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Abstract 

 

Telomeres show variation in length, both between and within species, and have been proposed as a 

biomarker of biological ageing, providing information on the current physiological state of 

individuals, and reflecting (accumulated) somatic damage over time. The underlying causes of 

variation in telomere length remain unclear. In this thesis, I studied telomere dynamics in a wild 

passerine population. First, I assessed the methodological consequences of storage of blood in 

ethanol for the subsequent measurement of telomere length using qPCR. I found that telomere 

length estimates shorten in a quadratic relationship when blood samples are stored for relatively 

long periods. I then show that telomeres shorten with age within individuals, and that individuals 

with shorter telomeres disappear more quickly from the population. Moreover, individuals showed 

low repeatability of telomere length over time, with some individuals showing significant elongation 

of telomeres.  

 
Using pedigree information, I then estimated the heritability of telomere length, and concluded that 

this is low in house sparrows, and the variation in telomere length of offspring was explained more 

by the year of birth. In addition, the age of the biological father had a negative effect on offspring 

telomere length. I also found that the age of the rearing male had a positive effect on offspring 

telomere length, but only at the population level. This, again, indicates the selective disappearance 

of individual adults and/or offspring with shorter telomeres. 

 
In conclusion, my results show that telomeres may not reflect accumulated damage but may instead 

be more plastic than previously thought. Telomeres may instead reflect more immediate 

circumstances of the individual. Regardless, individuals overall still showed significant telomere 

attrition with age, and individuals with relatively short telomeres disappeared from the population, 

supporting the use of telomeres as a biomarker of ageing in wild passerines.  

 

 

 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3 
 

Acknowledgements 

 

First, I would like to thank my supervisor, Professor Terry Burke, who has provided me with guidance 

throughout my PhD, even after I decided to work part-time and live back in the Netherlands. Our 

almost weekly meetings were of great help. Moreover, it was a privilege to be able to work on 

telomeres and have a large multi-year dataset available that was ready to be explored.  

 

I would also like to thank Mirre Simons for providing the statistical knowledge that was needed to 

complete my PhD. I may not always have been able to immediately grasp the statistics you explained 

in so much detail, but your explanations were immensely helpful, so thank you for having patience 

with me.  

 

And then I would like to thank Julia Schroeder for providing valuable insights in heritability, and for 

reading many of my chapters. Our fieldwork wintertrips to Lundy, organised in detail by you to 

accommodate a great number of master students, were a real treat. You provided valuable feedback 

that I used to improve my work.  

 

Many thanks to Nathalie Dos Remedios and Marie-Elena Mannarelli for measuring all the telomeres 

lengths in thousands of samples and providing me with knowledge on how to measure telomere 

length on the qPCR.   

 

Then I would like to thank all the people on Lundy for keeping me sane during the many months I 

spent on Lundy, running from nest to nest and trying to catch all sparrows. Without the great people 

on Lundy providing good company and friendship, I would not have been able to keep going for so 

long.  

 

And of course, a great thanks to my family, who were supportive right from the start, even when 

they realized I would be living abroad on an island, and then stay 3 to 4 months each year on an 

even smaller and completely remote island.  

 

 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



5 
 

List of contents 

 

 
Abstract ................................................................................................................................................... 1 

Acknowledgements ................................................................................................................................. 3 

List of contents ........................................................................................................................................ 5 

1. General introduction ......................................................................................................................... 10 

1.1 Senescence .................................................................................................................................. 10 

1.2 Telomeres and senescence ......................................................................................................... 11 

1.3 House sparrows on Lundy ........................................................................................................... 12 

1.4 Measuring telomeres .................................................................................................................. 13 

1.5 Telomeres and sample storage ................................................................................................... 16 

1.6 Telomere attrition and elongation .............................................................................................. 16 

1.7 Telomeres and survival ............................................................................................................... 21 

1.8 Heritability and parental effects ................................................................................................. 22 

1.9 Questioning causal involvement ................................................................................................. 23 

1.10 Thesis outline ............................................................................................................................ 25 

1.11 Contributions made to this thesis ............................................................................................. 25 

2. Blood sample storage in ethanol affects telomere length estimation by qPCR ............................... 27 

2.1 Summary ..................................................................................................................................... 27 

2.2 Introduction ................................................................................................................................ 27 

2.3 Methods ...................................................................................................................................... 30 

2.3.1 Sample collection ................................................................................................................. 30 

2.3.2 DNA extraction ..................................................................................................................... 30 

2.3.3 Telomere qPCR measurement ............................................................................................. 31 

2.3.4 Experiment ........................................................................................................................... 33 

2.3.5 Statistical analysis ................................................................................................................ 35 

2.3.6 Repeatability of telomere lengths ....................................................................................... 36 

2.4 Results ......................................................................................................................................... 36 

2.5 Discussion .................................................................................................................................... 39 

Supporting information S2. ............................................................................................................... 43 

3. Longitudinal data reveal selective disappearance of individuals with short telomeres ................... 44 

3.1 Summary ..................................................................................................................................... 44 

3.2 Introduction ................................................................................................................................ 44 



6 
 

3.3 Methods ...................................................................................................................................... 48 

3.3.1 Study system ........................................................................................................................ 48 

3.3.2 Telomere length ................................................................................................................... 48 

3.3.3 Storage time effects ............................................................................................................. 49 

3.3.4 Age of birds, lifespan, and survival ...................................................................................... 50 

3.3.5 Statistical analysis ................................................................................................................ 50 

3.3.6 Age effects ........................................................................................................................... 50 

3.3.7 Survival and lifespan effects ................................................................................................ 52 

3.3.8 Repeatability of individuals .................................................................................................. 53 

3.4 Results ......................................................................................................................................... 53 

3.4.1 Mean and centred age effects ............................................................................................. 53 

3.4.2 Telomere length effects on survival and lifespan ................................................................ 55 

3.4.3 Variation within individuals ................................................................................................. 55 

3.5 Discussion .................................................................................................................................... 56 

3.5.1 Mortality and selective disappearance ................................................................................ 57 

3.5.2 Telomere lengthening .......................................................................................................... 59 

3.5.3 Conclusion ............................................................................................................................ 61 

Supporting Information S3 ................................................................................................................ 62 

4. Contrasting genetic and social paternal age effects on offspring telomere length ......................... 64 

4.1 Summary ..................................................................................................................................... 64 

4.2 Introduction ................................................................................................................................ 64 

4.3 Methods ...................................................................................................................................... 68 

4.3.1 Study system ........................................................................................................................ 68 

4.3.2 Cross-fostering ..................................................................................................................... 69 

4.3.3 Parentage ............................................................................................................................. 69 

4.3.4 Age of parents ...................................................................................................................... 69 

4.3.5 Telomere length ................................................................................................................... 69 

4.3.6 Storage-time effects ............................................................................................................. 70 

4.3.7 Statistical analysis ................................................................................................................ 70 

4.4 Results ......................................................................................................................................... 72 

4.4.1 Paternal effects .................................................................................................................... 72 

4.4.2 Maternal effects ................................................................................................................... 74 

4.5 Discussion .................................................................................................................................... 75 

4.5.1 Genetic father and mother effects ...................................................................................... 75 



7 
 

4.5.2 Social paternal effects .......................................................................................................... 78 

4.5.3 Selective disappearance ....................................................................................................... 80 

4.5.4 Conclusion ............................................................................................................................ 81 

Supporting Information S4 ................................................................................................................ 82 

5. Low heritability of telomere length in a wild passerine ................................................................... 83 

5.1 Summary ..................................................................................................................................... 83 

5.2 Introduction ................................................................................................................................ 83 

5.3 Methods ...................................................................................................................................... 87 

5.3.1 Study system ........................................................................................................................ 87 

5.3.2 Cross-fostering experiment ................................................................................................. 87 

5.3.3 Blood sample collection and telomere length measurements ............................................ 87 

5.3.4 Pedigree ............................................................................................................................... 88 

5.3.5 Statistical analysis ................................................................................................................ 88 

5.4 Results ......................................................................................................................................... 91 

5.5 Discussion .................................................................................................................................... 92 

Supporting information S5 ................................................................................................................ 97 

6. General discussion ............................................................................................................................ 99 

6.1 Research summary ...................................................................................................................... 99 

6.2 Telomeres as biomarkers of age ............................................................................................... 101 

6.3 Telomeres and causality ........................................................................................................... 101 

6.4 Evolutionary potential .............................................................................................................. 102 

6.5 The future and telomeres ......................................................................................................... 103 

References .......................................................................................................................................... 106 

 

 

  



8 
 

 

 

A group of young and old house sparrow males, with coloured bands, on a rooftop on Lundy Island. 
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1. General introduction 

 

1.1 Senescence 

 
Senescence, or the deterioration of a phenotype and a reduction of residual reproduction at older 

ages, occurs in most organisms (Møller 2006; Nussey et al. 2013). Previously, it was assumed that 

wild animals do not experience senescence due to high extrinsic mortality rates (Barrett et al. 2013). 

However, evidence that animals do experience senescence has accumulated over the years (Barrett 

et al. 2013; Nussey et al. 2013). Evidence of senescence is shown by an age-specific pattern of 

phenotypic improvement in early life, followed by a plateau and decline later in life. Why humans 

and animals experience senescence has been a central question for a long time (Pauliny & Blomqvist 

2012). After all, senescence seems maladaptive because individuals with an increased lifespan will 

also have more reproductive opportunities (Haussmann et al. 2003), and as such would have a 

selective advantage over those with shorter lives. Yet a decline in both survival and reproduction 

occurs in many species (Williams 1957). This seems like an evolutionary paradox.  

 

There are three main theories why senescence occurs, all based around the concept that selection 

favours early-life reproduction and is thus strongest in early life (Hammers et al. 2015). The first one, 

the antagonistic pleiotropy hypothesis, states that genes that have a positive effect in early life can 

have a deleterious effect later in life but can still be favoured due to the net benefit of the positive 

early-life effects (Hamilton 1966, Kirkwood & Austad 2000). The second theory is the mutation 

accumulation hypothesis. This hypothesis postulates that deleterious mutations that act late in life 

accumulate over evolutionary time, because selection is weaker at older ages due to a combination 

of mortality and lower remaining lifespan (Medawar 1952). This accumulation of genes that only 

have a negative effect late in life may be the cause of senescence. The third theory is the disposable 

soma theory. It was first proposed by Weismann (1892), who suggested that senescence is part of 

the trade-off framework. Trade-offs occur because animals have restricted resources to spend on 

different life-history components, such as reproduction and (somatic) maintenance (Stearns 1976). 

Investing energy in one component means that the same energy cannot be invested into another. 

Trade-offs are visualised with fitness as the paid currency, where one trait negatively influences the 

fitness outcome from another trait (Stearns 1989). This theory predicts that, because mortality 

increases with age, reproduction early in life is favoured, but comes at the cost of somatic 

maintenance. Senescence evolves as a consequence of this selection favouring early-life 

reproduction.  
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Because of the trade-offs between maintenance and reproduction, the senescent phenotype is also 

influenced by individual quality. High-quality individuals may have access to more resources than 

low-quality individuals, and are thus less impacted by the ‘choice’ between maintenance, 

reproduction and survival (van Noordwijk & de Jong 1986). Qualitative differences between 

individuals lead to differences in fundamental trade‐off because individuals show variation in how 

much they ‘suffer’ in terms of costs they endure and benefits they accrue at a given level of 

reproductive investment (Stearns 1992). Such qualitative effects may make the detection of life-

history trade-offs difficult, as they can mask traded-off costs (Nussey et al. 2013). 

 

Variance in individual quality, among other factors, may thus affect how individuals are impacted by 

trade-offs and, consequently, lead to variation in life-history traits. The variation between individuals 

and resulting consequences on the rate of senescence led to the attempt to identify the actual 

molecular or physiological causes of senescence. From laboratory experiments, one of the proposed 

mechanisms that underlie age-related declines in physiological function were telomeres.  

 

1.2 Telomeres and senescence 

Telomeres are composed of DNA with hundreds of copies of the repeated sequence 5’TTAGGG-3 

(Meyne et al. 1989). Telomeres are located at the ends of chromosomes (Blackburn 1991). 

Telomeres are double stranded, but the end is a single-stranded G-rich overhang. This G-rich 

extension loops back on itself and back into the double-stranded telomeric DNA part. This t-loop 

needs to be maintained to prevent DNA damage, which is done by proteins such as the shelterin and 

CST complexes (Monaghan et al. 2018).  

 

Telomeres have several functions within a cell: 1. Telomeres safeguard chromosome integrity by 

protecting chromosomes from nucleotide loss, as the ends of chromosomes are not fully replicated 

during cell division (Blackburn 1991; Monaghan et al. 2018). This ‘end replication problem’ would be 

detrimental for DNA, and thus telomeres shorten instead. 2. Protecting DNA from cellular stresses, 

such as oxidative stress, which also causes telomeres to shorten (Bize et al. 2009, Blackburn et al. 

2015; Reichert et al. 2017). 3. When telomeres become critically short, they cause a cellular signal, 

after which cells can suffer from DNA damage, leading to apoptosis (Blackburn 1991; von Zglinicki 

2002). So telomeres serve a central role in genomic integrity, but as a consequence shorten, which 

may have its own consequences. Critically short telomeres may increase local inflammation (Campisi 

et al. 2005), cause genomic instability (Kong et al. 2013), and reduce vascular function and health 
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(Sharpless & DePinho 2004). Moreover, short telomeres have been associated with lower survival in 

birds (Wilbourn et al. 2018).   

 

Telomeres will be the focus in this thesis to assess their links with life-history traits. I use a closed 

and wild population of house sparrows, Passer domesticus, on Lundy island (see next section). Such 

an insular population gives valuable insights into telomere dynamics both within a population as 

within individuals (see box 3). This longitudinal research is needed because even though longitudinal 

studies of telomere dynamics are emerging, most studies are still focused on cross-sectional effects 

(Monaghan et al. 2018, also see Box 1.3).  

 

1.3 House sparrows on Lundy 

We collected blood samples from adult house sparrows located on the small island of Lundy, in the 

south-west of England (Figure 1.1), in the years 2000-2016. Ninety-nine per cent of the house 

sparrows in our population are banded (Schroeder et al. 2015). House sparrows are not well suited 

for long-distance flights (Bengtson et al. 2004) and due to the distance to the mainland (18 km), 

dispersal is nearly non-existent (Schroeder et al. 2015). In our population, data from 13 

microsatellite markers was used to assign the parentage of the small number of unbanded birds that 

were not observed as chicks in the nest (Schroeder et al. 2015). From this analysis, it was concluded 

that immigration accounted for ca. 0.5% of all recruits (Schroeder et al. 2015). Moreover, it was 

concluded that the probability of re-sighting an individual on Lundy was between 0.91 and 0.96 

(Schroeder et al. 2015; Simons et al. 2015a). This means that we had available detailed lifespan and 

survival information, as well as the exact known ages of individuals that would normally be difficult 

to obtain in the wild. 
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Figure 1.1. Lundy island (red circle), located in the Bristol Channel. Upper left: a banded Lundy House 
sparrow female.  
 
 

1.4 Measuring telomeres 

 
Telomeres can be measured using a variety of methods. One of the older methods is the Telomere 

(terminal) Restriction Fragment method, or TRF (Criscuolo et al. 2009). In this method non-telomeric 

DNA is digested, after which a phosphorescent or radioactive probe is used to measure the mean 

lengths of TRFs using a Southern blot or in-gel hybridization (Nakagawa et al. 2004). This method is 

relatively easy and provides inter- and intra-gel coefficients of variation among individual birds of 

less than 2% (Haussmann et al. 2003). It also provides measurements of absolute telomere lengths 

(Cawthon et al. 2002).  

 

There are a few drawbacks of the TRF method. For one, autoradiographic smears may not be 

straightforward to interpret (Criscuolo et al. 2009). Moreover, this method requires relatively large 

amounts of DNA (5-10 µg), obtained from carefully preserved tissue samples, and is time consuming 

(Haussmann & Mauck 2008).  

 

These drawbacks can be avoided with a newer method: quantitative PCR, or qPCR (see Box 1.1). This 

method is now the most popular for measuring telomere length (Martin-Ruiz 2015). In qPCR, 



14 
 

primers are used to amplify random telomere repeats, with the amount of the product being 

proportional to the total telomere length (Cawthon 2009). The qPCR method also has a few 

drawbacks: 1. It measures a T/S ratio, where telomere length (T) is expressed in proportion to a 

control gene (S) (Cawthon 2002). 2. Interstitial repeats are also incorporated into the amplification, 

and can thus cause a bias in animals that have large numbers of interstitial repeats, or large variation 

of interstitial repeats between individuals (Nanda et al. 2002; Barrett et al. 2012).  

 

We chose to analyse our house sparrow blood samples with qPCR for a multitude of reasons: 1. 

Sample measurement speed. qPCR analysis is seven times faster than TRF. With over 2,500 samples 

in total to analyse, with hundreds of samples added each year, sampling efficiency was important. 2. 

Even though the avian genome has many interstitial repeats (Nanda et al. 2002) and the qPCR 

method detects these repeats alongside the telomeres, these repeats do not change with age 

(Delany et al. 2003). This means that the inclusion of these telomeric repeats should not impact on 

the conclusions concerning telomere dynamics (but see Foote et al. 2013). 3. Results from the TRF 

and qPCR methods have been shown to be highly correlated, and thus qPCR is a reliable method 

(Criscuolo et al. 2009).  
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Box 1.1: Measuring telomeres with Quantitative Polymerase Chain Reaction (qPCR) 

 
qPCR monitors the amplification of DNA in real time, by measuring the total fluorescence after each 
cycle of amplification using fluorescently labelled primers (Holland et al. 1991; Higuchi et al. 1992). 
These primers attach themselves to the DNA sequence of interest, which allows the amount of DNA 
to be measured via the measurement of the fluoresce. Multiple DNA sequences labelled with 
different dyes can be measured at the same time (Cawthon 2009). We used the telomeric DNA (T) 
and a reference gene, GAPDH (S), measured in the same well on a qPCR plate and then calculated 
the T/S ratio to normalise the telomere estimate among samples. See Figure A below, which shows 
an example of a subject with long and short telomeres (taken from Lin et al. 2019). 

 
After measuring the fluorescence, the quantity of DNA at the start of amplification is still unknown. 
To calculate the amount of DNA that was available before amplification, standards dilutions are 
used. These dilutions of known concentrations are also amplified and measured on the qPCR. The 
logarithms (base 10) of 5 different concentrations are then plotted. The amount of DNA present in a 
sample can then be calculated in reference to the known concentrations of the standards (Cawthon 
2009). See Figure B, which shows an example (red dotted lines) how the amount of (T) is calculated 
when the fluorescence is detected after 18 cycles, leading to a starting DNA concentration of 1.1 
(taken from Cawthon 2009).  

 
A (from Lin et al. 2019) 
 
 
 
 
 
 
 
 
 
 
 

 

B (from Cawthon 2009) 
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1.5 Telomeres and sample storage 

 
With an increase in studies that focus on measuring telomeres, methods regarding collecting 

samples, extracting DNA and analysing telomeres have undergone scrutiny (Nussey et al. 2014). 

Because telomeres are located at the end of chromosomes, degradation of DNA over time is a 

potential issue that will affect telomeres first (Nussey et al. 2014).  

 

There are different ways to store blood samples, such as storage in ethanol or on FTA cards (Hatman 

Flinders Technology Associates). There are only a few studies that have investigated storage 

methods, but the overall conclusions were that telomere length measurement by qPCR may indeed 

be influenced by the storage method (Zanet et al. 2013, Reichert et al. 2017a; but see Tolios et al. 

2015). Also, within the same storage method, differences can potentially accumulate between 

samples that are stored for a short or long time. This is a potential issue, especially in long-term and 

longitudinal datasets. Longitudinal datasets utilise a time-series, measuring individuals multiple 

times. Any conclusions regarding telomere loss during such a time series may not be meaningful if 

the earlier collected samples have degraded over time.  

 

I was interested in studying long-term telomere dynamics in our house sparrow population. But 

upon initial investigation of our data, I noticed a decline in telomere length at older years that could 

not be explained by the age of individuals. Surprisingly, only a few studies have investigated effects 

of storage time on telomere length. Most studies focus on the method of storage, or only 

investigated short term storage effects on telomere length. Because I needed to understand the 

relationship between storage time and telomere length, we set up an experiment to assess if the 

decline was due to blood sample or DNA storage time.  

 

1.6 Telomere attrition and elongation 

 
The first study that studied telomere length observed that telomeres shortened in cultures of human 

fibroblasts (Harley et al. 1990). After the discovery that telomeres shorten with each cell division 

until a critical end, telomeres were proposed as a mitotic clock (Olovnikov 1996). Such a mitotic 

clock suggested that telomeres shortened at a constant rate (Haussmann & Vleck 2002; Ju & 

Rudolph 2008). The large body of work that has subsequently studied the change in telomere length 

with age has indeed concluded that telomeres shorten in many species (Dantzer & Fletcher 2015). 

However, if telomeres shorten at a constant rate, variation in telomere length between individuals 

of the same age and species should be very low. Instead, there is high variation in telomere length 

among individuals of the same species and age (Monaghan & Haussmann 2006; Hares et al. 2018).  
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The observed variation in telomere length can occur due to three, non-mutually exclusive causes: 1. 

Environmental effects which affect the amount of (oxidative) stress that individuals experience, 

which in turn affect telomere attrition (Von Zglinicki 2002). 2. Telomere restoration processes, such 

as telomerase. 3. Initial telomere length of the zygote, determined by, for example, genetic or 

parental factors, meaning that individuals start life with different telomere lengths (Olsson et al. 

2010), discussed in Section 1.8 and Chapters 4 and 5.  

 

Telomeres can shorten due to different processes. The loss of telomeric base pairs with each cell 

division is due to an incomplete replication process, called the end-replication problem (Box 1.2). 

Telomeres can shorten between 30 to 200 base-pairs per cell division, however, in humans only 10 

base-pairs are attributable to the end replication problem (von Zglinicki et al. 2001). This means that 

the remaining telomeric losses must be due to other processes. The most important factor causing 

telomere shortening is oxidative stress (Houben et al. 2008; Monaghan 2014; Zhang et al. 2015; 

Reichert et al. 2017). 

 

Oxidative stress arises when reactive oxygen species (ROS) are generated. ROS are, among other 

things, a by-product of aerobic metabolism and ATP production in mitochondria and are highly 

reactive (Balaban et al. 2005). ROS are both non-radical oxidants and free radicals. Both non-radical 

oxidants and free radicals are unstable and can cause chain reactions within cells that eventually can 

lead to damage (Monaghan et al. 2009). Telomeres, having a high guanine content and are therefore 

specifically susceptible to oxidative damage (Henle et al. 1999). The effects of ROS have been 

intensively studied in vitro, where oxidative stress affects telomere length in a dose-dependent 

manner (von Zglinicki 2002). 

 

Organisms have evolved mechanisms to prevent or repair oxidative damage (Haussmann & 

Marchetto 2010). Oxidative damage is therefore a balance between free radicals and defence 

mechanisms (Haussmann & Marchetto 2010). When the production of ROS then exceeds the 

defence mechanisms, oxidative damage still occurs (Monaghan et al. 2009). Oxidative stress occurs 

in animals that are stressed, producing stress hormones, such as cortisol and corticosterone. Such 

hormones elicit a reallocation of resources to maximize survival (Haussmann & Marchetto 2010). 

