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Abstract 

 
The delicate structure of the orbital floor makes it prone to fractures. Implants are often 

used to repair fractures, -which are tailored to the estimated defect size and shape by 

surgeons. Deficiencies in shaping or positioning may require additional surgeries to 

correct or remove the implant, as can infections and other postoperative 

complications. 

 

Additive Manufacturing (AM) processes can produce complex geometries, and 

therefore present an opportunity to address some of these deficiencies. However, this 

requires knowledge of suitable materials and of their behaviour in the chosen AM 

process; this is the focus of this thesis.  

 

The processability of polymer-ceramic composites with antimicrobial properties were 

investigated on laser sintering (LS) and high speed sintering (HSS) as they can 

produce parts with a high accuracy and a rough surface finish to encourage 

osseointegration. Polyamide 12 (PA12) was chosen as it is an ideal polymer for these 

processes, hydroxyapatite (HA), due to its osteoconductive properties and zinc (Zn), 

which is known to possess antimicrobial properties.  

 

The processability of varying compositions of HA:PA12 and 2:98 wt% Zn:PA12 

composites were initially investigated separately. It was found that the upper limit for 

processing HA:PA12 differed (20:80 for LS and 40:60 for HSS) while the 2:98 wt% 

Zn:PA12 composition was successfully processed on both LS and HSS.  

 



 IV 

Analysis proved the presence of well distributed additives after processing, indicating 

that samples are likely to exhibit osteoconductive and antimicrobial properties. The 

addition of the additives increased the porosity and the specific surface area, more so 

for HSS than LS samples. However, there was a decrease in the tensile and flexural 

properties of the samples with the addition of the additives. Overall, the LS samples 

had higher mechanical properties than HSS samples, nonetheless, both processes 

produced samples with similar flexibility to the natural orbital floor bone1, 2 with 

potentially enough strength for orbital reconstruction applications.  

 

Cell viability tests showed that all the HA:PA12 samples were biocompatible and the 

2:98 wt% Zn:PA12 samples proved to be effective against Staphylococcus aureus. 

However, when the materials were combined (Zn:HA:PA12) both the LS and HSS 

samples that contained Zn, showed cytotoxic effects against MG 63 cells. In 

conclusion, both processes have shown a potential in the fabrication of polymer-

ceramic composites with antimicrobials for orbital floor reconstruction application 

however further work is required to investigate whether there is an optimal 

Zn:HA:PA12 ratio that has a bacteriostatic effect and is biocompatible. 
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1 Introduction 

 

1.1 Background  

 

Sport injuries, interpersonal violence, and motor vehicle accidents are the most 

common causes of orbital floor fractures. Some orbital fractures require surgical 

intervention, and most times an implant is needed to reconstruct the orbital anatomy. 

Many materials have been used for the reconstruction of the orbital floor including 

bone grafts, polyether ether ketone (PEEK), and titanium mesh. These materials have 

been successful to a certain degree, but still have some drawbacks and limitations 

including potential implant malalignment, implant migration, and high infection rates.  

 

Laser sintering (LS) and high speed sintering (HSS) are powder-base additive 

manufacturing (AM) techniques that have the potential to fabricate customisable 

implants based on patient scan data, aiming to reduce inaccuracies due to implant 

shaping in-situ. Polyamide 12 (PA12) is a polymer commonly used in LS and HSS due 

to its ideal processing properties. While biocompatible, PA12 is not osteoconductive, 

and this can limit bone regeneration and implant integration to the surrounding bone. 

Hydroxyapatite (HA), in contrast, is a widely used osteoconductive material, similar in 

composition to natural bone but it is a brittle material that cannot easily be used to 

produce complex structures. Using HA as an additive for PA12 can help overcome the 

brittleness of the ceramic while enhancing osteoconductive properties. 
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Orbital floor implants are susceptible to bacterial infections due to the implants’ 

possible exposure to the nasal/oral/pharyngeal mucosal cavities. An implant site 

infection usually requires an additional surgery, normally also requiring removal of the 

implant. Moreover, many of the bacterial infections that arise at these implant sites are 

resistant to one or more antibiotics. Therefore, it is a challenge to treat these infections, 

and preventing them is a priority. The addition of an antimicrobial agents to implants 

has been found useful in reducing implant associated infections. Antimicrobial agents, 

such as zinc (Zn), have a different method of action to antibiotics which is less likely 

to promote resistance in bacteria. The incorporation of an antimicrobial agent to an 

orbital floor implant may be beneficial as it can decrease bacterial adhesion to the 

surface of the implants. This has the potential to reduce the need for a secondary 

surgery.  
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1.2 Aims and objectives  

 

The aim of this research was to investigate the potential use of powdered-polymer 

Additive Manufacturing processes (specifically laser sintering and high speed 

sintering) for orbital floor reconstruction applications. 

 

The objectives: 

 

• To investigate the processability of HA:PA12 composites from 5 to 40 wt% HA 

in order to establish whether there was an upper limit for the amount of HA 

which could physically be processed and the optimal HA:PA12 composition. 

• To investigate any effects that HA may have on the physical, mechanical 

properties and biocompatibility of all HA:PA12 compositions which could be 

processed. 

• To identify if steam autoclave has an effect on the mechanical properties of the 

base polymer (PA12). 

• To investigate the processibility of 2:98 wt% Zn:PA12 by LS and HSS.  

• To investigate any effects that Zn may have on the physical, mechanical and 

antimicrobial properties of the 2:98 wt% Zn:PA12 samples which could be 

processed.  

• To investigate the processibility of Zn:HA:PA12 compositions by LS and HSS. 

• To investigate any effects that the combination of the additives (Zn and HA) 

may have on the physical, mechanical and antimicrobial properties as well as 

the biocompatibility of the Zn:HA:PA12 samples which could be processed.   
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2 Literature review 

 

Chapter 2 will begin by giving a background into bone: its composition, formation and 

development and the different types of bone healing. The anatomy of the orbit will be 

discussed in section 2.2 focusing on the orbit and orbital floor fractures as well as bone 

healing. Section 2.3 will discuss the surgical repair procedure of orbital floor repair and 

the variety of implantation materials that have been used for orbital floor reconstruction 

including their advantages and disadvantages. The common post operative 

complications are discussed, including ideas on how to prevent/ decrease the rate of 

these complications. Section 2.5 explores how additive manufacture (AM) techniques 

can be useful in the fabrication of patient specific orbital floor implants. The literature 

is reviewed to assess which AM technique has the most potential in the manufacture 

of ceramic-based materials suitable for orbital floor reconstruction applications. 

Section 2.7 focuses on factors that influence the mechanical properties of the parts 

produced by Laser sintering (LS) and high speed sintering (HSS). Following this, 

discussion focuses on the processing of polyamide 12 (PA12) and compositing PA12 

with ceramics and antibacterial materials. This in turn leads into determination of the 

research gap related to the manufacture of patient specific ceramic-polymer 

composites with antibacterial properties for orbital floor reconstruction applications.  
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2.1 Bone 

 

Bone is a specialised, complex and highly organised connective tissue3. Its functions 

include protecting internal organs, providing structural support, facilitating movement, 

acting as a reservoir for cytokines and growth factors, and storing mineral content such 

as calcium and phosphorous4, 5.  

 

 

 

The hierarchical organisation of bone is shown in Figure 2.1. Bone is made from two 

different osseous tissues known as cortical and cancellous bone6. Cortical bone 

makes up the outer wall of bones and is formed of osteons units known as Harversian 

systems. This compact bone makes up 80 % of the skeletal mass and is responsible 

for the support and protection of the skeleton. Cancellous bone is made up of 

interconnected framework of trabeculae (which makes up the remaining skeletal 

mass). It is less dense than cortical bone due to its porous/ spongy structure, and is 

responsible for metabolic functions and biomechanical functions5. Cortical bone has 

Figure 2.1. (a) The dense outer shell shows the macrostructure of cortical bone while 

the porous bone inside the dense outer shell is the cancellous bone; (b) Microstructure 

of osteon units; (c) Nanostructure of collagen fibres made up of collagen fibrils5.  
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less than 10 % porosity while cancellous bone has a 50- 90% porosity7. Porosity is 

important as it permits vascular and neural supply. However, porosity leads to a 

decrease in the mechanical strength, Cortical bone has an ultimate strength between 

50- 151 MPa8, 9 and a modulus between 7-30 GPa8-10. Cancellous bone has an 

ultimate strength of 0.1- 30 MPa and a modulus between 10 to 3000 MPa11.  

 

Bone is composed of inorganic and organic elements. The organic matrix contains 

fibrous protein and collagen while the inorganic matrix component is non-

stoichiometric carbonated hydroxyapatite12. Different bone types have a differing ratio 

of inorganic mineral, collagen and water, in a systematic way. The quantity of collagen 

stays fairly consistent while the calcium phosphate (CaP) content increases at the 

expense of the water content. 

 

The mammalian skeleton is formed by two processes during the embryonic 

development; intramembranous ossification which produces the flat bones in the skull 

and the clavicle, and endochondral ossification, which is responsible for the 

development of most bones in the body13. 

 

Intramembranous ossification takes place in the embryo, eight weeks after fertilisation. 

Mesenchymal stem cells multiply and condense into compact nodules. Some cells 

differentiate into capillaries while others alter their shape to become osteoblasts- cells 

that can synthesise and mineralise bone. Osteoblasts secrete osteoid, an 

unmineralized organic bone matrix made mostly from type 1 collagen. They soon 

become calcified thus hardening the bone matrix. Osteoblasts that are trapped in the 

calcified matrix differentiate into bone cells (osteocytes). Then, bony spicules are 
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emitted from the region where ossification commenced. Compact mesenchymal cells 

surround the bony spicules to form the periosteum, a membrane that surrounds the 

bone. The cells under the periosteum differentiate into osteoblasts which deposit 

osteoid matrix parallel to the spicules, this causes many layers of bone to be formed14. 

 

Endochondral ossification is an important process that takes place in foetal 

development for the production of long bones, it also takes place during the growth of 

long bones and during natural bone healing of fractures. Endochondral ossification 

commences with a pre-existing cartilage template which begins to calcify. An osteoid 

matrix is laid down by the osteoblast, on the outer part of the cartilage template, to 

form the trabecular bone, which provides structural support. The chondrocytes begin 

to grow and increase in size, they stop secreting collagen and start to secrete alkaline 

phosphatase, an enzyme critical in mineral deposition. The calcified cartilage formed 

is impermeable to diffusion of nutrients thus chondrocytes begin to undergo a 

programmed cell death known as apoptosis to leave small cavities. At the same time, 

a bud of cells originating from periosteum invades the calcified cartilage template 

initiating vascularisation. This allows for nutrients, osteoblasts and osteoclasts to enter 

the cavities to remodel the partially calcified cartilage into woven bone which is then 

remodelled into lamellar bone. The diaphysis (the central part of the long bone) 

elongates, inside the diaphysis is the medullary cavity, which contains bone marrow. 

Chondrocytes and cartilage continue to grow at the end of bone. Growth plates are 

formed between the epiphyseal and metaphyseal ossification centres that mediates 

bone growth. These plates disappear when the individual has stopped growing which 

is at around 13 to 18 years old14. However, bone is never fully developed as it 

continually renews itself. 
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2.1.1 Bone healing 

 

Bone is strong however it can fracture if external forces are applied in excess of its 

strength. Trauma such as sport injuries, interpersonal violence and motor vehicle 

accidents as well as medical conditions such as osteoporosis can lead to bone 

fractures. Fracture healing is a critical biological process. Bone has the capacity to 

self-repair certain micro-damaged bone fractures in order to fully restore the bone to 

its original condition. However, approximately 10 % of pathological fractures and 

defects will undergo delayed union which may progress to non-union15, where the 

bone cannot heal without further intervention16. These fracture repair interventions are 

divided into two types: primary and secondary fracture healing. Primary fracture 

healing, also known as direct fracture healing, occurs when there is direct contact 

between the fracture surfaces while secondary bone healing does not require direct 

contact of bone fractures.  

 

Primary bone healing 

 

Primary bone healing, also known as direct fracture healing, occurs through gap 

healing or contact healing. Contact healing can only take place when bone on one 

side of the cortex unites with bone on the other side of the cortex, the gap ends must 

be less than 0.01 mm and the strain in the interfragmentary region should be less than 

2 % (the strain is increased with an increase in gap distance). Cutting cones, 

longitudinal cavities generated by osteoclasts, are later filled by bone formed by 

osteoblasts present at the back of each of these cutting cones. Bony union and 

restored Haversian systems are formed simultaneously. The Haversian systems 
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permit blood vessels carrying osteoblastic precursors to penetrate. Direct remodelling 

allows the bridging osteons to later mature into lamellar bone17. 

 

Harversian system remodelling and bony unions are not formed simultaneously in gap 

healing. The fracture site is filled with lamellar bone, but unlike contact healing, the 

lamellar bone is reorganised longitudinally by secondary osteonal reconstruction 

process. Mechanically weak lamellar bone, produced by osteoblasts, replaces the 

primary bone structure. This process takes 3 to 8 weeks until a secondary remodelling 

phase begins which follows a similar process to contact healing17. 

 

Secondary bone healing 

 

Secondary bone healing, also known as indirect fracture healing, is the most common 

form of fracture healing. It is slower than primary bone healing as it can take months 

or even years to fully heal. New bone is formed by both intramembranous and 

endochondral ossification12, 18. A hematoma, a collection of blood outside a damaged 

blood vessel, develops at the fracture site in the first few days after the fracture. The 

injury initiates an inflammatory response which causes the hematoma to coagulate 

around and in between the fracture ends to form a template for callus formation. 

Mesenchymal stem cells (MSCs) are recruited, proliferated and differentiated into 

osteogenic cells in order to regenerate the bone. Once the primary hematoma is 

formed, a fibrin-rich granulation tissue develops where endochondral formation takes 

place in between the fracture ends and externally to the periosteal site, forming a soft 

callus and giving the structure stability. Simultaneously, adjacent to the fracture ends, 

intramembranous ossification creates a hard callus. Blood supply and adequate 
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vascularisation are essential for successful fracture healing19. In order to allow for 

blood-vessel in growth, cells and extra matrices are removed at the repair site by 

chondrocyte apoptosis and cartilaginous degradation. The next step involves the 

mineralisation and resorption of the primary soft cartilaginous callus into hard bony 

callus17. The final stage is the remodelling phase, where the hard callus remodels into 

lamellar bone structure with central medullar cavity which restores the bone’s structure 

and mechanical strength, which may take months or even years12. 

 

2.2 The orbit and orbital floor fractures  

 

The two bony cavities that divide the upper facial skeleton from the middle face are 

Figure 2.2 known as the orbits. The purpose of these bones is to provide protection 

for what is inside the orbit which includes nerves, veins, extraocular muscles, arteries 

and the eye globe20.  

 

 

 

Figure 2.2 Schematic diagram of the for walls of the orbit. 
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An orbit is composed of seven bones: frontal, zygomatic, maxillary, ethmoidal, 

sphenoid, lacrimal and palatine. It is divided into four walls which are covered with 

periosteum: the superior wall, the medial wall, the lateral wall and the orbital floor21, 

as shown in Figure 2.2. The superior wall is made up of the orbital plate of the frontal 

bone and the lesser wing of the sphenoid bone. The lateral wall is the thickest wall 

and is composed of the zygomatic and greater wing of the sphenoid. The medial wall 

a thin wall composed of the frontal process of the maxilla, lacrimal, ethmoid and lesser 

wing of sphenoid. The orbital floor also has a thin structure, it is largely formed of the 

orbital plate of the maxilla as well as the small orbital process of palatine bone and 

orbital surface of zygomatic bone. The length of an adult orbital floor is 35 to 40 mm22 

with a non-uniform thickness23 ranging from 0.26 to 1.25 mm24. Due to its thin structure 

and anatomical positioning, over the hollow maxillary sinus, it is more susceptible to 

fractures.  

 

There are two main proposed mechanisms by which an orbital floor fracture occurs: 

buckling and hydraulic. The buckling theory suggests that a fracture occurs through a 

transmission of force to the orbital floor from a shock to the orbital rim. The hydraulic 

theory proposes that the fracture occurs through a transmission of force to the orbital 

floor through a shock to the eye globe25.  

 

2.3 Surgical repair of orbital floor fractures  

 

A fracture in the orbital floor may create an opening into the maxillary sinuses and/ or 

the ethmoid where the orbital fat, muscles and tissue can become entrapped26. This 
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can result in complications such as diplopia; double vision27, enophthalmos; a relative 

posterior displacement of the eye globe28 and hypoglobus; a lowering of the globe29.  

 

 

There is much debate on the management and the treatment of orbital fractures, in 

particular on the topic of the indication for surgery. The majority of surgeons rely on 

the data acquired from computer tomography (CT) scans30, 31 (Figure 2.3) to assess 

what fracture they believe requires surgical intervention. Some fractures necessitate 

immediate surgery (within 24 hours), due to restricted eye motility which leads to pain, 

nausea or oculocardic reflex. Other patients are observed for two weeks or more, 

before any surgery is undertaken32. Some small fractures may heal alone by the 

formation of scar tissue. Early surgery is typically carried out 1 to 14 days after the 

incident. Patients with diplopia that is clinically unimproved with orbital tissue 

entrapment are treated within that timeframe. Large defects are managed at an early 

stage as studies have shown better functional results with early surgeries. Making a 

Figure 2.3. Computer tomography (CT) scan of an orbital floor fracture31. 

Fracture  
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decision on when to treat small orbital defects is more challenging- some fractures 

may heal without surgery by the formation of scar tissue. Patients with small defects 

usually have adequate ocular motility with minimal displacement thus it is more difficult 

to estimate whether surgery is necessary as it is hard to foresee how the soft tissue 

will behave over time. It is therefore critical to observe these defects closely. This can 

take even more than two weeks before any surgery is indicated32.  

 

2.3.1 Orbital floor surgery  

 

An orbital floor surgery aims to restore the function of the orbital floor and the patient’s 

aesthetic appearance by repairing the defect using an implantation material with 

adequate strength to support the orbital content which weigh between 37.80 to 51.03 

g33. Accessing the orbital floor can be done by making an incision transcutaneously 

through the lower eyelid, infrarorbital or via the transconjunctival approach. The latter 

is the preferred method as it offers the best visualisation of the orbital floor. In brief: 

1. The surgeon makes an incision to gain access to the orbital floor, avoiding disruption 

of the lacrimal glands, infraorbital nerves, the optic nerves and the origin of the 

inferior oblique muscles.  

2. Once the surgeon has gained access to the defect, the standard sized orbital floor 

implant is shaped by hand and trimmed to the estimated size and shape of the 

fracture, during the surgery.  

3. After the implant is placed on the defect, it is fixed (certain materials require the use 

of screws to secure the implant in place), and subsequently the skin incision is closed 

up by sutures.  
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4. To ensure eye mobility a forced duction test is performed34 to test if tissue has been 

trapped beneath the implant. If the forced duction test fails, the incision is reopened 

to remove the implant in order to resize and reshape the material and then placed 

back on the defect and fixed in position. 

5. The incision is closed again by stitching.  

The total cost of the surgery ranges from $25,586.26 to $49,985.7435 in the US, any 

complications can increase surgical time and thus surgical cost.  

 

2.3.2 Implant materials for orbital floor reconstruction  

 

Various materials have been used for orbital floor reconstruction surgery in the hope 

of accomplishing an optimal clinical outcome for patients36. However, as of yet, an 

ideal implantation material remains elusive26. The purpose of an orbital floor implant 

is to repair the defect while bringing the eye globe to its correct position and avoiding 

enophthalmos36.This means there are a number of (often conflicting) performance 

requirements which are difficult to meet in a single material.  Ideal orbital floor implant 

should be: 

1.  Biocompatible- which is defined as ‘the capability of a finished and sterilized 

medical device to perform within an acceptable biological reaction in a clinical 

application37. This is important as it allows the implant to integrate with the host 

tissue while avoiding negative responses38.  

2. Osteoconductive- to promote growth of natural bone on the surface and through 

the implant to increase implant stability and reduce implant migration39.  

3. High toughness- Orbital floor implants are non-loadbearing; the mechanical 

properties of orbital floor implants vary considerably between one another. It is 
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important that an implant is tough enough to resist fractures and firm enough to 

support the orbital content.  

4. Readily available- to accommodate for the increased demand36.  

5. Malleable or ideally custom- to fit the complex defect and regional anatomy for 

a more accurate restoration36. 

6. Antibacterial- to prevent bacterial infections. 

7. Easily sterilised before use.  

For many years bone grafts and in particular autografts were considered to be the 

’gold standard’. However, various synthetic materials have been developed and are 

being used for orbital floor reconstruction. Their prices vary between $70.25 up to 

$7,718.0035 per implant in the US. The materials used for orbital floor reconstruction 

are presented in this section (2.3.2). 

 

Natural materials used for orbital floor repair  

 

Bone grafts are commonly used in surgical procedures to regenerate bones. 

Autografts, allographs and xenografts are harvested from different sources. 

 

Autografts are transplanted tissue from one part into another part of the body of the 

same individual. Cancellous bone, cortical bone and cortico-cancellous grafts are 

common autologous bone grafts. Autografts are most commonly harvested from the 

outer table of calvarium (skull), the maxillary bone and the mandibular cortex to treat 

orbital floor and medial wall fractures. These are often seen as the “gold standard” for 

bone grafting as they circumvent immunogenicity, which is defined as “the ability of a 

of a molecule or a substance to provoke an immune response40”. They have ideal 
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osteoconduction and osseointegration (direct bone-to-implant anchorage) properties 

which decreases the risk of implant migration and increases graft stability due to direct 

bone-to-implant contact. In addition, they have the ability to recruit immature cells to 

develop into pre-osteoblasts, known as osteoinduction41. Autografts are commonly 

used for children under the age of 8 to accommodate for growth of the orbital 

skeleton34. Unlike the other bone grafts, autografts do not pose a risk of disease 

transmission, nonetheless, harvesting from another part of the body requires an 

additional operation. This is a disadvantage as it increases pain and donor site 

morbidity42. Another disadvantages of autografts includes poor drainage of fluids as 

well as their cumbersome properties, meaning that they cannot be easily tailored to 

match the shape of the orbital floor43. 

 

Allografts involve the transplantation of organs, cells and tissue from one person into 

another in the same species and can be harvested from cadavers or living donors 

making them more widely available than autografts. The drawbacks to allografts are 

the absence of viable cells, reducing its osteogenic potential and increasing viral 

transmutations and contaminations. In addition, they can increase immunological 

reactions that may prevent bone healing which can give rise to rejection42. 

 

Xenografts are organs, tissues and cells transplanted from individuals of one species 

and implanted into a recipient from another species. These are commonly sourced 

from coral sources, porcine and bovine bone. Xenografts are readily available and are 

relatively inexpensive. When their antigenic properties are stabilized to avoid disease 

transmission, they partially lose their osteogenic and osteoinductive properties. 
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Furthermore, their use can increase the transmission of infections and zoonotic 

diseases42.  

 

Synthetic materials no longer in use or uncommonly used for orbital floor regeneration 

 

Alloplastic synthetic biomaterials were developed to overcome the drawbacks of 

natural transplants such as autografts, allografts and xenografts. They can be made 

in different forms and possess a variety of properties44. Various implantation materials 

have been used for orbital reconstruction however, many of these implantation 

materials are no longer in use or are uncommonly used due to high complication rates. 

 

Bioactive glass (BG) have been used in bone reconstruction applications due to their 

ability to biodegrade over time while releasing calcium and silica ions that are believed 

to stimulate osteoprogenitor cells45 however, highly reactive BGs degrade rapidly 

causing implant instability46. In addition, because of its rigid nature, it is difficult to 

shape the implant making it challenging to achieve the precise shape and size required 

for successful orbital floor repair. Typically, BG implants are manufactured using 

conventional fabrication techniques. Conventional manufacturing techniques have 

been used for many years to produce orbital floor implants. These include subtractive 

and formative manufacturing47-50. Subtractive manufacturing uses processes such as 

milling or drilling techniques to remove material from a block for the desired shape to 

be achieved. Formative manufacturing, such as injection moulding, uses heat and 

pressure to obtain the desired shape of the object. Often, the use of traditional 

manufacturing techniques would require the use of multiple fabrication techniques to 

produce parts which can be expensive51. Studies investigating the use of BG implants 
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found that they generally foreign body reaction however, the one of the most common 

post operative complication reported was diplopia (up to 61%)52, 53. Diplopia followings 

surgical repair is commonly caused by several54:  

1. Failure to remove extraocular muscles and orbital tissue from the fracture site 

before implant placement. 

2. Orbital tissue entrapment by the implant.  

3. Implant adherence to the periosteum lining of the orbit leading to a 

phenomenon known as orbital adherence syndrome. 

4. Neuromuscular damage, which can be caused by oversized implants. 

In the case of a complication where the patient requires an additional surgery to re-

position the implant, an addition $13,042.41 is required in charges35 in the US. 

 

 

High-density polyethylene is used to produce porous polyethylene implants (PPE) for 

craniofacial defect restoration (Figure 2.4). It is biocompatible and its porous structure 

allows for vascularisation55. Medporâ is a commercial PPE sheet with good 

Figure 2.4. The arrow points towards a porous Medporâ sheet placed over an 

orbital fracture57. 

Medporâ Sheet 
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mechanical strength and flexibility56, 57. Nonetheless, it lacks rigidity and is not 

radiopaque, making it challenging to examine the implant using X-ray imaging. Like 

BG, Medporâ are manufactured using conventional fabrication techniques. Unlike BG 

implants, Medporâ implants do not typically cause post operative diplopia, 

nonetheless, complications such as implant fusion to the extraocular muscle or the 

fibroadipose tissue has been reported58 making it more challenging to remove the 

implant in case of complications. In addition, it has been reported to have a relatively 

high infection rate (ranging from 1 % to 12.5 %)59-61. A study found that the infection 

rate can be significantly reduced by soaking Medporâ implants in gentamycin solution 

before implantation62. However, implant fusion remains a challenge.  

 

 

Silicone implants and sheets are supple, inexpensive and provide sufficient 

mechanical stability to maintain the content of the orbit in big blowout fractures 

however its smooth surface may limit its application in bone reconstruction. 

Conventional fabrication techniques are typically employed to fabricate these 

implants. Implantation of silicone implants is relatively easy; however, it has a 

complication rate between 12 % to 13.8 %50, 63, including implant migration (Figure 

Figure 2.5 Silicone implant removal post migration. (Personal 

communication I. Varley, MD, in 24/10/ 2017). 
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2.5) and infections63. Silicone implants are prone to develop a fibrous capsule around 

the implant. Certain fibrous capsules do not pose risk to the patient, thus if a 

complication occurs, it may not be extracted with the implant as it can provide sufficient 

mechanical strength to support the orbital content and obviate the need for a 

secondary implant. Nevertheless, if the fibrous capsule becomes very thick it can lead 

to orbital tissue entrapment or infections64.  

 

Polymethyl methacrylate (PMMA) is a biocompatible, non-immunogenetic and a cost 

effective polymer65 but contain residual monomers that may leach out and result in 

toxic effects66. Overall, PMMA is relatively bioinert so cannot osseointegrate with bone 

tissue67. PMMA implants for orbital floor repair were manufactured by mixing PMMA 

powder with liquid reagent and is then moulding it into the desired shape. Patients who 

received PMMA implants had no surgical complications however, all the patients 

suffered from minor pain68 which may have been caused by sharp edges from implant 

trimming and shaping procedure.  

 

Polyamides (PA) has great mechanical properties and flexibility as well as 

biocompatibility and high resistance to body fluids, making it a great polymer for 

medical implants. However, PA’s bioinert properties limits its applications. 

Commercially available PA implants (SupraFOIL® and Supramid®) for orbital floor 

applications are typically produced from PA6, manufactured by conventional 

fabrication processes. PA implants are 38 times less expensive than Medporâ 

implants69 which is advantageous with the rise in medical costs, the use of reliable, 

safe, yet cost-effective materials is important. Nonetheless, one of the main reasons 
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PA implants are uncommonly used is in orbital floor repair due to post operative 

complications such as persistent enophthalmos69 and infections70, 71. 

