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ABSTRACT 

Phreatomagmatic volcanoes form when ascending magma 

explosively interacts with surface or groundwater at 

shallow depths. Three types of phreatomagmatic activity 

are recognised- phreaticp phreatomagmatic (s. s. ) and 

surtseyan - based on the degree of involvement of magma 

with water and the depth of the interaction. Phreatic 

maars and phreatomagmatic tuff-rings are underlain by 

pipe-like diatremes but these structures are poorly- 

developed or absent in surtseyan tuff-rings. Comparisons 

of phreatomagmatic volcanoes with their eroded diatreme 

equivalents, which contain subsided subaerially-deposited 

material, allow a model for activity of this type to be 

constructed. 

The Saefell tuff-ringg SW Icelandq is a surtseyan- 

type structure whose crater remained open to the sea 

during most of its activity, allowing easy access of water 

to the magma, Base-surgeso sourced partly from directed 

blasts, formed large dunes with internal structures 
indicating deposition by density currents whose flow- 

power decreased with time and with distance from the vent. 
Syndepositional slumping and minor en masse collapse of 

crater deposits formed a pile of massive tuffs above which 

subsequent surge and airfall activity deposited a nestedg 
inner crater rim. 

The Medano tuff-ringg Tenerife, is a phreatomagmatic- 

type structure whose crater contains reworked tuffs 

deposited during subsidence into the underlying diatreme. 

Initial activity ejected much country rock material as 

magma contacted groundwater at depth but with time eruptions 

became more strombolian, as water was used up or failed to 

gain access to the vent. Surges were less common than in 

the Saefell eruption because the Medano water: magma ratio 

and explosion depth less often fulfilled the optimum 

conditions for surge production. 

The East Lothian diatremes in Scotland are subdivided 

into two groups on the basis of their infilling. The Red 

group diatremes contain high proportions of sediment and 



represent the subsided products of phreatic maars which 

erupted into a pile of water-richv poorly-consolidated 

alluvial plain sediments. The later Green group diatremes 

contain mainly juvenile basalt fragments and formed as 

phreatomagmatic or sometimes surtseyan tuff-rings, due to 

magma contacting water at shallow depths or in marginal 
lakes respectively. The Parade diatreme, Dunbar, contains 

over 300m of largely base-surge tuffs thought to represent 
the subsided inner flank deposits of a large maar. 

The Heads of Ayr and the East Fife diatremes expose 
different levels in subsided phreatomagmatic tuff-rings 

due to collapse-ahd erosion. Deep levelst such as that 

exposed at Lundin Links, contain unbedded tuffs and 

abundant intrusive material. Shallower levels, such as at 
Elie Nessp contain high proportions of bedded tuffs which 

are often centroclinally orientated. Base-surge, airfall, 

slumped and reworked tuffs in the Scottish diatremes are 
directly comparable to deposits in the modern tuff-rings 

studiedv proving their origin. 
A model for the formation of surtseyan tuff-rings is 

presented, with phreatomagmatic explosions resulting from 

steam expansion jets which disrupt an already vesiculating 

magma as it engulfes subsiding water-laden ash. A base- 

surge model is also presented, involving deposition of 

tuffs with characteristic bedforms and structures by the 

head, body and tail of each surgep analogous to turbidity 

currents. Cooling of hot, dry steam to coolv moist steam 
towards the rear of surge pulses leads to lag breccias and 

progressive dune deposits being succeeded by regressive 

dunes and plastering structures with time. 

Juvenile sideromelane fragments erupted by 

phreatomagmatic volcanoes rapidly alter to palagonite 

as heated pore-wa: ters circulate through the newly-deposited 

tuffs. Palagonitization results in cation mobility within 

unstable glass and precipitation of authigenic minerals in 

voids. Non-equilibrium growth of such minerals results in 

variable compositions and crystal forms. Subsequent 

alteration occurs slowly as a weathering process whose rate 

is greatly reduced as authigenic precipitation closes pore 



spaces within the tuffs. On diagenesisq unstable alteration 

products are commonly replaced by chlorite, calcite and clay. 
Reddening of some tuffs occurs by in situ breakdown of iron- 

bearing minerals and release of Fe to solutiong although 

groundwater exchange with red country rock sediments may 

also occur. 
Unless present in diatremesq phreatomagmatic products 

have a low preservation potential due to :- extreme 

alteration, rapid syn- and post-volcanic reworking, low 

ejecta volumes and breaching and burial beneath later lavas. 

In contrastp the sedimentary structuresq petrography, 

morphology and grain size characteristics of diatreme tuffs 

are shown to be often sufficiently well preserved to permit 

the identification of their original surface volcanoes and 

their eruptive histories. 
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CHAPTER 1 

INTRODUCTION 

1.1. Aims of the Studv 
This study was initiated to determine the volcanic and 

sedimentary processes which occur during the formation and 

evolution of phreatomagmatic volcanoes. Such volcanoes 

generally consist of a surface expression -a maar or a 

tuff-ringg and a sub-surface structure -a diatreme. During 

and after volcanic activity surface products subside into 

the diatreme which underlies the volcano. Diatreme deposits 

thus contain much information about the depositional 

processes which formed their now eroded surface expressionst 

and their study also indicates the nature of sub-surface 

volcanic processes which can never be directly observed. 

Recent tuff-rings on Iceland and Tenerife were studied 

to characterise the range of primary volcanic and 

sedimentary reworking processes which affect these 

pyroclastic volcanoes, Numerous diatremes in Scotland were 

studied to determine their origin and to examine the types 

of sub-surface processes which formed them. 

Comparisons between modern and ancient examples of 

phreatomagmatic volcanoes allow an idealised model to be 

constructed for activity of this type. Differences between 

the model and specific volcanoes may be interpreted in 

terms of variations in geological setting, eruption style 

and collapse history. Such a model can also be used to 

indicate the possible variations in modern activity of this 

type and to provide information useful in identifying 

phreatomagmatic deposits in the geological record. 

1.2. Methods of Stud 

The Recent tuff-rings were mapped in detail using 

aerial photographs and enlarged base maps at scales of 

1: 10,000 to 1: 20,000. The diatremesv for which some 

detailed base maps already existv were mapped at scales of 

1: 2500 to 1: 3500 from aerial photographs, Mapping was 

supplemented by logging of much of the bedded tuff 

sequences and examination of the sedimentary structures 



2 

to determine their depositional mechanism. 
Representative samples were collected for petrographic 

examinationp which included modal and grain-size analyses of 
the tuffs. Grain morphology was quantitatively studied in 

thin section and in more detail by S. E. M. Limited microprobe 

analyses were carried out on selected mineral phasesp 

especially on alteration products. Microprobe element 

variation maps were used to study the movement of cations 
during the alteration of sideromelane to palagonite., 

1.3. Previous Work 

Studies of. tuff-ringsq maars and diatremes have been 

carried out since the last century but it was not until 

recently that the role of groundwater in their formation 

was recognised. Lorenz et al. (1970)9 in a broad-based 

review of these volcanoes, summarised much of the previous 
literature along with many of their own field observations. 
They were amongst the first authors to discuss and relate 
both surface and sub-surface volcanic features. 

The literature on observed phreatic and phreatomagmatic 

eruptions has greatly increased in recent years with the 

advent of improved communicationsp which allow geologists 

easier access to of ten remote volcanoes. The most recent 

example is that of Mt. St. Helens which involved 

intermittent steam-blast eruptions (Christiansen & Peterson, 

1981). These observations may be used to indicate the types 

of processes which occur during volcanism. 
Various aspects of phreatomagmatic (s. l. ) activity 

have been the study of more detailed recent work. Base- 

surge deposits and their relevance to surge dynamics and 

processes have been extensively studied (Moore, 1967; 

Waters & Fisherp 1971; Schmincke et al. g 1973; Sheridan & 

Updikeq 1975; Fisher, 1977). The alteration of basaltic 

glassp although not confined to phreatomagmatic depositsp 

is nevertheless an important process in their post-eruptive 
history. Such alteration has been studied in historic 

eruptive productsp such as Surtsey, Iceland (Jakobssonq 

1978) and in more ancient tuff-ringst such as Oahut Hawaii 

(Hay & Iijimat 1968). 
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1.4. Layout of Thesis 

In a comparative study of this type the volcanoes from 

each area are treated separately. Each chapter is thus 

complete in itself although the diatreme studies draw 

heavily on information presented in the chapters on Recent 

tuff-rings. Important features of each area are discussed 

in the appropriate chapter although general considerations 

about the origin and evolution of phreatomagmatic volcanoes 

are presented as a model for this type of activity. 

A brief review of observed phreatomagmatic activity is 

presented in Chapter 4 as a summary of the processes known 

to occur. The final chapter (Chapter 8) is a summary of the 

more important conclusions drawn from each data chapter as 

well as the main points of the review and model chapters. 

The appendices contain details of the analytical methods 

used and the pocket at the back of the thesis contains a 

general lithological key to the diatreme maps and the logs 

for bedded tuff sequences throughout the thesis. 

1.5. Definitions 

Since the terminology of pyroclastic deposits is as 

yet ill-defined it is thought necessary to define much of 
the nomenclature used in this thesis. The definitions used 
largely come from Lorenz et al. (1970), Lorenz (1973), 

Wright et al. (1980) and Schmid (1981). 

Diatreme :-A pipe-like volcanic conduit filled with 

pyroclastic debris and brecciated wall rocksp which are 

often cut by intrusions. 

Fluidization :-A process in which a mixture of particles 

(solid or liquid) is suspended by an upward escaping fluid 

phase (liquid or gas) so that the frictional force between 

the fluid and the particles counterbalances the weight of 

the particles and the whole mass behaves as a fluid. 

Hyaloclasti(te: - A glassy clastic rock formed by the non- 

explosive quench granulation of magma on contact with water. 

Hyalotuff :-A glassy pyroclastic rock formed by the explosive 

interaction of magma and water at shallow depths where 

volatile exsolution has already partly fragmented the magma. 
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Maar :-A large volcanic crater cut into country rock below 

general ground level and possessing a low rim composed of 

pyroclastic debris. Approximate dimensions are - 100 to 200m 

widet 30 to 200m deep, with a rim height of 10 to loom. 

Phreatic eruption :- Eruptive activity caused by steam 

explosions due to heating of waterv generally by magmatic 
intrusions or extrusions. The magma acts purely as a heat 

source and is not intimately involved in the eruption. 

Comminuted country rock material is commonly ejected by 

these explosions. 
Phreatomagmatic, eruption :- An eruption similar to phreatic 

activity except that magma is intimately involved in the 

eruption and chilled juvenile material is ejected. In its 

wider sense (sensu lato) it is used to describe all types 

of pyroclastic. eruptions resulting from the contact of 

water with magma. 
Pyroclastic. surge :-A low-concentration tephra flow that 

travels outwards from a volcanic vent as time-transient 

pulses in which the kinetic energy rapidly decays. Base- 

surges are a particular form of these flows which result 

from phreatomagmatic, eruptionst and are highly charged with 

steam. 
Scoria :- Vesiculated fragments of basalt or basaltic 

andesite composition which are the basic analogues of 

pumice. Many fragments are glassy and consist largely of 

tachylite. Blocky, sparsely-vesicular phreatomagmatic 

tephra composed largely of sideromelane is distinct from 

scoria although it has as yet no short descriptive term, 

Strombolian :-A type of eruption which involves ejection 

of liquid magma droplets by volatile exsolution and bubble 

coalescence. Eruptions typically form small scoria cones. 

Surtseyan :-A type of eruption which is characterised by 

phreatomagmatic activity (s. l. ) and the formation of a 

tuff-ring. In this thesis the term is restricted to those 

tuff-rings formed as a result of phreatomagmatic activity 

when water contacted shallow surface water bodies. 

Tuffisite :- Intrusive tuff composed of juvenile and lithic 

fragments mobilised by gas-streaming and injected into 

fissures. 



Tuffite :-A mixed pyrocl astic/epicl as tic rock containing 
between 2555 and 7Y/c', of epiclastic material. The term is the 

mixed tuff-epiclastic analogue of pyroclastic and is 

subdivided by average clast size into tuffaceous shales to 

tuffaceous conglomerates. 
Tuff-rin. q :-A large volcanic crater above general ground 

level surrounded by a ring-like rim of phreatomagmatic 

debris and similar in size to maars. 

5 
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CHAPTER 2 

THE SAEFELL TUFF-RINGf ICELAND 

2.1. Introduction and Geolooical Settina 

The Saefell tuff-ring occurs on Heimaey, the largest 

of the Westmann Islands which lie off the SW coast of 

Iceland (Fig. 2.1a)o The islands constitute part of the 

Pleistocene to Recent Vestmannaeyjar volcanic systemo 

situated at the SE end of Iceland's Eastern Volcanic Zone. 

This system is characterised by the eruption of mildly 

alkaline olivine basaltp although most recently (1973) 

Eldfell on Heimaey has erupted hawaiites (Jakobssont 

1979). Most of the islands are eroded tuff-ringsq some 

of which have later scoria cones associated with them. 

Heimaey is composed of lavas and tuffs of various ages 

and origins (Jakobssonq 1968). 

On Heimaey (Fig* 2,1b) the oldest formations 

(>10P 000yrs. B. P. ) occur in the N of the island and 

are partly of sub-glacial origing formed before the last 

major glacial retreat. The Storhofdi volcano in the S 

of the island was formed next and consists of a tuff-ring 

with late-stage lava extrusion; 
14 

C dating of peat 
immediately overlying these lavas gives an age of about 
5400 B. P. (Kjartansson, 1967). This was shortly followed 

by the Saefell phreatomagmatic activity and soon 

afterwards by the formation of Helgafellt a composite 

scoria cone whose lavas form the central section of the 

island. No further activity occurred until the formation 

of the Eldfell scoria cone in 1973 whose lavas added a 

substantial area onto the NE coast of the island. 

Although the Surtsey eruption has been well 

documented the only published work on Saefell is by 

Jakobsson (1968) who recognised its phreatomagmatic origin 

and briefly mentioned its age and petrographic character. 

2,2. Structure and Products 

The tuff-ring (Fig. 2.2) presently has a maximum 

basal diameter of ca. 2-9kmv a maximum height of 188m and a 

maximum crater diameter of ca. le4km. The crater rim is a 

6 
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WESTMANN IS,, 50krý 

Fig. 2.1 a) Map of Iceland showing position of Westmann Is. 

is Postglacial Volcanic zone 
2: Plio-Pleistocene formations 
3: Tertiary formations 

b) Geological map of Heimaey. 
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simple anticlinal structure in the youngest tuffs which 
occurs where indipping crater tuffs bend over and pass 
into the outdipping, flank succession. The indipping tuffs 

are more steeply inclined (up to 4CP) than the outdipping 
beds (up to 300) due to syndepositional slumping steepening 
the depositional surface onto which crater tuffs were 
deposited, and to later collapse processes* 

2.2.1 Crater tuffs 

Only the western crater wall tuffs are presently 

exposedt erosiong especially by marine processeso haVing 

removed the eastern rim and most of the crater centre 
deposits. Two small islands about 600m offshore provide 
the only exposures of eastern crater tuffs. In the N 

the crater deposits are thin (<30m) or may occur as 
isolated veneers overlying the face of the outdipping 
tuffs exposed on the crater wall (Fig. 2.2). A minor 

nested rim occurs within the crater in the Wt 

sub-concentric with the main rim. It seems to have formed 

by deposition of younger tuffs over a pile of collapsed 

crater deposits. 

2.2.2 Flank tuffs 

The flank tuffs are well exposed in the coastal 

cliffs to the NE, S and SW of the crater. The flank tuffs 

are presently asymmetrically distributed about the craters 

the youngest tuffs occuring mainly to the W and SW, To the 

N and W the tuffs are overlain by Helgafell lavas as they 

thin away from the crater and their distal equivalents are 

thus not exposed. To the SW the most distal tuffs are 

preserved and outcrop above the Storhofdi lavas. The 

present day topography largely follows the upper bedding 

surfaces of the youngest flank tuffs though outcrops 

inland are poor due to a thin soil and grass cover, 

2.2.3 Crater rim 
The crater rim is a ridge-like anticlinal feature 

defining the passage from the indipping crater tuffs to the 

outdipping flank tuffs along the crest of the tuff-ring. 
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At deeper structural levels the contact of the crater and 

flank tuffs is an unconformity caused by slippage of 
indipping tuffs down the crater wall. At the lowest 

exposed structural level the contact is a 3-5m zone of 

blockyq shattered tuffs indicating that fault subsidence 

has occured. These blocky tuffs may originally have been 

debris flows since they wedge out upslope (Fig. 2.3) and 

have a broadly conformable, unfaulted upper contact with 

the overlying bedded indipping tuffs. Ring-fault 

subsidence occured after lithification of the blocky 

deposits and caused the shattering of the matrix and the 

break up of blocks within them. 

2.2.4 Individual units 
The tuffs have been subdivided into three units on 

the basis of their field relationships as seen on the 

southern side of the crater rim (Figs. 2.2p 2.3). Each 

unit unconformably overlies the unit below in the crater 

rim sequence, mainly because of syndepositional slumping 

of-poorly consolidated tuffs into the crater along with 

minor erosion. Outwards from the crater all the units are 

conformable and are difficult to distinguish because of 

lithological similarity. The schematic cross-section (Fig. 

2,2b) summarises the stratigraphic relationships between 

each unit. 
Unit I 

This oldest exposed unit is composed of ca, 40m of 

bedded tuffs which dip away from the crater at 5-100. 

Their indipping equivalent has slumped into the crater and 

is not now exposed. Unit 1 is exposed along the SE coastline 

of Heimaey but could only be definitely recognised S. 

of the crater by tracing it away from the rim where it 

thins to <1m thick at-a distance of 600m. The basal tuffs 

overlie erodedl columnar-jointed lava flows of the 

Storhofdi complex and are largely of base-surge origin 

with well developed plastering structures and ripples. A 

soil horizon (maximum thickness of 1m) occurs within some 

hollows in the lava top. It consists of an approximately 

30cm thick basal orange-brown layer rich in rootlets and 



altered scoria lapilli overlain by a buff-coloured fine 

dust horizon which contains many desiccation cracks. The 
top of the soil consists of a thin (<10cm) peaty layer rich 
in twigst rootlets and leaf remains which passes into 

scoria layers in a matrix of greyl fine ash, This soil is 

only developed at the top of the lava cliffs some 20-40m 

above sea-level. It is not present where the Saefell tuffs 

- Storhofdi lava contact occurs near the present day 

sea-level. Heret joints in the lava surface are partly 
filled by unbedded impure tuff rich in sediment and 

scoriaceous material and overlain by thinly bedded ash 

which is often plastered against the sides of the cracks. 
Above the soil horizon and the joint infilling 

material exposed on the wave-cut platform on the SW coast 

of Heimaey there is a thin (<10cm) layer of fine ash full 

of broken up fossilited grass stems, These grass stems are 

often aligned and plastered against the sides of lava 

joint faces and blocks, and will be further described in 

the section on base-surge structures (Section 2.3.2). 

These grass-rich layers are not found in the basal Saefell 

tuffs where these are exposed ca. 500m SW of the southern 

crater rim on the SW coast of Heimaey (Fig. 2.4). This is 

because the grass grew on soil developed on the subaerially 

exposed Storhofdi lavas to the NW and W of this outcrop* 
Surges which deposited tuffs there had not yet entrained 

any stemse 
The Unit 1 tuffs above the basal layers consist 

mainly of base-surge material with interbedded airfall 
deposits. One now greatly eroded scoria cone erupted 
through the thin distal. flank tuffs 1100m SW of the crater 

centre, To the S the scoria layer rests on the older 

underlying lavas whereas the northern deposit is underlain 
by at least 6m of bedded tuffs (Fig. 2.5). The section 
indicates that erosion of an originally much larger scoria 
depositt sourced near the welded spatter in the S 

would account for the present outcrops of scoria. Removal 

of scoria which originally mantled the buried lava hill 

formed the present break in the deposits, The scoria 
layers consist of a small area of welded spatter along 
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with lapilli and bombs of plagioclase-phyric basalt, 

although some rare accessory lithic lava blocks occur in 

places. 
The maximum exposed thickness of scoria is <10m but 

because of erosion this is probably much less than the 

original maximum thickness. U-shaped channels which cut 

the top Im of the scoria indicate that some reworking 

by base surges occurred but such. examples are-only-patchily 

developed. The bulk of the reworkingg causing rapid 

lateral thickness variations and much interfingering of 

scoria with thin tuff layers is thought to have been 

caused by fluvial activity. 
The scoria formed during a break in the phreatomagmatic 

activity. Perhaps lateral migration of magma away from the 

main chamber initiated the flank eruptions. The absence or 

exclusion of water allowed strombolian activity to occur, 

probably because the parasitic vents erupted subaerially 

on the previously formed Storhofdi island (Fig. 2.4). 

The Unit 1 tuffs above the scoria reach up to 40m 

thick in the southern crater rim and are well-bedded 

throughout. In the northern crater wall sequence Unit 1 

tuffs, probably form at least the lower 40m. of the deposits. 

Due to the lack of correlatable horizons their existance 

and thickness cannot be proven. 

Unit 2 

This sequence of well-bedded tuffs unconformably 

overlies Unit 1 in the crater rim (Figs. 2.21 2.3). 

Infilling of hollows in the partly collapsed crater rim of 

Unit I causes-the lower beds of the Unit 2 outdipping 

sequence (Fig. 2.3.2a) to thicken laterally by as much as 

30m. The indipping'equivalents of these lower beds (Fig. 

2.3t 2b) have slumped and are represented by debris flow 

fan deposits which wedge out up the slip plane, The upper 

part of the indipping sequence (Fig. 2.3) consists of ca. 

45m. of bedded tuffs. These conf7ormably overlie the slumped 

indipping deposits, drape the crater rim and rest 

conformably on the lower Unit 2 tuffs of the outer flank 

sequence. 
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Fig. 2.3 Southern crater rim tuffs exposed on E coast of 
Heimaey. See text for description. 

Well-bedded indipping tuffs of the southern crater 

wall sequence (Fig. 2.3,2b) pass to the N into 

structureless blocky tuffs of >40m thickness (Fig. 2.3, 

St). Near the margin of the structureless pile the bedded 

tuffs are cut by sub-vertical faults with displacements up 

to 5m into the crater centre. These faults bound the 

structureless pile which contains faint traces of bedding 

broadly continuous with the well-bedded sequence to the SW. 

The pile is thought to have formed by differential 

movements on concentric faults within the originally well- 

bedded crater sequence. Some upthrow motions, perhaps due 

to minor resurgenceg are invoked to explain the great 

thickness and severe bedding disruption within the pile. 

It is also possible that the pile is a relic of the 

collapsed crater centre sequence which has been agitated 

by explosions. 

To the S of the crater rim, Unit 2 is generally 

poorly exposed. The Unit 2 tuffs are much better exposed 

in the cliffs along the northern crater wall. Herep 
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a: Unit 2 indipping tuffs in southern part 

of crater 
b: Unit 2 indipping tuffs in northern part 

of crater 
c: Unit 3 tuffs within the crater 
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to lithological logs. 
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assuming Unit I to be 40m thick, the outdipping sequence 
of Unit 2 is ca. 140m thick whereas in the southern crater 
rim it is ca. 60m thick. This increased thickness is partly 
due to a lack of erosion in the N but may be partly 
the effect of SW-directed blasts. These increased the 

areal extent of Unit 2 to the SW and correspondingly 

reduced the topographic height of the rim in this 

direction. 

In the N the Unit 2 outdipping tuffs form a 

monotonous pile of well-beddedv occasionally cross-bedded 

tuffs which vary from fine ash to blocky agglomerate in 

grain size (Fig, 2.6). Near the top of the unit a 4m 

scoria horizon occurs which is cut into by a >60m wide 

curved shear surface caused by slumping of tuffs into the 

crater (Fig. 2.7). 
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Fig. 2.7 Slump scar on northern crater rim, now partly 
mantled by Unit 2 indipping tuffs. 

The base of the slumped material contains many blocks 

and some scoria fragments and is overlain by block-sagged 

layers bedded parallel to the margins of the shear surface. 
Mass movement must have occurred soon after deposition of 
the scoria whilst the overlying tuffs were moist and 

unconsolidated, giving rise to the curved shear plane 

similar to that seen in slumped clays. Deposition of the 
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succeeding tuffs infilled the slump scar and was 
accompanied by slumping of their indipping equivalents 
down the crater wall. The origin of the scoria layer is 

uncertain. Since it is completely conformable with the 

surrounding tuffs it was probably formed by very short- 
lived strombolian activity of the Saefell vent itself 

due to isolation of water from the magma. Such mixed 

activity has recently been described on Capelinhosq Azores 
by Camus et al. (1981). 

Other slump scars exposed further to the E are 

more recent and are infilled by debris flows and 

occasionally by later lava flows, These Helgafell lavas 

flowed S over the eroded, scarred cliff'face of the 

northern crater rim. They now drape the rim (Fig. 2.8), 

their high viscosity enabling them to dip at up to 409. 

Collapse oversteepening of the crater tuffs and the later 

lavas may9 howeverp have occurred. 
Unit 3 

This unitv well-bedded throughoutt unconformably 

mantles eroded underlying collapsed tuffs within the 

crater (Fig. 2,3) where it has built a smallt nested 

concentric rim inside the main rim (Fig. 2,2). The nested 
rim is a purely constructional feature built up as Unit 3 

beds bend over from indipping to outdipping above the pile 

of collapsed tuffs below. 

The unit occurs SW of the main Saefell summit and 

extends out to at least 1100m from the crater rim. From a 

maximum thickness of ca. 40m within the cratert Unit 3 thins 

to <3m at its most distal exposure in the SW. The deposits 

contain some small internal unconformities in their 

oversteepened crater sequence but are usually conformable. 
Mixed airfall and surge deposits near the crater give 

way to mainly surge derived material in the distal tuffs. 
Occasional blocky units beneath cross-bedded layers 

represent the coarse airfall components of the surge- 
forming eruptions which out-distanced the surges further 

from the vent and were deposited before them. Unit 3 tuffs 

do not persist to the N of the main Saefell summitv due to 

erosion and to SW-directed blasts (Section 2.3.3). Some 
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thing indipping tuffs high up on the northern crater wall 
may belong to Unit 3p as may some of the younger debris 
flows at the foot of the crater wall, which were probably 
derived from them (Fig, 2.3). 

Well-bedded sub-horizontal tuffsp at least 9m thick, 

are exposed on the SW of the island some 2-5km from the 

crater. The tuffs overlie the Storhofdi lavas and cover an 
area of at least 0*25km 2- They consist of w'ell-bedded, 
occasionally blockyq lapilli-rich deposits containing 
highly vesicular basaltic bombs. These bombs are unlike 

any found in the Saefell ejecta and often reach 25cm in 

sizet associated with blocks up to 1-5m diameter, No 

directional data are preserved. The thickness of the tuffs 
this distance from the vent, the nature of the bombs and 
the large size of the blocks suggest that these deposits 

were derived from a nearby additional volcanov perhaps to 
the S. 

On the SW coast of Heimaey the Unit 3 tuffs are 

overlain by Helgafell lavas, with no intervening soil. The 

absence of any erosive features in the youngest tuffs and 
their conformable contact with the lavas, indicate that the 
Helgafell eruption shortly followed the cessation of the 
Saefell activity. This is in agreement with soil profiles 
from the Westmann Islands (Jakobsson, 1968) which show the 

similarity in age of the two volcanoes. 
Summary 

The units are separated by unconformities on and 

within the crater rim* These discordances are largely the 

result of syndepositional slumping of material into the 

crater. Thisq together with the lack of any evidence of 
depositional breaks in the outer flank sequence suggests 
that the three units were deposited in rapid succession. 
Similar relationships on Surtseyv where pyroclastic deposits 
built a similar structure in less than three years 
(Thorarinssont 1967). support this conclusion. 

2.3. Pyroclastic Facies 

The tuff-ring deposits are subdivided into pyroclastic 

and resedimented facies. The pyroclastic facies consist of 
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Fig. 2.8 Blocky Helgafell lavas which flowed over the 
eroded Saefell northern crater rim and now 
overlie slumped Unit 2 crater tuffs. 

4 Z- 

Fig. 2.9 Block impact craters in distal Unit 3 tuffs SW 
of the crater. The crater on the left is 
surrounded by radial cracks due to dewatering 
and fracturing of moist ash. The right-hand 
crater is surrounded bY a rim of tuff ejected 
plastically on block impact. Hammer measures 
30cm. 
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airfall and base-surge tuffs. The resedimented facies 

comprise debris flows, slumped tuffs and aeolian reworked 

deposits. 

2.3.1 Airfall tuffs 

Deposition of airfall ejecta occurred throughout the 

activity of Saefellp interspersed with periodic base-surge 

events. The proportion of airfall material in any unit is 

difficult to estimate. It changes laterally outwards from 

the vent but is probably >707o near the vent and <30% in 

distal tuffs. Typical logs of the airfall ejecta are shown 

in Fig. 2.6. 

Some of the most prominent features of airfall 

deposits are block impact craters. These often deeply 

penetrate moisip bedded phreatomagmatic tuffsq forming 

prominent sags in cross-section. Many of the distalg fine- 

grained surge tuffs are deformed by block impacts, which 

may be asymmetric due to inclined impact angles. When seen 

on exhumed bedding surfaces some of the craters are 

surrounded by radially oriented cracks whilst others have 

raised rims of material partly ejected from the sag crater 

(Fig. 2.9), 

The cracksq which are similar to those figured by 

Camus et al. (1981, Fig. 9). may have formed by fracturing 

of rapidly drying fine tuffs on impact. Alternativelyt if 

the tuffs were still moist, impact dewatering may have 

forced water outwards from the crater along radial fissures 

which have now preferentially weathered out. The raised 

rims were formed by partial ejection of more cohesive ash 

from the crater. The better consolidation and preservation 

of the rims may be ascribed to improved packing of grains 

within them because of their secondary flowage. 

Block impact structuresq as well as being occasionally 

asymmetric and thus indicating their direction of origin, 

may also be used to determine the cohesiveness of the 

underlying tuffs at the time of impact. As at Medanop 

Tenerife, -(C. hapter 3) the most cohesive tuffs tend to be 

the distalv fine-grained surge deposits. These are most 

deeply deformed (Fig. 2.10) by block impacts. The fallout 
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Fig. 2.10 Block sag impact measurements from all units of 
the tuff-ring. Blocks penetrate deeply into the 
moist, cohesive phreatomagmatic tuffs. 
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Fig. 2.11 Unit 3 surge antidune structure exhibiting 
downflow-migrating crests. See text for 
description. Flow from right to left. During 
impact, the block which deformed the antidune 
had the same direction of movement as the 
surge. Hammer measures 30cm. 
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of airfal. 1 material into surge clouds may result in 

entrainment of finer particles by the flow. Coarser ejecta 

will be largely unaffectedt especially further from the 

vent where surges have lost most of their energy. Many 

plane beds associated with distal surge deposits may thus 

have a mixed origin. Many plot in the area of overlap 
between flow and fallout on Walker's (1971) grain-size 

graphs (Section 2.6.2). 

2.3,2 Base-surge tuffs 

Base-surges (Mooreq 1967) occurred throughout the 
building of the tuff-ring. Their deposits now form up to 
30/11c of the total volume of primary tuffs. The surge 
deposits are recognised by the presence of the' 

characteristic structures detailed belowp with the 

addition of structures rarely described in the literature 

small ripples of varying asymmetry. 
Antidunes 

a) Description 

The antidunes have heights up to 3m and wavelengths 

up to 15m. They contain lee-side laminae deposited at dip 

angles less than the angle of reposet abundant stoss-side 
laminae and regular sinuous profiles (Fig. 2.11). Similar 

features, characteristic of antidunes preserved in 

subaqueous supercritical flowst were noted by Fisher & 

Waters (1970) in base-surge deposits of Ubehebep California. 

Wave height tends to increase with wavelength (Fig. 2.12a) 

similar to surge dunes formed in other tuff-rings (Crowe & 

Fisherg 1973). 

The antidunes commonly exhibit internal climbing 

cross-laminations with predominantly downflow crest 

migration at climb angles of between 15 0 and 350. These 

features are similar to the subaqueous ripple laminae 

Type C of Reineck & Singh (1973)9 though on a larger scale. 
Plots of these stoss-side versus lee-siae dips (Fig. 2.12b) 

indicate that stoss-side slopes increase as lee-side slopes 
decrease similar to other base-surge dunes (Crowe & Fishert 

1973). Individual laminae tend to thin over the antidune 

crestsv and dip angles of both stoss and lee-side laminae 
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increase upwards in any individual structure. Lee-side 

laminae are coarser and sigmoidal in shape whereas those 

on the stoss-side are planar (Fig. 2.11). 

One antidune in Unit 1 has a wave height of 1-5m and 

a wavelength of 15m and has built up over gently undulating 

well-bedded tuffs (Fig. 2.13). The structure grew on the 

downflow side of the crest of a gentle undulationg with the 

lower bedding set (a) consisting of upflow migrating crests 

at a climb angle of 30-5e . Stoss-side laminae dip at 1! f 

and lee-side at 5-EP in this set. Both are of similar grain 

sizeq although isolated larger clasts lie along many of the 

upflow dipping laminae. Upwards in the set the dip angles 

of the stoss and lee-side laminae increase and the crest of 
the antidune becomes more peaked. 

At a peak height of about 60cmq a thinp fine, mantling 
layer (b) was depositedq followed by a coarser lapilli 

horizon which is much thicker on the stoss-side of the dune 

crest and thins rapidly away from it. Aboveg the laminae of 
the upper bedding set (c) are finer and more prominent than 

any of the underlying antidune tuffs. They exhibit downflow 

climbing crest migration at an angle of 30P. 
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Fig. 2.13 Slumped antidune in Unit 1 outer flank tuffs 
500m S of the southern crater rim. See text 
for description. Hammer measures 30cm. 

Some of these laminae thicken over the crest although those 

near the top surface of the antidune thin markedly and in 

places wedge out. The whole structure is capped by about 
75cm of thin, well-bedded tuffs (d) which, together with the 
lee-side laminae, slumped down its lee face. Some of these 

upper tuffs are thought to have formed part of the migrating 

antidune but slumping has obscured their relationship to it. 

A small thrust which cuts up through the downflow migrating 

bedform crests and dies out in the slumped material may be 

an example of drag thrusting due to frictional stress 

exerted by the overhead motion of the surge. The structure 
is analogous with thrusts in turbidite sequences described 

by Ballance (1964) but has probably been aided by gravity 

slip along bedding planes. It is thought that shearing of 
the unstable peaked crest initiated drag thrusting and 

slumping, and obliterated much of the earlier structure of 
the dune. 

b) Interpretation 

Theoretical profiles of sinusoidal "dune" growth 
(Exner, 1920; Leliavsky, 1955) show that an increasingly 

peaked, overturned crest is developed with time as a dune 

migrates (Fig. 2.14). Such a peak is not normally seen in 

sediments due to grain avalanching processes, but in this 
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case deposition of the slightly cohesive ash was so rapid 
that the overturned peak became fully developed before 
being slumped. Slumping was facilitated by the instability 

of the structure and the moist nature of the tuffs. 
Further examples of base-surge antidunes (Fig. -2.14) have 
been figured by Lorenz & Buchel (1980, Fig. 42) and by 

Fisher & Waters (1970t Fig. 5). These antidunes represent 
better preserved examples of until now theoretically 

predicted structures. Both sets of authors suggest that 

the structures were formed by strong shearing of an 

originally symmetrical*antidune by base-surges. However, 

it is difficult to envisage how a surge could exert 

sufficient shear stress to deform rather cohesive tuffs, 

especially when the structures are large-scale. 

The sudden upwards change from upflow to downflow 

crest migration and decrease in grain size in the bedding 

sets indicate more than one base-surge eventl each having 

a different flow power and depositing material of 
different grain size. The lower bedding set of antidune 
type is succeeded by a thin plane bed perhaps as flow power 
decreased within the base-surge. This was then followed by 

another surge of lower flow power whose power changed with 
time to form the megaripples and capping plane beds. 

Another high flow regime structure associated with 
the antidunes is upflow-dipping backset bedding probably of 

chute-and-pool flow origin. These beds dip at up to 4e 9 
are planar to sigmoidal in shape and closely resemble the 

Type 1 dunes of Schmincke et al. (1973). 

Plasterinq structures 
These occur only at the base of Unit 1 and are 

moderately well laminated grey ash deposits which have 

adhered to vertical and overhanging joint faces in the 

underlying lavas (Fig. 2.15). They bank up against lava 

blocks and fill up crevices in the underlying deposits. 

At the base a 2-10cm thick, unbedded reverse-graded layer 

is succeeded by coarserg bedded, reverse-to-ungraded tuffs 

up to 70cm. thick. Cracks in the lava surface which are 

sub-parallel to the surge motion are filled by plastering 

tuffs whereas others oblique to this contain only 
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Fig. 2.14 a) Theoretical profiles of subaqueous dune growthq 
after Exner (1920). 

b) Peakedt overturned surge dunet from Lorenz & 
Buchel (1980). 

c) Peaked surge dunet from Fisher & Waters (1970). 
Arrows indicate flow direction. 
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Fig. 2.15 Unit 1 surge tuffs plastered against jointed, 
eroded Storhofdi lavas. Surge motion towards 
the bottom of the photograph. Hammer measures 
30cm. 

Fig. 2.16 Casts of broken up grass stems in basal Unit 1 
tuffs. Note hematite-stained scoria mounds at 
top of photograph. Surge motion from right to 
left. Knife measures 8cm. 
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horizontally bedded ash which may have fallen out of the 

main body of the surge as it passed overhead. 

The initial plaster layer contains comminuted plant 

material throughout and, in placesp flow-aligned 

fossilised grass stems occur in discrete layers at its 

base (Fig. 2.16), The grass stems, which are now replaced, 

are broken into 1-5cm long fragments and are thought to 

have been transported and aligned within base-surges. The 

grass fragments occur within a thin layer of fine grey ash 

above a soil horizon containing scoria lapilli which form 

elongate mounds sub-parallel to the alignment of the stems 

(Fig. 2.17a). Base-surges reworked the top of the soil 

horizong aggregated the older scoria lapilli in elongate 

mounds and plastered ash and grass over these. 

The grass itself consists mainly of flattenedq broken 

stems with fine ribs parallel to their length and most 

have been split lengthways so that only one side of the 

stem is preserved, Occasionally, complete tubular stems 

with cellular interior structures occur and these are 

filled with fine ash. Grass seeds are also sometimes found. 

The stems are replaced by light greyp soft and fibrous 

slightly lustrous material which powders easily and is 

possibly gypsum. Some stems are reddish-brown in placesp 

probably due to hematitic pigmentp and are overgrown by a 

whiteý fibrous radiating soft mineral which is possibly a 

zeolite, The ash matrix contains many small black scoria 

fragments and feldspar crystals but predominantly consists 

of unaltered sideromelane. 

The stems are generally well aligned within a small 

area (Fig. 2.17b) but this trend varies greatly over short 

distances due to topographic channelling and to turbulence 

within the surge. In some areas vertical lava joints have 

been plastered by ash containing the stems. Loose lava 

blocks are surrounded by plastered ash with the stems 

indicating flowage around the block sides. 

The grass stems were broken and entrained whilst 

brittle indicating that the surges were hot and dry, 

probably containing superheated steam. Cooling of the steam 

allowed condensation of water and cohesive plaster tuffs 
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were deposited. Rapid burial of the stems prevented 
oxidation and rotting and the organic material was 
replaced due to percolation of solutions through the 
tuffs. 

Thickness variations 
Marked thinning of plane-bedded horizons over 

positive topographic features, and thickening into 

depressions occur throughout all the Saefell surge tuffs. 

The most common depressions are block sag craters and 

channels and these are infilled by surge beds which 
thicken and coarsen into the centre of the hollows. The 

most prominent topographic rises are tumuli which protrude 
from the underlying lava flowst and the surge dunes 

themselves. Pinch-and-swell bedding within surge tuffs is 

not due to irregularities in the underlying surface but is 

related to the formation of low profile dunes. 

Vesiculated tuffs 

These rare features consist of thin fine-grained 

tuffs with flattened vesicles. They formed by entrapment 

of gas bubbles in water-rich cohesive surge deposits 

(Lorenzq 1974a). Many of the plaster tuffs at the base of 
the tuff-ring deposits contain vesicles which are often 
flattened in the plane of the bedding and elongate in the 

surge direction, These formed by surge shearing of the 

cohesive tuffs and compaction of the deposits. Vesiculated 

accretionary lapilli are sometimes associated with these 

tuffs and also presumably formed within the surge. 

Accretionarylapilli 
Accretionary lapilli are often found associated with 

base-surge deposits. Most of the small juvenile and lithic 

fragments in the tuffs are rimmed by 1-3mm thick layers 

of fine ash which may be concentrically layered. 

Occasionallyq small spherical accretions of ash contain 

no larger nuclei and are poorly banded or internally 

structureless. The accretionary rims are generally 

composed of poorly sorted ash and are much coarser than 

the delicately banded rims described by Moore & Peck (1962). 

They may better be described as armoured lapilli (Womer 

et al.. t 1980).. and probably -formed rapidly in the lower part 
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of the eruption column where particle sorting was poorer. 
The abundance of such structures in all the Saefell tuffs 
has important consequences for grain-size analyses by 

sieving methods. Disaggregation of the composite lapilli 

will occur and result in more fine-skewed distributions 

than are actually present. The further consequences of 
these results will be discussed in the section on 

petrography (Section 2.6). 

U-shaped channels 
U-shaped channels with radial orientation to the 

crater rim occur throughout the tuff-ring deposits but 

are never abundant. The best exposed examples occur within 

a 2m thick horizon of the well-bedded indipping Unit 2 

succession. Herev at least three closely-spaced episodes 

of channel erosion are indicated by crosscutting 

relationships (Fig. 2,18), 

The maximum shoulder width of the channels is 210cm 

and depth 50cm. The average dimensions of eight measured 

channels are 130cm width and 30cm depth. Some channels 
have moderately flat-bottomed profiles and all are filled 

by surge deposits which thicken and coarsen into the 

centre of the troughs. Many have a fine ash layer 

plastered onto their sides whilst other channel walls have 

slumpedg forming small marginal slump folds. The profiles 

of the channels are all symmetrical and their bases 

roughly follow the bedding planes of the tuffs which they 

cut. 
A meandering mudflow channel of box-shaped cross- 

section is exposed on a bedding surface beneath one of the 

channelled zones. A surge channel which developed 

immediately above the mudflow channel (Fig. 2.19) has 

deposited a thin plastered layer over its inside walls. 

The meander wavelength of the mudflow channel is about 2m, 

and is similar to modern mudflow channels which erode the 

outer flank tuffs on Surtsey. 

The mudflow channel presumably provided an irregularity 

in the topography sub-parallel to the surge motion, which 

then deposited plane beds above the channel and subsequently 

eroded them. Surge erosion probably developed because the 
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Fig. 2.18 Surge U-shaped channels cutting Unit 2 crater tuffs 
near the southern part of the crater rim. Evidence 
for the three phases of surge erosion indicated was 
derived from localities outside the diagram. 

Fig. 2.19 Broad U-shaped surge channel cuts bedded tuffs at 
the top of the photograph and follows the course of 
a meandering mudflow channel in which the hammer 
lies. Same locality as Fig. 2.18. 
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surface irregularities initiated turbulence in the surge 
cloud, the large scale of some of the U-shaped channels 
indicating that they were cut by high velocity flows. The 
tendency for such density flows to follow previously cut 

channels has been described by Fisher (1977), although 
the reasons for erosion rather than deposition into such 

underlying topographic hollows is unknown. It may be that 

surges which cut such channels contain more particulate 

material and travel at higher velocitiesq their increased 

density allowing them to erode loose ash more easily. 
Small ripples 

These ripples vary from sinuous-crested to symmetric 

and asymmetric linguoid forms (Fig. 2.20). Internally they 

are composed of cores of coarse ash and lapilli covered by 

finer layers 1-3cm, thick. They commonly have heights up to 

5cm, chord lengths up to 12cm and are often found on the 

surfaces of larger surge dune structures. Some nucleated 

on larger clasts which now have parabolic ash tails-on 

their upflow sides whereas others consist of convex-upward 

ash laminae which overlie irregularly-shaped lapilli clumps. 
Internally the ripples are either structurelessp 

composed of poorly sorted coarse ash or comprise faint 

convex-upwards-to-irregular laminations of better sorted 
fine ash. The ripples are thought to have formed partly in 

a similar way to antiripplets or adhesion ripples (van 

Straatenq 1953) which develop when dry wind-borne sand is 

blown over a smootht moist sediment surface. Howevert 

since the pyroclastic material is transported by base-surges 

which contain a high proportion of water vapourt. plasteiing 

as well as adhesion processes can occurt giving rise to a 

wide variety of ripple shapes. Ripple irregularity is due 

to variations in the direction of flow in the surge cloud 

and to whether plastering or adhesion processes were 
dominant. Occasional vesicles within the finer, rippled 
tuffs indicate that these layers were deposited by 

plastering of cohesive ash. 
Similar structuresp composed of fine ash with faint 

convex-upwards laminations are found in the upper Surtur I 

outdipping tuffs on Surtsey. In section parallel to the 
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Fig, 2,20 Small surge ripples. 
a) Sinuous-crested ripples partly formed by 

adhesion. 
b) Linguoid ripples developed over lapilli 

clumps. 
C) Irregular ripples formed by plastering 

and adhesion 



presumed current direction the adhesion ripples (Fig. 

2.21a) consist of undulating laminae with staggered crests 
and narrow troughs between. The ripples grew by Upflow 
accretion with steep stoss and more gently dipping lee- 

sides. In some inclined tuffs on Surtsey and Saefell 

gravity flowage has formed small ripples or deformed 

previously deposited surge ripples. The gravity flowage 

structures are often difficult to distinguish from surge 

ripples since both types are small., fine-grained and lack 

internal foresets. 

Ofteng small scale surge ripples occur on the upper 

surfaces of large surge dunes or pinch-and-swell structures9 

and may be interbedded with such large scale features. It 
is thought that the ripples may be the deposits of the 

"tail" of surge clouds which are more expanded and carry 

smaller amounts of material than the "head" region. This 

would explain their small sizeq plaster origin (since most 

of the steam in the tail of a surge would probably be 

cooler and more condensed) and their association with much 
larger surge structures possibly deposited by the head and 
body of the surge. 

Similar ripples have been described only once before 

(Lorenzq 1974b)p perhaps because their more irregular 

forms have been confused with complex differential erosion 

patternst which they may superficially resemble. Whenever 

more regular examples are seeno however# their depositing 

current directions are consistently radially outward from 

the crater confirming their surge origin. Deflection of the 

surges by larger dunes results in an increased spread of 

palaeocurrent data derived from them (Fig. 2.21b). Only 

the general sense of movement of the surges may be deduced 

from such examples. 

2.3.3 Directional data 

Many of the base-surge deposits contain structures 

which may be used to determine the direction of the 
depositing flows (Fi'g, 

- 
2,22a). These- directions indicate 

derivation from the craterv although some anomalous 
directions are recorded in the smaller-scale structures 
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Fig. 2.21 a) Surge adhesion ripple found on Surtsey. Note 
upflow migration of ripple crests and knobbly 
projections on upper surface of the block. 
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Fig. 2.21 b) Plan view of large Saefell surge dune with 
smaller ripples superimposed on its surface. 
Arrows indicate surge movement direction as 
shown by small ripples. Large dune deposited 
by surges which moved from N to S. 



38 

such as block sag craters, small ripples, current lineations 

and parabolic plaster coatings. The smaller structures 
were presumably deposited by surges which were more 
deflected by topography and wind action. Some of the NW-SE 

orientated lineations were undoubtedly formed solely by 

paleowinds since they trend at 900*to the radial surge 
flow direction. The lack of directional data to the N of 
the crater is due to poor exposure. 

Directed blasts may also have influenced the measured 
surge directional data, Figure 2.22b is a contour map of 
the average maximum lithic size distribution for a block 

rich bed 1-2m below the top of Unit 3. This layer was 
deposited by SSW-directed blasts which ejected 25cm blocks 

to a distance of 1600m from the geometrical centre of the 

crater (which is close to the inferred source of the 

explosions). The directed blasts may also explain the 
distribution of Unit 3 itself which is best developed SW 

of the crater. The present topography of the ring consists 

of high ground to the N and NW and lower areas to the S 

and SW and was probably controlled by these directed blasts. 

Whether high ground to the N deflected the eruptive blasts 

through a notch in the rim to the SW, or primary SW- 
directed blasts reduced the height of the rim in this 
direction is unclear. Since the block distribution is 

clearly asymmetric and Unit 3 is absent to the N on the 

crater walls it is thought that the latterp directed blast 

hypothesis is the more likely. 

2.3.4 Surge depositional processes 
Base-surges vary in their physical properties and 

this variation results in the formation of different 
depositional structures. The concept of various types of 
surge has been previously proposed by Crowe & Fisher (1973) 

and Sheridan & Updike (1975). It is important to note that 

surges change in character as they travel away from the 

vent (Wohletz & Sheridang 1979), becoming coolerg more 
expanded and slower moving. Cooling of initially 

superheated steam results in hot, dry steam changing to 

coolp wet vapour with time. 
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Fig. 2.22 bL) Directional data from Saefell structures. 
1: surge channels 
2: lineations 
3: surge cross-beds 
4: grass stems, plaster ripples, asymmetric 

block sags 
Star indicates approximate vent position 
suggested by directional structures, 
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Fig. 2.22 b) Contoured average maximum lithic clast 
diameter map of the upper Unit 3 tuffs. 
Star indicates approximate vent position 
suggested by block size distributions. 
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The large-scale antidune structures are thought to 

have been deposited by rapidly movingg concentrated surges 

which had low proportions of wet steam relative to super- 
heated dry steam, The similarity in form of these surge 

structures to antidunes developed in subaqueous sedimentary 

environments (Skipper, 1971)9 suggests that rapid 

deposition rather than cohesive ash plastering was the 

dominant process'. The large scale of these structuresq and 

the climbing cross-laminations indicate deposition by 

heavily particle-ladeng fast moving flows. This is 

supported by the occurrence of the peakedg overturned dune 

crest described above (Section 2.3.2). Other large-scale 

structures such as U-shaped channels and marked lateral 

thickness variations were probably formed by such high 

velocityp dryg concentrated flows. 

Plastering structures, vesiculated tuffs and small 

ripples contain abundant evidence of cohesive ash 

deposition. These structures are smallo indicating dilute 

surges lacking in tephra. Their depositing surges tend to 

be deflected by positive topographic features and windst 

indicating low-velocity flows, This suggests that they 

were formed by slow-moving, dilutep wet steam flows. 

Ideallyr one surge could deposit all the above structures 

at different distances from the vent#, these distances 

depending on the initial properties of the surge, Moore 

(1967) referred to strong sandblasting of trees near the 

vent of Taal Volcanog the Philippines whereas further out 

the trees were plastered with mud coatings. This is thought 

to be due to the effects of superheated steam clouds near 

the vent, which cooled and condensed outwards9 depositing 

cohesive ash. 
The concept of flow power to describe the relative 

characteristics of surges seems appropriate. At a given 

distance from a vent a surge which deposits large-scale 

antidunes has higher flow power than one which deposits 

only vesiculated tuffs. Outward from the ventt surges 

deposit structures of decreasing flow regime such as at 

Taal where surge dunes decreased in size further from the 

vent (Waters & Fisherg 1971). Deposition at any one point 
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in space reflects the deceleration of a single surge 
(Crowe & Fisher, 1973) and results in a decrease in flow 

power upwards in a bedding set. It must be stressedv 
however, that surges are not discrete events9 but are 
pulse-like in nature. This is due to fluctuations in the 

eruptive activity, a common feature of phreatomagmatic 
volcanicity (Tazieff, 1959; Thorarinsson et al., 1964). 

The head of one surge pulse may thus overtake the 
tail of the one preceding it and mixing will occur. This 

could explain why large-scale surge structures are rarely 

overlain by smaller structures, which might have been 

expected to form as a surge cloud loses energy and 
deposits lower flow power structures. Mixing of surge 
pulses increases the complexity of a simple flow regime 
model. The idealised sequence of decreasing flow regime 
upwards in a bedding set is thus only rarely'developed 
(Crowe & Fisher, 1973). 

Another factor which complicates analogies with flow 

regime studies in sedimentology is the cooling of steam in 

the surge. The transition from hot, dry steam to coolq wet 
steam willp by clumping of moist particles, lead to 
instantaneous fallout of variously-sized aggregates of ash 
and plastering onto underlying surfaces. These processes 

are not analogous to deposition of sediment from an aqueous 

mediumt although some interparticle (cohesive) forces do 

occur especially between fine grained sediments, These 

factors result in more complex relationships between flow 

powerv sediment size and bedform structures* 

2.4. 'ResedimentOd Pyroclastic Facies 

Syn-eruptive reworking of airfall and surge tuffs 

occurred throughout the formation of Saefell and post- 

eruptive reworking has continued up to the present. 

2.4.1 Debris flows 

Many of the indipping crater tuffs consist of 
massiveg blocky unitsp 1-3m thickp with irregular top 

surfaces. The mainly basalt blocks reach up to 50cm 

diameter and are often concentrated towards the top of the 
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individual debris flow units9 forming inverse coarse-tail 

grading. Their common alignment in trails defines a crude 
internal stratification. Often, well-bedded indipping 

tuffs become slump-folded downslope with occasional small 

thrust imbricate structures. These tuffs pass downdip into 

debris flows which form a pile at least 10m thick at the 

base of the crater wall. The pile unconformably overlies 

the outdipping tuffs exposed in the crater wall and 

contains rafts of originally more lithified bedded tuff up 

to 20m across and 4m thick. These rafts occur at the top 

of debris flow units and are broadly conformable with them. 

The rafts were emplaced by slumping of less consolidated 

underlying deposits. 

Some of the debris flows have not moved very far, 

indicated, by the downslope transition from bedded to 

massive tuffs, Others may have flowed down the crater 

wall, since many debris flows thicken downslope to form a 

wedge-shaped pile. One scoria-rich debris flow at the base 

of the crater wall probably represents the slumped 

equivalent of a scoria horizon exposed near the top of the 

outdipping Unit 2 sequence to the N of the crater. This 

relationship suggests flowage up to a maximum of 110m. 