However, cortisol and corticosterone hormones are also linked to higher oxidative stresses and have 

been shown to cause telomere attrition in vitro (Steptoe et al. 2017).  
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Box 1.2: The end-replication problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. The double stranded helix is unwound by enzymes.  
B. As the strands separate, two replication forks form in opposing directions.  
C. One half of the replication fork is shown.  
D. The leading strand demonstrates continuous replication because DNA polymerase can only 
synthesize new DNA in the direction 5’->3’. 
 E. The lagging strand carries out discontinuous replication producing small fragments and requiring 
multiple RNA primers.  
F. After DNA polymerase synthesizes the new fragments, exonuclease must remove the RNA primers 
and the fragments are ligated together.  
G. DNA polymerase is unable to fill in the 5’ gap.  
H. The g-strand overhang is tucked into a protective t-loop structure. 

 
Taken from Haussmann & Marchetto 2010 
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However, In vivo, conclusions regarding associations between oxidative stress and telomere length 

are ambiguous in correlative studies. From 18 studies that studied possible correlations between 

stress hormones and telomere lengths in humans and birds, 10 reported a significant correlation 

between stress hormones and telomeric loss (Reichert et al. 2017). Experimental studies were less 

ambiguous. When experiments where stress hormones were experimentally controlled were 

conducted, seven out of eight studies provided support for oxidative stress causing telomere 

shortening (Reichert et al. 2017). However, this link appears to be dependent on factors such as 

tissue type or sex. Such a dependence does explain how variation in telomere length exists if, for 

example, sexes respond differently to stresses and as a consequence, show a difference in telomere 

length.  

 

Regardless of not knowing the exact mechanisms that mediate telomere loss, it is evident that 

animals experience environmental stresses in the wild, that in turn cause stress hormone and/or 

oxidative stress to shorten telomeres. Because older individuals would have endured more stresses 

in their lives, leading to damage in telomeres, a link between biological age and telomere length was 

proposed. Telomeres were seen as biomarkers of age, as they could reflect the cumulative damage 

an individual had endured during its lifetime (Zglinicki & Martin-Ruiz 2005). Many studies in various 

species found that telomeres indeed shorten with age (overview in Dantzer & Fletcher 2015). But 

more recent studies show that telomeres may not only shorten, but can also elongate (Bateson & 

Nettle 2017; Spurgin et al. 2018; Fairlie et al. 2016). Telomeres can be repaired and even lengthen 

after damage (Spurgin et al. 2018). Telomere increases can occur due to changes in cellular 

composition or due to telomeres elongating via telomerase (Blackburn et al. 1989; Spurgin et al. 

2017).  

 

Telomerase is found in all organisms that have nucleoid cells with only very few exceptions (Greider 

& Blackburn 1996). It solves the end replication problem by adding DNA to chromosomes before 

replication starts, resulting in daughter strands that are as long as the parent strands (Greiger & 

Blackburn 1996). Telomerase may pose as the ultimate solution to maintain cell integrity 

indefinitely. However, cells that would endlessly replicate are at a risk to become malignant 

(Monaghan & Haussmann 2006). This chance of malignancy is shown by the result that telomerase 

has been associated with cancer, caused by unlimited cell proliferation (Greiger & Blackburn 1996; 

Monaghan & Haussmann 2006). This increased chance of malignancy is likely the reason why 

telomerase activity is mostly found (although not exclusively) in germlines and embryos (Monaghan 

& Haussmann 2006).  

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12741#jane12741-bib-0009
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Regardless, elongation of telomeres has been found in some studies (Bateson & Nettle 2017; Spurgin 

et al. 2018; Fairlie et al. 2016). Telomere elongation, especially when influenced by environmental 

conditions, would suggest telomere length may not reflect accumulated costs accurately (Bateson 

2016). Instead, telomeres may be biomarkers of the body’s ability to absorb oxidative damage 

(Boonekamp et al. 2013). 

 

Such new insights regarding the telomere dynamics and individual age effects only came to light 

when individuals were measured more than once. Previously, many of the correlational links 

between age and telomere length were from cross-sectional datasets. The cross-sectional design can 

only infer the telomere shortening based on the telomere lengths of individuals of different ages 

(Chen et al. 2011). In more recent years, longitudinal studies did start to emerge. These studies 

managed to look more precisely at within-individual effects and some concluded that the attrition of 

telomeres both between and within individuals is variable (Spurgin et al. 2018, Atema et al. 2019). In 

a cross-sectional population, age effects that are found at the population level can be confounded by 

environmental effects on the population, such as those that influence entire cohorts, which affect 

age specific effects (Hall et al. 2004). Age classes can also be affected by the selective disappearance 

of certain individuals with age (Nussey et al. 2011, Lindström 1999). The latter is called selective 

disappearance.  

 

Selective disappearance occurs when individuals that show a trait disappear out of the population. 

Selective disappearance can be detected in longitudinal studies when a within-individual decline of 

telomere length occurs, while between-individuals, a decline (or a less steep decline) is not detected 

(Barrett et al. 2013; Box 1.3). Selective disappearance can also be detected when between-

individuals there is a positive age effect, while within-individuals there is a negative or no effect.  

  

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12741#jane12741-bib-0009
https://scholar.google.com/citations?user=rrejPi0AAAAJ&hl=en&oi=sra
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Box 1.3: Cross-sectional versus longitudinal and selective disappearance 

 

 

 Between individuals 

 Within individuals 

 

 

 

 

 

 
Cross-sectional data measures an individual once and can thus only detect a between-individual 
effect, indicated with the red line in the Figure above. Longitudinal data measures an individual 
multiple times, and can thus assess changes within individuals, indicated with the blue line in the 
Figure above.  

 

To detect selective disappearance, between-individual effects need to be compared to within-

individual effects. When, as seen in the example in the Figure, the between individual effect show a 

less steep decline of telomere length with age than the within-individual effect, selective 

disappearance has to act within the population. After all, a negative effect that occurs within-

individuals cannot be less strong between-individuals unless individuals that show a relatively strong 

effect of age on telomere length disappear out of the population. 

 
 

1.7 Telomeres and survival 

 
A meta-analysis in humans revealed that longer telomeres were associated with higher survival in 

young individuals (Boonekamp et al. 2013). In animals, the general pattern is a positive relationship 

between telomere length and survival (Wilbourn et al. 2018). Also, early-life telomere length 

changes have been been found to predict lifespan in birds; for example, in captive zebra finches 

(Taeniopygia guttata, Heidinger et al. 2012) and wild alpine swifts (Tachymarptis melba, Bize et al. 

2009). In some studies, early-life telomere length was a better predictor of survival than telomere 

length later in life (Ashgar et al. 2015).  

 

Telomere  
length 

Age 
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However, not all studies find an association between survival and telomere length (Beaulieu et al. 

2011; Sudyka et al. 2014). In addition, multiple studies have highlighted that telomere length may 

not be predictive of survival, but that the rate of attrition is (Wood & Young 2019). Even though the 

link between telomere length and survival is not always consistent, overall, there is a relationship 

between a higher mortality risk and shorter telomeres, at least in birds (meta-analysis of Wilbourn et 

al. 2018).  

 

The differences in conclusions among studies may be due to a multitude of reasons: different 

methods of measuring telomeres (TRF or qPCR), leading to differences in accuracy and throughput, 

differences in life-history of the species studied and the durations of the studies, differences in the 

ages of the animals studied (e.g. just young or old instead of both), and potential sex differences in 

mortality being ignored (Wilbourn et al. 2018). 

 

1.8 Heritability and parental effects 

If long telomeres are beneficial to an individual, then one would expect natural selection to favour 

long telomeres (Belmaker et al. 2019). However, traits need to be heritable if they are to evolve. The 

heritability of telomeres has been intensively studied in eukaryotes and vertebrates, including 

humans, with heritability estimates (h2) varying greatly from 0 to about 1 (Broer et al. 2013; Ashgar 

et al 2015; Becker et al. 2015; Dugdale & Richardson 2017; van Lieshout et al. 2019). Many 

heritability estimates are high, which can be due to the use of parent-offspring regressions to 

estimate heritability, which do not separate genetic from environmental effects (Dugdale and 

Richardson 2018; van Lieshout et al. 2020). An alternative is the use of a so called ‘Animal model’, 

which uses a pedigree and can portion phenotypic variance into genetic and environmental 

components (Dugdale & Richardson 2018).  

 

Aside from genetic and environmental effects, telomere length may also be passed on in a 

transgenerational way. As both parents pass on telomeres to the offspring, a difference in telomere 

length between two chromosomes can exist. This can lead to different telomere restoration and 

maintenance. These mechanisms can either compensate fully for any initial differences in telomere 

length in the zygote, called a telomeric reset (Vizlin-Hodzic et al. 2009). However, if such a reset 

occurs, no link should exist between parental telomere length and offspring telomere lengths. 

Alternatively, a telomeric reset could not occur and then parental telomere lengths could be 

correlated to offspring telomere length. Such an epigenetic inheritance is shown in some studies 
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that link parental age to offspring telomere length (Criscuolo et al. 2017; Noguera et al. 2018; 

Bouwhuis et al. 2018; Bauch et al. 2019).    

 

However, results from studies studying parental age effects on offspring telomere length have 

different conclusions, ranging from positive to negative parental age effects (Bauch et al. 2019). The 

variance in conclusions may be due to the use of cross-sectional studies, which assess what age-

related changes in telomeres occur at the population level. Age-related changes in telomere length 

within-individuals cannot be assessed. As the effects at the population level (between-individuals) 

can differ from the within-individual age effects, discerning these two effects is vital. Only one study 

to date investigated the relationship between offspring telomere length and parental age within 

individual parents. This study in jackdaws concluded that offspring telomere length decreased within 

individual father age. No effect was detected within mothers (Bauch et al. 2019). Seeing that we 

have a long-term dataset with multiple measurements of the same individual, our house sparrow 

population would provide valuable information about any age-related correlations between parent 

and offspring telomere length. Gaining insight in parental age correlations to offspring telomere 

length is important due to the effect such a link may have on the evolution of senescence. For 

example, if parental age has a negative association with offspring telomere length, and telomere 

length affects fitness, selection may favour young individuals to reproduce, at the cost of future 

reproduction. Such a link could influence the age structure of populations.  

 

1.9 Questioning causal involvement 

There are three indications that telomere lengths may have a causal effect on age and survival 

(Young 2018). First, several studies have shown that species with shorter telomeres tend to have 

shorter lifespans and individuals with shorter telomeres tend to have lower survival (Wilbourn et al. 

2018; Tricola et al. 2018). Second, short telomeres have been associated with higher risks of some 

diseases in humans, such as gastric cancer and diabetes (Hermann et al. 2018; Smith et al. 2019). 

Third, when telomerase affects telomere length, and in experiments in mice where telomerase is 

either overexpressed or knocked-out, lifespans are affected positively and negatively, respectively 

(Criscuolo et al. 2018). However, these observations do not provide conclusive evidence that 

telomeres play a causal role in aging. Telomeres could instead be a biomarker of accumulated 

damage to other (cell) structures that cause aging (Young 2018). The finding that telomere attrition, 

instead of telomere length, predicts survival in some species (i.e., Boonekamp et al. 2013), is an 

indication that telomeres may indeed be reflecting accumulated damage to other biological 

structures that cause aging (Young 2018).  
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Moreover, if telomeres are causally involved with aging, two predictions follow: 1. If telomere length 

determines mortality at older ages, then it is expected that telomere length predicts remaining 

lifespan more closely at older ages than at younger ages (Simons 2015). 2. If telomeres shorten until 

they drop below a critical length, then individuals with the shortest telomeres would die off, leaving 

less variance of telomere length in the population as age increases (Simons 2015). However, in 

contrast the correlation between telomere length and mortality appears to decrease with age 

(Boonekamp et al. 2013), and simulated data as well as a meta-analysis in humans showed that the 

variance in telomere length did not decrease with age (Simons 2015).  

 

Another reason to doubt the causal involvement of telomeres in survival is the question of why 

selection has not favoured individuals with longer telomeres (Young 2018). The most common 

argument is that trade-offs make such selection impossible or at least not beneficial, due to the cost 

it entails to, for example, other systems. However, that individuals of the same age and species still 

show high telomere length variation, and often have some heritable component (Dugdale et al. 

2018), shows that selection could potentially act on telomere length (Young 2018). Furthermore, 

there are many potential mechanisms that could drive the selection, such as favouring individuals 

with better telomere maintenance, longer initial telomere lengths or even evolving an alternative to 

telomeres, as seen in plants and some animals (Blackburn 2001).  

 

In sum, telomeres may not be the underlying cause of mortality, but may instead reflect other 

processes that lead to death or disease. However, the study of telomeres would not become less 

interesting should a causal relationship be absent. After all, as a potential biomarker of age, quality 

and other aspects of life, telomeres still offer a valuable tool with which to measure or predict life-

history components. 
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1.10 Thesis outline 

Chapter 2 investigates a methodological issue regarding sample storage I discovered after our 

telomeres were measured on the qPCR. To do so, I conducted an experiment where I re-extracted 

the DNA and re-measured the telomere length of 80 randomly selected samples to compare the 

telomere length of these samples at different storage times. After I investigated potential effects of 

blood sample storage on telomere length, I continued to study the biological shortening of 

telomeres with both within and between individual age, which will be presented in Chapter 3. In this 

chapter I also tested if telomere length was associated with survival and lifespan, and assessed if 

selective disappearance of individuals with short telomeres occurs in our house sparrow population.  

 

In Chapter 4, I use our longitudinal house sparrow data to disentangle population level parental age 

effects from within-individual parental age effects. Moreover, I use our cross-fostering experiment 

to also disentangle any biological parental effects from social parental effects. To date, only one 

other study in parental age effects on offspring telomere length has included both longitudinal and 

cross-fostering data, but only across a few years (Belmaker et al. 2019).  

 

In Chapter 5, I focused on partitioning the phenotypic variance of telomere length into different 

components, such as genetic, environmental, paternal and maternal. There are only a few studies to 

date that have estimated the heritability of telomere length in a wild population. Most of these 

studies employ parent–offspring regressions to assess genetic contributions to telomere length in 

offspring. Only a few studies use animal models, which more effectively allow genetic and 

environmental contributions to telomere length to be separated. As the Lundy house sparrow has 

one of the most complete pedigrees constructed for a natural population, it is highly suitable for 

applying the animal model.  

 

In Chapter 6 I provide a short summary of my thesis, and make a few general conclusions regarding 

my findings, as well as pointers to the future of telomeres.  

 

1.11 Contributions made to this thesis 

 
Blood samples were collected on Lundy over a range of years by many PhD students, master 

students and field assistants. In the laboratory, DNA was extracted, and telomeres were measured 

by Nathalie Dos Remedios and Marie-Elena Mannarelli. Telomere ratios were calculated using an R 

script provided by Mirre Simons. 
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I confirm that this Thesis is my own work. I am aware of the University’s Guidance on the Use of 

Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This work has not been previously been 

presented for an award at this, or any other, university.   
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2. Blood sample storage in ethanol affects telomere length estimation by 

qPCR 

 

2.1 Summary 

 
The role of telomeres as biomarkers of health and aging has received increasing interest in the past 

years. Many of the resulting studies, first in vitro and studied in humans, but later also assessing 

telomere dynamics across the lifespan of wild animal populations, collect blood samples across 

many years. Consequently, the blood samples may be stored for different storage durations before 

DNA is extracted and telomeres length measured.  

 
The varying sample storage times may affect telomere length, as previous studies have indicated. 

However, few studies have designed an experiment to test specifically if storage time of blood 

samples in ethanol is affecting telomere length when measured by quantitative PCR (qPCR). 

Moreover, the assessed storage time in previous studies has rarely surpassed one year, which may 

not be representative of the storage time in most longitudinal studies.   

 
We used blood samples that were stored in ethanol for between one and ten years at room 

temperature to assess the effect of sample storage time until DNA extraction and qPCR 

measurement on telomere length. We detected a negative effect on telomere length measurements 

of the time stored as a blood sample in ethanol at room temperature until DNA extraction. We 

found no effect of DNA storage time on qPCR measurement. Our findings highlight the importance 

of extracting DNA from blood samples soon after blood sample collection, freezing samples, or 

assessing blood sample storage time before analysis of biologically relevant questions, even when 

the same sampling storage protocol is used for all samples within a study.  

2.2 Introduction 

 
Telomeres are repetitive DNA sequences ([TTAGGG]n) located at the ends of chromosomes (Meyne 

et al. 1989; Blackburn 1991). Past studies have indicated that telomeres may play a fundamental role 

in the protection of chromosomal DNA, as well as a role in the regulation of cellular senescence 

(Armanios & Blackburn 2012; Nussey et al. 2014). Moreover, telomeres appear to shorten with age 

and other metabolically costly life experiences, and, as such, may reflect the (cumulative) effects of 

stresses from the environment as well as predicting susceptibility to disease (Blackburn et al. 2015; 

De Meyer et al. 2018; Willis et al., 2018). Consequently, telomere length may predict survival (Bize et 
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al. 2009; Heidinger et al. 2012; Nussey et al. 2014; but see Boonekamp et al. 2014). Because 

telomeres may predict longevity, telomeres may explain variation in life-history traits and also 

provide insight into the evolution of life-history strategies (Haussmann 2008).  

 

As telomeres may reflect variation in life-history traits, studies in evolutionary ecology have tried to 

explain the variation in telomere length (Nakagawa et al. 2004; Haussmann & Marchetto 2010; Horn 

et al. 2010; Monaghan 2010). In order to study telomere dynamics, tissue samples – usually blood – 

are collected and stored until the DNA is extracted for telomere measurement. There are a 

multitude of available techniques to store samples, extract DNA and measure telomere length, each 

usually requiring high competence levels in order to result in accurate estimates of TL. Several 

studies have now indicated some important concerns with the methods applied to extract DNA and 

measure telomere length (Horn et al. 2010; Haussmann et al. 2011; Nussey et al. 2014). However, 

the conditions of storage of (blood) samples, and their duration, have undergone less scrutiny.  

 

Degradation of DNA over time might especially be a potential issue when measuring telomeres, as 

telomeres are located at the ends of chromosomes, which are especially susceptible to degradation 

(Wang et al. 2010). The degradation of telomeres may be an issue when measuring telomeres with 

the quantitative Polymerase Chain Reaction (or qPCR). qPCR utilises a reference gene, which is 

measured at the same time as the telomeric DNA, to calculate the ratio of telomeric DNA to the DNA 

of the reference gene (Cawthon 2009). Due to the location of telomeric DNA at the end of 

chromosomes, it may degrade more rapidly than the reference gene DNA, which would affect the 

resulting ratio. The effect on the ratio may not only be negative, as would intuitively be expected. 

The quadruplex structures at the 3’ end of telomeres can become more accessible to qPCR over 

time, which may result in a in a higher telomere measurement, and consequently a higher T/S ratio 

(Zanet et al. 2013).  

 

Different storage methods are available in which to store blood samples, such as whole-blood 

storage in ethanol, in ethylenediaminetetra acetic acid (EDTA), in acid citrate dextrose (ACD), or as a 

dried blood sample on Flinders Technology Associates (FTA) cards. Whether telomeric DNA is 

affected by storage may depend on the storage method used (Tolios et al. 2015). In a study by 

Reichert et al. (2017), blood samples on FTA cards were compared to those stored at -80°C, and it 

was concluded that samples from FTA cards had significantly smaller telomere : control gene ratios. 

Dagnall et al. (2017) concluded that the DNA concentration of the sample and the temperature 

affected telomere length negatively. Eastwood et al. (2018) collected and stored samples in ethanol 
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at 4°C for 7 months. This method was compared to two other storage methods, in Longmire’s and 

Queen’s lysis buffers, also stored at 4°C for 7 months (Eastwood et al. 2018). The study concluded 

that, at least for their study system, storage in ethanol yields good results (at least when paired with 

optimized assays and extraction protocols) because telomere measurements were higher when the 

blood was stored in ethanol, whilst Longmire’s and Queen’s lysis produced lower telomere 

estimates. The previous studies and the varying effects of storage methods on telomere length show 

that scrutiny is needed when determining the storage method for a study. 

 

The previous studies focused on DNA extraction or storage methods and very few studies have 

addressed the effects of storing storage time on telomere length, while in blood samples the length 

of time before a (blood) sample’s DNA is extracted or telomere length is analysed can also 

potentially affect telomere length. There are only a few studies that included effects of storage time 

on telomeric DNA in their research. Zanet et al. (2013), stored whole blood samples in EDTA or ACD 

at room temperature for 9 days. The telomeric DNA appeared stable for the first 4 days, but showed 

degradation after that. A study in the Seychelles warbler, Acrocephalus sechellensis, where samples 

were collected and stored in ethanol at room temperature, reports finding no relationship between 

sample storage time and telomere length (Spurgin et al. 2017). However, there is no mention of for 

how long the samples were stored before DNA extraction and analysis.  

 

If samples can be affected by storage length, both cross-sectional and longitudinal datasets are at 

risk of basing conclusions on methodological (storage) effects instead of biological effects, as any 

potential biological effects may be confounded with methodological storage time effects. This risk is 

increased in biological studies because, oftentimes blood samples may be stored over a long period 

of time as samples are collected in the field and DNA extraction and telomere measurement may not 

be readily available. For some of the samples, the telomere length is not measured until many years 

after sample collection (Lin et al. 2019). Depending on laboratory set-up, some samples may be 

measured sooner than others, resulting in different storage times. These different storage times may 

influence DNA quality and quantity and consequently telomere length results and conclusions 

(Nakagawa et al. 2004; Haussmann et al. 2011; Smith et al. 2011; Cunningham et al. 2013; Nussey et 

al. 2014). 

 

We originally aimed to analyse telomere dynamics in our long-term dataset of house sparrows, 

Passer domesticus, in which samples were collected in the field and then stored in ethanol at room 

temperature. Initial investigation of the data indicated a decline of telomere length with sample 
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storage time. Consequently, we were interested in how long-term storage time (up to 10 years) 

affects telomere length estimates in our dataset. To test if storage time affects telomere length, we 

randomly selected 80 samples that were previously measured from our long-term dataset. We then 

re-extracted the DNA and re-measured telomere length in the selected samples by qPCR to assess 

effects of storage time on telomere length. This experiment allowed for repeated measures of the 

same sample at different sample storage ages, which allowed the detection of any potential within-

sample effects of storage time on telomere length. This study is the first to test whether telomere 

length is affected by storage time across multiple years, and where the sample storage time is 

divided into pre-extraction and post-extraction storage.  

 

2.3 Methods 

 
We selected 80 samples from our long-term dataset. Our long-term dataset consisted of 2,676 

samples which were collected from house sparrows on Lundy island (51.11 N, 4.40 W) in the years 

2000 to 2015. House sparrows are small passerines (Summer-Smith 1963). All individual sparrows 

were uniquely colour ringed and provided with a metal numbered ring from the British Trust for 

Ornithology. Adults were caught in both summer (April–September) and winter (November–March) 

using mist-nets or trapping within nestboxes and funnel traps.  

 

2.3.1 Sample collection 

 
The samples from fledged individuals (individuals that had left the nest) were collected and then 

stored in 1 ml of ca 100% ethanol at room temperature until DNA was extracted. 

 

2.3.2 DNA extraction 

 
DNA was extracted from blood samples prior to analysis and subsequently stored at -20°C in low TE 

pH 7.5. Prior to qPCR, DNA was quantified using a Nanodrop 8000 Spectrophotometer (Thermo 

Fisher) and normalised to 20–30 ng/ul. DNA purity was checked on the Nanodrop, using the Nucleic 

Acid ratios 280/260.   