 

 

Synthetic materials currently used for orbital floor regeneration 

 

Polydioxanone (PDO), a synthetic biomaterial, commonly used for the manufacture of 

sutures72 is biocompatible and is completely resorbable73. However, like most 

polymers, it lacks biological functionality. Patients who have received conventionally 

fabricated PDO foil implants have shown bone ingrowth six months postoperatively74. 

However, PDO is only used in small orbital floor defects (up to 1 cm2) as they do not 

offer sufficient stability to repair larger defects74. Other post operative complications 

reported include (up to 24%) diplopia, persistent enophthalmos74, 75 and infections76. 

 

Polyglycolic acid (PGA) is another resorbable material frequently used in bone 

regeneration applications due to its excellent biocompatibility however, its fast 

degradation compromises its mechanical strength77. An in vitro study carried out by 

Hatton et al.78 investigated biodegradable PGA and reinforced silicone membranes for 

the repair of orbital floor fractures. The study found that cell adhesion was superior in 

PGA due to the increased surface area caused by its woven topography compared to 

the smooth collagen. This is advantageous as a higher surface area provides more 

attachment sites for cell adhesion and migration while the rough surface increases 

osteoblast differentiation79. An in vitro study revealed up to 22% of patients who 

received PGA implants developed complications due to implant malalignment and 

11% had infections80.  
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Polymers such as polyetheretherketone (PEEK) (Figure 2.6) and 

polyetherketoneketone (PEKK) have recently gained a lot of interest due to their 

biocompatibility, radiopacity and a modulus of elasticity similar to that of cortical bone. 

In addition to its great biomechanical characteristics, PEKK has been reported to have 

significant antibacterial properties against gram-negative Pseudomonas aeruginosa 

compared to PEEK. The main limitation to PEEK and PEKK is their inability to bond to 

bone81. These implants have been generally manufactured using a block of extruded 

material82. However, recently, PEEK83 and PEKK patient specific implants (PSI) have 

been manufactured using 3D printing. Patients who received patient specific PEEK 

implants did not experience post operative infections however up to 17.9% had post 

operative diplopia84. 

 

Titanium is commonly used in bone reconstruction applications due to its 

biocompatibility, osteointegration and excellent mechanical properties. Titanium mesh 

Figure 2.6. Polyetheretherketone (PEEK) orbital floor implant (Personal 

communication I. Varley, MD, in 24/10/ 2017). 
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is one of the most commonly used materials for orbital repair and is typically 

manufactured by casting to standard sizes85. One of the main drawbacks to casting is 

the lack of flexibility in designing complex structures. In addition, titanium mesh 

implants are expensive (81 times more expensive than SupraFOIL implants69). 

Titanium mesh is trimmed and moulded to the estimated shape and size of the defect 

by the surgeon In-situ, despite careful trimming, sharp edges are common which can 

cause pain and discomfort to the patient86. Overall, titanium mesh has low extrusion 

rate and is stable due to its ability to osseointegrate. Reported post operative 

complications include mild chronic infections and delayed enophthalmos87. Due to the 

osseointegration capabilities of titanium if an infection occurs it may require implant 

extrusion which can result in loss of healthy bone. Like PEEK and PEKK more recent 

research has focused on the manufacture of patient specific titanium implants using 

3D printing technologies. Selective laser melting (SLM) and electron-beam melting 

(EBM) have been used, where EBM has been reported to produce parts with lower 

residual stresses and with lower degree of contamination by gasses. Overall, 3D 

printing patient specific titanium implants can enhance anatomical alignment however, 

handling fine titanium powders is dangerous as they can be explosive. In addition, 

several post processing steps are required to reduce residual stresses and remove 

support structures. The final polishing step gives rise to a smooth surface88 which is 

not desirable in bone reconstruction applications.  

 

Summary 

 

In summary, many materials have been used for orbital floor reconstruction 

applications. Table 2.1 shows the advantages and disadvantages of the different 
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materials used for orbital floor repair. It is evident that some materials perform better 

than others however, all the materials have drawbacks as well as reported post 

operative complications. Post operative complications can lead to complications which 

can lead the patient to experience discomfort and pain and if an additional surgery is 

necessary, additional charges are required. Therefore, reducing post operative 

complications can improve patient satisfaction and reduce overall cost. 

 

Table 2.1. Advantages and disadvantages of the various reconstruction materials 

used in orbital floor repair.  

Material   Advantages Disadvantages and implant 
complications  

Autografts  • “Gold standard”41 
• Circumvent 

immunogenicity41 
• Osteoconduction and 

osseointegration 
properties41 

•  Increased pain42 
• Donor site morbidity42 
• Poor drainage42  
• Cumbersome43  
• Limited availability 

Allografts •  More widely available 
than autografts  

• Reduced osteogenic potential 
• Increase viral transmission and 

contamination  
• Increased immunological 

reactions42 

Xenografts • Readily available  
• Inexpensive  

• Low osteogenic and osteoinductive 
properties42 

• Increased transmission of zoonotic 
diseases42 

Bioactive 
glass 

• Biocompatible 
• Biodegradable45 
• No foreign body reaction 

•  Fast degradation can cause 
implant instability46 

• Rigid so is difficult to shape   
• Diplopia reported 

PPE 
(Medporâ) 

• Biocompatible  
• Porosity allows for 

vascularisation 
• Good mechanical 

strength56, 57 
• Good flexibility56, 57 

• Not radiopaque  
• Lacks rigidity 
• Implant fusion to extraocular 

muscles the fibroadipose tissue58 
• Infections reported59-61 
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• No post operative 
diplopia reported  

Silicone  • Biocompatible 
• Supple 
• Inexpensive  
• Sufficient mechanical 

strength  
• Relatively easy 

implantation 

• Smooth surface  
• Implant migration reported50, 63 
• Implant infections reported50, 63 

PMMA • Biocompatible 
• Non-immunogenetic 
• Inexpensive65 
• No surgical complication 

reported 

• Residual monomers may leach out 
and can be toxic66  

• Bioinert67 
• Patients experienced minor post 

operative pain68 

PA 
(SupraFOIL® 
and 
Supramid®) 

• Biocompatible 
• Great mechanical 

properties  
• Good flexibility  
• High resistance to body 

fluids 
• inexpensive 

• Bioinert70, 71 
• Persistent enophthalmos reported 
• Infections reported70, 71 

PDO • Biocompatible  
• Completely resorbable73 
• Bine ingrowth reported 

six months post 
operatively74 

• Only used for small defects (up to 1 
cm2)74 

• Diplopia reported74, 75 
• Persistent enophthalmos reported 
• Infections reported74, 75, 76 

PGA • Biocompatible 
• Resorbable77 
• Better cell adhesion than 

silicone79 

• Fast degradation comprising 
mechanical strength77 

• Implant migration reported80 
• Implant infections reported80 

PEEK and 
PEKK 

• Biocompatible  
• Radiopaque 
• Modulus of elasticity 

similar to cortical bone 
• PEKK reported to have 

antibacterial properties    
• No post operative 

infections 

• Not osteoconductive81  
• Diplopia reported84 
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Titanium • Biocompatible 
• Osseointegration 

properties  
• Low extrusion rate  
• High implant stability   

• Expensive69  
• Mild chronic infections reported 
• Delayed enophthalmos reported87 
• Sharp edges86 
• Implant extrusion may result in loss 

of healthy bone  

 

 

2.4 Post operative complications and possible preventions 

 

The main post operative complications reported here (section 2.4) include post 

operative infections and migration, as well diplopia and presenting enophthalmos 

which may be caused by incorrectly sizing, shaping or positioning of the implant. As 

such, the major post operative considerations are prevention/treatment of infections, 

issues with implant stability, and the accuracy of the implants, each of which will be 

discussed here. 

 

2.4.1 Prevention/ treatment of bacterial infections  

 

Orbital floor bacterial infections are most commonly caused by Staphylococcus aureus 

(S. aureus), Staphylococcus epidermidis (S. epidermidis), Serratia marcescens, and 

Pseudomonas aeruginosa89. The most common treatment for bacterial infections is 

antibiotic use. Antibiotics are separated into classes according to their mechanism of 

action; antibiotic targets include bacterial DNA synthesis, cell wall synthesis, protein 

synthesis and/or RNA synthesis90. Constant bacterial mutation and transfer of 

bacterial DNA between cells  gives rise to antibiotic resistance which allows bacteria 

to survive antibiotic treatment via different methods including production of enzymes 

that can degrade, modify or inactivate the antibiotics91, changing the targets of 
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antibiotics as well as export the antibiotics entering the cell wall92, 93. Bacterial 

resistance to antibiotics is an increasing global challenge; an estimated 70 % of 

bacterial infections are now resistant to at least one or more antibiotics94. If an infection 

is persistent following placement of implants, a revision surgery is often required to 

remove the implant which is costly and has a reduced success rate. A lot of research 

has been conducted to study antimicrobial agents which are alternatives to ‘traditional’ 

antibiotics as they have great potential in fighting bacterial infections, and therefore 

decreasing the need for secondary surgeries. The use of metals as antimicrobial 

agents dates back to 1500 BP. Silver was commonly used by the Egyptians, Indians, 

Persian kings, Romans, Greeks and Phoenicians to disinfect water and preserve 

food91. Silver sutures were also invented to be used in surgical procedures to prevent 

infections95. As well as silver, other metals including copper and zinc are also 

antimicrobial agents.  The modes of action of metals and metal oxides differ from that 

of antibiotics, in that they alter the cellular processes of bacteria at a molecular and 

biochemical level which makes them promising against infections96. Metals such 

silver, copper and zinc are also antimicrobial agents. They can also be synthesised 

into metal oxide nanomaterials which have a higher surface area, leading to a greater 

particle surface reactivity97.  

 

Antimicrobial agents have proven to exhibit antimicrobial activity both in the macro and 

nano size. Antimicrobial agents such as metals and metal oxides have different 

mechanism of action to antibiotics. The mechanism of action is not well understood; 

however, it is believed that there are three general mechanisms.  
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Figure 2.7 shows examples of the different mechanism of actions of antimicrobial 

agents using zinc and zinc oxide as an example. The same mechanisms are believed 

to be true for other antimicrobial metals such as silver and copper and their oxides. 

Figure 2.7 (1) represents the formation of reactive oxygen species (ROS). This 

mechanism is considered the main mechanism of action for the antibacterial activity 

of ZnO. ZnO is a semiconductor that can produce ROS. Electrons can move from the 

valence to the conduction band. When a free electron (e-) moves to the conduction 

band, it gives rise to an electron hole (h+) in the valence band. The positively charged 

valence band reacts with water creating •OH and H+. O2 dissolves in the medium and 

becomes superoxide anion radicals (O2•–). These radicals react with the H+ to create 

(HO2•). Hydrogen peroxide anions (HO2–) are subsequently created by the collision of 

Figure 2.7. Different mechanisms of action of action of zinc oxide (ZnO) and zinc (Zn). 

(1) Formation of reactive oxygen species (ROS). (2) Release of antimicrobial ions. (3) 

Electrostatic forces between bacteria and ZnO nanoparticles causing damaging to 

bacterial cell membrane. 
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free electrons collide with HO2•. Finally, H2O2 are formed when hydrogen peroxide 

anions react with hydrogen ions. As the bacteria is negatively charged the only 

molecule that can enter the bacteria is H2O2. These molecules penetrate the cell 

membrane and cause damage to the cell98. Reactive oxygen species are only believed 

to be produced by zinc oxide and not by zinc. Figure 2.7 (2) shows the release of 

bacteriostatic ions, in this case Zn2+, which happens when a metal or metal oxide is 

placed in a medium with a microorganism. The ions penetrate into the bacteria and 

inactivate their enzymes99. Figure 2.7 (3) shows the third theoretical mechanism of 

action which works by electrostatic forces between the positively charged ions and 

negatively charged bacteria causing tight bond between the microorganism and the 

metal oxide.  

 

Silver-based wound dressings are commonly used to treat chronic skin and soft tissue 

infections such as diabetic foot ulcers. Many medical devices, including some heart 

valves and catheters are manufactured from silver impregnated polymers to inhibit the 

formation of bacterial biofilm. However, a prolonged exposure to silver can cause a 

non-life-threatening condition known as argyria. It can lead to an irreversible blue-grey 

skin colouring caused by the deposition of silver sulphide precipitates and silver 

selenide in the skin100. Copper is an effective antibacterial, antiviral and antifungal 

agent101. Zinc is an antimicrobial agent frequently used in dentistry in products such 

as toothpaste and mouthwash, and in control of dental plaque. In addition, zinc is an 

important trace element found in the body. It has a vital role in the development, 

formation, mineralisation and maintenance of healthy bone and been found to tightly 

osseointegrate and enhance cell adhesion102, increasing implant stability and hence 
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preventing migration103. Therefore, zinc is selected as the antibacterial material for this 

project.  

 

2.4.2 Improving implant stability  

 

Implant migration is commonly caused due to the lack of implant stability. Implant 

migration can lead to further complications which often require a secondary operation 

to remove the migrated implant and possibly insert a new implant. There are several 

ways by which implant stability can be increased including the use of screw fixations 

to mechanically fix the implant in position or the use of porous osteoconductive 

materials to achieve a direct anchorage and contact between the implant and bone. 

Screws, specifically titanium screws are used frequently in orbital floor reconstruction 

surgery to fix the implant to the orbital rim. The advantages to screw fixation is the 

high mechanical strength, the osseointegrate properties and lack of foreign body 

reaction104. However, screw loosening remains a problem64, 105 which does not only 

lead to poor implant fixation but can also lead to further complications such as 

infections106.  

 

Bioceramics, are widely used for bone regeneration due to their excellent 

biocompatibility and osteoconductive properties. They permit the formation of a more 

stable bond with the surrounding bone without the need for screw fixation107. Bioactive 

materials are defined as materials that will dissolve slightly to promote formation of a 

biological apatite layer before forming a direct chemical bond with the bone108. It is 

reported that 60 % of commercial bone graft substitutes include ceramics, mainly 

calcium phosphates (CaP) and bioactive glasses109. HA and tricalcium phosphate 
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(TCP) are types of CaP ceramics. CaPs exhibits great cell adhesion, excellent 

biocompatibility, osteoconductive properties and are similar in composition to the 

natural bone tissue mineral110. Hydroxyapatite (HA), Ca10(PO4)6(OH)2, is a material 

closely associated to the natural bone apatite. It is the inorganic element which makes 

up 65 % of bone. The rest is made up by the organic matrix. HA has been used 

extensively as an artificial bone substitute due to its biocompatibility, osseointegration, 

osteoconduction and bioactivity. At the bone-implant interface, HA forms a bond with 

the bone through a carbonated calcium-deficient apatite layer. This provides the 

implant with stabilisation, reducing implant migration111. It has been found to possess 

superior surface interaction properties and physiochemical interactions than the other 

CaPs110. TCP was found to have a bioresorption rate that is high and unpredictable111. 

HA is the most stable CaP, as it has a decreased solubility in physiological 

environment defined by pH, temperature and body fluids to support bone 

mineralisation51, 112.  Therefore, the bioceramic selected for this study is HA.  

 

2.4.3 Increasing restoration accuracy 

 

Incorrectly shaping or positioning the implant can hinder the accuracy of the 

restoration which can lead to complications such as diplopia and enophthalmos. As 

mentioned in section 2.3.2, currently more research is being conducted on the 

fabrication of patient specific orbital floor implants in order to increase the accuracy of 

restoration. However, materials currently used for orbital floor reconstruction, such as 

PEEK and titanium, are not bioactive. Additive manufacture (AM) has the potential of 

fabricating complex patient specific implants from patient scan data. In addition, part 

of the advantage of AM is the ability of adding bioactive and antibacterial materials to 
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improve implant stability and decrease infections, respectively. Even though, AM has 

many advantages it is important to bear in mind that AM will not eliminate the need for 

traditional fabrication techniques. Nonetheless it is predicted to revolutionise niche 

markets113.  

 

Based on this information this PhD will investigate the potential of AM to address all 

three of these post operative issues by producing orbital floor implants that are both 

antibacterial and encourage cell/bone growth, in patient-specific geometries. 

 

2.5 Additive manufacture  

 

AM is defined by ASTM F2792 as ‘a process of joining materials to make objects from 

three-dimensional (3D) model data, usually layer upon layer, as opposed to 

subtractive manufacturing methodologies’114. In the past, AM was mainly used to 

develop prototype models, nonetheless, the applications of AM expanded as the 

technology continued to improve allowing fabrication of a variety of materials at a 

higher accuracy and speed. The medical industry is using AM in many different ways 

including the production of patient-specific anatomical models, surgical 

instrumentation, prosthetics and implants. In 2011, one of the most researched fields 

addressing 3D printing for surgical applications was for craniofacial reconstruction115. 

The production of 3D printed patient-specific implants for craniofacial reconstruction 

has gained a lot of attention in literature as it does not only offer better cosmesis but 

can reduce surgical time as well as provide precise adaption to the implantation site82. 

AM technology has improved immensely over the past years however, its applications 
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remain limited. Some main limitations include part size, surface finish and quality 

variation from one machine to another116. 

 

2.5.1 Types of additive manufacture technologies  

 

There are various AM technologies developed to process metals, polymers, ceramics 

and plastics. These have several fundamental steps in common: 

 

• A computer aided design (CAD) is produced using a 3D modelling software. Some 

printers require the design of support structures for overhanging holes or edges to 

keep them in the aimed position. 

• The geometry of the 3D model is defined using a built-in-tessellation algorithm which 

covers the surface of the part with triangular mesh to create a simple boundary 

representation. This is then stored in Standard Tessellation Language (STL) format, 

a standard file format for 3D objects commonly used in AM systems. When this is 

used in combination with a 3D slicer (to slice the mesh into a series of parallel cross 

sections117), it forms the printing instructions for the 3D printer to fabricate the part.  

• The object is printed layer by layer according to the STL file.  

• The completed part is removed and post processed to obtain the final end product. 

This may include the removal of support structures.  
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Stereolithography 

 

 

Figure 2.7 shows a simple schematic diagram of a stereolithography (SLA) process. 

SLA, a liquid-based AM technique, using a photocurable liquid resin as the raw 

material. An ultraviolet (UV) laser to traces each layer according to the CAD model 

and polymerises the polymer, causing the resin to solidify, whilst the area around the 

part remains a liquid. Subsequently, the platform drops down by one-layer thickness 

and another layer of liquid resin is spread on top of the solidified part. The process is 

repeated, curing the layers on top of each other. This is repeated until the full part is 

manufactured118.  

  

 

 

 

Figure 2.7. Schematic diagram of a stereolithographic (SLA) process. 
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SLA possesses a very high resolution, the precision of this technique can reach 20 

µm and thus, being capable of fabricating highly accurate structures119. Complex 

parts, such as those needed for orbital floor reconstruction, require support structures 

for printability as they often have overhangs and bridges (Figure 2.8). This has several 

disadvantages including: additional time to remove the support structures, constraints 

on the geometric freedom as the supports need to be manually removed therefore, 

hand/ tool access is critical. The addition of support structures increases printing time 

which increases energy costs and in wasted feed stock as most support materials are 

non-recyclable120. Digital light processing (DLP), a “sister technology” to SLA, uses a 

projector to flash an image of a layer over the build platform, curing all points 

simultaneously, resulting in a faster processing time and can potentially reduce cost. 

SLA is mostly used for the manufacture of diagnostic models, surgical simulation and 

treatment models 121. The SLA parts are not commonly used in the body because most 

photocurable resins available have been shown to have cytotoxic effects on cells if 

any residues remain on the sample122, 123. 

Figure 2.8. Computer aided design (CAD) model of an orbital floor implant.  
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Direct ink writing  

 

3D direct ink writing (DIW), also known as robocasting, is another liquid-based AM 

technique. A schematic representation of DIW is shown by Figure 2.9. DIW is mainly 

used to produce ceramic parts as a higher density can be loaded compared with both 

in micro- and nano-scale compared to powder-based techniques124. A paste or a 

viscous material is extruded through an inkjet print head layer by layer at a constant 

rate and at a specific pressure. Once one layer is complete, the bed moves down by 

one layer. Another layer of viscous material is dispensed on top of the existing layer 

until the part is completed125.  

 

This technique is both cheaper and faster than photocuring and does not require 

support structures. It is often used to print bioceramic scaffolds for bone regeneration 

applications126. However, the parts produced generally have low resolution and 

mechanical properties127. 

 

Figure 2.9. Schematic representation of 3D direct ink writing (DIW) process. 
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Fused deposition modelling  

 

 

A schematic diagram of a fused deposition modelling (FDM) system is shown in Figure 

2.10. Materials such as thermoplastic polymers filaments are commonly used in FDM. 

Metals and ceramics alone cannot be processed on FDM due to their higher melting 

temperature, therefore they are mixed with polymer binders to make filament 

feedstock128. The filament feedstock moves through an extrusion nozzle and builds 

the model layer by layer. The extrusion nozzle operates in the x and y direction while 

the bed gets lowered in the z direction118.  

 

The advantage of FDM is its cost effectiveness and ease of operation. In addition, 

parts produced typically have good strength. Then the polymer binder can be removed 

to obtain just the ceramic or the metal part. However this usually results in defects and 

voids129, decreasing the mechanical properties of the part. FDM is typically used for 

the fabrication of geometrically simple surgical models that do not require a high level 

of detail130. 

Figure 2.10. Schematic diagram of a Fused deposition modelling (FDM) process. 
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Laser sintering  

 

Laser Sintering (LS) is typically used to process thermoplastic powders. A schematic 

diagram of LS is shown in Figure 2.11. A thin layer of fresh powder is spreads on the 

build platform, from left to right with a re-coater blade. The excess powder goes into 

the powder collector chamber on the other side. A CO2 laser scans the build platform 

according to the sliced STL file and fuses the powder in those specific areas. The 

powder that was not sintered around the part acts as support. The build platform 

moves down one layer and the re-coater blade on the right spreads a fresh layer of 

powder on the build platform, the laser scans the new layer, and this process is 

repeated until the part is complete131.  

 

LS produces parts with a high resolution and good mechanical properties118, 132. LS is 

carried out in an inert atmosphere using argon or nitrogen to circumvent oxidation of 

the polymer during sintering, leading to a reduction in internal stresses therefore no 

additional supports are required in LS133. The main drawback to LS is the expensive 

Figure 2.11. Schematic diagram of a laser sintering (LS) process. 
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equipment which can cost from $100,000 for industrial LS printers compared to 

industrial FDM printers are available from $15,000134. Due to its high accuracy 

typically, LS is used to fabricate geometrically complex structures135 which can have 

a huge potential in the manufacture of patient-specific orbital floor implants.  

 

High speed sintering  

 

High speed sintering (HSS) developed at the University of Loughborough136, is a 

promising technique that is currently in the development stage (not commercially 

available). A schematic diagram of an HSS system is shown in Figure 2.12. Like LS, 

it is mainly used for processing thermoplastic powders. HSS and LS are similar 

powder-based AM techniques that differ in the way sintering is initiated137. To sinter 

powders, HSS uses an inkjet print head to lay Radiation Absorbing Material (RAM) on 

the powder surface. Subsequently, an IR lamp passes over the powder build bed and 

the powders sprayed with the RAM ink absorb enough IR energy to selectively sinter 

the powders138. The powder in the feed is heated to prevent cold powder being 

Figure 2.12. Schematic diagram of a high speed sintering (HSS) process. 
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deposited on the build bed. The temperature of the bed is kept below the melting 

temperature of the material137.  

 

Similar to LS, it can also produce complex structures with the additional benefit of 

reducing machine costs and processing time139. As this is a prototype it may affect the 

accuracy of the prints in addition as there is not much research on biocompatibility of 

the ink used in HSS. Nonetheless, this technique can be potentially useful in the 

manufacture of patient-specific implants at a faster rate and potentially reduced cost. 

 

2.5.2 Additive manufacture of bioceramics  

 

AM of complex patient specific implants from bioceramics has gained a lot of interest 

over the past couple of decades. Unlike materials such as polymers and metals, 

ceramics are more challenging to process due to their brittle nature and high 

processing temperature. This section (2.5.2) will explore the different printing systems 

that offer printing of bioceramics and will discuss the advantages and limitations of 

each technique.  

 

Stereolithography 

 

SLA of ceramics is challenging, as most of these materials are not photocurable. 

Research has been conducted on the combination of ceramics such as silica, silicon 

nitride, alumina and HA with photocurable resin132, 140-145. The appropriate rheological 

properties, suspension viscosity and long-term stability, are important criteria for 

successful part printing on SLA. It is important that the additive remains 
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homogeneously distributed throughout the resin for a period of hours to days to ensure 

consistent properties. It has been reported that the addition of the ceramic increases 

the viscosity exponentially, which can lead to a reduction or an inhibition in the flow of 

resin. Current SLA technology can process materials at 10s of Pa•s and a shear rate 

of 1000 s-1 132. In addition, part shrinkage and a decrease in density are common 

drawbacks for SLA of ceramics which in turn leads to a decrease in the mechanical 

properties. Typically, volume shrinkage can be compensated for by software 

compensation technology, however, the software has to be further developed to 

accurately calculate this data for parts with a complex geometry144. Research has 

found that the polymerization process is significantly affected by the light scattering 

from the ceramic particles within the suspension, despite the ceramic particles being 

transparent to UV irradiation146. This phenomenon also effects the dimensional 

accuracy of the parts. Though SLA has a great potential in manufacturing custom 

implants with a high resolution, currently, due to the scarce number of biocompatible 

photocurable resin, its use is limited in the biomedical field.  

 

Digital light processing 

 

Ceramic printing on DLP was commercialised by Lithoz GmbH and is known as 

lithography-based ceramic manufacturing (LCM). LCM produces highly dense parts 

from materials such as zirconia, alumina and TCP147. A recent study by Schmidleithner 

et al.148 conducted an In vitro investigation on murine preosteoclast MC3T3-E1 cells 

suspended on TCP parts. It showed that there was an increase in alkaline 

phosphatase (ALP) activity over 14 days. However, the structure of bone is different 

between animals and humans which can influence the bone’s composition, 
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remodelling, healing and signalling pathways, thus, interspecies differences can make 

data extrapolation challenging149.  This technique has a potential in manufacturing 

highly dense ceramic parts with a high surface finish and a high resolution. Though, 

like SLA, the limitation in biocompatible photocurable resin remains an issue.  

 

Direct ink writing  

 

There are four important factors to bear in mind when DIW ceramic-slurries: the 

percentage of solids in the ink, the rheological properties of the paste, the rate of 

dispersion of the ink from the nozzle and the ink’s drying kinetics125, 150. 

 

Originally, ceramic-based slurries were combined with minimal organic content (<1 

wt%) to use as feedstock on DIW. The ink is usually composed of roughly 50 to 60 

vol% ceramic powder, a dispersant to help spread the ceramic in the aqueous 

solution151, 152, less than 1 % organic content which acts as the additive and 35 to 50 

% water or another volatile solvent. The main drawback to DIW is the use of organic 

content. This is because residual traces might still be present despite post processing 

which can give rise to an adverse toxic effects in vitro and provoke inflammatory 

responses in vivo153 

 

To avoid the use of organic content and increase the flexibility of the specimens, 

Maazouz et al.154 manufactured alpha-TCP and gelatine reactive slurries. The study 

found that the crosslinked bovine gelatine increased the compressive strength and 

elastic modulus of the scaffold than the non-crosslinked gelatine. Longer-cultures 

revealed that the crosslinked gelatine samples had higher cell proliferation and 
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adhesion nonetheless, the values were significantly lower than the tissue culture 

plastic (TCPS) control. The measured specific surface area was 24.85 ± 0.02 m2g. 

