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Abstract 

Additive Manufacturing (AM) as a material additive manufacturing process 

represents a significant breakthrough in manufacturing philosophy; this differs 

significantly from traditional material removal manufacturing processes e.g. 

metal cutting. Selective laser sintering (SLS), which comprises many elements 

such as mechanical processes, material, powders sintering, laser processing, and 

heat transfer, is an important branch of AM. Several fundamental problems 

including the interaction between the degree of particle melt (DPM) and crack 

behaviour of SLS printed part, eXtend finite element method (XFEM) based on 

material thermoelastic fracture performance are investigated in depth in this 

dissertation. 

The DPM is defined by the proportions of the existence of both melted and 

crystallised parts, and un-melted particles within the SLS printed component. 

As un-melted particles come close to the initial crack, the crack attempts to 

evade these un-melted particles; as the hole is close to the initial crack, and 

the crack attempts to stay close to the hole. 

There are two approaches, the virtual crack closure technique (VCCT) and the 

cohesive segment approach, used in each simulation. In some cases, VCCT 

results are similar to the results of the cohesive segment approach, however, the 

crack path of VCCT results is usually generated more smoothly than the results 

of the cohesive segment approach; this phenomenon is attributed to the fact that 

the method of VCCT for opening the crack is based on a combination of the 

critical energy release rates of normal and shear separation. 

Further, the XFEM can be used to analyse the thermoelastic fracture problem. 

The displacement field of XFEM discretisation is similar to the temperature 

field discretisation. The test indicates that XFEM allows steady-state 2D 

thermoelastic problems to be dealt with precisely on a mesh independent of 

the location and length of the crack. 



i 

Contents 

1 Motivations for selective laser sintering with computational technique 1 

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.3 Organisation of thesis chapter . . . . . . . . . . . . . . . . . . . . . . . . 5 

2 Selective laser sintering (SLS) process 6 

2.1 Overview of the SLS process . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.1.1 Characteristics of SLS . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.1.2 Processing parameters that influence SLS . . . . . . . . . . . . 10 

2.1.2.1 Laser spot diameter . . . . . . . . . . . . . . . . . . . . 11 

2.1.2.2 Fill laser power . . . . . . . . . . . . . . . . . . . . . . . 11 

2.1.2.3 Melt pool dynamics . . . . . . . . . . . . . . . . . . . . 12 

2.1.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 13 

2.1.3 Materials used in SLS . . . . . . . . . . . . . . . . . . . . . . . . . 13 

2.1.4 Sintering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

2.1.5 Technology challenges . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.2 Experimental literature in SLS fracture . . . . . . . . . . . . . . . . . . 21 

2.2.1 Production parameters . . . . . . . . . . . . . . . . . . . . . . . 21 

2.2.2 Sintering mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.3 SLS process reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

3 FEM applied to SLS fracture problems 26 



ii 

3.1 Fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

3.1.1 Linear elastic fracture mechanics . . . . . . . . . . . . . . . . . 27 

3.1.2 Elastic plastic fracture mechanics . . . . . . . . . . . . . . . . . 29 

3.1.3 Fatigue crack growth models . . . . . . . . . . . . . . . . . . . . 30 

3.1.3.1 Paris model . . . . . . . . . . . . . . . . . . . . . . . . . 31 

3.1.3.2 Walker model . . . . . . . . . . . . . . . . . . . . . . . 32 

3.1.3.3 Forman model . . . . . . . . . . . . . . . . . . . . . . . 32 

3.1.4 Crack growth direction . . . . . . . . . . . . . . . . . . . . . . . 33 

3.1.5 Crack growth magnitude . . . . . . . . . . . . . . . . . . . . . . 34 

3.2 Interface damage approaches . . . . . . . . . . . . . . . . . . . . . . . . 34 

3.2.1 Virtual crack closure technique (VCCT) . . . . . . . . . . . . . 34 

3.2.2 Cohesive element . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3.3 eXtend Finite Element Method (XFEM) . . . . . . . . . . . . . . . . . . 37 

3.3.1 Heaviside enrichment . . . . . . . . . . . . . . . . . . . . . . . . 38 

3.3.2 Tip enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

3.3.3 Inclusion enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 39 

3.3.4 XFEM crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

3.3.5 Limitations of the use of XFEM within Abaqus . . . . . . . . . . 41 

3.4 XFEM in heterogeneous material crack . . . . . . . . . . . . . . . . . . 41 

3.5 SLS fracture modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

4 Study of DPM in microcrack paths of printed engineering parts ob- 

 tained by SLS 46 



iii 

 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

 4.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

 4.2.1 Improved XFEM technique . . . . . . . . . . . . . . . . . . . . . 49 

 4.2.2 Crack propagation and the Level Set Method . . . . . . . . . . 50 

 4.2.3 VCCT and cohesive segment approach . . . . . . . . . . . . . . 52 

 4.3 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

 4.4 Test 1: Effect of the location of nylon-12 inclusion within the domain 

 of the crack behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

 4.4.1 Simulation of FEM model . . . . . . . . . . . . . . . . . . . . . . 55 

 4.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

 4.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 64 

 4.5 Test 2: Effect of the proximity of two nylon-12 inclusions within the 

 domain the crack path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

 4.5.1 Simulation of FEM model . . . . . . . . . . . . . . . . . . . . . . 69 

 4.5.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

 4.5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 72 

 4.6 Test 3: Effect of the porosity within the domain of the crack behaviour 74 

 4.6.1 Simulation of porous structure model . . . . . . . . . . . . . . 75 

 4.6.2 Simulation of SLS model . . . . . . . . . . . . . . . . . . . . . . . 79 

 4.6.3 Simulation of simplified SLS model . . . . . . . . . . . . . . . . 80 

 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

5 Study of microcracks in thermoelastic fracture mechanics obtained by SLS 84 

 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 



iv 

 5.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

 5.3 Simulation of FEM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

 5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

6 Conclusion 90 

 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

 6.2 Suggestions for future studies . . . . . . . . . . . . . . . . . . . . . . . . 91 

Bibliography 94  



v 

List of Figures 

2.1 AM services’s global income (in millions of dollars) as well as products from 

1993 to 2012. The upper (burgundy) segment shows services and the lower 

(blue) segment of the bars shows products. Neither category is involved in 

secondary processes, like, castings, moulded 

 parts, or tooling [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

 2.2 Schematic of selective laser sintering (SLS) [72]. . . . . . . . . . . . . . 8 

2.3 Processing parameters and elements which influence the SLS process 

[130]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

 3.1 Three modes of fracture [29]. . . . . . . . . . . . . . . . . . . . . . . . . 27 

 3.2 Stress distribution and plastic zone around the crack tip. . . . . . . . 29 

 3.3 Three regions for typical patterns of crack growth rate. . . . . . . . . 30 

 3.4 VCCT crack propagation scheme. . . . . . . . . . . . . . . . . . . . . . . 35 

 3.5 Evaluation of the Heaviside function. . . . . . . . . . . . . . . . . . . . . 39 

4.1 The microstructure of a standard SLS part manufactured from Duraform PA (nylon-

12-based powder accessible from 3D Systems) [143]. 47 

 4.2 Crack tip deformation field coordinates and paradigmatic contour Γ. 51 

 4.3 Sintered nylon 12 material DSC heating curve [109]. . . . . . . . . . . . 53 

 4.4 Sintered nylon 12 material DSC cooling curve [109]. . . . . . . . . . . . 55 

 4.5 Geometry and boundary conditions of Test 1. . . . . . . . . . . . . . . . 56 

 4.6 Effect of DPM on tensile strength [86]. . . . . . . . . . . . . . . . . . . . 57 

4.7 Schematic illustration of mesh seed distribution of Test 1 and finite element mesh 

for hmid=0.25mm. . . . . . . . . . . . . . . . . . . . . . . 59 

 4.8 Mesh sensitivity analysis results for Test 1, when l=7mm. . . . . . . . . 60 

 4.9 Norm of residuals analysis result. . . . . . . . . . . . . . . . . . . . . . . 61 



vi 

 4.10 Comparison of the external energy and internal energy. . . . . . . . . 62 

4.11 (a) l=23mm, (b) l=15mm, (c) l=7mm. Compare with computational crack 

propagation with different location of un-melted particles in Test 1 (lhs) 

and in J.Ibbett et al. Von-Mise stress field (MPa) results 

(rhs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4.12 The mechanism of calculating the crack length. . . . . . . . . . . . . . 

4.13 Zooming in crack path (upper figure) and crack length (bottom fig- 

64 

 ure), coordinates in mm, when l=7mm. . . . . . . . . . . . . . . . . . . 

4.14 Zooming in crack path (upper figure) and crack length (bottom fig- 

66 

 ure), coordinates in mm, when l=11mm. . . . . . . . . . . . . . . . . . . 

4.15 Zooming in crack path (upper figure) and crack length (bottom fig- 

66 

ure), coordinates in mm, when l=15mm. . . . . . . . . . . . . . . . . . . 

4.16 Zooming in crack path (upper figure) and crack length (bottom fig- 

67 

ure), coordinates in mm, when l=19mm. . . . . . . . . . . . . . . . . . . 

4.17 Zooming in crack path (upper figure) and crack length (bottom fig- 

67 

ure), coordinates in mm, when l=23mm. . . . . . . . . . . . . . . . . . . 

4.18 Figure depicting S22 stress field (MPa) and crack evolution: initial 

68 

 (lhs) and crack approaches the inclusion (rhs) when l=7mm. . . . . . 68 

4.19 Geometry and boundary conditions of Test 2. . . . . . . . . . . . . . . 69 

4.20 Schematic illustration of mesh seed distribution in Test 2. . . . . . . . 70 

4.21 Mesh sensitivity analysis results for Test 2. . . . . . . . . . . . . . . . . 

4.22 Compare with computational crack propagation affected by two nylon12 

inclusions in Test 2 (rhs) and in J.Ibbett et al. Von-Mise stress field 

72 

 (MPa) results (lhs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.23 Compare with computational crack propagation with different location of un-

melted particles in Test 1 (lhs) and in J.Ibbett et al. Von- 

72 

Mise stress field (MPa) results (rhs). . . . . . . . . . . . . . . . . . . . . 

4.24 Zooming in of Test 2 in crack path (upper figure) and crack length 

73 



vii 

 (bottom figure), coordinates in mm. . . . . . . . . . . . . . . . . . . . . 

4.25 The basic configuration of a crack near a circular hole subjected to 

74 

 uniform normal stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.26 (a) The maximum principal stress diagram; (b) Zooming in the maximum 

principal stress diagram of cracks and round holes; (c) Mesh 

75 

deformation diagram (deformation magnification 20 times) . . . . . . 

4.27 (a) Displacement diagram in the x direction; (b) Displacement diagram in the 

y direction; (c) Stress diagram in the x direction; (d) 

76 

 Stress diagram in y direction; (e) Shear stress diagram. . . . . . . . . 77 

 

4.28 Normalised stress intensity factor F1 vs. a/b. . . . . . . . . . . . . . . . 78 

4.29 Contour plots of different crack lengths and hole sizes. . . . . . . . . . 

4.30 The upper figure: the geometry of SLS printed part; the bottom fig- 

78 

ure: the expansion of the holes. . . . . . . . . . . . . . . . . . . . . . . . 

4.31 Zooming in crack path of SLS printed part in COH (upper figure) and 

79 

 VCCT (bottom figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.32 Extraction of model in SLS printed parts. . . . . . . . . . . . . . . . . . 

4.33 The diagram of calculation results (loading in y direction at the bottom): (a) 

maximum principal stress; (b) displacement in y direction; 

80 

(c) Mesh deformation diagram. . . . . . . . . . . . . . . . . . . . . . . . 

4.34 The diagram of calculation results (loading ratio 1:2 at the bottom): (a) 

maximum principal stress; (b) displacement in y direction; (c) 

82 

 Mesh deformation diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 82 

5.1 The plate with a crack in the middle: (a) adiabatic and (b) isothermal. 

5.2 Diagram of the temperature field in the plate with a centre crack (adi- 

87 

abatic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Diagram of the temperature field in the plate with a centre crack 

88 

 (isothermal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

5.4 Mesh sensitivity analysis results of normalised SIF. . . . . . . . . . . . . 89 



1 

Chapter 1 

Motivation for selective laser sintering 

with computational technique 

1.1 Motivation 

In recent years, there has been growing interest in additive manufacturing (AM) worldwide 

[1]. AM is a process of joining material in order to build a product using Computer Aided 

Design (CAD) files which are separated into layers. Its unique technologies and processes 

provide a range of technical, economic, and logistical advantages, and open up new ground 

for innovation. The basic AM consists of the production of a digital model, the conversion 

of a CAD model to a STL file, and printing and post processes. A range of materials such as 

cement, ceramics, metals, polymers, and composite materials are currently widely used in 

AM [2-4]. AM has the capacity to produce complex parts at a low cost, including designs 

which cannot be produced by traditional manufacturing methods, rendering low-yield 

production and customised products economically viable in many cases [5]; this reduces 

delivery time for order fulfilment, as well as enabling manufacturing from the source. 

  AM research was initially developed by Charles Hull in 1986 [6], which was followed 

by subsequent developments such as stereolithography (SLA), inkjet printing, fused 

deposition modelling (FDM), selective laser melting (SLM), and selective laser sintering 

(SLS). Currently, many additive manufacturing processes differ in terms of raw materials, 

operating principles, and the number of layers deposited to create a part which can be adopted. 

Many methods are used to soften or melt materials to create the layers, while others cure 

liquid materials. Each method has its advantages and disadvantages, and many companies 

provide choices between filament and powder material to build an object. The laser is one of 

the most frequently-adopted energy sources in AM, because high strength laser beams 

irradiated onto printed materials can be effectively absorbed without any transmission 
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medium [7, 8]. Today, selective laser sintering (SLS) has gained attention from a broad range 

of industrial sectors, such as biomedical, automotive, and aerospace due to its diverse 

advantages. SLS has become a promising business proposition for manufacturers engaged in 

different aspects of manufacturing, enabling the faster delivery of new custom products and 

the gaining of larger consumer markets for companies’ products. SLS is an AM technology 

which promises to revolutionise traditional manufacturing processes, decrease the length of 

design and production cycles, and enable the manufacture of parts without the need for tools 

for some individual items, saving significant costs and time [9]. However, there remain many 

key issues which need to be addressed before the widespread industrial application of the 

SLS process. SLS is therefore the chosen research topic of this thesis. 

SLS employs a transient cooling pattern to control phase compositions and phase 

percentages, grain sizes, and shapes to enhance desirable mechanical properties. Other 

experimental studies of effects on SLS processes have been developed, as referenced in the 

literature review [10, 11]. Berzins et al. [7] suggest that in SLS maps, the position of the 

boundaries and sintering are strongly influenced by powder particle size and build 

parameters. Because of the often inhomogeneous nature of the build parameters used, the 

SLS manufactured parts’ material properties vary significantly [12-14]. Further, the 

presence of un-melted particles due to incomplete melting introduces instabilities. This 

indicates that printed engineering parts usually develop unexpected fracture problems; the 

presence of fracture problems and other flaws can be influenced by thermal/mechanical 

load. Because SLS printing parts are generally applied under huge temperature conditions, 

this may increase the chance of failure due to instability [15, 16]. The main source of failure 

is attributed to geometric discontinuity or stress concentration. This form of discontinuity 

usually takes the form of a sharp change of geometry, opening, hole, notch, and/or crack 

[17]. As a result, a more comprehensive understanding of the printed parts’ performance is 

required, not related to mechanical testing, but to fatigue and fracture behaviour. The work 

report on the majority of the literature [18-20] is based on experimental study examining 

the potential of SLS to produce parts using polymer powders. This can be done 

experimentally, but on a microscopic scale because individual particles play an essential 

role, and a simulation method can give an essential advantage. 
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Computational mechanics (CM) is an important method in research into, and the 

characterisation of,  SLS problems. Some examples where CM has been put to practical 

use are semiconductor modelling, glass manufacturing, petroleum reservoir modelling, and 

biomechanics and vehicle crash simulation [21, 22]. The successful simulation of complex 

physical events due to the application of a variety of principles, methods and concepts 

means that CM is interdisciplinary [23-26]. For example, when the behaviour of the 

material is linearly elastic, the structure for predicting the distribution of loads, stress and 

thermal analysis becomes a vital tool. However, the available computational tools are not 

as robust as linear stress analysis in the simulation of material faults. The fields most 

relevant to computational mechanics in mathematics are numerical analysis, linear algebra, 

and partial differential equations. Modelling and analysis of these discontinuities is 

meaningful, as it builds on the understanding of their behaviour within selective laser 

sintered (SLS) parts and contributes to their longevity and performance. Prediction of the 

macrostructure performance of SLS parts requires better microstructural representation 

[27]. Performance, as well as properties’ modelling of SLS material, has been examined, 

especially in term of strength and damage. The impact of the microstructure is remarkable, 

and it is impossible to fully display SLS using a simple macroscopic model in order to 

successfully predict dynamic damage. The theory of SLS and the opportunity it affords to 

calculate predictive methods are shown below [28-30]: 

• Faster computational method: 

– For process control, fast emulators, deduced-order model 

– For high-fidelity physics-based simulation (such as implicit methods), an accurate, 

efficient and robust numerical method 

• Mechanics of the material – the SLS materials’ model as well as properties 

(such as solid-solid phase transformation) 

– Linkage of microstructure information to macroscale model 

– Damage as well as plasticity and modelling 

• Material processing 

– Residual stress 
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– Linkage of microstructure information to macroscale mode such as cooling rate 

maps and thermal gradient 

– Solidification as well as melting cycle, alloy composition distribution,                          

microstructure morphology evolution, melt pools and liquid-solid phase change 

models [28-30]. 

In modern design, SLS applications are so diverse that there is a high demand for 

powerful digital tools to avoid expensive and time-consuming experimental methods. This 

demand is more evident in the failure and fractures analysis of SLS parts, which prompted 

the author to conduct this research study. 

The most commonly used numerical methods, in order of dominance, are the boundary 

element method, the finite difference method, and the finite element method (FEM). FEM 

is far more prevalent than the finite difference method in solid mechanics, while the finite 

difference method is equally applicable in electromagnetism, thermodynamics, and fluid 

mechanics. Various methods address this problem, but the literature illustrates some general 

limitations, such as the divergence of the numerical technique before virtual failure. 

Therefore, failure modelling of materials remains an ongoing study object [31, 32]. 

For a standard simulation rule, the problem often becomes more complicated when the 

connections between some elements are changed; for example due to a cut, thermal effect 

or resection. During FEM, these direct discontinuities potentially cause massive remeshing 

and mesh adaptation [33, 34]. To find appropriate and high-quality mesh, machine and 

time cost is uncertain and critical. Although the mesh performed smoothly at the early stage 

for a model, the success of subsequent remeshing cannot be guaranteed; for this reason, it 

should be avoided for remeshing and mesh adaptation. 

In order to prevent the remeshing, a fresh method, based on the extended finite element 

method (XFEM), was introduced in 1999 [35]. The use of XFEM for dealing with element 

resection is discussed in the following sections. 
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1.2 Aims and objectives 

The project is designed to obtain an understanding of the nature of microcracks in printed 

engineering parts obtained by SLS. The objectives of this project are summarised as 

follows: 

• To review the general understanding of the application of SLS and FEM to fracture 

problems 

• To summarise the empirical literature and fatigue fracture modelling relating to SLS 

• To conduct testing to study DPM in the microcrack paths of printed engineering parts 

obtained by SLS 

• To conduct testing to study microcracks in thermoelastic fracture mechanics obtained 

by SLS 

 

1.3 Organisation of thesis chapters 

This thesis comprises six Chapters. In Chapter One, the key motivation for the study and 

the aims of the thesis are outlined. 