 

For qPCR, a multiplex protocol was implemented following Cawthon 2009. DNA was measured using 

a StepOnePlus from Applied Biosystems or Quantstudio 12K Flex Real-Time PCR System (Thermo 

Fisher Scientific), measuring telomere (T) and single copy gene (S) signals in the same reaction. The 

multiplex method is expected to be more accurate because any differences in the amount of DNA 
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that is pipetted no longer contributes to variation in the T/S ratio, because both T and S are 

measured from the same sample and within the same reaction (Cawthon 2009).  

 

2.3.3 Telomere qPCR measurement 

 
For our long-term dataset, we were aware that the collection of samples over a range of years may 

lead to samples being clustered by, for example, year or cohort (van Lieshout et al. 2020). To avoid 

confounding the effects of cohort with qPCR plate, each cohort of samples was randomly divided 

into three subsets for qPCR (quantitative polymerase chain reaction) analysis following advice from 

(van Lieshout et al. 2020). qPCR telomere measurements were undertaken in 2013–2018 (except for 

2017), with several plates being analysed each year. Each plate contained a random subset of 

samples from each of three different collection years. This meant that, for example, one-third of a 

plate would contain a random subset of samples collected in Year 1, one third from Year 2 and one 

third from Year 3; locations on the plate were randomised. 

 
Two sets of primer pairs were included in each reaction: telg (5’-

ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT-3’) and telc (5’-

TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA-3’), targeting telomeric sequence. The 

difference between these two primers is that telg can prime DNA from cycle one, while telc can 

prime DNA from cycle two onwards. In cycle one telg and telc primer can both hybridize to native 

telomere sequences, but only telg can prime DNA synthesis. The telc cannot prime DNA synthesis, 

due to its 3′ terminal mismatch. In Cycle two, telc can hybridize along telg primer extension products 

that were synthesized in Cycle 1, but are limited in priming DNA synthesis. In the following cycles 

telc can use telg extension products as a template to prime DNA (Cawthon 2009). 

 
We used GAPDH-F (5’-CGGCGGCGGGCGGCGCGGGCTGGGCGG-AGCCAGCCAAGTACGATGACAT-3’) 

and GAPDH-R (5’-GCCCGGCCCGCCGCGCCCGTCCCGCCG-CCATCAGCAGCAGCCTTCA-3’) to amplify 

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), an autosomal, single copy gene, as a 

reference. These primers are designed to place GC-clamps on both ends of GAPDH, which raises its 

melting temperature. Because the telomeric DNA is more abundant than the GAPDH DNA, telomeric 

DNA is picked up at earlier qPCR cycles than the GAPDH DNA (Cawthon 2009).   

 
The fluorescence generated by SYBR Green is indicative of the amount of PCR product in the 

reaction, if the reaction is in the exponential phase of the amplification curve, and provided that 

amplification is comparable and sufficient in all samples. The threshold was set within the log-linear 
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phase for all samples, well above background fluorescence (visual inspection). This enabled the 

calculation of the actual amount of initial molecules, since the fluorescence intensity is proportional 

to the amount of PCR product in the exponential phase. 

 
Samples were run in duplicate on each qPCR plate. qPCRs were conducted in 20-μl reactions, 

including 1.5 μl normalised DNA, 10 μl SYBR Select Master Mix (Applied Biosystems) and each of the 

four primers at 0.9 μM. qPCR amplification was conducted on a Quantstudio 12K Flex Real-Time PCR 

System (Thermo Fisher Scientific), as follows: 50°C for 2 mins; 95°C for 2 mins; 2 cycles of 94°C for 

15s and 49°C for 15s; 40 cycles of 94°C for 15s, 62°C for 10s, 74°C for 15s (with signal acquisition), 

84°C for 10s and 86°C for 15s (with signal acquisition). Note that the 74°C measure provided the Ct 

values (the value at which the fluorescence of the target DNA rises above background fluorescence 

and can thus be measured) for amplification of telomere template, whereas the 86°C measure 

provided the Ct values for amplification of GAPDH template, while the telomere product is melted. 

Five plates were analysed on an earlier model qPCR machine (StepOnePlus from Applied Biosystems) 

than the other 77 plates, using the same cycle protocol as Quantstudio 12K Flex Real-Time PCR 

System. To ensure that both machines provided comparable outputs, the intercept of the Ct values 

of the standardised curves (from the standard concentrations) from all plates from both machines 

were compared for both telomere DNA and GAPDH. Neither the telomere DNA nor the GAPDH Ct 

intercept values were normally distributed, hence a Wilcoxon test was done to test if the Ct 

intercepts differed significantly between machines; there was no difference (Telomere DNA: w = 

158, p = 0.51; GAPDH: w = 215, p = 0.67, N = 82 plates). 

 

On every qPCR plate, a standard reference sample was used to create standard curves. This 

reference sample was a blood sample from one of six individual birds that were selected due to the 

large quantity of collected blood. The DNA from each of the six reference samples was extracted at 

the start of the study and subsequently stored in multiple aliquots at -20°C in low TE pH 7.5. Each 

aliquot was used for multiple plates. This meant that one aliquot of the reference samples 

underwent multiple defrost cycles before a new aliquot was used.  

 
The reference samples were run in duplicate at concentrations of 80, 20, 5, 1.25 and 0.3125 ng/μl, as 

well as two non-template control wells to provide the standard curves of both telomeric as GAPDH. 

The standard curves of each plate were visually assessed for outliers and a maximum of 2 outliers 

were removed if the amplification efficiencies of GAPDH or telomere DNA improved. This resulted in 

15 plates having increased amplification efficiencies, improving average efficiency of all 82 plates of 
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the reference gene from 93.5% (range 73–119%) to 94.5% (range 76% - 119%) end efficiency of 

telomere DNA from 89.5% (range 71%- 109%) to 90.7% (range 71% - 109%).  

 

Samples for which Ct > 25, indicating very low amplification success, for either GAPDH or telomeres 

were excluded from analysis, as they were deemed unreliable. As a proxy for telomere length, we 

calculated the ratio of telomere signal (T) to GAPDH signal (S). Ct values for the telomere DNA and 

GAPDH signal per well were evaluated using the standard curve for each plate. T and S were 

calculated from the formula: 

 
Standardised signal = 10 ^ ((Ct value of sample – Intercept of standard curve) / log coefficient of 

standard curve) 

 
We then calculated the T/S ratio for each sample. 

 
As samples were analysed in duplicate in two separate but adjacent wells on each plate, and thus 

are expected to have similar T/S measurements, outliers were detected by calculating the relative 

difference between duplicates:  

 
((T/S ratio replicate 1 – T/S ratio replicate 2) / (T/S ratio replicate 1 + T/S ratio replicate 2)) /2 

 
Replicates that had a relative T/S ratio difference of more than 0.2 were re-analysed by qPCR. If the 

relative difference was still more than 0.2, the samples were omitted from analysis. Some samples 

were measured in duplicate multiple times (on different plates) without exceeding the 0.2 

difference. If that were the case, samples with the least relative difference were selected for 

analysis.  

 

2.3.4 Experiment 

 
We randomly selected 80 blood samples from our long-term dataset using R (version 3.5.0; R Core 

Team 2018). Degradation may occur during the period stored as a blood sample (hereafter referred 

to as blood storage time) or after the DNA has been extracted and stored at -20 °C (hereafter 

referred to as DNA storage time). To separate these two possible effects, we re-extracted the DNA 

and repeated the qPCR telomere measurements on both the 80 new and 80 old DNA extractions in 

2018. This created a qPCR dataset that included repeated measures on the same blood samples that 
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incorporated large variation in both blood sample storage time and DNA storage time. The protocol 

for extracting DNA and measuring the samples on the qPCR are equal to the protocols used for our 

long-term dataset (2.2.3).  

 

As the 80 randomly selected samples were part of the larger long-term dataset, of which the 

samples had their DNA originally extracted anywhere between 2006 and 2016, and their telomeres 

measured between 2013 and 2018 (situation A in Figure 2.1). The 80 selected samples had their DNA 

extracted again and were re-measured on the qPCR machine in 2018 (situation C in Figure 2.1). This 

led to a longer blood-storage time and a shorter DNA storage time when compared to the 

measurement from our long-term dataset (situation A), because the blood samples were stored for a 

longer period but DNA extractions were measured immediately after extraction. We also re-

measured the old DNA extractions (as stored previously from our long-term dataset) in 2018, leading 

to a longer DNA storage time and no change in blood storage time compared to the initial 

measurement (situation A in Figure 2.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. Two examples showing the differences in blood storage time and DNA storage time compared in 
our experiment. The examples show two blood samples taken in 2010 and 2011. A. Our initial measurement 
from our long-term dataset. The samples are taken from an individual in 2010, and another individual in 
2011. DNA for both birds is extracted one and again two years later, while the qPCR measurement was 
completed one year later for both samples. B. In 2018 we remeasured the old DNA extractions, as stored at -
20°C from our long-term database. This is 6 years later, as the DNA was stored in 2012 for both individuals. 
The blood sample storage time does not change, as only the extracted DNA was re-measured. C. We re-
extract the DNA in 2018 from blood samples collected in 2010 and 2011 to remeasure the telomeres in 2018. 
The time stored as a blood sample is now 8 and 7 years, respectively, for our two examples. The DNA 
storage time is 0 because the DNA is measured immediately after DNA extraction.  
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2.3.5 Statistical analysis 

 
All statistical analyses were conducted in the R environment (version 3.5.0; R Core Team 2018) using 

the ‘lme4’ package (version 1.1 – 17). The statistical analyses were performed for the 80 samples 

and their measurements from the three time points at which they were (re)measured (Situation A, B 

and C in Figure 2.1). The natural log was taken of the T/S ratio for all models (hereafter referred to as 

RTL).  

 

Because it is unknown when any potential degradation occurs – during the time stored as blood 

sample or as DNA extraction – we tested separately for the effect of blood storage time and DNA 

storage time. The effect of blood age and DNA age on telomere length were tested in a Linear Mixed 

Model (LMM). In this model, RTL was used as a response variable. For both blood and DNA age (in 

years) we applied Van de Pol & Wright’s (2009) method, calculating the mean and centred storage 

times for the sample to allow for assessment of both between- and within-sample storage time 

effects on telomere length.  

 

In a separate analysis we tested whether blood storage time (in years) had a linear or quadratic 

relationship with telomere length. We used an LMM, where RTL was added as the response variable, 

while both the linear and squared effects of blood storage time were added as fixed effects. Due to 

the repeated measurement of the same samples, and samples being analysed on the same or 

different qPCR plates, sample identity and qPCR plate identity were added to all models as random 

intercepts. 

 

Because telomere length is expressed as a ratio of T and S values, an association between storage 

time and telomere length can be caused by a change in length of either telomeric DNA, reference 

gene DNA or both. We therefore tested if the Ct values of both telomeres and the reference gene 

(GAPDH) were related to storage time in four separate linear mixed models. In the first two models 

either the Ct value of telomeric DNA or GAPDH was set as the response variable, and the time stored 

as a blood sample as both linear and quadratic factor was added as a fixed covariate. We also added 

the sample identity and qPCR plate identity as random intercepts to avoid pseudo replication. For 

the third and fourth model, we used models one and two, but replaced the time stored as a blood 

sample with the time stored as a DNA sample.  

 

Our 80 samples had, on average, an initial blood storage time of 2.8 years (SD 3.8) and a DNA 

storage time of 1.2 years (SD 1.2). When the old DNA extractions were remeasured, the mean blood 
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storage time was 3.3 years (SD 4.1) and the DNA storage time was 4.2 years (SD 1.2). The reason the 

blood storage time was not the same as the initial blood age was that some samples did not meet 

our criteria (such as a minimum of 0.2 relative difference between duplicates of the same sample on 

a plate or Ct > 25 for either GAPDH or telomeres), and were thus excluded, changing the average 

blood age. When the DNA was re-extracted and re-measured, the mean blood age was 7.3 years (SD 

4.1) and the DNA age was 0.  

 

2.3.6 Repeatability of telomere lengths 

 
We were interested in the repeatability of RTL estimates to assess the reliability of our qPCR 

measurements. We analysed RTL sample repeatability using the rptR package (Stoffel et al. 2017). 

rptR uses a mixed linear model framework, where the repeatability is calculated as the variance 

among the means of groups (in our case blood samples) over the sum of group-level and data-level 

(residual) variance. In this model we used RTL as the dependent variable and sample identity as a 

random effect. The repeatability of duplicates of the same sample (samples are always measured in 

two separate wells on a single qPCR plate) was 0.98 (se = 0.004, N = 145 samples), meaning that 98% 

of the variance observed in RTL can be explained by within-sample consistency. 

  
To assess the repeatability of the 80 samples that had their DNA re-extracted and telomeres re-

measured on the qPCR machine, we selected all samples that had two or more sample 

measurements. All samples were re-measured, but some measurements had to be excluded due to 

the duplicates of one sample on a plate having a larger relative difference than 0.2 or having Ct 

values of GAPDH or telomeres > 25. The repeatability of RTL of samples that were either re-analysed 

and/or re-extracted (and thus had varying blood and DNA storage times) was 0.49 (rpt, se = 0.07; N = 

58 samples). Adding the qPCR plate as a random effect to the model to assess repeatability of 

samples lowered the repeatability to 0.37 (rpt, se = 0.08, N = 58 samples).  

 

2.4 Results 

 
Using a model that included both mean and centred blood and DNA storage times, RTL was only 

associated with the blood storage time (βmean blood storage time = -0.05, se = 0.01, t = -6.9, df = 58.3, p < 0.001 and 

βcentred blood storage time = -0.08, se = 0.03, t = -3.1, df = 35.8, p = 0.004). The DNA storage time had no effect on 

relative telomere length (βmean DNA storage time = 0.02, se = 0.03, t = 0.5, df = 77.8, p = 0.61 and βcentred DNA storage time = -

0.03, se = 0.03, t = -0.98, df = 40.3, p = 0.33, Table 2.1).  
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Upon further investigation of the relationship between telomere length and blood storage time, we 

found that RTL was negatively associated with blood storage time (βblood storage time linear = -0.10, se = 0.01, t = -

6.90, df = 173.7, p < 0.001 see Table 2.2), and that this effect showed a quadratic relationship (βblood storage 

time^2 = 0.004, se = 0.001 t = 3.41, df = 173.5, p < 0.001). See Table 2.2 and Figure 2.1 for more details.  

 

Table 2.1. The linear mixed model results, testing for mean and centred blood storage and DNA storage time 
effects on log RTL.  

 
 

 
Figure 2.1. Quadratic blood sample age effect on RTL. The solid line represents the model fit, the dashed line 
the 95% credible interval.  
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Table 2.2. blood sample storage effects on RTL, linear mixed model results. 

 
 
 
We found no association between telomere Ct values and linear nor quadratic blood sample storage 

time (βblood storage time = 0.00, se = 0.03, t = 0.06, df = 158.2, p = 0.95 and βblood storage time^2 = -0.00, se = 0.00, t = -

0.19, df = 159.4 p = 0.85, respectively). We did find a negative association between GAPDH Ct values 

and linear blood storage time (βblood storage time = -0.12, se = 0.04, t = -3.13, df = 178.9, p = 0.002). There was 

no relationship between GAPDH Ct values and quadratic blood sample storage time (βblood storage time^2 = 

0.00, se = 0.00, t = 1.36, df = 176.7, p = 0.18, Table 2.3). 

 
Table 2.3. Blood sample storage effects on telomere and GAPDH Ct values, linear mixed model results from 
two models. 

 
 
 
For DNA storage, there were no associations between the Ct values of GAPDH and linear DNA 

storage time (βDNA storage time = 0.08, se = 0.05, t = 1.67, df = 164.0, p = 0.10). There was also no correlation 

between the Ct values of GAPDH and quadratic DNA storage time (βDNA storage time^2 = 0.01, se = 0.01, t = 

0.88, df = 172.2, p = 0.38). There were no associations between the Ct values of telomeres and linear 

nor quadratic DNA storage time (βDNA storage time = 0.01, se = 0.04, t = 0.20, df = 150.9, p = 0.84 and (βDNA storage time^2 

= 0.01, se = 0.01, t = 0.89, df = 160.1, p = 0.37, respectively). See Table 2.4 for linear mixed model 

output.  
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Table 2.4. DNA sample storage effects on telomere and GAPDH Ct values, linear mixed model results from 
two models. 

 
 

2.5 Discussion 

 
To our knowledge, this is the first systematic examination of long-term blood sample storage time in 

ethanol at room temperature, which is an often-used method of storage in field biology (Arctander 

1988; Owen 2011), on telomere measurements. In our study, we found evidence that the time a 

sample was stored as a whole blood sample in ethanol at room temperature shortens telomeres as 

estimated by qPCR, and that this effect was reduced during the time in storage. We did not find any 

associations between telomere length and storage time for frozen, extracted DNA, suggesting that 

storing frozen DNA does not affect telomere length. 

 

Collected whole blood samples can show a quick change in telomere length during storage (Zanet et 

al. 2013). The T/S ratio of whole blood samples that were stored in an anticoagulant (ACD or EDTA) 

at 4 C̊ and room temperature remained stable for the first 4 days, but showed an increase in T/S 

ratio after 4 days, up to a 34% increase after 9 days (Zanet et al. 2013). Such an increase in telomere 

length with storage time can occur when the telomere amplification in the qPCR increases relative to 

the reference gene because, due to degradation, the quadruplex structures at the 3’ end of 

telomeric DNA become more accessible for primers during the qPCR, leading to more amplification 

of telomeric DNA (Zanet et al. 2013).  

 

Why telomere lengths appear to shorten during whole-blood storage in our study is unclear, and we 

can only speculate as to the cause. In comparison, blood samples stored on FTA cards show signs of 

DNA fragmentation because PCR reaction efficiency was lower, and gels showed the DNA was more 

fragmented (Reichert et al. 2017). However, in contrast, Rosero-Bixby et al. (2019) found no sign of 

DNA fragmentation in extracted DNA samples that were stored at 4°C for multiple years, then 

analysed on agarose gel. We can only speculate that whole blood samples stored in ethanol also 

undergo DNA fragmentation. DNA fragmentation can potentially occur due to the non-sterile 

conditions in which samples are collected and stored. Due to the lack of completely sterile storage 
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conditions, T/S ratios can be affected by, for example, bacterial and fungal nucleases affecting 

telomere lengths, or oxidation of DNA affecting the PCR reactions of T and S differently (Rosero-

Bixby et al. 2019). We statistically tested whether Ct values for telomeres, our reference gene 

(GAPDH) or both were affected by the time period for which a sample was stored, and found that 

the Ct values of telomeres remained stable through both blood sample and DNA extraction storage, 

while the Ct values of GAPDH went down with blood-sample storage time. Lower Ct values of 

GAPDH indicate that more GAPDH DNA was detected in the qPCR, leading to higher S values and 

consequently lower T/S ratios because telomeres were unaffected by blood-storage time. We can 

only speculate why GAPDH was positively affected by blood sample storage time. It is possible that 

due to DNA fragmentation, the GAPDH DNA became more accessible over time for priming, resulting 

in more DNA being amplified in older blood samples. We did not check for DNA degradation in our 

dataset prior to qPCR analyses - by, for example, using agarose gel electrophoresis -, so we cannot 

exclude that the DNA of samples degraded over time. In contrast, we detected no correlation 

between DNA storage time and the Ct values of GAPDH. This could be the result of the different 

storage methods, where blood samples were stored in ethanol at room temperature, while DNA was 

stored at -20°C in low TE pH 7.5. Moreover, telomere measurements remained unaffected in both 

blood sample and DNA storage, which may be due to the small repeats of telomeric DNA, where 

DNA fragmentation has little impact on priming ability.  

 

There is only one other study that specifically assessed the effects of whole-blood sample storage in 

ethanol on telomere length. This study from Eastwood et al. (2018) concluded that storage in 

ethanol at 4°C yielded the highest relative telomere length, when compared to storage in Longmire’s 

and Queen’s lysis buffer. It should be noted that, as shown by the increase in telomere length with 

storage time in Zanet et al.’s (2013) study, obtaining higher telomere length estimates does not 

necessarily equate to better estimates. However, Eastwood et al. (2018) also reported high precision 

when blood samples were stored in ethanol. Regardless, the samples in Eastwood et al.’s (2018) 

study were only stored for 7 months, and were obtained from only 26 individuals, so their 

conclusions may have limited predictive value. To illustrate the point that attrition of telomere 

length may not be detected in blood samples that were stored for a relatively short time (less than a 

year), we restricted our dataset only to samples that were stored as a blood sample in ethanol at 

room temperature for a maximum of one year. This subset contained 52 samples. Within this subset, 

we also did not detect a decline in T/S with blood sample storage time (LMM, βblood storage time = 0.02, se = 

0.11, t = 0.19, df = 50.4, p = 0.95, Supporting information Table S2.1).  
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We did not detect any association between telomere length and time of DNA storage at -20°̊C. This 

is in agreement with another study that assessed storage-condition effects on blood samples from 

birds (Reichert et al. 2017). Reichert et al.’s (2017) study concluded that telomere length was highest 

for samples that were stored as frozen DNA extractions, when compared to whole-blood samples 

that were frozen or stored on FTA cards. However, their study cannot exclude the possibility that the 

differences stemmed from other sources, such as different DNA extraction methods, as these were 

not consistent in their study (Reichert et al. 2017). As our study has used the same extraction and 

qPCR measurement methods throughout, we can exclude the possible confounding effects of DNA 

extraction and qPCR quantification. As such, we can conclude that in our study (frozen) extracted 

DNA was more stable than whole-blood samples in ethanol. 

 

In contrast, Rosero-Bixby et al. (2019) did find effects of DNA extraction storage on telomere length 

in human blood samples. This study stored DNA extractions at 4°C for up to 9 years and concluded 

that telomere ratios went up in the first 5 years of storage, after which the pattern reversed. The 

DNA extractions in this study were not frozen, which seems likely to explain why they did find an 

effect of DNA storage on telomere length.  

    

The negative effect of blood sample storage time has implications for further research, as it could 

confound biological effects in the study species. For example, the age of individuals may be 

correlated with blood sample age, as samples from older individuals may have been stored for a 

longer time. This means that it will be hard to distinguish biological cohort effects from artefactual 

blood storage effects. Moreover, not only samples may be affected by storage time, but also the 

reference samples that are used in qPCR can be affected. For example, in our study, the DNA of all 

reference samples was extracted at the beginning of qPCR analyses and stored in multiple aliquots 

before freezing. One aliquot was used for multiple assays, and thus underwent multiple defrost 

cycles. We know that freeze/thaw cycles of whole blood minimally impacted qPCR T/S ratios (Zanet 

et al. 2013). However, whether frozen DNA remains unaffected by freeze/thaw cycles, especially 

after long periods of storage, is unknown. Reference samples being differently impacted due to a 

difference in how many freeze/thaw cycles an aliquot underwent, may result in a difference 

between the T/S ratios of samples between plates, also potentially confounding biological effects of 

interest.  

 

Past studies emphasise the need for consistency in sampling protocols. Our findings add that even 

when the method of storage is kept constant throughout a study, there is still the possibility of an 
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effect of storage time on telomere length measurements, potentially confounding biological effects. 