Some of the debris flows overlie a thinp fine grained 

layer which is occasionally well-bedded and contains 

accretionary lapilli. This layer is thought to have been 

deposited as a cohesive layer over the crater wallq with 

subsequent coarser material sliding dbwnslope over this 

basal moist horizon. In places, coarse blocks at the base 

of the overlying debris flows have scoured this fine 

horizon, forming grooves 
- 
and scour pits. Where this fine 

basal horizon is absentg blocks projecting from the 

underlying tuffs often have a "tail" of tuff on their 

downslope side. The tails formed as the debris flows 

passed over and around the blockv rather like glacial 

"crag-and-tail" structures* 
Debris flows which occurred during Volcanism are 

overlain by well-bedded tuffs and were formed by slumping 

of poorly consolidatedg probably moistv tephra. These 

debris flows clearly originated from curved slump scars 



which dissect much of the northern crater wall. The scars 
cut back into the outdipping flank sequence and their 
hanging walls are often overlain by younger, probably 

post-volcanic debris flows. In places the scars acted as 

channels for the later Helgafell lavas which flowed over 
the eroded cliff face. Further evidence of post-volcanic 
debris flows is scarce but some thickj blocky deposits 

which drape over the ring fault in the N of the crater 

probably post-date the volcanismo since they were emplaced 

after extensive erosion of the crater tuffs. 

-2.4.2 Disturbed bedding 

Distumbed bedding occurs occasionally in the outer 
flank tuffs9 and forms units up to 2m thick interbedded 

with well-stratifiedv predominantly surge tuffs. One 

particular unitp 1-2m thickg occurs 500m SW of the southern 
crater rim in a sequence which dips SW at 50 (Fig. 2.23). 

The base of the unit'is essentially planar and is overlain 
by a 5-20cm, thick ash layer. This layer is often injected 
into the coarser unit above, forming flame structures up 
to 15cm high. The top of the unit is irregular and 
hummocky and is overlain by surge tuffs which thicken into 
the hollows in the top of the disturbed tuffs. 

The unit was formed by gravity slumping of lapilli- 

rich beds over a basal finer horizon, Rotation and 
imbrication of these moderately well consolidated tuff 
blocks during slumping led to breakdown 

' of some of the 

coarser beds which now largely form the unit. Slump 
folding of some of the'more elongate slabs also occurred. 
Movement occurred largely before deposition of the 

overlying surge beds which infill the irregular top 

surface. Minor movement after this is indicated by one 
slab which penetrates up into the bedded surge tuffs and 
slightly deforms them. 

A thin ash layer some 15-20cm below the base of the 
disturbed unit has a rippled top surface (Fig. 2.24). 
These asymmetricq regularly-spac ed ripples contain no 
internal stratification and are often overturned down dip. 

The dip slope is also the downflow movement direction of 

43 
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Fig. 2.23 Gravity slumped Unit 3 tuffs on the southern 

flank of the tuff-ring. Downslope slump 
movements from right to left broke up bedded 
tuffs and caused rucking up of finer tuffs 
below. Knife measures 8cm. 
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Fig. 2.24 Gravity slump ripples in fine tuffs from same 
locality as Fig. 2.23. Downslope movement 
occurred from left to right and the ripples 
were subsequently deformed by surges which 
moved in the same direction. See text for 
description. Tape measures 20cm. 
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the base-surges which deposited the bulk of the surrounding 
tuffs. The crests of the structures are rounded to sharp 
and are overlain by a 15cm thick layer which is inversely 

graded and is rich in accretionary lapilli. In places, 
coarser lapilli are banked up against the overturned side 
of the ripples whereas their other sides are overlain by 
finer grained tuff. 

The roundedv downslope overturned form of many of 
these ripplest the lack of internal stratification and 
their similarity to small scale slump folds suggest that 

these ripples were initiated by gravity slumping of moist, 
fine tuffs. Howeverv the passage of surges overhead has 

sheared out some of the slump folds and deposited coarser 

material on their downflow sides. Similar structures were 
described by Crowe & Fisher (1973t Fig. 7) as current 

sheared flame structures, but it is difficult to envisage 
how surges could affect injection structures developed in 

sub-surface deposits. 

Both the disturbed beds and the sheared slump 
structures are developed in base-surge tuffs of Unit 3 age. 
The structures were formed by gravity slumping of 
(presumably) moist tuffs on slopes of <50. Small contorted 
bedding structures are also developed in some of these 

surge tuffs. They may have a primary origin similar to 

contorted laminations described by Coleman (1969) in 

channel deposits of the Brahmaputra. River. These were 
thought to have formed by turbulence associated with the 

abrupt transition between the lower and upper flow regimes. 
The transition caused an increased shear stress on the bed 

of the river and subsequently formed convolute bedding. 

Base-surges might form similar structures due to 

transitions of flow regime. Howeverg these would probably 
be on a small scale due to the inability of pyroclastic 
flows to exert as great a shear stress on the surface beds. 

2.4.3 Eolian and*fluvial reworking 
a) Eolian 

Strong winds often affect the distribution of tephra 
from pyroclastic volcanoes and may also erode and redeposit 
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tuffs during and after eruptive activity. Loosev blocky 

rubble which covers many of the upper tuffs SW of the 

crater has probably been formed by wind deflation removing 
finer material. During eruption this deflation is thought 
to have formed some blocky, coarse-skewed particle 
distributions. However, since phreatomagmatic tuffs are 

generally strongly fine-skewed, this effect is rarely 
discernable. Gullies were cut by wind and rain action in 

the initial crater rim of Unit 1 age. Similar features are 

presently cut into poorly consolidated distal tuffs SW of 
the crater. 

Strong winds are presently eroding the Surtsey tuffs 

and strongly wind-sculpted tuffs are well exposed on the 

NW cliffs of the island, Some recent wind blown deposits 

on Surtsey are banked up against the SE cliffs. They are 

almost indistinguishable from primary fine tuffs except 
that they contain many parabolic wind tails on the lee- 

-faces of upstanding clasts. Similar features are common 
in exposed poorly consolidated Saefell tuffs and also on 
the bedding surfaces of more indurated tuffs. Such 

structures continue beneath overlying tuff beds and were 
formed during the eruption, as were ridges and grooves 

along the bedding surfaces. Directional measurements of 

these structures indicate that the palaeowinds responsible 

were mainly from the E or NE. 

b) Fluvial 

Many recent tuff-rings such as Surtsey and Hverfjall 

are extensively eroded by fluvial and mudflow channels. 

Saefell has few exposures of these featuresq apart from 

the previously mentioned meandering mudflow channel. This 

is partly due to the poor exposures of bedding surfaces 

and sections concentric to the crater rim, However, 

although there was some fluvial erosion of the Surtsey 

tuffs during eruptiong most occurred after the end of the 

tephra-producing activity and is thus restricted to the 

youngest tuff beds. These beds are largely grass covered 

or wind eroded on Saefell so are seldom expo§ed. ýý. Tbose that 

are sometimes contain fluvial channels. 
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2.5. Volcanic History 

A brief history of the Saefell activity is useful as 

a comparison with modern observed eruptions of this type. 

1. Rising magma interacts with water contained in the 

upper crust and sea-floor sedimentso probably at water 

depths of <100m (the average water depth on the continental 

shelf round Heimaey). A subaqueous pile of tuffs was built 

up until the volcano broke the water surface where airfall 

and base-surge processes formed a tuff-ring. This tuff-ring 

was probably soon breached on its eastern sideg allowing 

constant water access to the vent, Minor parasitic scoria 

eruptions occurred due to brief lateral migration of magma. 

2. Syndepositional slumping and collapse of the Unit I 

indipping tephra was followed by prolonged Unit 2 deposition 

with continued oversteepening and slumping of indipping 

material. Some indipping-tuffs survived slumping but were 

partly downfaulted into the crater to form a structureless 

pile. 

3. Unit 3 was then depositedg predominantly by base- 

surgest over the collapsed and eroded tuffs below. A 

nested inner rim was formed over the largely structureless 

crater pile of Unit 2. Outcrop distribution was controlled 

by SSW-directed blasts. 

4. Erosion of the inactive tuff-ring then followed 

before the strombolian activity of Helgafell. Later lavas 

flowed over the eroded Unit 2 cliffs on the N side of the 

crater. Erosion removed most of the remaining indip 

succession particularly by tidal processes, perhaps aided 

by further minor crater collapse. Outer flank tuffs were 

not eroded to the same extentv but were affected by wind 

deflation* 

2.6, Petroqraphy, Morpholocly and Alteration 

2,6.1 Petrography 

The Saefell tuffs are predominantly composed of ash 

and lapilli of basaltic glass (sideromelane) and tachylite 

with clasts of basalt, scoria and sediment mainly derived 

from oldert underlying deposits. Some basaltic clasts 
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may have been derived by brecciation of more slowly cooled 
magma at depth beneath the volcano and would thus be of 
cognate origin. No means of distinguishing between these 

and shattered accessory basaltic clasts has been found. 

Subordinate crystals of olivine and plagioclase occur 

along with rare opaque grains. The location of all the 

samples studied is given in Fig. 2.25. 

a) Sideromelane 

Most of the pale brown sideromelane grains are 

vesicular and have blocky, often equant shapes. The more 

vesicular grains have highly irregular margins due to 

breakage across vesicles whereas poorly vesicular grains 
tend to have straight or slightly curved margins. Vesicles 

are spherical or sub-spherical and any one grain generally 

contains a variety of vesicle sizes, up to a maximum of 
0-5mm. Microlites of plagioclaseq which grew after most of 
the vesicles had formedt are found in the sideromelane 

along with phenocrysts of plagioclase, olivine (up to 1cm 

diameter) and rare Ti-augite. 

Some rarep elongate sideromelane grains with stretched 

vesicles and flow-aligned microlites occur (Fig. 2.26). 

These formed by flowage of more viscous magma simultaneously 

with volatile exsolution prior to quenching. Most grains 
formed by explosive granulation due to chilling of 

vesiculating, fluid magma. 
Occasionally, sideromelane grains may be enclosed 

within rims of further sideromelane (Fig. 2.27). The first 

non-vesicular grain probably fell Iýack into the vent and 

was caught up in a subsequent eruption and rimmed by a 

rapidly quenched magma droplet. Other grains have irregular 

curved cracks due to shattering of the glass during rapid 

quenching. These cracks are most abundant in the non- 

vesicular grains and perhaps indicate that such fragments 

suffered the most intense quenching, or more probably that 

they have been severely abraded since their formation. 

b) Tachylite 

Although not as abundant as sideromelane, dark brown 

to black tachylite occurs in all units of the tuff-ring in 

variable proportions (Table 2.1). Tachylite grains are 
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Fig. 2.25 Location map of samples which are numbered as 
they appear in the text. 



Fig. 2.26 Flow-aligned plagioclase microlites in partly 
tachylitic sideromelane lapillus. Plane 
polarised light. x1O. 
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Fig. 2.27 Slightly altered sideromplane lapillus enclosed 
within pale vesicular glass. Plane polarised 
light. x1O. 
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generally more vesicular than sideromelane and have more 
irregular though still sub-spherical vesicles. These are 
in places smaller near grain margins due to more rapid 

chilling. Grain shapes are roughly equant or elliptical 

with small irregularities because of breakage across 

vesicles. Many grains have lobate or ragged margins as 

magma droplets plastically flowed during slow cooling. 
Plagioclase microlites up to 0-2mm are common in 

most tachylite grains and, especially in the larger grains, 

are aligned parallel to vesicle elongation directions. in 

grains which have spherical vesiclesq the microlites are 

still well-aligned indicating slow flowage of fluid magma 
before disruption. The microlites grew before cooling of 

the magma since many are sharply truncated by grain 

margins and no decrease in their size towards tachylite 

margins is seen. Some grains have microlite alignment and 

vesicle elongation parallel to their marginsv perhaps 
indicating spinning of still fluid magma droplets during 

ejection. 

Rarelyl sideromelane grains have developed tachylite 

patches due to the rapid chilling of magma which was 
beginning to crystallize iron oxides. Other grains develop 

variable amounts of iron oxide ranging from pure tachylite 

to pure sideromelanel depending on the rate of cooling. 

Some grains consist of sideromelane with enclosing- - 
tachylite rims (or vice-versa) due to recycling of earlier 

eruptive products. 
Although highly variable in size and vesicularity, 

many of the grains being being scoriaceoust the tachylite 

is generally coarser than sideromelane in any deposit, 

often reaching 1cm diameter. It is probable that the rapid 

chilling of the sideromelane more effectively fragmented 

the magmat producing finer particles. In some samples 

tachylite-cored accretionary lapilli completely dominate 

particular horizons (Fig*' 2.28). indicating less water- 
influenced eruptions. 

c) Vesicle size 

In common with most pyroclastic deposits the 

sideromelane ash fragments do not contain an abundance 
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of very small vesicles. They are dominated by vesicles 

with radii in the range 0-02-0-Imm. Sparks (1978) noted 

that vesicles with dimensions less than the critical 

bubble radius for expansion (R*) should not be preserved, 

and most should be considerably larger than this. For 

scoria R* is generally about 5, um which is close to the 

minimum Saefell vesicle size. Howeverg the average size of 

the Saefell vesicles is rather less than the average for 

basaltic scoria which is 1-10mm (Sparks, op. cit. ). This is 

due to the different eruption mechanisms of surtseyan and 

strombolian volcanoes. 

In strombolian activityp magma rises freely to the 

surface and is disrupted by bursting of relatively large 

bubbles. In surtseyan activity, magma rises to near-surface 

depths and explosively interacts with water, causing 

quenching. The mass of surface overburden imposes a 

hydrostatic pressure on the magma, retarding free 

vesiculation. This effect is slightly enhanced by the 

flashing of water into steamý which imposes additional 

retarding pressures. The vesicle sizes. thus depend to some 

extent on the depth below surface at which the magma 

contacts waterv and the amount of steam produced. 

The small size of the Saefel. 1 vesicles is thought to 

be at least partly due to the effects of pressure on the 

magma. Sparks (1978) modelled the growth of-bubbles as a 

function of depth below magma surface for various magma 

parameters. Fig. 2.29 shows two of his graphs for varying 

magma ascent rate and water content. The effect of 

explosively quenching magma at depth below overburden is 

comparable to arresting magma vesiculation when bubbles 

are some depth below its upper surface. Because the 

overburden material is likely to be less dense than basaltic 

magma, direct comparison between depth values on Sparks' 

theoretical curves and surtseyan eruption depths is not 

possible. It must be stressed that overburden pressures 

will influence only the decompressional growth of bubbles, 

diffusional growth is dependant on the physical properties 

of the magma. 

In the Saefell tuffs the vesicle sizes preserved are 
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Fig. 2.28 Tachyl i te (t)- cored accretionary lapilli from 
sample 112 (Unit 1). 
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Fig. 2.29 a) Variation in vesicle radius with magma ascent 
rate (U cm ! 371). 

b) Variation in vesicle radius with wt-/v H20 
(W) content of magma. 

C) Progressive bubble growth as magma nears 
surface. Chilling of the Saefell magma 
occurred between stages ii) and iii). 
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0-02-0-Imm. In the more scoriaceous lapilli vesicle sizes 
reach 0-4mm. Since sideromelane fragments are smaller than 

scoria from the same horizon, it seems likely that larger 
bubbles are not preserved within them due to shattering of 
the glass on quenching. The concave embayments in many 

sideromelane fragments support this conclusion. By 

reference to Sparks' (1978) diagrams the range of vesicles 
in the Saefell tuffs can be used to estimate the depth 

below surface of magma: water interaction. Assuming magma 

parameters to be the same as in Fig. 2.29b and dissolved 

water content to be 1% the 091-094mm vesicle size range 

would be preserved by quenching at depths of <100m. The 

state of vesiculation of the Saefell magma is thought to 

be as indicated in Fig, 2,29c, with only minor disruption 

due to bursting of large bubbles. 

These results are in general agreement with the 

similar type of eruptions on Surtsey. Here, the tuff-ring 

built up a 130m thick pile of hyaloclastic and pyroclastic 
debris above the sea-floor. Water percolating down through 

the vent material from the breached crater of the tuff-ring 

could contact magma at shallow depths. In conclusion, it 

may be seen that vesicle size ranges can be qualitatively 

used to compare eruption mechanisms. Further discussion of 

this evidence will follow in later chapters. 

d) Fines 

All the Saefell tuffs contain a high proportion of 

fine ash which generally forms a matrix between coarser 

particles. For practical purposes the matrix was defined 

in thin section as those particles <0-2mm and this was 

found to constitute between 35 and 75/1c of each sample 

(Table 2.1). Although altered in many samples the matrix 

is generally composed of sideromelane grains. These are 

largely less vesicular than the coarser grains because 

many represent the broken up glass between the vesicles of 

coarser particles. 

In many of the lapilli-tuffs much of the fine 

material exists as accretionary rims around cores of 

coarser particles (Fig. 2.30). In some cases all the fine 

material in a particular lapilli horizon is found within 
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these rims. Such horizons contain a high proportion of 
void space between the largeg composite grains. Typically, 

the rims are 0-1-Imm thick and contain fragments <0-2mm. in 

diameter which are poorly sorted and either coarsen 
towards the outer rim margin or are ungraded. Elongate rim 
fragments lie with their long axes concentric to the core 

of the lapilli but this is rarely sufficiently well 
developed to form even faint concentric banding. The rims 

vary in thickness between deposits but tend to be of 

similar size in any one bed, and form around any particles 
larger than the rim grain size. All.. IapilJ-i contain a 

particle nucleus with a diameter greater than half the 

total diameterp which may be a juvenile, lithic or crystal 
fragment. 

The rims vary in thickness around irregularly-shaped 

grains so as to smooth out such irregularities. This is 

best displayed by lapilli which stuck together during 

growth and subsequently accreted a common rim. The largest 

lapillus found has a diameter of 15mm with a rim thickness 

of 2mm. The majority lie between 1 and 5mm and occur in 

thint well-sorted beds or more usually scattered 

throughout massivel poorly-sorted thicker units. 

The rimmed lapilli are different to most accretionary 

lapilli described from pyroclastic deposits, which 

generally have finet concentric laminae around a central 

core of coarserp structureless ash (Moore & Peckt 1962). 

Howeverg most of the latter lapilli formed by accretion in 

high eruption columns. Herep the abundance of fine material 

and small amounts of moisture favoured such relatively 

slow "onion-skin" growth as particles were buoyed up in 

the plume convective system. In contrast, small tuff-ring 

voicanoesp with their lowq heavily particle laden eruption 

columns rich in steam would provide conditions favouring 

the rapid growth and fallout of lapilli rimmed by poorly 

sortedg coarse ash. The inverse grading seen in many of 

the rims was probably formed as lapilli fell through the 

lowerp coarser regions of the eruption cloud. Similar 

accretionary lapilli'have been found by the author in 

other Icelandic tuff-rings such as Hverfjall, Hrossaborgo 
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Ludent and Surtsey and are thus characteristic of the 

water-richv poorly-developed eruption columns of tuff- 

rings. 

e) Crystal and lithic fragments 

Plagioclaseq olivine and magnetite are the main 

crystal phasesq along with rare clinopyroxene. Their 

compositions have been determined optically. The 

plagioclase is andesine-labradorite (An46-54) and is the 

most abundant phenocryst, reaching up to 2cm (and 4cm in 

the marginal scoria deposits within Unit 1). The 

plagioclase occurs either as separate crystals with 
brokeny angular margins or is rimmed by basaltic glass. 
Such rimmed feldspars are commonly intergrown with the 

glass at their margins (Fig. 2.31) indicating that 

resorption and corrosion occurred just prior to quenching 

of the magma. Some feldspars have rounded patches of 

vesicular glass within them which may indicate that 

corrosion of early formed'feldspars occurred with 

penetration of magma into cracks. Skeletal inclusions of 

acicular opaque crystals, possibly magnetiteg are found 

in one feldspar grain. 

Olivineq like plagioclase, occurs as single crystals 

up to 0-4mm but is more commonly associated with basaltic 

glass. The olivine is forsteritic in composition (Fo60-85) 

and sometimes contains small brown cubes similar to those 

which Jakobsson (1968) identified hs*Cr-ýspinel in olivines 

from other Westmann Island volcanics. Many of the olivines 

are deeply corroded by the surrounding glass although some 

subhedral fragments do exist within glass lapilli. * 

Clinopyroxene is purplish to pale brown, often weakly 

pleochroic and is probably titanaugite. It rarely forms a 

separate crystal phase and is much more common in the 

basalt lithic clasts. 

The lithic clasts consist almost entirely of alkali 

olivine basalt probably similar to the composition of the 

Saefell glass which has been analysed (Table 2.2). The 

most common lithic clast is a medium-grained holocrystalline 

basalt with plagioclase feldspars up to 0-5mmo olivine and 

intergranular titanaugite. These clasts were derived by 
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Fig. 2.30 Sideromelane lapillus with poorly-sorted 
accretionary rim. Plane polarised light. x1o. 

F, ig. 2.31 Plagioclase crystal with sideromelane glass 
which has penetrated along a cleavage plane 
and corroded part of the grain. Plane 
polarised light. xIO. 
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TABLE 2.2 SAEFELL GLASS AND MINERAL ANALySES 

(1) (2) (3) (4) (5) (6) 
S'02 46-8 46-8 53-2 37-6 47-3 46-6 
Ti02 2-53 2-78 0-07 0-12 2,136 2-02 
A1203 14-1 16-7 26-9 0-08 16-9 15-9 
Fe203 - - - 2-66 1-61 
FeO 12-1 12-7 0-52 20-6 9-10 10-3 
MnO 0-22 0-28 - 0-38 0-15 0-20 
M90 6-59 6-12 39-4 5-38 9-00 

CaO 12-2 9-51 10-15 0.30 10-4 10-51 

Na20 3-04 4-01 5-02 0-59 3-63 3-21 

K20 0-59 0-82 0-35 0-02 0-70 0051 

P205 - - - 
-- 

0*37 0-26 

Total 98-17 99-72 96-56 99909 98-95 100,12 

(1) Sideromelane lapillus from 112 (Unit 1). 
(2) Sideromelane lapillus from 112. 
(3) Plagioclase microlite from 112 lapillus. 

(4) Olivine phenocryst from 112 lapillus. 

(5) Helgafell lava (Jakobssong 1968) for 

comparison with Saefell glass. 
(6) Surtsey lava (April 1964) (Jakobssong 1968). 

Total Fe as FeO in samples (1) to (4) analysed 
by electron microprobe. 
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fragmentation of older underlying lavas. 

f) Composition of the tuffs 

The tuffs were point-counted in thin section to 

determine their modal composition (Table 2.1). The 

similarity in composition of the tuffs is indicated in 

Fig. 2.32 which displays the variation in composition up 

the Saefell sequence. No systematic changes in the tuff 

composition are found to occur although the exeptionally 

high matrix content of the Unit 3 samples may indicate the 

greater violence of the eruption at this timeg causing 

intense granulation of the tephra. 

2.6.2 Grain size and morphology 

a) Grain size studies . 
Although grain size studies have long been used in 

sedimentology to determine the origin and depositional 

mechanism of sediments this approach has only comparatively 

recently been quantitatively applied to pyroclastic 

deposits (Sheridang 1971; Walker, -. 1971; Walker & Croasdale, 

1971). Various size parameters have bee6 used in an attempt to 

distinguish the eruption typep the depositional mechanism 

and the distance from the vent of tephra samples. Walker 

(op. cit. ) used median diameter vs. sorting plots to 

distinguish between pyroclastic flow and fall deposits. 

Walker & Croasdale (1971) showed that such plots are 

effective in discriminating between strombolian and 

surtseyan activity. In a different approach, Sheridan (1971) 

used C (coarsest one percentile) -M (median diameter) plots 

to distinguish between various types of airfallp surge and 

flow deposits. 

Many younger pyroclastic deposits have now been 

sieved to determine these parameters and comparison with 

the Saefell tuffs may be usefully made* Due to the 

indurated nature of many of the Saefell tuffs the grain 

size distribution was determined by thin section point 

counting techniques (see Appendix 1 for methods employed). 

Conversion of thin section data to equivalent sieve values 

was carried out by use of Harrell & Eriksson's (1979) 

equations (Appendix 1). The raw and converted data for the 
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Fig. 2,32 Point count modal analyses of the Saefell tuffs. 
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samples is given in Table 2.3. No attempt was made to 

calculate skewness or kurtosis parameters because they 

cannot be accurately converted from thin section to sieve 

grain size measurements and are little used in pyroclastic 

studies. 

When the 8 Saefell samples are plotted on an Mdgr/cro 

diagram (Fig. 2.33) the samples lie within the surtseyan 

field or are more often slightly finer and less well- 

sorted. All the samples plot within Walker's (1971) flow 

field (Fig. 2.33) and some plot in the area of overlap 

with the airfall field, a characteristic of many base- 

surge deposits (Walker op. cite). Howeverg on a C-M diagram 

(Fig. 2.33) the samples fall into the fallq flow and surge 

fields of Sheridan (1971). This apparent diversity in 

origin may be explained by considering some of the features 

of the tuffs which are as follows s- 

1. Many samples contain accretionary lapilli. Build 

up of poorly sorted rims of ash round coarser cores and 

subsequent fall out will result in much more poorly-sorted 

grain distributions. This is sufficient to cause airfall 

tephra to plot in the field of pyroclastic flow on an 

Mdo/qo diagram. Sample 17 is completely composed of large 

accretionary lapilli and plots in the flow field on an 

Mdolo; 6 diagram (Fig. 2,33) but in the airfall field on a 

C-M diagram. The presence of accretionary lapilli increases 

a-0 greatly and for such samples C-M plots are more 

meaningful since. they are not dependant on sorting. The 

reason why many of the samples plot in the rhyolitic ash 

flow field is unclear. It may be connected with the 

extreme fines-enriched nature of most samPlesq causing 

them to have higher positive Mdo values. 

2, Many samplesq although dominantly composed of fine 

ashp contain isolated lapilli which greatly alter their 

C (coarsest one percentile) values. Such coarse fragments 

are very common in proximal deposits and may result by 

mixing of coarser material from a particular eruption with 

the finerg more slowly settling material from a preceding 

explosion. Alsot the moisture-richg denseq poorly-expanded 

eruption columns of surtseyan tuff-rings preclude any 
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marked sorting unless strong winds are blowing. These 

cause removal of fines and thus better sorting in proximal 
tephra. 

3. Samples of Unit 3 from more distal tuffs are 
generally finer and better sorted than other deposits. 

This is thought to be the result of directed blasts during 
Unit 3 deposition sorting the tephra better than non- 
directed eruptions. This would explain the finet well- 

sorted sample Ill which is thought on field evidence to be 

a distal base-surge deposit, and plots in the base surge 
dune area on a Sheridan C-M diagram (Fig. 2.33). Other 

distal Unit 3 deposits (10 & 17) are much more poorly 

sorted, due to the presence of the previously mentioned 

accretionary lapilli. 

When compared with cumulative curves for Surtsey 

tephra (Sheridan, 1971). all the Saefell samples have 

similar characteristics (Fig. 2.34). Sheridan argues that 
the Surtsey deposits have two modes of transport indicated 

by their coarse and fine. fractions respectively. The coarse 
fraction-has airfall and the fine fraction has suspended 
load characteristics on size-frequency diagrams. This is 

possibly because near the vent airfall tephra is 

continually falling into and mixing with base-surge 

deposits. The convergence of the Saefell (and Surtsey) 

curves towards the finer part of the distribution suggests 

coarse tail gradingg indicative of high particle 

concentration flows (Middletong 1966). 

b) Morphology of tephra 
Ash morphology was studied by SEM (see Appendix 2 for 

details) and quantitative measurements of grain shapes 

were carried out using the methods of Honnorez & Kirst 

(1975). Such studies are useful in distinguishing the 

mode of formation of pyroclastic deposits by comparison 

with the products of observed or better understood 

eruptions. A comprehensive atlas of ash morphology has 

been prepared by Heiken (1974). 

sEM studies 
SEM studies indicate that the Saefell tephra is 

typical blocky phreatomagmatic ash with grain shapes 
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Fig. 2.34 Cumulative frequency curves of Surtsey and 
Saefell tuffs. 
a) Surtsey tuffs (largely from Sheridan, 1971) 
b) Saefell tuffs 



controlled by fracturest and having generally low vesicle 

contents. Concave fracture surfaces and triangular impact 

pits (Fig. 2.35a) are common due to high velocity particle 

collisions which knock the sharp corners off most of the 

larger grains. Grain abrasion is probably aided by the 

internal thermal stress within the rapidly chilled glass 

which causes the particles to react in a more brittle 

manner than more slowly cooled glass. This process partly 

accounts for the lower proportion of fine tachylite grains 
in the matrix of the tuffs even though they have been 

subjected to similar impact effects. Finer glass grains 

tend to be more angular (Fig. 2.35b) and have been less 

abraded during eruption, a process noted in the wind 

transport of quartz grains (Kuenen, 1964). The main origin 

of the variously-sized tephra is of course primary 

granulation of slightly vesiculating fluid magma by 

explosive quenching. This forms the main , planar fracture 

surfaces which bound most grains and meet at nearly right 

angles. These are due to contraction of the glass after 

chilling and are characteristic of hyaloclastic ashes 

(Heikeno 1972). The abrasion process is a later effect 

superimposed on this and forms the smallergcurved fracture 

surfaces and impact pits. 

Other features of the tuffs include s- 

a) Sphericalq smooth-surfaced projections (Fig. 2.35c) 

interpreted as vesicle infilling material exposed by 

breakage of altered grains during sample preparation. 

b) Rare etch pits (Fig. 2.35d) which are probably due to 

dissolution by groundwater. 

c) Growth of authigenic minerals; this feature is seen on 

most grain surfaces and will be discussed in the section 

on alteration. 

22antitative grain morpholooy 

Measurements of the relative proportions of planar (P), 

convex (V). and concave (C) segments along grain perimeters 

were carried out on thin sections of the tuffs. Honnorez & 

Kirst (1975) developed such measurements to quantify the 

difference between non-explosive granulation of deep sea 

basaltic extrusive activity and explosive granulation of 
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Fig. 2.35 a) SEM photograph of Saefell ash showing concave 
fracture surfaces, impact pits and small 
vesicles. x250. 

A. 

Ll* 

Fig. 2.35 b) SEM photograph showing blocky, angularg fine 
Saefell ash. x150. 
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Fig. 2.35 c) SEM photograph of authigenic vesicle infill 
material exposed due to grain breakage. Note 
smooth surface of material in contrast to the 
irregular authigenic coatings on surrounding 
grain surfaces. x900. 

Fig. 2.35 d) iEM photograph of etch trails on sideromelane 
lapillus, probably due to dissolution by pore 
fluids. x8OO. 
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shallow water eruptions. Deep water extrusion of non- 
vesiculating magma forms hyaloclastic debris which is 

characterised by high proportions of planar grain 
boundaries. Shallow water activityg where the confining 

water pressure is insufficient to prevent vesiculation of 
the magmag forms hyalotuff debris characterised by high 

proportions of convex and concave grain boundaries. Some 

measure of the degree of vesicularity of the magma during 

any particular eruption episode can thus be made and may 
be related to the eruption type and the primary depositional 

mechanism of the tephra. Such studies also provide 

quantitative comparisons between modern and ancient 

volcanic products and aid in the recognition of ancient 

eruption types. 

PVC plots of the Saefell tephra (and two Surtsey 

examples) are shown in Fig. 2.36 and compared to typical 

byalotuff and hyaloclastic distributions taken from known 

eruptions of these types. In general the spread of the 

Saefell results reach much higher P values than Honnorez & 

Kirst's (1975) dividing boundary of P=2005' for blocky 

hyaloclastites and irregular hyalotuff grains. This 

indicates a much more variable vesicularity of the Saefell 

magma on quenching which means simple conclusions are hard 

to make. As a general rule none of the grains analysed 

have P>507o and most have P<40% indicating that explosive 

fragmentation was the dominant process. As well as this, 

samples analysed have higher C proportions than Vt because 

both intersection of planar fractures with vesicles and 

abrasion pits are concave. It-is difficult to see how 

convex grain margins could be formed in such an explosive 

environment. 
Variable vesicularity of closely spaced areas of the 

Saefell magma as it was chilled is thought to be the 

reason for the spread of PVC data. This variability need 

only be present on the scale of a few cm's to produce the 

total range in vesicularity found in the Saefell ash. 

Since the disruption of the magma does not depend on 
bubble coalescence (Section 2.6.1c) it becomes a chance 

factor whether any particular grain contains a vesicle or 
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ash morphology. 
-Surtsey ash 

Honnorez & Kirst (1975). 
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not. The state of the magma on chilling is thought to be as 
indicated in Fig. 2.29 where sparse, larger bubbles coexist 

with more abundant, smaller vesicles. The large bubbles are 

never preserved in the Saefell tephra because the size of 
the containing fragments is too large to be stable on 

quenching and subsequent abrasion. 

C omparisons between the different Saefell samples, and 

also with the Surtsey examplest indicate few essential 

differences in the state of the magma and the eruption type. 

Average PVC values for all the tuffs are bounded by the 

area P23-40t V17-34 and C32-50. In general finer fragments 

tend to plot with higher P values, due to their smaller 

perimeters intersecting few or no vesicles. 

A more effective plot for distinguishing hyalotuffs 

from hyaloclastites is aP vs N plot I where N= no. of 
inflexion points around grain perimeters (Honnorez & Kirst, 

op. cit. )]. On this diagram a line with slope 0-75 forms a 
boundary between hyaloclastite grains below and hyalotuff 

grains above the line. The Saefell grains (Fig. 2-37) are 

generally distributed on either side of the line with quite 

a wide scatter. For individual beds the proportion of 

grains in the hyalotuff field varies from 40 to 71%, but 

with only one exeption all the samples plot more towards 

the hyalotuff field. This exeption is sample 111, a 

probable distal base-surge t4ffp which has a high proportion 

of fines. The finer particles (<0-5mm) in all the samples 

account for almost all the points which plot in the 

hyaloclastite field. This is not surprisingp since fines 

have low N values (being small) and have fewer vesicles, 

giving them high P values. Thus I11t having more fines 

than any other samplep plots more in the hyaloclastite 

field. The two Surtsey samples plot with similar spreads 

to the Saefell grains (Fig. 2.37) except that 19 plots 

mainly in the hyalotuff field, although many fines lie 

close to the boundary line. 

It is thought that the spread of results indicates 

that both explosive and non-explosive granulation of magma 

occurred throughout the Saefell activity. However, since 

many fines are probably derived by breakage of larger 
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grains, little can be said about the state of the Saefell 
magma except that it was vesiculating, but not disrupting 
due to bubble coalescencet when chilling occurred. Honnorez 
& Kirst (1975) conclude that most volcanogenic material is 
likely to be generated by more than one mechanism, a fact 
borne out by this study. Due to the marked difference in 

morphology of coarse and fine particles however, it is 

suggested that only grains larger than 0*5mm should be 

measured in attempts to identify the products of explosive 
and non-explosive subaqueous volcanism. These particles 
result almost entirely from the primary chilling of the 

magma and readily indicate its degree of vesicularity at 
that time. 

2.6.3 Alteration of tuffs 

a) Previous work 
The alteration of sideromelane to palagonite is a 

microsolution: precipitation process (Jakobssono 1979) 

which involves the movement of cations through the glass 

structure and their replacement by H20. Some workers, 

most recently Bonatti (1965)9 believed that palagonite 

could be formed simultaneously with the quench formation 

of sideromelane. It is now widely acceptedv however, that 

the process is dependant on time, temperature and the pH 

of the water (Hay & Iijima, 1968b; Jakobsson, 1978). 

During alteration the main components leached out of the 

sideromelane areg-in-order on a volume basis: Na20t CaO, 

A-1203t K209 Si02 and MgO (Jakobssong 1979). H20 enters the 

glass and ferrous iron is oxidised to ferric iront staining 

the palagonite and the rock yellow to red-brown. These 

results were able to be obtained because the alteration of 

sideromelane to palagonite is essentially isovolumetric 

(Hay & Iijimag 1968a). 

Microprobe analyses by other workers (Hay & Iijima, 

op. cit.; Harveyt 1974) indicate that the distribution of 

most cations in palagonite is variable and that Of K20 is 

highly variable. This is thought by Harvey (op. cit. ) to be 

due to its high ionic radius preventing movement out of the 

sideromelane. Alsop it is more mobile in the looser 
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palagonite structure but unable to leave the system 
completely. Such variability in distribution of cations 
within the palagonite contrasts markedly with the very 
sharp boundary between fresh and altered glass. This 
indicates that a microsolution front penetrates into the 
fresh glass, a slow process which causes the prominent 
banded nature of many altered glass rinds. 
Most of the displaced cations go to form authigenic 

mineral growths close to the site of alterationo since 
percentages of palagonite and authigenic minerals are 
closely comparable within the scale of thin sections (Hay 

& Iijimaq 1968a, b). Bulk analyses of altered and unaltered 
tuffs (Hay & Iijima, op. cit. ) indicate that although 

extensive small-scale cation movement occurs at grain 

margins their mass movement through the rock is not 

extensive. These authigenic growths are mainly of zeolites 
and carbonates although opal and montmorillonite have also 
been described. 

b) Saefell alteration 
Palaqonite 

The first noticeable stage in the alteration of the 

Saefell tuffs is a darkening of the extremely fine 

material in the matrix which becomes muddy as individual 

grains lose their definition. This is followed by the 

development of thin rinds of orange-brown palagonite 

around grain margins and vesicles within the grains. Small 

amounts of zeolite are patchily developed in the pore 

spaces and vesicles and these increase with the in4prease 

in thickness of palagonite rinds. The most extreme 

alteration is found in one of the oldest samples from 

Unit 1. Within thist most grains smaller than O-1mm are 

totally palagonitized and altered rinds of up to 0-05mm 

exist on the larger grains. 
The first type of palagonite to form is cleart yellow, 

isotropicp and in places concentrically layered with no 

optically determinable crystalline phases. This is a form 

known as gelpalagonite (Peacock, 1926) and was also the 

first visible palagonite to form on Surtsey (Jakobssong 

1978). In some of the most altered Saefell samples the 
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gelpalagonite is replaced by a more brownish, translucent, 
birefringent form (Figs. 2.38,2.39) which is occasionally 
fibrous. This is probably fibropalagonite (Peacock, 1926), 
the fibres of which have been found to consist of 
smectites (Nayuduo 1964; Hay & lijimat 1968b). The 

gelpalagonite and fibropalagonite correspond respectively 
to the phases X and Y of Stokes (1971) who believed phase Y 

to be a crystalline form of phase X. The crystalline 

nature of the Saefell fibropalagonite is indicated by its 

fibrous form and by a ubiquitous length slow character 

normal to rind margins even where crystals cannot be 

optically detected. 

Extreme variability in the thickness of palagonite 

rinds, even within the scale of a thin section, is common. 
In one of the more altered tuffs, the thickness varies from 

0901-0-imm in grains 2cm apart. On Surtseyp variations of 
this magnitude and greater were ascribed by Jakobsson 
(1968) to the inability of steam to permeate non-porous 
tuffs. This steam originated by convective heating of 

mixed sea and meteoric water and permeated through the 

tuffs within the craters. The most highly altered Saefell 

deposits occur within the crater but the palagonite 
thickness variations noted above occur in distal, outer 
flank Unit I tuffs. Howeverg alteration in this area SW of 
the crater was probably enhanced by a thermal anomaly 

associated with the nearby parasitic scoria cone# as 

elsewhere the outer flank tuffs are moderately or 

completely unaltered. The more extreme crater tuff 

alteration is probably due to steam seepage associated 

with a crater thermal anomaly. This was not developed 

throughout the crater as indicated by the distribution and 
degree of palagonization of the Saefell tuffs (Fig. 2.40). 

This qualitative map shows that the tuffs on the N side of 

the crater are the most alteredg due to preferential steam 

permeation in this area perhaps aided by an additional 

thermal input from the overlying Helgafell lavas. In general 

the oldert outer flank tuffs are more altered because 

palagonitization has occurred slowly by subaerial 

weathering at low temperatures. 
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Fig. 2.38 Altered sideromelane ash with outer banded 
fibropalagonite rind and inner gelpalagonite. 
Plane polarised light. x25. 

DC7`411 -1 -- 

Fig. 2.39 Altered sideromelane lapillus with banded 
palagonite rind and thin accretionary ash rim. 
Clear, blocky zeolite around the composite 
fragment formed after partial removal of the tuff 
matrix. Plane polarised light. x40. 
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Chemicallyq the alteration of glass to palagonite 
in single grains was studied by electron microprobe 
(Table 2.4). Palagonite is depleted in Si029 A1203, CaO 

and Na2 0 with respect to sideromelane. Ti02 , FeO and K2 0 

are relatively enriched in the palagonite, which is much 

more hydrous. MgO is slightly enriched in one palagonite 

sample and depleted in another. These results agree with 

those of Hay & Iijima (1968b) except for K20 and MgOp 

which they indicate are depleted in palagonite within 

single grains. Howeverp both cations are enriched in the 

above authors bulk analyses of palagonite, indicating 

variations in their distribution throughýthe altered 

material. 

Authigenic minerals 

The authigenic minerals formed on palagonitization 

of sideromelane are present in small amounts but increase 

with increasing alteration. The most common authigenic 

minerals are zeolites which form thin irregular linings 

in the pore spaces or within vesicles. The minerals (Fig. 

2.39) are of two types: - 
1) Colourlessp blocky crystal aggregates with 

' 
moderate 

relief (n>balsam) and weak to nil birefringence. Their 

optical properties suggest that they may be chabazite or 

analcite. 

2) Fine, radiating needle-like aggregates of low relief 

(n<balsam)t low birefringence and length slow crystals. 

They are much less abundant than the blocky aggregates 

and are perhaps natrolite or phillipsite. 

Limited semi-quantitative microprobe analyses of 

these authigenic minerals (Table 2.4) indicate that they 

are hydrous, inhomogeneous phases. The blocky aggregates 

have a significant Na content along with lesser amounts of 

Cap Mg and Fe. Their chemistry varies over small distances, 

suggesting that ion diffusion has occurred. They may 

represent Na-zeolites such as analcite or natrolite which 

have exchanged cations with aqueous solutions. Zeolites 

are precipitated from cation-rich fluids which have 

leached the surrounding glass. The permeable structure of 

zeolites (Deer et all 1975) would allow small amounts of 
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TABLE 2.4 PALAGCNITE AND AUTHIGENIC ANALYSES 

(1) (2) (3) (4) (5) (6) (7) (8) 
Si02 45-7 38-6 31-9 38-2 44-4 44-4 45-4 44-4 

Ti02 2-71 4-13 4-39 4-35 0-14 0-14 0001 0-16 

A12 03 16* -1 11-0 8-49 11-2 19-5 19-6 20-2 19-7 

FeO - 12-4 19-9 20ol 20-5 1-07 0*85 0-25 0.61 

MnO 0-19 0-18 0923 0-16 0-11 0903 0-02 - 
mgo 6-20 4-90 6-33 5-18 1-87 0-05 0-14 0-52 

cao 9-72 3-38 1015 3-29 1-24 1-29 0-74 1-49 

Na2 0 3-90 1-13 1-37 1-67 4-18 5@12 5-00 5-16 

K20 0-78 0-93 0, -88 1-26 Ooll 0-72 0-81 1-16 

Total 97-70 84-15 74-84 85-81 72-62 73-20 72957 73*20 

(1) Sideromelane lapillus from 112 (Unit 1). 

(2) Palagonite rind around above lapillus. 

(3) Palagonite rind around lapillus from 112. 

(4) Palagonite rind around vesicle in 112 tuffs. 

(5) Blocky zeolite (? analcite) from 112 pore infill. 

(6) Blocky zeolite (? analcite) from 112 pore infill. 

(7) Fibrous zeolite from 112 vesicle infill. 

(8) Fibrous zeolite from 112 vesicle infill. 
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"foreign" cations to enter its aluminosilicate framework. 

The high water content of the Saefell zeolites enhanced 
their capacity for cation exchange. 

The fibrous aggregates have similar Na contents to 

the blocky material. They contain only minor traces of 

other cations and may thus be purer forms of analcite or, 

since they are fibrousq more probably natrolite. The low 

Na values compared with published zeolite analyses (Deer 

et al, 1975) may be partly due to loss of volatiles during 

microprobe analysis. The high water content was determined 

by difference and may have contributed by dilution to 

lower concentrations of the other elements. When 

recalculated on a water-free basis the cation contents are 

more like published analyses. 

The ability of zeolite minerals to exchange cations 

readily with solutions has led to them being extensively 

used as ion or molecular sieves. The variable composition 

of the Saefell zeolites is largel3ý due to this property. 

The authigenic minerals, although generally more 

abundant in the most altered tuffs, do not increase 

proportionally with formation of palagonite (Table 2.1). 

This is thought to be because the tuffs have behaved as an 

open system on the scale of a hand specimen. The 

authigenic content of the tuffs is influenced either by 

removal of components expelled'from the fresh glass or 

later dissolution of zeolites by percolating solutions. 

However, within vesicles in glass fragments there is less 

possible movement of solutions and the amount of authigenic 

minerals correlates well with the thickness of palagonite 

around the vesicle (Fig. 2.41). Furnes (1974) found a 

similar relationshipq although as in Saefell removal of 

some of the leached components leads to generally less 

authigenic material than palagoniteg which must remain 

in situ* 

F-lement distribUtion mappinq 

As well as analysing associated sideromelane, 

palagonite and zeolite by electron microprobet the 

relative changes in element concentration can be displayed 

by mapping. Previously this has been carried out using 
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c 
500m 

Fig. 2.40 Degree of alteration of Saefell tuffs. 
a: no palagonite found 
b: incipient to moderately palagonitized tuffs 
ct moderate to highly palagonitized tuffs 

> 

cu 

CL 

0 
ON 

Fig. 2,41 Plot of A (authigenic material) vs P (palagonite) 
as volume % relative to the vesicles with which 
they are associated (after Furnesq 1974), 

20 40 60 60 100 
5? 

0 A relative to V 
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an SEM with attached X-ray spectrometers. The method used 
here involves digital area mapping using an EDS microprobe 

and attached minicomputer (Appendix 2). 

Two areas around partly-filled vesicles in altered 

glass were mapped. The first area (Fig. 2.42a) consists of 

sideromelane with vesicles surrounded by palagonite rinds. 

One vesicle is partly filled with blocky zeolite. The 

mapping confirms that palagonite is depleted in Si02, 

A12 03 9 CaO and Na20 and enriched in Ti021 FeO, K20 and MgO 

relative to sideromelane (Fig. 2-42bocIdle). The elements 

which are depleted in the palagonite have been leached out 

of the rind and have formed the zeolites in the vesicles. 

The element line-scans on each map indicate that the 

sideromelane: palagonite boundary is compositionally sharp. 

The distribution of certain elements, notably Ti02 and M90 

is shown to be irregular throughout the palagonite. 

The second area (Fig. 2.43a) consists of a vesicle, 

partly filled with blocky zeoliteq having a rind of 

concentrically zoned palagonite. In thin section the inner 

rind is orange-brown, fibrous and weakly birefringent 

whereas the outer rind is brownt structureless, and 

isotropic. Other zones are visible under the microprobe 

backscattered electron image, suggesting they have slightly 

different compositions. The element maps (Fig. 2.43a, b, c, d) 

support this and show that the inner rind is depleted in 

Si02 and enriched in MgOj FeO and K20 relative to the 

outer rind. Overall the palagonite is depleted in TiO2, 

CaO and FeO and enriched in MgOt A1203 and Si02 relative 

to sideromelane. 

The zoning is thought to be due to the replacement of 

gelpalagonite by fibropalagonite during continued leaching 

of the glass. Solution fronts moved concentrically 

outwards from vesicles and cracks in the glasst 

redistributing elements. The establishment of a 

crystalline palagonite phase expelled certain. -elements and 

concentrated others within itp aided by movement of 

solutions. The marked difference in the types of elements 

enriched or depleted in the palagonite relative to the 

sideromelanel compared with other grains, is difficult to 
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explain. One explanation may be that the sideromelane 

mapped here is itself partly leached and altered. The 

higher water content of sideromelane in the mapped grain 

supports this. Once significant amounts of water enter the 

glass, elements are able to move more readily. 
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2.7. SUMMARY 

1. The Saefell tuff-ring is closely similar to Surtsey 

and was dominated by rapid ring growth with syndepositional 
reworking processes affecting mainly crater tuffs. Crater 

subsidence on ring faults occurred at a late stage during 
its activity but displacements were minor. 

2. Base-surges occurred throughout the volcanism, and 

formed many structures attesting to different types of 

surge. One large antidune contains evidence for the 

preservation of structures known formerly only from 

theoretical models and was deposited by surges of 

decreasing flow power. 

3. Directed blasts affected the distribution of tephra 

and were sourced from eruptive vents which had moved 
laterally within the crater. These sourced base-surges 

and also destroyed much of formerly bedded crater tuffs. 

4. Vesiculation of the alkali-olivine basalt magma was 

arrested by explosive chilling at depths of <100m. Although 

much of the tephra was formed by'chilling of vesiculating 

magma a great deal of granulation occurred, in part due to 

quench shattering of larger glass fragments. 

5. Accretionary lapilli are extremely abundant in the 

tuffs due to moist conditions in the poorly-expanded 

particle rich eruption columns. Capture of fines by 

accretiony and subsequent falloutp led to highly fine- 

skewed particle distributions at all distances from the 

vent. This process, along with mixing of airfall and 

surge deposits complicates conclusions on depositional 

processes based on grain size properties. 

6. Alteration of the sideromelane to palagonite was 

probably initiated soon after volcanic activity ceased 

due to the formation of a thermal anomaly located mainly 

within the crater. At present the alteration is proceeding 
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slowly as a weathering process. 

7. Palagonitization redistributed elements throughout the 

tuffs, and by promoting zeolite formationg reduced their 

permeability and porosity. Zeolite compositions are 

variable due to cation exchange processes. 

8. Preservation of the newly-formed tuff-ring in the 

active marine environment was due to the proximity of a 
land mass and subsequeptly by rapid consolidation of the 

tuffs. 
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CHAPTER 3 

THE MEDANQ TUFF-RING9 TENERIFE 

3.1. Introduction and Geoloqical Setting 

The Medano tuff-ring occurs on the SE coast of 
Tenerifel the largest of the Canary Islands off NW Africa 

(Fig. 3.1). These islands, of Tertiary to Recent aget are 
truly oceanic in character, with no sialic material 

underlying them even though they occur well up on the 

African continental rise (Macfarlane & Ridleyq 1968). The 

Canary Islands volcanics are characteristically alkaline 

and undersaturatedg and belong to the basanite (alkali 

olivine basalt)-trachyte phonolite suite (Ridley, 1970). 

The composition of the Tenerife volcanics includes all the 

members of the above suite in addition to more intermediate 

members such as trachybasalt and trachyandesite. 

The oldest formation on Tenerife is a basement shield 

composed of basanite and ankaramite lavas and pyroclastics 

dated at 16-7.2my (Abdel-Monem et al. t1968). The Vilaflor 

volcanic complex was built up on this shield and suffered 

major caldera. collapse in post-Pleistocene times (Ridleyq 

1970). Quaternary activity within the collapsed area built 

up the twin central volcanoes of Viejo and Teide which are 

the most prominent physiographic features on the island 

apart from the large semi-circular wall of the caldera. 

Volcanic activity on Tenerife has continued in historic 

timesq the last recorded eruption being of Mtn. Chinyero 

in 1909 (Fuster et al. 91968). 
The tuff-ring itself lies on the coast, 3km NE of 

Medanoq near a cluster of scoria cones some of which 

probably erupted along fissures. Later lava flowsl one from 

the nearest scoria coner overlap onto the eroded flanks of 

the king and these and the crater are partly covered by a 

plinian pumice fall deposit named the Granadilla pumice 

(Bootht 1973). This pumice fall was immediately succeeded 

by an ignimbrite which has ponded in the crater of the 

tuff-ring and was sourced in the Las Canadas caldera to 

the NW, Near Los Cristianos the ignimbrite contains 

carbonised plant material which has been dated at 
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Fig. 3., l Location maps of Tenerife and the Medano tuff-ring. 
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>, -32,000yrs. B. P. (Shotton & Williams, 1971). 
No previous work has been published on the tuff-ring 

although Fuster et al. (1968) referred to its"phreatic" 

origin and classified it with their Series 3 basalts which 
are succeeded only by Recent and historic activity. 

3.2.. Structure and Products 

The tuff-xing has a basal diameter of 1.1 - 1.6km 
(Fig. 3.2) and is elongated NE-SW although the crater is 

approximately circular with a maximum diameter of 620m. 

The maximum height of the tuff-ring is approximately 110m 

on the SW part of the rim whereas it is only 80m in the NW, 
indicating prevailing SW directed eruptions or winds during 

volcanism (Fig. 3.3). The height: width ratio averages 1: 20 

comparable with most other tuff-rings which lie in the 

range 1: 10 - 1: 30 (Heiken, 1971). 

The tuff-ring is at present partly erodedt especially 

on its SE 'flank which has been dissected by wave action. 
Flash floods due to intermittent heavy rains have cut many 
small gullies in the crater deposits and the outer flanks. 

Winds are presently removing fine material eroded by 

water-runoff thus preventing soil formation over much of 
the outer flanks. The crater contains much material eroded 

off the inner walls. Extensive vegetation (coarse grass, 

small bushes and cacti) causes poor exposure within the 

crater and outcrop is best on the seaward flank of the 

ring. 
The structure of the tuff-ring is generally simple, 

with outwardly inclined tuffs dipping at up to 3e- near 

the crater rim and decreasing outwards to <1CP in the most 

distal beds. This regular quaquaversal structure is not 
found on the southern flank where in places the tuffs dip 

towards the crater at up to 2e or are horizontal (Fig. 

3.2 ). The uppermost flank deposits in this area are 

horizontal or dip outwards at shallow angles. -Thisq plus 

the lack of evidence of slumping or faulting suggests that 

the dip reversal is due to the burial of a small-. hill by 

the tuff-ring in this area. 

The crater is filled to a maximum height-of ca. 70m 
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Fig. 3.3 Medano tuff-ring, looking to the SE, showing low, 
wide profile and higher rim in the S (right-hand 

side of photograph). 

Fig. 3.4 Crater rim unconformity in the southwestern part 
of the tuff-ring. Crater tuffs dip to the right. 
Large block in centre of photograph measures 2-5m 
across. 
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a. s. l. with near horizontal tuffs and pumice deposits. 

Only near the crater rim are more steeply dipping tuffs 

exposed, inclined inwards at up to 4CP and unconformably 

overlain by tuffs dipping at< 150 into the crater. 

The crater rim is well exposed in tidally-6nlarged 

gullies on the SE flank and consists of a sharp fault 

plane (Fig. 3.4) which dips into the crater at 40-5CP and 

separates outwardly inclined tuffs from more steeply 
dipping crater tuffs. No beds may be traced across this 

junction, even at its highest topographic position, 
indicating that collapse and oversteepening of the crater 

tuffs has occurred. Erosion of the crater rim has been 

extensivev and has sourced the sequence of reworked tuffs 

now found within the crater. It is estimated from the 

thickness of the outdipping tuffs partially planed off by 

erosion on the crater flank that the rim height has been 

reduced by at least 30m. Simple calculations assuming the 

reworked crater tuffs to consist of a disc of radius 300m 

and thickness 20m, and the former rim of the ring to be a 

toroidal ring of square X-sectionp radius 300mg indicate 

removal of 55m thickness of rim beds to source the crater 

infill. 