In Chapter Two, the basic process principles of SLS machining and the main factors 

which affect the quality of SLS printed parts are presented. The state of the art of SLS 

fracture problems are discussed in view of currently published understandings. 

In Chapter Three, the first section provides a general understanding of the fracture 

mechanism, while the second section concerns the application of interface damage 

approaching linking with virtual crack closure technique (VCCT) and cohesive elements. 

The third section offers a detailed explanation of XFEM when used in heterogeneous 

material cracks and SLS. 

In Chapter Four, three tests indicate that the degree of particle melt (DPM) has a 

critical effect on the crack behaviour of a SLS printed engineering part under load. The 

mechanism of how un-melted particles and porosity affect crack behaviour is examined. It 
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is observed that the location, number and size of un-melted particles and holes lead to 

significant changes in crack length and path. 

Chapter Five begins with discussion of the background of SLS printed parts and 

XFEM in thermoelastic fracture mechanics, addressing the interaction between a single 

crack and a single circular inclusion under thermomechanical condition, comparing this 

with existing solutions. 

In Chapter Six the conclusions of the thesis are listed along with the future 

developments proposed in this thesis. 
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Chapter 2 

Selective laser sintering (SLS) process 

Selective laser sintering (SLS) process has emerged as one of the fastest growing, most 

successful, and commercially available AM methods. It not only produces accurate models 

and prototypes, but also forms parts with reliable structures for direct functional use. It has 

attracted increasing attention from modern manufacturing industry due to its significant 

advantages in terms of wide selection of powders, applicability, relatively simple 

manufacturing process, high moulding accuracy, lack of requirement for support structure, 

and direct sintering of parts [36]. However, in terms of reliability, mechanical properties, 

precision, and the cost of manufactured products, SLS has not yet made a significant 

breakthrough and has not yet reached the necessary maturity level for general industrial 

applications. Therefore, it is necessary to conduct more in-depth research on its forming 

mechanism, the selection of new materials, optimisation of process parameters, and the    

pre- and post-treatment processes of SLS, in order to further improve the performance of 

SLS products and meet the requirements of industrial production [37, 38]. Research into 

SLS mechanisms, such as the laser-material interaction process, the evolution of 

temperature and stress fields during laser sintering, and the related physical and chemical 

processes, continue to require further exploration in terms of how to improve the final 

physical features of the manufactured components and improve production efficiency. 

Currently, this is an important aspect of SLS technology research, which is significant for 

the development of both SLS process and AM technology [39]. 

The Chapter firstly provides a basic overview of SLS, including commonly used 

technology, characteristics of SLS, processing parameters, material types, and sintering 

theory. The advantages and disadvantages of the use of SLS are then presented, after which 

the empirical literature in SLS fatigue fracture is outlined. This Chapter thirdly introduces 

state of the art obeys with reference to academic studies conducted by other researchers. 

These are the main research foci of this study. 
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2.1 Overview of the SLS process 

SLS was licensed to DTM Corporation, having been initially proposed by the University 

of Texas at Austin in the mid-1980s [7]. Compared to available processes of AM, there is 

a use of CAD software or a computed tomography imaging scanning process to present the 

elements in a three-dimensional manner. Selective laser melting (SLM) can only be 

employed for certain metals, such as aluminium and steel, but SLS can be used for many 

metals, as well as polymers and alloy powders. Laser scanning in SLS does not have the 

capacity to completely melt the powders. Meanwhile, at molecular level, the elevated local 

temperature on the grains’ surface leads to fusion of the powders [40, 41]. 

 

Figure 2.1 AM Services’s global income (USD$ millions) and products from 2000 to 

2017 [42] 

More recently, among commercial users and research institutions, SLS processes have 

become increasingly popular. Figure 2.1 presents the increased state of the revenues for 

AM services as well as products in the years between 2000-2017, which can be attributed 

to these manufacturing techniques’ advantages, such as reducing material waste and 

building complex geometries, and directly fabricating components with moving parts [42]. 
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In addition, a significant advantage can be gained in terms of reducing the overall 

production costs of an item. 

 

Figure 2.2: Schematic of selective laser sintering (SLS) [43] 

SLS has the capacity to deploy a laser beam layer by layer to selectively fuse powder 

into a designed solid object (see Figure 2.2 [43]). It adopts a fine powder to fuse the grains, 

heated by a laser beam with a  range of 7W to 200W in terms of plastic [7, 44]. For the 

purposes of decreasing thermal distortion or increasing fusion in the former tier, it heats 

the whole bed under the material’s melting point before the laser beam sinters the powder. 

The bed is reduced, with a novel powder layer being used after the construction of each 

layer. Then, a rotating roller is applied to distribute the powder consistently. The unsintered 

material powder is retained in its proper position to facilitate the construct, but the sintered 

one forms the part. After completion of the build, the unsintered material is wiped away 

and later reused. The procedure is carried out for every tier of the CAD model before it is 

performed on the last tier [43]. 

The procedure consists of each selective laser sintering system, which is described as 

follows. The major differentiators are measurement of the build volume and the type of 

laser. A variety of systems provides various solutions for layer deposition, powder 

dispensing and temperature control. SLS requires tight control and a high level of precision. 

Before removal, in order to minimise heat-induced distortion, stresses, and warping when 
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it is processed in the course of preheating, sintering, and storage, the temperature of the 

powder in addition to the (incomplete) components should be limited to below 2 °C [7]. 

2.1.1 Characteristics of SLS 

The unique characteristics of SLS compared to other AM technologies are as follows [45]: 

• A variety of materials is available. Theoretically, SLS can be produced using any 

powder material whose viscosity decreases when heated. A variety of powders 

including polymer, metal, ceramic powder, and quartz sand powder can be used as 

sintering material. 

• The manufacturing process is simple: given the fact that the unsintered powder 

facilitates the creation of the cavity and cantilever part of the model, the use of 

stereographic forming (stereolithography) and fused deposition moulding (FDM) is 

not required. SLS can directly produce complex shapes and parts. 

 

• High material utilisation rate. The un-sintered powder can be re-used without 

creating material waste, which reduces the cost of production. 

• Forming accuracy depends on the type of material used, particle size, geometry of 

the product and its complexity. The accuracy of the original shape can reach ±1%. 

• It has a variety of applications: as a result of the diversification of the forming 

materials, various forming materials are available to enable the production of 

sintered elements for different purposes. Sintered parts for different purposes, such 

as the production of plastic functional parts for structural verification and functional 

testing, metal part moulds, precision casting wax mould, and sand mould can be used. 

SLS is a layered manufacturing technology with incomplete melting. In general metal 

manufacturing, SLS materials consist of two types of powder materials, those with high 

and low melting points. During the laser sintering process, the low melting point of powder 

particles melts, while the high melting point of powder particles does not melt as the 

temperature increases. The low melting point of powder particles acts as an adhesive which 
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mixes the high melting point powder materials to form the final part. The metal parts 

manufactured by this process contain certain voids and do not yet reach full densities [46]. 

In general polymer manufacturing, polymer powder can be supplemented by other 

additives such as carbon or glass fibres to enhance the thermal and mechanical behaviour 

of the polymer element. Otherwise, due to the large spot diameter of the laser beam, the 

internal porosity of the final part can be of considerable size [47]. 

2.1.2 Processing parameters which influence SLS 

The SLS production process is relatively complex, and is influenced by many factors. In 

SLS, the laser beam raster scans the outer layer of the powder during the sintering process 

i.e. the beam moves in the x-direction at various y-positions, which is clearly shown in 

Figure 2.3. Some scanning factors which impact the method, as well as the intensity of 

energy delivered to the powder’s surface, are the laser spot diameter (D), the laser beam 

velocity (U), scan spacing (S), the fill laser power (P) and the vector length (L) of the scans. 

All of these factors work in the way shown in the following sections [48]. 

 

Figure 2.3: Processing parameters and elements which influence the SLS process [48] 

 

2.1.2.1 Laser spot diameter 

SLS processes mainly use CO2 and Yb-fibre lasers, related to the different sort of material. 

SLS processes mainly rely on CO2 lasers ranging from tens to hundreds of watts average 
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power because polymers are marked with more absorption in terms of their operating 

wavelength, which is also useful in the sintering of oxide ceramics and composite. In 

contrast, the laser sintering of metal powders requires Nd:YAG lasers, or more commonly 

Yb-fibre lasers. They produce a laser beam of 1064nm in wavelength. This could be 

approximate to the high absorptive range used by metal powders [49]. The SLS process 

with a reliance on medal power, known as direct metal laser sintering (DMLS) has the 

capacity to distinguish from SLS with a basis of polymer. In addition to metal powders, 

Nd:YAG and Yb-fibre lasers can also be widely applied in the sintering of carbide ceramics. 

Instead of the operating wavelength, additional laser factors impact the mechanical features 

and geometry of SLS printed elements. Laser power and scanning speed are the main 

factors impacting the sintering procedure [39]. Scan spot diameter is the distance from the 

reflector of the scanner to the outer layer of the powder bed; this affects the scanning speed 

of the sintering plane. The scan speed is varied by adjustment of the rotation speed of the 

reflector. 

2.1.2.2 Fill laser power 

The laser beam’s feature of interest is its laser power which forms the energy used in the 

powder bed (pulsed or continuous). The continuous laser has a fixed diameter which 

continuously emits light moving in a linear manner at a fixed scan speed across the cross 

point of the elements. Different lasers are generally marked with a fixed level of energy 

output, and in the majority of applications the heat is allocated in a similar manner, leading 

to the homogeneous melt of the powder through a bed of powder. 

Hooreweder et al. [50] observe that laser beam scanning and energy absorption are 

modelled by the use of a SLS machine, relying on the analytical ray-tracing model which 

performs the calculation of the possible sintering zone factors (width and thickness). This 

energy required to fuse certain powder elements is based on this equation: 

 Em = (cp × ∆T + cl) × ρ × V (2.1) 

where: 

cp specific heat (KJ/KgK) 
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V volume of the (spherical) particle (mm3)  

ρ density (kg/mm3)  

cl latent melt energy (KJ/Kg) 

∆T increase needed for melting (K) 

This process determines a plain contrast of the absorbed energy Ei to Em if any part has 

the capacity to absorb sufficient energy to melt. Based on the most horizontal molten 

elements, it evaluates the sintering zone dimension [27]. 

2.1.2.3 Melt pool dynamics 

Examination of the behaviour of the final parts of the molten material reveals oscillations 

due to the high-speed laser processing and the high thermal gradients induced to the 

powders. During processing, the solid phase presented formation is influenced by these 

oscillations, thus during the material’s molten stage, different phenomena exert influence 

on its size and shape [51]. 

Two phenomena, wetting and capillarity, are guided by the interface and surface 

energies present in the molten material. Capillarity means a lack of assistance of external 

forces and the capacity of a liquid to move in a confined space. Wetting means a solid 

surface and the capacity of a liquid to make connections. With SLS technology, in order to 

successfully build components, it is crucial for both liquid and solid features. The liquid 

wets the underlying material differently, relying on the condition of the solid material as 

well as the molten conditions [52]. 

In this case, a spreading coefficient is adopted to explain the wetting behaviour. The 

spreading of the liquid is favoured, because the coefficient rises positively; this is divided 

into tiny spherical droplets in a process called ‘balling’ as the molten material becomes less 

stable on the solid when the wetting angle rises. During laser processing, temperature 

gradients go up because of the non-uniform heating, therefore the balling’s formation is 

related to the induced capillary instabilities [51]. 
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2.1.2.4 Discussion 

The SLS process can improve the quality of the product fabricated by appropriate selection 

of the optimum values. Table 2.1 indicates that material properties, laser power, scan speed, 

and layer thickness are four main elements which influence the mechanical properties of 

the SLS process [53]. For example, the laser power controls feed bed temperature which 

influences the end properties. If the temperature is too high, this causes premature melting; 

if the temperature is too low, complete sintering results with poor edge definition, in which 

layers do not adequately fuse with the layers below and are not melted throughout. 

Therefore, within an SLS printed part, many particles have cores which cannot be melted 

and may not enter a fully melted state during the sintering process. In order to melt the 

particles fully, these areas arise in which there is insufficient energy available to be input 

to the powder. According to the machine parameters, it is necessary to define a universal 

energy density because the proportion of the powder is determined by the amount of energy 

input used by the material [54]. However, it is hard to grasp the nature of these parameters’ 

impact on products’ features due to the complexity of the process. 

Table 2.1: Dependence of output parameters of SLS on the input parameter [54] 

 
 

𝑇𝑎𝑟𝑔𝑒𝑡𝑎 𝑇𝑎𝑟𝑔𝑒𝑡𝑏 

Factor Value Value 

Laser power (W) 3.71 3.82 

Scan speed (mm/s) 41.9 48.9 

Energy density (J/mm2) 0.35 0.31 

Response Optimum value Optimum value 

Density (g/cm3) 0.728 0.656 

Flexural modulus (MPa) 337.1 289.7 

Stress at 10% (MPa) 49.3 46.2 

Desirability 0.69 0.43 

a The target involves maximum stress, maximum flexural modulus,  and maximum density. 

b The target involves maximum stress and maximum flexural modulus, and minimum 

density. 
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2.1.3 Materials used in SLS 

The SLS process is unable to be restricted to specific categories of materials; in theory, 

metals, ceramics, composites, and powder-based thermoplastics can be used in the 

production of SLS parts. When manufacturing components by SLS, materials of interest 

are selected according to the required conditions of the previous product. The thermal and 

physical properties of the material (such as specific heat, thermal conductivity and density) 

determine the resultant thermal historical behaviour. In general, in a process such as SLS, 

thermal conductivity is one of the principal thermal physical properties which affect the 

processing of materials, and the coefficient of thermal expansion is the critical value of the 

residual stress produced in the process of determining the solidification of molten materials. 

The above properties depend on the materials used, and the chemical composition of the 

material generally determines the behaviour of the materials. The main material types used 

in the process include the following: [16, 55-57]: 

• Wax: The traditional waxes used for investment casting (alkane wax, fatty acid wax, 

and others), were characterised by low wax mould strength, rendering it difficult to 

meet the requirements of fine and complex structure castings, and the moulding 

accuracy was poor, therefore DTM represents a low melting polymer wax composite 

material [55]. 

• Nylon: Nylon materials can be transformed into functional parts by use of the SLS 

method. Currently, nylon materials with four components are widely used 

commercially:  

(1) Standard nylon, which can be used to make models with good heat resistance and 

corrosion resistance. 

 (2) DuraForm GF, not only has the same performance as DTM nylon, but also 

improves the dimensional accuracy of parts and reduces surface roughness. 

(3) Fine nylon medical grade, which can be steam sterilised by high temperature 

autoclave for five cycles. 
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 (4) ProtoFormTM composite is a glass-strengthened DuraForm GF. This kind of 

modified material, compared to unreinforced DTM nylon, has better processing 

performance, whilst improving heat resistance and corrosion resistance [56]. 

• Metals: The use of metal powder for rapid prototyping is the trend of laser rapid 

prototyping from prototype manufacturing to rapid direct manufacturing. It greatly 

accelerates the development of new products and has broad application potential. In 

the selective sintering method of metal powder, three types of metal powders are 

commonly used:  

(1) a mixture of metal powder and organic binder 

(2) a mixture of two metal powders, one of which has a lower melting point and is 

sticky, which is the role of the binder 

 (3) A single metal powder sinters the unit system, especially the high melting point 

metal, which needs to reach the melting temperature in a relatively short time, and 

requires a high-power laser. The problem is the low density and poor mechanical 

properties of the parts due to their porous structure [16]. 

• Polycarbonate: The research on polycarbonate sintering moulding is relatively 

mature. Its moulded parts have high strength, good surface quality, and easy 

demoulding. They are principally used to manufacture lost foams for metal parts in 

the aviation, medical, and automotive industries in investment casting, and in various 

industries as general-purpose plastic mould; examples include DTM polycarbonate 

of the DTM Company. However, polycarbonate is more expensive than polystyrene. 

Some researchers have focused on polycarbonate (PC) and discussed its sintering 

process in order to improve the precision of moulded parts [55]. 

Due to the use of powder materials in the SLS process, the absorption value of bulk 

materials is different to that of powder materials. A complex process is required to obtain 

direct measurement of the absorption of powdery materials; it is proven by a numerical 

models that the absorption of the metal powder layer used in SLS is significantly greater 

than its value on the plane. This phenomenon is due to the multiple scattering present in 
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the powder bed, such as the interaction of beams with a rough surface (particle size of 

approximately 50m) and short wavelength (1070nm). Table 2.2 shows the published 

material properties of these powders [58]. It is necessary to grasp the impact and the 

available range, which can have an effect on end part properties. 

Table 2.2: Manufacturer published properties for SLS powders from Stratasys [58] 

 Nylon 11 Nylon 12 Polycarbonate Nickel alloy TiAl 

Tensile strength (MPa) 36 45 35 767 1007 

Tensile modulus (MPa) 1392 1700 1950 205000 129000 

Tensile elongation (%) 32 20 4 34 16 

Part melting point (◦C) 163 184 147 1300 1640 

Powder average

 size (um) 

25-92 25-92 25-92 30-60 30-60 

 

The particle size and distribution of the material affect the sintering properties, mainly 

the surface finish, accuracy and sintering rate of the sintered part. The size of the material 

particles affects the flatness of the laying powder and the minimum laying thickness, thus 

limiting the layer thickness of the sintered process. If the material particles are too large, 

the minimum layer thickness is limited; if the material particles are too small, the powder’s 

adhesion is affected by its electrostatic effect. Also, particle size affects the sintering rate 

between adjacent particles. Particle size affects the surface roughness and feature accuracy 

of the part, the sintering rate during the SLS process and the density of the powder bed 

base. As the particle size of the material decreases, the thickness of the powder layer 

decreases, which allows a thinner layer to be laid down during the SLS process to improve 

the principal error of the part. The use of thinner powder layers further improves the 

sintering between the layers and therefore the density of the part. The powder size also 

affects the lay-up process, with larger particle sizes producing rougher surfaces. However, 

if the particle size is too small and becomes fluffy due to electrostatic effects, the powder 

lay-up process becomes more difficult. Meanwhile, friction, adhesion and other surface 

forces become relatively high, resulting in a relatively loose laying of the powder at the 
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bottom of the bed. This problem becomes even more acute once the particles become sub-

micron or nano-sized. The nanosized powder is 10% lower than the normal laydown 

density; such a low density makes it almost impossible to sinter such nanosized powders 

together under the SLS process [59]. 

The distribution of granularity generally affects the laydown density, with a maximum 

level of 74% for particles of the same size. Different sized powders can increase the 

compactness, as smaller particles can fill the voids [60]. 

In addition, powder packing density is extremely tight in order to achieve a high SLS 

processing density. Therefore, in common with other powder processing processes, a wider 

distribution of particle sizes is applied, rather than a single particle size. Particle size 

dispersed powders have a higher laydown density compared to single particle size powders. 