BioOss®, a commercial bovine bone substitute with high osteoconductive properties, 

has been found to have a specific surface area ranging between 60 up to 100 m2/g155-

158  which means that it has a larger surface area to absorb more proteins to induce 

bone differentiation. A limitation to this technique is that to prevent gelation the gelatine 

has to be kept at temperatures higher than 30 ºC159, therefore printing the material 

may be challenging without additional equipment such as a heating jacket to keep the 

syringe at the desired temperature.  

 

Fused deposition modelling  

 

Research has been conducted on the combination of bioinert polymer with bioactive 

ceramic to fabricate composite filaments8, 160. Studies have also been conducted on 

the combination of biodegradable polymers such as polylactic acid (PLA), 

polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) with biodegradable 

ceramics for biomedical application161-164. A study comparing in vivo performance of 

titanium cage implants for spinal fusion applications with FDM PCL-TCP implants in 

sheep models found that at 12 months both implants had similar fusion rate and the 

PCL-TCP showed superior bone ingrowth and more homogeneous bone 

distribution165. Composites such as PCL/HA163, 166 and PCL/ PLA/ HA167 have been 

successfully used in FDM however, this technique still has its limitations such as only 

thermoplastic materials can be used, typically the parts produced have low surface 

roughness which is not advantageous as surface modification or coating may be 

required in addition, it is challenging to achieve micro porosity which is necessary for 
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cell ingrowth and vascularisation119. An additional drawback of FDM is the poor 

surface quality caused by the ‘staircase’ effect which is a result of the layer 

deposition168. The staircase effect cannot be completely eliminated, however it can be 

improved by optimising the processing parameters169. Post processing is typically 

required to remove the staircase effect, which may lead to a decrease in part accuracy.  

 

Laser sintering 

 

Ceramic parts have been fabricated on LS has been proven to have a potential in 

manufacturing bone scaffolds with a high resolution and high-quality surface finish. 

However, processing ceramics on LS is difficult as ceramic have a high melting 

temperature therefore, they are typically combined or coated with materials that have 

a lower melting temperature. Physically blended or coated ceramics with polymers 

such as PEEK153, poly(vinyl alcohol) (PVA)170, PCL171, high density poly ethylene 

(HDPE)172, 173, poly(L-lactide) PLLA174, Aliphatic- polycarbonate (a-PC)175 and 

polyamide (PA)176-179 have been produced on LS. Several studies have combined HA 

and PA12177, 179. PA12 is commonly used in LS as it had the desirable thermal 

properties.  The part produced had relatively low mechanical properties because the 

studies used low processing temperatures such as 132 and 140 °C and low laser 

powers of 4 and 5 W. The bed temperature and the laser powder used in the studies 

were very low which may have caused insufficient melting between the powder 

particles which can lead to low mechanical properties. Shrinkage is a well-known 

phenomenon, in LS. The shrinkage varies from one material to another and can affect 

the part accuracy. Shrinkage rates are lower in amorphous polymers as the molecular 

chains are arranged in a random manner. Nonetheless, amorphous polymers are not 
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frequently used in LS and HSS because they do not have a fixed melting peak 

therefore, the polymer transitions into a liquid more gradually, producing parts which 

are partially dense with potential layer deposition issues180. Typically, experimental 

prints are undertaken to calibrate the machines and calculate the shrinkage 

compensation in order to rescale the original CAD model.  
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2.5.3 Summary and manufacturing technique selection  

 

Table 2.2. Advantages and disadvantages of various AM techniques in possessing 

bioceramic materials. 

AM techniques  Advantages Disadvantages  

SLA and DLP • Parts produces with a 
high resolution  

• Parts have good 
strength  
 

• The need for support structures  
• There is a scarce number of 

biocompatible photocurable resin 
• Most ceramics are not photocurable  
• Ceramics have been found to affect 

the polymerisation process which in 
turn effects part accuracy.  

DIW • Cost effective  
• Fast process compared 

to SLA, DLP, LS and 
HSS 

• Does not require 
support structures  

• Low resolution  
• Low mechanical properties 
• May use organic content which may 

leave residual traces that may 
provoke an inflammatory response  

• Gelatin reactive slurries that do not 
require organic content have to be 
processed quickly to prevent 
gelation 

FDM • Cost effective 
• Easy to operate  
• Fast process compared 

to SLA, DLP, LS and 
HSS 

• Parts have good 
strength 

 

• Only thermoplastic polymers and 
wax can be used 

• Parts typically have low surface 
roughness 

• Poor surface quality  
• Nozzle blockage 

LS and HSS • Parts produces with a 
high resolution 

• Does not require 
support material  

• Rough surfaces to 
encourage bone 
ingrowth 

• Parts have good 
strength 

• Expensive equipment  
• Limited number of polymers can be 

processed  
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Table 2.2 shows the advantages and disadvantages of various AM techniques for 

processing bioceramics. Despite some efforts, there’s no perfectly suitable 

biocompatible orbital floor implant material that is osteoconductive, antimicrobial and 

patient specific, therefore, this project aims to investigate this further. Powder-based 

AM systems, LS and HSS, were selected because they can produce parts with a high 

accuracy, a rough surface finish which can encourage osseointegration and do not 

require support structures thus reducing waste. Therefore, these techniques have a 

promising potential in the fabrication of orbital floor implants. 

 

2.6 Polymer processing 

 

There is a wide range of sinterable polymers including thermoplastic polymers such 

as polypropylene (PP), polyethylene (PE), PCL as well as high performance polymers 

such as PEEK and amorphous polymers such as polycarbonate (PC), polystyrene 

(PS) and PMMA181. Thermoplastic polymers can be subdivided into amorphous and 

semi-crystalline. The molecular chains of amorphous polymers are arranged in a 

random manner while semi-crystalline polymers are 50 to 60 % ordered and the rest 

are in an amorphous state. The difference in molecular chain arrangement causes 

amorphous and semi-crystalline polymers to have significantly different thermal 

properties182. The thermal properties of a polymer are critical in LS and HSS as they 

are both heat transfer processes where polymer particles are heated rapidly and then 

cooled naturally to form solid parts182. Semi-crystalline PA11 and PA12 account for 95 

% of LS polymer powder material market183 as they possess the desired thermal and 

physical properties for successful sintering. Flowability of the powder is very much 

dependent on the shape and size of each particle. A spherical powder shape and a 
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powder size between 20 to 80 µm ensures better flowability and a superior packing 

density which in turn, gives rise to greater part density thus leading to superior 

mechanical properties184. One of the main reasons that commercial PA12 is readily 

used is that it has the spherical shape and an optimal particle size ensuring good 

processability. Therefore, PA12 was selected as the base polymer for this project. 

 

2.6.1 Polyamide 12 

 

PA12 is extensively used in LS and HSS because it has the desirable extrinsic and 

intrinsic properties for LS and HSS. It has a large sintering window (gap between 

melting temperature and crystallisation temperature), allowing it to stay stable despite 

the fluctuation of heat during the sintering process. PA12 is a thermoplastic polymer 

which becomes softer when exposed to heat and solidify upon cooling. When PA12 

particles are heated, they undergo thermal transition such as melting and 

crystallisation. The consolidation process of semi-crystalline PA12 occurs above their 

melting temperature (Tm). PA12 have a sharp melting peak therefore, when sufficient 

heat energy is absorbed by the particles, the polymer rapidly changes into a viscous 

liquid. Sintering necks are formed between particles and if enough heat energy is 

absorbed, particles fully melt and overlap with the previous layer. Upon cooling below 

Tm, polymer crystals grow from a nucleation centre to form lamellar stacks of 

spherulites. When PA12 is heated from room temperature to its melting point, it 

undergoes a crystal to crystal transition known as the Brill transition185. At room 

temperature, the molecular chains of PA12 form hydrogen bonded sheets which are 

stacked together using weak Van der Waals forces. The molecular chains are 

arranged into a trans-zigzag conformation to form a triclinic lattice. At melting point, 
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the triclinic phase of PA12 is replaced by a pseudo-hexagonal crystalline structure. 

This phenomenon can be observed by X-ray diffraction (XRD). PA12 at room 

temperature shows two distinct peaks at d-spacing of 0.44 nm and 0.37 nm, which are 

typical for the triclinic lattice. Upon melting, the two peaks merge into a single peak at 

d-spacing of 0.42 nm, a representative of the less stable pseudo-hexagonal unit cell186. 

This phase transition can cause shrinkage during the formation of crystalline regions, 

but it increases part density.  

 

2.6.2 Compositing polyamide 12 

 

While PA12 may have various benefits such as being an ideal material to process on 

LS and HSS, it is bioinert and is not amicrobial. As mentioned in section 2.5.2, various 

studies have investigated the processability of HA and PA12 to increase the 

osteoconductive properties of the material. Generally, the parts produced were 

processed at relatively low processing temperatures and laser power which in turn 

resulted in parts with low mechanical properties. Therefore, it would be interesting to 

investigate increasing the processing parameters in order to increase the degree of 

particle melt (DPM) to improve the mechanical properties of the parts.  

 

Kamarajan et al. investigated the in vitro and in vivo cell viability and cytotoxicity on 5 

and 10 wt% HA:PA12 LS scaffolds187. The cell viability results revealed that all the 

samples were biocompatible and did not cause any cytotoxicity. The test results for 

the alkaline phosphatase (ALP) assay showed that the scaffolds containing HA had 

lower ALP enzyme activity level at day 4 and 7 than the TCPS control. However, at 

day 10, there was no statistical difference between the samples and the control. The 
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low levels of ALP may be due the type of cells used. MG 63 cells are known to express 

lower ALP activity than primary human cells188. Alizarin red staining was used to test 

for calcium mineralisation. The results showed that after 28 days the samples with HA 

were more intensely stained, an indication for a higher calcium content. Calcium is a 

nutrient commonly associated with the formation and metabolism of bone however, in 

this study this stain may not be very useful as the samples with HA contains calcium, 

therefore the increase of HA content will increase calcium concentration. The control 

used was a PA12 scaffold, which does not contain calcium and is therefore not a useful 

control. Other techniques could have been used such as Sirius Red to stain total 

collagen tissue present on the scaffolds189. The in vivo test conducted in rat models 

suggest that after 7 weeks of implantation the rat with PA12 implant had an 

inflammatory response, but no inflammatory response was observed in the rat with 

the 10 wt% HA:PA12. The PA12 implants showed the presence of plasma cells, 

fibroblasts, neutrophils and scattered inflammatory infiltrate. The 10 wt% HA:PA12 

implant showed the presence of fibroblasts, scattered macrophages, plasma cells and 

a small number of neutrophils. Neutrophils are the first cells attracted to the site of 

injury and are key mediators of the inflammatory response which is the first step in 

secondary bone healing. Even though there was no inflammatory response in the rat 

model with the 10 wt% HA:PA12 implant, the literature highlighted that orbital floor 

implants are more prone to infections due to the implant’s exposure to the 

nasal/oral/pharyngeal mucosal cavities. This can potentially be prevented by adding 

an antibacterial agent to the polymer-ceramic composite.  

 

As of yet high speed sintering of polymers with HA remains a novel technique. This is 

also true for laser sintering and high speed sintering of polymers with antimicrobial 
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properties. Therefore, there is a gap in the research to explore the processability of 

these materials on HSS which can produce implants that can potentially be used for 

orbital floor reconstruction applications.  A study conducted by Turner et al.190 

introduced a new approach of combining 1 % antimicrobial agent (silver-based 

additive) with a polymer powder (PA12) to process on laser sintering. Currently, there 

are no published research on the laser sintering or high speed sintering of polymer-

ceramic implants with antimicrobial properties. As mentioned in section 2.4.1, Zn was 

chosen as the antimicrobial agents in this study due to their ability to aid in the bone 

formation process, improving cell adhesion and osseointegration properties however, 

as of yet there has been no literature reporting the LS or HSS of Zn/PA12 composites.  

 

2.7 Factors that influence the mechanical properties in laser sintering and high 

speed sintering  

 

Even though the orbital floor is non-load bearing, the material must possess sufficient 

strength to support the eye globe and orbital content and withstand any handling 

forces during the implantation procedure. The printing parameters and the part 

orientation within the build must be kept constant as they have an effect on the 

mechanical properties of the parts. Section 2.7.1 and 2.7.2 discuss how the energy 

density, as well as the part location and orientation of the parts within the build, 

respectively, have an influence on the mechanical properties of the parts in LS and 

HSS.   

 

2.7.1 Energy density  
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The energy density input plays an important role in powder-based AM. A higher 

sample density can be achieved by increasing the energy density input to the optimal 

setting191. The energy density is the intensity of the energy being delivered to the 

particles. The energy density (J/mm2) is commonly calculated using (Equation 2.1, 

where P represents the laser or lamp power (W), 𝜐 is the laser beam or lamp speed 

(mm/s) and h is the hatch distance or heated length of the lamp (mm)191, 192. 

 

𝐸𝑛𝑒𝑟𝑔𝑦	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 	
𝑃

𝜐	 × 	ℎ 

(Equation 2.1.) 

 

Increasing the energy input results in higher degree of particle melt (DPM) as it 

enables larger particles to melt complete leading to higher sample densities. A study 

conducted by Majewski et al.193 which investigated how the mechanical properties are 

effected by DPM in LS, revealed that increasing the DPM increased the tensile 

strength and elongation at break of the samples. Increasing the laser power and 

reducing the scan speed are a few ways to increase the DPM. However, delivering an 

excessive amount of energy to the particles can cause the smaller polymer particles 

to combust. Large particles often require more laser energy to melt than the small 

particles, results in complete melting of the small particles and incomplete melting of 

the large particles. Leading to what is known as ‘cored’ spherulites193-196. An 

advantage to the ‘cored’ spherulites in this research is that it can lead to surface 

irregularities which in turn lead to a higher degree of surface roughness. Implants with 

a textured surface have been found to be superior for bone reconstruction applications 

because they have an increased surface area which can increase bone-to-implant 
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contact (BIC)197-199. Therefore, the processing temperature is set just below the onset 

of melting temperature but above the onset of the crystallisation temperature, known 

as the ‘sintering window’. This is to ensure that the laser only contributes to the 

remaining energy required to melt the powder particles. If the bed temperature is set 

too close to the crystallisation temperature, curling will occur causing part distortion 

due to premature crystallisation. Usually, increasing the temperature slightly may 

avoid curling, however, if the bed temperature is set too close to the melting 

temperature it can give rise to lateral growth where powder particles stick on the 

molten surfaces and reduce the resolution of the part200.  

 

Zhu and Majewski191 investigated the correlation between the energy input and the 

porosity of HSS parts. The results revealed that parts processed with higher energy 

inputs showed a decrease in porosity which led to an increase in the ultimate tensile 

strength. However, if the energy input is too high, it can cause the surrounding powder 

to become over-sintered making it challenging or unfeasible to remove the parts. 

Therefore, the processing temperatures selected must be high enough to melt the 

particles however, not too high to over-sinter the surrounding powder making it not 

possible to remove the parts.  

 

2.7.2 Part location and orientation in the build platform  

 

The spacing and location of the parts in the bed also has an important effect on the 

mechanical properties. Studies have confirmed that the outer regions of the build 

should be avoided as the parts cool down faster than the parts placed in the centre201. 

The orientation of the parts in LS and HSS is important as it can affect part strength 
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and flexibility. Previous studies202-205 have reported that parts built in the horizontal 

direction for both LS and HSS processes have superior ultimate tensile strength, 

Young’s modulus and elongation at break than those built in the vertical direction 

because the applied force is the same as the layer direction.  

 

2.8 Summary 

 

This Chapter has identified the potential for AM of orbital floor implants to give their 

potential to manufacture custom-fit implants for the restoration of defects with complex 

geometries. Various AM techniques are available, however, for this research powder-

based AM techniques, LS and HSS, were selected because they can produce parts 

with a high accuracy, a rough surface and do not require support structures. PA12 was 

selected as the base polymer as it has the desirable thermal and physical properties 

to make it an ideal material for processing on both LS and HSS. However, PA12 is 

bioinert, therefore, different additives were investigated to enhance its 

osteoconductive and antimicrobial properties. HA was selected as the 

osteoconductive material because it is closely associated to the natural bone apatite 

and is the most stable calcium phosphate and Zn was selected as the antimicrobial 

material because it has a vital role in the development, formation, mineralisation and 

maintenance of healthy bone. Previous studies which processed HA:PA12 parts by 

LS generally have low mechanical properties, even though orbital floor implants are 

non-loadbearing it is important to ensure that the optimal sintering parameters as well 

as part orientation are selected as they affect the properties of the parts. The LS of 

polymers with antimicrobial agents remains a fairly novel technique. In addition, HSS 

of polymers with osteoconductive and antimicrobial properties has not been explored 
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in previous literature. Therefore, this research will focus on determining the feasibility 

of LS and HSS to process polymer parts with osteoconductive and antimicrobial 

properties.  
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3 Material and Method  

 

3.1 Material selection  

 

It is evident from the literature that polymer-ceramic composites have gained a lot of 

interest in bone reconstruction applications especially non-load bearing applications 

such as orbital floor implants. Some research has been conducted to investigate the 

feasibility of processing ceramic-polymer composites by laser sintering (LS). However, 

due to the novelty of high speed sintering (HSS), no research has investigated the 

processability of ceramic-polymer composites on HSS. In addition, the processability 

of polymer-ceramic composites with antimicrobial properties using these powder-

based additive manufacturing (AM) techniques has also not been explored.  

  

3.1.1 Base polymer  

 

Ceramics, metals and metal oxides generally have high melting temperatures, 

therefore in order to fabricate sound parts on LS and HSS using these materials, a 

polymer base has to be selected. As per section 2.6, polyamide 12 (PA12) has the 

desirable properties making it an ideal material for Laser sintering (LS) and high speed 

sintering (HSS). In this research, PA12 (PA2200, EOS GmbH) with an average particle 

size of 56 μm, was selected as the base-polymer. Many industry guidelines 

recommend the use of 50:50 virgin:aged PA12 to fabricate parts on LS and HSS as it 

produces denser parts in comparison to virgin PA12. However, virgin PA12 has been 

shown to have marginally superior mechanical properties206. Additionally, it is difficult 
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to know the processing history of the used PA12 powder, thus, 100 wt% virgin PA12 

powder was used in this research to ensure better part consistency.   

 

3.1.2 Bioactive material  

 

PA12 has many advantages such as good mechanical strength and biocompatibility, 

however, it lacks bioactivity. To reduce the risk of implant migration, current polyamide 

implants require titanium screws to bond the implant to the bone tissue. The use of 

screws for long-term implantations can cause complications such as implant loosening 

or wear. Osteoconduction can be improved with the addition of a bioactive ceramic. In 

this research, commercially available hydroxyapatite (HA) (Plasma Biotal Ltd©. 

CAPTAL® 30 D50 SD) was selected as the bioactive ceramic due to its spherical 

particle shape (which is desirable to achieve good flow behaviour in LS and HSS) and 

particle size similar to that of the base polymer (average particle size of 31.1 μm). 

 

3.1.3 Antimicrobial agent  

 

There are many materials available for orbital floor reconstruction, however, it is 

evident from the literature review (section 2.3.2) that most of these materials are prone 

to implant associated infections. The management of infections can be costly and 

difficult. The addition of an antimicrobial agent to implants have shown a potential in 

preventing infections and reducing the need for secondary surgeries. Zinc (Zn) has 

been found to aid in the of bone formation therefore, it is promising antimicrobial agent 

for bone reconstruction applications.  
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3.1.4 Compositions  

 

To assess the processability of HA and PA12 compositions different filler quantities 

were used. The maximum quantity of HA investigated was 40 wt% as higher quantities 

of HA would result in less polymer, and hence less sintering, which is likely to impact 

the mechanical properties of the material. Therefore, for the bioceramic: polymer 

compositions the ratios investigated were: 0:100, 5:95, 10:90, 20:80, 30:70 and 40:60 

wt% HA:PA12. 

 

An ideal concentration of Zn for the optimal antimicrobial properties remains elusive. 

Prior investigations conducted by group members indicated that a 2:98 Zn:PA12 

concentration would be adequate to achieve antimicrobial action whilst preventing 

cytotoxicity, and due to limited availability of both LS and HSS, this was the only 

composition investigated. 

 

The final compositions under investigation involved the combination of the optimal 

HA:PA12 composition for each printer with the selected antimicrobial agent based on 

the previous investigations. From section 4.6, the optimal HA:PA12 composition for 

orbital floor reconstruction purposes processed on LS was 20:80 wt% HA:PA12 and 

40:60 wt% HA:PA12 for HSS. Therefore, the Zn:HA:PA12 composition selected for LS 

was 2:19.6:78.4 wt% Zn:HA:PA12 and 2:39.2:58.8 wt% Zn:HA:PA12 for HSS. 
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3.1.5 Powder preparation  
 

For each composition, 6 kg of powder was prepared according to the ratios 

investigated. The compositions were tumbled for 45 minutes to ensure homogeneity. 

Then the mixed powder was divided in two, where 3 kg were used on LS and 3 kg 

were used on HSS.  

 

3.2 Powder characterisation 

  

3.2.1 Powder morphology  

 

The powder’s extrinsic properties such as particle shape and size have an important 

role in successful part fabrication in LS and HSS. The powder morphology was 

investigated using a scanning electron microscope (SEM) (Vega3, Tescan), a widely 

used technique for material characterisation which can image surfaces at much 

greater magnifications than optical microscopy. Secondary electron (SE) micrographs 

were used to evaluate the surface topography of the powders. Additionally, 

backscattered electron (BSE) micrographs were used to qualitatively measure the 

homogeneity of additives on the surface of the LS and HSS samples. Energy 

dispersive X-ray (EDX) were used alongside BSE micrographs to confirm the 

elemental composition of the printed samples.  

 

The samples were placed on 0.5 inch aluminium stubs (Agar Scientific Ltd) with 12 

mm double sided carbon adhesive tabs (Agar Scientific Ltd). Leit-C Plast conductive 

adhesive paste (Agar Scientific Ltd) was placed on the carbon tab then, the printed 

discs were pressed on to the adhesive paste. Silver ELECTRODAG 1415 (Agar 
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Scientific Ltd) was painted on the side of the disc to further reduce noise and surface 

charging. The samples were gold coated by a low vacuum sputter coater to produce 

a conductive layer which- decreases thermal damage and inhibits charging. The 

samples were analysed at an accelerating voltage of 15.0 kV and a working distance 

of 10 to 15 mm. 

 

3.2.2 Thermal analysis  

 

Selecting the optimal sintering parameters for LS and HSS is an essential requirement 

to fabricate parts successfully and is informed by the melting and crystallisation 

temperatures of the composite in question. A Differential Scanning Calorimeter (DSC) 

is a thermoanalytical technique which can determine these parameters and is typically 

used to screen new materials for their potential use in LS and HSS. 

 

DSC measures the heat energy required to keep both the polymer sample pan and 

the inert reference pan at the same temperature207. The sample pan contains a 

polymer, thus more heat energy is required to keep the sample pan at the same 

temperature as the empty reference. During melting, energy is used to melt the 

crystalline regions of the polymer, thus despite continuous heating, the temperature 

remains constant in the sample pan. When PA12 is cooled from the melt, the polymer 

chains realign into crystalline structures. This is an exothermic process, where heat is 

released, therefore less heat energy is required to keep the sample and reference pan 

at the same temperature. An example of a typical DSC curve for PA12 is shown by 

Figure 3.1. 
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Figure 3.1. A standard differential scanning calorimetry (DSC) curve for polyamide 12 

(PA12). The first peak is the crystallisation peak while the second peak is the melting 

peak. The area in the middle is the sintering. Window also known as the processing 

window200. 

 

The thermal transitions are determined by plotting heat flow vs temperature values. 

The area in the middle is the sintering window, also known as the processing window. 

The flat red line shows the material being heated at a constant rate past the melting 

temperature (Tm) peak to ensure that all the polymer is melted. Then the polymer is 

cooled, as shown by the flat blue dotted line until the crystallisation temperature (Tc) 

peak. The preliminary processing parameters are often set based on DSC results, 

using the processing window values as a guide. The precise parameters are typically 

set by trial-and-error builds. 
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An average weight of 5.30 mg of the powders investigated were placed in an 

aluminium pan, closed tightly with a lid and then placed in the DSC (8500, Perkin 

Elmer). An empty reference aluminium pan also closed tightly with a lid was placed in 

the reference position. The temperature of the sample was increased from 60 ºC to 

225 ºC at a rate of 10 ºC/min. The samples were heated to 225 ºC to ensure all the 

polymer has melted and then cooled to 60 ºC at a rate of 10 ºC/min. These settings 

were based on the default parameters for PA12 already established in the Advanced 

Polymer Sintering laboratory. 

 

3.3 Design of test samples 

 

The first step of additive manufacture (AM) is the generation of 3D computer aided 

design (CAD) models which were converted into STL format, the standard file type 

used by most 3D printers. Fusion 360 (Autodesk) was used to generate 3D models of 

the testing samples.  
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Figure 3.2 (A) shows the dimensions of a disc which was used in material 

characterisation, cell culture and microbiology tests. The biocompatibility tests were 

conducted in 24 well plates, therefore, the size and the shape of the discs were 

fabricated to fit inside these wells. A cylindrical shape was chosen in order to cover 

the surface area of the 24 well plate. Tensile test bars and three-point bend bars were 

designed according to ASTM D638 Type 1 and ASTM D790 standards, respectively. 

The CAD models were converted into STL files and were then sliced into 100 μm 

layers. As mentioned in section 2.5.1 this forms the printing instructions for the 3D 

printer. 

 

 

Figure 3.2. Computer aided design (CAD) models showing the dimensions (mm) of 

(A) discs, (B) tensile test bars and (C) three-point bend bars. 
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3.4 Part fabrication  

 

There are various factors that influence the mechanical properties of LS and HSS 

including processing conditions and build orientation. Setting the optimal sintering 

parameters can greatly influence mechanical properties, surface finish and accuracy 

of the parts.   

 

3.4.1 Laser sintering 

 

LS parameters  

 

Commercial laser sintering system Formiga P100 (EOS GmbH) was used to fabricate 

the parts. The default processing parameters established by the Advanced Polymer 

Sintering laboratory at the University were selected. A CO2 laser with a wavelength of 

10.6 µm was used to produce power. The bed temperature was set to 170 °C and a 

laser power of 21 W was selected. The scan speed and scan spacing were set to 2500 

mm/s and 0.25 mm, respectively. A standard layer thickness of 0.1 mm was chosen. 

 

Build setup  

  

The location of the parts in the build is important as highlighted in section 2.7.2. The 

parts were placed in the centre of the 200 x 250 mm build chamber, avoiding the colder 

outer corners which could lead to premature recrystallisation thus potentially leading 

to curling and/or part distortion. The machine underwent a standard warm up cycle of 

roughly 2 hours where several blank powder layers were spread on the print planform 
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without sintering. This helps reduce the shrinkage stresses created during the 

sintering process which in turn reduces part warpage. Then 12 mm blank unsintered 

layers were applied to the base of the build before printing to add more heat to the 

system.  

 

The samples were built in the horizontal orientation as it has shown to produce parts 

with superior mechanical properties. The build setup (Figure 3.3) contained 181 parts: 

21 tensile test bars, 20 3-point bend bars and 140 discs. For the tensile testing, 5 

tensile test bars were required, 5 3-point bend bars were needed for 3-point bending, 

4 discs were required for every biocompatibility investigation and the discs were 

needed for antimicrobial investigations. Discs were also used for the physical 

characterisation of the materials. Extra samples were made for experimental repeats. 

The build set up was sliced into 0.1 mm series of parallel cross sections. The LS 

process was briefly described in section 2.5.1 (for a step by step please see Appendix 

). 

 

 

 

Figure 3.3. LS build set up. 
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Post-processing  

 

After the print was successfully completed the build chamber was left overnight to cool 

the powder bed after the printing process. The finished parts were cleaned from the 

excess powder with compressed air. The samples were stored in sealed bags at room 

temperature before they were used for testing. 

 

3.4.2 HSS parameters  

 

As mentioned in section 2.5.1, HSS is a prototype and unlike a commercial machine 

the parameters are likely to change with the development of the machine. The default 

HSS printing parameters, at the time of use, for processing PA12 were used to high 

speed sinter all the different compositions. The bed temperature was set to 150 °C. 