The amount of collapse is more difficult to estimate 

due to the lack of correlatable horizons across the fault. 

Collapse was greater in the crater centre than at the 

margins, causing rotational steepening of the marginal 

indipping tuffs. Steepening of lacustrine reworked tuffs, 

presumably deposited horizontallyg to 300 inward dip at 

the margins of the crater involved subsidence of at least 

50m in the centre. 

The tuff-ring deposits may be subdivided into those 

of the outer flanks which are largely. of primary origin, 

and those of the crater which have been entirely reworked. 

3.2.1 Outer flank deposits 

The tuffs may be further divided into five distinct 

lithofacies on the basis of field characteristics (Fig. 

3.5) *. - 



101 

CD 
m 

Bo- 

(D 

wvvvv' E 
60- 

40- D 

......... 20- 

m 
16 - 

VY: K 

............... ; ý 
1ý 
- - 77 Z 1. : z - 

ý--- -erl 

- .... _.... 

"-. ... ø. 

D 

E 

Fig. 3@5 Stratigraphy of the Medano tuff-ring. 
Section (1): southern flank, 
Section (2): western flank of tuff-ring. 
A, B, D and E: logs of best-developed 
sections of respective units. 
See-insert in back pocket of thesis 'for 
kc, y-to-lithological logs. 



102 

Unit A 

This comprises the oldest exposed tuffsq found only 
along the wave-cut Cliffs on the S flank of the tuff-ring. 
They consist of at least 17m of pale yellow, beddedt often 
blocky tuffs (Fig. 3.5). Most of the blocks consist of 
angularg slightly vesicular basaltt some of which have 

chilled margins suggesting they are cognate lithics. Other 
basalt blocks are poorly vesiculatedo unchilled with 

abundant iddingsitised olivine and are probably accessory 
lithics. Less abundant accessory lithics consist of basalts 

derived from underlying lava flows (some large blocks 

exhibiting ropey flow structures)t bedded tuffst reddened 

palaeosolso plutonic syenites and rare fragments of 

gastropod-bearing limestone. 

At the base of Unit A is a poorly stratified, coarse 
block-rich deposit at least 3m thick (base not exposed) 

which contains blocks up to 1.5m diameter. Crude internal 

stratification is defined by laterally impersistant trails 

of similarly-sized clasts although the matrix of the tuffs 
is massive. The coarse component fines upwards (coarse 

tail grading) from 50-150cm at the base to 20-40cm 

diameter at the top of the bed. Above thisq less block- 

rich tuffs predoTinate with an upward decrease in the size 

and concentration of blocks. The tuffs above the basal bed 

contain internal matrix stratification on a centimetre 

scale with block sags beneath most of the clasts. Some of 

the block sag hollows are infilled by coarse, horizontally 

bedded layers (Fig, 3,6) in addition to the impacted block. 

These layers are generally thickest and coarsest in the 

Centre of the hollowp. fining and wedging out rapidly away 

from it. It is thought that base-surges deposited the 

coarse infill. materialq preferentially dropping part of 

their basal load into topographic "lows". 

The bulk of the unit was deposited by airfall processes 

indicated by the abundant planar bedding and block sagst 

the moderate sorting and the lack of well developed surge 

features. Minor base-surge activity is thought to have 

occurred throughout deposition of Unit A. The basal coarse 

beds are thought to represent blocky debris flows because 
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of their trains of blocks sitting in much finer massive 
tuff. It is possible that these coarse beds represent some 
proximal surge breccia similar to ignimbrite examples 
described by Wright & Walker (1977) but exposure is too 

poor to permit exact determination of their origin. 
Unit B 

This unit consists of well-bedded lapilli tuffs 

containing much fewerv smaller blocks than Unit A. Unit B 

thins along strike from 11.5m in the S to less than 3m 

thick to the E (Fig. 3.2). Beds range froni 2-30cm thick 

and are well-sorted lapilli and ash tuffs, with the lapilli 

being more vesicular than those found in Unit A. Highly 

vesicularp sometimes breadcrusted basaltic bombs are found 

throughout the unit especially towards the top and these 

are occasionally flattenedq indicating their molten plastic 

state on ejection. 
Upwards in the unit the amount and size of accidental 

and cognate lithic, clasts decrease as the number of bombs 

and the proportion of vesicular lapilli increases (Fig. 

3.5). Near the top of the unit two 30cm thick beds occur, 

containing a high proportion of angular basalt lithic 

clasts. These contain no internal stratification and are 
inversely-gradedg with almost entirely matrix-free clast 

supported layers at their tops. The beds appear to have a 

gradational contact with underlying well-bedded tuffs and 

are thought to be of surge origin since they infill hollows 

in the topography with coarse blocks. A 50cm well-bedded 

lapilli tuff layer separates the two clast-rich beds and 

appears to be of airfall origin. 
Overallp Unit B consists of airfall tuffs although 

minor surge activity occurred during its final stages of 

deposition. The presence of true vesicular bombs and 

almost scoraceous lapilli indicates that more strombolian- 

like activity was occurring due to the inability of water 

to completely chill the magma. The paucity of scoriaceous 

tachylite throughoutq howevert indicates that true fire- 

fountaining did not occuro 

Unit C 

This unit is generally well-beddedo consisting of up 
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to 5m of pale grey ash with subordinate cognate and 
accessory lapilli and rare blocks up to 60cm. Although 
largely inaccessible it is well exposed in two localities 

about 500m apart on the S flank of the tuff-ring (Fig. 

3.7). The Unit C tuffs contain many features which 
indicate deposition by base-surges but lateral variations 
between the two localities present important evidence of 

varying surge characteristics. 

a) Section 1 

This section (Fig, 3.7) lies 750m SSW of the 

geometrical centre of the tuff-ring and consists of 5m of 
SW dipping tuffs which are part of the irregularly-dipping 

non-quaquaversal tuffs on this southern flank. At the baseq 

the tuffs are full of accretionary lapilli which reach lcm 

diameter. These structures occur in smaller amounts 
throughout Unit C. Above this basal 10cm bed a 25cm thick, 

coarse lapilli tuff occurs which is laterally very 
discontinuous and wedges out completely in places. No- 

internal stratification is present and it has a sharp, 

sometimes erosive base which along with its complete lack 

of size grading suggests it may be of debris flow origin. 

The slightly hummocky top of the coarse bed is overlain by 

50cm of bedded accretionary lapilli-rich tuffs which pass 

upwards into 1-1.5m of well-bedded ash tuffs containing 

occasional crosg-beddingt of low-angle tabular type. 

A well exposed dune occurs at the top of the 1.5m 

thick well-bedded tuffs (Fig. 3.8) and overlies a 15cm 

basal block which has an asymmetric sag beneath it 

indicating R->L sense of motion on emplacement. The surge 

which formed the dune plastered coarse ash and lapilli 

over the upper faces of the block and built an asymmetric 

dune above the sag crater, The duneq or more properly 

antidunep has a wavelength of 1.50cm and a height of 16cm 

and exhibits rounded ripple crests initiallyt which become 

more peaked upwards. As in other dunes of surge origin 

(Crowe & Fisherp 1973) the stoss side beds are thinner and 

finer than those on the lee-sidep although only a small 

amount of downflow crest migrati. on has occurred. 
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pig. 3.8 Unit C dune deposited by surges which moved R--ý, -L 
and out of the plane of the photograph, forming 
a ridge-like dune with its long axis normal to 
the surge direction. More steeply dipping (if no 
correction is made for the angle of the 
depositional slope) lee-side beds are laterally 
well developed, sometimes normally-graded and 
planar or slightly concave in shape. Hammer 
measures 30cm. 

Erosion or non-deposition of the upper part of the 

original dune crest is indicated by truncated lee-side 

X-laminae of at least 10cm thickness. Continued surge 

deposition caused the overlying beds to thin markedly over 

the antidune and removed its effect on bed topography by 

20cm above the crest. 

The surge is thought to have deposited the antidune 

at this point because the block sag formed a major 

discontinuity on the bed which generated turbulence in the 

surge as it passed overhead, causing it to deposit 

material. A change in the physical properties of the surge 

pulses caused antidune deposition to cease and damping of 

topographic highs on the bed by rapid lateral thickness 

variation (+ ? erosion of highs). 

Above the antidune beds a 25cm block occurs, also 

with an asymmetric sag indicating a SW-directed trajectory 
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Fig. 3.10 a) Unit C surge channel with trough cross-bedding 
indicating banking of surges on the outside curve 
of a meander in its course (Fisher# 1977). 
EBt erosive base of channel 

Pig. 3.10 b) V-shaped Unit C channel cut by fluvial action and 
infilled by surge tuffs which subsequently slumped. 
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similar to the block beneath the antidune. The sag of the 

upper block is filled with coarse blocky tuff on its 

crater-facing side and immediately overlain by a 40-50cm 

thick coarse bed which is poorly internally laminated and 

thins to the SW. The base of the bed consists of mixed 

block-and-ash tuff and the blocks decrease in size upwards 

from 25 to 5 cm. The internal lamination consists of 

lapilli lenses 2-5cm thick and block trains and these 

together with the downslope thinningt occasional clast 

imbrication and rare internal block sags indicate that the 

unit is possibly derived from the bedload of a powerful 

surge able to transport coarse material further from the 

vent than. most of the surges which deposited Unit C. 

The remainder of Unit C consists of ash tuffs with 

thin lapilli layers, or more often lensesv as well as rare 

coarser units. Isolated blocks often have very deep sags 

beneath them indicating that the underlyina tuffs were 

moist and plastic, A plot of some of the blocks and the 

depth of their sags indicates that Unit C tuffs were more 

plastic than other tuff-ring deposits_(Fiý. 3.9). Two channels 9 

of different origin are found within this outcrop (Fig. 

3.10) and will be further described s- 

i) The first channel occurs near the top of Unit C and is 

2m deep and at least 4m wide (Fig. 3.10a). It cuts plane- 

bedded tuffs and is well exposedt though its margins have 

been eroded away. The shapet size and internal structure 

of the channel indicate it was cut by surges and infilled 

by themt although an isolated block with associated sag was 

probably emplaced as an airfall product. 

ii) The second channel cuts upper Unit C tuffs to the E of 

the first channel and is much smaller and of V-shaped 

cross-section (Fig, 3,10b). The shape of the channel and 

its small size suggest it was cut by. the. action of streams 

on consolidated tuffs. Modern stream channels on the 

crater walls have steep V-shaped profiles where they cut 

consolidated tuffs but much more flat-bottomed U-shapes 

where they cut loose tuffs. The origin of the poorly-bedded 

infilling tuff is unclear since bedding was destroyed by 

mass movements soon after deposition. Howeverv the 
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marginal fine ash layer is thought to have been plastered 
onto the channel walls by surges. The surges then 
infilled the channel, the upper channel deposits passing 

out unaffected into the surrounding sequence of surge tuffs. 

b) Section 2 

This section (Fig. 3.7) crops out'approximately the 

same distance from the centre of the crater as Section 1 

and consists of 3m of surge deposits overlain and cut out 

to the E by coarse, unbedded blocky tuffs. The basal 50cm 

of Unit C contains >50% of accretionary lapilli in thin 

ash beds which are in places slump folded and contain 

convolute bedding. This basal layer overlies coarse Unit B 

beds which are highly contorted due to gravity slumping. 

Small-scale trough cross-beds occur immediatel3ý above the 

basal . 50cm, and are -also -often slumped. 
The upper 2m of the unit consist of finel well-bedded, 

sometimes cross-bedded tuffs which are highly block-sagged, 

some of the blocks reaching 50cm. The sags beneath these 

blocks (Fig. 3.11) are very marked and indicate the highly 

plastic nature of the tuffs on deposition (Fig. 3.9). The 

ash beds coarsen upwards towards the top of the unit, 

becoming poorly-laminated lapilli tuffs which are cut out 

by the overlying coarse deposits9 although updip Unit C 

only reaches 3-5m thick and is conformably overlain by 

bedded, blocky tuffs. Downdip these blocky beds become 

massive and cut into the top 1m of Unit C as they grade 

into debris flows. 

The various features of the two Unit C sections may 

be summarised as follows :- 

iection I 

Base rich in accretionary lapilli 

many lapilli layers and coarse lenses 

Large antidunes. cross-bedding and 

erosive channels 

Moderate sags beneath blocks 

>4M thick 

Section 2 

Base rich in accretionary lapilli 

Fine ash throughout, except for lapilli top 

Small-scale trough cross-beds, abundant 

slumping and convolute bedding 

Very prominent sags beneath blocks 

>4m thick even though cut out by debris flows 
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Fig. 3.11 Deep impact sag in Unit C Section (2) tuffs. 
Note plastic deformation of moist, cohesive 
tuffs. Hammer measures 30cm. 

Fig. 3.12 Accretionary lapilli in Unit E. Parabolic 
plaster tails deposited by surges which moved 
from top to bottom of photograph. 
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The difference between Section 1 and Section 2 can be 

explained by their being deposited by surges with different 

physical properties, Section 2 contains abundant evidence 

of being deposited as fine, very moist tephra whereas 

Section I has much more coarse materialp large antidunes 

and channels indicating that its depositing surges were 

concentrated in coarse debris and not particularly 

moisture-rich. It is suqgested that Section 2 tuffs were 

deposited by expanded surges carrying only fine material 

and low temperature steam (i. e. moisture-rich), whereas 

Section 1 surges probably contained high temperature steam. 

A possible reason for this difference might be that some 

surge blasts were directed towards the SSW (towards 

Section 1) and thus surges reaching Section 2 would be 

more expanded and travelling at lower velocities. 

Unit D 

This unitp 47cm thick in the SW and< 30m thick in the 

SEv consists of poorly-bedded tUff with agglomeratic layers 

rich in blocksp especially near the base (Fig. 3.5). 

Bedding is crudely defined by clast rich. lenses and layers 

up to 1-5m, thick or by laterally impersistent, coarse 

lapilli layers up to 30cm. The. -blocks are predominantly 

angular basalt and are mostly accessory lithics. along with 

blocks of syeniteq trachytet bedded. tuffq pink pumiceq red 

scoria and some ignimbrite. Maximum block size reaches 1-5m 

but most are 15-40cm. diameterg decreasing in abundance and 

average size upwards to less than 25cm at the top of the 

unit, Block sags are found where large clasts overlie 

thinly bedded lapilli layers but are generally absent due 

to poor. bedding definition. Although largely block-rich 

the unit contains a high proportion of yellow glass shards 

of ash grade which form the matrix, 

Rare (<57o) fine beds contain faint traces of low 

angle cross-bedding and are probably of surge origin. 

Towards the top the bedding in Unit D becomes much better 

definedv due to the reduction in size and abundance of 

lithic clasts and better sorting of the lapilli and ash in 

the matrix. 

The moderate sorting, block sags, poor-to-moderate 
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bedding and the rare thin cross-bedded layers indicate 

that Unit D is a coarse airfall deposit which probably 

formed from a dense, poorly developed eruption column 

leading to lack of sorting of fine and coarse material. 

Intermittent minor surges occurred throughout the mainly 

airfall sequence. Some debris flow activity may have 

formed massive blocky beds found throughout the unit. 

Unit E 

This unit has a gradational contact with Unit D and 

the transition is marked by a 4m thick zone within which 

lithic clasts in Unit D fine to <10cm and decrease in 

abundance and are replaced by the incoming of vesicular 

bombs (Fig. 3.5). Unit E consists of up to 40m of well- 

beddedv blocky sideromelane lapilli in a yellow ash matrix 

of the same composition with scoriaceousq often broken 
, 

ribbon and irregular bombs up to 20cm. These bombs have 

highly vesicular cores with an outer chilled margin 2-5cm. 

thick and often broke up on impact, but never show any 

signs of flattening. The bombs are not abundant but occur 

throughout Unit E, associated with layers of more 

vesicular lapilliq some scoriaceous. 

Unit E is well sorted with thin laminae of ash and 

lapilli often <2cm thick, which vary laterally in thickness 

and grain size within distances of <1m. Thint fine-grained, 

often cross-bedded layers occur in places, reaching 40cm 

thickness but laterally impersistent. These often have large 

accretionary lapilli associated with them which occur 

towards the base of these surge horizons. The accretionary 

lapilli (Fig. 3.12) consist of poorly-sorted concentric 

rims of fine to coarse ash up to 2cm thick around cores of 

vesicular basalt or lithic clasts up to 4cm diameter. The 

thickest coatings are formed only around smaller lapilli 

cores. The maximum diameter of any complete lapillus is 

always <5cm and this may be associated with the flow power 

of the surges which are thought to have emplaced them 

(Section 3.3,2). Many of the accretionary lapilli are 

flattened parallel to bedding and rare examples deform 

fine layers producing small impact sags. Smaller 

accretionaryp or more properly rimmed lapilli, which 
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consist of poorly-sorted ash up to only 4mm thick are 

abundant throughout Unit E and probably grew rapidly in 

the moisture-rich eruption column of the tuff-ring. 

As well as this concentric coating of ash many of the 

larger accretionary lapilliq and other large clasts in the 

surqe deposits <5cm diameterv have parabolic-shaped ash 

coatings on their sides facing the crater centre (Fig. 

3.12). Similar aerodynamicq layeredq parabolic coatings 

have been described by Moore (1967) from the sides of trees 

facing the crater of Taal volcano. Theref coatings 10cm 

thick were recorded 2-5km from the vent centre. In Unit E 

up to 9-layered coatingst with an overall maximum 

thickness of 17cm, are found 500m from the vent centre. As 

in Taal some of the coatings consist of reverse-graded 

layers up to 2cm thick individuallyp indicating initial 

deposition of moist fine ash which coarsens outwards in 

any layer. Some indication that surges have-partly reworked 

underlying tephra is given by the association of clasts 

>8cm, with coats only on their upflow sides with. slightly 

smaller clasts which have been moved short distances and 

are coated with small parabolic tails on more than one 

side. The plastering structures were not found closer than 

500in from the crater centre, Directional data from these 

structures and from surge channels (Fig. 3.13) indicate a 

consistent radial orientation to the crater, No evidence 

for topographic channelling or directed blasts is indicated. 

Unit E also contains many channels of various origins 

(Fig. 3.14). which are well exposed because the Unit E tuffs 

are the youngest primary deposits of the tuff-ring and are 

thus not overlain by any other beds. The channels may be 

divided into four typesq all found within the top 10m of 

the unit. 

a) Small flat-bottomed U-to modified V-shaped channels 

(Fig. 3.14a) of shoulder width 20-80cm and depth 15-40cm 

occur along a single horizon within Unit E and are 

restricted to an outcrop lengt1i of less than 20m. The 

channels are spaced at intervals between 60 and 150 cm 
0 

and their bases dip at 15-20, cutting beds which dip SE 

at le . The channels are filled with lapilli and ash tuffs 
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Fig. 3.13 Directional data from Medano tuff-ring. 
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c: fluvial cross-beds and clast imbrication 
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which are finer and generally better sorted than the beds 

which the channels cutv although many channels contain 
isolated lithic clasts of up to 8cm diameter. The infilling 

tuffs are coarse and horizontally-bedded or massive at the 

channel base, becoming finer, better sortedg concave 

upward bedded tuffs towards the channel top. These upper 

beds may be traced out from the channels and form the 

lower part of a 30-40cm well-bedded. surge deposit which 

contains low-angle trough cross-beddingg flame structureso 

pinch-and-swell and convolute bedding and is markedly 

finer than the airfall beds above and below. A 2-3cm thick, 

bedded ash layer often occurs parallel to the channel sides 

and may be traced out into the overlying tuffs. 

The shapeg small size and basal horizontally bedded or 

massive infilling tuffs are indicative of a fluvial origin 

for most of the channels. The major part of their infilling 

wasq however# by base-surges which plastered ash onto the 

channel sides and deposited convex-upward laminae within 

them. Some of the original V-shapes of the channels have 

been enlarged by surges to more U-shaped profiles in their 

upper regions. Some contortion of-bedding probably resulted 

from mass movement of moist tephra for short distances down 

the channel. 

b) The southern margin of a large flat-bottomed channel 

(Fig, 3,14b) crops out on the side of a modern stream-cut 

gully on the NE flank of the tuff-ring. The width of the 

structure is unknown but its depth exceeds 2m and may be 

much greater. The channel margin is stepped and the basal 

infilling material is composed of well-bedded ash which 

abuts the near vertical margin at 10-150 and it overlain 

by massive, coarser lapilli tuffs. The upper channel infill. 

consists of well-bedded tuffs which unconformably overlie 

the lower infilling material and dip into the channel 

centre at 3e . The channel is orientated NW-SE which is 

approximately concentric to the crater rime 

The lack of any surge features and the concentric 

orientation indicate the stepped channel is of fluvial 

originý and was infilled by fluvial and debris flow 

material at the base before being subsequently eroded and 
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infilled by airfall beds. 

c) Small closely-spaced channels (Fig. 3.14c) of flat 

bottomed U-shape and measuring up to 40cm across and 15cm 

deep occur in the uppermost 5m of Unit E on the NE flank 

of the tuff-ring. They cut coarser poorly-bedded grey 

lapilli tuffs and are infilled at their base by 2-3cm of 

bedded ash parallel to their sides with horizontally 

bedded ash above. The beds immediately above the channels, 

which were all formed at the same time, consist of well- 

laminated ash containing pinch-and-swell bedding. These 

small channels occur as projections beneath a shallow 

depressiong 2m wide, which existed before their formation. 

The large channel was probably cut by surges and 

later modified by surges which cut the smaller channels 

and infilled the composite structure with tuffs which,.. -. 
thicken and coarsen into the hollow. It is possible that a 

single surge lobe with closely spaced highly debris 

concentrated "streamers" within it (Fisherg 1977) could 

have simultaneously cut the large U-shaped channel and the 

small U-shaped notches at its base. 

d) The final channel example occurs immediately below the 

eroded top of Unit E on the NW flank of the tuff-ring 

(Fig. 3.14d). The channel is a compositet asymmetric 

structure 2m deep and >6m wide. The base of the channel is 

a 1-3m wide flat-bottomed U-shaped structure which on its 

NE side passes into a steep-sided wall 1m high, but to the 

SW it passes into horizontally bedded tuffs. The infilling 

tuffs are banked up against the steep wall but pass into 

concave-upwards beds in the channel Centre, and consist of 

well-bedded lapilli tuffs. 

The channel was probably cut initially by surges and 

enlarged by them to form its slightly asymmetric shape. 

Infilling was by surge and airfall tuffsp forming many 

beds which thicken into the channel Centre although 

lacking any other surge characteristics. Banking-up of 

deposits on the NE side of the channel may have been caused 

by surges which were moving across the channel or around a 

channel meander. 
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3.2.2 Crater tuffs 

The crater tuffs are largely reworked and may be 

subdivided into three units on the basis of suspected 

depositional environment. 

Lacustrine tuffs 

A 2-4m thick bed of ash and lapilli tuff containing 

many fine-grained, discontinuous muddy tuff laminae and 

small cross-laminae is found immediately in contact with 

the ring fault inside the crater (Fig. 3.15). This unit is 

bedded parallel to the fault plane which forms its lower 

boundary, and dips into the crater at 30-4? . The muddy 

tuffs(Fig. 3.16) contain small lenses or ripples of fine 

tuff which in places are flaser-like. The lenticular 

laminae form beds up to 8cm thick separated by poorly- 

sorted lapilli tuffq and lenses of coarser ash and lapilli 

at times occur within these fine beds. Small-scale tabular 

cross-laminae with mud drapes occur within many of the 

finer beds. The ripples and flasers reach lengths of 4cm 

and heights of <1cmq the ripples having rounded crests and 

rarely exhibiting small-scale climbing-ripple lamination. 

Some of the muddy units contain small desiccation cracks 

of irregular shape. 

The regular development of this unit against the 

fault indicates that the beds were deposited against its 

footwall after some collapse had ocqurred. The fine tuffs 

are interpreted as being the deposits of a short-lived 

crater lake which had an input of coarser material from 

inflowing streams and airfall ejecta, Evidence for the 

latter is indicated by some sags in the muddy laSyers 

beneath small clasts. 

Fluvial tuffs 

The lacustrine unit is conformably overlain by at 

least 24m of mainly fine-grainedo well-bedded tuffs (Fig. 

3.16) which are largely of airfall origin at the base but 

become more reworked towards the top, The lower 6m consists 

of bedded airfall tuffs with blocks and bombs up to 10cm, 

many underlain by sags. Thin, muddy layers occur but are 

associated with fluvial channels and are probably of 

overbank origin, Some poorly exposed 2-5m wide U-shaped 
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channels may be of surge origin, and cut the airfall tuffs. 
The airfall tuffs are most similar to the Unit E tuffs in 
that they lack many blocks and have irregularly-shaped 

bombs., and may be their crater equivalents. 
Upwards in the unit, and into the crater centrev the 

airfall tuffs become completely reworked by fluvial action. 
The upper deposits are almost horizontalp well-sorted 
bedded tuffs which contain rare clasts <5cm diameter with 

no underlying sags. Individual beds fine into the crater 

and become better bedded with small-scale trough cross- 
bedding indicating flow into the crater. Clast imbrication 

generally agrees with this current direction although in 

places clasts lie along foreset bedding and care must be 

taken to identify their transport direction. Channels are 

very abundant in the upper-10cm of the deposit and 

palaeocurrent direc#ons derived from them indicate that 

much of the crater fluvial tuffs were derived from the W 

side of the tuff-ring. (Fig. 3.13). 

The deposits represent a-sequence of airfall tuffs 

with increasing fluvial reworking with time, transporting 

material into the crater centre, Coarse braid-bar deposits 

at the crater rim pass laterally into alluvial plain 
deposits in the crater centre with an increased spread of 

palaeocurrent data derived from themt and an increase in 

the proportion of fine material and sorting. 

Debris flow tuffs 

The lacustrine airfall and fluvial tuffs are 

unconformably overlain byýcoarse, blocky, debris flow tuffs 

at the edge of the crater (Fig. 3.4). The debris flows 

overlie the tiltedo eroded edge of these older deposits 

and thicken into the'craterv forming massive piles up to 

lom thick (Fig. 3.15). Very coarse massive tuffs with 

blocks up to 2-5m fine into the crater where they form 

structureless or weakly reverse-graded units 1-2m thick 

individually. These finer grained debris flows contain 

blocks up to 15cmv often arranaed in pebble trains which 

dip radially inwards at up to 160. Further into the crater 

centre the debris flows grade into fluvial deposits as 

they wedge out and become themselves reworked. . 
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In the N the debris flows originated from curved 

slump scars which cut back into the outdipping Unit D and 
E tuffs and obscure the ring faults. Elsewhere the debris 

flows are bounded bv the ring fault and some overlap it, 

indicating they post-date its final movements. The debris 

flows have largely been sourced from Unit D. indicated by 

their abundant block content. They probably formed after 

erosion of Unit E exposed Unit D in the footwall of the 

ring fault. This erosional stripping of the rim deposits 

forms the reverse stratigraphy in the reworked deposits, 

Unit E-derived fluvial tuffs overlain by Unit D-derived 

debris flows. 

3.3. Variation in Primary Products 

The Medano tuff-ring provides information on the 

variations in eruptive products and mechanisms with time 
in a tuff-ring. 

3.3.1 Tuff-ring products 
Lithologicallyl the Units A to E are distinct, 

differences between them reflecting differences in eruptive 

style. Table 3.1 summarises some of the main features of 
the individual units and their proposed depositional 

mechanisms. It must be stressed that the variation in 

products is thought to be due to variation in the amount of 

water interacting with magma to form the phreatomagmatic 

explosionst and the depth of that interaction. 

Units A and D are very similart with large blocks of 
both accessory and cognate origin in a finer matrix of 

chilled sideromelane glass. The paucity of well-sorted, 

well-bedded finer material in the units and the upward 
fining of the coarse component indicates that the units 

were the airfall products of poorly-expanded, low eruption 

columns formed from powerful explosions. These explosions 

probably had a focus some distance below the ground surfacet 

bringing up large lithic clasts. Minor surges were formed 

when magma: water interaction occurred near the surface, 

sourcing inclined eruption blasts, or when collapse of the 

unstable eruption column resulted in formation of surges. 
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The relative abundance of lithic clasts indicates that 

steam explosions due to high water: magma ratios were 
important, although nowhere near as important as in the 

mainly phreatic eruptions of maar volcanoes (Lorenz, 1973). 

Units B and E are similar in that they contain only 

small amounts of accessory lithic clasts, and a significant 

proportion of volcanic bombs, ejected whilst stilr molten. 

The units are medium-grained, well-bedded tuffs containing 

well-sorted thin beds of lapilli and ash. These units were 

formed by explosions with lower water: magma ratios which 

sourced small numbers of surges so probably occurred at 

shallower depths than the optimum for surge production. 

The low, water content of the erupting tephra clouds 

allowed development of higher eruption columns due to less 

heat exchange between magma and water enhancing thermal 

convection processes in the column (Wilson et al., 1978). 

This in turn resulted in better sorting of particles in the 

column and thus better bedding in the deposits. The low 

lithic content is due to the shallow explosion focus level 

precluding extensive wall-rock spalling which is much more 

common in maars (Lorenz, 1973; 1974), Surges in Unit E are 

the product of more powerful eruptions with foci at the 

optimum depthp forming laterally- directed blasts containing 

highly fragmented material. 

Unit C is different in that it is predominantly of 

surge origin and contains very high proportions of finely 

fragmented material as well as a few large ballistically 

emplaced blocks, The fine material is the result of highly 

efficient disruption of the magma and chilling by water. 

This is probably caused by high water: magma ratios and 

explosions at short distances below crater level. 

Figure 3.17 is a schematic diagram illustrating the 

qualitative changes in water: magma ratios and depth of 

explosion foci. This shows that phreatomagmatic activity 

is essentially variable although at Medano it may have 

been cyclic with less water-influenced eruptions following 

more powerful eruptions_ in which more water was involved. 

Formation of surges was especially intermittent and this 

was probably because eruptions evolved through the optimum 
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surge-forming conditions often And rapidly, forming thin, 

poorly-developed surge horizons. Unit C was formed by 

eruptions which maintained these conditions for longer 

periods of time. 

3.3.2 Base-surge mechanisms 
The range of structures in Unit C has already been 

described (Section 3.2.1). Surge structures of different 

type are found in Unit E and were deposited by surges with 
different physical properties. Unit E surge deposits are 
thin, formed by numerous (at least eight) short-lived surge 

events. Large accretionary lapilli are common but bear 

little resemblance to the smallq fine, concentrically 

rimmed types found in Unit C. The Unit E types are simply 

extreme examples of the abundant "rimmed lapillill found 

throughout Units B and E. The thick-rimmed accretionary 
lapilli in Unit E probably began to accrete their poorly- 

sorted rims in the low eruption column. They were then 

incorporated into surges where they accreted more ash and 

were emplacedq usually at the base of surge deposits. 

Emplacement occurred before the lapilli reached a critical 

size of ca. 5cm indicating that this was the maximum clast 

size which surges could transport. 

The parabolic-shaped plaster coatings on many blocks 

indicate that moist ash was deposited by surges. The thin, 

often reversely-graded layering was formed by surges 

carrying material of fine grade in pulsesp fine ash 

preceding coarser ash. Such structures indicate that at 

distances <500m from the crater centre the depositing 

surges carried only fine materialp perhaps as a moist, 

expanded cloud ahead of the body of the surge. Coarser 

material which surrounds the plastered blocks was presumably 

emplaced as part of the body load of later surges. These did 

not adhere to the blocks because they were not strongly 

affected by water surface tension or interparticle adhesive 

electrostatic forces. 

The surge channels commonly occur at the base of surge 

depositsq eroding underlying airfall beds. Often surges 

modify previously cut fluvial channelsp as a result of 
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turbulence induced by topographic irregularities. Being 
like density flows (Fisher, 1977) surges are controlled by 

pre-existing topography and will thus tend to flow down 

such channelsp especially as they are parallel to the 

radial motion of surges. The thin, fine, plaster layer 

which is deposited by surges at the margins of modified 

channels is significant. The layer is a surge deposit, 

whereas shortly before this surges have been purely erosive. 
This suggests that surge deposition is related to high 

moisture content and may signify that a hot, fast moving 

erosive stage is succeeded with time by a coolq expanded, 

moist depositional stage. The high moisture content of 

such surge deposits causes slumping and mass movement of 

channel infill material. 

It is concluded that Unit E surge deposits9 found 

only more than 500m from the crater centrep are not simply 
distal equivalents of the tVpe of deposits found in Unit C. 

Due to the outcrop distributiong Unit C is exposed only on 

the S flank of the tuff-ring and Unit E mainly on the N and 

W flanks. It may be that Unit E surges were fundamentally 

different from Unit C types but this could simply be. due 

to SW-directed surge blastsý with fewer# lower velocity 

surges reaching other parts of the tuff-ring. The large 

surge channels at the top of the Unit E sequence may 

indicate that in the final stages of activity this 

SW-directed activity ceasedg allowing more powerful surges 

to reach the northern flanks. Supporting evidence for 

SW-directed eruptions is the increased thickness of Units 

A to D in the SW, where on average they are 50% thicker 

than in the E and SE. 

3.4. Crater Deposits 

The crater deposits are important in that they record 

the post-volcanic subsidence of the tuff-ring and the range 

of reworking processes which occurred. 

The oldest crater deposits exposed are the thin 

lacustrine tuffs which presumably overlie older reworked 

crater tuffs. Fault collapse occurred before and to a small 

extent after their deposition. The crater lake formed during 
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a break in volcanic activity by ponding of rainwater into 
the central depression. The present topographic heights of 
the lacustrine tuffs (ca. 50m a. s. l. ) and lack of evidence of 
breaching of the tuff-ring rules out a marine origin for 
this lake. Renewed volcanic activity infilled the shallow 
lake and deposited airfall tuffs above. 

Continued rainfallg probably derived mainly from steam- 

rich eruption cloudst sourced flash floods similar to 

present-day processes. and reworked part of the airfall 

crater sequence. The cessation of volcanic activity allowed 
fluvial runoff to rework all but about 10m of the airfall 
tuffs and transport material into the crater centre. 
Continued subsidence in the centre due to magma withdrawal 

probably maintained it as a topographic depression and 

speeded-up the rate of eros ion of the crater rim. Debris 

flows and braided stream processes occured at the crater rim 
due to high slope angles. As gradients decreased on the 

crater floorg fluvial action sorted aTid transported material 
into the centre. 

Continued erosion of the crater rim stripped off Unit E 

and exposed Unit D. The latterg blocky tuffs sourced coarse 
debris flows which unconformably overlie subsided reworked 

crater tuffs. These debris flows dip at shallow angles into 

the crater and indicate that subsidence of the crater after 
their deposition has been of minor extent. Continued 

reworking and deposition of the products of other volcano's 

eruptions in the crater has occurred. This causes the 

crater sequence to be highly complex and here it bears 

little resemblence to the outer flank tuffs. 

Crater subsidence occurred throughout the deposition 

of much of the infilling tuffse Subsidence was slow, and 

greatest in the crater centreg tilting reworked tuffs and 

producing unconformities. Ring fault movements occurred 

purely as a response to central subsidence and thus lagged 

behind them. The ring-fault formed along a major plane of 

weakness and allowed movement of crater deposits without 

affecting the outer flank tuffs in any way. 



12b 

3.5. Volcanic History 

Since the base of the tuff-ring is not exposed, the 

initial eruptive products are not seen and it is thus not 

known whether they were of subaerlalg submarine or 

sublacustrine origin. However# the lack of tidal reworking 

in the distal tuffs indicates that sea-level was no higher 

at the time of formation of the tuff-ring than it is at 

present. If the tuff-ring formed during the cold phase of 

a glacial stage sea-level would have been appreciably 

lower and rainfall much higher than at present. In such a 

pluvial period standing water bodies would be abundant and 

it is suggested that the Medano tuff-ring was erupted into 

a shallow coastal lake of this type. The high rainfall 

during such a pluvial period would have sourced the streams 

which extensively reworked the crater tuffs and allowed a 

crater lake to form. 

The origin of the water which interacted with magma 

to produce phreatomagmatic activity after the tuff-ring 

became completely subaerial is problematic. A break in the 

crater rim may have allowed easy access of coastal lake 

water during the early stages of volcanism. No trace of 

such a notch is now seen and thus final activity could not 

have resulted from such water, It is thought that Units A 

and Dt which contain blocks from many levels of the 

country rocksp formed when water interacted with magma at 

some depth below the surface. The water may have percolated 

down from the surface lakeg similar to the Eifel maars 

(Lorenzt 1973) or may have originated in a deep aquifer. 

The pressure reduction after a phase of eruption (Lorenz, 

op. cit. ) spalls off sizeable blocks from the diatreme walls 

and these are transported upwards by the particle-charged 

gas jets of the eruption, Units B and E contain few 

xenolithic clasts and probably formed when magma rose to 

high levels before interacting with small amounts of 

surfaceg perhaps crater lakeg water. This obviates the 

need for a crater wall breacht for which there is no 

direct evidence. Unit C is thought to have been formed 

when magma interacted with abundant surface-derived water 

at intermediate depths. Crater lake surface water would be 
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continuously replenished by rainfall from steam-rich 

eruption columns and the high climatic input. Aquifer 

water would need more time to be replenished. The cyclic 

nature of the Medano eruptions thus depended on the rate 

of replenishment of the surface waterg its rate of 
downward percolation and the volume and rate of ascent of 
the magma (Section 3.6c). 

The Medano activity may be summarised thus 

a) Rising magma contacted groundwater within, coastal deposits 

and built a tuff-ring which rapidly grew above the water 

surface. Downward percolation of water through the 

disrupted diatreme deposits underneath the crater led to 

magma: water interaction at depth, Largely vertically- 

directed eruptions produced Unit A airfall tuffsv containing 

country-rock derived blocksp and a few base-surge deposits. 

b) Reduction in the amount of water and the depth of- 
interaction led to the intermediate strombolian-phreatomagmatic 

activity of Unit B. SSW-directed eruptions caused 

thickening of the unit in the S and sourced- base-surges. 

c) Highly explosive surge-producing eruptions of Unit C 

occurred due to the interaction of large amounts of water 

with magma at intermediate depths. The SSW-directed 

eruptions caused lateral variations in the surge deposits, 

due to differences in the surge physical properties. 

d) Renewed deep eruption foci sourced Unit D# mainly of 

airfall origin due to vertical ly-directed explosions. High 

water contents in the eruption column caused it to be 

poorly expanded and the airfall deposits are thus coarse 

and poorly sorted. 

e) Unit E formed due to intermediate strombolian-phreatomagmatic 

activity as magma contacted moderate amounts of crater 

lake water at shallow depths. Crater lake tuffs were 

deposited above subsided primary and reworked tuffs. A 

reduced amount of water in the eruption column led to it 

being more expanded and more wind influencedp depositing 

well-sorted bedded tuffs. Abundant rimmed lapilli formedg 

some growing within base surge clouds which also eroded 

channels and deposited sticky ash layers over upstanding 

clasts. 
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f) Cessation of volcanic activity allowed complete 
reworking of the crater tuffs aided by high rainfall in a 
pluvial period. Transport of material into the crater 

centre occurred by fluvial and debris flow action aided by 

further collapse of the crater deposits. Erosional 

stripping of the crater rim sourced coarse debris flows 

which are the final, main reworked deposit. 

9) Lavas from a nearby scoria cone lapped onto the flanks 

of the tuff-ring. Later deposition of Granadilla, pumice 
fall and associated ignimbrite followed over the whole Of 
the area and is now preserved in the crater of the tuff- 

ring. Establishment of an arid climate reduced the rate of 
reworking and preserved the tuff-ring almost intact. 

3.6, Petroqraphy, Morpholoqy and Alteration 

3.6.1 Petrography 

The Medano tuffs consist predominantly of juvenile 

sideromelane grains with rare tachylite. Variable 

proportions of cognate and accessory lithic clasts occur, 

as well as crystal fragments. Many sideromelane grains are 

altered to palagonite and authigenic minerals infill the 

pore spaces and vesicles of the altered tuffs. Figure 3.18 

is a location map for all the samples studied in this 

section. 

a) Sideromelane 

The sideromelane grains are pale-brown in colour and 

are blocky or irregular in shape. The glass is in most 

respects similar to that in the Saefell tuffs with 

plagioclase microlitesq opaque inclusionst vesicles of 

varying sizes and abundance and shattered margins. The 

Medano tuffs are generally more vesicularv especially in 

Units B and Et and many vesicles are elongate. Microlites 

are almost always flow-aligned although associated 

vesicles may be spherical or elongate parallel to the 

microlites. This indicates that magma was flowing just 

prior to quenching but was in places very fluid allowing 

spherical vesicles to develop. Elsewhere the magma was 

more viscoust the flow deforming the vesicles within it. 
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The change from fluid to viscous flow may often be seen 

within a single grain (Fig. 3.19). Grains containing 

stretched vesicles are often themselves elongate, 
indicating that the surface tension of the magma in part 

controlled particle shape (Lorenzq 1971). Other grains 

show flow-orientation structures unrelated to particle 

shape and were formed by quenching. In general, Units B 

and E contain elongate fragments with related stretched 

vesicles whereas Units A and D have mainly blocky grains 

containing spherical vesicles. Unit C is too fine-grained 

to determine the relationship between vesicle and juvenile 

particle shape. 

Sideromelane grains reach a maximum of 1-. 5cm but are 

commonly much finer and contain inclusions of blocky 

opaques, probably magnetite. As well as the plagioclase 

microlites some rare laths of biotite up to 005mm long 

occur. 
b) Scoria 

Some black or dark brown lapilli consist of very 

vesicular fine-grained or tachylitic material, and may be 

termed scoriaceous. Most of the scoria Occurs as volcanic 

bombs in Units B and E but rare scoriaceous lapilli occur 

in all the Medano tuffs except for Unit C. The volcanic 

bombs consist of >507o irregular vesicles in a matrix of 

tachylite containing many flow-aligned plagioclase 

microlites (Fig. 3.20). Larger crystals of magnetite and 

plagioclase up to 0-5mm occur as well as small 

clinopyroxene and biotite crystals. Vesicle density is so 

high in some bombs that bubbles coalesce and form composite 

vesicles up to 8mm diameter. 

c) Vesicle size 

In any single juvenile lapillus, vesicle radius 

varies by as much as 10times although most vesicles are 

between one third and a half of the average largest 

vesicle size. Most vesicles range from 0-02 to 0-2mm 

although sizes are much larger in scoriaceous grains. The 

average vesicle size of tephra from each Medano unit is 

different and indicates different depths at which vesicle. 

growth was arrested by quenching. 
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Fig. 3.19 Altered sideromelane lapillus containing 
spherical vesicles and alignedq stretched 
vesicles due to viscous flow. Plane 
polarised light. x4. 

Fig. 3.20 Tachylitic scoria lapillus from Unit E. Note 
high proportion of vesicles, many of which are 
lined with zeolite fringes. Note also flow 
aligned microlites and the highly irregular 
margins of the lapillus. Plane polarised light. 
X10. 
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Units A and D have average maximum vesicle radii of 
0-1-0-2mm whereas Units B and E contain sideromelane with 

vesicles of 0-3-0-8mm average maximum radius. This 

indicates that, all other factors remaining constant, the 

magma was quenched at greater depths during the eruption 

of Units A and D. Estimates of magma quench depth can be 
A 

made assuming ascent rates of 5cmS 9 H20 content of 1-Owt. % 

and other parameters equal to Sparks' (1978t Fig. 8e) 

values. Such estimates indicate that Units A and D were 
formed by quenching of magma at 150-200m depth whereas 

quenching of Units B and E magma occurred at depths of 

about 100m. These estimates are useful only in comparing 
the relative depths of magma quenching. Quantitative 

results could only be obtained if average maximum vesicle 

radii were accurately obtained from large numbers of 

specimens. They would also depend on knowing the values for 

magma parameters such as ascent rate, water content, 

solubility constant and diffusion coefficient (Sparks, 

op. cit. ). 

Unit C is too fine-grained to allow many vesicle 

measurements but the few larger lapilli have vesicle sizes 

similar to Units A and D. indicating that quenching 

occurred at moderate depths. This result may be misleading 
however, since the extreme granulation of Unit C tephra 

would completely destroy all traces of larger vesicles. 
If one assumes that the scoriaceous bombs in Units B 

and E cooled at or near the surface by contact with air 

then their maximum vesicle radii help to indicate the 

likely values of the various magma parameters. Values of 

5mm average maximum radius are obtained indicating that 

magma conditions probably conformed closely to those of 

basalt with 1*Owt. % water in Fig. 8e of Sparks (op. cit. ). 

d) Fines 

Similar to Saefell (Chapter 2) the Medano tuffs 

contain high proportions of fine ash (Table 3.2). Units B, 

C and E contain the highest fines content, which in most 

samples occurs largely in rims round larger grains, Units 

A and D contain less fines and these occur partly in thin 

accretionary rims and partly in the pore spaces between 
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large clasts. The rims'are identical to the Saefell 

examples (Section 2.6.1d) and reach 3mm thickness. Only in 

Unit C are the accretionary lapilli more like the type 

described by Moore & Peck (1962). Here, the rims are 

composed of fine ash (<0-02mm) which is faintly 

concentrically layered round larger nuclei (Fig. 3.21) but 

is poorly graded. The accretionary lapilli in the surge 

deposits of Section 1 (SSW of the crater) have slightly 
finerv better sorted rims than those of Section 2. This is 

thouqht to indicate that the Section 1 lapilli grew in a 
less moisture-rich eruption column or surge. Both lapilli 

types probably grew rapidly in the lower parts of the 

eruption column since their rims are poorly sorted. 

The lack of well developed accretionary rims in Unit 

A and D tuffs probably indicates that they were deposited 

rapidly from low eruption columns. Fines in the column 

would be deposited at greater distances from the vent 

unless they were captured by accretion. In such proximal 

deposits this process did not have sufficient time to 

become established. 

e) Crystal and lithic fragments 

The main crystal phases occur either as megacrysts in 

juvenile lapilli or as loose crystals in the tuffs. These 

crystals are (in order of abundance) plagioclasev 

magnetiteg clinopyroxenev olivine and biotite. Optically 

the plagioclase is -labradorite-andesine (An46 -An5a ) and 

this is confirmed by microprobe analyses of some 

microlites and loose crystals (Table 3,3). Analysis of the 

opaques indicates they are titano-magnetitp (Table 3.3). 

often plagioclase and magnetite form the only crystalline 

phases in the juvenile glass. 

The clinopyroxene is purplish titanaugite and is 

found only as broken crystals in the tuffs or as a common 

phenocryst phase in non-vesicular basalt lithic clasts. 

olivinev which has a composition Fo8o -Fo84 (determined 

optically), is likewise not found in association with 

juvenile glass. This does not implyg however, that these 

minerals are not of juvenile origin. If the pyroxene and 

olivine crystallised before magma quenching occurred it is 
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Fig. 3.21 Accretionary lapillus from Unit C Section (1) 
tuffs. Note the faint concentric layering in 
the accretionary rims and the high fines 
content of the tuff. Plane polarised light. x1O. 

Fig. 3.22 Common basaltic lithic 
consisting of clusters 
surrounded by flow-ali 
Reddish-brown hematite 
common throughout the 
light. x1O. 

fragment in Medano tuffs 
of augite and magnetite 

gned laths of plagioclase. 
replaced crystals are 

rock. Plane polarised 
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TABLE 3.3 BASALT AND MINERAL ANALYSES 

(1) (2) (3) (4) (5) (6) 

S'02 49-8 49-5 53-1 51-8 0-48 0-46 

Ti02 2*12 2-22 0-09 0-19 14-4 14-2 

A-1203 17-0 16-9 27-3 27-1 4-56 4-71 

Fe203 B-97 9-52 - - - - 
Feo - - 0-63 0-81 71-5 71-3 

MnO 0*22 0-22 - 0-11 0-75 0*64 

mgo 2-90 3-02 - - 4-96 5-44 

CaO 6*68 6-77 10-6 10-9 - - 
Na20 5-07 5-30 4-21 4-78 - 0-37 

K20 2-49 2*50 0-35 0-37 - - 
P20S 1-15 1-16 - 0-07 - 
Total 96-40 97-11 96-28 96-13 96-65 97-12 

(1) XRF analysis of scoriaceous bomb 15m above 

base of Unit E. 

(2) XRF analysis of scoriaceous bomb within 

reworked crater tuffs. 

All subsequent analyses are by electron microprobe 

(3) Plagioclase microlite from CLT14 (reworked 

crater tuff). 

(4) Plagioclase microlite from CLT14. 

(5) Titaniferous magnetite from CLT21 (Unit B 

tuffs). 

(6) Titaniferous magnetite from CLT21, 

Total Fe as Fe203 in XRF analysesp as FeO in 

microprobe analyses. 
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quite likely that explosive granulation would break any 
glass surrounding them. 

The biotite occurs as laths up to 2mm long in the 
tuffs and as smaller crystals in juvenile glass. Due to 
the lack of closely associated minerals little can be said 
about the crystallisation history of the magma. Magnetite 

probably crystallised firstg followed by clinopyroxenev 
olivinep plagioclase and biotite (not in order) and lastly 

microlite plagioclase. 
The lithic fragments are of many typesp mostly 

de. rived from basaltic extrusive and intrusive bodies in the 
country rocks beneath the volcano. Augite and plagioclase- 
phyric as well as medium-grained aphyric basalt types 

occur. A common lithic type consists of glomeroporphyritic: 
augite and magnetite with groundmass plagioclase and 
variable amounts of haematite crystals (Fig. 3.22). 
Analcite and calcite occur in veins or as vesicle infills. 

Equigranularp coarse-grained syenite fragments occur, 
especially in Units A and D, Their mineralogy consists of 
orthoclase, oligoclaset nephelineg biotite and sphene. 
These blocks are considered to represent samples of the 

plutonic basement underlying the Tenerife volcanic pile 
(Fuster et al., 1968). Sedimentary clasts are rare and 
include limestone fragments with peloid and bryozoan 

structures, 
f) Composition of the tuffs 

Point count analyses of the tuffs (Fig. 3.23t Table 
3,2) indicate that their composition is highly variable. 
The main points of note are : - 
i) Extreme fines content of CLT 15 (Unit C surge deposit) 
ii) Low lithic content of the Unit E samples 
iii) Variable alteration of all samples. 

The moderate lithic content of Units A and D is 
because most of the lithics are of lapilli grade or larger 

and cannot be counted in this section. Outcrop scale point 
counts indicate that both units contain 10-15% lithic 

clastst most of which are thought to be of accessory 
origin. 
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3.6.2 Grain size and morphology 

a) Grain size studies 
Thin section grain size values were obtained using 

point count methods as in Section 2.6,2. The altered 
matrix of some samples (CLT 110 160 23) made accurate 
determination of their fines content impossible and 
precluded measurements on more altered examples (Table 3.4). 

On a Mdo/cro plot (Fig. 3.24a) the bulk of the samples 
are more poorly sorted than most surtseyan examples. This 
is thought to be due to their proximity to the vent and to 
the early fallout of fines by incorporation into 

accretionary lapilli. The Unit C samples (3 & 15) are 

strongly fine-skewed and moderately well-sortedp a 

characteristic base-surge feature (Crowe & Fisherg 1973). 

When the samples are superimposed on Walker's (1971) 

plot (Fig. 3.24b) for differentiating mode of depositiong 

most of them plot within the flow field. The only samples 

which plot inside the field of fallout are the Unit C surge 
deposits. This diagram is not designed for use with 

surtseyan deposits and the moderate-to-low degree of 

sorting in these tuffs as a whole prevents using co as a 
discriminant of transport mechanism. Most base-surge 

deposits plot in the overlap area between flow and fallout 

fields (Walker op. cit. ) and the Unit C samples are thought 

to represent finer-grained deposits of this type. 

The use of a C-M diagram (Sheridanp 1971) to 

discriminate between the tuffs is more instructive. Many 

of the samples cluster just above the field of dominant 

airfall modes (Fig. 3.24c). Their slightly coarser C 

values are probably due to their proximal location to the 

vent. Alsov these samples generally have altered and 

replaced matrix material which could not be measured, thus 

making them less fine-skewed than the rest of the tuffs, 

The coarse fraction was estimated from photographs 

(Appendix 1) and was unaffected by alteration. 

All the Unit E tuffs (Samples 6,109 25) plot within 

the rhyolitic ash flow field, towards the coarse C side. 
The reason for this is unknown, and may be because the 

deposits are generally fine-grained but contain sufficient 
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coarse material to give coarser C values. The Unit C 

deposits have very fine Mdgf values which cause them to 
j)lot outside all Sheridan's fields. 

Composite grain size frequency distributions (Fig. 

3.25) indicate that most of the t, uffs are similar to those 

of Surtsey (Sheridang 1971). The exceptions to this are 

sample 16 (Unit A) and the Unit C tuffs. Unit A has a high 

coarse percentage and is very poorly sorted# almost 

bimodal. The sample is a coarse airfall deposit with its 

high fine content probably due to en masse fallout of 

moist ash from a low eruption column. The Unit C curves 

are the same shape as the other samples but are better 

sorted and much more fine-skewed. Surges carry the fine 

proportion of the erupted tephra away from the vent, 

turbulence within the surge sorting the material. The 

sorting values are very similar to proximal Surtsey 

deposits (Sheridang op. cit. ). With increasing distance 

from the vent surges sort material much better than 

airfall deposits (Crowe & Fisher, 1973). 

The Medano samples plot largely outside, or are 

undifferentiated by most of the published plots. This is 

thought to reflect the lack of work done on tuff-ring 

deposits9 whose tuffs are of mixed airfall and surge 

origin. The low dispersal of their products (Walker, 1973) 

and their fines-enriched nature are additional 

characteristics which add to the complexity of simple grain 

size discriminant plots. 

b) Morphology of tephra 

sEM studies 

The Medano ash is typically blocky with fractured 

grain surfaces and moderate numbers of smooth-walled 

vesicles (Fig. 3.26a). The juvenile tephra is identical to 

Saefel19 With ribbed impact fracture pits and etched 

surfaces. Spherical vesicle infilling structures are also 

present and are commonly cracked. These cracks resemble 

shrinkage cracks and may represent drying out of hydrous 

zeolite or palagonite (Fig. 3.26b). 

most grains are covered by fine ash and authigenic 

mineral growthsv which obscure surface textures. Commonly 
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Fig. 3.26 c) SEM photograph of icositetrahedral analcite 
found as pore infilling in Medano tuffs. 
Free growth into these pores allowed well- 
formed crystals to develop. xlOOO. 

Fig. 3.26 d) SEM photograph of fibrous radiating zeolite 
found as fringes round altered grains. x600. 



the authigenic minerals are fine-grained, amorphous and 
not easily identified. Occasionally howeverv the minerals 
are well formed and can be recognised from their form and 
by the use of energy dispersive semi-quantitative analyses. 