Naturally, this theory only holds true for spherical particle shapes. In general, spherical 

laydown powders are more effective than other shapes because they flow better than other 

irregular shaped particles. Therefore, when the processed material is spherical and the size 

distribution is dispersed, smaller particles are more likely to fill in the voids of larger 

particles, while the powder density of the layer further influences the density of the sintered 

part. This is due to the fact that a higher bed density leads to better thermal conductivity 

and therefore improves the sinterability of the bed substrate. At the same time, a high 

substrate density ensures a low shrinkage rate. 

The quality of the powder layer affects the quality of the finished part, and a new layer 

of powder is generally smoothed out by a counter-rotating roller. The surface of the layer 

is relatively flat because the excess powder can be flattened out relatively well. The 

variables of the roll laying mechanism, such as the linear speed of the roll, the rotation 

speed of the roll, the feed ratio, the roughness of the roll, and the layer thickness work 

together to determine the bed density. While all variables have an effect on the density, the 

feed ratio and layer thickness exert a stronger effect on the density of the bed base and 

therefore further influence the density of the part. The feed ratio and layer thickness are 

controlled by the movement of the feed cylinder and the part processing cylinder. The feed 

ratio is the ratio of the inward movement of the feed side piston to the outward movement 

of the part side piston. The value is typically approximately 2 to ensure that sufficient 

powder is supplied to the part cylinder. The layer thickness is a key variable in determining 
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the quality of SLS machined parts. Generally, a lower layer thickness has a higher part 

density; lower layer thicknesses provide better sintering between layers and therefore 

improve part density [60]. 

2.1.4 Sintering theory 

Sintering is the process by which particles bond and grow. The particle system is marked 

with an excess surface energy compared to dense materials, and sintering refers to the 

transition from a high energy state to a low energy state, a thermodynamically irreversible 

process whose free energy reduction is the driving force for the process to proceed. The 

higher the excess surface energy the particle system has before sintering, the easier this 

transition process is, and the greater the sintering activity becomes [61]. 

The sintering process involves the following six theories: surface diffusion vapour 

transport, lattice diffusion from surface, lattice diffusion from grain boundary, grain 

boundary diffusion and plastic deformation, and each of the above sintering theories has 

its own scope of application. For example, Frenkel’s model for sintering [62] is only 

applicable to substances with low viscous flow activation energy (mainly organic 

substances). The surface diffusion mechanism is applicable to sintering at lower 

temperatures or relatively fine powders, while the evaporation and solidification 

mechanisms are suitable for sintering with high vapour pressure, and sintering by 

atmospheric activation, or in the sintering of relatively fine powders. In contrast, the 

evaporation and solidification mechanisms are found to be suitable for sintering at high 

vapour pressures and for sintering by atmospheric activation. In practice, powder sintering 

is an extremely complex process; sometimes the various mechanisms may occur alternately 

or simultaneously in a single sintering process [63]. 

Generally, metal powder sintering processes can be divided into two principal 

categories: sintering without external forces and sintering with external forces. Sintering 

without external forces can be divided into two categories: solid phase sintering (SPS) and 

liquid phase sintering (LPS). Solid phase sintering is a heat treatment process which occurs 

below the melting point temperature of the powder material. In solid phase sintering, the 

driving force for the connection between the powder particles is provided by the diffusion 

drive. In general, the diffusion rate is relatively low, thus solid phase sintering is a relatively 
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long process. Liquid phase sintering is generally a process of binary or multi-component 

powders where the sintering temperature exceeds the melting point of one of the 

components, thus creating a liquid phase. The liquid phase may persist for an extended 

period of time during sintering, known as long-life liquid phase sintering, or for a shorter 

period of time, known as transient liquid-phase sintering [64]. 

Liquid phase sintering allows for a high degree of dense sintering of powder materials 

without the application of external forces. Although in some cases liquid phase sintering 

can cause large distortions in the specimen, this process remains widely used for the 

preparation of aerospace and aerospace materials such as powder Ti alloys, or high 

temperature powder alloys, hard alloys, and electrical contact elements. It is generally 

accepted that the liquid phase sintering of powder materials consists of three main stages: 

I. rearrangement  II. dissolution precipitation and III. solid phase sintering. 

The powder particle rearrangement stage means that, at a sufficiently high temperature, 

the low melting point powder material melts, forming a liquid phase which fills the holes, 

and with the flow of the liquid phase, the particles slide, rotate and rearrange, with the 

sintered body rapidly becoming dense. It can be claimed that powder particle 

rearrangement is the most significant and critical manifestation of the important role of 

liquid phase sintering. Liquid phase sintering without external pressure allows the powder 

material to reach a high degree of densification, mainly because the particles can be 

rearranged in the liquid phase environment. 

The second stage of liquid phase sintering is the dissolution-precipitation stage, where 

the diffusion process is intensified. The angular, micro-convex, and microfine particles of 

large particles are dissolved in the liquid phase and re-precipitate on the surface of the large 

particles when the solid phase is supersaturated with concentration during the liquid phase. 

During this stage, the particle shape changes and so-called ‘adaptive shape’ changes occur, 

which contribute to the denseness. Later in this stage, some solid phase particles form 

sintering necks. 

The third stage of liquid-phase sintering is the solid-phase stage, where the sintering 

neck grows further and grain growth is accompanied by coarsening of the pores. This 

process takes a longer time. 
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For the SLS process, the powder materials are generally binary or multi-component 

powders, i.e. the powder material consists of a mixture of high- and low-melting point 

particles. Due to the high scanning speed of the laser beam (10-100 mm/s), the interaction 

time between the laser beam and the material is relatively short (typically in the order of 

microseconds), i.e. the laser beam melts the low melting point powder material in a relatively 

short period of time to produce the liquid phase, which immediately cools and solidifies when 

the laser beam is removed. Therefore, during the SLS process, the liquid phase is 

instantaneously generated and solidified. At the same time, the liquid phase is present for a 

relatively short period of time, with no time for dissolution-precipitation and solid phase 

sintering to occur, thus the liquid phase sintering mechanism of SLS exists only in the first 

stage of conventional powder sintering, i.e. the rearrangement stage [65, 66]. 

In summary, the SLS sintering mechanism is a type of instantaneous liquid phase 

sintering without external forces in powder sintering theory. Meanwhile, due to the 

characteristics of the process, only the first stage of conventional liquid phase sintering         

(i.e. the rearrangement stage) occurs during the sintering process and the                     

dissolution-precipitation and solid phase sintering stages of conventional powder sintering 

are suppressed. When the ‘virgin sintered part’ (i.e. a raw part which has just been sintered 

and not yet post-treated) is manufactured, it can be post-treated to further improve the 

mechanical properties of the part by reheating and retaining it. 

2.1.5 Technology challenges 

Some drawbacks of AM need to be resolved by technological development and further 

research despite the advantages of AM, in terms of the ability to print complex structures, 

customisation, and freedom over design. Arising from two mechanisms, the residual 

thermal stress, the cooldown phase of molten top layers, and thermal gradient mechanisms 

(TGM) were found in SLS parts described by Mercelis and Kruth [67]. Combined with the 

relatively slow heat conduction of the material in TGM, the rapid heating of the top surface 

creates a steep temperature gradient. It is restricted by the significantly cooler lower layer, 

which induces elastic compressive strain as the top layer expands. However, the upper 

layer’s yield strength is reduced, allowing it to be plastically compressed at an increased 

temperature. In order to introduce tensile stress in the build direction, the cooling of the 
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plastically compressed upper layer leads it to shrink, which induces a bending angle to the 

laser source [68, 69]. Beyond the solidification trace, this mechanism which occurs in the 

solid phase is relatively significant. 

In a similar manner to TGM, the cooling of the molten top layer (shrinkage) induces 

stress. Because of thermal contraction, it shrinks when the material solidifies and cools. 

The cooler underlying material restricts this shrinkage, resulting in compressive stress in 

the underlying material, and tensile stress in the top layer [69]. 

If the tensile stress exceeds the solid material’s ultimate tensile strength (UTS) at a given 

temperature and point, both mechanisms may exhibit stress relief through fracturing. Solid 

phase fracturing is regarded as hot cracking [70]. 

Further, while a large amount of post-processing is usually required to achieve end-use 

parts, the disadvantages of the SLS process include a poor final surface finish. Building the 

temperatures in the build volume as well as thermal variations can lead to curling of parts 

and significant warping, both of which, in tandem, change the part strength, with incomplete 

melting introducing un-melted particles. They continue to pose challenging issues for the 

technology, although the reliability of the build part properties has significantly improved, 

permitting many more applications. Mechanical properties of the produced part in the SLS 

process are not only affected by the process parameters, but by the base material itself. 

Analysis of the various parameters and the breakdown of the SLS process is significant and 

influences the part’s end properties. Some of the parameters influence the end mechanical 

properties more than others, and parameters are also mutually influential. The result is a 

complex interlinking network of various factors; however, this falls outside of the scope of 

this research study. Thus, three of the most critical parameters are highlighted in this case: 

anisotropy, degree of particle, and temperature [69, 71]. 

The use of the SLS process ranges from metals to ceramics, and once it is available as 

a powder, it is possible to process almost any material. Nylon-12 is the most widely-used 

material which is composed of SLS, however, in general, polymers involving other             

semi-crystalline as well as amorphous polymers are also widely dealt with. For end-use 

applications, sintered Nylon-12’s good mechanical properties provide an example. 

However, where the currently unreliable production of end-use parts limits the use of AM 

in the industry, the reproducibility of the mechanical properties poses a challenging issue. 
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During the sintering process, an understanding of the resultant microstructural changes 

provides a better understanding of the material, especially within the structure, of the 

presence of un-melted particles for fracture [71]. 

2.2 Experimental literature in SLS fracture 

There are several studies [44, 72, 73] which focus on SLS processed products’ fatigue 

performance. However, there is a lack of information and comprehensive data on the 

influence of the defects under cyclic loads caused by SLS treatment on mechanical 

properties which can evaluate the process microstructure-properties relationship while 

emphasising the initiation of cracks and the growth of cracks. However, some studies          

[74, 75] highlight a persistent problem; there remains a significant flaw in SLS processing, 

although much progress has been made and extensive investigations have been carried out 

on various materials. After the given process-related defects (i.e. pores and residual stress) 

and matrix conditions (which are often quite fragile after treatment), post-treatment is 

required to achieve high fatigue performance. This requirement has led to a lengthy process 

chain, resulting in an increased cost. 

2.2.1 Production parameters 

Chen et al. [76] applied the Tauchi method to study shrinkage variation and fracture 

resistance in the X, Y and Z directions during the sintering phase of SLS processing, and 

presented the problem of shrinkage compensation from different perspectives. The 

shrinkage and fracture resistance of SLS has been measured by adjustment of the 

machining direction and the bending of the machining has been analysed. It has been noted 

that machining direction plays an important role in SLS fracture. 

In addition, Pan et al. [77] carried out experimental studies on cemented carbide, 

polymer and steel powder materials, analysing the effect of processing parameters on 

sintering properties based on experimental studies. Meanwhile, the influence of processing 

parameters on sintering performance has been analysed on the basis of experimental studies. 

These experiments demonstrate that the strength of the sintered parts does not depend 

significantly on laser power, scanning speed and scanning interval within a certain range. 
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The study demonstrated no significant relationship between the strength of the sintered part 

and the individual parameters of laser power, scanning speed and scanning interval. In 

contrast, it is demonstrated that warpage is caused by the thermal expansion coefficient of 

the sintered and non-sintered phases. The difference in thermal expansion coefficients of 

the sintered and non-sintered phases, as well as the temperature difference at different 

locations of the scan trajectory and the height direction of the powder layer, have been 

shown to be the results of warpage. Pan et al. [77] also suggests that a number of 

experimental studies have been carried out with the use of the roll laying method of SLS 

machining, which provides a basis for sintering high quality machined parts. This provides 

a basis for sintering high quality parts. 

In addition, using numerical analysis, Borzan [78] investigated energy transfer, heat 

transfer, and sintering, analysing the effects of laser power, laser beam velocity, scan 

spacing, laser beam diameter, scan line length on the processing temperature field, density 

and strength of printed parts. As input laser energy increases, the density and strength of 

SLS printed parts significantly enhances. Further, Borzan highlighted the fact that there is 

no significant change in fracture performance, and it should be more impacted by the 

sintering mechanism because the microstructure of the printed part is influenced by the 

sintering mechanism. 

2.2.2 Sintering mechanism 

Kruth and other academics [79-81] conducted in-depth studies, publishing a number of 

articles classifying the sintering mechanism of SLS, selective laser melting (SLM) and 

direct metal laser sintering (DMLS) processes, which have contributed to the 

understanding of SLS sintering theory. The classification of the sintering mechanisms of 

SLS and DMLS processes has played an important role in the understanding of SLS 

sintering theory. For example, SLS techniques are classified into four main categories 

according to their different joining mechanisms: solid state sintering, chemically induced 

binding, liquid phase sintering partial melting, and full melting. In addition, the team 

carried out experimental studies on the effect of Nano powders on the sintering properties 

of SLS, such as sintering temperature and density. 
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By establishing a shrinkage model for the SLS forming process, Dong et al. [82] 

investigated the shrinkage form and its pattern of formed parts during SLS processing. The 

results of the study showed that shrinkage is related to the degree of sintering and the 

amount of warpage is proportionate to the shrinkage rate of sintering. The warpage is 

proportionate to the square of the cantilever length, the shrinkage rate, and inversely the 

sum of the two layer thicknesses. The composition of forming shrinkage is also 

investigated, and a model for the calculation of temperature-induced shrinkage, sintering 

shrinkage, and crystallisation shrinkage is proposed. The relationship between sintering 

shrinkage and the sintering process is also investigated on this basis, highlighting the fact 

that it increases with increasing sintering power, increases with decreasing scan interval, 

and is also related to the length of the sintering scan line, but not the forming direction. In 

preheating, the effect of radiation preheating density on powder preheating has been 

studied, and a heat flow density field model is proposed and compared with the 

experimentally measured preheating temperature field, which shows that the model is of 

great importance for the design of budget devices and the control of the forming process. 

Wudy et al. [83] conclude that the mechanical properties of SLS sintered parts based 

on polymer powder are poor, and conducted a resin reinforcement study on sintered 

prototype parts. The effect of curing temperature on the dimensional accuracy of the 

sintered parts during epoxy resin curing was investigated, and the changes in the 

mechanical properties and SEM photo microstructure of the machined parts were analysed 

at different curing temperatures. The relationship between the morphological structure of 

the fracture surface of the material and the tensile properties and impact was investigated, 

and the post-treatment conditions were optimised. The changes in hardness, compression, 

tensile and impact of HB1, HB3A, and HB3B materials after post-treatment were 

investigated in relation to the untreated materials and the changes of microstructure was 

observed by SEM. The test results show that the fracture performance of the sintered parts 

with enhanced post-treatment improved considerably. 
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2.3 SLS process reflections 

This Chapter reviews the relevant academic work which has been conducted in the field of 

SLS. 

This chapter firstly analyses the basic process principles of SLS machining, examining 

SLS machining process in detail, especially some of the main factors which affect the 

quality of SLS machined parts. An understanding of the conditions affecting SLS processes 

is also referenced in the literature. However, potential gaps in knowledge are identified 

when seeking to understand the evolution of microstructures within components 

manufactured through SLS. The focus of this study is to bridge this knowledge gap through 

the development of a tool which supports the understanding of this phenomenon in more 

detail. 

In the SLS process, the laser scan spacing should be smaller than the laser spot radius 

in order to ensure uniform scanning laser energy distribution. As the thermal conductivity 

of polymer powders is very small, the temperature gradient between the laser zone and its 

adjacent area is large; the sintered part is prone to warpage and deformation. Therefore, it 

is necessary to preheat the polymer powder sintered material and increase the temperature 

of the powder bed as much as possible. SLS of polymers is a very complex and unstable 

thermal conductivity process. The use of heat transfer models has the potential to simulate 

changes in the temperature field during laser sintering, and to support the rational selection 

of process parameters. Both crystalline and non-crystalline polymers can be used as SLS 

forming materials, but there are significant differences between the two in terms of 

sintering behaviour and sintered part properties. Laser sintering of non-crystalline 

polymers occurs above the glass transition temperature (𝑇𝑔), with low volume shrinkage 

during the sintering and high forming accuracy; however, due to the polymer’s high 

apparent viscosity,  sintering speed is slow and does not result in dense sintered parts, 

which produces poor mechanical properties. In contrast, crystalline polymers produce a 

melt-curing mechanism during laser sintering, which can be directly sintered into dense 

parts. 

The essence of the SLS mechanism is the study of a series of physical and chemical 

phenomena which occur while the powder material is processed by laser beam; meanwhile 
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the optimisation of the process parameters is effected by the control of various processing 

parameters in order to ultimately ensure that the sintered part meets the required forming 

quality. Due to the complexity of the sintering process and the limitations of the analytical 

tools, the SLS mechanism has not been sufficiently studied and remains only partially 

understood. The study of laser-material interaction has provided useful theoretical support 

for the SLS sintering mechanism. However, the majority of current studies are at micro 

scale; advances in observation methods and theories render it easier to explain the 

homogeneity of the sintering tissue, the generation of pores and cracks, and the sintering 

deformation both at microstructure level, and also at the kinetic and even electronic levels; 

this is likely to play an important role in the improvement and application of SLS 

technology. 

Based on the findings in this section, further research into fracture mechanics and FEM 

applied to SLS fracture are discussed in the following section.  
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Chapter 3 

FEM applied to SLS fracture problems 

Today, the analysis of crack growth and fatigue life is an important issue in mechanical- 

and aeronautical engineering. In these engineering sectors, the structure is subjected to 

repeated cyclic loading within the range where the stress is far below the yield strength; 

when stress concentration at the crack tip exceeds the critical value, rapid instability growth 

occurs, resulting in brittle failure of the structure. Inevitably, in all engineering materials, 

there are initial defects such as fine-scale cracks, inclusions and fine-scale holes. At the 

beginning of cyclic loading, the growth rate of cracks is extremely slow, but after a period 

of accumulation, the cracks grow rapidly and in the vicinity of the crack tip, there is a 

sprouting and accumulation of microscopic initial defects, which interact with the main 

crack. Eventually, brittle damage occurs without warning, which can cause major 

engineering accidents [84]. 

Fracture mechanics often work with strong discontinuities and clearly define cracks 

which maintain continuity in the displacement field of plastic and fracture mechanics. In 

some ways, the theory of continuous- and discrete methods can be combined and revised, 

and fracture mechanics can be used to resolve the weak discontinuity problem [85]. In this 

particular project, a damage-based cohesive law is used for fatigue fracture analysis,              

i.e. the extended finite element method (XFEM), which is a discontinuous method [86, 87]. 

XFEM is a numerical analysis method for fatigue crack expansion based on fracture 

mechanics. Compared to conventional finite processes, XFEM has unparalleled advantages 

in modelling crack extension and is widely used in discontinuous media problems such as 

metallic cracks, non-metallic inclusions, holes, and concrete cohesive cracks. For the 

existence of fracture in SLS printed parts, it is important to establish the XFEM model for 

material nonlinear analysis as a guide. 

In this chapter, firstly, the fundamental aspects of fracture- and damage mechanics are 

briefly discussed, followed by a general understanding of XFEM. A literature review on 
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research into SLS fracture modelling follows, in which currently-published understandings 

are discussed, with an emphasis on areas of divergence and opportunity. It is these areas of 

opportunity which provide the focus for the research presented, and a valid research gap is 

identified. 