The radiation absorbing material (RAM) (PCO 7774, SunJet) absorbs sufficient 

thermal energy from the overhead lamp to increase the temperature and transfer it to 

the powder underneath. The processing parameters used were the default processing 

parameters established in the Advanced Polymer Sintering laboratory. The overhead 

initial power was set to 53 % (based on an array of 6 x 300 W ceramic infrared emitters) 

with a sinter speed and move speed of 120 mm/s and 70 mm/s, respectively. The 

amount of ink deposited is known as the greyscale. The greyscale has 8 levels 

excluding 0, where no ink is used. An increase in greyscale number increases the ink 

deposition. In this project the greyscale was set to 3 drops per drop. As used for LS, 

the layer thickness was also set to 0.1 mm.  All the compositions were processed 

using the default processing parameters. The HSS process was briefly described in 

section 2.5.1 (for a step by step please see Appendix ). 
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Build setup  

 

To ensure consistency between the laser sintering and the high speed sintering set 

up, the same build was transferred into the high speed sintering build chamber setting, 

however, the high speed sintering build chamber is rectangular (800 mm in X direction 

and 200 mm in Y direction) and is not as deep as the LS build chamber meaning the 

number of test samples that could be produced was slightly lower. This was not an 

issue as the previous build had many spare samples.  

 

 

The build (Figure 3.4) contained 131 parts; 15 tensile test bars, 16 3-point bend bars 

and 100 discs. The parts were centered in the build platform avoiding the cooler outer 

edges (the 25 mm around the edges). Like LSS, the HSS machine underwent a 

standard warm up cycle of roughly 1 hours where several blank powder layers were 

spread on the print planform. In order to achieve thermal stability before commencing 

the printing process, 50 standard blank layers were added to the base. This allowed 

enough time for the target build temperature to be achieved from the lamp moving 

across the build platform. When the build was complete, the heaters were turned off 

Figure 3.4 High speed sintering build set up. 
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and the build, with the sintered parts and the excess unsintered powder (known as the 

powder cake), was left to cool in the machine overnight.  

 

Post processing 

 

In HSS, the powder bed was exposed to infrared radiation from the lamp which causes 

the excess powders around the parts to harden. To remove the excess powder, the 

parts were blasted with soda-lime glass beads (Honite grade 16, Gyson). The samples 

were stored in sealed bags, at room temperature, before they were used for testing. 

 

3.5 Effect on the physical and mechanical properties  

 
The physical and mechanical properties of the processed compositions were 

investigated in terms of dimensional accuracy, surface topography analysis (the 

methods were discussed in section 3.2.1), additive distribution within the sample, 

surface area analysis, characterisation of crystal structure, tensile properties and 

flexural properties. Due to the COVID-19 pandemic there were several restrictions in 

the laboratories therefore some of the characterisation investigations such as surface 

area analysis and additive distribution analysis, were not conducted on the LS and 

HSS Zn:PA12 compositions as well as LS 2:19.6:78.4 wt% Zn:HA:PA12 and HSS 

2:39.2:58.8 wt% Zn:HA:PA12. 

 

3.5.1 Dimensional accuracy  

 

When designing patient specific implants any changes in the dimensional accuracy 

should be compensated for in the design. This is done in order to ensure more 
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accurate restoration. The machines are calibrated to PA12 therefore it was expected 

that different materials may behave differently. The dimensional accuracy of 3-point 

bend bars was measured for all the compositions that were processed. The width, 

height and length of a set of 5 three-point bend bars for each composition, were 

measured in triplicates using Vernier callipers, accurate to 0.01 mm. The percent 

difference was calculated using (Equation 3.1. These values are useful for determining 

how the addition of the additives affect the accuracy of the parts.  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒	(%) =
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙	𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑥𝑎𝑐𝑡	𝑣𝑎𝑙𝑢𝑒

𝑒𝑥𝑎𝑐𝑡	𝑣𝑎𝑙𝑢𝑒	 × 	100 

 

(Equation 3.1.) 

 

3.5.2 Additive distribution 

 

X-ray microcomputed tomography (MicroCT) is a non-destructive imaging technique 

that produces 3D images from 2D trans-axial slices208. MicroCT was used to analyse 

the distribution of additives throughout the sample. MicroCT uses a micro-focused X-

ray tube to generate X-rays. The X-rays are directed towards the sample which were 

mounted on a rotating table. Radiation passes through the sample, the attenuation is 

converted into 2D images by the detector209. The sample is then rotated at a fraction 

of a degree where another projection image is taken, this is repeated until the sample 

has turned 360 º to generate a series of projection images. The X-ray detector converts 

the incident X-ray photons into collectable electrical charges and digitalises them into 

2D slice images that can be reconstructed to form 3D images210. Low-density materials 
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such as polymers absorb less X-rays and thus leads to poor imaging contrast or fainter 

images211, therefore, the information obtained showed mainly HA particles as it is more 

dense than PA12 thus can attenuate more X-rays. 

 

The discs were placed on a stub and covered with clingfilm to prevent the discs from 

moving during the process. Clingfilm has low a density, any signals from the clingfilm 

was digitally filtered out during quantitative analysis of the final image. A 50 kV tube 

voltage was used.  A 0.5 mm aluminium filter was placed in front of the X-ray source 

to remove lower energy X-rays. The pixel size and the elevation were both set to 10 

μm. The rotation step was set to 0.7 º. The image files were then reconstructed from 

TIF to JPEG using NRecon version 1.6.9.8 and the analysis was conducted on CTAn 

(3D.Suite, Bruker). 

 

3.5.3 Surface area analysis  

 

The surface area of an implant can influence the cell attachment and proliferation. 

Brunauer-Emmett-Teller (BET) is an adsorption-based technique typically used for 

measuring the surface area of porous solids and powders. Because the size of 

nitrogen atoms are well known, it is commonly used as the adsorbate in BET to 

measure surface area212. Firstly, the sample was weighed and a mass range of 0.04-

0.08g was used. The sample was then placed under vacuum at 120 ºC to remove 

gasses and water vapour that may interfere with the surface analysis. The sample was 

reweighed to obtain the degas weight of the sample. BET analysis was performed at 

boiling temperature of liquid nitrogen (-196.15 ºC). At this temperature the gas 

molecules can physically be adsorb on the solid surface. The analysis is conducted at 
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a relative pressure (𝑃/𝑃!) typically in the range of 0.05 to 0.30 which is assumed to be 

the relative pressure for monolayer adsorption212. The volume of gas adsorbed is 

measured at 𝑃/𝑃!. As the pressure increases, more gas is adsorbed. The volume 

absorbed can be used to measure the gas molecules in the monolayer. The number 

of molecules/ atoms required to from a monolayer on the surface can be calculated 

using the BET equation (Equation 3.2.) , where 𝑛 is the amount of adsorbent covering 

the surface at, 𝑛" is monolayer capacity of adsorbed gas, 𝑃! is the saturation pressure 

of the nitrogen being adsorbed at the adsorption temperature, 𝑃 is the pressure and 𝐶 

is the BET constant which is related to the energy of adsorption in the first adsorbed 

layer213. 

 

𝑃/𝑃!
𝑛(1 − 𝑃 𝑃!⁄ ) =

1
𝑛"𝐶

+
𝐶 − 1
𝑛"𝐶

G
𝑃
𝑃!
H 

(Equation 3.2.) 

 

From the BET equation, the surface area (𝑎#) can then be calculated using (Equation 

3.3.) where 𝜎" is the molecular cross-sectional area, 𝐿 is Avogadro constant and 𝑚 is 

the mass of adsorbent213.   

 

𝑎# =
𝑛" ∙ 𝐿 ∙ 𝜎"

𝑚  

 

(Equation 3.3.) 
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3.5.4  Characterisation of crystal structure 

 
X-ray diffraction (XRD) was used in this research for phase identification of materials 

before and after LS and HSS to determine whether the printing processes effected the 

crystal structure of the materials.  

 

Crystalline materials are composed of atoms with regular interatomic spacing. When 

conditions satisfy Bragg’s law, X-rays interact with the sample to produce constructive 

interference, where two of equal amplitudes align to interact and produce a more 

amplified wave. The diffractions are processed and counted by a detector. The 

incident X-ray and the crystal plane interact at angle θ which is also equal to the angle 

between the crystal plane and the diffracted X-ray. The sample is scanned through a 

range of angle 2θ, which is angle between the incident X-ray and the diffracted X-rays 

(the angle of the detector).   

 

The diffraction pattern was collected on a Bruker D2 Phaser. CuKa X-ray wavelength 

was used with a nickel filter to supress lower intensity Kβ emission. The patterns were 

obtained from 10 to 80 ° angle 2q, at a scan speed of 6 ° per minute and a step size 

of 0.02 °. DIFFRAC.EVA was used to match the diffraction pattern peak positions and 

intensities against the Inorganic Crystal Structure Database (ICDD). 

 

3.5.5 Tensile properties  

 

Orbital floor implants must be manufactured with adequate mechanical strength to 

support the orbital content145. Orbital floor implants may be subject to tension and/or 

bending, so both tensile testing and 3-point bending were chosen.  
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Tensile testing was carried out to determine the Young modulus, tensile strength and 

the elongation at break of the LS and HSS samples. A 5 kN load cell was used in the 

tensile test machine (H5K, Tinius Olsen) to test the samples in accordance with ASTM 

D638214 type 1 at a rate of 1 mm/min. Five samples from each composition were 

tested. The gauge length, the thickness and the width were measured. Reflective tape 

was placed on either ends of the gauge to enable the laser extensometer to measure 

the spacing between the tapes and provide a value for the percentage of elongation.  

 

3.5.6 Flexural properties   

 

Three-point bending was used to evaluate the flexural modulus of the LS and HSS 

samples. A bar with a rectangular cross section, was placed on two supports and was 

loaded with a 2.5 kN load cell in a three point bend machine (LRX, Lloyd instruments) 

in accordance to ASTM D790215 at rate of 0.1 mm/min. Five samples were tested for 

each material. The samples were also placed in a bag and picked at random. To 

ensure that all the data start from the same load, the samples were all preloaded with 

5.0 N. The span was set to 50.0 mm and the test was stopped at 10.0 mm deflection.  

 

3.6 Effect of steam sterilisation on the mechanical properties of PA12 

 

Before the printed discs are used in cell culture and antimicrobial investigations, the 

samples have to be sterilised to reduce contamination. Steam autoclave kills microbes 

using heat in the form of saturated steam under intense pressure and is a preferred 

method to sterilise medical and surgical instruments216, 217. It is important that the 

sterilisation technique does not cause any permanent changes to the mechanical 
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properties as it can affect the performance of the samples. The effect of sterilisation 

on the mechanical properties of PA12 was investigated in collaboration with James 

Wingham, a PhD researcher at the University of Sheffield. The mechanical properties 

of PA12 were investigated under the different conditions present in steam autoclave 

such as high temperature, exposure to moisture/ water or a combination of heat and 

moisture. Nine sets of five tensile test samples laser sintered from 100 wt% PA12 were 

tested as printed, after steam autoclave (121 °C for 20 min) and after heat only 

autoclave (121 °C for 20 min). One set were tested immediately without drying, the 

second set were air dried for 7 days and the last set were oven dried at 50 °C for 7 

days before tensile testing. An overview of the protocol is shown in Figure 3.5. More 

details can be found in the published paper218.  

The percentage water content at any given time (wt) is calculated using Equation 3.4, 

where (mt) represents the mass of the sample at time t and. (mdried) is the dried mass 

of the sample: 

𝑤$ =
𝑚$ −𝑚%&'(%

𝑚%&'(%
	× 	100 

(Equation 3.4.) 

However, when there was no oven drying before tensile testing, the (mdried) value was 

not available. Therefore, to calculate the (mdried) (Equation 3.5.) was used. Where (winit) 

is the initial water content which is assumed to be the same for all the samples 

because the samples were all fabricated on the same build and (mint) is the initial mass 

of the samples. 
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𝑚%&'(% = 𝑚')$ G
100

100 +	𝑤')$
H 

(Equation 3.5.) 

Once the value for (mdried) was calculated, the value for (wt) was calculated using 

(Equation 3.4.). 
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Figure 3.5 O
verview

 of the effect of steam
 autoclave experim

ent protocol. The *m
 w

as taken due to an 18 h delay betw
een 

autoclaving and tensile testing.  
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3.7 Effect on the biocompatibility  

 

The biocompatibility of the LS and HSS samples were investigated in vitro using MG 

63 cells (Sigma-AldrichÓ), a human osteosarcoma-derived osteoblastic cell line. The 

cells were cultured using the standard media recommended by the supplier: Minimum 

Essential Medium Eagle (MEME) (Sigma-AldrichÓ) with 10 vol% fetal calf serum (FCS) 

(Sigma Aldrich), 1 vol% non-essential amino acids (NEAA) (Sigma-AldrichÓ), and 1 

vol% L-glutamine (LG) (Sigma-AldrichÓ). In addition, 1 vol% penicillin-streptomycin 

(P/S) (Sigma-AldrichÓ) was added to prevent bacterial contamination. An MG 63 

(Passage number between 5 to 9) vial with roughly 2 million cells was removed from 

liquid nitrogen and thawed in a water bath at 37 ºC for 30 seconds. The vial was 

transferred into 10 ml culture medium and centrifuged for 5 minutes at 1000 rpm and 

20 ºC to remove the dimethylsulfoxide (DMSO) from the thawing process. DMSO is a 

cryopreservation reagent used to prevent the formation of ice crystals, however it is 

toxic to cells when they are thawed. Therefore, it must be removed quickly to reduce 

the exposure of DMSO to the cells. After the centrifuge, the supernatant was removed, 

and the cell pellet was resuspended with 10 ml culture medium. The cells were then 

transferred into a T75 flask and incubated at 37 ºC with 5 % CO2. After 24 hours, the 

medium was replaced with 10 ml of fresh culture medium to ensure that the cell debris 

and the non-adhered cells were removed. The flask was placed back into the incubator 

and the medium was changed every two days until the cells reached 70- 80 % 

confluency and were ready for sub-culturing.  

 

To sub-culture the cells, the media was removed, and the cells were washed three 

times with sterile phosphate-buffered saline (PBS) (Sigma-AldrichÓ), a physiological 
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buffer used to remove any remaining media. The cells were detached by placing 2 ml 

trypsin EDTA (Sigma-AldrichÓ) and incubated for 3 minutes at 37 ºC with 5 % CO2. 

The cells were suspended with 4 ml culture media and centrifuged for 5 minutes at a 

speed of 1000 rpm. The supernatant was removed, and the cell pellet was 

resuspended with 10 ml culture medium. The cells were then counted using a 

hemocytometer to make up the media with the desired number of cells for further 

culturing, setting up an experiment or freezing the cells down. 

 

3.7.1 Cell seeding density  

 

Tissue culture plastic (TCPS) is commonly used as a standard control in experiments 

as its surface has been treated to allow for good surface attachment. However, we 

cannot use TCPS as a direct control in this experiment as there are differences in 

surface morphologies of the printed samples and TCPS, which affects both cell growth 

and attachment. Therefore 100 wt% PA12 was used as the main control. However, it 

is still useful to use TCPS as a general control to assess how well the samples are 

performing compare to the TCPS control. It is important to select the optimal seeding 

density in order to ensure that the cells do not reach over-confluency. When the cells 

became over-confluent on TCPS, cell clumping, or cell detachment can take place 

leading to a reduction in the accuracy of the reading. The optimal seeding density on 

TCPS was assessed by monitoring the rate of cell growth. In a 24 well plate, three 

repeats of 1x104, 2 x104, 3 x104, 4 x104 and 5 x104 MG 63 cells in 0.5 mL medium 

were incubated for 7 days on TCPS. The medium was changed every two to three 

days. An optical microscope with a camera was used to image the cells at days 1,4 

and 7. 
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3.7.2 Cell viability and DNA quantification    

 

Sterile LS and HSS discs were placed in 24 well plates and weighed down with sterile 

stainless steel rings with 15 mm outer diameter and a 14 mm inner diameter. Four 

discs were used for each composition, three discs were suspended with 0.5 ml culture 

medium containing cells made up as per section 3.7, 0.5 ml media was added to the 

discs from each composition. TCPS was used as control, sterile surgical grade 

stainless steel rings were placed in the wells for consistency. The experiment was 

conducted for 7 days. The media was replaced every two days. 

 

In vitro cell viability of MG 63 cells cultured on LS and HSS discs were assessed using 

PrestoBlueTM, a resazurin based reagent. Non-fluorescent resazurin reduces to 

strongly fluorescent resorufin in cellular respiration of viable cells 219. The cell viability 

was measured at day 1, 4 and 7. However, as with the characterisation investigations 

(section 3.5), the COVID-19 pandemic lead to restrictions in the tissue culture 

laboratory therefore, the cell viability was measured only at day 1 and 4 for LS 

2:19.6:78.4 wt% Zn:HA:PA12 and HSS 2:39.2:58.8 wt% Zn:HA:PA12. On the 

following days, the media was removed, the cells were washed twice with sterile PBS, 

and 0.5 ml of 10 % PrestoBlueTM in culture medium was added to each well. In order 

to prevent light from breaking down the resazurin, the well plates were wrapped in 

aluminium foil and incubated for 30-75 min at 37 °C until the assay turned purple/pink 

in colour. 200 µl of the reduced solutions were pipetted into 96 well plates for the 

fluorescence to be read at 560 nm using Infinite M200 (Tescan). The fluorescence 

was normalised to fluorescence produced per minute.  
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PicoGreen® dsDNA Assay Kit (ThermoFisher Scientific) was used as a tool to assess 

cell proliferation on the LS and HSS samples during in vitro cell culture. PicoGreen® 

is a dye which fluoresces when bound to double stranded DNA (dsDNA) 220. Unlike 

PrestoBlueTM, it is destructive and requires lysed cells. Cell lysis was conducted by 

placing 250 µl of filter sterilised deionized water in each well to conduct a freeze thaw 

cycle. It involved placing the well plate in -80 ºC for 24 hours before thawing at room 

temperature. During this process, cells swelled up and ruptured due to the formation 

of ice crystals and contract when thawed. A pipette was used to scrape the cells 

attached to the discs and homogenise the cell suspension. The well plate was placed 

back into -80 ºC for another freeze-thaw cycle before DNA quantification.  

 

The PicoGreen® assay was used according to the manufacturer’s instructions. In 

brief: TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) was prepared by diluting the 

TE buffer concentrate to 1 in 20 with deionized water. The dsDNA standard curve 

solutions were prepared by diluting the DNA stock in TE buffer to make up 

concentrations ranging from 0-1000 ng/ml. The DNA standard curve concentrations 

were plated in 100 µl triplicates into a 96 well plate. The provided PicoGreen® stock 

solution was diluted 200 fold in TE buffer. The reagent was wrapped in aluminium foil 

to prevent photodegradation. In the 96 well plate 50 µl of distilled water was mixed 

with 50 µl of the cell suspension. Next, 100 µl of the PicoGreen reagent was added to 

the samples and the standard curve concentrations. The well plate was wrapped for 4 

minutes at room temperature. The fluorescence was quantified using an excitation 

wavelength of 485 nm at an emission wavelength of 528 nm.  
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3.8 Effect on the antibacterial properties  

 

In this research the antibacterial activity of LS and HSS samples were assessed 

against gram-positive staphylococcus aureus (S. aureus).  

3.8.1 Bacterial culture preparation 

 

S235, a strain of S. aureus, was resurrected from frozen stock. A sterile inoculating 

loop was used to obtain a sample from frozen stock. The bacteria were then 

suspended in Brain Heart Infusion (BHI) broth and grown overnight in an incubator at 

37 °C. The bacterial suspension was diluted to an absorbance of 0.05 at 600 nm in 

PBS.  

 

3.1.1 Assessing bacterial growth  

 

An experiment was conducted to determine the growth phases of the bacteria over 

time in PBS. Sterile discs were placed in universal tubes with 5 ml of bacterial 

suspension. There were 3 repeats for each composition. The universal tubes were 

placed into a shaking incubator at 200 rpm and 37 °C, overnight to ensure that the 

disc was submerged with the bacterial suspension. After 24 hours, the bacterial 

suspension was removed, and the discs were transferred into new universal tubes. 

The discs were then washed twice with PBS to remove unattached bacteria and 

resuspended in 5 ml PBS. The discs were shaken on a Vortex for 30 seconds to detach 

the bacteria attached to the discs.    

 

Bacterial culture dilutions  



Chapter 3 

 82 

 

Bacterial culture dilutions were required to perform colony counting in order to count 

the number of bacteria that have been released from the discs. Serial dilutions were 

performed at 100, 10-1, 10-2, 10-3 and10-4 were plated on BHI agar plates (Figure 3.6) 

to ensure that single colonies could be counted.  The bacteria in PBS were plated on 

agar plates at dilution of 10-4. Two bacterial dilutions were plated up from each disc. 

The plates were placed into an incubator overnight. The following day, the bacterial 

colonies were counted. The number of bacterial colonies were counted at the lowest 

dilution where single colonies could be counted.  

 

 

 

 

 

Figure 3.6 Agar plate dilutions for colony counting. 
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Bacterial colony calculation 

 

The number of colony forming units per ml in the original culture can be calculated by 

(Equation 3.6.). 

 

𝐶𝑜𝑙𝑜𝑛𝑦	𝑓𝑜𝑟𝑚𝑖𝑛𝑔	𝑢𝑛𝑖𝑡𝑠	𝑝𝑒𝑟	𝑚𝑙	(𝐶𝐹𝑈/𝑚𝑙	) =
𝑛𝑜. 𝑜𝑓	𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠	 ×	10*(,-.)$')/	%'1.$'-))

𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑝𝑙𝑎𝑡𝑒𝑑	𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛  

(Equation 3.6.) 

 

The raw numbers for CFU were converted into log scale and the statistical analysis 

was carried out as per section 3.9. 

 

3.9 Data analyses  

 

All the data analyses were performed on GraphPad Prism version 7 for Mac OS X. An 

unpaired T-test was used to analyse whether two sets of samples are statistically 

different from one another. For tests with three of more sets of samples, one-way 

ANOVA followed by Tukey’s multiple comparison was used.
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4 Results and discussion: bioactive ceramic: polymer 

compositions  

 

This Series was focused on determining the effect of hydroxyapatite (HA) when added 

to the base polymer PA12 at different wt% and processed on laser sintering (LS) and 

high speed sintering (HSS). This chapter will discuss the results obtained based on 

the methodology introduced in Chapter 3. The objectives for this chapter are:  

 

• To investigate the processibility of varying compositions of HA:PA12 in order to 

establish whether there was an upper limit for the amount of HA which could 

physically be processed. 

• To determine the effect of HA on the physical and mechanical properties for all 

the compositions that could be processed.  

• To identify if the sterilisation technique has an effect on the mechanical 

properties of the base polymer. 

• To determine whether the addition of HA has an impact on the biocompatibility 

of the processed parts.  

• To select the optimal HA:PA12 composition for further investigations into the 

addition of an antimicrobial agent.    
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4.1 Processability  

 

The first objective is to investigate the powder morphology to check for particle 

sphericity, size (where the optimal particle size ranges between 20- 80 µm) and 

surface roughness as these factors impact powder processability and cell adhesion. 

Then the thermal properties of the powder composites were investigated to assess 

whether the addition of HA affects the melt characteristics of the base polymer which 

in turn can impact its processability.   

 

4.1.1 Powder morphology 

 

Figure 4.1. Secondary electron (SE)- Scanning electron microscopy (SEM) 

micrographs of (a) polyamide 12 and (b) hydroxyapatite powders.  

The morphology of the powders was assessed using scanning electron microscopy 

(SEM) as per the method in section 3.2.1. Figure 4.1 (a) shows an SEM micrograph 

of PA12 particles. The PA12 particles have a near spherical shape and are within the 

optimal sintering range. The surfaces of PA12 particles appeared relatively smooth 

with some PA12 particles showing cracks. It has been reported that cracking can 
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exists in virgin powders however, aged powders exhibit an increase in cracking as the 

powders are kept at high temperatures from previous processing206, indicating that 

cracking is not likely to have a significant effect on the processability. Based on these 

observations there is no obvious reason why the morphology of PA12 should prevent 

effective processability.  

 

The HA particles, shown in Figure 4.1 (b), have a spherical shape. The HA particles 

were generally smaller than the PA12 particles nonetheless they are within the 

acceptable range for sintering on LS and HSS. HA particles show a higher surface 

roughness which has been reported to yield a higher degree of cell adhesion and 

influence proliferation of osteoblasts as it increases the surface area of the samples221-

224. As mentioned in the literature, section 2.5.2, a higher surface area is likely to be 

advantageous as it provides more space for cell attachment which is predicted to be 

advantageous in this research. Like PA12, the morphology of HA is also not likely to 

prevent good processability.  

 

4.1.2 Thermal analysis  

 
Thermal analysis of the powders was conducted using differential scanning 

calorimetry (DSC). As mentioned in section 2.6.1, PA12 has a large sintering window 

which permits the use of a large variety of processing temperatures225 on LS and HSS. 

It is important that when an additive is mixed with PA12, the sintering window does 

not become smaller. A decrease in the sintering window makes the material more 

challenging to process as more precise processing parameters would be required.  
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Figure 4.2. Differential scanning calorimeter (DSC) curves of hydroxyapatite: 

polyamide 12 (HA:PA12) powder compositions, where Tconset is crystallisation 

temperature onset and Tmonset is melting temperature onset 

 
 
Table 4.1. Melt characteristics of hydroxyapatite: polyamide 12 (HA:PA12) powder 

compositions. 

HA:PA12 

(wt%) 

Melting 

temperature 

onset (°C) 

Melting 

temperature 

(°C) 

Crystallisation 

temperature 

onset (°C) 

Crystallisation 

temperature 

(°C) 

Processing 

window 

(°C) 

 

0:100 181 192 158 150 23  

5:95 179 192 158 150 21  

10:90 181 192 157 150 24  

20:80 181 192 158 151 23  

30:70 181 192 158 150 23  

40:60 181 192 158 150 23  
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Figure 4.2 and Table 4.1 shows the DSC curves and the melt characteristic values, 

respectively, for the HA:PA12 compositions. All the compositions show a melting and 

a crystallisation peak with a clear gap between the two peaks. The values for the 

melting temperature onset (Tmonset) range from 179 to 181 °C, the melting temperature 

(Tm) was 192 °C for all compositions, the crystallisation temperature onset (Tconset) 

range from 157 to 158 °C and the crystallisation temperature (Tc) range from 150 to 

151. The sintering window ranged from 21 to 24 °C, indicating that HA had a marginal 

effect on the processing window of the material. The values obtained here are 

comparable to the values reported in the literature for virgin PA12 powder184, 226. HA 

does not melt in the temperature range analysed as it has a high melting temperature 

of 1650 °C227, 228,thus it would not be expected to have a big influence on the melt 

characteristics of the material. Despite slight differences in values between the 

different compositions, the LS and HSS systems are not accurate enough to input 

such small changes, indicating that the default processing parameters (for processing 

PA12 on LS and HSS) can be used in the initial printing trials to process the HA:PA12 

compositions.  

 

4.2 Printability  

 

Although the thermal properties did not change, it is still expected that higher 

concentrations of HA are likely to affect the printability as well as the physical and 

mechanical properties of the material176, 177.  Tensile test samples, 3-point bend bars 

and discs were printed on LS and HSS using the selected HA:PA12 compositions (as 

per section 3.1.4). 
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4.2.1 Laser sintering  

 

 

All the tensile test samples (Figure 4.3) and three-point bend bars were successfully 

printed by LS, using all the compositions. However, the discs were not successfully 

printed at 30:70 and 40:60 wt% HA:PA12. At these compositions, some discs curled 

at the edges during the LS process. The curled discs were dislodged from their 

position and dragged across the powder bed by the re-coater blade leading to build 

termination. Often, curling is caused by early crystallisation due to a low bed 

temperature195, 200, 229, indicating that HA, has an effect on the processability in LS.   