Fig. 3.26(c9d) shows some of the typical authigenic 

minerals which occur within vesicles and pore spaces. 
Analcitet in icositetrahedral and acicular forms, has been 

recognised. Microprobe and EDS analyses in the SEM mode 
indicate that the analcite has a minor calcium and a 

significant potassium content (Section 3.6.3b). 

SDI studies indicate that the tuffs have variable 

porosities due to variable amounts of matrix and the 

proportion of authigenic minerals. The permeabilityt which 
is also dependant on the above factors, is rapidly reduced 
in even slightly altered tuffs by authigenic bridging 

between matrix grains which are the first to be altered. 
Quantitative grain morphology 

PVC measurements on the Medano tephra were complicated 
by the alteration of much of the glass fragments. 

Palagonitization and corrosion of the grain margins by 

later cementing material made it impossible to measure 

many of the samples* The alteration is most marked in the 

older samples and thus only Units D and E were used in the 

analyses. 
The PVC plots (Fig. 3.27a) show that most grains have 

low P values and only 17% plot above the P 2CWo line. This 

indicates that the majority of the Unit E tephra was 

derived by explosive fragmentation of the magma due to 

volatile exsolution. The Unit D samples are all altered and 

thus only 10grains were measured. It is not thought, toý. be 

statistically meaningful to draw anSi conclusions from the 

Unit D PVC results in which 80% of the grains-plot below 

the 200% line. 

The data for three primary and one partly reworked 

Unit F_ samples agree with the petrographic information in 

suggesting that this unit was formed by eruptions of 

intermpdiate surtseyan-strombolian character. The 

eruptions were not wholly strombolian in'- 
' 
type, since scoria 

tends to plot along the P O51o line on the ternary PVC 
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diagram (Honnorez & Kirst, 1975). The magma was 
therefore freely vesiculating at a high level when it came 
into contact with moderate amounts of probably surface- 
derived water and explosively erupted. The PVC Plots of 
the Unit E tephra closely resemble those of Capelinhos and 
Surtsey (Honnorez & Kirst, op, cit. ) when these volcanoes 
were well-established and water had restricted access to 
their vents. 

The P vs N plots (Fig. 3,27b) support the above 
conclusions with over 907o of the samples plotting above 
the line with slope 0-75. On this diagram the Unit D 
tephra plot well within the hyalotuff fieldp perhaps 
indicating that they were derived by explosive quenching 
of vesiculating magma. The lack of samples in the 
byaloclastic field, howeverl is in part due to the small 
number of fine ash grains measured. In all the Medano 
tuffs these grains are generally altered and could not be 

measured. This, and the lack of results from Units A, By C 

and D means that comparisons with Saefell are difficult to 

make. In general the final stages of the Medano activity. 
were more strombolian than any of the Saefell eruptions. 

PVC and SEM studies indicate that deposits thought to 
be formed by eruptions transitional in character between 

strombolian and surtseyan consist of purely mechanical 
mixtures of both end member clasts. All lapilli studied 

are either strombolian scoria or phreatomagmatic tephra 

with no juvenile material of intermediate morphology* This 

agrees with studies of ejecta from mixed or transitional 

strombolian-phreatomagmatic activity (Francis & Thorpe, 

1974; Self et al. 91980), The amount of water interacting 

with the magma determines the eruption characteristics and 
the proportions of strombolian and phreatomagmatic ejecta. 
it is probable therefore that in intermediate strombolian- 

phreatomagmatic eruptions all the available water is used 

up in reacting with some of the magmag chilling it 

completely. The remainder of the magma is not chilled and 

erupts as strombolian scoria. 
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3.6.3 Alteration of tuffs 

a) Sequence of alteration 
All the Medano tuffs are altered to some extentq the 

older tuffs generally more than the younger. The first 

noticable alteration occurs in the tuff matrix which 
becomes turbid wbilst some grains alter to palagonite. In 

this initial stage isolated altered ash grains are sparsely 

scattered through the matrix whereas the rest of the asb 

appears completely fresh. Altered fragments are randomly 
distributed and their development must result from minute 
differences in the permeability of the tuffs around them 

and the micro-cbemistryl pH and Eb of the solutions 

permeating through the tuffs at that point. 
Progressive alteration continues with the development 

of palagonite rinds on larger lapilli and growth of 

autbigenic minerals. Initial palagonite is orange-yellow, 

amorphous and isotropic and forms rinds of variable 

thickness (up to 092mm). Most of Unit E is presently at 

this stage of alteration except for one sample (CLT 7) 

which is highly altered and another whose matrix has been 

partly altered to clay. 
The most extreme form of alteration consists of deep 

orange palagonite which forms rinds up to 0-6mm thick on 
larger lapilli and totally replaces smaller fragments. 

Rinds round grain margins tend to be structureless and, 

isotropic to weakly birefringentg though the strong colour 

masks this. Rims of palagonite around vesicles consist of 

birefringent radiating fibres of length-fast material. 

Authigenic mineral growth'increases with increasing 

alteration (Fig. 3,28) in the bulk tuff as well as in 

individual vesicles. Movement of the solutions which 

precipitate the zeolites through the tuffs means that 

palagonite is more abundant in most samples. Howeverg in 

one sample (CLT 5) of lacustrine tuff the zeolite minerals 

are slightly more abundant than the palagonite, This is 

thouqht to indicate that slightly alkaline lake waters 

directly precipitated additional zeolites and carbonate 

minerals in the tuffs (Hay, 1966). The sample studied may 
however have been a preferred precipitation site for 
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pal agoni ti zation -derived zeolites from other areas of the 

tuf f S. 

The authigenic minerals in the tuffs are analcite, 

calcite and rare phosphatic material. In all cases the 

analcite formed first with calcite later filling up pores 

and vesicles. The analcite is white and massive or 

slightly fibrous in hand specimen. In thin section it is 

colourless, isotropic and has a blocky earlier form which 

is fringed with fibrous needles (Fig. 3.29). Analyses of 

the analcite indicate it is potassium bearing (Table 3.5) 

but both blocky and fibrous forms have similar compositions. 

The calcite is less abundant and formed after the analcite. 

often, where an altered ash grain has zeolite in the 

vesicles within the palagonite rindp the fresh glass has 

calcite filled vesicles. This indicates that analcite was 

derived from the palagonitization process and precipitated 

close to the altered glass. 

-I 

Fig. 3.29 Coiouriess, fibrous anaicite (A) forming 
fringes around pore spaces with later 
calcite (C) infilling remaining voids. 
Plane polarised light. xIO. 

Calcite occurs in many of the tuffs but is not 

generally related to the amount of zeolite formed. The most 

altered tuffs contain the most calcite in general but its 

variable development suggests that carbonate solutions 
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TABLE 3.5 SIDEROMELANE9 PALAGCNITE AND AUTHIGENIC ANALySES 

(1) (2) (3) (4) (5) (6) (7) (8) 

S'02 52-8 37-9 55-6 47-35 42-1 42-6 49-9 2-73 

Ti02 2-16 3-71 - 1-24 0-44 0-24 0010 0-04 

A12 03 15-8 7-45 18-1 11-3 18-9 15-6 15-9 1-14 

FeO 7-19 15-2 0-13 16-5 3-44 0-52 0-14 0-54 

MnO 0-30 - - 0-09 - - - 
mgo 2-43 4-46 0-19 4-27 1-44 0-34 - 0-27 

Cao 5-45 1-12 0-55 1*23 0-75 0,64 0-34 33-3 

Na20 4-02 0-60 3-20 0-35 0-42 4.83 4-51 0-17 

K20 3-02 1-80 4-97 3-57 1-21 5-14 5*65 0-13 

P2 ()5 0-95 - - - 0-20 0-11 - 221-7 

Total 94*12 72-24 82*74 85-90 68*90 70-02 76-74 61-02 

(1) Sideromelane lapillus from CLT14 (reworked crater tuff). 

(2) Palagonite rind around above lapillus. 

(3) Zeolite pore infill near above lapillus. 

(4) Slightly palagonitized glass lapillus from CLT21 (Unit B 

tuff). 
(5) Palagonitized rind around vesicle in above lapillus 

(CLT21). 

(6) Zeolite within vesicle in above lapillus (CLT21). 

(7) Fibrous zeolite vesicle infill from CLT14. 

(8) Vesicle infill of "apatitic" composition from CLT21. 



154 

have moved freely through the tuffs. Most of the calcite is 

thought to have formed directly from the palagonitization 

although some could have been brought in by groundwater 

percolation. Calcite fills many of the voids in the tuffs 

and greatly reduces permeabilityg preventing further 

leaching. 

One sideromelane lapillus in sample CLT14 (reworked 

crater tuff) contains vesicles filled with colourlesst 

radiating acicular crystals. Microprobe analyses (Table 

3.5) indicate they contain Ca and P. suggestive of 

apatitic compositions. The minor amounts of phosphate 

found could be derived from alteration of the surrounding 

juvenile glass, which has a small P content. 

b) Element distribution mapping 

Microprobe element mapping (Appendix 2) was used to 

study the qualitative changes in glass chemistry during 

alteration. B. E. I. photographs clearly indicate that 

concentric zones of alteration occur as palagonite is 

formed (Fig. 3.30a). Computer maps (Fig. 3.30) display 

which elements have been mobile*daring alteration. 

The mapped area comprises a partly-filled vesicle 

surrounded by well-bedded palagonite (Fig. 3.30). The 

palagonite occurs as a dark inner rind surrounded by a 

faintly-banded outer light-coloured rind. The vesicle 

infill consists of a layer of massive material around the 

vesicle wall with irregulart blocky crystals in the centre. 

The palagonite outer rind is enriched in Mgq K and 

Fe relative to the fresh glassp and depleted in Al and Ti 

(Fig. 3.30b-e). Both the palagonite and the glass have 

similar Si contents, The inner palagonite rind is depleted 

in all of these elements except for All relative to the 

outer rind. The inner rind is probably a very hydrous 

phase formed by further leaching of initial palagonite. 

The blocky inner vesicle infill, is a Ca-phosphate 

containing traces of Mg. and is a form of apatite, 

possibly collophane. The rim of earlier authigenic material 

forming the initial vesicle infill is also predominantly 

composed of Ca and P. However, it also contains Mgp Alp Si 

and K. it is thought that this material formed under 
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non-equilibrium conditions and is a hydrous gel v containing 

all the elements expelled from the juvenile glass during 

palagonitization. It may have taken in Ca and P during 

precipitation of the later apatitic phase. Although not 

shown on the computer mapsp some movement of phosphorous 

and calcium in the glass towards the vesicle did occur. 
The boundary between the palagonite and the glass is 

sharpq both optically. and in terms of chemical gradients. 
This lack of a concentration gradient towards the 

palagonite has been explained by postulating rapid cation 

mobilisation (Harvey9 1974), The rapidity of the alteration 

process has been demonstrated by Furnes (1975) who studied 

the rate of palagonitization experimentally. Even at low 

temperatures (200C)t appreciable alteration took place 

within one year. 
Even within the scale of a thin section, different 

thicknesses of palagonite occur around vesicles and lapilli 

margins* Concentrically banded palagonite rinds also occur, 

as do authigenic minerals with variable compositions. 

Element mapping indicates that the amount of cation 

depletion or enrichment in the palagonite also varies. 

All these changes are caused by variations in the micro- 

chemistry of the aqueous fluids surrounding each 

sideromelane fragment. Temperature and duration of 

alteration may also be important factors when considering 

changes in alteration on scales larger than hand specimen. 
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3.7. SUMIRMARY 

1. The Medano tuff-ring formed when trachybasalt magma 
ascended (along a fissure) and interacted with water 
derived from a shallow coastal lake. 

2. Five lithologically distinct units were formed by 

phreatomagmatic eruptions. Variations between the products 
and structures of each unit are attributed to changes in 

the depth of eruption focus and the amount of water 
reaching the vent. 

3* Surges are pulsatory density flows which eroded, or 
deposited different structures depending largely on their 

temperature (and thus moisture-content). Directed blasts 

caused marked variations in surge properties. 

4. Ring-fault subsidence allowed a thick sequence of 

reworked tuffs to build up in the crater. Lacustrine, 

fluvial and debris flow deposits formed in the miniature 
basin and are presently being themselves reworked. 

S. Vesicle size studies indicate that explosive magma 

quenching occurred at 1.50-200m during Units A and D 

eruptions and was shallower during Units B and E. Grain 

size distributions and petrography indicate that Units 

B and E eruptions were less water-influenced and thus less 

explosive. 

6. Grain morphologies are similar to typical 

phreatomagmatic tephrae PVC results agree with this and 
also indicate the intermediate phreatomagmatic-strombolian 

nature of the Unit E eruptions. Such intermediate activity 
forms a mechanical mixture of phreatomagmatic and 

strombolian ash. 

7. Palagonitization of the tuffs is variable in its 

development# due to variations in the micro-chemistry of 

pore fluids and tuff permeability. Cation mobility and 



162 

relative enrichment or depletion in palagonite is also 

variableg for similar reasons* 
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CHAPTER 4 

RECENT 1111REATUNIAGIATIC ACTIVITY -A REVIEW 

Before discussing ancient examples of phreatomagmatic 
volcanoesq a review of recent and observed types will be 

carried out* This will include comparisons with the 
Saefell and Medano tuff-rings and will establish a general 
model for activity of this type. Ancient examples may then 
be related to their original equivalents. The term 

phreatomagmatic is here used loosely to describe eruptions 
forming maars and tuff-rings. 

4*1. Ob-. Prved PhreatomacpAtic Eruptions 

Over the last thirty years many detailed accounts of 
observed phreatomagmatic eruptions have been published 
(Kienle et al., 1980; Machado et al. 91962; Moore et al., 
1966; Muller & VeyI91957; Nairn et al. 91979; Richards, 1959; 
Thorarinsson et al, 91964). The 3-fold division of 
phreatomagmatic volcanoes proposed by Camus et al. (1981) 

provides a useful means of classifying eruption types, 

processes involved and products formed. 

4.1.1 Initial activity 
All three types of activity - phreatic, 

phreatomagmatic and surtseyan - begin by contact of magma 

with water, The mechanism and depth of this contact 

contrdls the type of volcano formed, as does the 

magma: water ratio and the rate of magma effusion. These 

factors will be discussed in the context of an overall 

model for phreatornagmatic activity (Chapter 7). 

The initial activity of volcanoes formed by 

magma: water interactions consists of highly explosive 
blasts. These blasts occur at short intervals (1-30seconds 

on Surtsey) with smallerg more frequent explosions in 

between. Eruption clouds are highly charged with steam and 

punctured by tephra fingers which shoot out in all 
directions. These fingers have a bomb or block at their 

tips and draw out a trail of tephra behind them as they 
leave the central eruption column, forming the typical 
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"cocks tail" pattern (Fig. 4.1). 

Base-surges form after large, especially directed 

explosions and leave the crater through notches in the rim. 
Most appear to be only partly related to column collapse 

processes. Such collapse processes are commonly observed 

and are theoretically predicted in the moisture-rich 

plumes of phreatomagmatic eruptions (Wilson et al. t 1978). 

Surges move outwards as pulsatory density flowsp being 

topographicall3V channelled and transporting tephra down 

the volcano flanks (Fig. 4.1 ). 

Scoriaceous tephra may be erupted at any time due to 

lesser amounts of water reaching the vent. During fissure- 

type eruptions, strombolian activity may occur at one 

point whilst phreatomagmatic activity occurs elsewhere. 

This mixed activity may sometimes occur within a single 

small eruptive crater (Ukinrek maars, Alaska; Kienle et al., 

1980). The near-surface access of water to magma is 

periodic (Self et al. 9 1980) and controls the intensity 

and duration of phreatomagmatic explosions. Ollier (1974) 

discussed such a mechanism and termed a "tap model'19 where 

magma: water interaction is intermittant. 

Constructive phases of volcano growth alternate with 

periods of repose. During activity considerable recycling 

of tephra which falls back into the crater occurs. This 

crater infill, is supplemented by material which slumps off 

the crater walls. Also, explosions undermine the crater 

walls and break off large masses of more consolidated tuff. 

Some early formed concentric fissures (Thorarinsson et al., 

1964) caused collapse of the crater walls of Surtsey 

during its early activity. Small nested cones built up by 

weak eruptions inside the crater are blasted away when 

powerful eruptions occur. 

4.1.2 Syneruptive erosion 

If the phreatomagmatic activity is surtseyan then 

wave action continually modifies the external shape of the 

tuff-ring. Breaching of the ring in various places 

occurred, during the Capelinhos eruption (Machado et al. 9 
1962), keeping the crater open to the sea. Tidal reworking 
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affected the crater tuffs of both Capelinhos and Surtsey, 

removing large quantities of ash. When activity ceasedg the 
tuff-rings were rapidly eroded, their survival prolonged by 
lava effusion in a later stage of activity. 

Maars are not subject to syneruptive tidal reworking 
but are, along with tuff-rings, eroded by water runoff. 
This water may directly condense from the eruption column 

or be meteoric due to ash seeding rain clouds overhead. 
Nilahue maar (Muller & Veylt 1957) was infilled largely by 

water from a small stream which flowed down the nearby 
hillside and breached the tephra rim. Rapid erosion of the 

unconsolidated tephra by debris flow and fluvial runoff 

results in the characteristic parasol ribbing seen on the 

outer flanks of many volcanoes (Fig. 4.2). 

Maar craters rapidly become partly filled with a lake, 

often because the pit intersects the water table. These 

lakes often drain down fissures prior to renewed eruptions 
but are soon replenished afterwards. In this way 

phreatomagmatic eruptions maintain a water supply to fuel 

further magma: water explosions. 

4.1.3 Late-stage activity 

With time phreatomagmatic activity wanes as 

continued magma upwelling fails to contact copious amounts 

of water* Degassing of this magma prevents violent 

explosive activity even if water is present and lava ponds 
in the crater. These factors control whether a scoria cone 

or lava lake are formed although commonly both are present. 

Surtseyq Capelinhos, Taal and Ukinrek volcanoes developed 

late-stage strombolian activity with associated lava flows 

and more rarely domes. If activity continues the initial 

maar or tuff-ring may be buried beneath later scoria and 
lava such as on Surtsey and Capelinhos (Fig, 4,3). The . 
change in eruptive style is solely due to the absence of 

watery-either because of sealing of the crater from the 

sea (Surtsey), or because groundwater cannot be replenished 

rapidly enough (Ukinrek). Once the magma has degassed it 

forms lava flows and domes and will not explosively 

interact with any amount of water. 
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HVERFJALL 

LAKE 

500m 

Fig. 4.2 Drawing from an aerial photograph of Hverfjall, 
Icelandt a Recent tuff-ring whose flanks have 
been extensively eroded by fluvial action. 
Note the mound of tephra within the craterv 
thought to represent a late-stage tuff cone. 
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Fig. 4.3 a) Early stage in the growth of the Capelinhos 
tuff-ringp showing breached crater. 

b) Final stage in the growth of the volcano, 
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and addition to previous coastline. 
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Although the above descriptions apply to small, 

purely phreatomagmatic volcanoes many other compositep 

large volcanoes have phreatomagmatic phases. Examples of 

these include Vesuvius (Sheridan et al., 1981), Mount 

St. Helens (Moore & Sissont 1982) and numerous examples 

in the I. A. V. C. E. I. Bulletin of Volcanic Eruptions. 

Data from such eruptions may be used to supplement the 

limited observations made on maar and tuff-ring activity. 

4.2. Recent, 
-Eroded 

Phreatomaqmatic Volcanoes 

Many descriptions of recentv though not historically 

activev phreAtomagmatic volcanoes exist. Variable degrees 

of erosion allow the study of many products whose processes 

of formation could not be directly viewed during 

eruptions. In this study the main points of interest in 

the eroded samples are 

1)Base-surge deposits 

2)Collapse processes 

3)Reworking and crater infill processes 

4)Preservation potential. 

A general review of maars, tuff-rings and diatremes 

is given by Lorenz et al. (1970). In the present study 

more attention will be paid to comparisons with the 

Saefell and Medano tuff-rings and information bearing on 

the originp deposits and significance of diatremes. 

4.2.1 Base-surge deposits 

Base-surge channels are best developed near or on 

the crater rim (Barcena: Richards, 1959; Saefell). Surge 

dunes occur downslope from these on the outer flanks and 

are best developed in the sub-horizontal distal tuffs. 

This is thought to indicate that surges are highly chaotic 

particle: gas mixtures within and just outside the crater. 

on moving down the volcano flanks they become coherent 

pulse-like flows capable of depositing thinp well-sorted 

beds. Factors which favour deposition include loss of 

flow velocity (as . 9urges move from steep to gentle slopes), 

decrease in temperature (causing condensation of steam and 

clumping of moist tephra) and expansion of surge clouds 
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(due to admixing of cool air at surge front causing 

dilution of the flow and collapse of turbulent grain 

support mechanisms). Admixing of cool air also lowers the 

surge temperature and thus increases particle loss. 

Allen (1982) in a summary of the sedimentary features 

of pyroclastic surges and flowsp mentions their similarity 

to turbidity currents. He classifies surge dunes (which he 

terms sand-waves) into progressive, stationary and 

regressive (Fig. 4.4a) types. These types are related to 

the temperature (and thus moisture content) and the 

sediment deposition rate relative to transport rate of 

surges. Using the direction and steepness of bedform climb 

one can get a rough idea of the temperature and relative 

deposition rate of a surge. 

When the Saefell and Medano dunes are interpreted in 

these terms the results agree with Allen's (1982) 

conclusions. The first Saefell dune (Fig. 4.4b) is similar 

to his type Aj/A, 2ý a progressive bedform, with preservation 

of complete sets and some erosional partings. The dune is 

a Unit 3 directed surge deposit with no associated 

accretionary lapilli, The block impact sag plastically 

deforms the dune laminae indicating they were slightly 

cohesive. The absence of accretionary lapilli, adhesion 

ripples and plastering structures indicates the surge was 

hot and relatively. dry. 

- The slumped Saefell dune (Fig. 4.4b) passes from a 

regressive type C bedform upwards into a progressive type 

Al bedform. This change indicates the increasing 

temperature of the depositing surges with time, perhaps as 

the hotp dry head of a surge pulse overtook the cool, 

moistq expanded tail of a preceding pulse. 

The Medano dune (Fig. 4.4b) is a type A2 progressive 

bedform. The proximity of the dune to the crater and the 

lack of accretionary lapilli suggest that its depositing 

surge was hot and relatively dry. The presence of some 

moisturep however, is indicated by the ash plastered around 

the underlying block, It is thought that surges contain 

both hotp dry steam and cool, moist water vapour at all 

times. Thus even progressive bedforms contain some 
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moisture when deposited. 

The Medano and Saefell surge deposits are broadly 

similar to the surge deposits of other volcanoes. The 
form, location, abundance and sequence of surge structures 
is variable even. *in a single volcano. These differences are 
dependant on the physical properties of the surges and the 
influence of external factors such as the volcano 

morphology. A general model for surge origin, motion and 
deposition will be presented in Chapter 7. For specific 
descriptions of base-surge deposits see Moore (1967), 

Fisher & Waters (1970). Waters & Fisher (1971)9 Crowe & 
Fisher (1973)9 IvIattson & Alvarez (1973), Schmincke et al. 
(1973), Sheridan & Updike (1975) and Fisher (1977). 

4.2.2 Collapse processes 

a) Maars 

Direct evidence for subsidence in phreatomagmatic 

volcanoes is common in maars but less obvious in tuff-rings. 

The Eifel idaars (Lorenz, 1973) have smaller ejecta volumes 
than crater volumes due to collapse. Thick deposits of 

reworked pyroclastics (>175m) were found in a maar in the 

French Massif Central (Lorenzq op. cit. )p separated from 

the surrounding country rock gneisses by a ring fault. 

This was interpreted to indicate prolonged subsidence of 
the crater infill after cessation of volcanic activity. 

Syneruptive collapse processes were observed at 
Nilahue (Muller & Veyll 1957) and Ukinrek maars (Self et 

al. t 1980), with arcuate fractures and slumping. This 

slumping is thought to be the surface expression of 

subsidence along ring faults at depth (Lorenz, 1973). 

Excavation of an eruptive chamber at depth (Lorenz, op. 

cit. )q due to wall-rock spalling as eruption pressure 

decreases, forms a diatreme beneath maars. Further 

subsidence in maars may occur after eruptiong howeverp 

along ring fractures which develop outwith the eruptive 

crater. This subsidence is a type of caldera collapse, 

and results in en masse collapse of the diatreme deposits 

with remarkably little disruption (Gutmann, 1976). 
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b) Tuff-rings 

As with maarsq syneruptive subsidence in tuff-rings 

has been invoked to explain the occurrence of repeated 

slumping and collapse of the crater walls along arcuate 

planes (Capelinhos: Camus et al. t1981; Thorarinsson et al., 

1964). In extinct tuff-rings it is frequently not possible 

to determine whether syneruptive collapse occurred. Rim 

beds which have slumped into the crater are often observed 

(Heiken, 1971) but may not represent crater collapse. Such 

slumped products could be reworked by subsequent eruptions 

and ejected from the cratert preventing its infilling. 

Some subsidence does however occur along ring faults 

which leads to crater enlargement (Lorenzt 1970). Thick 

sequences of reworked tuffs such as at Medano (Chapter 3) 

indicate slowg posteruptive subsidence. The amount of 

subsidence in tuff-rings is likely to be less than in 

maars (Lorenzq 1973). This is because there is less 

disruption of the country rocks beneath tuff-ringst which 

have subsequently low proportions of accessory lithics. 

This has important consequences on the processes of 

diatreme formation and will be further discussed in the 

following chapters (Chapters 5t 6& 7). 

4.2.3 Reworking and crater infill processes 

In one respect maars and tuff-rings may be treated 

as minature depositional basins with an abundant supply of 

upliftedv proximalv unconsolidated infilling material. Add 

to this the effects of volcanic explosions with associated 

ground tremor and copious supplies of water. from eruption 

columns and its not surprising why a wide range of 

reworking processes are observed. 

a) During eruption 

As mentioned above (Section 4.2.2) syneruptive 

collapse of crater wall tuffs has been frequently observed 

in maars and tuff-rings. Slumping is facilitated by the 

high moisture content of the tuffs and explosions beneath 

the crater wall sequence (Thorarinsson et al., 1964). Much 

tephra falls directly back into the crater after eruption 

and probably contributes greatly to its infilling. 
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Fluidization of crater/vent material may occur in some 

phreatomagmatic volcanoes (Lorenzi 1970; McCallum et al., 
1976) but in a brief review Wolfe (1980) concludes that 

this is unlikely. Other processes such as gas-streaming, 

ball milling and fines elutriation have been observed in 

volcanic conduits but are not strictly fluidi2ation 

phenomena (Wolfep op. cit. ). 

Active vents generally occupy small areas of the 

crater and thus eruptions do not totally disrupt crater 

tuffs. Lakes (or lagoons if surtseyan tuff-rings are 

breached) may occupy part of the crater whilst eruptions 

occur. On Surtsey (Thorarinsson et al., 1964) two main 

craters were formed. In one a shallow lake existed for 

some time whilst activity continued in the other. Renewed 

activity causes intercalation of reworked and primary 

tuffs many times during the life of phreatomagmatic 

volcanoes. 

b) After eruption 

As slow subsidence of the crater tuffs occurs, a 

thick pile of reworked tuffs builds up within the basin. 

Jahns (1959) illustrated that'at Crater Elegante, Mexico, 

the infilling consists of talus brecciap deltaic and 

lacustrine sediments, alluvial fans and playa deposits 

(Fig. 4.5). The episodic nature of the subsidence is 

indicated by well-defined topset benches around the crater 

walls. In modern surtseyan tuff-rings such as Surtsey and 

Capelinhos there is little evidence of post-volcanic 

subsidence. It is thought unlikely that they will 

accumulate thick sequences of reworked depositst for 

reasons which will be discussed in Chapter 7, In this 

respect the Medano tuff-ring is different to Saefell, 

which is like Surtsey in having suffered ýittle post- 

volcanic subsidence. 

Water runoffq on the inner and outer slopes of tuff- 

rings MaY occur at all times during and after eruption. 

Depending on the degree of consolidation of the tuffs, 

mudflow or fluvial channels are formed, producing the 

parasol ribbing seen on most pyroclastic volcanoes (Fig. 

4,2). on the unstable submarine slopes of surtseyan 
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tuff-rings volcanic tremor and slumping initiates debris 

flows and turbidites(Alexandersson, 1972), although such 

processes are rarely recorded. 

Wave action rapidly reworks surtseyan tuff-rings 
(Fig. 4.6)t causing changes in shape and size as they 

grow. The parasitic vents of Surtsey (Thorarinsson, 1967) 

were eroded away in a matter of days. Wave erosion 
has also affected Capelinhos (Machado et al., 1959) 

and Saefell (Chapter 2) redistributing much of the flank 

tephra. Wind action may be locally important in removing 
fines and eroding loose tephra. (Surtseyj Saefell). 

4.2.4 Preservation potential 
The reasons for the scarcity of phreatomagmatic 

deposits before the Tertiary are as follows : - 
1) Small volcano sizes, low ejecta volumes and low 

dispersal aid rapid reworking. 

2) They frequently occur in active sedimentary environments, 

since these often supply the water for explosive activity, 

e. g. Surtsey in shallow marine environmentp Nilahue in 

stream valley, Menan Buttes (Hamilton & Myer, 1963) on 

river floodplaing Fort Rock (Heikeny 1971t 1972) in lake 

basin. These processes erode and redistribute tephra. 

3) They are composed of unconsolidated tephraq aiding 

reworking. Alteration of tuffs occurs rapidlyg improving 

their resistance to physical weathering but ultimately 

destroying most primary textures. 

4) A large number of reworking processes affect 

phreatomagmatic volcanoes (Section 4.2.3). These processes 

are aided by the prolonged subsidence of the crater. 

5) Phreatomagmatic volcanoes often erupt lavas at a late 

stage. These flows may breach the crater (Surtsey, 

Capelinhos) and obscure the previously formed tuffs. 

Ofteng however, such lavas prevent complete redistribution 

of the tuffs by "armouring" the structure against erosion. 

Such reasons explain why few examples of ancient 

maar/tuff-ring products are documented in the literaturev 

even though they are reported to be second only to scoria 

cones in abundance amongst volcanoes (Wood, in press). 
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Another reason for this scarcity is probably lack of 
recognition in ancient rocks, because of alteration and 
similarities with sediments. Many maar beds contain< 205c;, 
juvenile materialv the remainder consisting of comminuted 

sediment if phreatomagmatic activity was initiated by pore 

water from unconsolidated, newly-deposited sediments. In 

ancient rocks it is frequently sufficient that a' 

volcaniclastic deposit is recognisedv let alone an 
identification of the volcano type. 

Factors which enhance the preservation of maar/tuff- 

rin(J products are as follows 

1) Subsidence of tuffs into a diatreme. This preserves 

thick sequences of primary tuffs at depth below the 

erosion surface. Most ancient phreatomagmatic products 

are found in such structures (Lorenz et. al., 1971). 

2) Deposition of tuffs along with sediments in a 

depositional basin. Rapid burial and consolidation of tuffs 

may occury after which time they may be preserved depending 

on uplift and erosion. 
3) Rapid alteration of primary glass fragments causes 

formation of authigenic minerals. Carbonate from alteration 

and precipitation from water bodies around or within the 

crater fill the pore spaces of the tuffs and stop the 

passage of solutions through them. This process of 

consolidation occurs within a short time under the right 

conditionsp and improves the preservation potential. 

It can be seen that preservation of phreatQmagmatic 

material is dependant on many factors. Generalisations on 

these factors and the resultant deposits will be 

discussed in Chapter 70 with the formation of a facies 

model. 
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4.3. SUMMARY 

1. Observed phreatomagmatic activity is highly explosive 
but periodic in nature. Access of water to the vent is the 

main factor controlling eruption style. 

2. Airfall and base-surge processes deposit tephra but 

strombolian fire-fountaining may occur at any time if 

water is excluded from the vent. 

3. Syndepositional slumping of loose tephra into the 

crater and concentric faults are the surface expression of 
syneruptive. subsidence into a diatreme. Post-eruptive 

subsidence is'common especially in maars and occurs along 

ring faults. 

4. Late stage activity commonly consists of strombolian 

eruptions with associated lava flowsq as water is used up 

or excluded from the vent. 

5. Base-surge deposits in eroded maars/tuff-rings contain 

structures which largely reflect deposition from pulsatory 
density flows. Steam temperature (and thus moisture 

content) controls the type of structures formed by surges. 

6. Reworking processes greatly modify deposits during and 

aftLA-r eruption. The subsiding crater acts as a small 

depositional basin in which thick reworked sequences may 

accumulate. 

7. Preservation potential of phreatomagmatic products is 

poor and depends on special conditions. Even though they 

are the second-most abundant volcano typeg they are rarely 

found in pre-Tertiary sequences. 
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CHAPTER 5 

EAST LOTHIAN DIATRDIES 

The following two chapters describe tuffs which have 

subsided to various depths in Scottish diatremes and are 
presently exposed at diverse structural levels. By 

comparing closely-spaced diatremes whose surface expressions 

were probably very similar a composite, idealised cross- 

section can ! be constructed, The East Lothian diatreme 

deposits are generally exposed at higher structural levels 

than those in Fifeq and will be discussed first. 

5.1. Introduction and Geoloqical Settinq 

The East Lothian diatremes cut Upper Old Red Sandstone 

and Lower Carboniferous (Dinantian) sedimentary and 

volcanic strata exposed along the coast between North 

Berwick and Dunbar (Fig. 5.1). Those strata belong. to the 

Garleton Hills Volcanic Rocks (McAdam, 1975) which thicken 

to the S and include both lavag and tuffs. J_ittle 

previous work has been carried out on the diatremes although 

Martin (1955) briefly discussed the North Berwick examples 

and Francis (1962) described those around Dunbaro Graham & 

Upton (1978) reported gneissic clasts from tuffs to the W 

of Partan Craig diatreme which they interpreted as samples 

from a basement complex at 7-8km depth. 

Although the present work is concerned mainly with the 

diatreme deposits the country rock sediments and tuffs are 

also mentioned briefly. They are significant because they 

represent the deposits accumulated around the flanks of 

those active volcanoes, fed by the diatremesq but 

themselves rarely and only fragmentarily preserved within 

the stratigraphical column (Francisq 19839 in press). 

The regional dip of the country rocks is variable, but 

shallowq and results from gentle post-Carboniferous 

deformation which includes N-S trending open folding as 

well as normal faulting with a mainly NE-SW trendo These 

faults are sub-parallel to the Southern Uplands Fault which 

lies some 15km to the 'S. 
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5.2. Country Rock Deposits 

5.2.1 Dunbar area 
At Dunbar, the country rock sediments and interbedded 

tuffs consist of >500m of sandstones and cornstones 
(carbonate palaeosols) of Upper Old Red Sandstone age 

overlain by >80m of Lower Carboniferous (Cementstone Group 

of the Calciferous Sandstone Measures) shalesq sandstones 

and cementstones (Francisy 1962). The sediments are 

commonly red. The lower part of the Cementstone Group 

contains thin green interbedded tuffs within red marls. 

Although the sequence generally dips to the Et faulting 

causes the Carboniferous rocks to occupy the westernp and 
Old Red Sandstone the eastern part of the coast (Fig. 5.2). 

I 

5.2.2 North Berwick area 

Along the coastal strip from Seacliffe Tower to 

Milsey Bayq E of N6rth-Berw. ick*(Fig. 5.3)9 the country 

rocks are all of Lower Carboniferous age and dip at shallow 

angles to the W. The-general sUccession'(-after- Grieves,, 

1981) is as follows :- 

Red Basaltic Tuff Formation 

Limestone / cementstone 

Green Basaltic Tuff Formation 

Basaltic Lavas 

---------------- Unconformity 

Canty Bay Sandstone Formation 

Estimated thickness (metres) 

100 

3 

100 

8 

250+ 

These thicknesses are approximate because lack of 

marker horizons makes it difficult to correlate across 

faults. 

Canty Bay Sandstone Formation 

The main outcrop of this formation is to the F. of 

Seacliffe Beach, but due to faulting it also occurs in 

Canty Bay and to the S of Gin Head diatremoý-The_formation 

consists predominantly of red marls and mudstones with 

interbedded white sandstones and rare cementstones. Typical 

logs of the formation are shown in Fig. 5.4. Much of the 
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following description is taken from Clough et al. (ý910) and 
Grieves (1981). 

The red marls and mudstones are well laminated and 
contain thin siltstone lenses. Low-angle trough cross- 
bedding is occasionally present, with small intraclasts 

lying along the bases of the troughs. Some climbing ripples 

occur, associated with thin silt bands. 

Within and generally towards the base of the red marls 

are more calcareous units. These units are up to 1-5m thick 

and consist of red cementstone beds individually 5-20cm, 

thick. Some horizons of poorly stratified calcareous 

siltstone contain abundant sub-sphericalp randomly 

scattered calcrete nodules up to 5cm diameter. 

The sandstones are generally white to pink although 

green patches occur due to reduction of hematite. They are 

calcareous, medium to fine-grained and up to 3-5m thick. 

All the sandstone units have erosive bases (Fig. 5.4) which 

often contain marl and mudstone rip-up clasts, in places so 

numerous as to form mud clast breccias up to 40cm thick. 

At their base the sandstone horizons are trough cross- 

bedded with foresets up to 1-5m long. Some units contain 

climbing ripples toward their tops but most fine upwards 
into plane-bedded siltstones. Laterally discontinuous, thin, 

structureless horizons with erosive bases are common. These 

often have planar top-surfaces and are succeeded by trough 

cross-bedded layers. Cross-laminae are in places disturbed 

forming soft sediment deformation and dewatering structures 

(Fig. 5-5). 

Towards the top of the Canty Bay Sandstone Formation 

the marly beds become progressively tuffaceous. The 

tuffaceous material consists of poorlV-sorted red and green 

ash and fine lapilli in beds up to 5cm thick. Often the ash 

layers pick out low-angle trough cross-bedding structures 

in the tuffaceous marls. Only fine volcanic material occurs 

in the sediments; no blocks or coarse lapilli are found. 

The depositional environment of the Canty Bay 

Sandstone Formation was probably an alluvial plain with 

ineandering rivers. The climate was arid or semi-aridp 

forming the calcrete horizons associated with soil 
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development on alluvial plains during breaks in deposition. 
Eruption of Green Basaltic Formation tuffs began nearby and 
increased in magnitude during deposition of the Canty Bay 
Sandstone Formation. Reworking of distal tuffs led to their 
incorporation within the marly overbank deposits. 

Green Basaltic Tuff Formation (G. B. T. F. ) 

This formation crops out a few metres W of Canty 

Bay Sandstone Formation sediments at the western side of 
Seacliffe Bay (Fig. 5.3). It appears to overlie them with 
slight, probably localq angular unconformity. In the cliffs 
to the S the unconformity-is marktd, by 8m of lavaý . 
which have irregular inclusions of sediment within them. 

The top of the lavas is eroded and G. B. -T. F. deposits 

overlie them. Here the tuffs are red but become locally 

green to the W due to reduction of hematite., 
, 

Near their base the tuffs are red to orange, well 
laminated and contain variable but generally high , 
proportions of sediment (Fig. 5.6), Typically, fine tuffs 

are interbedded with tuffaceous siltstones up to 40cm 

thick, although rare coarse tuffs with basaltic blocks occur 

near the base. Lenticular blocky unitsv rich in rounded 

marl and siltstone clasts up to 20cm, have channel-like 

erosive bases. Many of these clasts originated by erosion 

of the underlying deposits. Other blocky units formed by 

slumping of the tuffs consist largely of bedded tuffs and 

tuffites, Upwards the proportion of blocky units decreases 

and the tuffs become finer. Moderately-sorted gravels and 

lenticular sandstones predominate over blocky deposits. 

Rare large blocks (up to 70cm) of sediment with asymmetric 

sags indicate that volcanic activity occurred to the S 

or SF_ "of the area. 
Clast imbrication and rare cross-laminations in the 

finer units indicate local current directions from the E. 

Three angular unconformities occur in the lower parts of 

the G**BT. F. To the W of. this the tuffs lose their red 

colourationt become bleached and are cut by small faults 

infilled with hematite and calcite. An E-W normal fault 

exposed in the cliffs separates red tuffs to the S from 

green tuffs on the foreshore SW of Seacliffe Harbour. 
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This fault has a downthrow of 3-4m and is presumed to have 

acted as a barrier to solutions which caused the local 

colouration of the tuffs. To the W and and up-sequence the 

red tuffs merge into green tuffs over a zone 50m wide. 
The green tuffs are generally finer, more calcareous 

and contain fewer sediment clasts than the red tuffs (Fig. 

5.6). Lapilli-rich tuffs are commonly interbedded with 

marls, with rare blocky units formed by slumping and debris 

flows (Fig. 5.7). Many of the lapilli-rich tuffs are 

normally graded and all are well sorted. The marls and 

cementstones are most abundant towards the exposed top of 

the unit, where they contain much cArbonaceous plant debris. 

Sedimentary structures (Fig. 5.8) in the green tuffs 

include small-scale cross-bedding, mud lensesp soft 

sediment deformation by impact of basaltic bombs, wave 

ripples and channels. One large channel (Fig. 5.9) occurs 

in the cliffs SE of Oxroad Bay. The channel is a largely 

constructional feature perhaps related to infilling of a 

depression. Some of the marly tuffs are fossiliferous and 

-contain worm-burrows. In places tuffaceous sandstone dykes 

have been injected into the tuffs. They may be either 

tuffistic, gas-fluidized intrusions or sediment injections. 

The G. B. T. F. also forms the country rocks around the 

Partan Craigp Yellow Man and Horseshoe diatremes (Fig. 5.3). 

Here the formation consists of well-bedded tuffs with 

interbedded siltstones, mudstones and marls. Low-angle 

trough cross-beddingt channels and blocky debris flows 

occur as well as many normally graded units. Cementstone 

beds occur in small basins NE of Partan Craig and also at 

the top of the formation in Milsey Bay (Fig, 5.3). Towards 

the top of the formation thin tuffaceous sandstones are 

interbedded with the tuffs. These have asymmetricl sinuous- 

crested ripples and small rhomboid ripples-on their top 

surfaces (Fig. 5.10). Rare basaltic blocks within the tuffs 

sometimes have small sags beneath them, indicating fallout 

onto tuffs accumulating subaqueously. One example of a deep 

impact crater is seen beneath a small block in the country 

rock tuffs N of Horseshoe diatreme (Fig. 5.11). The tuffs 

above the block are coarse and poorly-bedded and probably 
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represent airfall material deposited-on reworked water- 

saturated tuffs exposed at the surface or beneath shallow 

water. 
The G. B. T. F. contains a number of units laid down in 

spatially associated environments. The lowermost unit 
consists largely of proximal-to-mid alluvial fan red deposits 

with interbedded debris flowo sheetflood and channel layers. 

The red colour is due to the incorporation of large amounts 

of red sedimentp although further breakdown of 
ferromagnesian minerals may have occurred after deposition. 

The succeeding unit consists mainly of lacustrine 

reworked tuffs into which debris flows occasionally brought 

coarser clasts. Volcanism was more activev though distal, 

and contributed mainly fine ash. This calcareous facies 

might be interpreted as playa deposits or floodplain silts 

which encroached on to the alluvial fan as relief subsided 
(Collinsong 1978). 

The uppermost unit consists of playa deposits on an 

alluvial plain across which meandering channels migrated, 
Some of the lakes were large enough to have generated wave 

ripples. Algal limestones (Turner, 1980) in the tuffs W of 
North Berwick indicate shallow water lagoonal conditions, 

Locallyv volcanic activity reached a peak during deposition 

of the G. B. T. 'Fo in the W and declined towards the top of 
the formation. 
Red Basaltic Tuff Formation (RoBoT. F. ) 

The top of the Green Basaltic Tuff Formation is 

separated from the base of the R. BoT. F. by 3m of green 

calcareous mudstoneo In Milsey Bay (Fig. 5o3) this bed 

marks the transition between green calcareous tuffs of the 

upper GoBoT. F. and red tuffaceous marls of the lower 

R. B. T. Fo The remainder of the R. BoToF. consists of red tuffs 

with interbedded cementstones and tuffaceous marls. -Both red 

and green lapilli occur in a red fine-graiýnedq tuffaceous 

matrix which also contains basalt blocks up to 15cm across. 

Normally -graded units are abundant, as are low-angle cross- 

laminations. 
A conglomeratic unit occurs to the W of a 80m wide 

disturbed zone in which large bedded blocks have rotated 
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almost in place due to syndepositional slumping (Martin, 
1955). This unit contains rounded blocks of both red and 
green tuffite as well as basalt and cementstone. The coarse 
unit has an erosive,. channelled base and fines upwards into 

tuffaceous marls and siltstones. At the top of the 
formation four lavas conformably overlie the red tuffs. The 
lowest lava is overlain by 5m of red tuffaceous sediments 

and contains irregular sediment inclusions at its base. 

The R. B. T. F. was deposited in shallow, probably 
lacustrine, water into which ash was falling. Slumping of 
consolidated tuffs was perhaps initiated by volcanic tremor 

which might also have been associated with local uplift, 
thereby providing a source area for the fluvial 

conglomerate (Turnerg 1980). A reversion to lacustrine 

sedimentation afterwards was followed by flow of lavas into 

the shallow water with incorporation of some of the wet 

sediments at the bases of flows. 

A schematic diagram illustrating the sedimentary 

environment into which the East Lothian volcanoes erupted 
is shown in Fig. 5.11. 

5.3. Diatreme Deposits 

The diatremes in East Lothian have been divided into a 

Red Group and a Green Group (on the basis of their 

different infilling deposits) by Martin (1955) who believed 

the Green Group diatremes to be the younger because they 

cut younger sediments than the Red Group. This evidence is 

not conclusive and the likely ages of the diatremes will be 

discussed later. In addition to the diatremes, smaller 

areas of brecciated country rock occur along the coastal 

section. As these crypto-volcanic structures represent 

initialq arrested stages in the formation of diatremes 

(and their surface volcanoes) it is convenient to treat 

them first (Fig, 5,4). 

5.3.1 Crypto-volcanic structures 

Numerous small circular or oval areas (10-50m 

diameter) of brecciated country rock occur at Dunbar (Fig. 

5.2). These structures were described by Francis (1962) as 



195 

MTS. 

Fig. 5.11 Depositional environment during formation of the 
East Lothian diatremes. Green di4tremes formed in 
more marginal environment than the, Red diatremes. 
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"incipient necks which never reached the surf ace". Doming 

of the country rocks occurred with intrusion of tuff and 

brecciation of the central beds of the dome. Flow-alignment 

of elongate blocks forms narrow concentric zones at the 

margins of these ring structuresq which are often defined 

by inwardly inclined fractures. Collapse of brecciated 

material into the centre of the rings caused basin-like 

structures to be developed (Fig. 5.12). Some ring structures 

contain much comminuted sediment and fragments from various 

adjacent levels in the country rocks. These represent 

deeper erosional levels than structures whose breccia. 

blocks are larger and may be directly correlated with the 

surrounding strata. Elongation of some of the structures 

along a NE-SW trend occursv and activity may have been 

fault-controlled. 

The crypto-volcanic structures E of-North Berwick are 

generally larger than those at Dunbarq but formed in the 

same way. The best example occurs on Seacliffe Beach S of 

the Car (Fig. 5.2). Here, the disturbed zone measures at 

least 150x300m and its well-exposed eastern margin-cuts red 

mudstonesp sandstones and marly tuffs of the Canty Bay 

Formation. The margin is sharp and rotated blocks of 

country rock strata dip into the structure at up to 760. 

Blocks reach lengths of 12m and are embedded in a matrix 

of occasionally flow-banded red tuffaceous mudstone. Many 

blocks of tuffaceous mudstone and marl have rounded margins 

whereas the sandstone blocks are angglar and irregularly 

shaped. 
Some of the blocks are veined by tuffisite which 

penetrates along bedding planes or stopes small fragments 

from the block margins. The sandstone blocks often contain 

deformed laminae and areas of "swirled stratification" 

suggesting plastic deformation of poorly-consolidated 

sediment. The margins of the sandstones are covered with 

small irregular pits and hollows (Fig. 5.12). These formed 

by weathering out of small stringers of intrusive tuff 

which infiltrated the blocks. 

Blocks of red tuffq unlike any lithology found in the 

adjacent country rock sequenceg are also found. These 
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Fig. 5.12 a) Map of crypyo-volcanic structure W of the 
Parade diatreme. 
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cut by tuffisite and invaded by-mudstone 
stringers. 
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contain base-surge cross-bedding and accretionary lapilli 

and will be described in the following section on diatreme 
deposits. It is suggested that the tuffs were incorporated 

by subsidence of material from higher levels in the Canty 
Bay Sandstone Formationt which has since been removed by 

erosion. 

5.3.2 Red Group diatremes 

The best exposed members of this group are the 
Seacliffe Tower and the Car'diatremes E of North Berwick, 

and the Parade diatreme at Dunbar. 

Seacliffe Tower 

This diatreme (Fig. 5.13) cuts lower Canty Bay 

sediments 6km E of North Berwick (Fig. 5.3). Its NW marqin 

consists of a step-like wall of poorly-bedded tuffs against 

which country rock sediments are turned down (Fig. 5.14). 

The margin is irregular and faulted; the shallowly NW- 

dipping country rocks outside are turned-over so as to dip 

SE into the neck at up to 500 within 10m of the contact. In 

the SW the margin is a curved normal fault. Detached blocks 

(up to 20m across) of country rock frequently occur within 

the-diatreme near the margin, along with collapsed bedded 

tuffs. 
The diatreme infill consists of redv bedded tuffs and 

unbedded tuffs containing large blocks of sediment and 

older tuff. The bedded tuffs are predominantly of lapilli 

and ash grade but agglomeratic layers occur in places. All 

the "tuffs" have a sedimentary component which may vary 

between 10 and 907of and many would be better described as 

tuffites. 

The bedding is defined by moderately-sorted lapilli 

layers up to 30cm *thickv interspersed with fine red ash. In 

places the lapilli layers have pinch-and-swell structures 

or wedge out. Most beds are ungraded although clast-rich 

layers sometimes exhibit coarse-tail grading. Clasts 

include mudstoneg siltstoneq marlp bedded tuff, tuffaceous 

sedimentsv basalt (blocks and bombs) and rare sandstone. 

Coarse layers are laterally discontinuous and some consist 

largely of bedded tuff clasts in a fine tuff matrix. 
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In places these layers have slightly erosive bases and are 
interpreted as debris flows. 

Block sags are rare, largely because clasts tend to 

occur in discrete coarse layers (Fig. 5.15a). Blocks 
impacting onto such layers would cause much less deformation 

than if isolated blocks fell onto fineq bedded ash. Where 
blocks do occur in well-bedded tuffs they often plastically 
deform the underlying layers (Fig. 5.14)9 indicating that 

the tuffs were moist and cohesive. Some blocks are mantled 
by layers which thin over, or are thicker on one side of 
the block. 

Cross-bedding is not readily distinguished in the 

tuffs but small-scale examples are recognised throughout 

the diatreme. In the finer tuffsq cross-laminations are 

trough shaped and dip at 10-150 (Fig. 5.15). In coarser 

tuffsp cross-bedding is sigmoidalp low-angle and defined by 

trails of lapilli. All the cross-bedding is small-scale and 

sets rarely exceed 50cm long and 20cm high. The low-angle 

form of the cross-bedding and its common association with 

pinch-and-swell beddingp shallow channels 1-2m wide and 

beds which thin over the top of projecting blocks indicate 

that deposition was by base-surges. The 3-D exposures are 

too poor for making directional readings on such structures. 

Typical logs of the Seacliffe tuffs are shown in Fig. 5.16, 

Structurally the diatreme consists of discrete zones 

of bedded and massive tuffs separated by sharp or 

gradational contacts. The bedded zones are roughly 

concentric to the neck margin and their dips define basin 

and domal structures separated by unbedded tuffs (Fig. 5,13). 

The margins of some parts of the bedded zones are diffuse, 

marked by breakdown of bedding into blocks which are 

rotated and separated by unbedded tuffs. Slide planes 

parallel to bedding (Fig. 5.17) form sharp boundaries above 

which blocky unbedded tuffs occur. In placesq the slide 

planes slightly cross-cut the bedding, but are remarkably 

parallel over ten's of'metres. One slide plane separates a 

raft containing steeply dipping tuffs fr6m gently dipping 

tuffs below. The contact dips NE at 250 and is represented 

by a 10cm brecciated zone full of irregular sediment clasts. 
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The breccia contains many anastomosing calcite veins and a 
weak, sub-vertical fabric defined by streaked-out mudstone 
fragments. The rafted tuffs are highly faulted and slump- 
folded. 

The unbedded zones also contain large sediment blocks 

up to 8m long. Some near the northern margin are highly 
irregularg vertically-orientated (Fig. 5.17) and were 

probably incorporated from the poorly- consolidated country 

rocks at the diatreme margin during collapse. Other 

sediment blocks near the centre of the diatreme were 

probably emplaced by faulting. Their extremely irregular 

shape and their veining by intrusive tuff suggest that gas- 

streaming may have actively disrupted them while they were 

poorly lithified. 

Other features of the diatreme include rare tuffisite 

dykes near the margins, and rare bombs and organic matter 
in the tuffs. The bombs have a cracked, slightly vesicular 

outer surface and may be of cauliflower type (Lorenz, 1973), 

although similar structures could have been formed by 

shattering of an intrusive plug at depth. The organic 

matter consists of calcite-replaced twigs or plant stems 

up to 2cm diameter. The tuffs around the twigs are green due 

to local reducing conditions around the decaying vegetation. 
The internal deformation of the diatreme tuffs is 

thought to be due to compression on collapse. Grieves (1981) 

interpreted 
- 

the structure as being due to the subsidence 

of crater deposits which contained a small parasitic tuff- 

cone. No evidence for such a structure is present other 

than domed tuffs. The slide planes and the large areas of 

unbedded tuff suggest that subsidence of tuffs largely 

occurred whilst they were poorly consolidated. 

The Car 

This diatreme (Fig. 5.18) cuts Cinty Bay Formation 

sediments at the E side of Seacliffe Beach (Fig. 5,3) and 

forms a peninsula exposed only at low tide. The southern 

margin is similar to the Seacliffe diatreme with country 

rock sandstones and marls dipping into the structure at 

3e to 5OP . An embayment in the eastern margin contains 

disrupted sediments and may be a faulted raft incorporated 
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during subsidence. Immediately inside the southern margin 

the diatreme infill consists of randomly-oriented blocks of 
bedded tuff. 

The diatreme tuffs are red, fine-grained and generally 

contain less sediment than the Seacliffe tuffs. The most 

common clasts are basalt (some rare vesicular bombs occur) 

and bedded tuff. One unbedded area in the northwestern part 

of the diatreme is particularly rich in basaltic blocks, 

and is associated with a dyke suggesting break up of an 

intrusive body. A basalt plug cuts the bedded tuffs in the 

northeastern part of the diatreme and was probably intruded 

at a late stage in the subsidence. 

