-specific fertility trajectory 𝑓𝑎, where the 𝑎 subscript denotes age in years (Caswell, 2001). 𝑙𝑎 

and 𝑓𝑎 are calculated under the assumption that a single matrix class represents the size/state at birth. 

Therefore, we calculated an equivalent of 𝑙𝑎 𝑓𝑎 but for a cohort of individuals from the 𝑐(𝑧), notated as 

𝑙𝑎̃𝑓𝑎̃, and calculated as 

 
𝑙𝑎̃ =  〈𝑙𝑎 , 𝑐〉 =  ∫ 𝑙𝑎(𝑧)𝑐(𝑧)𝑑𝑧

𝑈

𝐿

 

𝑓𝑎̃ =
1

𝑙𝑎̃

∫ ∫ 𝐹𝑃𝑎(𝑧 ′, 𝑧)𝑐(𝑧)𝑑𝑧 𝑑𝑧′
𝑈

𝐿

𝑈

𝐿

 

(3.5) 
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Because 𝑐 is a probability distribution (by assumption), 〈𝑙𝑎 , 𝑐〉 denotes an average value with respect to 

the distribution.  

Demographic vital rates summarise population-level transitions between life stages whilst a population 

remains in a stable stage distribution. Mean sexual reproduction, ∅, describes the mean year to year per-

capita number of sexual offspring once the population has converged to the stable stage distribution and 

is calculated as 

 
∅ =  ∑ Fmat

𝑚

1

ω 
(3.6) 

where F is the fecundity matrix or kernel, and ω is the stable stage distribution and 𝑚 is the number of 

life stages in the derived MPM. 

Generation time is a measure of population turn-over: the number of years necessary for the individuals 

of a population to be fully replaced by new ones. Generation time (T) is calculated from reproductive 

rate (𝑅0) and asymptotic growth rate (𝜆) as 

 
𝑇 =

log(𝑅0)

log (𝜆)
 

(3.7) 

where 𝑅0 is defined as 

 
𝑅0 =  ∫ 𝑙𝑎̃𝑓𝑎̃𝑑𝑧

∞

0

 . 
(3.8) 

Age at maturity, Lα, is the number of years that it takes an average individual in the population to enter 

a mature life stage, defined as a stage in which an individual can potentially reproduce. This is calcu-

lated by decomposing the MPM into 𝐹𝑚𝑎𝑡 and 𝑃𝑚𝑎𝑡  and using them to define a Markov chain with 

absorbing states for entering a potentially reproductive class and mortality. Markov chain theory can 

then be used to calculate the mean age of first reproduction, conditional on reaching maturity and this 

approach is outlined in (Caswell, 2001). 

Mature life expectancy as calculated in (Healy et al., 2019; Salguero-Gómez et al., 2016b), 𝐿𝑤 , is the 

log ratio of mean age at sexual maturity, 𝐿𝛼, until the mean life expectancy, 𝜂𝑒, of an individual in the 
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population and is calculated as 𝐿𝑤 = log(𝜂𝑒) − log(𝐿𝛼). Healy et al. (2019) describe their metric for 

mature life expectancy to be conditional on reaching maturity in their methods. In fact, the function 

they used from the Rage R package (https://github.com/jonesor/Rage) calculated this metric using the 

log ratio calculation. For this study, we used a Markov chain approach to calculate the average age of 

mortality, conditional on reaching maturity as described in Ellner et al. (2016). 

The final two metrics capture the spread of reproduction and mortality across age. To measure the 

spread of reproduction across the life course (G), we calculated the Gini index of the age-specific fe-

cundity curves, 𝑓𝑎̃using the Gini function of the ineq package (Zeileis, 2015). The resulting values go 

from 0, describing iteroparous strategies which reproduce across their lifespan, to 1, describing sem-

elparous strategies with one large reproductive event. We calculated the distribution of mortality risk 

by calculating the standard deviation of the age-specific distribution of mortality derived from the age-

specific survivorship curve 𝑙𝑎̃. We used linear interpolation to standardise age-specific curves for com-

paring metrics derived from MPMs/IPMs with different matrix dimensions / kernel resolution. We cal-

culated the mortality rate from each interpolated point on the standardised age-specific survival curves 

and calculated the standard deviation of the resulting sequence. 

Deriving indices of transient dynamics 

To quantify transient dynamics, we calculated six indices of transient dynamics based on the indices 

described in detail in Stott et al (2010). Each index either quantifies amplification or attenuation. Each 

of these indices can be calculated as a case-specific projection from a predefined population structure 

or as a transient bound, i.e. the greatest possible magnitude amplification or attenuation. We used the 

transient bound because it doesn’t require knowledge of the existing population structure. Indices for 

first-step amplification and first-step attenuation capture the biggest possible population increase or 

decrease after a single time step, relative to the asymptotic growth rate. Indices for maximum amplifi-

cation or maximum attenuation calculate the greatest possible deviation, across all time steps, from 

what would have been projected if the population had started at the stable size/stage distribution. Indices 

for amplified and attenuated inertia calculate the greatest deviation from the long-term stable population 
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projection once the transient dynamics have reached their stable stage distribution, relative to the as-

ymptotic projection. 

The original calculation of the indices of transient potential (Stott et al., 2011) was not an appropriate 

method for directly applying to our simulated IPMs because these calculations determined the transient 

potential by projecting from an initial population vector with all individuals placed in a single discrete 

class. Conceptually, this wasn’t appropriate for IPMs because IPMs are based on a continuous state 

variable. This calculation also wasn’t appropriate for the MPMs derived from these IPMs because the 

measures of transient potential defined in Stott et al. (2011) were highly sensitive to the upper size limit 

of the final size class. This upper size limit was defined to minimise eviction (Williams et al., 2012), 

was not a biologically relevant parameter and was not consistent for each MPM/IPM. A greater upper 

size limit always resulted in greater transient amplification because in our simulated population models 

the vital rates of survival and fecundity increased with size.  

Our modified transient indices were based on the transient amplification or attenuation from a stand-

ardised reference stage–size distribution. To calculate the three indices of transient amplification we 

projected from a cohort of mature-class projections and to calculate the three indices of transient atten-

uation we projected from a cohort of new recruits (Fig. 3.1). For measures of transient amplification, 

we used a starting Gaussian distribution with a mean of z = 1 and a standard deviation of 0.2. The value 

of 0.2 was chosen arbitrarily but our analyses were not sensitive to the value chosen for the standard 

deviation. For measures of transient attenuation, we used a starting Gaussian distribution with a mean 

of 0 and the standard deviation of the size at birth distribution. To translate these case-specific projec-

tions to the discretised MPM of each IPM, the continuous state starting distribution described above 

was ‘cut’ into the discrete size classes to derive an initial population vector (Fig. 3.1, second row). 

Linking life histories and transient potential 

We generated a set of 1000 simulated integral projection models using the two-stage, size-classified 

IPM and the Metropolis algorithm sampling technique. From these simulated population models, we 

calculated the six life history traits and six transient indices described in the previous sections. We used 
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principal component analysis (PCA) to explore the main axes of (co)variation of transient indices and 

life history metrics separately, using R function ‘prcomp’ from base R package ‘stats’ (Core R Team, 

2019). Life history metrics were all log transformed, as in Healy et al. (2019), and transient indices of 

transient amplification were log transformed due to right skew but indices of transient attenuation did 

not require log transformation. Life history metrics and transient indices were scaled and centred before 

carrying out the PCA. 

We used partial least squares regression, also known as projection to latent structures, (PLS) to reveal 

associations between both life history metrics and transient indices derived from population models. 

PLS determined a linear regression model by projecting the predicted variables and the observable var-

iables to a new space thus deriving latent variables that maximise (co)variance with both life history 

traits and transient indices. Life history metrics and transient indices were scaled and centred before 

carrying out PLS. To avoid confusion, components from PCA are referred to as principal components 

(PCs) and components from PLS are referred to as latent variables (LVs) throughout this manuscript. 

PLS was implemented using the R package ‘pls’ (Liland, 2013). We used 10-fold cross-validation to 

evaluate how many latent variables to retain. Cross-validation determined the proportion of variance 

explained in life history traits and transient indices as the number of LVs was increased. PLS also pro-

duced weightings for how each life history metric and transient index is weighted towards each LV. We 

used these weights, in addition to cross validation results, to determine the composition of each LV and 

how many LVs should be retained to quantify the link between life history and transient potential.  

We used PLS to predict transient indices from life history metrics to test the viability of PLS as a pre-

dictive tool. We used the calculated life history metrics for each population model to predict values for 

each of the six transient indices using the PLS regression models (Fig. 3.2). We then projected each 

population model onto the major axes of transient response, representing the magnitude of transient 

response and the tendency to have greater amplification than attenuation. We projected into this PCA 

space using the transformations specified by the PCA fitted to the simulated IPMs. To assess the accu-

racy of prediction we compared the predicted transient indices or PCs to the observed transient indices 

or PCs and calculated the coefficient of determination (R-squared) and root mean squared error of 
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prediction (RMSEP). We made this comparison for transient indices predicted using PLS with an in-

creasing number of LVs from one to six. 

To determine how discretisation to MPMs might affect predictions of transient indices we derived two 

sets of MPMs for each set of 1000 simulated IPMs. Firstly, we derived a set of MPMs where the con-

tinuous size domain was discretised to four size classes with uniform stable size class distributions. 

Each of these size classes was also subclassified as immature or mature, reflecting the same size by 

maturity structure of the IPM. This meant that the MPMs had eight discrete life stages. These standard-

ised eight class MPMs, referred herein as the ‘fixed dimensions’ set of MPMs, is analogous to the 

approach employed by Gamelon et al. (2014), whereby they standardised published MPMs from CO-

MADRE to have the same number of classes. Secondly, from the same set of IPMs, we derived a second 

set of MPMs discretised to a range of different dimension. Each of these MPMs were randomly allo-

cated to have 1,4 or 8 size classes, resulting in MPMs with 2, 8 or 16 discrete life stages. This diversity 

in matrix dimension aimed to replicate the diversity of matrix dimensions in databases such as COM-

PADRE, as such this set is termed ‘COMPADRE analogue’. From these two sets of MPMs, we repeated 

the analysis conducted for IPMs and compared the PLS-predicted transient indices to the measured 

transient indices of the original IPM (Fig. 3.2).  

 

Results 

There were clear (co)variance patterns between the six transient indices derived from simulated IPMs 

(Supplementary fig. S3.1). The principal component analysis (PCA) of the six transient indices showed 

that 91.5% of the variance in the six transient indices could be explained by two principal components 

(Fig. 3.3). When interpreting these axes, it is important to note that larger values for amplification indi-

ces represent large transient potential whereas for attenuation indices the opposite is true and large 

transient potential is represented by smaller values. PC1 described the amplitude of transient responses 

and accounted for 72.1% of (co)variance. Increasing values on PC1 were associated with large transient 
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bounds: larger values for transient amplification and smaller values for transient attenuation. PC2 de-

scribed a tendency to amplify as opposed to attenuate and accounted for 19.4% of (co)variance. Increas-

ing values on PC2 were associated with a tendency towards amplification: larger values for transient 

amplification and larger values for transient attenuation. Populations were not normally distributed 

within the PCA space and the positions of simulated population models within these two PCA axes 

exhibited non-linear patterns (Fig. 3.3). For example, we observed few population models with a small 

magnitude of transient potential (negative values on PC1) and a tendency towards attenuation (negative 

values on PC2). We didn’t find evidence of an inherent link between the transient magnitude or ten-

dency of a population model and its long-term growth rate. For our simulated population models, there 

was no clear relationship between the position on these PCA axes and asymptotic long term growth 

rate, 𝜆 (Fig. 3.3). 

Similarly, we observed very strong covariance patterns in the life histories of simulated population 

models. Life history, as quantified by the six life history metrics, could be organised in a two-axis life 

history space which explained 98% of life history variation (Fig. 3.4). The first PC accounted for 90.0% 

of the variance in the life history metrics and the second PC accounted for 8.0%. The position within 

this PCA space was primarily informed by measures of longevity: generation time, life expectancy post 

maturity and mean age at maturity. This implies that the other metrics covaried so strongly with these 

three metrics that they didn’t provide any new information. When we looked for covariance patterns 

across both transient dynamics and life history simultaneously using PLS, we identified a six-dimen-

sional latent space in which we refer to each axis as latent variables (LVs) 1-6. Using cross-validation, 

we determined that LV 1 explained 73% of (co)variance in life history metrics and LV 2 explained 12% 

(Table 3.1). Thus, we could explain 85% of the variance in life history traits with two LVs, compared 

to 98% explained by the first two PCA-derived components. We also saw that spread of reproduction, 

mean sexual reproduction and distribution of mortality risk were important for positioning a population 

in the PLS latent space, unlike in PCA space. LV 4 explained the third most variance, accounting for 

9.3% of variance compared to only 2.7% of variance explained by LV3. 
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Whilst the first LV resembled a fast-slow continuum similar to the life history PC1, subsequent 

axes/LVs deviated from the definitions of the PCA axes (Fig. 3.5, Table 3.2). LV1 captured variation 

in mean measures of life history, such as mean sexual reproduction and mean age at maturity, but also 

captured variation in the spread of reproduction and mortality. Increasing values for LV1 were associ-

ated with population models with iteroparous reproductive strategies and life histories where mortality 

is concentrated at particular parts of the life course rather than spread equally throughout the life course. 

LV1 was negatively correlated with life history metrics associated with a slower population turnover: 

longer generation times, later age at maturity and longer mature life expectancy. LV 2 (9.3% variance 

explained) accounted for some remaining (co)variances and negatively correlated with all life history 

metrics except for the spread of reproduction. LV 3 (2.7% variance explained) described an axis from 

early maturing, semelparous life histories to life histories with unequally spread mortality, longer ma-

ture life expectancy and longer generation times. 

For indices of transient amplification, increasing from one to two to three LVs produced consistent 

increases in the proportion of variance explained, but subsequent LVs produced negligible further in-

creases (Fig. 3.6). Contrastingly, for indices of attenuation, we didn’t see substantial increases in vari-

ance explained beyond using 2 LVs and we saw much greater variation in variance explained by LV1 

for each attenuation index. Variance explained by LV 1 for amplified inertia, maximum amplitude and 

maximum attenuation was between 30-32% (Table 3.1). Using only the first LV very poorly explained 

variance in attenuated inertia, with only 9.0% of variance explained. However, variance explained for 

attenuated inertia increased to 62.7% when two LVs were used. Using LV 2 increased variances ex-

plained for attenuation indices: we observed increases of 19.0%, 52.9%, 53.8% for first step attenuation, 

maximum attenuation, attenuated inertia, respectively. This was compared to 16.3%, 14.9% and 11.5% 

for the respective amplification indices.  

The relationship between transient indices and each LV translated into the relationship between each 

LV and the transient PCA axes: magnitude and tendency to amplify. The first LV captured the magni-

tude of transient dynamics, LV2 captured variation in both magnitude and tendency, LV3 captured 

variation in tendency (Fig. 3.6). As quantified by R2, one LV explained 45.1% of variance in the 
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magnitude of transient potential (PCA axis 1) and two LVs explained 79.1% of variance, however, the 

variance explained increased only marginally to 82.2% when three LVs were used. Contrastingly, LV 

1 essentially described none of the variance (0.001%) in the transient PCA axis 2: the tendency for a 

population to amplify as opposed to attenuate. Two LVs still explained only 14.9% of variance; how-

ever, when three LVs were used, 53.1% of variance was explained. Increasing the number of LVs to 4, 

5 or 6 led to only very marginal increases in the proportion of variance explained in the transient indices, 

and therefore in the PCA axes for magnitude and tendency. 

The link between life history and transient indices was weaker for indices that describe transient re-

sponse at longer timescales from the initial perturbation. The first step amplification/attenuation was 

directly linked to the reproductive capacity or survival rate of the initial cohort, whereas amplified/at-

tenuated inertia was more poorly predicted by position on a fast-slow continuum due to being calculated 

a greater number of time steps from the initial perturbation. LV1+2+3 explained 71.3%, 65.6% and 

59.1% for first step amplification, maximum amplification, and amplified inertia, respectively (Fig. 3.6, 

Table 3.1). LV1+2 explained 86.3%, 83.3% and 62.8% for first step attenuation, maximum attenuation, 

and attenuated inertia, respectively (Fig. 3.6, Table 3.1). Calculating these metrics further from the 

initial perturbation meant that the projection had cycled through the life cycle multiple times and there-

fore the inertia indices were a result of more complex pathways through each population model.  