3.1 Fracture mechanics 

Fracture mechanics are the theoretical basis of the design of damage tolerances for 

structures, and are divided into linear elastic fracture mechanics and elastic plastic fracture 

mechanics. Linear elastic fracture mechanics are applicable to the case of small-scale 

yielding near to the crack tip; elastic plastic fracture mechanics are applicable to the case 

of large-scale yielding near-tip cracks [88]. 

3.1.1 Linear elastic fracture mechanics 

 

Figure 3.1: Three modes of fracture [89] 

On the assumption of linear elasticity of material, the stress field has a r1/2 singularity near 

the crack tip. In 1921, Griffith [89] firstly identified initial defects as the cause of brittle 

damage in materials below yield strength, and used the change in energy as a criterion for 

judgement of the continuation of crack extension. Irwin [90] developed Griffith’s theory 

by considering material yielding at the crack tip, introducing the sensitive intensity factor 

(SIF) and energy release rate in 1957. In 1963, Wells [91] introduced the crack opening 
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angle (COD) as a parameter of material fracture strength for elastic plastic analysis. In 

1972, Rice and Levy [92] introduced the path-independent J-integral, which was widely 

used to describe the stress and strain fields for the elastic-plastic extension of cracks. 

According to the relative displacement of the crack surface, fracture mechanics divide 

the fracture, enabling a crack to propagate into an opening type (Mode I), a sliding type 

(Mode II) and a tearing type (Mode III), as shown in Figure 3.1 [89]. 

A Mode III crack is often seen as a three-dimensional fracture problem. In practical 

engineering, the role of shear cannot be ignored, and the actual two-dimensional fracture 

problems are mainly model I-II crack problems. The study of SLS part cracking should be 

addressed two questions:  

(1) In what direction does the crack expand?  

(2) Under what conditions do cracks begin to expand? 

The determination of cracks’ critical conditions is very important for the study of 

fracture. In recent years, many researchers [75, 93, 94] have proposed crack fracture criteria 

by means of theoretical studies and experiments. These theories determine the directional 

angles, which mostly converge to similar expansion paths. For example, these include the 

theories of critical plane stress, maximum circumferential stress, maximum energy release 

rate, and the maximum strain energy density. 

The stress intensity factor uniquely characterises the strength of the crack tip stress 

field and is an important parameter in determining the fracture of a material. The methods 

used to calculate the stress intensity factor are displacement extrapolation, virtual crack 

expansion, virtual crack closure technique (VCCT), and interaction integration. A research 

study by Zerbst et al. [95] demonstrates that the interaction integral method has the highest 

accuracy. This method uses area points rather than line integrals to calculate interaction 

integrals, subsequently deriving the stress intensity factor. The crack propagation in actual 

engineering mainly consists of compound cracks, and its shearing effect cannot be ignored. 

For compound cracks, the direction angle of crack propagation is considered as a function 

of compound stress intensity factors KI and KII. In research into crack growth rates after the 

proposition of the classic Paris formula, a large number of experimental studies proposed 

its modification, to take into account various additional factors such as the stress intensity 

factor threshold, stress ratio, and the interaction of overload and low load. 
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3.1.2 Elastic plastic fracture mechanics 

 

Figure 3.2: Stress distribution and plastic zone around the crack tip [96] 

According to the assumption of linear elastic fracture mechanics, the stress at the crack tip 

is theoretically infinite. Without consideration of the yield of the crack tip material, a 

conservative numerical solution is obtained. When the size of the plastic zone at the crack 

tip is small, the results of linear elastic fracture mechanics remain strongly representative, 

and the majority of brittle materials fall into this category. As the size of the plastic zone 

is close to the crack size, it is elastic plastic fracture, and low and medium strength steel 

generally exhibit elastic plastic fracture. On the assumption of material elastic plasticity, a 

larger plastic zone appears at the crack tip; the stress distribution is shown in Figure 3.2 

[96]. 

Irwin [33] developed a second-order approximation method for a small plastic zone 

based on the redistribution of stress at the crack tip. Dugdale and Barenblatt [97] assume 

that the stress is equal to the yield strength in the plastic zone, replacing the actual crack 

length with the effective crack length, and proposing a conditional yield zone model and a 

cohesive force model. Wells [91] proposes a new failure criterion for elastic plastic fracture, 

i.e. crack opening displacement (CTOD). In brittle materials, the crack opening angle is 

almost zero, while in elastic plastic materials, due to the large deformation of the crack tip 
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material and the dullness of the crack tip, the crack opening angle cannot be ignored. 

Therefore, the first- and second-order CTOD methods are proposed. 

Based on the theory of energy conservation, Eshelby [98] defines a series of path 

independent line integrals, named J-integrals, in the name of energy-momentum tensor. 

Rice and Rosengren [92] develop the J-integral theory, establishing the relationship 

between J-integral and energy release rate, and using J-integral as the basis for failure 

judgement of elastic plastic fracture. Hutchinson, Rice and Rosengren [92, 99] study the 

singularity of the J integral, establishing the well-known HRR singular field; this laid an 

important theoretical framework for elastic plastic fracture mechanics. 

3.1.3 Fatigue crack growth models 

 

Figure 3.3: Three regions for typical patterns of crack growth rate [100] 

This cycle may initiate new cracks or lead to the growth of existing defects in the structure. 

In order to clearly understand the failure of printed engineering structures under fatigue, it 

is necessary to take the crack initiation test . The purpose of the crack initiation test is to 

determine the number of cycles required for crack growth from the existing division. 

However, in the start-up test, there was no pre-crack in the sample, and the number of 

cycles required for a new crack was determined. In the crack growth experiment, crack 
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length a and the number of cycles n are collected in order to determine the crack growth 

rate. According to the experimental data on crack growth, the relationship between the 

crack growth rate and load can be identified. Here, the energy release rate is usually 

calculated by an analytical formula based on linear elastic fracture mechanics (LEFM) [101, 

102]. Figure 3.3 shows three different regions of crack growth rate, which are different to 

experimental observations. Region I and  Region III represent early development of a  

fatigue crack and the fatigue crack growth at very high rates, respectively. Region II defines 

a stable crack propagation system, which can be described by Paris’ law [100]. 

The fatigue crack growth (FCG) model is an empirical model according to fracture 

mechanics, which describes experimental data by fitting parameters of empirical curves in 

this form [103]: 

  (3.1) 

The stress intensity factor (SIF) K was introduced by Irwin in 1957 around the crack 

tip after his analysis of the stress field, for static fracture analysis [104]: 

 K = Fσ√πa (3.2) 

where a is the crack length while F is the geometry factor which relies on the relative crack 

length α = a/b. 

In 1961 Paris et al. proposed the concept of using a simple empirical Equation 3.3 to 

apply linear elastic fracture mechanics (LEFM) to fatigue [103]. Paris’s law describes 

fatigue crack growth rate, da/dN, as a power law function of applied energy release rate. 

and is today the most common model used for FCG analysis. It has been developed to 

reduce the fatigue experimental data and to characterise fatigue crack propagation for a 

large range of load levels. 

  (3.3) 

 ∆K = F∆S√πa  (3.4) 
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where CP and mP are constants which rely on the material, frequency of the cycles and the 

environment, and S is the stress range. 

3.1.3.1 Paris model 

Paris’ law is a simple format, and can more accurately describe the growth of fatigue cracks 

at the stable stage; it meets the requirements of general engineering structure fatigue design 

and verification. It is most commonly used in fatigue crack growth rate formulae [105]. 

Due to the internal dispersibility of the material’s structure and mechanical properties, and 

the errors in external conditions such as specimen size, measurement technology and test 

environment, the material parameters usually obtained from the test have a certain degree 

of dispersibility. In engineering applications, the material parameters in Paris‘ law are often 

taken as certain values (the average value is the most common), but this processing method 

cannot provide failure probability or reliability indicators. In order to carry out structural 

durability and damage tolerance design, and in-service safety evaluation, the method of 

probability statistics should be used to study the fatigue crack growth rate, and the 

corresponding probability model should be established for fatigue reliability analysis [106]. 

3.1.3.2 Walker model 

Compared to the Paris model, the Walker model has strong capacity to predict the stable 

crack propagation stage, with a simple form and fewer parameters [107]. The Walker 

model is a mathematical formula commonly used in engineering applications to describe 

crack growth rate. It can be applied to crack growth data with different stress ratios. The 

model is given by the following relationship: 

(3.5) 

(3.6) 

Where the constants CW and mW are very similar to the constants in the Paris model         

(see Equation 3.3) CP and mP . The Walker model’s crack growth rate is a modified model 

of the stress ratio R. According to the test data of the fatigue crack growth rate da/dN and 
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the stress intensity factor amplitude △K, the fitting curve of the crack growth relationship 

under different stress ratios can be made. The parameter △K is an equivalent zero-to-

tension stress intensity which leads to a similar growth rate as the actual Kmax, R 

combination. The third curve fitting parameter, γW, is a constant for the material. This 

parameter may be obtained from data of the various R values, linear regression or trial and 

error. It is possible that there is no value to be found for γW, then the Walker model cannot 

is not valid. If γW = 1 then △K equals △K and the stress ratio has no effect on the data 

[105]. 

3.1.3.3 Forman model 

Taking into account both the stress ratio and the influence of fracture toughness, Forman 

proposed the following model to study the propagation law of fatigue crack growth in the  

Region II and III (Figure 3.3). Forman’s model for the fatigue crack growth rate includes 

the correction of the stress ratio and the correction of the fracture toughness Forman’s 

model is given by the following relationship [105]: 

 

  (3.7) 

 

where Kc is the fracture toughness. If crack growth data for various stress ratios are 

available, these may be used by computing the quantity in Equation 3.8 for each data point 

[108]. 

  (3.8) 

 

Different modifications have been proposed to the Paris model to address issues such 

as mode-ratio or load ratio on crack growth rate [108]. For the simulation of fatigue crack 

growth rate under different stress ratios, the accuracy of the fitting is related to the 

dispersion of the test data. Generally, the Paris model fitting formula does not change along 

with the change of the stress ratio. It represents the mean value formula of the overall data; 

the Walker and Forman model formulae themselves change with the stress ratio, and the 
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change trend is essentially the same: the increase in crack growth rate increases with the 

stress ratio. In the case of multiple stress ratios, the accuracy of the three models is 

gradually reduced. 

3.1.4 Crack growth direction 

The direction of crack extension is considered to be a function of the mixed-mode stress 

intensity factor present at the crack tip. Although there are several available guidelines for 

both two and three dimensions, they usually differ only in the initial kink angle, but then 

converge to a similar crack path. In two dimensions, these methods tend to give the crack 

extension angle, which is usually the minimisation direction KII [109]. 

In two-dimensions (2D), the major standards for the crack extension direction are the 

maximum strain energy density method [110], maximum energy release rate [24], and 

maximum circumferential stress [111], and the critical plane approach. In the literature, 

other available standards are the generalised fracture criterion [112] and the standards of 

energy release rates. With finite elements, the standard which is most amenable to 

modelling crack growth is maximum circumferential stress, as the growth direction is given 

in a closed form solution in terms of the mixed-mode stress intensity elements. θc is given 

in a closed form solution in terms of the mixed-mode stress intensity factors. The maximum 

circumferential stress criterion is given as the angle θc given by: 

 

  (3.9) 

3.1.5 Crack growth magnitude 

At every cycle of fixed amplitude fatigue, crack growth can be micro-scale. Two main 

approaches are suggested in the literature for crack extension in a given simulation iteration 

of a constant amplitude load. The first approach assumes that known and limited growth 

will occur in a given iteration, while the second considers that some control laws, such as 

the fatigue crack growth law, can be used to find corresponding growth increments in a 

particular iteration. For the situation of variable amplitude loading with unknown 
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correction factor model for given fracture geometry, the method for constant amplitude 

loading is no longer effective, and each cycle must be modelled in order to predict the 

amplitude and path of fracture growth [113]. 

3.2 Interface damage approaches 

Interface damage approach is taken into account in the modelling of SLS printed parts 

[106]. The use of different modelling methods of delamination has been widely researched 

in the modelling of composites. The most commonly used methods of calculation are 

surface-based cohesive behaviour (SBCB) interaction, cohesive elements, and virtual crack 

closure technique (VCCT). The advantages and disadvantages of these methods in SLS 

print part modelling, are described in detail below [114, 115]. 

3.2.1 Virtual crack closure technique (VCCT) 

Before the appearance of the virtual crack closure technique (VCCT), many academics had 

been exploring this issue for some fifty years. The earliest method of using finite element 

to calculate the crack initiation toughness was to model the specimen with cracks through 

finite element. During the modelling process, a very fine mesh was created near the crack 

tip, and then adjusted according to the front edge of the crack tip. The extrapolation of the 

element extracts the corresponding stress and displacement, and finally calculates the 

crack’s fracture toughness. It is evident that this method is complex to operate, creates a 

heavy workload, and requires extremely high mesh quality, especially at the crack tip [16]. 

Subsequently, Irwin [22] proposed the strain energy release rate (SERR), which created a 

new opportunity for the use of finite element to solve fracture toughness. Researchers 

developed the virtual crack extension technique (VCET) through the concept of 

corresponding variable energy release rate. This method uses the finite element to model 

the specimen with cracks. The first step involves the loading of the model, then the 

extraction of the stress at the crack tip node; in the second step, the crack propagation 

distance is assumed and rebuilt. Subsequently the same load is applied, displacement is 

extracted at the node of the original crack tip, and the fracture toughness of the material 

according to the strain energy release rate is obtained. The VCET method does not require 
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high grid quality, and the theoretical method is easy to understand, but the calculation 

process is more complicated. On this basis, Rybicki [33] and Raju [35] modified and 

mathematically explained the VCET, obtaining the VCCT. Compared to the VCET method, 

the VCCT method is much simpler. Only one step of finite element analysis is required to 

obtain the strain energy release rate, and accuracy is also guaranteed. In the VCCT, it is 

assumed that the opening displacement of the node at the tip of the virtual crack is 

approximately equal to the opening displacement of the node behind the actual crack tip. 

 

Figure 3.4: VCCT crack propagation scheme [116] 

In VCCT, the energy released △a during the crack propagation is equal to the energy 

required to close the crack with a size equal to △a. This technique requires a two-step 

solution because it uses the force of the first step before crack propagation and the 

displacement value of the second step. In Figure 3.4, the energy required to close the crack 

between points i and j is calculated as [116]: 

  (3.10) 

 

     Where X1i and Y1i represent the shear and opening forces at node i in step 1.  

     The shear and normal openings of node i in step 2 are △u1i   and △w1i. 



39 

3.2.2 Cohesive element 

The cohesion element model is a numerical method used to simulate crack path propagation. 

The essential theory of this method is based on elastoplastic fracture mechanics. It assumes 

that ideal linear elastic materials have crack nucleation initiation and crack propagation 

during the fracture process. The earliest cohesion model is that of Dugdale[93] and 

Barenblatt [31] whose original proposal was to solve the problem of the singular point of 

the crack tip in linear elastic fracture mechanics. They divided the crack into two parts: one 

part is a free surface, the other part has a cohesive force zone, and advanced the hypothesis 

of the crack tip cohesion zone. This hypothesis considers that, within a critical range, the 

cohesion of the crack surface is a function of the opening displacement, namely traction-

separation law. 

This approach is the use of cohesion element to simulate the fracture of SLS printed 

parts [114]. In the cohesion element zone, the cohesion force increases with opening 

displacement, but there is a limit value for the cohesion force. When the cohesion force 

does not reach this value, the material is in the linear elastic deformation stage; when this 

limit value is reached, the material begins to enter the shape deformation stage. When the 

cohesive force drops to zero, the material is completely broken and fracture occurs. At this 

point, the cohesive energy of the material reaches its maximum value. This value is termed 

the ‘critical value of cohesive energy’. It is clear that the important features of the cohesion 

model are the limit value of cohesion force and the critical value of cohesion energy. 

Because the cohesion element model is simple and effective, it can be calculated in 

finite element methods and the technology is relatively mature. It has been included in 

commercial finite element software, such as ABAQUS software, and has been applied in 

many projects. 

3.3 eXtend Finite Element Method (XFEM) 

Due to the limitations of the above methods, the advantages of the finite element method 

have gradually evolved. In contrast to the above methods, the finite element method 

generates a high level of accuracy in solving the stress and displacement fields at the crack 

tip. Through the connection between the stress, displacement and the stress intensity factor, 
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the finite element method has become an efficient solution for the stress intensity factor. 

Accurate numerical solutions are widely used in research into crack propagation problems. 

The finite element method has many advantages, such as being suitable for arbitrary 

geometry and arbitrary boundary conditions, as well as various nonlinear problems. 

Abaqus is a popular suite of finite element analysis software. It provides linear and 

nonlinear analyses of mechanical and fluid dynamics, including multi-body systems and                    

multi-physical field coupling [26, 118, 119]. In this case, the crack issue is internal object 

geometric discontinuity problems caused by the mutation; a problem of this nature is the 

strong discontinuity problem. To resolve the crack issue, Abaqus provides two commonly-

used methods. One is based on the conventional finite element method (CFEM) of research 

into the crack problem; this method requires the user to establish the model grid which is 

consistent with the actual situation of cracks. Another approach is based on the extended 

finite element method (XFEM) for crack problem research; there is no need for the user to 

establish the model grid which is consistent with the actual situation of cracks. Based on 

the platform of Abaqus, XFEM inherits all the advantages of CFEM. In addition, there are 

other various advantages of CFEM. Firstly, the division of the grid has nothing to do with 

internal structures’ geometrical or physical interfaces. Secondly, as the stress and 

deformation contours cluster, such as the crack tip, the precision of meshing is not required. 

Thirdly, when crack initiation is stimulated, the grid subdivision does not have to be 

divided again [59, 120-122]. Therefore, relative to CFEM, XFEM is especially effective in 

strong discontinuity problems such as crack growth problems. 

The extended finite element method (XFEM) is a finite element method in which the 

interpolation of enrichment functions is added to the standard approximation. 

 

Please note that this article does not use the multi-scale Fe method [103]. 

 (3.11)  

 

where Nj and NB are respectively shape functions for normal as well as enriched nodes ustd 

are displacement associated with additional degrees of freedom. e.g. the jump occasioned 
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by a crack in the displacement field, uenr, displacements of standard degrees of freedom, as 

explained in the following sections. aB
k are the added degrees of freedom and Ψ is a special 

function to effectively computed the discontinuity associated with a crack or the asymptotic 

field ahead of the crack tip [123]. 

 

The advantages of XFEM can be summarised as follows: 

• Allowing cracks to be carried inside or through the element, the meshing can be 

carried out irrespective of the crack shape, and no re-sectioning of the mesh is 

required to simulate crack extension, saving computational costs. 

• Using Heaviside enrichment at the crack face and crack tip to simulate 

discontinuities, adding additional degrees of freedom to the element nodes near the 

crack face and crack tip, and capturing the crack tip singularity field by means of a 

shape function which satisfies the appropriate properties, allowing accurate solutions 

to be obtained on coarse meshes. 

• It is applicable to a wide range of material properties and multi-media problems, and 

is more applicable to problems such as geometric and contact nonlinearities than the 

boundary element method. 