We also find that, even though the telomere to reference gene ratio may remain unaffected (in our 

study, with regards to DNA storage time), the telomere and/or reference gene values can potentially 

change independently of each other with storage time. This means that no change in the T/S ratio 

does not equate to no changes in telomere and reference gene length with storage time. It is 

essential for studies to investigate any potential changes in either telomere or reference gene length 

with storage time, to validate T/S ratios. We also recommend that DNA should be extracted from 

blood samples as soon as possible after collection. If whole-blood storage is required, freezing the 

blood samples should minimize telomere attrition. For datasets that have stored samples without 

freezing, we recommend testing for storage-related effects on telomere measurements. When such 

effects are found, consideration should be given to controlling for storage time as a covariate in 

statistical models.  
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Supporting information S2.  

 
We selected only samples that were stored for 0 or 1 years (as a blood sample in ethanol at room 

temperature) to assess if a decline in telomere length is detectable with relatively short blood 

sample storage times.  

 
Table S2.1. blood sample and DNA storage effects on RTL measurements in samples stored for 0 or 1 year.  
Results from linear mixed model. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  



44 
 

3. Longitudinal data reveal selective disappearance of individuals with short 

telomeres 
 

3.1 Summary 

 
Telomere length shows high variation between individuals, even between those of the same age. 

This variation is hypothesised to be caused by either differences in telomere length at birth or in 

how telomeres shortens with age. Most studies investigating telomere shortening have been cross-

sectional. More recently, however, longitudinal studies have shown that telomeres can both shorten 

and lengthen within individuals. Longitudinal studies can potentially demonstrate associations 

between survival and telomere length, important in understanding population and individual-level 

effects. We studied individual house sparrows, Passer domesticus, in a wild, closed population, 

taking many repeated measurements of their telomeres (N = 1,494 measurements) across a 21-year 

period. On a longitudinal level, individuals experienced telomere attrition as they aged. Telomere 

length was not, however, associated with age across individuals. Such a difference in within-

individual and between-individual age effects indicates that there has been selective disappearance, 

where individuals with shorter telomeres have disappeared from the population. Individuals did not 

show high consistency in their telomere lengths, and we provide evidence that telomere 

measurements increased in some individuals. If shortening and lengthening of telomeres can occur 

in response to environmental circumstances, telomere length might be more plastic than previously 

thought, with changes within individuals reflecting past and current life experiences.  

 

3.2 Introduction 

 
Senescence, defined as a reduction of residual reproductive success at older ages along with an 

increased likelihood of death, occurs in most organisms (Williams 1957; Kirkwood & Rose 1991). The 

main selective pressure that allows senescence to occur is extrinsic mortality, which selects for 

investment in early reproduction. This selection pressure results in a reduction in the strength of 

selection to maintain phenotypic traits as an individual ages, and results in a trade-off between 

investment in early-life reproduction and survival later in life (Williams 1957; Reznick et al. 2004). 

Evidence for this trade-off between early-life reproduction and growth or somatic maintenance has 

been found in a wide range of species (Lemaître et al. 2015; but see Cohen et al. 2020).  

 

However, the exact costs that underlie trade-offs that mediate senescence are still largely unknown 

(Flatt & Hayland 2011; Young 2018). Only when the molecular and physiological constraints that 
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drive senescence are uncovered can we start to shed light onto this major knowledge gap (Vleck & 

Haussmann 2007). There has, therefore, been much recent interest in biomarkers or mechanisms of 

ageing that can be measured in an ecological context, and telomere biology specifically (Spurgin et 

al. 2018). Telomere length has received attention because telomeres act on a cellular level and their 

lengths, and changes in the lengths, have been linked with the health and survival of individuals 

(Wilbourn et al. 2018). As such, telomeres may offer a potential link between cellular processes and 

ageing (Monaghan & Haussmann 2006). 

 

Telomeres are repeated sequences (TTAGGG)n, located at the ends of chromosomes (Blackburn 

2000). Telomeres have several functions within a cell. First, telomeres safeguard chromosome 

integrity by protecting chromosomes from nucleotide loss during cell division, as the ends of 

chromosomes are not fully replicated during DNA replication (the end replication problem, 

Blackburn 1991). Second, telomeres have been suggested to protect DNA from cellular oxidative 

stress, which shortens telomeres and would otherwise damage genes within chromosomes (Bize 

2009; Blackburn et al. 2015). Third, short telomeres may trigger cellular responses when they reach 

a critically short length, potentially leading to apoptosis (Harley et al. 1990; Lansdorp 2000). More 

recently, it has been shown that telomeres are a hub for cellular signalling to detect damage to the 

cell, irrespective of their length, which can feed into apoptosis and other key cellular signalling 

pathways (Hemann et al. 2001; Simons 2015 and Hewitt et al. 2012; Victorelli & Passos 

2017). Telomeres have been observed to shorten with age in many species (Dantzer & Fletcher 

2015) and have been linked to lifespan and survival (overview in Wilbourn et al. 2018, and see in 

contrast Li et al. 2020). Due to this link between telomere length and lifespan and survival, it has 

been proposed that telomeres are biomarkers of age (Bekaert et al. 2005; von Zglinicki & Martin-

Ruiz 2005; but see Mather et al. 2011), or more specifically of ‘biological age’ (Monaghan & 

Haussmann 2006, but see Boonekamp et al. 2013). 

 

Oxidative stress has been hypothesised to account for the link between telomere length and aging 

(Reichert & Stier 2017). Oxidative stress arises when reactive oxygen species (ROS) are generated 

during, among other causes, organismal stress (Chatelain et al. 2020). ROS are highly reactive 

(Balaban et al. 2005) and can cause damage to telomeres, so shortening them (von Zglinicki 2002). 

As telomeres may be damaged by oxidative stress, and oxidative stress can arise from organismal 

stress, telomeres may be a potential measure of the ecological stress (and thus accumulated 

damage) that an individual has undergone in its lifetime (Monaghan & Haussmann 2006; Asghar et 

al. 2015; Bize et al. 2009), reflecting biological age (the age of an individual shaped by its lifetime 

http://jeb.biologists.org/content/218/5/668#ref-40
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experiences), rather than chronological age. In line with the predictions following from this 

hypothesis is the observation that there is a large amount of variation in telomere length among 

individuals of the same species and age (Monaghan & Haussmann 2006; Hares et al. 2018). Such 

variation in telomere length between individuals of the same age suggests that individuals may 

undergo telomere shortening processes - such as stressful periods - differently (McEwen & Wingfield 

2003; Pauliny et al. 2006) and, or alternatively, start life with different telomere lengths (but note 

that heritability estimates range from 0 to 1, Dugdale & Richardson 2018).  

 

Evidence for variation in within-individual telomere attrition rates is scarce because within-individual 

differences can only be detected in longitudinal studies. Longitudinal studies are rare due to the 

time-consuming task of collecting multiple samples from individuals across their lifespans, and 

ideally need to be undertaken in a closed population, or dispersal may bias conclusions (Barrett et al. 

2013). Cross-sectional studies cannot distinguish changes in a trait with age within individuals from a 

change in composition of a population. It is vital to distinguish between such longitudinal and cross-

sectional effects because population-level associations between a trait and age can be caused by a 

completely different mechanism to within-individual associations (Reid et al. 2010; van de Pol & 

Verhulst 2006). A population’s composition can change due to the selective disappearance over time 

of individuals that express a certain trait (Nussey et al. 2011, Lindström 1999). When low-quality or 

inferior individuals disappear from the population, the older cohorts will consist of a ‘biased’ 

population that expresses the trait that enabled them to survive (Nussey et al. 2011). If selective 

disappearance is not taken into account, within-individual changes in a trait will be underestimated 

(van de Pol and Verhulst 2006). 

 

The importance of longitudinal studies is highlighted by mounting evidence that telomere length can 

both decrease and increase within individuals (Bateson & Nettle, 2017; Spurgin et al. 2017; Fairlie et 

al. 2016; Foley et al. 2020). Elongation of telomeres was an unexpected finding, given that telomeres 

were hypothesized only to shorten. Telomeres can be lengthened by an enzyme called telomerase 

(Blackburn et al. 1989). Contrary to elongation per se, elongation can also appear to be the case due 

to a change in blood cell turnover because telomere length is measured as an average across cells in 

a sample. Which of the possible elongation mechanisms operates is still unclear, but telomere 

elongation, especially when influenced by environmental conditions, may suggest that telomere 

length may not reflect accumulated costs accurately (Bateson 2016).  

But why then, if telomeres can elongate, has selection not favoured longer telomeres in all species? 

Young (2018) provided two non-mutually exclusive hypotheses: the costly maintenance hypothesis 

https://scholar.google.com/citations?user=rrejPi0AAAAJ&hl=en&oi=sra
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12741#jane12741-bib-0009
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and the functional attrition hypothesis. The costly maintenance hypothesis incorporates the notion 

that telomeres are part of a trade-off, as the maintenance of telomeres may entail costs. However, 

considering that telomeres are a small fraction of an entire genome, the costs of maintaining 

telomere length may be relatively small. Moreover, many species have large sections of so-called 

‘junk DNA’, which is called as such due to its apparent lack of protein coding DNA (Comings 1972), 

and the lack of a functional role at organism level (although non-coding DNA can potentially still 

serve a purpose; Palazzo & Gregory 2014). If junk DNA serves little or no purpose, it can be 

questioned why it persists in the genome, which consequently may imply that eliminating ‘junk DNA’ 

is costly, or the costs of maintenance of DNA can be low (Young 2018). In the case of the latter, it can 

be speculated that the maintenance costs of telomeric DNA can be negligible. However, it should be 

noted that even small maintenance costs may cause evolution to ‘favour’ telomere attrition, if the 

role of telomeres in life-history trade-offs is also small (Young 2018).  

 

The functional attrition hypothesis proposes that telomere loss could be adaptive if the attrition 

itself has a purpose, such as preventing cancer (Young 2018). Telomeres prevent chromosome ends 

being repaired by DNA repair mechanisms (Campisi 2013). The prevention of DNA repair is vital in 

the telomeres, because if the repair of DNA is followed by a cell division, the genome will become 

unstable (Rodier et al. 2005). Genomic instability is a cancer risk. As such, when cells divide without 

telomerase (as may occur in cancerous cells), telomeres may become unstable, which triggers a 

cellular response that may lead to cellular senescence (Fumagalli et al. 2012; Campisi 2013). 

 

If telomeres are part of the trade-off network, there may be evolutionary implications when the 

lengths of telomeres affect life-history trajectories and individuals suffer fitness consequences. Some 

life-history components have already been linked to telomere length. For example, telomere length 

at a young age predicts lifespan and survival in several species, including humans (Joeng et al. 2004; 

Haussmann et al. 2005; Salomons et al. 2009; Boonekamp et al. 2013) and birds (Haussman et al. 

2005; Heidinger et al. 2012; Eastwood et al. 2019). It should be noted that the previous studies have 

shown associations between telomere length and survival. Whether telomere length is affecting 

survival directly, or is a biomarker of other processes that affect survival, is unclear (Simons 2015), 

but both possibilities are equally interesting. However, before attempting to study the exact 

significance – causal or as a biomarker – of telomeres in the aging process, we first need to 

understand how age and survival are potentially connected to telomere length, as this is a vital first 

step to shedding light on the possibility of telomeres affecting (or being a biomarker of) life-history 

components.  
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We studied the association between telomere length and age or survival using a large longitudinal 

study in a natural closed population of a bird, the house sparrow, Passer domesticus. We were able 

to separate associations of telomere length within and between individuals with age using 

longitudinal data collected over 15 years. We also have detailed age and survival information in this 

insular population. Telomere dynamics have previously only been studied in island populations of 

two birds and one mammal: Seychelles warblers, Acrocephalus sechellensis, house sparrows and 

Soay sheep, Ovis aries (Spurgin et al. 2017, Ringsby et al. 2015; Fairlie et al. 2016). 

 

We focussed on the following hypotheses, based on the current literature: 1. Telomere length is 

negatively associated with age. 2. Some individuals show telomere elongation, and we therefore also 

expect low repeatability of telomere length within individuals. 3. Survival is positively associated 

with telomere length. 4. Telomere length is positively associated with lifespan. 

 

3.3 Methods  

 

3.3.1 Study system 

 
We studied house sparrows on Lundy Island (51.11 N, 4.40 W), in the south-west of England, in 

2001–2017. House sparrows are small, multi-brooded passerines (Summer-Smith 1963). Due to the 

remote location of the island and the sedentary nature of house sparrows (Bengtson et al. 2004), 

immigration and emigration are rare and estimated at 0.5% of all recruits (Schroeder et al. 2015). 

The birds breed in nest-boxes located mainly in the Lundy village (Griffith et al. 1999, Sánchez‐Tójar 

et al. 2017). 

 

Due to continuous catching efforts, almost all individual sparrows are uniquely colour ringed and 

provided with a metal numbered ring from the British Trust for Ornithology. Adults are caught in 

both summer (April – September) and winter (November – March) using mist nets, trapped within 

nest-boxes or with funnel traps. In our population, individuals are captured repeatedly throughout 

their lives. The age of all birds (in years) is known as almost all (>99%) of the house sparrows are 

banded as nestlings or first-year juveniles (Schroeder et al. 2015).  

 

3.3.2 Telomere length 

 
Blood samples used for telomere analysis were collected from juveniles (i.e. offspring that had 

fledged from the nest) and adults by puncturing the brachial venipuncture with a 26G needle and a 
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nonheparinized capillary tube. The blood from each individual was stored in 1 ml of ca 100% ethanol 

at room temperature. DNA was extracted using an ammonium acetate precipitation method 

(Nicholls et al. 2000; Richardson et al. 2001) and stored at -20oC in low TE pH7.5. 

 

DNA was quantified using a Nanodrop 8000 Spectrophotometer (Thermo Fisher) and normalised to 

20–30 ng/ul. DNA was extracted using an ammonium acetate precipitation method (Nicholls et al. 

2000; Richardson et al. 2001) and stored at -20oC in low TE pH 7.5. For qPCR, a multiplex protocol 

was implemented following Cawthon (2009). Telomere length was measured in a StepOnePlus 

(Applied Biosystems) or Quantstudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific). For 

specific details regarding the telomere measurement protocol, see Section 2.3.3.  

 

The collection of blood samples over a range of years may lead to samples being clustered during 

analysis by, for example, year or cohort (van Lieshout et al. 2020). This may lead to different 

conditions (i.e. laboratory conditions) among clusters (van Lieshout et al. 2020). To avoid blood 

samples being biased by such clustering, all plates used for qPCR (quantitative polymerase chain 

reaction) contained a random subset of samples from three different years. For a detailed 

description of how the analysis was completed in batches, see Section 2.3.3.   

 

We analysed 1,339 telomere length measurements from post-fledging (individuals that left the nest) 

house sparrows. These samples were from 853 individual birds from 21 cohorts (year of hatching). 

557 individuals had one RTL measurement and 782 individuals had two or more measurements 

obtained following independent capture events. The total number of individuals or samples varies 

between analyses due to missing or uncertain values of age or lifespan. Uncertainty or missing age 

and lifespan values occur when an individual was not caught in its first year of life and the age had to 

be estimated. In this dataset, the average house sparrow age at sampling was 0.97 (SD 1.27) years. 

The oldest bird sampled in our population was 7 years old. The average lifespan of the birds sampled 

was 2 years (SD 1.7).  

 

3.3.3 Storage time effects 

 
As for any laboratory analysis when samples have been stored, there is a risk of degradation or loss 

of sample integrity. For telomeres specifically this issue has attracted attention, as change over time 

is often the focus of study. Blood sample storage time has been suggested to affect telomeres when 

stored at above freezing, where telomere measurements increased over time (Rosero-Bixby et al. 

2019). In order to assess if storage time affected our telomere measurements, we developed an 
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experiment where we re-extracted the DNA and re-measured (log) relative telomere length in a 

randomly selected subset of 80 samples from all blood samples that we collected between 2000 and 

2015. We detected a negative quadratic effect of the time a blood sample was stored in ethanol at 

room temperature (see Section 2.4). In the first five years of storage, blood sample storage time 

showed a negative linear association with telomere length, after which the association between 

storage time and telomere length became less strong. As the first 5 years showed a negative linear 

effect, we decided to only include blood samples that were stored for five years or less in statistical 

analyses. Moreover, we accounted for the blood sample storage time effect by including blood 

sample age (in years, as an integer) as a fixed covariate in all models.   

 

3.3.4 Age of birds, lifespan, and survival 

 
The ages of individual birds were calculated in years, based on their cohort (year of birth). On Lundy, 

the chance of resighting an individual is high (96%, Simons et al. 2015a). Resighting is done by using 

actual catches, sightings during the breeding season and winter, sightings from social parentage 

using video recording, and genetic sightings (Simons et al. 2019). The lifespans of birds were 

calculated by subtracting cohort from the year in which an individual was last observed alive. Due to 

the high resighting rate, we considered birds to be dead when not sighted for 2 years. Birds that 

were still alive at the time of analysis were excluded from analysis for the calculation of lifespan. 

Survival (binary) was defined as an individual living for at least another year after a telomere 

measurement was taken.  

        

3.3.5 Statistical analysis 

 
All analyses were conducted in the R environment (version 3.5.0; R Core Team 2018) and the ‘lme4’ 

package (version 1.1–21) was used to run the statistical models. A linear mixed model was used for 

all analyses, unless specified otherwise. After running an LMM, assumptions about 

homoscedasticity, collinearity and residual normal distributions were checked by visually inspecting 

residual plots. Relative telomere length was log transformed for all models, so the residuals fit a 

normal distribution, and will be referred to RTL hereafter. We considered an effect to be statistically 

significant when p < 0.05. P-values were calculated using the package LmerTest (version 3.1-0), using 

Satterthwaite’s degrees of freedom.  

 

3.3.6 Age effects 

 
We tested whether RTL was associated with age. We separated cross-sectional (between-individual) 

and longitudinal (within-individual) effects using van de Pol & Verhulst (2006) methods, using within-
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subject centring of age. To test the association of age (integer, in years) with RTL, we used RTL as a 

response variable, with the mean individual age (between-individual effect) and centred individual 

age (within-individual effect) as predictor variables. To test for selective disappearance in our 

population, we tested if the within-individual and between-individual slopes were significantly 

different. To test this, we applied van de Pol & Wright’s (2009) method (equation 3). In this model, 

the centred age is replaced with our original fixed effect (age), while all other variables remained the 

same. Here, age, reflecting both within- and between-individual effects, now tests for within-

individual effects because the model tests each fixed effect, while controlling for other effects in the 

model, including mean age. The mean age now represents the difference between the mean age 

and centred age slopes. If the estimate of mean age in this model is close to zero and nonsignificant, 

the within- and between-age effects on RTL are regarded to be similar. 

 

Adding the year of hatching (cohort) to the models would provide information about potential 

differences in telomere length that occur due to the year of birth (Fairlie et al. 2016). However, we 

were unable to separate cohort from blood sample storage time effects, because the age of the 

blood sample was also included in the model, and cohort and sample age were correlated. We 

therefore excluded cohort from our analyses, with the consequence that we were unable to assess 

whether telomere length was affected by cohort.  

 

Because associations between telomere length and age might be dependent on the sex of the bird, 

sex was added as a fixed (factor) effect, with an interaction with both centred age and mean age. 

Birds were repeatedly measured, and multiple samples were analysed on the same qPCR -plate; we 

accounted for this interdependence in the dataset by including the individual bird identity and qPCR 

plate identity as random intercepts.  

 

To test if the effect of age on telomere length was different for individual birds, a random slope was 

assigned to centred age and bird identity. For this model, multiple measurements per individual 

were needed, and thus individuals that had two or more measurements were selected. The model 

that included the random slope for bird identity and centred age was compared to a model that did 

not include the random slope, using the Akaike Information Criterion (AIC). In order to make the 

model comparison, both models needed to use the same dataset, so the model that did not contain 

the random slope was also restricted to individuals with two or more measurements.  
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Additionally, we tested whether telomere lengthening occurred in some individuals in the 

population using Simons et al.’s (2014) statistical approach that separates true lengthening from the 

statistical noise expected from estimated error. This method fits regressions of age against RTL for 

each individual separately, and thus can only be used on individuals for which there are three or 

more measurements. We used residual RTL, as used in the Cox models (see Section 3.3.7. below), to 

fit individual regressions. Simons et al.'s (2014) approach uses several steps to calculate and 

compare the error variance (the variance due to measurement error) under different assumptions. 

The first assumption is that the RTL slopes describing change within individuals vary, and that 

telomeres thus increase and/or decrease. The error variance under this assumption is calculated 

(equation 4 in Simons et al. 2014). The second assumption is that telomeres do not elongate; the 

error variance under this assumption is also calculated (equation 5 in Simons et al. 2014). When the 

estimated error variance under the assumption that telomeres do not elongate (equation 5 in 

Simons et al. 2014) is higher than the error variance under the assumption that telomeres do 

increase and/or decrease (equation 4 in Simons et al. 2014), telomeres show elongation (Simons 

et al. 2014). A variance ratio test between the two variances was used to test whether the variances 

were significantly different (equation 6 in Simons et al. 2014). We used Equation 7 in Simons et al. 

(2014) to identify which individuals showed an increase in telomere length with a 95% confidence 

interval.  

 

3.3.7 Survival and lifespan effects 

 
We tested whether RTL was associated with post-fledging survival, using a Cox time-dependent 

regression. This model compares covariate values of individuals undergoing the event, in this case 

death, with values of other individuals who were present at that time. The time-dependent model 

uses time steps, which were the numbers of days between successive captures, with the first time 

set as the number of days between hatch date and first capture. The exact hatch dates for some 

individuals were unknown, so we calculated the median hatch date (from all individuals in our 

dataset) and set that date (13 June) as the date of hatching for all individuals.  

 

For analysis, we knew that RTL was affected by the blood sample storage time and the qPCR plate. 

Thus, using RTL as a predictor for survival in a Cox model posed the problem that these factors could 

not be accounted for. Therefore, to use RTL as a predictor, we first used a linear mixed model with 

RTL as the response and corrected for blood sample age (added as a fixed effect) and qPCR plate 

(added a random intercept) effects. The residuals from the linear mixed model were then used as 

the predictor for survival in a Cox time-dependent regression model. Our most recent samples were 
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collected in 2015, meaning that for all birds the survival (living for at least a year or more after 

capture) was known, because monitoring the population continued until the time of analysis (2020).  

 

To test if lifespan was associated with early-life telomere length, we used the first RTL 

measurements of young birds (younger than 1 year). A Cox proportional-hazard model was used, 

where the RTL residuals from the linear mixed model (as used for the Cox time-dependent 

regression model, see above) was used as the predictor variable. The lifespan (as an integer, in 

years) of individuals was added as the response variable. Twenty-nine birds were still alive at the 

time of analysis (2020). These birds were right censored.   

 

3.3.8 Repeatability of individuals 

 
We analysed individual bird repeatability in telomere length using the rptR package (Stoffel et al. 

2017). rptR uses a mixed linear model framework, where the repeatability is calculated as the 

variance among the means of groups (in our case individual birds) over the sum of group-level and 

data-level (residual) variance. In rptR we used RTL as the dependent variable and individual age 

(integer, in years) and blood sample storage time (integer, in years) as covariates to account for age 

and storage time effects on telomere length. qPCR-plate was added as a random effect. 