The reason why the mechanical test specimens were printed successfully but not the 

discs is not entirely known however one hypothesis is that as the discs are smaller 

than the tensile test samples therefore less energy from the laser is delivered to 

sample leading them to cool down at a faster rate. The edges always cool down faster 

than the centre of the part due to the cold un-sintered powder surrounding it. It is 

predicted that the steep thermal gradient between the edges and the centre of the part 

Figure 4.3. Laser sintered tensile test bars made of different wt% of hydroxyapatite: 

polyamide 12 (HA:PA12). Scale bar= 10p coin. 
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gives rise to non-uniform expansion and contraction leading to curling230-232. A simpler 

explanation may be that the tensile test specimens and 3-point bend bars have a larger 

mass than the discs, making them more difficult to drag away in the case of minor 

curling.   

 

Another reason for the failed discs at higher wt% of HA, is hypothesised to be due to 

the decrease in polymer particles available to absorb and transmit the energy from the 

laser. It may reduce the coalescence between polymer particles as there are more HA 

particles in the way, potentially leading to heterogenous nucleation233. In addition, the 

decrease in polymer particles can result in less energy being absorbed by the polymer 

grains, potentially leading to poor layer adhesion and thus build failure. Further work 

is needed to investigate this theory however, it is outside the scope of this research. 

Due to the build failures at 30:70 and 40:60 wt% HA:PA12, these compositions were 

not used in any further experimentations, meaning only LS compositions of 20:80 wt% 

HA:PA12 or below will be included in the remainder of this thesis. 
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4.2.2 High speed sintering  

 

The HSS of HA:PA12 samples is novel thus far and has not been explored in literature. 

The results showed that all the tensile test samples (Figure 4.4), 3-point bend bars 

and discs were printed successfully by HSS using the default processing parameters 

discussed in section 3.4.2. All the samples were grey/black in colour which was due 

to the Radiation Absorbing Material (RAM) ink used in the HSS process. The range of 

compositions which could successfully be built was better in HSS than LS. This was 

likely to be due to the differences in sintering between the two techniques, where in 

HSS the infrared lamp passes over the whole powder bed which also heats the 

surrounding powder, leading to a lower thermal gradient between the edges and the 

centre of the part. As discussed in section 4.2.1, the thermal gradient can affect the 

curling and shrinkage of the part thus a reduction in thermal gradient can decrease 

part failure. Additionally, the energy input is slower which may give more time for the 

Figure 4.4. High speed sintered tensile test bars made of different wt% of 

hydroxyapatite: polyamide 12 (HA:PA12). Scale bar= 10p coin. 
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particles to melt and coalesce. Unlike LS, no HA:PA12 compositions processed on 

HSS, were excluded from further experimentations in this thesis.  

 

4.3 Effect on the physical and mechanical properties  

 

The second objective was to assess the effect of the additive on the physical and 

mechanical properties of the parts produced. The physical properties were 

investigated in terms of dimensional accuracy, surface topography analysis, additive 

distribution, surface area analysis and characterisation of the crystal structure. The 

mechanical properties were assessed by tensile testing and 3-point bending.  

 

4.3.1 Dimensional accuracy  

 

To assess whether the dimensional accuracy was affected by the addition of HA, the 

dimensions of 3-point bend bars were measured for all the compositions that were 

processed. The percentage difference was calculated by comparing the values of the 

samples to the exact values of the CAD dimensions as per  Figure 3.2. This 

information is useful because when real-life parts are produced any significant 

changes in dimension should be compensated for in the design to ensure a more 

accurate restoration. 
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Table 4.2. Part dimensions of 3-point bend bars composed of different wt% of 

hydroxyapatite: polyamide 12 (HA:PA12). The expected values were defined in the 

CAD model. The measurements were conducted on 5 samples. 

 

Table 4.2 shows the mean part dimensions of 5 LS samples. The width ranges from 

12.68 to 13.15 mm, the thickness ranges from 4.14 to 4.24 mm and the length ranges 

from 59.80 to 60.13 mm. The variance in values for each composition is narrow which 

shows a homogeneity in production across the prints. The percent difference for the 

LS samples ranges from 1.16 % to 2.46 % for the width, 3.42 % to 5.97 % for the 

thickness and 0.22 to 0.33 % for the length. The addition of HA shows a small effect 

on the accuracy of the parts. As mentioned in section 2.5.2, shrinkage in LS and HSS 

is well known and can be compensated for in the CAD file. Therefore, when designing 

real-life parts, test prints are required to check for shrinkage compensation to add into 

the original CAD file. The results show that implants fabricated from these materials 

at these processing parameters are likely to have a high dimensional accuracy. 

Nonetheless, this must be explored further as orbital floor implants have complex 

shapes which can affect the printability.  

 

HA:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:100 13.15 0.10 1.16 4.14 0.05 3.42 60.13 0.05 0.22 

5:95 12.68 0.07 2.46 4.24 0.05 5.97 59.80 0.04 0.33 

10:90 12.70 0.06 2.34 4.20 0.06 4.95 59.87 0.04 0.22 

20:80 12.71 0.05 2.21 4.17 0.05 4.30 59.84 0.08 0.27 
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Table 4.3. Part dimensions of high speed sintered 3-point bend bars composed of 

different wt% of hydroxyapatite: polyamide 12 (HA:PA12). The expected values were 

defined in the CAD model. The measurements were conducted on 5 samples. 

HA:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:100 12.72 0.06 2.18 3.77 0.11 5.85 58.49 0.11 2.52 

5:95 12.64 0.09 2.78 3.85 0.07 3.78 58.35 0.23 2.76 

10:90 12.70 0.04 2.29 3.81 0.06 4.87 58.30 0.08 2.83 

20:80 12.82 0.06 1.37 3.87 0.05 3.17 58.60 0.16 2.33 

30:70 12.89 0.05 0.87 3.91 0.04 2.15 58.64 0.18 2.26 

40:60 12.80 0.05 1.57 3.86 0.06 3.40 58.59 0.09 2.35 

 

The part dimensions of 3-point bend bars processed by HSS are shown in  

Table 4.3. The width ranges from 12.64 to 12.89 mm, the thickness ranges from 3.77 

to 3.91 mm and the length ranges from 59.30 to 58.64 mm. Like the LS samples, the 

production was relatively homogeneous for each composition as shown in the narrow 

variance in values. The percent difference for the average width ranges from 0.87 % 

to 2.78 %, 2.15 % to 5.85 % for the thickness and 2.33 % to 2.76 % for the length. The 

percent difference of HSS samples was slightly higher than that of LS samples which 

was expected as LS is a commercial machine while the HSS machine is still under 

development. Nonetheless, when designing real-life parts, test prints are required to 

add the shrinkage compensation into the original CAD model. In addition, the printing 

of complex shapes must be explored further.   
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4.3.2 Surface topography analysis 

 

HA:PA12 

(wt%) 

x100 

(500 µm scalebar) 

x1000 

(50µm scalebar) 

0:100 

  

5:95 

  

10:90 

  

HA 

PA12 

cavities 
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20:80 

  

 

Figure 4.5. Backscattered electron (BSE)- Scanning electron microscopy (SEM) 

micrographs of laser sintered discs composed of different wt% hydroxyapatite: 

polyamide 12 (HA:PA12) taken at x100 and x1000 magnifications.  

 

Homogeneous distribution of additives on the surface is generally accepted to be a 

main priority. Figure 4.5. shows backscattered electron (BSE)-SEM micrographs of LS 

discs. The PA12 particles are shown in grey. Some PA12 particles appeared to have 

fully melted while others did not reach full degree of particle melt. As mentioned in 

section 2.7.1, this is known as ‘coring’.  An advantage to the cored spherulites is the 

surface irregularities which leads to a higher degree of surface roughness. Implants 

with a textured surface have an increased surface area, which is believed to be 

advantageous in bone reconstruction applications as it increases bone-to-implant 

contact (BIC)197-199 thus potentially increasing implant stability.  

 

HA particles have a brighter intensity than PA12 particles which correlates to HA’s 

higher average atomic number. The HA particles were found to have retained their 

shape after sintering as the processing parameters are not high enough to melt the 

ceramic particles. The PA12 particles melted around the HA particles which held them 
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in position, acting like a ‘binder’. The x100 magnification images show that HA is 

relatively well distributed on the surface of the samples with no obvious 

agglomerations, indicating that the samples are likely to have an even surface 

interaction with the cells. Additionally, the 100x micrographs indicate that as the 

concentration of HA increases, more HA is observed at the surface, as would be 

expected. All the compositions show irregular surface cavities which was also 

observed by Kinstlinger et al.135, likely increasing the surface area of the samples and 

in turn increasing BIC. 
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30:70  
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Figure 4.6. Backscattered electron (BSE)- Scanning electron microscopy (SEM) 

micrographs of high speed sintered discs composed of different wt% of 

hydroxyapatite: polyamide 12 (HA:PA12) taken at x100 and x1000 magnifications.  
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The BSE-SEM micrographs shown in Figure 4.6 are of HSS specimens. HSS samples 

show less particle coring than LS samples, resulting in smoother surfaces. The HSS 

samples have a relatively textured surface which is mainly predicted to be a result of 

the ink (the lighter specks attached to the particles) used during the HSS process. This 

may be advantageous as it increases the effective surface area, which could result in 

potentially higher BIC. As expected, the 100x micrographs show that as HA increases, 

more HA is observed at the surface. The HSS samples have higher porosity compared 

to LS samples, which may be due to the incomplete melting of the PA12 particles. This 

is a potential indication that not enough energy was put into HSS to fully melt the 

particles. The main drawback to increased porosity is the general reduction in 

mechanical properties234-237, as pores act as stress concentration sites where cracks 

can initiate and propagate. However, sufficient porosity has been found to promote 

bone ingrowth which has been known to increase implant stability235, 238, 239.  

 

Like the LS samples, the HA particles also retained their shape in HSS and were 

reasonably well distributed on the surface, likely leading to a homogeneous interaction 

between the surface of the samples and the cells. The micrographs show that the 

addition of HA increases the porosity which is likely to be advantageous as osteoblasts 

prefer to grow and proliferate on pore sizes between 100 to 350 µm235, 240-243, to allow 

for cell migration, ingrowth and vascularisation. This is roughly similar to the range 

determined here for 5-40 wt% HA:PA12. The HSS samples appear to have superior 

porosity than LS samples, indicating that cell viability is likely to be higher on HSS 

samples. However, increased porosity is predicted to decrease the mechanical 

properties of the samples. Thus, LS samples are likely to have superior mechanical 

properties over HSS samples. 
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4.3.3 Additive distribution  

 

Figure 4.7. 2D cross-sectional images of laser sintered samples composed of different 

wt% of hydroxyapatite: polyamide 12 (HA:PA12) obtained by micro-CT scanning. 

Scale bar= 2 mm.
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Figure 4.8. 2D cross-sectional images of high speed sintered samples composed of 

different wt% of hydroxyapatite: polyamide 12 (HA:PA12) obtained by micro-CT 

scanning. Scale bar= 2 mm. 
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Additive distribution  
 

Figure 4.7 and Figure 4.8 show 2D cross-sectional images of LS and HSS samples, 

respectively, obtained by non-destructive X-ray computed micro-tomography 

(MicroCT) to examine the distribution of additives within the samples. The white specs 

are the HA particles. The results show that HA is well distributed throughout the LS 

and HSS samples without any obvious agglomerations, demonstrating that any effect 

that HA may have on the mechanical properties is predicted to be evenly distributed 

through the geometry.  

 

4.3.4 Surface area analysis  

 

The specific surface area greatly influences the way osteogenic cells interact with the 

surface of the scaffold155, 244-246. The specific surface area of the samples was 

measured by Brunauer-Emmett-Teller (BET) nitrogen adsorption technique as per the 

method in section 3.5.3.  
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Table 4.4. Brunauer-Emmett-Teller (BET) nitrogen adsorption measurements of the 

specific surface area of laser sintered and high speed sintered samples composed of 

different wt% of hydroxyapatite: polyamide 12 (HA:PA12). 

HA:PA12 (wt%) Specific surface area (m2/g) 

LS HSS 

0:100 20.7 26.4 

5:95 21.5 117.6 

10:90 40.7 117.7 

20:80 77.6 136.4 

30:70 - 72.0 

40:60 - 121.3 

 

The results in Table 4.4 show the specific surface area values for LS and HSS 

samples. The values range from 20.7 to 77.6 m2/g for LS samples. The results 

demonstrate an increase in specific surface with the increase in HA. Various studies 

comparing the performance of HA based bone substitutes found that materials with 

increased surface area show greater osseointegration155, 156, 247. The literature 

theorises that the mechanism of hydroxyapatite induced bone differentiation is caused 

by the adsorption of native bone morphogenetic proteins (BMPs), osteoblasts and 

bone marrow cells from the body fluid to the HA-based biomaterial248-250. Therefore, 

materials with a larger surface area have the capacity to adsorb more bone BMPs 

which can trigger a higher degree of bone formation. BioOss®, a commercial bovine 

bone substitute with high osteoconductive properties, has been found to have a 

specific surface area ranging between 60 up to 100 m2/g155-158. LS 20:80 wt% 

HA:PA12 had a surface area within the same range indicating that this composition is 
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likely to trigger a higher degree of bone formation similar to that of BioOss®. The 

increase in surface area with the addition of HA was likely to be due to the rougher 

surfaces of HA particles, as discussed in section 4.1.1. 

 

The values for the specific surface area of HSS samples range from 26.4 to 136.4 

m2/g. The results show that the addition of HA led to an increase in specific surface 

area. However, as the HA content increases there was not a linear increase in specific 

surface area indicating that higher quantities of HA did not affect the specific surface 

area of the material. The values for 5:95 wt% HA:PA12 up to 40:60 wt% HA:PA12 

were within or marginally higher than the values of BioOss®155-158, denoting that these 

samples are predicted to trigger a higher degree of bone formation. It is reasonable to 

expect the samples to have a higher potential in triggering bone formation. The large 

increase in specific surface area, with the addition of HA, was predicted to be due to 

the increase in porosity as seen in section 4.3.2. 

 

4.3.5 Characterisation of crystal structure   

 

X-ray diffraction (XRD) was used to characterise the powders before processing and 

after processing to gain a deeper understanding of the chemical composition of the 

material after processing. It was critical that the crystal structure of the HA does not 

alter during the processing of the materials as it can impact its osteoconductive 

properties. 
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The diffraction patterns of the PA12 and HA powders before processing are shown in 

Figure 4.9. The diffraction patterns agree with the literature which suggests that HA 

should produce strong peaks at around 2θ= 25.90, 31.80, 32.91, 32.95, 34.17 º. The 

orientation of atomic planes in the crystal lattice of HA are represented by the Miller 

indices (hkl) (002), (211), (112), (300) and (202)176, 251-253. PA12 powder has two 

crystalline peaks at 2θ= 20.97 and 22.27 º which is similar to previous studies176, 254, 

255.  

 

Figure 4.9. Powder X-ray diffraction (XRD) patterns of polyamide 12 (PA12) and 

hydroxyapatite. (HA) before 3d printing. The XRD pattern of HA is presented with 

Miller indices (hkl) showing crystal family of planes for each diffraction peak. 
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Figure 4.11. XRD patterns of high speed sintered discs composed of different wt % of 

hydroxyapatite: polyamide 12 (HA:PA12). Where ∆ represents PA12 and ∎ represents 

HA. 

Figure 4.10. XRD patterns of laser sintered discs composed of different wt % of 

hydroxyapatite: polyamide 12 (HA:PA12). Where ∆ represents PA12 and ∎ represents 

HA. 
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The diffraction patterns for the compositions processed by LS and HSS are shown in 

Figure 4.10 and Figure 4.11, respectively. The diffraction pattern of PA12 after LS and 

HSS show a single peak at 2θ = 21.38° rather than two peaks at 2θ= 20.97 and 22.27 

º, as seen by PA12 powder before processing (Figure 4.9), indicating that the LS and 

HSS processes change the crystal structure of PA12. This is a known phenomenon, 

as mentioned in section 2.6.1, when PA12 is heated from room temperature to its 

melting point, the triclinic phase of PA12 is replaced by the pseudo-hexagonal 

crystalline structure. The triclinic phase of PA12 shows two distinct diffractions, as 

seen by Figure 4.9. During melting, the two diffractions merge into a single broad 

peak176. No change is observed to the crystal structure of HA after processing by LS.  

XRD patterns revealed that the crystalline structure of HA remained the same before 

and after LS. As with the melt characteristics results in section 4.1.2, it was expected 

that the LS and HSS processes would not change the crystal structure of the HA as it 

has extensively high melting temperature, indicating that the osteoconductive 

properties of HA are not likely to be affected by the printing processes. 

 

4.3.6 Tensile properties  

 

The orbital floor is non-loadbearing therefore, the reconstruction materials used in 

orbital floor repair are not required to have high mechanical properties nonetheless, 

the material must possess sufficient mechanical resistance to support the orbital 

content, which weigh 42.97 ± 4.05 g33. In addition, during the implantation process, 

the implant may be subject to bending. The tensile properties and the flexural modulus 

of LS and HSS samples were tested. 
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Figure 4.12. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax ) of laser sintered samples composed of 

different wt% hydroxyapatite: polyamide 12 (HA:PA12). Error bars: ±SD, n=5. Statistical 

analysis using one way ANOVA with Tukey’s multiple comparison. Statistical 

significance * p<0.05. 
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Figure 4.12 and Table 4.5 show the mean (a) Young’s modulus (E), (b) ultimate tensile 

strength (σUTS) and (c) elongation at break (εmax) of 5 LS samples tested as per section 

3.5.5. The results show that HA only has a marginal effect on E as the values range 

from 1690 to 2026 MPa. The increase in HA content gave rise to an increase in E, 

while only 20:80 wt% HA:PA12 shows as significant difference compared to PA12 

control (0:100 wt% HA:PA12). The σUTS values range from 46.3 to 41.7 MPa, denoting 

that HA effects the strength of the material. HA has a moderate effect on the εmax, as 

values range 20.3 to 11.4 %. With the increase in HA content there was a decrease in 

εmax, with 10:90 and 20:80 wt% HA:PA12 showing a significant difference compared 

to the PA12 control. The variance in values is moderate denoting relative homogeneity 

in the fabrication process across the prints. 

 

In the literature, typically when HA is added to a polymer the E and the σUTS increases 

while the εmax decreases8, 256, 257. However, Orozco-Diaz et al. reported a decrease in 

E and the σUTS in samples containing HA compared to the polymer control166. The 

results obtained here agree with the research that reported an increase in the E and 

Table 4.5. Tensile properties for laser sintered samples composed of different wt% of 

hydroxyapatite: polyamide 12.  

HA:PA12 (wt%) E (MPa) σUTS (MPa) εmax (%) 

0:100 1690± 133 46.3± 1.4 20.3± 0.2 

5:95 1804± 15 44.4± 0.7 18.2± 0.2 

10:90 1946± 109 44.3± 1.2 16.4± 0.3 

20:80 2026± 167 41.7± 0.9 11.4± 0.4 
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a decrease in εmax with an increase in HA content, denoting a moderate increase in 

brittleness. Section 2.1 reported that cancellous bone has an ultimate strength of 0.1- 

30 MPa and a modulus between 10 to 3000 MPa11. The results obtained here were 

similar to the values as cancellous bone. Section 2.3.2 reported that commercially 

available Medpor® has a modulus of 30.2 MPa258, which is substantially lower than 

the values determined here, indicating that implants made of these compositions are 

likely to be suitable for orbital floor reconstruction. The decrease in σUTS with increased 

HA content revealed that HA decreased the strength of the material. Medpor® have 

been reported to have a σUTS of 1.85-3 MPa258, 259 which is considerably lower than the 

results obtained by the LS samples, signifying that implants fabricated by LS from 

these compositions would have enough strength to support the globe and the orbital 

content. Similar studies have shown a small spread in values, owing at least in part to 

the homogeneity of the printing in the commercial LS system176, 177. As HA is a brittle 

material an increase in E is expected with the increase in HA content. The decrease 

in σUTS  and εmax is predicted to be due to the decrease in ‘binder’ i.e., PA12 particles 

available to fuse together as HA content increases.   
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Figure 4.13. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax ) of high speed sintered samples 

composed of different wt% hydroxyapatite: polyamide 12 (HA:PA12). Error bars: ±SD, 

n=5. Statistical analysis using one way ANOVA with Tukey’s multiple comparison. 

Statistical significance * p<0.05. 
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Figure 4.13 and Table 4.6 show the mean (a) E, (b) σUTS and (c) εmax of HSS samples. 

The results show that HA only has minimal effect on E as the values range from 639 

to 901 MPa. The variance for each composition is narrow representing homogeneity 

in the fabrication process across the prints. As HA content increases, only 30:70 wt% 

HA:PA12 shows a statistically significant increase in E compared to PA12 control 

(0:100 wt% HA:PA12). The σUTS values range from 12.3 to 8.7 MPa, indicating that HA 

has minimal effect on the strength of the material, with no significant difference 

observed in the statistical test. As with the E values, the variance across the prints is 

narrow. HA had a marginal effect on the εmax values, decreasing from 4.0 to 2.6 % as 

the HA content increased. The variance for each composition was relatively narrow as 

with the E and σUTS. As the HA content increases, there is a decrease in εmax values, 

although 30:70 and 40:60 wt% HA:PA12 show a significant difference compared to 

the PA12 control. 

 

HA:PA12 (wt%) E (MPa) σUTS (MPa) εmax (%) 

0:100 639± 168 12.3± 3.3 4.0± 0.2 

5:95 813± 134 15.2± 3.3 3.9± 0.2 

10:90 705± 107 12.5± 2.9 3.7± 0.3 

20:80 822± 147 12.7± 3.7 3.5±0.4 

30:70 901± 285 10.4± 3.6 3.0± 0.3 

40:60 865± 267 8.7± 2.5 2.6± 0.4 

Table 4.6 Tensile properties for high speed sintered samples composed of different 

wt% of hydroxyapatite: polyamide 12 (HA:PA12). 
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The results obtained here agree with the research that HA increases E and decreases 

εmax, indicating a minimal increase in brittleness. The modulus values of HSS samples 

are higher than commercially available Medpor® implants, and were within the values 

of cancellous bone11, indicating that implants fabricated by HSS from these 

compositions have suitable stiffness for orbital floor reconstruction applications. The 

non-linear decrease in σUTS is not significant and the values obtained are higher than 

the σUTS of commercially available Medpor® implants and similar to that of cancellous 

bone denoting that implant fabricated from these compositions have sufficient strength 

of support the globe and the orbital content. HSS is not a commercial system, there 

was a larger spread in values for each composition was expected. Overall, the HSS 

samples have lower E, σUTS and εmax compared to LS samples, which is predicted to 

be due to the considerably higher degree of porosity of HSS samples. It is widely 

known that increasing the porosity decreases the mechanical properties of the 

material260-263, as discussed in section 4.3.2.  
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4.3.7 Flexural properties  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.14. Flexural modulus of (a) laser sintered and (b) high speed sintered samples 

composed of different wt% hydroxyapatite: polyamide 12 (HA:PA12 Error bars: ±SD, n=5. 

Statistical analysis using one way ANOVA with Tukey’s multiple comparison. Statistical 

significance * p<0.05. 
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Table 4.7. Flexural modulus values for laser sintered and high speed sintered samples 

composed of different wt% of hydroxyapatite: polyamide 12 (HA:PA12). 

 

 

 

 

 

 

 

 

 

Figure 4.14 (a) and Table 4.7 show the mean flexural moduli for 5 LS samples. The 

values range from 1874 to 2186 MPa, indicating that HA content a minimal effect on 

the flexural modulus. The variance in values for each composition was moderate 

indicating homogeneity in samples across the printing. As the HA content increases, 

an increase in flexural modulus is seen although there was only a statistical difference 

observed between the PA12 control (0:100 wt% HA:PA12) and 20:80 wt% HA:PA12. 

A study 3-point tested 15 fresh-frozen orbital floors from cadavers found that the 

flexural modulus range between 1260 to 4450 MPa1, 2. This is within the range of 

values determined here, indicating that the LS samples had a similar flexibility to the 

natural orbital floor. Similar studies have shown a similar small spread in values, owing 

at least in part to the homogeneity of the printing in the commercial LS system used. 

A previous study has found that increasing the HA content resulted in a higher flexural 

modulus for parts produced on FDM and IM264. This trend, also observed here, is likely 

HA:PA12 (wt%) Flexural modulus (MPa) 

Laser sintering High speed sintering 

0:100 1878±53 1117±68 

5:95 1887±59 1065±201 

10:90 1975±101 959±234 

20:80 2186±111 1040±254 

30:70 - 1267±242 

40:60 - 1217±172 
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due to a decrease in the degree of particle melt (DPM), as discussed previously in 

section 4.3.2.  

 

Figure 4.14 (b) and Table 4.7  shows the mean flexural moduli for HSS samples. The 

values range from 959 to 1267 MPa, like the flexural moduli for LS samples, this 

indicated that HA had a minimal effect on the flexural modulus. The variance in values 

for each composition was not as narrow as that of LS samples demonstrating that 

HSS samples were slightly less homogenous across the printing. As the HA content 

increases, there was not a linear increase in flexural modulus and no significant 

difference was observed in the statistical test. The flexural modulus values for HSS 

samples were marginally lower than that of the natural orbital floor indicating that these 

samples have increased flexibility while still remaining firm enough to support the 

globe and the orbital soft tissue contents. As mentioned in 4.3.6, a higher variance in 

values was expected for the HSS samples as this process is a prototype and is still 

under development. The increase in HA content also did not have the same effect as 

with LS samples and the trend observed in the literature.  

 

4.4 Effect of steam sterilisation on the mechanical properties of polyamide 12 

 

In this study the samples have to be sterilised before their use in cell culture and 

antimicrobial investigations to reduce contamination. Steam autoclave a preferred 

method to sterilise medical and surgical instruments216, 217. It kills microbes using heat 

in the form of saturated steam under intense pressure. Therefore, the next objective 

was to identify the effect of sterilisation on the mechanical properties of the base 

polymer in order to ensure that it does not negatively impact the material. The results 
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obtained are summarised here. More information can be found in the published 

paper218 from this work.  

 

Figure 4.15 and Table 4.8 show the mean (a) E, (b) σUTS and (c) εmax for all 

combinations of conditioning and drying.  E values ranges from 1066 to 1792 MPa, 

σUTS ranges from 42.72 to 50.24 and εmax ranges from 24.86 to 46.48 %. The results 

show that steam sterilisation decreases E and σUTS but increases εmax. 
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Figure 4.15. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile strength 

(σUTS) and elongation at break (εmax ) of laser sintered polyamide 12 (PA12) samples for 

all combinations of conditioning and drying. Error bars: ±SD, n=5. Statistical analysis 

using one way ANOVA with Tukey’s multiple comparison. Statistical significance * 

p<0.05. 
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Table 4.8. The values for the measured tensile properties of all combinations of 

conditioning and drying.  

Sample description E (MPa) σUTS (MPa) εmax (%) 

 

As built 

A - No drying  1744 48.9 24.9 

D - Air-dried 1792 49.4 30.0 

G - Oven-dried 1746 50.2 26.6 

 

Heat only 

C - No drying  1630 49.3 25.6 

F - Air-dried 1870 49.4 33.8 

J - Oven-dried 1746 50.2 25.5 

 

Heat and 

steam 

B - No drying  1066 42.7 46.5 

E - Air-dried 1408 44.8 36.4 

H - Oven-dried 1638 48.9 24.5 

 

 

To investigate how moisture effects the tensile properties of the PA12, the water 

content is measured during testing and then the correlation between water content 

and mechanical properties is calculated. Table 4.9 shows the values for the 

measured water content at the time of tensile testing (wtest). The effect of water 

content on the mechanical properties can be seen by Figure 4.16. The linear fit 

with R2 shows a moderate correlation between the water content and the Young’s 

modulus (R2= 0.86) as well as the elongation at break (R2= 0.87). There was a 

strong correlation between the water content and ultimate tensile strength (R2= 

0.97) indicating that the changes in mechanical properties are caused by the water 

content rather than the temperature. 
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Table 4.9. Measured water content during testing. 