• Most of the elements remain conventional finite elements, which can be effectively 

combined with conventional finite elements for large scale finite element parallel 

computation techniques, and its programmes are easy to write into commercial finite 

element software [124]. 

3.3.1 Heaviside enrichment 

For the modelling of cracks in uniform materials, two different enrichment schemes are 

used. For elements cut entirely by cracks, the re-amide concentration function is employed 

[125]: 
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 Ψ(x) = {
 +1  𝑖𝑓 𝑥 ≥ 0 (𝑎𝑏𝑜𝑣𝑒 𝑐𝑟𝑎𝑐𝑘)
−1  𝑖𝑓 𝑥 < 0 (𝑏𝑒𝑙𝑜𝑤 𝑐𝑟𝑎𝑐𝑘)

 

 (3.12) 

This form displays discontinuity or ‘jump function’, which offers a similar stress and 

strain field on both sides of the crack. Around the cracks, the approach is to work on adding 

further virtual, independent degrees of freedom to the elements [125]. 

 

Figure 3.5: Evaluation of the Heaviside function [125] 

3.3.2 Tip enrichment 

The tip of the belt around the fracture often needs additional concentration to show a special 

asymptotic field, ultimately requiring additional degrees of freedom. This is achieved 

through the following functions [103]: 

  (3.13) 

where in the local crack-tip coordinate system, r and θ are the polar coordinates. By 

the crack, the Heaviside function in Equation (3.11) cut the element, while in the element 

containing the tip, the crack tip’s enrichment functions in Equation (3.12)  introduces a 

discontinuity across the crack. Only Equation (3.12) is adopted, when a node is enriched 

by Equations (3.11) and (3.12) [103]. 
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3.3.3 Inclusion enrichment 

Sukumar was the first individual to trial the use of enrichment in XFEM to represent the 

material interface. This form of concentration is [126]: 

                                                 Ψ(𝑥) = |∑ 𝑁𝐼(𝑥)𝜁𝐼|                                                     (3.14) 

where for the material interface level set function, 𝜁𝐼 are the nodal level set values. 

However, this solution has led to a mixed problem between the unenriched and enriched 

elements. In order to improve convergence speed, a minimisation problem is proposed, and 

convergence is improved; this enrichment has been shown to have optimal convergence. It 

should also be noted that the enrichment function is zero on all nodes, thus it does not 

require moving, like a set of other enrichment functions [127]. 

3.3.4 XFEM crack growth 

The technique of calculating the stress intensity factor of mixed function by XFEM is 

adopted. The literature review conducted by Paris and Belytshko identifies the procedures, 

advantages and disadvantages of different computing technologies. The most common 

technique, based on their previous research, is to use interaction integrals in the form of 

domains extracted from J-integrals. When used with the appropriate mesh, the method has 

a high accuracy rate under different crack conditions. 

In summary, it is the domain form of the interaction integral, where the line integral is 

converted to an area integral, which is the extension of the J-Integral. The energy release 

rate is obtained by the J-Integral, and the stress intensity factor of the mixed mode is 

obtained from the mutual integral [106]. 

XFEM was initially used for the numerical simulation of elastic crack extension and was 

later developed to simulate a variety of discontinuity problems. In the context of fracture 

mechanics, Yazid et al. [94] and Luycker et al. [128] reviewed the application of XFEM in 

the simulation of various types of cracking. XFEM has been used to simulate elastic cracking, 

single and multiple cracking, cracking under static and dynamic loading, cracking in 

homogeneous and non-homogeneous materials, for example functional gradient material 

cracking, bio-material interface cracking, cracking in isotropic and anisotropic materials, 

two-dimensional cracking and three-dimensional cracking problems. 
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In terms of materials, Dolbow [35] applied the XFEM method and interaction 

integration techniques in order to calculate composite stress intensity factors for cracks in 

materials with functional gradients. Chen and Zhang [129] applied XFEM to carry out a 

study of sub-interface crack expansion paths in bio-materials. Zhang et al. [32] used XFEM 

to simulate the entrapment problem in viscoelastic media. 

In the case of dynamic crack growth, Menouillard et al. [130] used XFEM to simulate 

dynamic crack extension using explicit time integration techniques. Liu et al. [101] 

combined spectral units and extended finite elements to effectively improve the numerical 

perturbation problem in dynamic crack extension simulations. Duddu [131] used the 

XFEM method and level set method to simulate dynamic crack development in rate-

independent materials. Prabel et al. [132] used the XFEM method to simulate dynamic 

crack propagation in elastic plastic media. 

In the case of three-dimensional cracking, Sukumar et al. [133] extended XFEM to 

three dimensions for the first time to study planar type I cracking, and Gasser et al. [23] 

numerically simulated three-dimensional crack extension in concrete using the extended 

finite element method. Hosseini et al. [17] used the three-dimensional extended finite 

element method to simulate the fatigue expansion of semi-elliptical cracks in Al-Li alloy, 

considering the linear variation of the closure stresses along the crack wave front, and the 

numerical simulations and experimental data agreed. 

3.3.5 Limitations of the use of XFEM within Abaqus 

As mentioned, due to its relatively recent introduction, the XFEM implementation in 

Abaqus remains affected by certain relevant limitations [134]: 

• It is still not available in Abaqus/Explicit 

• A crack cannot turn more than 90 degrees within an element 

• There is no crack branching 

• Parallel processing of elements is not allowed 
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• Only single or non-interacting cracks can be contained in the domain 

• Fatigue crack growth phenomenon cannot be modelled 

• Only linear continuum elements can be used, with or without reduced integration 

• Only general static and implicit dynamic analyses can be performed. 

3.4 XFEM in heterogeneous material crack 

When analysing actual engineering problems, in many cases, the material is assumed to be 

isotropic and uniform. However, in fact, the materials used in the project are non-uniform 

on a certain scale, and there are often many interior defects, such as holes, inclusions, and 

cracks. These defects seriously affect the overall performance of the structure and reduce 

its service life. The question of how to accurately model and simulate these defects and 

analyse their influence on fracture parameters and crack propagation is of great 

significance to ensure the safety of structures. The finite element method was first used to 

simulate this nature of problem. By meshing all non-uniform parts, this kind of problem 

can be simulated more accurately. However, this processing method involves a significant 

number of computing grids, which consume a large amount of computer memory and CPU 

space; on the other hand, for the crack growth problem, each sub-step needs to be redrawn, 

which greatly limits application of the finite element method in the crack propagation of 

heterogeneous materials. 

The combination of XFEM and the level set method enables various types of 

discontinuities (holes, inclusions, cracks, and material interfaces) to be independent of the 

calculation grid. For crack propagation problems of heterogeneous materials with a large 

number of discontinuities, this saves time; the cumbersome operation of modelling various 

discontinuities and meshing is eliminated, and the problem of mesh redrawing caused by 

crack propagation is avoided. On the basis of this characteristic, XFEM has been used to 

conduct extensive research into the crack growth of non-uniform materials containing holes 

and inclusions [135]. 
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Based on XFEM, Daux [136] simulated the problems of porous holes, multi-branch 

cracks and cracks caused by holes. Sukumar [133] combined the XFEM and horizontal set 

method to simulate the problem of holes and inclusions, and Huynh and Belytschko [137] 

used XFEM to study the fracture problems of two-dimensional and three-dimensional 

composite material, while Chen and Zhang [129] used XFEM to study interfacial crack 

propagation in dual materials. Pathak et al. [138] used XFEM to analyse the fatigue life of 

a flat plate with a large number of randomly distributed discontinuities. Jiang et al. [118] 

studied the influence of holes, inclusions and cracks on the dynamic stress intensity factor 

of the main crack based on XFEM. Kumar et al. [139] proposed a homogenised XFEM to 

evaluate the fatigue life of edge cracks in a discontinuous plate. In recent years, many 

academics have studied the homogenisation and equivalent performance of heterogeneous 

materials based on XFEM [140, 141]. In the majority of the abovementioned studies, 

traditional XFEM was used. For problems with a large number of discontinuities, only a 

very fine global computing grid can be used, and computing efficiency requires 

development. 

3.5 SLS fracture modelling 

On the basis of the research background [10, 68, 141], it is unnecessary for the prediction 

of macrostructure performance to have a better microstructure representation. Specifically 

in terms of strength, metallographic characterisation and damage, it has examined the 

properties as well as the performance modelling of SLS materials. With a simple macro 

scale model to successfully predict dynamic damage, it is not yet possible to adequately 

represent the SLS, and the microstructure’s effect is highly significant. 

The physical simulation of the SLS process refers to the study of the change laws of 

physical quantities (fields of temperature, stress, and deformation) in the process, with the 

aim of understanding the material sintering process in depth, and ultimately improving the 

quality of sintered parts. The sintering process is deconstructed into temperature field, 

stress field, deformation field and microstructure field. This deconstruction is helpful to 

enable analysis of the evolution laws of the sintering process, and is very valuable in the 

calculation of the deformation and stress of sintered parts. The microstructure of a material 
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depends not only on its chemical composition, but also on the thermal history of its 

sintering process. The microstructure, especially its influence in the laser sintering heat-

affected zone and melting zone, is more noteworthy. 

Through the quantitative analysis of these state fields, it is helpful both for researchers 

to understand the microstructure formation of SLS sintering process, and to analyse the 

influence of various process parameters on the quality of sintered parts. Currently, due to 

the incomplete mathematical description of the above-mentioned physical fields, in-depth 

research into the physical process of SLS is required. 

Gusarov, Laoui and Wang [143, 144] provide insights into the evolution of the powder 

temperature field in SLS, which is essential for the study of the sintering mechanism and 

optimisation of the sintering process parameters. They first analysed the contact heat 

transfer between two particles, and subsequently analysed and discussed the effective heat 

transfer coefficients of face-centred cubic and body-centred cubic powder accumulation 

models, which laid the foundations for the theoretical analysis of SLS temperature field 

and stress field. 

Kolossov [145] proposed a SLS processing thermodynamic model which considers 

heat transfer nonlinearity and phase change, and used a three-dimensional finite element 

method to analyse the temperature change and the deformation of the sintered part during 

the sintering process. Studies have shown that changes in material properties caused by 

temperature changes strongly affect the sintering process, and the density of sintered parts 

can vary between very loose (50% theoretical sintered density) and close to compact. 

Dong et al. [146] used the finite element method to simulate the sintering process of 

the SLS single track in three dimensions. A finite element model considering heat transfer 

and sintering phenomenon in the sintering process is established. Due to the continuous 

movement of the laser beam, the model considers the instantaneous phenomenon of laser 

sintering through the change in the coordinate system, dynamically analyses the heat 

transfer problem in the sintering process, and introduces the convective heat transfer 

phenomenon into the model. Although this model can more comprehensively analyse 

thermal phenomena during processing, it is more complicated than other models. Tests 

prove that the model can be tested under certain conditions. 
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Shiomi et al. [147] focuses primarily on the finite element simulation of the metal SLS 

process. They simulated the evolution of the temperature field and instantaneous stress 

field during the sintering process of a single-layer metal powder. By analysing the 

deformation and stress distribution of the sintered sample, they inferred identification of 

the most likely place to break when the sintered sample was formed. Secondly, colleague 

academics conducted research on the generation and elimination of residual stress during 

the sintering process, and found that holding at 600-700°C for one hour can reduce residual 

stress by approximately 70% [148]. 

One of the key factors is the microstructure behaviour of an un-melted particle. It has 

been noted that, with regard to the growth of dynamic cracks under loading within the 

sintered material of an SLS particle, its behaviour is significantly affected by the presence 

of un-melted particles [27]. 

Furthermore, during the rapid melting of metallic powdered feedstock, the SLS process 

creates large thermal gradients. In solidification, certain alloys suffer from thermally 

induced microcracking which cannot be damaged by process optimisation. It is difficult to 

decide on the optimum processing parameters for a given printed engineering part. 

Therefore, in order to decide on the appropriate parameters required to create an acceptable 

part, when adopting geometries or new materials, experimentation is usually required. For 

example, for building tissue using SLS, the design of experiments (DOE) technique was 

used to study the optimum processing parameters by Partee et al. [149]. Ibbett et al. [27] 

simulated the onset and propagation of microcracks through the adoption of XFEM. 

However, very few papers have studied microcracks in printed engineering parts obtained 

by SLS. With regard to the further development of SLS, there is some research on the 

critical topics of microcracks in products. Therefore, there are no definite conclusions 

about the possible effect of SLS on microcracks. 

 

3.6 Summary 

In this Chapter, the current state of the art situation in fracture mechanics, interface damage 

approaches and XFEM has been briefly explained. A literature review about XFEM in 

heterogeneous material crack and fracture modelling follows, in which currently-published 
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understandings are discussed, with an emphasis on areas of divergence and opportunity. It 

is these areas of opportunity which provide the focus for the research presented. Several 

conclusions can be drawn from this Chapter: 

• Discussion of the application of the crack growth simulation algorithm is proposed 

in this paper in actual engineering terms. By presenting the detailed fatigue crack 

model and interface damage approach, comparing and analysing the solution and 

simulating the results of traditional finite element method and XFEM, the 

effectiveness of XFEM is verified. 

• Research into crack growth in heterogeneous materials, and analysis of the effects of 

various types of discontinuities such as inclusions, holes, and cracks on crack growth 

at macro and micro levels is presented. Under the framework of XFEM, various 

discontinuities can be independent of the computational grid, thus the mesh 

refinement method proposed in this paper can be fully utilised to refine the grids near 

to the discontinuities. For various types of microscopic defects, multilevel mesh 

refinement is performed on the local area of the defect, and the problems at different 

scales are unified into a set of meshes for calculation. Through different numerical 

examples, the effectiveness of the above method is verified, and the influence of the 

type, location, size, and other parameters of micro-defects on the growth of          

macro-cracks is analysed. 

• Among the SLS thermophysical process, many academics have constructed 3D 

temperature field and stress field finite element analysis models. These models need 

to take into account the convection, radiation boundary conditions, and the nonlinear 

characteristics of the material’s thermophysical properties, and include the process 

of sintering powder materials into solid blocks, along with the problem of drastic 

changes in thermophysical properties. 

• Un-melted particles are identified as one of the key parameters which may cause a 

crack in an SLS printed part; further study of un-melted particles will be discussed 

in the following chapter. 
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Chapter 4 

Study of DPM in microcrack paths of 

printed engineering parts obtained by 

SLS 

With applicable level set methodology, voiding and inclusion modelling in the eXtended 

finite element method (XFEM) are to be clarified. To demonstrate the flexibility and 

application of XFEM, analysis on microcrack paths in selective laser sintering (SLS) 

printed components is provided in this chapter. This investigation involves modelling of 

strong (displacement fields) and weak (strains fields) discontinuities. The un-melted 

particles and holes, causing those discontinuities, are seen to lead to the existence and 

propagation of microcracks. In this chapter, circular inclusions and holes are modelled for 

different particle densities and particle distribution patterns in materials to characterise 

their effect on crack behaviour [27, 150]. 

In the next step, the proximity of un-melted particles in SLS printed engineering parts made 

of nylon 12 has been proven to be fundamental and influential in cracking and the eventual 

failure in previous reports [27, 151-153]. After that, state-of-the-art degree of particle melt 

(DPM) and XFEM are presented, beginning with a general understanding of SLS printing 

process and commonly discussed DPM mechanism. Simulations of crack invitation and 

subsequent evolution were modelled by the integration of constitutive and fracture laws. 

Then the detailed research for nylon 12 is carried out to understand the material mechanism 

in SLS fracture problem. Three tests on numerically studying samples are carried out with 

varied distribution of unmelted particles by XFEM. Model development has gone through 

multiple stages in this field. Each of these phases attempts to improve functionality and 

accuracy of previous results. The occurrence and propagation of microcracks were 
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simulated. Therefore, comprehensive crack behaviours’ data and comparative numerical 

analyses could indicate how the DPM in the SLS component affects and controls crack 

initiation and expansion. Specific model validations and limitations in the applied 

techniques are discussed. 

4.1 Background 

It is widely known that, in SLS printing process, the foundational powder (for instance, 

nylon 12 is applied in this study) is allocated in a powder bed when a laser beam sinters 

the pattern of each slice (the cross section of CAD) on the powder bed. As the powder is 

cured, one layer, with close tie to the prior one, will be printed. The component is printed 

via the repetition of this process [1, 7]. The mechanism of the SLS has bonding 

microstructure, it is affected by some parameters leading to inhomogeneity in the final 

component, such as the input of energy, scan speed, print orientation and part bed 

temperature. 

 

Figure 4.1: The microstructure of a standard SLS part manufactured from 

Duraform PA (nylon-12-based powder accessible from 3D Systems) [154]. 

In addition to the reduction in inhomogeneity of SLS printed specimens, some investigators 

[74, 152-156] indicated that the un-melted core exists in the microstructure of specimens 

with the help of different methods such as a differential scanning calorimetry (DSC) test 

and electron microscopy. They found a strong correlation between un-melted cores and 
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mechanical properties of the final part. Figure 4.1 [154] indicates micrograph of the cross-

section of SLS printed part with full melted and crystallised particles and un-melted cores. 

The reason to the un-melted core existence is their failure in achieving the fully melted 

state during SLS process. 

The DPM is defined by the proportions of the existence of both melted and crystallised 

parts, and un-melted particles within the component [156]. The amount of energy density 

input to the part can adjust the DPM of the final part, therefore characterising an appropriate 

energy density based on the material behaviours and printing parameters is necessary. 

Andrew number is applied to measure the energy density in Equation 4.1 as follows [153]: 

  (4.1) 

As the energy density increases, the DPM grows but the amount of un-melted particles 

drop off. In this process, material transfer from a ‘double phase’ structure with both melted 

and crystallised regions, and un-melted particles to a ‘single phase’ structure with only 

melted material. The mechanical properties (i.e. Young’s Modulus and tensile strength) of 

the material rise dramatically when the DPM increases, but after a certain DPM point, the 

mechanical properties start to drop. One of reasons to this phenomenon is that is once the 

melting process is completed, this ‘single phase’ structure material becomes a new material 

due to the change of molecular structure mechanism. Since the excess input energy can 

lead to locally vaporise the polymer, gas bubbles will be occurred. The higher number of 

gas bubbles, the greater the porosity of the final parts. Another reason to this phenomenon 

is that too much energy will spill-over into regions near the part during the SLS process. It 

can lead to support part to be caked to the final part, making worse mechanical properties 

of the part [74]. Among this procedure, DPM plays an important role in the mechanical 

properties of printed parts. Furthermore, these unfinished melting process brings the 

inclusion of un-melted particles in the layer, Hitt et al. [151] stated that the presence of 

these un-melted particles is caused by crack induction and stress concentrations. It is 

concluded that when setting up the simulation of the model, the DPM is the most important 

parameter for its effect on the region of un-melted particles and fracture behaviour. 
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There are several possible polymers (as long as it is a powder) can be processed in the 

SLS, in different applications. In this chapter, only nylon-12 will be studied, and its 

advantage is that nylon-12 is the most available manufactured SLS polymers in industry. 

The excellent material properties of printed nylon-12 make it notable in the market. The 

crack behaviour of SLS processed nylon-12 products has only been mentioned in a few 

papers [27, 50, 157-159]. Thus, comprehensive data on effects of defects induced by SLS 

processing on mechanical properties under cyclic load which allows for an evaluation of 

procedure–microstructure–property connections with an emphasis on both crack initiation 

and crack growth are currently not available according to the review of previous literature. 