Using demographic data with discretised structuring of a continuous state variable, as found in data-

bases such as COMPADRE, affected predictions of transient potential. The discretisation of the contin-

uous state variable affected the values of derived life history metrics and transient indices (Supplemen-

tary fig. S3.3). Therefore, when compared to a PLS fitted to our simulated IPMs, PLS models fitted to 

MPM-derived metrics provided an altered link between life history and transients. Surprisingly, we 

found that when only one LV was used to predict transient indices using our two MPM-fitted PLSs, the 

predicted transient indices were more similar to the actual values than the values predicted by the IPM-

fitted PLS (Fig. 3.6, Supplementary fig. S3.2). Despite this apparent improvement by discretising the 

demographic data, we saw evidence that the PLS model had been degraded by fitting to discretised 

data; when increasing from one to two latent variables, which should improve prediction, the proportion 
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of variance explained decreased for all measures of transient amplification (Fig. 3.6). The predictions 

of both transient magnitude (PC1) and the tendency towards amplification/attenuation (PC2) were de-

graded by using a discretised version of the population models. Predictions for PC1 using MPM-fitted 

PLSs only explained 55% to 60% of variance when any number of LVs were used, whereas predictions 

from continuously structured models using two LVs explained 79.1% of variance (Fig. 3.6). PC2 was 

even more poorly predicted; 25% of variance explained was barely exceeded by a PLS using 4 LVs 

fitted to fixed dimension MPMs (Fig. 3.6). Compared to the effect of using discretised models versus 

continuously structured models, whether the models were discretised to fixed dimension or the ‘COM-

PADRE analogue’ made a relatively small difference. For indices of transient amplification, predictions 

using the PLS fitted to fixed dimension MPMs scored better than the COMPADRE analogue MPMs, 

as measured by R2; however, for indices of transient attenuation, the opposite was true. Differences in 

the ability to predict transient PC1 was negligible between fixed dimension MPMs and the COMPA-

DRE analogue MPMs.  
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Discussion 

Our simulated population models are sampled under the assumption that density dependence means 

populations fluctuate around a carrying capacity and therefore growth rates are constrained. As a result, 

the emerging patterns can be attributed in part to non-adaptive constraints: a factor not typically con-

sidered when interpreting these analyses. We found multivariate associations in covariance patterns in 

metrics of life history and transient potential. However, there are still significant proportions of variance 

in transient indices that remained unexplained by life history metrics when using PLS. Our PCAs 

showed that the six transient indices and life histories were highly constrained. If a population has a 

large potential for transient amplification, then it will have a large potential for transient attenuation: 

we described this as the magnitude of transient potential. The first latent variable in life history and 

transient indices resembled the familiar but imprecisely defined fast-slow continuum, explaining over 

70% of variance in life history traits and 50% of variance in the magnitude of transient potential. This 

shows a clear link between life history and transients. However, our results agree with prior research 

that showed additional axes of variation are required to usefully classify life histories (Healy et al., 

2019; Paniw et al., 2018; Salguero-Gómez et al., 2016b). In our work, using two LVs explained 75% 

of the magnitude of transient potential and three LVs were needed to explain 50% of variation in a 

population’s tendency towards amplification or attenuation. Finally, we found that the relationship be-

tween life history metrics and the transient potential can be obscured when predictions are made using 

discretised population models. A population’s tendency towards transient amplification/attenuation 

couldn’t be reliably determined via a comparative approach using discrete class population models. 

Non-adaptive constraints shape covariance patterns in transient indices and understanding the role of 

non-adaptive constraints provides context for interpreting empirical analyses. When observing covari-

ance patterns in empirical data, it can be hard to determine whether the patterns arise from adaptive 

constraints, where certain combinations of traits are selected through evolution, or from non-adaptive 

constraints such as density dependence. In the case of transient indices, the covariance patterns previ-

ously observed in empirical research (Gamelon et al., 2014; Stott et al., 2010, 2011) are non-adaptive; 
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the (co)variance patterns within life history metrics and transient indices that we observed reflect those 

found in our simulated population models so are due to a combination of density dependent constraint 

of log(λ) ~ 0 and mathematical constraints. An example of a mathematical constraint is that the maxi-

mum amplitude must be greater than or equal to the first-step amplification. We do not explore mathe-

matical constraints in-depth and a future direction to explore mathematical constraints from MPMs 

might be to investigate the properties by random matrices (Grela, 2017), since MPMs are just matrices 

of transition rates. Stott et al. (2010) and Gamelon et al. (2014) showed a positive correlation between 

the magnitude of transient potential and asymptotic growth rate (Fig. 3.3). We can better contextualise 

this correlation because we did not identify the same relationship in simulated populations; their find-

ings imply that in real-world populations transient potential may be associated with population persis-

tence. However, another explanation is that this result may be due to biases in published MPMs. For 

example, invasive and endangered species are overrepresented in the scientific literature (Crone et al., 

2011). Invasive species tend to have a greater amplitude of transient potential (Jelbert et al., 2019) and 

they are also more likely to be studied when they are not at carrying capacity or under density-dependent 

pressures, therefore a model of these populations may have a growth rate > 1. The presence of non-

adaptive constraints does not affect our ability to use this framework as a predictive tool and we can 

exploit non-adaptive constraints to reduce uncertainty in mapping the association between life history 

and transient dynamics. 

In general, the position along a fast-slow continuum provides some insight into a population’s transient 

potential, however, it still leaves critical unexplained variance in transient behaviour, especially in the 

second axis: the tendency towards amplification or attenuation. We found ~50% of the variance in the 

magnitude of transient potential is explained by our fast-slow axis, LV1. Reproduction is a requirement 

for amplification and mortality is a requirement for attenuation therefore an association was expected 

of life histories being structured from ‘fast’ high reproduction, high mortality life histories to ‘slow’ 

low reproduction, low mortality life histories. Furthermore, due to demographic constraints attributed 

to density dependence which constrains 𝜆~ 1, life histories with higher reproduction must, on average, 

exhibit lower survival across some or all parts of the lifecycle (Rolph et al., 2021). This means that less 
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reproductive populations exhibit higher survival rates, therefore living longer and having longer gener-

ation times which leads to a smaller transient potential. At first glance, these findings seem to counter 

the research suggesting that species with a longer generation time have a greater extinction risk because 

they struggle to recover from disturbances (Hutchings et al., 2012). When interpreting the strength and 

direction of the association between life history and transient dynamics we have to be precise about 

what aspect of transient dynamics is being captured by the transient indices used in this analysis. Slow 

life histories have been found to take longer to recover from disturbance than fast life histories because 

their population growth rate is restricted by a lower reproductive rate and a later age at maturity. For 

example, previous comparative work showed that ‘slower’ life histories had a smaller damping ratio 

meaning that they took longer to return to their asymptotic state (Salguero-Gómez, 2017). However, 

the transient indices used in our analysis do not quantify time taken to recover from a perturbation, 

therefore our finding that slower life histories have a smaller magnitude of transient potential is not 

counter to existing evidence. 

Our findings regarding the association of life history and transient dynamics differ from comparative 

work by Stott et al. (2010) which found that life history extremes exhibited a larger transient potential. 

Life history was classified by Stott et al. (2010) in terms of ecological succession from annuals to per-

ennials to late succession rather than on a fast-slow continuum. It may be that our underlying IPM is 

not flexible enough to describe tree-like life histories with long lifespans but high early-life mortality. 

Another possible explanation for these differences is that late succession life histories in Stott et al. 

(2010) included species like trees which are typically modelled with large matrices comprising many 

size classes (Zuidema et al., 2010) and we found, reflecting existing evidence (Stott et al., 2010; 

Tenhumberg et al., 2009), that MPMs with more size classes can express larger transient bounds. De-

mographically, to express the combination of long generation times but high early-life mortality a life 

history needs slow growth and low survival. These types of life history can be expressed through our 

IPM in terms of vital rates with large numbers of offspring, 𝑏(𝑧), but low first year survival of offspring, 

𝑝𝑟, but do not manifest in the annual transition rates because the ‘trade-off’ between adult survival and 

offspring survival occurs in the within-year processes. Secondly, depending on census timing 



Chapter 3: Linking life history to transient dynamics via population models 

85 

 

(Okuyama, 2019) or MPM construction methods (Kendall et al., 2019), a seed stage may appear in the 

matrix structure of published tree MPMs providing a low survival class from which a population can 

be projected to exhibit large attenuations in transient response. Similarly, production of seeds means 

that a population has a large capacity for transient amplification (Ezard et al., 2010). 

Previous comparative analyses have identified a ‘reproductive strategies’ axis as important for structur-

ing life histories, however, none of the axes emerging from either our PCA or PLS can be clearly la-

belled as reproductive strategies. The reproductive strategies axis is typically associated with the metric 

for the spread of reproduction (Healy et al., 2019) or Demetrius’ entropy (Salguero-Gómez et al., 2016b) 

or iteroparity (Paniw et al., 2018). The life history axes exhibited by our PCA of six life history metrics 

differed from previous studies in two key ways and highlights very strong covariance patterns. Firstly, 

three of the six life history metrics hardly contributed to PC1 and PC2. Secondly, the percentage of 

variance explained by the first axis increased considerably to 90%, compared to previous empirical 

analyses which presented second axes explaining 40-60% of variation. This percentage of variance 

explained is greater than in the PCA of 9 metrics from simulated MPMs in Rolph et al. (2021), indicat-

ing that these six metrics are more highly constrained than the nine used previously, and that noise 

introduced by discretisation to MPMs weakens covariance patterns. Instead of a 2-axis framework, we 

find that three LVs are required to link life history to transients, especially in predicting a population’s 

tendency to amplify instead of attenuate. We found that whether a population had a tendency for am-

plification or attenuation was linked most strongly to metrics of mortality: distribution of mortality and 

mature life expectancy, whereas Gamelon et al., (2014) found a link between generation time and the 

tendency to attenuate. Populations with a long mature life expectancy and semelparous strategies had a 

greater tendency for attenuation. This ‘tendency’ axis may be more pertinent to determining the ‘resil-

ience’ of populations than the magnitude of transient response.  

Artefacts arising from discretisation of continuous state variables impacted the association between life 

history and transient dynamics, but we have shown that simulated population models provide a toolkit 

for diagnosing how this discretisation process affects comparative analyses. Our results support a grow-

ing body of evidence that modelling decisions in MPM construction affect the reliability and robustness 
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of their predictions (Kendall et al., 2019; Salguero-Gómez & Plotkin, 2010; Stott et al., 2010). Our 

findings corroborate with work by Tenhumberg et al. (2009) that discretisation of continuous state var-

iables allows organisms to move through the state space faster. Discretisation also artificially induced 

the demographic processes of stasis, remaining at the same size across the projection interval, which 

does not mathematically exist in a continuous structured population. This analysis showed that these 

discretisation effects meant that the transient dynamics of discretised population models were of lesser 

magnitude than those of their parent IPM. These effects also extended to life history metrics; however, 

the effects were less unidirectional, often introducing noise instead of bias. These results are concerning 

because our exploration of discretisation was somewhat limited; investigating the use of discrete class 

models derived from a continuously structured model. Many other factors that may also affect the as-

sociation between life history and transient indices, including the existence of multiple state variables 

(e.g. sex and size), what type of MPM structure was used (Carslake et al., 2009) and the presence or 

exclusion of cryptic life stages (Kendall et al., 2019). We showed that standardising published MPMs 

(e.g. Gamelon et al., 2014) to a fixed set of life stages before analyses only marginally improved the 

accuracy of our comparative analysis. We would expect to see a similar effect in other comparative 

analyses. We echo calls to always review the associated publication for an MPM before inclusion in 

comparative analyses (Kendall et al., 2019) to check MPM construction methods. Another considera-

tion is that non-adaptive constraints and matrix discretisation may interact. Whilst our discretisation 

process impacted measures of life history and transient dynamics, it did not alter asymptotic growth 

rate, 𝜆, and so the 𝜆 ≈ 1 non-adaptive constraint is still in force. Therefore, we might expect that the 

overall covariance patterns, constrained by 𝜆 ≈ 1, would hold true and any latent space derived by PCA 

or PLS would be less affected by use of discretised population models. This may falsely give the im-

pression that discretisation is having a negligible effect on comparative analyses, however the position 

of a population within this latent space could be affected considerably. 

This work was motivated to build a more general understanding of transient dynamics and aimed to 

answer three questions; what explains covariance patterns in transient indices, what is the strength and 

direction of any association between life history and transient dynamics, and how does MPM 
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discretisation affect this association. Firstly, we showed that covariance patterns in transient indices for 

published MPMs conform to patterns attributed to non-adaptive constraints. This reiterates an important 

consideration when interpreting these analyses: dimension reduction techniques such as PCA and PLS 

will always find axes and we must be careful not to ascribe our preferred explanation to these patterns. 

Secondly, we’ve shown that life history links to transient dynamics, and generally, the expectation that 

fast life histories have greater potential for transient amplification and attenuation holds. However, we 

need subsequent LVs to explain more variance, especially in a population with a tendency towards 

amplification or attenuation, and there remains a proportion of variance that we cannot explain using 

our PLS approach. However, to generalise this finding, we have to critically consider how well the 

covariance patterns from population models relate to measurements from real populations. Thirdly, our 

ability to discern this association would have been weakened if we had used published discretely struc-

tured demographic data. Overall, this work makes a useful step towards a more general understanding 

of the link between life history and transient dynamics.  
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Figures 

 

Figure 3.1: Standardised case-specific projection method used to quantify transient amplification 

and attenuation for integral projection models (IPM) and matrix population models (MPMs). The 

figures in the first column show the initial population distribution for each case-specific projection. 

Each colour represents two cases of initial conditions. Red is an immature cohort with a Gaussian size 

distribution centred on z = 0 and standard deviation corresponding to the size at birth parameter of that 

parameter set. Blue is a mature cohort with a Gaussian distribution centred on z = 1 and a standard 

deviation of 0.1. For the matrix population models (row 2), the continuous size distribution is split into 

discrete size classes. The discrete size classes are numbered with vertical lines indicating the upper and 
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lower bounds of each class. The area of each bar represents the population density in each size class. 

The figures in the second column show population projections over 10 time-steps from each of the 

initial distributions, normalised by the asymptotic growth rate. 
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Figure 3.2: Outline for analysis designed to determine: (1) the predictive performance of a PLS 

fitted to metrics derived from IPMs, (2) whether these predictions are affected by using COM-

PADRE analogue MPMs, (3) whether standardising MPMs to fixed dimensions improves predic-

tions compared to the COMPADRE analogue. A set of 1000 simulated integral projection models 

(IPMs), sampled to λ ~ 1, are also discretised to two sets of matrix population models. The first set is 

discretised to MPMs with 1,2 or 4 size classes. The second set is discretised to two size classes with a 

uniform stable stage distribution. Each set of M/IPMs are used to derive six life history metrics and six 

indices of transient dynamics and are used to fit three separate partial least squares regressions (PLS). 

Each of these models is used to predict transient indices from life history metrics derived from their 

respective set of M/IPMs. These predictions are made using an increasing number of latent variables 

from 1-6. These predicted transient indices are then compared to the measured transient indices derived 

from the original IPM (before discretisation, if applicable). Each comparison is used to calculate R2 and 

the root mean square error of prediction (RMSEP) to determine the accuracy of prediction.  
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Figure 3.3: > 90% of (co)variance in six indices of transient dynamics derived from simulated 

integral projection models (IPMs) can be accounted for by two components derived from a prin-

cipal component analysis. The size and direction of arrows indicate loadings of the transient indices 

towards PC1+2. Each point represents an IPM and its position in the PC1+2 space. Subplots show the 

relationship between PC1+2 and log long-term asymptotic growth rate (𝜆). 
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Figure 3.4: ~98% of (co)variance in six life history metrics derived from simulated integral pro-

jection models (IPMs) can be accounted for by two components derived from a principal compo-

nent analysis. Size and direction of arrows indicate loadings of the life history metrics towards PC1+2. 

Each point represents an IPM and its position in the PC1+2 space. Subplots show the relationship be-

tween PC1+2 and log long-term asymptotic growth rate (𝜆). 