Generally, the bedded tuffs consist of monotonous 

alterations of ash and lapilli tuff. Many blocks lie within 

prominent' #pact sags and. in. places blocj.,, y. units -dominate 
the succession. Rare lensoid and cross-bedded horizons 

occur throughout the tuffs9 indicating periodic surge 

activity. 

Two sequences of surge deposits are seen in the 

southern part of the diatreme. The firstf near the S marging 

consists of fine, well-bedded tuffs containing well-sorted 

lapilli layers up to 4cm thick (Fig. 5.19). 

"10cm 

Fig. 5.19 Low-angle surge trough cross-bedding in the 
Car diatreme tuffs. Note preservation of 
some low-profile dunes. 
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These lapilli layers pinch-and-swell and thin over the top 

of clasts which project from the underlying beds. They are 

associated with small-scale, low-angle trough cross-bedding 

which often develops in hollows cut into underlying lapilli 

beds. Low profile dunes have wave-heights of 3-7cm and 

wavelengths of 80-140cm with cross-laminae dipping at 4-60. 

Separated from these deposits by faults is a second 

sequence of similar low profile dunes, some with climbing 

cross-laminationg and pinch-and-swell features (Fig. 5.20). 

In additionv they include thin, blocky layers up to 10cm 

thick which thin and fine over dune crests, Small blocks 

2 to 8cm across have sags up to three times that diameter 

beneath them (Fig. 5.20). The small size of the cross- 

bedding and the generally fine-grained nature of the tuffs 

perhaps indicate deposition by low-velocityv expanded surges. 

The inferred high moisture content of such surges is 

reinforced by the deep impact sags beneath even the smallest 

clasts. 

Structurallyq the diatreme is composed of a number of 

bedded areas, separated by faults (Fig. 5.19). A linear 

unbedded zone in the centre of the diatreme contains numerous 

blocks of bedded tuff and basalt. Many of the faults are 

curved and are assumed to have formed when the tuffs were 

poorly consolidated. In a large sector of the northeastern 

part of the diatreme the strike of the bedding curves as 

though centroclinal to a centre in the Ný. 

The crypto-volcanic structure (Section 5.2.1) exposed 

250m SW of the diatreme contains tuffs which may represent 

the distal outer flank deposits from the Car. Some of the 

disrupted blocks comprise well-bedded lapilli tuffs with 

accretionary lapilli and low-angle trough cross-bedding 

(Fig. 5.21). The accretionary lapilli are small (<5cm 

diameter) and generally spherical though some are more 

irregular. They are further discussed in the petrography 

section (Section 5.4), 

The trough cross-bedding typically fýrms sets 1.5cm 

high and 120cm long with tangential bottom contacts and 

truncated tops. Low-angle climbing cross-bedding also 

Occursp though whether migration is up- or downstream is 
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pig. 5.21 b) Accretionary lapilli in crypto-volcanic 
tuffs S of the Car diatreme. Note the fine 

rims around cores composed of ash 
aggregates. Coin measures 17mm across. 

Fig. 5.21 a) Low-angle trough and dune cross-bedding from 
crypto-volcanic tuffs S of the Car diatreme, 
showing location of accretionary lapilli 
units. 
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not clear. Such deposits are typical surge tuffs and 
probably represent the only examples of unreworked distal 

tuffs seen in East Lothian. The surge deposits and the 

accretionary lapilli indicate that deposition occurred 

subaerially and they were preserved from subsequent 

reworking only by collapse into the crypto-volcanic 

structure. 

The Parade 

This diatreme occurs on the foreshore N of Dunbar 
(Fig. 5.2) and presently measures ca. 8O0x500m (Fig. 5.22). 
Its eastern margin cuts Upper Old Red Sandstone sediments 
and its western margin cuts'Carboniferous Cementstone Group 

sediments (Francist 1962)0 indicating relative downthrow of 
the western sediments by >300m. The eastern margin is 

faulted and consists of a 40m wide zone of brecciated 

country rock siltstones. The brecciated zone is separated 
from the diatreme by a lm band of fault gouge. The sediment 
blocks in the brecciated zone generally dip into the 
diatreme at high angles, and are often intruded by tuffisite. 

Towards the western margin the country rock 

cementstones dip into the diatreme at up to 500 and pass 
into a 15m wide disrupted zone. This zone contains steeply 
dipping, shattered sediments which pass into unbedded tuffs 

containing sediment blocks. Within the diatreme the tuffs 

dip E or NE at moderate anglesp becoming steeply inclined 

near the western margin. The eastern margin obliquely 

truncates the gently eastward dipping sequence of bedded 

tuffs. 
Although the diatreme is cut by many small faults, 

joints and dykes the tuffst younging to the Ev form an 

almost continuous bedded succession equivalent to a 

stratigraphic thickness of >300m (see Fig. 5.27 for 

representative sections). The red-brown tuffs are similar 

to those of the Car and Seacliffe diatremes. Their volcanic 

component consists of crystalline basalt and altered glass 

with their sedimentary component comprising clasts of 

similar lithology to the country rocks along with their 

constituent minerals (quartz, feldspar, mica). The 

proportion of these two Components varies between 
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successive beds, giving rise to alterations, a few metres 
thick, of tuff and tuffite. The bedded tuffs are mainly of 
lapilli-ash grade but contain block-rich layers up to 1-5m 

thick. At the base of the sequence, near the western 

margino they are predominantly of airfall origin with only 

rare low-angle cross-bedding attributable to surges. 

Throughout the diatreme these cross-bedded layers are rich 

in sediment, suggesting that their depositing surges 

resulted from phreatic steam explosions. Coarse beds are 

laterally discontinuous along strike, and most wedge out 

over a few metres. Successive coarse beds are often 

separated by thin, fine tuff laminae which are cut out by 

the overlying units. Block sags are common in the lowest 

lom of the succession, but are rare above. Many of the 

sags are asymmetric and indicate block derivation from the 

E to the NE. Localised breakdown of bedding is interpreted 

to have been formed by slumping of poorly-consolidated 

materialp often associated with slip along bedding planes. 

Low-angle trough cross-bedded tuffs first occur 25m up 

the succession and subsequently form a variablev but often 

substantial proportion of the diatreme infilling. Typicallyq 

the trough sets are defined by moderately-sorted ash and 

lapilli layers up to 5cm thick. These layers dip at up to 

120 (more commonly <60) and have tangential or concave 

shapes (Fig. 5.23). Cross-set amplitudes-reach 35cm and 

dune wavelengths in excess of 2m are indicated. Isolated 

clasts up to 6cm lie along the cross-sets and do not deform 

themp indicating emplacement by flow. Cross-bedding is 

commonly truncated by erosion surfacesv although in places 

complete preservation of dune forms occurs. Rare U-shaped 

channels which trend normal to the bedding strike are 

associated with cross-beds. The size, shape and sorting of 

the cross-bedding indicates deposition by base-surges. 

The dune forms (Fig. 5.24) are generally symmetrical, 

although internally they often consist of cross-lamination 

dipping predominantly in one direction with minor 

oppositely, dipping sets. No definite conclusions as to the 

current direction can be madeq but'. by analogy with most 

other surge dunes the main cross-laminae are fore-set / 
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Fig. 5.23 'Surge cross-bedding in the Parade diatreme tuffs. 
a) Large-scale trough sets formed above eroded 

tuffs. Note interbedded'Massive units. 
b) Large dune containing low-angle cross-sets. 

Fig. 5.24 Well-developed surge dunes in the Parade 
diatreme. Note increasingly peaked dune crests 
upwards and climbing cross-laminations. Dune 
mantled by massive layer which is block-sagged 
in places. 



213 

lee-side accumulations. The rare stoss-side sets were 
deposited during the final stages of dune migration, perhaps 

as flow power diminished in surges. 
A good cross-section of a surge dune occurs in the 

northeastern part of the diatreme, about 15m from the top 

of the exposed bedded sequence (Fig. 5.25). 

4 

.......... . 
0iiol 

Adt 

77 P5 

Fig. 5.25 Surge dune developed in NE-dipping tuffs. Flow 
from right to left. Concave lee-side laminae 
thin and fine away from the dune crest, which is 
rounded initially but becomes sharper upwards. 
Stoss-side laminae are planar and dip at lower 
angles than the lee-side if correction is made 
for regional dip. Downstream climbing cross- 
lamination at increasing climb angles occurred 
as the dune built up. Crestal erosion forms many 
internal unconformities. Hammer handle measures 
30cm. 

The estimated current direction is from the NE which is 

updip relative to the present orientation of the tuffs. 

Directional data are difficult to estimate from cross- 

bedding which is seen only on strike faces, but most 

examples suggest currents from the NE, E or SE. 

The layers within the cross-bedded units are arranged 

so commonly as to suggest that they can be used as an 

indicator of surge depositional processes. in idealised 
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Fig. 5.26 a) Oblique view of surge dunes and cross-bedding 
in the Parade tuffs. Hammer measures 30cm and 
lies on division 3 of the idealised surge 
sequence with divisions 2 and 1 underlying it 
to the left. 
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Ideallsed surge sequence: Dunbar 
Fig. 5.26 b) Idealised surge sequence from the Parade tuffs. 
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form, this sequence consists of a coarse, poorly-bedded 

base 20-40cm thick, dune cross-bedding for 40 to 70cm at 

the centre and 10 to 25cm of massive tuff which thins over 

the dune crests at the top. This topmost layer is often 

missing and the dunes are then overlain by coarse, poorly- 

bedded tuffs of the succeeding sequence. 

Each layer is thought to represent the deposit of a 

different region within the surge cloudg namely a basal 

traction carpetp a turbulent suspension in the main body of 

the surge and an end-phase laminar flow due to en masse 

collapse of the eruption column. Surge models are further 

discussed in Chapter 7. 

Blocks of sediment, mainly siltstone and mudstonev are 

found throughout the tuffs. Some of the finer grained clasts 

have very irregular margins, suggesting they were moist and 

plastic when ejected. As sandstone blocks are angulart they 

must have been indurated before ejection; indeed poorly- 

consolidated coarser sediments would have been readily 

comminuted by eruptions, Finer, clay-rich sediments would 

have been more cohesive and thus survive. Oftent irregular 

sediment clasts occur within coarse surge beds, indicating 

the resistance of cohesiveg plastic sediment to attrition. 

One mudstone clast in a surge bed appears to have been 

plastically deformed over an underlying basalt block during 

post-emplacement compaction. Some of the plasticq tuffaceous 

sediments might represent crater lake deposits disrupted 

during renewed activity. Blocks of bedded tuff9 unlike any 

lithology outside the diatremet probably represent crater 

tuffs reworked by explosions. 

The moist nature of many of the tuffs on deposition is 

indicated by load structuresp soft sediment faults and rare 

flame structures. Block impact sags plastically deform 

well-laminated tuffs and in places small clasts have sags 

deeper than twice the clast diameter, 

NE-trending joints and small faults, and joints 

parallel to the strike of the bedding cut the tuffs. Many 

of these fissures are filled with intrusive sandstones 

which commonly exhibit flow banding* These dykes contain 

almost entirely sediment-derived material (Francisq 1962) 
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and field as well as petrographic evidence suggests at 
least two successive intrusive phases. Later NE-trending 

quartz-dolerite dykes cut the diatreme tuffs but are in 

places deflected along or cut by small faults. 

The lack of internal bedding disruption and the wide- 

marginal fault zones are features exhibited by few other 
diatremes in Scotland. Other features of difference include 

the large size, the high proportion of surge deposits and 
the abundant intrusive sandstone bodies. The relevance of 
these differences is discussed in Section 5.5. 

5.3.3 Green Group diatremes 

The diatremes of this group are situated E of North 

Berwick and include Tantallon, Gin Headq Horseshoeq Yellow 

Man and Partan Craig (Fig. 5.3). Their green colour is 

largely due to chloritic replacement of their abundant 
juvenile glass component. 
Tantallon Diatreme 

This diatreme measures ca. 400m across and cuts the 

Green Basaltic Tuff Formation to the S and the Canty Bay 

Sandstone Formation to the N (Fig. 5.28). The northern 

margin is a vertical fault defined by a 1m zone of 
brecciated tuff and sediment. The country rock beds are 
turned down within 5m of the contact and are locally 

brecciated. The marginal diatreme tuffsq which form a 

raised platform on the foreshorep initially consist of 

rotated blocks of greeng bedded tuff which have steep or 

vertical dips. Within 10m of the contact the blocky tuffs 

merge into massivet unbedded lapilli tuffs. 

The southern margin is more irregular and is defined 

by a number of NE-trending faultsp which bound large 

upthrown rafts of Canty Bay Formation sediments. A series 

of basaltic dykes are intruded along the margin at HWM and 

cut a3 to 5m zone of brecciated tuffs and sediments, The 

diatreme tuffs near the southern margin are unbedded and 

massive or contain blocks of bedded tuff and tuffitee 

The diatreme infilling consists of green-to-brown 

lapilli tuffs with abundant blocks of basalt, and less 

numerous clasts of green tuffq red tuffaceous mudstone and 
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sediment. Rounded vesicular basaltic bombs up to Im diameter 

are also rarely found. Where bedding is well developed in 

the centre of the diatreme the tuffs are moderately well 

sorted and contain few coarse beds. A central basinal 

structure is formed by tuffs which are cut by shallowp wide 
channels infilled by coarser tuffs. Rare cross-bedding and 
U-shaped channels occur in the bedded tuffs to the S of the 

centre. 

The southern half of the diatreme consists largely of 

agglomerate containing blocks of bedded tuff and tuffite. 

In places those blocks are so numerous that they indicate 

break-up almost in situ, perhaps by slumping. One area 

consists of a clast supported deposit containing blocks 

up to 2m across of bedded tuffs (Fig. 5.29). The tuffs are 

well sorted and finely laminated, with occasional low-angle 

trough cross-bedding. Nearby blocky deposits contain 

abundant red tuffaceous mudstone and were perhaps 
incorporated from the country rocks by collapse. Large 

rafts containing brecciated siltstone and mudstone are 

surrounded by blocky tuffs. The rafts have sharpq irregular 

margins, and appear to represent brecciated sedimentary 

sequences which have collapsed into the diatreme fill, 

Whether these sediments were derived from the poorly- 

consolidated country rocks or represent collapsed post- 

eruption crater infilling material is not known. A further 

raft is exposed in the cliffs beneath Tantallon Castle 

(Fig. 5.30) and measures 20xl2x5m. It consists of medium- 

grainedo horizontally-bedded white sandstone and is 

surrounded by massive tuffs. It probably represents a block 

detached from the wall rocks during collapse, 

Gin Head Diatreme 

This diatreme measures ca. 700m across and cuts Canty 

Bay Sandstone Formation sediments (Fig. 5.31). The western 

margin is sharp and irregular, with country rock mudstones 

turned down against it. The mudstones are folded in some 

placesq broken up into blocks in othersv and are cut by red 

intrusive marl dykes. Inside the diatremet bedded blocky 

tuffs at first dip at up to 460 into the centre althbugh 

bedding can no longer be discerned beyond 2m from the 
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margin. The eastern marqin is similar except that it cuts 

across a poorly-exposed crypto-volcanic structure which 
disrupts the country rock mudstones. 

The bulk of the diatreme is occupied by intrusive 

basalt which has vertical jointing in places, indicating a 

sill-like form. The remaining fill consists mainly of 

unbedded agglomerate with blocks of tuffq basaltp mudstone, 

siltstone, limestone and tuffaceous sediment. Bedded areas 

contain rare basaltic bombs with impact sags. Agglomerates 

near the eastern margin are blockyq poorly bedded and 

interbedded with sandstone. 

These marginal beds are cut by a shallow channel 15m 

wide with a base dipping at 150 towards 31CP (Fig. 5.32). 

The channel is filled by massive tuffaceous siltstone with 

clasts up to 15cm long derived by erosion from the 

underlying units. Migration of the channel is indicated by 

lateral accretion surfaces. The upper part of the channel 

is filled with well-laminated tuffs overlain by massive 

blocky agglomerate. A 1-5m. sill intrudes the beds 3m above 

the channel. 

The channel is interpreted as having been cut by 

streams flowing into i tuff-ring crater during an early 

phase in the history of the Gin Head structure. Sediment 

was perhaps derived from breaching of the tuff-ring by 

rivers. Debris flowsq which probably originated from the 

crater wallp reworked the tuffs. Marginal faulting brought 

the reworked tuffs down to their present positiong and was 

accompanied by intrus. ive activity at depth. 

Two rafts of sandstone occur within the diatreme, near 

the eastern margin. One measures ca, 20x6xlOm and is exposed 

in the cliffs at HWM where it is surrounded by greeng blocky 

unbedded tUffS* The raft is irregularly shaped and consists 

of well-beddedg often trough cross-bedded micaceous 

sandstone. The tuffs beneath the base are highly jointed 

and laced by calcite veins. Some copper carbonate staining 

occurs locally along the contact. The base of the raft dips 

into the diatreme at 4bo and is cut by a few steept normal 

faults with downthrows of 3-4m to the S. 

The other raft is smaller (12x3x5m) and overlies a 
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thin, highly sheared, green mudstone layer. The raft 

appears to have slid into place over poorly-consolidated 

sediment. Both rafts are lithologically very similar to 

some of the Canty Bay Formation sandstoneso especially the 
larger raft which contains slumped bedding. The rafts were 

probably incorporated during collapsep from the well- 

consolidated wall rocks. 

The high proportion of intrusive material in the 

diatreme perhaps suggests that the erosion level in Gin Head 

is relatively lower than in other diatremes. This is 

supported by the general lack of bedding in the tuffs, and 
by the collapse-incorporated rafts. 

Horseshoe diatreme 

This diatreme measures ca. 350m across and cuts tuffs 

belonging to the G. B. T. F. (Fig. 5.33). At HWM the 

southeastern margin is poorly exposed but at LUTM it is seen 
to be sharp and faultedo with little change in the dip of 
the adjacent country rocks. The northwestern margin cuts 

obliquely across the country rock tuffs and is defined by a 

steepy I to 2m zone of unbedded tuffs. This marginal zone 
is cut by many anastomosing calcite veins and a few 

intrusive sandstone dykes. The dykes may be tuffisitic or 

are perhaps due to liquefaction of wet sediment by volcanic 

tremor. The country rock tuffs dip into the margin at 30P. 

The tuffs of the diatreme are distinguished from those 

of the country rocks by their coarser grain sizet poorer 

sorting and block content. In the diatreme they are 

generally of lapilli grade with blocks of basaltv sediment 

and tuffaceous sediment (Fig. 5.34). In the southern part 

of the diatreme they contain large blocks of mudstone and 

siltstonel which are cut by dykes of intrusive sediment. 

Flow banding in the tuffs surrounding some of. the sediment 

blocks suggests they were emplaced along fractures which 

acted as pathways for gas-streaming, The very irregular 

shapes of some of the mudstone blocks indicate they were 

emplaced in a plastic condition. 

One tuffaceous sandstone body in the southern sector 

of the diatreme appears to represent collapsed channel 

infill. material. The body (Fig. 5.35) has an erosive base 
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and contains sediment bedded parallel to its base. Some of 
the surrounding poorly-bedded tuffs have slumped into the 

sandstone. A vertical normal fault cuts the northern margin 
of the sandstone. The body is interpreted as a channel 
infill. which formed during a late-stage in the eruptive 

activity and was incorporated in the diatreme by collapse. 
Well-preserved wood fragments occur sparsely in the 

tuffs. Thesep and carbonised material in some of the 
intrusive sediment dykes, are thought to have been derived 

from the poorly-consolidated country rock sediments. 
Structurallyq the diatreme tuffs consist of a number 

of poorly to well-bedded areasp along with massivep often 
blockyq agglomerate. The blocky zones occur mainly around 

the margins of the diatreme. The bedded tuffs, are folded 

into a basin-like structure in the NW and to the SE are 

gently flexedl dipping generally into the centre of the 

diatreme. 

Yellow Man diatreme 

This diatreme measures ca. 200m across andp like the 

Horseshoe diatremep cuts the G. B. T. F. tuffs (Fig. 5.39 

5.36). The western margin is defined by a1 to 2m faulted 

zone containing structureless blocky tuffs. The country 

rock tuffaceous mudstones are brecciated up to 5m outside 

this zonev or are abruptly truncated by it. Vertical faults 

and joints parallel to the margin contain calcite with 

vertical growth fibres. Intrusive sediment dykes cut the 

country rocks and trend at 900 to the margin. 

The eastern margin is partly defined by a basalt dyke 

and is also faulted. The country rocks dip into the margin 

at 3009 and are intruded by sediment dykes. According to 

Martin (1955) the margin cuts the western margin of the 

Horseshoe diatreme, at HWM. Current exposures of the tuffs 

outside the diatreme here are poorp and the material 

(poorly-bedded lapilli tuff cut by small faults and 

intrusive sandstone dykes) could represent either the 

Horseshoe tuffs or the country rock tuffs. 

The bulk of the diatreme infill consists of unbeddedt 

often blockyq tuffs. In. -the Wl howeverp poorly-bedded 

coarse tuffs define a small basin structure, The lowest 



227 

Yettow Man red 
tuff ite 
blocks 

16 

*A- -. 0 Fro, ý11ý 
6 

c 
c 
c 

:c 
c cc 

c c cc c cc cc 

46 
a 

w 

,e-, 4 

'-in trusi ve 
tuff 

Q b. le 4tA 

97A 
a8 9 a/ A,; ý, 

'm y -- A Ir Ä /A iß -- . -1 4 

HORSFSHOE 

loom 
E 

pY M%V 1q «o A IK -4m 1* "W &i 
b 4, ý& ! 61 P t Nieý äý &e 

Fig. 5.36 Map and section of the Yellow Man diatreme. 

DYKE 
. 
0i ...... 

12- 

. is m 

a 
... w , ...... 

Coarse blocky 
tuff at centre c> of basin 

40 

plastically deformed 
red mudstone clasts 

... 

'I'll' 

- ft 10 Z. - -kt.. ft T 

0 
'Z*. -**- ., 

? blocksags 

DYKE 

Fig- 5.37 Logs of the Yellow Man tuffs on either side 
of the NW-SE dyke. 



228 

bedded tuffs occur ca. 50m within the margin and contain 

aligned blocks in poorly sorted layers. Upwards the beds 

become even coarser (Fig. 5.37) and contain blocks up to 

1-5m across. The blocks consist of basalt, bedded red 
tuffaceous siltstone and some streaked-out mudstone clasts. 
Some of the layers are almost clast-supportedg but become 

finer upwards and dip at progressively steeper angles. A 

dyke slightly cross-cuts the poorly-bedded sequence and N 

of it the bedding dip decreases into the centre of the basin. 

The centre of the basin is filled by very coarse, 

unbedded material including blocks of basalt (up to 2-3m), 

red tuffaceous siltstone, bedded green tuff, red marl and 

grey cementstone. Most of the blocky layers which form the 

basin structure have probably been emplaced as debris flows, 

perhaps initiated by collapse. 

The remainder of the diatreme contains unbedded 

agglomerate tuffst cut by dykes. East of the faulted margin 

of the basin is a breccia crowded with blocks of red, 

bedded, tuffaceous mudstone in a matrix of similar material 

finely comminuted. Breccia zones rich in these blocks occur 

throughout the diatremet with blocks-reaching 3m diameter. 

Many of the tuffite blocks near the margins of the zones 

are veined and broken up by intrusive tuff. The tuffites in 

the blocks are well-sortedp well-laminated and often contain 

small-scale trough or planar cross-bedding. These 

characteristics as well as the fine grain size and the lack 

of impact sag structures indicate that the tuffites were 

originally deposited in a quiescent, subaqueous environment. 

Perhaps they represent collapsed remnants of deposits 

originally laid down within the breached crater of the 

Yellow Man volcano. Conversely, the diatremeg which 

contains few recognisable airfall tuffs, may represent an 

advanced crypto-volcanic structure. On that interpretation 

the red tuffites may be country rock deposits disrupted by 

the cryptovent. Collapse back into the diatremeg which 

perhaps never fed a fully developed subaerial volcano, 

resulted in brecciation and intrusion of dykes into the 

tuffites. 

Areas near the main E-W dyke contain abundant rounded 
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blocks of basaltv some of which have lobate margins. These 

pillow-like surface structures are thought to be due to 

intrusion into fluidized, wet unconsolidated tuffs. Similar 

lobate structures were reported by Kokelaar (1982) at the 

bases of sills intruded into wet sediment. The blocks 

commonly occur in elongate zones parallel to the major dyke 

and probably represent broken up dykes. Intrusive tuffisite 

dykes and pods are associated with the dykes at the eastern 

margin. They formed by gas-streamingg perhaps largely due 

to the production of steam after intrusion of basalt into 

wet tuffs and sediment. 

Whether or not the Yellow Man diatreme had a subaerial 

volcanic expression, the high block contentq the lack of 

airfall tuffst the abundance of brecciated reworked tuffs 

and the intrusions all suggest that present exposures 

represent a comparatively deep-level section through a 

collapsed diatreme. 

Partan Craig diatreme 

This diatreme (Fig. 5.38) measures ca. 600m across and 

cuts the Green Basaltic Tuff Formation about 1-5km E of 

North Berwick (Fig. 5,3). The eastern margin cross-cuts the 

undisturbed country rock marly tuffst and is defined by a 

im zone of unbedded tuff. This zone is sheared in places 

and is cut by anastomosing calcite veins trending both 

parallel and normal to the margin. Within the diatremet 

bedded lapilli tuffs are cut by a coarse brecciated zone, 

containing blocks up to 3.5m across of basalt, tufft marl, 

sandstone and tuffite. Bedding within some of the blocks is 

crumpled and faulted, Near the margin the country rocks 

are folded into a small elongate basin structure whose long 

axIs trends NE-SI49 normal to the diatreme margin. A thin, 

similarly-trending dyke cuts the country rocks SE of the 

basin and abruptly terminates against the diatreme margin. 

It thickens towards the Yellow Man diatreme and probably 

had its source there. 

At LWMv the western margin appears to consist of a 

low-angle sheared zone, separating blocky diatreme tuffs 

from underlying green mudstones. Outside the diatreme a 

large raft of bedded tuffs has been emplaced by sliding 
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over green and red mudstones (Martin, 1955), now visible 
in erosional "windows" through the raft. At HWM smaller 

blocks of mudstone, tuff and tuffite form a poorly exposed 
breccia, cut by intrusive sandstone dykes. Here, the 

diatreme margin is steep and faulted, truncating coarse 

diatreme tuffs which occupy the southwestern limb of an 

elongate basin. 

The lowest exposed part of the basin is formed of 

poorly-bedded, blocky agglomerate and breccia. The beds 

(Fig. 5.39) contain blocks of basalt, tuff and bedded red- 

green tuffaceous mudstone. 
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Fig. 5.39 Blocky units at the western margin Of the Partan 
Craig diatreme which broke up and formed debris 
flows. Bag measures 30cm and lies at base of 
unit comprising tuffaceous sandstone blocks. 

one particular unit, 2m thick, consists almost entirely of 

blocks of tuffaceous sandstone. Above the blocky units, 

some of which have slightly erosive basesp the bedding 

becomes better-defined and lapilli grade beds alternate 

with more blocky horizons (Fig. 5.40). Upwards, basaltic 

blocks predominate and the beds resemble airfall tuffs. The 

blocky lower units are mainly thick debris flows which 

contain plastically deformed mudstone clasts and block 

trails. Some of the blocky units are oligomict, almost 
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clast-supportedp conglomerates and cannot have travelled 

very far. Breakdown of bedding along strike into the basin 

suggests that subsidence may have initiated debris flows by 

oversteepening. 
The blocks of tuffaceous mudstone which are common in 

the Partan Craig debris flows are found in many of the 
North Berwick diatremes. The mudstones contain 20-70/01, of 
tuff and are well-sortedp well-beddedp often cross-bedded 
deposits. The cross-bedding in the Partan Craig blocks is 

commonly low-angle? trough-shaped and of moderate scale. 
one block contains an asymmetric dune with climbing cross- 
laminations (Fig. 5.41). This structure is similar to surge 
dunes at Saefell (Chapter 2)9 but is smallert possibly 
because the Partan Craig dune is a distal. surge structure. 

The remainder of the deposits within the diatreme are 
largely poorly-bedded green lapilli tuffs. They contain 

blocky layersp some of the blocks with impact sags, and 

small channels. The channels contain coarse lapilli and are 
in places associated with faintly cross-bedded tuffs. Many 

of the structureless units appear to have formed by flow, 

since they have irregular bases, block trainsq and lack 

internal sorting. Some of the better bedded units are 

affected by slumpingg which has in places resulted in 

movement along shear surfaces. Block impact sags are rarely 

seen, because of debris flow reworking and because larger 

clasts seldom overlie bedded finer units. Rare gneissic 

clasts occur in the western part of the diatreme. They are 

similar to clasts described by Graham & Upton (1978) except 

that none were seen to be mantled by basaltic material. 

The youngest deposits in the northeastern part of the 

diatreme comprise green tuffaceous sediments thought to 

have been deposited in a crater lake. The deposits - well- 

laminated tuffaceous marls and siltstones - overlie coarse 

debris flow material (Fig. 5.42) and consist of thin (up to 

40cm)p laterally discontinuous units, Further description 

of these deposits is given in Section 5.4. In placesp 

blocky layers cut into the tuffaceous marls and incorporate 

rip-up clasts at their base. One such clast (Fig. 5.43) has 

been folded by being sandwiched between two bedded tuff 
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blocks. Other features of the marly layers include 

loadcasts, flame structuresv desiccation cracks and small 

sags, apparently of impact origin. 

The tuffaceous marls represent lacustrine deposits 

formed at a late stage in the volcanism, presumably within 

the crater of the Partan Craig volcano. Weak eruptions are 

thought to have ejected only fine ash, but triggered debris 

flows which moved into the shallow lake and disrupted the 

sediments accumulating there. The lack of current-formed 

structures in the lacustrine tuffs suggests that the crater 

walls were not breached at this time. It is possible that 

the lake formed after cessation of the Partan Craig 

activityp and that nearby volcanoes supplied the fine ash 

which now forms the thino normally graded laminae within 

the lacustrine deposits. 

Structurallyp the diatreme consists of gently folded 

tuffs cut by steep faults of unknown displacement. The 

folding is on NNE axesq similar to the fault trend. The 

large size of the diatremev its comparatively minor 

internal deformation and the abundance of reworked tuffs 

suggest that relatively little collapse has occurred. This 

is supported by the presence of rafts of bedded tuff outside 

the western marging which are, thought to be Partan Craig 

outer flank deposits. Sliding and downfaulting preserved 

these largely unreworked tuffs close to their collapsed 

crater equivalents in the diatreme. 

5.4. Petroqraphy, Morpholoqy and Alteration 

5,4.1 Petrography 

The red and green diatreme tuffs contain different 

proportions of juvenile and non-juvenile materialg as well 

as having been altered and replaced by different minerals. 

The country rock tuffs and tuffaceous sediments are similar, 

though generally more altered than their presumed diatreme 

equivalents and will be discussed along with the latter. 

a) Juvenile fragments 

Although the tuffs are highly altereý (Section 5.4.4), 

vesicular and non-vesicular fragments of originally 
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juvenile-glassýcan be recognisedýin many, samples, of, -both 
red and green tuffs. Generallyo the particles are blocky 

and subangular with irregular, often corroded margins. In 

the country rock tuffs the juvenile fragments are more 

rounded and equant, due to reworking. 

The lapilli reach 5mm diameter but most are 1-2mm. In 

the largely indeterminate matrix grains<0-3mm are common. 

The smaller ash grains tend to be less vesicular than the 

larger lapilli andq where preservedp their margins are more 

angular. 

Some of the fragments consist of what appears to be 

unaltered sideromelane. This is especially true of the 

Parade tuffs, many of which comprise yellow-orange, almost 

isotropicp structureless material containing opaque 

inclusion. &, (Fig. 5.44). Howeverg on closer examination the 

material is seen to consist of small, yellowp isotropic 

areas within fragments largely replaced by chlorite and 

clay. In the green tuffsg similar patchest apparently of 

original sideromelaneg survive within the centres of lapilli. 

In generalg the juvenile material in the green tuffs 

(Fig. 5.45) is more vesicular than that from the red'tuffs. 

Both types of lapilli sometimes contain elongate Vesicles, 

largely unrelated to the shape of the enclosing fragment. 

Flow structures have partly controlled the irregular shapes 

of some fragments. Inclusions in the juvenile fragments are 

largely replaced by chlorite and calcite, apart from 

sediment kenocrysts9 such as quartz and feldspar. Opaque 

spots are scattered throughout the fragments9 which in the 

red tuffs are often oxidised to hematite. Pseudomorphs 

after olivinet pyroxene and feldspar also occurg especially 

in the red tuff lapilli. 

Vesicles in the grains reach a maximum of 0-4mm, with 

the larger vesicles occurring singly in large lapilli. 

Smaller vesicles often occur in clusters although only 

rarely do bubbles coalesce. A general increase in vesicle 

size into lapilli centres indicates that grain interiors 

cooled less rapidly than their marginse 

Some grains are full of disseminated iron oxide 

crystals and may represent original tachylite. These grains 
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Fig. 5.44 Vesicuiar ash grain from the Parade tuffs, now 
replaced by vermiculite and chlorite. Much of 
the matrix is chlorite replaced and surrounds 
relict ash and quartz grains. Plane polarised 
light. x1O. 

Fig. 5.45 Vesicular ash from the Partan Craig diatreme 
tuffs, now replaced by chlorite and calcite. 
Matrix is largely chlorite replaced and 
contains corroded ash and quartz grains. 
Plane polarised light. x1O. 
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tend to contain more irregularly-shapedp often elongated 
vesicles. Such fragments also contain small laths of 
plagioclase feldspar which are aligned parallel to vesicle 

elongation. The microlites are up to O-Imm long and are 
often the only unaltered phase in the juvenile tachylite 
lapilli. They are seldom found within altered grains 
thought to have been originally sideromelane - probably 
because they were only able to crystallize during the slower 

cooling of the tachylite. Further evidence for this is 

indicated by grains which have interiors rich in iron oxide 

with some microlites, and margins which contain little iron 

oxide and no microlites. Differential cooling rates allowed 
tachylite to form within quenched sideromelane rims. 
b) Phenocrysts 

The phenocrysts commonly occurring within the juvenile 

lapilli can now be recognised only by their shapesp since 
the original minerals have generally been pseudomorphed by 

alteration products. Most pseudomorphs appear to be after 

olivineg pyroxene and feldspar. The type and proportion of 
the different crystals present varies between diatremeso 

reflecting either source magmas of different composition or 

the time at which a fractioning common source magma was 

tapped. 

The green diatreme tuffs contain mainly pseudomorphs 

after partially resorbed olivinep which commonly occur as 

crystal aggregates in the centres of juvenile lapilli. The 

red diatreme tuffs have a different crystal content with 
both the Seacliffe Tower and the Car diatremes containing 

mainly pyroxenes. The Car pyroxenes are moderately abundant 

and are generally freshq often concentrically-zoned augites. 

The pyroxenes are generally partially corroded and enclosed 

by thin rims of altered-glass. The Parade diatreme tuffs 

contain some feldspart pyroxene and olivine pseudomorphs as 

well as a few large, alteredo subhedral crystals up to 3mm 

across. These often have rounded outlines but a few better- 

formed examples have typical olivine shapes. 
As well as the previously mentioned crystalsv some 

rare biotite laths occur in the red diatreme tuffs. In one 
instance a partly-resorbed biotite crystal is rimmed by 
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altered glass9 indicating it may be of juvenile origin. 

c) Vesicle sizes 

Due to the small number of samples collected from each 

diatremep only generalisations about vesicle size ranges 

can be made. More detailed conclusions can be made on the 

Parade diatreme, which has been comprehensively sampled and 

studied. 

The average maximum vesicle radius varies with 

stratigraphic levels in the Parade. In general, the average 

vesicle size increases from ca. 0-02 to 0-05mm going up 

sequence from the western margin and decreases upwards in a 

logged section near the youngest exposed tuffs. Within this 

general trend abrupt variations in average vesicle size 

indicate rapid fluctuations in-magma vesicularity on 

eruptiong due to changing eruption characteristics. Such 

fluctuations are observed over short periods of time in 

recent eruptions (Chapter 4). 

In general, the North Berwick diatreme tuffs contain 

larger vesicles than the Parade tuffs. The smallest maximum 

vesicle radius is found in the Seacliffe Tower diatreme 

tuffs. Although the green diatreme tuffs have similar 

maximum vesicle radii to the red diatreme tuffs, their 

vesicles are more abundant. The average size of vesicles is 

slightly larger in the green diatreme tuffs, ranging 

between 0-05 and 0-07mm. It is thought that the green 

diatreme volcanoes had shallower eruption focig or their 

magma had different physical propertiesv to the red 

diatreme volcanoes. 

The rapid fluctuations in vesicle size in the Parade 

tuffs suggest that external factors influenced bubble 

growth. Howeverv only tentative conclusions may be drawn 

from such evidence because it is based on thin section datat 

which represent statistically very small samples. 

d) Accessory lithic fragments 

The lithic fragments in the East Lothian diatremes 

consist of two typesq volcanic and sedimentary. The 

volcanic component comprises lava fragments and clasts of 

tuff from previous eruptions. The lava fragments are 

generally of fine-grained basalt containing calcite and 
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chlorite pseudomorphs after pyroxene and olivine. The tuff 

clasts are more highly altered than their host tuffsp as are 
recycled juvenile grains from previous eruptions. The 

volcanic lithic clasts are often highly angular and reach 

much larger sizes than juvenile grains. Many poorly 

vesicular basaltic clasts may be cognate rather than 

accessory lithic fragmentsp but no means of distinguishing 

these has been found. 

The sedimentary component is usually more abundant 

than the volcanic, especially in the red tuffsp and consists 

of both single grains and rock fragments. The single grains 

comprise quartz, orthoclasel microclinev plagioclase and 

mica, as well as accessory sphene and tourmaline. The grains 

range in size from 0-01 to 0-3mm, are poorly sorted and have 

angular to sub-rounded shapes. Some of the grains in the red 

tuffs have hematitic rims. The quartz generally has strained 

extinction and occasionally occurs as granular aggregates of 

small sub-grains derived by mechanical breakdown of large 

particles. In one of the Parade tuffites, many of which are 

tuffaceous siltstonesq a rounded quartz grain has a 

syntaxial quartz rim (Fig. 5.46). This rim is corroded by 

the clay matrix of the rock howeverp and may have formed 

before the quartz grain was incorporated in the tuffite, or 

at least before the growth of the authigenic matrix. 

The sedimentary rock fragments are often sub-, rounded 

in shape and include siltstonev mudstonev shalep cementstone 

and limestone. The coarser sediment clasts all have 

carbonate cements or a clay matrix and are less abundant 

than the finer sediment clasts. This suggests that the more 

cohesive fine sediment was better able to survive disruption 

by volcanic explosions. Coarse sediment would be broken down 

more easilyp especially as the sediments were poorly 

consolidated. Numerous sediment grains occur as inclusions 

within juvenile fragments, indicating that the bulk of the 

sediment in the tuffs was derived from the country rock 

succession. Rounding of many smaller sedimentary rock 

clasts probably occurred during transport within the 

volcanic conduit. 
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Fig. 5.46 Syntaxiai quartz rim around quartz grain in 
the Parade tuffs. Matrix is rich in clay which 
corrodes the quartz rim and other sedimentary 
lithics. Note hematite staining of much of the 
matrix. Crossed polars. x25. 
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Pore spaces in Horseshoe diatreme tuffs 
infilled with chlorite and later sparry 
calcite. Plane polarised light. x25. 
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e) Matrix / Cement 

A variety of matrix types occur in the tuffs along 

with cements, which may occasionally replace the matrix 

and occupy all the pore spaces between larger grains. In the 

red tuffs much of the matrix consists of hematite-stained 

clay minerals (Fig. 5.46). Optically, the clay minerals 

appear to be montmorillonite and kaolinite which are 

associated with sericite flakes in places. Small sediment 

grains as well as altered juvenile ash occur throughout the 

matrix, which often wraps around them. ýparry calcite 

cement fills voids and occasionally replaces some of the 

matrix, where it is associated with micrite. Corrosion of 
both juvenile and lithic clasts by matrix or cement is 

common. 

The green tuffs generally lack matrix material and 

have pore spaces infilled with calcite and chlorite cements 

(Fig. 5.47). Often, juvenile lapilli occur in a sparry 

calcite cement. A few samples have a matrix of fine ash 

and lithic grains but this is always replaced by chlorite 

and calcite to some extent. 

The accretionary lapilli in the disturbed country rocks 

SW of the Car consist of matrix-grade material and merit 

Fig. 5.48 Accretionary lapillus from crypto-volcanic 
structure SW of the Car diatreme. Core consists 
of a structureless aggregate of ash surrounded 
by faintly concentric bands of fine ash. 
Plane polarised light. x4. 
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further description. Typically, they are 2 to 5mm in 

diameterg sub-spherical and contain well-sorted cores of 
silt-grade material with thing finer rims (Fig. 5.48). The 
lapilli cores are largely structureless9 though faint 

concentric layering is occasionally defined by thin clay 
laminae. The rims are concentrically banded, up to 0-5mm 

thick and decrease in grain size outwards. The material in 

the lapilli is identical to the hematite-stainedg tuffaceous 

siltstone of the matrix and both are similarly highly 

calcite replaced. Some of the lapilli adhered together 

during growth and accreted a common rim. Others broke on 
impact with the groundo rupturing their outer rims. No 

post-emplacement deformation of the lapilli has occurred. 
The lapilli are identical to those described by Moore & 

Peck (1962) and were formed in the upper regions of 

phreatomagmatic eruption columns. The accretionary lapilli 

were subsequently deposited some distance from their source 

vent. Similart though less obvious, accretionary rims around 
larger grains in some of the diatreme tuffs are more like 

the armoured lapilli in proximal tuffs described previously 

from Saefell (Chapter 2). 

f) Origin of tuff colouration. 

The origin of the different colours of the diatreme 

tuffs is of interest because it reflects differences in 

their diagenetic histories. The green tuffs contain 

abundant green chloritic replacement of juvenile lapilli. 

Locallyo howeverv the matrix of the green tuffs is reddened. 

This is most common in narrow zones around blocks of red 

sediment. In places, thin sediment-rich layers are 

interbedded with the green lapilli tuffs, and these layers 

are often hematite-stained. 

The red tuffs contain a hematite-rich clay matrix with 

many sediment and volcanic grains having hematite rims. In 

extrelne casesp volcanic grains may be completely replaced 

by h9matite and the clay matrix by calcite. Some chlorite 

is often present in pore linings or as a replacement of 

vol, canic grains. 

Lorenz (1972) ascribed the reddening of Permian 

diatreme tuffs in West Germany to circulation of oxidising 

iý 
. dm 



244 

groundwaters from country rock red sediments. He noted that 
red tuffs were always found adjacent to red sedimentary 
horizons outside the diatreme. Drab-coloured tuffs in the 
diatremes are associated with drab sediments and both must 
have been simultaneously affected by reducing groundwaters. 
At the present erosion level all the East Lothian green 
diatremes are surrounded by green tuffs and all the red 
diatremes by red tuffs, suggesting a similar origin. 

It is thought that the colour in the red diatreme 

tuffs is partly due to passage of oxidising solutions. 
Howeverg since red tuffs contain a high proportion of 

sediment material derived from the country rocksq it is 

likely that they underwent similar diagenetic changes to 
these sediments* Features of these changes include : - 
1) the alteration and replacement of ferromagnesian minerals, 
and the survival of heavy minerals such as sphene and 
tourmaline 
2) the distribution of hematite as grain coatings and in the 
interstitial matrix 
3) the alteration of feldspar by sericitization 
4) the replacement and dissolution of quartz and juvenile 

laPilli 
5) the presence of authigenic clayt chlorite and calcite. 

These features are similar to those noted by Turner 
(1980) in Triassic sediments thought to have had a similar 
diagenetic history to sandy alluvium described by Walker 
(1976). Herev unstable ferromagnesian grains were altered 
intrastratally to produce reddening. In the case of the 
East Lothian red tuffs the alteration of volcanic glass may 
have contributed to this reddening process. The colour of 
the red tuffs is thus largely due to in situ alteration. 

A further contribution to reddening may have been 

provided by ageing of the ferric hydroxide precursor 
(Turnert 1980). Such material may well have been deposited 
in large amounts along with the clay-rich suspended load in 

floodplain environments. Oxidising conditions prevailed 
here due to periodic drying and lowering of the water table, 

and iron hydroxides changed to hematite with time. The 
Canty Bay Sandstone Formation floodplain deposits are red 



suggesting that such a reddening process may have occurred. 
The drab channel sandstones and the Green Basaltic Tuff 

Formation lagoonal and lacustrine tuffs were deposited in 

reducing conditions. Here, ferric hydroxides were unstable 

and were removed in solution. No estimate of the importance 

of deposition and ageing of hematite precursor to the 

intrastratal alteration of ferromagnesian minerals and 

volcanic glass can be made. However, it is thought that 

both processes were more important than secondary (post- 

diagenetic) reddening in forming the country rock red beds. 

The red diatreme tuffsp with their high sediment 

contentp were affected by the same processes which reddened 

the country rocks. The green diatreme tuffsq which contain 

few accessory clasts, are green because no primary or 

secondary reddening processes affected them. 

9) Modal composition 

Point count modal analyses (Fig. 5.49, Table 5.1) 

indicate the essential differences between the red and 

green diatreme tuffs. In many of the red tuffs the matrix 

is finely comminuted sediment and clay, which increase the 

accessory lithic. content of these deposits to 90% in some 

cases. More juvenile-rich red tuffs do occur, indicating 

that activity occasionally became phreatomagmatic rather 

than phreatic. 

The green tuffs are generally highly calcite-cemented 

whereas the red tuffs contain abundant matrix. Where 

altered fragments could be recognised, they were counted as 

though original fresh material. This explains the low 

chlorite and calcite content of many of the tuffs whose 

juvenile fragments are completely replacedq but are still 

recognisable. 

5.4.2 Grain size studies 

The high sediment content of many of the tuffs 

increases the difficulties in quantitatively comparing thin 

section grain-size analyses with published sieve analyses 

of modern pyroclastics (Appendix 1). This is because the 

varied fragment composition increases density contrasts 

between grains. Thuso especially in lithic-rich tuffs 
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grain size results determined in thin section may only be 

qualitatively compared with published sieve analyses. 
On Mdo/ao diagrams the East Lothian tuffs generally 

plot within the surtseyan field of Walker & Croasdale 
(1971), or are skewed to the finer Nldj6 side of the field 
(Fig. 5.50a). Most samples plot within or close to the area 

of overlap between the flow and fall fields of Walker 
(1971). This is thought to be partly due to deposition by 

base-surgesp although proximal airfall deposits also plot 
in the high 0-ý region of the airfall field. Some of the 

Parade tuffs plot towards the fine Mdo side of the airfall 
field, and would thus appear to be either distal airfall 
tuffs or the proximal products of weak explosions. The 

poorly sorted Parade tuffs, which plot in the flow field 

(Fig. 5.50b) may be proximal airfall tuffs, or proximal 

surge tuffs. Close to the vent such a distinction may be 

meaningless since both laterally and vertically direcred 

tephra are simultaneously ejected. The almost continuous 
fallout of ejecta would mix airfall material into any 

proximal surge deposit. Finer material would be entrained 
by surges but coarser fragments would fall through the 

surge clouds and be incorporated into their proximal tuffsp 

forming poorly-sorted deposits. 

The East Lothian tuffs are widely scattered on 

Sheridan's (1971) C-M diagram (Fig. 5.50c). S(=e of the 

deposits plot in the airfall field, and since they also 

plot in the fall field on MdO/cro diagrams may be safely 

assumed to have this origin. Samples 4,59 7 and 9 are from 

surge cross-bedded tuffs in the Parade diatreme, and plot 

within or close to the rhy'olitic base-surge dune field. 

Their fine-skewness compared to basaltic base-surge 

deposits (Sheridanp 1971) is perhaps due to more violently 

explosive fragmentation of the magma. Distal basaltic surge 
tuffs would be finer and better sorted than Sheridan's 

Surtsey deposits, and may thus be what the Parade tuffs 

represent. It is interesting to note that the Parade surge 
deposits have much higher sediment contents than airfall 
tuffs from the same diatreme (Fig. 5,49, Table 5.1). This 

suggests that violentp dominantly phreatic explosions 
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fragmented the country rock sediments and fed base-surges. 

Eruptions more phreatorfiagmatic in type ejected greater 

amounts of juvenile material and sourced airfall deposits. 

The same relationship holds for the North Berwick diatremes, 

where samples sl and c2 are possible surge deposits which 

contain much sediment. 

The massive tuffs associated with surge cross-bedding 

generally plot in the rhyolitic ash flow field. These tuffs 

are typically more poorly sorted than the surge-cross-beds 

which they are associated with, but are finer than airfall 

deposits. The massive beds may be the base-surge equivalent 

of massive ash flow deposits which have associated ground 

surge deposits. The limited data suggest the massive beds 

have grain-size distributions intermediate between those of 

surge cross-beds and airfall deposits. 

Cummulative grain size frequency distributions help to 

discriminate between the various tuffs (Fig. 5.51). The 

North Berwick tuffs all have parabolic fine-skewed curves 

similar to Surtsey tuffs. (Sheridang 1971). One sample (Y5) 

is much less fine-skewed than the others and is also 

apparently better sorted. Howevert this sample has a matrix 

partly replaced by calciteg which reduces the number of 

fines and accounts for the shape of its cumulative curve. 

The Parade tuffs are likewise broadly similar to 

surtseyan deposits in their cumulative distribution curves. 

The airfall samples (D3 and D13) have similar distributions 

to the basalt airfall curves of Sheridan (1971). The 

proposed massive surge deposits (D29 D6 and D12) have 

similar distributions to those of Surtsey (Sheridan, 

op. cit. ) and partly similar to the massive surge beds of 

Sheridan & Updike (1975). The proposed surge cross-bedded 

tuffs (D19 D49 D59 D7 and D9) are more fine-skewed than 

the Surtsey tuffs but are similar to the sand wave size- 

distribution curves of Sheridan & Updike (op. cit. ). who 

analysed rhyolitic surge deposits in Sugarloaf Mt., 

Arizona. 

comparisons between the basaltic Parade tuffs, and the 

rhyolitic Sugarloaf Mt. tuffs suggest that massive and 

cross-bedded surge tuffs from each volcano have similar 
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size-distribution curves. The Parade massive bed curves 
arev howeverv more poorly sorted than those of Sugarloaf 

Mt., and the Parade cross-beds slightly more poorly sorted. 
This probably reflects the proximal position of the Parade 

tuffs whereas the Sugarloaf Dit. tephra are more distal. The 

composition of the magma appears to have had little effect 

on the surge size-distribution curves of both centres. The 

fine-skewed distribution of the Parade airfall tuffs 

compared to those of the Sugarloaf Mt. is due to thin 

section grain-size techniques which are not applicable to 

coarser lithologies. Consequently, only the finer Parade 

airfall layers could be measured (Table 5.2). 

5.4.3 Morphology of particles 

a) SEM studies 
Alteration and replacement of the juvenile fragments 

has obscured most of the details of their morphology. 
Howevert where visible they are seen to be typical blocky 

phreatomagmatic ash bounded by planar fracture surfaces. 
Small vesicles are commonly present but do not control 

grain shape. 
Sediment grains, especially quartzv are the only 

unaltered easily studied particles in many of the deposits. 

Both highly angular and sub-rounded quartz grains occur. 
The more rounded grains have frosted surfaces and lack 

conchoidal breakage patterns. One such grain (Fig. 5.52) 

has a rather smooth surface perhaps due to diagenesis 

(Krinsley & Donahue, 1968). Small V-shaped and irregular 

pits occur in clusters on its surface (Fig. 5.53). These 

are thought to be abrasion features of quartz grains in 

subaqueous environments (Krinsley & Doornkamp, 1973) 

although recently Al-Saleh & Khalaf (1982) have described 

similar features in aeolian dune sands. Such aeolian grains 

also contained dish-shaped depressionsq similar to some of 
the Parade grains. Transport of these grains into or from 

marine environments would explain their presence in the 

East Lothian diatremes. 

No textures uniquely attributable to the transport of 

grains by volcanic processes were noted. In any event, 
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Fig. 5.52 SEM photograph of quartz grain from the Parade 
tuffs. Note overall rounded shape and abundant 
pits on surface. x350. 

Fig. 5.53 SEM photograph of small pits on surface of 
quartz grain shown in Fig. 5.52. Note smooth 
surface and upturned plates which may be 
diagenetic features. x3OOO. 

'-ago 
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such features would probably be indistinguishable from 

aeolian grain surface textures. 

b) Quantitative grain morphology 

Only fragments which were not highly altered or 

corroded were measured. This resulted in mainly the larger 

granules being studied, since fines are generally replaced, 

although in some cases even their grain shapes are well- 

preserved. 

On a PIC diagram (Fig. 5.54a) the North Berwick and 
the Dunbar diatreme tuffs plot in similar fields. The plot 
distributions are slightly skewed towards the C apexq 
indicating the preponderance of concave boundaries. Both 

shattering of glass and intersection of grain margins with 

vesicles form such embayments. The plots are not successful 
in distinguishing green diatreme tuffs from red diatreme 

tuffs and often ash from the same diatreme has a wide 

spread of PVC, values. The one country rock tuff sample 

measured has a similar spread of values to the diatreme 

tuffsq indicating it was probably derived from them. 

Reworking in a lagoonal environment has had little effect 

on the grain shapes. No samples of tuffs reworked in more 

active environments were studied because of alteration, but 

where visible, juvenile grains do appear to have been 

slightly rounded. 

On a 11 vs N diagram (Fig. 5.54b) the bulk of the 

grains plot above the line with slope 0-75. This indicates 

that explosive vesiculationg rather than granulation, 

formed the lapilli (Honnorez & Kirstq 1975). However, since 

finer ash could not be measured it is not surprising that 

the samples all'plot in the high-N field. Comparison with 

Saefell (Chapter 2) and Medano (Chapter 3) suggests that 

the fines would probably have plotted in the high-P. 

hyaloclastic field. The spread of results in the East 

Lothian diatreme tuffs is thus very similar to the modern 

examples studied; all must have formed by similar processes. 