However, a fatal problem has been pointed out by several studies, and there is still a major 

drawback on the process of SLS compared to the convectional progress. It is truly 

necessary for post-treatment to achieve high fatigue performance, because of the given-

related defects, i.e. residual stresses and pore, and material conditions that are brittle after 

processing. Nylon-12 used in this experiment, is assumed to be under the general post-

treatment. 

4.2 Numerical implementation 

The extended finite element method (XFEM) adopted in this chapter, is a finite element 

method by which the interpolation of enrichment functions are added to the standard 

approximation [119]. After that, the solid elements are counted, which have been divided 

by the enriched function. The crack propagation mechanism implied in this method relies 

on the initiation criteria such as the evolution criteria, which depends on the material 

energy release rate. There are two distinct types of damage modelling within an XFEM 

framework, the virtual crack closure technique (VCCT) and cohesive segment approach 

[35, 160]. 

4.2.1 Improved XFEM technique 

The research of XFEM method focuses on the use of enrichment functions to better 

describe discontinuities such as the crack tip displacement field and particle inclusion 

problems, and the Heaviside function and the low-order terms of the Westergaard crack tip 
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singular field function are used to simulate isotropy. The linear elastic crack model uses 

the material interface enrichment function to simulate the weak discontinuity of the 

material interface. This makes the particle inclusion interface and the crack independent of 

the grid, and there is no need to remesh when the crack propagates. The displacement 

approximation of XFEM is: 

 

(4.2) 

Where Ni, Nj, Nk and Nm are finite element node shape functions, G represents the 

collection of regular element nodes (all nodes), G0 means a collection of element nodes for 

crack penetration, G1 is a collection of crack tip element nodes and G2 is a collection of 

interface element nodes of particle inclusions. H(x) represents the enrichment function of 

crack surface nodes, φl(x) is the enrichment function of crack tip nodes and Nm(x)χm(x) is 

the interface shape function of particle inclusions. 

The node displacement of the enrichment unit is not the real node displacement. In 

order to make all the nodes are real node displacements, Equation 4.2 needs to be 

transformed into the following equation: 

(4.3) 

4.2.2 Crack propagation and the level set method 

XFEM has been developed on the basis of level set method. This approach has been proven 

to be difficulty in solving fracture problem because it failed maintain the previous crack 

surface in a frozen state when crack propagates, letting aside the evaluation of signed 

distance function in this procedure. Adjustments and adaptations have been required since 
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the implementation of level set method in curve interfaces, such as crack. Apart from that 

very set of level marked as φ, the second set level, ψ, is also required in the measurement 

of crack tips. 

Basically, the zero-level set of function ψ(x,t) is to denote 1D crack growth. The 

intersection of the zero-level set of function ψ(x,t) and its counterpart, φk(x,t) is at the end 

of the crack where k is the number of tips. Based on previous statements assumes that ψ is 

orthogonal to φ and the notes are to denote level set function values [92]. 

 φiψi = 0 (4.4) 

According to the similar finite element shape function, the functions are interpolated in 

the mesh and they are now be written as in Equation 4.5 and Equation 4.6. 

  (4.5) 

 

Figure 4.2: Crack tip deformation field coordinates and paradigmatic contour Γ 

[92]. 

 ψ(x,t) = XNj(x)ψj(x,t) (4.6) 
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However, the zero level set of ψ cuts through the entire domain even when the crack is 

actually embedded in it. An assumption of the part is generated and it is unlikely to change 

neither its shape nor its moving paths once the crack has emerged. The consistent updates 

of φk and ψ functions lead to the recalculation of the φ function, which are used to model 

the crack growth. The crack growth direction of Θ, is one of the factor in φk and ψ evolution. 

The velocity vector v = (vx,vy), which is normal to the interfaces, is determined by the 

continuous displacement of the crack tips. 

  (4.7) 

Abaqus/Standard commercial software failed to estimate the exact time of the test to 

be performed as it is a Newton-Raphson solver. For this reason, the iterations are computed 

without time step. The calculation of increment iteration by this stimulation equals the 

velocity multi-ply by the time difference (∆t). In this equation, the velocity parameter is to 

measure the displacement (i.e. crack propagation) on the surface of printed material. 

                                                                                                                                          (4.8) 

  (4.9) 

This analysis tales references from local coordinate, among which XFEM is to measure 

the crack propagation at edges. 

4.2.3 VCCT and cohesive segment approach 

There are some methods modelling crack propagation in Abaqus, such as cohesive segment 

approach and virtual crack closure technique (VCCT). The cohesive method requires two 

elements: a damage initiation criterion and a damage evolution law. The damage initiation 

criterion reminds Abaqus of the beginning of damage When the level of stress or strain 

reaches a particular level of “strength” specified in the measurement. Then, there are six 

available options: Maximum principal stress, train, maximum nominal stress, strain, a 

quadratic superposition of the nominal stress and strain [161]. 
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The crack propagation direction for the max principal stress or strain criterion is always 

perpendicular to the max principal stress or strain. Otherwise it is need to specify the crack 

propagation direction. The damage evolution is based on the effective separation after 

damage initiates. The simplest way to define damage evolution is to specify the effective 

separation at failure (i.e. when Damage = 1). The cohesive method can be used with or 

without the presence of an initial crack. 

The VCCT does require the presence of an initial crack, and it is determined by the 

energy release rate G (i.e. the amount of energy released from the structure when the crack 

propagates, forming a new surface). Mathematically, G represents the energy released per 

unit area [161]. 

VCCT defines a fracture criterion instead of triggering and propagation. The fracture 

criterion is based on the calculation of the critical energy release rates for normal and shear 

separation Essentially, crack propagation occurs when G exceeds the critical energy release 

rate.. 

4.3 Material 

The nylon 12 powder for SLS process is a melt-curing process and therefore the melting 

and crystallisation characteristics of nylon 12 powders are decisive for the sintering process 

and the final quality of the sintered part. 

The melting process of crystalline polymers differs from that of low molecular crystals, 

which melt in a narrow temperature range of about 0.2°C. The melting process remains 

almost at a temperature where the two phases are in equilibrium until the crystals are 

completely melted. In contrast, the melting of crystalline polymers takes place over a wide 

temperature range, called the melting range, in which the crystalline polymer appears to 

melt and warm up at the same time. This is because crystalline polymers contain crystals 

of varying degrees of perfection, with the more imperfect crystals melting at a lower 

temperature and the more perfect crystals melting at a higher temperature. The melting 

point and melting range of crystalline polymers are less related to the size and distribution 

of the molecular weight than to the crystallisation history, the degree of crystallisation and 

the size of the spherical crystal. The lower the crystallisation temperature, the lower the 
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melting point and the wider the melting range; the higher the degree of crystallisation and 

the larger the spherical crystal, the higher the melting point. Figure 4.3 shows the DSC 

curve of nylon 12 sintered material measured using a differential scanning calorimeter at a 

temperature rise rate of 10°C/min [162]. 

 

Figure 4.3: Sintered nylon 12 material DSC heating curve [162]. 

As can be seen in Figure 4.3, the sintered nylon 12 has a steeper melt peak, a higher 

melt onset temperature, a narrower melting range and a higher latent heat of fusion of 93.9 

J/g as measured by DSC. These characteristics are all beneficial to the sintering process. 

Due to the higher melt onset temperature, the preheating temperature of the powder can be 

increased and the temperature gradient between the sintered layer and the surrounding 

powder can be reduced. The high latent heat of fusion prevents the powder particles 

adjacent to the laser scanning area from melting due to heat transfer, which helps to control 

the dimensional accuracy of the sintered part. 

Nylon 12 crystallises as it cools from the molten state and the rate of crystallisation is 

very temperature dependent. Since the rate of crystallisation is the sum of the rate of 

nucleation and the rate of grain growth, the temperature dependence of the rate of 

crystallisation of nylon 12 is the result of the combined effect of the temperature 

dependence of both. At temperatures close to the melting point, nylon 12 molecular chain 

segments move vigorously, nuclei are not easily formed or the nuclei formed are unstable, 
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and the number of nuclei formed is small, making the total crystallisation rate small; as the 

temperature decreases, the rate of nuclei formation increases greatly, and at the same time, 

as the polymer chains have sufficient activity, they can easily diffuse to the nuclei and 

discharge into the lattice, so the grain growth rate also increases, so the total crystallisation 

rate When the temperature continues to decrease, although the nucleation rate continues to 

increase, the melt viscosity increases, the polymer chain segment diffusion ability 

decreases, and the grain generation rate slows down, resulting in a decrease in the total 

crystallisation rate; when the temperature is below 𝑻𝒈 , the chain segment movement 

is ”frozen”, and the nucleation and When the temperature falls below 𝑻𝒈 , the chain 

movement is ”frozen” and both nucleation and grain growth rates are very low, making the 

crystallisation process practically impossible. Figure 4.4 shows the DSC curve of the HS 

sintered material from the molten state at 220°C down to room temperature at a rate of 

10°C/min. 

 

Figure 4.4: Sintered nylon 12 material DSC cooling curve [162]. 

The onset of crystallisation of the sintered nylon 12 was 154.8°C, the peak of the 

crystallisation peak was 148.2°C and the crystallisation termination temperature was 

144.3°C. The crystallisation of the sintered material mainly occurs between 144.3°C and 

154.8°C. Above 154.8°C, the crystallisation rate of the sintered material is slow and the 
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crystallisation process is difficult because the nuclei are not easily formed. difficult to carry 

out. The crystallisation rate can be adjusted by controlling the operating temperature during 

the sintering process to reduce the shrinkage stress caused by crystallisation. The tendency 

of the sintered part to failure due to shrinkage stresses caused by crystallisation can be 

reduced by controlling the operating temperature during sintering. 

 

4.4 Test1: Effect of the location of nylon-12 inclusion within 

the domain of the crack behaviour 

In this research, the computational result is to be compared with the numerical result shown 

in [27] to validate the XFEM fracture modelling technique based on VCCT and cohesive 

segment approach. Normally, the SLS printed parts are weaker in the build direction due 

to the inter-layer bonding mechanism. In this study, the interlayer strength is not considered 

and the 2D simulation is completed in a printed plane workpiece. 

4.4.1 Simulation of FEM model 

This section start with the concentrate on the evolution of an onset and propagation of 

microcracks FEM model. The model to be evaluated is able to anticipate how the DPM 

affects and controls crack initiation and propagation in SLS components. Therefore, in 

order to make the whole simulation similar to the actual SLS printed parts, additional 

assumptions and validations should be generated in the simulation. At the end of the section, 

the results of model evaluation will be analysed and discussed from various aspects. The 

FEM plane strain statics analysis will be carried out using the software package 

Abaqus/Standard 2017. 

The geometrical analysis of the model in this research depends on the numerical result 

and the modelling information acquired from the research of J.Ibbett et al [27]. In order to 

save computer capacity and improve modelling efficiency, the model form is simplified 

from 3D to 2D. Commonly, the geometry of the printed component is considered as a 

cuboid in a normal 3D space. However, as the simulation developed in this section is in 

2D, the circle is demonstrated as an un-melted particle, and the remaining part is 

represented as a melted particle. 
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A 30 mm long and 60 mm height workpiece shown in Figure 4.5, was to simulate to 

achieve a balance between accuracy and computational cost of the model. The chosen plate 

has an un-melted hole with 5 mm radius cantered at five different location (0, -23), (0, -

19), (0, -15), (0, -11), (0, -7). l represents the distance between the centre of the inclusion 

and the centre of workpiece, and these five distinct locations of un-melted particle will be 

revealed in the result. Since J.Ibbett et al [27] only give the choice of the three locations 

for the study, the effect of the inclusion location within the domain of the crack behaviour 

cannot represent clearly. Furthermore, the direction of the crack need to be investigated by 

using more choices of the inclusion location. The crack edge has an initial length of 7.5 

mm. A plane strain state is to be applied to increase loading to fracture acting on the 

workpiece and allowing crack progression. 

 

Figure 4.5: Geometry and boundary conditions of Test 1. 

A range of literature have been researched which are the varying material properties 

and examining how the tensile strength and Young’s modulus changed with energy density 

of printed parts. Duraform PA Nylon-12 (3D Systems) and PA12 powder grade (PA2200, 

EOS GmbH) are two most popular nylon-12 powder grades used in the literature [49]. 

These two types of nylon-12 powder are widely used in functional prototyping and, 

increasingly in SLS. The tensile properties of nylon-12 are specified by a set of different 

process parameters. According to Table 4.1, Hopkinson et al. [152] suggested that as 

energy density increases, Young’s modulus, tensile strength and elongation at break of 
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nylon-12 printed part rise significantly. For instance, the range of Young’ modulus 

increased from 2300 MPa to 2800 MPa when energy density changed from 0.0085 J/mm2 

to 0.012 J/mm2. Ajoku et al. [148] and Caulfield et al. [163] studied the same grade of 

material, with marginal amount of energy density input and the whole range of print 

orientations and found that the tensile properties of part (from Ajoku et al. [148]) decrease 

slightly. However, due to different sets of processing parameters from Caulfield et al. [163], 

part bed temperature was extremely low, so Young’s modulus dropped down dramatically 

but tensile strength had been remaining to be investigated. The similar behaviour was also 

found in Usher et al. [164] and Amado-Becker et al. [165] which illustrated that DPM grew, 

the tensile properties of final part increased. The range of tensile properties again varied 

noticeably, which was proven to be affected by water condition of powder and test 

temperature. In PA2200, the tensile properties seemed varied sightly, and also showed the 

similar trend as Duraform PA. 

 

Figure 4.6: Effect of DPM on tensile strength [153]. 

Amado-Becker et al. [165] stated that as the density reached a maximum value of 977 

(kg/mm3) at an energy density of 0.032 (J/mm2), the material behaved in an almost isotropic 

form, presenting average values for Young’s modulus and Poisson’s ratio, 2310 MPa and 

0.408, respectively. Considering all of the literature investigated, it would seem sensible 

to accept 2000 MPa as ideal high-performance in Young’s modulus. To assess a rough 

value of Young’s modulus and tensile strength for un-melted cores, Figure 4.6 from [153], 
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is used as reference. Referring to a certain point between ‘single phase’ structure and 

‘double phase’ structure as mentioned in Section 4.1, the tensile strength and Young’s 

modulus of un-melted cores around ten percent higher than the fully-melted material. 

Therefore, the value of Young’s modulus in un-melted cores is set up as 2200 MPa in this 

case. The maximum principal stress for damage evolution is 10 MPa and normal mode 

fracture energy is 6.3 mJ/mm2 corresponding to [166]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 

 

 

 

Table 4.1: Parameters of SLS on Nylon-12 mechanical properties in the literature. 

Author Material Machine Young’s 
Modulus 
(MPa) 

Tensile 
Strength 
(MPa) 

Elongation at

 Bre

ak 
(%) 

Energy 
Density 
(J/mm2) 

Key Factors 

Hopkinson et 

al. [152] 
Duraform PA 3D Systems SLS 

Vanguard 
2300- 
2800 

41-49 4-14 0.0085- 
0.012 

DPM 

Ajoku et al. 
[142] 

Duraform PA 
3D Systems SLS 
Vanguard 

1800- 
2050 

41-49 8-9 0.015 Print orientations 

Caulfield et 

al. [163] 
Duraform PA DTM

 Sinters

tation 2500 

700-1100 - 5-16 0.0079- 
0.028 

DPM and print orientations 

Usher et 
al. [164] 

Duraform PA DTM

 Sinters

tation 2500 

600-1900 30-52 2-16 0.015-0.06 DPM and print orientations 

AmadoBecker

 et 
al. [165] 

Duraform PA DTM SLS 125 

former 
500-2310 - - 0.012- 

0.032 
DPM 

Salazar et 
al. [158] 

Duraform PA - 1720-2010 45-57 4.4-10 - Temperature 

Seltzer et 
al. [159] 

Duraform PA - 1170-1720 - 5-10 - Water condition 

Drummer 
et al. [167] 

PA2200 DTM Sin- 
terstation 
2000 

1600- 
2000 

52-55 10-14 - - 

Dadbakhsh et 

al. [104] 
PA2200 

DTM Sin- 
terstation 2500 

- 32-35 16-18 0.056 Virgin and in-process aged 

powders 

Majewski et 

al. [153] 
PA2200 

EOS Formiga 
P100 

1250-3800 35-71 7.5-20 0.043 Thickness and print 

orientations 

Brugo et 
al. [157] 

PA2200 
EOS Formiga 
P100 

1600 58 15 0.056 - 

Amel et al. 
[168] 

PA2200 
EOS Formiga 
P100 

2000 47 6 0.056 - 

Lammens 
et al. [166] 

PA2200 
EOS Formiga 
P395 

1830-2100 46-57 3.6-15.5 - Print orientations 

Dewulf et 
al. [169] 

PA2200 
EOS Formiga 
P395 

1520-1700 39-47 4.3-19 
0.024- 
0.042 

DPM 

Cano et al. 
[110] 

PA2200 - 550-2020 33-72 4-53.8 - Temperature and print 

orientations 
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Crespo et 
al. [170] 

PA2200 - 1700 45 20 - - 

Chen et al. 
[79] 

PA12 
(VESTOSINT) 

HK P320 SLS 
system 

300 39 70 0.015 - 

4.4.2 Model validation 

The basic principle of XFEM is to take into account known features of the solution of a 

problem in the approximation of the unknown field. In fracture mechanics, the 

displacement field is enriched with a discontinuous function across the crack surface, 

which allows the simulation of crack growth in a finite element framework without the 

need to build a conforming mesh at each step of the propagation,  functions with singular 

derivative near the crack front that span the near-tip expansion of the displacement field, 

which improve the accuracy of the method. Even though the mesh does not need to match 

the crack surface, in practice, the size of its elements must be small enough with respect to 

characteristic lengths like the crack length and the crack radius of curvature. The mesh 

available from the structural analysis with the FEM of a safe component is not appropriate 

for the damage-tolerance analysis of this cracked component with the XFEM. For this 

reason, a mesh refining procedure tailored to the XFEM is desirable. A simple approach is 

to divide recursively the elements that are close to the crack until their size is deemed small 

enough. A more sound approach is to refine the mesh on the basis of an error estimation. 

In this case. the element meshing in this analysis is grounded on linear elastic solid element 

in Figure 4.7. The specimen is meshed randomly with a refined zone in the middle and un-

melted parts by CPE4 elements (a 4-node bi-linear plane strain quadrilateral). The crack 

edges, un-melted part and the dotted line are meshed with hmid, while dashed lines with h 

size finite elements. The trajectory of transition between the different zones are linear. 
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Figure 4.7: Schematic illustration of mesh seed distribution of Test 1 and finite 

element mesh for hmid=0.25mm. 

Mesh sensitivity analysis was intended to get the mesh size to its optimum scale which 

will generate a balance between certainty, running time, and storage (capacity). Table 4.2 

shows the result of the mesh sensitivity analysis on Test 1, when l equals 7 mm. The 

approximate global size of finite element (h) is set up as 1 mm. As the mesh size (hmid) 

decreases, the amount of von mises stress, tresca stress and max principal increase 

dramatically. From Figure 4.8, it can be seen that after a mesh size (hmid) of 0.25mm the 

stress values remaining unchanged by an appreciable amount, but there is an exponential 

rise in the number of nodes and elements, resulting in an increase of the running time and 

storage requirement but without much increase in the certainty of the stress. Hence, to 

guarantee the optimum performance, a mesh size (hmid) of 0.25mm is selected for meshing 

both specimen models. 
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Table 4.2: Mesh sensitivity analysis results for Test 1, when l=7mm. 