  



Chapter 3: Linking life history to transient dynamics via population models 

98 

 

 

Figure 3.5: Correlation between the partial least squares regression (PLS) derived latent varia-

bles (LVs) 1+2 (A), 2+3 (B) and the life history trait predictor variables (pink), and between LVs 

and the transient indices (green). The direction of arrows indicate the variable’s correlation with the 

first two LVs, therefore similar variables are grouped, and variables positioned on opposite sides of the 

plot origin are negatively correlated. Distance between the origin and the variables represents the 

strength of correlation to the first two components as calculated by Pearson’s correlation coefficient. 

The axes labels indicate the proportion of variance in life history metrics explained by each LV. The 

percentage of variance in life history metrics explained by the other LVs is shown in panel E. Panel C 

and D shows the position of the simulated IPMs on the first three LVs.  
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Figure 3.6: Proportion of variance explained, R2, of partial least squares regressions with increas-

ing numbers of latent variables fitted to three sets of population models each predicting six tran-

sient indices from nine life history traits. An R2 value equalling 1 would represent an exact match 

between measured and predicted values. The R2 values are calculated by comparing the PLS predicted 

values to the ‘true’ measured values derived from an original set of simulated IPMs (Fig. 2). PLSs were 

fitted to three different sets of population models: IPMs, MPMs with a fixed dimension discretised from 

the IPMs and COMPADRE analogue MPMs discretised from the IPMs.  
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Tables 

Table 3.1: Cumulative percentage of variance explained by using increasing number of PLS latent 

variables 

 Number of latent variables 

 1 2 3 4 5 6 

Life history metrics 73.3 85.4 88.1 97.4 98.6 100.0 

First step amplification 38.3 54.6 71.3 71.5 71.9 71.9 

First step attenuation 67.3 86.3 92.3 92.4 93.0 93.0 

Amplified inertia 31.6 43.1 59.1 61.5 62.2 62.5 

Attenuated inertia 9.0 62.8 65.4 71.5 76.1 76.2 

Maximum amplitude 32.0 46.9 65.7 66.7 67.5 67.6 

Maximum attenuation 30.5 83.4 83.7 84.6 85.0 85.1 
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Table 3.2: Life history loadings describing the transformation from each life history metric onto each 

of the six latent variables. 

 Latent variable 

 1 2 3 4 5 6 

Spread of reproduction 0.394 0.44 -0.316 -0.589 -0.499 0.624 

Age at sexual maturity -0.367 -0.417 -0.576 -0.741 -0.157 -0.251 

Distribution of mortality 0.417 -0.582 0.684  -0.43 -0.161 

Mean sexual reproduction 0.459 -0.41   0.635 0.13 

Mature life expectancy -0.462 -0.245 0.528 -0.261 0.331  

Generation time -0.414 -0.565 0.202 0.292 -0.433 0.706 
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Table 3.3: Transient loadings describing the transformation from each of the six latent variables onto 

transient indices.  

 Latent variable 

 1 2 3 4 5 6 

First step amplification 0.389 -0.677 -1.433  -0.313  

First step attenuation  0.111 -0.131    

Amplified inertia 0.339 -0.547 -1.342 0.264 -0.419 -0.223 

Attenuated inertia  0.115   0.102  

Maximum amplitude 0.364 -0.664 -1.551 0.189 -0.454 -0.104 

Maximum attenuation  0.124     
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Table 3.4: Life history metrics, their description, and the interpretation of large/small values. 

Metric Description Smaller value means Larger value means 

Mean sexual repro-

duction 

The mean year to year per-capita number of sexual off-

spring once the population has converged the stable 

stage distribution 

Low average annual repro-

duction 
High average annual reproduction 

Generation time 
The mean time between two 

consecutive generations 
Short generation time Long generation time 

Age at maturity 
Age at first reproduction is the age when individuals 

reach sexual maturity 
Early maturation Late maturation 

Mature life expec-

tancy 
Log ratio of mean age at sexual maturity 

Fewer years spent alive and 

mature 
More years spent alive and mature 

Spread of reproduc-

tion 

Describes the range between iteroparous and sem-

elparous on a scale of 0 to 1 using the Gini index 

Semelparous; few reproduc-

tive events 

Iteroparous; many reproductive 

events 

Distribution of mor-

tality 

The standard deviation of the age distribution of mor-

tality 

Constant mortality through-

out the life cycle 

Mortality concentrated at particu-

lar parts of the lifecycle 
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Supplementary figures 

 

Supplementary figure S3.1: Non-linear covariance patterns between life history metrics and ma-

jor axes of transient dynamics. Pairwise correlations between each of the life history metrics (after 

transformation) and the first and second principal components derived from a PCA of the 6 transient 

indices. Transient indices denoted with a * have been log10 transformed. Plots on the diagonal are den-

sity plots. Plots on the sub diagonal are pairwise scatter plots. Values on the above diagonals are corre-

lation coefficients where a value of 0 represents no correlation, a value of 1 represents a perfect positive 

correlation and a value of -1 represents a perfect negative correlation.  
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Supplementary figure S3.2: Root mean squared error of prediction (RMSEP) of partial least 

squares regressions with increasing numbers of latent variables fitted to three sets of population 

models each predicting six transient indices from nine life history traits. The RMSEP values are 

calculated by comparing the PLS predicted values to the ‘true’ measured values derived from an original 

set of simulated IPMs (Fig. 2). PLSs were fitted to three different sets of population models: IPMs, 

MPMs with a fixed dimension discretised from the IPMs and COMPADRE analogue MPMs discretised 

from the IPMs. 
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Supplementary figure S3.3: Discretisation from IPMs to MPMs biases metrics of life history and 

indices of transient dynamics. The discretisation of integral projection models (IPMs) to matrix pop-

ulation models (MPMs) affected the value of derived transient indices. The values on the y axis are the 

percentage error when the MPM derived metrics is compared to the value of the metric calculated from 

the original IPM. The values on the x-axis are the number of size classes of each MPM. The boxplots 

represent the median, interquartile range (IQR) and maximum/minimum values.    
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Supplementary figure S3.4: Major axes of transient dynamics, the magnitude of response and 

tendency to amplify, can be predicted from life history traits using partial least squares regression 

(PLS); however, using metrics derived from discretised versions of the population models affects 

the accuracy of prediction. Based on a set of simulated IPMs, this plot shows the predicted values for 

transient PC1 and transient PC2 from a PLS fitted on the IPMs, from a PLS fitted on MPMs with a 

fixed dimension discretised from the IPMs and a PLS fitted to COMPADRE analogue MPMs. These 

predicted values are plotted against the values for transient PC1 and PC2 derived from the original 

IPMs. The dashed line indicates the 1:1 line for perfect prediction. Lines added to highlight bias in the 

prediction linear model with a 95% confidence interval for the mean value. 
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Summary 

1. Populations of plants, animals and other organisms show interannual variability in the vital 

rates of survival, growth, and reproduction. Stochastic population models are a key tool for 

predicting how temporal variation affects measures of population performance and life his-

tory. How we model between-year variability in regression relationships may affect the 

interpretation of population models and our understanding of population dynamics. 

2. Integral projection models (IPMs) enable the use of continuous state structure and parsi-

monious modelling of trait-fate relationships. Ecologists modelling interannual variability 

in vital rates for constructing IPMs typically use generalised linear mixed-effects models 

(GLMMs) with year as a random effect. The use of hierarchical general additive models 

(HGAMs) provides an alternative, more flexible, approach to modelling interannual varia-

bility. 

3. We test how different functional approaches to modelling interannual variation affects the 

outputs of IPMs using 27 years of data from the Soay sheep population on the Scottish 

island of St. Kilda as a case study. 

4. HGAMs scored better in model comparisons and the choice to use HGAMs or GLMMs 

had some effect on prospective projections and measures of life history. Differences in 

functional expressions of vital rates resulted in the average size distribution of HGAM-

fitted IPMs to have smaller sheep than GLMM-fitted IPMs. This size change is reflected in 

perturbation analyses: HGAM-fitted IPMs showed that the stochastic long-term growth rate 

was more sensitive to changes in the vital rates of smaller sheep. 

5. This work shows that how model time-variant vital rates do matter for our understanding 

of ecological systems. However, this work does not invalidate results from previous Soay 

sheep IPMs. HGAMs provide a robust approach for fitting non-linear time-varying vital 

rate models and might be especially useful in cases where there are hidden state variables. 
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Introduction 

Understanding the drivers of population dynamics is a key challenge in ecology (Sutherland et al., 

2013). In an evolutionary context, maximising population growth rate is equivalent to maximising fit-

ness (Metcalf & Pavard, 2007). In an applied context, understanding the drivers of population growth 

rate can aid conservation actions by predicting population viability (Menges, 2000) given sufficient 

data (Coulson et al., 2001b). Within populations, we observe substantial interannual variability in the 

vital rates of survival, growth, and reproduction. In turn, among-individual variation in these vital rates 

is driven by variability in individual-level traits such as size or age. To understand these relationships 

between traits, vital rates and population dynamics, ecologists typically fit models parametrised by field 

data to build demographic models such as matrix population models (MPMs) (Caswell, 2001) and in-

tegral projection models (IPMs) (Merow et al., 2014). M/IPMs take statistical models of individual 

trait-fate relationships and use these to infer population-level processes. To ensure reliable inference of 

population-level processes, is it crucial that the underlying statistical models accurately capture the trait-

fate relationships of the study system. 

IPMs, and many MPMs, are parametrised using mainstream regression tools that capture the functional 

form of the trait-fate relationships (Ellner et al., 2016d; Merow et al., 2014). MPMs discretise the fitted 

regression model into discrete classes whereas IPMs retain the continuous nature of this relationship. 

As a result, it has been argued that IPMs produce better predictions of population dynamics with fewer 

data (Ramula et al., 2009) and are not biased from discretising a continuously size-structured population 

(Picard & Liang, 2014). However, MPMs have considerable flexibility to describe complex demogra-

phy with any number of life stages and any combination of transition rates between them. A potential 

limitation of IPMs is that they are over-constrained; the functional expression of vital rates must come 

from a universe of alternatives and a choice of modelling framework may constrain the range of possible 

functional forms. These constraints might not be appropriate; for example, assuming linearity when 

there is no evidence of a linear relationship in the natural system (Dahlgren et al., 2011). This may mean 

that vital rates models underpinning IPMs are susceptible to biases when the model fails to capture the 
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relevant relationship between predictors and outputs. That is, when one or more vital rate models un-

derfits the data. The bias-variance trade-off describes the conflict in any model fitting scenario between 

minimising both bias and variance. This trade-off is important to consider when fitting vital rate models 

because how adequately the models capture vital rates might affect results from population models, and 

therefore our understanding of populations. 

Long-term studies have enabled researchers to examine stochastic, non-equilibrium population dynam-

ics. For example transient dynamics (Ezard et al., 2010) and incorporating variable environments (e.g. 

Rees & Ellner, 2009) building on pioneering work by Tuljapurkar & Orzack (1980). It is recognised 

that incorporating environmental stochasticity (Fieberg & Ellner, 2001) and individual stochasticity 

(Caswell, 2009) improves population predictions. Modelling vital rates in a variable environment is a 

key focus of ecological modelling and affects the projected population dynamics and thus our ecological 

inference. The need to incorporate time-variant processes in population models has implications on the 

methods used to model vital rates. 

There are a multitude of options in how we can model vital rates, any tool that translates predictor 

variables to response variables can be used, however, only a small subset of these tools is typically used. 

Generalised linear models (GLMs) are usually the most basic appropriate modelling tool, the generali-

sation facilitated by link functions is required because vital rates such as survival probability violate the 

normality assumption. There are a few examples where more flexible, non-linear models such as re-

strictive cubic splines (Dahlgren et al., 2011) or generalised additive models (GAMs) (González et al., 

2013) have been used. With multiple years of data, there are an even greater variety of options to model 

time-variant vital rates. It is well-known that partial pooling of information using hierarchical models 

improves inferences (Schaub & Kéry, 2012). This makes intuitive sense for time-variant vital rates: it 

might be expected that the vital rate function of one year will resemble vital rate functions of other 

years. For example, the survival probability might increase with size for all years, however, the rate of 

increase or the overall survival rate may be different for different years. Time-variant, stochastic IPMs 

can be constructed from vital rate models where a year can be fitted in a GLM as a fixed effect, however, 

this assumes that the year effect is constant across individuals, which may not be appropriate. An 
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alternative approach uses generalised linear mixed-effects models (GLMMs) with year as a random 

effect (Rees & Ellner, 2009). Both GLMs and GLMMs are constrained to have a linear and/or polyno-

mial underlying relationship (on the scale of the link function) and simple parametric forms are typically 

used which may underfit the data and induce the bias error. Fitting generalised additive mixed models 

(GAMMs) with year as a random effect is a non-linear approach for modelling time-varying processes 

however the smoothness of the modelled vital rates must be consistent across years. 

An alternative tool for modelling vital rates, currently unused in IPMs, is hierarchical generalised addi-

tive models (HGAMs). HGAMs are a natural extension of the GAM framework and allow smooth 

functional relationships between traits and vital rates to vary between groups (e.g. years) but with pool-

ing towards a common shape. HGAMs can model relationships with five alternative assumptions of 

interannual variability in functional response (Pedersen et al., 2019). Therefore, HGAMs provide a 

framework for testing assumptions about the between year variability of the function’s smoothness 

and/or average trends across years. HGAMs provide the strengths of GAMs, the ability to fit non-linear 

vital rate relationships, but also the strengths of the hierarchical structure of GLMMs, whilst making 

parsimonious use of data. 

Estimates of life history metrics and perturbation analyses might be improved by using more flexible 

HGAMs for capturing interannual fluctuations in vital rates because they minimise bias whilst not over-

fitting variance. Demographic models such as MPMs and IPMs can be used to proliferate an initial 

cohort of individuals through time to visualise survivorship and fecundity across age, even if the models 

themselves were not age-structured. From these trajectories, life history metrics such as mean life ex-

pectancy and age at maturation can be derived (Ellner et al., 2016a). These life history metrics have 

already been shown to be sensitive to how vital rates are modelled in time-invariant IPMs (Dahlgren et 

al., 2011; González et al., 2013). Perturbation analyses, or sensitivity analyses, identify the relative 

importance of different demographic processes for maintaining long term population growth rate (Ellner 

et al., 2016b). These analyses are used to identify the relative evolutionary importance of particular 

demographic transitions and are used to target population management actions. Thus, our understanding 
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of ecological systems, as attained through life history analyses and sensitivity analyses, may be affected 

by how we model time-varying vital rates. 

Using St Kilda’s Soay sheep population as a case study we aim to determine if using more flexible 

models to capture vital rate relationships, traversing the variance-bias trade-off, can improve estimates 

of life history and demographic outputs. Using 27 years of data from the Soay sheep population, we 

model vital rates with GLMMs and five forms of HGAM. The Soay Sheep make an ideal case study 

because individual-based demographic data has been collected since 1985 from annual censuses. There 

are well-documented differences in environmental sensitivity for sheep at different stages of the life 

cycle and can be structured by differences in vital rates explained by age and size. We define two IPM 

structures: a simple one-state IPM for all sheep and a two-state IPM with discrete classes for lambs and 

adult sheep. We construct four stochastic, time-varying, density-independent IPMs from the combina-

tions of the two IPM structures with vital rates modelled either by GLMMs or the best scoring HGAMs. 