Sample description 

  

Water content (%) 

Pre-test Post-test Average 

 

As built 

A - No drying  0.13 -0.02 0.05 

D - Air-dried 0.14 0.07 0.11 

G - Oven-dried 0 - 0 

 

Heat only 

C - No drying  0.13 -0.03 0.05 

F - Air-dried 0.07 0.06 0.07 

J - Oven-dried 0 - 0 

 

Heat and 

steam 

B - No drying  1.01 0.68 0.84 

E - Air-dried 0.60 0.48 0.54 

H - Oven-dried 0 - 0 
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Figure 4.16. Effect of water content on (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and (c) Elongation at break (εmax). The measurement of the goodness 

of fit is shown by the linear fit with the calculated R2. There was a strong correlation 

between the water content and σUTS and a moderate correlation between water 

content and E as well as εmax.  
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The ‘Heat and Steam- Oven-dried’ show that the changes in mechanical properties 

are reversable and that steam autoclave can be employed to disinfect the samples in 

this study without causing permanent changes to the mechanical properties. However, 

it is important to note that when the implant is inserted in vivo it is likely to be absorbing 

moisture. Therefore, the mechanical properties are likely to change upon implantation. 

These changes call for further investigation by mechanically testing samples that have 

been submerged long term in physiological conditions. 

 

4.5 Effect on the Biocompatibility  

 

The last objective of this Series was to determine the effect of HA on the 

biocompatibility of the parts produced. Prior to these tests a variety of cell seeding 

densities, commonly used in biocompatibility assessments, were cultured on tissue 

culture plastic (TCPS) in order to evaluate the optimal seeding density to use in the 

cell culture investigations.  
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4.5.1 Cell seeding density 

Figure 4.17. Light microscopy of MG 63 cells cultured on tissue culture plastic (TCPS) 

at different cell densities for 7 days. By day 4, the wells with 30,000 cells or more had 

reached 100% confluency. The images were acquired at 100x magnification. The 

images here are a representative of 3 images acquired per sample. Scalebar= 400 µm 

and is the same for all images. 
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The number of cells used in the cell culture experiments was chosen based on the cell 

seeding investigation (see section 3.7.1 for full method). In brief, 10,000, 20,000, 

30,000, 40,000 and 50,000 MG 63 cells were seeded in 0.5 ml Minimum Essential 

Medium Eagle (MEME) media into each of n=3 wells in a 24 well plate and grown on 

TCPS for 7 days. Figure 4.17 shows light microscopy images were taken on days 1, 

4 and 7.  The wells with 30,000 to 50,000 cells reached almost 100% confluency by 

day 4. By day 7, the wells with 20,000, 40,000 and 50,000 cells had clumped together 

and peeled off the edges, which is unfavourable as this is likely to affect the cell viability 

reading and thus cannot be used as a control or to normalise the data. The wells with 

10,000 and 30,000 cells did not show peeling from the edges and appeared to have 

reached 100% confluency on day 7. Cell detachment and clumping can be caused by 

various factors such as over-confluency of cells, cell media changes, scraping the cells 

with the pipette tip during media changes and shaking the well plates during handling. 

As PA12 is used as a control in this project it is important to have a commonly used 

control such as TCPS to assess the overall cell viability trend. Kamarajan et al.187 used 

10,000 cells in their in vitro investigation to evaluate the biocompatibility of LS 

HA:PA12 composites where no cell clumping or peeling were reported. Therefore, 

10,000 cells per well was selected as the cell density. However, after an initial cell 

viability trial, 10,000 cells per well was too low to obtain a reading for the DNA 

quantification test. Therefore, 20,000 cells per well was selected as the cell seeding 

density for this project. 
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4.5.2 Cell viability and DNA quantification    

 

The In vitro experiments for determining the biocompatibility of LS and HSS samples 

composed of PA12 and PA12 with different wt% of HA were conducted by measuring 

the cell viability (metabolic activity) of MG 63 cells using PrestoBlueTM assay and 

quantifying the DNA content using PicoGreen® dsDNA Assay Kit on day 7. The in 

vitro investigations are limited as they do not give a full idea of how the material will 

perform in vivo, however they are a good starting point to test for the material 

biocompatibility. It is well known in research that ceramics offer a superior osteoblastic 

adherence and proliferation265-267 therefore a higher percentage of HA present in the 

samples is likely to be more advantageous when it comes to bone regeneration.  

 

The mean cell viability of MG 63 cells seeded on LS samples is shown in Figure 4.18. 

The results show an increase in fluorescence over time across all the compositions, 

detonating that there is an increase in cell viability over time. The variance in 

fluorescence for each composition is relatively narrow indicating a homogeneity in the 

surfaces of the samples. There was no statistical difference in the cell viability of the 

LS PA12 control (0:100 wt% HA:PA12), the rest of the HA:PA12 compositions and 

TCPS on any of the days, indicating that the addition of HA has a marginal effect the 

biocompatibility of LS samples. On day 7, there was a reduction in cell viability of 

TCPS as the MG 63 cells peeled off the edges despite using a low cell seeding density. 

The results show that the laser sintered samples can support cell viability equivalent 

to TCPS. Studies using similar quantities of HA in 3D printed scaffolds have also 

reported no statistical significance in the cell viability with the increase in HA content, 

incubated for up to 7 days166, 268. The relatively small variance in cell viability for each 
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composition was likely to be due to the homogeneous surface topography and additive 

distribution as discussed in section 4.3.2. 

 

The amount of DNA recovered from cells, using PicoGreen® dsDNA Assay Kit, after 

7 days of culture on LS samples and TCPS is shown in Figure 4.19. The results show 

no statistical difference in the quantity of DNA in culture between the PA12 control, 

the HA:PA12 compositions and TCPS. The variance was also narrow for the values 

presented here. The results not showed no statistical significance in cell viability 

(Figure 4.18) between the PA12 control and the samples that contained HA. However, 

Figure 4.18. Cell viability (MG 63: PrestoBlue™) of laser sintered samples composed 

of hydroxyapatite: polyamide 12 (HA: PA12) at different weight percentages (wt %). 

0:100 HA: PA12 was used as control. Tissue culture plastic (TCPS) was used for 

comparison. N=1, n=3. Error bars: ±SD. Statistical analysis using one-way ANOVA. 

Statistical significance * p<0.05. 
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on day 7, there was a marginal non-significant increase for 20:80 wt% HA:PA12. The 

DNA content results revealed that there was likely the same quantity of DNA per 

volume, but the cells were more viable on samples containing 20:80 wt% HA:PA12.  

 

 

The mean cell viability of MG 63 cells seeded on HSS samples is shown in Figure 

4.20. There was an increase in fluorescence for each composition over time, indicating 

an increase in cell viability over time. The variance in values for each composition is 

moderately small indicating homogeneity sample topography across the prints. As HA 

Figure 4.19. DNA content as indication of cell number on laser sintered samples 

composed of hydroxyapatite: polyamide 12 (HA:PA12) at different weight 

percentages (wt%) after 7 days of culture. 0:100 HA: PA12 was used as control. 

Tissue culture plastic (TCPS) was used for comparison. N=1, n=3. Error bars: ±SD. 

Statistical analysis using one way ANOVA. Statistical significance * p<0.05. 
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content increases there is an increase in cell viability, although there is only a statistical 

increase in cells grown on 40:60 wt% HA:PA12 as well as TCPS on day 1, TCPS on 

day 4 and 40:60 wt% HA:PA12 as well as TCPS on day 7, compared to the PA12 

control. The results obtained here show that all the HSS samples generally have lower 

cell viability than TCPS, with 40:60 wt% HA:PA12 showing the closest cell viability 

values to TCPS. The cell viability was moderately higher for LS samples than HSS 

samples, denoting that MG 63 cells prefer to attach and proliferate on LS samples 

nonetheless all the HSS samples were biocompatible. The variance in HSS samples 

were similar to that of LS samples, indicating homogeneity of additive distribution and 

surface topography. Unlike the LS sample and previous studies166, 268, 40:60 wt% 

HA:PA12 shows a higher fluorescence, demonstrating that implants made from this 

composition are likely to have increased the cell viability. This trend was expected 

because as discussed in section 2.4.2, HA has osteoconductive properties which 

increase the cell viability of the material. 
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The amount of DNA in 7 days of culture on HSS samples and TCPS is shown in Figure 

4.21. The number of DNA in culture were similar between each HA:PA12 composition, 

signifying that HA did not affect the cell attachment. The variance was relatively small 

indicating homogeneity in HA distribution and surface topography. The number of cells 

grown on TCPS was significantly higher than the HA:PA12 samples, indicating that 

cells prefer to attach to TCPS than the HSS samples. Overall, the number of cells 

grown on HSS samples is marginally lower than LS samples, demonstrating that cells 

attachment is better on LS samples. Due to the increase in porosity (as discussed in 

Figure 4.20. Cell viability (MG 63: PrestoBlue™) of high speed sintered (HSS) samples 

composed of hydroxyapatite: polyamide 12 (HA: PA12) at different weight percentages 

(wt %). 0:100 HA: PA12 was used as control. Tissue culture plastic (TCPS) was used 

for comparison.  N=1, n=3. Error bars: ±SD. Statistical analysis using one way ANOVA. 

Statistical significance * p<0.05. 
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section 4.3.2) and specific surface area (as discussed in section 4.3.4) of HSS 

samples, an increase in in cells attachment was expected. This discrepancy on the 

expected outcomes with regards to number of cells grown on the HSS samples could 

be due to the RAM ink, interfering with the cell attachment mechanisms. This could 

happen in two ways. If the ink itself interacts with HA and covers it, then the cells have 

a reduced number of attachment sites, and functionally less attachment area despite 

roughness. Alternatively, the ink itself could be inhibiting cell attachment or growth in 

some other way. Both of these would require further investigation. The variance in 

number of cells grown on HSS samples was relatively small, like the LS results. The 

cell viability results however showed that on day 7, the cell viability of 40:60 wt% 

HA:PA12 was similar to that of TCPS. This is an indication that even though fewer 

cells grew on 40:60 wt% HA:PA12 discs, the cells were more viable on this 

composition, compared to the cells that grew on TCPS. 
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4.6 Summary and composite selection 

 

HA had the desired morphology for processing on LS and HSS. The addition of HA 

did not seem to affect the melt characteristics of the polymer however, according to 

the literature a higher concentration of HA is predicted to affect the printability as well 

as the physical and mechanical properties. For LS the highest concentration of HA 

that could be processed was 20:80 wt% HA:PA12 and 40:60 wt% HA:PA12 for HSS. 

Overall, all the parts that could be printed, even the PA12 control, showed a slight 

Figure 4.21. DNA content as indication of cell number high speed sintered (HSS) 

samples composed of hydroxyapatite: polyamide 12 (HA:PA12) at different weight 

percentages (wt%) after 7 days. 0:100 HA: PA12 was used as control. Tissue culture 

plastic (TCPS) was used for comparison. N=1, n=3. Error bars: ±SD. Statistical 

analysis using one way ANOVA. Statistical significance * p<0.05. 
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variation in dimensions compared to the CAD model. Thus, when designing real-life 

parts, any significant changes should be compensated for in the design.  

 

The analysis of the physical properties such as the additive distribution on the surface 

and the volume of both LS and HSS samples showed a relatively even distribution of 

HA. Therefore, any effect that HA may have is likely to evenly distributed. LS and HSS 

samples appeared to increase in porosity with the addition of HA however, porosity 

was higher in HSS samples. An increase in porosity is likely to negatively impact the 

mechanical properties but overall improve BIC as it increases the surface area of the 

samples. The surface area results showed that the HSS 5-40 wt% HA:PA12 samples 

and LS 20:80 wt% HA:PA12 had specific surface area similar or larger than 

BioOss®155-158, a commercial bovine bone substitute with high osteoconductive 

properties. Therefore, it is reasonable to expect the HSS samples and 20:80 wt% 

HAPA12, to have a higher potential in triggering bone formation. Due to the unchanged 

crystal structure of HA before and after processing, the samples are predicted to have 

osteoconductive properties. When the mechanical properties were investigated, as 

expected, the LS samples had superior mechanical properties to the HSS samples. 

The addition of HA had more of a significant effect on the LS samples than the HSS 

samples however, all the samples processed showed higher tensile test values than 

commercially available Medpor® implants and similar values to cancellous bone11. 

Therefore, all the processed samples had potentially sufficient tensile properties to 

potentially be used as orbital floor reconstruction material. In addition, the flexural 

moduli of the LS samples were all similar to that or the orbital floor bone. The HSS 

samples however, showed slightly lower values.  
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The effects of steam autoclave on the mechanical properties were measured for the 

PA12 control. The results revealed that steam autoclave did not cause any permanent 

changes to the mechanical properties. The sterilised samples were then in used in In 

vitro cell viability investigations. These investigations showed that all the samples were 

biocompatible. However, cells grown on LS samples had higher cell viability than those 

grown on HSS samples. This was predicted to be due to the ink in HSS reducing the 

number of attachment sites, and functionally less attachment area despite roughness. 

In addition, the ink may be inhibiting cell attachment or growth in some other way. For 

the LS samples, the cells on the 20:80 wt% HA:PA12 were marginally more viable 

than the other samples. For HSS, 40:60 wt% HA:PA12 there was a significant increase 

cell viability compared to the PA12 control. Therefore, for LS, 20:80 wt% HA:PA12 and 

for HSS 40:60 wt% HA:PA12 were selected as the compositions to continue with the 

investigations.



Chapter 5 

 135 

5 Results and discussion: antimicrobial: polymer compositions 
 

This Chapter was focused on investigating the effect of zinc (Zn) when added to 

polyamide 12 (PA12) and processed on laser sintering (LS) and high speed sintering 

(HSS). The results obtained are discussed in this chapter. The objectives were: 

 

• To investigate the processability of Zn in order to assess its suitability for 

processing on LS and HSS.  

• To determine the effect of Zn on the physical and mechanical properties for all 

the compositions that could be processed.  

• To evaluate the antibacterial activity of the parts produced.  

 

5.1 Processability of zinc: polyamide 12 composites 

 

As with Chapter 4 the first objective was to assess particle sphericity and size. Then, 

the melt characteristics of the composites were investigated as these properties have 

an effect on the processability of the material. 
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5.1.1 Powder morphology  

 

 

A scanning electron microscopy (SEM) micrograph of Zn powder is presented in 

Figure 5.1. The Zn particles appeared to have a near spherical shape. It can be seen 

the Zn particles are just about within the acceptable range for processing on LS and 

HSS. Based on this, the powder morphology of Zn was not likely to prevent effective 

processing.  

 

 

 

 

 

 

 

 

Figure 5.1. Secondary electron (SE)- Scanning electron microscopy 

(SEM)micrographs of zinc (Zn) powder taken at x1000 magnification. 
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5.1.2 Thermal analysis  

 

 

 

 Table 5.1. Melting and crystallisation onset temperatures of 2:98 wt% zinc: polyamide 

12 (Zn:PA12) powder with pure PA12 for comparison. 

 

 

 

 

Zn:PA12 

(wt%) 

Melting 

temperature 

onset (°C) 

Melting 

temperature 

(°C) 

Crystallisation 

temperature 

onset (°C) 

Crystallisation 

temperature 

(°C) 

Processing 

window 

(°C) 

0:100 181 192 158 150 23 

2:98 179 191 157 150 22 

Figure 5.2. Differential scanning calorimeter (DSC) curves of 2:98 wt% zinc: 

polyamide 12 (Zn:PA12) powder. 
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The differential scanning calorimeter (DSC) curve and the melt characteristics for 2:98 

wt% Zn:PA12 are shown by Figure 5.2 and Table 5.1, respectively. The value for 

Tmonset is 179 ºC, Tm is 191 ºC, Tconset 157 ºC and Tc 150 ºC. It can be seen that 2:98 

wt% Zn:PA12 has a relatively wide processing window of 22 ºC, 1 ºC lower than the 

processing window of the PA12 control. As with the HA:PA12 compositions in chapter 

4, the default processing parameters could potentially be used to process 2:98 wt% 

Zn:PA12. 

 

5.2 Printability 

 

The processability of Zn:PA12 samples is novel on both LS and HSS. Test samples 

were printed on LS and HSS using 0:100 and 2:98 wt% Zn:PA12. The default 

processing parameters were used for both processes. The HSS parameters changed 

due to further development on the machine done by the Advanced Polymer Sintering 

team .at the University of Sheffield. The bed temperature was changed from 150 °C 

to 160 °C. The overhead initial power was kept at 53 % (based on an array of 6 x 300 

W ceramic infrared emitters). The sinter speed was decreased from 120 mm/s to 80 

mm/s. The recoater speed (move speed) was kept at 70 mm/s. Overall, the new 

processing parameters delivered higher energy than the old processing parameters 

(discussed in section 3.4.2). This was predicted to improve the mechanical properties 

of the samples.  

 

In Chapter 4, the concentrations of HA did not affect the processing window of the 

material, however, the addition of HA did affect the printability, physical and 
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mechanical properties of the samples. Therefore, the addition of Zn was also predicted 

to have an effect on the overall properties of the material. 

 

5.2.1 Laser sintering  

 

 

The tensile test samples (Figure 5.3), 3-point bend bars and discs were successfully 

fabricated on LS using Zn:PA12 compositions, indicating that at this ratio Zn did not 

affect the printability of the samples.  

 

Figure 5.3. Laser sintered tensile test bars made of 0:100 and 2:98 wt% zinc: 

polyamide 12 (Zn:PA12). Scale bar= 20p coin. 
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5.2.2 High speed sintering 

 
 

All the tensile test bars (Figure 5.4), 3-point bend bars and discs were produced using 

2:98 wt% Zn:PA12 composition on HSS. The new processing parameters resulted in 

a harder powder cake than the old processing parameters, mentioned in section 3.4.2. 

However, it was still possible to separate individual parts and removal the surrounding 

powder completely through bead blasting.  

 

5.3 Effect of Zn on the physical and mechanical properties  

 

The next objective was to assess the effect of Zn on the physical properties of the 

parts produced. The physical properties were investigated in terms of dimensional 

accuracy, surface topography analysis and characterisation of the chemical 

composition. The additive distribution and the surface area analysis could not be 

conducted for the Zn:PA12 samples due to COVID-19 restrictions. The mechanical 

properties were assessed by tensile testing and 3-point bending.  

 

Figure 5.4. High speed sintered tensile test bars made of 0:100 and 2:98 wt% zinc: 

polyamide 12 (Zn:PA12). Scale bar= 20p coin. 
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5.3.1 Dimensional accuracy 

 

Table 5.2. Part dimensions of laser sintered 3-point bend bars composed of 0:100 and 

2:98 wt% zinc: polyamide 12 (Zn:PA12). The expected values were defined in the CAD 

model. The measurements were conducted on 5 samples. 

Zn:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:100 12.89 0.06 1.42 4.25 0.03 6.13 60.03 0.04 0.06 

2:98 12.86 0.05 1.08 4.49 0.05 12.30 60.02 0.07 0.13 

The effect of Zn on the dimensional accuracy of the parts was assessed as per the 

method in section 3.5.1. The results in Table 5.2 show the mean part dimension of LS 

samples. The width ranged from 12.86 to 12.89 mm, the thickness ranged from 4.25 

to 4.49 mm and the length ranged from 60.02 to 60.03 mm. The production was 

relatively homogeneity as shown by the moderate variance between each 

composition. The % difference ranges from 1.08 to 1.42 % for the width, 6.13 to 12.30 

% for the thickness and 0.06 to 0.13 % for the length. Both the control and the 2:98 

wt% Zn:PA12 show a slight variation in the dimensions of the printed samples 

compared to the CAD model. This was also observed in chapter 4.3.1 for LS HA:PA12 

parts. 
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Table 5.3. Part dimensions of high speed sintered 3-point bend bars composed of 

0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12). The expected values were defined 

in the CAD model. The measurements were conducted on 5 samples. 

Zn:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:100 13.07 0.08 0.55 3.98 0.01 0.57 58.70 0.06 2.17 

2:98 12.95 0.14 1.01 3.90 0.05 2.48 58.51 0.05 2.48 

 

 

 

 

Table 5.3 shows the mean part dimensions of HSS samples. The width ranges from 

12.95 to 13.07 mm, the thickness ranges from 3.90 to 3.98 mm and the length ranges 

from 58.51 to 58.70 mm. The PA12 control (0:100 Zn:PA12), printed using the new 

processing parameters shows a reduction in % difference in all dimensions compared 

to the results presented in section 4.3.1, for the HSS samples. Therefore, the new 

processing parameters enhanced the dimensional accuracy of the parts.  

 

Similarly to the dimensions of HSS HA:PA12 samples (section 4.3.1), LS Zn:PA12 

samples presented here (section 5.3.1), a marginal difference in the dimensions of the 

HSS Zn:PA12 samples compared to the CAD model is obtained. Therefore, when 

designing real-life parts, test prints are required to determine shrinkage compensation 

into the original CAD file. 
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5.3.2 Surface topography analysis  

 

 

Figure 5.5. Backscattered electron (BSE)- Scanning electron Scanning electron 

microscopy (SEM) micrographs of laser sintered discs composed of 2:98 wt% zinc: 

polyamide 12 (Zn:PA12) taken at x100 and x1000 magnifications. 

 

Figure 5.5 shows backscattered electron (BSE)-SEM micrographs of LS 2:98 wt% 

Zn:PA12 discs. Like HA, the distribution of Zn on the surface of the sample can affect 

Zn:PA12 

(wt%) 

x100 

(500 µm scalebar) 

x1000 

(50µm scalebar) 

 

 

0:100 

  

 

 

2:98 

  

PA12 

Zn 
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both the physical and mechanical properties. For example, a homogeneous 

distribution of Zn on the surface of the samples can affect the way bacteria interacts 

with the material. The white particles are the Zn particles, and the grey particles are 

PA12. The low magnification image show that the Zn was reasonably well distributed 

on the surface of the discs. Like the HA:PA12 compositions, the surface of the 

Zn:PA12 discs appeared rough due to particle coring which could potentially increase 

bone implant contact (BIC) and hence implant stability.  

 

Zn:PA12 

(wt%) 

Low magnification 

(500 µm scalebar) 

High magnification 

(50µm scalebar) 

 

 

0:100 

  

 

 

2:98 

  

  

Figure 5.6. Backscattered electron (BSE)- Scanning electron Scanning electron 

microscopy (SEM) micrographs of high speed sintered discs composed 2:98 wt% zinc: 

Zn 

PA12 
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polyamide 12 (Zn:PA12) and 0:100 wt% Zn:PA12 used as comparison. The 

micrographs were taken at x100 and x1000 magnifications. 

The SEM micrographs of HSS samples composed of Zn:PA12 are presented in Figure 

5.6. The Zn is relatively well distributed on the surface of HSS samples. As expected, 

the new processing parameters delivered more energy to the particles which lead to 

a higher degree of particle melt (DPM) compared to the samples processed using the 

old HSS processing parameters (shown by  

 

Figure 4.6). As mentioned in section 2.7.1, a higher DPM is predicted to improve the 

overall mechanical properties of the parts due to the increase in sample densities. The 

SEM micrographs for 2:98 wt% Zn:PA12 show that the addition of Zn increased the 

degree of particle coring and increased the porosity compared to the PA12 control 

which is likely to be advantageous in bone reconstruction application but can have a 

negative effect on the mechanical properties. The HSS sample appear more porous 

than the LS sample therefore despite the change in processing parameters the LS 

samples are predicted to still have superior mechanical properties. Nonetheless as 

mentioned in section 2.1, porosity is important as it permits bone ingrowth and 

vascularisation. The pores size of the HSS 2:98 wt% Zn:PA12 are within the optimal 

range (between 100- 350 µm235, 240-243) as with the HA:PA12 HSS samples seen in 

section 4.3.2.  

 

5.3.3 Characterisation of crystal structure  

 

Due to the high melting temperature of Zn (419 °C269) it was expected that the crystal 

structure would not be affected by the processing parameters. Any changes to the 
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crystal structure can affect the antimicrobial properties of the material. Therefore, the 

crystal structure of Zn powder before processing and the crystal structure of the 

processed LS and HSS samples were assessed by X-ray diffraction (XRD). 

 

 

The diffraction pattern for Zn powder is represented in Figure 5.7. Zinc showed 

diffraction peaks at 2θ = 35.57, 38.30, 42.52, 53.71, 70.07 and 70.11 ° represented 

(hkl) (002), (100), (101), (102), (103), (110) and (004)270.  

 

 

 

Figure 5.7. Powder X-ray diffraction (XRD) patterns of zinc (Zn) before 3d printing. 

The XRD pattern of Zn is presented with Miller indices (hkl) showing crystal family of 

planes for each diffraction peak. 
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Figure 5.9. X-ray diffraction (XRD) patterns of high speed sintered discs composed of 2:98 

wt% zinc: polyamide 12 (Zn:PA12). Where ∆ represents PA12 and ∘ represents Zn. 

 

Figure 5.8. X-ray diffraction (XRD) patterns of laser sintered discs composed of 2:98 

wt% zinc: polyamide 12 (Zn:PA12). Where ∆ represents PA12 and ∘ represents Zn. 

 



Chapter 5 

 148 

The diffraction patterns for the 2:98 wt% Zn:PA12 samples manufactured by LS is 

shown by Figure 5.8 and HSS is shown by Figure 5.9. The peak at 2θ = 21.38 ° is for 

PA12 and the Zn peaks are shown at 2θ = 30- 80 °. Both graphs confirm the presence 

of Zn. Similar to the crystal structure of HA:PA12 compositions in section 4.3.5, the 

processing procedures did not appear to change the crystal structure of Zn therefore, 

both LS and HSS 2:98 wt% Zn:PA12 samples are predicted to possess antimicrobial 

properties.   
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5.3.4 Tensile properties 

 
Figure 5.10. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax ) of laser sintered samples composed of 

0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12). Error bars: ±SD, n=5. Statistical 

analysis using an unpaired T-test. Statistical significance * p<0.05. 
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Table 5.4. Tensile properties for laser sintered samples composed of 0:100 and 2:98 

wt% zinc: polyamide 12 (Zn:PA12). 

 

 

 

 

Figure 5.10 and Table 5.4 show the mean (a) Young’s modulus (E), (b) ultimate tensile 

strength (σUTS) and (c) elongation at break (εmax) of LS 2:98 wt% Zn:PA12 samples 

tested as per section 3.5.5. The E ranges from 877 to 940 MPa showing that the 

addition of Zn had a minimal effect on the stiffness of the material. The σUTS ranges 

from 34.2 to 43.4 MPa, showing that Zn significantly decreases the tensile strength of 

the material. The addition of Zn to PA12 led to a significant decrease in the εmax of the 

material from 14.1 to 11.2 %. All the E, σUTS and εmax have marginally narrow variance 

representing homogeneity in the fabrication process. The E, σUTS and εmax values 

presented here, show that the PA12 control (0:100 wt% Zn:PA12) has overall lower 

values than the LS PA12 control (0:100 wt% HA:PA12) in section 4.3.6. The results 

presented in section 4.3.6 were obtained one month after printing. However, due to 

the COVID-restrictions, the results here (section 5.3.4) were obtained, seven months 

after printing. The decrease in overall tensile properties were predicted to be due to 

the effect of long-term ageing on the tensile properties of PA12 samples. Goodridge 

et al.271 investigated the long-term effect of ageing on the mechanical properties of LS 

PA12. The results obtained by Goodridge et al. did not agree with the results obtained 

in this study as the results for the samples stored in dry conditions over a 52-week 

Zn:PA12 (wt%) E (MPa) σUTS (MPa) εmax (%) 

0:100 940±94 43.4±0.3 14.1±2.0 

2:98 877±124 34.5±0.4 11.2±0.6 
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period showed an increase in the E, σUTS and εmax. Further testing is required in order 

to determine the reason for the decrease in overall tensile properties.  