  

3.4 Results 

 

3.4.1 Mean and centred age effects 

 
The sexes of birds were not related to RTL (βsex (male) = -0.01; se = 0.02, t = 0.35, df = 655; p = 0.73) and 

neither the association between centred age nor mean age on RTL was dependent on sex (βsex*centred age = 

0.02, se = 0.03, t = 0.81, df = 566.6, p = 0.41 and βsex*mean age = 0.03, se = 0.02, t = 1.42, df = 562.9, p = 0.16, 

Table S3.1). Because the interactions between sex and centred and mean age were not significant, 

both interactions were removed from the model. We then tested whether the RTL of individuals was 

correlated with age and found no between-individual age effect (βmean age = -0.00, se = 0.01, t = -0.13, df 

= 543.5, p = 0.90). There was a significant negative within-individual effect of age on RTL (βcentred age = -

0.04, se = 0.01, t = -2.78, df = 706.1, p = 0.00, Figure 3.1 and Table 3.1).  
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Figure 3.1. Within-individual age effects on telomeres in the house sparrow on Lundy. As individuals age, 
their telomeres mostly shorten. The solid line represents the model estimate, while the dashed lines 
represent the 95% confidence intervals. The dots are the raw data points.  

 
 
Table 3.1. Mean and centred effects on RTL, from the linear mixed model. 

 
 

 
We tested if the between-individual (mean) age slope was significantly different from within-

individual (centred) age slope, and found that the mean age and centred age slopes were 

significantly different (βSlope difference = 0.04, se = 0.02, t = 2.16, df = 1,252.0, p = 0.003, Appendix S3.2, Table 

S3.2).  
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3.4.2 Telomere length effects on survival and lifespan 

 
There was a positive, non-significant, association between survival and residual RTL (log hazard = -

0.06, se = 0.11, Z = -0.56, p = 0.58, N = 1304, N events = 748). Therefore, for an increase of 1 residual 

RTL, the chance of death was lowered by 6% (linear hazard = 0.94).  

  

Young individuals (less than one year old) with longer RTL did have longer lifespans, but this effect 

was not significant (log hazard = -0.06, se = 0.14, Z = -0.42, p = 0.67, N = 541, N events = 514).    

 

3.4.3 Variation within individuals 

 
Individuals showed low repeatability, with only 11% of the variance in telomere length being 

explained by among-individual differences in RTL in a model that accounted for individual age, qPCR 

plate and blood sample age effects (R = 0.11, se = 0.03). 

 

Including a random slope for centred age and bird identity, to test whether individuals had varying 

slopes, provided no better fit than a model with only a random intercept for centred age (AIC of 

615.2 for the model without the bird identity and centred age slope, versus 616.4 for the model with 

only a random intercept for centred age). The individual slope model and the model that it was 

compared to are presented in Supporting Information (Tables S3.3 and S3.4). The model that 

allowed individuals to have varying slopes did not provide a better fit than a model that had fixed 

slopes for individuals, showing that there was no support for individual differences in the association 

between RTL and age.  

 

We tested whether telomere lengthening could be attributed to measurement error, using Simons 

et al.’s (2014) approach. This test showed that increases or decreases could not be attributed to 

measurement error (estimated error variance = 0.02, p < 0.01, F variance test). However, only 7 

individuals showed significant elongation (out of 115 individuals). To visually illustrate that 

telomeres can elongate in some individuals, we selected all individuals with 5 or more telomere 

measurements (Figure 3.2). 
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Figure 3.2. Linear regressions of 20 individuals (their individual identities are shown at the top of the plots) 
that each had five or more telomere measurements. The x-axis shows the age of the bird at capture (in 
years) and the y-axis shows residual RTL from a model correcting for qPCR plate and blood sample age 
effects.  

 

3.5 Discussion 

 
We used one of the largest longitudinal datasets to date, with only the Seychelles warblers study 

obtaining more telomere measurements (1,808 telomere measurements from 1,040 individuals, 

Spurgin et al. 2018), to assess the relationship between lifelong telomere dynamics and age, adult 

survival and whether early-life RTL is associated with longevity within a wild closed population. We 

found a positive but non-significant association of telomere length with age, which is contrary to 

previous studies, which mainly detected a decline of telomere length with age at the population 

level (Pauliny et al. 2006; Salomons et al; 2009; Spurgin et al. 2018). Population-level effects are 

interesting, as they signify that telomeres may be used as a biomarker of age (either calendar or 

biological). Telomeres that reflect age adequately could help in providing age estimates of 

individuals in the wild, as obtaining known ages can be difficult in wild populations (Nakagawa et al. 
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2004). However, not all studies report population-level effects (Hall et al. 2004), and sometimes 

associations of telomere length with age were complex and driven by, for example, variation among 

cohorts (Young et al. 2013). We were unable to separate cohort effects from blood sample storage 

time effects, so we do not know how cohort might have affected associations of telomere length 

with age in our house sparrow population. 

 

3.5.1 Mortality and selective disappearance 

 
We find that telomere length generally shortens with age within individuals. This is in line with other 

studies that also concluded that telomeres shorten within individuals with increasing age (Hall et al. 

2004; Pauliny et al. 2006; Salomons et al. 2009; Young et al. 2013; Fairlie et al. 2016, Spurgin et al. 

2018). The lack of an association between age and telomere length between individuals, in 

comparison to a negative association within individuals, indicates selective disappearance (Snijders 

& Bosker 1999). In our case, selective disappearance acts on individuals that have short telomeres, 

making them disappear out of the population with age, resulting in a population with relatively 

longer telomeres at older ages (Fairlie et al. 2016; Spurgin et al. 2018). However, it should be noted 

that we have not provided evidence for a causal relationship between telomere length and the 

disappearance of individuals. It is plausible that telomere length reflects other processes that may 

lead to the disappearance of individuals, instead of causing disappearance.  

 

Regardless, whether telomeres cause selective disappearance or are a biomarker of intrinsic 

processes that lead to selective disappearance, these results imply that birds with shorter telomeres 

should have lower survival. Not finding survival effects in our Cox model is in contradiction to what 

was previously found in a range of studies and species (Wilbourn et al. 2018). We propose two 

possible explanations: 1. Attrition of telomeres affects survival instead of telomere length. 2. A 

difference in timing of when the first telomere measurement was taken.  

 

The first explanation of why we did not detect survival effects is due to our study using telomere 

length instead of telomere attrition as the predictor of survival. Attrition may affect survival through 

two mechanisms: 1. Telomere attrition may lead to the accumulation of senescent cells and the 

depletion of stem cell stocks, which accelerates tissue damage and in turn might affect survival 

(Boonekamp et al. 2013; Herbig et al. 2006; Campisi & Fagagna 2007). 2. Higher telomere attrition 

might reflect accumulated damage in the body, which in turn affects fitness and survival (Metcalfe & 

Alonso‐Alvarez 2010; Young, 2018). Two animal studies to date investigated the relationship 

between telomere attrition and length, and consequent survival to recruitment age, and both 

https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15181?af=R#mec15181-bib-0046
https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15181?af=R#mec15181-bib-0066
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concluded that only attrition affected survival negatively (Boonekamp et al. 2014; Wood & Young. 

2019). In humans, a meta-analysis showed that there was an association between mortality and 

telomere length, but the study also concluded that telomere attrition may more closely predict 

mortality, especially at older ages (Boonekamp et al. 2013).  

 

Second, is a difference between some of the studies that researched telomere effects on survival 

and our study is the timing of the telomere measurements. We took the first telomere 

measurements after fledging. In Heidinger et al. (2012)’s and Eastwood et al.’s (2019) studies, birds 

were measured as nestlings. Telomere dynamics may be vastly different in nestlings than in adults. 

For example, attrition rates tend to be higher early in life (Hall et al. 2004; Fairlie et al. 2016). Such 

declines are usually most marked during periods of an individual’s life when growth is occurring 

(Pauliny et al. 2015). During growth there is high cell proliferation, which can cause telomere 

shortening (Zeichner et al. 1999). Moreover, nestlings can experience stresses, such as food 

shortage, that impact growth, and consequently telomere dynamics. The impact of stress on 

telomere dynamics was demonstrated in jackdaw, Corvus monedula, nestlings (Boonekamp et al. 

2014). These nestlings were exposed to increased or reduced stress by increasing or decreasing 

brood sizes, which resulted in longer telomeres in nestlings in reduced broods and shorter telomeres 

in increased broods. The effect on telomere lengths was still apparent later in life and the attrition 

rates predicted post-fledging survival. Due to taking measurements from post-fledglings, we may not 

have picked up on any effect, potentially strong, on survival that may have occurred in the nestling 

period.  

 

We found no significant association between telomere length and adult survival in our Cox model, 

which seems contrary to finding selective disappearance. As our population of house sparrows is 

insular, any effects of telomere length on survival should be detected, as birds cannot leave the 

island and thus our data are not affected by individuals leaving the study site. A potential 

explanation why we did not detect survival effects in adults in our Cox model, but do find selective 

disappearance when comparing within-individual and between individual slopes, is catching bias, 

which might cause a shift in the between-individual and within-individual slopes if, for example, 

older individuals are more likely to be caught. The slope of the between-individual effect will then be 

driven upwards at older ages, increasing the difference between the within-individual and between-

individual slopes. Selective disappearance would then be wrongly concluded as occurring, when it 

did not. However, there is limited catching bias in our house sparrow population (Simons et al. 

2015a), so it is unlikely that a catching bias is the cause of detecting selective disappearance. 



59 
 

 

It should be noted that the results of the Cox models are nonetheless in the direction of expectation 

(i.e. less survival and shorter lifespans in individuals with shorter telomeres). Moreover, a recent 

meta-analysis from Wilbourn et al. (2018) assessed 27 survival studies and concluded that there was 

an association between survival and telomere length. The mean log hazard ratio from these 27 

survival studies was 0.21 (s.e = 0.05), which is similar to our log hazard of 0.16. It thus remains likely 

that survival is associated with telomere length in adult house sparrows.  

 

3.5.2 Telomere lengthening 

 
Some individuals showed possible elongation of telomere lengths that could not be explained by 

measurement error. In contrast, our random slope model, that allowed the slopes of individual birds 

to vary with age and RTL, did not provide a better fit than a model that did not include random 

slopes for individual birds. This contradiction can potentially be explained by the few birds that 

showed significant elongation in our study (9 out 141 individuals). The majority of birds, however, 

show within-individual telomere attrition with age, which explains why the random slope model did 

not provide a better fit.  

 

Telomeres can elongate due to a ribonucleoprotein enzyme called telomerase, and to a lesser extent 

recombination (Kass-Eisler & Greider 2000). Telomerase has been found to elongate telomeres in 

several species, including humans. In humans, telomerase is expressed in embryos, but down-

regulated in most tissues in adults (Meeker & Coffee 1997; Haussmann et al. 2004). However, in 

contrast, telomerase is expressed in both embryonic and adult rodents, such as laboratory mice, or 

long-lived birds, such as the Leach’s storm petrel (Oceanodroma leucorhoa; Kipling & Crooke 1990; 

Haussmann et al. 2004). It is thus possible that telomerase is also expressed in (some tissues of) 

house sparrows.  

 

There are benefits associated with telomere elongation. It is not the average telomere length, but 

the shortest telomeres in a cell population, and indeed among chromosomes within a cell, that are 

likely to have the most impact on cellular survival (Hemann et al. 2001). Senescence has been 

hypothesized to be induced by critically short telomeres, and thus elongation of telomeres would 

reduce the number of cells with critically short telomeres and thus senescence (van Deursen 2014). 

In addition, as telomere elongation can be the result of telomerase activity, among other 

mechanisms, telomerase itself has been associated with regeneration of tissue and, in mice, 
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beneficial to health parameters (Reichert et al. 2014; Simons 2015). However, elongation can also 

come at a cost, as elongation itself may be energetically costly, or pose a cancer risk (Young 2018).   

 

The potential cancer risk associated with telomere maintenance or elongation may be an 

insignificant risk in our house sparrow population. House sparrows are relatively short-lived and 

experience high extrinsic mortality factors (as indicated by the recruitment levels, which are around 

20%; Cleasby et al. 2010). The potential risk of rescuing critically short telomeres through the use of 

telomerase – tumours – may be of an insignificant risk as birds may perish before tumours become 

an issue.  

 

Aside from true elongation, telomere elongation may be attributed to measurement error 

(Steenstrup et al. 2013), or telomeres may only appear to elongate. However, Simons et al. (2014) 

provided us with a statistical test that we could use to show that the increase in telomere length in 

our data is not attributable to measurement error. However, it is still possible that telomeres did not 

elongate. Telomeres are measured as an average telomere length of a population of blood cells in a 

sample. Consequently, elongation of telomeres within individuals may not truly reflect a lengthening 

of telomeres, but instead reflect a change over in cells, where cells with shorter telomeres are 

expelled, leading to overall longer telomere measurements (Spurgin et al. 2018). Such a change in 

the population structure of (blood) cells may be more likely in mammals, where telomeres are often 

measured in leucocytes, where leucocyte type (types have different telomere lengths, Weng 2012) 

proportions have been found to change in response to infection, in turn affecting telomere length 

measurements (Weng 2012; Beirne et al. 2014). In birds, telomere length is measured in nucleated 

erythrocytes, which have a rapid cell turnover with a maximum lifespan of 35 days in chickens, 45 in 

pigeons and 42 in ducks (Rodnan et al. 1957). House sparrows may have similar or shorter 

erythrocyte lifespans, and we can thus speculate that house sparrows can have swift changes in 

blood cell composition and, consequently, telomere length.  

 

In addition to showing that some individuals showed telomere elongation, individuals showed low 

repeatability in RTL. Such a low repeatability is in agreement with what was previously found in the 

Seychelles warbler, where repeatability of telomere length in individuals was estimated to be 7% 

(Spurgin et al. 2018). Seychelles warblers, a species living up to 15 years of age, showed cross-

sectional and longitudinal shortening of telomeres, but with bouts of telomere lengthening in some 

individuals, which was shown not to occur due to measurement error (Spurgin et al, 2018). These 

bouts of lengthening occurred mainly right after the juvenile period, around 4 years of life, and again 
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later in life (Spurgin et al, 2018). Telomeres were also highly inconsistent in telomere length across 

years and lifespans in a wild Soay sheep population (Fairlie et al. 2016). In this population of Soay 

sheep, telomere lengths could also elongate or show attrition, but this was associated with year, and 

thus environmental circumstances.  

 

3.5.3 Conclusion 

 
In conclusion, telomeres shorten within individuals, and individuals with short telomeres disappear 

out of our population. Individuals do not show a high consistency in telomere length, and some 

individuals show telomere elongation. The low consistency in telomere length, and the instances of 

telomere elongation, indicate that telomeres may be more plastic than previously thought. If 

telomeres show plasticity in their length, they may not then be a reliable biomarker of accumulated 

damage over time (biological age), at least in some individuals. However, we did find an overall 

within-individual decline in telomere length with age, suggesting that most individuals do undergo 

telomere attrition, and thus telomere length may, overall, still act as a biomarker of age.  
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Supporting Information S3 

Table S3.1. Age and sex model with sex and age interaction 

Effects of age, blood sample age and sex on Relative Telomere Length (RTL), showing linear mixed 

model results.  

 
 

Table S3.2. Mean age and centred age slope comparison 

Effects of age, mean age and blood sample on Relative Telomere Length (RTL). The mean age here 

represents the difference between mean and centred age (van de Pol & Wright 2009).  
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Table S3.3. Random slope for within-individual age comparison  

Effects of age, mean age, centred age, blood sample age and sex on Relative Telomere Length (RTL). 

Only individuals with two or more measurements were selected. A random slope was added for 

centred age and individual.  

 
 

Table S3.4. Random slope for within-individual age comparison 

Effects of age, mean age, centred age, blood sample age and sex on Relative Telomere Length (RTL). 

Only individuals with two or more measurements were selected. This model was used to compare to 

the random slope model, presented in Table S3.3.  

 

 

 

  



64 
 

4. Contrasting genetic and social paternal age effects on offspring telomere 

length 
 

4.1 Summary 

 
Parents shape the fate of their offspring not only through inherited genetics but also through social 

parenting effects. It has been increasingly recognised that parental effects can cause 

transgenerational effects on offspring fitness, in particular when parents age. Parental age effects on 

telomere length are a hypothesised mechanistic explanation of these transgenerational effects. 

Here, we separate the genetic and rearing effects of parental age on offspring telomere length, using 

cross-fostering in an insular population of house sparrows, Passer domesticus. This population of 

house sparrows has been studied for 20 years and individuals have been repeatedly sampled, which 

allowed us to separate within-individual from between-individual age effects.  

 

Within genetic fathers, we found a negative effect of paternal age on offspring telomere length. We 

also found a population-wide effect, where older social fathers reared offspring with longer 

telomeres, while individual social fathers showed no increase in offspring telomere length with age. 

Moreover, we found no effect of moather age on offspring telomere length. We found evidence for 

selective disappearance for genetic and social fathers, respectively. We hypothesise that aging 

genetic fathers produced offspring with shorter telomeres because of an imperfect embryonic 

(telomeric) reset. Moreover, we propose that social fathers improved offspring telomere length with 

age due to a quality differences between fathers, where good quality fathers obtained better 

breeding sites early in life and may have been able to offset telomere attrition more effectively than 

low-quality fathers, consequently producing offspring with longer telomeres throughout their 

lifetimes.  

 

4.2 Introduction 

 
Senescence occurs when the accumulation of damage throughout life results in an accelerating 

decline of function across an individual’s organs, leading to lower survival probability and offspring 

production (Jaskelioff et al. 2011: Bouwhuis et al. 2012). Senescence is an aging effect, but the 

distinction between senescence and aging is that senescence is progressive and irreversible, leading 

to negative fitness effects, whereas aging may not necessarily lead to an impairment of fitness 

(Monaghan et al. 2008). Senescence is an evolutionary conundrum, because senescence is not 

beneficial to individuals and thus selection should act against it (Monaghan et al. 2008). Trying to 
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understand this evolutionary conundrum, the evolution of senescence and the underlying 

mechanisms, have been a topic of research for many decades (Gaillard & Lemaitre 2020).  

 

In addition to senescence at the individual level, there is accumulating evidence of senescence 

having transgenerational effects. Older parents may influence the lifespans and reproductive success 

of offspring, called the Lansing effect (Lansing 1947; Bouwhuis et al. 2010; Ducatez et al. 2012; 

Schroeder et al. 2015). When transgenerational age effects are negative, an increase in selection 

pressure on longevity is expected, because older parents have reduced indirect fitness, which in turn 

can impact the age structure of a population (Schroeder et al. 2015). However, the mechanisms 

underlying such transgenerational effects remain unclear (Priest et al. 2002; Heidinger et al. 2016).  

 

One mechanism that has been suggested to underlie the transgenerational effects of senescence is 

telomere length (Unryn et al. 2005; Heidinger et al. 2016; Eisenberg et al. 2019). Telomeres are 

repetitive DNA sequences located at the ends of chromosomes (Blackburn 1991). Telomeres protect 

chromosomes from losing coding sequence, maintain genomic stability and prevent the cell’s repair 

mechanism from regarding the chromosome ends as DNA breaks (Blackburn 1991). Short telomeres 

have been correlated with reduced survival and disease incidence in animals, including humans 

(Haussmann et al. 2005; Aubert & Lansdorp 2008; Salomons et al. 2009; Butt et al. 2010; Wilbourn et 

al. 2018; Pepper et al. 2018). The lengths of telomeres are the outcome of lengthening and 

shortening processes. Telomeres can be elongated by the enzyme telomerase, but this enzyme is 

repressed in most somatic tissues in adult vertebrates (Greider & Blackburn 1985; Blackburn et al. 

1989). There are other potential pathways that may result in telomere elongation (Mendez-

Bermudez et al. 2012), however, an overall shortening of telomere length with age is observed in 

most species (Dantzer & Fletcher 2015). Telomeres shorten with each cell replication due to an 

imperfect DNA replication mechanism (Olovnikov 1973), and the attrition can potentially be 

accelerated by stress and adversity (Bize et al. 2009; Houben et al. 2008, Reichert et al. 2017; Pepper 

et al. 2018).  

 

Variation in telomere length between and within individuals can be the result of differences in the 

aforementioned shortening and lengthening processes, but also due to a difference in initial 

telomere length. Telomere length can be heritable in some species (heritability estimates range from 

0 to 1, overview in Dugdale & Richardson 2018). Parents may also potentially influence the telomere 

length of their developing offspring via the environment they provide, including the age of the 

parents (Ashghar et al. 2015). Offspring telomere length may be affected by maternal age-related 

http://rsos.royalsocietypublishing.org/content/5/8/180744


66 
 

changes in the hormones or nutrients that they provide, which may also in turn be influenced by 

male age (Heidinger & Young 2020). In addition, the care a parent provides to its offspring may 

change with age, which in turn may affect offspring telomere length (Beamonte-Barrientos et al. 

2010; Costanzo et al. 2016; Heidinger & Young 2020). The effects of parental age on telomere length 

can thus act through genetic parental effects or rearing parental effects, which can be 

experimentally separated using cross-fostering in wild birds (Kruuk & Hadfield 2007).  

 

The age of males and females may affect offspring telomere length differently because females 

obtain all oocytes prenatally, while a male’s sperm production is an ongoing process, which has been 

proposed to make sperm more prone to telomere attrition (Kimura et al. 2008; Keefe et al. 2015). 

However, even though oocytes are produced prenatally, this does not mean that telomere length in 

oocytes is unaffected by age. Oxidative stress can damage telomeres (Reichert & Stier 2017), and 

older gametes may have undergone more oxidative stress, resulting in shorter telomeres 

(Cimadomo et al. 2018). Moreover, it is speculated that eggs from older females underwent more 

mitotic cell cycles, which shorten telomeres, before entering meiosis during fetal oogenesis (Keefe & 

Liu 2007).  

 

For males, due to the continuous replication of sperm cells, telomeres in sperm might shorten with 

male age. By contrasting, the continuous shortening of telomeres in sperm may also cause selection 

on sperm with longer telomeres, as sperm with short telomeres might disappear (Wallenfang et al. 

2006; Froy et al. 2014; Eisenberg et al. 2018). Telomeres could even elongate in sperm, as germ cells 

are one of the few tissues that keep expressing telomerase (Kimura et al. 2008). The activity of 

telomerase is hypothesized to lead to a telomeric reset at conception, but to what extent telomere 

restoration occurs is still largely unknown (Vizlin-Hodzic et al. 2009). However, if a reset does not 

(fully) occur, male age may affect offspring telomere length at conception.  

 

Effects of the rearing environment on offspring telomere length have been observed previously 

(Haussmann et al. 2012; Broer et al. 2012; Herborn et al. 2014; Costanzo et al. 2017), with an often 

observed pattern of accelerated telomere loss during periods of stress, such as reduced food or 

increased sibling competition (Boonekamp et al. 2014; Herborn et al. 2014). In many species, the age 

of a parent affects the quality of the breeding territory, or the ability to provision young (Froy et al. 

2013; Nussey et al. 2013; Oro et al. 2014; Rabon 2014; Costanzo et al. 2017; Criscuolo et al. 2017). In 

turn, telomere dynamics in offspring have been correlated with the quality of parental care in some 
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species (Clutton-Brock, 1991; Haussman et al. 2012; Broer et al. 2012). This means that parental age 

may affect offspring telomere length indirectly, via environmental circumstances.   