With these IPMs we implement a suite of routine analyses: calculating population growth rate, calcu-

lating life history metrics and perturbation analyses. From these analyses, we aim to determine how our 

understanding of a population’s dynamics and life history is affected decisions regarding modelling 

vital rates could affect in a variable environment. We test this by looking for differences in life history 

trajectories and the relative importance of different demographic processes for maintaining long term 

population growth rate. Ultimately, this work aims to determine whether using more flexible vital rate 

models should be considered when constructing IPM and provide novel insights into the role of inter-

annual variation of vital rates of the Soay sheep in St Kilda. 
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Methods 

Field Data 

The motivation for developing powerful approaches for modelling vital rates was to then fit these mod-

els to real systems to gain a better understanding of that system. An ideal system to test how we model 

vital rates affects results is the semi-feral population of Soay Sheep on the island of Hirta (Pemberton 

& Clutton-Brock, 2004). The data used in this analysis were collected from a population of unmanaged 

Soay sheep (Ovis aries) found on the 100-hectare island of Hirta in the St Kilda Archipelago (54o49’N 

08o34’W) located 65km offshore from the Outer Hebrides, Scotland. Humans left the island of Hirta in 

1930 but established a population of sheep to maintain the grazed pasture (Pemberton & Clutton-Brock, 

2004). The island of Hirta has exposed oceanic conditions and its weather system, and sheep population, 

is highly influenced by the North Atlantic Oscillation (NAO) (Coulson et al., 2001a; Hurrell, 1995). A 

major cause of mortality in Soay sheep is overwintering conditions (Pemberton & Clutton-Brock, 

2004). Lambs are born in March-May and are weaned in August. The population has been studied since 

the 1950s and a longitudinal individual-based study began in 1985. Since being studied, the population 

has fluctuated between 600 to 2000 individuals. The subset (approximately 30%) of the population live 

around the Village Bay area where these individuals are more reliably recorded. 

Because we had a good understanding of the basic facets of the study system and because they are a 

self-contained population with no immigration or emigration, this Soay Sheep population provided a 

good foundation for testing methodological approaches. We can compare the results of this work to 

previous research, for example, a time-variant IPM has been constructed with vital areas fitted using 

GLMMs by Simmonds & Coulson (2015). The Soay sheep have also been used as a model system for 

several research areas including parasitology (Leivesley et al., 2019), selection (Ozgul et al., 2009) and 

population ecology (Hindle et al., 2019).  

The data chosen for this study include annual census data from 1990 to 2017; years prior to 1990 had 

insufficient census records for fitting the required statistical models and 2017 was the latest year of data 
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available to the authors at the time of analysis. Each summer census record contained information about 

a sheep’s capture weight (kg), age (years), whether it survived to the following year (true/false) and 

whether it reproduced (true/false). Additionally, data was collected on the mothering and fate of lambs: 

the number of lambs (integer), survival of lambs to the lamb’s first census (true/false), size of lamb at 

the lamb’s first census (kg).  

Functional expression of vital rates 

Six vital rates were modelled from the Soay sheep data: the probability of survival from t to t+1, size at 

t+1, probability of reproducing between t and t+1, number of offspring produced, survival of offspring 

to t+1, size of offspring at t+1. Vital rates were fitted to data for all sheep, data for lambs, and data for 

adult sheep. These vital rates were first modelled as generalized linear mixed-effects models (GLMMs). 

The suitably transformed output was modelled as a function of size (kg) with time (year) as a random 

effect. We used R package mgcv (Simon Wood, 2016) to fit GLMMs. The R function calls for fitting 

these models are presented in supplementary table 4.1. 

Vital rates were also modelled as hierarchical generalised additive models (HGAMs) which are an ex-

tension of generalised additive models (GAMs). HGAMs facilitate modelling of nonlinear functional 

relationships between explanatory factors and response where the shape of the function itself can vary 

between different grouping levels. We fitted five types of HGAM models based on the families of 

HGAMs outlined in Pedersen et al. (2019) and can be summarised as follows; model G: A single com-

mon smoother for all observations, model GS: a global smoother plus group-level smoothers that have 

the same wiggliness, model GI: A global smoother plus group-level smoothers with differing wiggli-

ness, model S: group-specific smoothers without a global smoother, but with all smoothers having the 

same wiggliness, model I: group-specific smoothers with different wiggliness (Fig. 1). ‘Wiggliness’ is 

a term introduced in Pedersen et al. (2019) and I use it here for consistency. HGAMs were fitted using 

R package mgcv (Simon Wood, 2016) using restricted maximum likelihood (REML). The R function 

calls for fitting these models are presented in supplementary materials. 
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Integral projection model 

In this study, we used integral projection models (IPMs) to model the age and size-structured population 

dynamics. The IPM was introduced to ecology by Easterling et al. (2000) and describes transitions over 

a discrete-time interval between continuous state, with discrete categories. Mathematically an IPM is 

described as 

 
𝑛𝑡+1(𝑧′) =  ∫ 𝐾(𝑧′, 𝑧)𝑛𝑡(𝑥)

𝑈

𝐿

  
 (4.1) 

where z is size at year t and z’ is size at year t+1 and n is the size distribution of individuals.  The K 

kernel comprises functions describing the processes of survival, growth, and reproduction. 

For our Soay Sheep IPM, we constructed post-reproductive summer census IPMs with a projection 

interval of one year.  We defined a simple one-state IPM definition where individuals were classified 

by size (capture weight, kg) and no other discrete factor where the population dynamics are described 

as  

 
𝑛(𝑧, 𝑡 + 1) = ∫ 𝐾(𝑧′, 𝑧)𝑛(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

 
(4.2) 

The full IPM kernel, 𝐾(𝑧′, 𝑧) was composed of a survival/growth component P(z′, z) and a reproduc-

tive/recruitment component F(z′, z) which were comprised of functions describing demographic pro-

cesses, in full: 

 
𝐾(𝑧′, 𝑧) = P(z′, z) F(z′, z) =  𝑠(𝑧)𝐺(𝑧′, 𝑧) +

1

2
 𝑠(𝑧)𝑝𝑏(𝑧)𝑏(𝑧)𝑝𝑟(𝑧)𝐶0(𝑧′, 𝑧) 

 (4.3) 

where 𝑠(𝑧) was survival, 𝐺(𝑧′, 𝑧) was growth, 𝑝𝑏(𝑧) was probability of reproducing, 𝑏(𝑧) was the 

number of offspring, 𝑝𝑟(𝑧) was the probability of a lamb surviving to its first census and 𝐶0(𝑧′, 𝑧) was 

the size of lamb at its first census in the summer after birth. The 1/2 was because we were only modelling 

the females in the population and assumed a 50/50 gender ratio at birth. 

To explore how explicitly incorporating structure into the IPM affected demographic outputs we de-

fined a second IPM formulation. By defining IPMs with different complexities, we could determine 

how fitting vital rates with GLMMs or HGAMs interacted with different IPM structures. Due to known 
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differences in vital rates, we separated sheep into lambs (L), defined as individuals between the age of 

0 and their second summer census, and adult sheep, ewes (E). This produced the second IPM formula-

tion and the population dynamics for this model were described as  

 
𝑛𝐿(𝑧, 𝑡 + 1) = ∫ 𝐾𝐿𝐿(𝑧′, 𝑧)𝑛𝐿(𝑧, 𝑡)𝑑𝑧

𝑈

𝐿

+ ∫ 𝐾𝐿𝐸(𝑧′, 𝑧)𝑛𝐸(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿

 

𝑛𝐸(𝑧, 𝑡 + 1) = ∫ 𝐾𝐸𝐸(𝑧′, 𝑧)𝑛𝐿(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿

+ ∫ 𝐾𝐸𝐿(𝑧′, 𝑧)𝑛𝐿(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿

 

 (4.4) 

where the E and L subscript denotes the life stage of the individual (following similar notation to Childs 

et al., (2011). 𝐾𝐿𝐿(𝑧′, 𝑧) and 𝐾𝐿𝐸(𝑧′, 𝑧) were recruitment kernels. 𝐾𝐸𝐸(𝑧′, 𝑧) was a survival/growth 

kernel of adult ewes and 𝐾𝐸𝐿(𝑧′, 𝑧) was a survival/growth kernel describing transitions from summer 

lambs to adult ewes. These kernels were written out as: 

 
𝐾𝐿𝐿(𝑧′, 𝑧)  =  

1

2
 𝑠𝐿(𝑧)𝑝𝑏,𝐿(𝑧)𝑏𝐿(𝑧)𝑝𝑟,𝐿(𝑧)𝐶0,L(𝑧′, 𝑧) 

𝐾𝐿𝐸(𝑧′, 𝑧)  =  
1

2
 𝑠𝐸(𝑧)𝑝𝑏,𝐸(𝑧)𝑏𝐸(𝑧)𝑝𝑟,𝐸(𝑧)𝐶0,E(𝑧′, 𝑧) 

𝐾𝐸𝐸(𝑧′, 𝑧)  =  𝑠𝐸(𝑧)𝐺𝐸(𝑧′, 𝑧) 

𝐾𝐸𝐿(𝑧′, 𝑧)  =  𝑠𝐿(𝑧)𝐺𝐿(𝑧′, 𝑧) 

 (4.5) 

 

For each of the two types of IPM structures, one-state and two-state, we constructed two different IPMs 

from the fitted vital rate models. One IPM was constructed from vital rates fitted with GLMMs and the 

other IPM was constructed using the best fitting HGAM model for each vital rate, as quantified by the 

lowest Akaike information criterion (AIC) score. Overall, this meant we had constructed four IPMs. 

The age structuring in this study was simpler than in other studies which classify individuals as lambs, 

yearlings, or adults (Hindle et al., 2019). However, by using two IPM class structures, this was sufficient 

to show that adding more model structure minimised differences arising from whether vital rates were 

fitted using HGAMs or GLMMs. Another simplification was that vital rates were fitted independently, 

for example, the size and survival of offspring were independent of the number of offspring, whereas, 
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in reality, twins are lighter at birth than singletons and size (Wilson et al., 2005). An implementation of 

modelling reproductive allocation strategies is outlined in Childs et al. (2011).  

From each kernel, an iteration matrix was derived for the computational implementation of the IPM. 

An iteration matrix is a discretised approximation of the continuous kernel at a sufficiently high reso-

lution that the kernel resolution has a negligible effect on outputs such as growth rate. The upper and 

lower size limit of the kernels were set to 0kg and 50kg respectively to prevent eviction; eviction de-

scribes cases where individuals fated for a size outside the size limits are lost (Williams et al., 2012). 

Stochastic IPM 

We incorporated environmental stochasticity to improve our estimates of life history metrics, perturba-

tion analyses and long-term growth rate. There are two main approaches to incorporating environmental 

stochasticity into an IPM: kernel selection and parameter selection (see Ellner et al., 2016). We imple-

mented density-independent environmental stochasticity using kernel selection by constructing a set of 

kernels using the year-specific sets of parameters. We generated sets of kernels for both IPM structures 

(1-state and 2-state), for each model-fitting method (GLMM and HGAM) and for every interannual 

transition. This resulted in four sets of kernels corresponding to the four different IPMs. We generated 

the kernel for each year by using the predict.gam function from R package mgcv (Simon Wood, 2016) 

to calculate the response at points across the size domain by midpoint approximation. For all our simu-

lations of stochastic environments, we assumed an identical independent distribution (i.i.d.) where every 

annual transition kernel has an equal probability of being sampled at each time-step. 

Calculating life history traits 

We calculated a set of life history traits from our IPMs by using methods from Ellner et al. (2016a) 

based on Markov chain theory. These methods were extended for use with a stochastic environment by 

constructing megakernels where individuals are now cross-classified by the environment in addition to 

being classified into adults or lambs. This is an analogous approach to using megamatrices for cross 

classifying MPMs (e.g. Tuljapurkar & Horvitz, 2006). To construct megakernels, we generated kernels 

whose dimensions are given by the product of the dimension of the discretised size kernel with the 
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number of age classes with the number of temporal variants of the environment. One megakernel was 

produced for each of the four IPMs, 𝐾𝑚𝑒𝑔𝑎, which was split into the fecundity megakernel, 𝐹𝑚𝑒𝑔𝑎 and 

survival megakernel 𝑃𝑚𝑒𝑔𝑎. From these megakernels we calculated the main results of analyses of in-

dividual life trajectories outlined in table 3.3 of Ellner et al. (2016a).  

To investigate how life history trajectories were affected by size at birth, metrics were calculated as a 

function of initial size, z0. We calculated the survival probability to age a, 𝑙𝑎(𝑧0) , and average per 

capita fecundity at age a conditional on survival to age a, 𝑓𝑎(𝑧0). To visualise the survivorship and 

fecundity curves we fitted a Gaussian distribution to a dataset of the size of lambs at first census to 

define a starting cohort c(z). From this starting cohort, we calculated 𝑙𝑎(𝑧0)  and 𝑓𝑎(𝑧0). We calculated 

the fundamental matrix, 𝑁0, of the megakernels to calculate mean and variance in lifespan, probability 

of reproducing at least once, mean size at death and mean age at first breeding. 

Perturbation analyses 

We used prospective perturbation analyses to identify how changes to vital rates at different sizes af-

fected stochastic population growth rate, 𝜆𝑠. Prospective perturbation analyses determine which vital 

rates are most important to the population’s survival and at that stage/size these vital rates are most 

sensitive. Perturbations can be applied at different levels of the IPM’s structure: kernel, vital rate func-

tion, or parameter (Ellner et al., 2016b). Parameter level perturbations did not have a useful ecological 

interpretation for HGAMs, nor could we have made an equal comparison between parameter perturba-

tions for GLMMs and HGAMs because different model-fitting methods had different parameter struc-

tures. Kernel-level perturbations would have identified the effect of changes to a composite of different 

vital rate functions and so were less insightful. Therefore, for this analysis, we focussed on function-

level perturbations. For these perturbation analyses, we did not need to take a mega kernel approach. 

We followed the overall perturbation methods from Ellner et al., (2016b, page 93) with the methods for 

perturbation analyses with environmental stochasticity (Ellner et al., 2016c, page 211) but adapted for 

a 2-state model. A perturbation to the standard deviation (SD) of a vital rate represented a test of how 
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long-term stochastic growth was affected by the result of an increase in the year-to-year variability of 

the vital rate: did a population respond to a more variable environment?  

We chose to calculate elasticities and sensitivities analytically as opposed to numerically because nu-

merical calculations were more computationally intensive. Sensitivity was defined as a partial deriva-

tive: we calculated the partial derivative of stochastic growth rate 𝜆𝑠 with respect to a vital rate which 

we have perturbed by a very small value 𝜖 and can be expressed, using Tuljapurkar’s small fluctuation 

approximation (SFA) (Tuljapurkar & Haridas, 2006) as  

 𝜕𝑙𝑜𝑔𝜆𝑠

𝜕𝜖
 =  

1

𝜆𝑠

𝜕𝜆𝑠

𝜕𝜖
 =  𝐸 [

〈𝑣𝑡+1, 𝐶𝑡𝑤𝑡〉

〈𝑣𝑡+1, 𝐾𝑡𝑤𝑡〉
] 

 (4.6) 

where 𝐶𝑡 is a perturbation kernel that in the format of perturbing 𝐾𝑡 to 𝐾𝑡 + 𝜖𝐶𝑡. The time-varying 

population structure 𝑤𝑡 and reproductive value 𝑣𝑡 were calculated from these formulas 

 
𝑤̃𝑡+1 = 𝐾𝑡𝑤𝑡 ,         𝑤𝑡+1 = 𝑤̃𝑡+1 / ∫ 𝑤̃𝑡+1(𝑧)𝑑𝑧

𝑈

𝐿

  

𝑣̃𝑡−1 = 𝑣𝑡𝐾𝑡−1 = ∫ 𝑣𝑡(𝑧′)𝐾𝑡(𝑧′, 𝑧)𝑑𝑧′
𝑈

𝐿

,      𝑣𝑡−1 = 𝑣̃𝑡−1 / ∫ 𝑣̃𝑡−1(𝑧)𝑑𝑧
𝑈

𝐿

 

 

 (4.7) 

where 𝐾𝑡 was the full kernel 𝐾 for year 𝑡 and U and L were the lower and upper size limits, respectively. 