Mesh Size hmid 

(mm) 

Von Mises 

Stress 

(MPa) 

Tresca 

Stress 

(MPa) 

Max Principal 

Stress 

(MPa) 

Number of 

Nodes 

Number of 

Elements 

1.5 3.21E-01 4.03E-01 3.90E-01 1010 920 

1.0 4.02E-01 5.64E-01 5.77E-01 2027 1901 

0.75 4.69E-01 6.70E-01 6.80E-01 2629 2491 

0.625 5.40E-01 7.75E-01 7.85E-01 3167 3020 

0.5 6.02E-01 8.96E-01 8.99E-01 4091 3929 

0.375 6.91E-01 1.00E+00 1.10E+00 5833 5645 

0.3 7.79E-01 1.13E+00 1.23E+00 7985 7772 

0.25 8.68E-01 1.25E+00 1.34E+00 10486 10249 

0.225 8.86E-01 1.29E+00 1.39E+00 12355 12101 

0.2 8.96E-01 1.32E+00 1.42E+00 14823 14545 

0.15 9.06E-01 1.33E+00 1.45E+00 23703 23363 

 

Figure 4.8: Mesh sensitivity analysis results for Test 1, when l=7mm. 

Residual is calculated after running the regression model and it is the differences 

between the observed values and the estimated values. The norm of residuals is a 

measurement of the level of fitness, where the smaller the value is, the higher level of 
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fitness is, therefore it is applicable in validating this model by using Equation 4.10. fint 

representing the internal energy, and fext representing the external energy. 

The main function code for calculating the norm of residual in MATLAB is seen in 

Appendix A. This function is formed via the leading of the output data for internal energy 

and external energy. In order to apply Equation 4.10, the matrices of internal energy and 

external energy data are transferred to the vectors. Thus, the norm of residuals analysis 

results can be generated as Figure 4.10 shown with most values in norm of residual below 

0.5. It can be seen that from Figure 4.10, the values of the external energy and internal 

energy starting to grow at the beginning; when time is around 0.2, the external energy 

continue to grow, but the internal energy fall off to about 7 MPa. The reason to this 

phenomenon is that only takes about 0.2 time period to complete penetrating the whole 

plate, after which the plate is break into two parts, and the simulation only takes a few more 

time to finish the process. Therefore, it is energy dissipation due to penetration of the plate 

that makes external and internal energy different. 

 

Figure 4.9: Norm of residuals analysis result. 

Norm of Residual = 

 
 f int − f ext   

 
 f ext    
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Figure 4.10: Comparison of the external energy and internal energy. 

In addition, the crack behaviour measured in the simulations achieved a significant 

result in comparison with J.Ibbett et al. [27] results, as depicted in Figure 4.11. In the result 

of J.Ibbett et al. [27], since the crack did not penetrate the sample, the crack path is not the 

same as the result of the simulation. The values of stress field for the simulation and J.Ibbett 

et al results are similar. Furthermore, the inhouse code was used in J.Ibbett et al. [27], 

however, but the software package Abaqus/Standard 2017 was applied in this study. 

Different assumptions might be made for these two analyses. Therefore, the visual 

validation does not seem to be suitable for this study. 
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Figure 4.11: (a) l=23mm, (b) l=15mm, (c) l=7mm. Compare with computational crack 

propagation with different location of un-melted particles in Test 1 (lhs) and in 

J.Ibbett et al. Von-Mise stress field (MPa) results (rhs). 
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4.4.3 Results and discussion 

According to Figure 4.11, the crack path only showed slightly different behaviour in 

distinct location of un-melted particles, but it is difficult to observe results of crack path 

and length. In XFEM simulation in Abaqus, there are two types of field output to describe 

the crack behaviour. Namely, PHILSM indicates signed distance function in describing the 

crack surface, and PSILSM indicates signed distance function in describing the initial crack 

front. However, the draft field output cannot generate crack length and geometric 

parameters of crack. To calculate the 2D crack length, firstly, the crack length of single 

element needs to be determined, and then the total length of the crack can be obtained by 

cumulative summation. Since the crack tip cannot stay inside the element, but not the 

boundary of element, it can be generally concluded that the crack is a straight line in the 

element. In Figure 4.12, the two intersection points of the crack on the boundary of the 

element can be found as it is determining by the position when PHILSM is equal to zero 

among those four nodes. Therefore, the geometric parameters of crack can be calculated. 

The CrackGeo V1.3 Plug-in was integrated within ABAQUS framework to indicate the 

crack path and length in zooming detailed by using this mechanism. The CrackGeo V1.3 

is an ABAQUS post-processing plug-in. When the model uses XFEM and Cohesive 

elements to simulate cracks, it can extract two-dimensional and three-dimensional crack 

data, includes the number of cracked elements, the length of the crack and the final shape 

of the crack. 

 

Figure 4.12: The mechanism of calculating the crack length. 

In this case, the crack path and length were plotted in coordinate as Figure 4.13-4.17 

shown. In the crack path figures, the coordinates of pre-defined crack are from (-15,0) to 

(-7.5,0). The coordinates of the plate are (-15,30), (15,30), (15,30) and (15,-30). To get the 
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zooming detailed results, Figure 4.13-4.17 only show the middle section of the plate. 

Therefore, the crack tip starts to open at point (-7.5,0), and then move upwards. 

Furthermore, the crack length unit (mm) was described as length against simulation time. 

The stress/strain field near the inclusion is destroyed. When crack propagation is 

involved, the direction is affected by the nature and location of the particles, such as the 

opening displacement/mode. One of the focuses of this experiment is the impact of 

inclusion location and stiffness on crack growth under plane strain. Figure 4.5 gives the 

definition of inclusion via analysis on un-melted particles. The particle size is used as the 

characteristic length of the sample, and the inclusion diameter is used to describe all sizes. 

The results show that the direction of crack propagation is immensely affected by 

inclusions. 

Cracks attempt to stay away from inclusions, and the pattern is accelerated as the 

inclusions move closer to the initial position of the crack. Another examination that can be 

made by this test is Figure 4.18 indicates that the interfacial stress tends to increase when 

the crack approaches the inclusion. There are two approaches, VCCT and cohesive 

segment approach, used in each simulation, which give a comparative result. In some cases 

in Figure 4.13-4.17, VCCT results are similar to the results of cohesive segment approach 

as Figure 4.14, Figure 4.16 and Figure 4.17 show, which enhanced the reliability of those 

results. Both results shows tortuous crack path, the crack path of VCCT result is generated 

more smoothly than the results of cohesive segment approach, and the reason to this 

phenomenon is that the method of VCCT opening crack is based on the combination of the 

critical energy release rates of normal and shear separation. This phenomenon can also be 

explained in crack length results, VCCT trend usually takes 0.2 simulation time to complete 

the crack growth, while the trend of cohesive segment approach is more linear. Therefore, 

The two approaches are in overall good agreement with each other, with the exception of 

the first instants of propagation where the cohesive segment approach process zone has to 

shape up, whereas the VCCT starts with a sharp crack.  
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Figure 4.13: Zooming in crack path (upper figure) and crack length (bottom figure), 

coordinates in mm, when l=7mm. 

 

Figure 4.14: Zooming in crack path (upper figure) and crack length (bottom figure), 

coordinates in mm, when l=11mm. 
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Figure 4.15: Zooming in crack path (upper figure) and crack length (bottom figure), 

coordinates in mm, when l=15mm. 

 

Figure 4.16: Zooming in crack path (upper figure) and crack length (bottom figure), 

coordinates in mm, when l=19mm. 
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Figure 4.17: Zooming in crack path (upper figure) and crack length (bottom figure), 

coordinates in mm, when l=23mm. 

 

Figure 4.18: Figure depicting S22 stress field (MPa) and crack evolution: initial (lhs) 

and crack approaches the inclusion (rhs) when l=7mm. 
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4.5 Test 2: Effect of the proximity of two nylon-12 inclusions 

within the domain the crack path 

The second experiment investigated how the proximity of two particles affects crack 

behaviour. By Setting up an offset edge crack in the sample, similar to the one in Test 1, 

adding two particle inclusions and leaving a small gap or ”bottleneck” between them to 

observe the effect of the concentrated area between them. The aim of this experiment is 

whether particles will act as stress concentrators when they are close to each other, thereby 

inducing cracks to approach them. The accuracy of the second test will be examined by 

comparing with the numerical results reported in [27] as to justify the XFEM simulation 

based on VCCT and cohesive segment approaches. The numerical modelling is also to be 

adjusted to functions as more practical internal cracks under Mode I fatigue loading. 

This section firstly introduces the simulation of FEM model, then the model validation 

will be presented. The results of simulation will be discussed based on the results of Test 

1. 

4.5.1 Simulation of FEM model 

 

Figure 4.19: Geometry and boundary conditions of Test 2. 
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The software package Abaqus/Standard 2017 was used to predict the likely crack path for 

two particle inclusion’s plate condition. In the analysis, the sample plate, 40 mm high and 

40 mm wide was set up as shown in Figure 4.19. The pre-defined crack was approximated 

by taking very small initial length of 0.5 mm in the centre. The coordinates of inclusion 

centre locations are set up as (10, 5) and (10, -7) where both un-melted particles have 5.5 

mm radius. There is only 1 mm gap between two un-melted particles, and the centre of this 

gap is 0.5 mm lower than the centre of the plate. Therefore, this gap can be used for 

examining the crack path and stress concentration. A plane strain state is applied with 

increased load to fracture further the workpiece and allow crack progression. 

From Test 1, the same mechanical properties of nylon-12 is used in this section. The 

un-melted particles are assumed ten percent stiffer. The maximum principal stress for 

damage evolution is set up as 10 MPa and normal mode fracture energy is 6.3 mJ/mm2 

referring to [166]. 

4.5.2 Model validation 

The plate FE model, as mentioned in Section 4.3, is based on linear elastic element (CPE4 

element). Figure 4.20 shows the increased number of elements is to allow the crack 

propagation and stress distributions between the two particles to be seen more clearly. The 

technique of mesh is free mesh, and the mesh algorithm is set up as advancing front. 

 

Figure 4.20: Schematic illustration of mesh seed distribution in Test 2. 
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In order to improve the mesh size, mesh sensitivity analysis has been implemented. The 

approximate global size of the element size is set up as 1 mm, and different local seeds of 

the element size start from 1 mm to 0.1mm. Table 4.3 shows the result of the mesh 

sensitivity analysis for Test 2. As the mesh size decreases, the amount of von mises stress, 

tresca stress and max principal increase dramatically. In Figure 4.21, it can be seen that 

after a mesh size of 0.2 mm the stress values do not change with noticeable amount, but 

there is an exponential rise in the number of nodes and elements, which will result in an 

increase of the processor time and storage requirement but without much increase in the 

accuracy of the stress results. Hence, to get the optimum performance, a mesh size of 0.2 

mm is selected for meshing both specimen models. 

Furthermore, the crack behaviour measured in the simulations generated a significant 

result in comparison with J.Ibbett et al. [27] results, as depicted in Figure 4.23. In the result 

of J.Ibbett et al. [27], since the crack does not penetrate the sample, the crack path is not 

the same as the result of the simulation. The values of stress field for the simulation and 

J.Ibbett et al. results are similar. Furthermore, the in-house code was used in J.Ibbett et al. 

[27], but the software package Abaqus/Standard 2017 was applied in this study. Different 

assumptions are to be made for these two analyses. 
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Table 4.3: Mesh sensitivity analysis results for Test 2. 

Mesh 

Size 

(mm) 

Von Mises 

Stress 

(MPa) 

Tresca 

Stress 

(MPa) 

Max 

Principal 

Stress 

(MPa) 

Number 

of Nodes 

Number of 

Elements 

1.0 4.11E-01 5.24E-01 5.89E-01 2111 2034 

0.75 4.89E-01 6.20E-01 7.30E-01 2653 2566 

0.625 5.50E-01 7.24E-01 8.95E-01 3804 3716 

0.5 6.52E-01 8.46E-01 1.03E+00 5272 5179 

0.45 7.49E-01 9.53E-01 1.13E+00 5766 5645 

0.35 8.28E-01 1.06E+00 1.25E+00 9490 9387 

0.3 8.88E-01 1.15E+00 1.34E+00 12208 12099 

0.25 9.23E-01 1.23E+00 1.39E+00 16832 16700 

0.2 9.56E-01 1.28E+00 1.47E+00 24751 24618 

0.15 9.61E-01 1.30E+00 1.50E+00 41627 41474 

0.1 9.66E-01 1.31E+00 1.53E+00 89362 89169 

 

 

Figure 4.21: Mesh sensitivity analysis results for Test 2. 
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Figure 4.22: Compare with computational crack propagation affected by two 

nylon12 inclusions in Test 2 (rhs) and in J.Ibbett et al. Von-Mise stress field (MPa) 

results (lhs). 

4.5.3 Results and discussion 

It can be seen from Figure 4.23 that the crack has steered towards the gap between the two 

particles and passed through the other side. Red regions between the two particles indicate 

a higher level of stress in graphs. 

 

Figure 4.23: (a) l=23mm, (b) l=15mm, (c) l=7mm. Compare with computational 

crack propagation with different location of un-melted particles in Test 1 (lhs) and 

in J.Ibbett et al. Von-Mise stress field (MPa) results (rhs). 
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The CrackGeo V1.3 Plug-in was applied to indicate the crack path and length in 

zooming detailed as Chapter 4.4.3 mentioned. Therefore, the crack path and length were 

plotted in coordinate as Figure 4.24 shown. In the crack path figures, the coordinates of 

pre-defined crack are from (-20,0) to (-19.5,0). Figure 4.24 only shows the middle section 

of the plate. Therefore, the crack tip starts to open at point (-19.5,0), and then move 

downward. Furthermore, the crack length unit (mm) was described as length against 

simulation time. 

Test 2 affirms that a ‘bottle neck’ of two particles triggers the crack ‘steering’ towards 

that location, where the proximity leads to an extreme concentration and increase of the 

stresses. This would certainly result in fatal damage of the material in most cases. 

 

Figure 4.24: Zooming in of Test 2 in crack path (upper figure) and crack length 

(bottom figure), coordinates in mm. 
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4.6 Test 3: Effect of porosity within the domain of crack 

behaviour 

During the use of SLS components in the real world, pores are highly likely to become 

unstable. In contrast to pore morphologies, sizes and their arrangement lead to different 

stress distributions in the component. Moreover, micro-cracks inevitably exist in SLS 

components. Under the influence of holes, the stress concentration generated at the tips of 

the micro-cracks can easily lead to their unstable growth. Therefore, it is a matter of strong 

significance to study the influence of the interaction between cracks and holes on the stress 

field at the crack tip. In this section, we take a SLS printed component with randomly 

distributed hole morphology size as an example to simplify the mechanical behaviours 

such as crack growth during the use of SLS printed parts, and study the interaction between 

cracks and holes, in order to predict the crack propagation path. 

Test 3 simulation is closer to a real case. The geometrical configuration of porosity 

arrangement has been reproduced from [152]. 

4.6.1 Simulation of porous structure model 

Generally, pore morphology can be approximately round or elliptical, single or randomly 

distributed. According to the SEM photographs of SLS parts, the calculation model can be 

simplified to a basic configuration which includes both round and elliptical holes; 

moreover, the development of contemporary modelling technology makes it possible to 

prepare SLS parts with controllable porosity. Therefore, in this section the ordered 

arrangement of porous structures is studied. 
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Figure 4.25: The basic configuration of a crack near a circular hole subjected to 

uniform normal stress 

The model used for reliability verification is shown in Figure 4.25. There is a crack 

with a length of 2a in the infinite plate. A circular hole with a radius R is close to the crack. 

The centre of the circular hole is on the crack extension line. The distance between the 

crack centre and the hole circumference is b, and the distance between the crack centre and 

the hole centre is c=1m, the infinite plate bears uniform normal stress in the direction 

perpendicular to the crack surface. Taking the half length of the crack as: a=0.1, 0.2, 0.3, 

0.4, 0.5m, the radius of the hole R=0.1, 0.2, 0.3, 0.4, 0.5m, both ends bear uniform normal 

stress σ=1.0Pa, elastic modulus E=1000Pa, Poisson’s ratio = 0.25. It can be observed that, 

for XFEM, the boundaries of cracks and holes are independent of the grid boundary. 
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Figure 4.26: (a) The maximum principal stress diagram; (b) Zooming in the 

maximum principal stress diagram of cracks and round holes; (c) Mesh 

deformation diagram (deformation magnification 20 times). 

Figure 4.26 (a) is the maximum principal stress diagram of the above model (a=0.4m, 

R=0.3m). The maximum principal stress diagram of the crack and circular hole area is 

enlarged as shown in Figure 4.26 (b), Figure 4.26 (c) is a grid deformation diagram magnified 

20 times. It can be seen from the figure that the grid of cracks and circular hole boundaries 

penetrating the cell is opened under normal stress. 

 

Figures 4.27 are respectively (a) Displacement diagram in the x direction (b) Displacement 

diagram in the y direction; (c) Stress diagram in the x direction; (d) Stress diagram in y 

direction; (e) Shear stress diagram. It can be seen from the figure that the existence of holes 

affects the stress distribution of the crack tip field, that is, the crack tip closer to the circular 

hole has a larger stress value. Therefore, this section focuses on the crack tip on the side of 

the hole, and studies the interaction between the crack and the hole and the influence of the 

hole on the stress field at the crack tip. To analyse the feature of this interaction, the calculation 

result of the normalised stress intensity factor is shown in Figure 4.28. 
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Figure 4.27: (a) Displacement diagram in the x direction; (b) Displacement diagram 

in the y direction; (c) Stress diagram in the x direction; (d) Stress diagram in y 

direction; (e) Shear stress diagram. 

Figure 4.28 shows that, with the increase of the crack length, F1 shows an increasing 

trend, and the longer the crack length and the closer to the hole, the faster F1 increases. In 

addition, as the aperture size increases, F1  increases accordingly. When a/b is equal, the 

larger the aperture size, the larger the F1. The above results illustrate that the crack length 

and aperture size affect the normalised crack tip stress intensity factor F1 to varying degrees. 

When the pore size is small, the F1 retains a small value, and when the pore size increases, 

the F1 increases significantly. The a/b related to the crack length also affects F1. F1 

increases nonlinearly with the increase of a/b. The larger the a/b value, the greater the 

increase in the F1 value. The above results are also consistent with the literature referenced 

[10]. 
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Figure 4.28: Normalised stress intensity factor F1 vs. a/b 

 

Figure 4.29: Contour plots of different crack lengths and hole sizes 

Figures 4.29 are respectively: (a) the maximum principal stress diagram with half crack 

length a=0.2m and circular hole radius R=0.1m. (b) The maximum principal stress diagram 

with half crack length a=0.4m and circular hole radius R=0.3m; from Figure 4.29 (a), it 

can be seen that, when the crack is shorter and the radius of the hole is smaller, the stress 

at the crack tip of the field is less affected by holes. It can be seen from Figure 4.29 (b) 
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that, when the radius of the crack and the hole increases, the stress field of the crack tip 

near the hole is strongly affected by the hole, and the stress intensity factor at the crack tip 

also increases sharply. This leads to rapid destruction of the material. 