 

The results presented in Table 5.5 show that even at a small amount Zn has a bigger 

effect on the σUTS and εmax compared to the HA:PA12 compositions presented in Table 

4.6. This significant decrease in the σUTS and εmax could potentially be due to the wider 

particle size distribution of Zn:PA12 compositions compared to the HA:PA12 

compositions. Hui et al.176 have reported that a large particle size distribution can lead 

to negative effect on the part density, flowability, surface finish, part accuracy and 

hence mechanical properties. Nonetheless, despite the reduction in mechanical 

properties of 2:98 wt% Zn:PA12 the parts possess superior mechanical properties to 

commercially available Medpor® implants and similar E and σUTS to cancellous bone11, 

as reported in section 2.1, therefore LS 2:98 wt% Zn:PA12 are predicted to be strong 

enough for orbital floor reconstruction application.  
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Figure 5.11. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax) of laser sintered samples composed of 

0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12). Error bars: ±SD, n=5. Statistical 

analysis using an unpaired T-test. Statistical significance * p<0.05. 
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Table 5.5. Tensile properties for high speed sintered samples composed of 0:100 and 

2:98 wt% zinc: polyamide 12 (Zn:PA12) 

 

 

 

 

Figure 5.11 and Table 5.5 show the tensile properties, (a) E, (b) σUTS and (c) εmax, of 

HSS 0:100 and 2:98 wt% Zn:PA12 samples. The E values ranged from 939 to 1042 

MPa, representing that the addition of Zn lead to a significant decrease in the stiffness 

of the HSS samples. The σUTS ranged from 23.1 to 28.0 MPa, showing that there is a 

significant decrease in the tensile strength of the material with the addition of Zn. Zn 

has a slight effect on the εmax which ranged from 6.3 to 7.1 %. The variance is 

moderate for all the values, showing relative homogeneity in the printing process. As 

predicted the change in sintering parameters significantly increased the tensile 

properties in comparison to the mechanical properties of the parts fabricated on HSS 

using the old processing parameters. In section 4.3.6, the PA12 control had a E of 

639.40 MPa, 12.34 MPa σUTS and 3.98 % εmax. The new processing parameters 

increased the E by 402.6 MPa, the σUTS by 15.64 MPa and the εmax by 3.12. Both the 

LS and HSS showed a decrease in the E, the σUTS and εmax compared to the PA12 

controls. However, HSS 2:98 wt% Zn:PA12 samples have tensile properties higher 

than that of Medpor® implants and comparable tensile properties of cancellous 

bone11. Thus, both LS and HSS 2:98 wt% Zn:PA12 have potentially sufficient 

mechanical strength to support the eye globe and the orbital content.  

Zn:PA12 (wt%) E (MPa) σUTS (MPa) εmax (%) 

0:100 1042±76 28.0±3.1 7.1±0.9 

2:98 939.0±60 23.1±3.0 6.3±0.7 



Chapter 5 

 154 

5.3.5 Flexural properties  

Figure 5.12. Flexural modulus of (a) laser sintered and (b) high speed sintered 

samples composed of 0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12). Error bars: 

±SD, n=5. Statistical analysis using unpaired T-test. Statistical significance * p<0.05. 

 
 
Table 5.6. Flexural modulus values for laser sintered and high speed sintered samples 

composed of 0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12). 

 

 

 

 

 

 

 

Zn:PA12 (wt%) Flexural modulus (MPa) 

Laser sintering High speed sintering 

0:100 1525±51 1324±160 

2:98 1263±120 1048±175 
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Figure 5.12 (a) and Table 5.6 shows the mean flexural modulus of LS 0:100 and 2:98 

wt% ZnO:PA12 samples. The values range from 1263 to 1525 MPa denoting that Zn 

marginally reduced the flexural modulus of the material. The variance was relatively 

narrow demonstrating that the LS process produced relatively homogeneous parts. 

The flexural modulus values for the LS PA12 control (0:100 wt% Zn:PA12) here is 353 

MPa lower than the PA12 control in section 4.3.7. Therefore, the effect of polymer 

aging on the mechanical properties need to be further investigated. Despite the 

decrease in overall flexural modulus the 2:98 wt% Zn:PA12 samples were similar in 

flexibility to the natural orbital floor bone1, 2 indicating that this composition is likely to 

be firm enough to support the eye globe and the orbital content. The small spread in 

values were also observed in previous literature and the results reported in section 

4.3.7. In Chapter 4, HA increased the stiffness of the material however, here it can be 

seen that Zn decreased the stiffness of the material.  

 

 
Figure 5.12 (b) and Table 5.6 shows the mean flexural modulus of HSS samples. The 

values range from 1048 to 1324 MPa. The variance in values was slightly larger than 

the LS samples demonstrating that the HSS prints were marginally less homogeneous 

than the LS prints. The flexural modulus for the PA12 control (0:100 wt% Zn:PA12) in 

section 4.3.7 is lower than the flexural modulus of the HSS PA12 control here, showing 

that the new processing parameters lead to an increase in the flexural modulus of the 

material. As with the LS samples, the addition of Zn lead to a significant decrease in 

flexural modulus however, the samples were still within the same flexibility as the 

natural orbital floor bone1, 2.  
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5.4 Evaluation of antibacterial properties of Zn:PA12 parts 

 

The last objective for this Series was to evaluate the antibacterial activity of the parts 

produced against Staphylococcus aureus (S. aureus.). The results are based on the 

methodology introduced in section 3.8. 

 

 

Figure 5.13 shows a statistically significant 2-log (99 %) reduction in colony forming 

units (CFU) of S. aureus (S235) attached to the discs after 34h incubation compared 

to the PA12 control (0:100 wt% Zn:PA12). Typically, antibiotics (or bactericidal 

materials) are required to illicit a  ≥3 log reduction in number of viable bacteria (≥99.9 

%). However, the aim of the addition of an antibacterial agent in this research is to 

Figure 5.13. Number of viable Staphylococcus aureus (S. aureus) attached to laser 

sintered discs composed of 0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12) after 

24 h incubation. N=1, n=3. Error bars ± SD. Statistical analysis using unpaired T-

test. Statistical significance * p<0.05. 
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prevent the growth of bacteria on the implant. Such materials are known as 

bacteriostatic. Typically, bacteriostatic materials result in a 1 to 2-log reduction (90- 99 

%)272, 273 in the CFU measured. Therefore, LS 2:98 wt% ZnO:PA12 demonstrated 

bacteriostatic effects. Research conducted on Zn/ bioactive glasses have shown that 

depending on the concentration, the release of Zn2+ can take more than 24 hours274. 

Therefore, it would be interesting to investigate longer incubation periods to see 

whether the antibacterial activity of the samples increases over time. 

 

 

The antibacterial activity of HSS 2:98 wt% Zn:PA12 against S. aureus showed a 

statistically significant 1.2-log reduction in CFU compared to the PA12 control. Like- 

the LS samples, the HSS samples showed a bacteriostatic effect although not as great 

Figure 5.14. Number of viable Staphylococcus aureus (S. aureus) attached to high 

speed sintered discs composed of 0:100 and 2:98 wt% zinc: polyamide 12 (Zn:PA12) 

after 24 h incubation. N=1, n=3. Error bars ± SD. Statistical analysis using unpaired 

T-test. Statistical significance * p<0.05. 
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as the LS samples. It has been reported that an increase in surface roughness does 

not only provide an increase in surface area for cell attachment but also for bacterial 

colonisation275-278. Even though the specific surface area was not measured for the 

samples in Chapters 5 and 6, it can be assumed from the specific surface area 

measurements of the HA:PA12 compositions and the SEM micrographs in section 

5.3.2, that the HSS samples had a higher surface area than the LS samples. The cell 

viability and DNA quantification results in section 4.5.2 showed that even though it was 

expected for the HSS samples to have a higher biocompatibility and DNA content, as 

indication of cell number, than LS sample due to their higher surface area this was not 

the case. The HSS samples were covered in Radiation Absorbing Material (RAM) 

which could be potentially interfering with the antibacterial activity of the Zn. Another 

potential explanation as to why there is a reduction in the antibacterial activity of HSS 

samples compared to LS samples may be that the RAM ink covering the particles 

could be reducing the rate of release of Zn2+ therefore once again investigating longer 

incubation periods may give an indication of the release rate of Zn2+ over time.  

 

The LS 2:98 wt% Zn:PA12 samples showed a larger reduction in S. aureus attachment 

than the HSS samples. However, both LS and HSS samples showed a bacteriostatic 

effect against S. aureus. Therefore, the addition of Zn has been found to decrease the 

attachment of S. aureus bacteria and thus potentially decreasing the chances of 

implant associated infections.  

 

5.5 Summary  
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As predicted from the morphology investigations the Zn did not prevent good 

processability. The dimensional accuracy of the LS and HSS parts showed that all the 

processed samples had marginally different dimensions compared to CAD model. As 

with the HA:PA12 samples, further test trials are required to calculate the shrinkage 

compensation when manufacture of real-life. The characterisation of the crystal 

structure revealed that the Zn crystal structure remains unchanged after processing. 

The surface topography analysis showed the addition of Zn was fairly evenly 

distributed on the surface of both LS and HSS samples which is an indication that the 

antibacterial properties of Zn was likely to be homogeneous on the surface of the 

sample. It also showed that the addition of Zn increased the porosity and surface 

cavities of the samples. The HSS 2:98 wt% Zn:PA12 samples had a porosity within 

the optimal range235, 240-243 to allow for bone ingrowth and vascularisation. However, 

an increase in porosity affected the mechanical properties of the LS and HSS sample. 

Nonetheless,  the results showed both the LS and HSS 2:98 wt% Zn:PA12 had similar 

values to modulus and σUTS to cancellous bone11,  higher modulus and σUTS than 

commercially available Medpor® implants258, 259 and a flexibility comparable to the 

natural orbital floor bone. This indicates that implants manufactured from these 

compositions are likely to have a promising potential in orbital floor reconstruction 

applications. 

 

The antibacterial investigations showed that the LS and HSS 2:98 wt% Zn:PA12 had 

bacteriostatic effects against S. aureus compared to the PA12 control. LS samples 

showed a larger reduction in S. aureus attachment however both LS and HSS samples 

could potentially be useful in preventing implant associated infections.
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6 Results and discussion: antimicrobial: bioactive ceramic: 

polymer compositions  

 

The final Chapter was focused on determining the effect of the combination of 

hydroxyapatite (HA) and zinc (Zn) with the polyamide 12 (PA12). The results obtained 

are discussed in this chapter. The main objectives are:  

 

• To assess the processability of the selected compositions of Zn:HA:PA12 on 

laser sintering (LS) and high speed sintering (HSS). 

• To determine the effect of the combination of HA and Zn on the physical and 

mechanical properties for all the compositions that could be processed.  

• To evaluate the antimicrobial activity of the parts produced.  

• To determine whether the addition of HA has an impact on the biocompatibility 

of the processed parts.  

 

6.1 Processability  

 

Firstly, the thermal characteristics of Zn:HA:PA12 compositions were assessed in 

order to identify whether the addition of both Zn and HA affect the processing window 

and thus the processability of the powders. 
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6.1.1 Thermal analysis   

 

The differential scanning calorimeter (DSC) curve and melt characteristics of the 

Zn:HA:PA12 compositions are shown in Figure 6.1 and Table 6.1, respectively.  

 

 

Table 6.1. Melting and crystallisation onset temperatures of zinc: hydroxyapatite: 

polyamide 12 (Zn:HA:PA12) powder compositions. 

Zn:HA:PA12 

(wt%) 

Melting 

temperature 

onset (°C) 

Melting 

temperature 

(°C) 

Crystallisation 

temperature 

onset (°C) 

Crystallisation 

temperature 

(°C) 

Processing 

window 

(°C) 

0:0:100 181 192 158 150 23 

2:19.6:78.4 180 191 158 150 23 

2:39.2:58.8 180 191 158 151 22 

Figure 6.1. Differential scanning calorimeter (DSC) curves of zinc: 

hydroxyapatite: polyamide 12 (Zn:HA:PA12) powder compositions. 
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Both the curves show a gap between the melting and crystallisation peaks. The value 

for the melting temperature onset (Tmonset) is 180 °C for 2:19.6:78.4 and 2:39.2:58.8 

wt% Zn:HA:PA12, the melting temperature (Tm) is 191 °C for both compositions, the 

crystallisation temperature onset (Tconset) is 158 °C and the crystallisation temperature 

(Tc) range from 150 to 151 °C. The processing window is 23 °C for 2:19.6:78.4 wt% 

Zn:HA:PA12 and 22 °C or 2:39.2:58.8 wt% Zn:HA:PA12, only 1 °C lower than the 

PA12 control, indicating that the combination of Zn and HA has a marginal effect on 

the melt characteristics of the material. These results were similar to the melt 

characterises of HA:PA12 and Zn:PA12, shown in sections 4.1.2 and 5.1.2, 

respectively, denoting that the default processing parameters for PA12 could 

potentially be used in the initial printing trials.   

 

6.2 Printability  

 

Despite the additives having a marginal effect on the melt characteristics, it can still 

be expected that the combination of both the additives can, but is unlikely, to affect 

the printability of the material. Section 6.2 explores the processability of 2:19.6:78.4 

wt% Zn:HA:PA12 by LS and 2:39.2:58.8 wt% Zn:HA:PA12 by HSS. 
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6.2.1  Laser sintering  

 

 

The processability of a polymer with an osteoconductive material and an. Antimicrobial 

agent on LS is a novel technique. The results obtained here show that 2:19.6:78.4 

wt% Zn:HA:PA12 can successfully processed using the default processing 

parameters on LS. The tensile test samples in Figure 6.2 show that the 2:19.6:78.4 

wt% Zn:HA:PA12 were grey/blue in colour due to the addition if the Zn and HA. 

 

 

 

 

 

 

 

 

Figure 6.2. Laser sintered tensile test bars composed of 0:100 and 2:19.6:78.4 wt% 

of zinc: hydroxyapatite: polyamide 12. Scale bar= 20 p coin. 
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6.2.2 High speed sintering 

 

Like LS, the HSS of polymer: osteoconductive material: antimicrobial agent 

composites have not been previously explored in literature. The results obtained in 

this section show that 2:39.2:58.8 wt% Zn:HA:PA12 was successfully processed on 

HSS using the new default processing parameters (discussed in section 5.2). Figure 

6.3 shows the 2:39.2:58.8 wt% Zn:HA:PA12 has a lighter grey colour than the PA12 

control, which is likely to have been caused by the colour of the additives.  

 

6.3 Effect on the physical and mechanical properties 

 

In order to assess the effect of the additives on the physical and mechanical properties 

on the samples, the dimensional accuracy, surface topography, characterisation of 

chemical composition, tensile properties and flexural properties were tested. Due to 

Figure 6.3. High speed sintered tensile test bars composed of 0:100 and 2:39.2:58.8 

wt% of zinc: hydroxyapatite: polyamide 12. Scale bar= 20 p coin. 
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COVID-19 restrictions the additive distribution and the surface area analysis could not 

be investigated. 

 

6.3.1 Dimensional accuracy  

 
The mean dimensions of 3-point bend bars processed by LS from 0:20:80 and 

2:19.6:78.4 wt% Zn:HA:PA12 are shown by Table 6.2 and for HSS from 0:40:80 and 

2:39.2:58.8 wt% Zn:HA:PA12 is shown by Table 6.3. 

 

Zn:HA:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:20:80 12.85 0.09 1.15 4.23 0.04 5.83 60.07 0.05 0.11 

2:19.6:78.4 12.93 0.12 0.56 4.46 0.05 10.58 60.17 0.11 0.28 

 

The width, thickness and length range from 12.85 to 12.95 mm, 4.23 to 4.46 mm and 

60.07 to 60.17 mm, respectively. The variances in values are moderately small 

denoting homogeneity in production through the LS prints. The percent difference for 

the width, thickness and length ranges from 0.66 to 1.15 %, 5.83 to 10.58 % and 0.11 

to 0.28 %, respectively. Therefore, the addition of both additives shows a small effect 

on the accuracy of the parts. A marginal change in dimension was also observed for 

HA:PA12 parts in 4.3.1 and Zn:PA12 parts in section 5.3.1. As mentioned in section 

2.5.2, the accuracy of the parts can be increased by calculating the shrinkage 

compensation from test trials.  

Table 6.2. Part dimensions of laser sintered 3-point bend bars composed of different 

wt% of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). The expected values were 

defined in the CAD model. The measurements were conducted on 5 samples. 
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Table 6.3. Part dimensions of high speed sintered 3-point bend bars composed of 

different wt% of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). The expected 

values were defined in the CAD model. The measurements were conducted on 5 

samples. 

Zn:HA:PA12 

(wt%) 

Width 

(mm) 

SD % 

difference 

Thickness 

(mm) 

SD % 

error 

Length 

(mm) 

SD % 

difference 

CAD 13.00 - - 4.00 - - 60.00 - - 

0:40:60 12.91 0.06 0.88 4.00 0.04 0.63 58.83 0.07 1.95 

2:39.2:58.8 12.98 0.12 0.59 3.97 0.04 0.73 58.96 0.16 1.73 

 

The mean width, thickness and length for HSS 3-point bend bars range from 12.89 to 

12.91 mm, 3.97 to 4.00 mm and 58.83 to 58.96 mm, respectively. The variance in 

values across the builds are small, showing the homogeneity of the printing process. 

The percent difference for the width, thickness and length ranges from 0.59 to 0.88 %, 

0.63 to 0.73 % and 1.73 to 1.95 %, respectively, demonstrating that the addition of 

both the additives have a minor effect on the dimensional accuracy of HSS samples. 

A minor effect on the dimensional accuracy was also observed above in the chapters 

4 for HSS HA:PA12 samples and chapter 5 for HSS Zn:PA12 samples. As mentioned 

above (section 6.3.1), test trails are required when designing real-life parts to 

compensate for the shrinkage in the material.  
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6.3.2 Surface topography analysis  

 

In order to obtain osteoconductive and antibacterial properties it was important that 

the additives were evenly distributed on the surface of the samples. The surface 

distribution of additives was assessed by scanning electron microscopy (SEM).  

 

Zn:HA:PA12 

(wt%) 

Low magnification 

(500 µm scalebar) 

High magnification 

(50µm scalebar) 

0:20:80 

  

2:19.6:78.4 

 

  

 

Figure 6.4. Backscattered electrons (BSE)- Scanning electron microscopy (SEM) 

micrographs of laser sintered discs composed of 2:19.6:78.4 wt% zinc: 

hydroxyapatite: polyamide 12 (Zn:HA:PA12). Taken at x500 and x1000 

magnifications. 
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Figure 6.4 shows SEM micrographs taken at x500 and x1000 magnifications of LS 

0:20:80 and 2:19.6:78.4 wt% Zn:HA:PA12 discs. The HA and the Zn particles are white 

in colour while the PA12 are grey in colour. The additives appear relatively well 

distributed on the surface of LS samples. The additives appeared to increase the 

surface cavities and particle coring which is likely to increase the surface area of the 

samples and hence bone-to-implant contract (BIC). A similar trend was also observed 

in section 4.3.2 and 5.3.2, for HA:PA12 and Zn:PA12, respectively. It is more difficult 

to distinguish between the Zn and HA particles as both particles have a higher atomic 

number than PA12 and thus appear brighter. In order to determine the elemental 

composition of the surface of the samples, SEM-energy dispersive X-ray (EDX) 

microanalysis was used.   
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Figure 6.5. Energy Dispersive X-ray (EDX)- Scanning electron microscopy (SEM) 

analysis of laser sintered 2:19.6:78.4 wt% zinc: hydroxyapatite: polyamide 12 

(Zn:HA:PA12).  

 

Figure 6.5 show EDX-SEM micrographs and spectra of LS 2:19.6:78.4 wt% 

Zn:HA:PA12. Spectrum (A) shows the presence of carbon (C) and oxygen (O) which 

are elements present in PA12. It also fluorine (F) but it is not significant, which could 

be a residue from the PA manufacturing machinery. The gold (Au) peaks are predicted 

to be from the gold coating. Spectrum (B) shows the presence of a Zn indicating that 

this is a Zn particle. The spectrum also shows the presence of C, O, calcium (Ca) 
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which may be residues from the PA12 and HA particles and non-significant F. 

Spectrum (C) shows the presence of Ca and O, indicating that this is a HA particle. 

The C can be a residue from the PA12 particles. 

 

 
Figure 6.6 shows -SEM micrographs of 0:40:60 and 2:39.2:58.8 wt% Zn:HA:PA12.  

 

Zn:HA:PA12 

(wt%) 

Low magnification 

(500 µm scalebar) 

High magnification 

(50µm scalebar) 

0:40:60 

  

2:39.2:58.8 

  

 

Figure 6.6. Backscattered electron (BSE)- Scanning electron Scanning electron 

microscopy (SEM) micrographs of high speed sintered discs composed of different 

wt% zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). Taken at x500 and x1000 

magnifications.  
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The brighter particles show HA and Zn additives while the grey particles are of PA12. 

The additives appear to be relatively well distributed on the surface. The addition of 

the additives appears to increase the porosity of the samples. The porosity is overall 

higher for HSS samples than LS samples, which is likely to increase the surface area 

of the sample but is predicted to decrease the mechanical properties of the material.  

This was also observed for the HSS samples in section 4.3.2 for HA:PA12 and section 

5.3.2 for Zn:PA12. Like LS, it is difficult distinguish between HA and Zn for the HSS 

2:39.2:58.8 wt% Zn:HA:PA12 samples. Therefore, EDX-SEM analysis was conducted 

to determine the surface elemental composition of 2:39.2:58.8 wt% Zn:HA:PA12.   
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Figure 6.7. Energy Dispersive X-ray (EDX)- Scanning electron microscopy (SEM) 

analysis of high speed sintered 2:39.2:58.8 wt% zinc: hydroxyapatite: polyamide 12 

(Zn:HA:PA12). The arrow points towards the area being analysed.  

 
Figure 6.7 shows EDX-SEM micrographs and spectra of HSS 2:39.2:58.8 wt% 

Zn:HA:PA12. Spectrum (A) shows the presence of C and O which are present in PA12, 

indicating that this is a PA12 particle. It also shows the presence of F, however it is 

not significant. This may be a residue from the PA manufacturing machinery. Spectrum 

(B) shows the presence of Zn, indicating that this is a Zn particle. It also shows the 
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presence of C and O which may be residues from the PA12 particles around the Zn 

particle. Spectrum (C) shows the presence of Ca, O and phosphorus (P) which are 

present in HA, signifying that this is a HA particle. In the LS spectrum (Figure 6.6 (C)), 

the HA particle did not show the presence of P. This may be because the LS sample 

has a smaller quantity of HA and the P may have been undetectable. It also shows 

the presence of magnesium (Mg) and F, but they are not significant.   

 

6.3.3 Characterisation of crystal structure 

  

X-ray diffraction (XRD) was used to characterise the crystal structure of LS 2:19.6:78.4 

wt% Zn:HA:PA12 and HSS 2:39.2:58.8 wt% Zn:HA:PA12.  

 

Figure 6.8. Powder X-ray diffraction (XRD) patterns of laser sintered 2:19.6:78.4 wt% 

zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12) and high speed sintered 2:39.2:58.8 

wt% Zn:HA:PA12. Where ∆ represents PA12, ∎ represents HA and ∘ represents Zn. 
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Figure 6.8 confirms the presence of PA12, HA and Zn. It can be seen that the PA12 

at around 2θ = 21° for LS 2:19.6:78.4 wt% Zn:HA:PA12 is larger than the peak PA12 

peak for the HSS sample which correlated to the fact that there was more PA12 

present in the LS samples. The diffraction peaks for HA between 2θ= 25 to 34 º are 

larger for the HSS samples than the LS samples as there is a higher quantity of HA in 

the HSS sample. Like the previous results in section 4.3.5 for HA:PA12 samples and 

section 5.3.3 for Zn:PA12 samples, the crystal structure of the additives is predicted 

to have stayed the same after processing, indicating the osteoconductive properties 

of HA and antimicrobial properties of Zn is likely to be present in both LS and HSS 

samples.  

 

6.3.4 Tensile properties 

 

Figure 6.9 and Table 6.4 show the mean (a) Young’s modulus (E), (b) ultimate tensile 

strength (σUTS) and (c) elongation at break (εmax) of LS 0:0:100, 0:40:60 and 

2:19.6:78.4 wt% Zn:HA:PA12 tested seven months after printing due to COVID-19 

restrictions. 
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Figure 6.9. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax) of laser sintered samples composed of 

different wt% zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). Error bars: ±SD, n=5. 

Statistical analysis using an unpaired T-test. 
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Table 6.4. Tensile properties for laser sintered samples composed of different wt% 

zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). 

 

 

 

 

 

 

 

The values for E show a statistically significant increase from 940.0 to 1164 MPa with 

the addition of the additives, indicating an increase in the material stiffness. The values 

for σUTS show a statistically significant decrease from 43.37 to 30.13 MPa with the 

addition of Zn and HA, signifying that the additives decrease the tensile strength of the 

material. The values for εmax range from 15.22 to 09.57 %, showing a statistically 

significant decrease with the addition of both Zn and HA. The moderate variance in 

values of E, σUTS and εmax signifies a relative homogeneity in the fabrication process. 

Like the tensile properties in section 5.3.4, the E, σUTS and εmax values presented here 

are lower than the values in 4.3.6, including the values for the PA12 control. Once 

again this may be due to the ageing of the polymer. Further work is required to 

investigate the effect of long-term environmental conditions on the mechanical 

properties of the samples. Nonetheless, the modulus and the tensile strength values 

were higher than that of commercially available Medpor® implants258, 259 and were 

similar to cancellous bone11, indicating that these materials are potentially strong 

enough to be used as orbital floor implant materials. As seen in section 4.3.6 the 

addition of HA led to an increase in E and a decrease in σUTS and εmax, a similar trend 

Zn:HA:PA12 

(wt%) 

E (MPa) σUTS (MPa) εmax (%) 

0:0:100 940.0±93.8 43.37±0.3 14.10±2.0 

0:20:80 1120±±64.4 37.79±0.3 15.22±0.9 

2:19.6:78.4 1164±39.1 30.13±0.4 09.57±0.7 
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is seen here, however the decrease εmax for 0:20:80 wt% Zn:HA:PA12 is not 

statistically significant. A similar to the trend was seen in section 5.3.4 with the addition 

of Zn. However, here it can be seen that the addition of both the additives further 

reduces the σUTS and εmax which is hypothesised to be due a wider particle distribution 

with the addition of both the additives. In addition, as per section 5.3.2,  the additives 

resulted in more particle coring which, as mentioned in section 2.7.1, is due to 

incomplete melting of the particles, leading to a reduction in the σUTS and εmax of the 

sample.  
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Figure 6.10. The tensile properties: (a) Young’s modulus (E), (b) Ultimate tensile 

strength (σUTS) and elongation at break (εmax) of high speed sintered samples 

composed of different wt% zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). Error 

bars: ±SD, n=5. Statistical analysis using an unpaired T-test. 
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Table 6.5. Tensile properties for high speed sintered samples composed of different 

wt% zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). 

 

 

 

 

 

 

Figure 6.10 and Table 6.5 show the tensile properties, (a) E, (b) σUTS and (c) εmax, of 

HSS 0:0:100, 0:40:60 and 2:39.2:58.8 wt% Zn:HA:PA12. The values of E range from 

994 to 1107 MPa, indicating minimal effect on the stiffness of the material. The σUTS 

statistically decreased from 28.0 to 08.0 MPa with the addition of both additives. The 

results also show a statistically significant decreased in εmax from 07.1 to 02.7 % with 

the addition of Zn and HA. The moderate variance in values indicate a rather 

homogeneous fabrication process. The E values obtained here are similar to the E 

values of HSS Zn:PA12 seen in section 5.3.4. Like the LS Zn:HA:PA12 samples, the 

addition of both Zn and HA further reduces the σUTS and εmax values. LS and HSS 

samples show marginally similar E values. The σUTS and (c) εmax values are higher for 

LS samples than HSS samples. Nonetheless, both the LS 2:19.6:78.4 and HSS 

2:39.2:58.8 wt% Zn:HA:PA12 had higher mechanical properties to some commercially 

available orbital floor reconstruction materials258, 259 and comparable values to 

cancellous bone11. Therefore, it can be assumed that both the LS 2:19.6:78.4 and 

HSS 2:39.2:58.8 wt% Zn:HA:PA12 have sufficient strength to potentially be used as 

orbital floor reconstruction materials.  