For constructing 𝐶𝑡 for vital rate perturbation, we applied perturbations to mean vital rate and variance 

with the coefficient of variance = σ/μ which is represented as  

 𝑝𝑡 → 𝑝𝑡 + 𝜖𝑝𝑡  (4.8) 

where 𝑝𝑡 is the vital rate function for a given year t and 𝜖 represents the very small value. We applied 

this perturbation by using a direc, δ, function. A δ function can be thought of as a gaussian distribution 

with a variance that is shrunk to zero and was used to describe how we perturbed a vital rate around a 

particular size 𝑧. δ functions are explained in Ellner et al. (2016b, Page 91).  For example, a perturbation 

to the probability of survival vital rate looks like 

 s(z, θ(t)) →  s(z, θ(t))  +  ϵs(z, θ(t)) δz0
(z)   (4.9) 
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and substituting this into the full kernel (Eqtn. 4.3) and collecting the 𝜖 terms produced a perturbation 

kernel 𝐶𝑡. The survival function is part of both the survival/growth component P(z′, z) and the fecundity 

component F(z′, z) so the perturbation kernel is defined as such: 

 𝐶𝑡(𝑧, 𝑧′) = 𝑠(𝑧, θ(t))𝐺(𝑧′, 𝑧, θ(t))δ𝑧0
(𝑧) 

+ 
1

2
𝑠(𝑧, θ(t))𝑝𝑏(𝑧, θ(t))𝑝𝑟(𝑧, θ(t))𝐶0(𝑧′, 𝑧, θ(t))δ𝑧0

(𝑧) 

 

(4.10) 

The perturbation kernel 𝐶𝑡 can be substituted into the sensitivity equation (4.5) and can be calculated 

as 

 
  

1

𝜆𝑠

𝜕𝜆𝑠

𝜕𝜖
 =  𝐸 [

〈𝑣𝑡+1, 𝐶𝑡𝑤𝑡〉

〈𝑣𝑡+1, 𝐾𝑡𝑤𝑡〉
]  =  ∫ ∫ 𝐸 [

𝑣𝑡+1(𝑧′)𝑤𝑡(𝑧)𝐶𝑡(𝑧′, 𝑧)

〈𝑣𝑡+1, 𝐾𝑡𝑤𝑡〉
] 𝑑𝑧 𝑑𝑧′ 

 

(4.11) 

For the two-state model, the perturbation is applied slightly differently. Instead of just 𝐶𝑡 we have 𝐶𝑡𝐿𝐿, 

𝐶𝑡𝐿𝐸 for perturbations to recruitment transitions, 𝐶𝑡𝐸𝐸 for perturbations to adult survival and 𝐶𝑡𝐸𝐿 for 

perturbations transitions from lambs to adult sheep. We used survival as an example again and by sub-

stituting equation 4.8 into the two-state model (Eqtn. 4.4) gives us 

 
𝐶𝑡𝐿𝐿(𝑧, 𝑧′) =  

1

2
 𝑠𝐿(𝑧, θ(t))𝑝𝑏,𝐿(𝑧, θ(t))𝑏𝐿(𝑧, θ(t))𝑝𝑟,𝐿(𝑧, θ(t))𝐶0,L(𝑧′, 𝑧, θ(t))δ𝑧0

(𝑧) 

𝐶𝑡𝐿𝐸(𝑧, 𝑧′) =  
1

2
 𝑠𝐸(𝑧, θ(t))𝑝𝑏,𝐸(𝑧, θ(t))𝑏𝐸(𝑧, θ(t))𝑝𝑟,𝐸(𝑧, θ(t))𝐶0,E(𝑧′, 𝑧, θ(t))δ𝑧0

(𝑧) 

𝐶𝑡𝐸𝐸(𝑧, 𝑧′) =  𝑠𝐸(𝑧, θ(t))𝐺𝐸(𝑧′, 𝑧, θ(t))δ𝑧0
(𝑧) 

𝐶𝑡𝐸𝐿(𝑧, 𝑧′) = 𝑠𝐿(𝑧, θ(t))𝐺𝐿(𝑧′, 𝑧, θ(t))δ𝑧0
(𝑧) 

 

(4.12) 

and for the two-state IPM, equation 4.10 looks like  

 1

𝜆𝑠

𝜕𝜆𝑠

𝜕𝜖
 =  𝐸 [

〈𝑣𝑡+1,𝐿, 𝐶𝑡,𝐿𝐿𝑤𝑡,𝐿〉

〈𝑣𝑡+1,𝐿, 𝐾𝑡,𝐿𝐿𝑤𝑡,𝐿〉
]  +  𝐸 [

〈𝑣𝑡+1,𝐿 , 𝐶𝑡,𝐿𝐸𝑤𝑡,𝐸〉

〈𝑣𝑡+1,𝐿, 𝐾𝑡,𝐿𝐸𝑤𝑡,𝐸〉
]   

+  𝐸 [
〈𝑣𝑡+1,𝐸 , 𝐶𝑡,𝐸𝐸𝑤𝑡,𝐸〉

〈𝑣𝑡+1,𝐸 , 𝐾𝑡,𝐸𝐸𝑤𝑡,𝐸〉
]  +  𝐸 [

〈𝑣𝑡+1,𝐸 , 𝐶𝑡𝐸𝐿𝑤𝑡,𝐿〉

〈𝑣𝑡+1,𝐸 , 𝐾𝑡𝐸𝐿𝑤𝑡,𝐿〉
]  

 

(4.13) 

and the equivalent integration equation 4.11 can be derived from equation 4.13. 

The perturbation analysis was implemented by simulating a stochastic environment for 10,000 time-

steps with a uniform starting distribution. To allow the simulation to progress from the uniform starting 
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distribution to a time-varying ‘stable’ size structure we excluded the values for the first 500 values. 

Each time-step we randomly chose a projection kernel for any of the 26 annual transitions and projected 

the population based on that kernel. Independent and identically distributed (i.i.d.) assumptions remain 

in place; all projection kernels were always as likely to occur as any other. For each of the four IPMs, 

the perturbation analyses were repeated for each vital rate: the probability of survival from t to t+1, size 

at t+1, probability of reproducing between t and t+1, number of offspring produced, survival of off-

spring to t+1, size of offspring at t+1. The same randomly generated sequence of years was used for the 

kernel selection step of the perturbation analyses for each of the vital rates of each of the IPMs.  

 

Results 

Size and year were important predictors of an individual’s vital rates, but more flexible functional forms 

were needed to capture state-fate relationships in the 1-state IPM structure because lambs and adult 

sheep were demographically distinct (Supplementary fig. S4.1-S4.2). In all vital rate models adding the 

year as an explanatory factor improved the model fit, as measured by AIC score (Tables 4.1-4.3) and 

global size-dependent trends were underlying the interannual fluctuations. This is evidenced by the fact 

that the best performing HGAM models for all vital rates had a global trend with either a group-level 

trend with the same wiggliness (GS) or differing wiggliness (GI) (Tables 4.1-4.3). The size was posi-

tively correlated with higher survival, more offspring, and larger offspring. However, this positive trend 

did not hold for some vital rates beyond a certain size; the probability of reproduction and the survival 

probability of offspring had a negative correlation with size after approximately 25kg (Supplementary 

fig. S4.1-S4.2). This negative correlation was captured more distinctly in HGAMs than GLMMs (S4.1-

S4.2). It was more important that the modelling tool could capture this non-linear feature in the 1-state 

IPM than the 2-state IPM because modelling the vital rates separately in the 2-state model split the data; 

this, in effect, created a piecewise regression that could better accommodate the non-linear functional 

form. As a result, the vital rates of larger sheep (approximately >25kg) and smaller sheep (approxi-

mately <10kg) fitted with GLMMs, especially in the 1-state IPM structure, were inflated to be higher 
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than their HGAM equivalent. This was especially prominent in the probability of reproducing, proba-

bility of reproduction and size of offspring (Supplementary fig. S4.3). When comparing how the mod-

elling approaches captured interannual variation, in our case study HGAMs fitted a more consistent 

functional form for each year, whereas GLMMs exhibited more variety in the strength and direction of 

the association between size and vital rate.  

The four different IPMs produced generally consistent predictions about the long-term population dy-

namics, however, GLMM-fitted IPMs produced a population of larger individuals. All four models 

predicted a long-term population increase; stochastic long-term growth rates were between 1.051 and 

1.062 with the 2-state IPMs predicting lower growth rates (Table 4.4). Across the survey period (1991 

to 2017), the one-step growth rates of the 1-state IPM were more closely associated with the observed 

population and exhibited minimal difference between the GLMM-fitted IPM and HGAM-fitted IPM 

(Supplementary fig. 4.4). In contrast, the 2-stage IPMs had one-step growth rates a greater distance 

from the observed growth rates and were less consistent when comparing the GLMM-fitted IPM to the 

HGAM-IPM. The one-step growth rate for the year 1991 of the 2-state models showed a negative 

growth rate, whereas the observed data and GLMM-fitted IPMs showed a positive growth rate. Across 

all four IPMs, the stable size/state distributions (SSD) of stochastic population projections were bi-

modal: the majority of the female populations were comprised of adult sheep that were between 15 and 

30 kg in weight with a smaller cohort of lambs that were between 8 and 17kg (Fig. 4.2). The bimodality 

of the SSDs of the 1-state IPMs was more pronounced when vital rates were fitted using HGAM. Across 

both 1-state and 2-state IPMs, the SSDs of GLMM-fitted IPMs consisted of larger sheep than the SSDs 

of HGAM-fitted IPMs (Fig. 4.2). This change in size was most apparent in adult sheep and the 2-state 

IPM, there was a negligible difference in the SSD of first-year individuals (Fig 4.2).  

Differences in whether vital rates were modelled with HGAMs or GLMMs affected trajectories of life 

history, which in turn affected life history metrics. However, the effect of the modelling method on life 

history was contingent on whether a 1-state or 2-state IPM structure was used. All IPMs showed a type 

II survivorship curve with a low, but highly annually variable, lamb survival (Fig. 4.3, top row). There 

were fewer differences in survivorship curves between the GLMM-fitted IPM and the HGAM-fitted 
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IPM for the 2-state IPMs than the 1-state IPMs. Average per capita fecundity (𝑓𝑎) of a surviving cohort 

of lambs for age (𝑎) 0 to 8 showed differences due to whether the IPM’s underlying vital rates were 

modelled with GLMMs or HGAMs (Fig. 4.3, bottom row). If vital rates were modelled with HGAMs, 

the per capita fecundity steeply increased as a sheep ages but then flattens by age 4 to a value of ~0.37. 

This trend is consistent for IPMs with HGAM-fitted vital rates for both 1-state model and 2-state models 

whereas for IPMs with GLMM-fitted vital rates the fecundity curve was steeper for the 2-state model 

than the 1-state model and did not flatten by age eight years. These differences were a consequence of 

the inflated vital rates for larger sheep that resulted from fitting vital rate using less flexible GLMMs. 

In terms of life history metrics, we found that GLMM-fitted 1-state IPM producing results least con-

sistent with the other 3 IPMs. The 2-state IPM produced similar estimates for their mean life expectancy 

of 4.86 and 4.80 years for the GLMM-fitted and HGAM-fitted IPM, respectively (Table 4.4). However, 

the 1-state, GLMM-fitted IPM predicted longer lives sheep with a life expectancy of 5.32 years whereas 

the HGAM-fitted 1-state IPM was closer to the 2-state IPMs with a predicted life expectancy of 5.01 

years. We saw a similar pattern for variance in life span, 𝜎𝜂
2, with a value of 91.7 produced by the 

GLMM 1-state IPM but between 55-59 for the other three IPMs. 

Out of the modelled vital rates, the stochastic population growth rate was most sensitive to perturbations 

of the survival and growth, and least sensitive to the reproductive rates of lamb (Fig. 4.4). The stochastic 

growth rate was not sensitive to perturbations to the reproductive vital rates of lambs. The shifts in SSD 

that we observed due to differences in model fit are reflected in the results of a perturbation to the vital 

rate function (Fig. 4.4); GLMM-fitted IPMs identified that sheep were more sensitive to vital rate per-

turbation at larger sizes than HGAM-fitted IPMs. The elasticity functions for the mean vital rates peak 

at a smaller size in the HGAM-fitted version of all models. Relative to GLMM-fitted IPMs, HGAM-

fitted IPMs identified growth and survival to be less sensitive to perturbation and reproductive vital 

rates to be more sensitive (Fig. 4). There were two exceptions to this: for the 2-state IPM structure, the 

stochastic growth rate was more sensitive to perturbations to the probability of reproduction and sur-

vival probability of offspring when vital rates were fitted by HGAM rather than GLMMs (Fig. 4.4). 
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At any size, increases in the year-to-year variability of the vital rate of survival or growth negatively 

impacted long-term growth rate (Fig. 4.5), however, perturbations to the standard deviation (SD) of the 

size of offspring birthed by adult sheep at year t+1 always positively population growth rate (Fig. 4.5). 

For the other three vital rates, perturbations to the SD of the probability of reproduction, number of 

offspring and the survival probability of offspring had a relatively small effect, as indicated by the much 

smaller values for stochastic elasticity to standard deviation (Fig 4.5). These elasticities were less sen-

sitive to perturbations but, depending on how vital rates were fitted, the elasticity for one IPM could 

exhibit both positive and negative effects of perturbation to SD for different sized individuals. Some 

vital rates were not affected; in the 2-state model, the vital rate for a lamb’s size of offspring was not 

affected by perturbation to that standard deviation of that vital rate (Fig. 4.5). For the vital rates of 

survival, growth, and size of offspring, the three vital rates for which 𝜆𝑠 was most sensitive to pertur-

bations to, 𝜆𝑠 was sensitive to perturbations at larger sizes for GLMM-fitted IPMs when compared to 

HGAM-fitted IPMs. Across these vital rates, HGAM-fitted IPMs produced results that suggested that 

𝜆𝑠 was more sensitive increases in the year-to-year variability than their GLMM-fitted counterpart with 

larger elasticity peaks. The other three vital rates, probability of reproduction, number of offspring, and 

survival of offspring, were even more affected by model fit and produced quite different results depend-

ing on model structure and model fit. For example, GLMM-fitted 1-state IPM predicted that 𝜆𝑠 was 

negatively affected by increases in the variability of the survival probability of offspring from adult 

sheep (>24kg), however, the HGAM counterpart predicted that 𝜆𝑠 was positively or not affected by the 

same perturbation. For survival and growth, across 1-state and 2-state IPMs, the HGAM-fitted IPMs 

produced generally more consistent results, whereas, across the other 4 vital rates, GLMMs produced 

more consistent results. 
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Discussion 

Previous IPMs have typically used less flexible models to minimise the risk of overfitting (eg. Childs 

et al., 2003; Kuss et al., 2008; Simmonds & Coulson, 2015) but in this work, we have shown that using 

more flexible HGAMs can improve predictions from stochastic IPMs. We tested this by constructing 

four different IPMs of the Soay Sheep of St Kilda using two model structures with time-variant vital 

rates models fitted by HGAMs or GLMMs. We found that using HGAMs was a natural extension to 

the existing repertoire of models used to fit vital rates for IPMs and better captured the vital rate rela-

tionships in our study; we found that HGAMs outperformed GLMMs when scored by AIC. The choice 

of vital rate model subtly impacts the model outputs and can affect our interpretation of the results. We 

found that IPMs with vital rates fitted with GLMMs had overinflated survival of large individuals which 

increased the average size of sheep in stochastic population simulations. This shift in stable stage dis-

tribution was reflected in the sizes that long term stochastic growth rate, 𝜆𝑠, was sensitive to vital rates 

perturbations. When using HGAMs to model vital rates temporal variation manifested differently in 

each vital rate function. These differences affected how the long-term growth rate was sensitive to per-

turbations to the standard deviation of each vital rate. Model structure, whether lambs and adult sheep 

were modelled together or separately, affected life history trajectories and metrics of life history; how-

ever, model structure had a lesser effect if HGAMs were used to model vital rates. 

The flexibility required for modelling vital rates depends on what outputs are to be calculated from an 

IPM. In our case study, GLMMs were flexible enough for calculating life history metrics which were 

mean measures such as mean life expectancy and mean size at death, and long-term growth rate. The 

measures derived from HGAM or GLMM fitted IPMs were not identical, but the differences would not 

substantially affect the interpretation of results. However, variance in lifespan, a life history metric that 

was a measure of variance, was much more affected by whether GLMMs or HGAMs were used to fit 

vital rates for a 1-state IPM. Again, we did see that incorporating an age structure produced more con-

sistent measures of variance in lifespan across HGAM and GLMM-fitted IPMs but for the 1-state IPM, 

variance in lifespan derived from the HGAM-fitted IPM was much closer to the metrics derived from 
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the 2-state IPMs. This may be a general result that added flexibility in vital rate models improves esti-

mates of metrics of variance, but we would need more examples of this across other case studies to 

confirm this generalisation. The shift in stable state distribution due to using HGAMs or GLMMs, and 

its subsequent effect on perturbation analyses, shows that the added flexibility is important if perturba-

tion analyses is an output of the IPM. 

More flexible vital rate models might be useful when there are hidden or unmeasured additional state 

variables. For example, age is often an unmeasured variable because an organism is hard to age (e.g. 