5.4.4 Alteration of tuffs 

a) Green tuffs 

The green tuffs are all-similar in having chlorite- 
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replaced juvenile lapilli in a generally sparry calcite 
cement which has replaced most traces of the original tuff 

matrix. A few relatively fresh glass fragments have 

survived the alteration (Fig. 5.55) and consist of pale to 
dark brown isotropic glass. Some of the relict glass grains 
have concentrically-banded rinds around both vesicles and 
the grain margins. These bands probably represent 

palagonite rinds developed soon after formation of the 

glass. The vesicles are filled with concentrically-banded 

chlorite which is partly replaced by calcite. At least 

three stages of chlorite growth are represented in the 

bands. Presumably alteration of these relict grains was 

prevented because. surrounding pore spaces were rapidly 
filled by authigenic minerals which formed a barrier to 

alteration solutions. 
Most of the chlorite is apple-green in colourv weakly 

pleochroic and has low birefringence. Under crossed polars 
it is seen to form radiating or flakey aggregates which may 

occur in radial layers around grain boundaries (Fig. 5.56). 

optically it appears to be prochlorite. Chlorite often only 

partially replaces volcanic grains, and is associated with 

calcite which is generally later. Many grains have chlorite 

replaced rims spotted with opaques and calcite replaced 

cores. In extreme casesq calcite has totally replaced grains 

with vesicles containing concentrically-banded chlorite. 

Rinds around many vesiclest thought to represent 

replaced palagonite, are often full of small rounded high 

relief crystals and dusty opaques (Fig. 5.56). The 

disseminated grains often form trails parallel to the 

concentric banding in the rindsv which reach 0-05mm in 

thickness. 
Calcite occurs as both a replacive and a pore-infilling 

mineral. In places relict grain shapes can be distinguished 

in sparry calcite which has replaced and pseudomorphed the 

matrix (Fig. 5.57). A common pore infilling sequence is 

iron oxide rim around grains 

chlorite 
banded radial calcite 

vuggy calcite with interpenetrant large crystals. 
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Fig. 5.55 Vesicular lapillus from the Partan Craig diatreme 
tuffs. Note preservation of vesicles and grain 
shape even though the fragment is chlorite and 
calcite replaced. Concentric structures around 
vesicles probably represent replaced palagonite 
rinds. Plane polarised light. x1O. 

Fig. 5.56 Prochlori te-repl aced vesicular lapillus from 
the Horseshoe diatreme tuffs. Rinds around 
vesicles contain dusty opaques, which also 
occur around the grain perimeter. Plane 

polarised light. x40. 
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Fig. 5.57 Relict grain shapes visible in calcite replaced 
matrix of the Partan Craig diatreme tuffs. 
Plane polarised light. x1o. 

Fig. 5.58 Vesicular lapillus from the Parade diatreme 
tuffs. Vesicles infilled by orange, fibrous 
vermiculite which, along with hematite 
replaces most of the fragment. Plane polarised 
light. x1O. 
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Replacive calcite-is either coarse-grained and sparry or 
more micritic in type, with opaque spots and other 
impurities often giving it a turbid appearance, 
b) Red tuffs 

The red tuffs contain a. wider variety of alteration 

products than the green tuffs and in addition are 

extensively hematite-stained. The sediment component of the 

tuffs is largely unalteredt apart from the sericitization 

of feldspar and the hematitization of the'cXay matrix. 
The most common alteration product of the juvenile and 

lithic fragments is an orange-brown, slightly pleochroic 

mineral with low relief and low-to-moderate birefringence 

(Fig. 5.58). It forms radial fibrous layers, radiating 

"booklets" or aggregates of small crystals. It resembles 

vermicular clay and chemically is similar to vermiculite, 

or some forms of chlorite (Table 5.3). There appears in 

places to be a gradation between pale yellow chloritep with 
low relief and low birefringence, and orange-brown 

vermiculitev with slightly higher relief and higher 

birefringence. In other samples chlorite is enclosed and 

corroded by the vermiculitev or vice-versa. Oftent the 

chlorite is full of opaques and the contact with the clay 
is defined by a layer of hematite. 

Chlorite and clay replace most volcanic grainst 

pseudomorph, phenocrysts and infill vesicles. Variable, 

though generally small amounts of calcite are often 

associated with the above minerals. The calcite usually 

occurs as the, final phase of vesicle infill or replaces the 

cores of volcanic fragments. Often, the outer rims of a 

grain are replaced by orange vermiculitep with chlorite 

inside this and calcite at the grain centre 9 '. Numerous 
__ 

spots of disseminated hematite are scattered through many 

grainso and are often concentrated around grain and vesicle 

margins. Common vesicle infill / alteration sequences are 

Chlorite-banded vermiculite-fibrous vermiculite-calcite 

Chlorite-hematite-vermiculite-calcite 

Banded 'vermiculite-calcite-banded vermiculite. 
Most of the primary structures have been preserved 

even in highly altered volcanic grains. The most obvious 



262 

Fig. 5.59 Vermiculite and chlorite replacement of 
vesicular lapillus from the Parade diatreme 
tuffs. Concentric bands around vesicles 
represent vermiculite replacement of 
palagonite rinds. Within vesicles, zoning 
of vermiculite may represent replacement of 
composite authigenic phases. Plane polarised 
light. x25. 

Fig. 5.60 Tuffaceous siltstone from the Parade diatreme, 

showing clay replacement of the fine matrix. 
Much of the matrix and the ash grains are 
replaced by hematitet which also forms rims 
around some of the quartz grains. Plane 
polarised light. x25. 
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TABLE 5.3 MICROPROBE ANALYSES OF SAMPLE D6 

(1) (2) (3) (4) (5) (6) 
S'02 35-3 34-3 33-8 34-0 65-7 4-51 

Ti02 0-10 0-79 0-19 - - 0-89 

A1203 15*5 15-2 15-1 15-4 19-9 1-84 

FeO 11-8 15-2 18-4 *8-01 0-26 75-6 

MnO 0-14 0-21 0-26 - 0010 1-13 

mgo 24-3 23-1 17-4 22-6 1.55 0-25 

cao 0-19 0*40 0-41 - 10-4 0*42 

Na20 0-49 1-01 - 0-19 - 
K20 0-07 0*26 0-15 - 0-34 

Total 87-89 90-47 85-71 80-01 98-10 84-98 

(1) Chlorite/vermiculite 

(2) Chlorite/vermiculite 

(3) Chlorite/vermiculite 

(4) Vermiculite analysis 
. ""(Fe as Fe2 03 )o 

(5) Zeolite (? analcite) 
(6) Hematite replacement 

vesicle infill. 
in altered lapillus. 
in altered lapillus- 
(Deer et al. p 1975) 

vesicle infill. 

of vesicular lapillus. 
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are the vesicles which have been infilled, but still retain 
their original shapes. Some of the banding in the chlorite 

and vermiculite around the vesicles is similar to that seen 
in the green tuffs and is thought to be replacive after 

palagonite (Fig. 5.59). The hematite rims around vpsicles 

and grain margins may be partly due to alteration of 

earlier iron-rich palagonite rinds. Within vesiclesq zoning 
in the alteration minerals may represent replacement of 

earlier composite or partly-filled vesicles (Fig. 5.59). 

Alternativelyq slight changes in the composition of the 

altering fluids may have precipitated slightly different 

replacement minerals with time. 

The matrix of the red tuffs is largely composed of 
hematite-stained clayq probably kaolinite or montmorillonite 
(Fig. 5.60). Most of the clay is colourless or turbid, 

extremely fine-grainedt and has low relief and low-to- 

moderate birefringence. The fine-grained matrix is 

sometimes replaced by orange vermiculite cement, especially 

around highly altered volcanic grains. In placesp calcite 

cements fill pore spaces or replace the matrix. Veins filled 

with sparry calcite cut many of the tuffs and are a post- 

compaction feature. 

Vermiculite is reputedly often found as an alteration 

product of biotite (Deer et al. 9 1975)9 but such a 

paragenesis. is hard to envisage in the red tuffs, even 

though they do contain small amounts of generally fresh 

biotite. In K-rich marine waters vermiculites are said to 

be derived from volcanic material and chlorite (Deer et al., 

op. cit. ). In the red tuffs vermiculite commonly replaces 

chlorite, similar to vermiculites formed by weathering of 

chlorite in soils. Saline groundwaters might well have 

affected the tuffs since the volcanoes are thought to have 

formed near a palaeo-shoreline, on a coastal alluvial plain, 

why the green tuffs never developed vermiculite is unclear. 

The reason may be related to the sediment which was 

incorporated in the red tuffs. If biotite was present in 

the newly-deposited continental alluvium of the Canty Bay 

Formation it would have rapidly decomposed under oxidizing 

conditionsp forming mixed-layer clays and hematite (Turner, 
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1980). Perhaps the colour of the tuffs and the oriqin of 
the vermiculite is in part due to ari originally high 

biotite content in the sedimentsv now removed by alteration. 
In addition to the sedimentary biotite, clasts of biotitite 

(or glimmerite) are known in some of the Dunbar tuffs 

(Uptonp 1982). Alteration of this cumulate igneous biotite, 

may have added to the reddening process at the Parade 

diatreme. 

5.5. Discussion 

The red and green diatremes differ in many ways, the 

most important of which are z- 

a) Sediment content; the red tuffs contain abundant country 

rock material, the green tuffs mainly juvenile fragments, 

b) Colour; this is related to sediment content and the Eh 

of groundwaters. 

c) Age; the green diatremes are slightly younger (Martin, 

1955). 

d) Alteration; this is largely dependant on sediment 

content and groundwater composition. 

e) Internal structure; the red diatremes contain generally 

well-bedded sequences of tuffs, the green diatremes largely 

poorly-bedded, often blocky tuffs. 

f) Location; the red diatremes lie to the S and E. the green 

diatremes to the N and W of the area studied. 

g) Depositional environment of the country rocks around the 

diatremes; the red diatremes are surrounded by alluvial 

plain sedimentsp the green diatremes by lagoonal or 

lacustrine deposits. 

These differences are thought to represent 

fundamentally different styles of volcanic activity, The 

red diatremes erupted into unconsolidated, water-rich 

alluvial plain sediments and explosively comminuted them, 

The green diatremes erupted into shallow lake water and 

ejected mainly chilled magma fragments. The red diatremes 

are thus thought to be eroded maars, whereas the green 

diatremes are eroded tuff-rings 0 
The reasons-for the different styles of activity may 

be related to the source and abundance of the water which 
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contacted the mao. Tia. I orhaps convc-ctiv(, hPating of port, 

waters in the alluvial sediments led to mainly stewn 

explosions above the slowly ascending red diatreme magma. 

periodic upwelling of magma may have initiated retrograde 

boiling in the superheated water column above it. and 

geyser-like jets sprayed out a mixture of chilled glass and 

sediment. 

The green diatremes were probably formed when magma 

first contacted pore water and then rose to near surface 

depths where shallow lakes provided an abundant water 

source. The main explosions were triggered by the direct 

contact of magma with abundant water, and took place within 

the upper part of the intrusiong ejecting mainly chilled 

glass. Rapid ascent rates probably allowed magma to reach 

very high levels before disruption by phreatomagmatic 

explosions. The depth of interaction of magma and water was 

thus important in determining whether tuff-rings or maars 

were formed (Lorenzo 1973). The actual products and 

structures forming the red and green tuffs are similar, 

reflecting similar depositional processes@ 

B CMI x 
"0. 
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li es 
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20- p ý 
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ac 
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xCountry rock tuffs 
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Fig. 5.61 Block impact sag measurements, 

Symbols as in Fig. 5.49. 
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An example of this is given by the block impact data (Fig. 
5.61) which indicate that the tuffs had generally similar 
cohesive properties. Unfortunately, the lack of data 
prevents detailed comparison between deposits. The range of 
products and the type of volcano formed by water: magma 
interactions is further discussed in Chapter 7. 

The Parade diatreme is rather different from the North 
Berwick red diatremesq the main differences being as 
follows : - 
a) Marginal features: The Parade margins are wide shear 
zones which extensively disrupt the country rocks whereas 
the North Berwick red diatreme margins are narrow and 
sharply truncate the country rocks. 
b) Internal structure: The Parade tuffs are relatively 

undisturbed and form a >300m thick E or NE-dipping sequence 
within the diatreme. The North Berwick red diatreme tuffs 

are often disturbed by sliding and slumping with bedding 
largely centroclinalg forming se. quences up to 100m thick. 

c) Sedimenýary structures: The Parade tuffs contain a high 

proportion of base-surge cross-bedded tuffs whereas the 
North Berwick examples contain few such structures. 

It is thought that -the Parade diatreme contains a 
fault bounded block of bedded crater tuffs which subsided 
en masse after cessation of volcanism. The maar which 

erupted these tuffs must have been larget because of the 
thickness of the deposits. Subsidence occurred mainly after 
lithification of the tuffst which are remarkably little 

disturbed. The North Berwick red diatremes represent maar 
crater tuffs which subsided whilst poorly consolidated. 
into narrow diatremesp causing buckling of the bedded tuffs. 

The Parade tuffs subsidedg probably along concentric ring 
faults outside the original diatreme margins, with no 

associated space problems. These faults offset the country 

rock sediments such that those in the W are downthrown by 

at least 300m relative to those E of the diatreme (Francisq 

1962). 
The abundance of base-surge deposits in the Parade 

diatreme and their scarcity in all of the other East 

Lothian diatremes is hard to explain. The outer flank tuffs 
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of maars in Germany often contain a high proportion of 
base-surge deposits, but their crater tuffs are generally 

poorly exposed. Perhaps the eruptions of the Parade volcano 

were completely dominated by surge activity because magma: 

water explosions occurred at the optimum depth for the 

production of base-surges (Mooreq 1967). 
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5.6. SUMMARY 

1. Newly-deposited Lower Carboniferous alluvial plain and 
lagoonal sediments were intruded by basaltic magma, 
initiating phreatomagmatic and phreatic activity. 

2. Maars formed when sediment pore waters were heated by 

slowly ascending magma. Tuff-rings formed when more rapidly 
ascending magma directly contacted water in standing water 
bodies. 

3. Crypto-volcanic structures formed by short-lived gas- 

streaming as steam and magmatic gases were injected into 

country rocks at depth. Similar fault-controlled activity 
formed intrusive tuffisite dykes. 

4. Tuffs deposited around the volcanoes were reworked 
forming thick tuffite sequences. Minor reworking within 

volcanoes resulted from water runnoff and crater breaching. 

5. Primary volcanic tuffs were deposited by airfall and 
base-surge processes. The proportion of each type of 
deposit depended on the depth of magma: water interaction. 

6. Both massive and cross-bedded surge tuf fS occur and are 
thought to be the deposits of different regions of surge 

clouds. Different depositional mechanisms formed tuffs with 
distinctive grain-size characteristics. 

7. Subsidence during or just after volcanism brought 

mainly crater tuffs down into the diatreme. Slumping of 

poorly-consolidated tuffs and compression during collapse 
into an increasingly narrow conduit deformed the tuffs. 

Rafts of country rock were incorporated in many diatremes 

by marginal collapse. 

8. Reddening of maar diatreme tuffs occurred due to 
in situ oxidative weathering of country rock-derived 
ferromagnesian minerals and alteration of glass. Some 

10 



270 

groundwater exchange with the country rock red beds may 

also have occurred. Green diatreme tuffs altered to 

chloritep surrounded by green sediments which accumulated 

in reducing environments. 

9. The Parade diatreme tuffs are the product of ring fault 

collapse of a large thickness of maar crater tuffs. Base- 

surge deposits are abundant and contain more sediment than 

associated airfall deposits. Optimum conditions for surge 

formation were often fulfilled by the Parade volcano and 
involved explosions at depthq entraining abundant sediment. 

10. All the features of the East Lothian diatreme tuffs 

are consistent with a phreatomagmatic origin. Collapse into 

diatremesp reworking and alteration have obscuredl but not. 

destroyed many of the primary features of maars and tuff- 

rings which once existed. 
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CHAPTER 6 

EAST FIFE AND AYR DIATREMES 

Numerous diatremes are well exposed along the coast- 
line of East Fife and provide excellent exposures for the 

study of various structural levels in collapsed diatreme 

tuffs. The Heads of Ayr diatremep a large structure exposed 
on the W coast of Scotlandq is briefly described and 
compared with the Fife examples. 

6.1. Introduction and Geoloqical Settinq 

The diatremes (Fig. 6.1) cut Carboniferous sediments 

which range from Calciferous Sandstone Measures to Coal 

Measures in age (Forsyth et al. # 1977). Over a hundred 

diatremes have been located throughout East Fife but only a 

small number of these are sufficiently well-exposed to 

permit detailed examination, The diatremes have long been 

the subject of scientific interest but only comparatively 

recently have attempts been made to compare them with 

modern volcanoes (Francisq 1970). 

The. diatreme tuffs are composed of altered alkali- 

basalt fragments along with sediment derived from the 

surrounding country rocks. The age of the diatremes hast in 

generalt been difficult to assess and cross-cutting 

relationships have proved the only reliable method for 

determining their minimum ages (Francist in Forsyth et al., 

1977). Great difficulties in correlating bedded tuffs in 

the surrounding Carboniferous strata with specific 

diatremes have largely prevented the use of this method of 

dating. The identification of distinctive blocks in the 

diatreme tuffs has also proved of little use in determining 

the minimum age of diatremes. Potassium-argon dating 

(Francist op. cit. ) has established a minimum age of 289±10my 

for intrusions and lavas in some of the diatremes. However, 

these ages conflict with the lack of evidence for basanitic 

volcanism at this time in the Carboniferous succession of 

East Fife. Palynological evidence suggests an early 

Westphalian age for one diatreme but those diatremes 

lacking intrusions or fossil spores cannot be accurately 
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dated. Figure 6.2 summarises the current information on the 

diatreme ages. 

During the Lower Carboniferous# deposition in East 

Fife was fluvio-deltaic or shallow marine in character, 
building up a thick sequence of sediments in this part of 

the subsiding Midland Valley Trough. With timev marine 
incursions became more frequent and limestones were formedl 

but towards the end of the Carboniferous the development of 

on-delta swamp conditions led to the formation of thick 

coal seams. Throughout the Carboniferoust a cyclic pattern 

of deposition occurred in East Fifep due to subsidence and 

delta migration. 

Structurally, the area has been affected by gentle 

folding and major faulting (Forsyth et al. 9 1977). Many of 

the diatremes post-date the folding but pre-date the 

faultingg the age of which is thought to be Upper 

Carboniferous. Some of the diatremes appear to have formed 

along linear zones which may represent the early expression 

of faults. 

In the following accountv only the diatreme features 

relevent to the present study will be mentioned, Brief 

descriptions of all the East Fife diatremes have recently 

been published in a Geological Survey Memoir (Forsyth et al,, 

1977) and the reader is referred to these for discussions of 

diatreme features outside the scope of this report. 

The diatremes range from small cxypto-volcanic 

structures which had little (if any) surface expressiont 

through approximately circular features filled with varying 

proportions of beddedt collapsed or unbedded tuffst to 

larget irregularly-shaped structures containing much 

intrusive or brecciated material. The diatremes filled 

mainly with bedded tuffs are most relevant to this study and 

will be described first. 

6,2, Diatremes containing Mainly Bedded Tuffs 

6.2.1 Elie Ness diatreme 

This diatreme (Fig. 6,3) cuts Calciferous Sandstone 

Measures 'sediments SE of the town of Elie and measures 
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ca. 5OOx3OOm. 

Eastern margin 
The eastern margin is sinuous and separates 

agglomeratic, unbedded tuffs from brecciated sediments 

which are turned down against it. The tuffs at the eastern 
diatreme margin consist of a ca. 100m wide zone of generally 

unbeddedv lapilli-grade material with irregular 

agglomeratic areas. The blocks in these areas reach 5m in 

size and comprise alkali basaltp bedded and massive tuff, 
limestone, sandstone and red mudstone. Some of the tuff 

blocks are highly rounded (Fig. 6.4) and may have been 

abraded by gas-streaming processes thought to occur at 
diatreme margins (Francisp 1970). 

The marginal zone is intruded by NW-trending basanite 

dykes which are emplaced en echelon. The dykes often have 

irregularp lobate margins which in places break down and 

pass into basanitic breccia. The dyke margins are commonly 

unchilled and are flanked by intrusive tuff which often 

contains flow-banded lapilli trails parallel to the contact. 
These features indicate that magma was injected into poorly- 

consolidatedp perhaps fluidized tuffs during collapse of 

material into the diatreme. Further evidence of gas- 

streaming is indicated by irregular sandstone blocks which 

occur in the marginal diatreme tuffs near the Lady's Tower 

(Fig. 6.3). These blocks contain crumpled bedding which is 

often intruded by small stringers of sediment-rich tuffisite. 

The surfaces of the blocks are pitted and embayed in a 

manner resembling carious weatheringg but this texture has 

only been found in sandstones intruded by tuffisite. It is 

thought to be a characteristic feature of gas-streaming 

processes which have abraded poorly-consolidated coarser 

sediment clasts. The texture has been found in many blocks 

within diatremes and crypto-volcanic structures. 
A basalt-rimmedy rounded tuff-block occurs in unbedded 

agglomerate near the above sediment blocks (Fig. 6.5). This 

rimming by magma is only seen around a few, isolated large 

clasts in the diatreme. The reason for the scarcity of such 

blocks is probably connected with their sizev since many 

juvenile lapilli contain quartz grains and other small 
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Fig. 6.4 "Ball-milled" rounded autolithic blocks from 
the eastern margin tuffs in the Elie Ness 
diatreme. 
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Fig. 6.5 Tuff block with a vesicular juvenile basalt 
rim. Eastern margin tuffs in the Elie Ness 
diatreme. 
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xenocrysts and lithics. Presumablyt any. large block which 
does manage to directly contact the magma may accrete a 
rim. This rim, however, is likely to be destroyed in the 

explosive chilling following contact of the magma with 
water. Only fragments smaller than the optimum stable size 
of juvenile lapilli produced in the eruptions (generally 

<lcm) are thus rimmed by glass. The presence of large 

rimmed clasts indicates less explosive chilling of the 

magmag perhaps due to a relative lack of water. 
Collapsed-bedded tuffs 

Moving W into the diatreme the unbedded marginal zone 
passes into a zone of collapsed-bedded tuffs (Fig. 6.3). 

This zone is ca. 40m wide and is bounded on both E and W 

sides by NW-trending dykeý. The zone contains rotated 
blocks of well-bedded tuff up to 3m longo many of which 
have rounded shapest in a structureless lapilli tuff matrix. 

Internallyp the blocks are moderately to well-bedded 
lapilli tuffs with rare clasts up to 10cm acrosso-mainly of 
basanite. Some of the blocks contain fine laminae of well- 

sorted, often gradedg ash with small-scale trough and 

planarg sometimes climbing, cross-lamination structures. 

These blocks contain very sediment-rich layerst in places 

contorted by loading and injection structures. These tuffs 

are thought to represent water-reworked deposits formed 

during the initial build up of volcanic detritus in a 

shallow subaqueous environment. Other bedded tuff blocks 

are less well sorted, and contain block sags and are 

probably of airfall origin. 
The collapsed bedded area passes to the S into largely 

structurelessy occasionally blocky tuffs which also form 

the small island to the SW (Fig. 6.3). Herep structureless 
lapilli tuffs are cut by sub-verticalv sediment-rich dykes, 

similarp horizontal bands appear to have acted as planes of 

movement for large structureless tuff rafts. These may be 

either tuffisite dykes intruded along faults or slide planes, 

containing either flow or shear-aligned lapilli. Basanitic 

dykes cut coarse tuff breccias containing angular tuff 

blocks in the S part of the islandq and contain pink 

anorthoclase crystals up to 10cm across, 
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Eastern bedded tuffs 

The collapsed-bedded area is separated from well- 
bedded tuffs to the W by a NW-trending linear zone of 
unbedded tuffs cut by tuffisite dykes and a later, 

bifurcating basanite dyke. Near the dyke the bedded tuffs 

grade into a 1m zone of flow-banded lapilli tuffv banded 

parallel to the dyke. West of the dykep N and NW-trending 

faults cut the tuffst which locally contain blocks and 

rare, possibly breadcrust bombs of basalt. 

The bedded tuffs to the W of the dyke dip NW at 
between Wand 7e and are initially coarse, with blocks up 
to 70cm in diameter. The bedded sequence is summarised in 

log form in Fig. 6.6 and only its more important features 

will be discussed. 

Initiallyp the tuffs are poorly-bedded with lapilli 

and block trails and rare finer horizonsp which are often 
impact deformed. Upwardsp the bedding becomes better 

defined as more fine units occur and coarse units become 

better sorted. Traced to the SW along strike many of the 

blocky beds coarseng perhaps due to directed eruption 

blasts. Within some of the coarser unitsp lapilli and 

blocks are occasionally rimmed with coats of-fine ash, 

similar to armoured lapilli described previously from 

Saefell (Chapter 2). Largert ovoid or spherical aggregates 

of lapilli and ash may be armoured mud balls formed by 

fluvial erosion of partly consolidated tephra slopes. 

Similar structures have been found by the author in a tuff- 

ring on Procida, an island off Naplesq Italy. 

Discrete layers rich in sediment clasts occur 

throughout the bedded sequence and become more abundant 

uPwards9 suggesting that explosions periodically enlarged 

the vent by disruption of the country rocks around the 

conduit. The most common clast types are red mudstone and 

greyp often shelly limestone. Some of the clasts, are 

plastically deformedý indicating their poor consolidation 

on ejection. 
The finer layers are generally sandwiched between 

blocky units which often have loaded bases. ýIany of the 

fine units contain trough cross-beddingg which is low- 
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angle and of long wavelength (Fig. 6.7). Pinch-and-swell 
bedding, thinning of units over the tops of projecting 
blocks and beds at steep repose angles suggestive of 

plastering indicate that these fine tuffs are of surge 
origin (Fig. 6.8). Because of their extremely low profiles 

and the lack of 37D exposure, directional data are hard to 

collect. However, some troughs indicate derivation from the 

SW or Sp as do the asymmetric block sags. 
There is a commonly developed sequence of tuffs within 

the surge units, which may represent deposits from different 

parts of the surges. Generallyt trough and planar-bedded 
fine-grained layers are overlain by massivet structureless 
tuffs which may be inversely graded (Fig. 6.9). The cross- 
bedded layers sometimes overlie coarsep blocky, poorly- 
bedded units but the latter are not abundant. Some of the 

surge units are deformed by block impact sagsp which 

generally affect their upper layers. In places the cross- 
bedded units are partly eroded and loaded by overlying 

coarser tuffsp some of which appear to have flowed slightly. 
The contacts between the sub-units in any surge 

deposit are generally gradational but are in places abruptp 

especially above cross-bedded tuffs, Most of the abrupt 

contacts are erosive. Although the most common sequence has 

been described above and in Fig* 6.99 the constituent sub- 

units may overlie one another in any orderp separated by 

abrupt contacts. In these instances the sub-units are 

generally thinner than 30cm individuallyp whereas they reach 

up to 1-5m thick in the best-developed sequences. 

To the W and upwards in the bedded tuff succession the 

surge units die out and coarsep blocky beds become abundant 
(Fig. 6.10). These beds are 0-5-3m thick and contain blocks 

of crystalline basalt up to 1-5m acrossp though more 

commonly 10-30cm. Internallyt they contain trails of blocks 

which define a crude beddingp and some laterally 

discontinuous layers of bedded tuff. The latter bedded 

layers are often eroded and cut out by the coarser tuffs 

above, These layers contain some blocks with impact sags 

though large blocks in the massive tuffs above often 

directly overlie them without deforming them. In places, 
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a) Low-angle trough sets with pinch-and-swell 

bedding, deformed by a block impact sag. 
b) Dune with climbing cross-lamination 

structure. Note low profile and almost 
horizontal bedding sets on the right side of 
the dune. Flow direction'uncertain but 
thought to be from right to left. 

C) Cross-bedded tuffs overlain by massive bed 
which cuts down into them and has load 
structures at its base. 



283 

xx 
xx ...... .... 

x 
X. 

x;.... 
- *-** ... :: _ _- **- 

10cm 

---------- 

......... ... 

10cm 

.......... 

; or 10cm 

d. 

Fig. 6.8 Structures in the eastern Elie Ness surge tuffs. 
a) Mantling of an upstanding block by surge beds 
b) Deep impact sag of block in surge tuffs 
c) Surge mantling of a projecting block. Note 

thinning over top of block and steep angle 
of reposev suggestive of surge plastering. 

3 
:::: " .: 

2 

:. o-.: """". 

°: ... o.. " 

.::. 
. 

". 
": ..:. 

O. O. 

Fig. 6.9 Idealised 
diatreme, 
unit. 

Thickness 

20-50 cm 

15-70cm 

30-150cm 

surge sequence from the Elie Ness 
Note thickness variations of each 



284 

xx 

40 

F> 

4p 

25cm 

Fig. 6.10 a) Debris flow tuffs from the centre of Elie 
Ness diatreme. Note block trails and 
fine structureless matrix. 

" 

': 
"�. '. 

�-I 

a- 

Fig. 6.10 b) NW-dipping debris flows in the Elie Ness 
diatreme. Note variations in block size 
between successive units and their overall 
poor sorting. Large block at top of low 
cliff measures 40cm across. 

T 
. 



285 

the bedded layers have been broken up and incorporated as 
rip-up blocks in the coarsev massive tuffs above. 

The sequence is interpreted as originally bedded coarse 
airfall tuffs which have undergone mass flow to variable 

extentsp with interbedded finer layers. In some places the 
debris flows eroded the underlying tuffs but generally they 

conformably overlie them. The debris flows are all matrix- 

supported and are poorly sorted. Some of the units have a 

reverse-graded base overlain by a blocky layer with slight 

coarse-tail grading towards the top. Other features 

include :- blocks which protrude from the irregular top of 
flows and are mantled by bedded ashv elongate blocks 

oriented parallel to the base of the flows and slight. 
loading of the underlying finer deposits. Flow occurred 
immediately after deposition of the coarse units9 which are 

generally conformably overlain by finer well-bedded tuffs. 

These debris flow tuffs are probably the youngest exposed 
deposits in the diatreme and may have been initiated by 

tremors associated with the ejection of the coarse blocks. 

There is a general increase in block size upwards in the 

succession, indicating that explosions became more violent 

with time. 

West-central bedded tuffs 

The bedded tuffs in the SE part of the diatreme are 

separated from those to the W by a major composite dyke of 
basalt and tuffisite (Fig. 6.3). The dyke is Sm thick at 

HWM and comprises mainly basalt flanked by thing grey 

flow-banded tuffisite. Towards LWM the central basalt dyke 

becomes brecciated and mixed with the tuffisite. Further to 

the S the dyke becomes. completely tuffisitic and contains 

blocks of basalt, folded sandstone and tuff in a flow- 

banded matrix which resembles vertically-bedded shale or 

siltstone (Franciso in Forsyth et al. 9 1977). A steep 

normal fault of unknown displacement, 5m W of and parallel 

to the dyke has a downthrow to the E. 

West of the fault the tuffs consist of N-dipping, 

well-bedded lapilli and ash. The features of these tuffs 

are summarised in log form in Fig. 6.6. At LWM9 the lowest 

exposed deposits are trough cross-bedded tuffs exposed 
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approximately normal to the current direction, forming a 
complex festoon pattern (Fig. 6.11). Individual troughs 

reach depths of 50cm and widths of 2m, and are strongly 

curved. The festoon-bedded tuffs occur mainly within a N-S 

trending gully cut in the surrounding bedded tuffs. This- 

gully appears fault-bounded and measures 6m deep by at 
least 8m acrossp and is poorly exposed at LWM. The festoon 

bedding is probably due to repeated surge deposition and 

erosive channelling within this gullyq forming nearly 

symmetrical troughs with erosive margins. Rare block sags 
deform the cross-bedding, especially towards the top of the 

festooned unit. The sequence is cut by small soft sediment 
faults with offsets of <10cmg which may be related to 

compaction of the cohesive tuffs. 

Above the festoon-bedded unit there is a >30m thick 

sequence of well-bedded tuffs alternating with coarser, 

sometimes blocky, poorly-bedded layers. The finer tuffs are 

often cross-beddedo with low-angle planar and trough sets. 

one example of climbing cross-lamination in a surge dune 

occurs towards the top of the unitt with downflow crest 

migration at climb angles of 1CPto 15" (Fig. 6,7, ). 

Although current directions are hard to obtaing some 

foresets indicate a source to the S or SE. 

The cross-bedded layers reach up to 1m thick and are 

commonly overlain by coarser, poorly-bedded tuffs up to 

2-5m thick. These tuffs may be coarse tail reverse-graded 

or contain a blocky layer overlain by lapilli tuff. Many of 

these blocks penetrate deeply into the underlying bedded 

tuffs and plastically deform them. This alternating fine- 

coarse sequence is repeated at least 15 times throughout 

the tuffs in this part of 
* 
the diatreme. 

Above the alternating sequencel near the lighthousev 

the tuffs become coarser and poorly bedded. Some beds are 

completely structureless and may be debris flows whereas 

others are poorly bedded and'represent coarse airfall 

deposits* Some finer, bedded layers occurp but these are 

broken up by block impact sags or wedge out due to erosion 

by debris flows. 

The tuffs in this part of the diatreme thus comprise 
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Fig. 6.11 a) Trough cross-bedded tuffs in the SW part of 
the Elie Ness diatreme with sets forming a 
complex festoon pattern. Surge motion normal 
to plane of photograph. Hammer measures 30cm. 

. ...... .... 

.......... 

locm 

........... Cj. . O. -o 
dt 

XX 
............. 

............... 

. 
41 

...... . .... ........ . 

30cm 

Fig. 6.11 b) Slumped, contorted bedding in tuffs near the 
Elie Ness lighthouse. Note small step-faults 
some of which deformed poorly consolidated 
tuffs. 

C) Block impact sag in the Elie Ness tuffs near 
locality b) above. Note plastic deformation 
beneath the block and the asymmetric sag 
above it to the right. 
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a thick sequence of cross-bedded tuffs alternating with 
coarserp poorly-bedded tuffs and overlain by mixed debris 
flows and coarse airfall tuffs. This sequence correlates 
with a similar succession to the W (Fig. 6.6). Downthrow of 
at least 10m of the eastern tuffs relative to those in the 
W has occurred, along faultsv one of which is now followed 
by the major composite dyke. 

Western bedded tuffs 

The deposits in the W of the diatreme are moderately 
to well-bedded lapilli tuffs with occasional layers rich in 
basalt blocks (Fig. 6.6). Some cross-bedded tuffs occur -and 
indicate surge derivations from the E. Coarser horizons 

commonly have loaded bases which project down into the 
finer tuffs below. A basaltic breccia plug cuts the bedded 

tuffsv which dip into it, in the extreme W of the diatreme. 

The breccia appears to rest irregularly on the bedded tuffs 

to the S (Francis, in Forsyth et al. 9 1977) and may be 

partly extrusive. The plug is cut by both tuffisite and 

carbonate veins. Francis (op. cit. ) suggested that the 

breccia marked the centre of the neck because of the 

surrounding inward dips of the tuffs. Late-stage intrusion 

of a plug into subsiding tuffs could occur at any location 

in the diatremet and may merely indicate the final position 

of the volcanic centrev or be unconnected with it, The 

centroclinal bedding in the tuffs is a more convincing 

indication of a former volcanic centre but collapse 

processes may form basin structures totally unrelated to 

the original attitude of the bedst and obscure the site of 
the vent. 

The coarser tuffs in the W of the diatreme contain 

wood fragments and crystals of pyrope garnett zircon and 

alkali-feldspart as well as amphibole and pyroxene nodules. 

Oftent lapilli of juvenile basalt have small crystals at 

their centresp although no large clasts are rimmed in'this 

way. 
summaryand conclusions 
1. The Elie Ness diatreme consists of a fault-bounded 

marginal zone along which subsidence movements occurredq 

with collapsed bedded-tuffs further into the diatreme which 
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were only partly affected by such movements. The major part 
of the diatreme consists of bedded tuffs which subsided en 

masse and are only slightly foldedp although cut by faults 

of small displacement. 

2. The sequence of tuffs begins with water-reworked ash 
deposits at the base. Aboveg airfall tuffs with minor surge 
deposits give way to a surge dominated sequýnce. The 

overlying tuffs are coarse' 
, 
airfall tuffs partly reworked by 

debris flows which may have been triggered by violent late- 

stage eruptions and by collapse into the diatreme. Some of 

the youngest tuffs are cut by basaltic breccia and later 

tuffisite dykesp indicating a final intrusive phase of gas- 

poor followed by gas-rich magma. 

3. The surge tuffs occur. in a characteristic sequence 

thought to represent the deposits of different parts of the 

surge clouds. Commonlyt cross-bedded tuffs are overlain by 

coarser, often reverse-gradedp blocky tuffs which are 

poorly bedded. A massivev unbedded lapilli tuff bed may in 

places occur between the cross-bedded and the blocky tuffs. 

The significance of this sequence will be discussed further 

in Chapter 7. 

4. Collapse of bedded tuffs into the diatremeg and 

incomplete exposures have made conclusions about the 

probable vent position hard to make. Howeverp the evidence 

from most of the surge deposits indicates derivation from 

S of the presently exposed tuffs. Asymmetric block impact 

data support thist as does the southward coarsening of 

blocks along strike in airfall layers. The centroclinal 

attitude of the beds may thus be related to a later vent, 

or more probably is a feature of differential subsidence 

within the diatreme. 

6.2.2 Elie Harbour diatreme 

The Elie Harbour diatreme (Fig, 6.12) measures ca. 13o 

x230m and cuts Lower Limestone Group sediments at the S 

side of the Elie pier. The diatreme contains well-bedded 

lapilli tuffs intruded by basaltic dykes and a plug of 

basaltic breccia. A raft of sandstone lies in the central 

part of the diatreme and is highly tuffisitized in places. 
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Only the eastern margin of the diatreme is exposedo on the 

wave-cut platform. 

Eastern marqin 

The margin consists of a trough feature some 1-2m wide 

containing tuffs highly veined with calcite. Outside this 

ring fault the country rock sediments are turned down 

against the marging forming vertically banded blocks in a 

zone 4-6m. wide. Outside thisq a curved fault parallel to 

the margin separates the zone from less disturbed country 

rocks which dip into the diatreme at up to 6CP. Basalt 

dykes follow the disturbed zone and continue eastwards, 

with radial orientation to the diatreme, 

Bedded tuffs 

The bedded tuffs are best exposed in the W side of the 

diatremeg where a 55m thick sequence occurs in the W-dipping 

beds (Fig. 6.13). At the base of the exposed sequence are 

well-bedded lapilli tuffs with interbedded poorly-bedded 

coarsep blocky layers, Thin, well-laminated ash layers are 

laterally very continuous and mantle blocks from underlying 

beds. Impact sags are rareq mainly because of a scarcity of 

blocks immediately overlying well-bedded layers. Blocks are 

mainly of basalt but some rare limestonev sandstone and 

coal clasts are found.. 

Upwardsp the blocky layers become scarcer and overall 

the sequence becomes finer and better bedded. Some of the 

finer units pinch-and-swell along the strike, In one place 

near LWM the tuffs are cut by a curved shear surface along 

which movement occurred whilst the tuffs were moist. Coarse 

units become more common by 30m up the sequence and some 

isolated blocks up to 1-5m occur. Francis (in Forsyth et al., 

1977) noted the presence of scoriaceous basalt bombs but 

only vesicular# sometimes roundedg blocks of basalt have 

been found. None of the blocks contain structures indicating 

they were molten on ejection (Fig. 6.14). 

Towards the top of the bedded sequence blocks become 

more abundant and reach 1-8m, diametert though are on 

average 20-30cm. Along strike to the S the block component 

of the tuffs becomes coarser (Table 6.1) perhaps indicative 

of directed eruption blasts. 



N part of diatreme 

A. M. L. size (cm) 

5 

3 

5 

12 

10 

10 

5 

20 

15 

2 

5 

S part oi diatreme 292 Height in log (m) A. M. L. size (cm) 

20 a 

10 

16 30 

35 
12 5 

10 

20 

30 

4 25 

30 
02 

Table 6.1 Comparative block sizes in the Elie Harbour tuffs 

Some of the finer layers in the upper part of the sequence 

are occasionally loaded, with flame. injection structures. 

Very small-scale cross-bedding occurs in places, the origin 

of which is uncertain. 

At-the top of the bedded sequence a coarsev blocky 

deposit occursv in the centre of the centroclinally bedded 

tuffs (Fig. 6.15).. This deposit is largely unbeddedt 

although it contains low-angle irregular partings. The 

blocks are mainly of basalt9 which reach 75cm and these are 

scattered through a poorly-sorted lapilli tuff matrix. The 

coarse tuffs form an upstanding mass above the wave cut 

platform to the W and may be bounded by a fault. The tuffs 

themselves may thus be a collapse breccia or a debris flow. 

The distinction may be semantic since flow could well have 

occurred during collapse. 

The unbedded tuffs abut against a large (5Ox2Om) raft 

of coarse sandstone. The raft is heavily tuffisitized, 

especially at its margins with mixed sediment and tuff cut 

by grey tuffisite dykes. Gritty bands in the sandstone 

often contain muscoviteg feldspar and garnet. Another 

sediment raft is found within a tuffisite dyke in the SE 

part of the diatreme. The raft is of similar, through finer, 

lithology to the major raft and is more highly broken up 

and intimately penetrated by grey intrusive tuff. 

The major raft has a faulted contact with the tuffs in 

the W but in the E its margin is obscured. An E-W basalt 

dyke cuts the tuffs E of the raft and terminates against it. 

The eastern tuffs are poorly exposed but are generally 

finer than those in the W and dip to the E at 40-ýO. The 

tuffs are cut by an oval basaltic breccia plug near IM. 
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Fig. 6.14 Large basaltic blocks in the Elie Harbour 
diatreme tuffs. Note shattered margins and 
the lack of fluidal structures. Hammer 
measures 30cm. 
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Fig. 6.15 Unbedded, blocky deposit at centre of the Elie 

Harbour centroclinally bedded tuffs. Note low- 

angle, irregular partings. Hammer measures 30cm. 



294 

. 
Summary and conclusions 

1. The small, ring fault bounded diatreme consists of 

centroclinally-bedded tuffs in the W with a largey faulted 

sediment raft sitting in its centre. To the Et the tuffs 

dip at high angles and are cut by basaltic intrusions. The 

structure is quite simpley and appears to be the result of 

collapse along ring faults. 

2. The tuffs are all of airfall origing with an apparent 
lack of surge deposits. The central tuffs are unbedded and 

may be debris flows triggered by collapse. Directed 

eruptions caused the tuffs in the W to become coarser along 

strike to the S. 

3. The small size of the diatreme perhaps indicates that its 

surface expression was also relatively smallv since the 

general lack of bedding disruption and intrusive material 

indicates that the tuffs have not apparently subsided to 

great depths. Collapse occurred en masse with some 

differential movements along a ring fault'in the E. The 

sediment raft was probably included by collapsev and it 

subsided whilst being intruded by tuffisite. A basalt 

. 
breccia plug may be situated att or close to the original 

vent position. 

6.2.3 Craigforth diatreme 

The Craigforth diatreme (Fig. 6.16) cuts Limestone 

Coal Group sediments W of Eliet and is one of the few 

diatremes which is almost completely. exposed. 

Marqins 
The easterm margin is well-exposed near HWM and'is 

defined by a tuffisite dyke which separates bedded tuffites 

within the diatreme from tuffisitic breccia outside it. The 

dyke contains flow-aligned coal and sediment clasts and-is 
in places cut by irregularl polygonal joints. The bedded 

diatreme tuffites are sharply and obliquely cut by the dyke 

but towards HWM the bedding becomes folded and oriented 

sub-parallel to the contact, 

The western margin is a fault which dips into the 

diatreme at a high anglep with the surrounding country 

rocks folded and dipping into the magma. To the S the 
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margin is defined by a basaltic dyke, a linear pod of 
tuffisitic breccia or a fault. 

Eastern tuffs 

The first 9m of the exposed tuffites at the eastern 
side of the diatreme consists of tuffaceous shale and 
siltstone with thin beds of carbonate-cemented tuffaceous 

sandstone (Fig. 6.17). Blocks of sediment up to 50cm occurv 
many with deept plastic impact sags beneath them. Calcite 

veins are abundant, either sub-parallel to bedding or 
filling tension gashes oriented at 070-1100. 

Towards the top of the 9m sequence the tuffites become 

well-sortedg well-laminated ashy siltstones which in places 
contain low-angle trough cross-bedding. The laminae are 
sometimes reverse-graded and are often erosively cut-out by 

overlying coarser layers. These deposits are interpreted as 
fine base-surge tuffites formed at an early stage in the 

evolution of the volcanop when ejecta were rich in sediment 
derived from the country rocks adjacent to the conduit. 

Immediately above the fine surge depositst a 15cm 
thick lapilli tuff horizon with a slightly irregular base 

occurs (Fig. 6.18). In contrast to the underlying tuffites 

the lapilli horizon is completely composed of juvenile 

volcanic fragmentsp set in a calcite replaced matrix. Above 

thisp the diatreme tuffs contain low proportions of 

accessory lithics and resemble the green tuffs found in 

most East Fife diatremes. 

The main features of the bedded sequence are 

summarised in the logs (Fig. 6.17)9 but some merit further 

description. The tuffs contain many soft-sediment 
deformation structuresp including flame structures and 
diapiric injection structures. Oftenp coarser horizons have 

loaded bases and in one place they contain pseudonodule 

structures. The moist nature of the tuffs is confirmed by 

the many deep impact sags beneath even small clasts. Small 

softýsediment faults are also common, as are tuffisite 

dykes. 
Cross-bedded tuffs become common towards the exposed 

top of the sequencep the features of which indicate they 

are of surge origin. Trough cross-bedded units are often 
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erosive on one another, and are generally overlain by 

coarsev poorly-bedded lapilli tuffs (Fig. 6.19). Dunes up 
to 2-5 wavelength and 50cm wave height occurg some 

containing climbing-ripple lamination. Directional data 

are difficult to interpret but the best-exposed examples 
indicate currents from the S or SE. 

Western tuffs 
The tuffs in the W of the diatreme dip out towards the 

margin at 25-35?. The tuffs are generally sediment-rich and 
are separated from the main diatreme tuffs, by a fault. The 

marginal tuffites are very similar to those in the Ev and 
comprise tuffaceous shales and siltstones interbedded with 
more tuffaceous lapilli beds (Fig. 6.17). Block sags occur 
in the highly disturbed tuffitesp and many tuffisite dykes 

and sills cut the deposits near the margin. At the margin 
the tuffites become better bedded and more sediment-rich. 

Across the fault which bounds the marginal tuffites 

the tuffs become rich in volcanic material. Up the sequence 
into the diatreme centret the tuffs become better-bedded 

and towards the top contain cross-bedded tuffs (Fig. 6.17). 

A large raft of red mudstone occurs near the fault and is 

intruded by tuffisite at its margins (Fig. 6.16). 

Central tuffs 
The central tuffs correlate beneath sand cover with 

those in the E and are of similar lithology (Fig. 6,17), 

The deposits are greeng juvenile-rich tuffs with many 

trough cross-beds. Other surge features include pinch-and- 

swell bedding and piling up of coarse material on one side 

of upstanding blocks. Cross-bedding indicates currents from 

the S or SW9 roughly from the present geometrical centre of 

the diatreme. 
Structure 

The tuffs in the centre and northern part of the 

diatreme are centroclinally bedded around poorly exposed 

unbedded tuffsv although they are folded in the N so that 

the tuffs dip outwards. The sediment-derived tuffs are 

symmetrically disposed around the marginsv apart from 
, 
in 

the S where tuffisitic breccia occurs . Generallyp bedding 

becomes poorly-defined to the S9 towards the breccia. 
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Fig. 6.18 Lapilli tuffs overlying fine, sediment-rich 
surge cross-bedded tuffs near the E margin of 
the Craigforth diatreme. Tape measures 30cm. 

Fig. 6.19 Surge trough cross-bedded tuffs overlain by 

poorly-bedded tuffs above an erosion surface. 
Pen measures 14cm. 
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The diatreme is elongated NE-SW and contains much 
internal evidence of collapse, much of which occurred whiltt 
the tuffs were poorly consolidated. Post-consolidation 

collapse occurred along faults, which were intruded by 

tuffisite along the margins. 

Summary and conclusions 

1. The oldest exposed tuffs are sediment-rich and contain 

some surge structures. These are probably the initial 

volcanic productso formed as poorly-consolidated sediments 

were explosively disrupted. The lack of juvenile material 
indicates that the initial activity was dominated by steam 

explosionsp which perhaps formed an initial maar. 

2. The incoming of juvenile magma occurred abruptly and 

continued throughout the life of the volcano. The maar was 
thus rapidly transformed into a tuff-ring as the conduit 
became largely isolated from the country rocks. 

3. Surges were very common throughout the volcanism and 

were probably sourced from the direction of the present 

centre of the diatreme, although directional data are hard 

to collect and folding of the tuffs has confused the 

interpretation of the results. 

4, Collapse occurred throughout the volcanic activity and 

the late-stage movements were accompanied by gas-streaming. 

Disturbance and rotation of the tuffs was limitedp perhaps 
because collapse was "lubricated" by the gas-streaming. A 

later, minor phase of intrusive activity emplaced a basalt 

dyke along the southern margin. 

6.2,4 St. Monance diatreme 

This diatreme (Fig. 6.20) cuts Calciferous Sandstone 

Measures sediments S of the Town of St. Monance. 

Marqins 

The western margin is faulted with the tuffs and 

sediments highly penetrated by tuffisiteo Many sandstone 

blocks are incorporated in the structureless diatreme tuffs 

near the margin. A basalt dyke cuts the margin and passes 

out into the country rocksv where it becomes bleached and 

carbonated. The eastern margin is sharp and the diatreme 

tuffs contain many irregular rafts of red mudstone, The 
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country rocks surrounding the diatreme are steeply turned 
down against the margins, and in the S their bedding traces 

are deflected. 

Diatreme tuffs 

Although bedding in the diatreme is not easily detected, 
it is best seen from the low cliffs at HWM. At HWM the 
bedded tuffs in the W are broken up, folded and dip at 

steep to vertical angles. The tuffs comprise well-bedded 

alternations of lapilli and ash which are in places deformed 
by impact sags from small blocks. 

To the E the collapsed tuffs pass into structureless 
tuffs which form a zone approximately parallel to the cliff- 
line at HWM. East of this the tuffs are faintly bedded and 
dip E at 30-5e . The tuffs form a 50m thick sequence which 
is cut off to the E by faults and multiple dykes (Figo 6o2o)o 

The deposits are summarised in log form (Fig. 6.21) and 

comprise bedded lapilli tuffs with occasional block-rich 

horizons. Block sags are commong especially near the base of 
the unit but become rare upwards where bedding becomes 

poorly defined. 

The most common blocks are basalt and red mudstoneg 

which reach up to V. 5m. The red mudstone clasts, are often 

plastically deformedg and elongated parallel to bedding. 

Some of this deformation may be due to compaction of the 

tuffs but in some cases deformation occurred at the time of 
impact of the blocks. One elongate mudstone clast is 

deformed over the top of a block which protruded from an 

underlying unit (Figo 6,22). Another elongate clast is 

itself deformed by a basaltic ? bomb which impacted onto it 

(Fig. 6.23)o Some large mudstone blocks are more angular, 

and were more consolidated on ejectiont perhaps because 

they were derived from deeper levels in the country rock 

sequence. 
The lack of well-defined bedding may indicate that 

many of the tuffs have flowed to some extent, Much of the* 

bedding is defined by blocky trails or lenses of coarser 

material in a largely structureless matrix, Sorting is poor 

or absentg especially towards the centre of the diatremeg 

and the tuffs generally coarsen upwards. Collapse led to 
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Fig. 6.22 Elongate mudstone clast which is deformed over a 
tuff block which protruded from the underlying 
bed. Western bedded tuffs in the St. Monance 
diatreme. 

Fig. 6.23 Red mudstone block plastically deformed by 
impact of a basaltic block with possible 
cauliflower surface texture. Same locality as 
Fig. 6.22. Pen measures 14cm. 
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the mass movement of newly-deposited tuffsp whereas older 
bedded tuffs were better consolidated and survived 
oversteepening. 
Structure 

Various bedded areas occur in the diatieme and, 
although now bounded by-faultsq the tuffs in these areas 
appear to be bedded centroclinally to the mass of intrusive 
basalt in the S. The diatreme is cut by many dykesq trending 
N-S or E-Wq which emanate from the large plug to the S. The 
dykes follow faults which cut the tuffs and bound large 

rotated bedded tuff rafts. 
Summary and conclusions 
1. Bedding in the younger tuffs in the diatreme has been 

largely obscured by debris flow reworkiqg. Olderv more 

consolidated tuffs were affected by faulting and folding, 

The present attitude of the bedded tuffs, suggests collapse 

about a centre now intruded by basalt plugs and dykes, 

2. Large amounts of red mudstone clasts were erupted along 
with the juvenile volcanic ejecta. Less consolidated clasts 

were deformed by loading on compaction of the tuffst or by 

impact processes at the time of fallout, Largerp angular 
blocks were more consolidated and behaved in a brittle 

manner on eruption. 

6,2,5 Kinkell Ness diatreme 

This diatreme cuts Calciferous Sandstone Measures 

sediments on the coast SE of St. Andrews (Fig. 6,24)9 The 

diatreme margins are sharpp and are generally defined by 

tuffisi. tic brecciag and in the SE a fault separates tuffs, 

basanite and tuffisitic breccia from the country rocks. The 

margin is irregular and cuts across the strike of the 

country rockso although their bedding traces are deflected 

by it in the SE. Within the diatreme the bedded tuffs dip 

centroclinally towards a centre now concealed beneath drift 

at HWM. 

Bedded tuffs 

An 80m thickp continuous sequence of W-dipping tuffs 

is exposed in the S of the diatreme (Fig. 6.25). The 

deposits comprise interbedded ash and lapilli tuffs with 
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occasional poorly-bedded blocky layers. Block sags occur 
throughout the tuffs ando together with the poor-to-moderate 

sortingg rapid alterations in grain size between beds and 

rapid lateral thickness variations indicate their largely 

proximal airfall origin. Some of the finer tuffs contain 
low-angle cross-bedding which is thought to be of surge 

origin. 

The cross-bedding (Fig. 6.26) is trough-shaped or 

sometimes sigmoidal and individual laminae dip at <109. 

Some examples of climbing cross-lamination occur but little 

can be said about the direction of climb relative to 

current direction. This is because the current direction 

cannot be calculatedo due to the lack of suitable 3-D 

exposures. In some places small dunes are preserved, 

probably because of their rapid deposition and burial 

beneath overlying surge. or airfall tuffs. Cross-bedded tuffs 

are often overlain by poorly-beddedl poorly-sorted lapilli 

tuffs. These overlying coarse tuffsv like their equivalents 

in other diatreme surge deposits, infill, the irregularities 

in the tops of the cross-bedded units. 

Upwards in the bedded sequence the tuffs become 

coarser, with many blockyv po6rly-bedded layers. Cross- 

bedded units also become more abundant upwardsq. and are 

interbedded with coarsert lapilli-rich beds up to 40cm 

thick. These beds are rich in pyroxenite xenoliths which 

are elsewhere only rarely found* Perhaps the magma pulse 

which carried these xenoliths was more gas-chargedt and 

formed more surge blasts on interacting with water near the 

surface than other pulses which erupted mainly airfall 

tuffs. 