 

However, linking parental age directly to telomere dynamics in offspring has led to mixed and 

contrasting results in a range of species, including birds, mammals and lizards (Heidinger & Young 

2020). There appears to be an inconsistency when comparing birds, small mammals and lizards and 

humans and chimpanzees (Heidinger & Young 2020). In birds, two-thirds of the studies show a 

negative correlation between paternal and maternal age with offspring telomere length (Heidinger 

& Young 2020); this is in contrast to humans and chimpanzees, where there is a positive association 

between offspring telomere length and paternal age (Unryn et al. 2005; Kimura et al. 2008; Broer et 

al. 2013; Eisenberg 2018; Eisenberg 2019). The different parental effects on offspring telomere 

length among taxa may stem from both the study systems and study designs (Heidinger & Young 

2020). One potential difference in study design is the use of cross-sectional versus longitudinal data, 

with many studies that have investigated the relationship between offspring telomere length and 

parental age having used the former (Bauch et al. 2019; Eisenberg et al. 2019). In cross-sectional 

studies, individuals are sampled once, which makes it impossible to assess if any relationship 

observed between offspring telomere length and parental age occurs within individuals, or is instead 

just a change observed at the population level (Van de Pol & Verhulst 2006).  

 

We used a 15-year longitudinal dataset from a wild population of house sparrows, Passer 

domesticus, where a transgenerational negative fitness effect has been previously detected 

(Schroeder et al. 2015). Schroeder et al. (2015) found, at the cross-sectional level, that individual 

females with older mothers and individual males with older fathers produced fewer annual and 

lifetime recruits than individuals with younger parents. This negative effect of mother and father age 

was explained by the genetic parents – affecting offspring before one day of hatching, because 

offspring were cross-fostered at that age – while the age of the foster parents did not predict the 

fitness of offspring. Schroeder et al. (2015) proposed that telomeres could be a potential mechanism 

contributing to the negative genetic parental age effect on offspring fitness.   

 

In the population of house sparrows on Lundy, offspring were routinely cross-fostered between 

nests at a young age, which allowed us to assess these questions: 1. Is there a relationship between 

telomere lengths of fledged offspring (offspring that left the nest) and parental age? 2. Is telomere 

length in fledged offspring best explained by the age of genetic parents (i.e. an effect arising due to 

genetics, incubation or very early life (one day) parental care) and/or by the age of the foster 
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parents (i.e. parental care and/or environmental effect after day one of hatching)? Due to the 

longitudinal nature of our data, we can distinguish within-individual from between-individual 

parental age effects on fledged offspring telomere lengths. This enables us to detect selective 

disappearance when the slope of the within-individual effect differs from that of the between-

individual effect (van de Pol & Wright 2009).  

 

4.3 Methods  

 

4.3.1 Study system 

 
We studied house sparrows on Lundy island (51.11 N, 4.40 W), in the south-west of Britain, studied 

in 2001–2015. House sparrows are small, multi-brooded passerines (Summer-Smith 1963). Lundy 

Island is located 20 kilometres from the coast, which given the sedentary nature of house sparrows 

(Bengtson et al. 2004), led to very low immigration and emigration (0.5% of all recruits, Schroeder et 

al. 2015). The birds breed in nest-boxes located on the island in sheds and workshops (Griffith et al. 

1999, Sánchez‐Tójar et al. 2017). 

 

All individual sparrows were uniquely colour ringed and provided with a metal numbered ring from 

the British Trust for Ornithology (BTO). Adults are caught in both summer (April–September) and 

winter (November–March) using mist nets or trapping within nest-boxes and funnel traps. 

Individuals were captured and blood sampled repeatedly throughout their lives. The ages of all birds 

(in years) were known as almost the entire (>99%) house sparrow population were banded as 

nestlings or first-year juveniles (Schroeder et al. 2012).   

 

In house sparrows, both males and females incubate the eggs and take care of the young. However, 

males incubate half as much as females (Bartlett et al. 2005) and provide 25% less food deliveries 

than females in broods that are older than one week (Mock et al. 2005). About 17.5% of all offspring 

in the Lundy house sparrow population are the product of an extra-pair mating, while 38% of all 

broods contained at least one extra-pair offspring (Hsu et al. 2015). Moreover, male sparrows on 

Lundy adjusted their offspring provisioning rates according to being cuckolded by females, but their 

incubation efforts remained unaffected (Schroeder et al. 2016). 
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4.3.2 Cross-fostering  

 
Because we were interested in genetic parent effect (the parent that provided the egg or sperm) 

versus social (the parent that took care of the chicks) parental effects on offspring telomere length, 

we used a cross-fostering experiment where nestlings were cross-fostered reciprocally one day after 

hatching into any available brood of the same hatching date. If no brood was available of the same 

age, the brood was not cross-fostered. Broods were never reduced or enlarged in size. This meant 

that if two broods with an unequal number of chicks were available for cross-fostering, not all chicks 

were cross-fostered (Winney et al. 2015).  

 

4.3.3 Parentage 

 
We used data from 13 microsatellite markers amplified in two multiplexes (Dawson et al. 2012) to 

assemble a genetic pedigree of our population and so assign genetic parents (Schroeder et al. 2012). 

Social parents were identified for each brood via video recordings of the nest at day six of 

incubation, where the unique colour combination on the legs of each parent was noted.  

 
 

4.3.4 Age of parents 

 
For individual offspring, the age of the father and mother were calculated in years (integer) by 

deducting the parent’s year of hatching (cohort) from the year in which the offspring hatched. 

 

4.3.5 Telomere length 

 
Blood samples were collected from juveniles (i.e. offspring that had fledged from the nest) and 

adults by puncturing the brachial venipuncture with a 26G needle and collection with a 

nonheparinised capillary tube. The blood from each individual was stored in 1 ml of ca 100% ethanol 

at room temperature. DNA was extracted using an ammonium acetate precipitation method 

(Nicholls et al. 2000; Richardson et al. 2001) and stored at -20oC in low TE pH 7.5. 

 

DNA was quantified using a Nanodrop 8000 Spectrophotometer (Thermo Fisher) and normalised to 

20–30 ng/ul. DNA was extracted using an ammonium acetate precipitation method (Nicholls et al. 

2000; Richardson et al. 2001) and stored at -20oC in low TE pH 7.5. For qPCR, a multiplex protocol 

was implemented following Cawthon (2009). Telomere length was measured in a StepOnePlus 

(Applied Biosystems) or Quantstudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific). For 

specific details regarding the telomere measurement protocol, see Section 2.3.3.  
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The collection of blood samples over a range of years may lead to samples being clustered during 

analysis by, for example, year or cohort (van Lieshout et al. 2020). This may lead to different 

conditions (i.e. laboratory conditions) among clusters (van Lieshout et al. 2020). To avoid blood 

samples being biased by such clustering, all plates used for qPCR (quantitative polymerase chain 

reaction) contained a random subset of samples from three different years. For a detailed 

description of how the analysis was completed in batches, see Section 2.3.3.   

 

4.3.6 Storage-time effects 

 
Blood sample storage time has been suggested to erode telomeres when stored above freezing 

(Tolios et al. 2015; but see Rosero-Bixby et al. 2019). However, in many studies the effects of storage 

on telomere measurements are unknown. We assessed storage-time effects in our samples that had 

been collected over a wide range of years in an experiment, where we re-extracted the DNA and 

remeasured telomere length on the qPCR of 80 randomly selected samples (see Section 2.3.4). We 

detected a negative quadratic effect of the time for which a blood sample was stored in ethanol at 

room temperature, where the first 5 years of storage showed a linear decline in telomere length, 

with a slower decline subsequently. Due to the linear decline in the first 5 years of storage, we 

decided to only include blood samples that were stored for five years or less in the statistical 

analysis. Moreover, we corrected for the blood sample storage time effect by including blood sample 

age (in years, as an integer) as a covariate in all models. 

 

4.3.7 Statistical analysis 

 
All analyses were conducted in the R environment (v. 3.5.0; R Core Team 2018), and the ‘lme4’ 

package (v. 1.1–17) was used to run the mixed models. We considered an effect to be statistically 

significant when p-values were lower than 0.05. p-values were calculated using the package 

LmerTest (version 3.1-0), using Satterthwaite’s degrees of freedom.  

For analysis, we only selected individuals that were cross-fostered and thus had different genetic 

fathers from social fathers, or genetic mothers from social mothers. Environmental effects may 

become stronger with age in comparison to other effects that shape a trait, as the effects of the 

environment may accumulate over an individual’s lifetime (Price & Schluter 1991). Because 

environmental effects may over time erode parental age effects (Charmantier et al. 2006) on 

offspring telomere length, we selected offspring that were less than one year old for analysis.  
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We used within-subject centring of parental age (sensu van de Pol & Verhulst 2006) to separate 

cross-sectional (between-individual) and longitudinal (within-individual) effects. This method splits 

the ages of individuals into a mean age (among measurements made at different ages, reflecting 

between-individual effects) and a centred age (reflecting within-individual age effects). To test if the 

between-individual and within-individual father and mother age slopes were significantly different, 

we applied van de Pol & Wright’s (2009) equation 3. In this model, the centred father or mother age 

is replaced with father or mother age, while all other variables remain the same. Age, reflecting both 

within- and between-individual effects, now tests for within-individual effects because the model 

tests each fixed effect while controlling for other effects, including mean age. The mean age now 

represents the difference between the mean age and centred age slopes. If the estimate of mean 

age in this model is close to zero and nonsignificant, the within- and between-age effects on 

offspring telomere length are regarded significantly different.  

 

We tested the relationship between offspring relative telomere length and parental age using a 

linear mixed effect model (LMM). In this model, the offspring RTL was used as the response variable. 

The mean ages of the genetic fathers and genetic mother were correlated (Pearson’s correlation, 

0.39, t = 5.36; df = 165; p = <0.001). The mean ages of the social father and social mother were also 

correlated (Pearson’s correlation, 0.25; t = 3.32, df = 163; p = 0.001). Therefore, we decided to run 

separate models for fathers and mothers.   

 

In the father model, the following covariates were included: the mean genetic and centred father 

ages and the mean social and centred father ages. We included the following random intercepts: 

genetic father identity, social father identity and qPCR plate identity in the father model. In the 

mother model, the mean genetic and centred mother ages and the mean social and centred mother 

ages were included as covariates, while the random intercepts were genetic mother identity, social 

mother identity and qPCR plate identity. We initially included both the genetic brood and social 

brood identities, but these explained a negligible part of the variance (variance < 0.001), and so were 

removed.  

 

To test for selective disappearance of father or motherss, we tested if the within-individual and 

between-individual slopes – in the father and mother models separately – were significantly 

different. In order to test if the slopes differed, we applied van de Pol & Wright’s (2009) method 

(equation 3). In this model, the centred father or mother age is replaced with our original fixed 

effect (father or mother age), while all other variables remain the same in the model. Father or 
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mother age, reflecting both within- and between-individual effects, now tests for within-individual 

effects because the model tests each fixed effect, while controlling for other effects including mean 

father or mother age. The mean father or mother age now represents the difference between the 

mean age and centred age slopes. If the estimate of mean age in this model is close to zero and 

nonsignificant, the within- and between-age effects on RTL are considered to be alike, and it is then 

unlikely that selective disappearance occurs. 

 

Birth cohorts can show differences in age-related telomere dynamics (Fairlie et al. 2016). Including 

birth cohort in our models would have provided information on how early-life experiences, such as 

environmental circumstances in the year of birth, can affect life-long telomere length. However, 

cohort is highly correlated to the age of the blood sample, and was therefore excluded from our 

analyses, with the consequence that we were unable to assess whether any parental age 

associations to offspring telomere length were affected by cohort.  

 

We analysed a total of 166 blood samples for the father models (90 genetic fathers and 86 social 

fathers) and 166 blood samples for the mother models (90 genetic and 88 social mothers). 

 

4.4 Results 

 

4.4.1 Paternal effects 

 
At the within-individual level, offspring RTL was negatively related to the age of the genetic father 

(βgenetic father = -0.11, se = 0.05, t = -2.46, df = 111.6, p = 0.02; Table 4.1 and Figure 4.1). Offspring telomere 

length was not correlated with social father age (βsocial father = -0.07, se = 0.05, t = -1.26, df = 123.7, p = 

0.21; Table 4.1 and Figure 4.2). At the between-individual level, an offspring’s RTL was not 

associated with the age of the genetic father (βgenetic father = 0.01, se = 0.03, t = 0.33, df = 77.8, p = 0.74; 

Table 4.1 and Figure 4.1). In contrast, offspring telomere length was positively correlated with mean 

social father age (βsocial father = 0.06, se = 0.03, t = 2.13, df = 89.3, p = 0.04; Table 4.1 and Figure 4.2).  
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Figure 4.1. Associations of offspring RTL with mean and centred genetic father age, showing linear mixed 
model results. A. Between father, age of the genetic father is not associated with offspring telomere length. 
B. Individual genetic father produce offspring with decreased telomere length as they age. Each filled circle 
is one individual estimate. Thick solid lines represent model estimates and shading indicates 95% credible 
intervals of a linear mixed model. 

 

 

 

 

 

 

 

 

 
Figure 4.2. Associations of offspring RTL with mean and centred social father age, showing linear mixed 
model results. A. Between father, age of the social father correlates to offspring telomere length positively. 
B. Within Individual social fathers, age does not affect offspring telomere length. Each filled circle is one 
individual estimate. Thick solid lines represent model estimates and shading indicates 95% credible intervals 
of a linear mixed model. 

 

The slopes showed a significant difference between the slopes of the between- and within-genetic 

father age effects (βdifferent slopes genetic father = 0.12, se = 0.05, t = 2.28, df = 140.5, p = 0.02, Supporting 

information Table S4.1), indicating the selective disappearance of genetic fathers with offspring with 

smaller RTLs. The estimated difference in the slopes of the between- and within-social father ages 

was also significant (βdifferent slopes social fathers = 0.12, se = 0.06, t = 2.10, df = 150.1, p = 0.04, Supporting 

information Table S4.1), indicating that for social fathers, selective disappearance may also occur.  
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4.4.2 Maternal effects 

 
There was no association of offspring RTL with within-mother age for either genetic or social 

mothers (βgenetic mother = 0.07, se = 0.05, t = 1.48, df = 139.3, p = 0.15 and βsocial mother = -0.04, se = 0.04, t = -

0.94, df = 125.3, p = 0.35, respectively; Table 4.1 and Figure 4.3). Similarly, at the between-individual 

level, offspring RTL was not associated with the age of the genetic, nor the social mother (βgenetic mother = 

0.02, se = 0.03, t = 0.94, df = 156.9, p = 0.35 and βsocial mother = 0.05, se = 0.03, t = 1.52, df = 71.4, p = 0.13, 

respectively, Table 1 and Figure 4.3).   

 

 

Figure 4.3. Associations of offspring RTL with mean and centred social mother age, showing linear mixed 
model results. A. Between social mothers, age of the social mother is not related to offspring telomere 
length. B. Within social mothers, offspring age is not associated with mother age. Each filled circle is one 
individual estimate. Thick solid lines represent model estimates and shading indicates 95% credible intervals 
of a linear mixed model. 

 
Table 4.1. Effects of parental age on offspring RTL in the Lundy house sparrow population, showing linear 
mixed model results.  

 
 

When comparing the slopes of genetic between- and within-mother age, the slopes were not 

significantly different (βdifferent slopes genetic mothers = -0.05, se = 0.06, t = -0.85, df = 143.5, p = 0.40, Supporting 

information Table S4.1). The social between- and within-mother age slopes were also not 
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significantly different and βdifferent slopes social mothers = 0.08, se = 0.05, t = 1.67, df = 150.4, p = 0.10, Supporting 

information Table S4.1).  

 

4.5 Discussion 

 
Our experimental cross-fostering showed that aging genetic fathers produced offspring with shorter 

telomere lengths. We also showed that, for genetic fathers, individuals that produce offspring with 

short telomeres disappear out of the population or, alternatively, their offspring disappear out of 

the population. Moreover, we show that offspring telomere length is positively associated with 

social paternal age, and that selective disappearance may also occur among social fathers that 

produce offspring with short telomeres. We found no association of offspring telomere length with 

either genetic or social mother age. 

 

4.5.1 Genetic father and mother effects 

 
There are several other studies that report negative genetic male age effects on offspring telomere 

length. Our findings add to studies in mice (Mus musculus, de Frutos et al. 2016), sand lizards 

(Lacerta agilis, Olsson et al. 2011), alpine swifts (Apus melba; Criscuolo et al. 2017), zebra finches 

(Taeniopygia guttata, Noguera & Metcalfe, 2018), jackdaws (Corvus monedula, Bauch et al. 2019) 

and Seychelles warblers (Acrocephalus sechellensis, Sparks et al. 2020).  

 

There are three potential non-mutually exclusive explanations why older biological fathers produce 

offspring with shorter telomeres: 1. The gametes of older males have shorter telomeres. 2. Aging 

males may sire lower-quality offspring with shorter telomeres. 3. Females adjust their egg 

composition in response to male age, which in turn affects offspring telomere length.  

 

The first possibility, that older males produce gametes with shorter telomeres, is a potential 

consequence of telomerase becoming less active or being expressed less in older males (Hamilton, 

2001; Criscuolo et al. 2017). Less telomerase activity could lead to shorter telomeres in sperm that, 

when merged with the female gamete, produce lower telomere length in offspring. The mechanisms 

of inheritance of telomere length, and the relative contributions of the paternal and maternal 

genomes, including transient and possible carry-over effects during zygote development, are poorly 

understood (Entringer et al. 2018). Currently, we know that telomere length can be heritable in 

some species, but heritability estimates vary greatly, and may be overestimated due to the inclusion 

of maternal and environmental effects (Entringer et al. 2018). Transient effects might be expected 

because zygotes receive chromosomes with telomeres from both parents, which may differ in 
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length. Therefore, as the embryo develops different mechanisms that maintain and regulate 

telomere length may change and integrate the maternal and paternal telomere contribution to their 

soma. When telomeres in games are fully restored, or ‘reset’, gamete telomere length and parental 

telomere length will not be correlated, and the telomere effect will be transient (Liu et al. 2007; 

Entringer et al. 2018). However, if the maintenance and restoration mechanisms do not (completely) 

alter gamete telomere length, the effect can be regarded as an epigenetic inheritance effect (De 

Meyer et al. 2014), which is independent of DNA sequence variation, but dependent on a change in 

telomere length (Bauch et al. 2019). Additionally, if the maintenance and restoration mechanisms 

change with parental age, offspring telomere length may consequently be affected.  

 

The second possibility is that aging sires produce offspring of lower quality (Preston et al. 2015). In 

male houbara bustards, Chlamydotis undulata, a decline in offspring quality (body size) with male 

age was theorised to occur due to a decline in the quality of male germ-line DNA, which in turn 

occurs through the build-up of genetic mutations due to the high replication rates in sperm (Preston 

et al. 2015). Sperm quality (DNA fragmentation, protamination, traditional semen parameters) has 

been linked to telomere length in previous studies in humans (Rocca et al. 2016; Cariati et al. 2016), 

and even though studies directly assessing links between semen quality and telomere length in non-

human species are lacking at present, such a link might exist. However, in our house sparrow 

population a decline in the quality of sperm is less likely to occur. A previous study from Girndt et al. 

(2019) compared the sperm of old and young males, and found no significant differences in sperm 

quality (sperm morphology and semen volume). Even though sperm DNA fragmentation and 

telomere length in sperm in Girndt et al. 's (2019) study were not directly assessed, studies in 

humans indicate that there is a link between sperm morphology and DNA integrity (Tang et al. 

2009). We therefore have no indication that DNA integrity is affected in the sperm of aging house 

sparrows, and it is thus unlikely that offspring are affected by sperm quality differences between old 

and young fathers in house sparrows.  

 

The third explanation, which proposes that females may adjust egg composition in response to male 

age, has been demonstrated in previous studies (Cunningham & Russell 2000). Females may, for 

example, adjust egg size or testosterone levels according to male quality. Testosterone has been 

proposed to affect the antioxidant system in young birds, which may cause an increase in oxidative 

stress and, consequently, shorter telomeres (Tobler & Sandell 2009; Reichert et al. 2017). 

Additionally, females may reduce egg antioxidants when paired to older males, which in turn may 

also cause an increase in telomere loss (Noguera et al. 2018; Monaghan & Ozanne 2018). We have 
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not investigated the possibility of differences in the hormones or nutrition provided to the eggs of 

females relative to the age of their male mate, and thus cannot conclude that females respond to 

male age. However, males can also adjust their behaviour according to their current partner, as in 

our population of house sparrows, a within-father adjustment of paternal care in response to 

mother identity was found (Schroeder et al. 2016). Fathers adjusted their provisioning rates (but not 

their incubation efforts) when their partners showed different degrees of cuckoldry. The fathers did 

not change their provisioning behaviour when cross-fostered chicks were present in their broods, so 

fathers did not detect cuckoldry through their present offspring. A change in feeding rates in 

response to mother behaviour could have impacted chick growth and consequently offspring 

telomere length.  

 

In addition, the timing of our experimental cross-fostering could have given genetic parents time to 

potentially affect offspring telomere length via incubation and other, very early life (one day) 

parental care effects, such as nest maintenance and brooding the chicks. Due to these incubation 

and very early life affects, we cannot fully attribute the effect of paternal age on offspring telomere 

length to a gamete effect.  

 

Our findings contrast with studies in humans and chimpanzees, which have reported positive genetic 

paternal age effects on offspring telomere length (Eisenberg & Kuzawa 2018; Bouwhuis et al. 2018). 

One of the reasons, among others, why the primate studies and our study show different results 

could be the sperm production rate differences between mammals and birds. Humans and 

chimpanzees are species that have larger sperm production and produce sperm year-round. Such 

year-round sperm production may require more telomerase activity, or an increase in the selective 

loss of sperm with shorter telomeres (Froy et al. 2017). Species that have seasonal sperm 

production, such as house sparrows, are expected to have less telomerase activity in the testes, 

which may result in sperm having shorter telomeres and, consequently, offspring with shorter 

telomeres (Eisenberg 2019).  

 

We did not detect any association between the age of the genetic mother and offspring telomere 

length. This is in concordance with studies that assessed the association between female age and 

offspring telomere length, which usually reported no effect (Froy et al. 2017; Bouwhuis et al. 2018; 

Bauch et al. 2019; Spark et al. 2020). However, some studies have reported maternal age effects on 

offspring telomere length, such as in the great reed warbler, tree swallow (Tachycineta bicolor) and 

black-browed albatross, Thalassarche melanophris, where there were positive effects of maternal 
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age, and in the alpine swift and zebra finch, where maternal age had a negative effect on offspring 

telomere length (Asghar et al. 2015; Criscuolo et al. 2017; Belmaker 2016; Marasco et al. 2019; 

Dupont et al. 2018, respectively).   

 

The difference in father and mother age effects on offspring telomere length may be explained by 

differences in the germ lines of both sexes. In mammals and birds, males produce sperm throughout 

their lives, while all female oocytes are formed during embryogenesis (Kimura 2008; Vizcarra et al. 

2015; Johnson 2015). This means that telomere length of the female oocytes may be determined 

before birth and be less affected by female age (Aviv et al. 2018). However, oocytes remain in the 

ovary until ovulation, so eggs ovulated later in life may have undergone more oxidative stress, and 

consequently, telomere loss (Cimadomo et al. 2018). This may specifically be the case for longer-

lived species, as the time period for oxidative damage to occur will be longer. In a relatively short-

lived species, like the house sparrow, it is unlikely that oxidative stress in oocytes would significantly 

alter oocyte telomere length.  