Brault & Caswell, 1993). The need to test more flexible models stems from a concern that IPMs are too 

constrained because, in contrast to MPMs, they must model vital rates from a universe of alternatives, 

of which only a subset of models is typically used. Whilst previous work has shown how using more 

flexible non-linear functional forms can better capture vital rate relationships (Dahlgren et al., 2011; 

González et al., 2013), our work shows that it is possible to extend this flexibility to how we capture 

time-varying vital rates. In practice, implementing a stochastic IPM with HGAMs is no more complex 

than using GLMMs. In our study HGAMs was a better fit for the data than GLMMs, this was especially 

apparent in a simpler model structure. Furthermore, this means that more flexible HGAMs might be an 

appropriate approach for modelling vital rates in high volume demographic data collected via image 

analysis (e.g. Bruijning et al., 2018) and/or remote sensing (e.g. Tredennick et al., 2016) because these 

methods focus on measuring continuous physical attributes. However, in our case study, the ‘hidden’ 

state variable was age, of which the two age classes of lambs and adults populated largely distinct size 

ranges. Therefore, a non-linear functional form could describe the distinct vital rates of these groups 

along a single axis. HGAMS might not provide the same improvements over GLMMs in cases where a 

hidden variable (e.g. age) does not correlate with the modelled continuous state variable. 

Our results are broadly consistent with previous work on the Soay sheep population. Size was an im-

portant predictor of vital rates but lambs and adult sheep were demographically distinct (Catchpole et 

al., 2000), lamb survival was more temporally variable than adult survival (Hindle et al., 2019), and we 

observed cyclical patterns of population crashes (Coulson et al., 2001a). However, our results also pro-

vide some are new insights, particularly concerning the role of size-dependent variation on population 
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growth. For example, that increased variability in reproductive vital rates had negative or positive im-

pacts on population growth rate depending on what size this increase in variability was acting, and 

whether we used HGAMs or GLMMs to those vital rates. This effect of changes in variability in vital 

rates is important to understand, especially as we expect greater variability in vital rates because climate 

change is predicted to affect the North Atlantic Oscillation (NAO) leading to more variability in the 

environment (Simmonds & Coulson, 2015). This is important to correctly model because research has 

shown that a changing climate is leading to smaller sheep (Ozgul et al., 2009), and so it’s important to 

understand at which sizes selection is acting; however, in this case, the shrinking of sheep is primarily 

attributed to environmental effects despite the heritability of sheep size. In other settings, if a study’s 

purpose is to advise on population management actions (e.g. Gerber & Heppell, 2004), a shift in the 

results in a sensitivity analysis could result in management actions being targeting inappropriately 

(Easterling et al., 2000). Despite some differences in our results from HGAM IPMs and GLMM IPMs, 

when age structuring was incorporated these differences were fairly minimal. Since previous studies on 

Soay sheep have incorporated age structuring (Catchpole et al., 2000; Hindle et al., 2019; Ozgul et al., 

2009; Simmonds & Coulson, 2015), their results are unlikely to have been invalidated by our findings. 

There are implications in how HGAM IPMs can be used because of the loss of interpretability of the 

model parameters. For example, in a typical GLMM-fitted vital rate model the parameters represent 

time-varying slopes and intercepts of each vital rate (Ellner et al., 2016c) whereas in HGAM the pa-

rameters refer to a series of smooth functions (Pedersen et al., 2019). In this work, we implemented 

stochasticity using kernel selection which generates a transition matrix for each year of data available 

and simulates a population by randomly selecting a kernel at each timestep. An alternative method of 

incorporating stochasticity in IPMs is to do parameter selection which generates a unique kernel for 

each time step by sampling the parameters of each vital rate model and constructing a transition matrix 

for each set of sampled parameters (Ellner et al., 2016c). Whilst technically possible, sampling HGAM 

parameters to generate unique kernels would be unlikely to produce realistic transition matrices. None-

theless, implementing stochasticity via parameter selection is less common because it can negate im-

portant intra-annual correlations between vital rates which can be an important part of assessing 
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uncertainty in model prediction (Fieberg & Ellner, 2001).  For the same reason as stochasticity cannot 

be implemented by parameter selection, HGAMs cannot be used to calculate the elasticity to perturba-

tions to vital rate parameters and are restricted to elasticities to function perturbations and kernel per-

turbations. Another method that is limited by using HGAMs is state-space integral projection models 

(SSIPMs). This is an approach for estimating demographic parameters from time series of size-struc-

tured survey data using a Bayesian framework (White et al., 2016). However, parameters of HGAM 

IPMs would be harder to sample, as opposed to simple slope and intercepts, because of poorer parameter 

identifiability and a greater potential for biologically unrealistic parameter combinations. Similarly, 

HGAMs might not be optimal for the underlying IPM in the simulated population models approach 

outlined in Rolph et al. (2021) because it relies on sampling parameter sets of IPMs which produce 

IPMs with a long-term growth rate of 1.  

Our findings provide direction for future research and opportunities for integrating HGAMs with other 

IPM methods. Because most demographic datasets do not have the detail and longitude of the Soay 

sheep dataset and typically span 5 or fewer years (Menges, 2000) the generalisation we can make from 

this case study is limited. Therefore, future research needs to assess whether using HGAMS with fewer 

years of data provides the same differences we observed, especially as to whether HGAMs are more 

likely to overfit when using fewer years of data. This could be assessed with the Soay sheep data by 

fitting vital rate models to a subset of years from the full demographic time series and comparing to the 

model fit to the full time series. An alternative approach might use simulated demographic data from 

which HGAM or GLMM vital rate models can be fitted to samples from this simulated data representing 

a wider range of life histories, to observe how sample size and longitude of the dataset affect model fit. 

A methods-focused area of research could investigate how HGAMs can be utilised effectively in other 

forms of IPMs such as dynamic energy budget (DEB) IPMs (Smallegange et al., 2017), integrated pro-

jection model integral projection models (IPM2) (Plard et al., 2019) and density-dependent IPMs (Ellner 

& Rees, 2006). In terms of types of models, we constructed for comparison, an omission in this study 

is generalise additive mixed-effects models (GAMMs) with a random intercept (Wood, 2017). 
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Conceptually, GAMMs would provide a midpoint between GLMMs and HGAMs as it incorporates the 

additive features of HGAMS but not the pooled smoothing parameter. 

In conclusion, we can use non-linear functional forms to model time-varying vital rates using HGAMs. 

We found that using HGAMs over GLMMs improved model fit, affected IPM outputs relating to life 

history and response to perturbations, and thus may affect our understanding of ecological systems. 

Hesitancy to using non-linear vital rates in IPMs may be due to the shortage of published examples or 

a concern that non-linear models may overfit the data. This work helps overcome these hurdles by 

providing another example of a non-linear IPM which shows that additional flexibility is possible to 

incorporate into IPMs, this flexibility improved the model fit and resulted in differences in predictions. 

Going forward, we recommend fitting HGAMs alongside GLMMs to check for any non-linear relation-

ships so that time-variant vital rates are not inappropriately approximated by a linear constraint. This is 

especially appropriate in species where the demography of a system is poorly understood or data defi-

cient so that the population may be structured by a single continuous variable. In cases like this, explicit 

demographic structuring is less important because non-linear splines can account for more complex 

demographic relationships and/or hidden state variables. Overall, HGAM IPMs are a promising exten-

sion to the stochastic IPM approach and should be considered when fitting vital rates. 
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Figures 

 

Figure 4.1: Comparison of functional forms of models fitted to survival probability when lambs 

and adult are modelled together rather than separately. The models fitted are a generalised linear 

mixed-effects model and five types of hierarchical generalised additive model (HGAM). The five 

types of HGAMs can be summarised as follows; model G: A single common smoother for all obser-

vations, model GS: a global smoother plus group-level smoothers that have the same wiggliness, 

model GI: A global smoother plus group-level smoothers with differing wiggliness, model S: group-

specific smoothers without a global smoother, but with all smoothers having the same wiggliness, 

model I: group-specific smoothers with different wiggliness.  
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Figure 4.2: The stochastically simulated stable state distributions of the study population of sheep. 

Temporal mean average +- 1 standard deviation size distributions for four integral projection models 

fitted to Soay sheep data resulting from i.i.d. stochastic simulations of length 10,000 timesteps. Popu-

lations were projected for two model structures; a one-state model where all sheep were grouped and a 

two-state model where lambs and adult sheep were modelled separately where lambs transitioned to 

adult sheep after their first year. For each model structure, vital rates were fitted using two methods: 

hierarchical generalised additive models (HGAMs) and generalised linear mixed models (GLMM). 
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Figure 4.3: Survivorship curves and fecundity curves. Stochastically simulated probability of sur-

vival (𝑙𝑎) and average per capita fecundity (𝑓𝑎) of a surviving cohort of lambs for age (𝑎) 0 to 8 with a 

starting size distribution derived from the mean size at first census of lambs in the Soay sheep popula-

tion. Each line represents a starting cohort from each year. Survivorship and fecundity curves were 

generated from for types of IPM. Each IPM is constructed with one of two structures: a single state 

encompassing all sheep (left-hand column) or a two-state model with discrete states for lambs and adult 

sheep (right-hand column). For each IPM structure, one IPMs is constructed from vital rate functions 

fitted using generalised linear mixed models (GLMMs) (purple) or hierarchical generalised additive 

models (HGAMs) (orange). 
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Figure 4.4: The effect on the long-term growth rate of a perturbation to the vital rate function for 

six vital rates. This perturbation analysis calculated the stochastic elasticity of six vital rates of survival, 

growth, probability of reproducing, number of offspring born, survival probability of offspring and 

mean size of offspring. The perturbations are applied to four different IPMs. Each IPM is constructed 
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with one of two structures: a single state encompassing all sheep (orange) or a two-state model with 

discrete states for lambs (purple) and adult sheep (green). For each IPM structure, one IPMs is con-

structed from vital rate functions fitted using generalised linear mixed models (GLMMs) (dashed line) 

or hierarchical generalised additive models (HGAMs) (solid line). These plots indicate the effect on 

stochastic long-term growth rate of an increase of vital rate at size z. 
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Figure 4.5: The effect on the long-term growth rate of a perturbation to the standard deviation 

of the vital rate function for six vital rates. This perturbation analysis calculated the stochastic elas-

ticity to standard deviation of six vital rates of survival, growth, probability of reproducing, number of 

offspring born, survival probability of offspring and mean size of offspring. The perturbations are ap-

plied to four different IPMs. Each IPM is constructed with one of two structures: a single state 
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encompassing all sheep (orange) or a two-state model with discrete states for lambs (purple) and adult 

sheep (green). For each IPM structure, one IPMs is constructed from vital rate functions fitted using 

generalised linear mixed models (GLMMs) (dashed line) or hierarchical generalised additive models 

(HGAMs) (solid line). These plots indicate the effect on the stochastic long-term growth rate of an 

increase of vital rate at size z. 
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Tables 

Table 4.1: Model comparison by Akaike information criterion (AIC) of vital rate models fitted to 

all sheep using generalised linear mixed models (GLMMs) and hierarchical generalised additive 

models (HGAMs). HGAMs were fitted in different five configurations (G, GS, GI, S, I) of how features 

were shared across groups. The five types of HGAMs can be summarised as follows; G: A single com-

mon smoother, GS: a global smoother plus group-level smoothers that have the same wiggliness, GI: A 

global smoother plus group-level smoothers with differing wiggliness, S: group-specific smoothers 

without a global smoother, but with all smoothers having the same wiggliness, I: group-specific smooth-

ers with different wiggliness. 

All sheep GLMM HGAM: G HGAM: GS HGAM: GI HGAM: S HGAM: I 

Survival 3471.298 3945.895 3335.480 3323.783 3386.283 3363.374 

Growth 6424.557 6535.442 6326.513 6302.789 6336.081 6329.543 

Probability 

of repro-

ducing 

3953.659 3613.480 3552.992 3557.098 3558.600 3582.649 

Number of 

offspring 

born 

6717.129 6731.233 6677.670 6690.854 6708.951 6711.112 

Survival of 

offspring 
2703.627 2699.030 2504.570 2506.565 2546.850 2557.539 

Mean size 

of offspring 

at t+1 

7683.752 7741.156 7605.963 7610.518 7659.363 7643.601 
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Table 4.2: Model comparison by Akaike information criterion (AIC) of vital rate models fitted to 

lambs using generalised linear mixed models (GLMMs) and hierarchical generalised additive 

models (HGAMs). HGAMs were fitted in different five configurations (G, GS, GI, S, I) of how features 

were shared across groups. The five types of HGAMs can be summarised as follows; G: A single com-

mon smoother, GS: a global smoother plus group-level smoothers that have the same wiggliness, GI: A 

global smoother plus group-level smoothers with differing wiggliness, S: group-specific smoothers 

without a global smoother, but with all smoothers having the same wiggliness, I: group-specific smooth-

ers with different wiggliness. 

Lambs GLMM HGAM: G HGAM: GS HGAM: GI HGAM: S HGAM: I 

Survival 1289.885 1608.7775 1268.1216 1269.3274 1300.9434 1279.6863 

Growth 1487.879 1510.5105 1485.6327 1460.7522 1476.1097 1480.6526 

Probability 

of repro-

ducing 

1385.446 1442.5562 1370.6728 1374.5792 1394.5350 1379.6249 

Number of 

offspring 

born 

866.334 908.1478 841.5500 850.5509 860.4697 888.6845 

Survival of 

offspring 
292.622 342.9099 263.5293 271.6001 271.8099 283.9249 

Mean size 

of offspring 

at t+1 

314.592* 314.5927 
Insufficient data 

for good model 

fit 

Insufficient data 

for good model 

fit 

Insufficient data 

for good model 

fit 

Insufficient data 

for good model 

fit 
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Table 4.3: Model comparison by Akaike information criterion (AIC) of vital rate models fitted to 

adult sheep using generalised linear mixed models (GLMMs) and hierarchical generalised addi-

tive models (HGAMs). HGAMs were fitted in different five configurations (G, GS, GI, S, I) of how 

features were shared across groups. The five type of HGAMs can be summarised as follows; G: A single 

common smoother, GS: a global smoother plus group-level smoothers that have the same wiggliness, 

GI: A global smoother plus group-level smoothers with differing wiggliness, S: group-specific smooth-

ers without a global smoother, but with all smoothers having the same wiggliness, I: group-specific 

smoothers with different wiggliness. 

Adults GLMM HGAM: G HGAM: GS HGAM: GI HGAM: S HGAM: I 

Survival 2087.366 2337.549 2064.568 2070.339 2076.477 2082.874 

Growth 6424.557 6535.442 6326.513 6302.789 6336.081 6329.543 

Probability 

of repro-

ducing 

2252.560 2143.873 2150.262 2140.118 2229.104 2193.075 

Number of 

offspring 

born 

5856.910 5820.482 5808.792 5813.531 5833.511 5851.761 

Survival of 

offspring 
2301.657 2355.093 2231.078 2235.506 2259.750 2260.154 

Mean size 

of offspring 

at t+1 

7683.752 7420.550 7292.146 7280.628 7296.665 7299.753 
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Table 4.4: Comparison of life history measures calculated from four different IPMs. Each IPM is 

constructed with one of two structures: a 1-state IPM encompassing all sheep or a 2-state IPM with 

discrete states for lambs and adult sheep. For each IPM structure, one IPMs is constructed from vital 

rate functions fitted using generalised linear mixed models (GLMMs) or hierarchical generalised addi-

tive models (HGAMs). Notation of each life history measure follows table 3.3 of (Ellner et al., 2016a). 

Stochastic population 

measure 

1-state IPM 2-state IPM 

GLMM HGAM GLMM HGAM 

Mean life expectancy, 𝜂̅(𝑧0)  5.317313 5.012113 4.860881 4.795846 

Variance in lifespan, 𝜎𝜂
2(𝑧0) 91.66789 58.31827 57.33409 55.99884 

Standard deviation in 

lifespan, 𝜎𝜂(𝑧0) 
9.574335 7.63664 7.571927 7.483237 

Mean probability of repro-

ducing once, 𝐵(𝑧0) 

0.7884714 0.750724 0.7461362 0.7386878 

Mean size at death, 𝜔̅(𝑧0) 16.98803 17.51278 17.28827 17.28505 

Mean age at first breeding, 

𝑎̅𝑅(𝑧0) 

0.312671 0.3390717 0.3214633 0.3609229 

Stochastic long term growth 

rate,  𝜆𝑆 

1.059735 1.062220 1.051862 1.051322 
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Supplementary figures 

 

Supplementary figure S4.1: Comparison of vital rate models fitted to all sheep by hierarchical 

generalised additive models (HGAMs) and generalized linear mixed-effects models (GLMMs). 