 

Zn:HA:PA12 

(wt%) 

E (MPa) σUTS (MPa) εmax (%) 

0:0:100 1042±76 28.0±3.1 07.1±0.9 

0:40:60 1107±156 11.0±2.6 03.9±0.7 

2:39.2:58.8 994.0±78 08.0±1.9 02.7±0.1 
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6.3.5 Flexural properties  

 

The flexural modulus of LS and HSS samples composed of Zn:HA:PA12 were tested 

on 3-point bending in order to investigate how the addition of Zn and HA affected the 

way the material deflects during bending. 

 

 

 

 

  

 

Figure 6.11. Flexural modulus of (a) laser sintered and (b) high speed sintered samples 

composed of different wt% of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). Error 

bars: ±SD, n=5. Statistical analysis using one way ANOVA with Tukey’s multiple 

comparison. 
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Table 6.6. Flexural modulus values for laser sintered and high speed sintered samples 

composed of different wt% zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12). 

 

 

 

 

 

 

 

 

Figure 6.11(a) and Table 6.6 show the mean flexural modulus of LS Zn:HA:PA12 

compositions. The results show that the addition of Zn and HA resulted in a statistically 

significant increase in flexural modulus from 1525 to 1682 MPa, indicating that the 

addition of both the additives have marginal effect on the flexural modulus of the 

material. There is a moderate variance in values for LS samples, representing relative 

homogeneity of the printing process across the builds.  As mentioned in section 4.3.7, 

the tested flexural modulus of the orbital floor bone ranges from 1260 to 4550 MPa1, 

2. The results for LS 2:19.6:78.4 wt% Zn:HA:PA12 is within that range therefore 

implants made from this material are likely to have similar flexibility to the natural 

orbital floor. The results obtained here show a similar trend to the flexural modulus of 

HA:PA12 samples (sections 4.3.7), and unlike the Zn:PA12 samples (section 5.3.5), 

the addition of both additives led to an increase in the flexural modulus compared to 

the PA12 control.  

 

Zn:HA:PA12 (wt%) Flexural modulus (MPa) 

Laser sintering High speed sintering 

0:0:100 1525±51 1324±160 

0:20:90 1682±42 1564±259 

2:19.6:78.4 1632±87 - 

2:39.2:58.8 - 1211±283 
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Figure 6.11(b) and Table 6.6 show the mean flexural modulus of HSS Zn:HA:PA12 

compositions. The flexural modulus ranges from 1211 to 1564 MPa, showing that the 

addition of both additives have a minimal effect on the flexural modulus of the material. 

The variance in values is moderate, showing slightly reduced homogeneity in the 

printing process across the prints. The flexural modulus values for HSS 2:39.2:58.8 

wt% Zn:HA:PA12 are similar to the natural orbital floor bone therefore, implants 

fabricated from this material are likely to be firm enough to support the orbital content 

and the eye globe. The spread in values obtained here were similar to the spread in 

values for the HSS samples in section 5.3.5. The variance is larger for HSS samples 

than LS samples which is likely to be due to the LS machine being a commercial 

system. The flexural modulus values for HSS Zn:HA:PA12 samples did not show a 

trend with the addition of the additives which was also seen in section 4.3.7 for HSS 

HA:PA12 samples. 

 

6.4 Evaluate the antimicrobial properties of Zn:HA:PA12 

 

The next objective of this Chapter is to evaluate the antimicrobial properties of the LS 

and HSS Zn:HA:PA12 parts against Staphylococcus aureus (S. aureus) after 24 h of 

incubation. 
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Figure 6.12. Number of viable Staphylococcus aureus attached to laser sintered discs 

composed of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12) at different weight 

percentages (wt%) after 24 h incubation. N=1, n=3. Error bars ± SD. Statistical 

analysis using one way ANOVA with Tukey’s multiple comparison. Statistical 

significance * p<0.05. 

 

Figure 6.12 shows a statistically significant 1.2-log reduction in colony forming units 

(CFU) of S. aureus for 2:19.6:78.4 wt% Zn:HA:PA12 compared to the PA12 control. 

There is not a significant reduction in CFU of S. aureus for 0:20:80 wt% Zn:HA:PA12 

compared to the control. This indicates that only 2:19.6:78.4 wt% Zn:HA:PA12 has the 

bacteriostatic effect required. In section 5.4, LS 2:98 wt% Zn:PA12 samples showed 

a 2-log reduction in CFU of S. aureus attached to the discs compared to the PA12 

control. The combination of Zn and HA appears to decrease the antimicrobial 

properties of the material. An increase in surface area has been found to increase 
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bacterial colonisation, leading to potentially more bacterial attachment on Zn:HA:PA12 

discs compared to the Zn:PA12 discs, however, this requires further investigation. 

Another hypothesis is that the HA may be reducing the toxicity of Zn but this also 

requires further investigation. 

 

Figure 6.13. Number of viable Staphylococcus aureus attached to high speed sintered 

discs composed of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12) at different 

weight percentages (wt%) after 24 h incubation. N=1, n=3. Error bars ± SD. Statistical 

analysis using one way ANOVA with Tukey’s multiple comparison. Statistical 

significance * p<0.05. 

 
Figure 6.13 shows that, as expected, 0:40:60 wt% Zn:HA:PA12 did not reduce the 

attachment of CFU of S. aureus compared to the PA12 control. Despite 2:39.2:58.5 

wt% Zn:HA:PA12 showing a statistically significant 0.9-log reduction in CFU of S. 

aureus, the material does not possess the bacteriostatic effect required. Section 5.4 
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revealed that the antibacterial properties of HSS samples were lower than that of LS 

samples which is also observed here. This was predicted to be due to the ink which 

may be interfering with either the release of Zn2+ or the interaction of antibacterial 

activity of Zn.   

 

6.5 Effect on the biocompatibility  

 

The last objective for this Chapter was to assess how the addition of the antimicrobial 

agent to the bioceramics-polymer composite influences the cytotoxicity of the 

samples. Due to COVID-19 restrictions a higher cell seeding density (50000 cells per 

well) was selected to ensure less time was required for the PrestoBlueTM analysis. The 

results were all divided by the incubation time therefore this change was not likely to 

effect overall results. However ideally the same cell seeding density should have been 

used. 
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The mean cell viability of MG 63 cells seeded on LS Zn:HA:PA12 discs is shown in 

Figure 6.14. The results show a statistically significant decrease in fluorescence for 

2:0:98 wt% Zn:HA:PA12 compare to the PA12 control on day 1. There is an increase 

in fluorescence over time for 0:0:100, 0:20:80 wt% Zn:HA:PA12 and tissue culture 

plastic (TCPS) and a statistically significant reduction in fluorescence over time for 

2:0:98 and 2:19.6:78.4 wt% Zn:HA:PA12, indicating that Zn reduces the viability of the 

material. The variance in values is moderate indicating a relatively homogenous 

interaction between the cells and the sample. The fluorescence values for the PA12 

Figure 6.14. Cell viability (MG 63: PrestoBlue™) of laser sintered samples 

composed of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12) at different weight 

percentages (wt %). 0:0:100 HA: PA12 was used as control. N=3, n=3. Error bars: 

±SD. Statistical analysis using one way ANOVA with Tukey’s multiple comparison. 

Statistical significance * p<0.05. 
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control and 0:20:80 were relatively similar to results obtained for the same 

compositions in section 4.5.2, indicating that the change in cell seeding density did not 

have a significant effect on the results. A similar spread in values was also obtained 

for LS HA:PA12 samples, denoting a homogeneity in the interaction between the cells 

and the sample. As mentioned in section 5.4, the literature suggests that it can take 

more than 24 h for the Zn2+ ions to get released and exhibit cytotoxic effects274 which 

is what was seen in the results here. The release of Zn2+ can have an effect on the pH 

of the media. Changes in the pH can be toxic to cells however, this has to be tested 

further. Additionally, further investigations are required to test whether there is an ideal 

concentration of Zn that is both biocompatible and bacteriostatic. Nevertheless, this is 

a proof of concept of the processability of these materials. This research has shown 

that these materials can be processed successfully. At this stage, it may not be used 

in orbital floor reconstruction applications however, it may be useful in applications 

such as antimicrobial surfaces.  
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Figure 6.15 shows the cell viability of MG 63 cells seeded on different compositions of 

Zn:HA:PA12 fabricated by HSS. On day 1, there is a statistically significant decrease 

in fluorescence for 2:29.2:58.8 wt% Zn:HA:PA12 compared to the control. The results 

show an increase in fluorescence over time for 0:0:100, 0:40:80 wt% Zn:HA:PA12 and 

TCPS and a statistically significant reduction in fluorescence over time for 2:0:98 and 

2:39.2:58.8 wt% Zn:HA:PA12, denoting a reduction in cell viability due to the presence 

of Zn. The values show a relatively moderate variance, representing a moderate 

homogeneity in the interaction between the cells and the samples. As with the 

fluorescence values for the LS, the fluorescence values for the PA12 control and 

Figure 6.15. Cell viability (MG 63: PrestoBlue™) of high speed sintered samples 

composed of zinc: hydroxyapatite: polyamide 12 (Zn:HA:PA12) at different weight 

percentages (wt %). 0:0:100 HA: PA12 was used as control. N=3, n=3. Error bars: 

±SD. Statistical analysis using one way ANOVA with Tukey’s multiple comparison. 

Statistical significance * p<0.05. 
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0:40:60 were comparable to the values obtained for the same compositions in section 

4.5.2. Overall, the fluorescence values obtained for the HSS samples were lower than 

LS samples, indicating that LS samples are more viable than the HSS samples. A 

similar spread in values was obtained for HSS HA:PA12 samples, denoting a 

homogeneity in the interaction between the cells and the sample. Unfortunately, at this 

wt% of Zn, the HSS samples are not bacteriostatic nor biocompatible. The 

antimicrobial property investigation in Chapter 6, showed that HSS Zn:PA12 samples 

showed a bacteriostatic effect. Therefore, this material may not be able to be used in 

vivo at this stage but can potentially be used in other applications that require 

antimicrobial properties.   

 

6.6 Summary 

 

The default processing parameters were used to fabricate the different Zn:HA:PA12 

compositions on LS and HSS. The physical and the mechanical properties of all the 

processed Zn:HA:PA12 samples were investigated. The dimensional accuracy 

investigations revealed that all the LS and HSS parts had marginally different 

dimensions compared to the CAD model. Thus, when printing real-life parts, test prints 

are required to calculate the shrinkage compensation in order to rescale the original 

CAD model. The surface topography analysis showed that the Zn and HA additives 

were relatively evenly distributed on the surface of both LS and HSS compositions, 

which suggests this approach is suitable for compositing. It can be predicted from the 

XRD results that the crystal structure of Zn and HA after processing, by LS and HSS, 

remained unchanged thus the samples are predicted to have osteoconductive and 

antibacterial properties, that are relatively well distributed on the material’s surface (as 
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seen from the SEM micrographs). The addition of Zn and HA increased the porosity 

of the materials which in turn led to a decrease in tensile strength and elongation at 

break of the LS and HSS. LS 2:19.6:78.4 and HSS 2:39.2:58.8 wt% Zn:HA:PA12 had 

similar E values but LS 2:19.6:78.4 Zn:HA:PA12 had superior σUTS and εmax than HSS 

2:39.2:58.8 wt% Zn:HA:PA12 samples. Nonetheless, both LS and HSS samples had 

a higher modulus and σUTS and then commercially available Medpor® implants258, 259 

and similar values to cancellous bone11, denoting that both these materials are likely 

to be suitable for orbital floor reconstruction.  In addition, the flexural modulus of both 

LS and HSS Zn:HA:PA12 samples were similar to that of the natural orbital floor 

indicating that implants manufactured from these materials are likely to be firm enough 

to support the eye globe and the orbital content.  

 

The antibacterial investigations showed that the LS 2:19.6:78.4 wt% Zn:HA:PA12 had 

a bacteriostatic effect against S. aureus. However, HSS 2:39.2:58.8 wt% Zn:HA:PA12 

did not have a bacteriostatic effect against S. aureus. In vitro cell viability investigation 

revealed that both LS 2:19.6:78.4 wt% and HSS 2:39.2:58.8 wt% Zn:HA:PA12 

samples had a cytotoxic effect on MG 63 cells.   

 



Summary discussion and conclusions 

 191 

7 Summary discussion and conclusions  

 

The aim of this research was to investigate the potential use of powdered-polymer 

Additive Manufacturing processes (specifically laser sintering and high speed 

sintering) for orbital floor reconstruction applications. To achieve this, the selected 

materials must be readily available and able to be processed on LS and HSS into 

patient-specific geometries with the required dimensions. In order for a material to be 

suitable for orbital floor implant applications it must also have sufficient mechanical 

properties, ability to be sterilised before implantation and biocompatibility. Desirable 

properties include porosity, ideal specific surface area, osteoconductivity and 

antimicrobial properties. This research was set out to address each of these 

requirements by the inclusion of additives, such as HA and Zn, which potentially could 

induce the required and desirable properties in PA12 additively manufactured parts., 

as summarised in the following sections. 

 

7.1  Processability on LS and HSS 

 

In order to assess the processability, the powder morphology was evaluated, and the 

thermal properties of the compositions were investigated. Processing of 

hydroxyapatite (HA) on HSS is a novel technique that has not been explored 

previously in the literature. The results obtained here show that a wider range of 

compositions were capable of being processed on HSS than LS, where the upper limit 

for the quantity of HA which could be physically processed on LS was 20:80 wt% 
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HA:PA12 and 40:60 wt% HA:PA12 for HSS. Nonetheless, both processes were shown 

to be capable of producing parts at the appropriate size for orbital floor reconstruction. 

 

7.2 Additive distribution, porosity and specific surface area  

 

The distribution of the additive within the sample was assessed using microcomputed 

tomography (MicroCT) while the distribution of the additives on the surface and the 

porosity were assessed using scanning electron microscopy (SEM). The additives 

were relatively well distributed within and on the surface of the samples therefore, any 

effect on the properties was predicted to be evenly distributed through the geometry.  

The addition of the additives increased the porosity. Unlike LS samples, all the HSS 

samples (except the PA12 control) had pores within the optimal range for cell ingrowth 

(between 100- 350 µm235, 240-243). An increase in porosity increased the specific 

surface area. The investigations revealed that HSS 5- 40 wt% HSS HA:PA12 samples 

and LS 20:80 wt% HA:PA12 had a surface area similar to that of BioOss® (60 - 100 

m2/g155-158) which is likely to trigger a higher degree of bone-to-implant contact (BIC). 

Thus, implants manufactured from LS 20:80 wt% HA:PA12 and HSS 5-40 wt% 

HA:PA12 compositions are predicted to be less likely to lead to implant migration from 

the fracture site235, 238, 239. 

 

7.3 Mechanical properties 

 
 
The mechanical properties of the processed compositions were assessed by tensile 

testing and 3-point bending. An increase in porosity negatively impacted the 

mechanical properties of the samples due to pores acting as stress concentration sites 
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where cracks can initiate and propagate234-237. The addition of the additives led to a 

decrease in the ultimate tensile strength (σUTS) and elongation at break (εmax). The LS 

samples had a higher modulus, σUTS and εmax than HSS samples. However, all the 

processed samples both LS and HSS had comparable values to cancellous bone  

(ultimate strength between 0.1- 30 MPa and a modulus between 10 to 3000 MPa11). 

In addition, the 3-point bend results showed that both processes produced parts with 

similar flexibility to the natural orbital floor bone (between 1260 to 4450 MPa1, 2), 

indicating that all the compositions were more likely to be firm enough to support the 

eye globe and the orbital content. 

 

7.4 Sterilisability  

 

Implant sterilisation is an important criterion for orbital floor implants. The sterilisation 

investigations were conducted on LS 100% PA12 samples and showed that the 

samples could be steam autoclaved without permanently affecting the mechanical 

properties of the parts. However, the investigations revealed that moisture does affect 

the mechanical properties of the material. Therefore, in order to gain a better 

understanding of how the mechanical properties would change after implantation, 

further tests are required where the samples are submerged long term in physiological 

conditions. 

 

7.5 Chemical composition  

 
 
Analysing the chemical structure of the processed samples gives an idea of what 

materials are present and hence what properties are expected of the samples. The X-
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ray diffraction (XRD) analysis confirmed the presence of the additives and showed 

that the crystal structure of the additives appeared to remain unchanged after 

processing. Therefore, any effects of HA and zinc (Zn), such as osteoconductive and 

antimicrobial properties, were likely to be present in both LS and HSS samples. 

 

7.6 Antimicrobial capabilities 

 

The antibacterial investigations revealed that LS 2:98 wt% Zn:PA12 was more 

effective against Staphylococcus aureus (S. aureus) than the HSS 2:98 wt% Zn:PA12. 

Nonetheless, both LS and HSS 2:98 wt% Zn:PA12 samples had a bacteriostatic effect 

against S. aureus. However, when Zn was combined with HA:PA12 samples there 

was a reduction in the antimicrobial activity where only LS 2:19.4:78.6 wt% 

Zn:HA:PA12 had a bacteriostatic effect. Therefore, implants made from this material 

on LS are likely to be more effective against infections than HSS samples.  

 

7.7 Biocompatibility  

 

In vitro cell viability tests showed that all the LS and HSS HA:PA12 samples were 

biocompatible, but the cell viability was higher for LS samples than HSS samples. 

However, when Zn was added to HA:PA12 samples, both the LS and HSS samples 

showed cytotoxic effects against MG 63 cells, meaning that they cannot be used in 

safely in vivo. This research is a proof of concept that HA and Zn can successfully be 

processed with PA12 on both LS and HSS, however, further research is required 

before this approach can be applied in practice. 
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Table 7.1 provides and overview of the compositions processed and whether they met 

the implant requirements or not while. Table 7.2 provides a summary of these main 

findings, in order to form a conclusion as to the viability of this approach for use in 

orbital floor reconstructions. 

 

Table 7.1. Overview of the compositions and whether they met the implant 

requirements. Where ü means they did, ¬ means some of the compositions did, û 

means they did not and - means it was not tested.  

Requirements  Process Compositions 

PA12 HA:PA12 Zn:PA12 Zn:HA:PA12 

Processing LS ü ¬ ü ü 

HSS ü ü ü ü 

Additive 

distribution 

LS - ü ü ü 

HSS - ü ü ü 

Porosity  LS û û û û 

HSS û ü ü ü 

Specific 

surface area 

LS û ¬ - - 

HSS û ü - - 

Mechanical 

properties 

LS ü ü ü ü 

HSS ü ü ü ü 

Sterilisation LS ü - - - 

HSS - - - - 

Antimicrobial 

properties 

LS û û ü ü 

HSS û û ü û 
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Biocompatibility LS ü ü û û 

HSS ü ü û û 

 

Table 7. 2 Implant requirements and summary conclusions 

Requirement  LS HSS Recommendation 
Processability on 
LS and HSS 
  
(ESSENTIAL) 

Can produce readily 
available samples to the 
required accuracy for this 
application but only up to 
20 wt% HA. 

Can produce readily 
available samples to the 
required accuracy for this 
application up to 40 wt% 
HA.  

Both processes suitable but 
choose HSS if higher HA 
concentrations required. 

Additive 
distribution  
 
(ESSENTIAL) 

Additives well distributed 
within and on the surface 
of the samples. 

Additives well distributed 
within and on the surface 
of the samples. 

Both suitable processes.  

Porosity 
  
(DESIRABLE) 

The pores were smaller 
than the optimal pore size 
required for bone 
reconstruction 
applications (100- 350 
µm). 

The porosity of the 
samples was within the 
optimal pore size required 
for bone reconstruction 
applications (100- 350 
µm). 

Consider HSS if bone-implant 
integration is highly 
important.  Changing 
processing parameters may 
allow tailored pore size on 
either process. 

Specific surface 
area  
 
(DESIRABLE) 

Only 20 wt% HA:PA12 
showed a specific surface 
area likely to trigger a 
higher degree of bone 
formation (between 60 - 
100 m2/g). 

All the HA:PA12 samples 
had a specific surface 
area which was likely to 
trigger a higher degree of 
bone formation (between 
60 - 100 m2/g). 

Consider HSS if bone-implant 
integration is highly 
important.  Changing 
processing parameters may 
allow tailored specific surface 
area on either process. 

Mechanical 
properties  
 
(ESSENTIAL) 

All samples had comparable values to cancellous 
bone  (ultimate strength between 0.1- 30 MPa and a 
modulus between 10 to 3000 MPa and flexibility 
similar to the natural orbital floor bone (between 1260 
to 4450 MPa), indicating that the samples are likely to 
be firm and flexible enough for orbital floor 
reconstruction applications. 

Both processes are suitable.  

Sterilisation  
 
(ESSENTIAL) 

Could be sterilised without 
permanently effecting the 
mechanical properties of 
the samples. 

Not been tested but we 
can assume from the 
investigations on LS 
samples that they could 
be sterilised without 
permanently effecting the 
mechanical properties. 

Both likely to be suitable 
processes. 

Antimicrobial 
properties  
 
(DESIRABLE) 

All the samples showed a 
bacteriostatic effect 
against S. aureus. 

The Zn:HA:PA12 
samples did not show a 
bacteriostatic effect 
against S. aureus. 

LS is more suitable at this 
stage but with further 
development on HSS and 
perhaps the use of different 
inks or antimicrobial agent 
this process may be suitable. 

Biocompatibility 
 
(ESSENTIAL)  

The non-Zn containing samples were biocompatible. 
The samples that contained Zn were cytotoxic against 
MG 63 cells therefore further work is required.    
The non-Zn containing samples were biocompatible. 
The samples that contained Zn were cytotoxic against 
MG 63 cells therefore further work is required 

Investigate changing the 
ratios of the composition or 
the use of a different 
antimicrobial agents.  
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It is evident from Table 7.1 and Table 7.2 that PA12 and HA:PA12 compositions 

produced by both LS and HSS met all the essential criteria assessed in this work to 

be used in orbital floor implants indicating that both LS and HSS processes have 

shown a clear potential in the fabrication of an implant for orbital floor reconstruction 

application. As the LS Zn:HA:PA12 samples have shown bacteriostatic effects but 

were cytotoxic, further work can be conducted to investigate whether there is an 

optimal Zn:HA:PA12 ratio that has a bacteriostatic effect and is biocompatible. Specific 

suggestions for further work can be found in Section 7.8.  

 

7.8 Future work  

 

1. Properties of LS and HSS parts are known to change with time and due to 

environmental conditions. Longer-term studies of mechanical properties of 

these parts when subject to conditions simulating orbital floor environments will 

provide further confidence in the suitability of this approach. 

2. Investigate whether there is an ideal Zn:HA:PA12 composition or other 

antimicrobial agents that are both biocompatible and exhibits a bacteriostatic 

effect on LS. 

3. Investigate the time it takes for the Zn to be released from the processed 

samples to gain a better understanding of how long it may take for the samples 

to exhibit their optimal antimicrobial effect and whether the antimicrobial effects 

will provide suitable protection under the relevant timescales for this 

application.  
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4. Test the antimicrobial samples against a wider array of bacteria to identify the 

antimicrobial effect of the material on both Gram positive and Gram negative 

bacteria. 

5. Investigate pre-conditioning of the samples such as placing them in media or 

simulated body fluid (SBF) for a period of time before the cell viability 

investigations to assess whether this may reduce the cytotoxic effects of Zn on 

cells. 

6. Investigate the use of other inks in HSS which may improve cell attachment or 

is less likely to interfere with the performance of the additives 

7. Designing implants from patient scan data and printing them to assess the 

feasibility of printing of complex structures. 
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8 Outputs 

 

8.1 Publication 

 

J.R. Wingham, M. Omran, J. Shepherd, C. Majewski. Effect of steam autoclave in 

laser sintered polyamide 12. Rapid Prototyping Journal. 2020. 

 

8.2 Conferences  

 

M. Omran, C. J. Wilcock, K. Mumtaz, R. Moorehead and C. Miller. “Development of 

Additively Manufactured Stratified Custom Ceramic Implants for Orbital Floor 

Reconstruction”. Poster at Advanced Biomanufacturing Conference, United Kingdom, 

Sheffield, 22-23 May 2017.   

 

M. Omran, C. J. Wilcock, K. Mumtaz, R. Moorehead and C. Miller. “The relationship 

between the viscoelasticity and printability of hydroxyapatite/agarose pastes” poster 

at Polymer Process Engineering (PPE) 2017, United Kingdom, Bradford, 25-27 July 

2017.  

 

M. Omran, I. Varley, C. J. Wilcock, C. Majewski, R. Moorehead and C.A. Miller. 

“Additively Manufactured Polyamide Scaffolds for Maxillofacial Reconstruction” poster 

at MeDe Innovation Annual Conference, United Kingdom, Sheffield, 18 January 2018.  

 

M. Omran, C.J. Wilcock, R. Moorehead, C. Majewski, I. Varley and C.A. Miller. 

“Incorporating antimicrobial agents into polyamide scaffolds for orbital floor implants” 
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Poster at United Kingdom Society of Biomaterials Conference, United Kingdom, Bath, 

28-29 June 2018. 

 

M. Omran, C.J. Wilcock, R. Moorehead, C. Majewski, I. Varley and C.A. Miller. 

“Evaluating two powder-based 3d printing techniques for the manufacture of implants 

for orbital floor repair” Presentation at Tissue and Cell Engineering Society and the 

United Kingdom Society for Biomaterials Conference, United Kingdom, Nottingham, 

11-13 June 2019. 

 

8.3 Awards  

 

The University of Sheffield Kroto Research Inspiration: My Research Story Video 

Competition. 24 October 2018.  

 

The University of Sheffield Post Graduate Research Day: Gone in 60 Seconds Prize 

winner. 28 March 2019. 
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10 Appendix A 
 

Laser sintering process  

 

 

 

1. The powder was placed into the machine.  

2. A re-coater blade was used to spread a thin layer of powder on the build 

platform. The powder was heated using a heater throughout the process.  

3. CO2 laser sinter was used to fuse powder particles in specific areas according 

to cross sectional data from the STL file.  

4. The build platform moved down one layer (0.1 mm). 

5. A new layer of powder was spread on top of the previous layer by the re-coater 

blade. 

6. The laser scanned the successive cross section according to the STL file. 

7. Steps 5-7 were repeated until the print was completed.  
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8. After the print was completed the build was removed. Compressed air was used 

to remove the excess powder from the discs, tensile test bars and 3-point 

bending bars. 

 

High speed sintering process 

 

 

1. The fresh powder was placed in the powder chamber of the machine.   

2. The build platform was lowered to one layer thickness. 

3. The feed hopper was filled with powder. 

4. The infrared (IR) lamp and the roller, attached together in a moving carriage, 

moved transversely across the build platform. The roller deposited the powder 

while the IR lamp preheated powder on the build platform.   

5. The inkjet print-head moved across the build platform depositing RAM in the 

desired cross-section according to the STL file.  
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6. The IR lamp carriage passed across the build platform, the areas with the ink, 

absorbed higher thermal energy to sinter the underlying powder. The powder 

without the ink was not sintered and acted as support material.  

7. Steps 4-7 were repeated until the print was completed. 

8. When the print was completed, the parts were removed from the machine and 

left to cool at room temperature overnight. 

9. In HSS, the powder bed is exposed to infrared radiation from the lamp which 

causes the excess powders around the parts to become solid and can only be 

removed by blasting the parts with soda-lime glass beads (Honite grade 16, 

Gyson). 

 

 