 

4.5.2 Social paternal effects 

 
We found a positive association between offspring telomere length and social paternal age, but not 

maternal age. However, the effect size of social maternal age is similar to social paternal age, which 

means that a positive association between offspring telomere length and social maternal age may 

still exist, even though it was not statistically detected. An increase in offspring telomere length with 

social parental age can be the result of two, non-mutually exclusive processes: 1. Parents improve 

rearing conditions with age. Or 2. A quality difference between parents that produce offspring with 

short and long telomeres.  

 

An improvement in rearing conditions can affect the telomere lengths of individuals because the 

growth period may be a critical time with respect to telomere length dynamics. During growth, 

telomeres shorten more quickly than during adult life due to faster cell proliferation (Zeichner et al. 

1999; Pauliny et al. 2012). Telomere shortening has been linked to stress (reviewed in Reichert et al. 

2017), and stress in the nest can lead to poor growth, which results in oxidative stress, which in turn 

can shorten telomeres (Hall et al. 2004). Parents might provide a better environment for their 

offspring as they age, and telomeres have been previously linked to breeding performance (Pauliny 

et al. 2006), and the quality of individuals (Le Vaillant et al. 2015). For example, a study on European 

blackbirds (Turdus merula) found that one-year-old birds were half as successful at finding large prey 

items as two-year-olds (Desrochers 1992). A link between parental age, offspring body condition 
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and, consequently, telomere length has been found in black-browed albatrosses (Thalassarche 

melanophris; Dupont et al. 2018), where it was concluded that young albatrosses raised offspring 

with poorer body condition (females only) and shorter telomeres.  

 

It is possible that house sparrow parents become more adept at finding suitable prey for their 

offspring, becoming more efficient foragers and providing offspring with more and better nutrition, 

potentially resulting in longer offspring telomeres. It is also possible that parents manage to obtain 

higher-quality territories and nest sites as they age. House sparrow males search and inspect nest 

sites during winter and advertise their preferred one to females in spring (Sánchez-Tójar et al. 2017). 

Younger individuals inspect more nestboxes than older individuals. The difference in the number of 

inspections between old and young males is likely to be due to older individuals already being 

established and showing high site fidelity (Sánchez-Tójar et al. 2017). It is possible that younger 

males must settle for lower-quality nestboxes and territories, resulting in poorer nestling conditions 

and offspring with shorter telomeres.   

 

However, we find no evidence that individual, aging social fathers (nor mothers) improve their 

offspring’s telomere length. Such a within-individual increase in offspring telomere length with 

parental age would be expected if parents managed to obtain higher-quality territories or provided 

better care for their offspring as they get older. However, house sparrows show high breeding site 

fidelity (Sánchez-Tójar et al. 2017), which indicates that changes (and thus potential improvements 

with age) in breeding site do not occur often, potentially explaining, at least in part, why individuals 

do not improve their offspring telomere length with age. Instead, the lack of a within-individual, but 

the existence a between-individual, age-related effect in offspring telomere length might indicate a 

quality difference that exists early in life and persists throughout. Telomere attrition may be a cost 

incurred by reproduction (reviewed in Sudyka 2019) and telomere maintenance may be costly 

(Young 2018). Individuals with phenotypic traits that benefit them (i.e. high-quality individuals) may 

be more proficient in negating or bearing the negative effects of telomere maintenance (Criscuolo et 

al. 2017; Sudyka 2019). High-quality individuals may also have improved life-history traits, such as 

longer lifespans (Monaghan & Haussmann 2006; Bize et al. 2009). With improved lifespans (and thus 

remaining in the population at higher ages), high-quality individuals may maintain telomere length 

more efficiently and provide better rearing conditions to offspring throughout life, who, in turn, 

obtain longer telomeres. 
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It should be noted that separating parental social effects from genetic effects can be difficult due to 

relatives having a shared environment, as well as heritable genetic effects (Kruuk & Hadfield 2007). 

By using a cross-fostering approach we negated most confounding factors. However, cross-fostering 

may have its own pitfalls (Winney et al. 2015). We cross-fostered offspring one day after hatching, 

so genetic parents had some time to influence offspring with parental care before offspring were 

cross-fostered. This means that any pre-hatching or early-life care may have been confounded with 

genetic effects (Kruuk & Hadfield 2007). However, compared to the approximately two-week nest 

rearing, plus some post-fledging care, periods, the incubation period and the one day of parental 

care before cross-fostering are likely to be of low impact, and we expect that this did not affect our 

conclusions.  

 

4.5.3 Selective disappearance 

 
We detected selective disappearance in our population, at least for the genetic and social fathers. 

Selective disappearance hypotheses that poor-quality individuals disappear from the population, 

resulting in relatively more high-quality individuals at older ages (Dupont et al. 2018). Selective 

disappearance is rarely detected when studying telomeres due to the cross-sectional nature of most 

studies (Bauch et al. 2019; Eisenberg et al. 2019). However, one study to date, investigating parental 

age effects on offspring telomere length in the Seychelles warbler, found a negative within-paternal 

age effect on offspring telomere length, while there were no between-paternal age effects (Sparks 

et al. 2020).  

 

We cannot discern whether selective disappearance occurs at the paternal or offspring levels. We 

have shown that individuals have shorter telomeres with increasing age in Chapter 3. The fathers in 

the present study also age, and consequently may also have shorter telomeres, which means that 

the fathers may disappear from the population. Alternatively, we measured the telomere lengths of 

fledged offspring. It is possible that older fathers are still part of the older population, producing 

offspring with short telomeres, which in turn died before we measured their telomere lengths. We 

showed previously in this same population that the eventual reproductive success of offspring was 

negatively affected by the father's age (Schroeder et al. 2015). In addition, both within-pair and 

extra-pair males initially increased their paternal success (total number of annual offspring sired in a 

year), followed by a senescent decline later in life (Hsu et al. 2017). If telomeres, in part, underlie, or 

are a biomarker of the decline in paternal success observed in Hsu et al. (2017)’s study, then it may 

be the case that selective disappearance is occurring at the offspring level.  
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4.5.4 Conclusion 

 
An effect of genetic and social paternal age on offspring telomere length may have evolutionary 

consequences when this effect in turn affects longevity and fitness. If the paternal age effect has a 

negative impact on fitness, this will lead to an accelerated loss of fitness at increasing age, and thus 

faster senescence (Priest et al. 2002). Alternatively, if the paternal age effect is positive, the pace of 

the senescent decline will be lower at higher ages. We have previously found cross-sectional 

negative male and female age effects on offspring annual and lifetime fitness in our house sparrow 

population (Schroeder et al. 2015). This effect occurred before chicks were cross-fostered and was 

thus regarded as a genetic parent effect and it was proposed that the underlying mechanism could 

be telomere length (Schroeder et al. 2015). The findings from Schroeder et al. (2015) are only 

partially in concordance with our findings. We also detected a negative father effect on offspring 

telomere length, but the effect was a within-genetic father effect, while there was no association of 

among-genetic father age and offspring telomere length. Moreover, we did find a positive cross-

sectional correlation between social father and offspring telomere length, while Schroeder et al. 

(2015) detected no social parent effect on fitness. In addition, we find no effects of neither genetic 

nor social mother age on offspring telomere length, while in Schroeder’s et al. (2015) study, mother 

age did affect the fitness of female offspring. Due to the discrepancies, and because we made a 

distinction between within- and between individual parent effects, while Schroeder et al (2015) did 

not, we cannot make any inferences to telomeres being a (partial) underlying mechanism of the 

detected parental age effects on offspring fitness.  
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Supporting Information S4 

 

Tables S4.1. Comparing slopes of paternal and maternal within and between age effects on offspring 

telomere length. 

 

Effects of genetic and social paternal and maternal age, mean age and blood sample on offspring 

Relative Telomere Length (RTL), showing linear mixed model results. According to van de Pol & 

Wright (2009), the mean age now represents the difference between mean and centred age.  
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5. Low heritability of telomere length in a wild passerine 
 

5.1 Summary 

 
Telomeres are protective caps at the ends of chromosomes, the lengths of which may reflect the 

costs of environmental conditions that have been experienced by an individual and are thus 

considered to be a potential biomarker of senescence. Telomeres show large variation in length 

between individuals of the same species and age. The origin of this variation is still largely unknown, 

but it is important to understand the origin of variation to assess the evolutionary potential of 

telomere length.  

 

We used a cross-fostering experiment, and an animal model - in which a pedigree allowed us to 

separate environmental from genetic effects -, to assess the genetic (heritability) and environmental 

contribution to the variance in telomere length of offspring, in a natural insular population of house 

sparrows. We found that telomere length had low heritability. In addition, neither natal and rearing 

broods, nor the identity of rearing fathers and mothers, explained any proportion of the phenotypic 

variation in telomere length. However, the year of birth explained nearly one third of the phenotypic 

variation. Our findings mirror other studies that have applied an animal model. The low heritability 

may indicate that telomere length is connected to fitness and has evolutionary potential, but that 

telomere length is also influenced by the environment.  

 

5.2 Introduction 

 
Telomeres are repetitive DNA sequences, located at the ends of the chromosomes (Meyne et al. 

1989). Telomeres are thought to have a function in cellular replication and maintenance, and may 

act as a defence against cancer by triggering cell apoptosis and thus controlling uncontrolled cell 

proliferation (Aviv 2006). However, telomeres shorten due to the cell's imperfect replication 

mechanism, and stressors on the organism that cause oxidative damage, which in turn may affect 

telomere length (Shay & Wright 2019; Chaitelin et al. 2020). Maintaining telomere length may be 

vital to ensure the viability and chromosomal stability of cells (Blackburn 1991), especially 

considering that telomere length may predict individual life expectancy (Heidinger et al., 2012; Bize 

et al. 2009). Such a connection of telomere length to life expectancy indicates that telomere length 

may be a life-history marker, providing a potential proxy for future individual fitness (Cawthon et al. 

2003), and potentially explaining variation in life-history and fitness in natural populations (Chaitelin 

et al. 2020).   



84 
 

It has been well documented that telomere length varies greatly between and within species 

(Monaghan & Haussmann 2006; Monaghan 2010). Traits with inter-individual variation are 

influenced by natural selection and are evolutionarily important (Reichert et al. 2015). Moreover, if 

telomere length is related to intrinsic trade-offs, phenotypes that can cope with telomere erosion 

may be at a selective advantage (Reichert et al. 2015). Therefore, the likely components of 

environmental variation that, in turn, affect telomere length within species has attracted attention 

from researchers. Most studies were conducted on a cross-sectional level, comparing individuals of 

different ages within a species (Pauliny et al. 2012) and concluded that telomere length declines 

with age (reviewed in Horn et al. 2010; overview in Dantzer & Fletcher 2015). However, such age-

related conclusions must be assessed with caution because of the numerous factors that may cause 

between-individual variation in telomere length (Pauliny et al. 2012). One such factor is the 

heritability of telomere length.  

 

The heritability, or specifically the narrow-sense heritability (h2), describes the proportion of the 

phenotypic variance that is explained by additive genetic effects (Becker et al. 2015). The h2 of 

telomeres has been intensively studied in eukaryotes and vertebrates, including humans, with 

heritability estimates varying greatly from 0 to 1 (Becker et al. 2015, Broer et al. 2013, Ashgar et al. 

201; Dugdale & Richardson 20185). Some of the heritability estimates appear high, especially 

considering that telomeres may potentially be connected to fitness, as implied with the association 

to life expectancy, while most traits related to fitness show low heritability (Postma 2014).  

 

There are several reasons why the estimates from several studies of the heritability of telomere 

length were high. First, heritability estimates are expressed in ratios, calculated as the proportion of 

genetic components over total phenotypic variance, which also includes other effects, such as 

maternal and environmental effects. As a proportion of a sum of other effects, the heritability 

estimate can be high when other effects are relatively low, even when the absolute additive genetic 

effect itself may be low (Dugdale & Richardson 2018). Not accounting for other effects that explain 

phenotypic variance can thus inflate heritability estimates (Becker et al. 2015; Dugdale & Richardson 

2018).  

 

Second, interstitial repeats that are not part of the terminal telomere genome may bias heritability 

estimates (Atema et al. 2015). This may be the case specifically for birds, where interstitial repeats 

appear to be numerous (Foote et al. 2013). qPCR estimates do not discriminate between interstitial 

repeats and telomeric repeats, while such a distinction may be of importance as interstitial repeats 
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are expected to remain unchanged in an individual’s lifetime, while telomeric repeats are expected 

to change. However, interstitial repeats can vary between individuals (Foote et al. 2013) and are 

thus also a source of variation in telomere estimates on the qPCR. With qPCR estimates it is thus 

impossible to differentiate whether heritability estimates reflect variation in interstitial repeats, 

telomeric DNA or both (Atema et al. 2015).   

 

A third reason that might potentially lead to the inflation of heritability estimates is the use of 

parent–offspring regressions to estimate heritability (Dugdale and Richardson 2018; van Lieshout et 

al. 2020). Parent–offspring regressions do not take multiple measurements into account and do not 

allow for the efficient distinction between genetic and environmental effects, because relatives will 

share a more similar environment than non-relatives (Dugdale & Richardson 2018). This similarity in 

environment needs to be partitioned out from genetic effects. Statistical, so-called animal models 

provide a way to separate genetic and environmental effects. An animal model uses repeated 

individual measurements to partition phenotypic variance into individual and residual variance, and 

individual variance into genetic and environmental components, allowing for the estimation of 

repeatability and, when adding a pedigree, heritability (Dugdale & Richardson 2018).  

 

Another methodological issue that most studies do not control for when assessing heritability is 

offspring age (Reichert et al. 2015). Telomeres tend to change with age, and any initial genetic effect 

may change as environmental effects increasingly influence telomere length over time (Dugdale & 

Richardson 2018). Controlling for age is a necessity, as it will standardise the environmental effects 

that individuals were exposed to prior to sampling (Dugdale & Richardson 2018). Correcting for age 

does require continual data collection over a long period of time, with individuals being of known 

age, which may be difficult to achieve in wild study populations (Sparks et al. 2020).  

 

This study aims to provide a well-founded (i.e. taking into account most of the aforementioned 

methodological issues) heritability and repeatability estimate by using an insular house sparrow 

population with an exceptionally extensive and comprehensive pedigree. This population is suitable 

for partitioning the phenotypic variation in telomere length into different components, such as 

genetic and environmental, by the use of an animal model due to many reasons: First, the closed 

nature of the population and continuous efforts to catch and band all individuals have led to almost 

all individuals being of known age and contributing to a single population pedigree (Schroeder et al. 

2012a). Secondly, many individuals are sampled multiple times, and often at similar ages in both 

parents and offspring, allowing for parent and offspring age standardisation. Thirdly, we cross-foster 
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young chicks at two days of age, which allows for the distinction between genetic and environmental 

effects (Winney et al. 2015; Schroeder et al. 2012b).  

 

Aside from assessing heritability and repeatability, we then used an animal model to partition the 

variance in offspring telomere length into parental components, where we separate natal from 

rearing brood and in turn, genetic from rearing parent. In addition, we tested if the year of birth 

explained any of the telomeric variance found in offspring.   

 

 

  



87 
 

5.3 Methods  

 

5.3.1 Study system 

 
The data we used to assess heritability were collected from in 1995–2016, from a wild and insular 

house sparrow population located on Lundy island (51.11 N, 4.40 W), in the south-west of Britain. 

House sparrows are small, multi-brooded passerines (Summer-Smith 1963). The birds have a 

sedentary nature (Bengtson et al. 2004), which, combined with Lundy island being located ca. 20 

kilometres from the coast, leads to very low immigration and emigration rates (0.5% of all recruits, 

Schroeder et al. 2015). The birds breed in nestboxes located in and around the Lundy village (Griffith 

et al. 1999, Sánchez‐Tójar et al. 2017). 

 

All individual sparrows are given a unique colour ring combination and are provided with a metal 

numbered ring from the British Trust for Ornithology (BTO). Adults and fledglings are caught in both 

summer (April–September) and winter (November–March) using mist-nets or by trapping within 

nestboxes or funnel traps. Individuals are captured and blood sampled repeatedly throughout their 

lives. The ages of individual birds were calculated in years based on their cohort (year of birth). The 

age of each bird is known, as more than 99% of the house sparrow population were banded as 

nestlings or first-year juveniles. Moreover, the study has a very low catching bias and a high 

resighting rate of 0.96, indicating that very few birds avoid capture (Schroeder et al. 2015; Simons et 

al. 2015).   

 

5.3.2 Cross-fostering experiment 

 
Chicks were cross-fostered in all years, with the exceptions of 2008 and 2010 (Winny et al. 2015). 

Chicks were cross-fostered the day after hatching (with an exception in 2000–2003, where chicks 

were cross-fostered two days after hatching, Cleasby et al. 2010), reciprocally with any other 

available brood of the same age. Broods were never reduced or enlarged when cross-fostered. A 

proportion of broods were partially or not cross-fostered due to a lack of available broods of the 

same size or age, respectively, on day two. Chicks would remain in their foster-broods until 

fledgling.  

 

5.3.3 Blood sample collection and telomere length measurements 

 
We collected blood samples from juvenile (i.e. individuals that had left the nest) and adult house 

sparrows from Lundy Island, in the years 2003 to 2015. Blood samples were taken by puncturing the 
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brachial vein with a 26G needle and collecting into a non-heparinised capillary tube. The blood from 

each individual was stored in 1 ml of ca 100% ethanol at room temperature.  

 

DNA was quantified using a Nanodrop 8000 Spectrophotometer (Thermo Fisher) and normalised to 

20–30 ng/ul. DNA was extracted using an ammonium acetate precipitation method (Nicholls et al. 

2000; Richardson et al. 2001) and stored at -20oC in low TE pH 7.5. For qPCR, a multiplex protocol 

was implemented following Cawthon (2009). Telomere length was measured in a StepOnePlus 

(Applied Biosystems) or Quantstudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific). For 

specific details regarding the telomere measurement protocol, see Section 2.3.3.  

 

The collection of blood samples over a range of years may lead to samples being clustered during 

analysis by, for example, year or cohort (van Lieshout et al. 2020). This may lead to different 

conditions (i.e. laboratory conditions) among clusters (van Lieshout et al. 2020). To avoid blood 

samples being biased by such clustering, all plates used for qPCR (quantitative polymerase chain 

reaction) contained a random subset of samples from three different years. For a detailed 

description of how the analysis was completed in batches, see Section 2.3.3.   

 

5.3.4 Pedigree  

 
We constructed our pedigree using the genotypes at 13 microsatellite loci to assign genetic 

parentage (Dawson et al. 2012; Schroeder et al. 2015). The pedigree we used contained 9,110 

individuals that were sampled between 1995 and 2016. The pedigree was pruned prior to analysis to 

remove uninformative links (Hadfield 2010), leading to 1,105 individuals. For pedigree information, 

see Supporting information S5.2. 

 

5.3.5 Statistical analysis 

 
All analyses were conducted in the R environment (v. 3.5.0; R Core Team 2018). The T/S ratio was log 

transformed to fit a normal distribution (hereafter called RTL). We calculated the heritability of 

telomere length with an animal model (Kruuk 2004) using a Bayesian approach and the package 

MCMCglmm in R (version 2.28, Hadfield 2010). An animal model calculates the proportion of the 

phenotypic variance explained by additive genetic effects.   

 

MCMCglmm estimates the posterior mode and 95% credible intervals (95% CI) for fixed effects and 

variance components, after which the heritability can be calculated. For all models (see below), the 

number of iterations was set to 700,000, with a thinning of 600 and a burn-in period of 15,000. We 
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ensured that the model converged by confirming that autocorrelation between sampled iterations 

was below 0.1 and using a Heidelberger & Welch (1983) test to test if samples were drawn from a 

stationary distribution. We used default priors for fixed effects and parameter expanded priors for 

the random variance structure because the random variance was small (F distribution: V = 1, nu = 1, 

alpha.mu = 0, alpha.V = 1,000). 

 

We used a model build-up approach to assess potential confounding random effects and potential 

changes in heritability estimates (Charmantier et al. 2014), using six models. The first model 

contained the age of the blood sample (in years) as a fixed covariate to account for sample storage 

effects (see Chapter 2). The age of the individual (integer, in years) was also added as a fixed 

covariate. The response variable was RTL. The following random effects were added to the model: 

The additive genetic relationship matrix generated from individual identity linked to the genetic 

pedigree (animal), the identity of the bird, reflecting the permanent environmental variance 

explained by the identity of the individual, also accounting for common non-genetic variance due to 

repeated measures of the same individual (Kruuk 2004; Wilson et al. 2010). The qPCR plate was 

added to account for pseudo replication because of RTL repeated measures on the same qPCR 

plate.  

 

In the second and third models, we added the brood each individual was born (natal brood) and 

raised in (rearing brood), respectively, to model 1. The natal brood and rearing brood effects estimated 

the variance among broods that can be attributed to the shared environment of individuals hatching and 

growing up in the same nest, over and above the variance of additive genetic effects. We did not add 

both the natal brood and rearing brood to the same model because not all individuals are cross-

fostered, which leads to confounding effects of natal and rearing brood.  

 

In a fourth model, we added the year of birth (cohort) to the first model to estimate the variance 

that can be attributed to environmental effects that occur in the year of hatching.  

 

In a fifth model we used model four, but with a dataset that was restricted to relatively young birds, 

i.e. birds that were sampled in their first and second year of life. We made this selection because 

heritability is expressed as a ratio of total phenotypic variation (see below). As a ratio of total 

phenotypic variance, heritability is expected to lower as individuals age because other effects, such 

as the environment, start to affect individuals more strongly. This means that younger individuals 

should show higher heritability than older individuals (Charmantier et al. 2006). In order to get closer 
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to a heritability estimate that was less altered due to environmental effects, we selected only 

individuals that were sampled in their first and second year. 

 

In the sixth and last model we added the identities of the rearing male and female as random effects 

to the fourth model to estimate rearing parental effects on offspring RTL.  

 

The estimates from the MCMCglmm model were used to calculate heritability and repeatability. 

Narrow-sense heritability was calculated as the ratio of the additive variance component to total 

phenotypic variance of the trait (Wilson et al. 2010):  

 

VA 

h2 =      ----- 

              Vp 

 

Where h2 is the heritability, VA is the variance attributable to additive genetics and Vp is the total 

phenotypic variance of the trait. To calculate the total phenotypic variance, only biologically relevant 

variance was included. This meant that only bird identity, animal identity (as per pedigree), cohort, 

natal brood identity, rearing brood identity, rearing male/female identity and the residual variance 

were included in the calculation, depending on the model in which the effects were included.   

 

To calculate the repeatability, the following formula was used: 

 

            VA  +  Vpe 

R =    ---------------- 

                 Vp 

 

Where R is the repeatability and Vpe is the variance that can be attributed to the permanent 

environment of individuals.   

 

The variance of the permanent environment of individuals, year of birth (cohort), natal early 

environment, rearing early environment, rearing parental male and female and the residual variance 

were calculated as a ratio of the total phenotypic variance.  
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The sample sizes used for analyses varied between models due to missing information. In total, we 

used 1,493 RTL measurements from 931 individuals in our analyses. When adding the rearing brood 

and natal brood identities, 1,096 RTL measurements from 694 individuals were used because of 

missing brood information. In the model with rearing males and females, we used 1,027 samples 

from 656 individuals. For an overview of the number of samples and individuals, see S5.1.  

 

5.4 Results 

 
Birds showed low repeatability for telomere length, with an estimate of 0.20 (CI 0.13–0.29).  