Vital rate models for survival, growth, probability of reproduction, number of offspring, offspring 
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survival and mean size of offspring fitted to data from the Soay Sheep population using two modelling 

frameworks: HGAMs and GLMMs. Each line represents a model fit for each annual transition in the 

dataset. Transparency was adjusted by the population density at each size of a mean size distribution 

from a stochastic i.i.d.  projection simulated for 10000 timesteps to highlight population density along 

with the vital rate functions.  
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Supplementary figure S4.2: Comparison of vital rate models fitted by adults and first-years by 

hierarchical generalised additive models (HGAMs) and generalized linear mixed-effects models 

(GLMMs).  Vital rate models for survival, growth, probability of reproduction, number of offspring, 

offspring survival and mean size of offspring fitted to data from the Soay Sheep population using two 

modelling frameworks: HGAMs and GLMMs. Each line represents a model fit for each annual 
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transition in the dataset. Transparency was adjusted by the population density at each size of a mean 

size distribution from a stochastic i.i.d. projection simulated for 10000 timesteps to highlight population 

density along with the vital rate functions. 
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Supplementary figure S4.3: The differences in vital rate models fitted by to all sheep, adults and 

lambs by hierarchical generalised additive models (HGAMs) and generalized linear mixed-effects 

models (GLMMs).  Difference between the predicted vital rate models for survival, growth, probability 

of reproduction, number of offspring, offspring survival and mean size of offspring fitted to data from 

the Soay Sheep population using two modelling frameworks: HGAMs and GLMMs. Each line 
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represents a model fit for each annual transition in the dataset. Large values (>0) mean that GLMM 

predicted higher values than HGAM and negative values mean that HGAM predicted higher values 

than GLMM. 
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Supplementary figure S4.4: 1-step growth rates from 1991 to 2017 for four integral projection 

models (IPMs) constructed from vital rates fitted to data from the Soay sheep population in St 

Kilda (green and orange lines). These growth rates are compared to the growth rates derived from 

field population counts of the Soay sheep population (black line). Populations were projected for two 

model structures; a one-state model where all sheep were grouped and a two-state model where lambs 

and adult sheep were modelled separately where lambs transitioned to adult sheep after their first year. 

For each model structure, vital rates were fitted using two methods: hierarchical generalised additive 

models (HGAMs) and generalised linear mixed models (GLMM). 
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Supplementary figure S4.5: Survivorship patterns across four different IPMs. Probability of sur-

vival to ages 1,2,3, and 8 given size at first summer census (z0) for four different IPMs. Each IPM is 

constructed with one of two structures: a single state encompassing all sheep (orange) or a two-state 

model with discrete states for lambs and adult (purple). For each IPM structure, one IPMs is constructed 

from vital rate functions fitted using generalised linear mixed models (GLMMs) or hierarchical gener-

alised additive models (HGAMs). 
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Supplementary figure S4.6: Fecundity patterns across four different IPMs. Average annual, per-

capita fecundity at ages 1,2,3, and 8 given size at first summer census (z0) for four different IPMs. Each 

IPM is constructed with one of two structures: a single state encompassing all sheep (orange) or a two-

state model with discrete states for lambs and adult sheep (purple). For each IPM structure, one IPMs 

is constructed from vital rate functions fitted using generalised linear mixed models (GLMMs) or hier-

archical generalised additive models (HGAMs). 
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Supplementary figure S4.7: Variance in lifespan given size at first summer census (z0) for four 

different IPMs. Each IPM is constructed with one of two structures: a single state encompassing all 

sheep (orange) or a two-state model with discrete states for lambs and adult sheep (purple). For each 

IPM structure, one IPMs is constructed from vital rate functions fitted using generalised linear mixed 

models (GLMMs) or hierarchical generalised additive models (HGAMs). 
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Supplementary figure S4.8: Mean probability of reproducing at least once given size at first sum-

mer census (z0) for four different IPMs. Each IPM is constructed with one of two structures: a single 

state encompassing all sheep (orange) or a two-state model with discrete states for lambs and adult 

sheep (purple). For each IPM structure, one IPMs is constructed from vital rate functions fitted using 

generalised linear mixed models (GLMMs) or hierarchical generalised additive models (HGAMs). 
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Supplementary figure S4.9: The effect on the long-term growth rate of a perturbation to the mean 

vital rate function for six vital rates. This perturbation analysis calculated the stochastic elasticity to 

mean function of six vital rates of survival, growth, probability of reproducing, number of offspring 

born, survival probability of offspring and mean size of offspring. The perturbations are applied to four 

different IPMs. Each IPM is constructed with one of two structures: a single state encompassing all 
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sheep (orange) or a two-state model with discrete states for lambs (purple) and adult sheep (green). For 

each IPM structure, one IPMs is constructed from vital rate functions fitted using generalised linear 

mixed models (GLMMs) (dashed line) or hierarchical generalised additive models (HGAMs) (solid 

line). These plots indicate the effect on the stochastic long-term growth rate of an increase of vital rate 

at size z. 
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Supplementary figure S4.10: The proportional effect on the long-term growth rate of a perturba-

tion to the mean vital rate function for six vital rates. This perturbation analysis calculated the sto-

chastic sensitivity to mean function of six vital rates of survival, growth, probability of reproducing, 

number of offspring born, survival probability of offspring and mean size of offspring. The perturba-

tions are applied to four different IPMs. Each IPM is constructed with one of two structures: a single 



Chapter 4: Time-varying vital rates for population modelling: how flexible do we need to be? 

161 

 

state encompassing all sheep (orange) or a two-state model with discrete states for lambs (purple) and 

adult sheep (green). For each IPM structure, one IPMs is constructed from vital rate functions fitted 

using generalised linear mixed models (GLMMs) (dashed line) or hierarchical generalised additive 

models (HGAMs) (solid line). These plots indicate the effect on the stochastic long-term growth rate of 

an increase of vital rate at size z. 
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Supplementary tables 

Supplementary table S1:  R calls for the gam function in R package mgcv for fitting each vital rate. 

HGAMs were fitted in different five configurations (G, GS, GI, S, I) of how features were shared across 

groups. The five types of HGAMs can be summarised as follows; G: A single common smoother, GS: 

a global smoother plus group-level smoothers that have the same wiggliness, GI: A global smoother 

plus group-level smoothers with differing wiggliness, S: group-specific smoothers without a global 

smoother, but with all smoothers having the same wiggliness, I: group-specific smoothers with different 

wiggliness. 

Demographic 

function 
Model type R call in mgcv::gam 

Survival GLM gam(surv ~ t/ z -1 , family = binomial, method="REML") 

 HGAM: G gam(surv ~ z , family = binomial, method="REML") 

 HGAM: GS 
gam(surv ~ s(z,bs="tp") + s(z, t, bs="fs",m=2), family 

= binomial, method = "REML") 

 HGAM: GI 
gam(surv ~ s(z, bs="tp") + s(z, by =t, m=1,bs="tp") + 

s(t, bs="re"), family = binomial, data = method="REML") 

 HGAM: S 
gam(surv ~ s(z, t, bs="fs",m=2), family = binomial, 

method="REML") 

 HGAM: I 
gam(surv ~ s(z, by = t,bs="tp",m=2)+ s(t, bs="re"), 

family = binomial, method="REML") 

Growth GLM gam(z1 ~ t/z-1 ) 

 HGAM: G 
gam(z1 ~ s(z, bs="tp"), family = gaussian, 

method="REML") 

 HGAM: GS 
gam(z1 ~ s(z, bs="tp") + s(z, t, bs="fs",m=2), family 

= gaussian, method="REML") 

 HGAM: GI 
gam(z1 ~ s(z, bs="tp") + s(z, by =t, m=1,bs="tp") + 

s(t, bs="re"), family = gaussian, method="REML") 

 HGAM: S 
gam(z1 ~ s(z, t, bs="fs",m=2), family = gaussian, 

method="REML") 

 HGAM: I 
gam(z1 ~ s(z, by = t,bs="tp",m=2)+ s(t, bs="re"), fam-

ily = gaussian ,method="REML") 
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Probability of 

reproduction 
GLM gam(repr ~ t/ z -1 , family = binomial, method="REML") 

 HGAM: G 
gam(repr~ s(z, bs="tp"), family = binomial, 

method="REML") 

 HGAM: GS 
gam(repr~ s(z, bs="tp") + s(z, t, bs="fs",m=2), family 

= binomial, method="REML") 

 HGAM: GI 
gam(repr~ s(z, bs="tp") + s(z, by =t, m=1,bs="tp") + 

s(t, bs="re"), family = binomial, method="REML") 

 HGAM: S 
gam(repr~ s(z, t, bs="fs",m=2), family = binomial, 

method="REML") 

 HGAM: I 
gam(repr~ s(z, by = t,bs="tp",m=2)+ s(t, bs="re"), fam-

ily = binomial, method="REML") 

Number of off-

spring 
GLM 

gam(n_offspring ~ t/ z -1 , family = poisson, 

method="REML") 

 HGAM: G 
gam(n_offspring ~ s(z, bs="tp"), family = poisson, 

method="REML") 

 HGAM: GS 
gam(n_offspring ~ s(z, bs="tp") + s(z, t, bs="fs",m=2), 

family = poisson, method="REML") 

 HGAM: GI 

gam(n_offspring ~ s(z, bs="tp") + s(z, by =t, 

m=1,bs="tp") + s(t, bs="re"), family = poisson, 

method="REML") 

 HGAM: S 
gam(n_offspring ~ s(z, t, bs="fs",m=2), family = pois-

son, method="REML") 

 HGAM: I 
gam(n_offspring ~ s(z, by = t,bs="tp",m=2)+ s(t, 

bs="re"), family = poisson, method="REML") 

Offspring sur-

vival 
GLM gam(win_l ~ t/ z -1 , family = binomial, method="REML") 

 HGAM: G 
gam(win_l~ s(z, bs="tp"), family = binomial, 

method="REML") 

 HGAM: GS 
gam(win_l~ s(z, bs="tp") + s(z, t, bs="fs",m=2), family 

= binomial, method="REML") 

 HGAM: GI 
gam(win_l~ s(z, bs="tp") + s(z, by =t, m=1,bs="tp") + 

s(t, bs="re"), family = binomial, method="REML") 

 HGAM: S 
gam(win_l~ s(z, t, bs="fs",m=2), family = binomial, 

method="REML") 

 HGAM: I 
gam(win_l~ s(z, by = t,bs="tp",m=2)+ s(t, bs="re"), 

family = binomial, method="REML") 

Size of off-

spring at t+1 
GLM gam(z_l~ t/z-1) 
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 HGAM: G gam(z_l~ s(z, bs="tp"), family = gaussian) 

 HGAM: GS 
gam(z_l~ s(z, bs="tp") + s(z, t, bs="fs",m=2), family 

= gaussian) 

 HGAM: GI 
gam(z_l~ s(z, bs="tp") + s(z, by =t, m=1,bs="tp") + 

s(t, bs="re"), family = gaussian) 

 HGAM: S gam(z_l~ s(z, t, bs="fs",m=2), family = gaussian) 

 HGAM: I 
gam(z_l~ s(z, by = t,bs="tp",m=2)+ s(t, bs="re"), fam-

ily = gaussian) 
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Summary of thesis achievements 

The aim of this thesis was to advance our understanding of the causes and consequences of demographic 

variation, with a particular focus on variation in population performance and life history. Demographic 

variation has many dimensions: demographic rates vary throughout an individual’s lifetime, across 

individuals, across populations, across species, and across space and time. In this work I examined 

demographic variation using two approaches, species-level macroecological comparative demography 

and the in-depth study of a single system, to develop our understanding of the complex relationships 

between demography, life history and population dynamics.  At these two levels of ecological 

complexity, across three data chapters, I have covered a range of parallel themes; how non-adaptive 

constraints play a key role in shaping demographic variation, synthesising demographic variation, the 

link between demography and life history, and how assumptions in demographic models can affect our 

interpretation of analyses. This thesis discussion first summarises the key findings from each data 

chapter. I then explore how the findings of this thesis can inform our broader understanding of 

demography and life history, the future of comparative demography, and provides a conceptual 

springboard for how we can apply the null model framework to approach new research questions. 

In chapter two, Density dependence limits the comparative analysis of demographic data, I found that 

observed patterns of demographic (co)variation were consistent with patterns from simulated 

population models constrained by density dependence, a non-adaptive constraint. I simulated 

demographic models under the constraint that asymptotic growth rate, 𝜆, in persistent populations 

converge to 1 or log⁡(𝜆) ≈ 0. I compared the covariance patterns in life history metrics derived from 

our simulated demographic models to those derived from published MPMs sourced from the 

COMPADRE Plant Matrix Database. I saw substantial similarities in these patterns and therefore 

determined that the covariance patterns in demographic life history metrics might be attributed to 

density dependence. Furthermore, our work shows that we should assume that (co)variances patterns in 

demographic life history metrics are not attributed to budgetary trade-offs of investment in survival, 

growth, and reproduction. These findings prompt the re-evaluation of previous comparative analyses 
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that previously implied that these observed major axes of life-history variation are representative of 

budgetary trade-offs. This work provides a framework for further examinations of non-adaptive 

constraints.  

In chapter three, Linking life history to transient dynamics via population models, I applied the 

simulated population model approach to achieve two aims. First, to assess how non-adaptive constraints 

affected (co)variance patterns in transient indices. Second, to explore the link between life history and 

transient dynamics. I used a different set of life-history metrics and a set of six transient indices but 

again found that non-adaptive constraints were ubiquitous in covariance patterns of MPM/IPM derived 

metrics. I found that (co)variance patterns within transient indices showed two main axes: magnitude 

of response and tendency towards amplification or attenuation. The most important axis of variation in 

life history traits and transient indices emerged as a prototypical fast-slow continuum from short-lived, 

highly reproductive populations to long-lived, less reproductive populations. This axis explained 50% 

of the magnitude of transient potential but subsequent latent variables were needed to improve 

predictions, and the tendency to amplify or attenuate was more poorly linked to life history. Non-

adaptive constraints explained much of the (co)variance patterns in life history and transients which 

improved predictions of transient potential. Non-linear patterns in life history traits suggested that 

statistical approaches with assumptions of linearity such as PLS and PCA might not perform optimally. 

This work also proved that the simulated population models approach developed in chapter two could 

also be used as a standalone technique to answer the same research questions as empirical databases 

such as the COMPADRE Plant Matrix Database. 

In chapter four, Time-varying vital rates for population modelling: how flexible do we need to be?, I 

stepped away from the comparative approach to explore the causes and consequences of demographic 

variation for a single population: the Soay sheep of St Kilda. I found that decisions in how we model 

time-varying vital rates, in terms of functional forms and how we pool parameters across years, affected 

trajectories of survival and reproduction having effects on life history metrics and vital rate sensitivities. 

I showed this by constructing time-varying IPMs with vital rates fitted with generalised linear mixed-

effects models (GLMMs) and the more flexible hierarchical generalised additive models (HGAMs). 
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HGAMs scored better in model comparisons and the choice to use HGAMs or GLMMs had some effect 

on prospective projections and measures of life history. Differences in functional expressions of vital 

rates resulted in the average size distribution of HGAM-fitted IPMs to have smaller sheep than GLMM-

fitted IPMs. This size change is reflected in perturbation analyses: HGAM-fitted IPMs showed that the 

stochastic long-term growth rate was more sensitive to changes in the vital rates of smaller sheep. 

Overall, this chapter found that HGAMs provide a robust approach for fitting non-linear time-varying 

vital rate models and might be especially useful in cases where there are hidden state variables. 