The tuffs exhibit many penecontemporaneous deformation 

structureso indicating their moistt plastic nature on 

deposition. Examples include load structuresq flame 

structures, gravity slump structures and rare contorted 

bedding. Towards HWM the tuffs are cut by tuffisite dykes 

which are very sediment-rich in places* One dyke contains 

lens-shaped pods of gritty sandstone which are bedded 

parallel to the dyke margins. The dyke also contains 

elongatey angular bedded blocks of sandstone which are cut 
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by grey tuffisite. The blocks are partly incorporated into 
the tuffisite and probably represent country rock fragments 

emplaced along faults which also served as pathways for 

gas-streaming. Other tuffisite intrusions contain bedded 

tuff blocks derived from earlierv collapsed tuffs in the 
diatreme. 

The diatreme contains many crinoidal and some coral- 
bearing limestone clasts which Forsyth et al. (1977) 

indicate were derived from Carboniferous strata at least 

600m above those which the diatreme is now seen to cut. 
Collapse of at least this amount must therefore have 

occurred to bring these blocks to their present position, 
The diatreme is famous for containing the Rock and Spindle, 

a stack consisting of intrusive and brecciated basanite. 

Many other intrusions cut the diatreme tuffs as well as the 

surrounding country rocks (Fig. 6.24). A linear tuffisite 

intrusion cuts the sediments E of the diatreme, and is 

approximately parallel to the diatreme margin. It was 

probably emplaced along a concentric, outer ring fracturep 

similar to mirginal fractures described by Francis (1962) 

from Dunbar which were formed during the initial "drilling's 

of the diatreme. 

Summary and conclusions 
1. The Kinkell Ness diatreme contains interbedded airfall 

and surge tuffsq the proportion of surge tuffs increasing 

upwards along with an increase in the number of blocky 

units* Surge deposits are associated with coarse units 

containing pyroxenite xenolithsv suggesting that magma 

pulses had different physical properties at this time, 

2. Collapse by at least 600m caused the centroclinal 

attitude of the bedded tuffsq and their internal 

deformation by faulting* Syndepositional deformation of 

the water-rich tuffs previously affected the tuffs on-a 

small scale. Collapse was accompanied by intrusion of 

magma, some so highly gas-charged that it comminuted and 
incorporated fragments of the country rock sediments and 

olderg collapsedq bedded tuffs. Intrusion of tuffisite also 

occurred along an outer ring fracture probably initiated 

during the formation of the diatreme. 
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6.3. Other Diatremes 

Many of the other diatremes in East Fife contain 
features which are relevant to the present discussion. More 

complete descriptions of the general features are given in 

the relevant Geological Survey Memoir (Forsyth et al., 1977). 

6.3.1 Coalyard Hill diatreme 

This diatreme consists of an outer zone composed of 
sediment-rich tuffs which is cut by an inner zone composed 

of green basaltic tuffs (Fig, 6.27). The outer diatreme 

contains many rafts of sandstone, together with sediment- 

rich tuffs which are cut by numerous tuffisite dykes and 
breccia. The inner diatreme contains bedded and structureless 
basaltic tuffsp cut by basaltic dykes and plugst one of 

which is locally sill-like. The basaltic intrusions are 

often surrounded by basaltic brecciap due to break-up on 
intrusion into poorly-consolidated, perhaps moist tuffs. 

The bedded tuffs are of airfall origin and generally occur 

within rafts up to Bm across. 
At HWMq poorly-bedded and structureless tuffs are cut 

by low-angle planes, some of which consist of a 2-5cm thick 

band of sheared fine-grained tuff, Whether movement 

occurred whilst the tuffs were poorly-consolidated by soft 

sediment slidingg or after consolidation by a low-angle 

fault is often uncertain. The sense of displacement seen on 

some of the planes and the occasional break-down of bedding 

above the toe of some curved planes suggest they are mainly 

slump features. 

The outer diatreme is elongated NE-SW and its 

southeastern margin is defined by the Ardross Fault (Fig. 

6,27). The inner diatreme is approximately circular and 

contains basaltic tuffs which have subsided from their 

original depositional level, As Forsyth et al. (1977) point 

outp the Coalyard Hill diatreme began as fissure-controlled 

eruptions which changed to a single-centre volcano with 

time. The initial activity was essentially maar-like and 

formed sediment-derived tuffs by gas-streaming whereas 

later a tuff-ring formed within this as the input of 

juvenile magma increased. In this respect the volcano may 
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have resembled Surtsey in some ways, since the latter began 

as a fissure eruption and reverted to a single- centred 

tuff-ring with time. The Ardross Fault thus formed a major 

tectonic feature which influenced the volcanism (Francis & 

Hopgoodv 1970). 

6.3.2 Lundin Links diatreme 

This small diatreme (Fig. 6.28) is of interest 

because it probably represents a structure which had little 

surface expression, or a-very deep level in one which did 

source a surface volcano. It contains unbedded basaltic 

tuffs which are cut by irregular basaltic intrusions. The 

individual laýilli are often very angular or ragged and are 

well-mixed with their ash matrix. The completeness of this 

mixing suggests they were emplaced by turbulent flow, 

perhaps by gas-streaming. 
Country rock blocks up to 10m across occur within the 

tuffsq but only become abundant at the diatreme margins, 

where sandstone, coal and shale fragments are common. 

outside the eastern margin the country rock sediments are 

deformed and were intruded by tuffisite whilst poorly 

consolidatedt kesulting in soft-sediment folding and 

slumping. Within the diatreme the marginal tuffs are 

locally flow-banded around large clastsq and have been 

reddened by groundwater exchange with the red country rock 

sediments. 
The lack of any blocks of subaerially-deposited bedded 

tuffp the small size of the diatreme and the abundance of 

basalt suggest that the present erosion level is some 

considerable distance below the original eruption surface$ 

or that the diatreme is a well-developed crypto-volcanic 

structure. 

6,3.3 Viewforth diatreme 

This diatreme is significant because it contains 

presumed crater lake post-volcanic tuffaceous sediments 

and may have sourced reworked tuffs associated with the 

Passage Group sediments to the E. The tuffites overlie 

bedded tuffs in the centre of the diatreme (Fig. 6.29) 
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and comprise tuffaceous siltstones and marls with a thin 
coal. The sediments contain miospores which indicate an 
age of early Westphalian (Forsyth et al., 1977). Since the 
country rocks outside the'diatreme belong to the Passage 
Group, the deposition of the tuffaceous sediments is 

assumed to have occurred before a final phase of subsidence 
into the diatreme. 

A large area of tuffs is found 250m to the E of the 
diatreme (Fig. 6.30). The deposits consist of interbedded 

lapilli and ash tuffs with many block-rich units. Although 

faulted and folded, a continuous sequence at least 75m 

thick is exposed. Towards the apparent top of the sequence 
in the E the tuffs become fine-grained and very well 
laminated. The excellent sorting of the tuffs indicates 

they have been at least partially reworked. Thing coarse, 
blocky units which occur in the sequence are interpreted as 
debris flows. Other features which indicate reworking are 

small washout channels filled with tuffaceous sandstone and 

small-scale cross-bedding, thought to be of fluvial origin, 
The sequence is thought to represent the distal 

deposits of a phreatomagmatic volcano whose younger 

products have been reworked. Because of faulting these 

tuffs are not seen in conformable contact with the couptry 

rock sediments and may have been sourced from the Viewforth 

diatreme. The fact that the tuffs fine away from the 

diatreme might support this suggestiono The faults which 

separate the tuffs from the Passage Group sediments do not 

resemble diatreme marginsp suggesting that the tuffs do not 
lie within a large previously unrecognised diatreme 

structure. 

6.3,4 Kincraig diatreme 

This diatreme is the largest coastally-exposed 

example in East Fife and is internally very complex (Fig. 

6.31). Structurally the diatreme consists of bedded tuffs 

which dip towards two centreso now marked by basalt and 

basaltic breccia intrusions. The bedded tuffs consist of 

mixed airfall and surge deposits, which contain blocks of 

basalt up to 1,, 5m across and numerous red mudstone clasts. 
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Some of the clasts are highly irregularly-shaped and have 

suffered soft- sediment deformation during compaction of 

the tuffs. 

A large area of collapsed tuffs in the centre of the 

diatreme is cut by a columnar-jointed intrusion (Fig. 6.32)9 

which has the form of a shallow inverted cone (Francis, 

1970). The collapsed tuffs consist of blocks up to 2m 

across of bedded and massive tuff, some containing cross- 

bedding and grading. The cross-bedding (Fig. 6.33) comprises 

low-angle trough sets which are made up of generally well- 

sorted fine and coarse ash laminae. Isolated basalt lapilli 

occur in some of the layersv which are often normally 

graded. The cross-bedded units are commonly interbedded 

with poorly-bedded or massive coarse tuffs which are poorly 

sorted and contain basalt and sediment clasts up to 25cm. 

All the collapsed tuffs contain a variable but generally 

high matrix sediment contentv unlike most of the tuffs in 

the diatreme which are rich in juvenile material. 

The low-angle of the trough setsv the interbedded 

massive tuffs and the occurrence of occasionally poorly- 

sorted cross-beds suggest that they are of surge origin. 

The trough cross-beds perhaps represent the deposits of low- 

power surges which deposited only fine material, The 

massive beds may represent coarse airfall tuffs partly 

reworked by debris flows. Intrusion of the large plug 

during collapse of the tuffs subsequently broke up the 

bedding. 

The occurrence of two apparent centres in the diatreme 

may be due to the presence of vents of different ages in 

the samep large diatreme. A modern analogue of this 

situation is Surtseyp which developed two large vents with 

time. Later collapse of tuffs into the centres and intrusion 

by magma would probably lead to a Kincraig-like structure 

being formed. En masse subsidence of the entire diatreme 

material would explain the shear zone at the western margin 

and the disturbance of the surrounding country rocks. 

A block of the tuffaceous siltstone occurs in 

tuffisitic, breccia near the eastern margin of the diatremeg 

and contains structures indicating deposition by turbidity 
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C) Trough cross-bedding in collapsed block at 
same locality as b) above. Note thickening 
and coarsening of tuffs towards the base of 
the troughs. 
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currents. Such structures include well-laminatedt graded 
horizons with small-scale cross-bedding and load structures. 
The origin of the deposit is problematic though it may 

represent early volcanic products reworked in marginal 

lakes or lagoons. 

6.4. Heads of Ayr Diatreme 

This diatreme occurs on the SW coast of Scotland (Fig. 

6.34) but has many comparable features to those in East 
Fife and merits further description. The diatreme was 

comprehensively studied by Whyte (1964) and his descriptions 

and maps provided a basis for the present study. 

The diatreme cuts Lower Carboniferous Cementstone 

Group sediments SW of Ayr and contains green tuffs which 

are well-bedded in the W and massive towards the E. The 

central part of the exposed diatreme is occupied by a large 

area of country rock sediments which is cut by basaltic 

intrusions. Petrographically (Section 6.5) the tuffs are 

similar to those of East Fife and formed by phreatomagmatic 

processese 
Western tuffs 

The tuffs in the W of the diatreme are generally well 
bedded and are folded along NE-SW axes into gently plunging 

open synclines and anticlines. The folded tuffs are cut by 

NW-SE and E-W trending faults which are in places marked by 

thin basaltic dykes. Near the marging which is not exposed 
in the Wp the tuffs comprise steeply-dipping beds of 
lapilli and ash with rare larger clastse The large clasts 

reach up to 30cm diameter and comprise cognate basalt and 

accessory andesite, lherzolitet cementstone and limestone 

lithics. Some of the blocks formed deep impact sags in the 

bedded tuffs, especially in fine-grained horizons which 

were moist on deposition. Slumping (Fig. 6.35) also occurs 
in some of the tuffs, proving their moist condition. 

Other sedimentary structures in the tuffs include 

grading and cross-bedding. Both normall and more commonly, 

reverse-grading occursp especially in the finer tuffs where 

coarse material comes in gradually. The cross-beýding (Fig. 

6.36)'ýis small-scale and consists of low-angle planar and 
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Fig. 6.35 Block impact sag and slumping in the western 
tuffs of the Heads of Ayr diatreme. 

Fig. 6.36 Low-angle planar cross-sets in the western 
Ayr diatreme tuffs. These beds may be 
water-reworked or of surge origin. 
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trough cross-sets. The individual cross-beds are fine- 

grained, well-sorted and occur in sets of up to 15cm height. 
Cross-bedded units reach maximum thicknesses of 20cm and 
are commonly interbedded with well-sortedp graded tuffs. 
The small scale of the structuresp their association with 
well-sorted fine tuffs and the lack of distinctive surge 
features suggest they are water-reworked tuffs. 

The tuffs near the western margin contain large 

amounts of carbonate in their pore spaces which Whyte (1964) 

thought to be primary. This would suggest that much of the 

western tuffs, accumulated in lakes from which carbonates 

were being precipitated. The lakes were probably only 
shallowt allowing periodic emergence of the tuffs and 

subsequent subaerial deposition. Such lakes were common in 

this area during Cementstone Group times, with the country 

rock sediments containing abundant evidence of lacustrine 

sedimentationg in the form of mud-cracksp rare evaporites 

and non-marine fossils (Belt et ale, 1967). 

The features of the tuffs in the W of the diatreme 

indicate that they were deposited initially in a shallow 

subaqueous environment with wave-reworkingp slumping and 
debris flows. As volcanic activity continuedo rapid 
deposition of the tuffs infilled the lakes and later tuffs 

were laid down subaerially. 
The oldest western diatreme tuffs are very similar to 

the Greenan Castle Ash (Whyteg 1964), which is an 

approximately 30m, thick bedded tuff deposit interbedded 

with the country rocks at the top of the Cementstone Group, 

some 2km S of the diatreme. These country rock tuffs are 

well-bedded, often well-sorted fine tuffs. which are locally 

cross-bedded or slumped. They contain large amounts of 

carbonate cement, which replaces much of their fine ash 

matrix. The tuffs. are the distalp reworked deposits from 

the diatremeg the remainder having been removed by erosion. 
Eastern tuffs 

The eastern tuffs, are composed of similar material to 

those in the W. but are largely unbedded and massive. The 

eastern margin is similar to those in the East Fife 

diatremest and consists of a sharp fault separating 



320 

collapsed bedded tuffs from country rock sediments which 
dip into the margin at up to 500. Some of the diatreme 

tuffs are flow-banded and contain a variety of sedimentary 

and igneous clasts. The eastern tuffs also contain many 

rafts of Cementstone Group sediments, which reach 100m in 

size. The rafts consist of broken-up blocks of sandstone, 

which are often contorted and cut into by tuffisite. One of 

the smaller rafts contains cementstone conglomerate which 
has been displaced upwards by 40-70m from its stratigraphic 

position at the base of the Ayrshire Cementstone Group 

outside the diatreme (Whyte, 1964)_ 

Where present, bedded tuffs comprise poorly sorted 

lapilli and ash beds with rare block-rich horizons. Poor 

exposures obscure much of the detail, but bedding appears 

to break-down gradually into the surrounding massive tuffs 

as though deformation occurred whilst the tuffs were poorly 

consolidated. Near the eastern margin, bedded tuffs dip into 

the diatreme at steep angles and are cut by small joints 

and faults with little displacement which trend normal to 

the bedding. 

- 

-''"- r - .4 

: 4. r.? 
_1 . --!. -... 

Fig. 6.37 Carbonated ultrabasic block with juvenile basalt 

rim. See text for description. Penknife measures 
8cm. 
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Both the eastern And western tuffs contain blocks of 
carbonated ultrabasic material and calcified wood fragments. 

The ultrabasic blocks are altered Iherzolitep reach 35cm 
diameter and are often coated with an irregular rim of 
juvenile basalt (Fig. 6.37). This coating reaches a 

thickness of 3cm and consists of pale-green basalt with 
flow-aligned, concentric vesicles. Many smaller, angular 
lithic clasts, are also coated by such rimsp which in these 

cases tend to smooth out the irregularities in the clast 

shapes and form near-spherical lapilli. Such rims were 

accreted during the rise of the gas-charged magmag and 

resemble those described from the Hegau diatremesq SW 

Germany (Lorenz et al. 9 1970). 

The Hegau lapilli are highly spherical and smooth- 

surfaced and reach maximum sizes of 12mmt with larger 

lapilli having less regular shapes. The Ayr lapilli and 
block rims are thought to have been shaped by surface 

tension and rotation whilst fluidp larger fragments having 

less regular rims due to less rapid rotation and impacts 

with other clasts. Such structures are present in Ayrq but 

not in other Scottish*diatreme tuffsp perhaps because the 

viscosity and surface tension, 6f the [leads of Ayr magma 
favoured their formation. 

Calcified wood fragments are generally less than 5cm, 

but a large fragment occurs in the eastern tuffs at IM, 

whyte (1964) suggested that such material was derived from 

vegetation growing on the active volcano flanks but this is 

thought to be unlikely. Such fragments could have been 

derived from the poorly-consolidated country rocks which 

the diatreme intruded# or have been washed in by rivers or 

tides which reworked the flank tuffs. In the latter case 

the wood fragments would be included in the diatreme by 

collapse; 
cerytral area 

The central part of the diatreme is occupied by. 

Cementstone Group shales and cementstones which are bounded 

by NW-trending dykes (Fig. 6.34). Both dykes obliquely cut 

the bedding in the sediments and probably mark fault-zones. 

The easterno olivine dolerite dyke post-dates the diatreme 
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and has been assigned to the Tertiary by previous workers 
(Whyte, 1964). 

The sediments are cut by numerous plugs of monchiquite 
basalt up to 40m across, which are irregular or elongated 
NW. All the plugs are surrounded by intrusive breccias 

which contain high proportions of poorly-baked sedimentary 
clastsp some of them showing evidence of partial-melting 
(Alexandert 1980). The breccias formed by break-up of the 

plugs on intrusion into consolidated sediments. Although 

the sediments in the central area are largely unexposed, 
they do not appear to be highly deformed. Exceptions to this 

occur around the intrusive breccias where the sediments dip 
inwards towards themp and at the margins of the central 

area where the sediments become broken-up and their bedding 

traces deflected into parallelism with the dykes. 

Country rocks 
The Cementstone Group sediments to the E of the 

diatreme are highly faulted and contorted (Fig. 6.34). 

Within 250m of the diatreme the country rock mudstones and 

sandstones are deformed into a number of circular basinsp 

one of which is cut by a monchiquite breccia plug. The 

depressions are crypto-volcanic collapse structures similar 
to those seen in East Fife and East Lothian# where rising 

gas and magma streams intruded and domed the country rocks 

which then collapsed as the magma withdrew* 
Diatreme formation 

Whyte (1964) proposed that the Heads of Ayr volcano 

reached a height of 600-1000mg based on the outcrop extent 

of the eastern tuffs. The volcano is thought by the present 

author to have been a tuff-ringg based on field and 

petrographic evidenceg and as such would have had a lowt 

wide profile. This tuff-ringg by analogy with similar 

voicanoesp was formed above a diatreme into which tuffs and 

wall rocks periodically collapsed. 

The westernp well-bedded tuffs in the diatreme 

probably represent partly-reworked flank deposits. The 

eastern tuffs may represent collapsed crater tuffs# since 

they lack well-defined bedding and contain flow-banded 

tuffs. Collapse into the diatreme along ring faultsq and 
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growth of tuff-ringo fault, subsidence and 
erosion to present level* Note crypto-volcanic 
structures E of the main volcano. 
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movements on NW-SE faults controlled by regional stresses, 

resulted in the presentp complex outcrop distribution (Fig. 

6.38). The folding of the western tuffs appears to be purely 

the result of compression during subsidence. 

The central area of Cementstone Group sediments 

probably pre-dates the volcanism and may represent a 

relatively stable block about which the tuffs subsided. The 

central area may itself have subsidedt but to a lesser 

extent than the surrounding tuffs. The area was intruded by 

vesiculating monchiquitic, basaltv which brecciated the 

sediments. A dyke of similar material cuts the western 

tuffs (Whyte, 1964) suggesting that the intrusions were 

emplaced at a late stage in the volcanism. 

The eastern tuffs resemble well-mixed diatreme deposits 

described by Cloos (1941) in S. Germany, which contain 

subsided country rock rafts and moderately-sortedl often 

flow-banded tuffs. Slumpingg gas-streaming processes and 

explosions destroyed much of the bedding in these subsided 

crater tuffsq which collapsed whilst many of them were 

probably poorly consolidated. 

Summary and conclusions 

1. The Heads of Ayr diatreme contains tuffs formed by 

phreatomagmatic eruptionst probably when magma contacted 

groundwater within late Cementsyone Group lacustrine / 

marginal marine deposits. A widet low tuff-ring built up 

whose outer flanks were partly reworked by fluvial and 

lacustrine processes* 

2. Subsidence occurred along ring faults and on faults 

initiated by regional stresses in the tectonically active 

midland Valley. The western flank tuffs subsided slowly 

after compaction and were deformed by compressiont whereas 

the eastern tuffs represent crater deposits which subsided 

and were broken-down by gas-streaming and other processes 

whilst poorly consolidated. The central sediments represent 

subsided material from the pre-eruption country rocks which 

was intruded by late-stage magma injections. 

6,5, Petroqraphv, MorpholooV And AltPrAtion 

Two of the East Fife diatremest. Elic Ness and Kinkell 
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Ness were selected for petrographic study and extensively 
sampled. Samples from many of the other diatremes were 
studiedv and this confirmed their broad similarity to the 
above two examples which may be taken as representative, 
The Heads of Ayr diatreme tuffs differ in some respects 
from those of East Fife, and comparisons between them help 
to identify the factors responsible for these differences. 
Sample localities are marked on the geological maps of the 
diatremes or their position in bedded sequences is shown on 
the relevant logs. 

6.5.1 Petrography 

All the tuffs consist of varying proportions of 
juvenile, crystal and lithic fragments in a fine-grained 

matrix which is often partly or completely replaced. Minor 

amounts of primary carbonate and zeolite cement occurv but 

these are often indistinguishable from replacivep secondary 

cements* 

a) Juvenile fragments 

All the juvenile fragments consist of alteredp often 

vesicular ash and lapilli up to I*Scm diameter. The 

fragments are generally angularg with small-scale 
irregularities in their outlines due to breakage across 

vesicles or flowage of magma prior to quenching. in general 
the Elie Ness tuffs contain the most angular lapilli with 
the largely equant fragments containing planar or slightly 

curved boundaries cut by concave vesicle embayments (Fig. 

6.39), The Kinkell Ness and Heads of Ayr lapilli are much 

more irregularly-shaped with some very ragged margins. All 

the diatreme tuffst howeverp contain variable proportioni 

of fragments with blocky through to fluidal shapesq thý 

proportions varying even within one bed. No systematic 

variations in grain shape occur throughout any of the 

studied sequences of bedded tuffs. 

The Elie Ness juvenile lapilli contain variable, 

though generally small numbers of vesicles which are 

usually spherical and reach a maximum of O*Smm diameter. 

The fragments contain small microlites up to 0-03mm, which 

are probably plagioclase. These microlites are flow-aligned 
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around crystals and parallel to the rare examples of 
elongate vesicles. Many of the lapilli contain fragments 

of country rock quartz as well as altered crystals of 
clinopyroxene, biotite and olivine. Spots or clumps of iron 

ore, probably magnetitet occur throughout most lapilli, 

occasionally becoming so abundant that the lapilli resemble 
tachylite. Some of the more tachylitic fragments have 
hematite-stained rimst giving the host tuffs a dull red 
colouration. The Kinkell Ness juvenile fragments are mostly 
similar to the Elie Ness lapillip except that they are 

generally more vesicular and contain fewer microlites. 
The Heads of Ayr juvenile lapilli are on average more 

vesicular than their East Fife equivalents and contain many 
more plagioclase microlites, which are of oligoclase- 

andesine composition. The microlites are often aligned 

parallel to elongate vesicles which are in turn sometimes 

parallel to fragment elongation (Fig. 6.40). Other examples 

of flow include rounded lapilli with concentrically-aligned 

microlites, probably formed by spinning of magma droplets 

during cooling. Tachylitic and hematite-stained lapilli are 
locally abundantp some of these fragments having a thin 

marginal zone containing less iron oxide and fewer vesicles 
than their cores. Such a zone is due to chilling of the 

marginsp whilst the cores cooled less rapidly and exsolved 

more magnetite and volatiles. The juvenile Ayr lapflli also 

contain rare crystals of quartzp clinopyroxene and 

plagioclasev as well as pseudomorphs possibly after olivine. 
Although now largely altered and replacedq the 

juvenile lapilli in all the diatremes represent original 

sideromelane and tachylite glasst as well as more 

crystalline types. Most of the primary textures have been 

preserved by pseudomorphing of crystalline phasest although 

smaller grains are often highly corroded and replaced. 

b) Matrix / Cement 

Where presentp the matrix of the tuffs consists of a 

mixture of juvenile ash grains and Igneous and sedimentary 

lithic fragments along with minor crystal and opaque 

grains. These fragments are generally enclosed within 

largely unresolved fine dust-grade material which contains 
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Fio. ypical blocky, juvenile iapilli from the jjip 
Ness tuffs. Note preservation of grain shapes 
and internal structure, even though totally 
replaced by chlorite. Plane polarised light. x1o. 

Fig. 6.40 lbpadý, of Ayr 
- 
)Uv(ý1111(- laPIlluS wIth ,, tr4-t(-Ii(, d 

vesicles parallel to the fragment elongation. 
Note ragged grain edges and other more fluidal 
textures than the Fife lapilli. Plane polarised 
light. xIO. 



turbid clay minerals. Fsost of the tufts have- a high matrix 
content (Section 6.5.2c) and few claSt-supported deposits 

occur. 
Different types of cementj which may be primary or 

replacivet occur in the tufts of East Fife and Ayr. Tile 

most common is a calcite cement# which is particularly 

abundant in the tufts in the western 11cads of Ayr tufts. 
11cret coarse recrystallised calcite forms up to 305 of the 
tuffs and commonly penetrates the lapilli and sediment 

grain margins. Some grains have been totally replaced by 

calcitep and only their iron oxide rims can now be 

recognised. 
in many instancesp the larger fragments In the tufts 

are surrounded by thin turbid rims of fine matrixg with 

sparry calcite between (Fig. 6.40). In such cases calcite 
is replacive after the matrix and the thine often 

iron-stained coatings protect the fragments from corrosion. 

Whyte (1964) thought that the calcite was a primary phase 

precipitated from shallow water in which tile tufts were 

accumulating. This may be the case for some of the cAlcite 
but some is undoubtedly replacivee 

Calcite is generally less abundant In tile East Fife 

diatreme depositst but coarse tufts contain some rQpIACiVV 

calcite. It appears that the lack of connected pore SPACQU 

in f Inc tufts prevented free percolation of cArhWAtQ- 

bearing solutions through the rock. The poor sorting of tile 

coarse tufts facilitated the movement of solutions. Some 

of the tufts are cut by hairline fractures# which Are 

commonly calcite filledg And these Allowed Accens of 

solutions even into well-sortedv COMPACted fine tufts, Such 

fractures probably formed by ciLaplAcive calcite 

crystallization. 
Another common cementing material is AnAlcitv# which 

occurs either as fringes round pore spaces or At COMPICtO 

pore Infillings (Fig. 6*41)o Tile AnAlcite is colourless# 

has weak-to-nil birefringence and occurs As blocky 

Aggregates. Individual crystals Are often vuhadrA19 with 

rounded or octagonal cross-section* Tile AnAlcite is 

generally corroded by calcitag which often forms the final 
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pore-infilling. 
The zeolite is not itself replacive of any other 

material but grew freely in pore spaces within the tuffs. 
In placesg the matrix which previously filled the pores was 
removed before analcite growth occurred. It is thought that 
the analcite grew authigenically as a result of alteration 
of the tuffs which liberated Nap Al and Si to solution. 
The most analcite-rich sample is from the Greenan Castle 
Ashq Ayrp which contains up to 2CY; of the zeolite. The 

abundance of analcite is perhaps due to alteration of 
volcanic glass plus an input from lake brines. Both 

analcite and calcite replace and pseudomorph smAll# fibrous, 

radiating crystal aggregates found as pore linings* The 
fibrous minerals are thought to represent earlier Authiocnic, 

zeolites. 
A further cement found In the Cast Fife and Ayr tuffs 

is chloriteg which generally occurs in small patches but 

may locally be widespread. The chlorite occurs as 

authigcnic fringes round altered grains or as a massive 

replacemcntp pseudomorphing larger fragments but completely 

obliterating all traces of matrix-grAde material* Relict 
juvenile and lithic fragments Are often preserved floating 

in a chlorite cement. quartz grains generally survived 

corrosion and are often rimmed by fibrous chlorite. 
The order of formation of the Various cments Is 

similar in many of the tUffS And typical sequences consist 

of :- 
chlorite(authigenic)-analcite-&pArry calcite (Fig. 6*42) 

analcite-chlorite-cAlcite 

The diagenetic history of the tuffs is complexq And 

dependant on many factors which vary over short distAncog, 

11owevert common features of many tuffs include An early 

phase of dissolutiong forming voids where matrix WAS CX1CQ 

present# and hematite-stainingo resulting from it) situ 

alteration of ferromagnesian minerals (Turnerp 19110). 

c) Lithic fragments 

The lithic fragments in the tuffs consist of both 

Igneous and sedimentary material, It is largely impossible 

to convincingly identify cognate lithicsq and only rarely 
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Fig. C). 41 Colourless analcite infilling voids in the Ayr 

diatreme tuffs. Slightly turbid sparry calcite 
forms the last stage of pore infilling. Note 

relict spherulitic texture around the pore walls, 

which represents replaced fibrous authigenic 

phases. Plane polarised light. xIO. 

Fig. 6.42 Pore infilling sequence in the Ayr diatreme 

tuffs. Sequence comprises : - 
hematite(H)-chlorite(Ch)-analcite(A)-calcite(Cc). 

Plane polarised light. x40. 
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can accessory igneous lithics be correlated with rock-types 
known to form part of the country rocks beneath the 

volcanoes. 
The East Fife igneous lithics consist of both 

hypabyssal and deep-seated types (Forsyth et alet 1977), 

The hypabyssal types (Fig. 6,43) consist of basanites, 

nepheline-basalts and monchiquites wLth analcite-bearing 

varieties reported by the Survey (Forsyth et al. 9 opecito)* 
More deep-seated xenoliths Include hornblende-clinopyroxene 

rocksq clinopyroxenites and biotite-clinopyroxene rocks. 

Often such aggregates are highly carbonated and one from 

Elie Ness consists of euhedral. augites and anhedral biotite 

plates surrounded by calcite-replaced tabular crystals, 

possibly feldspar. Some of the other diatremes and intrusions 

contain 1herzolite xenoliths# the best-known examples being 

from the Coalyard Hill diatreme (Chapmang 1974). One of the 

pyroxenite xenoliths from Elie Ness has a thin rim of basalt 

containing concentrically-aligned elongate vesicles which 

are now calcite filled, The rim has a chilled outer margin 

and all the evidence Indicates that the xenolith was 

transported by volatile-rich magma and chilled whilst the 

rimmed clast was spinning. 
Igneous. lithic fragments from the Heads of Ayr diAtreme 

have been well described by Whyte (1964). Ile concluded that 

the common andesite clasts were derived from Lower O. R. S. 

lavas which probably extend beneath the volcano* Conspicuotis 

grey-white fragments in the tuffs consist of highly 

carbonated lherzolites which Alexander (29HO) considered to 

be picritic. The xenoliths contain clinopyroxene@ enstAtitQ, 

olivine, plagioclase and spinel of pleonAste composition 

(Alexandcrv op, cit, )* All the minerals are highly replaced 

by serpentinet chlorite And abundant cAlcite. As with the 

Last Fife xenolithstsome of the 1herzolite block& Are 

mantled by highly irregular rims of vesicular bA%Alt. 

Sedimentary lithic fragments Are most common in the 

Kinkell Ness diatreme# although sediment-rich layers occur 

in most of the diatreme tuffs studied. Some of tho Kinkell 

Ness tuffs would be better termed tuffites since thpir 

sediment proportion& often exceed Wea", Most of tho 
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sedimentary framents consist of single quartz grains but 
siltstoneg mudstone and limestone clasts are Also common, 
Most of the coarser-grained clastic fragments have A 
calcareous cement or A clay matrix which prevented their 
being completely comminuted during eruption. The lAck of 
sandstone fragments suggests they were derived by disruption 

of poorly-consolidatcdg newly-deposited sediments Around 
the vent. 

As well as these fragmentsv single grains of 

orthoclaseq microcline biotitet muscovite and rare 

plagioclase occur# most of which probably represent 

originally detrital sedimentary grains derived from the 

country rocks. Small wood fragments are found in many tuffs, 

and are generally replaced by calcite or more rarely 

opaquesp possibly pyrite. 

Large sedimentary clasts are never seen rimmed by 

juvenile basaltp although many juvenile lapilli contAin 
individual quartz grains. Sediment clasts found In the 

diatreme Intrusions of East Fife are often slightly baked, 

with patchy development of chloritep augite And occasional 

cordicrite (Forsyth ct al, t 1977). Individual quArtz OrAins 
found within Intrusions arc often surrounded by auglip 

prisms# which represent reaction rinse tocrits of AugLto with 

a core of glass or augite are thought to represent 

completely resorbed quartz grains (Forsyth Ct Al. g OP. Cit. ). 

Such reaction rims are not seen Around quArtr OrAins within 
juvenile lapillip presumably because the MAPMA droplets 

were chilled before reaction could take Place. 1110 Only 

effects on the quArtz xrnocrystS APPPAr to be mechAnicAl 

breakage. Infiltration of now chloritised QlA515 Anti the 

development of chlorite rims (Fig. 6o44)o 

d) Crystal fragments 

Single crystal frAgments Are relAtively Common in All 

the tuffs, studied# expeciAlly those In the 1* 71 It, Neas 

diatreme. This diAtreme in famous for its VArled suite of 

xenocrystst which include garneto zircon@ AUQitVp AMphibOlQj 
blotitet olivine and AlkAli feldspar, H., iny of the xenncrystr. 

Are probably derived from disintegration of Ignpous 

xenoliths Although gArnet has not 1xien reported In Any 
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Fig. 6.43 Typical lithic clasts in the Elie Ness tuffs. 
Fragment on left is altered basalt and on the 

right is a mudstone clast. Plane polarised 
light. x1O. 

Fig. 6.44 Fracturing and infiitration of chlorite into 

quartz xenocryst within Elie Ness juvenile 

lapillus. Note corroded grain margins and 
irregular, embayed shape. Plane polarised 
light. x25. 
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xenolith. Thisp along with its pyrope composition prompted 

Colvine (1968) to suggest that it crystallized from a 

suitable magma at depth and was carried rapidly upwards 

before resorption occurred. 

Chapman (1974) proposed that the Elie Ness magma 

crystallized garnet at over 70km deptht followed by augite 

and biotite near the mantle/crust boundary. The presence of 

zircon, biotite and anorthoclase xenocrystst along with 

large apatites suggests that the source magmas for the Elie 

Ness and other Fife diatremes were rich in K, P. Zr and 

presumably other large lithophile cations (Upton, 1982). 

The high C02 content of these magmas is indicated by the 

common occurrence of partly carbonated xenocrysts and 

xenoliths. 

e) Modal composition 

Modal analyses of the Fife and Ayr diatreme tuffs 

(Fig. 6.45v Table 6.2) indicate their highly variable 

composition. Apart from alteration and replacement of the 

matrix by authigenic cementt the greatest variation occurs 

in the lithic and juvenile basalt components. In general, 

as the lithic component increases, the juvenile basalt 

component decreasest with other components remaining roughly 

constant. This reflects eruption types ranging from phreatic, 

with little juvenile magmatic input and mainly steam blasts, 

to phreatomagmaticq with greatly increased magmatic input. 

Looking at one bedded diatreme sequence in particular 

(Fig. 6.45), little systematic variation in tuff composition 

occurred with time. Howeverp there appears to be an 

antipathetic relationship between vesicular juvenile lapilli 

and sediment fragmentsp for the reasons outlined above. The 

matrix contentp which is an indicator of the violence of the 

explosions (Self & Sparks# 1978) fluctuates widely 

throughout the sequence, indicating the essentially variable 

nature of the explosions. Howevert there is a broad trendq 

on which these fluctuations are imposed, of gradual decrease 

and increase in eruption strength with time. 

f) Grain size 

Thin section grain size analyses were carried out by 

point counting methods on samples which have not been badly 
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Samgte 
num er 

Fig. 6.45 Modal analyses of the east7central, bedded Elie 
Ness diatreme tuffs showing variations in 

component proportions up the stratigraphic 
sequence. Note antipathetic relationship between 

quartz grains and vesicular juvenile glass as 
eruptions change from phreatic to 

phreatomagmatic. 
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affected by alteration. Tuffs which have had their matrix 
replaced by cement have been analysed to allow at least 

partial comparisons with less altered samples. Grain size 
arrays were converted to sieve equivalents and are listed' 
in Table 6.3. 

East Fife tuffs 

The Elie Ness tuffs (Fig. 6.46a) plot well within the 

surt§eyan field of Walker & Croasdale (1971) on an Mdo/cro 

diagram# with the exception of sample FEN 13 which is a 
very poorly-sorted surge tuff. The Kinkell Ness tuffs lie 
below this field and are consistently better sorted than 

the Elie Ness samples. On a similar diagram (Fig. 6.46b) 

marked with flow and fallout fields (Walkert 1971) most of 
the Elie Ness tuffs plot in the area of overlap whereas the 
Kinkell Ness tuffs plot well within the fallout field. 

on Sheridan's (1971) C-M diagram (Fig. 6.46c) the Elie 

Ness tuffs, plot in his areas 2 and 3. Those samples from 

surge cross-bedded units (FEN2,13p 14t 18 and 19) generally 

plot in area 2, which is Sheridan's rhyolitic ash flow 

field. Other samples, presumed to be of airfall origin plot 
in area 30 the airfall field. The Kinkell Ness tuffs plot 
between or close to the area between the three fields. 

FRS7v from faintly-bedded fine tuffs near the margin of the 

Kinkell Ness diatreme is the only sample to plot in area 1. 

the field of rhyolitic base-surge dunes. 

The cumulative volume Fc curves for the East Fife tuffs 

(Fig. 6.47) show how poorly-sorted and fine-skewed the base- 

surge tuffs are. overall the cumulative curves for the 

Kinkell Ness tuffs are more fine-skewed but most of the 

curves have similar shapes, This perhaps indicates that 

during the formation of these proximal deposits, airfall 

and surge deposition occurred simultaneously and resulted in 

much mixing of products. 

Avr tu'Ffc 

The Ayr tuffs (Fig. 6.48a) plot in two distinct areas 

on a Mdfil6o diagram. One group is very poorly sorted and 

plots around the high 6,6 side of the surtseyan field of 

Walker & Croasdale (1971), but well within the flow field 

of Walker (1971) (Fig. 6.48b). The other group is only 
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moderately poorly sorted and plots around the strombolian/ 

surtseyan overlap zone but within the fallout field of 
Walker (op. cit. ). The latter group has suffered calcite 

replacement of the matrix, causing a spurious increase in 

sorting. These samples would plot alongside the remainder 

of the tuffs if alteration had not occurred. 
On Sheridan's (1971) C-M diagram the tuffs all plot in 

the airfall field, except for samples A4 and AlOv which plot 
in the rhyolitic ash flow field. These two samples are 
bedded and unbedded lapilli tuffs from the western and 

eastern areas of the Heads of Ayr diatreme respectively, 

and are thought to represent coarse airfall tuffs. 

Cumulative volume % curves (Fig. 6.47) indicate the 

general coarse-skewed nature of the Ayr tuffsp with samples 
A4 and A10 having the coarsest tails. The smooth curves of 

many of the samples closely resemble cumulative plots of 
Surtsey tephra (Sheridang 1971). These tephra are thought 

by Sheridan to have had two modes of transport, the coarse 
fraction resembling airfall material and the fine fraction 

resembling suspended load material. It seems reasonable to 

assume that near the ventp coarse material continually falls 

out of the eruption column and mixes with fine material 

transported horizontally by surges. 

Compared to the Fife tuffs the Ayr samples are similar 
but generally less well sorted. The Ayr cumulative curves 

show more evidence of two sub-populations than the Fife 

tuffst indicative of mixing of airfall and surge deposits. 

Both differences could be explained if the Ayr tuffs were 

more proximal than their Fife equivalents. Howevert since 

the deposits occur within diatremes they are all assumed to 

be very proximal. A more reasonable explanation might be 

that the Heads of Ayr volcano was larger and built by more 

powerful eruptions than the Fife examples. The size of the 

diatreme and the thickness of the Greenan Castle Ash - 25m 

thick at 2-5km from the diatreme - suggest the volcano was 

of considerable size. More powerful eruption blasts would 

have deposited more coarse-skewedt poorly-sorted tuffs near 

the vent than weaker eruptions. 
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6.5.2 Morpholoqy 

Due to the highly altered nature of the tuffs, SEM 
techniques were found to be of little use in studying ash 

morphology. However, in thin section grain shapes are often 

well preserved and quantitative PVC measurements can be 

made. 

In general,, the Fife tuffs plot in an area of the 
triangular diagram with low P and moderate to high V and C 

values (Fig. 6.49). Some of the Elie Ness samples (FEN12,19) 

are more closely grouped than the otherst possibly indicating 

that one mechanism of tephra formation was dominant at those 
times. The Kinkell samples plot within a similar area to 

the Elie Ness tuffsq indicating similar tephra-forming 

processes and magma vesicularity. 
The Ayr tuffs (Fig. 6.49) plot in a similar area to the 

Fife samples and are assumed to have formed under similar 

conditions. The finer ash grains were plotted separately 
from the coarse lapilli but were not found to occupy 

-significantly different areas of the triangular diagram. 

On aP vs N plot, the Fife tuffs plot above or close 
to the line with gradient 0-75 (Fig. 6.50), The spread of 

points generally parallels the N-axist indicating that both 

small and large grains have similar P values which generally 
lie between 10% and 307c, As with the PVC plotsv some of the 

grains from the same sample tend to plot in closely-spaced 

groups. The Kinkell Ness tuffs best display this feature 

with sample FRS6 plotting about the dividing line and 

samples FRS8 and FRS11 plotting above it. 

The Ayr tuffs have very similar distributions on a 
P vs N diagram (Fig. 6.50)p and these are almost identical 

to the Fife samples. Grains from the same sample 

occasionally plot in loosely defined groups within the 

overall field of points. 
In conclusionp the Fife and Ayr tuffs generally plot 

in the field of hyalotuffs (flonnorez & Kirstq 1975). The 

samples plot well within the hyalotuff field on P vs N 

diagrams but are more skattered on PVC diagrams. The 

similarity of all the sample distributions on PVC diagrams 

suggests either that Honnorez & Kirst's P= 207c line does 
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not fully define hyalotuffs or that the Fife and Ayr 
tephra was formed by a mixture of processes. This latter 

explanation is thought to be more likely, especially since 

phreatomagmatic eruptions are known to vary from highly 

water-influenced to almost strombolian. 

6.5.3 Alteration of tuffs 

The juvenile lapilli and igneous lithi. cs from all the 
tuffs are mostly replaced by chlorite, calcite or hematite. 

In sediment-rich tuffs the chlorite tends to be colourless 
or pale-yellow but elsewhere it is pale-green and 
pleochroic. Chlorite analyses from Elie Ness and Ayr (Table 

6.4) indicate that both types have similar compositions and 
are most similar to ripidolite. 

Calcite is often replacive after chlorite, resulting 
in many juvenile lapilli having chlorite-filled vesicles 

surrounded by sparry calcite (Fig. 6.51). Where lapilli are 

not calcite replaced their margins are often corroded by 

calcite cement which commonly replaces the tuff matrix. 
Many sedimentary fragments are partly corroded by calcite 
but this does not occur in sediment-rich tuffs where only 
the volcanic fragments are altered. 

Hematite replacement occurs most commonly in the 

tuffites, where the clay-rich matrix becomes full of opaque 
or brown oxide dust. The hematite never becomes abundant 

enough to give the rocks a red colouration but locally, 

patches of red-brown tuffs do occur. Týe hematite is partly 
derived from red sediment clasts derived from the country 

rocks beneath the volcanoes. Some hematite is sourced from 

the in situ breakdown of silicate minerals. In some*of the 
tuffitesp hematite-replaced fragments are seen squeezed-out 
between quartz grains (Fig. 6.52). It is thought that 

silicate (? ferromagnesian) minerals were altered to clay 

which was then squeezed between framework grains due to 

compaction of the rock. If the silicate had been a 
ferromagnesian mineralo alteration to clay would have 

released Fe to solutiont which then precipitates as 

authigenic hematite., Such a process is common in. the 
formation of red-bed deposits (Turnerg 1980). 
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TABLE 6.4 MICROPROBE ANALYSES 

(1) (2) (3) (4) (5) (6) 

S'02 31-2 31-9 35-3 25-6 50-3 52-7 
Ti02 0-15 0-14 - 0-90 0-62 0-07 
A1203 14-0 14-9 14-9 21-2 1-52 27-1 
FeO 21-3 22-5 16-2 21-6 12-8 0-72 
MnO 0-12 0-14 0-10 0-40 0-47 0-02 
mgo 16-5 17-1 16-9 15-3 9-55 - 
CaO 0-31 0-28 0-21 0'-16 21-1 11-2 
Na20 - - 0-63 - 1-41 4-58 
K20 0-10 0-12 0-73 0-37 

*(3-88) 

Total 83-68 87-08 84-97 89-04 97-77 96-76 

(1) Chlorite vesicle infill from sample FENI. 
(2) Chlorite replacement of lapillus from 

sample FEN1. 
(3) Chlorite replacement of lapillus from 

sample A12. 
(4) Ripidolite (prochlorite) comparative analyses 

(Deer et al., 1975) (*=Fe2o3)0 
(5) Altered pyroxene from sample FEN1. 
(6) Plagioclase crystal from sample A12. 
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Fig. 6.51 Juvenile Elie Ness lapillus containing vesicles 
which are chlorite filled whereas the core of 
the fragment is replaced by calcite. Note 
calcite replacement of matrix in upper right 
area of photograph. Plane polarised light. x1o. 

Fig. 6.52 Squeezed-out fragment of now hematite-replaced 
material. Alteration of an initial ferromagnesian 
mineral to clay was followed by compaction of 
the rock and reduction of pore space. Kinkell 
Ness diatreme tuffs. Plane polarised light. x25. 
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As might be expected, all the juvenile lapillit which 
were originally unstable basaltic glass, have now been 

completely altered. The tuffs have not, however, been 

extensively leached or hydrothermally alteredo since many 
igneous lithic fragments are almost completely fresh. Only 

olivine, which is rather susceptible to alteration, has 

been almost completely replaced. 

It is thought that devitrification and alteration of 
basaltic glass occurred in a mild hydrothermal system 

associated with sub-volcanic intrusions. Precipitation of 

authigenic minerals resulted from this alteration and from 

groundwater exchange with the country rocks. This effectively 

closed most of the pore spaces in the tuffs and greatly 

reduced subsequent solution percolation. Alteration 

continued slowlyp essentially as a diagenetic/weathering 

process, there being no evidence of metamorphic reactions in 

the rocks. The definition of the onset of very low-grade 

metamorphism is taken to be the reaction : 

analcite+quartz = albite+water (Winkler, 1979). 

6.6. Discussion 

The East Fife and Ayr diatremes contain the deposits 

of phreatomagmatic volcanoes which formed when ascending, 

vesiculating magma contacted water-rich unconsolidated 

sediments deposited in the subsiding Midland Valley Basin. 

Surface water bodies known to have reworked distal tuffs 

from these volcanoes also provided an abundant source of 

water to maintain explosive activity. 
Some of the diatremes are known to have been sourced 

from the tops of alkaline sills injected into poorly- 

consolidated wet sediments (Franciso 1968). Howevert as 

Upton (1982) pointed out, the presence of megacrysts and 

xenoliths of deep-seated origin indicates rapid transport 

velocities from depths below which sills or wet sediments 

could exist. Some of the explosive volcanism was thus 

initiated at deep levels, by exsolution Of C02 and other 

volatilest and the diatreme was rapidly drilled out when the 

ascending gas-fluid mixture contacted abundant pore-waters. 
Some of the carbonated material in the diatremes may 
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thus have been formed by reaction with magmatic C02, 

although much is thought to be due to decarbonation of 

organic-rich sediments. 

Major deep-seated faults and other surface lineaments 

probably underlain by faults provided lines-of-weakness 

exploited by the ascending magmas (Upton, 1982). Alkali- 

basalt volcanism was characterised throughout the Midland 

Valley by highly explosive activity, which was predominantly 

phreatomagmatic. The major faults which controlled the 

volcanism also controlled the position of the many smaller 

subsiding basins within the Midland Valley. The faults thus 

brought together magma and wet sedimenty and near the 

surface the faults would have acted as local sinks for 

ground water, increasing the likelihood of phreatomagmatic 

activity. 

Injection of degassed magma into diatremes at a late 

stage in the volcanism. did not source explosive eruptions. 

Ratherp intrusion into wet tuffs and sediments led to minor 

fluidization and brecciation of the plug or dyke. The late- 

stage gas-streaming often concentrated at the diatreme 

margins is the result of final degassing of magma at depth 

along with steam-fluidized jets formed by heating of pore- 

water. Afterwards, intrusive activity ceased due to the high 

viscosity of the volatile-depletedp cooled magma. 

Presumablyq many of the plugs which cut the tuffs were 

intruded at depth as a result of collapse of material into 

the diatreme, forcing magma to be injected along planes of 

weakness. 
The absence of lavas may be due to their not being 

formedo or to subsequent erosion. The presence of major 

basalt intrusions in some diatremes indicates that there 

was no lack of magma to source extrusive flows. Upton (1982) 

suggested that fine-grained fragments of volcanic rock 

found in diatremes but not in the surrounding country rock 

succession represent now eroded lava flows from the volcano. 

No lava flow-structures have been found in any of these 

blocks and it. is suggested they originated by disintegration 

of shallow intrusive bodies. Since there appears to be no 

reason why lava flows should not have formed after the 
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cessation Of exPlosive activity, it is possible that such 
volcanoes sourced some of theýlavas in the Midland Valley 
Carboniferous succession. 
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6.7. SUMMARY 

1, The East Fife and Ayr diatremes represent the collapsed 

equivalents of phreatomagmatic volcanoes which erupted in 

in the Midland Valley Basin during the Carboniferous. 

Abundant pore-water in thick successions of newly-deposited 

sediments and surface water bodies initiated explosive 

volcanism. Although some diatremes were sourced from the 

tops of sills others represent pipes formed by magmas which 

ascended rapidly from deep levels in the crust. 

2. Initial volcanism was sometimes of fissure-type, with 

the ejection of large amounts of derived sedimentary 

material. Subsequent activity was highly variable, ejecting 

predominantly juvenile or lithic material and depositing it 

by surge of airfall processes. 

3. Outer flank tuffs were reworked in fluvial or lacustrine 

environments and all tuffs were affected by slumping and 

mass flow processes. Debris flows often occurred at a late 

stage in the volcanism, perhaps triggered by violent 

eruptions which deposited blocky tuffs. Some evidence of 

crater breaching existso with the formation of post-volcanic 

crater lake sediments. 

4. Collapse occurred during and after volcanic activity, 

along marginal faults and by slow subsidence due to the 

withdrawal of magma at depth. Centroclinally bedded tuffs 

often define collapse basinso the position of which does 

not necessarily correspond to the site of the vent. Collapse 

is accompanied by magmatic and tuffisitic intrusive 

activityp which further disrupts already subsided tuffs. 
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CHAPTER 7 

A MODEL FOR PHREATOMAGIMATIC VOLCANOES 

The diatreme deposits extensively described in the 

previous chapters are so similar to modern phreatomagmatic 
volcanoes (s. l. ) in terms of depositional structures, 
lithology, petrography, grain. size and grain morphology 
that their origin cannot be doubted. The information from 
the modern and ancient examples in this report may thus be 

used, along with published work9 to produce an idealised 

model for the formationg growth and subsequent collapse of 
phreatomagmatic volcanoes. Each volcano is inherently a 
unique structurep so the model approach is most useful in 
indicating the possible range of processes and their 
deposits9 and the factors which affect these. 

7.1. Initiation of Phreatomaqmatic Activity 

The type of initial activity to a great extent controls 
the subsequent evolution of the volcano and its ultimate 

collapse history. It must be stressed that maars and tuff- 

rings are the product of different mechanisms which account 
for their differences in structure and products (summarised 

in Chapter 4). Howeverg these terms apply to end members of 

a continuum, each of which may evolve into one another 
(Lorenzv 1973). At any given time, therefore, a tuff-ring 

may eject products more characteristic of maars or even 

scoria cones depending on the amountp rate and duration of 

supply of external water as well as other factors. The most 
important factorsp and those which have been used to 

classify explosive magma: water eruptions into three types, 

are 1)the amount of water reaching the magmal,, 2)-the. intimacy 

of the contact and 3)the environment in which this occurs. 

The three types defined by Camus et al. (1981) are phreatic, 

phreatomagmatic (s. s. ) and surtseyang used strictly to 

define types of volcano which are morphologically distinct 

and formed under different conditions. 

7,1.1 Surtseyan eruptions 
Surtseyan eruptions will be described firstf since 
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the Surtsey eruption of 1963-67 is one of the best- 

documented of all eruptions. Any model for this type of 

activity has to explain the following characteristic 

features (see Chapter 4) : - 

a) Submarine fissure eruption rapidly evolving to single 

vent activity 

b) Very low1proportions of accessory lithic material in the 

ejecta 

c) Activity becomes strombolian only when crater becomes 

sealed off from the sea 

d) Abundant evidence of slumping of material into crater 

and subsequent reworking by explosions 

e) Variation from steam explosions to tephra-laden jets 

with some periodicy in the timing of major blasts 

f) Inclined eruption blasts and base-surges often observed 

g) Little evidence of post-volcanic subsidence at the surface. 
The low accessory lithic content and the lack of 

appreciable post-volcanic subsidence strongly suggest that 

this type of volcano is not underlain by a diatreme which 

cuts deep into the rocks beneath the sea-floor. Insteadv a 
fissure opens and allows rising magma to directly contact 

seawater, forming a pile of hyaloclastite debris. The 

following model for this type of activity is summarised in 

Fig. 7.1 and will be-described in detail in the text. 

Stage I 

In the initial stages (Fig. 7.1a), water flashes to 

steam and forms a carapace around the granulated pile, 

insulating it from the rest of the water. Small steam 

explosions trigger more widespread explosions by slightly 

raising ambient pressures in the pore-waters of the pile 

(Nelson & Duda, 1982), The continued extrusion of magma 

sets up instabilities in the pilep which becomes slumped 

and forms fluxoturbidites. 