 

The h2 explained between 8–17% of the total phenotypic variance in offspring RTL, depending on 

which random factors were included in the model (Table 5.1). In the first model, the heritability was 

0.17 (CI 0.11–0.28). This estimate excluded the qPCR plate variance in the phenotypic variance, as 

this variance was technical, not biological. Including the qPCR plate lowered the h2 estimate to 0.10 

(CI 0.05–0.16) in the first model. The permanent environment of individuals (bird identity) explained 

near zero of the phenotypic variation in all models (Table 5.1), which is likely due to the low number 

of repeated measurements within individuals.  

 

In Model 2, where the natal brood was added, the heritability was 0.08 (CI 0.00–0.18). In model 3, 

where the rearing brood was added, the heritability was 0.08 (CI 0.00–0.18). In both models, the 

rearing and natal broods explained near zero of the total phenotypic variance (Tables 5.1 and 5.2). 

 

In model 4, which included cohort in model one, the heritability estimate was 0.11 (CI 0.05–0.19). 

Cohort explained a greater proportion of the total phenotypic variance with an estimate of 0.27 (CI 

0.10–0.48). When this model was used for young birds only (model 5), the heritability was 0.08 (CI 

0.04–0.18). Cohort also explained a larger proportion of the variance when only young individuals 

were included (0.36, CI 0.24–0.72).  

 

In model 6 we added the identity of the rearing male and female to model 4 (the cohort model). 

Both the rearing male and female explained near zero of the offspring’s phenotypic variance (Table 

5.1). The heritability in this model was also close to zero (CI 0.00–0.13).  

 

For MCMCglmm model output of all models, see Table 5.1.  
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Table 5.1. The posterior means for the random effects in the MCMCglmm model. Below are the 95% 
confidence intervals shown. In all models the blood sample age and individual age were added as 
covariates.  

 

 

 

Table 5.2. The calculated variance components, where the variance of additive genetic (h2), permanent 
environment of individuals (Vpe), year of birth (Vcoh), natal early environment (Vnat), rearing early environment 
(Vrear), rearing parental male (Vmale) and female (Vfemale) and residual variance (Vr) are calculated as the 
proportion of the total phenotypic variance. Below are the 95% confidence intervals shown. 

 

 

5.5 Discussion 

 
Using a mixed-model analysis of variance (animal model; Knott et al. 1995; Kruuk 2004) and using a 

long-term longitudinal dataset, we showed that there was a small amount of additive genetic 

variance in telomere length in Lundy house sparrows. The permanent environment effect on 

telomere length was negligible in our dataset, while we did find a cohort effect. The additive genetic 

variance and variance explained by cohort were slightly higher in birds that were in their first year of 

life. The rearing brood, natal brood, rearing mother and father identities explained near zero of the 

proportion in phenotypic variance in offspring telomere length. 
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Our findings contrast with many previous studies, where telomere length heritability estimates in 

wild species and humans ranged from 0 to 1 (for an overview, see Dugdale & Richardson 2018, Table 

1). The large range in heritability estimates may reflect interesting biological genetic variation 

between species, as well as methodological differences in study populations and methods (Becker et 

al. 2015). One often-proposed methodological explanation for differences in heritability estimates is 

the variation in the method used, such as the use of parent–offspring regressions instead of animal 

models (Atema et al. 2015; van Lieshout et al. 2020), especially when considering that many of the 

reported heritability estimates are relatively high (van Lieshout et al. 2020). Parent–offspring 

regressions do not take in account any shared environment, and thus a high covariance between 

parents and siblings (Kruuk et al. 2004). Not accounting for or separating these non-genetic effects 

from genetic effects can cause an inflation of the heritability estimate (Kruuk et al. 2004).  

 

We used an animal model, which partitions phenotypic variance into environmental and genetic 

effects (Wilson et al. 2010), thus accounting for a shared environment of parents and siblings, and 

preventing an inflation of the heritability estimate. To date, there are only a few other studies that 

estimated heritability by using an animal model in wild populations. Four studies that did apply an 

animal model in wild populations (white-throated dipper, Cinclus cinclus, Becker et al. 2015; 

European badger, Meles meles, van Lieshout et al. 2019; Seychelles warbler, Acrocephalus 

sechellensis, Sparks et al. 2020 and great mouse-eared bat, Myotis myotis, Foley et al. 2020) all 

found that heritability estimates were close to zero.  

 
In contrast to the near zero or low heritabilities reported in European badgers, white-throated 

dippers, Seychelles warblers, great mouse-eared bat and the present study, a study from Asghar et 

al. (2015) in great reed warblers, Acrocephalus arundinaceus, reported a relatively high heritability 

estimate of 0.48. Such high heritability in the great reed warbler could be due to the use of blood 

samples from 8- to 10-day old chicks. As the variance that can be attributed to heritability tends to 

diminish with age because other factors, such as the environment, become relatively stronger, 

telomere length measurements in young individuals will be closer to the inherited telomere length 

(Charmantier et al. 2006). The individuals we selected as juveniles had already fledged. It is possible 

that nestlings express a much higher heritability, which will reflect the inherited telomere length 

more adequately. Whether this is the case remains a question for future research, where measuring 

the telomere lengths of nestlings is vital.  
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Some studies assessing the heritability of telomere length also find parental or nest effects. The 

study from Ashgar et al. (2015) found a strong maternal (0.47) effect on telomere length in the great 

reed warbler, while in the white-throated dipper there were strong nest effects (0.2, Becker et al. 

2015). A pattern of maternal effects seems to mirror what is found in several human studies 

(Nordfjäll et al. 2010; Njajou et al. 2007). However, we found no maternal nor a paternal effect on 

offspring telomere length in any of our models, which means that mothers and fathers did not 

produce offspring that resembled each other more strongly than would be expected, based on 

their shared genes. There are several explanations that may explain the lack of parental and 

nest effects.  

 

First, the lack of parental effects may be due to the occurrence of extra-pair mating (Sparks et al. 

2020) in our population of house sparrows. Extra-pair mating would, at least for males, mean that 

the genetic father is not the one providing care to the offspring. However, due to our cross-fostering 

approach, we separated genetic parents from rearing parents and found no effects of either. 

Second, telomere length was measured in adults and juveniles, after the rearing period. Telomeres 

shorten more rapidly in early life (Hall et al. 2004; Salomons et al. 2009). As we measured telomere 

length in individuals that had fledged, most telomere attrition would have occurred already, 

potentially affected by environmental circumstances, decoupling any potential associations with 

parental or nest effects on telomere length. Moreover, it is likely that parental effects diminish with 

age because telomeres are affected by environmental circumstances (Ashgar et al. 2015; Sparks et 

al. 2020), as the environment an individual experiences may become more impactful in comparison 

to initial parental and brood effects. Third, parental and brood effects may comprise many features 

of the parent and brood, which may have both positive and negative effects on offspring telomere 

length (Becket et al. 2015). The positive and negative effects can potentially cancel each other out, 

leading to no overall effects of parental identity and brood on offspring telomere length. Fourth, 

there are a low number of repeated measurements taken from offspring of individual (genetic and 

social) mothers and fathers, which may have made separating genetic from social parental effects 

impossible. Moreover, parent identity and nest identity may be strongly linked, and separating these 

effects requires large amounts of data (Becker et al. 2015).  

 

Most studies that applied an animal model in wild populations (Becker et al. 2015; van Lieshout et al. 

2019; Foley et al. 2020) concluded that the environment (i.e. year or cohort effects) explained a 

large part of the variance in offspring telomere length. Their results mirror what we found in our 

house sparrow population, where the variance of the year in which individual offspring hatched 
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explained a third of the phenotypic variance found in offspring telomere length. However, in our 

population, cohort is strongly linked with blood sample storage time, and we were unable to 

separate these two effects (see Section 3.3.6). It is possible that our cohort effects were 

overestimated due to blood sample storage time. Regardless, it is plausible that the cohort explains 

at least some of the variance in offspring telomere length. Stress is linked to telomere shortening 

(see overview in Reichert et al. 2017) and telomeres tend to shorten more quickly in suboptimal 

conditions; as such, the yearly fluctuations in environment can lead to differences in telomere length 

in both offspring and adults (Haussmann & Marchetto 2010; Young et al. 2013; Monaghan 2014). 

Differences in exposure to physiological stressors (such as food availability) during early life could 

lead to cohort effects, as entire cohorts will be influenced by yearly fluctuations in weather 

conditions and, consequently, food abundance. Indeed, it was previously shown that the mortality of 

house sparrows on Lundy varies widely among years, indicating a strong environmental effect 

(Simons et al. 2019). The exact cause of the variation in yearly mortality in the house sparrow is still 

unknown, and we can only speculate that fluctuations in environmental circumstances also affect 

telomere length in offspring.  

 
To our knowledge, this is the first study that estimates heritability in a wild population that utilised a 

cross-fostering experiment and an animal model with a pedigree consisting of more than a thousand 

informative individuals. Estimating heritability of telomere length in natural populations, using 

individuals of known age will allow us to study the evolutionary potential of telomeres, because both 

natural selection and the heritability of a trait shape evolutionary responses (Kruuk 2004). Traits that 

are closely related to fitness tend to have low heritability as strong selection depletes variation 

(Mousseau & Roff, 1987; Price et al. 1991; Voillemot et al. 2012).  

 
The low heritability of telomere length found in our house sparrow population could indicate that 

selection favoured individuals with long telomeres, and thus eroded some variation in a trait 

(Falconer & Mackay 1996), in our case in telomere length. Indications that telomere length may 

indeed be related to fitness are provided in Chapters 3 and 4, where we find evidence for selective 

disappearance of individuals with short telomeres, and disappearance of (genetic) fathers that 

produce offspring with short telomeres, respectively. It is thus possible that telomeres are 

connected to fitness, or reflect processes that are connected to fitness. Whether telomere length is 

linked to fitness in our house sparrow population, remains a question for the future.   
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Supporting information S5  

 

Table S5.1. Number of samples and individuals per model. 
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Table S5.2. Pedigree information (pruned pedigree) of the Lundy house sparrow from the years 1995 to 
2016.  

Relationship n 

Records 1048 

Max. pedigree depth 17 

Maternities 969 

Paternities 974 

Full sibs 1039 

Maternal sibs 2577 

Paternal sibs 2845 

Maternal half sibs 1538 

Paternal half sibs 1806 

Maternal grandmothers 870 

Maternal grandfathers 869 

Paternal grandmothers 877 

Paternal grandfathers 873 

Founders 58 

Mean maternal sibship size 3.27 

Mean paternal sibship size 3.42 

Non-zero F 726 

F > 0.125 51 

Mean pairwise relatedness 0.07 

Pairwise relatedness > 0.125 0.20 

Pairwise relatedness > 0.25 0.03 

Pairwise relatedness > 0.5 0.01 
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6. General discussion 
 

6.1 Research summary 

 
In this thesis I have used, to date, one of the largest long-term datasets for a wild population to 

study telomere length, both methodological and biological. The use of longitudinal data has 

provided insights into telomere associations and life-history components that might otherwise have 

remained uncovered. Moreover, with the use of an experiment, I discovered that the long-term 

storage of blood samples is associated with relative telomere measurements on the qPCR, 

specifically affecting the measurements of our reference gene, GAPDH. Such sample storage effects 

may have profound implications for any study that is collecting data over a period of years. As 

telomeres continue to be a major focus of study, and more researchers are using longitudinal data, 

storage effects need to be considered when choosing a storage method. For studies that already 

have a large collection of blood samples, testing and consequently correcting for storage effects may 

be necessary. If storage effects are neglected, any biological telomere attrition may be confounded 

with methodological attrition. Given the long-term nature of most studies, it is important to check 

for any temporal effects of storage. 

 

Once I became aware of the methodological attrition of relative telomere measures with sample 

storage time, I ensured I corrected for this methodological telomere attrition in further analyses. In 

Chapter 3, I found that telomeres shorten with age within individual birds. On the population level, I 

found no attrition of telomeres with age. This finding indicates the occurrence of selective 

disappearance, where individuals with short telomeres disappeared out of the population (van de 

Pol & Wright 2009). In our Lundy house sparrow population, we consider individuals to be unable to 

leave the study area, and due to our strong efforts to catch and observe individuals, we know when 

individuals have died. Selective disappearance can only be observed by obtaining both cross-

sectional and longitudinal measurements in a closed population. If individuals with short telomeres 

are shorter lived than individuals with long telomeres, then telomeres may have fitness 

consequences.  

 

Another interesting finding in Chapter 3 was that telomeres did not only appear to shorten, but 

some individuals also showed elongation of telomeres. I showed that this is not due to measurement 

error. However, as telomere length is measured as an average length across blood cells, it is also 

possible that the average telomere length went up due to a higher prevalence of longer telomeres. 

Regardless, it is still possible the telomeres elongated in at least some individuals. There are benefits 
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associated with telomere elongation. For example, aging has been connected to critically short 

telomeres, which may lead to apoptosis and senescence and thus, telomere elongation could result 

in a reduction in cells with critically short telomeres (van Deursen 2014). Moreover, as telomere 

elongation can be the result of telomerase activity, telomerase itself has been related to tissue 

regeneration and benefits to health parameters, at least in mice (Reichert et al. 2014; Simons 2015). 

However, elongation can also come at a cost because elongation could be energetically costly, or 

pose a cancer risk (Young 2018).   

 

In Chapter 4 I was interested in the possibility that parents may pass on telomere length in a 

transgenerational way, so beyond the genetics and environment they provide to offspring. Using our 

cross-fostering experiment, which allowed me to separate genetic effects from rearing effects, I 

found that offspring telomere length was negatively associated with age for male biological parents. 

This was a within-male age effect, so individual males produced offspring with shorter telomeres as 

they aged. In contrast, offspring reared by older males had longer telomeres. Such an effect was only 

seen at the population level, meaning that individual rearing males did not increase their offspring's 

telomere lengths as they aged. Both the biological and social male effects that I found could be the 

result of selective disappearance. This selective disappearance could act at two levels: 1. Individual 

male level. As biological males that produce offspring with short telomeres disappear, males that 

produce offspring with long telomeres remain in the population at higher ages. For the social males, 

the males that rear offspring at higher ages with longer telomeres may also persist in the population. 

2. Offspring level. Older males may persist in the population, still producing offspring with shorter 

telomeres, but the offspring dies before its telomeres are measured. In Chapter 3 I find selective 

disappearance of individuals with short telomeres. It is thus likely that the level of selective 

disappearance acts on the offspring level. However, whether this is truly the case is a question for 

future research, where the survival of both parents and offspring needs to be assessed and 

compared. Regardless of the level at which selective disappearance may act, the effects of paternal 

age on offspring telomere length can have evolutionary consequences if telomere length, in turn, 

affects fitness. If older fathers produce offspring with shorter telomeres that consequently (although 

not necessarily causatively) have lower survival and fitness, then selection is expected to favour 

reproduction in young individuals. As such, the population age structure could be potentially shaped 

by telomere length or, as causation has not yet been shown, by the underlying (physiological) 

process that telomere length reflects.  
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In Chapter 5, I was interested in the heritability of telomere length. Specifically, I was interested in 

partitioning phenotypic variance of offspring telomere length in a heritable and environmental 

component. Our study design (cross-fostering and a strong pedigree) and insular population was the 

perfect candidate in which to apply an animal model, which allows the partitioning of the 

phenotypic variance into genetic and environmental components. Using an animal model, I found 

low heritability of telomere length. However, cohort and thus environmental variation in the year of 

birth explained a large part of the variance in telomere length. This evidence for the environment 

affecting telomere length is in concordance with many previous studies that found cohort or year 

effects (Spurgin et al. 2018; Watson et al. 2015; Fairlie et al. 2015). The low heritability may indicate 

that telomere length is connected to fitness, as traits with high fitness consequences tend to have 

low heritability estimates (Postma 2014). However, I have not assessed associations between 

telomere length and fitness in our population, and thus cannot infer that telomere length has fitness 

consequences.  

 

6.2 Telomeres as biomarkers of age 

 
The idea that telomeres reflect biological age (the age reflecting life-time experiences, such as 

stress) has been widely proposed and studied (Mather et al. 2011). However, the finding that 

telomeres may elongate in certain individuals indicates more plasticity in telomere length than 

previously envisaged and indicates that telomeres may not actually reflect cumulative biological age, 

as originally envisaged. Telomere length may instead reflect the recent state or current quality of an 

individual, and also reflect the ability of an individual to maintain or even elongate its telomeres 

(Boonekamp et al. 2013). This challenges the notion that telomeres may be biomarkers of biological 

age, where telomeres are proposed to reflect accumulated lifetime damage. However, I show in 

Chapter 3 that most individuals show an overall decline in telomere length with age, and that fitting 

a model that allowed individuals to have varying slopes did not provide a better fit than a model that 

did not have varying slopes for individuals. These two findings show that, even though a few 

individuals showed elongation of telomeres, the general trend is still a decline, which means that 

telomere length, at least for most individuals, can still be a viable biomarker of biological aging.  

 

6.3 Telomeres and causality 

 
Simons proposed previously that telomeres might reflect an individual’s state rather than play a 

causal role in the aging process (Simons 2015). Indeed, the evidence for a causal role in aging and 

senescence is weak in the current literature. Causality is usually inferred via correlation, which 

makes a wrong assumption (Simons 2015). However, one observation that would at least suggest 
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the possibility that telomeres are causally involved in aging and consequently survival is that the 

variance in telomere length is lower at older ages (Blasco 2005, 2007). Under this scenario the 

variance in telomere length reduces at older ages because, if telomere attrition causes lower 

survival, individuals with shorter telomeres will die sooner than individuals with long telomeres. 

Indeed, in Chapter 3 I show that individuals with short telomeres have lower survival in our house 

sparrow population, as indicated by selective disappearance. While such a finding does not confirm a 

causal role of telomeres in aging and survival, it does not rule out causality either.  

 

6.4 Evolutionary potential 

 
Individuals that can maintain telomere length (or even elongate their telomeres) may be at a 

selective advantage. After all, individuals with long telomeres have higher survival (as I show in 

Chapter 3), and pass on longer telomeres to their offspring via both genetics and transgenerational 

effects (as shown in Chapters 4 and 5, respectively). However, if individuals with short telomeres 

have lower survival, and then probably lower fitness, why has selection not favoured telomeres to 

elongate? Young (2018) proposes two plausible explanations. One hypothesis proposes that there 

are actual fitness benefits to telomere attrition. These fitness benefits would arise due to several 

functions that telomere attrition could have. One such function is cancer surveillance. Telomeres can 

act as surveyors for cancer because attrition keeps track of oxidative damage and cellular 

proliferation in the absence of telomerase. When cells divide without telomerase (as may occur in 

cancerous cells), then telomeres may become unstable, which in turn may trigger cellular responses 

that can lead to apoptosis (Fumagali et al. 2012; Campisi 2013). However, also for this hypothesis, 

the fitness benefits of reducing cancer risks should outweigh the costs in fitness when such 

reductions are not undertaken. Whether this is the case in wild populations remains a question for 

debate. However, even though cancer prevalence in animals is considered to be rare, the fitness 

consequences of cancer are still estimated to be high (Effron et al. 1977). This suggests that 

preventing cancer via telomeres could result in fitness benefits that explain why telomere attrition 

still occurs.  

 

A second hypothesis proposes that telomere maintenance or elongation in itself is costly (called the 

costly maintenance hypothesis), under the assumption that telomere dynamics are part of the 

present-future trade-off and, as such, maintenance of telomeres entails resource costs. Additionally, 

costs could also occur due to other biological factors, for example when maintenance includes a risk 

to chromosomal integrity. Only when the costs of telomere maintenance outweigh the benefits, 

telomere attrition would be selected for. However, regardless of the pathway that would induce 
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costs to maintain or elongate telomere length, in the grand scheme of current-future trade-offs, it is 

not likely that telomeres play a major role for two reasons: First, telomere attrition can be low (for 

example, in humans only 20–30 base-pairs a year, Daniali et al. 2013). Second, maintenance can only 

result in small costs, along with the fact that large regions of junk DNA persist (and are thus 

maintained) that put the much smaller telomeric regions into the shade (Young 2018). However, 

telomeres could still potentially be, in some part, part of the trade-off network. 

 

Understanding that telomere length can potentially be traded-off with, for example reproduction or 

maintenance will help us identify the sources of variation in life-history traits. Explaining diversity is a 

major goal in evolutionary biology (Stearns 1992) and it is now clear that telomeres should not be 

overlooked when trying to explain variation in life-history traits.  

 

6.5 The future and telomeres 

 
I found strong year effects when assessing the heritability of telomeres, as is shown in Chapter 5. 

This indicates that there is a strong environmental component to telomere length. As all individuals 

that were measured in this study were post-fledglings, it seems reasonable to assume that the 

genetic component of telomere length may have been eroded over time as environmental impacts 

caused telomere attrition. This means that, even though we found that telomeres were heritable, 

the heritability at birth may have been underestimated. In order to fully understand the heritability 

of telomeres, it would be beneficial to measure samples in very young birds. As we routinely take 

blood samples from individuals as young as two days old, the next logical step will be to measure the 

telomere length of these young individuals.  

 

It will be difficult to demonstrate that telomeres play a causal role in the aging process if only 

correlative studies are undertaken. It is evident that experiments are required to provide insight into 

the causes and consequences of telomere length. Such experiments usually entail experiments that 

manipulate telomerase, or that increase the workload of parents or individuals via brood-size 

manipulations or by providing extra weight to individuals. The expectations here are that less 

telomerase leads to telomere loss and the stress caused by the extra workload would lead to 

telomere shortening and would affect survival. To date, experimental studies have mostly been 

undertaken in the laboratory, where telomerase knock-out studies are often used to show the 

potential of a causal link between telomere length and mortality (Simons 2015). However, even 

though telomerase deficient mice and zebrafish showed shortened lifespans, the telomere 

shortening was beyond that seen in natural conditions, and does thus not reflect the normal aging 
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process (Henriques et al. 2013). In order to stay within a more natural range of variation in telomere 

length, appropriate experiments need to be conducted in the wild. But this may be difficult, as wild 

populations are affected by many (environmental) conditions that, instead of the experiment, affect 

telomere length. Even manipulating telomerase is not straightforward, as telomerase may affect 

more than telomere length only (Cong & Shay 2008). 

 

One study that did try to show causation was performed on wild great tits, Parus major, in the 

Netherlands (Atema 2017). Individuals were fitted with extra weights (up to 5% of the body mass) to 

increase their workloads. No effects on survival and telomere length were found. A similar 

experiment in Adelie penguins, Pygoscelis adeliae, provided similar results (Beaulieu et al. 2011). 

Whether the lack of an impact of the extra workload was due to the lack of a causal impact of 

workload on telomere attrition, or the impact of the extra weight being less than that of natural 

lifetime stresses, remains unclear. Also brood-size manipulations, where parents are expected to 

expend more energy on enlarged broods, which is expected to affect telomeres and consequently 

survival, can provide confusing results as it may be unclear what the brood-manipulation does to a 

parent. For example, parents may have to increase energy expenditure, which may affect telomere 

length and survival, as expected. Alternatively, parents may take more risks, which do not cost more 

energy but may yield higher provisioning rates. The laboratory and wild studies show clearly that 

providing evidence for a causal relationship between telomere length and mortality is not 

straightforward. One could also question why evidence for a causal role of telomeres bears so much 

weight. After all, it is possible that telomeres reflect other processes that are the actual cause of 

mortality. The study of telomeres is no less interesting if there is no causality of this nature because, 

as a biomarker of underlying processes, we can still make predictions of, or inferences to, for 

example, mortality. The future for telomeres thus lies in both experimenting in wild populations and 

trying to understand what (physiological) processes telomeres may reflect.  
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