Life history through a demographic lens 

Demography can provide powerful insights into life history. However, demographic data based on 

annual censuses can obfuscate important processes. Throughout this work I made a distinction between 

life history traits and life history metrics; life history traits were captured from direct field measurements 

whereas life history metrics were derived from population models. For example, work by Stearns (1983) 

explored covariances patterns in life history traits which captured timings of within-year developments 

such as gestation period and the number of offspring and are more direct measures of energetic 

investment. Conversely, Salguero-Gómez et al., (2016), which was presented as a continuation of 

Stearns’ work, used demographic data to explore covariance patterns in life history metrics derived 

from demographic models. This demographic data describes transitions across annual censuses and 

these demographic rates represent the composite of many processes that occur between each census 

such as energetic investment into survival and reproduction, environmental factors, and density 

dependence. As a result, demographically derived life history metrics are good at capturing the timing 

and schedules of life history events but are not a direct measure of investment and therefore are less 

informative about allocation strategies. For example, MPM-derived mean sexual reproduction vital rate 

is incorporating several demographic processes (probability of reproduction, number of offspring, 

survival rate of offspring) and environmental factors. The key to using demographic data to explore 

patterns of life histories is our definition of ‘life histories’. Sutherland et al., (1986) suggested over three 

decades ago that life histories “may be more profitably viewed as consequences of [organisms’] actions 
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(which may be evolved strategies), environmental effects and demographic constraints”. (Co)variance 

patterns in demographically derived life history metrics do not describe axes of life-history strategies. 

Instead, we are observing axes of life history, of which life-history strategies are only one component. 

Inconsistencies in the use of life history metrics for comparative analysis of demographic data have 

resulted in an unclear and ambiguous definition of the fast-slow continuum and reproductive strategies 

axes. Despite, technical ambiguity introduced by the use of different metrics, the generic messages of 

previous comparative analyses (Healy et al., 2019; Salguero-Gómez, 2017) are that life histories are 

structured along a ‘pace of life’ axis correlating with generation time, and a reproductive strategy axis 

going from iteroparity to semelparity. Having shown that these patterns are consistent with density-

dependent constraints, it might be more productive to bypass the PCA approach and simply classify life 

histories using two or three metrics that explicitly capture these dimensions of life history. Alternatively, 

PCA and similar approaches are designed for dimension reduction and can accommodate many more 

metrics than the typical comparative demographic analysis. Why not include all robust metrics and 

allow the (co)variance patterns to emerge organically, rather than a preselection of metrics to fit the 

author’s criteria of sufficiently describing different facets of life history? Otherwise, there is a risk that 

the emerging axes of variation are dictated as much by the author’s choice of metrics, as the underlying 

life history of the study organisms. Going forward, authors should provide more transparency behind 

the motivation for each chosen life history metrics. In addition, authors could provide an alternate 

version of an analysis in which uses the same sets of life history metrics as other analyses; this would 

improve our ability to compare results between analyses. 

Metrics used to classify life history should be independent of population performance. We need to be 

able to attribute observed correlations between life history and performance in empirical data to 

ecological mechanisms, rather than non-adaptive constraints. For example, R0 is used as a measure of 

life history in Salguero-Gómez et al., (2016) but R0 is mathematically constrained to be sign equivalent 

to log⁡(𝜆). Therefore, when life history, as classified by major axes of variation in life history metrics 

including R0, is found to correlate with 𝜆, we cannot differentiate whether this correlation ecologically 

driven, or just an artefact of mathematic constraints. This classification of life history is also shown to 
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correlate with IUCN red list status (Salguero-Gómez, 2017); however, this is likely explained by a 

correlation with 𝜆 because population growth rate is a factor in red list status. By conflating performance 

with life history, we undermine this comparative approach as a predictive framework. The simulated 

population model approach used in chapters two and three provide an appropriate tool for diagnosing 

these inherent correlations using simulated population models. By comparing whether a correlation is 

present in the empirical data and our null model, simulated population models, we can identify whether 

a link between life history and performance is inherent. 

Chapters two and three were in-depth explorations of the effects of density-dependent constraints but 

we also know that mathematical constraints act on (co)variance patterns of life history metrics; however, 

we do not know the strength and shape of these constraints. A constraint is a mechanism that excludes 

some combinations of a set of variables. Mathematical constraints emerge in comparative demography 

when there are combinations of IPM/MPM-derived metrics that do not materialise despite every 

possible parameter combination for an IPM or MPM. For example, a mathematical constraint in 

transient indices is that maximum amplitude must be equal to or greater than first step amplification. In 

this simple case, it’s easy to understand how the constraint acts. Other examples are less straightforward; 

for example, are there any mathematical constraints between generation time and degree of iteroparity? 

Other factors may also affect these constraints such as the matrix dimension of MPMs. It is important 

to understand the implications of mathematical constraints for the same reasons as density-dependent 

constraints; (co)variance patterns are likely shaped by these constraints and when examining a 

relationship found in empirical analyses, we need to know how much we can attribute to non-adaptive 

vs adaptive constraints. Reassuringly, the non-adaptive constraints observed in chapter two and three 

were not entirely mathematical because when we sampled population models to different mean 𝜆 values, 

the covariance in life history metrics patterns was affected. A rigorous approach for a comprehensive 

examination of the impact of mathematical constraints would be the use of random matrix theory 

(RMT). A random matrix is a matrix in which some or all elements are random variables and originate 

in probability theory and mathematical physics but have been used to examine the stability of complex 

ecological systems (May, 1972; Stone, 2018) and transient dynamics (Grela, 2017). May (1972) 
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described interactions in ecological communities using matrices, which then were treated as random 

matrices to examine the inherent dynamics of the system. Similarly, we could treat MPMs as random 

matrices to examine the inherent mathematical properties of demographically structured populations.  

Our findings in chapter two and three build on previous work (eg. Picard & Liang, 2014; Salguero-

Gómez & Plotkin, 2010) and showed there was discretisation error in the majority of life history metrics 

and transient indices calculated from MPMs that were derived from our simulated IPMs. This 

discretisation induced error reduced the power of comparative analyses; in chapter three we found that 

the link between life history and transient dynamics was obscured when we analysed with discretely 

structured MPMs, as opposed to their continuously structured counterpart IPMs. We expect there to be 

an interaction between non-adaptive constraints and discretisation errors. For example, in the use of 

projection to latent space (PLS), the overall trends might persist, because of stabilising effect of non-

adaptive constraints, whereas the position of a population model within the latent space may be affected 

considerably. As a result, emerging major axes of variation may hold true when derived from discretised 

models, because they are primarily attributed to non-adaptive constraints. 

Adding an energetic underpinning to comparative demography would allow us to differentiate between 

energetic investments and environmental effects or non-adaptive factors. One tool that shows promise 

in this regard is dynamic energy budgets integral projection models (DEB-IPMs) (Smallegange et al., 

2017). By incorporating a mechanistic understanding of vital rates, rather than a simply correlative 

approach as used in typical IPMs, DEB-IPMs provide an explicit link from individual-based investment 

in survival, growth, and reproduction to population-level processes. DEB-IPMs have been successfully 

used across a variety of taxa; in bulb mites (Smallegange & Ens, 2018), manta rays (Smallegange et al., 

2017), and Japanese anchovy (Liao et al., 2020). The greater data requirements and method complexity 

are likely to be a barrier to mass adoption in the same scales as MPMs, thus making a macroecological 

comparative approach less feasible. However, simulating DEB-IPMs via a null model approach may 

offer some insights into what proportion of the (co)variance of life history metrics can be attributed to 

underlying energetic investments. If this were to show that energetic investments are detectable in the 
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comparative analysis demographic data, then this would provide confidence in the comparative methods 

(eg. Healy et al., 2019; Salguero-Gómez et al., 2016).  

Evaluation and opportunities of our simulated 

population model approach 

In chapters two and three we used simulated population models to show that non-adaptive constraints 

played a crucial role in shaping species-level covariance patterns of life history traits and transient 

indices. Non-adaptive constraints may play a currently unrecognised role in other demographic 

analyses, such as our analysis of the Soay sheep population in chapter four. Here, we discuss the 

limitations of the current framework and changes required for applying the framework to comparative 

analysis of stochastic demographic models and single-species studies. In summary, our procedure for 

simulating population modes can be broken down into three stages, and this staging is used when 

describing how this approach could be adapted for future work. First, a plausible plant-like IPM is 

defined. In our implementation, this IPM had two discrete maturity stages with continuous size 

domains. Second, parameter sets for this IPM are sampled using a metropolis algorithm to fulfil the 

criteria of asymptotic long-term growth rate, 𝜆, was approximately 1. Third, if the simulated population 

models need to be compared to MPMs from databases such as COMPADRE/COMADRE, the simulated 

IPMs are discretised to MPMs. 

A key evaluation of this framework is determining how well the plant-like IPM we defined could 

express the demographic life history space. A quantitative evaluation asks how well the IPM could 

express the full diversity of combinations of life histories we could conceivably observe in natural 

populations. There are qualitative examples where a certain feature of life history couldn’t be described. 

For example, our IPM did not contain dormant life stages, which are present in a range of organisms 

(Paniw et al., 2017). We saw evidence that our IPM was more constrained than MPMs from 

COMPADRE in terms of covariance of life history metrics: in simulated population models, a greater 

proportion of variance is explained by the fast-slow axis than our COMPADRE subset. This may in 
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part be due to MPM’s freedom to express any combination of states and transitions between states, as 

opposed to our IPM’s more constrained functional forms. Alternatively, it might have been that the IPM 

we defined was limited in describing life history diversity beyond the classical fast-slow continuum. 

Ultimately, the key messages of our work were not diluted by the relative inflexibility of our underlying 

IPM since the broad goal of this approach is to produce a sufficiently comprehensive approximation of 

the diversity of plausible life histories, which this work achieved. However, future applications of this 

framework may want to describe life histories beyond what we currently observe in databases such as 

COMPADRE. Therefore, simulated population models could provide a null model from which we can 

identify gaps in the life history space when compared to real populations. We could then look for 

explanations as to why certain possible combinations of life history metrics are not realised in real-

world conditions. 

Time-varying demographic models have been incorporated in comparative work, and we cannot 

currently apply our simulated population model to this setting. Paniw et al. (2018) utilised the time-

varying demographic models in COMPADRE and COMADRE to show that slower life histories were 

less sensitive to temporal autocorrelation. However, the same question remains: how much of this 

pattern can we attribute to non-adaptive constraints such as density dependence? Another avenue of 

research uses the comparative analysis of time-variant population models to explore the demographic 

buffering hypothesis by determining how temporal variability in vital rates correlates with their 

contribution to fitness (Jongejans et al., 2010; McDonald et al., 2017). These studies have also used 

simulated population models to compare background patterns to empirical data from published 

population models. Simulated MPMS were generated with replicate matrices representing a set of 

annual transitions and demographic parameters sampled from separate distributions. Our approach 

presents several advantages over this approach. First, our life histories are underpinned by an IPM so 

we can use the functional basis of vital rates to generate more realistic life histories. Second, instead of 

independently sampling demographic parameters, we are simulating sets of parameters under a 

constraint that ensures realistic population dynamics. Third, IPMs can be discretised to MPMs, 
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providing a tool to determine whether the discretisation process biases the analyses, as we did in chapter 

three. 

Comparative single species studies are another area that would benefit from a null model of simulated 

time-varying population models. For example, PlantPopNet is a globally distributed study of Plantago 

lanceolata looking to overcome a central challenge to single system and comparative studies: the lack 

of spatial replication (Buckley et al., 2014). By setting up field sites across the distribution of their target 

species, PlantPopNet looks to disentangle the factors underpinning the species’ demography such as 

the environment, genetics, and local adaptation. However, when examining apparent trade-offs in the 

vital rates of survival, growth and reproduction, and the sensitivity of long-term growth rate to 

perturbations to these vital rates, how much is attributed to non-adaptive constraints? Again, it would 

be useful to contextualise the empirical demographic data against a background of simulated 

populations subject to minimal constraints on population growth rate. When simulating population 

models for a single species we would no longer be trying to explore the full diversity of life histories 

and can use prior knowledge of the study system to define a species-specific IPM. In addition, parameter 

sets could be sampled from target distributions of other population metrics such as generation time, in 

addition to the stochastic growth rate. 

These opportunities to apply the simulated population model approach to time-varying comparative 

research and single species research will require more complex IPMs. There are conceptual and 

computation considerations with using a more complex population model. Conceptually, more 

complexity such as more flexibility in vital rate models risks the model expressing an implausible life 

history, e.g., an organism that is born large and shrinks as it matures. Computationally, every new 

parameter adds a new dimension to the parameter space and so will slow sampling and/or require greater 

computational resources. A more complex IPM also provides traps for different sets of parameters to 

express essentially the same demography. For example, with our relatively simple IPM, we experienced 

issues whereby immortal life histories that lived forever and never reproduced, thus satisfying the 

log⁡(𝜆) ⁡≈ 1 criterion, were oversampled. This is because once reproduction had been reduced to zero, 

parameters for now redundant vital rates such as the probability of flowering could freely vary to 
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produce unique parameter sets but essentially the same demographic model. Our solution was to 

implement some weak constraints to dissuade the sampler from doing this and thus adding model 

complexity may provide more opportunities to create immortal life histories and so might require 

additional constraints. However, I advise caution applying excessive constraints as it may detract from 

the conceptual aim to produce an unbiased sample of plausible life histories. 

To incorporate stochasticity into the simulated population model approach we would need to define an 

IPM where vital rates can vary across a number of years. In chapter four we used kernel selection to 

simulate a stochastic population and assumed a stochastic population simulation randomly selects 

yearly transition kernels from independent identical distribution (i.i.d.). If assuming i.i.d., pseudo-

duplicates of parameter sets might be sampled whereby the annual transitions are simply swapped 

between years. For example, for a stochastic IPM with vital rate parameters describe three years of 

annual transitions, if the parameters for year 1 and year 2 were switched, this would seem like two 

distinct parameter sets (the original and the switched set) to the sampler. Whereas in terms of stochastic 

population growth rate they are identical because of the i.i.d. assumption. Therefore, instead of kernel 

selection, we would use parameter selection whereby each parameter would have a mean and variance 

and unique kernels are generated for each time step by sampling from these parameter distributions 

(Ellner et al., 2016). We would need to determine appropriate assumptions for the covariances of these 

parameters. Whilst in chapter four we showed that HGAMs are appropriate for data-driven time-varying 

population models, they would be more obtuse to use for defining the stochastic IPM because HGAM 

parameters are less straightforward to interpret. Essentially, familiar challenges remain; the need to 

strike a balance between a model flexible enough to describe sufficient variability between years 

without adding too much model complexity which would hinder efficient sampling of parameters. 

Preceding this work, several simulated population model approaches have been used in demography 

(e.g. Jongejans et al., 2010; McDonald et al., 2017; Takada et al., 2018). However, given the advantages 

and general applicability of this framework, some thought should be given to the reproducibility and 

standardisation of this approach. Reporting the use of the simulated population model approach would 

need to include a formal definition about the underlying IPM, the target distribution, any pseudo-priors 
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used to constrain the sampler, the sampling algorithm used and, if applicable, how the IPMs had been 

discretised to MPMs. The first step towards wider adoption of this approach is to provide access to the 

simulated population models generated as part of chapter two and three, in the form of their discretised 

MPMs, in the same format that MPMs from COMPADRE/COMADRE is distributed. This immediately 

provides a way that any comparative analyses can be run with simulated models, alongside their 

empirical data, to observe the effects of non-adaptive constraints. In addition, tools like the IPMr 

package developed by Sam Levine (https://github.com/levisc8/ipmr) could be useful tool for standard 

descriptions of the underlying IPMs from which parameter sets are sampled. 

Conclusions 

The demographic approach is valuable; providing insight into how differences between individuals 

scale up to population-level dynamics. Here we’ve shown how we can use the demographic approach 

to interrogate comparative, and single system, patterns in life history and transient responses to 

perturbations. When modelling a single population, even the finest details in how we capture interannual 

variation in vital rates can impact our understanding of that population’s life history and response to 

perturbations. At a comparative level, we showed using the demographic approach that density 

dependence is likely to explain a considerable proportion in (co)variance patterns in demographic life 

history metrics, and that these life history metrics can predict elements of transient. Alongside these 

important findings, we’ve stressed that the interpretation of demographic analyses requires 

consideration of non-adaptive constraints and how demographic models are constructed. We provide a 

solution to these challenges: using simulated population models are a useful tool to contextualise results 

against a null model. Ultimately, when doing macroecological analyses, before we attribute an 

explanation to an emerging pattern, we need to ensure that we have ruled out other explanations, which 

may be unrelated to the biology of the study organisms.  
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