No truly explosive, pyroclastic, activity has yet 

occurred, because steam can freely expand outwards away 

from the magma, As well as collapsing outwards9 the 

unconsolidated pile continually subsides onto the 

underlying fissure. Irregular fragments of wet ash are 

engulfed by the magma as it is extruded, These fragments 
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are rapidly heated and steam expands outwardsp disrupting 

the partly chilled outer skin of the magma and allowing 
further incorporation of wet ash. The overburden of the 

pile of shattered debris suppresses steam explosions and 

may direct them inwards into the magmag causing further 

disruption and mixing of magma and wet sediment. 
Colgate & Sigurgeirsson (1973) suggested various ways 

in which magma and water may be thoroughly mixed. Industrial 

analogues of this processt when a hot fluid mixes with a 

coldt vapourisable fluidg have sometimes occurred with 
disastrous results. Here, mixing becomes self-sustained as 

each explosion increases the interaction between hot and 

cold fluids. The process rapidly leads to all the heat of 
the hot fluid being used up in vapourising the cool fluid. 

The interaction causes fuel-coolant explosions which are 

exceptionally violent and have strengths comparable to 

nuclear bomb detonations. Colgate & Sigurgeirsson (op. cit. ) 

speculated that some of the most violent volcanic eruptions, 

such as Krakatoat may have been the result of fuel-coolant 

explosions. 
Self & Sparks (1978) describe plinian analogues of 

basaltic phreatomagmatic volcanoes which result from the 

interaction of silicic magma with water. They propose that 

such highly explosive eruptions result from magma/water 

interactiong superimposed on fragmentation imparted by 

earlier vesiculation. This leads to a large surface area of 

fragmented magma contacting waterp initiating fuel-coolant 

interactions. In silicic magmas which source plinian 

eruptionsp volatile exsolution becomes increasingly marked 

as the magma nears the surfaceg and disrupts it into a 

dispersion of released gas and liquid/plastic fragments 

(Wils6n, 1980). The exit velocity through the vent is 

commonly above 100m and discharge rates are also very 

high. Thust if erupted subaqueouslyp a well-dispersed 

mixture of magma fragments, would interact very fully with the 

surrounding water. Basaltic magmas which source strombolian 

eruptions are disrupted by coalescence and bursting of 

large bubbles which occurs very near the magma surface, 

ejecting spatter (Wilson, op. cit. ). Magma rises at only a 
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few metres per second in the conduit and ejection velocities 
are low compared with plinian activity. The magma is thus 
vesiculating when it is erupted subaqueously, but the degree 

of disruption and rate of mixing of magma and water is many 
times less than in plinian eruptions. This explains why 
intensively explosive fuel-coolant interactions do not 
occur in basaltic phreatomagmatic activity, and why low 
dispersal tuff-rings rather than extensive plinian ash 
sheets are formed. 

Phreatomagmatic explosions (s. l. ) may become self- 
sustaining for a short time but never culminate in 

exceptionally violent explosions. The fact that at Surtsey 

the explosions were almost silent (Thorarinsson et al., 
1964) strongly suggests that fuel-coolent explosionsv which 
result in loud detonationsq did not occur. The reasons for 

the lack of self-sustaining reactions are as follows :_ 
i) Magma effusion rate is too slow to cause rapid extrusion 

of large volumes of hot fluid. As soon as small amounts of 
extruded magma come into contact with water they are chilled 

and explosively granulated. Explosions disrupt only the 

outer skin of the magma, preventing whole-scale mixing. 
Volatile exsolution has only slightly fragmented the magma 
before contact with waterg and this also reduces effective 
heat transfer and thus explosivity. 
ii) Escape of steam jets outwards through the unconsolidated 
hyaloclastite pile continually removes hot ash particles. 
The pile is thus cooled and its pore-water only locally 

approaches boiling temperatures. This prevents explosive 

spontaneous vapourisation of the pore-waters. 
iii) The surrounding water is too abundant to allow 

vapourisation of more than a small proportion. of it by 

explosive mixing. Input of water rapidly damps down any 

explosion before it can become fully self-sustaining. 
Stage 2 

The pile of granulated debris grows upwards and 

outwards although much material is transported away by 

slumping (Fig. 7.1. b). As the pile growsp the pore-water in 

the material around the fissure is vapourisedp and thus 

magma can rise further into the pile since it 'is insulated 
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by a steam carapace. Only at the upper margins of the pile 
is this insulation destroyed by explosions and collapse of 
overlying material. The magma also lines its conduit with 
chilled basalt as the pile grows upwards. 

The explosions in the upper part of the pile form an 
unstablev expanded dome filled with steam which sits above 
the magma. Such a steam-dome was observed at Surtsey as the 

pile neared the surface (Thorarinsson, 1967). Explosions 

eject shattered magma droplets into this cavityt allowing 

some material to cool slowly enough to form tachylite. 

Surtlat a subaqueous vent near Surtsey which never had a 

subaerial expression, contains tachylite and lapilli with 
fluidal shapes thought to have formed in this way (Kokelaar, 

in press). 

Staqe 3 

Once the pile builds up above the water surface (Fig. 

7.1c) the amount of water reaching the magma is reduced, 

Howeverp large amounts of water can still percolate through 

the subaqueous pile. The lack of water overburden means 

that steam jets can expand much more readily, and a wide 

tephra-ring is constructed. This lack of overburden, 

howeverg means that water is not continually forced into 

the magma. Any water which does percolate down through the 

pile is vapourised as it nears the magma and does not 

explosively interact with it. 

The continuing phreatomagmatic activity is due to 

incorporation of masses of wet ash which subside into the 

magma as it is intruded, The magma has a low viscosity, 

because of its high temperature and high volatile content, 

Camus et al., (1981) suggest that steam dissolves in magma 

involved in phreatomagmatic eruptions and lowers its 

viscosity still further. This mobile magma is able to 

thoroughly mix with the wet ash, which is itself highly 

disrupted by steam expansion. After mixing, explosive steam 

expansion results in truly phreatomagmatic eruptions. 

The periodicity in the explosions may be a function of 

the rate of magma extrusion and the time needed for water 

to percolate into slumped tephra and be vapourised. Major 

periodic blasts may be due to the explosive release of 
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overpressures generated by slumped tephra masses overlying 
the magma conduit. Such blasts remove the blockages in the 

vent and are followed by quiet steaming as water percolates 
dowh and directly contacts the magma. Only when slumping 
has again blocked the vent do pressures begin to build up, 

culminating in another major blast. 

Magma sometimes contacts water at very shallow depths 

resulting in an abundance of inclined eruption blasts. The 

blasts excavate a funnel-shaped crater in the tephrav which 
is continually filled by slumping. Water generally has 

access to the crater because of breaches in the tephra-ring 

but when it is temporarily sealed-off the activity changes 
(Thorarinsson et al. t 1964). Whereas previously the 

explosions were intermittentp now the eruptions change to a 

continuous uprush of tephra and steam which may continue for 

many hours. Fully molten lava bombs are ejected and the 

eruption column may reach 2km in height. This type of 

activity is caused by rapid exsolution of dissolved 

volatiles in the magmag along with some chilling due to 

contact with water. The activity might be termed phreato- 

strombolian, since true fire-fountaining does not occur. 

Some strombolian activity only occurs once the vent is 

completely isolated from the sea. 

The negligible amount of observed post-volcanic 

collapse (Tryggvasont 1968) on Surtsey is due to the absence 

of a deep diatreme beneath the volcano. Subsidence of crater 

tuffs is limited by the size of the funnel-shaped crater 

which is itself rather small. The lack of a diatreme also 

explains the lack of accessory lithics in the tuffsv since 

few country rock fragments were entrained by the magma as 
it rose up its source fissures. Only seafloor sediment 

material is found as lithic fragmentsl indicating that only 

on intruding these wet sediments did explosive activity 

begin. Other examples of surtseyan volcanoes include 

Capelinhos, Azores (Camus et al., 1981); Myojin Reef, Japan 

(Moore, 1967) and some of the tuff-rings at Fort Rock, U. S. A. 

(Heiken, 1972). 
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7.1.2 Phreatomagmatic eruptions (s. s. ) 

This type of eruption is very similar t6 surtseyan, 

except that magma contacts water at greater depths below 

the contemporaneous ground surface. This can occur when 

magma intrudes a thick sequence of newly-deposited, water- 
laden sediments or contacts groundwater in a thick aquifer. 
Water may also gain access along pre-existing fault planes 

up which magma is ascending or fissures which open up ahead 

of rising magma (Lorenzy 1973). 

Lorenz et al. 9 (1970) state that vapourisation of 

water occurs only adjacent to the intrusion, and unless 

this lies at a very shallow level no breakthrough to the 

surface can occur. In the case of poorly-consolidated 

sediments, intrusions are likely to take the form of sills. 
Convection causes circulation of a rising current of heated 

water above the intrusion. The final result is that a 

column of pore-water in the sediments is brought to boiling 

temperature appropriate to the corresponding depth from the 

surface. The column finally reaches the complete distance 

from the intrusion to the surface. An explosiver purely 

phreatic eruption due to vapourisation of heated groundwater 

at the surface then propagates downwards as a decompressional 

wave (Lorenz et al., op. cit. ). This wave taps the magma 

which then rises into the pipe, carrying fragments of 

country rock upwards. 
Downward migration of the eruption focus causes 

explosions at progressively deeper levels and brings up 

fragments of the underlying country rocks. A diatreme is 

thus excavatedg which is filled wi th juvenile and lithic 

materialv and tuffs subsided from the tuff-ring. Surface 

processes are the same as surtseyan activity since magma: 

water interactions are the driving mechanismy except that 

subsidence into a diatreme occurs. Ofteng surface water is 

present in addition to groundwater at depth and it may be 

difficult to distinguish tuff-rings underlain by diatremes 

to those lacking such features. 

This type of activity commences with phreatic 

explosions, which disrupt the country rocks and form a 

diatreme. As magma rises up the diatreme and sources 
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phreatomagmatic eruptions it gradually transforms the 
initial maar into a tuff-ring (Lorenz, 1973). Such tuff- 

rings may be characterised by wide craters which lie only 

slightly above the level of the surrounding region, which 

represent infilled maars. The oldest ejecta of such 

volcanoes are often rich in accessory lithics, although 

later products tend to mask them. Their subsidence 

history is often indicated by thick successions of reworked 

pyroclastics deposited from post-volcanic crater lakes. 

Once a diatreme has been formed it is enlarged by 

spalling of the wall rocks. Small blocks are commonly 

carried upwards and rounded by gas streams whereas large 

rafts subsideg sometimes without suffering breakdown or 

abrasion (Cloosq 1941). Thus, at any given time a tuff-ring 

of this type may erupt substantial amounts of comminuted 

wall-rock material. Keller (1974) describes one composite 

volcano in Anatolia which began with the formation of a 

tuff-ring in a shallow lake. Later explosions had a deeper 

focus and formed a maar crater which dissected the tuff-ring. 

Subsidence was accompanied by scoria fire-fountaining 

presumably as the magma became isolated from the surrounding 

groundwater. Other examples of phreatomagmatic tuff-rings 

include Hverfjall, Iceland (Lorenz et al. 9 1970); Velay, 

France (Camus et al. 9 1981) and Split Butte, U. S. A. 

(Womer et al. 9 1980). 

7.1.3 Phreatic eruptions 
This type of eruption is initiated in the same way 

as the phreatomagmatic eruptions previously described. 

Essentiallyq heated groundwater is vapourised above a 

moderately shallow intrusion and drills a diatreme to the 

surface. The main difference is that magma does not 

intimately mix with the water but merely heats it, sourcing 

purely steam-blast explosions. This activity forms maars 

whichq because they eject many wall-rock clasts but little 

juvenile materialq develop deep craters. 

Lorenz et al. (1970) note that maars may also form by 

subsidence as a result of withdrawal of magmatic support 

and that high proportions of accessory lithic material need 
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not be present. Depending on the amount of subsidence maars 

may be formed by both phreatic and phreatomagmatic activity. 
By definitionp thereforeq maars possess deep diatremes into 

which material subsides. When only eroded diatreme deposits 

are present in an area, it is difficult to determine whether 

their surface expression was a maar or phreatomagmatic tuff- 

ring. Only when the diatreme tuffs contain substantial 

amounts of accessory lithic clasts can a maar origin be 

proposed. Other features which favour a maar origin include 

evidence for collapse of surface-deposited material to 

substantial depthst diatremes with large diameters and 

evidence of widespread gas-streaming (thought to be a more 

common process in the larger diatremes of maars). 

Since maars and phreatomagmatic tuff-rings are formed 

by a similar range of processes the determination of the 

surface expression of diatremes is probably of doubtful 

validity. More important is to determine whether phreatic 

or phreatomagmatic processes formed the now collapsed 

diatreme depositst since this indicates the degree of wall 

rock-disruption. 

7.1.4 Deep diatremes 

Some diatremeso such as kimberlite pipes were, until 

recentlyp thought to have originated at great depths and 

penetrated upwards by mechanisms unrelated to shallow 

phreatic or phreatomagmatic explosions (Lorenz et al., 1970). 

However, even these diatremes terminate downwards. in dykes 

at depths of 3km or less below their supposed eruption 

surface (Hawthorne, 1975). Lorenz (1975) has proposed that 

formation of the diatremes resulted from contact of 

kimberlitic magma with groundwaterv initiating 

phreatomagmatic eruptions. The evidence he presents is 

convincing and leads to the conclusion that mosty if not 

all diatremes, formed in various structural settings and 

from magmas of varying composition, are the result of near- 

surface magma: water interaction. 

The role of explosively exsolved magmatic C02 in 

forming diatremes cannot be ruled out (Coeq 1966). Kennedy & 

Nordlie (1968) suggest that this process aids sampling of 
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deep-seated levels in the crust and upper mantle by 

detonating into short-lived fracturest carrying fragmented 

wall rocks. Howevert as Lorenz (1980) points out, ascent of 

volatile-charged magmas often occurs along planes of crustal 

weakness. The rising magma reacts with groundwater which 

accumulates in the upper levels of the fractures. Since the 

amount of water which reaches the surface'is small, 

diatremes are formed. Larger quantities of melt reaching 

the surface will rapidly use up the available groundwater 

and initial phreatomagmatic deposits are buried beneath 

scoria and, lava flows (Fig. 7.2). 

It must be emphasised yet again that diatreme formation 

by phreatomagmatic processes is purely a high-level 

phenomenon. These-processes merely require that ascending 

magma contacts water at depths shallow enough to allow 

vapourisation to occurg generally resulting in diatreme 

breakthrough to the surface. Diatreme formation thus 

indicates nothing about the origin, physical properties or 

ascent mechanisms of magmas from deep levels, nor does it 

say anything about the sampling and transport of mantle or 

other deep-seated xenoliths. 

7.2. Diatreme Processes 

Once a diatreme has been formed beneath a surface 

volcano numerous processes occur which result in features 

now observed in eroded examples. Such processes have been 

summarised by many authors (references in Lorenz et al., 

1970) and will merely be listed here 

a) Flow-banding 

b) 13all-milling 

C) Fluidization 

d) Explosive fragment comminution 

e) Wall rock bursting and spalling 

f) Subsidence along faultst by slumping and during 

defluidization 

g) Magmatic intrusion 

Lorenz et al. (op. cit. ) used the term fluidization to 

describe all processes in which dense particles are 

distributed within a rising liquid or gas phase. 
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Fig. 7.2 Influence of hydrogeology on the formation of 
maarst after Lorenz (1980). 
1: Ascending magma reaches the surface without 
contacting water and forms a scoria cone. 
2t Ascending magma rises up a healed fracture 
which contains small amounts of water. An 
initial maar forms which is buried beneath a 
later scoria cone after the water is used up. 
3: Ascending magma rises up an '. 'open" fracture 
which underlies a surface valley and thus 
contains abundant water. A large maar is formed. 
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Wolfe (1980) criticised their definition of fluidization as 
applied to diatremes and noted that only very high velocity 
gas-streaming or explosions could support or raise dense 
lithic fragments within such breccia pipes. He concluded 
that true fluidization is only involved in pyroclastic flows 

and flow-banded tuffisitic intrusions. 

Neverthelessq many examples of large blocks in 

diatremes are found to have subsided, or more rarely riseny 
without suffering the intense comminution expected if 

explosions had emplaced them. It is thought that explosions 
at the base of the diatreme momentarily fluidize the 

surrounding particles and mightp by a series of bursts, 

allow large blocks to gently subside over great distances. 

Smaller blocks would be thrown upwards by the blast, and 

channels filled with high velocity particle streams would 
dissect the diatreme material. Ejection and reworking of a 
large part of the diatreme infill would only occur if 

explosions were very powerful or had a shallow focus. 

The role of continuousq smaller explosions is thought 

to be most important in sorting and milling the materials 

within the diatreme. Large blocks subside and are broken 

down into smaller fragments which are then able to ascend 

in the diatreme as explosions continue. As a general rule, 

the deeper the source of the clasts, the smaller their 

maximum diameterv indicating an emplacement mechanism able 

to produce size-sorting with time (McGetchin, 1966). Some 

maars contain deep-seated xenoliths which occur as discretet 

well-rounded fragments that increase in abundance and size 

with upward stratigraphic position in the ejectap and 

therefore with time in the eruptive sequence (McGetchin & 

Ullrichv 1973). Migration of explosion foci downwards as 

decompres . sion waves tap the magma is thought to account for 

this phenomenon. 

7.3. Surface Volcanic Processes 

At the surface the processes which occur in phreatic, 

phreatomagmatic and surtseyan volcanoes are very similar 

and consist essentially of airfall and base-surge 

deposition. 
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7.3.1 Airfall processes 

Airfall processes are well understood and the main 

differences between airfall deposition from phreatomagmatic 

volcanoes and those where water played no part in the 

eruption are in the size, density and stability of the 

eruption column. Phreatomagmatic eruption columns tend to 

be lower, less expanded and more liable to collapse (Wilson 

et al., 1978). Most of the tephra formed in phreatomagmatic 

eruptions is thus deposited near the vent. Even fine 

particles, which in other eruption-types are widely 

dispersed by convection currents and windsq are proximally 

deposited. This is due to the formation of accretionary 

lapilli, principally at low levels in the column,, and by 

flocculation of-ash into clumps (Self & Sparks, 1978). Such 

clumps form in the steam-rich column and often do not 

develop into accretionary lapillip and are thus difficult to 

detect in ash deposits. 

7.3.2 Base-surge processes 
The origin of base-surges has been briefly discussed 

in Chapter 4 (Section 4.1. ). as have some of their observed 

features and deposits. In this section some attempt will be 

made to review the origin of surges and to relate sequences 

in their deposits to the different regions of surge clouds 

thought to have deposited them. 

Eruption characteristics 
Surges can be formed at any time during volcanic 

activity but are most common at the beginning of powerful 

eruptions. Surges may be associated with shallow blasts 

which eject tephra in all directions, or may occur during 

strongly vertically-directed eruptions. Although column 

collapse need not always directly feed horizontal surge 

clouds, the vast mass of falling tephra may force subsequent 

eruption blasts sideways with the same effect. 

Nuclear explosion tests have shown that there is an 

optimum explosion depth for surge production, which varies 

according to the strength of the blast and the type of 

overburden (Moorep 1967). For poorly-consolidated tephra 

this is probably quite shallow but it must be stressed that 
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surges of lesser range do form from explosions of depths 

other than the optimum. 
An interesting natural analogue of this situation is 

cited by Schmincke et al. (1974)9 who describe maars on 
Gran Canaria, Canary Islands. Hereq they state that 
increasing diameter and depth of the three craters correlates 

with the increasing size of ejected blocks and the greater 

volume of pyroclastic deposits, ratio of accessory to 
juvenile fragments and the degree of base-surge transport. 

Assuming that the contact of magma with groundwater was at 
the same level for each maar, the most powerful eruptions 

sourced more base-surges. This factor controls the formation 

of surges and it may be proposed that to form surges of 

optimum range, maars must be fed by more powerful explosions 
than tuff-rings, since the latter volcanoes generally have 

deeper explosion foci. The effects of variation in explosion 
depth and power explain why some maars, such as Pulvermaar, 

W. Germany have high proportions of surge deposits and other 

maars, such as Tazenatt France have low proportions of 

surge deposits. 

Surpe models 
Fisher (1979) developed a model for surge formation 

which he ascribed to progressive collapse of eruption 

columns. Flow-differentiation within the conduit 

concentrates larger clasts towards the centre of the column 

as it is erupted. Fisher's (1979) model requires that a 
f iner-grained sheath around the column becomes partly mixed 

with air as coll'apse continues. A relatively small-volume, 

low-conce&tration surge thus precedes the main pyroclastic 

flow which results from collapse of the coarser interior of 

the eruption column. 
This model adequately explains ground surge deposits 

which commonly underlie voluminous pyroclastic. flowso but 

fails to account for many of the features of base-surges. 

Base-surges may emanate directly from the vent (primary 

base-surges) or form as a result of column collapse 

(secondary base-surges) (Moor. ev 1967). They are not 

succeeded by voluminous pyroclastic flows but. thinp coarsep 

poorly-sorted deposits associated with cross-bedaed tuffs 
I 
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may represent the phreatomaginatic analogue of such flows. 

It is proposed that shallow explosions source primary base- 

surges whereas deeper explosions form ascending eruption 

columns which collpase to form secondary surges. If column 

collapse occurs rapidly, secondary surge pulses feed the 

primary surge which is often more steam-enriched (Moore, 

1967). Sometimesq as at the Ukinrek Maars, Alaska (Kienle 

et al. t 1980) small phreatomagmatic explosions form primary 

surges after the cessation of a major column-forming 

eruption. This indicates upward migration of magma after 

the end of the major eruption, forming surges which in this 

case were strongly directionally controlled by notches in 

the maar rim and by shallow valleys around the vent. 

Wohletz & Sheridan (1979) proposed a model based on 

observations of surge depositsi which they divided into 

three facies - massive, planar and sandwave - on the basis 

of their dominant bedforms. They maintained that pyroclastic. 

surges are initially fluidized systems which deflate with 

time outwards from the vent. During transport the cloud 

passes from a proximal viscous mode of flow, characterised 

by deposition of the sandwave facies, to a distal inertial 

mode of flow represented by deposition of the planar facies. 

The gradual transition from viscous to inertial is coincident 

with deposition of the massive facies. Their modelq however, 

refers to pyroclastic. surges which, unlike base-surges, 

contain minor amounts of'steam. This steam content accounts 

for many of the characteristic features of base-surge 

deposits (see below). 

Although it is agreed that surges will decrease in 

thickness with time as Particles settle towards the bed, 

the present author considers that fluidization is not a 

correct term to apply to their transport-mechanism. 

Fluidization requires that an externally supplied fluid be 

forced upwards through a mass of grains such that their 

weight is balanced by the fluid drag. The only external 

source of fluid in base-surges is that ingested at the flow 

headq resulting in a mechanism known as bulk self- 

fluidiz. ation (Allen, 1982). As will be discussed later this 

ingestion is too limited to result in more than 'short-lived 
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fluidization within the head of the surge. Grain self- 
fluidization, in which the fluid phase comes from gases 

exsolved from the fluidized particles themselves, hav been 

considered an important process in pyroclastic flows (Sparks, 

1976). However, this process is thought"io be unimportant in 

base-surges, which contain rapidly quenched tephra. 

The surge model proposed by the present author draws 

analogies with turbidity currentsv which are better 

understood and have been the subject of much research. Both 

base-surges and turbidity currents are dissipative gravity- 

current surges which derive their excess of density from 

the presence of internally-dispersed particles (Allen, 1982). 

Near the vent surges contain both fine and coarse tephra, 

with hot steam as the enveloping fluid. Outwardsv the coarse 

tephra falls out and the steam coolsv leaving finev moist, 

suspended tephra which may clump together and be deposited 

on cohesive particle-capturing-beds. Thusp the surge cloud 

density decreases outwardsp as does its effective thickness 

due to settling of particles. 

Three main regions in surges are thought to be 

responsible for depositing material by different mechanisms 

a) The head region 

Lobes-and-clefts seen on the head of surges (Fisher, 

1977) form as a gravitational instability effect and are 

related to the continuous engulfment of the ambientIfluid 

(air in base-surge clouds). This mixing dilutes the 

concentration of material in the head and causes increased 

turbulence (Fig, 7, '3). maintaining at least fine tephra in 

suspension. The amount of air admixed at the head decreases 

as its overhang height decreases. Overhang height and the 

thickness of the head are a function of the Reynolds number 

of the surge (Simpsong 1972). Measurements by the present 

author from photographs of surge clouds indicate that the 

ratio of their overhang height to head height varies from 

0-03 to O-lp agreeing well with the predicted values for 

such high Reynolds number flows. The low value of this 

ratio in surges indicates that the effect of air ingestion 

at the head is of limited importancev as is also the case 

in many turbidity currents (Middleton & Hampton, 1976). 
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The lobate nature of the head may be important in 

forming both erosional and accretionary grooves. Fisher 

(1977) attributed surge channels to erosion by the lobes on 

the front of surges. Allen (1982) suggested that lobes and 

clefts imply the existance of transverse variations in 

shear stress and therefore sediment transfer rate. Where 

these rates are positivev-radial ash waves form but 

grooves form between these where the rates are negative. 

The different rates of sediment transfer are independant of 

the occurrence of lobes or clefts. 

b) The body region 

The body of a turbidity current has an approximately 

constant thickness and, if the current surge is larget flow 

in the body approximates a steady, uniform state (Middleton 

& Hampton, 1976). Since the body constitutes most of the 

surgep it follows that most sediment is carried and deposited 

from this region. Mixing with the ambient fluid does occur 

along the upper surface of the body (as Helmholtz-type 

waves)t but is likely to be of minor importance (Allen, 

1982). 

c) The tail region 

The tails of turbidity currents and pyroclastic surges 

are thin and more dilute than the other regions, and carry 

mainly fine sedimentg much of it in suspension. I 

Mixing due to billows on the top of the head region 

(Allenp 1982) leads to marked dissipation of gravity-current 

surges. Fine material and steam is constantly lost from the 

base-surge by this mechanism, forming voluminous clouds 

which expand slowly due to turbulence and mixing with air. 

The lower parts of these expanding clouds are dragged along 

by the moving surge below and may deposit thin layers of 

fine ash after the surge has passed (Fig. 7.3). Such clouds 

of elutriated fines are the surge equivalent of 

co-ignimbrite ash clouds (Sparks & Walkerv 1977). In base- 

surges such clouds are liable to be poorly expanded due to 

condensation of steam preventing turbulent convectiont and 

are probably the source of much of the accretionary lapilli 

found in proximal surge deposits (Hoblitt et al., 1981). 

Thin airfall layers from such clouds are only liable to be 
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found above the last surge deposit from a particular 
eruptive phase, since the clouds will be ingested and 
reworked by succeed ing surges during pulsatory surge 
activity. 
Surqe depositional mechanisms 

A characteristic vertical sequence of sedimentary 
features is found in the surge deposits of East Lothian 
(Chapter 5)t Fife (Chapter 6) and examples from the 
literature. The Saefell (Chapter 2) and Medano (Chapter 3) 

surge deposits contain similar but less complete sequences. 
The idealised sequence has been described in detail 

previously (Section 5.3.2) and its deposits subdivided into 

three divisionsp here named 1.2 and 3 to distinguish them 
from the Bouma divisions of turbidities., The sequence 

comprises a basal poorly-stratifiedg blocky unit (Division 1) 

overlain by well-beddedv often cross-bedded tuffs 
(Division 2) with an overlying massive unit (Division 3) 

which often exhibits marked lateral thickness variations, 
Division I 

These coarse tuffs are thought to be basal lag breccias 

transported as a traction carpet beneath the head region of 
surges (Fig. 7.4). Particle segregation by size or density 
is prevented by rapid deposition rate relative to transport 

rate. High particle concentrations in this basal region 
inhibit turbulencev which also prevents sorting, The block 

trails which define a crude stratification probably 

represent the deposits from pulsatory surges whose bed-load 

fluctuates rapidly in thickness and grain size. Poorly- 

developed normal grading is. a result of an upward and 
backward decrease in particle si-ze and concentration in the 
head. 

Division 2 

This division is thought to represent the deposits 

from the body behind the surge head (Fig. 7.4). Herep 

particle concentrationg size and deposition rate are low 

enough to allow turbulent sorting and grain-by-grain 
deposition 'to occur. Plane beds and dune cross-bedding are 
formedv rare normal grading being developed due to more 

rapid deposition of coarser particles. 
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Erosion of previously deposited layers is indicated by the 

occurrence of truncated cross-sets although often complete 
bedforms are fully preserved, probably because of rapid 
deposition rates. 

Division 3 

This division is thought to represent the deposits 

from the rear of the body and the tail of the surge (Fig. 

7.4). Its lack of well-defined bedding'or grading-*suggests 

that particle deposition rates were too high to allow 

size-sorting. Such rapid deposition rates are probably due 

to clumping and fallout of cohesive tephra in a part of the 

surge where steam is cooling and condensing. The deposits 

of this division resemble thinner, finer analogues of those 

from pyroclastic flowsp in which sorting is also poor 

(Walker , 1971 ). The lateral thickness variations in 

Division 3 are the result of preferential deposition in 

even small topographic depressions. Pyroclastic flows behave 

like other fluids and do not adhere to slopesq causing them 

to pond in hollows. Division 3 is often thinly developed, 

partly because surges carry most material in the head 

regions and because the next surge pulse will "consume" the 

tail and body of the preceding pulse. Even within one 

discrete surgev the head decelerates more rapidly than the 

body and the surge eventually consumes itself (Allen, 1982). 

Comparison with turbidite divisions 

Turbidites have been divided into five main divisions 

based on characteristic internal featuresý and these have 

been interpreted as the deposits of decelerating flows. The 

structures within the divisions indicate decreasing flow 

power with time as turbidite deposition continues. Division 

1 of base-surge. deposits is approximately analagous to 

Division A of turbidites since both are coarsev massive and 

normally graded. Division 2 is analagous to turbidite 

divisions B and C, since all contain plane and cross-bedded 

layers. 

Division 3 has no analogue in turbiditesp perhaps 

because the much more rapid particle fall velocities in 

base-surges cause their body tephra to be deposited en masse. 

The much slower particle fall velocities in turbidites 
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allows grains carried in the body to be sorted before 

depositionp forming bedded layers. The moisture in surge 

clouds probably prevents their becoming as well expanded as 
turbidity currentsl which also inhibits sorting within them. 

The E division of turbidities corresponds to the airfall 
deposit from the ash cloud above base-surgesp rarely seen 
because of the frequency of subsequent surge pulses. 

The decreasing flow power of surges has previously 

been discussed using the concept of flow regime (Section 

2.3.4). As Allen (1982) statest the use of flow power or 
bed shear stress is more meaningful when applied to 

turbidite and surge structures* Decreasing flow power 

outwards from the vent and the outward cooling of super- 

heated steam lead to proximal surge deposits containing 

Divisions lp 2 and 3, and more distal surge deposits 

containing only Divisions 2 and 3 (Fig. 7.4). This is 

observed at Saefell (Chapter 2) where distal surge deposi ts 

contain cross-bedded and massive tuffs but lack a basal 

coarse division. Associated thin airfall tuffs at Saefell 

may represent deposits from the ash cloud above surges* The 

presumed proximal deposits from the East Lothian (Chapter 5) 

and Fife (Chapter 6) diatremes contain all the surge 

divisions, Similar sequences of deposits were recorded from 

the 1980 Mt, St, Helens directed blasts, where proximal, 

coarsep basal tuffs are overlain and gradually outwardly 

replaced by surge deposits and finally fine airfall tuffs 

(Hoblitt et al. 9 1981)p and from the Laacýer See surge tuffs 

(Schmincke. et al. 9 1973). 

Wohletz and Sheridan's (1979) study of pyroclastic 

surge deposits indicates there are three main typesq 

sandwavet massive and planar, Some of their figured sections 

show transitions similar to th6se seen in base-surge 

deposits studied by the present author. Differing 

transitions and surge sequences from those presented above 

may be partly explicable because Wohletz & Sheridan studied 

mainly distalp pyroclastic surge deposits from major 

eruptions? whereas . in the present study only more proximalp 

base-surge deposits of rather small eruptions have been 

examined, The transition from hotq dry steam to coolt wet 
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steam is not discussed by Wohletz & Sheridan and may 

explain many of the features of base-surge deposits. ' 

Steam condensation 

The effect of cooling of hot, dry steam to coolv wet 

vapour in base-surges with time has been discussed previously 
(Sections 2,3.21 4.2.1). This process does not occur in 

turbidity currents and accounts for many of the different 

structures in surge deposits compared to turbidites. Allen 

(1982) suggested. that as steam coolst progressive 

(i. e. downstream migrating) bedforms change to regressive 

(i. e. upstream migrating) types due to increased stoss-side 

particle capture by cohesion. He states that this important 

difference between surge and subaqueous bedforms. means that 

dunesq antidunes and chute-and-pool bedding do not occur in 

a hydrodynamic sense in base-surge deposits. 

The present author agrees with this conclusion but, 

since dunes and antidunes may be used as purely descriptive 

terms (cf aeolian versus subaqueous "dunes" ). this means 

that it can still be, and has here been used to describe 

the broadly sinusoidal shape and structure of certain 

bedforms. This is acceptable as long as attempts are not 

made to apply formulae determined for subaqueous systems to 

surge deposits to derive estimates of the flow speed or 

other properties. Only in progressive duneso where evidence 

for steam condensation is lacking, might such formulae be 

applied. 

So, as well'as thinning and fining away, from, the 

ventt and becoming dominated by cross-bedded# planar and 

massive tuffst surge structures will increasingly reflect 

the increased "wetness" of the surge clouds. Thust distal 

surge deposits will contain vesiculated tuffsp plastering 

structurest adhesion ripplest regressive dune structures 

and armoured and accretionary lapilli. The lack of such 

structures in most of the diatreme surge tuffs studied 

suggests that they represent proximalvhotp dry surge 

deposits. 

7.3.3 Collapse processes 
The processes which allow great thicknesses of 
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subaerially-accumulated deposits to subside into diatremes 
have been well summarised by Lorenz et al. (1970). 

Syn-eruptive subsidence has been proposed for phreatomagmatic 

volcanoesp in which periodic eruptions fracture and eject 

wall rock material and subsidence occurs during the periods 

of repose. The deeper levels of diatremes contain broken- 

down remnants of bedded tuffs formed at an early stage in 

the volcanism. Progressively higher levels contain large 

rafts of country rock or bedded tuff which have subsided by 

as much as 2km. 

Post-eruptive subsidence largely occurs along ring 

faults which may be the subsurface equivalents of the crater 

rim unconformities present in maars and 
' 

tfiff-rings. Some 

ring faults occur outside and concentric to the diatreme 

marginsp and cause subsidence of arcuate slices of wall 

rocks. Sometimes the inner slices of rock have subsided- 

more than the outer ones, due to frictional drag against 

the marginal ring faults (Hearnt 1968). 

An important fact to note is that the now subsided 

subaerial tuffs largely represent the deposits from the 

surface crater of the maar or. tuff-ring. That so many of 

the diatremes studied in this report contain thick 

successions of well-bedded tuffs indicates that the final 

phase of subsidence was accompanied by only weakeruptions. 

Strongly explosive activity would have broken up these 

thick sequences and ejected many blocks of bedded tuffo The 

marginal breccias and tuffisitic intrusions in many of the 

diatremes indicate that late-stage activity was often 

localised along rIng faults. This marginal gas-streaming 

lubricated the subsidence of the central block which 

continued to subside slowly after the cessation of volcanic 

activity. 
A qualitative estimate of the relative amount*of 

subsidence of diatreme materials may be achieved by noting 

the type of diatreme infill now exposed. Deep levels contain 

mAinly intrusive material# higher levels contain more 

subaerially-deposited tuffs and at the highest levels 

diatremes are completely occupied by. undisturbed tuffs 

which may contain post-eruptive deposits, 
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7.4. Comparison of Volcanoes Studied 

Detailed descriptions have been 

volcanoes in the present study and a 

activity has been erected. The final 

to fit the volcanoes into the modelv 

between examples at a variety of ero 

given of all the 

model for this type of 

part of the study is 

allowing comparison 

sion levels. 

7.4.1 Recent volcanoes 
Saefell (Chapter 2) is wholly analogous to Surtsey, 

and thus represents a surtseyan tuff-ring. Magma contacted 

water in a shallow submarine environment, initiating 

phreatomagmatic explosions which built up a subaqueous pile 

of hyaloclastite and hyalotuff. Access of water to the magma 

was maintained by crater breaching after growth of a 

subaerial tuff-ring. Phreatomagmatic explosions continued 

by incorporation of collapsed wet tuffs into the magma and 

by direct contact of water with fragmented vesiculating 

magma. No major diatreme underlies the tuff-ring, since 

wall-rock incorporation and ejection was of minor extent. 

The limited subsidence which occurred was a result of 

compaction of loose tuff in the subaqueous pile and magma 

withdrawal. 
Medano (Chapter 5) is more analogous to a 

phreatomagmaticv rather than a' surtseyan tuff-ring. its 

depositscontain many accessory lithic clasts derived from 

the country rock sequencet and it has a crater filled with 

subsided reworked tuffs. This indicates that the tuff-ring 

is underlain by a diatreme into which syn- and post- 

eruptive subsidence has occurred. Activity was initiated at 

depth by the contact of magma with groundwater which may 

have preferentially collected in the fissure which the 

magma utilised for its ascent. Due to the variations in the 

water supply, phreatic explosions resulting from low 

magma: wbLter ratios sometimes brought up mainly lithic 

clasts. At other timesq especially towards the end of 

volcanic activityq mixed phreatomagmatic/str9mbolian 

eruptions resulting from high magma: water ratios ejected 

scoriav lava bombs and chilled ash. 



381 

7.4.2 Ancient volcanoes 

The East Lothian diatremes (Chapter 4) are subdivided 
into two groups, red and greenp on the basis of colour, 

lithic content and internal structure. The red diatremes 

appear to be exposed at lower structural levels than the 

green diatremesp since they presently cut thick sedimentary 

sequences whereas the latter cut green tuffs thought to 

represent their reworked distal equivalents. The red 

diatremes were predominantly formed by phreatic explosions 

which disrupted the unconsolidated country rock sediments. 

They apparently contain more surge deposits than the green 

diatremest which may reflect more explosions at the optimum 

depth for surge formation. The red diatremes are bounded by 

major ring faults or shear zonesy suggesting that post- 

eruptive collapse has played an important role in their 

formation. ' It is suggested from all*the above evidence that 

the red diatremes contain subsided maar tuffs. Phreatic 

explosions were initiated by magma contacting abundant 

pore and ground water held in poorly-consolidatedv newly- 

deposited sediments. 

The green diatreme deposits are close to their original 

eruption surface and have subsided only by a small amount. 

They generally contain low proportions of lithic, material, 

although some tuffs are rich in quartz grains. The margins 

of the green diatremes are commonly faultedt but these 

faults are sharp and probably represent only slight , 

movements compared to the shear zones around some 
* 

of the red 

diatremese It is suggested that the green diatremes contain 

collapsed tuff-ring deposits. Whether the tuff-rings were 

surtseyan or phreatomagmatic is unknowng but the lack of 

evidence of major collapse perhaps indicates they are of 

surtseyan typey or represent a type of phreatomagmatic 

tuff-ring with only a small diatreme. -Eruptions were 

initiated by the contact of magma with shallow lacustrine 

or lagoonal waterv plus an input from pore and groundwaters, 

in high level sediments. Perhaps the initial eruptions were 

phreatic forming a small maar which was transformed into a 

tuff-ring as more magma ascended to high levels. 

The Fife diatremes (Chapter 6) all contain tuffs which 
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have high proportions of juvenile material. Evidence for 
initial phreatic eruptions occurs in at least two diatremes, 
Craigforth and Coalyard Hill, and such activity may have 
preceded the formation of tuff-rings throughout the area, 
It is thought that most of the Fife diatremes contain 
collapsed phreatomagmatic tuff-ring deposits, since up to 
at least 500m subsidence is thought to have occurred in 

some cases. One diatreme, Viewforth, is flanked to the W by 
reworked tuffs and is thus close to its original eruption 
level. other reworked tuffs appear to be interbedded*with 
the Passage Group sediments to the W9 which are of marine 
and fluviatile. origin. The presence of thin coals and 
limestones within the diatreme suggests that the environment 
round the tuff-ring consisted of swampy/shallow marine 
conditions. The Viewforth volcano may thus have erupted 
into shallow water and be of surtseyan type. The remainder 
of the diatremes appear to be the collapsed deposits of 
phreatomagmatic tuff-rings which had initial phreatic 
phases. Eruptions were initiated when magma rose along 
fissures and intruded thick piles of water-laden sediments. 
Some of the dykes fed sills at high levelsp and diatremes 
formed from heating of ground and porewaters above these, 
Other magmas rose rapidly from depths of 70km or more 
carrying deep-seated xenoliths and xenocrysts and formed 
diatremes by magma: water interaction as they neared the 

surface. 
The Heads of Ayr diatreme (Chapter 6) erupted into a 

shallow lacustrine/marginal marine environment in which 
cementstones and mudstones were accumulating. Reworking of 
the outer flanks of the tuff-ring occurredv although there 
is no evidence that the crater wall was ever breached. The 

tuffs contain variable proportions of lithic material, 

generally highest in the oldest depositsq as well as deep- 

seated xenoliths. Collapse occurred along ring faults and 
internal fracturesp causing folding of the bedded outer 
flank tuffs. The volcano is thought to have originally been 

a phreatomagmatic tuff-ringy initiated by magma: water 
interaction at depth. Pore-water in poorly-consolidated 
sediments and surface lakes supplied water to cause 
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IDEALISED SECTION OF A PHREATOMAGMATIC VOLCANO 
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Fig. 7.5 Schematic section of a phreatomagmatic volcano 
showing the relative erosion levels exposed in 
each volcano studied. Relative levels were 
estimated purely on the basis of the type of 
diatreme infillt and are not quantitative 
measurements. of the amount of collapse. 
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phreatomagmatic activity. 
The relative erosion levels through the diatremes 

studied are shown schematically in Fig. 7.5 which is a 
composite, idealised cross-section through a diatreme. 
Comparisons between diatreme levels are purely qualitative 
and differences in internal structure and material depend 
on the erosion levelg amount of collapse, size and duration 

of activity of any individual volcano. 

7.5. Implications and Speculations 

7.5.1 Recognition-of ancient tuff sources 
The present study has shown that detailed comparisons 

may be made between modern volcanoes and ancient, altered, 
eroded structures which are their commonly preserved 
remnants in the geological record. Such ancient structures 
provide information on diatreme processes which can never 
be directly studied in modern analogues. The recognition of 
the eruption type and original surface form of these 
diatremes is important since it indicates the former 
juxtaposition of magma with high-level or surface water. 
Water depth may also be qualitatively estimated from the 

morphology of the ash and the proportion of hyaloclastite 

to hyalotuff fragments. 
Ash morphology may also be used to recognise 

phrea tomagmatic products found interbedded in sedimentary 
sequences. Rapid alteration of unstable sideromelane glass 
and eventual replacement by calcitep chlorite or other 
minerals may preserve some of the original textures, 
Unreworked tuffs are most unlikely to be preserved in the 

geological record unless they occur within diatremesq so 
primary structures are of little use in determining the 

origin of distal tuffs. 

7.5.2 Base-surge analogues 
As well as occurring during phreatomagmatic volcanism, 

base-surges are generated by shallow nuclear explosions and 
during impact events. which form craters. The lateral spread 
of radioactive fallout is greatly increased if baýse-surges 
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are generated, since they move horizontally at high 
velocities. if any water is vapourised during the explosiont 
its condensation removes heat from the surge and causes 
enhanced fallout because of clumping of moist particles. 

Cratering events are not common on Earth but have 

greatly controlled the present topography of such planets as 
the Moon and Mercury. On meteofite impactq material is shock- 
heatedt brecciating both meteorite and surface rocks. Hot 

gas from the volatilized meteorite and from heated material 
in the impact vicinity drives outward carrying comminuted 
ejecta (McKay & Morrisong 1971). Accretionary lapilli form 

within the surge by sintering of hot particles around a 
nucleus. The base-surge deposits form extensive breccia 

blankets around impact cratersp some ejecta being hot 

enough to weld on deposition. Dunes and erosive channels 

associated with these deposits are analogous to structures 
found in terrestrial surge tuffs. McKay and Morrison (1971) 

argue that much of the regolith material found on the lunar 

surface is the product of impact crater induced surge 
deposition. Similar claims have been made for erosive 
channels on Mars (Reimers & Komart 1979) which are thought 
to have been cut by base-surges. -In this case the surges 
resulted from explosive activity when ascending magma 

contacted water derived from melting of the permafrost 
layers. Models of base-surges from terrestrial volcanoes 

may be adapted to the different gravity and atmospheric 

conditions on other planets and used to explain topographic 

features and distribution of materials on their surfaces. 

7.5.3 Economic importance 

Breccia pipes or diatremes are an important source of 

metals such as copperv gold and tin. The formation of 

explosive diatremes related to igneous intrusions generally 
involves phreatomagmatic activity rather than the 

exsolution of juvenile volatiles. Heated circulating 

groundwater systems above high-level intrusions are ideal 

environments for the generation of phreatic explosions and 
the formation of diatremes. Such breccia pipes are highly 

porous and form preferential sites for metal deposition 
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from hydrothermal solutions which have passed through the 
igneous body. The rapid alteration of breccia fragments 
favours their replacement by. metal ores and is due to the 

continuous passage of groundwater through the rock and to 
the unstable nature of the chilled juvenile component. 
Alteration can take place very rapidly as at Taal Volcano, 

the Philippines, where breccia fragments were replaced by 

silica and pyrite in only 13 months (Wolfeq 1980). The ' 

great variety of lithic clast types often present in these 
breccias enhances the liklihood that at least one type will 
provide a preferential site for ore deposition. 

Another class of economically important diatremes are 
kimberlite pipest which are the major source of diamonds. 

Kimberlite magmas ascend relatively slowlyl their yield 

strength allowing transport of deep-seated nodules (Sparks 

et al. t 1977), At high crustal levels the magmas vesiculate 
freely and explosively interact with groundwater which has 

collected in joints and fissure systems utilised by the 

ascending magma. The exsolution of abundant'C02 from these 

magmas aids the explosive activity and thoroughly alters 
the juvenile material. The high proportion of accessory 
lithic clasts in kimberlite pipes indicates that they 

probably terminated at the surface in a maar-type volcanot 

since diatreme enlargement by spalling favours the formation 

of collapse structures. This is confirmed by the existance 

of rarp shallow craters underlain by kimberlite pipes in 

Tanzania (Edwards & Howkinso 1966). One such crater*t Mwadui, 

contains kimberlite tuffp brecciated kimberlite and reworked 
kimberlitic, sediments. The subsiding crater was filled with 
deltaic and lacustrine sedimentsp some of which contain 

diamonds. These sediments are thought to represent reworked 

products derived from the erosion of kimberlite tuffs 

surrounding the crater and kimberlite breccia within it. 

Although some kimberlite pipes never reached the 

surface, similar to crypto-volcanic structures described in 

this reportv most fed subaerial maar craters. It is - 

suggested that base-surges from such craters might have 

deposited kimberlite tuffs some distance from the vent. 

Reworking of these tuffsv some of which must have been 
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diamond-bearingp formed-the alluvial diamond deposits 

common in stable cratonic areas (Nixono 1980). Where the 

subsequent erosion has been of minor extentp the recognition 

of kimberlite tuffs or their reworked equivalents might be 

used as an important guide to exploration for the source 

pipe. 
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CHAPTER 8 

MAJOR THESIS CONCLUSIONS 

Some of the important data chapter conclusions are 
1ý1- briefly presented herep along with more general conclusions 

from the review and model chapters. 

1. A threefold classification of explosive activity 

resulting from magma: water interaction has been adopted. 
Phreatic activity commonly forms maars which are underlain 
by large diatremes. Phreatomagmatic activity commonly forms 

tuff-rings which are underlain by moderately-sized diatremes. 

Surtseyan activity forms tuff-rings which are either 

underlain by smallp poorly-developed diatremesq or have no 
diatreme beneath them. 

2. The variety of products formed by the Medano tuff-ring 

resulted from variations in the depth of eruption focus and 
the amount of water interacting with the magma. The 

lithological similarity of all the Saefell tuffs reflects 

an essentially similar eruptive style throughout its 

activity, due to free access of water to the magma and less 

variation in the depth of eruption focus. 

3. Surges were much more common during the Saefell activity 
than during the Medano activityq probably due to shallower 

explosions which resulted from water gaining access to the 

vent from the breached crater. Directed-blasts were 
important surge-forming mechanisms in both tuff-rings. 

4. Scottish diatreme deposits undoubtedly represent the 

collapsed remnants of phreatomagmatic and phreatic volcanoes. 

The diatreme tuffs contain variable amounts of sediment, 

often making it impossible to determine whether they fed a 

maar or a tuff-ring. 

5. Studies of diatremes at different erosion levels have. 

allowed an idealised cross-section to be constructed. Where 

quantitative estimates of the level of collapse in a 
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diatreme cannot be made, this idealised section can be used 
to indicate the amount of collapse which has occurred 

relative to other diatremes of similar age and erosion 
level. 

6. Diatreme processes are essentially the result of 
repeated explosions of varying magnitude which round and 
comminute large clasts, The overall effect of these blasts 
is to enlarge the diatreme and allow more material to 

subside into it. The repeated explosions may effect a crude 
size-sorting in the diatreme contents and result in gas- 
streaming at the pipe margins, rather than forming well- 
developed circulatory fluidized systems. 

7. Base-surge deposits are. 
'Felatively 

common in 

phreatomagmatic volcanoes and their structures indicate 

deposition by pulsatoryq dissipative gravity flows. Surges 

are largely analogous to turbidity currents except that 

cooling of steam in surges results in the formation of 
regressive bedforms and plastering structures at the same 
time as flow power diminishes. Surge tuffs contain distinct 

sub-units which may be attributed to deposition from the 
head, body and tail of the flow. 

8. Alteration of sideromelane to palagonite occurs rapidly 
in mild hydrothermal systems associated with crater thermal 

anomalies. After the cooling of intrusive magma 

palagonitization occurs much more slowly as a weathering 

process. Cation mobility during alteration of glass is 

probably a product of H+ ion metasomatism and results in 

precipitation of authigenic minerals. In isolated pore 

spaces and vesicles these minerals grow under non- 

equilibrium conditions and somet especially zeolitesq may 

take in large amounts of "foreign" cations. Alteration may 

also result in volume reduction of the tuffs, a factor 

which would aid post-volcanic subsidence. 

9. Alteration rapidly seals pore spaces and indurates the 

tuffs allowing them to survive slow subsidence into 
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diatremes. Subsequent diagenesis 

groundwater circulation from the 
in situ alteration of unstable m 
studied contain high proportions 
the diagenesis of which resulted 
the entire rock. 

is influenced by 

country rocksp and by 
inerals. Most red tuffs 

of sedimentary material, 
in in situ reddening of 

10. 'Phreatomagmatic activity is purely a shallow crustal 
phenomenon associated with rocks containing groundwater. 
The occurrence of this type of volcanism indicates nothing 
about the mechanisms of magma ascent and little about magma 
composition and physical properties. Phreatomagmatic 

. 
volcanoes are commong but products are volumetrically small 
and often bdried beneath extensive lava flows. Preservation 

potential of maars and tuff-rings is slight because they 

commonly form and are reworked within active sedimentary 
environments. Ancient phreatomagmatic deposits are 
generally found within'diatremes although it is thought 
that many tuffs interbedded with sediments may represent 
distal maar or tuff-ring products. Detailed petrographic 

examination of both altered and ancient tuffs by the 

present author has shown that phreatomagmatic tuffs may be 

recognised even when extensively reworked. 
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APPENDIX I 

GRAIN SIZE ANALYSIS 

Thin section grain size analyses were determined by 

point counting after the method of Friedman (1958). The 
long axes of 350 grains were measured from each section. 
Fragments larger than 4mm were measured by grid point 

counting of slabs of the sampled tuffs. 

The medianv sorting and coarsest one percentile 

parameters were measured from cumulative/phi plots of grain 
size using the formulae of Inman (1952). In an attempt to 

convert the thin section grain size results to their sieve 
grain size equivalents the formulae of Harrell & Eriksson 
(1979) were used : - 

Sieve Mdo = 0-121 + 1-03(X) 

Sieve 016 = 0-127 + 1-075(X) 

Sieve V84 = 0-452 + 0-895(X) 

Sieve C(01) = 0-164 + 1-137(X) 
(where X is the appropriate phi value measured from 

cumulative thin section grain size curves). 
One of the drawbacks of these formulae is that they apply 
to rounded quartz grains in mineralogically mature sediments 

rather than irregular basaltic glass fragments in lithic- 

rich tuffs. Neverthelessp it is thought that the use of the 
formulae allows better comparisons to be made with published 

sieve analyses of pyroclastic deposits. 

A more important drawback with the conversion of thin 

section volume %' to sieve weight % values is the variable 

density of the fragments in tuffs. This is not thought to 

pose too great a problem in the case of the Recent tuff- 

rings (Chapters 293) where the tuffs largely comprise 

juvenile fragments. In the case of many of the diatreme 

depositsv howeverv their high lithic, content means that 

conversion from volume % to weight % cannot be easily 

carried out. Grain size graphs of the diatreme deposits 

have thus been quoted as volume % and this factor must be 

taken into consideration when comparing them to sieved 

pyroclastics. 



--- -7 ; 

APPENDIX 2 

ELECTRON MICROPROBE TECHNIQUES 

Quantitative analyses were carried out on polished 
thin sections using a JEOL JX-A 50A microprobe fitted with 

a LINK 860 Series 2 Energy Dispersive System (E. D. S. ). 

Operating details were as follows :- accelerating voltage, 
20kV; beam currentp InA; count timev 100s. Calibration 

standards used for major element analyses were : - 
Na - jadeite; Mg - MgO; Al - A12 03 ; Si and Ca - 

wollastonite; K- orthoclase; Ti - TiO2 ; Mn - rhodonite 

and Fe - metallic iron. 

X-ray mapping was carried out using a LINK Digimap 

system with a picture count time of 200ms per spot and a 
line scan count time of 5OOms. Raw data from the mapping 

was numerically enhanced to display the often low 

concentrations of elements present in basaltic glass. 

Backscattered electron image (B. E. I. ) pictures were used to 

locate areas for mapping and proved of great use in 

detecting slight compositional variations within glass and 

mineral phases. 

The microprobe was used in a scanning electron 

microscope mode to study the detailed morphology of the 

ash and its alteration products. Semi-quantitative analyses 

were carried out using the E. D. S. system to identify 

unknown phases which were then photographed. 

392 
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