4.6.2 Simulation of the SLS model 

According to Hopkinson et al. [152], the manufacturing parameters of SLS’s printed parts 

are applied as shown in Table 4.4. The part bed point is set up as 148◦C, with a scan speed 

of 6300mm/s, scan spacing of 0.15mm and laser power set at 9.5W. Under these parameters, 

Young’s modulus of the final SLS printed part is 1019MPa and Poisson’s ratio is 0.344. 

 

Table 4.4: Build parameters used to produce the SLS part in Test 3 [152]. 

 

Part bed 

set-point 

Scan speed (mm/s) Scan spacing (mm) Laser power W 

148 6300 0.15 9.5 
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Figure 4.30: The upper figure: the geometry of SLS printed part; the bottom figure: 

the inside location of the holes. 

 

For SLS printed parts, DPM not only affects the un-melted particles, but also influences 

the porosity of the part. As the DPM increases, the porosity of the part drops significantly. 

Figure 4.30 illustrates the geometries of SLS printed part from the standard compact 

specimen (ASTM E1820-11) and the inside location of holes is random. Some results are 

shown from Figure 4.31 by applying the technique in Test 1 and Test 2. 

It can be noted that there is no significant difference in the crack path of the 3D SLS 

model, even it is already zooming in. Since the location of the holes is quite complicated 

in this coordinate system, there is no effective way to analyse the effect of holes in cracks 

of the SLS model. Furthermore, simulation of the simplified SLS 2D model is discussed in 

the next section. 
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Figure 4.31: Zooming in crack path of SLS printed part in COH (upper figure) and 

VCCT (bottom figure). 

4.6.3 Simulation of simplified SLS model 

 

Figure 4.32: Extraction of model in SLS printed parts 

As illustrated by Figure 4.32, a square plate with side length b = 5mm, and edge crack c = 

1.1mm, the upper end fixed, the lower end model containing uniform normal stress ζ and 

shear stress η, elastic modulus E = 1019MPa, Poisson’s ratio v = 0.344 is used. For all 14 

holes, the morphology and size are shown in Table 4.5, where (take the lower left corner 

of the plate as the origin, x0 is the x-coordinate of the pore centre, y0 is the y-coordinate of 
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the coordinate centre, Ra is the long axis radius, and Rb is the short axis radius, θ is the 

angle between the long axis and the x-axis direction). 

Table 4.5: The hole size of the printed SLS part 

 

No. of holes x0 (mm) y0mm Ra (mm) Rb (mm) θ 

 

 

The crack propagation path of the SLS printed parts with different loading ratios is 

simulated and predicted, and the manufacturing process of porous SLS printed parts is also 

considered. In this section, this process is simulated as an increase in porosity, that is, an 

increase in pore size. The crack propagation is synchronised, and the crack propagation 

step length is selected as one-eighth of the crack length in the previous step. For porous 

SLS printed part with different pore sizes, the step length is selected as 1/20 - 1/30 of the 

long axis and short axis of the pore size. In this section, the porous SLS printed parts under 

different loading ratios are studied. At the same time, the above crack growth and hole 

expansion modes are selected for calculation. Through calculation, it can be seen that the 

loading ratio has a greater influence on the crack growth path. 
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Figure 4.33: Diagram of calculation results (loading in y direction at the bottom):           

(a) maximum principal stress; (b) displacement in y direction; (c) Mesh deformation 

diagram. 

When the loading at the bottom end is 10MPa, the crack firstly deflects slightly 

upwards, and its angle is smaller. It is more affected by holes 3, 5, and 10 which are closer 

to the crack tip, and it finally it deflects to hole 5. 

 

Figure 4.34: Diagram of calculation results (loading ratio 1:2 at the bottom)                       

(a) maximum principal stress; (b) displacement in y direction; (c) Mesh deformation 

diagram. 
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When the loading ratio is 1:2 at the bottom, as shown in Figure 4.34, the initial 

expansion angle is larger than that under vertical loading. With the occurrence of hole 

reaming, the crack is most affected by hole 3, and it is expanding. After a short path, it 

deflects to the hole 3 and finally penetrates the hole 3. 

 

4.7 Summary 

In XFEM, by introducing the enrichment function of the crack strong discontinuity 

problem and the enrichment function of the weak discontinuity inclusion into the 

displacement solution space, the boundary of these discontinuities is independent of the 

physical grid, thereby reducing dependence on it; whilst improving efficiency, it meets the 

accuracy requirements. Based on the extended finite element method, the interaction 

between the un-melted particles, porosity and the crack propagation of the matrix is studied. 

During the crack propagation, the optimisation algorithm in Section 4.2 is used to further 

improve the calculation efficiency. 

Three tests indicated that the DPM has a critical effect on the crack behaviour of SLS 

printed engineering part under load. The mechanism of how un-melted particles affect 

crack behaviour was examined in Section 4.4 and 4.5. It was seen that the location, number 

and size of un-melted particles bring about significant changes in crack length and path. 

Moreover, the volume of the holes affects the crack path as mentioned in Section 4.6. 

According to the results of three tests, the role of the DPM in the crack behaviour of SLS 

printed engineering part can be summarised as follows: 

• As un-melted particle is close to the initial crack, and the crack seeks to stay away 

from the un-melted particle. However, this change in the crack’s direction is too 

small or sometimes has few discernible effects. 

• As un-melted particle is closer to a crack, the crack path is more strongly influenced. 

• The existence of a ‘bottle neck’ of two un-melted particles has the most critical effect 

on a crack path. 

• As the hole is close to initial crack, the crack seeks to stay close to the hole. 
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Based on these findings summarised during the SLS process, it is important to optimise 

the value of the DPM and decrease the area of un-melted particles and holes. Therefore, 

the failure resistance of final printed part will be enhanced. In order to obtain more 

significant results, further material applications require consideration. 
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Chapter 5 

Study of microcracks in thermoelastic 

fracture mechanics obtained by SLS  

Selective laser sintering (SLS) of powder is a complex manufacturing process, involving a 

series of processes such as the interaction between a certain laser and material, the theory 

of powder sintering, and the physical and chemical changes involved in the forming 

process. In order to take a comprehensive approach to the SLS process and gain a detailed 

understanding of how to better promote its development, continuous in-depth study of the 

laser sintering mechanism is required. After years of investigation, academics have 

established that the temperature field, stress field and their changes play a vital role in the 

SLS fracture problem, which is useful in the study of the process mechanism and further 

discussion of the deformation and cracking of the workpiece during the sintering process.  

XFEM has a range of advantages including: adaptability to complex geometric 

configurations, applicability to various fracture problems, reliability based on rigorous 

theory, and high efficiency suitable for computer aided implementation. It has become the 

most widely used numerical calculation method in engineering fracture analysis. Currently, 

analysis of, and research into, SLS temperature field and stress fields is mainly reliant on 

the finite element method. 

In this Chapter, the crack under thermomechanical loading is analysed by XFEM. The 

method studied here uses XFEM formulation which can be enriched both in thermal and 

mechanical fields. Firstly, beginning with the background of SLS printed parts and XFEM 

in thermoelastic fracture mechanics, the related governing equations are presented in 

Section 5.2, after which the simulation of the thermoelastic fracture FEM model is 

provided. The results are given for a square plate with a central crack. 
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5.1 Background 

Today, the thermoelastic crack issue has become increasingly important because many 

engineering components work under thermal and mechanical load. Several analytical and 

numerical approaches can be applied to address and seek to resolve these issues. For 

example, June et al. studied a square plate with a central crack and initial crack. Modified 

mapping-collection and complex variable approach was used, followed by measurement 

of the SIF of the part. 

The numerical approach can usually handle more complicated problems than the 

analytical approach. There are many different numerical approaches, such as the finite 

element method (FEM), the boundary element method (BEM) and XFEM. Many authors 

[171, 172] report that XFEM is used in shear problems with thermal load, whereas few 

papers apply XFEM to the thermoelastic fracture problem. For the crack extension situation, 

XFEM can predict the SIF without precise mesh. 

5.2 Numerical implementation 

In the process of SLS, powder materials retain heat exchange processes such as convection, 

radiation, and thermal alternation. They continue to obey the laws described by the above-

mentioned temperature and stress fields governing equations. However, selective laser 

sintering has its own elements, for example, powder materials. The asynchrony coefficient 

is generally significantly different from the inherent coefficient of the material. Generally, 

the resonance coefficient of powder materials is very low, and the thermal and physical 

properties of the material, such as its inductance coefficient, undergo significant change 

during the laser sintering process. In the selective laser sintering, when analysing the 

temperature field, the change in the material’s thermophysical properties requires 

consideration. Meanwhile, phase change and laser Gaussian distribution also have a strong 

influence on temperature field distribution. These are all factors which should be 

considered for SLS thermoelastic fracture mechanics analysis. 

The formulae for static linear isotropic thermal problems are: 
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                               (5.1) 

These formulae are in domain Ω bounded by ΓT  which represents the temperature 

field, q is the heat flux, the displacement field is defined as u, ε represents the strain tensor 

and the stress tensor is defined as σ. Further, k is the diffusivity of the material, α represents 

the expansion coefficient and the isotropic fourth-order Hooke tensor is defined as C. 

In thermoelastic situation, the room of justifiable temperature and displacement field 

can be measured by: 

   

(5.2) 

Therefore, the XFEM includes the displacement field U and shape function Ni(x). They 

are calculated from a crack-independent grid and take into account displacement jumps on 

the crack surface as well as stress singularities at the crack tip, where the enrichment 

function is multiplied by the shape function. 

u  (5.3) 
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5.3 Simulation of the FEM model 

 

Figure 5.1: The plate with a crack in the middle: (a) adiabatic and (b) isothermal. 

Simulation for the crack problem with thermal load is presented in this section. The 

mechanical properties of the material are set up as: Young’s modulus is defined as 2.184 ∗ 

105Pa, Poisson’s ratio is 0.3 and the coefficient of linear expansion is 1.67 ∗ 10−5per°C. 

To justify the ability of the numerical implementation for the temperature field by 

applying XFEM, the plate with a crack in the middle is exposed to two different groups of 

boundary conditions: Figure 5.1(a) shows a heat flux acts on the crack surface 

perpendicular under the adiabatic situation, Figure 5.1(b) demonstrates that the heat flux 

θ1 acts on the crack in the middle and another heat flux θ2  enforced at the plate boundary. 

θ2>θ1=0. The length of the plate is 1, the radius of the crack a ranges from 0.1 to 0.6 with 

a step of 0.1. The element meshing in this analysis is 2933 nodes and 5868 elements, with 

the uniform characteristic length set up as 0.025. 

5.4 Results and discussion 

Figure 5.2 shows the temperature field in the plate with a centre crack under the adiabatic 

condition, and Figure 5.3 demonstrates the temperature field in the plate with a centre 

crack under the isothermal condition when the radius of the crack a = 0.3. 
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Figure 5.2: Diagram of the temperature field in the plate with a centre crack 

(adiabatic) 

 

Figure 5.3: 

 Diagram of the temperature field in the plate with a centre crack(isothermal) 

 

Table 5.1 indicates the comparison between the calculation, handbook [173] and [174]. 

The SIF is normalised by α(Θ2 − Θ1)E√L. These results are very close to the literature 

[173, 174]. 
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Table 5.1: Calculation of normalised SIF 

a/W 

Adiabatic crack (FII) Isothermal crack (FI) 

This test [36] [93] This test [36] [93] 

0.1 0.019 0.018 0.021 0.268 0.268 0.271 

0.2 0.054 0.054 0.053 0.350 0.347 0.347 

0.3 0.096 0.095 0.094 0.405 0.401 0.406 

0.4 0.141 0.141 0.141 0.455 0.448 0.453 

0.5 0.191 0.190 0.188 0.496 0.491 0.491 

0.6 0.245 0.243 0.247 0.533 0.525 0.526 

 

The deviation of the calculated SIF with the mesh sensitivity analysis result is shown 

in Figure 5.4 as a is equal to 0.5. With characteristic length ranging from 0.01 to 0.1, 

separate mesh element sizes are applied. Unless using the large number of mesh element 

size, all results of the calculated SIF are within 0.7% for both conditions. 

 

Figure 5.4: Mesh sensitivity analysis results of normalised SIF 
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                       Chapter 6 

                     Conclusion 

6.1 Conclusions 

Microcracks are a common phenomenon in the SLS process, where the polymer powder 

material is cooled from its molten state during the sintering process, causing volume 

shrinkage due to temperature changes. There is a large volume change from the molten to 

the crystalline state, and the volume shrinkage comprises two parts, one being the volume 

shrinkage from the solidification of the melt and the other being the volume shrinkage from 

the crystallisation. When a polymer is in its molten state, the arrangement of the 

macromolecular chains is disordered. During crystallisation, the macromolecular chains 

are partly arranged in an orderly manner, and the gaps between the molecular chains are 

reduced; the higher the degree of crystallisation, the greater the reduction of such gaps and 

the greater the volume contraction. As a result, crystalline polymers have a stronger 

tendency to form shrinkage than non-crystalline polymers, and microcracks tend to be 

greater and more severe. Microcracks become a major process problem in the sintering of 

crystalline polymers. 

The DPM is defined by the proportions of the existence of both melted and crystallised 

parts, and un-melted particles within the component. The amount of energy density input 

to the part can change the DPM of the final part; as the DPM increases, the volume of            

un-melted particles and porosity decreases. It should be noted that, when the amount of 

energy density input increases, but after a certain DPM point, the mechanical properties 

and fracture performance of the SLS printed part begin to drop. 

In this paper, three tests are established on the improved sample models by the use of 

the ABAQUS finite element analysis platform, combined with the XFEM in order to 

simulate the influence of inclusions and holes on the deflection of the crack propagation 

path. In order to quantify the degree of influence, the CrackGeo V1.3 plug-in was used to 

indicate the crack path and length in zoomed detail. Un-melted particles were close to the 
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initial crack, and the crack attempted to stay away from the un-melted particle; as the hole 

was close to initial crack, the crack attempted to stay close to the hole. The existence of 

a ’bottle neck’ of two un-melted particles has the most critical effect on the crack path. 

Two approaches, VCCT and the cohesive segment approach, were used in each 

simulation. In some cases, the VCCT results were similar to the results of cohesive segment 

approach, however, the crack path of VCCT results is usually generated more smoothly 

than the results of the cohesive segment approach. The reason for this phenomenon is that 

the method of VCCT opening crack is based on the combination of the critical energy 

release rates of normal and shear separation. This phenomenon can also be explained in 

crack length results; the VCCT trend usually takes 0.2 simulation time to complete crack 

growth, while the trend of the cohesive segment approach is more linear. Therefore, the 

two approaches are in overall strong concurrence, with the exception of the first instance 

of propagation, where the cohesive segment approaching the process zone has to shape up, 

whereas the VCCT starts with a sharp crack. The cohesive segment approach is easier to 

use, and performs more efficiently, as the computation is lower down, at one order of 

magnitude, despite the less capable hardware used to run the analyses. 

Further, the XFEM can be used to analyse the thermoelastic fracture problem. The 

displacement field of XFEM discretisation is similar to the temperature field discretisation. 

The test indicates that XFEM allows steady-state 2D thermoelastic problems to be dealt 

with precisely on a mesh independent of the location and length of the crack. 

6.2 Limitations and suggestions for future studies 

Fatigue crack growth of SLS printed part containing holes and inclusions is, in reality, a 

very complex problem, involving chemical composition, metallography, fracture macro 

analysis, and other factors. Due to the fact that this paper is mainly a numerical simulation 

of crack growth behaviour, the research content has various actual shortcomings. The 

analysis in this paper is generally designed to contain macroscopic material defects, but in 

reality actual material defects are not entirely macroscopic. In addition, in order to simplify 

the model, the defects studied in this paper are of regular shape, while the actual material 

defect shapes are diverse, and multiple types of inclusions and holes may coexist.  
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      For SLS printed part, based on the research by [152], the crystallinity of a fully melted 

part and powder itself was found to be 25% and 47% respectively. Further to this, from the 

DSC data the Melted and Crystallised Material (MCM) crystallinity can be calculated 

along with the core crystallinity defined as being (1-%MCM), the DPM can be calculated 

using Equation 4.1. According to the inclusion size relative to the crystalline structure in 

Chapter 4.4 and Chapter 4.5, the size of inclusion model can represent the crack of SLS 

printed part  behave theoretically in the inclusion condition.  

      Generally, the radius of the hole is approximately 200 𝜇𝑚 in SLS printed part [175]. 

However, for the SLS model in Chapter 4.6, the size, orientation, aspect ratio for each 

holes are set up as SEM imaging of really part [175]. The location of each holes is random. 

This paper does not classify crack propagation into inclusion particles and holes; it is 

necessary to simulate the trajectory of the crack propagation after entering the inclusion 

particles and holes in order to gain a clearer understanding of the influence of DPM and 

crack propagation. Moreover, this paper only considers nylon-12. In terms of practical 

problems, the properties of materials are diverse, thus a wider selection of material should 

be examined. 

The three-dimensional crack characterisation and methods currently used are not 

perfect. When the crack passes through the part of the structure with a sharp increase in 

cross-sectional area, its shape is seriously distorted, which leads to errors in the simulation 

results. In order to improve the stability of the algorithm, it is necessary to propose a more 

complete three-dimensional crack characterisation and update the method of XFEM in 

future. 

This paper does not consider crack growth in 3D thermoelastic fracture problem, 

therefore further investigation of this should be undertaken. 

The volume shrinkage of sintered materials due to densification during sintering occurs 

mainly in the Z-direction, i.e. the height of the sintered layer decreases after sintering, 

which has little effect on the warpage of the sintered part in the XY plane (the first few 

layers). When sintering the first layer, if the temperature of the powder bed is low, there is 

a large temperature difference between the laser swept sintered layer and the surrounding 

powder; the sintered layer is quickly cooled and crystallised, resulting in shrinkage and 

curling of the edges of the sintered layer. When the curl is greater, the powder rollers 
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remove the first layer when the next layer is laid, rendering it impossible to continue the 

sintering process and necessitating a new sintering. During subsequent sintering, there is a 

tendency for microcracks to reduce gradually, but if the temperature difference between 

the newly laid powder and the sintered layer is large, this can nevertheless cause the 

fracture of the sintered part. 

Strict control of the sintering temperature can resolve the fracture problem of sintered 

materials. When the powder bed temperature is close to the melting point of nylon 12, the 

laser input energy is just sufficient to melt the nylon 12, i.e. the laser only provides the heat 

required to melt the nylon 12, and there is no excess heat to raise the temperature of the 

sintered layer, thus avoiding fracture under such sintering conditions. Due to the low melt 

viscosity of nylon 12, the sintering process is quickly completed, resulting in a dense 

sintered layer. The temperature difference between the sintered layer and the surrounding 

powder is close to the melting point of nylon 12, so that the shrinkage stress caused by the 

temperature difference is minimal and can be released by stress relaxation. The temperature 

of the newly laid powder layer also quickly approaches the melting point of nylon 12 due 

to infrared heating and interfacial heat transfer, and the temperature difference with the 

previous layer is so small that it does not cause shrinkage of the previous layer. 

Microcracks can be avoided by controlling the cooling rate once the entire sintered part has 

been produced.  
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